ecipes

A Problem-Solution Approach
Mohamed Mustapha Tahrioui

ApPress’

asyncio Recipes
A Problem-Solution Approach

Mohamed Mustapha Tahrioui

Apress’

asyncio Recipes

Mohamed Mustapha Tahrioui
Darmstadt, Hessen, Germany

ISBN-13 (pbk): 978-1-4842-4400-5 ISBN-13 (electronic): 978-1-4842-4401-2
https://doi.org/10.1007/978-1-4842-4401-2

Copyright © 2019 by Mohamed Mustapha Tahrioui

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4400-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-4401-2

For my beloved mother and father.

Table of Contents

About the Authorccciiiseemmmmnssnsnmmmssssmmsass s ————— Xix
About the Technical REVIEWETccusseesssssnsssssnsssssnsssssssssssnsssssanssssnnss xxi
Acknowledgments.......cccveummsssssssssnnnnmesssssssssssnsssssssssssssssnsnnnsssessssnns XXiii
INtroductionccccunnssnmmmmmssssnnnmssssssnnmsssssnnnsssssnnnnnssssnnnnnsssnnnnnnnssnnnnnns XXV
Chapter 1: Preparing for the ReCipescciuussemmnssssssnnnssssssnsnssssssnnnsasss 1
WRAL IS ASYNCIO?......evcereerrerererreresessersessesessessessesae s s e ssesaesassessesaesassessesaessssssnesaeses 1
What Is This Book’s Approach t0 asyncio?.........cceevvrrerinsnsensesiessssessessessssessessenns 2
Chapter 2: Working with Event LOOPS.......cccounnmmmmmmmmmnnnssssssssssssnsssesssnes 5
Locating the Currently RUnning LOOP.......ccovremrereneresesenesesesess s e 6
ProDIBM ... ————————— 6
SOIULION ... 6

HOW EWOTKS ...ttt 7
Creating @ New LoOp INSEANCEccoveerverrrenernseress s s sessenens 8
ProDIBM ... ————————— 8
SOIULION .t 9

HOW EWOTKS ..ottt e 9
Attaching a Loop to the Thread Problem..........cccovvvnncnnennesensse e 11
SOIULION .t ——— 11

HOW [EWOPKS ..o s sne s ne s s 12

TABLE OF CONTENTS

Attaching a Loop 10 the Process ..o 12
PrODIBM ... 12
Solution #1 (UNIX ONIY)...ecurriererererereresesesesesssssssssssssssssssssssssssesesesessssssssssasas 13
HOW [EWOTKS ...t 14
SOIULION H2 ..t 15
HOW [EWOTKS ..ot 17

RUNNING @ LOOP ...ceiieecerer et s e n e s s s e 19
PrODIBM ... 19
RST8] 11 TP 20
HOW [EWOTKS ...t 20

Running Async Code Without Bothering About LOOPSccceeerrvererenereccrinccnen 21
(10 1T TR 21
RST8] 1o TP 22
HOW [EWOTKS ... e 22

Running a Loop Until a Coroutine FiniShesc.cccvivninvnnnnnncninennsensennens 23
(o (0] T TR 23
B30 110 I 23
HOW [EWOTKS ... 23
B30 110 I 2N 24
HOW [EWOTKS ... 24
SOIULION #3 . 25
HOW [EWOTKS ..ot 26

Scheduling Callbacks 0N @ LOOPcccvcvvrernnnsnnness s ses e 26
(o (0] T T 26
B30 10 I S 26
HOW [EWOTKS ... s 27
B30 110 I 2T 28
HOW [EWOTKS ... 30

TABLE OF CONTENTS

Scheduling Coroutings 0N @ LOOPccvververerenesserseressssessessessessssessessessessssessesses 31
PrODIBM ... 31
SOIUTION H1 .t 31
HOW [EWOTKS ...t 32
SOIULION H2 ..o 34
HOW [EWOTKS ...t 35

Calling Blocking Code 0N @ LOOP......ccccvererrerernnenserseressssessessessssessessessessssessensens 35
(o 10] 1T N 35
RST8] 11 RS 35
HOW [EWOTKS ..o 37

Running a Coroutine Specifically on One LOOPccccccvveverercrnverenieneseseresenenns 38
(0] 1T TR 38
SOIULION H1 . 38
HOW [EWOTKS ... 39
SOIULION H2 ..t 39
HOW [EWOTKS ... 40

Stopping and CloSing @ LOOPcccvervvnrnenn e sessessesnes 40
Lo £0] T TR 40
£ o] 11 0] 40
HOW [EWOTKS ...t 41

Adding a Loop Signal HandIercccoeereerrienerenereeresesesee e 41
(10] T 41
SOIULION (UNIX ONIY)..oreeeceree e 42
HOW [EWOTKS ... 43

Spawning a Subprocess from @ Loopccccocevnvninennnnsnne s 43
(10 T S 43
£ o] 11 170 S 43
HOW [EWOTKS ... 45

vii

TABLE OF CONTENTS

Waiting for Subprocess Terminationcccvvvvvniennnensnsessess s sessessessenns 46
PrODIBM ... 46
SOIULION <.ttt 46
HOW [EWOTKS ...t 48

Chapter 3: Working with Coroutines and Async/Await.........ccceusssnnnnes 49

Writing Generator-Based Coroutine FUNCLIONS.........ccccovecrnccrencnnesernccneneens 50
(o (0] 1T T 50
B30 10T 50
HOW [EWOTKS ... 50

Writing a Native Coroutingcccocvvvninininnnsnsne s 51
(10 1T T 51
£ 0] 11 0] R 51
HOW [EWOTKS ... 52

Running a Coroutine and Blocking/Waiting Until It Finishes........c.cccocevvrernienne. 53
(o (0]] T T 53
£ 0] 11 0] 53
HOW [EWOTKS ...t 53

Running a Coroutine and Waiting for It to Finish.........c.ccoviverncnniesneserncenens 55
Lo (0] T RS 55
£ 0] 11 110 ST 55
HOW [EWOTKS ... 56

Waiting on a Coroutine with @ TIMEOULc.cccvverniennesernsessese e 56
ProDIBM ... s 56
E3 0] 0] OSSR 56
HOW [EWOTKS ...t 57

viii

TABLE OF CONTENTS

Cancelling @ COrOULINEccvevererrerieressesesseressessssessessessssessessessesessessessessssensessens 57
PrODIBM ... 57
SOIUTION H1 .t 58
HOW [EWOTKS ...t 59
SOIULION H2 ..o 59
HOW [EWOTKS ...t 60

Cancelling Multiple COrOULINEScccvevuererrerereserserseressssessessessesessessessessssessessens 60
(o 10] 1T N 60
RST8] 11 RS 61
HOW [EWOTKS ..o 62

Shielding a Coroutine from Cancellation...........c.ccocooevrnvnnerrncrnsenn e 63
(0] 1T TR 63
RST8] 1] PSR 63
HOW [EWOTKS ... 64

Chaining COrOULINES........cccveririrsiriere s s ene 65
(o (0] 1T TR 65
£ 0] 11 70 65
HOW [EWOTKS ..o 65

Waiting on Multiple COroutingScoveerrrererenernsesesesesese s sesesesssnens 66
(o0] T T 66
£ o] 11 0] T 66
HOW [EWOTKS ... 67

Waiting on Multiple Coroutines with Different Heuristicsccccocvvrevniniennne 68
(o101 T RS 68
Lo 11 110 3 R 68
L0 111 110 27 69
o] 11 110 = R 70
HOW [EWOTKS ... 71

ix

TABLE OF CONTENTS

Waiting on Multiple Coroutines and Ignoring EXCeptions.........cccvvvrererenserseraenns 72
PrODIBM ... 72
SOIULION ...t 72
HOW [EWOTKS ...t 73

Waiting for a Specific CoNdition...........cccvverrevenrenrenieresessessesese s sessesessenes 74
PrODIBM ... s 74
RST8] 11 PSR 74
HOW [EWOTKS ...t 75

Chapter 4: Working with Async Generators.........cccuseessesssssnsssssssnnnnes 77

Writing an ASYNC GENEIATONccoeoereeecrerererese e 78
(o (0]] T T 78
£ 0] 111 0] 78
HOW [EWOTKSeceeeeceereecrerc s 79

Running an ASYNC GENEIator...........ccoveererererenerrese s senns 79
(18] T RS 79
£ 0] 11 10 ST 79
HOW [EWOTKS ..o 80

Wrapping an Async Generator in an Async Comprehensionccccocevvvniernenn 81
(0] 1T SO STT 81
B3 0] 0] RS 81
HOW [EWOTKS ... e sn s sessssnssssensnnes 84

Writing a State Machine with an ASync Generator.............c.covvnnensennnsssscsenens 84
ProDIBM ... s 84
E3 0] 0] SRS 84
HOW IEWOIKS ...t 89

TABLE OF CONTENTS

Cleaning Up After Using ASYNC GENETratorscvvvrerererserserersesessessessessssessessens 90
PrODIBM ... 90
SOIULION ...ttt 90
HOW [EWOTKS ..ot 91
HOW [EWOTKS ..ot 92

Wring an Asynchronous Generator Based Web Crawler.........coocovvevverevenserseraens 92
PrODIBM ... 92
RST8] 11 PSR 92
HOW [EWOTKS ..o s 95

Chapter 5: Working with Async Context Manager........cccoussenressssnnnnes 97

Writing an Async Context Managerccoveernrrnenerenerenseseseses s esesneens 98
£ 0] 11 0] 98
HOW [EWOTKS ... 100

Running an Async Context Managerccovevrnererenerensesessesesesesessesessssessens 100
IS0 111 7o) S 100
HOW [EWOTKS ... 102

Synchronizing Pending Coroutines to Finish Cleanly............ccoccovvererrenernscnen. 102
B30 0] SRS 102
HOW [EWOTKS ... se s s 104

Interacting Asynchronously with a Closeable ReSOUICEcceveernrererrenernane. 104
SOIULION ...t 104
HOW IEWOIKS ... 105

Writing a Loop Worker Pool Async Context Managerccoevvvvvverieveesensensennes 106
SOIULION ..o 106
HOW [EWOTKS ... s 109

TABLE OF CONTENTS

Writing a Subprocess Worker Pool Async Context Managerccoeevvversersennes 110
SOIUTION ...t 110
HOW [EWOTKS ...t s 112

Chapter 6: Communication Between Asyncio Components.............. 113

Sending Additional Information to an Asynchronous Generator.............ccc....... 114
0]] T TR 114
£ 10 0] O 115
HOW [EWOTKS ... 116

Using Queues With COroutings.........cuvvrrrnirnsnsnse s 117
(0]] T TS 117
£ o] 111 0] 117
HOW [EWOTKS ... 119

Communicating with a Subprocess Using Streams..........ccccoevvnvnnniennieniennens 120
Solution #1: Windows and UNIX..........ccooerrmnrmnenernsnmresesessesese e sessesenns 121
SolUtion #2: UNIX ONIY ... s sessenenns 123
HOW [EWOTKS ... 125

Writing a Simple RPC System with ASYNCio.........ccovvrrnsnnsenenneneresesesseseneens 126
IS o] 11 0] S 127
HOW [EWOTKS ... 139

Writing Callbacks that Have a “Memory” Using Contextvars..........cccoousererenens 143
SOIULION #1 ..ot 143
HOW IEWOIKS ...t 144
SOIULION #2 ..o s 144
HOW [EWOTKS ... se s s snssenens 145

xii

TABLE OF CONTENTS

Chapter 7: Synchronization Between Asyncio Components............. 147
Using Locks for Mutual Exclusive Access to a Shared Resource...........ccc.cu..... 148
(0]] T S 148
£ 18] 10O 149
HOW [EWOTKS ... 150
Using Events for Notification.........ccccooevvinininnnnsn s 152
(0]] T TS 152
£ o] 11 0] 152
HOW [EWOTKS ... 153
Using Condition Variables for Control FIOWccccvoeeernnenenenerencsessesessesesennes 154
0]] T TS 154
RS0 111 0] 154
HOW [EWOTKS ... 156
Using Semaphores to Restrict Concurrent Resource ACCesS.......c.ccuvevvrerrernens 157
0]] T TSRS 157
IS o] 11 0] PSS 157
HOW [EWOTKS ... 158
Using Bounded Semaphores to Restrict Concurrent Resource
Access with Stricter Release HeuristiCs ... 159
ProBIEM ...t ——————————— 159
SOIULION ...t 159
HOW IEWOIKS ...t 160
Detecting Asyncio Code That Might Have Race Conditions..........c.ccoeevvvrenieraene 160
ProBIBM ... ———————— 160
SOIULION H#1 .. ———— 160
HOW [EWOTKS ...t s 161
SOIULION H2 ...t 162
HOW [EWOTKS ...t 163

xiii

TABLE OF CONTENTS

Chapter 8: Improving Asyncio Applicationsccccuseessrnssssnsnsssssnns 165
Profiling Asyncio AppliCations...........ccceevernennsnsns e 165
PrODIBM ... 165

£ 10 0] TR 166
HOW [EWOTKS ...t 167
Building a Simple Profiling Library...........ccccovvninvnininnnsnnnsss s 169
(0]] T TS 169

£ o] 11 0] 170
HOW [EWOTKS ... 177
Spotting a Long-Running COrouting.........c.coceeerenernseseneneseneressesessesesse e sessenenns 186
e 10]] T TS 186
RS0 11 0] 186
HOW [EWOTKS ...t 187
Refactoring “Old School” ASyncio COde...........ccovermrererensesenenerene s 189
0]] T TSR 189
Lo 11 110 I S 189
HOW [EWOTKS ... 192
Lo 11 110 7SS 195
HOW [EWOTKS ... s s 198
AVOIdiNG BUSY LOOPS ...ecuveveuerrnsesersenssesesrssessssesesssesessessssssesssssssssssssssssssssssssssnens 201
0]] T SRS 201

RS0 0] TS 201
HOW [EWOTKS ... e e senssssnsenens 202

Xiv

TABLE OF CONTENTS

Chapter 9: Working with Network Protocolsccussemsessssnnnsssssnnns 207
Writing a Protocol Subclass for a Simple Remote Command Server................ 209
PrODIBM ... 209

£ 18] 10O 210
HOW [EWOTKS ... 213
Writing a Protocol Subclass for a Simple Remote Command Client.................. 218
(0]] T TS 218

£ o] 11 0] 218
HOW [EWOTKS ... 220
Writing @ Simple HTTP SEIVEr........covieereerrreresesese e sessesesnnnens 222
0]] T TS 222
RS0 111 0] 222
HOW [EWOTKS ... 230
Executing Shell Commands Remotely Over SSHccooovreirecrnscnenenennne 241
0]] T TSRS 241

IS o] 11 0] PSS 241
HOW [EWOTKS ... 246
Chapter 10: Preventing Common Asyncio Mistakes........ccusseesnenssnnns 255
Handling Asyncio-Related EXCEPLIONS........ccccvvververiennnensenie s sesese s sesessens 255
ProBIEM ... ——————— 255
SOIULION H#1 ..o —————— 255
HOW [EWOTKS ...t 257
SOIULION H#2 ... —————————————— 259
HOW [EWOTKS ... 260

TABLE OF CONTENTS

Spotting a Long-RUnning TASKccceveerervereresemsersesessssessessessssessessessessssessessens 263
ProOBIBM ... 263
SOIULION ...t 263
HOW [EWOTKS ...t s 265

Spotting a Long-Running CallDACK.........ccvrerrererreriereresserseressssessessessessssessessens 267
PrODIBM ... 267
R0 1] P 267
HOW [EWOTKS ...t 268

Building a Coroutine Debugging Macro Librarycccccccvvviernsnsnenssensenenns 268
(0]] T TSR 268
RST8] 11 (o] TSR 268
HOW [EWOTKS ...t 271

Writing TEStS fOr ASYNCI0........coveecrercrerereree s 275
0]] T TS 275
RS0 0] T 275
HOW [EWOTKS ... 277

Writing Tests for Pytest (Using Pytest-ASYNCio)c.ccccvveerrrererenereserensenennenens 281
(0]] T TSR 281
RS0 0] RN 281
HOW [EWOTKS ... e s 283

Writing Tests for ASYNCIESL........ccoveevrenerermrnse s 285
(0]] T TS SR 285
B30 10 S 285
HOW [t WOTKS....c.coereeeriecrerenere s s 287

Writing Tests for DOCLEST..........ccvvcvnenenee e 289
ProBIBM ... 289
B30 0] SRS 289
HOW [EWOTKS ...t se s e snnneens 291

TABLE OF CONTENTS

Appendix A: Setting Up Your Environment........ccccccnmnnssnnnnnnssssnnnsnns 293
The INTEIPreter ... ———— 293
AVAIIADITITYcovecerececeee e ———————— 293
PEIfOIMANCE......ce et 294
SUMMING R UP e e 294

THE SEIUP ... ———————— 295
WINAOWS ... e e 296
Setuptools and Pip........coccrvrrinnnnn e 297
12T TR 298
11 R 299
Appendix B: EVent LOOPSccuussemmmmmssssnnsmsssssssnmsssssssnssssssssnssssssnsssssns 301
NesSting CallDACKSecerrrererrenerrnsersssesesssesrssessssessss e ssssessssesessssessssessssssessanes 302
FUTUIES/PIOMISES.....cvecciri e 302
(0] (1] 302
The Lifecycle of Event LOOPS iN ASYNCIOccoucverennninsesienesns s sessessennes 303
The 1dle STALE ..o 303
The Running State ... s sessessesnens 303

The Stopped State ... ———— 304

The CloSed State.........cccvererrrrerererese e 304
Basic Classes for EVent LOOPS ... sesesse e sesse s 305
AbStractEventLoop. ... 305
BaSEEVENILOODccvvirererie it 306

Are Event Loops 0S SPECIfiIC?ccccvvririnninienie s sessese s sessessessens 306
INA@X.eeeiiiemisiesssien s —————— 309

xvii

About the Author

Mohamed Mustapha Tahrioui has been a
programmer for seven years and currently
serves as a senior software engineer at
axxessio. He is on the core team of the asyncio-
heavy Telekom Smarthub project, where

he offers his expertise for implementation,
backward compatible architecture and
implementation. He also offers full stack
development via his IT consultancy Pi

Intelligence, using Python, Java, JavaScript,
Docker, PostgreSQL, MongoDB, and more.

Xix

About the Technical Reviewer

Said El Mallouki is a textbook computer geek
with decades of experience designing and
developing enterprise IT systems. His early
encounters with the internals of computers
took place at IBM’s production facility in
Germany more than two decades ago. In his
current occupation as a technology lead, he is

developing a toolchain for a natural language-
understanding system at Deutsche Telekom.
The intricacies of complex distributed systems were always on the top

of his interest list. With three degrees in IT, business, and marketing, he
combines a solid theoretical foundation with plenty of real-life experience.
Living in Germany by the Rhine with his wife Andrea and their 18-month
son Felix, his current favorite leisure activity is to be a devoted father.

Acknowledgments

I'would like to express my deep gratitude to

Mrs. Aditee Mirashi

Mr. Todd Green

Mr. Celestin Suresh John
Mr. James Markham

Mr. Matthew Moodle
Mr. Said El Mallouki

for their invaluable efforts during the execution of my book.
Furthermore, my special thanks are extended to my company axxessio
and in special to

Mr. Goodarz Mahboobi
Mr. Keyvan Mahbobi

xxiii

Introduction

Motivation

The Python programming language adopted a preemptive concurrency
framework in the early 90s via the threading module, which strived to
mimic the Java concurrency library, as per the respective commit message.

A simple but powerful mechanism governs concurrent execution of
bytecode in most Python implementations. This mechanism is called the
GIL (global interpreter lock). The interpreter consumes one bytecode
instruction at a time.

This effectively means that only one thread can run at the same time
(in one interpreter process). Despite this fact, the underlying native thread
implementation might be able to run more than one thread at a time.

The threads are appointed “fair” amounts of CPU time. Without
employing sophisticated introspection techniques, this boils down to
simple/naive time-based scheduling algorithms.

Taking this approach in the past would often yield inferior solutions to
an equivalent single threaded program, for Python implementation with a
GIL like CPython.

Since removing the GIL is not an option,' and prior attempts like
Python safe-thread? failed because they degraded the single threading
performance significantly, the concurrency situation meant having only
the threading module.

'https://docs.python.org/3/faq/library.html#can-t-we-get-rid-of-the-
global-interpreter-lock
*https://code.google.com/archive/p/python-safethread

https://docs.python.org/3/faq/library.html#can-t-we-get-rid-of-the-global-interpreter-lock
https://docs.python.org/3/faq/library.html#can-t-we-get-rid-of-the-global-interpreter-lock
https://code.google.com/archive/p/python-safethread

INTRODUCTION

What Is Asyncio?

The cooperative concurrency framework asyncio was written to address
the need for fast single-threaded programs that don't waste CPU time on
I/0 bound tasks.

Its primitives like coroutines and event loops allow developers to
execute code only when it’s not waiting for I/O and to yield control back
for other tasks.

Conclusion

Since its advent, asyncio has added countless APIs and keywords to the
Python language (async/await). Its steep learning curve scares some
developers from trying it. However, it’s a powerful technology that’s even
been used by big players like Instagram?.

The motivation of this book is to help more developers adopt asyncio
and experience the joy of using asyncio for fun and profit. With that said,
enjoy this book while learning more about asyncio!

*https://www.youtube.com/watch?v=ACgMTgX5Ee4

XxXVi

https://www.youtube.com/watch?v=ACgMTqX5Ee4

CHAPTER 1

Preparing
for the Recipes

This chapter explains what asyncio is at a very high-level view and puts
the APIs into perspective. It also explains the teaching approach that this
book takes.

What Is Asyncio?

The Python language, in version 3.4, has adopted a powerful cooperative
concurrency framework called asyncio. This cooperative concurrency
framework can be roughly split into high- and low-level APIs, as shown in
Figure 1-1.

© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_1

CHAPTER 1 PREPARING FOR THE RECIPES

HIGH LEVEL EVENTS LOW LEVEL EVENTS
COROUTINES EVENT LOOP

el

Figure 1-1. High- and low-level APIs of asyncio

A lot of usability improvements were added to asyncio in Python
version 3.7, including the asyncio. run API, which abstracts direct access
to event loops away and a couple of housekeeping tasks away from the
developer.

As aresult, the APIs for the most part are coroutines and task related.
Nonetheless, more exotic APIs—like transports and protocols—are also
discussed.

We feel that a bottom-up approach is better suited to teaching asyncio.
Although We do classify some of these APIs as low-level, whereas they are
often considered high-level. This approach is outlined in the next section.

What Is This Book’s Approach to asyncio?

The book follows a bottom-up approach and can be roughly split into the
topics shown in Figure 1-2.

CHAPTER 1 PREPARING FOR THE RECIPES

LOW LEVEL APIS / UNDERSTANDING

HIGH LEVEL APIS / REAL WORLD

SYNCHRONIZING BETWEEN ASYNCIO

EVENT LOOP COMPONENTS

COMMUNICATION BETWEEN ASYNCIO

EVENT LOOP POLICIES sl

COROUTINES AND TASKS IMPROVING ASYNCIO APPLICATIONS

ASYNC GENERATORS WORKING WITH NETWORK PROTOCOLS

ASYNC CONTEXT MANAGERS PREVENTING COMMON ASYNCIO MISTAKES

Figure 1-2. The book’s approach to asyncio

The topics are roughly introduced in terms of:
o Importance: To get a firm understanding of asyncio

e Precedence: In case they are needed to explain more
advanced topics

Since event loops live in the context of event loop policies—a concept
singular to asyncio—the book’s approach is to introduce low-level
concepts like event loops, event loop policies, and watchers first. After that,
we go over the coroutine and tasks APIs (which I consider low level too)
that abstract the async working units.

Async generators and async context managers are powerful and
compound, yet low-level tools and their respective use cases are
discussed next.

w

CHAPTER 1 PREPARING FOR THE RECIPES

In the high-level section, you learn how to:

e Make sure you do not run into race conditions when
synchronizing, the Coffman conditions (necessary
but not sufficient requirements for race conditions),
asyncio’s versions of locks and semaphores, and how
race conditions manifest in asyncio code.

e Make asyncio components talk to each other, including
how to implement traditional producer-consumer
patterns, client-server schemes, etc.

o Improve an asyncio application, including how to
migrate to a newer Python API version and how to
detect deprecated APIs.

o Implement your own binary protocols and implement
existing protocols, including how to use asyncio’s
powerful protocol and transport abstractions.

e Avoid common mistakes, including how to avoid too
long-blocking code, miss an await keyword, etc.

This approach was chosen to support your journey toward
understanding asyncio without too many technical intricacies at the wrong
time. With that said, I hope you enjoy the book!

CHAPTER 2

Working with Event
Loops

Python version 3.4 has adopted a powerful framework to support
concurrent execution of code: asyncio. This framework uses event loops to
orchestrate the callbacks and asynchronous tasks. Event loops live in the
context of event loop policies—a concept singular to asyncio. The interplay
among coroutines, event loops, and policies is illustrated in Figure 2-1.

. EVENT LOOP
heduled
o5 :,., o poLICY

is represented

., .
L .

reports back status/
continues yields back control

Figure 2-1. Coroutines, event loops, and policies

Coroutines can be thought of as functions you can “pause” at stages
explicitly marked with some sort of syntactical element. The coroutine’s
state is tracked via a task object, instantiated by the respective event

© Mohamed Mustapha Tahrioui 2019 5
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_2

CHAPTER 2 WORKING WITH EVENT LOOPS

loop. The event loop keeps track of which task is currently running and
delegates CPU time from idling coroutines to a pending one.

In the course of this chapter, we will find out more about the event
loop’s interface and its lifecycle. Event loop policies - and the impact global
asyncio APIs have on them, will be discussed. For more information on the
event loop concept, the different kinds of async work unit representations
(callbacks, promises/futures, and coroutines), why event loops are OS
specific, or guidance on subclassing an event loop, consult Appendix B.

Locating the Currently Running Loop
Problem

For various reasons, it is imperative that a concurrency framework is able
to tell you whether an event loop is currently running and which one it
is. For instance, it might be essential for your code to assert that only one
certain loop implementation is running your task. Hence only one task
can alter some shared resource or to be sure that your callbacks will be
dispatched.

Solution

Use the global asyncio.get event loop and asyncio.get running loop
APIs.

Option 1

import asyncio
loop = asyncio.get event_loop()

CHAPTER 2 WORKING WITH EVENT LOOPS

Option 2

import asyncio

try:

loop = asyncio.get running loop()

except RuntimeError:
print("No loop running")

How It Works

In >= Python 3.7, there are two valid ways to get the currently running loop

instance.

We can call asyncio.get event loop orasyncio.get running loop.
But what does asyncio.get _event loop do under the hood?Itis a
convenience wrapper for the following:

1.

Check if there is a loop running at the point of
calling the function.

Return the running loop whose pid matches the
current process pid, if there are any.

If not, get the thread-global LoopPolicy instance
that’s stored in a global variable in the asyncio
module.

If it is not set, instantiate it with the
DefaultLoopPolicy using alock.

Note that the DefaultLoopPolicy is OS dependent
and subclasses BaseDefaultEventLoopPolicy,
which provides a default implementation of loop.
get_event_loop, which is called.

CHAPTER 2 WORKING WITH EVENT LOOPS

6. Here is the catch: The loop policy.get event loop
method instantiates a loop only if you are on the
main thread and assigns it to a thread local variable.

If you are not on the main thread and no running
loop is instantiated by other means, it will raise a
RuntimeError.

This process has some issues:

o get event loop checks for the existence and returns
the currently running loop.

o The eventloop policy is stored thread globally, whereas
the loop instance is stored thread locally.

o Ifyou are on the main thread, get_event_loop will
instantiate the loop and save the instance thread locally
inside the policy.

e Ifyouare not on the main thread, it will raise a
RuntimeError.

asyncio.get _running loop works differently. It will always return the
currently running loop instance if there is one running. If there is none, it
will raise a RuntimeError.

Creating a New Loop Instance
Problem

Since loops in asyncio are tightly coupled with the concept of loop
policies, it not advisable to create the loop instances via the loop
constructor. Otherwise, we might run into issues of scoping since the
global asyncio.get_event_loop function retrieves only loops that
either it created itself or was set via asyncio.set_event loop.

CHAPTER 2 WORKING WITH EVENT LOOPS

Solution

To create a new event loop instance, we will use the asyncio.new_event
loop API.

Note This API does not alter the currently installed event loop
but initializes the (asyncio) global event loop policy - if it was not
initialized before.

Another gotcha is that we will attach the newly created loop to the
event loop policy’s watcher to make sure that our event loop monitors the
termination of newly spawned subprocesses on UNIX systems.

import asyncio
import sys

loop = asyncio.new_event loop()

print(loop) # Print the loop
asyncio.set _event loop(loop)

if sys.platform != "win32":
watcher = asyncio.get child watcher()
watcher.attach_loop(loop)

How It Works

The asyncio.get _event loop API only instantiates the loop if invoked
from the main thread. Don’t use any convenience wrappers to create the
loop and store it yourself, like shown. This is sure to work on any thread
and makes the creation of the loop side-effect free (besides the global
creation of the asyncio.DefaultLoopPolicy).

CHAPTER 2 WORKING WITH EVENT LOOPS
Here is evidence that a loop is bound to a thread:

import asyncio
from threading import Thread

class LoopShowerThread(Thread):
def run(self):
try:
loop = asyncio.get event loop()
print(loop)
except RuntimeError:
print("No event loop!")

loop = asyncio.get_event_loop()
print(loop)

thread = LoopShowerThread()
thread.start()
thread.join()

In essence, this code contains a threading.Thread subclass definition
that fetches the loop policy scoped loop.

Since we do not alter the DefaultLoopPolicy here, which holds one
thread local loop, we can see that just calling asyncio.get_event loop
inside the LoopShowerThread is not enough to get a loop instance in a
thread before instantiating it. The reason is that asyncio.get event loop
simply creates a loop on the main thread.

Also, we can see that calling the following on the main thread
beforehand does not affect the outcome, as predicted:

loop = asyncio.get event loop()
print(loop)

10

CHAPTER 2 WORKING WITH EVENT LOOPS

Attaching a Loop to the Thread Problem

Creating one loop per thread that’s bond to the thread and which’s
finishing can be also awaited can be a challenging task. Later we learn
about the executor API, which allows us to execute blocking coroutine calls
as non-blocking calls by executing the respective calls on a thread pool.

Solution

Using the threading. Thread and the side-effect-free (besides event loop
policy creation) asyncio.new_event loop APIs, we can create thread
instances that have unique event loop instances.

import asyncio
import threading

def create event loop thread(worker, *args, **kwargs):
def worker(*args, **kwargs):
loop = asyncio.new event loop()
asyncio.set _event loop(loop)
try:

loop.run _until complete(worker(*args, **kwargs))

finally:
loop.close()

return threading.Thread(target= worker, args=args,
kwargs=kwargs)

async def print_coro(*args, **kwargs):
print(f"Inside the print coro on {threading.get ident()}:",
(args, kwargs))

def start threads(*threads):
[t.start() for t in threads if isinstance(t, threading.Thread)]

11

CHAPTER 2 WORKING WITH EVENT LOOPS

def join_threads(*threads):
[t.join() for t in threads if isinstance(t, threading.Thread)]

def main():
workers = [create event loop thread(print coro) for i in
range(10)]
start_threads(*workers)
join_threads(*workers)

if name_ ==" main_"':

main()

How It Works

Loops live in the context of a loop policy. The DefaultLoopPolicy scopes
the loop per thread and does not allow creation of a loop outside a main
thread via asyncio.get_event_loop. Hence, we must create a thread local
event loop via asyncio.set _event loop(asyncio.new_event loop()).

We then await the asyncio.run_until complete completion inside
our internal worker function called worker by waiting for the thread to be
joined via join_threads.

Attaching a Loop to the Process
Problem

You have a multi-subprocess application that you want to asyncify.

Reasons for such a setup could be a primary-secondary setup, where
the primary process acts as the frontend to queries/requests and relays
them to multiple instances, which in turn use asyncio to use their CPU
time efficiently.

12

CHAPTER 2 WORKING WITH EVENT LOOPS

Solution #1 (UNIX Only)

We want to have process local event loops in a primary-secondary setup
with event loops running in all processes (also the parent process).

For this matter, we share a dictionary across the processes that saves
the event loop instances per process ID.

A helper function will contain the boilerplate to set up the event loop
and save it per processes ID.

Note The example is concise because of the UNIX-only APIs
os.register at fork and os.fork.We do not have any error
handling, which would be needed for a more sophisticated setup.

import asyncio
import os

pid loops = {}

def get_event loop():
return pid loops[os.getpid()]

def asyncio init():
pid = os.getpid()
if pid not in pid_loops:
pid loops[pid] = asyncio.new_event loop()
pid loops[pid].pid = pid

if name_ ==" main_"':
os.register at fork(after in parent=asyncio init, after in_
child=asyncio init)

if os.fork() == o:
Child
loop = get_event_loop()

13

CHAPTER 2 WORKING WITH EVENT LOOPS

pid = os.getpid()
assert pid == loop.pid
print(pid)

else:
Parent
loop = get event loop()
pid = os.getpid()
assert pid == loop.pid
print(pid)

How It Works

The shown solution provides a way to have one event loop per process on
a unix system and cache it inside the pid loops dict. For creating a new
process it uses the 0s.fork API which invokes the fork(2) system call. The
fork(2) system call creates a new process by duplicating the old one. Since
we call fork and then create the loops inside the parent and child process
the pid_loops dict should be empty at the point after the os. fork call.
Using the os.register at fork we register a hook which creates a new
event loop instance and saving it to the pid_loops dict using the current
pid as a key for the dict:

def asyncio init():
pid = os.getpid()
if pid not in pid loops:
pid loops[pid] = asyncio.new_event loop()
pid loops[pid].pid = pid

This operation involves a pid lookup beforehand to ensure the event
loop is only created and saved if there is none for the respective pid. This
ensures that we create only one event loop per pid. We assert that this is
true afterwards:

14

CHAPTER 2 WORKING WITH EVENT LOOPS

if os.fork() == o:
Child
loop = get_event loop()
pid = os.getpid()
assert pid == loop.pid
print(pid)

else:
Parent
loop = get event loop()
pid = os.getpid()
assert pid == loop.pid
print(pid)

Note Using the return value of os.fork we can distinguish
between the child and the parent process.

Solution #2

Using the more high-level multiprocessing module, we can build a cross-
platform solution that runs multiple coroutines in process local event loops.

This way we can circumvent the CPython restrictions imposed by the
GIL and leverage asyncio to improve our single core CPU usage on I/O
intensive tasks.

import asyncio

import os

import random

import typing

from multiprocessing import Process

processes = []

15

CHAPTER 2 WORKING WITH EVENT LOOPS

def cleanup():
global processes
while processes:
proc = processes.pop()
try:
proc.join()
except KeyboardInterrupt:
proc.terminate()

async def worker():
random_delay = random.randint(o, 3)
result = await asyncio.sleep(random_delay, result=f"Working
in process: {os.getpid()}")
print(result)

def process main(coro worker: typing.Callable, num of
coroutines: int,):
loop = asyncio.new_event loop()
try:
workers = [coro worker() for _ in range(num of coroutines)]
loop.run_until complete(asyncio.gather(*workers, loop=loop))
except KeyboardInterrupt:
print(f"Stopping {os.getpid()}")
loop.stop()
finally:
loop.close()

def main(processes, num_procs, num_coros, process main):
for _ in range(num_procs):
proc = Process(target=process main, args=(worker, num coros))
processes.append(proc)
proc.start()

16

CHAPTER 2 WORKING WITH EVENT LOOPS

main(processes, 10, 2, process main,)
except KeyboardInterrupt:

print("CTRL+C was pressed.. Stopping all subprocesses..")
finally:

cleanup()

print("Cleanup finished")

How It Works

Using the multiprocessing package we can run subprocesses easily under
all major distributions (Windows, Linux and Mac OS). This example
illustrates how to write an application that uses the multiprocessing.
Process class to run multiple coroutines in a separate Process. The
function that will be run in each Process is the following:

def process main(coro worker: typing.Callable, num of
coroutines: int,):
loop = asyncio.new_event loop()
try:
workers = [coro worker() for _ in range(num of
coroutines)]
loop.run_until complete(asyncio.gather (sworkers,
loop=1oop))
except KeyboardInterrupt:
print(f"Stopping {os.getpid()}")
loop.stop()
finally:
loop.close()

17

CHAPTER 2 WORKING WITH EVENT LOOPS

Note You are advised to use asyncio.run instead of intantiating
your own event loop. This example is only for illustrating how to
instantiate event loops in different processes!

First we create a new event loop via asyncio.new_event_loop. Next we
schedule some worker coroutines that simulate work via the coro_worker
coroutine function:

async def worker():
random_delay = random.randint(0, 3)
result = await asyncio.sleep(random_delay, result=f"Working
in process: {os.getpid()}")
print(result)

We then schedule the workers using asyncio.gather (*workers,
loop=1oop) to benefit from asynchronous execution of the coroutines -
if they yield back control back to the event loop via await asyncio.sleep
(which they do).

The returned GatheringFuture instance is awaited via loop.run_
until complete. This ensures that the process terminates when all
workers have returned.

In our parent process we schedule the processes via:

def main(processes, num_procs, num_coros, process_main):
for _ in range(num_procs):
proc = Process(target=process main, args=(worker,
num_coros))
processes.append(proc)
proc.start()

18

CHAPTER 2 WORKING WITH EVENT LOOPS

main(processes, 10, 2, process main,)
except KeyboardInterrupt:

print("CTRL+C was pressed.. Stopping all subprocesses..")
finally:

cleanup()

print("Cleanup finished")

The main function creates the processes and appends them to the
processes list. In the finally block we cleanup after the processes via:

def cleanup():
global processes
while processes:
proc = processes.pop()
try:
proc.join()
except KeyboardInterrupt:
proc.terminate()

In the case we encounter a KeyboardInterrupt while we join we
terminate the process via the process.terminate method.

Running a Loop
Problem

Callbacks and coroutines can only be scheduled on a running event loop
per design. We need to know which loop API we need to invoke in order to
transition the event loop state machine to the running state. We also need
to identify the right area to schedule a callback/coroutine.

19

CHAPTER 2 WORKING WITH EVENT LOOPS

Solution

We learn which loop API we need to invoke in order to transition the event
loop state machine to the running state and where the right place is to
schedule a callback/coroutine.

import asyncio
import sys

loop = asyncio.new event loop()
asyncio.set _event loop(loop)

if sys.platform != "win32":
watcher = asyncio.get child watcher()
watcher.attach loop(loop)

Use asyncio.ensure future to schedule your first coroutines
here or call loop.call soon to schedule a synchronous callback

try:
loop.run_forever()
finally:
try:
loop.run_until complete(loop.shutdown asyncgens())
finally:
loop.close()

How It Works

Calling asyncio.new_event_loop at the beginning of your script ensures
that you have instantiated the global DefaultLoopPolicy.

The loop_factory of that loop policy is then invoked and the result - a
new event loop, returned.

20

CHAPTER 2 WORKING WITH EVENT LOOPS

If we want to use the subprocess APIs of the loop, we need to attach the
current child watcher by hand to ensure we can listen to the subprocess
termination SIGCHLD signal. Since this is a UNIX API - meaning the
SIGCHLD signal, we check if we are on a Windows system first.

Note If we want to use subprocesses with event loops on Windows,
we need to use the ProactorEventLoop, which we discuss in
Chapter 9, “Working with Network Protocols”.

Afterward, we invoke the loop.run_forever call. This call will block
until we explicitly call loop.stop or an exception bubbles up.

Alternatively, we could use loop.run_until complete to schedule one
coroutine.

This also has the benefit that we do not have to call 1loop.stop
explicitly. The loop runs until the coroutine passed to loop.run_until
complete is fully consumed.

Note that you can still call all the Loop.run_* methods after calling
loop.stop, whereas a loop.close will close the loop directly.

Running Async Code Without
Bothering About Loops

Problem

Determine the most painless way to run a coroutine once, which might
orchestrate all the other coroutines in your system.

21

CHAPTER 2 WORKING WITH EVENT LOOPS

Solution

1. Use the following code if you don’t want to bother
about tampering with loop policies and cleaning up
after your asynchronous generators (you will learn
about them in the next chapters). This is also good if
you have only one thread and process and just one
coroutine that needs to run from start to finish.

import asyncio

async def main():
pass

asyncio.run(main())

How It Works

When you have a very simple setup and want to run a coroutine until it is
completely awaited, you can use the asyncio.run API.

Note that it will call asyncio.new_event loop and asyncio.set
event_loop for you and is hence not side-effect free.

Note The asyncio.run API cancels the remaining tasks in a non-
threadsafe fashion (it doesn’t use loop.call soon threadsafe
to cancel the tasks) and has an optional debug parameter that is
passed to the loop.

This API will also invoke the async generator cleanup hook called
loop.shutdown_asyncgens on the loop.

22

CHAPTER 2 WORKING WITH EVENT LOOPS

Note This is the recommended way to run simple and/or single-
threaded asyncio applications.

Running a Loop Until a Coroutine Finishes
Problem

Running a coroutine until the coroutine finishes is one of the most basic
yet most important tasks a loop must be able to do. Without this capability,
loops are pretty much useless. This is because you would have no
indication whatsoever that your workload was consumed, hence leaving
you without leeway for making assumptions in the code.

Solution #1

Given that we want to couple the coroutine’s lifetime with the loop, we can
use two methods. We can allocate a loop and schedule the coroutine on
the loop (and have to deal with all the cleanup actions ourselves) or use
more high-level APIs like asyncio.run.

import asyncio

async def main():
pass

asyncio.run(main())

How It Works

Basically, we can reuse the setup from the last answer to run a coroutine
until it was consumed. The same rules apply here.

23

CHAPTER 2 WORKING WITH EVENT LOOPS

asyncio.run takes care of the cleanup and stops the event loop.

Note asyncio.run works very well with simple setups in
conjunction with the asyncio.get running loop() API.

Solution #2

In settings in which asyncio.run is not available, you can invoke asyncio.
get _event_loop orasyncio.new_event_loop yourself. We will look at the
first case:

import asyncio

async def main():
pass

loop = asyncio.get event loop()

try:
loop.run_until complete(main())
finally:
try:
loop.run_until complete(loop.shutdown asyncgens())
finally:
loop.close()

How It Works

This generates the loop in the same fashion as Solution #1, with the
exception that it will generate a loop only if we are on the main thread.
It will otherwise raise a RuntimeError.

24

CHAPTER 2 WORKING WITH EVENT LOOPS

We have to call loop.shutdown_asyncgens ourselves to clean up after
any not completely consumed async generators. (We learn about async
generators in Chapter 6, “Communication Between Asyncio Components”)

Solution #3

The asyncio.new_event loop APIis the lowest-level asyncio API that
creates a new event loop instance while respecting the currently installed
event loop policy.

Using it involves a lot of manual work, like attaching the loop to the
current child watcher or cleaning up the async generators.

Be aware that might be necessary in more complex setups that span
multiple processes or to better understand what happens behind the
scenes of asyncio.

import asyncio
import sys

async def main():
pass

loop = asyncio.new event loop()
asyncio.set _event loop(loop)

if sys.platform != "win32":
watcher = asyncio.get child watcher()
watcher.attach loop(loop)

try:
loop.run_forever()
finally:
try:
loop.run_until complete(loop.shutdown asyncgens())
finally:
loop.close()

25

CHAPTER 2 WORKING WITH EVENT LOOPS

How It Works

It works the same as Solution #2 does, but you can call it from a thread.
The reason for this is because we do not use the convenience API asyncio.
get_event_loop, which performs a main thread equality check.

Note This is similar to what the asyncio.run APl does under
the hood.

Scheduling Callbacks on a Loop
Problem

Event loops can be used in a callback-oriented fashion or with coroutines.

The latter is considered the superior pattern in asyncio but for use
cases like timers or for timing-based state machines, a callback API with
delayable callbacks can yield very elegant and concise results.

Solution #1

We will learn about the loop.call * APIs, which can be used to schedule
synchronous callbacks on the event loop.

import asyncio

loop = asyncio.get event loop()

loop.call soon(print, "I am scheduled on a loop!")
loop.call soon threadsafe(print, "I am scheduled on a loop but
threadsafely!")

loop.call later(1, print, "I am scheduled on a loop in one second")
loop.call at(loop.time() + 1, print, "I am scheduled on a loop in
one second too")

26

CHAPTER 2 WORKING WITH EVENT LOOPS

try:
print("Stop the loop by hitting the CTRL+C keys...")
To see the callbacks running you need to start the running loop
loop.run_forever()
except KeyboardInterrupt:
loop.stop()
finally:
loop.close()

How It Works

For calling functions on the event loop, we have four methods at our disposal:
e call soon
e call soon_threadsafe
e call at
o call later

None of the loop.call * methods is thread-safe except for loop.
call soon_threadsafe.

All these methods support the new keyword-only parameter, context.
The context parameter needs to be an instance of Context, which is an API
introduced by PEP 567. The rationale of this parameter is to provide means
to “manage, store, and access context-local state”.

All the changes made by the loop.call * methods to any context
variable are preserved in it. The callback methods don't provide a way to
cleanly wait for them to be consumed.

This is why we employ the KeyboardInterrupt pattern. We need to
signal our process with the Ctrl+C key to stop the loop. We learn about a

cleaner alternative in the next solution.

27

CHAPTER 2 WORKING WITH EVENT LOOPS

Solution #2

Unfortunately, asyncio does not provide a nice API to await these
scheduled callbacks. The handles returned by the APIs can also only be
used to cancel pending callbacks.

There is a way to manipulate the event loop to make these callbacks
awaitable.

import asyncio
from functools import partial as func

class SchedulerLoop(asyncio.SelectorEventLoop):
def init (self):
super(SchedulerLoop, self). init ()
self. scheduled callback futures = []

@staticmethod
def unwrapper(fut: asyncio.Future, function):
Function to get rid of the implicit fut parameter.
:param fut:
:type fut:
:param function:
:return:

return function()

def future(self, done_hook):
Create a future object that calls the done hook when it
is awaited
:param loop:
:param function:
:return:

28

CHAPTER 2 WORKING WITH EVENT LOOPS

fut = self.create future()

fut.add _done_callback(func(self.unwrapper,
function=done_hook))

return fut

def schedule soon_threadsafe(self, callback, *args,
context=None):

def

def

fut = self. future(func(callback, *args))

self. scheduled callback futures.append(fut)
self.call soon threadsafe(fut.set result, None,
context=context)

schedule_soon(self, callback, *args, context=None):
fut = self. future(func(callback, *args))

self. scheduled callback futures.append(fut)
self.call soon(fut.set result, None, context=context)

schedule later(self, delay in seconds, callback, *args,

context=None):

def

fut = self. future(func(callback, *args))

self. scheduled callback futures.append(fut)

self.call later(delay in seconds, fut.set result, None,
context=context)

schedule_at(self, delay in seconds, callback, *args,

context=None):

fut = self. future(func(callback, *args))

self. scheduled callback futures.append(fut)
self.call at(delay in seconds, fut.set result, None,
context=context)

async def await callbacks(self):

callback futs = self. scheduled callback futures[:]
self. scheduled callback futures[:] = []
await asyncio.gather(*callback futs)

29

CHAPTER 2 WORKING WITH EVENT LOOPS

async def main(loop):
loop.schedule soon threadsafe(print, "hallo")
loop.schedule soon(print, "This will be printed when the
loop starts running")

def callback(value):
print(value)

loop.schedule soon threadsafe(func(callback, value="This
will get printed when the loop starts running"))
offset_in seconds = 4
loop.schedule at(loop.time() + offset in seconds,
func(print, f"This will be printed after
{offset_in seconds} seconds"))
loop.schedule later(offset in seconds, func(print, f"This
will be printed after {offset in seconds} seconds too"))
await loop.await callbacks()

loop = SchedulerLoop()
loop.run_until complete(main(loop))

How It Works

Since we don’t have a clean API to wait for scheduled synchronous
callbacks via await, we create one.

The gist is that we can provide our own loop implementation based on
SelectorEventLoop and thin wrapper methods around the loop.call *
methods that save a future that we can wait on.

The future is lazy consumed since the callbacks are set with future.
add_done_callback

When you await the future, the point of consumption is the asyncio.
gather call in the coroutine method await_callbacks.

30

CHAPTER 2 WORKING WITH EVENT LOOPS

Basically every time we invoke a loop.call * call, we save a future to
the loop. scheduled callback futures property.

Scheduling Coroutines on a Loop
Problem

We have learned how to schedule callbacks on a loop. The preferred way
in asyncio, however, is to use coroutines. They involve the least amount of
boilerplate code and are easier to reason about than asynchronous code
built around callbacks.

Solution #1
Option 1

If there is no running event loop, we can use asyncio.ensure_future
in conjunction with asyncio.run:
import asyncio
import random
async def work(i):

print(await asyncio.sleep(random.randint(o, i),
result=f"Concurrent work {i}"))

async def main():
tasks = [asyncio.ensure future(work(i)) for i in range(10)]
await asyncio.gather(*tasks)

asyncio.run(main())

31

CHAPTER 2 WORKING WITH EVENT LOOPS

Option 2

If we do not want to write a main coroutine, we can use loop.run_
until complete instead:

import asyncio
import random

async def work(i):
print(await asyncio.sleep(random.randint(o, i),
result=f"Concurrent work {i}"))

loop = asyncio.get event loop()
tasks = [asyncio.ensure future(work(i)) for i in range(10)]

loop.run_until complete(asyncio.gather(*tasks))

How It Works

To schedule coroutines on loops, we can use four mechanisms:
e The await keyword
o The loop.create_task method
e Theasyncio.ensure future
o Theasyncio.create task

We can use the await keyword which blocks until the coroutine either
returns or uses the asyncio.sleep await to yield back control over the
execution flow. The await keyword can be used in coroutine functions only.

The loop.create_task method schedules the coroutine and
immediately returns a task object that can be used to wait for the coroutine
to finish. It can be used in synchronous contexts and coroutine functions.
The only disadvantage is that it’s fairly low-level, and we need a loop
instance to invoke it.

32

CHAPTER 2 WORKING WITH EVENT LOOPS

Next up is the asyncio.ensure_future API, which can also be called
in both coroutine functions and synchronous contexts. It consumes both
tasks and coroutines. If there is no loop running, it will schedule it on the
loop stored in the default loop event policy by fetching it via asyncio.
get_event_loop and then calling loop.create_task.

Note the coroutines/tasks will run once the loop is actually running
and that you cannot schedule the same task on two loops with this
API.

asyncio.create_taskis the preferred way to schedule coroutines on
an event loop.

asyncio.create_task will raise a runtime error if no loop is running,
so essentially it can be used with coroutine functions or callbacks that are
scheduled on the loop via loop.call * - because such a handler can only
be called by a running event loop.

In this example we can use two mechanisms here—await and asyncio.
ensure_future.

Inside the coroutine, we await on asyncio.sleep with a random sleep
delay to simulate work. The result keyword-only parameter returns a
value after the sleep delay.

Since using asyncio.ensure_future like that means that our
coroutines are now scheduled, we find ourselves in a situation where we
need to wait for the execution to finish.

To wait for all of the pending tasks, we wrap them into an asyncio.
gather call and await the resulting GatheringFuture by calling loop.run_
until complete or awaiting it inside a coroutine that can be scheduled via
asyncio.run.

33

CHAPTER 2 WORKING WITH EVENT LOOPS

Solution #2

Using our knowledge about event loops and event loop policies, we can
write our own loop implementation that provides an API to cleanly wait for
all pending coroutines.

This can be helpful when asyncio.all tasks() returns too many
tasks for a given event loop and waiting for a subset of tasks is sufficient.

import asyncio

async def work():
print("Main was called.")

class AsyncSchedulerLoop(asyncio.SelectorEventLoop):

def init (self):
super (AsyncSchedulerLoop, self). init ()
self.coros = asyncio.Queue(loop=self)

def schedule(self, coro):
task = self.create task(coro)
task.add done callback(lambda : self.coros.task done())
self.coros.put _nowait(task)

async def wait for all(self):
await self.coros.join()

class AsyncSchedulerLoopPolicy(asyncio.DefaultEventLoopPolicy):
def new_event loop(self):
return AsyncSchedulerLoop()

asyncio.set_event loop policy(AsyncSchedulerLoopPolicy())
loop = asyncio.get event loop()

for i in range(1000):
Loop.schedule(work())

loop.run_until complete(loop.wait for all())

34

CHAPTER 2 WORKING WITH EVENT LOOPS

How It Works

If we want to make sure that we just await the tasks that we have scheduled
by means of the loop.create _task method, we can do so by writing our
own loop implementation.

We use an asyncio queue to hold the tasks for convenience.

Note that this implies that we consume tasks in a FIFO (first in, first out)
fashion, which corresponds to how loop.call * methods are consumed.

Why do we use a queue? Because we get the part for free where we
wait for all tasks to finish: we just have to await the queue's queue. join
coroutine!

We can use the queue’s queue.task _done method to signal we have
consumed a coroutine, but at what point? A good place to do so is in the
done_callback of the task—where we ultimately end up calling it.

Calling Blocking Code on a Loop
Problem

Only one callback can run on an asyncio event loop at a time. Hence, a
long running callback may block the event loop for others if it is executing
for too long. Event loops expose an executor API that addresses this issue.
We will learn about the executor API in the following example.

Solution

We use urllib3 as a blocking HTTP client library, which we will asyncify.
Hence, you need to install the certifi and urllib3 packages via the
package manager of your choice. For example, via pip or pipenv:

pip3 install urllib3==1.23
pip3 install certifi==2018.04.16

35

CHAPTER 2 WORKING WITH EVENT LOOPS

or
pipenv install urllib3==1.23
pipenv install certifi==2018.04.16

Note In this example, we use certifi for collections of root
certificates, which we can use to query TLS-secured websites over
HTTPS.

import asyncio

from concurrent.futures.thread
import ThreadPoolExecutor
import certifi

import urllib3

HTTP_POOL_MANAGER = urllib3.PoolManager(ca_certs=certifi.where())
EXECUTOR = ThreadPoolExecutor(10)
URL = https://apress.com

async def block request(http, url, *, executor=None, loop:
asyncio.AbstractEventLoop):
return await loop.run_in_executor(executor, http.request,
"GET", url)

def multi block requests(http, url, n, *, executor=None, loop:
asyncio.AbstractEventLoop):
return (asyncio.ensure future(block request(http, url,
executor=executor, loop=loop)) for _ in range(n))

async def consume_responses(*coro, loop):
result = await asyncio.gather(*coro, loop=loop, return_
exceptions=True)

36

CHAPTER 2 WORKING WITH EVENT LOOPS

for res in result:
if not isinstance(res, Exception):
print(res.data)

loop = asyncio.get event loop()

loop.set _default executor(EXECUTOR)

loop.run_until complete(consume responses(block request(HTTP_

POOL_MANAGER, URL, loop=loop),loop=loop))

loop.run_until complete(
consume_responses(*multi block requests(HTTP_POOL MANAGER,
URL, 10, loop=loop), loop=loop))

How It Works

To call a blocking function with asyncio, we can use the loop.run_in_
executor coroutine method. It will return an awaitable that, if awaited,
returns a future with the result of the blocking call. This means loop.run_
in_executor is lazy evaluated by definition.

How does it work under the hood? Basically an executor (like a
ThreadPoolExecutor) is used to schedule a blocking synchronous call
while also asyncifying it. In the case of the ThreadPoolExecutor, thread
preemption is used to provide the non-blocking experience. Note that the
CPython implementation has a global mutex object called the GIL, which
decreases the effectiveness of native p-threads.

Note It is discouraged to use ProcessPoolExecutor. In fact,
it will be prohibited via set_default executor in Python 3.8.
Source: https://bugs.python.org/issue34075.

37

https://bugs.python.org/issue34075

CHAPTER 2 WORKING WITH EVENT LOOPS

Here is an example of asyncifying the urllib3.PoolManager. Its
request method is scheduled on the executor:

return await loop.run_in executor(executor, http.request,
"GET", url).

Using a asyncio.gather call and a generator expression, we can
schedule multiple requests at the same time. That part is provided by
consume_responses which silences exceptions too

Running a Coroutine Specifically on One
Loop

Problem

To make sure that you run your coroutine specifically on one loop, you
have two methods, as explained next.

Solution #1

Getting an event loop instance and running a coroutine on it ensures that
the coroutine runs on specifically that loop. To ensure that the same loop is
used in chained coroutines, the asyncio.get running_loop is used:

import asyncio

async def main(loop):
assert loop == asyncio.get running loop()

loop = asyncio.get event loop()
loop.run_until complete(main(loop))

38

CHAPTER 2 WORKING WITH EVENT LOOPS

How It Works

If the loop is not running, the easiest way to run it is to schedule the
coroutine on the loop via loop.run_until complete.

If the coroutine is a built-in with a keyword-only loop parameter,
pass it.

Note Passing a loop explicitly via the keyword-only loop parameter
is considered deprecated, which we discuss in Chapter 8, “Improving
Asyncio Applications”.

Solution #2

By using the loop.create task AP], itis ensured that a coroutine will run
on a specific loop.
To use it, an event loop instance must be acquired:

import asyncio

async def main():

pass
loop = asyncio.get event loop()
task = loop.create task(main())

task.add _done callback(lambda fut: loop.stop())
Or more generic if you don't have loop in scope:
task.add done_callback(lambda fut: asyncio.get running

loop().stop())

loop.run_forever()

39

CHAPTER 2 WORKING WITH EVENT LOOPS

How It Works

If the loop is already running, we use the asyncio.ensure_future method
to schedule a coroutine on the loop.

Note If you are inside a coroutine, use asyncio.create task
instead!

The same observations from Solution #1 apply, with the additional
notice that we need to explicitly stop the loop in this case.

Stopping and Closing a Loop
Problem

As we learned earlier, the event loop has an internal state machine that
indicates which of its lifecycle duties are to be executed. For instance, only
arunning event loop may schedule new callbacks. An event loop that is in
the running state will continue to run indefinitely if it’s not halted properly.

Solution

In this section, we learn when and how to stop an event loop. We can do so
via the stop/close APIs.

import asyncio
import functools

async def main(loop):
print("Print in main")

def stop loop(fut, *, loop):
loop.call soon threadsafe(loop.stop)

40

CHAPTER 2 WORKING WITH EVENT LOOPS

loop = asyncio.get event loop()
tasks = [loop.create_task(main(loop)) for _ in range(10)]
asyncio.gather(*tasks).add done callback(functools.
partial(stop loop, loop=loop))
try:
loop.run_forever()
finally:
try:
loop.run_until complete(loop.shutdown asyncgens())
finally:
loop.close()# optional

How It Works

What happens here is that we have a loop instance that we run via loop.
run_forever.

We have scheduled a couple of tasks and saved them in a list. To be
able to stop our loop properly, we need to make sure we have consumed
all of the tasks, so we wrap them with a call to asyncio.gather and add a
done_callback to it, which closes our loop.

This ensures we have finished our work when we close the loop.

Note that we also call 1loop.shutdown_asyncgens, which should
become second habit when you close a loop. We explain this in further
detail in Chapter 4, “Generators”.

Adding a Loop Signal Handler
Problem

You need to use signal handlers with loops. We need a setup that runs
the signal handlers only when our loop is running and that disallows new
signal handlers when the loop is not running.

41

CHAPTER 2 WORKING WITH EVENT LOOPS

Solution (UNIX Only)

Ideally, the event loop should clean up the signal handlers. Fortunately,
asyncio provides such APIs out of the box.

import asyncio
import functools
import os

import signal

SIGNAL _NAMES = ('SIGINT', 'SIGTERM")
SIGNAL NAME_MESSAGE = " or ".join(SIGNAL_ NAMES)

def sigint_handler(signame, *, loop,):
print(f"Stopped loop because of {signame}")
loop.stop()

def sigterm handler(signame, *, loop,):
print(f"Stopped loop because of {signame}")
loop.stop()

loop = asyncio.get event loop()

for signame in SIGNAL_NAMES:

loop.add signal handler(getattr(signal, signame),

functools.partial(locals()

[f"{signame.lower()} handler"], signame, loop=loop))
print("Event loop running forever, press Ctrl+C to interrupt.")
print(f"pid {os.getpid()}: send {SIGNAL_NAME_MESSAGE} to
exit.")
try:

loop.run_forever()
finally:

loop.close() # optional

42

CHAPTER 2 WORKING WITH EVENT LOOPS

How It Works

Basically, we add a new signal handler via loop.add_signal handler.
It is analogous to the signal API. In this case, we decided to stop the loop
at the end of every handler. We provide it via functools.partial and take
the handler that is in scope via the locales built-in.

If you want to add another handler to the example, you just add the
name of the signal to SIGNAL_NAMES and a corresponding handler named
in this fashion:

"{signame.lower()} handler"

Why not use the signal API directly? The signal handlers you add to the
loop are checked in the course of a loop iteration. Hence, it is not possible
to add a signal handler to the loop when it is closed.

Another perk is that the signal handlers are cleaned up for you when
the loop closes.

Spawning a Subprocess from a Loop
Problem

Asynchronously spawning a subprocess and effectively splitting creation
and state management in separate parts is one of the reasons to use a loop
to spawn a subprocess.

Solution

The following solution is sufficient for most non-interactive uses of the
asyncio subprocess APIs. It has the benefit of being cross-platform by
setting the appropriate event loop policy on a Windows system.

import asyncio
import shutil

43

CHAPTER 2 WORKING WITH EVENT LOOPS

import sys

from typing import Tuple, Union

async def invoke command_async(*command, loop,
encoding="UTF-8", decode=True) -> Tuple[

44

Union[str, bytes], Union[str, bytes], int]:

Invoke a command asynchronously and return the stdout,

stderr and the process return code.

:param command:

:param loop:

:param encoding:

:param decode:

:return:

if sys.platform != 'win32':

asyncio.get child watcher().attach loop(loop)

process = await asyncio.create subprocess exec(*command,
stdout=asyncio.
subprocess.PIPE,
stderr=asyncio.
subprocess.PIPE,
loop=1oop)

out, err = await process.communicate()

ret code = process.returncode

if not decode:
return out, err, ret code

output_decoded, err decoded = out.decode(encoding) if out
else None,
err.decode(encoding) if err
else None

CHAPTER 2 WORKING WITH EVENT LOOPS
return output_decoded, err decoded, ret code

async def main(loop):
out, err, retcode = await invoke command async(shutil.
which("ping"), "-c", "1", "8.8.8.8", loop=loop)
print(out, err, retcode)

if sys.platform == "win32":
asyncio.set _event loop policy(asyncio.
WindowsProactorEventLoopPolicy())

loop = asyncio.get event loop()
loop.run_until complete(main(loop))

How It Works

To properly spawn a subprocess from a loop, we introduce an
asynchronous helper called invoke _command_async.

This helper coroutine function uses the loop's create_subprocess
exec method to create a subprocess.

Under UNIX, we have a class in asyncio called AbstractChildWatcher,
whose implementation is used to watch the termination of subprocesses.

To properly work, the ChildWatcher needs to be attached to an event
loop. When you have one loop instance, this might be fine, but when you
create your loops via asyncio.new_event_loop, etc., you need to make
sure the current loop policy's ChildWatcher is attached to it. You can do so
by calling the watcher's watcher.attach loop method, as shown here:

if sys.platform != 'win32"':
asyncio.get child watcher().attach loop(loop)

The next part is lazily (by means of a future) getting the process
instance via create_subprocess_exec.

45

CHAPTER 2 WORKING WITH EVENT LOOPS

The API for the process instance is analogue to the synchronous one.
You need to await the coroutine methods like process.communicate. In
theory, this gives you the flexibility to await it another time, but it’s not
necessary for the sake of this example.

Waiting for Subprocess Termination
Problem

The goal here is to watch a subprocess terminate hassle-free even under
Windows, which does not have a full signal APT and hence does not
support STGCHLD.

Solution

To ensure that we can await the termination of our subprocesses under
Windows, we will poll the subprocesses for a process return code, which
indicates a terminated subprocess.

import asyncio

Quote from https://docs.python.org/3/1library/asyncio-
subprocess.html:

The child watcher must be instantiated in the main thread,
before executing subprocesses from other threads. Call the get
child watcher() function in the main thread to instantiate the
child watcher.

import functools

import shutil

import sys

46

CHAPTER 2 WORKING WITH EVENT LOOPS

if sys.platform == "win32":
asyncio.set _event loop policy(asyncio.
WindowsProactorEventLoopPolicy())

def stop loop(*args, loop, **kwargs):
loop.stop()

async def is windows process alive(process, delay=0.5):
On windows the signal API is very sparse, meaning we don't
have SIGCHLD. So we just check if we have a return code on
our process object.
:param process:
:param delay:
:return:
while process.returncode == None:
await asyncio.sleep(delay)

async def main(process coro, *, loop):

process = await process coro

if sys.platform != "win32":
child watcher: asyncio.AbstractChildWatcher = asyncio.
get _child watcher()
child watcher.add child handler(process.pid, functools.
partial(stop loop, loop=loop))

else:
await is windows process alive(process)
loop.stop()

loop = asyncio.get_event_loop()

47

CHAPTER 2 WORKING WITH EVENT LOOPS

process_coro = asyncio.create subprocess exec(shutil.
which("ping"),
"_c", "1",
"127.0.0.1",
stdout=asyncio.
subprocess.
DEVNULL,
stderr=asyncio.
subprocess.
DEVNULL)

loop.create task(main(process coro, loop=loop))
loop.run_forever()

How It Works

For UNIX systems, it is quite easy to detect when a subprocess terminates
because the process changes its state and announces this via STGCHLD.
Coupled with the waitpid(2) syscall, which can detect process state
changes and blocks, we have a powerful tool to react to process
termination without the cost of a busy loop.

On Windows, it is not that easy. The signaling API is very limited
and just exposes SIGTERM and SIGINT. Hence, we must poll the process
return code which is set on process termination, because Windows only
uses this POSIX standard.

On Windows we do so via is_windows process alive.In Unix, we
could just use invoke_command_async, instead of attaching a child handler
to the watcher, which does basically the same thing. The watcher gets
attached to the loop and conveniently calls watcher.add child handler

for us.

48

CHAPTER 3

Working with
Coroutines and
Async/Await

A coroutine is a work unit for an event loop/scheduler and can be
understood as a suspendible function. The “co” in coroutine does not stem
from the word concurrent, but rather from the word cooperative.

The coroutine “cooperates” with the event loop that schedules the
coroutine. If the coroutine is “logically blocked,” meaning it waits on some
sort of I/0, the coroutine can yield control back to the event loop. The loop
can then decide how to use the freed resources (CPU time) to dispatch
other “waiting and ready” coroutines. The loop can then decide how to use
the freed resources (CPU time) to dispatch other pending coroutines.

In asyncio, we differentiate between a coroutine and a coroutine
function. The coroutine is the object returned by the coroutine function
and can be in a running, finished, cancelled, or suspended state. We use
the terms interchangeably if doing so doesn’t cause ambiguity.

© Mohamed Mustapha Tahrioui 2019 49
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_3

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Writing Generator-Based Coroutine
Functions

Problem

We cannot use coroutines defined with the async keyword in a pre-3.5
Python interpreter.

Solution

Functions that are defined with the @asyncio.coroutine decorator are
called generator-based and they provide the means to write a coroutine in
a pre-3.5 Python interpreter.

import asyncio

@asyncio.coroutine

def coro():
value = yield from inner()
print(value)

@asyncio.coroutine
def inner():
return [1, 2, 3]

asyncio.run(coro()) # will print [1, 2, 3]

How It Works

The @asyncio.coroutine decorator can be used to write generator-based
coroutines.

In their bodies we can only use the yield fromkeyword to call other
coroutines or suspend them—using await will raise a SyntaxError.

50

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

However, using yield fromon a native coroutine object, like asyncio.
sleep(1), in a non-coroutine generator will raise a TypeError:

import asyncio

def main():
yield from asyncio.sleep(1)

asyncio.run(main())

Note Generator-based coroutines have been deprecated since
Python version 3.7 and will be removed in Python version 3.10.

Also note that the decorator is not strictly enforced. This means we can
run functions with yield frominside their bodies on the eventloop too!

Writing a Native Coroutine
Problem

Being able to write a coroutine is the first step to using asyncioina
productive fashion.

Solution

Native coroutine functions are functions that return a coroutine, which in
turn is a cooperatively scheduled asyncio primitive. They are the preferred
way to write a coroutine function. Native coroutine functions are defined
with the async def syntax.

51

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

They are equivalent to the deprecated generator-based coroutine
functions in respect to their function and return native coroutine objects.

The async def transports all the semantics needed to define a
coroutine function. There is no need to include an await keyword inside
the coroutine function body.

import asyncio

async def coroutine(*args, **kwargs):
pass

assert asyncio.iscoroutine(coroutine())
assert asyncio.iscoroutinefunction(coroutine)

How It Works

Given that you have a coroutine function with the async keyword, you can
use the await keyword in its body to await other coroutines.

Using the predicate functions inspect.iscoroutine and inspect.
iscoroutinefunction, we can determine if an object is in fact a native
coroutine (function).

The coroutines run on the loop implementations provided by asyncio
and delegate to other coroutines only with the await keyword.

Note Every time you could have used yield from in a generator-
based coroutine, you now have to use the await keyword inside the
coroutine function body.

52

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Running a Coroutine and Blocking/Waiting
Until It Finishes

Problem

A syntactic mechanism is needed to pinpoint the moment when a
coroutine finishes. This mechanism must also be suspendable and
resumable.

Solution

Using the await keyword, we are equipped to handle awaiting native
coroutines in the intended fashion.

import asyncio

async def coroutine(*args,**kwargs):
print("Waiting for the next coroutine...")
await another coroutine(*args,**kwargs)
print("This will follow 'Done'")

async def another coroutine(*args,**kwargs):
await asyncio.sleep(3)
print("Done")

How It Works

The coroutine function called coroutine has a statement called await
another coroutine(*args,**kwargs) in its body that uses the await
keyword to signal to the event loop that it awaits the completion of
another coroutine.

The same mechanism is used in the await asyncio.sleep(3)
statement to halt the execution of the containing coroutine.

53

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Basically, an awaitis a yield fromwith an additional awaitable type
check and more intuitive operator precedencies, which are reflected in the

following table:

Operator Description

yield x, yield from x Yield expression
lambda Lambda expression
if -- else Conditional expression
or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in, is, is not, <, <=, >, Comparisons, including

>=, I=, == membership tests and identity tests

| Bitwise OR

A Bitwise XOR

& Bitwise AND

KL, > Shifts

+, - Addition and subtraction

e, /, /1, % Multiplication, matrix multiplication,
division, remainder

+X, =X, ~X Positive, negative, bitwise NOT

*ok Exponentiation

await x Await expression

x[index], x[index:index], Subscription, slicing, call, attribute

x(arguments...),x.attribute reference

(expressions...), [expressions...], Binding or tuple display, list display,
{key:value...}, {expressions...} dictionary display, set display

54

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

The updates precedencies make constructs like return await
possible. Previously, you had to put yield fromand the following
coroutine into parentheses to do this:

return (yield from asyncio.sleep(1))
vs.

return await asyncio.sleep(1)

Running a Coroutine and Waiting for It
to Finish

Problem

We have learned how to block until a coroutine has finished executing. But
we want to defer the waiting to a certain place to decouple scheduling the
coroutine. We also want to be able to pinpoint when it is finished and to
schedule callbacks at that time.

Solution

Using the await keyword in conjunction with asyncio.create_task, we
can decouple running a coroutine from awaiting it.

import asyncio

async def coroutine to run():
print(await asyncio.sleep(1, result="I have finished!"))

async def main():
task = asyncio.create task(coroutine to run())
await task

asyncio.run(main())

55

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

How It Works

This solution is very similar to the previous one. It schedules the coroutine
coroutine_to _runusingasyncio.create task and returns a task that can
be used to await said scheduled coroutine.

Note The coroutine starts running shortly after the call to
asyncio.create task.

Since splitting up the scheduling of the task and awaiting it, we have
the flexibility to create code that has sequence assurances while also
being able to schedule more work or attach callbacks to be executed on
consumption.

Note Using callbacks is discouraged since the order in which the
callbacks are dispatched is undefined and an implementation detail.

Waiting on a Coroutine with a Timeout
Problem

Given a coroutine that needs to be scheduled and a timeout in seconds,
how do we cancel a scheduled routine if it doesn’t complete in that
timeframe?

Solution

Ideally, we don’t want to schedule another coroutine to cancel a routine.
It would be better to specify this on “scheduling time”.

56

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT
import asyncio

async def delayed print(text, delay):
print(await asyncio.sleep(delay, text))

async def main():
delay = 3

on_time coro = delayed print(f"I will print after {delay}
seconds", delay)
await asyncio.wait for(on time coro, delay + 1)

try:
delayed coro = delayed print(f"I will print after
{delay+1} seconds", delay + 1)
await asyncio.wait for(delayed coro, delay)
except asyncio.TimeoutError:
print(f"I timed out after {delay} seconds")

asyncio.run(main())

How It Works

As we can see, asyncio provides the asyncio.wait_for function.
It safely returns from a call given a coroutine that runs in the time
boundaries or otherwise throws an asyncio.TimeoutError.

Cancelling a Coroutine
Problem

Designing a sophisticated concurrent system might require the need to
cancel the workloads you have scheduled on the event loop.

57

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Think about this execution scenario: You want to send a personalized
email to a database of customers. The personalization requires a web
query and sending out the email requires a database query.

These queries can run concurrently. If either of them results in an
error, the other query will need to be cancelled.

We will learn how to cancel a scheduled coroutine thread-safely and
not thread-safely.

Solution #1

Using the task object we receive from asyncio.create_task, it is possible
to control the execution state of the underlying coroutine.

import asyncio

async def cancellable(delay=10):

loop = asyncio.get running loop()

try:
now = loop.time()
print(f"Sleeping from {now} for {delay} seconds ...")
await asyncio.sleep(delay, loop=1loop)
print(f"Slept {delay} seconds ...")

except asyncio.CancelledError:
print(f"Cancelled at {now} after {loop.time()-now}
seconds™)

async def main():
coro = cancellable()
task = asyncio.create task(coro)
await asyncio.sleep(3)
task.cancel()

asyncio.run(main())

58

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

How It Works

The first solution is the most obvious. A task is the instance of a future
subclass and hence has a cancel method, which can be invoked to
unschedule the corresponding coroutine from the event loop and abort it
(if it’s running).

This happens irrespective of what the current thread is. You can do this
if you know that your application is single-threaded or you are absolutely
sure that the loop you are handling is in fact on the same thread.

Solution #2

Another way to cancel a coroutine thread-safely is to use the loop.call
soon_threadsafe API in conjunction with the handle.cancel method.

import asyncio

async def cancellable(delay=10):

loop = asyncio.get running loop()

try:
now = loop.time()
print(f"Sleeping from {now} for {delay} seconds ...")
await asyncio.sleep(delay)
print(f"Slept for {delay} seconds without disturbance...")

except asyncio.CancelledError:
print(f"Cancelled at {now} after {loop.time()-now}
seconds")

async def main():
coro = cancellable()
task = asyncio.create task(coro)
await asyncio.sleep(3)

59

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

def canceller(task, fut):
task.cancel()
fut.set_result(None)

loop = asyncio.get running loop()

fut = loop.create future()

loop.call soon threadsafe(canceller, task, fut)
await fut

asyncio.run(main())

How It Works

If you are on another thread, you can’t safely schedule a callback with
loop.call soonorloop.call at.

You need to use the loop.call threadsafe method for that, which
happens to be scheduled asynchronously as well.

To be able to tell when the scheduled coroutine has finished, you can
pass a future object and call it at the right time and then await it on the
outside.

Cancelling Multiple Coroutines
Problem

What if we want to cancel multiple scheduled coroutines at once? For
instance, the coroutines iteratively build up some result. We either want to
receive the result completely or stop the procedure, because the result has
become irrelevant.

Here, we learn how to leverage asyncio.gather and asyncio.
CancelledError to build an elegant solution that can do exactly that.

60

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Solution

The asyncio.gather method is a high-level tool that can be used to group
coroutines while silencing the emitted exceptions and returning them

as a result value. The exceptions are returned by using the keyword-only
argument return_exceptions.

import asyncio

async def cancellable(delay=10, *, loop):

try:
now = loop.time()
print(f"Sleeping from {now} for {delay} seconds ...")
await asyncio.sleep(delay)
print(f"Slept for {delay} seconds without disturbance...")

except asyncio.CancelledError:
print(f"Cancelled at {now} after {loop.time()-now}
seconds")

def canceller(task, fut):
task.cancel()
fut.set_result(None)

async def cancel threadsafe(gathered tasks, loop):
fut = loop.create future()
loop.call soon threadsafe(canceller, gathered tasks, fut)
await fut

async def main():
loop = asyncio.get running loop()
coros = [cancellable(i, loop=loop) for i in range(10)]

gathered tasks = asyncio.gather(*coros)

61

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Add a delay here, so we can see that the first three
coroutines run uninterrupted

await asyncio.sleep(3)
await cancel threadsafe(gathered tasks, loop)

try:
await gathered tasks
except asyncio.CancelledError:
print("Was cancelled")

asyncio.run(main())

How It Works

Using asyncio.gather, we can do the following:
o Schedule all the coroutines passed to it concurrently

e Receive a GatheringFuture, which can be used to
cancel all coroutines at the same time

If awaited successfully, asyncio.gather returns a list of all the results.
asyncio.gather supports a keyword-only argument called return_
exceptions, which can alter the result set on the GatheringFuture.

If an exception occurs in one of the scheduled coroutines, it can either
bubble up or be returned as an argument.

Note Irrespective of the return_exceptions argument being set
to True or not, the cancellation of the GatheringFuture is always
propagated since Python 3.7.

62

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Shielding a Coroutine from Cancellation
Problem

Some coroutines are vital to the integrity of the system and hence we
cannot allow them to be cancelled by accident. For example, some
initialization hooks of the system need to take place before we can
run anything else. Therefore, we cannot allow them to be cancelled
inadvertently.

Solution

If you want to ensure that a coroutine cannot be cancelled from the
outside, you can use asyncio.shield.

import asyncio

async def cancellable(delay=10):
now = asyncio.get running loop().time()
try:
print(f"Sleeping from {now} for {delay} seconds ...")
await asyncio.sleep(delay)

print(f"Slept for {delay} seconds without disturbance..

except asyncio.CancelledError:
print("I was disturbed in my sleep!")

def canceller(task, fut):
task.cancel()
fut.set_result(None)

async def cancel threadsafe(task, *, delay=3, loop):
await asyncio.sleep(delay)
fut = loop.create future()
loop.call soon threadsafe(canceller, task, fut)

"

63

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT
await fut

async def main():
complete time = 10
cancel after secs = 3
loop=asyncio.get running loop()
coro = cancellable(delay=complete time)
shielded task = asyncio.shield(coro)
asyncio.create task(cancel threadsafe(shielded task,
delay=cancel after secs, loop=loop))

try:
await shielded task
except asyncio.CancelledError:
await asyncio.sleep(complete time - cancel after secs)

asyncio.run(main())

How It Works

After shielding your task, you can safely call cancel on the shielded
task without fearing that the coroutine/task that’s shielded will also be
cancelled.

Note that you cannot safeguard a coroutine from being cancelled
from within itself with asyncio.shield. Given how asyncio.
shield is implemented (in the Python 3.7 version), it will add
another task to the global task list.

Hence, if you have shutdown logic that works along the lines of
gather(*all tasks()).cancel(), you might cancel the inner task of the
shield operation.

64

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Chaining Coroutines
Problem

Using concurrency does not mean our code is free from assumptions
about ordering and consequence. In fact, it is even more essential to have a
way to express them in an easily understandable fashion.

Solution

For that purpose, we can deploy the await keyword, which can be used to
block the execution of awaitables until they either return or are cancelled.

import asyncio
async def print delayed(delay, text):
print(await asyncio.sleep(delay, text))

async def main():
await print delayed(1, "Printing this after 1 second")
await print delayed(1, "Printing this after 2 seconds")
await print delayed(1, "Printing this after 3 seconds")

asyncio.run(main())

How It Works

Just one coroutine can run at the same time on a loop, since a coroutine
runs also under the GIL.

We use the await keyword to schedule an awaitable on the loop with
the premise of returning from that call when the awaitable has finished
executing or has been cancelled.

65

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Awaitables can be one of the following:

e A native coroutine object returned from a native
coroutine function.

e A generator-based coroutine object returned from a
function decorated with @asyncio.coroutine().

e Anobjectwithan await method returning an
iterator (futures fall in this category).

You can check for an awaitable by means of inspect.isawaitable.

Waiting on Multiple Coroutines
Problem

We want to wait on multiple coroutines at the same time.

Solution

We have two options to wait on multiple coroutines:
e asyncio.gather
e asyncio.wait

Both have their use cases. The asyncio.gather function provides a
way to group and wait/cancel multiple coroutines at a time, as seen in the
prior example.

If your only use case is to schedule multiple coroutines at the same
time, you can safely assume that asyncio.gather is sufficient to do the job.

66

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT
import asyncio

async def print delayed(delay, text,result):
print(await asyncio.sleep(delay, text))
return result

async def main():
workload = [
print_delayed(1, "Printing this after 1 second",1),
print _delayed(1, "Printing this after 1 second",2),
print_delayed(1, "Printing this after 1 second",3),

]

results = await asyncio.gather(*workload)
print(results)

asyncio.run(main())

How It Works

asyncio.gather schedules and executes multiple coroutines or futures
using asyncio.ensure_ future. This API is kept inside of Python 3.7 for
backward compatibility. It uses asyncio.get event loop for querying the
current event loop in the case of coroutines or asyncio.Future.get loop
in the case of futures before passing both of them to asyncio.ensure_
future for scheduling.

Note The entrance order is not necessarily the order in which the
coroutines/futures are scheduled.

All futures must share the same event loop. If all the tasks are completed
successfully, the returned future's result is the list of results (in the order of
the original sequence, not necessarily the result order).

67

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Additionally, there is the return_exception keyword-only argument,
which we discussed in the “How to Cancel Multiple Coroutines” section.

Waiting on Multiple Coroutines with
Different Heuristics

Problem

Recall that we talked about two ways to await multiple coroutines:
e asyncio.gather
e asyncio.wait

The one we have not discussed yet is asyncio.wait, which can be used
to wait on multiple coroutines with different heuristics.

Solution #1

We will wait for multiple coroutines using asyncio.wait and asyncio.
ALL_COMPLETED.

import asyncio

async def raiser():
raise Exception("An exception was raised")

async def main():
raiser future = asyncio.ensure future(raiser())
hello world future = asyncio.create task(asyncio.sleep(1.0,
"I have returned!"))
coros = {raiser future, hello world future}
finished, pending = await asyncio.wait(coros, return_
when=asyncio.ALL COMPLETED)

68

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

assert raiser future in finished

assert raiser future not in pending
assert hello world future in finished
assert hello world future not in pending

print(raiser future.exception())
print(hello world future.result())

asyncio.run(main())

Solution #2

We will wait for multiple coroutines using asyncio.wait and asyncio.
FIRST_EXCEPTION.

import asyncio

async def raiser():
raise Exception("An exception was raised")

async def main():
raiser future = asyncio.ensure future(raiser())
hello world future = asyncio.create task(asyncio.sleep(1.0,
"I have returned!"))
coros = {raiser future, hello world future}
finished, pending = await asyncio.wait(coros, return_
when=asyncio.FIRST EXCEPTION)

assert raiser future in finished

assert raiser future not in pending
assert hello world future not in finished
assert hello world future in pending

print(raiser future.exception())
err_was_thrown = None

69

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

try:
print(hello world future.result())
except asyncio.InvalidStateError as err:
err_was_thrown = err
assert err was_thrown

asyncio.run(main())

Solution #3

We will wait for multiple coroutines using asyncio.wait and asyncio.
FIRST_COMPLETED.

import asyncio

async def raiser():
raise Exception("An exception was raised")

async def main():
raiser future = asyncio.ensure future(raiser())
hello world future = asyncio.create task(asyncio.sleep(1.0,
"I have returned!"))
coros = {raiser future, hello world future}
finished, pending = await asyncio.wait(coros, return_
when=asyncio.FIRST_COMPLETED)

assert raiser future in finished

assert raiser future not in pending
assert hello world future not in finished
assert hello world future in pending

print(raiser future.exception())
err_was_thrown = None

try:
print(hello world future.result())

70

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

except asyncio.InvalidStateError as err:
err was_thrown = err
assert err was_thrown

asyncio.run(main())

How It Works

The different solutions of this section demonstrate how asyncio.wait
behaves with different values of the return_when parameter.

asyncio.wait is more low level than asyncio.gather in the sense that
it can be used for grouping coroutines as well, but not for cancellation
purposes. It takes a keyword-only parameter called return_when with the
wait strategy. It returns with two values—two sets either containing the
finished and the pending tasks.

The allowed values for the return_when parameter are as follows:

e FIRST _COMPLETED: Returns when any future finishes or

is cancelled.

o FIRST_EXCEPTION: Returns when any future finishes by
raising an exception. If no future raises an exception,
then this value is equivalent to ALL_COMPLETED.

o ALL_COMPLETED: Returns when all futures finish or are

cancelled.

Note You should not pass coroutines directly to asyncio.wait

but rather wrap them in a task first via asyncio.create task

or loop.create task. The reason for this is that coroutines are
wrapped inside of asyncio.wait using ensure future.ensure_
future leaves future instances unchanged. It is not possible to use
the coroutines to check inside the returned sets of asyncio.wait -
which are (done, pending), for the status of the coroutines.

71

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

We added the asserts to illustrate how asyncio.wait behaves given
the possible values for the return_when parameter.

Note Just calling raiser future.exception() is nota safe
option, since it might raise a CancelledError.

Waiting on Multiple Coroutines and Ignoring
Exceptions

Problem

We know so far that we have two ways of running multiple coroutines and
waiting on them, which are:

e asyncio.gather
e asyncio.wait

In both cases, we need to ensure that the future that gathers all the
coroutines/tasks is not cancelled.

We also how to achieve cancellation safety, which is to use asyncio.
shield.

Solution

Now we learn now how all that knowledge comes together to wait on
multiple coroutines and ignore exceptions using asyncio.gather and
asyncio.shield:
import asyncio
import sys
async def print delayed(delay, text,):

print(await asyncio.sleep(delay, text))

72

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

async def raise delayed(delay, text,):
raise Exception(await asyncio.sleep(delay, text))

async def main():
workload = [
print_delayed(5, "Printing this after 5 seconds"),
raise_delayed(5, "Raising this after 5 seconds"),
print _delayed(5, "Printing this after 5 seconds"),

]

res = None
try:
gathered = asyncio.gather(*workload, return_
exceptions=True)
res = await gathered
except asyncio.CancelledError:
print("The gathered task was cancelled", file=sys.stderr)
finally:
print("Result:", res)

asyncio.run(main())

How It Works

We schedule our workload using the asyncio.gather function; note that
we also schedule a coroutine that will raise an exception.

To shield against premature cancellation of our GatheringFuture, we
wrap everything into a try except block since asyncio.shield has no effect.

Note The try except block just stops the CancelledExrror from
bubbling up and the coroutines behind the GatheringFuture get
cancelled nonetheless.

73

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

Setting return_exceptions to True, however, turns all exceptions
(also CancelledErrors) into return values. You can find them in the
corresponding position of the returned list.

Waiting for a Specific Condition
Problem

We want to create a simple API that allows us to wait for a coroutine if a
condition of choice is invalid. Ideally, the API will allow us to pass our
condition as a predicate function.

Solution

asyncio provides an implementation of condition variables, a
synchronization primitive. They enable coroutines to wait until a
condition occurs.

import asyncio

async def execute on(condition, coro, predicate):
async with condition:
await condition.wait for(predicate)
await coro

async def print coro(text):
print(text)

async def worker(numbers):
while numbers:
print("Numbers:", numbers)
numbexrs. pop()
await asyncio.sleep(0.25)

74

CHAPTER 3 WORKING WITH COROUTINES AND ASYNC/AWAIT

async def main():
numbers = list(range(10))
condition = asyncio.Condition()
is_empty = lambda: not numbers
await worker(numbers)
await execute on(condition, print coro("Finished!"), is empty)

asyncio.run(main())

How It Works

We can use a condition variable to monitor the completion of our worker
coroutine, which pops the numbers inside the numbers list one after
another.

Condition variables provide us with implicit and explicit notifying.
Either they monitor a predicate that’s called repeatedly until it becomes
true or the waiters are notified by calling condition variable.notify or
condition_variable.notify all.

The example uses implicit notifying. Hence, our predicate
function, which is is_empty = lambda: not numbers, mustreturn True
for the condition variable’s lock to be freed.

We define the helper coroutine function execute_on, which sets the
lock inside the condition variable correctly. This happens before we use
thewait_for coroutine method to wait until the predicate holds true and
dispatch the passed coroutine.

Note If you use the condition variable in more than one coroutine,
you need to pass your own asyncio.Lock instance!

75

CHAPTER 4

Working with Async
Generators

Let’s recap which problems conventional generators try to solve.

We have a complex computation that can be performed iteratively
and are interested in every sub-result along the way. Of course, we could
pre-compute all values up to the desired value. But that means we would
have to wait until we reached the desired value to return a collection
of values pre-populated with the previous sub-results. This is because
returning from a function means we would lose all of the “context” that it
held up to that point.

Fortunately, Python provides the native and clean API of generators to
be able to return sub-results/values without losing the generator function’s
“context.” An issue remains with the generator pattern. If the computations
for the sub-results are independent, we unnecessarily provide the results
in the order of the yield calls.

This is a result of our generators working in a synchronous fashion. If
we asynchronously compute the steps and always return the result that has
finished computing as the next value, we basically have the framework for
our async generator.

© Mohamed Mustapha Tahrioui 2019 77
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_4

CHAPTER 4 WORKING WITH ASYNC GENERATORS

Writing an Async Generator
Problem

You can use async generators when you need to asynchronously generate a
sequence of values and have the construct behave like an iterator.

Solution

Async generators are the logical extension to (synchronous) generators.
The asynchronous generator iterators are governed under the
asynchronous iterator protocol. The asynchronous iterator protocol can
be implemented by providing the aiter method and the anext
coroutine method or by writing an asynchronous generator function.

The aiter method returns the asynchronous iterator and is
synchronous.

The _anext__ coroutine method returns an awaitable object, which uses
a StopIteration exception to “yield” values and an StopAsyncIteration
exception to signal the end of the iteration. Asynchronous generator functions
look like native coroutine /async-def functions and return an asynchronous
generator iterator. They hence may contain “yield” expressions for producing
values that can be consumed by an async-for loop.

To demonstrate how an asynchronous generator function is written,
we will write an asynchronous generator that generates random numbers
that yield control to the event loop for a specified time.

import random
import asyncio

async def random number gen(delay,start,end):
while True:
yield random.randint(start,end)
await asyncio.sleep(delay)

78

CHAPTER 4 WORKING WITH ASYNC GENERATORS

How It Works

The async random number generator is written as you would expect from
a synchronous one.

You pass it an interval via the start and end parameters, and it will
generate random integers using the random module.

The catch is that the coroutine yields control to the event loop for
delay seconds after generating the number to not block other coroutines.

The implications are that the consumers of random_number gen need
to be order-agnostic—meaning they need to be independent of each other
in terms of which consumer finishes first/last.

If you prefer an order preserving but blocking scheme, delete await
asyncio.sleep(delay) and the delay parameter - which would be
equivalent to a synchronous generator.

Running an Async Generator
Problem

Async generators cannot be awaited like normal coroutines. This section
shows how they can be run.

Solution

Consuming an async generator is possible two ways:
o Using an async for loop

e Manually interacting with the async generator by
means of the asend and aclose coroutines on it

The first option is more high level and what you want to run in a
production setting. There might be reasons why you decide otherwise. For
instance, using the async generator as a pausable/resumable coroutine

79

CHAPTER 4 WORKING WITH ASYNC GENERATORS

that you can feed data to after scheduling and that preserves context/state.
We will use this feature in the state machine section.

import random
import asyncio

async def random number gen(delay,start,end):
while True:
yield random.randint(start,end)
await asyncio.sleep(delay)

async def main():

async for i in random_number gen(1,0,100):
print(i)

try:
print("Starting to print out random numbers...")
print("Shut down the application with Ctrl+C")
asyncio.run(main())

except KeyboardInterrupt:
print("Closed the main loop..")

How It Works

To demonstrate how to run an async generator, we run our example
random_number gen in the main coroutine. We schedule the main coroutine
via asyncio.run and make sure we can catch a KeyboardInterrupt to have
a way to exit the loop. asyncio.run cleans up async generators that haven’t
finished executing (such as the while-True-1loop based random number
gen async generator).

80

CHAPTER 4 WORKING WITH ASYNC GENERATORS

Wrapping an Async Generator in an Async
Comprehension

Problem

Async generators enhance generators that can be consumed in
comprehension statements. Likewise, you can consume async generators
in async comprehension statements.

Solution

To demonstrate how to wrap an async generator in an async
comprehension, we will write a non-blocking multi-server HTTP client
that can request the contents of multiple URLs seamlessly, using only
standard library components.

We deploy the asynchronous comprehension in the part that generates
the non-blocking request objects using the loop.run_in_executor API.
We use urllib3 as a blocking HTTP client library, which we will asyncify.
Hence, you need to install the certifi and urllib3 packages via the
package manager of your choice. For example, via pip or pipenv, you use:

pip3 install urllib3==1.23

pip3 install certifi==2018.04.16
or

pipenv install urllib3==1.23
pipenv install certifi==2018.04.16

Note In this example, we use the certifi module for collections
of root certificates that we can use to query TLS-secured websites
over HTTPS.

81

CHAPTER 4 WORKING WITH ASYNC GENERATORS

import asyncio
import functools
from concurrent.futures.thread import ThreadPoolExecutor

import sys
import certifi
import urllib3

async def request(poolmanager: urllib3.PoolManager,

executor,
%

J)
method="GET",
url,

fields=None,
headers=None,
loop: asyncio.AbstractEventLoop = None,):
if not loop:
loop = asyncio.get running loop()
request = functools.partial(poolmanager.request, method,
url, fields=fields, headers=headers)
return loop.run_in executor(executor, request)

async def bulk requests(poolmanager: urllib3.PoolManager,

executor,
*

)
method="GET",
urls,

fields=None,
headers=None,
loop: asyncio.AbstractEventLoop = None,):
for url in urls:
yield await request(poolmanager, executor, url=url,
fields=fields, headers=headers, loop=1loop)

82

CHAPTER 4 WORKING WITH ASYNC GENERATORS

def filter unsuccesful requests(responses and _exceptions):
return filter(
lambda url and response: not isinstance(url and
response[1], Exception),
responses_and_exceptions.items()

)

async def main():

poolmanager = urllib3.PoolManager(cert reqs="CERT_
REQUIRED', ca certs=certifi.where())
executor = ThreadPoolExecutor(10)
urls = [

"https://google.de",

"https://apple.com”,

"https://apress.com",
]
requests = [request async for request in bulk
requests(poolmanager, executor, urls=urls,)]
responses_and_exceptions = dict(zip(urls, await asyncio.
gather (*requests, return_exceptions=True)))
responses = {url: resp.data for (url, resp) in filter
unsuccesful requests(responses and exceptions)}

for res in responses.items():
print(res)

for url in urls:
if url not in responses:
print(f"No successful request could be
made to {url}. Reason: {responses and
exceptions[url]}",file=sys.stderr)

asyncio.run(main())

83

CHAPTER 4 WORKING WITH ASYNC GENERATORS

How It Works

We start by writing a non-blocking wrapper around the ur11ib3.
PoolManager API. For this purpose, we schedule the poolmanager.request
method on an executor via the loop.run_in_executor coroutine method.
The convenience function request encapsulates that logic and has the
same signature (and defaults) as poolmanager.request.

Note that this is prone to error in between Python versions since the
underlying APl might change!

bulk requests is our async generator. It iterates over a list of URLs
and returns the futures that will resolve to the content under the URLs
if the request was successful. To collect all the request futures, we
deploy an async list comprehension. The syntax follows a synchronous
comprehension with an additional async keyword in front of the loop.

Similar comprehensions exist for dicts and sets. We then go on to
dispatch the requests via asyncio.gather and filter out the unsuccessful
events. An error message is printed for every failed request.

Writing a State Machine with an Async
Generator

Problem

You can use the async generator interface to interact with an async
generator, thereby turning it into a state machine.

Solution

Given the nature of async generators—which is that they preserve the
coroutine’s state and that they can be communicated with by means of

84

CHAPTER 4 WORKING WITH ASYNC GENERATORS

asend—we can manually iterate over them by means of asend calls for
every step.

We will write a state machine that is controlled by a user prompt which
invokes the respective events.

import asyncio

import enum

import logging

import sys

from dataclasses import dataclass

class State(enum.Enum):
IDLE = enum.auto()
STARTED = enum.auto()
PAUSED = enum.auto()

@dataclass(frozen=True)
class Event:

name: str
START = Event("Start")
PAUSE = Event("Pause")
STOP = Event("Stop")
EXIT = Event("Exit")

STATES = (START, PAUSE, STOP, EXIT)
CHOICES = "\n".join([f"{i}: {state.name}" for i, state in
enumerate(STATES)])

MENU - _Fllllll
Menu

Enter your choice:

{CHOICES}

85

CHAPTER 4 WORKING WITH ASYNC GENERATORS

TRANSITIONS = {
(State.IDLE, PAUSE): State.IDLE,
(State.IDLE, START): State.STARTED,
(State.IDLE, STOP): State.IDLE,

(State.STARTED, START): State.STARTED,
(State.STARTED, PAUSE): State.PAUSED,
(State.STARTED, STOP): State.IDLE,

(State.PAUSED, START): State.STARTED,
(State.PAUSED, PAUSE): State.PAUSED,
(State.PAUSED, STOP): State.IDLE,

(State.IDLE, EXIT): State.IDLE,
(State.STARTED, EXIT): State.IDLE,
(State.PAUSED, EXIT): State.IDLE,

}

class StateMachineException(Exception):
pass

class StartStateMachineException(StateMachineException):
pass

class StopStateMachineException(StateMachineException):
pass

async def next state(state_machine, event, *,
exc=StateMachineException):
try:
if state machine:
await state machine.asend(event)
except StopAsyncIteration:
if exc != StopStateMachineException:
raise exc()

86

CHAPTER 4 WORKING WITH ASYNC GENERATORS

except:
raise exc()

async def start statemachine(state machine,):
await next state(state machine, None, exc=StartStateMachine
Exception)

async def stop statemachine(state machine,):
await next state(state machine, EXIT,
exc=StopStateMachineException)

async def create state machine(transitions, *, logger=None,):
if not logger:
logger = logging.getlLogger(_name)
event, current state = None, State.IDLE
while event != EXIT:

event = yield
edge = (current state, event)

if edge not in transitions:
logger.error("Cannot consume %s in state %s",
event.name, current state.name)
continue

next_state = transitions.get(edge)
logger.debug("Transitioning from %s to %s", current_
state.name, next state.name)

current_state = next_state

def pick next event(logger):
next_state = None

87

CHAPTER 4 WORKING WITH ASYNC GENERATORS

while not next state:
try:
next state = STATES[int(input(MENU))]
except (ValueError, IndexError):
logger.error("Please enter a valid choice!")
continue

return next_state

async def main(logger):
state machine = create state machine(TRANSITIONS,
logger=1ogger)

try:
await start statemachine(state machine)

while True:
event = pick_next_event(logger)
if event != EXIT:
await next state(state machine, event)
else:
await stop statemachine(state machine)

except StartStateMachineException:
logger.error("Starting the statemachine was
unsuccessful™)

except StopStateMachineException:
logger.error("Stopping the statemachine was
unsuccessful™)

except StateMachineException:
logger.error("Transitioning the statemachine was
unsuccessful™)

88

CHAPTER 4 WORKING WITH ASYNC GENERATORS

logger = logging.getlLogger(__name_)
logger.addHandler (logging.StreamHandler(sys.stdout))
logger.setlLevel(logging.DEBUG)

try:

asyncio.get event loop().run until complete(main(logger))
except KeyboardInterrupt:

logger.info("Closed loop..")

How It Works

At the heart of a state machine lies a function that defines how to perform
a transition from the current state given the input to another state. In our
case, it's next_state.

next_state encapsulates the state transition logic and catches the
StopAsyncIteration, which is thrown when we call aclose on the
generator. A table that defines the valid transitions that might occur is also
needed—and provided—via the TRANSITIONS dict.

We model the state events as data classes and the state as an enum.
The user is prompted via the pick_next_event function, which presents
a menu matching the possible events to invoke on the state machine. The
current state will be printed. If an invalid transition was invoked, we raise
a custom StateMachineException to inform the user something went
wrong.

Additionally, we define convenience methods for starting, stopping,
and creating the state machine. create_state machine returns an async
generator and waits for I/O until needed. It ignores the events in relation to
unknown transitions.

89

CHAPTER 4 WORKING WITH ASYNC GENERATORS

Cleaning Up After Using Async Generators
Problem

Async generators may be stuck in execution when the loop changes state
to stopped or cancelled.

Solution

To be able to properly stop the async generator, the aclose property of the
async generator throws a GeneratorExit exception into the underlying
generator.

The loop and the asyncio module provide two ways to cleanly address
the issue when confronted with multiple async generators.

Option 1
import asyncio

async def async_gen coro():
yield 1
yield 2
yield 3

async def main():
async_generator = async_gen coro()
await async_generator.asend(None)
await async_generator.asend(None)

asyncio.run(main())

90

CHAPTER 4 WORKING WITH ASYNC GENERATORS

How It Works

asyncio.BaseEventLoop provides the BaseEventLoop.shutdown
asyncgens API, which schedules aclose calls on all the running async
generators.

asyncio.run conveniently handles calling loop.shutdown _asyncgens
for us internally.

Option 2
import asyncio

async def endless async_gen():
while True:
yield 3

await asyncio.sleep(1)

async def main():
async for i in endless_async_gen():
print(i)

loop = asyncio.new_event_loop()
asyncio.set _event loop(loop)

try:
loop.run_until complete(main())
except KeyboardInterrupt:
print("Caught Ctrl+C. Exiting now..")
finally:
try:
loop.run_until complete(loop.shutdown asyncgens())
finally:
loop.close()

91

CHAPTER 4 WORKING WITH ASYNC GENERATORS

How It Works

If you feel that you want to call BaseEvent.shutdown_asyncgens yourself
at a point where your code will not spawn any new async generators, you
can deploy a more elaborate shutdown routine. The principle stays the
same: You need to put your loop.shutdown asyncgens into the finally
block of the try-except-finally construct around your loop.run_until
complete/loop.run_forever, since you want it to irrespective of any
exception that your loop might have encountered.

Wring an Asynchronous Generator Based
Web Crawler

Problem

We want to build a web based crawler that can exploit the CPU time most
efficiently using async generators.

Solution

A web crawler is a piece of software that systematically browses the web.
This means it starts at a point like an URL and traverses all the links that it
encounters. If a web crawler operates in a synchronous fashion, it might
block other tasks that may be executed while it waits for the responses to
its requests. An async generator can yield control to the event loop at this
point to better exploit the CPU time.

import asyncio
import re

import typing

92

CHAPTER 4 WORKING WITH ASYNC GENERATORS

from concurrent.futures import Executor, ThreadPoolExecutor
from urllib.request import urlopen

DEFAULT EXECUTOR = ThreadPoolExecutor(4)
ANCHOR_TAG_PATTERN = re.compile(b"<a.+?href=[\"|\"](.*?)

[\"|\"].*?>", re.RegexFlag.MULTILINE | re.RegexFlag.IGNORECASE)

async def wrap async(generator: typing.Generator,
executor: Executor = DEFAULT_EXECUTOR,

sentinel=object(),

*
)

loop: asyncio.AbstractEventLoop = None):

We wrap a generator and return an asynchronous generator
instead

:param iterator:

:param executor:

:param sentinel:

:param loop:

:return:

if not loop:
loop = asyncio.get_running_loop()

while True:
result = await loop.run_in executor(executor, next,
generator, sentinel)
if result == sentinel:
break
yield result

93

CHAPTER 4 WORKING WITH ASYNC GENERATORS

def

def

follow(*1links):
:param links:
:return:

return ((link, urlopen(link).read()) for link in links)

get links(text: str):

Get back an iterator that gets us all the links in a text
iteratively and safely

:param text:

:return:

Always grab the last match, because that is how a smart
http parser would interpret a malformed # anchor tag
return (match.groups()[-1]
for match in ANCHOR TAG PATTERN.finditer(text)
This portion is a safeguard against None matches
and zero href matches
if hasattr(match, "groups") and len(match.groups()))

async def main(*1links):

async for current, body in wrap async(follow(*1inks)):
print("Current url:", current)
print("Content:", body)
async for link in wrap_async(get links(body)):
print(1link)

asyncio.run(main("http://apress.com"))

94

CHAPTER 4 WORKING WITH ASYNC GENERATORS

How It Works

Our crawler focuses on the two main tasks—requesting a website and
extracting all the links that it needs to follow. Both tasks involve a lot of
I/0. We can offload this to a thread pool, where things can happen in
parallel (so the tasks don’t block each other) by using the loop.run_in_
executor API. For that matter, wrap_async was written.

Note Alternatively we can use a network module that is asyncio
enabled like aiohttp which is not in the scope of this example.

Inside it, we invoke the next builtin, which takes a generator and a
default value which will be returned if a StopIteration exception is thrown.
We pass a sentinel object which we can test against later. This construction
will iterate over the generator until it is exhausted and return the sentinel
at which point the async generator will be closed by the if result ==
sentinel: condition. Since the loop.run_in_executor method returns a
future, we need to await it to get the result. This function ensures that every
step of the generator is executed non-blocking.

We need to create two generators now that follow links and another

one that extracts links from a website:

o followreads the contents of an URL uses urllib for

multiple links

o get links extracts the links of a multiple HTML page
using a regex iterator

Each of these steps will be scheduled on the thread pool, thanks
to loop.run_in_executor on next. The async generator will be then
consumed in main, where we in turn print the found links and the current
URL/body.

95

CHAPTER 5

Working with Async
Context Manager

Context managers provide a convenient API to govern a runtime context.
They expose the ability to hook into entering the context manager scope
and exit it. Given that asyncio extends the language with the possibility
of execution suspension, it becomes evident that a synchronous context
manager cannot interface with the event loop in a seamless fashion.

An asynchronous context manager is a context manager that can use
the await keyword to suspend execution in its enter and exit methods.
This way, it can yield control back to the event loop and interact with
resources (like a database) in an asynchronous fashion.

The asynchronous context manager was introduced in the course of
PEP-0492 and uses a pattern we already now from the async generator.
Well-known APIs like the for loop are used in conjunction with the async
keyword. In the case of the async context manager the with keyword will
be prefixed with the async keyword.

To not convolute the context manager AP], it was decided that all the
bits used in the context manager protocol would be replicated for the
asynchronous context rather than reused.

For instance, the dunder methods __enter and exit are copied
as__aenter and_aexit for the asynchronous variant.

Note that __aenter and __aexit_need to be coroutine methods.
For Python version 3.7 and with the help of native coroutines, it is now

© Mohamed Mustapha Tahrioui 2019 97
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_5

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

possible to use an asynchronous generator and the asynccontextmanager
decorator jointly to adhere to the asynchronous context manager protocol.

Writing an Async Context Manager

As of Python 3.7, there are two ways to write an async context manager.
Similar to the synchronous context manager, we can either write a class
and override the __aenter and _aexit__ coroutine methods or use the
asynccontextmanager decorator.

Solution

In this solution we’ll put the asynccontextmanager decorator to use by
writing an asynchronous context manager that enables non-blocking
file /0.

from concurrent.futures.thread import ThreadPoolExecutor
from contextlib import asynccontextmanager
import asyncio

class AsyncFile(object):

def _init (self, file, loop=None, executor=None):
if not loop:
loop = asyncio.get running loop()
if not executor:
executor = ThreadPoolExecutor(10)
self.file = file
self.loop = loop
self.executor = executor
self.pending = []
self.result = []

98

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

def write(self, string):

self.pending.append(
self.loop.run_in executor(self.executor, self.file.

write, string,)

)

def read(self, i):
self.pending.append(
self.loop.run_in_executor(self.executor, self.file.
read, i,)

)

def readlines(self):
self.pending.append(
self.loop.run_in executor(self.executor, self.file.
readlines,)

)

@asynccontextmanager
async def async_open(path, mode="w"):
with open(path, mode=mode) as f:
loop = asyncio.get running loop()
file = AsyncFile(f, loop=loop)
try:
yield file
finally:

file.result = await asyncio.gather(*file.pending,
loop=1oop)

99

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

How It Works

Leveraging our knowledge about asynchronous generators and

the context manager returned by the call to open, we can write an
asynchronous generator function that returns a non-blocking wrapper
around our file handle.

The AsyncFile class provides methods that add the calls to write,
read, and readlines to a list of pending tasks. These tasks are scheduled
on a ThreadPoolExecutor through an event loop in the finally block.

The finally block corresponds to __aexit__in this case since it is
ensured to be run; it also happens after the yield of the AsyncFile object.

This way, we achieve non-blocking file I/O in the context of the

asynchronous context manager.

Note that the results of the read calls will be stored in the result
field of the AsyncFile object.

Running an Async Context Manager

Given our asynchronous context manager from the previous example, we
want to leverage the async with keywords to schedule the async context
manager.

Solution

Using the async with keywords, we can enter the runtime context of an

async context manager.

Note The async with syntax can only be used inside a coroutine
function.

100

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

Upon entering the async context manager scope, the __aenter
coroutine method is called without parameters and upon leaving, the
__aexit__ coroutine method is called with the following parameters:
exception type, exception value, and traceback object.

Note The parameters passedto aexit are optional and may
be set to None if no exception occurred.

import asyncio
import tempfile
import os

async def main():
tempdir = tempfile.gettempdir()
path = os.path.join(tempdir, "run.txt")
print(f"Writing asynchronously to {path}")

async with async_open(path, mode="w") as f:

f.write("This\n")

f.write("might\n")

f.write("not\n")

f.write("end\n")

f.write("up\n")

f.write("in\n")

f.write("the\n")

f.write("same\n")

f.write("order!\n")

asyncio.run(main())

101

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

How It Works

Since the async context manager uses the async keyword, it can only be
used in the context of a (native) coroutine method.

The syntax is simply async with followed by the call to the
asynchronous context manager and, eventually, an as directive. The rest is

similar to synchronous context managers.

Synchronizing Pending Coroutines to Finish
Cleanly

asyncio provides multiple APIs to use if you want to await pending
coroutines.

There are APIs that target single and multiple coroutines and some
that enable the developer to await the coroutines under certain conditions
or iteratively.

We want to learn how to use these APIs in conjunction with async
context managers to synchronize pending coroutines cleanly.

Solution

For awaiting coroutines, the following APIs can be used in conjunction
with the await keyword: asyncio.gather, asyncio.wait, asyncio.wait_
for, and as_completed.

But this step needs to happen manually. Using async context
managers, we can write thin wrappers around these functions to create
powerful high-level synchronization tools.

The next solution demonstrates a synchronization wall, after which we
can expect all scheduled coroutines to have finished.

102

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER
import asyncio

class Sync():
def init (self):
self.pending = []
self.finished = None

def schedule coro(self, coro, shield=False):
fut = asyncio.shield(coro) if shield else asyncio.
ensure_future(coro)
self.pending.append(fut)
return fut

async def aenter (self):
return self

async def aexit (self, exc_type, exc_val, exc_tb):
self.finished = await asyncio.gather(*self.pending,
return_exceptions=True)

async def workload():
await asyncio.sleep(3)
print("These coroutines will be executed simultaneously and
return 42")
return 42

async def main():
async with Sync() as sync:
sync.schedule coro(workload())
sync.schedule coro(workload())
sync.schedule_coro(workload())
print("All scheduled coroutines have retuned or thrown:",
sync.finished)

asyncio.run(main())

103

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

How It Works

Given our knowledge of asyncio.gather and the async context manager
protocol, we can build a component that schedules work and awaits upon
leaving the scope.

For this matter, we wrote the async context manager called Sync, which
exposes a schedule coro method that can be used to schedule work (in
the form of a coroutine) and eventually shield it. It is then added to a list.

After all the work has been scheduled and protected from cancellation, we
can await it cleanly via asyncio.gather. Note that asyncio.shield schedules
the workload. So the work is already running and is a task object at that point.

Given that passing non-tasks to asyncio.gather is deprecated, this is
the intended behavior.

Note that you need to use the task object returned by schedule
coro for identity comparisons!

Interacting Asynchronously with a
Closeable Resource

You might have to deal with resources that schedule their close action as a
concurrent action.

Solution

Under the premise that asynchronously closing resources while exposing a
future allows us to stall the actual closing of the resource, we can write an
async context manager that abstracts the cleanup/closing away.

import asyncio
import socket
from contextlib import asynccontextmanager

104

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

@asynccontextmanager
async def tcp_client(host="google.de', port=80):
address_info = (await asyncio.get running loop().getaddrinfo(
host, port,
proto=socket.IPPROTO TCP,

))-pop()

if not address_info:

raise ValueError(f"Could not resolve {host}:{port}")
host,port =address info[-1]
reader, writer = await asyncio.open connection(host, port)
try:

yield (reader, writer)
finally:

writer.close()

await asyncio.shield(writer.wait closed())

async def main():
async with tcp client() as (reader, writer):
writer.write(b"GET /us HTTP/1.1\r\nhost: apress.com\r\n\r\n")
await writer.drain()
content = await reader.read(1024**2)
print(content)

asyncio.run(main())

How It Works

asyncio provides us with a high-level tool called asyncio.open_
connection to open an asynchronous stream writer and reader on an URL
with a given port.

The writer needs to be closed properly to deallocate the sockets
opened in the course of the connection.

105

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

Otherwise, both connection parties remain in a state of connection
(disregarding premature disconnections due to errors).

We can close a writer with the close method, but until the wait_
closed awaitable is awaited, we cannot safely assume it is closed.

We shield awaiting writer.wait_closed so that it cannot be cancelled
from the outside.

Given that we close and await the writer in the finally block, we can
safely assume that both actions succeed or that exceptions raised inside
the writer bubble up.

Writing a Loop Worker Pool Async Context
Manager

Given our knowledge of how to build an async context manager that
synchronizes all the coroutines scheduled inside its scope after leaving
and how to build custom event loops, we know how to write a loop
worker pool async context manager that ensures that all the loop.call *
callbacks have finished after leaving its scope.

Solution

In Chapter 2, “Event Loop,” we discussed a way to await synchronous
actions on the loop by writing our own loop implementation.

You might remember learning about the await_callbacks method,
which needs to be awaited to make sure all the scheduled handles have
finished.

We will leverage the same loop implementation in conjunction with
the async context manager protocol to build a coroutine worker pool async
context manager.

106

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

import asyncio
from contextlib import asynccontextmanager
from functools import partial as func

class SchedulerlLoop(asyncio.SelectorEventLoop):

def init (self):
super(SchedulerLoop, self). init ()
self. scheduled callback futures = []
self.results = []

@staticmethod
def unwrapper(fut: asyncio.Future, function):
Function to get rid of the implicit fut parameter.
:param fut:
:type fut:
:param function:
:return:

return function()

def future(self, done hook):
Create a future object that calls the done_hook when it
is awaited
:param loop:
:param function:
:return:
fut = self.create_future()
fut.add _done_callback(func(self.unwrapper,
function=done_hook))
return fut

107

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

108

def schedule soon_threadsafe(self, callback, *args,
context=None):

def

def

fut = self. future(func(callback, *args))

self. scheduled callback futures.append(fut)
self.call soon threadsafe(fut.set result, None,
context=context)

schedule_soon(self, callback, *args, context=None):
fut = self. future(func(callback, *args))

self. scheduled callback futures.append(fut)
self.call soon(fut.set result, None, context=context)

schedule later(self, delay in seconds, callback, *args,

context=None):

def

fut = self. future(func(callback, *args))

self. scheduled callback futures.append(fut)

self.call later(delay in seconds, fut.set result, None,
context=context)

schedule at(self, delay in seconds, callback, *args,

context=None):

fut = self. future(func(callback, *args))

self. scheduled callback futures.append(fut)
self.call at(delay in seconds, fut.set result, None,
context=context)

async def await callbacks(self):

callback futs = self. scheduled callback futures|:]
self. scheduled callback futures[:] = []

return await asyncio.gather(*callback futs, return_
exceptions=True, loop=self)

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

class SchedulerLoopPolicy(asyncio.DefaultEventLoopPolicy):
def new_event loop(self):
return SchedulerLoop()

@asynccontextmanager
async def scheduler loop():
loop = asyncio.get running loop()
if not isinstance(loop, Schedulerloop):
raise ValueError("You can run the scheduler loop async
context manager only on a SchedulerLoop")

try:
yield loop
finally:
loop.results = await loop.await callbacks()

async def main():
async with scheduler loop() as loop:
loop.schedule soon(print, "This")
loop.schedule_soon(print, "works")
loop.schedule soon(print, "seamlessly")

asyncio.set _event loop policy(SchedulerLoopPolicy())
asyncio.run(main())

How It Works

scheduler loop is our async context manager and it makes sure that the
loop we are running is a SchedulerLoop.

It fetches the currently running loop and awaits loop.await_
callbacksinits __aexit__ part/finally block.

To use the convenience of the asyncio.run API, we write a small
LoopPolicy where we override the loop.new_event_loop method to
return a SchedulerLoop instance.

109

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

Next, we run the main coroutine to see our async context manager

scheduler_loop in action.

Writing a Subprocess Worker Pool Async
Context Manager

Leveraging many patterns we have already learned, we can write an async
context manager that schedules functions on different processes and runs
on our event loop.

Solution

Using the asyncio.wrap_future method, which is intended to wrap
concurrent.futures.Future objects into awaitable asyncio.Future
objects, we can interact with the multiprocessing package. It is discouraged
to pass a ProcessPoolExecutor to the loop.run_in_executor API (since a
loop that is configured to use it may throw an OSError on loop.close—see
https://bugs.python.org/issue34073 for more information). Instead,
the preferred method is to use the asyncio.wrap future and executor.
submit APIs together.

import asyncio

from concurrent.futures.process import ProcessPoolExecutor
from contextlib import asynccontextmanager

from multiprocessing import get context, freeze support

CONTEXT = get context("spawn")
class AsyncProcessPool:

def init (self, executor, loop=None,):
self.executor = executor

110

https://bugs.python.org/issue34073

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

if not loop:
loop = asyncio.get running loop()
self.loop = loop
self.pending = []
self.result = None

def submit(self, fn, *args, **kwargs):
fut = asyncio.wrap future(self.executor.submit(fn,
*args, **kwargs), loop=self.loop)
self.pending.append(fut)
return fut

@asynccontextmanager
async def pool(max_workers=None, mp context=CONTEXT,
initializer=None, initargs=(), loop=None, return_
exceptions=True):
with ProcessPoolExecutor(max_workers=max_workers, mp_
context=mp_context,
initializer=initializer,
initargs=initargs) as executor:
pool = AsyncProcessPool(executor, loop=loop)
try:
yield pool
finally:
pool.result = await asyncio.gather(*pool.pending,
loop=pool.loop, return exceptions=return exceptions)

async def main():
async with pool() as p:
p.submit(print, "This works perfectly fine")
result = await p.submit(sum, (1, 2))
print(result)
print(p.result)

111

CHAPTER 5 WORKING WITH ASYNC CONTEXT MANAGER

if name == ' main_':
freeze support()
asyncio.run(main())

How It Works

Given that a ProcessPoolExecutor has a submit method that returns
concurrent.futures.Future objects, we can write an AsyncProcessPool
that provides us with an analogue submit method that works on an event
loop by using asyncio.wrap_future on the return value.

By saving the scheduled tasks, we can await them in the finally block
of our async context manager.

Using asyncio.wrap_future, we can safely interact with the results of
a subprocess computation result in an asyncio way. We can use ayncio.
wait for for timeouts or shield them from cancellation with asyncio.
shield (given that nothing cancels the subprocess from within).

When we fall out of the pool scope, all the scheduled workloads will
have finished.

Additionally, if we need to make stronger assurances inside the async
context manager scope, we can manually await them.

112

CHAPTER 6

Communication
Between Asyncio
Components

In the previous chapters, we learned about asynchronous interfaces to
standard library components (or even completely new APIs) that, in
the broader sense, keep shareable state/context or are “runnable”. This

includes:
o Coroutines
o Tasks
e Async generators
o Async context managers
e Async comprehensions
e Subprocesses

These components might need to share their state with other instances
of asyncio components. Examples where this makes sense include:

e Coroutine workers
o State-machine or state-keeping coroutines, such as an

audio player (playing/paused/idle)

© Mohamed Mustapha Tahrioui 2019 113
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_6

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

e A watchdog for multiple subprocesses
e Synchronization of distributed computations

To facilitate shared state/context, asyncio provides counterparts of
processes/thread communication, tools like queues and signals. Asyncio
also influenced the creation of new APIs, like contextvars, which are
intended to provide the semantic equivalent of thread locals for tasks. Note
that the implications on data integrity in a distributed system apply also
to sharing state between asynchronous components. Data races can occur
on uncoordinated concurrent reads/writes of the shared state, which we
explore in Chapter 7, “Synchronization Between Asyncio Components”.

Sending Additional Information to an
Asynchronous Generator

Problem

Asynchronous generators are very powerful features of the asyncio library
and they enable us to reap the benefits of coroutine suspension, yielding
intermediate values and sending values to the running asynchronous
generator.

We learned how to do all this in our state machine example. Basically,
the theory behind it is to iterate manually over the asynchronous
generator, which is an arguably inelegant solution.

Focusing on the mechanism that is enabling the state machine, we will
find a more generic solution to the problem in which we could also easily
implement the state machine example.

114

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

Solution

We write an async context manager Python 3.7 style, using the
@asynccontextmanager decorator, and manually iterate it so we can send it
values while it runs.

import asyncio
import logging
from contextlib import asynccontextmanager

class Interactor:
def _init (self, agen):
self.agen = agen

async def interact(self, *args, **kwargs,):
try:
await self.agen.asend((args, kwargs))
except StopAsyncIteration:
logging.exception("The async generator is already
exhausted!")

async def wrap_in_asyngen(handler):
while True:
args, kwargs = yield
handler (*args, **kwargs)

@asynccontextmanager
async def start(agen):
try:
await agen.asend(None)
yield Interactor(agen)
finally:
await agen.aclose()

115

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

async def main():
async with start(wrap_in_asyngen(print)) as w:
await w.interact("Put")
await w.interact("the")
await w.interact("worker™)
await w.interact("to")
await w.interact("work!")

asyncio.run(main())

How It Works

The Interactor class encapsulates the part that enables the
communication to the async generator. It uses the asend coroutine
method to pass generic payloads, which it does by wrapping the *args and
**kwargs parameters into a tuple.

Hence, the async generator needs to obey the contract and unwrap the
payload. Our helper async generator wrap_in_asyngen passes these values
to a callable that was passed via the handler parameter.

This helper async generator could behave state-fully, but mind you
that the state of local variables will be resetted to the initial value if you
yield them to the caller.

The start async context manager wraps the async generator in an
Interactor and yields it back to us.

Calling interact calls asend under the hood, which is the equivalent
of the async for loop behavior.

The async for loop first calls asend under the hood with None as an
argument to initiate the iteration of the async generator.

Subsequent iteration steps call asend with None as an argument, until
they receive the special sentinel value called PyAsyncGenWrappedValue,
which indicates to raise a StopAsyncIteration exception and contains the
last yielded value.

116

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

If you control the asend calls manually, it is possible to push values to
the asynchronous generator as demonstrated.

If you wanted to throw an exception into the asynchronous generator,
you can also use the athrow coroutine for that. In that case, you would
need to handle the exception inside the asynchronous generator function;
otherwise, it will stop prematurely.

Using Queues with Coroutines
Problem

Queues are widely used for concurrency, especially in the context of
multi-threaded or multi-process applications, so it’s a very familiar
process to developers.

If you want to migrate such an application to queues with
coroutines, you might wonder if there is a similar data structure like the
multiprocessing.Queue for asyncio that plays nice with coroutines.

Solution

Using asyncio.Queue, we can leverage asyncio-native objects to handle
queuing of payloads.

import asyncio
import logging

logging.basicConfig(level=1ogging.DEBUG)

async def producer(iterable, queue: asyncio.Queue, shutdown
event: asyncio.Event):
for i in iterable:

117

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

if shutdown event.is set():
break

try:
queue.put _nowait(i)
await asyncio.sleep(0)

except asyncio.QueueFull as err:
logging.warning("The queue is too full. Maybe the
worker are too slow.")
raise err

shutdown_event.set()

async def worker(name, handler, queue: asyncio.Queue, shutdown
event: asyncio.Event):
while not shutdown event.is set() or not queue.empty():
try:
work = queue.get nowait()
Simulate work
handler(await asyncio.sleep(1.0, work))
logging.debug(f"worker {name}: {work}")

except asyncio.QueueEmpty:
await asyncio.sleep(0)

async def main():
n, handler, iterable = 10, lambda val: None, [i for i in
range(500)]
shutdown event = asyncio.Event()
queue = asyncio.Queue()
worker coros = [worker(f"worker {i}", handler, queue,
shutdown event) for i in range(n)]
producer coro = producer(iterable, queue, shutdown event)

118

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

coro = asyncio.gather(
producer coro,
*worker coros,
return_exceptions=True

)

try:
await coro

except KeyboardInterrupt:
shutdown_event.set()
coro.cancel()

try:
asyncio.run(main())

except KeyboardInterrupt:
It bubbles up
logging.info("Pressed ctrl+c...")

How It Works

The worker-producer pattern works with coroutines as follows:

1. One producer coroutine produces new workloads that
it puts into a queue for the worker coroutines to fetch.

2. Itlistens for the shutdown signal to stop producing new
workloads and to gracefully shut down the program.

3. Using a queue, we must handle the asyncio.
QueueFull exception. We set the shutdown_event from
the producer when we have finished producing.

4. The worker coroutines, on the other hand, eagerly look
for work in the queue and suspend if there is none. The
indication for “no work” is a asyncio.QueueEmpty exception,
while we have not received a shutdown event yet.

119

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

Note It is important that we have an async.sleep somewhere in
the body of our worker so that other workers have a chance to grab
a workload too. It is also important to have an async.sleep(0)
inside the producer so that the workers have a chance to grab a
workload out of the queue. Otherwise, the workers will not start until
the producer has finished filling up the queue completely.

Communicating with a Subprocess Using
Streams

The subprocesses API provides the means to spawn and entertain
subprocesses using underlying tools like fork and spawn in a more high-
level fashion.

Usually, we want to deploy IPC channels like pipes to talk to our
subprocess, but for multiple processes this method might get a bit clumsy.

Given that asyncio provides a nice asynchronous streaming API, we
will leverage it as a communication channel to our subprocesses.

Note that on a UNIX system, we recommend the second solution
using the UNIX server and connections that use UNIX domain sockets. The
benefits are that you can use the sophisticated UNIX file permission system
on your sockets for access control and benefit from speed improvements
since the IP stack mechanisms are bypassed.

To keep the argument parsing straightforward, we have decided to
separate these examples.

120

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

Solution #1: Windows and UNIX

Using the asyncio.start _server and asyncio.open_connection APIs, we
can have two subprocesses communicate with each other, besides using
pipes for IPC.

This example uses TCP sockets for communication and hence is
cross-platform.

import argparse
import asyncio
import sys

parser = argparse.ArgumentParser("streamserver")

subparsers = parser.add subparsers(dest="command")
primary = subparsers.add parser("primary")
secondary = subparsers.add parser("secondary")
for subparser in (primary, secondary):
subparser.add argument("--host", default="127.0.0.1")
subparser.add argument("--port", default=1234)

async def connection_handler(reader: asyncio.StreamReader,
writer: asyncio.StreamWriter):

print("Handler started")

writer.write(b"Hi there!™)

await writer.drain()

message = await reader.read(1024)

print(message)

async def start primary(host, port):
await asyncio.create subprocess exec(sys.executable,
__file , "secondary", "--host", host, "--port",str(port),)

121

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

server = await asyncio.start server(connection handler,
host=host, port=port)
async with server:

await server.serve forever()

async def start secondary(host, port):
reader, writer = await asyncio.open connection(host, port)
message = await reader.read(1024)
print(message)
writer.write(b"Hi yourself!")
await writer.drain()
writer.close()
await writer.wait closed()

async def main():
args = parser.parse_args()

if args.command == "primary":

await start primary(args.host, args.port)
else:

await start secondary(args.host, args.port)

try:
import logging
logging.basicConfig(level=logging.DEBUG)
logging.debug("Press ctrl+c to stop")
if sys.platform == 'win32':
asyncio.set_event loop policy(asyncio.
WindowsProactorEventLoopPolicy())
asyncio.run(main())
except KeyboardInterrupt:
logging.debug("Stopped..")

122

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

Solution #2: UNIX Only

This example is UNIX only, since it uses UNIX domain sockets for
communication.

To start the server, we use asyncio.start_unix_server and asyncio.
open_unix_connection instead of the asyncio.start server and
asyncio.open_connection APIs.

import argparse
import asyncio
import sys

parser = argparse.ArgumentParser("streamserver")

subparsers = parser.add subparsers(dest="command")

primary = subparsers.add parser("primary")

secondary = subparsers.add parser("secondary")

for subparser in (primary, secondary):
subparser.add_argument("--path", default="/tmp/asyncio.socket")

async def connection_handler(reader: asyncio.StreamReader,
writer: asyncio.StreamWriter):

print("Handler started")

writer.write(b"Hi there!")

await writer.drain()

message = await reader.read(1024)

print(message)

async def start primary(path):
await asyncio.create subprocess exec(sys.executable,
__file , "secondary", "--path", path)

123

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

server = await asyncio.start unix_server(connection_
handler, path)
async with server:

await server.serve forever()

async def start secondary(path):
reader, writer = await asyncio.open unix connection(path)
message = await reader.read(1024)
print(message)
writer.write(b"Hi yourself!")
await writer.drain()
writer.close()
await writer.wait closed()

async def main():
args = parser.parse_args()

if args.command == "primary":
await start_primary(args.path)
else:
await start secondary(args.path)
try:
import logging
logging.basicConfig(level=logging.DEBUG)
logging.debug("Press ctrl+c to stop")
asyncio.run(main())
except KeyboardInterrupt:
logging.debug("Stopped..")

124

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

How It Works

This section applies to both solutions. The program can be started by
invoking it in this fashion (on a UNIX system):

env python3 primary --host 127.0.0.1 --port <portnumber>
Or using this for the UNIX domain socket solution:

env python3 primary --path <path>
It will automatically spawn a child process using this:

await asyncio.create subprocess exec(sys.executable, file ,
'--port",str(port),)

"secondary", "--host", host,
or this for the UNIX domain socket solution:

await asyncio.create subprocess exec(sys.executable, file ,
"secondary", "--path", path)

The following part is responsible for spawning the server and will
call the connection_handler on every connection attempt. It will inject a
StreamWriter and StreamReader instance:

server = await asyncio.start unix server(connection_handler, path)
async with server:
await server.serve forever()

The read API for the StreamReader is completely asynchronous and
blocks until it there is actual data to read.

The writer API is not symmetrical, because the write* methods cannot
be awaited.

Flow control has to be achieved via awaitingwriter.drain, which
blocks until the size of the buffer is drained down to the low watermark
and writing can be resumed. It will immediately return if there is nothing

to wait for.

125

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

To establish a connection to our stream server, we can use the

following:
reader, writer = await asyncio.open_connection(host, port)
or use this for the UNIX domain socket solution:
reader, writer = await asyncio.open unix_connection(path)

We receive stream readers and writers, which we can use to transfer
payloads back and forth:

message = await reader.read(1024)
print(message)

writer.write(b"Hi yourself!")
await writer.drain()
writer.close()

await writer.wait closed()

Note that we await writer.wait_closed() after the call towriter.
close(), which is a new Python 3.7 API intended for this particular use.
Note also that we don’t need to close in the StreamReader case.

Writing a Simple RPC System with Asyncio

Using asyncio and MQTT as our transport layer, we can build a simple
async RPC (remote procedure call) system.

Using RPC basically means that we can call a function/procedure
defined in another program as if it belongs to our code. Choosing MQTT
as a transport layer is best when we need to entertain a steady connection
between the involved parties of our system in order to react to remote
procedure calls between parties.

126

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

The parties involved are as follows:

o RPCRegistrar: The place where you register your
remote procedures to signal availability to clients

e RPCClients: The consumers of remote procedures that
were registered before

e RPCService: The provider of a remote procedure

This example assumes that you are running an instance of the
Mosquitto MQTT server locally on the default port. It can be found for
download here:

https://mosquitto.org/download/

Optionally, you can switch out the MQTT URL in the example with the
official Mosquitto test server. See mqtt://test.mosquitto.org.

The example also assumes that you have installed the hbmqtt library.
If you haven’t installed it, you can do so via:

pip3 install hbmgtt
#or

pipenv install hbmqtt

Solution

Using the hbmgtt library, we can build an async MQTT binding for remote
procedure calling. We will define a multi-stage protocol for invoking

and getting the result of the call in a Pythonic way. MQTT works in a
publish-subscribe fashion, which makes it perfect for interoperability with
asyncio.Future.

import abc
import asyncio
import collections

127

https://mosquitto.org/download/

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

import inspect

import logging

import pickle

import typing

from contextlib import asynccontextmanager
from pickle import PickleError

from uuid import uuid4

from hbmgtt.client import MQTTClient, ConnectException
from hbmqtt.mqtt.constants import Q0S 0

GET_REMOTE_METHOD = "get remote method"
GET_REMOTE_METHOD RESPONSE = "get remote method/response”

CALL_REMOTE_METHOD = "call remote method"
CALL_REMOTE_METHOD _RESPONSE = "call remote method/response”

REGISTER REMOTE_METHOD = "register remote method"
REGISTER_REMOTE_METHOD RESPONSE = "register remote method/response"

logging.basicConfig(level=1logging.INFO)

@asynccontextmanager
async def connect(url):
client = MQTTClient()
try:
await client.connect(url)
yield client
except ConnectException:
logging.exception(f"Could not connect to {url}")
finally:
await client.disconnect()

128

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

@asynccontextmanager
async def pool(n, url):
clients = [MQTTClient() for _ in range(n)]
try:
await asyncio.gather(*[client.connect(url) for client
in clients])
yield clients
except ConnectException:
logging.exception(f"Could not connect to {url}")
finally:
await asyncio.gather(*[client.disconnect() for client
in clients])

def set future result(fut, result):
if not fut:
pass
if isinstance(result, Exception):
fut.set_exception(result)
else:
fut.set result(result)

class RPCException(Exception):
def init (self, message):
self.message = message

def _str (self):
return f"Error: {self.message}"

class RegisterRemoteMethodException(RPCException):
def init (self):
super (RegisterRemoteMethodException, self). init
(f"Could not respond to {REGISTER REMOTE_METHOD} query")

129

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

class GetRemoteMethodException(RPCException):
def init (self):
super (GetRemoteMethodException, self). init (f"Could
not respond to {GET_REMOTE_METHOD} query")

class CallRemoteMethodException(RPCException):
def init (self):
super (CallRemoteMethodException, self). init (f"Could
not respond to {CALL_REMOTE_METHOD} query")

class RCPBase:

def init (self, client: MQTTClient, topics: typing.
List[str], qos=Q0S 0):

self.client = client

self.running_fut = None

self.topics = topics

self.qos = qos

@abc.abstractmethod
async def on_get remote method(self, uuid , service name,
function name):
raise NotImplementedError("Not implemented on get
remote _method!")

@abc.abstractmethod
async def on_register remote method(self, uuid , service_
name, function name, signature):
raise NotImplementedError("Not implemented on register
remote method!")

@abc.abstractmethod
async def on_call remote method(self, uuid , service name,
function _name, args, kwargs):

130

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

raise NotImplementedError("Not implemented on call
remote method!")

@abc.abstractmethod

async def on_get remote method response(self, uuid ,

service_name, function_name, signature or_exception):
raise NotImplementedError("Not implemented on get
remote_method response!")

@abc.abstractmethod

async def on_register remote method response(self, uuid ,

service name, function name, is registered or exception):
raise NotImplementedError("Not implemented on register
remote_method response!")

@abc.abstractmethod

async def on_call remote method response(self, uuid ,

service name, function name, result or exception):
raise NotImplementedError("Not implemented on_call
remote method response!")

async def next_message(self):
message = await self.client.deliver message()
packet = message.publish packet
topic_name, payload = packet.variable header.topic_
name, packet.payload.data
return topic_name, payload

async def loop(self):
while True:
topic, payload = await self.next message()
try:
yield topic, pickle.loads(payload)

131

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

except (PickleError, AttributeError, EOFError,

ImportError, IndexError):
logging.exception("Could not deserialize
payload: %s for topic: %s", payload, topic)

async def _aenter (self):
self.running_fut = asyncio.ensure future(self.start())
await self.client.subscribe([
(topic, self.qos) for topic in self.topics
D

return self

async def aexit (self, exc_type, exc val, exc_tb):
await self.stop()
await self.client.unsubscribe(self.topics)

async def start(self):
async for topic, payload in self.loop():
try:

if topic == REGISTER REMOTE METHOD:
await self.on _register remote_
method(*payload)

elif topic == GET_REMOTE METHOD:
await self.on_get remote method(*payload)

elif topic == CALL_REMOTE_METHOD:
await self.on call remote method(*payload)

elif topic == REGISTER REMOTE_METHOD RESPONSE:
await self.on register remote method
response(*payload)

elif topic == GET_REMOTE_METHOD RESPONSE:
await self.on_get remote method
response(*payload)

elif topic == CALL_REMOTE_METHOD RESPONSE:

132

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

await self.on _call remote method
response(*payload)
except TypeError:
logging.exception(f"Could not call handler for
topic: %s and payload: %s", topic, payload)
except NotImplementedError:
pass

async def stop(self):
if self.running fut:
self.running fut.cancel()

async def wait(self):
if self.running fut:
await asyncio.shield(self.running fut)

class RemoteMethod:

def init (self, rpc_client, signature, function name,
qos=Q0S 0):

self.rpc_client = rpc_client

self.signature = signature

self.function_name = function_name

self.qos = qos

async def _call (self, *args, **kwargs,):
uuid = str(uuid4())
service name = self.rpc_client.service name
payload = (uuid_, service name, self.function_name,
args, kwargs)
fut = asyncio.Future()
self.rpc_client.call remote method requests.
setdefault(service name, {}).setdefault(self.function_

name, {})[
uuid] = fut

133

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

await self.rpc_client.client.publish(CALL REMOTE_METHOD,
pickle.dumps(payload), qos=self.qos)
return await fut

class RPCClient(RCPBase):

134

def _init (self, client, service name, topics=None,
qos=Q0S 0):

if not topics:
topics = [CALL_REMOTE_METHOD RESPONSE, GET REMOTE
METHOD RESPONSE,]
super (RPCClient, self). init (client, topics, qos=qos)
self.call remote method requests = collections.
defaultdict(dict)
self.get remote method requests = collections.
defaultdict(dict)
self.list remote methods requests = collections.
defaultdict(dict)
self.responses = collections.defaultdict(dict)
self.service name = service name
self.remote _methods cache = collections.defaultdict(dict)

def getattr (self, item):

return asyncio.ensure future(self.get remote method(item))

async def get remote method(self, function name):

while True:
uuid = str(uuid4())
payload = (uuid , self.service name, function name)
fut = asyncio.Future()
self.get remote method requests.setdefault(self.
service name, {}).setdefault(function name, {})[uuid] = fut

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

await self.client.publish(GET _REMOTE_METHOD, pickle.
dumps(payload), qos=Q0S 0)
Might throw GetRemoteMethodException
try:
signature = await asyncio.shield(fut)
return RemoteMethod(self, signature, function_
name)
except GetRemoteMethodException:
await asyncio.sleep(0)

async def on_call remote method response(self, uuid , service
name, function name, result or exception):
fut = self.call remote method requests.get(service name,
{}).get(function name, {}).pop(uuid , None)
set_future result(fut, result or exception)

async def on_get remote method response(self, uuid , service
name, function name, signature or exception):
fut = self.get remote method requests.get(service name,
{}).get(function name, {}).pop(uuid , None)
set_future result(fut, signature or exception)

class RPCService(RCPBase):
def _init (self, client: MQTTClient, name: str, topics:
typing.List[str] = None, qos=Q0S 0):
if not topics:
topics = [REGISTER REMOTE_METHOD RESPONSE, CALL_
REMOTE_METHOD]
super (RPCService, self). init (client, topics, qos=qos)
self.name = name
self.client = client
self.qos = qos

135

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

self.register remote method requests = collections.
defaultdict(dict)
self.remote _methods = collections.defaultdict(dict)

async def register function(self, remote function):
function_name = remote function. name__
uuid = str(uuid4())
payload = pickle.dumps((uuid , self.name, function name,
inspect.signature(remote function)))
fut = asyncio.Future()
self.register remote method requests.setdefault(self.name,
{}).setdefault(function name, {})[uuid] = fut
self.remote _methods[self.name][function name] = remote
function
await self.client.publish(REGISTER REMOTE METHOD, payload,
gos=self.qos)
return await asyncio.shield(fut)

async def on register remote method response(self, uuid_,
service name, function name, is registered or exception):
fut = self.register remote method requests.get(service_
name, {}).get(function name, {}).get(uuid_, None)
set future result(fut, is registered or exception)

async def on_call remote method(self, uuid , service name,
function name, args, kwargs):
remote method = self.remote methods.get(service name, {}).
get(function name, None)
if not remote method:
payload = pickle.dumps((uuid , service name, function_
name, CallRemoteMethodException()))
return await self.client.publish(CALL_REMOTE_METHOD
RESPONSE, payload, qos=self.qos)

136

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

try:
result = await remote method(*args, **kwargs)
payload = pickle.dumps((uuid , service name, function_
name, result))
return await self.client.publish(CALL REMOTE METHOD
RESPONSE, payload, qos=self.qos)

except Exception as err:
payload = pickle.dumps((uuid , service name, function_
name, err))
return await self.client.publish(CALL_REMOTE_METHOD
RESPONSE, payload, qos=self.qos)

class RemoteRegistrar(RCPBase):
def _init (self, client: MQTTClient, topics: typing.
List[str] = None, qos=Q0S 0):
if not topics:
topics = [REGISTER REMOTE METHOD, GET REMOTE METHOD]
super (RemoteRegistrar, self). init (client, topics,
4o0s=qos)
self.registrar = collections.defaultdict(dict)

async def on_register remote method(self, uuid , service name,
function name, signature):
try:

self.registrar.setdefault(service name, {})[function_
name] = signature
payload = pickle.dumps((uuid_, service name, function_
name, True),)
await self.client.publish(REGISTER REMOTE METHOD
RESPONSE, payload)

137

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

except Exception:
A broad exception clause like this is bad practice
but we are only interested in the outcome of saving
the signature, so we convert it
logging.exception(f"Failed to save signature: {signature}")
payload = pickle.dumps((uuid , service name, function_
name, RegisterRemoteMethodException()))
await self.client.publish(REGISTER REMOTE METHOD
RESPONSE, payload,)

async def on_get remote method(self, uuid , service name,
function_name):
signature = self.registrar.get(service name, {}).
get(function name, None)

if signature:
payload = pickle.dumps((uuid_, service name, function_
name, signature),)
await self.client.publish(GET REMOTE_METHOD RESPONSE,
payload)

else:
payload = pickle.dumps((uuid , service name, function_
name, GetRemoteMethodException()),)
await self.client.publish(GET _REMOTE_METHOD RESPONSE,
payload)

async def remote function(i: int, f: float, s: str):
print ("It worked")
return

async def register with delay(rpc_service, remote function,
delay=3):

await asyncio.sleep(delay)

await rpc_service.register function(remote function)

138

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

async def main(url="mqtt://localhost"”, service name="TestService"):
async with pool(3, url) as (client, client1, client2):
async with RemoteRegistrar(client):
async with RPCService(client1, service name) as rpc_
service:
async with RPCClient(client2, service name) as
rpc_client:
asyncio.ensure future(register with delay(rpc_
service, remote function))
handler = await asyncio.wait for(rpc_client.
remote function,timeout=10)
res = await handler(1, 3.4, "")
print(res)

if _name_ =="' main_ ':

asyncio.run(main())

How It Works

MQTT uses so-called topics, which you can send payloads to and
subscribe on.

We use three topics and their respective “response” topics to facilitate
our RPC bus. They are defined as follows:

GET_REMOTE_METHOD = "get remote method"
GET_REMOTE_METHOD RESPONSE = "get remote method/response”

CALL_REMOTE_METHOD = "call_remote method"
CALL_REMOTE_METHOD RESPONSE = "call remote method/response”

REGISTER_REMOTE_METHOD = "register remote_method"
REGISTER_REMOTE_METHOD RESPONSE = "register remote method/response”

139

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

We implement our own simple message ID on MQTT using its least
reliable modus operandi in terms of quality of service, which means that
every message is sent at most once, with no acknowledgment message.

For convenience, we define async context managers for MQTTClient
that handle the disconnections and a pool that creates multiple
MOTTClient instances.

@asynccontextmanager
async def connect(url):
snip ..

@asynccontextmanager
async def pool(n, url):
snip ..

We will use the pool in this example because the MQTTClient instance
cannot be shared across our three aforementioned parties. We will invoke
the whole machinery in one process for ease of demonstration. (Ideally,
we should have three separate processes and hence three instances.)

We define a helper function that we use to interact with futures hassle-
free. If we pass it a non-exception value, we want it to be set as such;
otherwise, we call set exception. We need to do this because we are
listening to MQTT messages on their respective (non-async) loops. When
we find a message to a topic that our party has subscribed to, we check if
the IDs of the message and the stored future match and use this helper to
walke the party from awaiting the future.

We also define a couple of exceptions that are thrown when something
goes wrong on the respective topics.

def set future result(fut, result):
if not fut:
pass
if isinstance(result, Exception):
fut.set_exception(result)

140

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

else:
fut.set result(result)

class RPCException(Exception):
snip...

class RegisterRemoteMethodException(RPCException):
snip...

class GetRemoteMethodException(RPCException):
snip...

class CallRemoteMethodException(RPCException):
snip...

Next, we define the RCPBase class, which defines an interface to be
implemented by parties that want to define callbacks to the respective
topics.

It can be passed topics that it will unsubscribe/subscribe upon
entering/exiting if it is used as an async context manager

Furthermore, it will take care of starting its message loop and calling
the correct callbacks.

By awaiting its wait method, we can block indefinitely. This is useful
for the RPCRegistrar and the RPCService.

The RemoteMethod class abstracts away a method belonging to a
remote service. Note that __call isa coroutine (!) and it takes care
of publishing the *args and **kwargs parameters to the CALL_REMOTE_
METHOD topic, using pickle as a serializing mechanism.

class RemoteMethod:
snip ..

The RPCClient starts with the service name set to the name of the
RPCService instance that we are interested in.

141

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

We override the getattr toschedule aget remote method call,
which in turn returns a future we can await. It returns if the remote method
was registered and turns into a RemoteMethod. It will block indefinitely if
this doesn’t happen, so we await it with a timeout.

We use the RPCService to register a function. It publishes the intent
on the respective topic that the registrar is listening to when calling its
register function coroutine method.

The communication happens on the topic and its corresponding
<topicname>/response channel where the subscribing party answers.

The registrar saves the serialized signature object of the respective
function, which could, for instance, be used for parameter validation.

The main coroutine is straightforward. It shows the delayed registration
of a function that we embedded to demonstrate that you could very well
use these components in different processes/call order.

async def main(url="mqtt://localhost", service
name="TestService"):
async with pool(3, url) as (client, client1, client2):
async with RemoteRegistrar(client):
async with RPCService(client1, service name) as
IpC_service:
async with RPCClient(client2, service name) as
rpc_client:
asyncio.ensure_future(register with_
delay(rpc_service, remote function))
handler = await asyncio.wait for(rpc_
client.remote function,timeout=10)
res = await handler(1, 3.4, "")
print(res)

142

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

Writing Callbacks that Have a “Memory”
Using Contextvars

Sometimes it is nice to have “coroutine-local” context that can be shared
across runs, but is private inside the run. This basically means that two
coroutines that access the same key should have their private version/view
on their context variable.

Fortunately, PEP 567 introduced such a concept through the
contextvars module.

It provides three new APIs that can be used from the world of asyncio:

e C(ContextVar
o Context

e Token

Solution #1

We demonstrate that ContextVar instances are indeed coroutine-local by
constructing an example with multiple accesses to the value stored in the
same key from different coroutines.

import contextvars
from contextvars import ContextVar
import asyncio

context = contextvars.copy context()
context var = ContextVar('key', default=None)

async def memory(context var, value):
old value = context var.get()
context_var.set(value)
print(old_value, value)

143

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

async def main():
await asyncio.gather(*[memory(context var, i) for i in

range(10)])

asyncio.run(main())

How It Works

Using context = contextvars.copy context(), we get a copy of the
current Context object which is a “[..] new generic mechanism of
ensuring consistent access to non-local state in the context of out-of-
order execution [..]” (Source: https://www.python.org/dev/peps/pep-
0550/) for the current OS thread, which is just shallow. So, the caller is
the sole owner of the Context object.

The ContextVar must be defined outside of a function scope and
is used for a lookup on the “current” coroutine-local context object by
passing itself as a key.

By calling memory simultaneously multiple times, we can see that the
access to context_var is indeed coroutine-local, since it always starts with
the default value.

Solution #2

We demonstrate how synchronous callbacks use ContextVar instances for

context awareness.

import contextvars
import functools
from contextvars import ContextVar

context = contextvars.copy context()
context _var = ContextVar('key', default=None)

def resetter(context var, token, invalid values):

144

https://www.python.org/dev/peps/pep-0550/
https://www.python.org/dev/peps/pep-0550/

def

for

CHAPTER6 COMMUNICATION BETWEEN ASYNCIO COMPONENTS

value = context var.get()
if value in invalid values:
context var.reset(token)

blacklist(context var, value, resetter):
old value = context var.get()

token = context var.set(value)
resetter(context var, token)
print(old_value)

i in range(10):
context.run(blacklist, context var, i, functools.
partial(resetter, invalid values=[5, 6, 7, 8, 9]))

How It Works

Syn

chronous callbacks can also benefit from context-aware storage.

By using context.run, we can ensure that the context is not accessed

from more than one OS thread. This is because context.run raises a

RuntimeError when it’s called on the same context object from more than

one OS thread, or when it’s called recursively.

the

We also learned about the Token API, which can be used to reset
context to a previously set value. Tokens are returned by invoking a

ContextVar.set method. To return to a previous state given by a token
object, we invoke ContextVar.reset(token).

145

CHAPTER 7

Synchronization
Between Asyncio
Components

Asyncio enables us to write cooperative concurrent systems. There are no
mechanisms to ensure their correctness in terms of safety and liveness.
Safety in this context means to remain in an “intended” state and not divert
from it. Liveness in this context means to “make progress,” basically that the
intended states of the program are reached.

A program consists of critical and uncritical paths of execution.

A critical path is characterized by the access of a shared resource.
Synchronization in our context means that we ensure mutually exclusive
access of the shared resource for one coroutine. Ironically, claiming
exclusive control over a shared resource inside a critical path is one of the
Coffman conditions. We need to be careful to not run into deadlocks while
trying to fix our synchronization problems.

It’s the responsibility of the developer to ensure that the code
demonstrates named properties. We want to narrow down our understanding
of safety in the realm of concurrency for asyncio to a very practical one:

The (critical) paths of our application allow access of shared data;
allow one coroutine exclusively to access the shared data from the
coroutine’s beginning until the coroutine’s ending.

© Mohamed Mustapha Tahrioui 2019 147
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_7

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

To ensure the liveness of the asyncio program, we need to ensure
we do not construct code that runs into a deadlock. A deadlock can
be understood as a situation in time where the system fulfills the four
Coffman conditions simultaneously:

o Tasks claim exclusive control of the resources they
require (the mutual exclusion condition).

o Tasks hold resources already allocated to them
while waiting for additional resources (the wait for
condition).

e Resources cannot be forcibly removed from the
tasks holding them until the resources are used to
completion (the no preemption condition).

e A circular chain of tasks exists, such that each task
holds one or more resources that are being requested
by the next task in the chain (the circular wait
condition).

Note These are necessary but not sufficient conditions for a
deadlock. Removing them however is sufficient to not have deadlock,
i.e., to ensure the liveness of the program.

Using Locks for Mutual Exclusive Access
to a Shared Resource

Problem

You want to provide mutual exclusive access to coroutines concerning a
shared resource.

148

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

Solution

Using knowledge about async context managers, we can use asyncio.Lock

on context exclusively for one coroutine to access some resource:
import asyncio

NON_ATOMIC_SUM_KEY = 'non_atomic_sum’
ATOMIC SUM KEY = 'atomic_sum'
DATABASE = {ATOMIC SUM KEY: 0, NON_ATOMIC SUM KEY: 0}

async def add with delay(key, value, delay):
old_value = DATABASE[key]
await asyncio.sleep(delay)
DATABASE[key] = old value + value

async def add locked with delay(lock, key, value, delay):
async with lock:
old value = DATABASE[key]
await asyncio.sleep(delay)
DATABASE[key] = old value + value

async def main():
An asyncio lock can be used to guarantee exclusive access
to a shared resource
lock = asyncio.Llock()
atomic_workers = [
add locked with delay(lock, ATOMIC SUM KEY, 1, 3),
add locked with delay(lock, ATOMIC SUM KEY, 1, 2),
]
non_atomic_workers = [
add_with delay(NON ATOMIC SUM KEY, 1, 3),
add with_delay(NON_ATOMIC SUM KEY, 1, 2),

149

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

await asyncio.gather(*non_atomic_workers)
await asyncio.gather(*atomic_workers)

assert DATABASE.get(ATOMIC SUM KEY) == 2
assert DATABASE.get(NON_ATOMIC SUM KEY) != 2

asyncio.run(main())

How It Works

The CPython interpreter has a global lock that influences the interpreter’s
process parallelism. Only one native thread can effectively operate at a
time, meaning executing bytecode. This means since asyncio, we have
three ways in Python to run into synchronization issues/data races:

e Threaded code that gets non-cooperatively preempted
(suspended)

e Multi-process code

e Asyncio code that yields control back to the event loop
viaawait asyncio.sleep(n) inside the critical path
that accesses the shared memory

Asyncio gets interfaces for coroutines (event loops and the async def
keyword), multiprocessing (using subprocesses), and to threads (using the
event loop’s executor API).

In asyncio, the asyncio.Lock async context manager is the correct way
to provide mutual exclusive access to a shared resource.

Note Using the lock interface directly by awaiting the acquire and
release coroutine methods is considered deprecated! The threading
module and the multiprocessing module provide their version of a
lock context manager to ensure mutual exclusive access to shared
resources for threads and processes.

150

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

The asyncio version allows only one coroutine to enter its scope.
We compare access to a data race and one without and see how the lock
came into the picture to enable a data-race-free access.

Note Every access to a resource must happen under the same lock
to ensure data-race freeness. If you enter the async context manager
lock's scope, it will call acquireinits __aenter _ hook for you.

This call blocks until all the other parties that tried to call acquire have
returned. To signal to the lock that it is free again, the release coroutine
method is calledin __aexit by the lock. This will ensure that the first
waiter in the dequeue is notified. This way, only one coroutine is “inside”
the lock’s context at any time.

In our example, we construct two coroutine functions—add_with_
delay and add_locked with_delay. They access a dictionary value via the
same key, suspend themselves with asyncio.sleep, and write the initial
value they have read into the dictionary while adding a value they were
passed as a parameter.

They differ in their behavior based on how they behave in this critical
path. add with delay does not bother about synchronization and
dd_locked with delay locks the whole critical path up. This way, only
one coroutine can access the dictionary at the same time in reading and
writing.

Note The interesting bit here is that the presence of the lock
indicates that the context switch is useless. We could also have
chosen a more elaborate example—splitting, getting, and adding the
value into two coroutines—but we chose not to, since both examples
demonstrate the same principle.

151

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

Using Events for Notification
Problem

You want to notify waiting tasks that an event they are waiting on has
occurred.

Solution

asyncio events are intended to signal to multiple coroutines, hence the
coroutine method can be reused and will block until the event is “set”.
We demonstrate how a (service) cleanup pattern could be built using an
event loop.

import asyncio
import logging
import random

logging.basicConfig(level=1ogging.INFO)

async def busy loop(interval, work, worker, shutdown event):
while not shutdown event.is set():
await worker(work)
await asyncio.sleep(interval)
logging.info("Shutdown event was set..")
return work

async def cleanup(mess, shutdown event):
await shutdown event.wait()

logging.info("Cleaning up the mess: %s...", mess)

Add cleanup logic here

async def shutdown(delay, shutdown event):
await asyncio.sleep(delay)
shutdown_event.set()

152

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

async def add mess(mess pile,):
mess = random.randint(1, 10)
logging.info("Adding the mess: %s...
mess_pile.append(mess)

, Mess)

async def main():
shutdown_event
shutdown_delay
work = []

asyncio.Event()
10

await asyncio.gather(*[
shutdown(shutdown delay, shutdown event),
cleanup(work, shutdown event),
busy loop(1, work, add mess, shutdown event),

)

asyncio.run(main())

How It Works

We await three coroutines in our main method:
o shutdown(shutdown_delay, shutdown event)
o cleanup(work, shutdown_event)
o busy loop(1, work, add mess, shutdown event)

Shutdown is a helper coroutine method that “sets” the event instance
we pass to all coroutines. In other words, it notifies all coroutines currently
waiting or checking its status via event.is_set thatit’s finished. Since
the busy loop needs to perform work periodically, it doesn’t make sense
for it to await the event signal, so it’s polling it via event.is_set before
starting to invoke the worker. The cleanup coroutine, on the other hand,
demonstrates how you wait for the event to be set by awaiting its event.
wait() coroutine.

153

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

Using Condition Variables for
Control Flow

Problem

You want to grant mutually exclusive access to a shared resource.

Solution

Condition variables were introduced in a prior chapter, but not as a
synchronization mechanism. Basically, condition variables can be best
understood as locks coupled with event variables. The following example
shows us to build a stock watcher given multiple condition variables the

share one lock instance:

import asyncio
import random

STOCK_MARKET = {
"DAX": 100,
"SPR": 10,
"AMAZON": 1000,

}

INITIAL_STOCK_MARKET = STOCK_MARKET.copy()

class MarketException(BaseException):
pass

async def stock watcher(on alert, stock, price, cond):
async with cond:
print(f"Waiting for {stock} to be under {price}$")
await cond.wait for(lambda: STOCK MARKET.get(stock) <
price)
await on_alert()

154

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

def random stock():
while True:
yield random.choice(1list(STOCK MARKET.keys()))

async def twitter quotes(conds, threshold):
for stock in random stock():
STOCK_MARKET[stock] -= random.randint(1, 10)
new value = STOCK MARKET[stock]
print(f"New stock market value for {stock}: {new value}")
if new_value < threshold:
cond = conds.get(stock)
async with cond:
cond.notify()
await asyncio.sleep(.1)

async def governmental market surveillance():
raise MarketException()

async def main():
lock = asyncio.Lock()
conditions = {stock: asyncio.Condition(lock) for stock in
STOCK_MARKET}
threshold = -50
stock watchers = [
stock watcher(
governmental _market_surveillance,
stock,
threshold,
conditions.get(stock)
) for stock in STOCK MARKET

155

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

await asyncio.gather(*[twitter quotes(conditions, threshold),
*stock watchers], return exceptions=False)

try:
asyncio.run(main())

except MarketException:
print("Restoring the stock market..")
STOCK_MARKET = INITIAL STOCK MARKET.copy()

How It Works

The solution demonstrates how we can await dynamically calculated
conditions. We create a stock_watcher instance for each stock and pass it
a condition variable that has an instance of the same lock.

Using the same lock is important, otherwise awaiting condition.wait_
for will block indefinitely! The acquire, release, and locked methods of
the condition variable are just pass-throughs of the lock methods. If you
don’t use the same lock, the coroutines will not be governed by the same
context and in consequence not synchronized.

condition.wait_for is passed a callable. As long as the callable
returns a false value awaiting, the condition.wait_for coroutine will
block. Nonetheless, the condition variable needs to be signaled as to when
to check for the condition using cond.notify

To call the method, we need to acquire the lock first by using the async
context manager protocol on the condition variable:

async with cond:
cond.notify()

156

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

Note This check is redundant: if new value < threshold:.
It can be removed, since we use cond.wait_for and not cond.
wait. The context switch after invoking cond.notify via await
asyncio.sleep(.1) is necessary since it gives the condition
variable the chance to check if the condition became true.

The delay is not important as long it is bigger than or equal to zero.
Equal to zero would skip exactly one loop iteration.

Using Semaphores to Restrict Concurrent
Resource Access

Problem

You want to allow only a limited number of coroutines operating in a
context.

Solution

We see how to have 10 concurrent workers at most using asyncio.
Semaphores in this example

import asyncio

async def run(i, semaphore):
async with semaphore:
print(f"{i} working..")
return await asyncio.sleep(1)

157

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

async def main():
semaphore = asyncio.Semaphore(10)
await asyncio.gather(*[run(i, semaphore) for i in
range(100)])

asyncio.run(main())

How It Works

Semaphores operate like locks in the sense that they allow only a limited
number of coroutines operating in their context (they are implemented as
async context managers as well). This way, we can implement techniques
like paging or restrict simultaneous connections quite easily.

We can restrict simultaneous connections quite easily by adding a
semaphore to the async with clause like this:

async with semaphore, connect as connection:
continue...

Semaphores entertain a dequeue of “waiters” They let the dequeue
fill up until they hit their cap. If one of the currently executing coroutine
finishes and drops out of the context scope, __aexit__ will wake the next
waiter if there is one. This way, we always have a maximum of 10 workers
operating at the same time.

Note Using the semaphore interface directly by awaiting the
acquire and release coroutine methods is considered deprecated!

158

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

Using Bounded Semaphores to Restrict
Concurrent Resource Access with Stricter
Release Heuristics

Problem

We want to use a drop-in replacement for asyncio.Semaphore with a
stricter release heuristic.

Solution

Bounded semaphores are the same as semaphores, but have an additional
sanity check in their release method:

def release(self):
if self. value >= self. bound value:
raise ValueError('BoundedSemaphore released too many
times")
super().release()

Note Since it is discouraged to use the acquire and release
methods directly, this situation is highly unlikely to happen unless you
tamper with the value manually.

We see how to have a maximum of 10 concurrent workers using
asyncio.BoundedSemaphores in this example:

import asyncio

async def run(i, semaphore):
async with semaphore:

159

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

print(f"{i} working..")
return await asyncio.sleep(1)

async def main():
semaphore = asyncio.BoundedSemaphore(10)
await asyncio.gather(*[run(i, semaphore) for i in
range(100)])

asyncio.run(main(),debug=True)

How It Works

We demonstrated that the asyncio.BoundedSemaphore can be used as a
drop-in replacement for asyncio. Semaphore for our purposes, since it is
actually inheriting from it and simply adds a sanity check to the release
method.

Detecting Asyncio Code That Might Have
Race Conditions

Problem

Given the prelude about race conditions and possible race condition
vectors in asyncio applications, we want to understand where exactly the
data race happens in our application.

Solution #1

This solution provides a reproducible case of a data race—much like the
one we saw in this chapter—where we can annotate exactly where the data
race happens.

160

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

import asyncio
import typing

async def delayed add(delay, d: typing.Dict, key: typing.
Hashable, value: float):
last = d[key] # This is where the critical path starts, d
is the shared resource and this is a read access
await asyncio.sleep(delay)
d[key] = last + value # This is where the critical path
ends, d is the shared resource and this is a write access

async def main():
d = {"value": 0}
await asyncio.gather(delayed add(2, d, "value", 1.0),
delayed add(1.0, d, "value", 1.0))
print(d)
assert d["value"] != 2

asyncio.run(main())

How It Works

This case falls under the category of coroutine data races induced by
context switches (asyncio.sleep). We have touched upon the fact that
our example with delayed add was designed for educational value rather
than being a realistic example. The reason it’s not realistic is evident in the
critical path of the application. There is no chaining of coroutines involved,
so we can easily see where the access to the shared resource happens.
Strong indicators for a possible asyncio race condition is the use of
asyncio.sleep
Using asyncio.sleep destroys the invariant that the (coroutine)
function body is executed completely.

161

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

This means that other coroutines could alter the resources accessed by
the first coroutine.

In other words, asyncio.sleep has the potential to render access to
a shared resource non-exclusively, corresponding to the first Coffman
condition.

Thus, it is imperative to inspect all coroutine functions/methods that
have context switches using asyncio.sleep and follow all the calls to
asyncio.ensure future, asyncio.create task, loop.create task, and
uses of the await keyword for interactions with your shared resources.

Solution #2

The next example demonstrates a data race case involving the loop’s
executor API in conjunction with the ThreadPoolExecutor.

import asyncio

import threading

import time

from concurrent.futures.thread import ThreadPoolExecutor

def add_from thread(delay, d, key, value):
print(f"Thread {threading.get ident()} started...")
old = d[key]
print(f"Thread {threading.get ident()} read value {old}")
time.sleep(delay)
print(f"Thread {threading.get ident()} slept for {delay}
seconds")
d[key] = old + value
print(f"Thread {threading.get ident()} wrote {d[key]}")

async def main():
loop = asyncio.get_running_loop()
d = {"value": 0}

162

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

executor = ThreadPoolExecutor(10)
futs = [loop.run_in_executor(executor, add from thread, 1,
d, "value", 1),
loop.run_in_executor(executor, add from thread, 3,
d, "value", 1)]
await asyncio.gather(*futs)

assert d["value"] != 2

asyncio.run(main())

How It Works

This case falls under the category of thread data races induced by the
executor API. Threads are governed by non-cooperative preemption. This
means that the scheduler (OS, in the case of native threads) decides when
to suspend the thread.

Additionally, preemption might happen if we call time.sleep inside
the thread. An easy way to see if we have two agents simultaneously
accessing the same shared resource (dictionary “d”) is to add print
statements with the current thread identifier and the currently executed
operation.

Note The overhead of the print operation might skew the results
of our observations since it deploys global locking.

In this case, we can clearly see that the threads access the shared
resource in an intervened, race-prone way:

Thread 123145539575808 started...
Thread 123145539575808 read value 0
Thread 123145544830976 started...

163

CHAPTER 7 SYNCHRONIZATION BETWEEN ASYNCIO COMPONENTS

Thread 123145544830976 read value 0
Thread 123145539575808 slept for 1
Thread 123145539575808 wrote 1
Thread 123145544830976 slept for 3
Thread 123145544830976 wrote 1

Both threads start reading the value before one thread can successfully
read and write it to the dictionary. Thus, the initial value 0 was used both
places to write to the dictionary instead of 1 (in the case of a successful
read sequential, write).

In a completely sequential example, we would assume the result of the
computation is 2, whereas in this case it is 1.

164

CHAPTER 8

Improving Asyncio
Applications

To be able to determine if we have improved the code quality of our
asyncio code, we must come to common terms about which parts of
the code concern us. One universal, non-functional measure of code
quality that we will apply is memory and time consumption of code.
The other measure used in this chapter is to avoid using APIs that have
been deprecated.

To do that, the sections of this chapter illustrate how to build and
use profiling tools to measure the allocated memory and duration of
coroutines. Also, we learn which asyncio patterns have been deprecated
and build a tool that uses the ast module to automatically recognize them.
In the last example, we learn about an anti-pattern called busy loops and
how to avoid it using future objects.

Profiling Asyncio Applications
Problem

You are concerned about the memory and time used by an application in
the course of a coroutine call.

© Mohamed Mustapha Tahrioui 2019 165
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_8

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

Solution

Profiling in this context is measuring non-functional parameters of program
execution. To do this, the Python standard library includes the tracemalloc
module outlined in PEP 454. The tracemalloc module was introduced

in the CPython interpreter due to a need for a Python-specific memory
monitoring API. Memory management in CPython is handled by two APIs—
PyMem_Malloc and pymalloc. These allocators don’t play well with generic
memory debuggers like Valgrind, which can give you the C traceback to
your allocations, which would result in tracebacks ending in CPython C APIs
like PyMem_Malloc and pymalloc. We use the tracemalloc module and a
profiler class with a decorator to print our coroutine’s memory usage.

import asyncio

import logging

import tracemalloc

from functools import wraps

logging.basicConfig(level=1ogging.DEBUG)

class Profiler:
def init (self):
self.stats = {}
self.logger = logging.getlLogger(_name_)

def profile memory usage(self, f):

@wraps(f)

async def wrapper(*args, **kwargs):
snapshot = tracemalloc.take snapshot()
res = await f(*args, **kwargs)
self.stats[f. name] = tracemalloc.take
snapshot().compare to(snapshot, 'lineno")
return res

return wrapper

166

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

def print(self):
for name, stats in self.stats.items():
for entry in stats:
self.logger.debug(entry)

def _enter (self):
tracemalloc.start()
return self

def exit (self, exc_type, exc val, exc tb):
tracemalloc.stop()
self.print()

profiler = Profiler()

@profiler.profile_memory usage
async def main():
pass

with profiler:
asyncio.run(main())

How It Works

The profiler class is used as a container for the coroutine function-
related memory statistics. For this purpose, it defines a stats attribute in
its__init method:

class Profiler:
def init (self):
self.stats = {}
self.logger = logging.getlLogger(_name_)

167

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

Next, we want to define a decorator that we can use to mark the
coroutines we are interested in:

def profile memory usage(self, f):

@wraps(f)

async def wrapper(*args, **kwargs):
snapshot = tracemalloc.take snapshot()
res = await f(*args, **kwargs)
self.stats[f. name_] = tracemalloc.take snapshot().
compare_to(snapshot, 'lineno")
return res

return wrapper

We invoke tracemalloc.take snapshot() to save the current memory
allocations before we await the wrapped coroutine.

Then we compute the delta (change) from the first snapshot and save
the result for the invoked coroutine:

self.stats[f. name_] = tracemalloc.take snapshot().compare
to(snapshot, 'lineno")

Note We lose all but the memory information of the last call to the
decorated coroutine function!

We define a convenient print method to output the saved
StatisticDiff:

def print(self):
for name, stats in self.stats.items():
for entry in stats:
self.logger.debug(entry)

168

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

We create the profiler a (synchronous) context manager to wrap our call
to asyncio.run while calling tracemalloc.start and tracemalloc.stop.
Furthermore, we print the function-specific memory information upon

exiting the context manager scope:

def _enter (self):
tracemalloc.start()
return self

def _exit (self, exc_type, exc_val, exc_tb):
tracemalloc.stop()
self.print()

After defining the profiler class, we instantiate an instance that we use
to decorate a coroutine function and wrap the asyncio.run call:

profiler = Profiler()

@profiler.profile_memory usage
async def main():
pass

with profiler:
asyncio.run(main())

Building a Simple Profiling Library
Problem

In the last recipe, we demonstrated how a profiler class and its method
decorator can be used to provide context to the memory allocations of
coroutines, but the solution had many drawbacks due to its simplistic
nature. These drawbacks include:

« No separation of concerns. The “view” layer (printing
out to stdout) and the business logic are stuck together

169

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

e Only considers coroutine functions

e Saves only the memory delta of the last coroutine
function call

e Hardcodes the type of StatisticDiff generated to
lineno

¢ Does not provide a functionality to profile the

execution time of coroutines

Solution

In this example, we refine the profiler class to a small memory and
timing profiling library and try to resolve some of the drawbacks we
experienced due to the simple nature of the profiling library.

import asyncio
import contextlib
import inspect
import json
import logging
import pickle
import sys
import tracemalloc
from collections import defaultdict, namedtuple
from contextlib import asynccontextmanager
from functools import wraps
from inspect import iscoroutinefunction
from time import time
from tracemalloc import Filter, take snapshot, start as
tracemalloc_start, \
stop as tracemalloc stop

170

logging.

Timing =

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS
basicConfig(level=logging.DEBUG, stream=sys.stdout)

namedtuple("Timing", ["start", "end", "delta"])

class Profiler:

def

__init_ (self, key type="lineno", cumulative=False,

debug=False, excluded files=None):

def

def

def

self.time_stats = defaultdict(list)
self.memory stats = defaultdict(dict)
self.key type = key type
self.cumulative = cumulative
self.logger = logging.getlogger(__name_)
self.debug = debug
if not excluded files:
excluded files = [tracemalloc. file |,
inspect. file , contextlib. file]
self.excluded files = excluded files
self.profile memory cache = False

time(self):
try:

return asyncio.get_running loop().time()
except RuntimeError:

return time()

get filter(self, include=False):
return (Filter(include, filter) for filter in
self.excluded files)

profile memory(self, f):

self.profile _memory cache = True

if iscoroutinefunction(f):
@wraps(f)

171

CHAPTER 8

172

IMPROVING ASYNCIO APPLICATIONS

async def wrapper(*args, **kwargs):

else:

snapshot = take snapshot().filter traces
(self.get filter())

result = await f(*args, **kwargs)
current_time = time()

memory delta = take snapshot().filter traces
(self.get filter()).compare to(snapshot,
self.key type, self.cumulative)
self.memory stats[f. name_][current time] =
memory delta

return result

@wraps(f)
def wrapper(*args, **kwargs):

snapshot = take_snapshot().filter trace
s(self.get filter())

result = f(*args, **kwargs)

current_time = time()

memory delta = take snapshot().filter traces
(self.get filter()).compare to(snapshot,
self.key type, self.cumulative)
self.memory stats[f. name_][current time] =
memory delta

return result

return wrapper

def profile time(self, f):

if iscoroutinefunction(f):
@wraps(f)
async def wrapper(*args, **kwargs):

start = self.time()
result = await f(*args, **kwargs)

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

end = self.time()
delta = end - start
self.time stats[f. name_].
append(Timing(start, end, delta))
return result
else:
@wraps(f)
def wrapper(*args, **kwargs):
start = self.time()
result = f(*args, **kwargs)
end = self.time()
delta = end - start
self.time stats[f. name_].
append(Timing(start, end, delta))
return result
return wrapper

def _enter (self):
if self.profile memory cache:
self.logger.debug("Starting tracemalloc..")
tracemalloc_start()

return self

def exit (self, exc type, exc val, exc tb):
if self.profile memory cache:
self.logger.debug("Stopping tracemalloc..")
tracemalloc_stop()
if self.debug:
self.print memory stats()
self.print time stats()

173

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

def print_memory stats(self):
for name, stats in self.memory stats.items():
for timestamp, entry in list(stats.items()):
self.logger.debug("Memory measurements for call
of %s at %s", name, timestamp)

for stats diff in entry:
self.logger.debug("%s", stats diff)

def print time stats(self):
for function name, timings in self.time stats.items():
for timing in timings:
self.logger.debug("function %s was called at %s
ms and took: %s ms",
function name,

timing.start,
timing.delta)
async def read message(reader, timeout=3):
data = []
while True:
try:

chunk = await asyncio.wait for(reader.read(1024),
timeout=timeout)
data += [chunk]
except asyncio.TimeoutError:
return b"".join(data)

class ProfilerServer:
def init (self, profiler, host, port):
self.profiler = profiler
self.host = host
self.port = port

174

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

async def on_connection(self,
reader: asyncio.StreamReader,
writer: asyncio.StreamWriter):
message = await read message(reader)
logging.debug("Message %s:", message)

try:
event = json.loads(message, encoding="UTF-8")
command = event["command"]
if command not in ["memory stats", "time stats"]:
raise ValueError(f"{command} is illegal!")

handler = getattr(self.profiler, command, None)
if not handler:

raise ValueError(f"{message} is malformed")
reply message = handler

writer.write(pickle.dumps(reply message))
await writer.drain()
except (UnicodeDecodeError, json.JSONDecodeError,
TypeError,)as err:
self.profiler.logger.error("Error occurred while
transmission: %s", err)
writer.write(pickle.dumps(err))
await writer.drain()
finally:
writer.close()

class ProfilerClient:
def init (self, host, port):
self.host = host
self.port = port

175

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

async def send(self, **kwargs):
message = json.dumps(kwargs)
reader, writer = await asyncio.open connection(self.
host, self.port)
writer.write(message.encode())
message = await reader.read()
writer.close()
try:
return pickle.loads(message)
except pickle.PickleError:
return None

async def get memory stats(self):
return await self.send(command="memory stats")

async def get time stats(self):
return await self.send(command="time_stats")

@asynccontextmanager
async def start profiler server(profiler, host, port):
profiler server = ProfilerServer(profiler, host, port)
try:
server = await asyncio.start server(profiler server.
on_connection, host, port)
async with server:
yield
await server.serve forever()
finally:
pass

profiler = Profiler(debug=True)

@profiler.profile time
@profiler.profile memory

176

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

async def to be profiled():
await asyncio.sleep(3)
list(i for i in range(10000))

async def main(profiler):
host, port = "127.0.0.1", 1234
client = ProfilerClient(host, port)
async with start profiler server(profiler, host, port):
await to _be profiled()
memory stats = await client.get memory stats()
logging.debug(memory stats)

try:
logging.debug("Press CTRL+C to close...")
with profiler:
asyncio.run(main(profiler))
except KeyboardInterrupt:
logging.debug("Closed..")

How It Works

The design of this version of the profiling library provides a profiling
interface that can be used by coroutine and non-coroutine functions alike.
It needs to provide a profiling interface for memory and time complexity.
Also, it must expose its current state via a simple TCP endpoint that can be
queried via a JSON request and respond with the current state serialized
by the pickle module.

Note If the request fails, there is no retransmission. Furthermore, to
avoid blocking the request timeout after three seconds (by default),
the timeout parameter can be tweaked.

177

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS
To save the timing measurements, we generate a lightweight timing entity:
Timing = namedtuple("Timing", ["start", "end", "delta"])

Next, we create the profiler class that is much like the one from
the last example. Except that this time, the whole profiling process is
customizable:

class Profiler:

def init (self, key type="lineno", cumulative=False,
debug=False, excluded files=None):
self.time stats = defaultdict(list)
self.memory stats = defaultdict(dict)
self.key type = key type
self.cumulative = cumulative
self.logger = logging.getlLogger(_name_)
self.debug = debug
if not excluded files:
excluded files = [tracemalloc. file |,
inspect. file , contextlib. file]
self.excluded files = excluded_files
self.profile memory cache = False

The first two parameters—key_type and cumulative—are directly
passed to the compare_to method of the tracemalloc.Snapshot instances.
The debug flag prints the measurements when exiting the context manager.
excluded files is used to exclude certain files from the memory snapshot
via the tracemalloc.Filter API The profile memory cache attribute
is used to not invoke tracemalloc.start needlessly, but rather only if at
least one memory profile decorator was used. Next, we define two helpers:

def time(self):
try:
return asyncio.get running loop().time()

178

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

except RuntimeError:
return time()

def get filter(self, include=False):
return (Filter(include, filter) for filter in self.
excluded files)

Since our profiler can be used for coroutine functions and non-
coroutine functions alike, we need to provide an abstract way to get the
current timestamp. Hence, our time method. get_filter generates an
iterable of tracemalloc.Filter instances to pass to the tracemalloc.
Snapshot instances in the memory profiler. The following methods are the

heart of the profiler:

def profile memory(self, f):
self.profile_memory cache = True

if iscoroutinefunction(f):
@wraps(f)
async def wrapper(*args, **kwargs):

else:

snapshot = take snapshot().filter traces
(self.get filter())

result = await f(*args, **kwargs)
current_time = time()

memory delta = take snapshot().filter traces
(self.get filter()).compare to(snapshot,
self.key type, self.cumulative)
self.memory stats[f. name_][current time] =
memory delta

return result

@wraps(f)
def wrapper(*args, **kwargs):

snapshot = take snapshot().filter traces
(self.get filter())

179

CHAPTER 8

180

IMPROVING ASYNCIO APPLICATIONS

result = f(*args, **kwargs)

current_time = time()

memory delta = take snapshot().filter traces
(self.get filter()).compare to(snapshot,
self.key type, self.cumulative)
self.memory stats[f. name_][current time] =
memory delta

return result

return wrapper

def profile time(self, f):

if iscoroutinefunction(f):
@wraps(f)
async def wrapper(*args, **kwargs):

else:

start = self.time()

result = await f(*args, **kwargs)
end = self.time()

delta = end - start

self.time stats[f. name_].
append(Timing(start, end, delta))
return result

@wraps(f)
def wrapper(*args, **kwargs):

start = self.time()

result = f(*args, **kwargs)

end = self.time()

delta = end - start

self.time stats[f. name_].
append(Timing(start, end, delta))
return result

return wrapper

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

profile memory and profile_time are the memory and time profile
decorators that we can attach to coroutines and functions alike. They will
append the recent memory StatisticDiff for a given (coroutine) function
and timestamp (queried by the Profiler.time method) or the execution
duration of a call saved as a Timing object per the (coroutine) function.

profile memory will additionally filter out the excluded files (asyou
can see, we use the _ file _attribute of some built-in modules to exclude
them by default) from the memory snapshots.

As alluded to, we improve the profiler context manager by invoking
tracemalloc.start (tracemalloc_start is an alias) only when necessary
and conditionally printing the memory and time stats depending on the
debug flag

def enter (self):
if self.profile memory cache:
self.logger.debug("Starting tracemalloc..")
tracemalloc_start()

return self

def exit (self, exc type, exc val, exc tb):
if self.profile memory cache:
self.logger.debug("Stopping tracemalloc..")
tracemalloc_stop()
if self.debug:
self.print _memory stats()
self.print time stats()

The ProfilerServer and ProfilerClient are the foundation of our
transportation layer. Both parts use the read_message coroutine function

helper to query the reader with a timeout.

181

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

async def read message(reader, timeout=3):
data = []
while True:
try:
chunk = await asyncio.wait for(reader.read(1024),
timeout=timeout)
data += [chunk]
except asyncio.TimeoutError:
return b"".join(data)

The ProfilerServer responds with a serialized version of the
underlying profiler’s class ProfilerServer:

def _init (self, profiler, host, port):
self.profiler = profiler
self.host = host
self.port = port

The memory_stats and time_stats attributes, if queried with the right
attribute names marshaled in a JSON payload, look like this:

{

"command": "memory stats" | "time stats"

The bit that does this handling is the on_connection coroutine
method:

async def on_connection(self,
reader: asyncio.StreamReader,
writer: asyncio.StreamWriter):
message = await read message(reader)
logging.debug("Message %s:", message)

182

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

try:
event = json.loads(message, encoding="UTF-8")
command = event["command"]
if command not in ["memory stats", "time stats"]:
raise ValueError(f"{command} is illegall!")

handler = getattr(self.profiler, command, None)
if not handler:

raise ValueError(f"{message} is malformed")
reply message = handler

writer.write(pickle.dumps(reply message))
await writer.drain()
except (UnicodeDecodeError, json.JSONDecodeError,
TypeError,)as err:
self.profiler.logger.error("Error occurred while
transmission: %s", err)
writer.write(pickle.dumps(err))
await writer.drain()
finally:
writer.close()

The profiler client respects the protocol and returns a valid value if it

was able to unpickle the message:

class ProfilerClient:
def _init (self, host, port):
self.host = host
self.port = port

async def send(self, **kwargs):
message = json.dumps(kwargs)
reader, writer = await asyncio.open_connection(self.
host, self.port)

183

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

writer.write(message.encode())
message = await reader.read()
writer.close()
try:
return pickle.loads(message)
except pickle.PickleError:
return None

async def get memory stats(self):
return await self.send(command="memory stats")

async def get time stats(self):
return await self.send(command="time stats")

We define a start_profiler server asynccontextmanager that
wraps asyncio.start_server and takes care of calling server.serve
forever(). We need to pass the profiler from the outside, since it decorates
functions and methods. Mind you, async with can only be used in the
context of a coroutine function body:

@asynccontextmanager
async def start profiler server(profiler, host, port):
profiler server = ProfilerServer(profiler, host, port)
try:
server = await asyncio.start_server(profiler server.
on_connection, host, port)
async with server:
yield
await server.serve forever()
finally:
pass

184

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

Next, we decorate our time- and memory-intensive coroutine function
to_be profiled:

profiler = Profiler(debug=True)

@profiler.profile time
@profiler.profile memory
async def to be profiled():

await asyncio.sleep(3)

list(i for i in range(10000))

And query our instance of the ProfilerServer with a ProfilerClient
instance:

sync def main(profiler):
host, port = "127.0.0.1", 1234
client = ProfilerClient(host, port)
async with start profiler server(profiler, host, port):
await to _be profiled()
memory stats = await client.get memory stats()
logging.debug(memory stats)

Don’t forget to wrap asyncio.run with the profiler context manager:

try:
logging.debug("Press CTRL+C to close...")
with profiler:
asyncio.run(main(profiler))
except KeyboardInterrupt:
logging.debug("Closed..")

185

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

Spotting a Long-Running Coroutine
Problem

You need to spot a coroutine that runs too long.

Solution

We will write a decorator factory that tracks the time a coroutine was
running and invokes a formerly passed handler function if it surpasses a
certain threshold. Using the sys.set_coroutine origin_tracking depth
API, we can track the coroutine origin, meaning the place where the
coroutine was created, with the most recent call first.

import asyncio

import logging

import sys

from functools import wraps

THRESHOLD = 0.5
sys.set_coroutine origin tracking depth(10)

def time it factory(handler):
def time it(f):

@wraps(f)

async def wrapper(*args, **kwargs):
loop = asyncio.get running loop()
start = loop.time()
coro = f(*args, **kwargs)
result = await coro
delta = loop.time() - start
handler(coro, delta)
return result

186

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS
return wrapper
return time it

@time_it factory
def log time(coro, time delta):
if time _delta > THRESHOLD:
logging.warning("The coroutine %s took more than %s
ms", coro, time delta)
for frame in coro.cr origin:
logging.warning("file:%s line:%s function:%s", *frame)
else:
logging.warning("Coroutine has no origin !")

@log time
async def main():
await asyncio.sleep(1)

asyncio.run(main())

How It Works

We define a threshold of 0.5 seconds and make sure that at least 10
frames of a coroutine stack are stored inside the coroutine’s cr_origin by
invoking sys.set_coroutine origin tracking depth(10):

THRESHOLD = 0.5
sys.set_coroutine origin tracking depth(10)

Note The sys.set coroutine origin tracking_depth
API replaces the set_coroutine wrapper () API, which has
been deprecated and will be removed in Python version 3.8.

See bpo-32591 or the next section for more details.

187

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS
Next up is our decorator factory:

def time it factory(handler):
def time it(f):

@wraps(f)

async def wrapper(*args, **kwargs):
loop = asyncio.get running loop()
start = loop.time()
coro = f(*args, **kwargs)
result = await coro
delta = loop.time() - start
handler(coro, delta)
return result

return wrapper
return time_it

If you look closely, you might see that the time_it decorator resembles
the profiler’s profile_time method. It is just more lightweight since it
targets only coroutines and calls a handler function with the coro and the
time_delta as a parameter:

handler(coro,delta)

You can decorate a function you intend to use with a coroutine
decorator, like so:

@time_it factory
def log time(coro, time delta):
if time_delta > THRESHOLD:
logging.warning("The coroutine %s took more than %s
ms", coro, time delta)

188

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

for frame in coro.cr origin:
logging.warning("file:%s line:%s function:%s",
*frame)

else:
logging.warning("Coroutine has no origin !")

Now the log_time decorator will be injected with the currently used
coroutine and the time it took to run. As you can see, we use the coroutine
cr_origin member to print the call chain.

You can then, for instance, use the decorator on the callers of the
coroutine if you suspect them to be the source of the bottleneck. Or you
can write more sophisticated decorators that do this by automatically
using the decorator factory.

Refactoring “0ld School” Asyncio Code
Problem

You need to find replacements for some of the deprecated APIs and anti-
patterns of asyncio.

Solution #1

In this solution, we show examples of deprecated asyncio code alongside
the newer code.

import asyncio
import sys

async def coro():
print("This works!")

189

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

async def ensure_ future deprecated():
Up to Python 3.6
task = asyncio.ensure future(coro())

In Python 3.7+
task 2 = asyncio.create task(coro())

async def main():
pass

Up to Python 3.6
asyncio.get event loop().run _until complete(main())

Python 3.7+
asyncio.run(main())

async def wait_deprecated():
Passing coroutines objects to wait() directly is deprecated:

coros = [asyncio.sleep(10), asyncio.sleep(10)]
done, pending = await asyncio.wait(coros)

Use asyncio.create task

futures = [asyncio.create task(coro) for coro in (asyncio.
sleep(10), asyncio.sleep(10))]
done, pending = await asyncio.wait(futures)

async def tasks deprecated(loop):
Using Task class methods is deprecated:
task = asyncio.Task.current task(loop)
tasks = asyncio.Task.all tasks(loop)

Use the asyncio module level functions instead:
task = asyncio.current task(loop)
tasks = asyncio.all tasks(loop)

190

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

async def coroutine deprecated():
@asyncio.coroutine
def gen coro():
yield from asyncio.sleep(1)

async def native coroutine():
await asyncio.sleep(1)

async def passing loop deprecated():
loop = asyncio.get running loop()
This is deprecated
await asyncio.sleep(10, loop=1loop)
await asyncio.wait for(asyncio.create task(asyncio.
sleep(10)), 11, loop=loop)
futures = {asyncio.create task(asyncio.sleep(10,
loop=1oop))}
done, pending = await asyncio.wait(futures, loop=loop)

await asyncio.sleep(10)

await asyncio.wait_for(asyncio.create_task(asyncio.
sleep(10)), 11, loop=loop)

futures = {asyncio.create task(asyncio.sleep(10))}
done, pending = await asyncio.wait(futures)

async def coroutine wrapper deprecated():
set _coroutine wrapper() and sys.get coroutine wrapper()
will be removed in Python 3.8
sys.set_coroutine wrapper(sys.get coroutine wrapper())
and are deprecated in favor of
sys.set _coroutine origin tracking depth(sys.get coroutine
origin_tracking depth())
Of course passing sensible values!

191

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

How It Works

Using asyncio.ensure_future is considered deprecated, but it will not
be removed soon to maintain backward compatibility with older versions.
asyncio.create_taskis to be used now:

async def coro():
print("This works!")

async def ensure future deprecated():
Up to Python 3.6
task = asyncio.ensure future(coro())

In Python 3.7+
task 2 = asyncio.create task(coro())

To hide complexity away from users who have a simple “one-loop-in-
a-process-and-thread” setting, we can use asyncio.run instead of dealing
with the somewhat confusing details of asyncio.get_event_loop and the
like:

async def main():
pass

Up to Python 3.6
asyncio.get event loop().run until complete(main())

Python 3.7+
asyncio.run(main())

Passing coroutines directly to asyncio.wait is supported but might
have a surprising result since this approach schedules the coroutines and
wraps them in tasks under the hood. Hence, checking for the coroutines in
the returned “done and pending” sets will fail. The recommended way to
use asyncio.wait is to schedule the coroutines as task objects first, before
passing them:

192

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

async def wait_deprecated():

Passing coroutines objects to wait() directly is deprecated:

coros = [asyncio.sleep(10), asyncio.sleep(10)]
done, pending = await asyncio.wait(coros)

Use asyncio.create task

futures = [asyncio.create task(coro) for coro in (asyncio.
sleep(10), asyncio.sleep(10))]
done, pending = await asyncio.wait(futures)

Using asyncio.Task class methods current_task and all_tasks is

also considered deprecated. We use asyncio.current task and asyncio.

all tasks instead:

async def tasks deprecated(loop):
Using Task class methods is deprecated:
task = asyncio.Task.current task(loop)
tasks = asyncio.Task.all tasks(loop)

Use the asyncio module level functions instead:
task = asyncio.current_task(loop)
tasks = asyncio.all tasks(loop)

Of course, messing around with generator coroutines is considered
deprecated and a design mistake. Use native coroutines instead (which
disallow yield fromin their function bodies):

async def coroutine deprecated():
@asyncio.coroutine
def gen coro():
yield from asyncio.sleep(1)

async def native coroutine():
await asyncio.sleep(1)

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

Passing a loop parameter was optionally possible in a few APISs,
namely:

e asyncio.sleep
e asyncio.wait_for
e asyncio.wait

This has been deprecated as of Python 3.7:

async def passing loop deprecated():
loop = asyncio.get running loop()
This is deprecated
await asyncio.sleep(10, loop=1loop)
await asyncio.wait for(asyncio.create task(asyncio.
sleep(10)), 11, loop=1loop)
futures = {asyncio.create task(asyncio.sleep(10,
loop=1oop))}
done, pending = await asyncio.wait(futures, loop=loop)

await asyncio.sleep(10)

await asyncio.wait for(asyncio.create task(asyncio.
sleep(10)), 11, loop=loop)

futures = {asyncio.create task(asyncio.sleep(10))}
done, pending = await asyncio.wait(futures)

Also, as mentioned in the last section, using the coroutine wrapper
API in the sys module has also been deprecated. It was considered too
powerful and generally added too much overhead, in that it was able to
change the behavior of all native coroutines.

Since the initial idea was to provide a way to track the origin of a
coroutine, the sys.* coroutine origin tracking depth APIs and the
cr_origin native coroutine attribute were added:

194

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

async def coroutine wrapper deprecated():
set _coroutine wrapper() and sys.get coroutine wrapper()
will be removed in Python 3.8
sys.set_coroutine wrapper(sys.get coroutine wrapper())
and are deprecated in favor of
sys.set _coroutine origin tracking depth(sys.get coroutine
origin_tracking depth())
Of course, passing sensible values!

More details can be found in bpo-32591.

Solution #2

Using the ast module, we can find occurrences of generator-based
coroutines and other deprecated asyncio APIs. This solution demonstrates
how to do so for decorated and non-decorated generator-based coroutines
using function bodies. It also detects if you have imported the @asyncio.
coroutine decorator using from asyncio import coroutine.

How to refactor "old school" asyncio code
import argparse

import ast

import asyncio

import functools

import os

from asyncio import coroutine

parser = argparse.ArgumentParser("asyncompat")
parser.add argument("--path", default=_file)

195

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS
TEST SECTION

@coroutine
def producer():
return 123

@asyncio.coroutine

def consumer():
value = yield from producer()
return value

def consumer2():
value = yield from producer()
return value

TEST SECTION END

def is coroutine decorator(node):
return (isinstance(node, ast.Attribute) and
isinstance(node.value, ast.Name) and
hasattr(node.value, "id") and
node.value.id == "asyncio" and node.attr ==
"coroutine")

def is coroutine decorator from module(node, *, imported asyncio):
return (isinstance(node, ast.Name) and
node.id == "coroutine" and
isinstance(node.ctx, ast.Load) and
imported asyncio)

class FunctionDefVisitor(ast.NodeVisitor):
def init (self):
self.source = None
self.first run = True
self.imported asyncio = False

196

def

def

def

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

initiate visit(self, source):
self.source = source.splitlines()
node = ast.parse(source)
self.visit(node)

self.first run = False

return self.visit(node)

visit Import(self, node):
for name in node.names:
if name.name == "asyncio":
self.imported asyncio = True

visit FunctionDef(self, node):
if self.first run:
return

decorators = list(filter(is coroutine decorator,
node.decorator list))
decorators from module = list(
filter(functools.partial(is coroutine decorator from_
module, imported asyncio=self.imported asyncio),
node.decorator list))
if decorators:

print(node.lineno, ":", self.source[node.lineno],

"is an oldschool coroutine!")

elif decorators from module:

print(node.lineno, ":", self.source[node.lineno],

"is an oldschool coroutine!")

if name_ ==" main_"':

V =

FunctionDefVisitor()

args = parser.parse_args()
path = os.path.isfile(args.path) and os.path.abspath(args.path)

197

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

if not path or not path.endswith(".py"):
raise ValueError(f"{path} is not a valid path to a
python file!")

with open(path) as f:
v.initiate visit(f.read())

How It Works

In this solution, we wanted to demonstrate how to use the ast module to
find coroutines defined in the old generator decorator fashion. For this
matter, we provide two predicate functions that test an ast node to see if it
contains such a decorator:

def is _coroutine decorator(node):
return (isinstance(node, ast.Attribute) and
isinstance(node.value, ast.Name) and
hasattr(node.value, "id") and
node.value.id == "asyncio" and node.attr ==
"coroutine™)

def is _coroutine decorator from module(node, *, imported
asyncio):
return (isinstance(node, ast.Name) and
node.id == "coroutine" and
isinstance(node.ctx, ast.Load) and
imported asyncio)

Next, we write a two-pass ast.NodeVisitor that traverses the
program’s abstract syntax tree to look for function definitions that contain
a@asyncio.coroutine or a @coroutine decorator, since this is where we
could have imported the decorator:

198

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

from asyncio import coroutine:

class FunctionDefVisitor(ast.NodeVisitor):
def init (self):
self.source = None
self.first run = True
self.imported asyncio = False

def initiate visit(self, source):
self.source = source.splitlines()
node = ast.parse(source)
self.visit(node)
self.first run = False
return self.visit(node)

def visit Import(self, node):
for name in node.names:
if name.name == "asyncio":
self.imported asyncio = True

In the first pass, we check for the import. We save how asyncio was
imported and inject it as an additional parameter into our predicate
functions, which we use to filter the function definitions:

def visit FunctionDef(self, node):
if self.first run:
return

decorators = list(filter(is_coroutine_ decorator,
node.decorator list))
decorators from module = 1list(
filter(functools.partial(is_coroutine decorator
from module, imported asyncio=self.imported
asyncio),
node.decorator list))

199

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

if decorators:

print(node.lineno, ":", self.source[node.lineno],

"is an oldschool coroutine!")

elif decorators_from module:

print(node.lineno, ":", self.source[node.lineno],

"is an oldschool coroutine!")
For the sake of our example, we defined a test section as follows:

@coroutine
def producer():
return 123

@asyncio.coroutine

def consumer():
value = yield from producer()
return value

def consumer2():
value = yield from producer()
return value

This should be found by our command-line tool using the
FunctionDefVisitor:

if _name_ == "' main_ ':
v = FunctionDefVisitor()
args = parser.parse args()
path = os.path.isfile(args.path) and os.path.abspath
(args.path)
if not path or not path.endswith(".py"):
raise ValueError(f"{path} is not a valid path to a
python file!")
with open(path) as f:
v.initiate visit(f.read())

200

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS
Avoiding Busy Loops
Problem

Busy loops actively poll resources to determine their states. You want to
rewrite a (multi-threaded) busy loop doing some I/O more elegantly with
asyncio.

Solution

Given the asyncio.Future object, we can await the completion of a
coroutine very elegantly.

import asyncio
import random

async def fetch(url, *, fut: asyncio.Future):
await asyncio.sleep(random.randint(3, 5)) # Simulating work
fut.set_result(random.getrandbits(1024 * 8))

async def checker(responses, url, *, fut: asyncio.Future):
result = await fut
responses[url] = result
print(result)

async def main():
loop = asyncio.get running loop()
future = loop.create future()
responses = {}
url = "https://apress.com”
await asyncio.gather(fetch(url, fut=future),
checker(responses, url, fut=future))

asyncio.run(main())

201

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

How It Works

A busy loop is generally considered an anti-pattern, since it is very
resource intensive and wasteful of the CPU’s time. Given an event loop, we
can instead be notified when the resource state has changed. Consider the
following example, which uses threads and a busy loop:

import random
import threading
import time

def fetch(responses, url, *, lock: threading.Llock):
time.sleep(random.randint(3, 5)) # Simulating work
with lock:
responses[url] = random.getrandbits(1024 * 8)

def checker(responses, url, interval=1, timeout=30, *,
lock: threading.Llock):
interval, timeout = min(interval, timeout), max(interval,
timeout)
while timeout:
with lock:
response = responses.get(url)
if response:
print(response)
return
time.sleep(interval)
timeout -= interval
raise TimeoutError()

def main():
lock = threading.Lock()
responses = {}

202

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

url = "https://apress.com"
fetcher = threading.Thread(target=fetch, args=(responses,
url,), kwargs=dict(lock=lock))
worker = threading.Thread(target=checker, args=(responses,
url,), kwargs=dict(lock=lock))
for t in (fetcher, worker):

t.start()

fetcher.join()
worker.join()

if name_ =="_ main_"':
main()

The fetch function simulates I/0 work by using the time.sleep
function. It saves random bytes in a response dict guarded by a threading
lock to simulate a returned response:

def fetch(responses, url, *, lock: threading.Llock):
time.sleep(random.randint(3, 5)) # Simulating work
with lock:
responses[url] = random.getrandbits(1024 * 8)

The checker function, on the other hand, tries to retrieve the response
guarded by a lock. If it fails to do so (while responses.get(url) is a false
value), it retries until the timeout is reached. If the timeout is reached, it
raises a TimeoutError:

def checker(responses, url, interval=1, timeout=30, *,
lock: threading.Llock):
interval, timeout = min(interval, timeout), max(interval,
timeout)
while timeout:
with lock:
response = responses.get(url)

203

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

if response:
print(response)
return
time.sleep(interval)
timeout -= interval
raise TimeoutError()

Our main function schedules both functions using threads and the
same lock instance. It joins on them to await the busy loop:

def main():
lock = threading.Lock()
responses = {}

url = "https://apress.com”
fetcher = threading.Thread(target=fetch, args=(responses,
url,), kwargs=dict(lock=lock))
worker = threading.Thread(target=checker, args=(responses,
url,), kwargs=dict(lock=lock))
for t in (fetcher, worker):

t.start()

fetcher.join()
worker.join()

asyncio is made for I/O. You can easily create a good example in less
space and with explicit preemption of your coroutines simply by using a
asyncio.Future object:

async def fetch(url, *, fut: asyncio.Future):
await asyncio.sleep(random.randint(3, 5)) # Simulating work
fut.set_result(random.getrandbits(1024 * 8))

204

CHAPTER 8 IMPROVING ASYNCIO APPLICATIONS

By using an asyncio.Future, we can set the result when it is actually
ready and signal to the coroutine that is awaiting the future. This allows it
to store the result and handle it (printing it like shown here):

async def checker(responses, url, *, fut: asyncio.Future):
result = await fut
responses[url] = result
print(result)

In this case, the logical counterpart to threading.Thread. joinis
asyncio.gather:

async def main():
loop = asyncio.get running loop()
future = loop.create future()
responses = {}
url = "https://apress.com"
await asyncio.gather(fetch(url, fut=future),
checker(responses, url, fut=future))

asyncio.run(main())

The future instance can be conveniently created by using
loop.create future().

Note Refrain from instantiating asyncio.Future. You might
end up with exotic loop implementations that have enhanced future
classes that they only expose through loop.create future()!

205

CHAPTER 9

Working with Network
Protocols

Network communication is governed by networking protocols. This is
the umbrella term used for rulesets that lay out how data is transported
and formatted across (or inside) the boundaries of a network node.

For instance, they might define in which byte order a payload is to be
transferred, the encoding, the length of the payload, if the payload is
retransferred upon a failed attempt, etc.

These networking protocols, if crafted to be fit for one single purpose
like transportation or authentication, can interact with each other to a
degree where they seem to seamlessly inter-opt.

Well known cases for this pattern are HTTP, FTP, SSH, SFTP, and
HTTPS, which leverage more low-level transportation protocols like TCP
and UDP, use routing protocols like IP, and use TLS as an authentication or
integrity protocol.

These protocols are built around a message-exchange mechanism
called the request-response model. The party that initiates the
communication is usually known as the client. The answering party is
known as the server. Communication that is designed like this involves I/O
roundtrip times, where the requester/client/callee awaits a response.

A synchronous program that implements such a protocol would wait on
any responses that are being pending and hence unnecessarily use CPU time.

© Mohamed Mustapha Tahrioui 2019 207
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_9

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Asyncio provides tools to write implementations for these protocols or even
craft your own protocol that will run on asyncio’s powerful event loop system.
asyncio.BaseProtocol subclasses are asyncio primitives that declare
which bytes are transported by the asyncio.BaseTransport subclasses,
which on the other hand govern how bytes are sent. asyncio provides four
out-of-the-box transportation layers: UDP, TCP, TLS, and subprocess pipes.
The asyncio.BaseProtocol subclasses that are of interest to us are:

e asyncio.Protocol for streaming protocols like TCP and
UNIX sockets

e asyncio.BufferedProtocol for implementing streaming
protocols with manual control of the receive buffer

e asyncio.DatagramProtocol for implementing
datagram (UDP) protocols

e asyncio.SubprocessProtocol for implementing
protocols communicating with child processes
(unidirectional pipes)

In the highly unlikely case that you want to add more asyncio.
BaseTransport subclasses, you need to provide your own loop
implementation, since no loop API exposes a way to pass asyncio.
BaseTransport factories as an argument through. These can be used to
create clients or servers that run on an asyncio.BaseLoop subclass. To
create clients/servers for a certain protocol, you pass a protocol factory
function to one of the following asyncio.BaselLoop methods:

o loop.create _connection

o loop.create datagram endpoint
o loop.create_server

o loop.connect_accepted socket

o loop.subprocess shell

208

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

e loop.subprocess exec

e loop.connect read pipe

o loop.connect write pipe

o loop.create _unix_connection
o loop.create unix_server

The different connection methods return different transports. They
differ in how they transport the data. There are transports that use sockets
of different families like AF_INET, AF_UNIX, etc., and types like SOCK_STREAM
(TCP) and SOCK_DGRAM (UDP).

The asyncio.transports.SubprocessTransport subclasses
communicate via pipes. They are used in the context of subprocesses.

The create_unix_connection and create _unix_server methods are
only available on UNIX hosts. Subprocesses on Windows work only on the
ProactorEventLoop, as seen in earlier examples:

if sys.platform == "win32":
asyncio.set _event loop policy(asyncio.
WindowsProactorEventLoopPolicy())

In the course of this chapter, we discuss a subset of the loop methods
and some of the asyncio.BaseProtocol subclasses that are critical for
understanding how these networking primitives are used.

Writing a Protocol Subclass for a Simple
Remote Command Server

Problem

We want to implement a server for a custom network protocol with binary
payloads in asyncio.

209

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Solution

As established, asyncio provides an implementation of the asyncio.
BaseProtocol class that helps us implement network protocols. They
define callbacks that are then called by the asyncio.Transport object.
They have a strict 1:1 mapping to asyncio.BaseProtocol objects.

Implementing our own simple protocol, we will write a server that
receives a serialized Python function and runs it inside of a subprocess
pool. It then returns the result to the callee over TCP. For better pickling
support, we use the third-party library cloudpickle. It enables us to
serialize responses, like functions, that might not be importable.

To install it, we use the following:

pipenv install cloudpickle==0.6.1
or
pip3 install cloudpickle==0.6.1

import asyncio

import functools

import inspect

import logging

import sys

from multiprocessing import freeze support, get context

import cloudpickle as pickle
logging.basicConfig(level=1ogging.DEBUG, stream=sys.stdout)

def on_error(exc, *, transport, peername):
try:
logging.exception("On error: Exception while handling a
subprocess: %s ", exc)
transport.write(pickle.dumps(exc))

210

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

finally:
transport.close()
logging.info("Disconnected %s", peername)

def on_success(result, *, transport, peername, data):

try:
logging.debug("On success: Received payload from %s:%s
and successfully executed:\n%s", *peername, data)
transport.write(pickle.dumps(result))

finally:
transport.close()
logging.info("Disconnected %s", peername)

def handle(data):
f, args, kwargs = pickle.loads(data)
if inspect.iscoroutinefunction(f):
return asyncio.run(f(*args, *kwargs))

return f(*args, **kwargs)
class CommandProtocol(asyncio.Protocol):

def _init_ (self, pool, loop, timeout=30):
self.pool = pool
self.loop = loop
self.timeout = timeout
self.transport = None

def connection made(self, transport):
peername = transport.get extra_info('peername")
logging.info('%s connected', peername)
self.transport = transport

211

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

def data_received(self, data):
peername = self.transport.get extra info('peername")
on_error = functools.partial(on error, transport=self.
transport, peername=peername)
on_success_ = functools.partial(on_success,
transport=self.transport, peername=peername, data=data)
result = self.pool.apply async(handle, (data,),
callback=on_success , error callback=on error)
self.loop.call soon(result.wait)
self.loop.call later(self.timeout, self.close, peername)

def close(self, peername=None):
try:
if self.transport.is closing():
return
if not peername:
peername = self.transport.get extra_
info('peername")
finally:
self.transport.close()
logging.info("Disconnecting %s", peername)

async def main():
loop = asyncio.get running loop()
fork_context = get_context("fork")
pool = fork context.Pool()
server = await loop.create server(lambda:
CommandProtocol(pool, loop), '127.0.0.1', 8888)
try:
async with server:
await server.serve forever()

212

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

finally:
pool.close()
pool.join()

if name_ ==" main_ "':
freeze support()

asyncio.run(main())

How It Works

We can see in the imports that we will use the multiprocessing.Pool to
schedule the serialized function (and its arguments):

import asyncio

import inspect

import functools

import logging

import os

import pickle

import sys

from multiprocessing import Pool

Since we will use the asynchronous pool.apply async API for that, we
need to provide callbacks that are called on results and errors. We define
them outside our asyncio.BaseProtocol class definition:

logging.basicConfig(level=1logging.DEBUG, stream=sys.stdout)

def on_error(exc, *, transport, peername):
try:
logging.exception("On error: Exception while handling a
subprocess: %s ", exc)
transport.write(pickle.dumps(exc))

213

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

finally:
transport.close()
logging.info("Disconnected %s", peername)

def on_success(result, *, transport, peername, data):

try:
logging.debug("On success: Received payload from %s:%s
and successfully executed:\n%s", *peername, data)
transport.write(pickle.dumps(result))

finally:
transport.close()
logging.info("Disconnected %s", peername)

def handle(data):
f, args, kwargs = pickle.loads(data)
if inspect.iscoroutinefunction(f):
return asyncio.run(f(*args,*kwargs))
return f(*args, **kwargs)

The reason we don’t have them as methods of the CommandProtocol
is that calling result.wait on the ApplyResult instance will try to pickle
the callbacks provided. Since the callbacks are methods, it will also try to
pickle the instance and fail because of the unpickleable multiprocessing.
Pool attribute.

An easy solution to this problem is to use functions that are pickleable
(if importable) and then pass additional values via functools.partial
(as we will see later). The on-error callback is called when exceptions
are raised inside the process pool. Since we inject the transport instance,
we can transfer the serialized exception back to the callee, who can then
proceed to handle it appropriately.

Of course, we close the transport at the end of the usage to not run
into resource leakages. Very similarly we serialize the result and close the
transport afterward. Using a try-finally block, we ensure the transport

214

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

is always closed. handle basically deserializes the passed data and tries to
unpack it since our “contract” is to send a serialized tuple of a function,

a tuple of positional arguments, and a dict with keyword arguments. We
don’t handle exceptions here since they bubble up and are handled by
on_error. The return value is the one passed to on_success.

Next up is the CommandProtocol class. First of all, we define the
constructor, which needs to pass us the pool instance to handle the
different requests. The loop instance is for scheduling callbacks and the
timeout is for force-closing the transport if the result takes too long to
compute. A transport attribute is initialized to None to hold a reference to
the current transport.

Class CommandProtocol(asyncio.BaseProtocol):
def _init_ (self, pool, loop, timeout=30):
self.pool = pool
self.loop = loop
self.timeout = timeout
self.transport = None

Next, we need to implement the callbacks that are invoked by the
asyncio.Transport instance:

def connection made(self, transport):
peername = transport.get extra_info(‘peername’)
logging.info(‘%s connected’, peername)
self.transport = transport

command_protocol.connection_made is invoked when a client
connects to the server. In that case, we store the IP and port information
by querying the transport for the peername. We also store a reference to the
transport for further use.

The command_protocol.data received callback is where the better
part of the protocol lies. Here we receive the data, which we then pass to
the pool. We do not serialize the data here. Rather we wait for the handle
callback to be invoked.

215

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

We use functools.partial to pass the transport instance, so that the
callbacks can return the payload. We also schedule self.close after self.
timeout seconds, which force-closes the transport if it is taking too long.

def data_received(self, data):
peername = self.transport.get extra info('peername")

on_error_ = functools.partial(on_error, transport=self.
transport, peername=peername)

on_success_ = functools.partial(on_success,
transport=self.transport, peername=peername, data=data)

result = self.pool.apply async(handle, (data,),
callback=on_success , error callback=on error)

self.loop.call soon(result.wait)
self.loop.call later(self.timeout, self.close, peername)

The close method is only invoked when we do not close the
transport by querying transport.is closing().Ifit is not closed yet, we
close it; otherwise, we try to get the peername and close the transportin a
finally block:

def close(self, peername=None):
try:
if self.transport.is closing():
return
if not peername:
peername = self.transport.get extra_
info('peername")
finally:
self.transport.close()
logging.info("Disconnected %s", peername)

216

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

To start our server, we need to get a loop instance, get a
multiprocessing.Pool instance, and create a CommandProtocol factory
that we can pass to loop.create server.

For that matter, we inline a lambda that returns a new
CommandProtocol instance that reuses our pool. Now on every connect,

a new CommandProtocol instance is spawned, but we use the same pool
instance. We spawn the server on localhost and port 8888. We serve forever
and close the pool in the finally block.

async def main():
loop = asyncio.get running loop()
pool = Pool()
server = await loop.create_server(
lambda: CommandProtocol(pool, loop),
'127.0.0.1", 8888)
try:
async with server:
await server.serve forever()
finally:
pool.close()
pool.join()

asyncio.run(main())

Note The (cloud)pickle package does not protect against
malicious code. Don't run this server on networks you do not trust. No
measurements were taken to harden this server example to keep it
focused on the protocol part.

217

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Writing a Protocol Subclass for a Simple
Remote Command Client

Problem

We want to implement a client for a custom network protocol with binary
payloads in asyncio.

Solution

Due to limitations of the pickle package, it can only load serialized
functions that are importable. Since that is not always the case, this
solution is less powerful.

For better pickling support, we will use the third-party library called
cloudpickle. It will enable us to serialize locally (client-side) defined and
remotely inaccessible functions.

To install it, use the following:

pipenv install cloudpickle==0.6.1
or
pip3 install cloudpickle==0.6.1

Given our CommandProtocol we are now equipped to call serialized
Python functions.
import asyncio
import logging
import cloudpickle as pickle
import sys

logging.basicConfig(level=1ogging.DEBUG, stream=sys.stdout)

218

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

class CommandClientProtocol(asyncio.Protocol):
def init (self, connection lost):
self. connection lost = connection_lost
self.transport = None

def connection made(self, transport):
self.transport = transport

def data_received(self, data):
result = pickle.loads(data)
if isinstance(result, Exception):
raise result
logging.info(result)

def connection lost(self, exc):
logging.info('The server closed the connection")
self. connection lost.set result(True)

def execute remotely(self, f, *args, **kwargs):
self.transport.write(pickle.dumps((f, args, kwargs)))

async def remote function(msg):
print(msg) # This will be printed out on the host
return 42

async def main():
loop = asyncio.get running loop()

connection lost = loop.create future()

transport, protocol = await loop.create connection(
lambda: CommandClientProtocol(connection lost),
'127.0.0.1", 8888)

protocol.execute remotely(remote function, "This worked!")

219

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

try:
await connection lost
finally:
transport.close()

asyncio.run(main())

How It Works

First we call the imports and alias the cloudpickle package as pickle:

import asyncio

import logging

import cloudpickle as pickle
import sys

Next up is our CommandClientProtocol class. We pass an asyncio.
Future instance that we use to make sure our program does not exit
until the connection is lost. Also we initialize an empty attribute for the
asyncio.Transport object:

logging.basicConfig(level=1ogging.DEBUG, stream=sys.stdout)

class CommandClientProtocol(asyncio.Protocol):
def init (self, connection lost):
self. connection lost = connection_lost
self.transport = None

Now the callback functions. They are similar to the CommandProtocol
When the connection is made, connection_made is called with the

respective transport instance, which we save in the same named attribute:

def connection made(self, transport):
self.transport = transport

220

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Next, we define the data_received callback, which we also know from
the CommandProtocol. The on_error and on_success handler send back
either the result of invoking the function or any exceptions that happen
in the CommandProtocol.handle method. We deserialize the payload and
raise it if it happens to be an exception. Otherwise, we log it.

def data_received(self, data):
result = pickle.loads(data)
if isinstance(result, Exception):
raise result
logging.info(result)

The connection_lost method is invoked if we are not in contact
with the server anymore. In that case, we want to signal to our future it is
consumed by using future.set_result:

def connection lost(self, exc):
logging.info('The server closed the connection')
self. connection lost.set result(True)

For convenience, we define the execute_remotely method, which
takes a function or coroutinefunction and arguments and then invokes
them remotely:

def execute remotely(self, f, *args, **kwargs):
self.transport.write(pickle.dumps((f, args, kwargs)))

We define a coroutine that is invoked on the server:

async def remote function(msg):
print(msg) # This will be printed out on the host
return 42

To connect to the server, we pass a protocol factory to the loop.
create_connection method of the currently running loop. Then
we invoke our convenience method protocol.execute_remotely.

221

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

We await the connection_lost future, which we have passed inside our
CommandClientProtocol instance. At last, we close the transport in the
finally block.

async def main():
loop = asyncio.get running loop()

connection lost = loop.create future()

transport, protocol = await loop.create connection(
lambda: CommandClientProtocol(connection lost),
'127.0.0.1", 8888)

protocol.execute remotely(remote function, "This worked!")

try:
await connection lost
finally:
transport.close()

asyncio.run(main())

Writing a Simple HTTP Server
Problem

You need to build a very simple but functional HTTP server using
asyncio.start server.

Solution

For this matter, we install the third-party httptools package. Follow the
installation instructions at https://github.com/MagicStack/httptools.
At the point of writing this, you could use:

222

https://github.com/MagicStack/httptools

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

pip3 install httptools==0.0.11
or
pipenv install httptools==0.0.11

Using the httptools module and asyncio.Futures for HTTP parsing,
we will write an AsyncioHTTPHandler class, which we will use for an
asynchronous HTTP server.

import asyncio

from collections import defaultdict, OrderedDict
from json import dumps

from urllib.parse import urljoin

from wsgiref.handlers import format date time

from httptools import HttpRequestParser
class HTTPProtocol():

def init (self, future=None):
self.parser = HttpRequestParser(self)
self.headers = {}
self.body = b""
self.url = b""
self.future = future

def on_url(self, url: bytes):
self.url = url

def on_header(self, name: bytes, value: bytes):
self.headers[name] = value

def on_body(self, body: bytes):
self.body = body

def on_message complete(self):
self.future.set result(self)

223

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

def feed data(self, data):
self.parser.feed data(data)

MAX_PAYLOAD LEN = 65536
DEFAULT_HTTP_VERSION = "HTTP/1.1"
NOT_FOUND = """<IDOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>404 | Page not found</title>
<meta name="viewport" content="width=device-width, initial-
scale=1">
<meta name="description" content="404 Error page">
</head>
<body>
<p>"Sorry ! the page you are looking for can't be found"</p>
</body>
</html>"""

REASONS = {
100: "Continue",
101: "Switching Protocols",
200: "OK",
201: "Created",
202: "Accepted",
203: "Non-Authoritative Information",
204: "No Content",
205: "Reset Content",
206: "Partial Content",
300: "Multiple Choices",
301: "Moved Permanently",

224

302:
303:
304:
305:
307:
400:
401:
402:
403:
404:
405:
406:
407:
408:
409:
410:
411:
412:
413:
414:
415:
416:
417:
500:
501:
502:
503:
504:
505:

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

"Found",

"See Other",

"Not Modified",

"Use Proxy",

"Temporary Redirect",

"Bad Request”,
"Unauthorized",

"Payment Required",
"Forbidden",

"Not Found",

"Method Not Allowed",

"Not Acceptable”,

"Proxy Authentication Required",
"Request Time-out",
"Conflict",

"Gone",

"Length Required",
"Precondition Failed",
"Request Entity Too Large",
"Request-URI Too Large",
"Unsupported Media Type",
"Requested range not satisfiable",
"Expectation Failed",
"Internal Server Error",
"Not Implemented",

"Bad Gateway",

"Service Unavailable",
"Gateway Time-out",

"HTTP Version not supported"

225

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

class HTTPError(BaseException):
def init (self, status code):
assert status_code >= 400
self.status_code = status code
self.reason = REASONS.get(status_code, "")

def str (self):
return f"{self.status code} - {self.reason}"

class Response:

def init (self, status code, headers,
http version=DEFAULT HTTP_VERSION, body=""):
self.http version = http version
self.status code = status_code
self.headers = headers
self.reason = REASONS.get(status code, "")
self.body = body

def str (self):
status line = f"{self.http version} {self.status code}
{self.reason}\r\n"

headers = "".join(
(f'"{key}": {value}\r\n' for key, value in self.headers.
items())

)
return f"{status line}{headers}\r\n{self.body}"

def get default_headers():
return OrderedDict({
"Date": format date_ time(None).encode("ascii"),
"Server": AsyncioHTTPHandler.banner

1)

226

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

def response(headers=None, status code=200, content type="text/
html", http version=DEFAULT HTTP_VERSION, body=""):
if not headers:
headers = get default headers()
headers.update({"Content-Type": content_ type,
"Content-Length": str(len(body))})
return Response(status _code, headers, http version, body)

def json(headers=None, status code=200, content type="application/
json", http version=DEFAULT HTTP_VERSION, body=None):
if not body:
body = {}
return response(headers, status code, content type, http
version, dumps(body))

class AsyncioHTTPHandler:
allowed methods = ["GET"]
version = 1.0
banner = f"AsyncioHTTPServer/{version}".encode("ascii"”
default_timeout = 30

def init (self, host, timeout=default timeout):
self.host = host
self.routes = defaultdict(dict)
self.timeout = timeout

def route(self, *args, method="GET", path=None):

def register me(f):
nonlocal path, self

if not path:
path = f. _name__
http_method = method.upper()

227

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

assert http method in AsyncioHTTPHandler.allowed
methods

if not path.startswith("/"):
path = urljoin("/", path)
self.routes[http method][path] = f

return f
if args:
f, = args

return register me(f)
return register me

async def on_connection(self, reader, writer):
try:
request = await asyncio.wait for(reader.read(MAX
PAYLOAD LEN), self.timeout)
await self.send(writer, await self.handle(request))
except HTTPError as err:
if err.status_code == 404:
await self.send(writer, response(status
code=err.status_code, body=NOT FOUND))
elif err.status code == 405:
headers = get default headers()
headers.update(Allow=",
".join(AsyncioHTTPHandler.allowed methods))
await self.send(writer, json(headers, status_
code=err.status_code))
else:
await self.send(writer, json(status code=err.
status_code))
except TimeoutError:
await self.send(writer, json(status code=408))

228

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

finally:
writer.close()

async def handle(self, request):
finish _parsing = asyncio.get running loop().create
future()
proto = HTTPProtocol(future=finish parsing)

try:

proto.feed data(request)

await finish_parsing

path = proto.url.decode("UTF-8")

method = proto.parser.get method().decode("UTF-8")
except (UnicodeDecodeError, HttpParserUpgrade):

raise HTTPError(500)

if not method.upper() in AsyncioHTTPHandler.allowed
methods:
raise HTTPError(405)

handler = self.routes[method].get(path)
if not handler:

raise HTTPError(404)
return await handler(self)

async def send(self, writer, response):
writer.write(str(response).encode("ascii"))
await writer.drain()

host
port

"127.0.0.1"
1234

server = AsyncioHTTPHandler (host)

229

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

@server.route()
async def test me(server):
return json(body=dict(it works=True))

async def main():
s = await asyncio.start server(server.on connection, host,
port)
async with s:
await s.serve forever()

try:
asyncio.run(main())
except KeyboardInterrupt:
print("Closed..")

How It Works

The steps are described in the following sections.

Imports
First the imports:

import asyncio

from collections import defaultdict, OrderedDict
from json import dumps

from urllib.parse import urljoin

from wsgiref.handlers import format date_time

from httptools import HttpRequestParser

230

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Protocol Class Definition

Next, we define an HTTPProtocol class that will interact with the HTTP
requests and handle parsing via the httptools.HttpRequestParser.
All methods prefixed with on_* will be called upon the respective state

given by the suffix of the name. For instance, on_body will be invoked on

receiving the body of the HTTP request.
The feed_data method is being passed through to httptools.

HttpRequestParser, which enables parsing the HTTP request parsing.

class HTTPProtocol():

def

def

def

def

def

def

__init_ (self, future=None):

self.parser = HttpRequestParser(self)

self.headers = {}
self.body = b""

self.url = b""
self.future = future

on_url(self, url: bytes):
self.url = url

on_header(self, name: bytes, value: bytes):
self.headers[name] = value

on_body(self, body: bytes):
self.body = body

on_message _complete(self):
self.future.set result(self)

feed data(self, data):
self.parser.feed data(data)

231

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Global Definitions

Other definitions include the maximal payload size, the default HTTP
version of this server, and a small template in the case of a 404 error:

MAX_PAYLOAD LEN = 65536
DEFAULT HTTP_VERSION = "HTTP/1.1"
NOT_FOUND = """<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>404 | Page not found</title>
<meta name="viewport" content="width=device-width,
initial-scale=1">
<meta name="description" content="404 Error page">
</head>
<body>
<p>"Sorry ! the page you are looking for can't be
found"</p>
</body>
</html>"""

We also must define some messages that accompany the HTTP
status codes:

REASONS = {
100: "Continue",
Snip...

505: "HTTP Version not supported"”

232

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Exception Definition

Next, we define an exception that is raised upon HTTP errors, which refers
to status codes greater than or equal to 400:

class HTTPError(BaseException):
def init (self, status code):
assert status_code >= 400
self.status _code = status_code
self.reason = REASONS.get(status code, "")

def _str (self):
return f"{self.status code} - {self.reason}"

Response Class Definition

For sending out responses to HTTP clients that connect to our HTTP
server, we define a convenience class response. An HTTP response
contains the status code, headers, the HTTP version, and optionally a
body. We override the str method to dump the correct representation
of the response for transport (before the encoding).

class Response:

def init (self, status code, headers, http

version=DEFAULT HTTP_VERSION, body=""):
self.http version = http version
self.status code = status_code
self.headers = headers
self.reason = REASONS.get(status_code, "")
self.body = body

def str (self):
status _line = f"{self.http version} {self.status code}
{self.reasone}\r\n"

233

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

headers = "".join(
(f'"{key}": {Value}\r\nl fOI key, Value in Self-
headers.items())

)

return f"{status line}{headers}\r\n{self.body}"

Defining Utilities

Next, we define the default headers as a function that returns an
OrderedDict since the order of the headers is important. Also, the date is
considered to be non-optional in most cases, according to the HTTP/1.1
specification: https://www.w3.org/Protocols/rfc2616/rfc2616-seci4.
html#sec14.18.

def get default_headers():
return OrderedDict({
"Date": format date_ time(None).encode("ascii"),
"Server": AsyncioHTTPHandler.banner

1)

The following two functions are used by route handlers to return their
payloads in an appropriate format conveniently. The JSON handler is
based on the response handler, which returns a response object. It adds
a parameter for the Content-Type and calculates the Content-Length
header. Additionally, the JSON handler provides a Content-Type that’s
suitable for a JSON payload ("application/json") and returns an empty
JSON body instead of an empty body:

def response(headers=None, status code=200, content type="text/
html", http version=DEFAULT HTTP_VERSION, body=""):
if not headers:
headers = get default headers()

234

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

headers.update({"Content-Type": content type,
"Content-Length": str(len(body))})
return Response(status code, headers, http version, body)

def json(headers=None, status_code=200, content type="application/
json", http_version=DEFAULT HTTP_VERSION, body=None):
if not body:
body = {}
return response(headers, status code, content type, http_
version, dumps(body))

Defining the AsyncioHTTPHandler

The heart of our HTTP server is the AsyncioHTTPHandler. Its duties are

to respond to connection attempts and then try to parse and route the

message based on the parsed header information, such as the path, etc.
Additionally, it provides an easy way to register coroutines as handlers

to requests. To build the AsyncioHTTPHandler, we define the class

attributes allowed methods, where we store the currently supported HTTP

methods. For simplicity, we support the GET method for now. We have

a version flag that we can use in our banner, which we encode as ASCII

bytes. And we have a default timeout of 30 seconds for HTTP connections.

class AsyncioHTTPHandler:
allowed methods = ["GET"]
version = 1.0
banner = f"AsyncioHTTPServer/{version}".encode("ascii”
default _timeout = 30

Next, we define the _init__method, where we store the current host
and are passed the actual timeout value we want to use. We also initialize a
defaultdict with a dict factory as the data structure for our routes.

235

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

The rationale behind this is that we don’t want to defensively access
our route table. Rather, we want to receive a false value if there is no
handler for a particular route. We store the routes by the HTTP method
and the routes.

def _init_ (self, host, timeout=default timeout):
self.host = host
self.routes = defaultdict(dict)
self.timeout = timeout

The next method is used to register HTTP handlers to the provided
path. If not passed, the path defaults to the function name. The method
parameter is normalized with str.upper and then checked in the
allowed methods. If the path does not start with a leading forward slash,
itisjoined via urllib.parse.urljoin. Then the route is saved via the
normalized HTTP method and path. The lookup is analogue.

def route(self, *args, method="GET", path=None):

def register me(f):
nonlocal path, self

if not path:
path = f.__name__
http_method = method.upper()

assert http method in AsyncioHTTPHandler.allowed
methods

if not path.startswith("/"):

path = urljoin("/", path)
self.routes[http method][path] = f
return f

236

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

if args:

f, =args

return register me(f)
return register me

This last part of the decorator ensures that you can use it either as
@server.route or @server.route():

if args:

f, =args

return register me(f)
return register me

The on_connection coroutine method is the entry point to the HTTP
server. It handles all the incoming HTTP requests. First the request is
awaited for the timeout period via asyncio.wait_for and reader.read.

If it times out, we send an HTTP response with HTTP status 408 -
request timeout. If we receive a payload as big as MAX_PAYLOAD LEN or
smaller, we pass the payload to self.handle for parsing and either receive
aresponse object back or raise an HTTPError. If the error stems from a miss
in the route lookup, we send an HTTP response with a 404-status code.

If a client requests a method that is not allowed, we send an HTTP
response with a 405-status code. The HTTP specification requires us to
send an Allow header with a comma-separated list of all the allowed
HTTP methods.

async def on_connection(self, reader, writer):
try:
request = await asyncio.wait for(reader.read(MAX
PAYLOAD LEN), self.timeout)
await self.send(writer, await self.handle(request))
except HTTPError as err:

237

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

if err.status_code == 404:
await self.send(writer, response(status
code=err.status_code, body=NOT FOUND))
elif err.status_code==405:
headers = get default headers()
headers.update(Allow=",
".join(AsyncioHTTPHandler.allowed methods))
await self.send(writer, json(headers,status_
code=err.status_code))
else:
await self.send(writer, json(status code=err.
status_code))
except TimeoutError:
await self.send(writer, json(status code=408))
finally:
writer.close()

In self.handle, we instantiate a new HttpProtocol instance to handle
the response. As of this writing, we can handle the following issues:

e An HTTP header that’s not UTF-8 decodable or an
HTTP Upgrade request raises an HTTPError with 500,
which is the "Internal Error" HTTP status code.

¢ Anon-allowed HTTP method raises an HTTPError with
405, which is the "Not allowed" HTTP status code.

o A failed route lookup raises an HTTPError with 404,
which is the (infamous) "Not found" HTTP status code.

We pass a future object into the HTTPProtocol instance, which is set
when the whole request is handled. After being awaited, the HTTPProtocol
instance contains the request past and method.

238

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

async def handle(self, request):
finish parsing = asyncio.get running loop().create_
future()
proto = HTTPProtocol(future=finish_parsing)

try:

proto.feed data(request)

await finish _parsing

path = proto.url.decode("UTF-8")

method = proto.parser.get method().decode("UTF-8")
except (UnicodeDecodeError, HttpParserUpgrade):

raise HTTPError(500)

if not method.upper() in AsyncioHTTPHandler.allowed _
methods:
raise HTTPError(405)

handler = self.routes[method].get(path)
if not handler:

raise HTTPError(404)
return await handler(self)

Finally, we define a convenience method for writing to the
StreamhWriter in an ASCII encoding (we do not support charsets yet) and
use drain afterward to make sure the payload is transported.

async def send(self, writer, response):
writer.write(str(response).encode("ascii"))
await writer.drain()

239

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Starting the Web Server

To start the web server and expose a coroutine method, we create
AsyncioHTTPHandler under the loopback IP address and port 1234. We
then write a handler for the /test_me route and register it via @server.
route. By default, it will be available under /<function_name>, as
explained in the decorator section.

host
port

"127.0.0.1"
1234

server = AsyncioHTTPHandler(host)

@server.route
async def test me(server):
return json(body=dict(it works=True))

The important bit here is the call to asyncio.start_server, which
returns a TCP server instance that uses our callback on every new
connection under the given host and port:

async def main():
s = await asyncio.start server(server.on connection, host, port)
async with s:
await s.serve forever()

try:
asyncio.run(main())
except KeyboardInterrupt:
print("Closed..")

We can test it via Python like this:

import urllib.request
with urllib.request.urlopen("http://127.0.0.1:1234/test me") as f:
print(f.read().decode())

240

CHAPTER9 WORKING WITH NETWORK PROTOCOLS
Or we could use curl:

— curl http://127.0.0.1:1234/test_me
{"it _works": true}%

Executing Shell Commands Remotely
Over SSH

Problem

You want to write a small library that can execute remote commands
defined in Python and resembling OS commands.

Solution

SSH is a network protocol for secure remote login and securely accessing
remote services. It establishes a secure channel between a client and a
server in an untrusted network. To do this, it usually runs on top of TCP/
IP and provides features like integrity protection, encryption, and strong
server authentication.

The OpenSSH suite offers an SSH client implementation. The
installation of the OpenSSH suite is outlined in the bottom.

The example leverages the OpenSSH userland tools by writing
subprocess wrappers around them. To provide a cross-platform
experience, we deploy a decorator pattern where we can pass different
system commands per OS using keyword parameters.

import asyncio
import getpass
import inspect
import logging
import shutil

241

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

import subprocess

import sys

import itertools

from functools import wraps

logging.basicConfig(level=logging.INFO)

class NotFoundError(BaseException):
pass

class ProcessError(BaseException):
def init (self, return code, stderr):
self.return _code = return code
self.stderr = stderr

def str (self):
return f"Process returned non 0 return code {self.
return_code}.\n" \
f"{self.stderr.decode('utf-8")}"

def get ssh _client path():
executable = shutil.which("ssh")
if not executable:
raise NotFoundError(

"Could not find ssh client. You can install OpenSSH
from https://www.OpenSSH.com/portable.html.\nOn Mac
0SX we recommend using brew: brew install OpenSSH.\
nOn Linux systems you should use the package
manager of your choice, like so. apt-get install
OpenSSH\nOn windows you can use Chocolatey: choco
install OpenSSH.")

return executable

242

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

def get ssh _client path():
executable = shutil.which("ssh")
if not executable:
raise NotFoundError(

"Could not find ssh client. You can install OpenSSH
from https://www.OpenSSH.com/portable.html.\nOn Mac
0SX we recommend using brew: brew install OpenSSH.
\nOn Linux systems you should use the package
manager of your choice, like so: apt-get install
OpenSSH\nOn windows you can use Chocolatey: choco
install OpenSSH.")

return executable

class Connection:
def init (self, user=None, host="127.0.0.1", port=22,
timeout=None, ssh client=None):

self.host = host
self.port = port
if not user:

user = getpass.getuser()
self.user = user
self.timeout = timeout
if not ssh client:
ssh_client = get ssh client path()
self.ssh_client = ssh_client

async def run(self, *cmds, interactive=False):
commands = [self.ssh client,
f"{self.user}@{self.host}",
f"-p {self.port}",
*cmds |

logging.info(" ".join(commands))

243

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

proc = await asyncio.create subprocess exec(*commands,
stdin=subprocess.
PIPE, stdout=
subprocess.
PIPE, stderr=
subprocess.
PIPE,)
if not interactive:
stdout, stderr = await asyncio.wait for(proc.
communicate(), self.timeout)

if proc.returncode != 0:
raise ProcessError(proc.returncode, stderr)

return proc, stdout, stderr
else:
return proc, proc.stdout, proc.stderr

def command(*args, interactive=False, **kwargs):
def outer(f):
cnd = f. _name_
for key, value in kwargs.items():
if sys.platform.startswith(key) and value:
cnd = value

if inspect.isasyncgenfunction(f):
@wraps(f)
async def wrapper(connection, *args):
proc, stdout, stderr = await connection.
run(shutil.which(cmd), *args,
interactive=interactive)

async for value in f(proc, stdout, stderr):
yield value

244

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

else:
@wraps(f)
async def wrapper(connection, *args):
proc, stdout, stderr = await connection.
run(shutil.which(cmd), *args,
interactive=interactive)
return await f(proc, stdout, stderr)

return wrapper

if not args:
return outer
else:
return outer(*args)

@command(win32="dir")
async def ls(proc, stdout, stderr):
for line in stdout.decode("utf-8").splitlines():
yield line

@command(win32="tasklist", interactive=True)
async def top(proc, stdout, stderr):
c = itertools.count()

async for value in stdout:
if next(c) »1000:
break
print(value)

async def main():
con = Connection()
try:
async for line in ls(con):
print(line)

245

CHAPTER9 WORKING WITH NETWORK PROTOCOLS
await top(con)

except Exception as err:
logging.error(err)

if sys.platform == "win32":
asyncio.set _event loop policy(asyncio.
WindowsProactorEventLoopPolicy())

asyncio.run(main())

How It Works
Assumptions

Note that this code makes assumptions about the OpenSSH client on your
machine. It assumes that you have an OpenSSH daemon running on your
machine and the OpenSSH server authenticates via a certificate that you
have configured in the SSH configuration. It disregards that the first new
connection attempt might require a validity confirmation of the offered
fingerprint.

First, we need to install an OpenSSH client (if not already installed on
your system). You can install OpenSSH from https://www.OpenSSH.com/
portable.html

e On MacOS X, we recommend using brew: brew
install OpenSSH

e On Linux systems, you should use the package manager
of your choice, like so: apt-get install OpenSSH

e On Windows, you can use Chocolatey: choco install
OpenSSH

246

https://www.openssh.com/portable.html
https://www.openssh.com/portable.html

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Imports
We will start by importing the required modules:

import asyncio

import inspect

import logging

import shutil

import subprocess

import sys

import itertools

from functools import wraps
import getpass

logging.basicConfig(level=logging.INFO)

Defining Exceptions

Next we define some exception classes that might occur inside our
program:

class NotFoundError(BaseException):
pass

This exception is raised if the user did not install the OpenSSH client
on his system.

class ProcessError(BaseException):
def init (self, return code, stderr):
self.return code = return code
self.stderr = stderr

def str (self):
return f"Process returned non 0 return code {self.
return_code}.\n" \
f"{self.stderr.decode('utf-8")}"

247

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

This exception is raised on a non-zero return code, which indicates
an error code. Next, we write a little helper to get the path to the open SSH
client. It raises our defined NotFoundExrror if it cannot retrieve the path to
the OpenSSH client.

def get ssh _client path():

executable = shutil.which("ssh")

if not executable:
raise NotFoundError("Could not find ssh client. You can
install OpenSSH from https://www.OpenSSH.com/portable.
html.\nOn Mac 0SX we recommend using brew: brew install
OpenSSH.\nOn Linux systems you should use the package
manager of your choice, like so: apt-get install
OpenSSH\nOn windows you can use Chocolatey: choco
install OpenSSH.")

return executable

Defining a Connection Class

A connection class encapsulates a simple subset of the information we
need in order to have a working minimal wrapper around the OpenSSH
client. The connection class captures:

e User
e Host
e Port

¢ Timeout

e Path to the OpenSSH client

248

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

class Connection:
def init (self, user=None, host="127.0.0.1", port=22,
timeout=None, ssh_client=None):
self.host = host
self.port = port

if not user:
user = getpass.getuser()
self.user = user
self.timeout = timeout
if not ssh_client:
ssh_client = get ssh _client path()
self.ssh _client = ssh client

The connection class receives a method that runs the commands that
are passed to it with the given user, host, port, timeout, and interpreter.

Note If you run interactive programs like top, you might run into
issues because awaiting the Process.communicate() coroutine
will block until it raises the timeout. The purpose of the interactive
flag is to return the stdout and stdexrr pipes instead of awaiting
Process.communicate() to read from them for us.

In this case, the return code of the program is not clear, so we do not
checkit!

async def run(self, *cmds, interactive=False):
commands = [self.ssh client,
f"{self.user}@{self.host}",
f"-p {self.port}",
*cmds |

logging.info(" ".join(commands))

249

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

proc = await asyncio.create subprocess exec(*commands,
stdin=subprocess.
PIPE, stdout=
subprocess.PIPE,
stderr=subprocess.
PIPE,)
if not interactive:
stdout, stderr = await asyncio.wait for(proc.
communicate(), self.timeout)

if proc.returncode != 0:
raise ProcessError(proc.returncode, stderr)

return proc, stdout, stderr
else:
return proc, proc.stdout, proc.stderr

Defining a Command Decorator

The command wrapper does the heavy lifting in terms of OS operability
and finding the correct path to our executable.

We can pass the sys.platform nameswin32, darwin, linux, or
cygwin as keyword argument keys to provide a command alias for the
target platforms.

The command name defaults to the function name. The interactive
flag is passed to connection.run and its purpose and semantics are
defined above.

We need to differentiate between async generators and coroutines for
our wrapper, because we might want to use the yield keyword inside our
command functions.

250

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

The commands are expected to have a signature that receives
a process instance and a stdout/stderr buffer (bytes), or an async
generator that can be queried for the lines depending on the interactive

flag, in that particular order:

def command(*args, interactive=False, **kwargs):
def outer(f):
cnd = f._ _name_
for key, value in kwargs.items():
if sys.platform.startswith(key) and value:
cmd = value

if inspect.isasyncgenfunction(f):
@wraps(f)
async def wrapper(connection, *args):
proc, stdout, stderr = await connection.
run(shutil.which(cmd), *args,
interactive=interactive)

async for value in f(proc, stdout, stderr):
yield value
else:

@wraps(f)

async def wrapper(connection, *args):
proc, stdout, stderr = await connection.
run(shutil.which(cmd), *args,
interactive=interactive)
return await f(proc, stdout, stderr)

return wrapper

This part is so we can use @command or @command() in case we are

satisfied with the default options.

251

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

if not args:
return outer
else:
return outer(*args)

Remote Command Examples

We define two examples of remote commands. One is the 1s command. Its
Windows equivalent is dir, so we pass it with a win32 key to the command
decorator.

@command(win32="dir")
async def 1ls(proc, stdout, stderr):
for line in stdout.decode("utf-8").splitlines():
yield line

We also sport an example for an interactive program top.

Note There is no non-GUI equivalent to top on Windows (to our
knowledge), so we used tasklist, which resembles ps.

Since calling process.communicate would block, we instead
asynchronously iterate on the stdout stream for 1,000 lines:

@command(win32="tasklist", interactive=True)
async def top(proc, stdout, stderr):
c = itertools.count()
async for value in stdout:
if next(c) >1000:
break
print(value)

252

CHAPTER9 WORKING WITH NETWORK PROTOCOLS

Invoking the Commands

This is how we invoke the commands. We pass the connection instance
to them and await them if they are coroutines or consume them via async

for if they are async generators:

async def main():
con = Connection()
try:
async for line in 1ls(con):
print(line)

await top(con)

except Exception as err:
logging.error(err)

This part is necessary since the SelectorEventLoop, which is the
asyncio default, does not provide subprocess support on Windows:

if sys.platform == "win32":
asyncio.set _event loop policy(asyncio.
WindowsProactorEventLoopPolicy())

asyncio.run(main())

253

CHAPTER 10

Preventing Common
Asyncio Mistakes

Asyncio comes with mistakes of its own. For example, you can forget to
await a coroutine, write code that is blocking for too long, or run into data
races and deadlocks. Errors can occur inside scheduled tasks, coroutines,
and event loops. All of this-in addition to the complexity of learning new
APIs and concepts like coroutines and event loops-can discourage people
from using asyncio. In this chapter, we learn about common places where
mistakes are made and how to pinpoint them, the standard asyncio ways
of handling exceptions, and how to craft our own solutions when no
corresponding asyncio API is available.

Handling Asyncio-Related Exceptions
Problem

In this example, we find out where we can-but not necessarily should-
intercept exceptions that we raise in different asyncio-related scenarios.

Solution #1

As usual, exceptions can bubble up from business code and third-party
libraries up to the callee. The exceptions are raised along the chain of

© Mohamed Mustapha Tahrioui 2019 255
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_10

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

callers up to the outermost frame. Since asyncio introduces new ways to
schedule functions and coroutine calls, it is not straightforward anymore
where to handle respective exceptions. In this solution, we shed light on
how to handle exceptions inside coroutines.

import asyncio
import sys

class MockException(Exception):
def _init_(self, message):
self.message = message

def str (self):
return self.message

async def raiser(text):
raise MockException(text)

async def main():
raise MockException("Caught mock exception outside the
loop. The loop is not running anymore.")

try:
asyncio.run(main())

except MockException as err:
print(err, file=sys.stderr)

async def main():
await raiser("Caught inline mock exception outside the loop."
"The loop is not running anymore.™)

try:
asyncio.run(main(), debug=True)
except MockException as err:
print(err, file=sys.stderr)

256

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

async def main():
try:
await raiser("Caught mock exception raised in an
awaited coroutine outside the loop."
"The loop is still running.")
except MockException as err:
print(err, file=sys.stderr)

asyncio.run(main(), debug=True)

How It Works

We have divided Solution #1 and Solution #2 in the exception handling for
exceptions raised inside the loop.call * methods and the ones raised by
coroutines.

The solution for coroutines is simple. You need to guard the awaits
with a try-except block if you want to handle exceptions. If not handled,
the exception will bubble up to the code that started your loop (asyncio.
run or more low-level mechanisms). The first part defines a convenience
Exception class that makes printing the error easier:

import asyncio
import sys

class MockException(Exception):
def _init_(self, message):
self.message = message

def str (self):
return self.message

257

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

We also define a coroutine that raises a MockException when we chain
awaits and have exceptions in between:

async def raiser(text):
raise MockException(text)

Next, we run our main method and show some inline exception raising:

async def main():
raise MockException("Caught mock exception outside the
loop. The loop is not running anymore.")

We decide to catch the exception from the outside, which has the
drawback that the loop is not running anymore:

try:
asyncio.run(main())

except MockException as err:
print(err, file=sys.stderr)

It is trivially possible to catch it inline, so we skip demonstrating that
case and show the more interesting case of chained coroutines with an
inline try-except block:

async def main():
try:
await raiser("Caught mock exception raised in an
awaited coroutine outside the loop."
"The loop is still running.")
except MockException as err:
print(err, file=sys.stderr)

asyncio.run(main(), debug=True)

Here, we catch the exception that is raised by the raiser coroutine
inside the parent coroutine.

258

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

Note The loop is still running in this case after the exception
handling. We caught the exception at the point where the coroutine
was awaited, which is the crucial part.

Solution #2

In this solution, we discuss how to handle exceptions raised inside the
loop.call * callback scheduling methods.

import asyncio
import sys

class MockException(Exception):
def _init_ (self, message):
self.message = message

def str (self):
return self.message

def raiser sync(text):
raise MockException(text)

async def main():
loop = asyncio.get running loop()
loop.call soon(raiser sync, "You cannot catch me like this!")
await asyncio.sleep(3)

try:
asyncio.run(main(), debug=True)

except MockException as err:
print(err, file=sys.stderr)

259

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

async def main():

try:
loop = asyncio.get running loop()
loop.call soon(raiser sync, "You cannot catch me like
this!")

except MockException as err:
print(err, file=sys.stderr)

finally:
await asyncio.sleep(3)

asyncio.run(main(), debug=True)

def exception_handler(loop, context):
exception = context.get("exception")
if isinstance(exception, MockException):
print(exception, file=sys.stderr)
else:
loop.default_exception _handler(context)
async def main():
loop: asyncio.AbstractEventLoop = asyncio.get running loop()
loop.set_exception handler(exception handler)
loop.call soon(raiser sync, "Finally caught the loop.call *
mock exception!")

asyncio.run(main(), debug=True)

How It Works

In this example, we demonstrate how to catch the errors raised by the
loop.call * methods. Similar to Solution #1, we define our boilerplates:

import asyncio
import sys

260

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

class MockException(Exception):
def _init_ (self, message):
self.message = message

def str (self):
return self.message

def raiser sync(text):
raise MockException(text)

Next, we try to catch the exceptions raised by loop.call soon at
different points (outside the asyncio.run call and at the loop.call soon
call) to no avail:

async def main():
loop = asyncio.get running loop()
loop.call soon(raiser sync, "You cannot catch me like this!")
await asyncio.sleep(3)

try:
asyncio.run(main(), debug=True)
except MockException as err:
print(err, file=sys.stderr)

async def main():

try:
loop = asyncio.get running loop()
loop.call soon(raiser sync, "You cannot catch me like
this!")

except MockException as err:
print(err, file=sys.stderr)

finally:
await asyncio.sleep(3)

asyncio.run(main(), debug=True)

261

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

The right way to catch a loop.call * callisvia the loop.set_
exception _handler API. We need to define an exception handler that will
get the currently running loop and a dict object containing the following
key-value pairs:

e message: Error message

o exception (optional): Exception object

o future (optional): asyncio.Future instance
o handle (optional): asyncio.Handle instance
o protocol (optional): Protocol instance

o transport (optional): Transport instance

o socket (optional): socket.socket instance

Our simple exception handler handles all the MockExceptions that
we define and relays to the loop.default exception_handler in the
other cases.

We could also re-raise the exception if we think we have handled all
the non-fatal exception cases, but this is up to the developer to decide.

def exception_handler(loop, context):
exception = context.get("exception")
if isinstance(exception, MockException):
print(exception, file=sys.stderr)
else:
loop.default_exception_handler(context)

async def main():
loop: asyncio.AbstractEventLoop = asyncio.get running loop()
loop.set_exception handler(exception handler)
loop.call _soon(raiser sync, "Finally caught the loop.call *
mock exception!")

asyncio.run(main(), debug=True)

262

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

Spotting a Long-Running Task
Problem

Coroutines are the first level citizens of asyncio. They operate inside the
event loop using Task objects. What if we wanted to know in detail how
long our task runs?

Solution

We will write a Task wrapper that records how long our tasks run and teach
our loop to create instances of that type.

import asyncio
import logging

logging.basicConfig(level=1ogging.DEBUG)
class MonitorTask(asyncio.Task):

def _init_ (self, coro, *, loop):
super(). init (coro, loop=loop)
self.start = loop.time()
self.loop = loop

def del (self):
super (MonitorTask, self). del ()
self.loop = None

def await (self):
it = super(MonitorTask, self). await ()

def awaited(self):
try:
for i in it:
yield i

263

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

except BaseException as err:
raise err
finally:
try:
logging.debug("%r took %s ms to run", self,
self.loop.time() - self.start)
except:
logging.debug("Could not estimate endtime
of %r")

return awaited(self)

@staticmethod
def task factory(loop, coro):
task = MonitorTask(coro, loop=loop)
The traceback is truncated to hide internal calls in
asyncio show only the traceback from user code
if task._source traceback:
del task. source traceback[-1]
return task

async def work():
await asyncio.sleep(1)

async def main():
loop = asyncio.get running loop()
loop.set task factory(MonitorTask.task factory)
await asyncio.create task(work())

asyncio.run(main(), debug=True)

264

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

How It Works

First, we write our subclass MonitorTask in which we store a reference to
our current loop. To avoid a reference circle, we setitto Nonein _del :

class MonitorTask(asyncio.Task):
def init (self, coro, *, loop):
super(). init (coro, loop=1loop)
self.start = loop.time()
self.loop = loop

def del (self):
super (MonitorTask, self). del ()
self.loop = None

Next, we override the _await__ function to be able to call our timing
logic after the task is completely consumed. For this matter, we await the
awaitable returned by the super call and re-raise all exceptions that may
occur. Using a finally block, we reliably time when the task was awaited:

def await (self):
it = super(MonitorTask, self). await ()

def awaited(self):
try:
for i in it:
yield i
except BaseException as err:
raise err
finally:
try:
logging.debug("%r took %s ms to run", self,
self.loop.time() - self.start)

265

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

except:
logging.debug("Could not estimate endtime
of %r")

return awaited(self)

Note The for i in it: yield i syntaxisequivalenttoa
yield from statement but, unlike yield from, it can be used
syntactically in a function that’s not decorated by asyncio.
coroutine.

The most important part is arguably the task factory. It creates
MonitorTask objects and truncate the traceback so the outputs show only
user code information:

@staticmethod
def task factory(loop, coro):
task = MonitorTask(coro, loop=loop)
The traceback is truncated to hide internal calls in
asyncio show only the traceback from user code
if task._source traceback:
del task. source traceback[-1]
return task

Next, we set our task factory on the loop via loop.set _task factory
and create a task using asyncio.create_task.
The duration of our call to work () will be logged via the logging module.

async def work():
await asyncio.sleep(1)

266

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

async def main():
loop = asyncio.get running loop()
loop.set task factory(MonitorTask.task factory)
await asyncio.create task(work())

asyncio.run(main(), debug=True)

For more sophisticated instrumentation, we could use the asyncio.
Task methods asyncio.Task.print_stack or asyncio.Task.get stack.

Spotting a Long-Running Callback
Problem

Writing a custom task class for a day-to-day use case like spotting long-
running callbacks is too complicated.

Solution

We can use a much simpler API to spot a long-running callback (scheduled
via loop.call *).asyncio natively provides the slow callback duration
property in its loops to achieve the same effect as in the last example.

import asyncio
import time

def slow():
time.sleep(1.5)

async def main():
loop = asyncio.get running loop()
This will print a debug message if the call takes more
than 1 second

267

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

loop.slow_callback duration = 1
loop.call soon(slow)

asyncio.run(main(), debug=True)

How It Works

Using the loop.slow_callback duration attribute, we control at which
threshold in seconds the loop prints the traceback for a long-running
callback. This example will notify us that our slow() callback exceeded the
threshold and print out the information on stderr.

Building a Coroutine Debugging Macro
Library

Problem

Using our knowledge about how errors are handled in asyncio, we want to
write a little library that helps us find exceptions when they occur in our
coroutines.

Solution

For this solution, we use the pdb module in three instances:

o Injectpdb.post_mortemin an except clause around all
non-caught exceptions

o Injectpdb.set trace before the call

o Injectpdb.set trace after the call

268

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

Our design goals for our debugging macro library are as follows:

e Not to be invasive on our code, meaning write as little
code for debugging as possible

e (Virtually) no execution speed penalty if we do not have
the debugging mechanisms enabled to avoid timing-
related bugs to be obfuscated

import argparse

import inspect

import os

import pdb

from functools import wraps
import asyncio

def get asyncio_debug mode parser():
parser = argparse.ArgumentParser()
parser.add argument("--asyncio-debug", action="store true",
dest="__asyncio debug ", default=False)
return parser

def is_asyncio debug mode(parser=get asyncio_debug mode parser()):
return parser and parser.parse args(). asyncio debug or
os.environ.get("CUSTOM ASYNCIO DEBUG")

__asyncio debug = is_asyncio_debug mode()

def post _mortem(f):
if not _ asyncio _debug_ :
return f

if inspect.isasyncgenfunction(f):
@wraps(f)
async def wrapper(*args, **kwargs):

269

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

try:
async for payload in f(*args, **kwargs):
yield payload
except BaseException as err:
pdb.post mortem()
raise err

else:
@wraps(f)
async def wrapper(*args, **kwargs):
try:
return await f(*args, **kwargs)
except BaseException as err:
pdb.post mortem()
raise err

return wrapper

def pre_run(f):
if not _ asyncio _debug_ :
return f

if inspect.isasyncgenfunction(f):
@wraps(f)
async def wrapper(*args, **kwargs):
pdb.set trace()
async for payload in f(*args, **kwargs):
yield payload

else:
@wraps(f)
async def wrapper(*args, **kwargs):
pdb.set trace()
return await f(*args, **kwargs)

270

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

return wrapper

def post _run(f):
if not _ asyncio_debug_ :
return f

if inspect.isasyncgenfunction(f):
@wraps(f)
async def wrapper(*args, **kwargs):
async for payload in f(*args, **kwargs):
yield payload
pdb.set trace()

else:
@wraps(f)
async def wrapper(*args, **kwargs):
result = await f(*args, **kwargs)
pdb.set trace()
return result
return wrapper

@post_mortem
async def main():
raise Exception()

asyncio.run(main())

How It Works

We will use a decorator solution that can be enabled via a command-line
argument called --asyncio-debug or via an environment variable called
CUSTOM_ASYNCIO_DEBUG which we will save in a new flag called __asyncio_
debug_ .

271

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

For this matter, we define two helper methods that provide the
necessary parser and check for the command-line argument/environment
variable in the listed order:

def get asyncio_debug mode parser():
parser = argparse.ArgumentParser()
parser.add_argument("--asyncio-debug", action="store true",
dest="__asyncio_debug ", default=False)
return parser

def is_asyncio debug mode(parser=get asyncio debug mode parser()):
return parser and parser.parse args(). asyncio debug or
os.environ.get("CUSTOM_ASYNCIO DEBUG")

Note There is a Python built-in constant called debug .ltisa
globally accessible, read-only variable that is used to implement the
assert mechanism. It defaults to True and can be set to False
via the -0 Python interpreter flag. We decided against using this
mechanism since many third-party libraries wrongly use assert
statements for invariants in production code. Hence, using this
mechanism - the -0 flag, would render their code unusable.

We initialize the __asyncio_debug global with a call to is_asyncio_
debug_mode:

__asyncio_debug = is_asyncio_debug mode()

Next, we write a coroutine/async generator decorator that respects the
__asyncio_debug flag. In essence, it catches all not caught exceptions
and uses pdp.post_mortem to give us a shell into the coroutine that threw
the BaseException subclass instance.

272

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES
Here, we just return the coroutine if _asyncio_debug is false:

def post mortem(f):
if not _ asyncio_debug_ :
return f

In the case of an async generator function, we use async for to
delegate it and wrap it with a try-except block with our pdb.post_
mortem call.

We re-raise the exception to not manipulate the behavior of the

coroutine.

if inspect.isasyncgenfunction(f):
@wraps(f)
async def wrapper(*args, **kwargs):
try:
async for payload in f(*args, **kwargs):
yield payload
except BaseException as err:
pdb.post _mortem()
raise err

Very similarly, we consume a coroutine with an await statement, but
invoke pdb.post_mortem() on exceptions:

else:
@wraps(f)
async def wrapper(*args, **kwargs):
try:
return await f(*args, **kwargs)
except BaseException as err:
pdb.post mortem()
raise err

return wrapper

273

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

Our @pre_run decorator calls pdb.set_trace before it consumes the
async generator or the coroutine function.

Other than that, the mechanism is the same as the @post_mortem
decorator’s mechanism:

def pre_run(f):
if not _ asyncio_debug_ :
return f

if inspect.isasyncgenfunction(f):
@wraps(f)
async def wrapper(*args, **kwargs):
pdb.set trace()
async for payload in f(*args, **kwargs):
yield payload

else:
@wraps(f)
async def wrapper(*args, **kwargs):
pdb.set trace()
return await f(*args, **kwargs)

return wrapper

If we are interested in the state after consuming the coroutine/async
generator, we can use the @post_run decorator. Here, we can see our
@post_mortem decorator in action:

@post_mortem
async def main():
raise Exception()

asyncio.run(main())

274

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES
We find ourselves inside the frame in which the exception was raised:

/tmp/preventing common asyncio mistakes.py(94)main()
-> raise Exception()
(Pdb)

Writing Tests for Asyncio
Problem

We cannot rely on the execution order of a concurrently executed asyncio
program to follow the order of instructions. Effects of concurrently
accessing resources-like race conditions, time-related phenomena, etc.
are prone to happen in asyncio applications and cannot be covered by
testing measures that are “not aware” of coroutines.

Solution

The term “software-testing” in the context of this chapter is “software that
is able to deterministically assert that other software behaves as specified”.
Software testing can be conducted on many levels, as follows (in the order
of descending granularity):

e Unit testing
o Integration testing
o System testing

All these still have the goal in common that they want to
“deterministically assert that other software behaves as specified” Here,
we'll focus on the role of unit testing since it is the most common.

Picking the right assertions that the tests must ensure becomes more
critical in the context of concurrency. Furthermore, it dictates in a way how
the concurrent code is written. It implies the need for invariants that hold
true irrespective of the concurrent nature of the program. For instance,

275

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

testing timing-related properties of a concurrent program does not make
much sense to ensure its correctness.

To help us with that, we can use packages like pytest, pytest-
asyncio, doctest, and asynctest. For this solution, we write our own
unittest.TestCase subclass that allows us to test coroutines. We also
learn how to deal with the unittest.mock.patch API around coroutines to
intercept calls to asyncio.sleep or stdout output.

import asyncio

import functools

from io import StringIO

from unittest import TestCase, main as unittest main
from unittest.mock import patch

def into future(arg, *, loop=None):
fut = (loop or asyncio.get running loop()).create future()
fut.set _exception(arg) if isinstance(arg, Exception) else
fut.set _result(arg)
return fut

class AsyncTestCase(TestCase):
def getattribute (self, name):
attr = super(). getattribute (name)
if name.startswith('test') and asyncio.
iscoroutinefunction(attr):
return functools.partial(asyncio.run, attr())
else:
return attr

class AsyncTimer:
async def execute timely(self, delay, times, f, *args,
**kwargs):

276

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

for i in range(times):
await asyncio.sleep(delay)
(await f(*args, **kwargs)) if asyncio.
iscoroutine(f) else f(*args, **kwargs)

class AsyncTimerTest(AsyncTestCase):

async def test execute timely(self):
times = 3
delay = 3

with patch("asyncio.sleep”, return value=into_
future(None)) as mock sleep, \
patch('sys.stdout', new _callable=StringIO) as
mock stdout:
async_timer = AsyncTimer()
await async_timer.execute_timely(delay, times,
print, "test execute timely")

mock sleep.assert called with(delay)
assert mock stdout.getvalue() == "test execute timely\
ntest execute timely\ntest execute timely\n"

if _name_ == "'_ main_ ':

unittest main()

How It Works

We will start with our imports:

import asyncio
import functools

We are importing functools to enable the TestCase subclasses to run
coroutine test methods.

277

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

from io import StringIO

StringIO will be used to intercept the stdout output.
from unittest import TestCase, main as unittest main

We import the TestCase class to provide an async one, which can
test coroutine methods. We also import unittest.main under an alias to
putitintoanif name == "' main__ ' guard. Every time this class is
invoked as the first script, all our test cases will run.

from unittest.mock import patch

We also import the unittest.mock.path function, which we will use to
intercept asyncio.sleep and everything printed to stdout. Next, we write
a helper that wraps an argument into an future, which we will use to mock
outasyncio.sleep

def into future(arg, *, loop=None):
fut = (Lloop or asyncio.get running loop()).create future()
fut.set _exception(arg) if isinstance(arg, Exception) else
fut.set _result(arg)
return fut

The TestCase class of the unittest module provides APIs for unit
testing by declaring synchronous methods that start with test. You cannot
use coroutine methods as of now. So we subclass the TestCase class to
be able to intercept every attribute access to the respective test methods.
If the user tries to access a method of the AsyncTestCase class whose
name starts with "test", we need to wrap the requested method into a
partial that can schedule the coroutine in a synchronous fashion. For this
matter, we use functools.partial to provide a callable, which wraps the
coroutine inside asnycio.run.

278

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

class AsyncTestCase(TestCase):
def _getattribute (self, name):
attr = super(). getattribute (name)
if name.startswith('test') and asyncio.
iscoroutinefunction(attr):
return functools.partial(asyncio.run, attr())
else:
return attr

Next, we write a simple class called AsyncTimer that we will unit test.
The class has only one method, called execute_timely, which schedules
a (coroutine) function multiple times and adds a delay in between the
calls via asyncio.sleep. execute_timely accepts functions, coroutine
functions, and arguments passed after the function are passed through (to
the scheduled coroutine function/function). The method has parameters
to tweak how often the function/coroutine function is called and how long
the delay is called delay and times.

class AsyncTimer:
async def execute timely(self, delay, times, f, *args,
**kwargs):
for i in range(times):
await asyncio.sleep(delay)
(await f(*args, **kwargs)) if asyncio.
iscoroutine(f) else f(*args, **kwargs)

Next, we write an AsyncTestCase subclass to test AsyncTimer. We will
call the subclass AsyncTimerTest. Since we have altered the behavior of
__getattribute_ inside of AsyncTestCase to wrap all test coroutine
methods on our AsyncTestCase class into partials, we can use the await
keyword with asyncio.run inside of test_execute timely. Prefixing the
name with test ensures that the test will be executed if we invoke the unit
test runner on this file.

279

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

class AsyncTimerTest(AsyncTestCase):
async def test execute timely(self):
times = 3
delay = 3

We declare the class and the test coroutine method with the correct
name and set up two variables that determine how often the passed
(coroutine) function is scheduled and how long the time is in between.

with patch("asyncio.sleep”, return value=into_
future(None)) as mock sleep, \
patch('sys.stdout', new _callable=StringIO) as
mock stdout:
async_timer = AsyncTimer()
await async_timer.execute_timely(delay, times,
print, "test execute timely")

Using unittest.mock.path, we now can intercept all calls to asyncio.
sleep. To do so, we need the return value of our mock function to be an
awaitable since asyncio.sleep is being awaited in AsyncTimer.execute_
timely. The return_value we pass is an empty future where the result is
already set (in this case, it is None because the return value of asyncio.
sleep is not used). Why? Because when the result is already set on a
future, it returns immediately upon awaiting. The resulting behavior is that
awaiting our patched versions of asyncio.sleep causes await asyncio.
sleep to return directly. Next, we patch sys.stdout to be a StringlO
instance. This way, we can intercept every print call that was made:

mock sleep.assert called with(delay)
assert mock stdout.getvalue() == "test_execute_timely\
ntest execute timely\ntest execute timely\n"

280

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

Using our mock objects, we can assert now that asyncio.sleep was
indeed called with delay seconds and that test_execute_timely\ntest_
execute timely was printed three times on stdout.

if name_ ==" main_"':
unittest main()

Last but not least, we called our aliased unittest.main function to
make it easier to run the unit test. All we need to do is to run this file and
our test cases will be discovered.

Writing Tests for Pytest (Using
Pytest-Asyncio)

Problem

We want to write unit tests for asyncio with less boilerplate code.

Solution

Python 3 includes the unittest standard library module, which does
a good job at giving us an interface for writing unit tests in the Python
language. Pytest is a third-party package that helps us write unit tests with
less boilerplate code involved. Using Pytest and pytest-asyncio, we will
create a simple example to test coroutines.

You need to install pytest via your package manager of choice. For
example, via pip or pipenv:

pip3 install pytest==3.8.0
pip3 install pytest-asyncio==0.9.0

or

281

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

pipenvinstall pytest==3.8.0
pipenv install pytest-asyncio==0.9.0

import asyncio
import sys
from types import SimpleNamespace

import pytest

def check pytest asyncio installed():
import os
from importlib import util
if not util.find spec("pytest asyncio"):
print("You need to install pytest-asyncio first!",
file=sys.stderr)
sys.exit(os.EX_SOFTWARE)

async def return after sleep(res):
return await asyncio.sleep(2, result=res)

async def setattr_async(loop, delay, ns, key, payload):
loop.call later(delay, setattr, ns, key, payload)

@pytest.fixture()
async def loop():
return asyncio.get running loop()

@pytest.fixture()
def namespace():
return SimpleNamespace()

@pytest.mark.asyncio

async def test return after sleep():
expected result = b'expected result'’
res = await return after sleep(expected result)
assert expected result == res

282

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

@pytest.mark.asyncio
async def test setattr async(loop, namespace):
key = "test"
delay = 1.0
expected_result = object()
await setattr async(loop, delay, namespace, key, expected
result)
await asyncio.sleep(delay)
assert getattr(namespace, key, None) is expected result

if name_ ==" main_"':
check pytest asyncio installed()
pytest.main(sys.argv)

How It Works

We define a helper function that asserts that we have the pytest-asyncio
plugin installed:

def check pytest asyncio installed():
import os
from importlib import util
if not util.find spec("pytest asyncio"):
print("You need to install pytest-asyncio first!",
file=sys.stderr)
sys.exit(os.EX_SOFTWARE)

It checks for the existence of the module without importing via
importlib.
Next, we define coroutine functions we want to test:

async def return after sleep(res):
return await asyncio.sleep(2, result=res)

283

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

async def write_async(loop, delay, ns, key, payload):
loop.call later(delay, setattr, ns, key, payload)

The @pytest.fixture decorator allows us to inject parameters into the
test functions on every new run.
Using the pytest-asyncio module, it also supports coroutine functions:

@pytest.fixture()
async def loop():
return asyncio.get running loop()

Since it runs in the context of a running loop, we can query the running
loop via asyncio.get_running_loop and inject it into our test functions.
Our first simple test asserts that the resulting value of our function is equal
to the one given as input:

@pytest.mark.asyncio

async def test return after sleep():
expected result = b'expected result'’
res = await return after sleep(expected result)
assert expected result == res

Next, we ensure that our write_async function does in fact set an
attribute asynchronously given a specific delay. To await the delay, we use
asyncio.sleep as opposed to time.sleep to not block the coroutine. After
the delay, we assert that the attribute was indeed set.

@pytest.mark.asyncio
async def test setattr async(loop, namespace):
key = "test"
delay = 1.0
expected result = object()
await setattr async(loop, delay, namespace, key, expected
result)

284

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

await asyncio.sleep(delay)
assert getattr(namespace, key, None) is expected result

To make this example easier to execute, we defined a __main__ hook
for easier script usage:

if name_ ==" main_ "':
check _pytest asyncio installed()
pytest.main(sys.argv)

Writing Tests for Asynctest
Problem

This example solves the problem of knowing whether your coroutine was
awaited and with which arguments, etc.

Solution

Seasoned Pythonists know that the standard library module unittest
provides a patch context manager that can help mock objects and
functions. The third-party module asynctest provides a CoroutineMock
object (among other features) that we can use to integrate our coroutines
with the unittest mock API. For this example, you need to install it via
your package manager of choice, such as pip or pipenv:

pip3 install asynctest==0.12.2
pip3 install asynctest==0.12.2

or

pipenvinstall asynctest==0.12.2
pipenv install asynctest==0.12.2

285

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

Using the asynctest module’s CoroutineMock object and the mock
context manager of the unittest module, we can intercept calls to our
coroutine object and its return values.

import sys
from unittest.mock import patch

import asynctest
import pytest

def check pytest asyncio installed():
import os
from importlib import util
if not util.find spec("pytest asyncio"):
print("You need to install pytest-asyncio first!",
file=sys.stderr)
sys.exit(os.EX_SOFTWARE)

async def printer(*args, printfun, **kwargs):
printfun(*args, kwargs)

async def async_printer(*args, printcoro, printfun, **kwargs):
await printcoro(*args, printfun=printfun, **kwargs)

@pytest.mark.asyncio
async def test printer with print():
text = "Hello world!"
dict of texts = dict(more text="This is a nested text!")

with patch('builtins.print') as mock printfun:
await printer(text, printfun=mock printfun, **dict of
texts)
mock printfun.assert called once with(text, dict of
texts)

286

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

@pytest.mark.asyncio
async def test async printer with print():
text = "Hello world!"
dict of texts = dict(more text="This is a nested text!")
with patch(' main_ .printer', new=asynctest.
CoroutineMock()) as mock printfun:
await async_printer(text, printcoro=mock_printfun,
printfun=print, **dict of texts)
mock printfun.assert called once with(text,
printfun=print, **dict of texts)

if _name_ =="'_ main_ "':
check_pytest asyncio installed()
pytest.main(sys.argv)

How It works

We skip our check_pytest asyncio_installed helper since we have
defined the function in the upper example. First, we define the coroutine
functions to be tested.

Note We designed the helper coroutine functions to illustrate how
to use asynctest.CoroutineMock but not to be useful beyond
that purpose.

Here, we basically pass all arguments nearly unaltered to printfun
(besides not unpacking kwargs):

async def printer(*args, printfun, **kwargs):
printfun(*args, kwargs)

287

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES
And analogue for async_printer as follows:

async def async_printer(*args, printcoro, printfun, **kwargs):
await printcoro(*args, printfun=printfun, **kwargs)

We know from the last section that we can run coroutine test functions
in pytest with the pytest-asyncio plugin:

@pytest.mark.asyncio
async def test_printer with print():
text = "Hello world!"
dict of texts = dict(more text="This is a nested text!")

Using unittest.patch, we can mock the print built-in. Using the
identifier builtins.print, we can use the instance stored in the builtins
module and pass it (instead of print) as the printfun parameter.

mock printfunis a proxy object that delegates the call to the original
implementation and exposes methods that we can use to view what
happened inside of it. For instance, we use the mock.assert _called
once_with method to see if mock printfun wasindeed passed the

arguments as we would expect:

with patch('builtins.print') as mock printfun:
await printer(text, printfun=mock printfun, **dict of
texts)
mock printfun.assert called once with(text, dict of
texts)

We can similarly check in the coroutine case if the arguments where
passed correctly by passing an asynctest.CoroutineMock instance to the
path function:

with patch(' main_ .printer', new=asynctest.
CoroutineMock()) as mock printfun:

288

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

Note We need to name the printer __main_ .printer because
we have defined the function in the same document as the script we
use for running.

After awaiting async_printer, we can check if the patched coroutine
mock printfunwas indeed called with the correct arguments:

await async printer(text, printcoro=mock printfun,

printfun=print, **dict of texts)
mock_printfun.assert called once with(text,
printfun=print, **dict of texts)

asynctest.CoroutineMock exposes more APIs, which you can look up
on the offical GitHub page at https://github.com/Martiusweb/asynctest.

Writing Tests for Doctest
Problem

We want to write interactive tests inline inside the Python docstring.

Solution

Doctest is a neat tool in the standard library, but it’s not well known
among Python developers. It provides a convenient interface to write
interactive tests inline inside the Python docstring. Its uses, according to
the documentation, are three-fold:

e To check that a module’s docstrings are up-to-date
o To perform regression testing

o To write interactive tutorial documentation for a package

289

https://github.com/Martiusweb/asynctest

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

In this solution, the doctest module will be used to test the function
called complicated.

async def complicated(a,b,c):
>>> import asyncio
>>> asyncio.run(complicated(5,None,None))
True
>>> asyncio.run(complicated(None,None,None))
Traceback (most recent call last):

ValueError: This value: None is not an int or larger than 4
>>> asyncio.run(complicated(None,"This","will be printed
out"))

This will be printed out

:param a: This parameter controls the return value
:param b:
:param c:
:return:
if isinstance(a,int) and a > 4:
return True
elif b and c:
print(b,c)
else:
raise ValueError(f"This value: {a} is not an int or
larger than 4")

if name_ ==" main_":
import doctest
doctest.testmod()

290

CHAPTER 10 PREVENTING COMMON ASYNCIO MISTAKES

How It Works

Since doctest mimics an interactive interpreter, we cannot just use awaits
inside of it. Instead, we can asyncio.run wherever an await is needed.

First, we import asyncio:

>>> import asyncio

Next, we use asyncio.run to schedule the coroutine and (since it

returns the return value) write the result on the next line:

>>> asyncio.run(complicated(5,None,None))
True

In the case of an exception we write the following:

Traceback (most recent call last):

Then the representation (given by _ repr) of the exception:
ValueError: This value: None is not an int or larger than 4

The next important bit is some convenience code used to run the file’s

documentation tests if they run as a script:

__main__":

if _name_ ==
import doctest
doctest.testmod()

291

APPENDIX A

Setting Up Your
Environment

Choosing the correct tools to work with asyncio is a non-trivial choice,
since it can significantly impact the availability and performance of
asyncio. In this appendix, we discuss the interpreter and the packaging
options that influence your asyncio experience.

The Interpreter

Depending on the API version of the interpreter, the syntax of declaring
coroutines change and the suggestions considering API usage change.
(Passing the loop parameter is considered deprecated for APIs newer than
3.6, instantiating your own loop should happen only in rare circumstances
in Python 3.7, etc.)

Availability

Python interpreters adhere to the standard in varying degrees. This is
because they are implementations/manifestations of the Python language
specification, which is managed by the PSE.

At the time of this writing, three relevant interpreters support at least
parts of asyncio out of the box: CPython, MicroPython, and PyPy.

© Mohamed Mustapha Tahrioui 2019 293
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2

https://doi.org/10.1007/978-1-4842-4401-2

APPENDIXA SETTING UP YOUR ENVIRONMENT

Since we are ideally interested in a complete or semi-complete
implementation of asyncio, our choice is limited to CPython and PyPy.
Both of these products have a great community.

Since we are ideally using a lot powerful std1ib features, it is
inevitable to pose the question of implementation completeness of a given
interpreter with respect to the Python specification.

The CPython interpreter is the reference implementation of the
language specification and hence it adheres to the largest set of features
in the language specification. At the point of this writing, CPython was
targeting API version 3.7.

PyPy is a close second, but it’s a third-party implementation and
therefore adopts new features a bit slower. At the point of this writing, PyPy
was targeting API version 3.5 (or just in alpha quality).

Performance

Since asyncio is implementation dependent, CPython and PyPy can
yield substantially different performance footprints. For example, a
program using aiohttp (an asyncio library for interaction over the
HTTP protocol) and running on PyPy overpowers an instance running
on CPython after the fourth second in terms of requests per seconds, by
magnitudes up to 6.2.

Summing It Up

For the sake of this book, we give precedence to feature completeness.
Therefore, we use CPython release 3.7.0. You can find the interpreter that
matches your OS environment here:
https://www.python.org/downloads/release/python-370/
For reproducible installs, you may choose to follow the rest of this
appendix.

294

https://www.python.org/downloads/release/python-370/

APPENDIXA SETTING UP YOUR ENVIRONMENT

The Setup

At the time of this writing, Python is shipped by most *nix operating

systems. However, that version probably will not satisfy our needs.

There are concerns about pre-3.7 versions. Versions 3.3-3.4 expose a

decorator-based API for declaring coroutines and for yielding control back

to the event loop.

As the changelog indicates, there are fixes included in the 3.7.0 version

that address serious issues like the following:

bpo-33674: Fixed a race condition in SSLProtocol.
connection_made() of asyncio.sslproto: start

the handshake immediately instead of using call
soon(). Previously, data_received() could be called
before the handshake started, causing the handshake
to hang or fail.

bpo-32841: Fixed an asyncio.Condition issue, which
silently ignored cancellation after notifying and
cancelling a conditional lock.

bpo-32734: Fixed an asyncio. Lock() safety issue,
which allowed acquiring and locking the same lock
multiple times, without it being free.

bpo-26133: Don’t unsubscribe signals in an asyncio
UNIX event loop upon interpreter shutdown.

bpo-27585: Fixed waiter cancellation in asyncio. Lock.

bpo-31061: Fixed a crash when using asyncio and
threads.

bpo-30828: Fixed an out-of-bounds write in asyncio.
CFuture.remove done callback().

295

APPENDIXA SETTING UP YOUR ENVIRONMENT

Windows

The Windows operation system does not come with a Python version
installed. Python 2 support is better for newer versions of Python 2 and
Windows:
“[...] Up to 2.5, Python was still compatible with Windows 95,
98 and ME (but already raised a deprecation warning on
installation). For Python 2.6 (and all following releases), this

support was dropped, and new releases are just expected to
work on the Windows NT family. [...]”

Source: https://docs.python.org/2/using/windows.html
For Python 3, the official statement is:

“As specified in PEP 11, a Python release only supports a
Windows platform while Microsoft considers the platform
under extended support. This means that Python 3.6 supports
Windows Vista and newer. If you require Windows XP sup-
port, then please install Python 3.4.”

Source: https://docs.python.org/3/using/windows.html
This means to run Python 3.7.0, you have to run Windows Vista.
Installing Python 3.7.0 on Vista

Browse to https://www.python.org/downloads/release/python-370/ or
find the link to the Windows x86-64 executable installer here:

https://www.python.org/ftp/python/3.7.0/python-3.7.0-amd64.exe
After the download, make sure the MD5 sums match via this command:
CertUtil -hashfile python-3.7.0-amd64.exe MD5

If it matches the one on the website, proceed with the installation.

Otherwise, redo the procedure.

296

https://docs.python.org/2/using/windows.html
https://docs.python.org/3/using/windows.html
https://www.python.org/downloads/release/python-370/

APPENDIXA SETTING UP YOUR ENVIRONMENT

Follow the installation procedure and make sure to add the home
folder of your Python installation to the path. Python 3.7.0 is usually
installed under C:\Python37.

Installing Python 3.7.0 on Windows 7+

The recommended way to install Python 3.6 on Windows 7+ is to use
Chocolatey. Chocolatey is a community system package manager
for Windows 7+. It is something like apt-get/pacman/yast2 in Linux
distributions or brew on MacOS X.

You can read about Chocolatey’s installation procedure here:

https://chocolatey.org/docs/installation

To install Python 3, we specify the correct package when invoking
Chocolatey like so:

choco install python -version 3.7.0

Once Chocolatey runs, you should be able to launch Python directly
from the console since Chocolatey adds it to the path automatically.

Setuptools and Pip

To be able to download, install, and uninstall any compliant Python
software product, you need setuptools and pip. This way, you can install
third-party Python packages with a single command. Also, they allow you
to enable network installation capabilities on our own Python software
with just a little work. All supported versions of Python 3 include pip, so
just make sure it’s up to date:

python -m pip install -U pip

297

https://chocolatey.org/docs/installation

APPENDIXA SETTING UP YOUR ENVIRONMENT

MacO0S

MacOS users are presented with an outdated Python 2.7 version, which we
cannot use with asyncio:

“MacOS X 10.8 comes with Python 2.7 pre-installed by Apple.
Ifyou wish, you are invited to install the most recent version of
Python 3 from the Python website (https://www.python.org).
A current “universal binary” build of Python, which runs
natively on the Mac'’s new Intel and legacy PPC CPU’, is
available there.”

Source: https://docs.python.org/3/using/mac.html

This means we can pretty much run Python 3.7.0 on newer MacOS
Xversions. The recommend way to install Python 3.7.0 is to install it via
brew, which is a community system package manager for MacOS X. It is
something like apt-get/pacman/yast2 in Linux distributions.

brew can be used to install the Python distribution of our choice. You
can find it under https://brew. sh or, at the time of this writing, you can
use this code snippet:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.
com/Homebrew/install/master/install)”

Make sure the packages installed by brew are the first ones to be
recognized by your system:

export PATH="/usr/local/bin:/usr/local/sbin:$PATH"

Install the Python distribution of our choice. Since we want to
specifically install the Python 3.7.0 version, just doing the following will
result in irreproducible configurations, which we want to avoid:

$ brew install python

298

https://www.python.org
https://docs.python.org/3/using/mac.html
https://brew.sh

APPENDIXA SETTING UP YOUR ENVIRONMENT

We can instead refer to the commit version more explicitly (which will
install the Python 3.7.0 version to our system) by issuing:

$ brew install https://raw.githubusercontent.com/Homebrew/
homebrew-core/82038e3b6de9d162c7987b8f2f60d8f538591f15/Formula/
python.rb

The Python installation by default comes with pip and setuptools
included, so you are ready to go. To test it, you may execute the following:

$ which python3

Which should yield the following:
/usr/local/bin/python3

Executing this:

$ python3

Should yield (besides the second line, which depends on your Xcode
toolchain) the following:

Python 3.7.0 (default, <current date>)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on
darwin

Type "help", "copyright", "credits" or "license" for more
information.

>>>

Linux

Linux users may find a Python 3 version installed on their operation
systems. For example, Debian flavors ship with versions ranging from
3.3 to 3.5 (Jessy - Stretch), which are all unacceptable for our asyncio use

299

APPENDIXA SETTING UP YOUR ENVIRONMENT

case. To install the CPython 3.7.0 release version on Debian flavors, add
deadsnakes ppa and install Python 3.7.0 like this:

$ sudo apt-get install software-properties-common
$ sudo add-apt-repository ppa:deadsnakes/ppa

$ sudo apt-get update

$ sudo apt-get install python3.7

Note This will install a global version of the Python interpreter on
your system.

Debian-based systems have an update-alternatives mechanism, which
you can use to ensure the system picks the right interpreter. You can list all
the possible alternatives for a tool like so:

$ update-alternatives --list python
You can install a new version like so:

$ update-alternatives --install /usr/bin/python python /usr/
bin/python3.7 1

Where 1 is the priority (a higher score means more significance) and /
usr/bin/python is the symlink target.

To install pip, do not pick the version provided by your system packaging
tools. Rather, download it manually, as described on the official page:

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
python get-pip.py

You may choose to update it from time to time via this command:
pip install -U pip

The testing procedure for a Linux distribution is the same as the
MacOS one.

300

APPENDIX B

Event Loops

An event is a message that is emitted in a certain condition by one part of
the program. A loop, on the other hand, is a construct that finishes under a
certain condition and executes a certain program until it does so.

An event loop therefore is a loop that allows one to subscribe to the
event transmission and register handlers/callbacks. It enables the program
to run in an asynchronous fashion. The event loop delegates all the events
it receives to their respective callbacks.

Most implementations of callback patterns have one major drawback:
they dictate the programming style in a way that introduces a lot of nesting.
This happens because the execution of synchronous code follows the
order of its instructions.

Hence, to express that certain parts of a program depend on each
other, we use ordering. In the case of dependence on an asynchronous
result, however, the following patterns have evolved:

o Nesting callbacks, so that the inner callback can access
the outer callback’s results (closures)

o Using objects that act as proxies of a future result (so-
called futures or promises)

o Coroutines, which are suspendible functions that run
in event loops

© Mohamed Mustapha Tahrioui 2019 301
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2

https://doi.org/10.1007/978-1-4842-4401-2

APPENDIXB EVENT LOOPS

Nesting Callbacks

The rule of thumb for nesting callbacks is that if there is a need to wait

for the result of a callback, it is necessary to embed your code inside

the respective callback. You quickly end up with a situation that is
infamously coined callback hell. Callback hell is the point where the depth
of the callback nesting makes reasoning and improving the program a
maintenance nightmare.

Futures/Promises

Futures or promises are objects that encapsulate the result and error
handling of an asynchronous call.
They eventually provide APIs to query the current state of the results/
exceptions and ways to register a callback for handling results/exceptions.
Since they encapsulate the future context of the asynchronous call and
need nesting, the resulting program appears to be written in a more top-
down fashion.

Coroutines

You can think of coroutines as suspendible functions.

Being suspendible means that we can pause the coroutine at any given
point. This means there must be some sort of atomic unit that it consists of.

This is what we might refer to and measure as a tick. A tick is the time
unit of the event loop. It encompasses all the actions that happen in one
iteration step of the event loop.

Coroutines can in fact do more: they can suspend themselves and
await the result of another coroutine.

All the logic behind the waiting is coordinated by the event loop since
it is aware of the respective coroutine state.

302

APPENDIXB EVENT LOOPS

The Lifecycle of Event Loops in Asyncio

Event loops in asyncio have four states they can be in:
o Idle
e Running
e Stopped
e Closed

You can interact with the lifecycle of the event loop by means of four
event loop methods, which can be split into starting, stopping, and closing
methods.

They constitute the event loop lifecycle interface that all asyncio/third-
party event loops need to provide for compatibility:

o run_forever
e run_until complete

The run_forever method is called without a parameter, whereas the
run_until_complete method consumes a coroutine. To stop, we use the
stop method and to close, we use the close method.

The Idle State

The idle state is the state the loop is in after creation. It cannot consume
any coroutine or any callback in this state.
In this state, loop.is_running returns the value False.

The Running State

The running state is the state the loop is in after either calling loop.run_
forever or loop.run _until complete.

303

APPENDIXB EVENT LOOPS

In this state, the loop.is_running method returns the value True.

The difference between the methods is that, in the case of loop.
run_until complete, the coroutine—passed as an argument to loop.
run_until complete—is wrappedin an asyncio.Future.

A callback is registered as a handler on the asyncio.Future object that
runs the loop.stop method after the coroutine is fully consumed.

The Stopped State

The stopped state is the state the loop is in after calling the stop command.
The loop does not return False for the is_running method just after
calling the stop method.
Any batch of pending callbacks are consumed first. Only after they are
consumed does the loop move into the idle state.

Note Callbacks scheduled after calling 1oop.stop will be
disregarded/not scheduled. Instead, they are executed when the
event loop moves back into a running state.

The Closed State

The loop enters the closed state by calling the close method. It can only
be called if the loop is not in the running state. The documentation states
further that it:

“[..] clears the queues and shuts down the executor but does
not wait for the executor to finish. It is idempotent and irre-
versible. No other methods should be called after this one.”

304

APPENDIXB EVENT LOOPS

Basic Classes for Event Loops

There are two options for shipping your own event loops in Python 3.

Abstract event loops are provided by the asyncio.events and asyncio.

base_events modules. AbstractEventLoop and BaseEventLoop represent

two potential classes for an event loop implementation.

AbstractEventLoop

The AbstractEventLoop class defines the interface of an event loop in the

asyncio ecosystem. The interface methods can be roughly split into the

following sections:

Lifecycle methods (running, stopping, querying the
state of, and closing the loop)

Scheduling methods

Callbacks

Coroutines

Future creation

Thread-related methods

I/0-related methods

Low-level APIs (socket, pipe, and reader/writer APIs)

High-level APIs (server, pipe, and subprocess-related
methods)

Signal methods

Debug flag management methods

The API is stable and can be subclassed in the case of a manual event

loop implementation.

305

APPENDIXB EVENT LOOPS

BaseEventLoop

Despite being more high-level component based, the BaseEventLoop class
should not be used to create a manual loop implementation because its
API is not stable. But it can be used as guidance on how to implement one.

Its BaseEventLoop. run_once method is called on every tick of the
loop and therefore encompasses all the actions needed in one iteration.

This calls all currently ready callbacks, polls for I/0O, schedules the
resulting callbacks, and then schedules call later callbacks.

If you plan to implement an event loop yourself, you will need to
provide a method that’s similar to it. The name and body of the function
are just implementation details.

Are Event Loops 0S Specific?

Yes, event loops are OS specific. This may affect API availability and the
speed of the event loop. For instance, add_signal handler and remove_
signal handler are UNIX-only loop APIs.

One of the reasons behind the OS specificity—besides missing
corresponding native bindings—is that most of the loops are implemented
based on the selectors module.

The selectors module provides a high-level I/O multiplexing
interface based on the select module. The selectors module is built
on top of Select, poll, devpoll, epoll, or kqueue, depending on the
underlying OS. The block in the selectors module is responsible for
setting DefaultSelector, which in turn is used by the asyncio module (see
Listing B-1).

306

APPENDIX B

Listing B-1. Selectors Selection in the Selectors Module

if 'KqueueSelector' in globals():
DefaultSelector = KqueueSelector
elif 'EpollSelector' in globals():
DefaultSelector = EpollSelector
elif 'DevpollSelector' in globals():
DefaultSelector = DevpollSelector
elif 'PollSelector' in globals():
DefaultSelector = PollSelector
else:
DefaultSelector = SelectSelector

EVENT LOOPS

Note Windows also has a ProactorEventLoop implementation

that is based on I/0 completion ports or short IOCP.

The official documentation of IOCP describes them as “an efficient

threading model for processing multiple asynchronous I/O requests on a

multiprocessor system”.

The ProactorEventLoop may, for example, be used on Windows if the

need arises to use the asyncio subprocess APIs. See https://www.python.

org/downloads/release/python-370/.

307

https://www.python.org/downloads/release/python-370/
https://www.python.org/downloads/release/python-370/

Index

A asyncio.BaseTransport, 208

io.B hore, 1
AbstractEventLoop class, 305 asyncio.BoundedSemaphore, 159

aclose, 79, 90, 91

acquire, 156
add_locked_with_delay, 151
__aenter__, 151

__aexit__, 151,158

asyncio.BufferedProtocol, 208
asyncio.CancelledError, 60
@asyncio.coroutine, 50
asyncio.create_task, 32, 55, 58, 162
asyncio.DatagramProtocol, 208
asyncio.ensure_future, 31, 32,

agen, 115
__aiter__, 78 40, 162
__anext_, 78 asyncio.Future, 127, 201

approach, 2-4 asyncio.gather, 30, 60, 102

as_completed, 102
as directive, 102

return_exceptions, 61, 62
asyncio.get_child_watcher, 20

asend, 79, 85,116, 117 asyncio.get_event_loop, 7, 9, 10, 24
ast, 165, 195 asyncio.iscoroutine, 52
async comprehensions, 81, 84 asyncio.iscoroutinefunction, 52
asynccontextmanager, 98, 115 asyncio.Lock, 75, 149
@asynccontextmanager, 99 asyncio.new_event_loop, 9, 24
async def, 51, 83 asyncio.open_connection,
async for, 79 105, 121, 123
async generators, 78, 90 asyncio.open_unix_
asynchronous context connection, 123

manager, 98, 102 asyncio.Protocol, 208
asyncify, 35 asyncio.Queue, 117
asyncio, 1 asyncio.QueueFull, 119
asyncio.AbstractEventLoop, 16 asyncio.run, 22, 23, 31, 80, 169
asyncio.all_tasks(), 34 asyncio.SelectorEventLoop, 28
© Mohamed Mustapha Tahrioui 2019 309

M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2

https://doi.org/10.1007/978-1-4842-4401-2

INDEX

asyncio.Semaphore, 159
asyncio.set_event_loop, 8, 12
asyncio.shield, 63, 64, 104
asyncio.sleep, 32, 79, 151
asyncio.start_server, 121, 123
asyncio.start_unix_server, 123
asyncio.StreamReader, 123
asyncio.StreamWriter, 123
asyncio.Subprocess
Protocol, 208
asyncio.TimeoutError, 57
asyncio.Iransport, 220
asyncio.transports.
SubprocessTransport, 209
asyncio.wait, 102
asyncio.ALL_COMPLETED, 68
asyncio.FIRST_COMPLETED,
70,71
asyncio.FIRST_EXCEPTION, 69
return_when, 71
asyncio.wait_for, 57, 102
asyncio.WindowsProactorEvent
LoopPolicy, 45, 122
asynctest, 276
asynctest.Coroutine
Mock, 288
async with, 100, 102
async with cond, 154
await, 32, 50, 52, 53, 65
awaitable, 28
await asyncio.create_
subprocess_exec, 125
ayncio.wait_for, 112

310

BaseEventLoop class, 306

BaseEventLoop.shutdown_
asyncgens, 91

BaseEvent.shutdown_asyncgens, 92

blocking, 53-55

busy loops, 153, 165

bytecode, 150

C

callback, 30
cancel, 64
certifi, 35
ChildWatcher
AbstractChildWatcher, 45
circular wait, 148
cloudpickle, 210, 211
Coffman conditions, 148
concurrent access control
asyncio.Semaphore, 157
concurrent execution, 5
concurrent.futures.Future
asyncio.wrap_future, 112
condition.notify, 75
condition.notify_all, 75
cond.notify, 156
context.run, 145
ContextVar.reset, 145
contextvars, 114, 143-145
contextvars.copy_context, 144
ContextVar.set, 145
cooperative, 49
cooperative concurrency, 1

coroutines, 5, 53, 73
CPython, 37, 166
cr_origin, 187

current loop, 6

custom loop, 31-33, 35

D

decorator, 168
inspect.isasyncgenfunction, 269

DefaultLoopPolicy, 10

deprecated
asyncio coroutine, 189-191
passing loop parameter, 194
yield from, 191

doctest, 290
asyncio.run, 291

E

event.is_set, 153
Event loops
AbstractEventLoop
class, 305
in asyncio
states, 303, 304
BaseEventLoop class, 306
coroutines, 302
nesting callbacks, 302
OS specific, 306, 307
patterns, 301
event.set(), 118
event.wait(), 153
executor, 37
expected_result, 282, 284

INDEX

F

fork, 13

freeze_support, 110

FTP, 207

functools.partial, 42, 43, 145
Future, 30
future.add_done_callback, 30, 107
Future.exception, 72

G

GatheringFuture, 33, 62, 73
generator-based coroutine, 50, 51
GeneratorExit, 90

GIL, 15

H

hbmaqtt, 127

HTTP, 207

HTTPS, 36, 207

HTTP server, 222-241

httptools, 223
httptools.HttpRequestParser, 231

l,J
inspect.isawaitable, 66
interfacing with other event loops
and futures, 140
Interpreter
availability, 293, 294
performance, 294
I/0 roundtrip times, 207
1P, 207

311

INDEX

K

KeyboardInterrupt, 27

L

Linux, 299, 300
Liveness, 147
locked, 156
loop, 11, 12
loop.call_at, 26, 60
loop.call_later, 26
loop.call_soon, 26, 60
loop.call_soon_threadsafe, 26, 59
loop.connect_accepted_socket, 208
loop.connect_read_pipe, 209
loop.connect_write_pipe, 209
loop.create_connection, 208
loop.create_datagram_endpoint, 208
loop.create_server, 208, 217
loop.create_task method, 32, 39, 162
loop.create_unix_connection, 209
loop.create_unix_server, 209
loop_factory, 20
loop.getaddrinfo, 105
LoopPolicy
DefaultLoopPolicy, 7
loop.run_forever, 20, 21
loop.run_in_executor, 81, 84,
93,95, 110
loop.run_until_complete, 20, 21, 32
loop.run_until_complete/loop.
run_forever, 92
loop.shutdown_asyncgens,
20, 22, 41, 92

312

loop.subprocess_exec, 209
loop.subprocess_shell, 208

MacOS, 298, 299
mainthread, 24
malloc
pymalloc, 166
PyMem_Malloc, 166
tracemalloc, 166
Mosquitto, 127
MQTT, 126
client, 140
topics, 139
multiprocessing, 15
get_context, 210
Pool, 213
multiprocessing.Queue, 117
mutual exclusion, 148
mutual exclusive access, 148-151

N

native coroutine, 51, 52
Nesting callbacks, 302
next, 95

O

OpenSSH, 241

operator precedence, 54
os.register_at_fork, 13
overview, 2-4

P

passing loop parameter, 39
patch
mock, 276
pdb.post_mortem, 268
pdb.set_trace, 268, 274
pickle, 128
Pickleable, 214
pool.apply_async, 212
precedence, 54, 55
ProactorEventLoop, 21
Process, 12
process.communicate, 46
ProcessPoolExecutor, 110, 112
process.returncode, 47
Profiling
ProfilerClient, 175, 177
ProfilerServer, 174, 175
valgrind, 166
Protocol
close, 216
connection_made, 215
data_received, 215
peername, 216
timeout, 215
publish-subscribe, 127
_PyAsyncGenWrapped
Value, 116
pytest
decorator, 284
pytest-asyncio, 283, 288
@pytest.fixture, 284
@pytest.mark.asyncio,
283, 286, 288

INDEX

Q

queue.get_nowait(), 118
queue.join, 35

R

read, 100

readlines, 100

refactoring, 189-200

release, 156

return_exceptions, 74

RPC system, 126

Runnable
async comprehensions, 113
async context managers, 113
async generators, 113
coroutines, 113
subprocesses, 113
tasks, 113

running a loop, 19-21

RuntimeError, 8, 24

S

Safety, 147

schedule callback, 26-30
SchedulerLoop, 28
SchedulerLoopPolicy, 109
SelectorEventLoop, 30
Selectors module, 306
Setuptools and Pip, 297
SFTP, 207

side effect, 9

SIGCHLD, 46

313

INDEX

SIGINT, 48

signal handler, 41-43

SIGTERM, 48

single core, 15

spawn, 110

SSH, 207, 241-253

state machine, 85

StatisticDiff, 168

StopAsynclteration, 78, 116

stop/close loop, 40, 41

Stoplteration, 78

StringlO, 278

subprocess, 43

multi OS support, 242
Sync
sync.schedule_coro, 104

synchronization, 150

SyntaxError, 50

syscall, 48

sys.platform, 20

sys.set_coroutine_origin_tracking
depth, 186

T

task, 71
TCP, 207
testing
pytest, 276, 281
threading, 8
threading.Thread, 10, 203
threading.Thread.join, 10
ThreadPoolExecutor, 37, 93, 162

314

threadsafe, 27, 58
loop.call_soon_threadsafe, 22

timeout, 56

time profiling, 170-174, 176, 177

time.sleep, 163

TLS, 207

Token, 145

traceback, 266, 268, 290

tracemalloc
tracemalloc.filter_traces, 171
tracemalloc.start, 167
tracemalloc.stop, 167
tracemalloc.take_snapshot, 166

tracemalloc.Filter, 178

TypeError, 51

typing.Coroutine, 17

uv

UDP, 207

UNIX, 13

urllib3, 35
urllib3.PoolManager, 38

W, X

wait_for, 75

waiting on condition
asyncio.Condition, 74
synchronization

primitive, 74
waitpid(2), 48
watcher.attach_loop, 20

while True, 197
Windows, 43

Python version, 296, 297
worker, 12
wrap_async, 95
wrap_in_asyngen, 116
write, 100

INDEX

writer.close, 126
writer.drain, 125
writer.wait_closed, 126

Y,Z

yield from, 50

315

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Preparing for the Recipes
	What Is Asyncio?
	What Is This Book’s Approach to asyncio?

	Chapter 2: Working with Event Loops
	Locating the Currently Running Loop
	Problem
	Solution
	Option 1
	Option 2

	How It Works

	Creating a New Loop Instance
	Problem
	Solution
	How It Works

	Attaching a Loop to the Thread Problem
	Solution
	How It Works

	Attaching a Loop to the Process
	Problem
	Solution #1 (UNIX Only)
	How It Works
	Solution #2
	How It Works

	Running a Loop
	Problem
	Solution
	How It Works

	Running Async Code Without Bothering About Loops
	Problem
	Solution
	How It Works

	Running a Loop Until a Coroutine Finishes
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works
	Solution #3
	How It Works

	Scheduling Callbacks on a Loop
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Scheduling Coroutines on a Loop
	Problem
	Solution #1
	Option 1
	Option 2

	How It Works
	Solution #2
	How It Works

	Calling Blocking Code on a Loop
	Problem
	Solution
	How It Works

	Running a Coroutine Specifically on One Loop
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Stopping and Closing a Loop
	Problem
	Solution
	How It Works

	Adding a Loop Signal Handler
	Problem
	Solution (UNIX Only)
	How It Works

	Spawning a Subprocess from a Loop
	Problem
	Solution
	How It Works

	Waiting for Subprocess Termination
	Problem
	Solution
	How It Works

	Chapter 3: Working with Coroutines and Async/Await
	Writing Generator-Based Coroutine Functions
	Problem
	Solution
	How It Works

	Writing a Native Coroutine
	Problem
	Solution
	How It Works

	Running a Coroutine and Blocking/Waiting Until It Finishes
	Problem
	Solution
	How It Works

	Running a Coroutine and Waiting for It to Finish
	Problem
	Solution
	How It Works

	Waiting on a Coroutine with a Timeout
	Problem
	Solution
	How It Works

	Cancelling a Coroutine
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Cancelling Multiple Coroutines
	Problem
	Solution
	How It Works

	Shielding a Coroutine from Cancellation
	Problem
	Solution
	How It Works

	Chaining Coroutines
	Problem
	Solution
	How It Works

	Waiting on Multiple Coroutines
	Problem
	Solution
	How It Works

	Waiting on Multiple Coroutines with Different Heuristics
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	Waiting on Multiple Coroutines and Ignoring Exceptions
	Problem
	Solution
	How It Works

	Waiting for a Specific Condition
	Problem
	Solution
	How It Works

	Chapter 4: Working with Async Generators
	Writing an Async Generator
	Problem
	Solution
	How It Works

	Running an Async Generator
	Problem
	Solution
	How It Works

	Wrapping an Async Generator in an Async Comprehension
	Problem
	Solution
	How It Works

	Writing a State Machine with an Async Generator
	Problem
	Solution
	How It Works

	Cleaning Up After Using Async Generators
	Problem
	Solution
	Option 1

	How It Works
	Option 2

	How It Works

	Wring an Asynchronous Generator Based Web Crawler
	Problem
	Solution
	How It Works

	Chapter 5: Working with Async Context Manager
	Writing an Async Context Manager
	Solution
	How It Works

	Running an Async Context Manager
	Solution
	How It Works

	Synchronizing Pending Coroutines to Finish Cleanly
	Solution
	How It Works

	Interacting Asynchronously with a Closeable Resource
	Solution
	How It Works

	Writing a Loop Worker Pool Async Context Manager
	Solution
	How It Works

	Writing a Subprocess Worker Pool Async Context Manager
	Solution
	How It Works

	Chapter 6: Communication Between Asyncio Components
	Sending Additional Information to an Asynchronous Generator
	Problem
	Solution
	How It Works

	Using Queues with Coroutines
	Problem
	Solution
	How It Works

	Communicating with a Subprocess Using Streams
	Solution #1: Windows and UNIX
	Solution #2: UNIX Only
	How It Works

	Writing a Simple RPC System with Asyncio
	Solution
	How It Works

	Writing Callbacks that Have a “Memory” Using Contextvars
	Solution #1
	How It Works
	Solution #2
	How It Works

	Chapter 7: Synchronization Between Asyncio Components
	Using Locks for Mutual Exclusive Access to a Shared Resource
	Problem
	Solution
	How It Works

	Using Events for Notification
	Problem
	Solution
	How It Works

	Using Condition Variables for Control Flow
	Problem
	Solution
	How It Works

	Using Semaphores to Restrict Concurrent Resource Access
	Problem
	Solution
	How It Works

	Using Bounded Semaphores to Restrict Concurrent Resource Access with Stricter Release Heuristics
	Problem
	Solution
	How It Works

	Detecting Asyncio Code That Might Have Race Conditions
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Chapter 8: Improving Asyncio Applications
	Profiling Asyncio Applications
	Problem
	Solution
	How It Works

	Building a Simple Profiling Library
	Problem
	Solution
	How It Works

	Spotting a Long-Running Coroutine
	Problem
	Solution
	How It Works

	Refactoring “Old School” Asyncio Code
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Avoiding Busy Loops
	Problem
	Solution
	How It Works

	Chapter 9: Working with Network Protocols
	Writing a Protocol Subclass for a Simple Remote Command Server
	Problem
	Solution
	How It Works

	Writing a Protocol Subclass for a Simple Remote Command Client
	Problem
	Solution
	How It Works

	Writing a Simple HTTP Server
	Problem
	Solution
	How It Works
	Imports
	Protocol Class Definition
	Global Definitions
	Exception Definition
	Response Class Definition
	Defining Utilities
	Defining the AsyncioHTTPHandler
	Starting the Web Server

	Executing Shell Commands Remotely Over SSH
	Problem
	Solution
	How It Works
	Assumptions
	Imports
	Defining Exceptions
	Defining a Connection Class
	Defining a Command Decorator
	Remote Command Examples
	Invoking the Commands

	Chapter 10: Preventing Common Asyncio Mistakes
	Handling Asyncio-Related Exceptions
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Spotting a Long-Running Task
	Problem
	Solution
	How It Works

	Spotting a Long-Running Callback
	Problem
	Solution
	How It Works

	Building a Coroutine Debugging Macro Library
	Problem
	Solution
	How It Works

	Writing Tests for Asyncio
	Problem
	Solution
	How It Works

	Writing Tests for Pytest (Using Pytest-Asyncio)
	Problem
	Solution
	How It Works

	Writing Tests for Asynctest
	Problem
	Solution
	How It works

	Writing Tests for Doctest
	Problem
	Solution
	How It Works

	Appendix A: Setting Up Your Environment
	The Interpreter
	Availability
	Performance
	Summing It Up

	The Setup
	Windows
	Installing Python 3.7.0 on Vista
	Installing Python 3.7.0 on Windows 7+

	Setuptools and Pip
	MacOS
	Linux

	Appendix B: Event Loops
	Nesting Callbacks
	Futures/Promises
	Coroutines
	The Lifecycle of Event Loops in Asyncio
	The Idle State
	The Running State
	The Stopped State
	The Closed State

	Basic Classes for Event Loops
	AbstractEventLoop
	BaseEventLoop
	Are Event Loops OS Specific?

	Index

