
asyncio
Recipes

A Problem-Solution Approach
—
Mohamed Mustapha Tahrioui

asyncio Recipes
A Problem-Solution Approach

Mohamed Mustapha Tahrioui

asyncio Recipes

ISBN-13 (pbk): 978-1-4842-4400-5  	 ISBN-13 (electronic): 978-1-4842-4401-2
https://doi.org/10.1007/978-1-4842-4401-2

Copyright © 2019 by Mohamed Mustapha Tahrioui

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-4400-5. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Mohamed Mustapha Tahrioui
Darmstadt, Hessen, Germany

https://doi.org/10.1007/978-1-4842-4401-2

For my beloved mother and father.

v

Chapter 1: Preparing for the Recipes��1

What Is Asyncio?��1

What Is This Book’s Approach to asyncio?���2

Chapter 2: Working with Event Loops��5

Locating the Currently Running Loop���6

Problem��6

Solution��6

How It Works��7

Creating a New Loop Instance���8

Problem��8

Solution��9

How It Works��9

Attaching a Loop to the Thread Problem��11

Solution��11

How It Works��12

Table of Contents

About the Author��xix

About the Technical Reviewer��xxi

Acknowledgments��xxiii

Introduction���xxv

vi

Attaching a Loop to the Process��12

Problem��12

Solution #1 (UNIX Only)���13

How It Works��14

Solution #2���15

How It Works��17

Running a Loop��19

Problem��19

Solution��20

How It Works��20

Running Async Code Without Bothering About Loops��21

Problem��21

Solution��22

How It Works��22

Running a Loop Until a Coroutine Finishes��23

Problem��23

Solution #1���23

How It Works��23

Solution #2���24

How It Works��24

Solution #3���25

How It Works��26

Scheduling Callbacks on a Loop��26

Problem��26

Solution #1���26

How It Works��27

Solution #2���28

How It Works��30

Table of ContentsTable of Contents

vii

Scheduling Coroutines on a Loop��31

Problem��31

Solution #1���31

How It Works��32

Solution #2���34

How It Works��35

Calling Blocking Code on a Loop��35

Problem��35

Solution��35

How It Works��37

Running a Coroutine Specifically on One Loop��38

Problem��38

Solution #1���38

How It Works��39

Solution #2���39

How It Works��40

Stopping and Closing a Loop���40

Problem��40

Solution��40

How It Works��41

Adding a Loop Signal Handler��41

Problem��41

Solution (UNIX Only)��42

How It Works��43

Spawning a Subprocess from a Loop��43

Problem��43

Solution��43

How It Works��45

Table of ContentsTable of Contents

viii

Waiting for Subprocess Termination��46

Problem��46

Solution��46

How It Works��48

Chapter 3: Working with Coroutines and Async/Await������������������������49

Writing Generator-Based Coroutine Functions���50

Problem��50

Solution��50

How It Works��50

Writing a Native Coroutine���51

Problem��51

Solution��51

How It Works��52

Running a Coroutine and Blocking/Waiting Until It Finishes��������������������������������53

Problem��53

Solution��53

How It Works��53

Running a Coroutine and Waiting for It to Finish��55

Problem��55

Solution��55

How It Works��56

Waiting on a Coroutine with a Timeout��56

Problem��56

Solution��56

How It Works��57

Table of ContentsTable of Contents

ix

Cancelling a Coroutine���57

Problem��57

Solution #1���58

How It Works��59

Solution #2���59

How It Works��60

Cancelling Multiple Coroutines��60

Problem��60

Solution��61

How It Works��62

Shielding a Coroutine from Cancellation��63

Problem��63

Solution��63

How It Works��64

Chaining Coroutines���65

Problem��65

Solution��65

How It Works��65

Waiting on Multiple Coroutines��66

Problem��66

Solution��66

How It Works��67

Waiting on Multiple Coroutines with Different Heuristics������������������������������������68

Problem��68

Solution #1���68

Solution #2���69

Solution #3���70

How It Works��71

Table of ContentsTable of Contents

x

Waiting on Multiple Coroutines and Ignoring Exceptions�������������������������������������72

Problem��72

Solution��72

How It Works��73

Waiting for a Specific Condition���74

Problem��74

Solution��74

How It Works��75

Chapter 4: Working with Async Generators���77

Writing an Async Generator���78

Problem��78

Solution��78

How It Works��79

Running an Async Generator��79

Problem��79

Solution��79

How It Works��80

Wrapping an Async Generator in an Async Comprehension��������������������������������81

Problem��81

Solution��81

How It Works��84

Writing a State Machine with an Async Generator���84

Problem��84

Solution��84

How It Works��89

Table of ContentsTable of Contents

xi

Cleaning Up After Using Async Generators��90

Problem��90

Solution��90

How It Works��91

How It Works��92

Wring an Asynchronous Generator Based Web Crawler���������������������������������������92

Problem��92

Solution��92

How It Works��95

Chapter 5: Working with Async Context Manager�������������������������������97

Writing an Async Context Manager��98

Solution��98

How It Works��100

Running an Async Context Manager��100

Solution��100

How It Works��102

Synchronizing Pending Coroutines to Finish Cleanly���102

Solution��102

How It Works��104

Interacting Asynchronously with a Closeable Resource������������������������������������104

Solution��104

How It Works��105

Writing a Loop Worker Pool Async Context Manager���106

Solution��106

How It Works��109

Table of ContentsTable of Contents

xii

Writing a Subprocess Worker Pool Async Context Manager������������������������������110

Solution��110

How It Works��112

Chapter 6: Communication Between Asyncio Components���������������113

Sending Additional Information to an Asynchronous Generator�������������������������114

Problem��114

Solution��115

How It Works��116

Using Queues with Coroutines���117

Problem��117

Solution��117

How It Works��119

Communicating with a Subprocess Using Streams���120

Solution #1: Windows and UNIX��121

Solution #2: UNIX Only��123

How It Works��125

Writing a Simple RPC System with Asyncio���126

Solution��127

How It Works��139

Writing Callbacks that Have a “Memory” Using Contextvars�����������������������������143

Solution #1���143

How It Works��144

Solution #2���144

How It Works��145

Table of ContentsTable of Contents

xiii

Chapter 7: Synchronization Between Asyncio Components��������������147

Using Locks for Mutual Exclusive Access to a Shared Resource�����������������������148

Problem��148

Solution��149

How It Works��150

Using Events for Notification��152

Problem��152

Solution��152

How It Works��153

Using Condition Variables for Control Flow��154

Problem��154

Solution��154

How It Works��156

Using Semaphores to Restrict Concurrent Resource Access�����������������������������157

Problem��157

Solution��157

How It Works��158

Using Bounded Semaphores to Restrict Concurrent Resource
Access with Stricter Release Heuristics��159

Problem��159

Solution��159

How It Works��160

Detecting Asyncio Code That Might Have Race Conditions��������������������������������160

Problem��160

Solution #1���160

How It Works��161

Solution #2���162

How It Works��163

Table of ContentsTable of Contents

xiv

Chapter 8: Improving Asyncio Applications��������������������������������������165

Profiling Asyncio Applications��165

Problem��165

Solution��166

How It Works��167

Building a Simple Profiling Library��169

Problem��169

Solution��170

How It Works��177

Spotting a Long-Running Coroutine���186

Problem��186

Solution��186

How It Works��187

Refactoring “Old School” Asyncio Code���189

Problem��189

Solution #1���189

How It Works��192

Solution #2���195

How It Works��198

Avoiding Busy Loops��201

Problem��201

Solution��201

How It Works��202

Table of ContentsTable of Contents

xv

Chapter 9: Working with Network Protocols�������������������������������������207

Writing a Protocol Subclass for a Simple Remote Command Server�����������������209

Problem��209

Solution��210

How It Works��213

Writing a Protocol Subclass for a Simple Remote Command Client������������������218

Problem��218

Solution��218

How It Works��220

Writing a Simple HTTP Server��222

Problem��222

Solution��222

How It Works��230

Executing Shell Commands Remotely Over SSH���241

Problem��241

Solution��241

How It Works��246

Chapter 10: Preventing Common Asyncio Mistakes��������������������������255

Handling Asyncio-Related Exceptions��255

Problem��255

Solution #1���255

How It Works��257

Solution #2���259

How It Works��260

Table of ContentsTable of Contents

xvi

Spotting a Long-Running Task���263

Problem��263

Solution��263

How It Works��265

Spotting a Long-Running Callback���267

Problem��267

Solution��267

How It Works��268

Building a Coroutine Debugging Macro Library���268

Problem��268

Solution��268

How It Works��271

Writing Tests for Asyncio��275

Problem��275

Solution��275

How It Works��277

Writing Tests for Pytest (Using Pytest-Asyncio)���281

Problem��281

Solution��281

How It Works��283

Writing Tests for Asynctest���285

Problem��285

Solution��285

How It works��287

Writing Tests for Doctest��289

Problem��289

Solution��289

How It Works��291

Table of ContentsTable of Contents

xvii

Appendix A: Setting Up Your Environment���293

The Interpreter���293

Availability��293

Performance���294

Summing It Up��294

The Setup���295

Windows���296

Setuptools and Pip���297

MacOS��298

Linux���299

Appendix B: Event Loops���301

Nesting Callbacks��302

Futures/Promises���302

Coroutines��302

The Lifecycle of Event Loops in Asyncio��303

The Idle State���303

The Running State��303

The Stopped State��304

The Closed State��304

Basic Classes for Event Loops���305

AbstractEventLoop���305

BaseEventLoop���306

Are Event Loops OS Specific?��306

Index��309

Table of ContentsTable of Contents

xix

About the Author

Mohamed Mustapha Tahrioui has been a

programmer for seven years and currently

serves as a senior software engineer at

axxessio. He is on the core team of the asyncio-

heavy Telekom Smarthub project, where

he offers his expertise for implementation,

backward compatible architecture and

implementation. He also offers full stack

development via his IT consultancy Pi

Intelligence, using Python, Java, JavaScript,

Docker, PostgreSQL, MongoDB, and more.

xxi

About the Technical Reviewer

Said El Mallouki is a textbook computer geek

with decades of experience designing and

developing enterprise IT systems. His early

encounters with the internals of computers

took place at IBM’s production facility in

Germany more than two decades ago. In his

current occupation as a technology lead, he is

developing a toolchain for a natural language-

understanding system at Deutsche Telekom.

The intricacies of complex distributed systems were always on the top

of his interest list. With three degrees in IT, business, and marketing, he

combines a solid theoretical foundation with plenty of real-life experience.

Living in Germany by the Rhine with his wife Andrea and their 18-month

son Felix, his current favorite leisure activity is to be a devoted father.

xxiii

Acknowledgments

I would like to express my deep gratitude to

Mrs. Aditee Mirashi

Mr. Todd Green

Mr. Celestin Suresh John

Mr. James Markham

Mr. Matthew Moodle

Mr. Said El Mallouki

for their invaluable efforts during the execution of my book.

Furthermore, my special thanks are extended to my company axxessio

and in special to

Mr. Goodarz Mahboobi

Mr. Keyvan Mahbobi

xxv

Introduction

�Motivation
The Python programming language adopted a preemptive concurrency

framework in the early 90s via the threading module, which strived to

mimic the Java concurrency library, as per the respective commit message.

A simple but powerful mechanism governs concurrent execution of

bytecode in most Python implementations. This mechanism is called the

GIL (global interpreter lock). The interpreter consumes one bytecode

instruction at a time.

This effectively means that only one thread can run at the same time

(in one interpreter process). Despite this fact, the underlying native thread

implementation might be able to run more than one thread at a time.

The threads are appointed “fair” amounts of CPU time. Without

employing sophisticated introspection techniques, this boils down to

simple/naive time-based scheduling algorithms.

Taking this approach in the past would often yield inferior solutions to

an equivalent single threaded program, for Python implementation with a

GIL like CPython.

Since removing the GIL is not an option,1 and prior attempts like

Python safe-thread2 failed because they degraded the single threading

performance significantly, the concurrency situation meant having only

the threading module.

1�https://docs.python.org/3/faq/library.html#can-t-we-get-rid-of-the-
global-interpreter-lock

2�https://code.google.com/archive/p/python-safethread

https://docs.python.org/3/faq/library.html#can-t-we-get-rid-of-the-global-interpreter-lock
https://docs.python.org/3/faq/library.html#can-t-we-get-rid-of-the-global-interpreter-lock
https://code.google.com/archive/p/python-safethread

xxvi

�What Is Asyncio?
The cooperative concurrency framework asyncio was written to address

the need for fast single-threaded programs that don't waste CPU time on

I/O bound tasks.

Its primitives like coroutines and event loops allow developers to

execute code only when it’s not waiting for I/O and to yield control back

for other tasks.

�Conclusion
Since its advent, asyncio has added countless APIs and keywords to the

Python language (async/await). Its steep learning curve scares some

developers from trying it. However, it’s a powerful technology that’s even

been used by big players like Instagram3.

The motivation of this book is to help more developers adopt asyncio

and experience the joy of using asyncio for fun and profit. With that said,

enjoy this book while learning more about asyncio!

3�https://www.youtube.com/watch?v=ACgMTqX5Ee4

IntroductionIntroduction

https://www.youtube.com/watch?v=ACgMTqX5Ee4

1© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_1

CHAPTER 1

Preparing
for the Recipes
This chapter explains what asyncio is at a very high-level view and puts

the APIs into perspective. It also explains the teaching approach that this

book takes.

�What Is Asyncio?
The Python language, in version 3.4, has adopted a powerful cooperative

concurrency framework called asyncio. This cooperative concurrency

framework can be roughly split into high- and low-level APIs, as shown in

Figure 1-1.

2

A lot of usability improvements were added to asyncio in Python

version 3.7, including the asyncio.run API, which abstracts direct access

to event loops away and a couple of housekeeping tasks away from the

developer.

As a result, the APIs for the most part are coroutines and task related.

Nonetheless, more exotic APIs—like transports and protocols—are also

discussed.

We feel that a bottom-up approach is better suited to teaching asyncio.

Although We do classify some of these APIs as low-level, whereas they are

often considered high-level. This approach is outlined in the next section.

�What Is This Book’s Approach to asyncio?
The book follows a bottom-up approach and can be roughly split into the

topics shown in Figure 1-2.

Figure 1-1.  High- and low-level APIs of asyncio

Chapter 1 Preparing for the Recipes

3

The topics are roughly introduced in terms of:

•	 Importance: To get a firm understanding of asyncio

•	 Precedence: In case they are needed to explain more

advanced topics

Since event loops live in the context of event loop policies—a concept

singular to asyncio—the book’s approach is to introduce low-level

concepts like event loops, event loop policies, and watchers first. After that,

we go over the coroutine and tasks APIs (which I consider low level too)

that abstract the async working units.

Async generators and async context managers are powerful and

compound, yet low-level tools and their respective use cases are

discussed next.

Figure 1-2.  The book’s approach to asyncio

Chapter 1 Preparing for the Recipes

4

In the high-level section, you learn how to:

•	 Make sure you do not run into race conditions when

synchronizing, the Coffman conditions (necessary

but not sufficient requirements for race conditions),

asyncio’s versions of locks and semaphores, and how

race conditions manifest in asyncio code.

•	 Make asyncio components talk to each other, including

how to implement traditional producer-consumer

patterns, client-server schemes, etc.

•	 Improve an asyncio application, including how to

migrate to a newer Python API version and how to

detect deprecated APIs.

•	 Implement your own binary protocols and implement

existing protocols, including how to use asyncio’s

powerful protocol and transport abstractions.

•	 Avoid common mistakes, including how to avoid too

long-blocking code, miss an await keyword, etc.

This approach was chosen to support your journey toward

understanding asyncio without too many technical intricacies at the wrong

time. With that said, I hope you enjoy the book!

Chapter 1 Preparing for the Recipes

5© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_2

CHAPTER 2

Working with Event
Loops
Python version 3.4 has adopted a powerful framework to support

concurrent execution of code: asyncio. This framework uses event loops to

orchestrate the callbacks and asynchronous tasks. Event loops live in the

context of event loop policies—a concept singular to asyncio. The interplay

among coroutines, event loops, and policies is illustrated in Figure 2-1.

Coroutines can be thought of as functions you can “pause” at stages

explicitly marked with some sort of syntactical element. The coroutine’s

state is tracked via a task object, instantiated by the respective event

Figure 2-1.  Coroutines, event loops, and policies

6

loop. The event loop keeps track of which task is currently running and

delegates CPU time from idling coroutines to a pending one.

In the course of this chapter, we will find out more about the event

loop’s interface and its lifecycle. Event loop policies - and the impact global

asyncio APIs have on them, will be discussed. For more information on the

event loop concept, the different kinds of async work unit representations

(callbacks, promises/futures, and coroutines), why event loops are OS

specific, or guidance on subclassing an event loop, consult Appendix B.

�Locating the Currently Running Loop
�Problem
For various reasons, it is imperative that a concurrency framework is able

to tell you whether an event loop is currently running and which one it

is. For instance, it might be essential for your code to assert that only one

certain loop implementation is running your task. Hence only one task

can alter some shared resource or to be sure that your callbacks will be

dispatched.

�Solution
Use the global asyncio.get_event_loop and asyncio.get_running_loop

APIs.

�Option 1

import asyncio

loop = asyncio.get_event_loop()

Chapter 2 Working with Event Loops

7

�Option 2

import asyncio

try:

 loop = asyncio.get_running_loop()

except RuntimeError:

 print("No loop running")

�How It Works
In >= Python 3.7, there are two valid ways to get the currently running loop

instance.

We can call asyncio.get_event_loop or asyncio.get_running_loop.

But what does asyncio.get_event_loop do under the hood? It is a

convenience wrapper for the following:

	 1.	 Check if there is a loop running at the point of

calling the function.

	 2.	 Return the running loop whose pid matches the

current process pid, if there are any.

	 3.	 If not, get the thread-global LoopPolicy instance

that’s stored in a global variable in the asyncio

module.

	 4.	 If it is not set, instantiate it with the

DefaultLoopPolicy using a lock.

	 5.	 Note that the DefaultLoopPolicy is OS dependent

and subclasses BaseDefaultEventLoopPolicy,

which provides a default implementation of loop.

get_event_loop, which is called.

Chapter 2 Working with Event Loops

8

	 6.	 Here is the catch: The loop_policy.get_event_loop

method instantiates a loop only if you are on the

main thread and assigns it to a thread local variable.

If you are not on the main thread and no running

loop is instantiated by other means, it will raise a

RuntimeError.

This process has some issues:

•	 get_event_loop checks for the existence and returns

the currently running loop.

•	 The event loop policy is stored thread globally, whereas

the loop instance is stored thread locally.

•	 If you are on the main thread, get_event_loop will

instantiate the loop and save the instance thread locally

inside the policy.

•	 If you are not on the main thread, it will raise a

RuntimeError.

asyncio.get_running_loop works differently. It will always return the

currently running loop instance if there is one running. If there is none, it

will raise a RuntimeError.

�Creating a New Loop Instance
�Problem
Since loops in asyncio are tightly coupled with the concept of loop

policies, it not advisable to create the loop instances via the loop

constructor. Otherwise, we might run into issues of scoping since the

global asyncio.get_event_loop function retrieves only loops that

either it created itself or was set via asyncio.set_event_loop.

Chapter 2 Working with Event Loops

9

�Solution
To create a new event loop instance, we will use the asyncio.new_event_

loop API.

Note T his API does not alter the currently installed event loop
but initializes the (asyncio) global event loop policy - if it was not
initialized before.

Another gotcha is that we will attach the newly created loop to the

event loop policy’s watcher to make sure that our event loop monitors the

termination of newly spawned subprocesses on UNIX systems.

import asyncio

import sys

loop = asyncio.new_event_loop()

print(loop) # Print the loop

asyncio.set_event_loop(loop)

if sys.platform != "win32":

 watcher = asyncio.get_child_watcher()

 watcher.attach_loop(loop)

�How It Works
The asyncio.get_event_loop API only instantiates the loop if invoked

from the main thread. Don’t use any convenience wrappers to create the

loop and store it yourself, like shown. This is sure to work on any thread

and makes the creation of the loop side-effect free (besides the global

creation of the asyncio.DefaultLoopPolicy).

Chapter 2 Working with Event Loops

10

Here is evidence that a loop is bound to a thread:

import asyncio

from threading import Thread

class LoopShowerThread(Thread):

 def run(self):

 try:

 loop = asyncio.get_event_loop()

 print(loop)

 except RuntimeError:

 print("No event loop!")

loop = asyncio.get_event_loop()

print(loop)

thread = LoopShowerThread()

thread.start()

thread.join()

In essence, this code contains a threading.Thread subclass definition

that fetches the loop policy scoped loop.

Since we do not alter the DefaultLoopPolicy here, which holds one

thread local loop, we can see that just calling asyncio.get_event_loop

inside the LoopShowerThread is not enough to get a loop instance in a

thread before instantiating it. The reason is that asyncio.get_event_loop

simply creates a loop on the main thread.

Also, we can see that calling the following on the main thread

beforehand does not affect the outcome, as predicted:

loop = asyncio.get_event_loop()

print(loop)

Chapter 2 Working with Event Loops

11

�Attaching a Loop to the Thread Problem
Creating one loop per thread that’s bond to the thread and which’s

finishing can be also awaited can be a challenging task. Later we learn

about the executor API, which allows us to execute blocking coroutine calls

as non-blocking calls by executing the respective calls on a thread pool.

�Solution
Using the threading. Thread and the side-effect-free (besides event loop

policy creation) asyncio.new_event_loop APIs, we can create thread

instances that have unique event loop instances.

import asyncio

import threading

def create_event_loop_thread(worker, *args, **kwargs):

 def _worker(*args, **kwargs):

 loop = asyncio.new_event_loop()

 asyncio.set_event_loop(loop)

 try:

 loop.run_until_complete(worker(*args, **kwargs))

 finally:

 loop.close()

 �return threading.Thread(target=_worker, args=args,

kwargs=kwargs)

async def print_coro(*args, **kwargs):

 �print(f"Inside the print coro on {threading.get_ident()}:",

(args, kwargs))

def start_threads(*threads):

 [t.start() for t in threads if isinstance(t, threading.Thread)]

Chapter 2 Working with Event Loops

12

def join_threads(*threads):

 [t.join() for t in threads if isinstance(t, threading.Thread)]

def main():

 �workers = [create_event_loop_thread(print_coro) for i in

range(10)]

 start_threads(*workers)

 join_threads(*workers)

if __name__ == '__main__':

 main()

�How It Works
Loops live in the context of a loop policy. The DefaultLoopPolicy scopes

the loop per thread and does not allow creation of a loop outside a main

thread via asyncio.get_event_loop. Hence, we must create a thread local

event loop via asyncio.set_event_loop(asyncio.new_event_loop()).

We then await the asyncio.run_until_complete completion inside

our internal worker function called _worker by waiting for the thread to be

joined via join_threads.

�Attaching a Loop to the Process
�Problem
You have a multi-subprocess application that you want to asyncify.

Reasons for such a setup could be a primary-secondary setup, where

the primary process acts as the frontend to queries/requests and relays

them to multiple instances, which in turn use asyncio to use their CPU

time efficiently.

Chapter 2 Working with Event Loops

13

�Solution #1 (UNIX Only)
We want to have process local event loops in a primary-secondary setup

with event loops running in all processes (also the parent process).

For this matter, we share a dictionary across the processes that saves

the event loop instances per process ID.

A helper function will contain the boilerplate to set up the event loop

and save it per processes ID.

Note T he example is concise because of the UNIX-only APIs
os.register_at_fork and os.fork. We do not have any error
handling, which would be needed for a more sophisticated setup.

import asyncio

import os

pid_loops = {}

def get_event_loop():

 return pid_loops[os.getpid()]

def asyncio_init():

 pid = os.getpid()

 if pid not in pid_loops:

 pid_loops[pid] = asyncio.new_event_loop()

 pid_loops[pid].pid = pid

if __name__ == '__main__':

 �os.register_at_fork(after_in_parent=asyncio_init, after_in_

child=asyncio_init)

 if os.fork() == 0:

 # Child

 loop = get_event_loop()

Chapter 2 Working with Event Loops

14

 pid = os.getpid()

 assert pid == loop.pid

 print(pid)

 else:

 # Parent

 loop = get_event_loop()

 pid = os.getpid()

 assert pid == loop.pid

 print(pid)

How It Works
The shown solution provides a way to have one event loop per process on

a unix system and cache it inside the pid_loops dict. For creating a new

process it uses the os.fork API which invokes the fork(2) system call. The

fork(2) system call creates a new process by duplicating the old one. Since

we call fork and then create the loops inside the parent and child process

the pid_loops dict should be empty at the point after the os.fork call.

Using the os.register_at_fork we register a hook which creates a new

event loop instance and saving it to the pid_loops dict using the current

pid as a key for the dict:

def asyncio_init():

 pid = os.getpid()

 if pid not in pid_loops:

 pid_loops[pid] = asyncio.new_event_loop()

 pid_loops[pid].pid = pid

This operation involves a pid lookup beforehand to ensure the event

loop is only created and saved if there is none for the respective pid. This

ensures that we create only one event loop per pid. We assert that this is

true afterwards:

Chapter 2 Working with Event Loops

15

if os.fork() == 0:

 # Child

 loop = get_event_loop()

 pid = os.getpid()

 assert pid == loop.pid

 print(pid)

else:

 # Parent

 loop = get_event_loop()

 pid = os.getpid()

 assert pid == loop.pid

 print(pid)

Note  Using the return value of os.fork we can distinguish
between the child and the parent process.

�Solution #2
Using the more high-level multiprocessing module, we can build a cross-

platform solution that runs multiple coroutines in process local event loops.

This way we can circumvent the CPython restrictions imposed by the

GIL and leverage asyncio to improve our single core CPU usage on I/O

intensive tasks.

import asyncio

import os

import random

import typing

from multiprocessing import Process

processes = []

Chapter 2 Working with Event Loops

16

def cleanup():

 global processes

 while processes:

 proc = processes.pop()

 try:

 proc.join()

 except KeyboardInterrupt:

 proc.terminate()

async def worker():

 random_delay = random.randint(0, 3)

 �result = await asyncio.sleep(random_delay, result=f"Working

in process: {os.getpid()}")

 print(result)

def process_main(coro_worker: typing.Callable, num_of_

coroutines: int,):

 loop = asyncio.new_event_loop()

 try:

 workers = [coro_worker() for _ in range(num_of_coroutines)]

 loop.run_until_complete(asyncio.gather(*workers, loop=loop))

 except KeyboardInterrupt:

 print(f"Stopping {os.getpid()}")

 loop.stop()

 finally:

 loop.close()

def main(processes, num_procs, num_coros, process_main):

 �for _ in range(num_procs):

 proc = Process(target=process_main, args=(worker, num_coros))

 processes.append(proc)

 proc.start()

Chapter 2 Working with Event Loops

17

if __name__ == '__main__':

 try:

 main(processes, 10, 2, process_main,)

 except KeyboardInterrupt:

 print("CTRL+C was pressed.. Stopping all subprocesses..")

 finally:

 cleanup()

 print("Cleanup finished")

How It Works
Using the multiprocessing package we can run subprocesses easily under

all major distributions (Windows, Linux and Mac OS). This example

illustrates how to write an application that uses the multiprocessing.

Process class to run multiple coroutines in a separate Process. The

function that will be run in each Process is the following:

def process_main(coro_worker: typing.Callable, num_of_

coroutines: int,):

 loop = asyncio.new_event_loop()

 try:

 �workers = [coro_worker() for _ in range(num_of_

coroutines)]

 �loop.run_until_complete(asyncio.gather(∗workers,
loop=loop))

 except KeyboardInterrupt:

 print(f"Stopping {os.getpid()}")

 loop.stop()

 finally:

 loop.close()

Chapter 2 Working with Event Loops

18

Note  You are advised to use asyncio.run instead of intantiating
your own event loop. This example is only for illustrating how to
instantiate event loops in different processes!

First we create a new event loop via asyncio.new_event_loop. Next we

schedule some worker coroutines that simulate work via the coro_worker

coroutine function:

async def worker():

 random_delay = random.randint(0, 3)

 �result = await asyncio.sleep(random_delay, result=f"Working

in process: {os.getpid()}")

 print(result)

We then schedule the workers using asyncio.gather(*workers,

loop=loop) to benefit from asynchronous execution of the coroutines -

if they yield back control back to the event loop via await asyncio.sleep

(which they do).

The returned GatheringFuture instance is awaited via loop.run_

until_complete. This ensures that the process terminates when all

workers have returned.

In our parent process we schedule the processes via:

def main(processes, num_procs, num_coros, process_main):

 for _ in range(num_procs):

 �proc = Process(target=process_main, args=(worker,

num_coros))

 processes.append(proc)

 proc.start()

Chapter 2 Working with Event Loops

19

if __name__ == '__main__':

 try:

 main(processes, 10, 2, process_main,)

 except KeyboardInterrupt:

 print("CTRL+C was pressed.. Stopping all subprocesses..")

 finally:

 cleanup()

 print("Cleanup finished")

The main function creates the processes and appends them to the

processes list. In the finally block we cleanup after the processes via:

def cleanup():

 global processes

 while processes:

 proc = processes.pop()

 try:

 proc.join()

 except KeyboardInterrupt:

 proc.terminate()

In the case we encounter a KeyboardInterrupt while we join we

terminate the process via the process.terminate method.

�Running a Loop
�Problem
Callbacks and coroutines can only be scheduled on a running event loop

per design. We need to know which loop API we need to invoke in order to

transition the event loop state machine to the running state. We also need

to identify the right area to schedule a callback/coroutine.

Chapter 2 Working with Event Loops

20

�Solution
We learn which loop API we need to invoke in order to transition the event

loop state machine to the running state and where the right place is to

schedule a callback/coroutine.

import asyncio

import sys

loop = asyncio.new_event_loop()

asyncio.set_event_loop(loop)

if sys.platform != "win32":

 watcher = asyncio.get_child_watcher()

 watcher.attach_loop(loop)

Use asyncio.ensure_future to schedule your first coroutines

here or call loop.call_soon to schedule a synchronous callback

try:

 loop.run_forever()

finally:

 try:

 loop.run_until_complete(loop.shutdown_asyncgens())

 finally:

 loop.close()

�How It Works
Calling asyncio.new_event_loop at the beginning of your script ensures

that you have instantiated the global DefaultLoopPolicy.

The loop_factory of that loop policy is then invoked and the result - a

new event loop, returned.

Chapter 2 Working with Event Loops

21

If we want to use the subprocess APIs of the loop, we need to attach the

current child watcher by hand to ensure we can listen to the subprocess

termination SIGCHLD signal. Since this is a UNIX API - meaning the

SIGCHLD signal, we check if we are on a Windows system first.

Note I f we want to use subprocesses with event loops on Windows,
we need to use the ProactorEventLoop, which we discuss in
Chapter 9, “Working with Network Protocols”.

Afterward, we invoke the loop.run_forever call. This call will block

until we explicitly call loop.stop or an exception bubbles up.

Alternatively, we could use loop.run_until_complete to schedule one

coroutine.

This also has the benefit that we do not have to call loop.stop

explicitly. The loop runs until the coroutine passed to loop.run_until_

complete is fully consumed.

Note that you can still call all the loop.run_* methods after calling
loop.stop, whereas a loop.close will close the loop directly.

�Running Async Code Without
Bothering About Loops
�Problem
Determine the most painless way to run a coroutine once, which might

orchestrate all the other coroutines in your system.

Chapter 2 Working with Event Loops

22

�Solution

	 1.	 Use the following code if you don’t want to bother

about tampering with loop policies and cleaning up

after your asynchronous generators (you will learn

about them in the next chapters). This is also good if

you have only one thread and process and just one

coroutine that needs to run from start to finish.

import asyncio

async def main():

 pass

asyncio.run(main())

�How It Works
When you have a very simple setup and want to run a coroutine until it is

completely awaited, you can use the asyncio.run API.

Note that it will call asyncio.new_event_loop and asyncio.set_

event_loop for you and is hence not side-effect free.

Note T he asyncio.run API cancels the remaining tasks in a non-
threadsafe fashion (it doesn’t use loop.call_soon_threadsafe
to cancel the tasks) and has an optional debug parameter that is
passed to the loop.

This API will also invoke the async generator cleanup hook called

loop.shutdown_asyncgens on the loop.

Chapter 2 Working with Event Loops

23

Note T his is the recommended way to run simple and/or single-
threaded asyncio applications.

�Running a Loop Until a Coroutine Finishes
�Problem
Running a coroutine until the coroutine finishes is one of the most basic

yet most important tasks a loop must be able to do. Without this capability,

loops are pretty much useless. This is because you would have no

indication whatsoever that your workload was consumed, hence leaving

you without leeway for making assumptions in the code.

�Solution #1
Given that we want to couple the coroutine’s lifetime with the loop, we can

use two methods. We can allocate a loop and schedule the coroutine on

the loop (and have to deal with all the cleanup actions ourselves) or use

more high-level APIs like asyncio.run.

import asyncio

async def main():

 pass

asyncio.run(main())

�How It Works
Basically, we can reuse the setup from the last answer to run a coroutine

until it was consumed. The same rules apply here.

Chapter 2 Working with Event Loops

24

asyncio.run takes care of the cleanup and stops the event loop.

Note  asyncio.run works very well with simple setups in
conjunction with the asyncio.get_running_loop() API.

�Solution #2
In settings in which asyncio.run is not available, you can invoke asyncio.

get_event_loop or asyncio.new_event_loop yourself. We will look at the

first case:

import asyncio

async def main():

 pass

loop = asyncio.get_event_loop()

try:

 loop.run_until_complete(main())

finally:

 try:

 loop.run_until_complete(loop.shutdown_asyncgens())

 finally:

 loop.close()

�How It Works
This generates the loop in the same fashion as Solution #1, with the

exception that it will generate a loop only if we are on the main thread.

It will otherwise raise a RuntimeError.

Chapter 2 Working with Event Loops

25

We have to call loop.shutdown_asyncgens ourselves to clean up after

any not completely consumed async generators. (We learn about async

generators in Chapter 6, “Communication Between Asyncio Components”.)

�Solution #3
The asyncio.new_event_loop API is the lowest-level asyncio API that

creates a new event loop instance while respecting the currently installed

event loop policy.

Using it involves a lot of manual work, like attaching the loop to the

current child watcher or cleaning up the async generators.

Be aware that might be necessary in more complex setups that span

multiple processes or to better understand what happens behind the

scenes of asyncio.

import asyncio

import sys

async def main():

 pass

loop = asyncio.new_event_loop()

asyncio.set_event_loop(loop)

if sys.platform != "win32":

 watcher = asyncio.get_child_watcher()

 watcher.attach_loop(loop)

try:

 loop.run_forever()

finally:

 try:

 loop.run_until_complete(loop.shutdown_asyncgens())

 finally:

 loop.close()

Chapter 2 Working with Event Loops

26

�How It Works
It works the same as Solution #2 does, but you can call it from a thread.

The reason for this is because we do not use the convenience API asyncio.

get_event_loop, which performs a main thread equality check.

Note T his is similar to what the asyncio.run API does under
the hood.

�Scheduling Callbacks on a Loop
�Problem
Event loops can be used in a callback-oriented fashion or with coroutines.

The latter is considered the superior pattern in asyncio but for use

cases like timers or for timing-based state machines, a callback API with

delayable callbacks can yield very elegant and concise results.

�Solution #1
We will learn about the loop.call_* APIs, which can be used to schedule

synchronous callbacks on the event loop.

import asyncio

loop = asyncio.get_event_loop()

loop.call_soon(print, "I am scheduled on a loop!")

loop.call_soon_threadsafe(print, "I am scheduled on a loop but

threadsafely!")

loop.call_later(1, print, "I am scheduled on a loop in one second")

loop.call_at(loop.time() + 1, print, "I am scheduled on a loop in

one second too")

Chapter 2 Working with Event Loops

27

try:

 print("Stop the loop by hitting the CTRL+C keys...")

 �# To see the callbacks running you need to start the running loop

 loop.run_forever()

except KeyboardInterrupt:

 loop.stop()

finally:

 loop.close()

�How It Works
For calling functions on the event loop, we have four methods at our disposal:

•	 call_soon

•	 call_soon_threadsafe

•	 call_at

•	 call_later

None of the loop.call_* methods is thread-safe except for loop.

call_soon_threadsafe.

All these methods support the new keyword-only parameter, context.

The context parameter needs to be an instance of Context, which is an API

introduced by PEP 567. The rationale of this parameter is to provide means

to “manage, store, and access context-local state”.

All the changes made by the loop.call_* methods to any context

variable are preserved in it. The callback methods don't provide a way to

cleanly wait for them to be consumed.

This is why we employ the KeyboardInterrupt pattern. We need to

signal our process with the Ctrl+C key to stop the loop. We learn about a

cleaner alternative in the next solution.

Chapter 2 Working with Event Loops

28

�Solution #2
Unfortunately, asyncio does not provide a nice API to await these

scheduled callbacks. The handles returned by the APIs can also only be

used to cancel pending callbacks.

There is a way to manipulate the event loop to make these callbacks

awaitable.

import asyncio

from functools import partial as func

class SchedulerLoop(asyncio.SelectorEventLoop):

 def __init__(self):

 super(SchedulerLoop, self).__init__()

 self._scheduled_callback_futures = []

 @staticmethod

 def unwrapper(fut: asyncio.Future, function):

 """

 Function to get rid of the implicit fut parameter.

 :param fut:

 :type fut:

 :param function:

 :return:

 """

 return function()

 def _future(self, done_hook):

 """

 �Create a future object that calls the done_hook when it

is awaited

 :param loop:

 :param function:

 :return:

 """

Chapter 2 Working with Event Loops

29

 fut = self.create_future()

 �fut.add_done_callback(func(self.unwrapper,

function=done_hook))

 return fut

 �def schedule_soon_threadsafe(self, callback, *args,

context=None):

 fut = self._future(func(callback, *args))

 self._scheduled_callback_futures.append(fut)

 �self.call_soon_threadsafe(fut.set_result, None,

context=context)

 def schedule_soon(self, callback, *args, context=None):

 fut = self._future(func(callback, *args))

 self._scheduled_callback_futures.append(fut)

 self.call_soon(fut.set_result, None, context=context)

 �def schedule_later(self, delay_in_seconds, callback, *args,

context=None):

 fut = self._future(func(callback, *args))

 self._scheduled_callback_futures.append(fut)

 �self.call_later(delay_in_seconds, fut.set_result, None,

context=context)

 ��def schedule_at(self, delay_in_seconds, callback, *args,

context=None):

 fut = self._future(func(callback, *args))

 self._scheduled_callback_futures.append(fut)

 �self.call_at(delay_in_seconds, fut.set_result, None,

context=context)

 async def await_callbacks(self):

 callback_futs = self._scheduled_callback_futures[:]

 self._scheduled_callback_futures[:] = []

 await asyncio.gather(*callback_futs)

Chapter 2 Working with Event Loops

30

async def main(loop):

 loop.schedule_soon_threadsafe(print, "hallo")

 �loop.schedule_soon(print, "This will be printed when the

loop starts running")

 def callback(value):

 print(value)

 �loop.schedule_soon_threadsafe(func(callback, value="This

will get printed when the loop starts running"))

 offset_in_seconds = 4

 loop.schedule_at(loop.time() + offset_in_seconds,

 �func(print, f"This will be printed after

{offset_in_seconds} seconds"))

 �loop.schedule_later(offset_in_seconds, func(print, f"This

will be printed after {offset_in_seconds} seconds too"))

 await loop.await_callbacks()

loop = SchedulerLoop()

loop.run_until_complete(main(loop))

�How It Works
Since we don’t have a clean API to wait for scheduled synchronous

callbacks via await, we create one.

The gist is that we can provide our own loop implementation based on

SelectorEventLoop and thin wrapper methods around the loop.call_*

methods that save a future that we can wait on.

The future is lazy consumed since the callbacks are set with future.

add_done_callback.

When you await the future, the point of consumption is the asyncio.

gather call in the coroutine method await_callbacks.

Chapter 2 Working with Event Loops

31

Basically every time we invoke a loop.call_* call, we save a future to

the loop._scheduled_callback_futures property.

�Scheduling Coroutines on a Loop
�Problem
We have learned how to schedule callbacks on a loop. The preferred way

in asyncio, however, is to use coroutines. They involve the least amount of

boilerplate code and are easier to reason about than asynchronous code

built around callbacks.

�Solution #1
Option 1

If there is no running event loop, we can use asyncio.ensure_future

in conjunction with asyncio.run:

import asyncio

import random

async def work(i):

 �print(await asyncio.sleep(random.randint(0, i),

result=f"Concurrent work {i}"))

async def main():

 tasks = [asyncio.ensure_future(work(i)) for i in range(10)]

 await asyncio.gather(*tasks)

asyncio.run(main())

Chapter 2 Working with Event Loops

32

Option 2

If we do not want to write a main coroutine, we can use loop.run_

until_complete instead:

import asyncio

import random

async def work(i):

 �print(await asyncio.sleep(random.randint(0, i),

result=f"Concurrent work {i}"))

loop = asyncio.get_event_loop()

tasks = [asyncio.ensure_future(work(i)) for i in range(10)]

loop.run_until_complete(asyncio.gather(*tasks))

�How It Works
To schedule coroutines on loops, we can use four mechanisms:

•	 The await keyword

•	 The loop.create_task method

•	 The asyncio.ensure_future

•	 The asyncio.create_task

We can use the await keyword which blocks until the coroutine either

returns or uses the asyncio.sleep await to yield back control over the

execution flow. The await keyword can be used in coroutine functions only.

The loop.create_task method schedules the coroutine and

immediately returns a task object that can be used to wait for the coroutine

to finish. It can be used in synchronous contexts and coroutine functions.

The only disadvantage is that it’s fairly low-level, and we need a loop

instance to invoke it.

Chapter 2 Working with Event Loops

33

Next up is the asyncio.ensure_future API, which can also be called

in both coroutine functions and synchronous contexts. It consumes both

tasks and coroutines. If there is no loop running, it will schedule it on the

loop stored in the default loop event policy by fetching it via asyncio.

get_event_loop and then calling loop.create_task.

Note the coroutines/tasks will run once the loop is actually running
and that you cannot schedule the same task on two loops with this
API.

asyncio.create_task is the preferred way to schedule coroutines on

an event loop.

asyncio.create_task will raise a runtime error if no loop is running,

so essentially it can be used with coroutine functions or callbacks that are

scheduled on the loop via loop.call_* - because such a handler can only

be called by a running event loop.

In this example we can use two mechanisms here—await and asyncio.

ensure_future.

Inside the coroutine, we await on asyncio.sleep with a random sleep

delay to simulate work. The result keyword-only parameter returns a

value after the sleep delay.

Since using asyncio.ensure_future like that means that our

coroutines are now scheduled, we find ourselves in a situation where we

need to wait for the execution to finish.

To wait for all of the pending tasks, we wrap them into an asyncio.

gather call and await the resulting GatheringFuture by calling loop.run_

until_complete or awaiting it inside a coroutine that can be scheduled via

asyncio.run.

Chapter 2 Working with Event Loops

34

�Solution #2
Using our knowledge about event loops and event loop policies, we can

write our own loop implementation that provides an API to cleanly wait for

all pending coroutines.

This can be helpful when asyncio.all_tasks() returns too many

tasks for a given event loop and waiting for a subset of tasks is sufficient.

import asyncio

async def work():

 print("Main was called.")

class AsyncSchedulerLoop(asyncio.SelectorEventLoop):

 def __init__(self):

 super(AsyncSchedulerLoop, self).__init__()

 self.coros = asyncio.Queue(loop=self)

 def schedule(self, coro):

 task = self.create_task(coro)

 task.add_done_callback(lambda _: self.coros.task_done())

 self.coros.put_nowait(task)

 async def wait_for_all(self):

 await self.coros.join()

class AsyncSchedulerLoopPolicy(asyncio.DefaultEventLoopPolicy):

 def new_event_loop(self):

 return AsyncSchedulerLoop()

asyncio.set_event_loop_policy(AsyncSchedulerLoopPolicy())

loop = asyncio.get_event_loop()

for i in range(1000):

 loop.schedule(work())

loop.run_until_complete(loop.wait_for_all())

Chapter 2 Working with Event Loops

35

�How It Works
If we want to make sure that we just await the tasks that we have scheduled

by means of the loop.create_task method, we can do so by writing our

own loop implementation.

We use an asyncio queue to hold the tasks for convenience.

Note that this implies that we consume tasks in a FIFO (first in, first out)

fashion, which corresponds to how loop.call_* methods are consumed.

Why do we use a queue? Because we get the part for free where we

wait for all tasks to finish: we just have to await the queue's queue.join

coroutine!

We can use the queue’s queue.task_done method to signal we have

consumed a coroutine, but at what point? A good place to do so is in the

done_callback of the task—where we ultimately end up calling it.

�Calling Blocking Code on a Loop
�Problem
Only one callback can run on an asyncio event loop at a time. Hence, a

long running callback may block the event loop for others if it is executing

for too long. Event loops expose an executor API that addresses this issue.

We will learn about the executor API in the following example.

�Solution
We use urllib3 as a blocking HTTP client library, which we will asyncify.

Hence, you need to install the certifi and urllib3 packages via the

package manager of your choice. For example, via pip or pipenv:

pip3 install urllib3==1.23

pip3 install certifi==2018.04.16

Chapter 2 Working with Event Loops

36

or

pipenv install urllib3==1.23

pipenv install certifi==2018.04.16

Note I n this example, we use certifi for collections of root
certificates, which we can use to query TLS-secured websites over
HTTPS.

import asyncio

from concurrent.futures.thread

import ThreadPoolExecutor

import certifi

import urllib3

HTTP_POOL_MANAGER = urllib3.PoolManager(ca_certs=certifi.where())

EXECUTOR = ThreadPoolExecutor(10)

URL = https://apress.com

async def block_request(http, url, *, executor=None, loop:

asyncio.AbstractEventLoop):

 �return await loop.run_in_executor(executor, http.request,

"GET", url)

def multi_block_requests(http, url, n, *, executor=None, loop:

asyncio.AbstractEventLoop):

 �return (asyncio.ensure_future(block_request(http, url,

executor=executor, loop=loop)) for _ in range(n))

async def consume_responses(*coro, loop):

 �result = await asyncio.gather(*coro, loop=loop, return_

exceptions=True)

Chapter 2 Working with Event Loops

37

 for res in result:

 if not isinstance(res, Exception):

 print(res.data)

loop = asyncio.get_event_loop()

loop.set_default_executor(EXECUTOR)

loop.run_until_complete(consume_responses(block_request(HTTP_

POOL_MANAGER, URL, loop=loop),loop=loop))

loop.run_until_complete(

 �consume_responses(*multi_block_requests(HTTP_POOL_MANAGER,

URL, 10, loop=loop), loop=loop))

�How It Works
To call a blocking function with asyncio, we can use the loop.run_in_

executor coroutine method. It will return an awaitable that, if awaited,

returns a future with the result of the blocking call. This means loop.run_

in_executor is lazy evaluated by definition.

How does it work under the hood? Basically an executor (like a

ThreadPoolExecutor) is used to schedule a blocking synchronous call

while also asyncifying it. In the case of the ThreadPoolExecutor, thread

preemption is used to provide the non-blocking experience. Note that the

CPython implementation has a global mutex object called the GIL, which

decreases the effectiveness of native p-threads.

Note I t is discouraged to use ProcessPoolExecutor. In fact,
it will be prohibited via set_default_executor in Python 3.8.
Source: https://bugs.python.org/issue34075.

Chapter 2 Working with Event Loops

https://bugs.python.org/issue34075

38

Here is an example of asyncifying the urllib3.PoolManager. Its

request method is scheduled on the executor:

return await loop.run_in_executor(executor, http.request,

"GET", url).

Using a asyncio.gather call and a generator expression, we can

schedule multiple requests at the same time. That part is provided by

consume_responses which silences exceptions too.

�Running a Coroutine Specifically on One
Loop
�Problem
To make sure that you run your coroutine specifically on one loop, you

have two methods, as explained next.

�Solution #1
Getting an event loop instance and running a coroutine on it ensures that

the coroutine runs on specifically that loop. To ensure that the same loop is

used in chained coroutines, the asyncio.get_running_loop is used:

import asyncio

async def main(loop):

 assert loop == asyncio.get_running_loop()

loop = asyncio.get_event_loop()

loop.run_until_complete(main(loop))

Chapter 2 Working with Event Loops

39

�How It Works
If the loop is not running, the easiest way to run it is to schedule the

coroutine on the loop via loop.run_until_complete.

If the coroutine is a built-in with a keyword-only loop parameter,

pass it.

Note P assing a loop explicitly via the keyword-only loop parameter
is considered deprecated, which we discuss in Chapter 8, “Improving
Asyncio Applications”.

�Solution #2
By using the loop.create_task API, it is ensured that a coroutine will run

on a specific loop.

To use it, an event loop instance must be acquired:

import asyncio

async def main():

 pass

loop = asyncio.get_event_loop()

task = loop.create_task(main())

task.add_done_callback(lambda fut: loop.stop())

Or more generic if you don't have loop in scope:

task.add_done_callback(lambda fut: asyncio.get_running_

loop().stop())

loop.run_forever()

Chapter 2 Working with Event Loops

40

�How It Works
If the loop is already running, we use the asyncio.ensure_future method

to schedule a coroutine on the loop.

Note I f you are inside a coroutine, use asyncio.create_task
instead!

The same observations from Solution #1 apply, with the additional

notice that we need to explicitly stop the loop in this case.

�Stopping and Closing a Loop
�Problem
As we learned earlier, the event loop has an internal state machine that

indicates which of its lifecycle duties are to be executed. For instance, only

a running event loop may schedule new callbacks. An event loop that is in

the running state will continue to run indefinitely if it’s not halted properly.

�Solution
In this section, we learn when and how to stop an event loop. We can do so

via the stop/close APIs.

import asyncio

import functools

async def main(loop):

 print("Print in main")

def stop_loop(fut, *, loop):

 loop.call_soon_threadsafe(loop.stop)

Chapter 2 Working with Event Loops

41

loop = asyncio.get_event_loop()

tasks = [loop.create_task(main(loop)) for _ in range(10)]

asyncio.gather(*tasks).add_done_callback(functools.

partial(stop_loop, loop=loop))

try:

 loop.run_forever()

finally:

 try:

 loop.run_until_complete(loop.shutdown_asyncgens())

 finally:

 loop.close()# optional

�How It Works
What happens here is that we have a loop instance that we run via loop.

run_forever.

We have scheduled a couple of tasks and saved them in a list. To be

able to stop our loop properly, we need to make sure we have consumed

all of the tasks, so we wrap them with a call to asyncio.gather and add a

done_callback to it, which closes our loop.

This ensures we have finished our work when we close the loop.

Note that we also call loop.shutdown_asyncgens, which should

become second habit when you close a loop. We explain this in further

detail in Chapter 4, “Generators”.

�Adding a Loop Signal Handler
�Problem
You need to use signal handlers with loops. We need a setup that runs

the signal handlers only when our loop is running and that disallows new

signal handlers when the loop is not running.

Chapter 2 Working with Event Loops

42

�Solution (UNIX Only)
Ideally, the event loop should clean up the signal handlers. Fortunately,

asyncio provides such APIs out of the box.

import asyncio

import functools

import os

import signal

SIGNAL_NAMES = ('SIGINT', 'SIGTERM')

SIGNAL_NAME_MESSAGE = " or ".join(SIGNAL_NAMES)

def sigint_handler(signame, *, loop,):

 print(f"Stopped loop because of {signame}")

 loop.stop()

def sigterm_handler(signame, *, loop,):

 print(f"Stopped loop because of {signame}")

 loop.stop()

loop = asyncio.get_event_loop()

for signame in SIGNAL_NAMES:

 loop.add_signal_handler(getattr(signal, signame),

 functools.partial(locals()

[f"{signame.lower()}_handler"], signame, loop=loop))

print("Event loop running forever, press Ctrl+C to interrupt.")

print(f"pid {os.getpid()}: send {SIGNAL_NAME_MESSAGE} to

exit.")

try:

 loop.run_forever()

finally:

 loop.close() # optional

Chapter 2 Working with Event Loops

43

�How It Works
Basically, we add a new signal_handler via loop.add_signal_handler.

It is analogous to the signal API. In this case, we decided to stop the loop

at the end of every handler. We provide it via functools.partial and take

the handler that is in scope via the locales built-in.

If you want to add another handler to the example, you just add the

name of the signal to SIGNAL_NAMES and a corresponding handler named

in this fashion:

"{signame.lower()}_handler"

Why not use the signal API directly? The signal handlers you add to the

loop are checked in the course of a loop iteration. Hence, it is not possible

to add a signal handler to the loop when it is closed.

Another perk is that the signal handlers are cleaned up for you when

the loop closes.

�Spawning a Subprocess from a Loop
�Problem
Asynchronously spawning a subprocess and effectively splitting creation

and state management in separate parts is one of the reasons to use a loop

to spawn a subprocess.

�Solution
The following solution is sufficient for most non-interactive uses of the

asyncio subprocess APIs. It has the benefit of being cross-platform by

setting the appropriate event loop policy on a Windows system.

import asyncio

import shutil

Chapter 2 Working with Event Loops

44

import sys

from typing import Tuple, Union

async def invoke_command_async(*command, loop,

encoding="UTF-8", decode=True) -> Tuple[

 Union[str, bytes], Union[str, bytes], int]:

 """

 �Invoke a command asynchronously and return the stdout,

stderr and the process return code.

 :param command:

 :param loop:

 :param encoding:

 :param decode:

 :return:

 """

 if sys.platform != 'win32':

 asyncio.get_child_watcher().attach_loop(loop)

 process = await asyncio.create_subprocess_exec(*command,

 �stdout=asyncio.

subprocess.PIPE,

 �stderr=asyncio.

subprocess.PIPE,

 loop=loop)

 out, err = await process.communicate()

 ret_code = process.returncode

 if not decode:

 return out, err, ret_code

 �output_decoded, err_decoded = �out.decode(encoding) if out

else None,

 �err.decode(encoding) if err

else None

Chapter 2 Working with Event Loops

45

 return output_decoded, err_decoded, ret_code

async def main(loop):

 �out, err, retcode = await invoke_command_async(shutil.

which("ping"), "-c", "1", "8.8.8.8", loop=loop)

 print(out, err, retcode)

if sys.platform == "win32":

 �asyncio.set_event_loop_policy(asyncio.

WindowsProactorEventLoopPolicy())

loop = asyncio.get_event_loop()

loop.run_until_complete(main(loop))

�How It Works
To properly spawn a subprocess from a loop, we introduce an

asynchronous helper called invoke_command_async.

This helper coroutine function uses the loop's create_subprocess_

exec method to create a subprocess.

Under UNIX, we have a class in asyncio called AbstractChildWatcher,

whose implementation is used to watch the termination of subprocesses.

To properly work, the ChildWatcher needs to be attached to an event

loop. When you have one loop instance, this might be fine, but when you

create your loops via asyncio.new_event_loop, etc., you need to make

sure the current loop policy's ChildWatcher is attached to it. You can do so

by calling the watcher's watcher.attach_loop method, as shown here:

if sys.platform != 'win32':

 asyncio.get_child_watcher().attach_loop(loop)

The next part is lazily (by means of a future) getting the process

instance via create_subprocess_exec.

Chapter 2 Working with Event Loops

46

The API for the process instance is analogue to the synchronous one.

You need to await the coroutine methods like process.communicate. In

theory, this gives you the flexibility to await it another time, but it’s not

necessary for the sake of this example.

�Waiting for Subprocess Termination
�Problem
The goal here is to watch a subprocess terminate hassle-free even under

Windows, which does not have a full signal API and hence does not

support SIGCHLD.

�Solution
To ensure that we can await the termination of our subprocesses under

Windows, we will poll the subprocesses for a process return code, which

indicates a terminated subprocess.

import asyncio

Quote from https://docs.python.org/3/library/asyncio-

subprocess.html:

The child watcher must be instantiated in the main thread,

before executing subprocesses from other threads. Call the get_

child_watcher() function in the main thread to instantiate the

child watcher.

import functools

import shutil

import sys

Chapter 2 Working with Event Loops

47

if sys.platform == "win32":

 asyncio.set_event_loop_policy(asyncio.

WindowsProactorEventLoopPolicy())

def stop_loop(*args, loop, **kwargs):

 loop.stop()

async def is_windows_process_alive(process, delay=0.5):

 """

 �On windows the signal API is very sparse, meaning we don't

have SIGCHLD. So we just check if we have a return code on

our process object.

 :param process:

 :param delay:

 :return:

 """

 while process.returncode == None:

 await asyncio.sleep(delay)

async def main(process_coro, *, loop):

 process = await process_coro

 if sys.platform != "win32":

 �child_watcher: asyncio.AbstractChildWatcher = asyncio.

get_child_watcher()

 �child_watcher.add_child_handler(process.pid, functools.

partial(stop_loop, loop=loop))

 else:

 await is_windows_process_alive(process)

 loop.stop()

loop = asyncio.get_event_loop()

Chapter 2 Working with Event Loops

48

process_coro = asyncio.create_subprocess_exec(�shutil.

which("ping"),

"-c", "1",

"127.0.0.1",

 �stdout=asyncio.

subprocess.

DEVNULL,

 �stderr=asyncio.

subprocess.

DEVNULL)

loop.create_task(main(process_coro, loop=loop))

loop.run_forever()

�How It Works
For UNIX systems, it is quite easy to detect when a subprocess terminates

because the process changes its state and announces this via SIGCHLD.

Coupled with the waitpid(2) syscall, which can detect process state

changes and blocks, we have a powerful tool to react to process

termination without the cost of a busy loop.

On Windows, it is not that easy. The signaling API is very limited

and just exposes SIGTERM and SIGINT. Hence, we must poll the process

return code which is set on process termination, because Windows only

uses this POSIX standard.

On Windows we do so via is_windows_process_alive. In Unix, we

could just use invoke_command_async, instead of attaching a child handler

to the watcher, which does basically the same thing. The watcher gets

attached to the loop and conveniently calls watcher.add_child_handler

for us.

Chapter 2 Working with Event Loops

49© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_3

CHAPTER 3

Working with
Coroutines and
Async/Await
A coroutine is a work unit for an event loop/scheduler and can be

understood as a suspendible function. The “co” in coroutine does not stem

from the word concurrent, but rather from the word cooperative.

The coroutine “cooperates” with the event loop that schedules the

coroutine. If the coroutine is “logically blocked,” meaning it waits on some

sort of I/O, the coroutine can yield control back to the event loop. The loop

can then decide how to use the freed resources (CPU time) to dispatch

other “waiting and ready” coroutines. The loop can then decide how to use

the freed resources (CPU time) to dispatch other pending coroutines.

In asyncio, we differentiate between a coroutine and a coroutine

function. The coroutine is the object returned by the coroutine function

and can be in a running, finished, cancelled, or suspended state. We use

the terms interchangeably if doing so doesn’t cause ambiguity.

50

�Writing Generator-Based Coroutine
Functions
�Problem
We cannot use coroutines defined with the async keyword in a pre-3.5

Python interpreter.

�Solution
Functions that are defined with the @asyncio.coroutine decorator are

called generator-based and they provide the means to write a coroutine in

a pre-3.5 Python interpreter.

import asyncio

@asyncio.coroutine

def coro():

 value = yield from inner()

 print(value)

@asyncio.coroutine

def inner():

 return [1, 2, 3]

asyncio.run(coro()) # will print [1, 2, 3]

�How It Works
The @asyncio.coroutine decorator can be used to write generator-based

coroutines.

In their bodies we can only use the yield from keyword to call other

coroutines or suspend them—using await will raise a SyntaxError.

Chapter 3 Working with Coroutines and Async/Await

51

However, using yield from on a native coroutine object, like asyncio.

sleep(1), in a non-coroutine generator will raise a TypeError:

import asyncio

def main():

 yield from asyncio.sleep(1)

asyncio.run(main())

Note G enerator-based coroutines have been deprecated since
Python version 3.7 and will be removed in Python version 3.10.

Also note that the decorator is not strictly enforced. This means we can

run functions with yield from inside their bodies on the event loop too!

�Writing a Native Coroutine
�Problem
Being able to write a coroutine is the first step to using asyncio in a

productive fashion.

�Solution
Native coroutine functions are functions that return a coroutine, which in

turn is a cooperatively scheduled asyncio primitive. They are the preferred

way to write a coroutine function. Native coroutine functions are defined

with the async def syntax.

Chapter 3 Working with Coroutines and Async/Await

52

They are equivalent to the deprecated generator-based coroutine

functions in respect to their function and return native coroutine objects.

The async def transports all the semantics needed to define a

coroutine function. There is no need to include an await keyword inside

the coroutine function body.

import asyncio

async def coroutine(*args, **kwargs):

 pass

assert asyncio.iscoroutine(coroutine())

assert asyncio.iscoroutinefunction(coroutine)

�How It Works
Given that you have a coroutine function with the async keyword, you can

use the await keyword in its body to await other coroutines.

Using the predicate functions inspect.iscoroutine and inspect.

iscoroutinefunction, we can determine if an object is in fact a native

coroutine (function).

The coroutines run on the loop implementations provided by asyncio

and delegate to other coroutines only with the await keyword.

Note E very time you could have used yield from in a generator-
based coroutine, you now have to use the await keyword inside the
coroutine function body.

Chapter 3 Working with Coroutines and Async/Await

53

�Running a Coroutine and Blocking/Waiting
Until It Finishes
�Problem
A syntactic mechanism is needed to pinpoint the moment when a

coroutine finishes. This mechanism must also be suspendable and

resumable.

�Solution
Using the await keyword, we are equipped to handle awaiting native

coroutines in the intended fashion.

import asyncio

async def coroutine(*args,**kwargs):

 print("Waiting for the next coroutine...")

 await another_coroutine(*args,**kwargs)

 print("This will follow 'Done'")

async def another_coroutine(*args,**kwargs):

 await asyncio.sleep(3)

 print("Done")

�How It Works
The coroutine function called coroutine has a statement called await

another_coroutine(*args,**kwargs) in its body that uses the await

keyword to signal to the event loop that it awaits the completion of

another_coroutine.

The same mechanism is used in the await asyncio.sleep(3)

statement to halt the execution of the containing coroutine.

Chapter 3 Working with Coroutines and Async/Await

54

Basically, an await is a yield from with an additional awaitable type

check and more intuitive operator precedencies, which are reflected in the

following table:

Operator Description

yield x, yield from x Yield expression

lambda Lambda expression

if -- else Conditional expression

or Boolean OR

and Boolean AND

not x Boolean NOT

in, not in, is, is not, <, <=, >,

>=, !=, ==

Comparisons, including

membership tests and identity tests

| Bitwise OR

^ Bitwise XOR

& Bitwise AND

<<, >> Shifts

+, - Addition and subtraction

*, @, /, //, % Multiplication, matrix multiplication,

division, remainder

+x, -x, ~x Positive, negative, bitwise NOT

** Exponentiation

await x Await expression

x[index], x[index:index],

x(arguments...),x.attribute

Subscription, slicing, call, attribute

reference

(expressions...), [expressions...],

{key:value...}, {expressions...}

Binding or tuple display, list display,

dictionary display, set display

Chapter 3 Working with Coroutines and Async/Await

55

The updates precedencies make constructs like return await

possible. Previously, you had to put yield from and the following

coroutine into parentheses to do this:

return (yield from asyncio.sleep(1))

vs.

return await asyncio.sleep(1)

�Running a Coroutine and Waiting for It
to Finish
�Problem
We have learned how to block until a coroutine has finished executing. But

we want to defer the waiting to a certain place to decouple scheduling the

coroutine. We also want to be able to pinpoint when it is finished and to

schedule callbacks at that time.

�Solution
Using the await keyword in conjunction with asyncio.create_task, we

can decouple running a coroutine from awaiting it.

import asyncio

async def coroutine_to_run():

 print(await asyncio.sleep(1, result="I have finished!"))

async def main():

 task = asyncio.create_task(coroutine_to_run())

 await task

asyncio.run(main())

Chapter 3 Working with Coroutines and Async/Await

56

�How It Works
This solution is very similar to the previous one. It schedules the coroutine

coroutine_to_run using asyncio.create_task and returns a task that can

be used to await said scheduled coroutine.

Note T he coroutine starts running shortly after the call to
asyncio.create_task.

Since splitting up the scheduling of the task and awaiting it, we have

the flexibility to create code that has sequence assurances while also

being able to schedule more work or attach callbacks to be executed on

consumption.

Note U sing callbacks is discouraged since the order in which the
callbacks are dispatched is undefined and an implementation detail.

�Waiting on a Coroutine with a Timeout
�Problem
Given a coroutine that needs to be scheduled and a timeout in seconds,

how do we cancel a scheduled routine if it doesn’t complete in that

timeframe?

�Solution
Ideally, we don’t want to schedule another coroutine to cancel a routine.

It would be better to specify this on “scheduling time”.

Chapter 3 Working with Coroutines and Async/Await

57

import asyncio

async def delayed_print(text, delay):

 print(await asyncio.sleep(delay, text))

async def main():

 delay = 3

 �on_time_coro = delayed_print(f"I will print after {delay}

seconds", delay)

 await asyncio.wait_for(on_time_coro, delay + 1)

 try:

 �delayed_coro = delayed_print(f"I will print after

{delay+1} seconds", delay + 1)

 await asyncio.wait_for(delayed_coro, delay)

 except asyncio.TimeoutError:

 print(f"I timed out after {delay} seconds")

asyncio.run(main())

�How It Works
As we can see, asyncio provides the asyncio.wait_for function.

It safely returns from a call given a coroutine that runs in the time

boundaries or otherwise throws an asyncio.TimeoutError.

�Cancelling a Coroutine
�Problem
Designing a sophisticated concurrent system might require the need to

cancel the workloads you have scheduled on the event loop.

Chapter 3 Working with Coroutines and Async/Await

58

Think about this execution scenario: You want to send a personalized

email to a database of customers. The personalization requires a web

query and sending out the email requires a database query.

These queries can run concurrently. If either of them results in an

error, the other query will need to be cancelled.

We will learn how to cancel a scheduled coroutine thread-safely and

not thread-safely.

�Solution #1
Using the task object we receive from asyncio.create_task, it is possible

to control the execution state of the underlying coroutine.

import asyncio

async def cancellable(delay=10):

 loop = asyncio.get_running_loop()

 try:

 now = loop.time()

 print(f"Sleeping from {now} for {delay} seconds ...")

 await asyncio.sleep(delay, loop=loop)

 print(f"Slept {delay} seconds ...")

 except asyncio.CancelledError:

 �print(f"Cancelled at {now} after {loop.time()-now}

seconds")

async def main():

 coro = cancellable()

 task = asyncio.create_task(coro)

 await asyncio.sleep(3)

 task.cancel()

asyncio.run(main())

Chapter 3 Working with Coroutines and Async/Await

59

�How It Works
The first solution is the most obvious. A task is the instance of a future

subclass and hence has a cancel method, which can be invoked to

unschedule the corresponding coroutine from the event loop and abort it

(if it’s running).

This happens irrespective of what the current thread is. You can do this

if you know that your application is single-threaded or you are absolutely

sure that the loop you are handling is in fact on the same thread.

�Solution #2
Another way to cancel a coroutine thread-safely is to use the loop.call_

soon_threadsafe API in conjunction with the handle.cancel method.

import asyncio

async def cancellable(delay=10):

 loop = asyncio.get_running_loop()

 try:

 now = loop.time()

 print(f"Sleeping from {now} for {delay} seconds ...")

 await asyncio.sleep(delay)

 print(f"Slept for {delay} seconds without disturbance...")

 except asyncio.CancelledError:

 �print(f"Cancelled at {now} after {loop.time()-now}

seconds")

async def main():

 coro = cancellable()

 task = asyncio.create_task(coro)

 await asyncio.sleep(3)

Chapter 3 Working with Coroutines and Async/Await

60

 def canceller(task, fut):

 task.cancel()

 fut.set_result(None)

 loop = asyncio.get_running_loop()

 fut = loop.create_future()

 loop.call_soon_threadsafe(canceller, task, fut)

 await fut

asyncio.run(main())

�How It Works
If you are on another thread, you can’t safely schedule a callback with

loop.call_soon or loop.call_at.

You need to use the loop.call_threadsafe method for that, which

happens to be scheduled asynchronously as well.

To be able to tell when the scheduled coroutine has finished, you can

pass a future object and call it at the right time and then await it on the

outside.

�Cancelling Multiple Coroutines
�Problem
What if we want to cancel multiple scheduled coroutines at once? For

instance, the coroutines iteratively build up some result. We either want to

receive the result completely or stop the procedure, because the result has

become irrelevant.

Here, we learn how to leverage asyncio.gather and asyncio.

CancelledError to build an elegant solution that can do exactly that.

Chapter 3 Working with Coroutines and Async/Await

61

�Solution
The asyncio.gather method is a high-level tool that can be used to group

coroutines while silencing the emitted exceptions and returning them

as a result value. The exceptions are returned by using the keyword-only

argument return_exceptions.

import asyncio

async def cancellable(delay=10, *, loop):

 try:

 now = loop.time()

 print(f"Sleeping from {now} for {delay} seconds ...")

 await asyncio.sleep(delay)

 print(f"Slept for {delay} seconds without disturbance...")

 except asyncio.CancelledError:

 �print(f"Cancelled at {now} after {loop.time()-now}

seconds")

def canceller(task, fut):

 task.cancel()

 fut.set_result(None)

async def cancel_threadsafe(gathered_tasks, loop):

 fut = loop.create_future()

 loop.call_soon_threadsafe(canceller, gathered_tasks, fut)

 await fut

async def main():

 loop = asyncio.get_running_loop()

 coros = [cancellable(i, loop=loop) for i in range(10)]

 gathered_tasks = asyncio.gather(*coros)

Chapter 3 Working with Coroutines and Async/Await

62

 �# Add a delay here, so we can see that the first three

coroutines run uninterrupted

 await asyncio.sleep(3)

 await cancel_threadsafe(gathered_tasks, loop)

 try:

 await gathered_tasks

 except asyncio.CancelledError:

 print("Was cancelled")

asyncio.run(main())

�How It Works
Using asyncio.gather, we can do the following:

•	 Schedule all the coroutines passed to it concurrently

•	 Receive a GatheringFuture, which can be used to

cancel all coroutines at the same time

If awaited successfully, asyncio.gather returns a list of all the results.

asyncio.gather supports a keyword-only argument called return_

exceptions, which can alter the result set on the GatheringFuture.

If an exception occurs in one of the scheduled coroutines, it can either

bubble up or be returned as an argument.

Note I rrespective of the return_exceptions argument being set
to True or not, the cancellation of the GatheringFuture is always
propagated since Python 3.7.

Chapter 3 Working with Coroutines and Async/Await

63

�Shielding a Coroutine from Cancellation
�Problem
Some coroutines are vital to the integrity of the system and hence we

cannot allow them to be cancelled by accident. For example, some

initialization hooks of the system need to take place before we can

run anything else. Therefore, we cannot allow them to be cancelled

inadvertently.

�Solution
If you want to ensure that a coroutine cannot be cancelled from the

outside, you can use asyncio.shield.

import asyncio

async def cancellable(delay=10):

 now = asyncio.get_running_loop().time()

 try:

 print(f"Sleeping from {now} for {delay} seconds ...")

 await asyncio.sleep(delay)

 print(f"Slept for {delay} seconds without disturbance...")

 except asyncio.CancelledError:

 print("I was disturbed in my sleep!")

def canceller(task, fut):

 task.cancel()

 fut.set_result(None)

async def cancel_threadsafe(task, *, delay=3, loop):

 await asyncio.sleep(delay)

 fut = loop.create_future()

 loop.call_soon_threadsafe(canceller, task, fut)

Chapter 3 Working with Coroutines and Async/Await

64

 await fut

async def main():

 complete_time = 10

 cancel_after_secs = 3

 loop=asyncio.get_running_loop()

 coro = cancellable(delay=complete_time)

 shielded_task = asyncio.shield(coro)

 �asyncio.create_task(cancel_threadsafe(shielded_task,

delay=cancel_after_secs, loop=loop))

 try:

 await shielded_task

 except asyncio.CancelledError:

 await asyncio.sleep(complete_time - cancel_after_secs)

asyncio.run(main())

�How It Works
After shielding your task, you can safely call cancel on the shielded

task without fearing that the coroutine/task that’s shielded will also be

cancelled.

Note that you cannot safeguard a coroutine from being cancelled
from within itself with asyncio.shield. Given how asyncio.
shield is implemented (in the Python 3.7 version), it will add
another task to the global task list.

Hence, if you have shutdown logic that works along the lines of

gather(*all_tasks()).cancel(), you might cancel the inner task of the

shield operation.

Chapter 3 Working with Coroutines and Async/Await

65

�Chaining Coroutines
�Problem
Using concurrency does not mean our code is free from assumptions

about ordering and consequence. In fact, it is even more essential to have a

way to express them in an easily understandable fashion.

�Solution
For that purpose, we can deploy the await keyword, which can be used to

block the execution of awaitables until they either return or are cancelled.

import asyncio

async def print_delayed(delay, text):

 print(await asyncio.sleep(delay, text))

async def main():

 await print_delayed(1, "Printing this after 1 second")

 await print_delayed(1, "Printing this after 2 seconds")

 await print_delayed(1, "Printing this after 3 seconds")

asyncio.run(main())

�How It Works
Just one coroutine can run at the same time on a loop, since a coroutine

runs also under the GIL.

We use the await keyword to schedule an awaitable on the loop with

the premise of returning from that call when the awaitable has finished

executing or has been cancelled.

Chapter 3 Working with Coroutines and Async/Await

66

Awaitables can be one of the following:

•	 A native coroutine object returned from a native

coroutine function.

•	 A generator-based coroutine object returned from a

function decorated with @asyncio.coroutine().

•	 An object with an __await__ method returning an

iterator (futures fall in this category).

You can check for an awaitable by means of inspect.isawaitable.

�Waiting on Multiple Coroutines
�Problem
We want to wait on multiple coroutines at the same time.

�Solution
We have two options to wait on multiple coroutines:

•	 asyncio.gather

•	 asyncio.wait

Both have their use cases. The asyncio.gather function provides a

way to group and wait/cancel multiple coroutines at a time, as seen in the

prior example.

If your only use case is to schedule multiple coroutines at the same

time, you can safely assume that asyncio.gather is sufficient to do the job.

Chapter 3 Working with Coroutines and Async/Await

67

import asyncio

async def print_delayed(delay, text,result):

 print(await asyncio.sleep(delay, text))

 return result

async def main():

 workload = [

 print_delayed(1, "Printing this after 1 second",1),

 print_delayed(1, "Printing this after 1 second",2),

 print_delayed(1, "Printing this after 1 second",3),

]

 results = await asyncio.gather(*workload)

 print(results)

asyncio.run(main())

�How It Works
asyncio.gather schedules and executes multiple coroutines or futures

using asyncio.ensure_future. This API is kept inside of Python 3.7 for

backward compatibility. It uses asyncio.get_event_loop for querying the

current event loop in the case of coroutines or asyncio.Future.get_loop

in the case of futures before passing both of them to asyncio.ensure_

future for scheduling.

Note T he entrance order is not necessarily the order in which the
coroutines/futures are scheduled.

All futures must share the same event loop. If all the tasks are completed

successfully, the returned future's result is the list of results (in the order of

the original sequence, not necessarily the result order).

Chapter 3 Working with Coroutines and Async/Await

68

Additionally, there is the return_exception keyword-only argument,

which we discussed in the “How to Cancel Multiple Coroutines” section.

�Waiting on Multiple Coroutines with
Different Heuristics
�Problem
Recall that we talked about two ways to await multiple coroutines:

•	 asyncio.gather

•	 asyncio.wait

The one we have not discussed yet is asyncio.wait, which can be used

to wait on multiple coroutines with different heuristics.

�Solution #1
We will wait for multiple coroutines using asyncio.wait and asyncio.

ALL_COMPLETED.

import asyncio

async def raiser():

 raise Exception("An exception was raised")

async def main():

 raiser_future = asyncio.ensure_future(raiser())

 �hello_world_future = asyncio.create_task(asyncio.sleep(1.0,

"I have returned!"))

 coros = {raiser_future, hello_world_future}

 �finished, pending = await asyncio.wait(coros, return_

when=asyncio.ALL_COMPLETED)

Chapter 3 Working with Coroutines and Async/Await

69

 assert raiser_future in finished

 assert raiser_future not in pending

 assert hello_world_future in finished

 assert hello_world_future not in pending

 print(raiser_future.exception())

 print(hello_world_future.result())

asyncio.run(main())

�Solution #2
We will wait for multiple coroutines using asyncio.wait and asyncio.

FIRST_EXCEPTION.

import asyncio

async def raiser():

 raise Exception("An exception was raised")

async def main():

 raiser_future = asyncio.ensure_future(raiser())

 �hello_world_future = asyncio.create_task(asyncio.sleep(1.0,

"I have returned!"))

 coros = {raiser_future, hello_world_future}

 �finished, pending = await asyncio.wait(coros, return_

when=asyncio.FIRST_EXCEPTION)

 assert raiser_future in finished

 assert raiser_future not in pending

 assert hello_world_future not in finished

 assert hello_world_future in pending

 print(raiser_future.exception())

 err_was_thrown = None

Chapter 3 Working with Coroutines and Async/Await

70

 try:

 print(hello_world_future.result())

 except asyncio.InvalidStateError as err:

 err_was_thrown = err

 assert err_was_thrown

asyncio.run(main())

�Solution #3
We will wait for multiple coroutines using asyncio.wait and asyncio.

FIRST_COMPLETED.

import asyncio

async def raiser():

 raise Exception("An exception was raised")

async def main():

 raiser_future = asyncio.ensure_future(raiser())

 �hello_world_future = asyncio.create_task(asyncio.sleep(1.0,

"I have returned!"))

 coros = {raiser_future, hello_world_future}

 �finished, pending = await asyncio.wait(coros, return_

when=asyncio.FIRST_COMPLETED)

 assert raiser_future in finished

 assert raiser_future not in pending

 assert hello_world_future not in finished

 assert hello_world_future in pending

 print(raiser_future.exception())

 err_was_thrown = None

 try:

 print(hello_world_future.result())

Chapter 3 Working with Coroutines and Async/Await

71

 except asyncio.InvalidStateError as err:

 err_was_thrown = err

 assert err_was_thrown

asyncio.run(main())

�How It Works
The different solutions of this section demonstrate how asyncio.wait

behaves with different values of the return_when parameter.

asyncio.wait is more low level than asyncio.gather in the sense that

it can be used for grouping coroutines as well, but not for cancellation

purposes. It takes a keyword-only parameter called return_when with the

wait strategy. It returns with two values—two sets either containing the

finished and the pending tasks.

The allowed values for the return_when parameter are as follows:

•	 FIRST_COMPLETED: Returns when any future finishes or

is cancelled.

•	 FIRST_EXCEPTION: Returns when any future finishes by

raising an exception. If no future raises an exception,

then this value is equivalent to ALL_COMPLETED.

•	 ALL_COMPLETED: Returns when all futures finish or are

cancelled.

Note Y ou should not pass coroutines directly to asyncio.wait
but rather wrap them in a task first via asyncio.create_task
or loop.create_task. The reason for this is that coroutines are
wrapped inside of asyncio.wait using ensure_future. ensure_
future leaves future instances unchanged. It is not possible to use
the coroutines to check inside the returned sets of asyncio.wait -
which are (done, pending), for the status of the coroutines.

Chapter 3 Working with Coroutines and Async/Await

72

We added the asserts to illustrate how asyncio.wait behaves given

the possible values for the return_when parameter.

Note  Just calling raiser_future.exception() is not a safe
option, since it might raise a CancelledError.

�Waiting on Multiple Coroutines and Ignoring
Exceptions
�Problem
We know so far that we have two ways of running multiple coroutines and

waiting on them, which are:

•	 asyncio.gather

•	 asyncio.wait

In both cases, we need to ensure that the future that gathers all the

coroutines/tasks is not cancelled.

We also how to achieve cancellation safety, which is to use asyncio.

shield.

�Solution
Now we learn now how all that knowledge comes together to wait on

multiple coroutines and ignore exceptions using asyncio.gather and

asyncio.shield:

import asyncio

import sys

async def print_delayed(delay, text,):

 print(await asyncio.sleep(delay, text))

Chapter 3 Working with Coroutines and Async/Await

73

async def raise_delayed(delay, text,):

 raise Exception(await asyncio.sleep(delay, text))

async def main():

 workload = [

 print_delayed(5, "Printing this after 5 seconds"),

 raise_delayed(5, "Raising this after 5 seconds"),

 print_delayed(5, "Printing this after 5 seconds"),

]

 res = None

 try:

 �gathered = asyncio.gather(*workload, return_

exceptions=True)

 res = await gathered

 except asyncio.CancelledError:

 �print("The gathered task was cancelled", file=sys.stderr)

 finally:

 print("Result:", res)

asyncio.run(main())

�How It Works
We schedule our workload using the asyncio.gather function; note that

we also schedule a coroutine that will raise an exception.

To shield against premature cancellation of our GatheringFuture, we

wrap everything into a try except block since asyncio.shield has no effect.

Note T he try except block just stops the CancelledError from
bubbling up and the coroutines behind the GatheringFuture get
cancelled nonetheless.

Chapter 3 Working with Coroutines and Async/Await

74

Setting return_exceptions to True, however, turns all exceptions

(also CancelledErrors) into return values. You can find them in the

corresponding position of the returned list.

�Waiting for a Specific Condition
�Problem
We want to create a simple API that allows us to wait for a coroutine if a

condition of choice is invalid. Ideally, the API will allow us to pass our

condition as a predicate function.

�Solution
asyncio provides an implementation of condition variables, a

synchronization primitive. They enable coroutines to wait until a

condition occurs.

import asyncio

async def execute_on(condition, coro, predicate):

 async with condition:

 await condition.wait_for(predicate)

 await coro

async def print_coro(text):

 print(text)

async def worker(numbers):

 while numbers:

 print("Numbers:", numbers)

 numbers.pop()

 await asyncio.sleep(0.25)

Chapter 3 Working with Coroutines and Async/Await

75

async def main():

 numbers = list(range(10))

 condition = asyncio.Condition()

 is_empty = lambda: not numbers

 await worker(numbers)

 await execute_on(condition, print_coro("Finished!"), is_empty)

asyncio.run(main())

�How It Works
We can use a condition variable to monitor the completion of our worker

coroutine, which pops the numbers inside the numbers list one after

another.

Condition variables provide us with implicit and explicit notifying.

Either they monitor a predicate that’s called repeatedly until it becomes

true or the waiters are notified by calling condition_variable.notify or

condition_variable.notify_all.
The example uses implicit notifying. Hence, our predicate

function, which is is_empty = lambda: not numbers, must return True

for the condition variable’s lock to be freed.
We define the helper coroutine function execute_on, which sets the

lock inside the condition variable correctly. This happens before we use

the wait_for coroutine method to wait until the predicate holds true and

dispatch the passed coroutine.

Note I f you use the condition variable in more than one coroutine,
you need to pass your own asyncio.Lock instance!

Chapter 3 Working with Coroutines and Async/Await

77© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_4

CHAPTER 4

Working with Async
Generators
Let’s recap which problems conventional generators try to solve.

We have a complex computation that can be performed iteratively

and are interested in every sub-result along the way. Of course, we could

pre-compute all values up to the desired value. But that means we would

have to wait until we reached the desired value to return a collection

of values pre-populated with the previous sub-results. This is because

returning from a function means we would lose all of the “context” that it

held up to that point.

Fortunately, Python provides the native and clean API of generators to

be able to return sub-results/values without losing the generator function’s

“context.” An issue remains with the generator pattern. If the computations

for the sub-results are independent, we unnecessarily provide the results

in the order of the yield calls.

This is a result of our generators working in a synchronous fashion. If

we asynchronously compute the steps and always return the result that has

finished computing as the next value, we basically have the framework for

our async generator.

78

�Writing an Async Generator
�Problem
You can use async generators when you need to asynchronously generate a

sequence of values and have the construct behave like an iterator.

�Solution
Async generators are the logical extension to (synchronous) generators.

The asynchronous generator iterators are governed under the

asynchronous iterator protocol. The asynchronous iterator protocol can

be implemented by providing the __aiter__ method and the __anext__

coroutine method or by writing an asynchronous generator function.

The __aiter__ method returns the asynchronous iterator and is

synchronous.

The __anext__ coroutine method returns an awaitable object, which uses

a StopIteration exception to “yield” values and an StopAsyncIteration

exception to signal the end of the iteration. Asynchronous generator functions

look like native coroutine /async-def functions and return an asynchronous

generator iterator. They hence may contain “yield” expressions for producing

values that can be consumed by an async-for loop.

To demonstrate how an asynchronous generator function is written,

we will write an asynchronous generator that generates random numbers

that yield control to the event loop for a specified time.

import random

import asyncio

async def random_number_gen(delay,start,end):

 while True:

 yield random.randint(start,end)

 await asyncio.sleep(delay)

Chapter 4 Working with Async Generators

79

�How It Works
The async random number generator is written as you would expect from

a synchronous one.

You pass it an interval via the start and end parameters, and it will

generate random integers using the random module.

The catch is that the coroutine yields control to the event loop for

delay seconds after generating the number to not block other coroutines.

The implications are that the consumers of random_number_gen need

to be order-agnostic—meaning they need to be independent of each other

in terms of which consumer finishes first/last.

If you prefer an order preserving but blocking scheme, delete await

asyncio.sleep(delay) and the delay parameter - which would be

equivalent to a synchronous generator.

�Running an Async Generator
�Problem
Async generators cannot be awaited like normal coroutines. This section

shows how they can be run.

�Solution
Consuming an async generator is possible two ways:

•	 Using an async for loop

•	 Manually interacting with the async generator by

means of the asend and aclose coroutines on it

The first option is more high level and what you want to run in a

production setting. There might be reasons why you decide otherwise. For

instance, using the async generator as a pausable/resumable coroutine

Chapter 4 Working with Async Generators

80

that you can feed data to after scheduling and that preserves context/state.

We will use this feature in the state machine section.

import random

import asyncio

async def random_number_gen(delay,start,end):

 while True:

 yield random.randint(start,end)

 await asyncio.sleep(delay)

async def main():

 async for i in random_number_gen(1,0,100):

 print(i)

try:

 print("Starting to print out random numbers...")

 print("Shut down the application with Ctrl+C")

 asyncio.run(main())

except KeyboardInterrupt:

 print("Closed the main loop..")

�How It Works
To demonstrate how to run an async generator, we run our example

random_number_gen in the main coroutine. We schedule the main coroutine

via asyncio.run and make sure we can catch a KeyboardInterrupt to have

a way to exit the loop. asyncio.run cleans up async generators that haven’t

finished executing (such as the while-True-loop based random_number_

gen async generator).

Chapter 4 Working with Async Generators

81

�Wrapping an Async Generator in an Async
Comprehension
�Problem
Async generators enhance generators that can be consumed in

comprehension statements. Likewise, you can consume async generators

in async comprehension statements.

�Solution
To demonstrate how to wrap an async generator in an async

comprehension, we will write a non-blocking multi-server HTTP client

that can request the contents of multiple URLs seamlessly, using only

standard library components.

We deploy the asynchronous comprehension in the part that generates

the non-blocking request objects using the loop.run_in_executor API.

We use urllib3 as a blocking HTTP client library, which we will asyncify.

Hence, you need to install the certifi and urllib3 packages via the

package manager of your choice. For example, via pip or pipenv, you use:

pip3 install urllib3==1.23

pip3 install certifi==2018.04.16

or

pipenv install urllib3==1.23

pipenv install certifi==2018.04.16

Note I n this example, we use the certifi module for collections
of root certificates that we can use to query TLS-secured websites
over HTTPS.

Chapter 4 Working with Async Generators

82

import asyncio

import functools

from concurrent.futures.thread import ThreadPoolExecutor

import sys

import certifi

import urllib3

async def request(poolmanager: urllib3.PoolManager,

 executor,

 *,

 method="GET",

 url,

 fields=None,

 headers=None,

 loop: asyncio.AbstractEventLoop = None,):

 if not loop:

 loop = asyncio.get_running_loop()

 �request = functools.partial(poolmanager.request, method,

url, fields=fields, headers=headers)

 return loop.run_in_executor(executor, request)

async def bulk_requests(poolmanager: urllib3.PoolManager,

 executor,

 *,

 method="GET",

 urls,

 fields=None,

 headers=None,

 loop: asyncio.AbstractEventLoop = None,):

 for url in urls:

 �yield await request(poolmanager, executor, url=url,

fields=fields, headers=headers, loop=loop)

Chapter 4 Working with Async Generators

83

def filter_unsuccesful_requests(responses_and_exceptions):

 return filter(

 �lambda url_and_response: not isinstance(url_and_

response[1], Exception),

 responses_and_exceptions.items()

)

async def main():

 �poolmanager = urllib3.PoolManager(cert_reqs='CERT_

REQUIRED', ca_certs=certifi.where())

 executor = ThreadPoolExecutor(10)

 urls = [

 "https://google.de",

 "https://apple.com",

 "https://apress.com",

]

 �requests = [request async for request in bulk_

requests(poolmanager, executor, urls=urls,)]

 �responses_and_exceptions = dict(zip(urls, await asyncio.

gather(*requests, return_exceptions=True)))

 �responses = {url: resp.data for (url, resp) in filter_

unsuccesful_requests(responses_and_exceptions)}

 for res in responses.items():

 print(res)

 for url in urls:

 if url not in responses:

 �print(f"No successful request could be

made to {url}. Reason: {responses_and_

exceptions[url]}",file=sys.stderr)

asyncio.run(main())

Chapter 4 Working with Async Generators

84

�How It Works
We start by writing a non-blocking wrapper around the urllib3.

PoolManager API. For this purpose, we schedule the poolmanager.request

method on an executor via the loop.run_in_executor coroutine method.

The convenience function request encapsulates that logic and has the

same signature (and defaults) as poolmanager.request.

Note that this is prone to error in between Python versions since the
underlying API might change!

bulk_requests is our async generator. It iterates over a list of URLs

and returns the futures that will resolve to the content under the URLs

if the request was successful. To collect all the request futures, we

deploy an async list comprehension. The syntax follows a synchronous

comprehension with an additional async keyword in front of the loop.

Similar comprehensions exist for dicts and sets. We then go on to

dispatch the requests via asyncio.gather and filter out the unsuccessful

events. An error message is printed for every failed request.

�Writing a State Machine with an Async
Generator
�Problem
You can use the async generator interface to interact with an async

generator, thereby turning it into a state machine.

�Solution
Given the nature of async generators—which is that they preserve the

coroutine’s state and that they can be communicated with by means of

Chapter 4 Working with Async Generators

85

asend—we can manually iterate over them by means of asend calls for

every step.

We will write a state machine that is controlled by a user prompt which

invokes the respective events.

import asyncio

import enum

import logging

import sys

from dataclasses import dataclass

class State(enum.Enum):

 IDLE = enum.auto()

 STARTED = enum.auto()

 PAUSED = enum.auto()

@dataclass(frozen=True)

class Event:

 name: str

START = Event("Start")

PAUSE = Event("Pause")

STOP = Event("Stop")

EXIT = Event("Exit")

STATES = (START, PAUSE, STOP, EXIT)

CHOICES = "\n".join([f"{i}: {state.name}" for i, state in

enumerate(STATES)])

MENU = f"""

Menu

Enter your choice:

{CHOICES}

"""

Chapter 4 Working with Async Generators

86

TRANSITIONS = {

 (State.IDLE, PAUSE): State.IDLE,

 (State.IDLE, START): State.STARTED,

 (State.IDLE, STOP): State.IDLE,

 (State.STARTED, START): State.STARTED,

 (State.STARTED, PAUSE): State.PAUSED,

 (State.STARTED, STOP): State.IDLE,

 (State.PAUSED, START): State.STARTED,

 (State.PAUSED, PAUSE): State.PAUSED,

 (State.PAUSED, STOP): State.IDLE,

 (State.IDLE, EXIT): State.IDLE,

 (State.STARTED, EXIT): State.IDLE,

 (State.PAUSED, EXIT): State.IDLE,

}

class StateMachineException(Exception):

 pass

class StartStateMachineException(StateMachineException):

 pass

class StopStateMachineException(StateMachineException):

 pass

async def next_state(state_machine, event, *,

exc=StateMachineException):

 try:

 if state_machine:

 await state_machine.asend(event)

 except StopAsyncIteration:

 if exc != StopStateMachineException:

 raise exc()

Chapter 4 Working with Async Generators

87

 except:

 raise exc()

async def start_statemachine(state_machine,):

 �await next_state(state_machine, None, exc=StartStateMachine

Exception)

async def stop_statemachine(state_machine,):

 �await next_state(state_machine, EXIT,

exc=StopStateMachineException)

async def create_state_machine(transitions, *, logger=None,):

 if not logger:

 logger = logging.getLogger(__name__)

 event, current_state = None, State.IDLE

 while event != EXIT:

 event = yield

 edge = (current_state, event)

 if edge not in transitions:

 �logger.error("Cannot consume %s in state %s",

event.name, current_state.name)

 continue

 next_state = transitions.get(edge)

 �logger.debug("Transitioning from %s to %s", current_

state.name, next_state.name)

 current_state = next_state

def pick_next_event(logger):

 next_state = None

Chapter 4 Working with Async Generators

88

 while not next_state:

 try:

 next_state = STATES[int(input(MENU))]

 except (ValueError, IndexError):

 logger.error("Please enter a valid choice!")

 continue

 return next_state

async def main(logger):

 �state_machine = create_state_machine(TRANSITIONS,

logger=logger)

 try:

 await start_statemachine(state_machine)

 while True:

 event = pick_next_event(logger)

 if event != EXIT:

 await next_state(state_machine, event)

 else:

 await stop_statemachine(state_machine)

 except StartStateMachineException:

 �logger.error("Starting the statemachine was

unsuccessful")

 except StopStateMachineException:

 �logger.error("Stopping the statemachine was

unsuccessful")

 except StateMachineException:

 �logger.error("Transitioning the statemachine was

unsuccessful")

Chapter 4 Working with Async Generators

89

logger = logging.getLogger(__name__)

logger.addHandler(logging.StreamHandler(sys.stdout))

logger.setLevel(logging.DEBUG)

try:

 asyncio.get_event_loop().run_until_complete(main(logger))

except KeyboardInterrupt:

 logger.info("Closed loop..")

�How It Works
At the heart of a state machine lies a function that defines how to perform

a transition from the current state given the input to another state. In our

case, it’s next_state.

next_state encapsulates the state transition logic and catches the

StopAsyncIteration, which is thrown when we call aclose on the

generator. A table that defines the valid transitions that might occur is also

needed—and provided—via the TRANSITIONS dict.

We model the state events as data classes and the state as an enum.

The user is prompted via the pick_next_event function, which presents

a menu matching the possible events to invoke on the state machine. The

current state will be printed. If an invalid transition was invoked, we raise

a custom StateMachineException to inform the user something went

wrong.

Additionally, we define convenience methods for starting, stopping,

and creating the state machine. create_state_machine returns an async

generator and waits for I/O until needed. It ignores the events in relation to

unknown transitions.

Chapter 4 Working with Async Generators

90

�Cleaning Up After Using Async Generators
�Problem
Async generators may be stuck in execution when the loop changes state

to stopped or cancelled.

�Solution
To be able to properly stop the async generator, the aclose property of the

async generator throws a GeneratorExit exception into the underlying

generator.

The loop and the asyncio module provide two ways to cleanly address

the issue when confronted with multiple async generators.

�Option 1

import asyncio

async def async_gen_coro():

 yield 1

 yield 2

 yield 3

async def main():

 async_generator = async_gen_coro()

 await async_generator.asend(None)

 await async_generator.asend(None)

asyncio.run(main())

Chapter 4 Working with Async Generators

91

�How It Works
asyncio.BaseEventLoop provides the BaseEventLoop.shutdown_

asyncgens API, which schedules aclose calls on all the running async

generators.

asyncio.run conveniently handles calling loop.shutdown_asyncgens

for us internally.

�Option 2

import asyncio

async def endless_async_gen():

 while True:

 yield 3

 await asyncio.sleep(1)

async def main():

 async for i in endless_async_gen():

 print(i)

loop = asyncio.new_event_loop()

asyncio.set_event_loop(loop)

try:

 loop.run_until_complete(main())

except KeyboardInterrupt:

 print("Caught Ctrl+C. Exiting now..")

finally:

 try:

 loop.run_until_complete(loop.shutdown_asyncgens())

 finally:

 loop.close()

Chapter 4 Working with Async Generators

92

�How It Works
If you feel that you want to call BaseEvent.shutdown_asyncgens yourself

at a point where your code will not spawn any new async generators, you

can deploy a more elaborate shutdown routine. The principle stays the

same: You need to put your loop.shutdown_asyncgens into the finally

block of the try-except-finally construct around your loop.run_until_

complete/loop.run_forever, since you want it to irrespective of any

exception that your loop might have encountered.

�Wring an Asynchronous Generator Based
Web Crawler
�Problem
We want to build a web based crawler that can exploit the CPU time most

efficiently using async generators.

�Solution
A web crawler is a piece of software that systematically browses the web.

This means it starts at a point like an URL and traverses all the links that it

encounters. If a web crawler operates in a synchronous fashion, it might

block other tasks that may be executed while it waits for the responses to

its requests. An async generator can yield control to the event loop at this

point to better exploit the CPU time.

import asyncio

import re

import typing

Chapter 4 Working with Async Generators

93

from concurrent.futures import Executor, ThreadPoolExecutor

from urllib.request import urlopen

DEFAULT_EXECUTOR = ThreadPoolExecutor(4)

ANCHOR_TAG_PATTERN = re.compile(b"<a.+?href=[\"|\'](.*?)

[\"|\'].*?>", re.RegexFlag.MULTILINE | re.RegexFlag.IGNORECASE)

async def wrap_async(generator: typing.Generator,

 executor: Executor = DEFAULT_EXECUTOR,

 sentinel=object(),

 *,

 loop: asyncio.AbstractEventLoop = None):

 """

 �We wrap a generator and return an asynchronous generator

instead

 :param iterator:

 :param executor:

 :param sentinel:

 :param loop:

 :return:

 """

 if not loop:

 loop = asyncio.get_running_loop()

 while True:

 �result = await loop.run_in_executor(executor, next,

generator, sentinel)

 if result == sentinel:

 break

 yield result

Chapter 4 Working with Async Generators

94

def follow(*links):

 """

 :param links:

 :return:

 """

 return ((link, urlopen(link).read()) for link in links)

def get_links(text: str):

 """

 �Get back an iterator that gets us all the links in a text

iteratively and safely

 :param text:

 :return:

 """

 �# Always grab the last match, because that is how a smart

http parser would interpret a malformed # anchor tag

 return (match.groups()[-1]

 for match in ANCHOR_TAG_PATTERN.finditer(text)

 �# This portion is a safeguard against None matches

and zero href matches

 �if hasattr(match, "groups") and len(match.groups()))

async def main(*links):

 async for current, body in wrap_async(follow(*links)):

 print("Current url:", current)

 print("Content:", body)

 async for link in wrap_async(get_links(body)):

 print(link)

asyncio.run(main("http://apress.com"))

Chapter 4 Working with Async Generators

95

�How It Works
Our crawler focuses on the two main tasks—requesting a website and

extracting all the links that it needs to follow. Both tasks involve a lot of

I/O. We can offload this to a thread pool, where things can happen in

parallel (so the tasks don’t block each other) by using the loop.run_in_

executor API. For that matter, wrap_async was written.

Note A lternatively we can use a network module that is asyncio
enabled like aiohttp which is not in the scope of this example.

Inside it, we invoke the next builtin, which takes a generator and a

default value which will be returned if a StopIteration exception is thrown.

We pass a sentinel object which we can test against later. This construction

will iterate over the generator until it is exhausted and return the sentinel

at which point the async generator will be closed by the if result ==

sentinel: condition. Since the loop.run_in_executor method returns a

future, we need to await it to get the result. This function ensures that every

step of the generator is executed non-blocking.

We need to create two generators now that follow links and another

one that extracts links from a website:

•	 follow reads the contents of an URL uses urllib for

multiple links

•	 get_links extracts the links of a multiple HTML page

using a regex iterator

Each of these steps will be scheduled on the thread pool, thanks

to loop.run_in_executor on next. The async generator will be then

consumed in main, where we in turn print the found links and the current

URL/body.

Chapter 4 Working with Async Generators

97© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_5

CHAPTER 5

Working with Async
Context Manager
Context managers provide a convenient API to govern a runtime context.

They expose the ability to hook into entering the context manager scope

and exit it. Given that asyncio extends the language with the possibility

of execution suspension, it becomes evident that a synchronous context

manager cannot interface with the event loop in a seamless fashion.

An asynchronous context manager is a context manager that can use

the await keyword to suspend execution in its enter and exit methods.

This way, it can yield control back to the event loop and interact with

resources (like a database) in an asynchronous fashion.

The asynchronous context manager was introduced in the course of

PEP-0492 and uses a pattern we already now from the async generator.

Well-known APIs like the for loop are used in conjunction with the async

keyword. In the case of the async context manager the with keyword will

be prefixed with the async keyword.

To not convolute the context manager API, it was decided that all the

bits used in the context manager protocol would be replicated for the

asynchronous context rather than reused.

For instance, the dunder methods __enter__ and __exit__ are copied

as __aenter__ and __aexit__ for the asynchronous variant.

Note that __aenter__ and __aexit__ need to be coroutine methods.

For Python version 3.7 and with the help of native coroutines, it is now

98

possible to use an asynchronous generator and the asynccontextmanager

decorator jointly to adhere to the asynchronous context manager protocol.

�Writing an Async Context Manager
As of Python 3.7, there are two ways to write an async context manager.

Similar to the synchronous context manager, we can either write a class

and override the __aenter__ and __aexit__ coroutine methods or use the

asynccontextmanager decorator.

�Solution
In this solution we’ll put the asynccontextmanager decorator to use by

writing an asynchronous context manager that enables non-blocking

file I/O.

from concurrent.futures.thread import ThreadPoolExecutor

from contextlib import asynccontextmanager

import asyncio

class AsyncFile(object):

 def __init__(self, file, loop=None, executor=None):

 if not loop:

 loop = asyncio.get_running_loop()

 if not executor:

 executor = ThreadPoolExecutor(10)

 self.file = file

 self.loop = loop

 self.executor = executor

 self.pending = []

 self.result = []

Chapter 5 Working with Async Context Manager

99

 def write(self, string):

 self.pending.append(

 �self.loop.run_in_executor(self.executor, self.file.

write, string,)

)

 def read(self, i):

 self.pending.append(

 �self.loop.run_in_executor(self.executor, self.file.

read, i,)

)

 def readlines(self):

 self.pending.append(

 �self.loop.run_in_executor(self.executor, self.file.

readlines,)

)

@asynccontextmanager

async def async_open(path, mode="w"):

 with open(path, mode=mode) as f:

 loop = asyncio.get_running_loop()

 file = AsyncFile(f, loop=loop)

 try:

 yield file

 finally:

 �file.result = await asyncio.gather(*file.pending,

loop=loop)

Chapter 5 Working with Async Context Manager

100

�How It Works
Leveraging our knowledge about asynchronous generators and

the context manager returned by the call to open, we can write an

asynchronous generator function that returns a non-blocking wrapper

around our file handle.

The AsyncFile class provides methods that add the calls to write,

read, and readlines to a list of pending tasks. These tasks are scheduled

on a ThreadPoolExecutor through an event loop in the finally block.

The finally block corresponds to __aexit__ in this case since it is

ensured to be run; it also happens after the yield of the AsyncFile object.

This way, we achieve non-blocking file I/O in the context of the

asynchronous context manager.

Note that the results of the read calls will be stored in the result
field of the AsyncFile object.

�Running an Async Context Manager
Given our asynchronous context manager from the previous example, we

want to leverage the async with keywords to schedule the async context

manager.

�Solution
Using the async with keywords, we can enter the runtime context of an

async context manager.

Note T he async with syntax can only be used inside a coroutine
function.

Chapter 5 Working with Async Context Manager

101

Upon entering the async context manager scope, the __aenter__

coroutine method is called without parameters and upon leaving, the

__aexit__ coroutine method is called with the following parameters:

exception type, exception value, and traceback object.

Note T he parameters passed to __aexit__ are optional and may
be set to None if no exception occurred.

import asyncio

import tempfile

import os

async def main():

 tempdir = tempfile.gettempdir()

 path = os.path.join(tempdir, "run.txt")

 print(f"Writing asynchronously to {path}")

 async with async_open(path, mode="w") as f:

 f.write("This\n")

 f.write("might\n")

 f.write("not\n")

 f.write("end\n")

 f.write("up\n")

 f.write("in\n")

 f.write("the\n")

 f.write("same\n")

 f.write("order!\n")

asyncio.run(main())

Chapter 5 Working with Async Context Manager

102

�How It Works
Since the async context manager uses the async keyword, it can only be

used in the context of a (native) coroutine method.

The syntax is simply async with followed by the call to the

asynchronous context manager and, eventually, an as directive. The rest is

similar to synchronous context managers.

�Synchronizing Pending Coroutines to Finish
Cleanly
asyncio provides multiple APIs to use if you want to await pending

coroutines.

There are APIs that target single and multiple coroutines and some

that enable the developer to await the coroutines under certain conditions

or iteratively.

We want to learn how to use these APIs in conjunction with async

context managers to synchronize pending coroutines cleanly.

�Solution
For awaiting coroutines, the following APIs can be used in conjunction

with the await keyword: asyncio.gather, asyncio.wait, asyncio.wait_

for, and as_completed.

But this step needs to happen manually. Using async context

managers, we can write thin wrappers around these functions to create

powerful high-level synchronization tools.

The next solution demonstrates a synchronization wall, after which we

can expect all scheduled coroutines to have finished.

Chapter 5 Working with Async Context Manager

103

import asyncio

class Sync():

 def __init__(self):

 self.pending = []

 self.finished = None

 def schedule_coro(self, coro, shield=False):

 �fut = asyncio.shield(coro) if shield else asyncio.

ensure_future(coro)

 self.pending.append(fut)

 return fut

 async def __aenter__(self):

 return self

 async def __aexit__(self, exc_type, exc_val, exc_tb):

 �self.finished = await asyncio.gather(*self.pending,

return_exceptions=True)

async def workload():

 await asyncio.sleep(3)

 �print("These coroutines will be executed simultaneously and

return 42")

 return 42

async def main():

 async with Sync() as sync:

 sync.schedule_coro(workload())

 sync.schedule_coro(workload())

 sync.schedule_coro(workload())

 �print("All scheduled coroutines have retuned or thrown:",

sync.finished)

asyncio.run(main())

Chapter 5 Working with Async Context Manager

104

�How It Works
Given our knowledge of asyncio.gather and the async context manager

protocol, we can build a component that schedules work and awaits upon

leaving the scope.

For this matter, we wrote the async context manager called Sync, which

exposes a schedule_coro method that can be used to schedule work (in

the form of a coroutine) and eventually shield it. It is then added to a list.

After all the work has been scheduled and protected from cancellation, we

can await it cleanly via asyncio.gather. Note that asyncio.shield schedules

the workload. So the work is already running and is a task object at that point.

Given that passing non-tasks to asyncio.gather is deprecated, this is

the intended behavior.

Note that you need to use the task object returned by schedule_
coro for identity comparisons!

�Interacting Asynchronously with a
Closeable Resource
You might have to deal with resources that schedule their close action as a

concurrent action.

�Solution
Under the premise that asynchronously closing resources while exposing a

future allows us to stall the actual closing of the resource, we can write an

async context manager that abstracts the cleanup/closing away.

import asyncio

import socket

from contextlib import asynccontextmanager

Chapter 5 Working with Async Context Manager

105

@asynccontextmanager

async def tcp_client(host='google.de', port=80):

 address_info = (await asyncio.get_running_loop().getaddrinfo(

 host, port,

 proto=socket.IPPROTO_TCP,

)).pop()

 if not address_info:

 raise ValueError(f"Could not resolve {host}:{port}")

 host,port =address_info[-1]

 reader, writer = await asyncio.open_connection(host, port)

 try:

 yield (reader, writer)

 finally:

 writer.close()

 await asyncio.shield(writer.wait_closed())

async def main():

 async with tcp_client() as (reader, writer):

 writer.write(b"GET /us HTTP/1.1\r\nhost: apress.com\r\n\r\n")

 await writer.drain()

 content = await reader.read(1024**2)

 print(content)

asyncio.run(main())

�How It Works
asyncio provides us with a high-level tool called asyncio.open_

connection to open an asynchronous stream writer and reader on an URL

with a given port.

The writer needs to be closed properly to deallocate the sockets

opened in the course of the connection.

Chapter 5 Working with Async Context Manager

106

Otherwise, both connection parties remain in a state of connection

(disregarding premature disconnections due to errors).

We can close a writer with the close method, but until the wait_

closed awaitable is awaited, we cannot safely assume it is closed.

We shield awaiting writer.wait_closed so that it cannot be cancelled

from the outside.

Given that we close and await the writer in the finally block, we can

safely assume that both actions succeed or that exceptions raised inside

the writer bubble up.

�Writing a Loop Worker Pool Async Context
Manager
Given our knowledge of how to build an async context manager that

synchronizes all the coroutines scheduled inside its scope after leaving

and how to build custom event loops, we know how to write a loop

worker pool async context manager that ensures that all the loop.call_*

callbacks have finished after leaving its scope.

�Solution
In Chapter 2, “Event Loop,” we discussed a way to await synchronous

actions on the loop by writing our own loop implementation.

You might remember learning about the await_callbacks method,

which needs to be awaited to make sure all the scheduled handles have

finished.

We will leverage the same loop implementation in conjunction with

the async context manager protocol to build a coroutine worker pool async

context manager.

Chapter 5 Working with Async Context Manager

107

import asyncio

from contextlib import asynccontextmanager

from functools import partial as func

class SchedulerLoop(asyncio.SelectorEventLoop):

 def __init__(self):

 super(SchedulerLoop, self).__init__()

 self._scheduled_callback_futures = []

 self.results = []

 @staticmethod

 def unwrapper(fut: asyncio.Future, function):

 """

 Function to get rid of the implicit fut parameter.

 :param fut:

 :type fut:

 :param function:

 :return:

 """

 return function()

 def _future(self, done_hook):

 """

 �Create a future object that calls the done_hook when it

is awaited

 :param loop:

 :param function:

 :return:

 """

 fut = self.create_future()

 �fut.add_done_callback(func(self.unwrapper,

function=done_hook))

 return fut

Chapter 5 Working with Async Context Manager

108

 �def schedule_soon_threadsafe(self, callback, *args,

context=None):

 fut = self._future(func(callback, *args))

 self._scheduled_callback_futures.append(fut)

 �self.call_soon_threadsafe(fut.set_result, None,

context=context)

 def schedule_soon(self, callback, *args, context=None):

 fut = self._future(func(callback, *args))

 self._scheduled_callback_futures.append(fut)

 self.call_soon(fut.set_result, None, context=context)

 �def schedule_later(self, delay_in_seconds, callback, *args,

context=None):

 fut = self._future(func(callback, *args))

 self._scheduled_callback_futures.append(fut)

 �self.call_later(delay_in_seconds, fut.set_result, None,

context=context)

 �def schedule_at(self, delay_in_seconds, callback, *args,

context=None):

 fut = self._future(func(callback, *args))

 self._scheduled_callback_futures.append(fut)

 �self.call_at(delay_in_seconds, fut.set_result, None,

context=context)

 async def await_callbacks(self):

 callback_futs = self._scheduled_callback_futures[:]

 self._scheduled_callback_futures[:] = []

 �return await asyncio.gather(*callback_futs, return_

exceptions=True, loop=self)

Chapter 5 Working with Async Context Manager

109

class SchedulerLoopPolicy(asyncio.DefaultEventLoopPolicy):

 def new_event_loop(self):

 return SchedulerLoop()

@asynccontextmanager

async def scheduler_loop():

 loop = asyncio.get_running_loop()

 if not isinstance(loop, SchedulerLoop):

 �raise ValueError("You can run the scheduler_loop async

context manager only on a SchedulerLoop")

 try:

 yield loop

 finally:

 loop.results = await loop.await_callbacks()

async def main():

 async with scheduler_loop() as loop:

 loop.schedule_soon(print, "This")

 loop.schedule_soon(print, "works")

 loop.schedule_soon(print, "seamlessly")

asyncio.set_event_loop_policy(SchedulerLoopPolicy())

asyncio.run(main())

�How It Works
scheduler_loop is our async context manager and it makes sure that the

loop we are running is a SchedulerLoop.

It fetches the currently running loop and awaits loop.await_

callbacks in its __aexit__ part/finally block.

To use the convenience of the asyncio.run API, we write a small

LoopPolicy where we override the loop.new_event_loop method to

return a SchedulerLoop instance.

Chapter 5 Working with Async Context Manager

110

Next, we run the main coroutine to see our async context manager

scheduler_loop in action.

�Writing a Subprocess Worker Pool Async
Context Manager
Leveraging many patterns we have already learned, we can write an async

context manager that schedules functions on different processes and runs

on our event loop.

�Solution
Using the asyncio.wrap_future method, which is intended to wrap

concurrent.futures.Future objects into awaitable asyncio.Future

objects, we can interact with the multiprocessing package. It is discouraged

to pass a ProcessPoolExecutor to the loop.run_in_executor API (since a

loop that is configured to use it may throw an OSError on loop.close—see

https://bugs.python.org/issue34073 for more information). Instead,

the preferred method is to use the asyncio.wrap_future and executor.

submit APIs together.

import asyncio

from concurrent.futures.process import ProcessPoolExecutor

from contextlib import asynccontextmanager

from multiprocessing import get_context, freeze_support

CONTEXT = get_context("spawn")

class AsyncProcessPool:

 def __init__(self, executor, loop=None,):

 self.executor = executor

Chapter 5 Working with Async Context Manager

https://bugs.python.org/issue34073

111

 if not loop:

 loop = asyncio.get_running_loop()

 self.loop = loop

 self.pending = []

 self.result = None

 def submit(self, fn, *args, **kwargs):

 �fut = asyncio.wrap_future(self.executor.submit(fn,

*args, **kwargs), loop=self.loop)

 self.pending.append(fut)

 return fut

@asynccontextmanager

async def pool(max_workers=None, mp_context=CONTEXT,

 �initializer=None, initargs=(), loop=None, return_

exceptions=True):

 �with ProcessPoolExecutor(max_workers=max_workers, mp_

context=mp_context,

 �initializer=initializer,

initargs=initargs) as executor:

 pool = AsyncProcessPool(executor, loop=loop)

 try:

 yield pool

 finally:

 �pool.result = await asyncio.gather(*pool.pending,

loop=pool.loop, return_exceptions=return_exceptions)

async def main():

 async with pool() as p:

 p.submit(print, "This works perfectly fine")

 result = await p.submit(sum, (1, 2))

 print(result)

 print(p.result)

Chapter 5 Working with Async Context Manager

112

if __name__ == '__main__':

 freeze_support()

 asyncio.run(main())

�How It Works
Given that a ProcessPoolExecutor has a submit method that returns

concurrent.futures.Future objects, we can write an AsyncProcessPool

that provides us with an analogue submit method that works on an event

loop by using asyncio.wrap_future on the return value.

By saving the scheduled tasks, we can await them in the finally block

of our async context manager.

Using asyncio.wrap_future, we can safely interact with the results of

a subprocess computation result in an asyncio way. We can use ayncio.

wait_for for timeouts or shield them from cancellation with asyncio.

shield (given that nothing cancels the subprocess from within).

When we fall out of the pool scope, all the scheduled workloads will

have finished.

Additionally, if we need to make stronger assurances inside the async

context manager scope, we can manually await them.

Chapter 5 Working with Async Context Manager

113© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_6

CHAPTER 6

Communication
Between Asyncio
Components
In the previous chapters, we learned about asynchronous interfaces to

standard library components (or even completely new APIs) that, in

the broader sense, keep shareable state/context or are “runnable”. This

includes:

•	 Coroutines

•	 Tasks

•	 Async generators

•	 Async context managers

•	 Async comprehensions

•	 Subprocesses

These components might need to share their state with other instances

of asyncio components. Examples where this makes sense include:

•	 Coroutine workers

•	 State-machine or state-keeping coroutines, such as an

audio player (playing/paused/idle)

114

•	 A watchdog for multiple subprocesses

•	 Synchronization of distributed computations

To facilitate shared state/context, asyncio provides counterparts of

processes/thread communication, tools like queues and signals. Asyncio

also influenced the creation of new APIs, like contextvars, which are

intended to provide the semantic equivalent of thread locals for tasks. Note

that the implications on data integrity in a distributed system apply also

to sharing state between asynchronous components. Data races can occur

on uncoordinated concurrent reads/writes of the shared state, which we

explore in Chapter 7, “Synchronization Between Asyncio Components”.

�Sending Additional Information to an
Asynchronous Generator
�Problem
Asynchronous generators are very powerful features of the asyncio library

and they enable us to reap the benefits of coroutine suspension, yielding

intermediate values and sending values to the running asynchronous

generator.

We learned how to do all this in our state machine example. Basically,

the theory behind it is to iterate manually over the asynchronous

generator, which is an arguably inelegant solution.

Focusing on the mechanism that is enabling the state machine, we will

find a more generic solution to the problem in which we could also easily

implement the state machine example.

Chapter 6 Communication Between Asyncio Components

115

�Solution
We write an async context manager Python 3.7 style, using the

@asynccontextmanager decorator, and manually iterate it so we can send it

values while it runs.

import asyncio

import logging

from contextlib import asynccontextmanager

class Interactor:

 def __init__(self, agen):

 self.agen = agen

 async def interact(self, *args, **kwargs,):

 try:

 await self.agen.asend((args, kwargs))

 except StopAsyncIteration:

 �logging.exception("The async generator is already

exhausted!")

async def wrap_in_asyngen(handler):

 while True:

 args, kwargs = yield

 handler(*args, **kwargs)

@asynccontextmanager

async def start(agen):

 try:

 await agen.asend(None)

 yield Interactor(agen)

 finally:

 await agen.aclose()

Chapter 6 Communication Between Asyncio Components

116

async def main():

 async with start(wrap_in_asyngen(print)) as w:

 await w.interact("Put")

 await w.interact("the")

 await w.interact("worker")

 await w.interact("to")

 await w.interact("work!")

asyncio.run(main())

�How It Works
The Interactor class encapsulates the part that enables the

communication to the async generator. It uses the asend coroutine

method to pass generic payloads, which it does by wrapping the *args and

**kwargs parameters into a tuple.

Hence, the async generator needs to obey the contract and unwrap the

payload. Our helper async generator wrap_in_asyngen passes these values

to a callable that was passed via the handler parameter.

This helper async generator could behave state-fully, but mind you

that the state of local variables will be resetted to the initial value if you

yield them to the caller.

The start async context manager wraps the async generator in an

Interactor and yields it back to us.

Calling interact calls asend under the hood, which is the equivalent

of the async for loop behavior.

The async for loop first calls asend under the hood with None as an

argument to initiate the iteration of the async generator.

Subsequent iteration steps call asend with None as an argument, until

they receive the special sentinel value called _PyAsyncGenWrappedValue,

which indicates to raise a StopAsyncIteration exception and contains the

last yielded value.

Chapter 6 Communication Between Asyncio Components

117

If you control the asend calls manually, it is possible to push values to

the asynchronous generator as demonstrated.

If you wanted to throw an exception into the asynchronous generator,

you can also use the athrow coroutine for that. In that case, you would

need to handle the exception inside the asynchronous generator function;

otherwise, it will stop prematurely.

�Using Queues with Coroutines
�Problem
Queues are widely used for concurrency, especially in the context of

multi-threaded or multi-process applications, so it’s a very familiar

process to developers.

If you want to migrate such an application to queues with

coroutines, you might wonder if there is a similar data structure like the

multiprocessing.Queue for asyncio that plays nice with coroutines.

�Solution
Using asyncio.Queue, we can leverage asyncio-native objects to handle

queuing of payloads.

import asyncio

import logging

logging.basicConfig(level=logging.DEBUG)

async def producer(iterable, queue: asyncio.Queue, shutdown_

event: asyncio.Event):

 for i in iterable:

Chapter 6 Communication Between Asyncio Components

118

 if shutdown_event.is_set():

 break

 try:

 queue.put_nowait(i)

 await asyncio.sleep(0)

 except asyncio.QueueFull as err:

 �logging.warning("The queue is too full. Maybe the

worker are too slow.")

 raise err

 shutdown_event.set()

async def worker(name, handler, queue: asyncio.Queue, shutdown_

event: asyncio.Event):

 while not shutdown_event.is_set() or not queue.empty():

 try:

 work = queue.get_nowait()

 # Simulate work

 handler(await asyncio.sleep(1.0, work))

 logging.debug(f"worker {name}: {work}")

 except asyncio.QueueEmpty:

 await asyncio.sleep(0)

async def main():

 �n, handler, iterable = 10, lambda val: None, [i for i in

range(500)]

 shutdown_event = asyncio.Event()

 queue = asyncio.Queue()

 �worker_coros = [worker(f"worker_{i}", handler, queue,

shutdown_event) for i in range(n)]

 producer_coro = producer(iterable, queue, shutdown_event)

Chapter 6 Communication Between Asyncio Components

119

 coro = asyncio.gather(

 producer_coro,

 *worker_coros,

 return_exceptions=True

)

 try:

 await coro

 except KeyboardInterrupt:

 shutdown_event.set()

 coro.cancel()

try:

 asyncio.run(main())

except KeyboardInterrupt:

 # It bubbles up

 logging.info("Pressed ctrl+c...")

�How It Works
The worker-producer pattern works with coroutines as follows:

	 1.	 One producer coroutine produces new workloads that

it puts into a queue for the worker coroutines to fetch.

	 2.	 It listens for the shutdown signal to stop producing new

workloads and to gracefully shut down the program.

	 3.	 Using a queue, we must handle the asyncio.

QueueFull exception. We set the shutdown_event from

the producer when we have finished producing.

	 4.	 The worker coroutines, on the other hand, eagerly look

for work in the queue and suspend if there is none. The

indication for “no work” is a asyncio.QueueEmpty exception,

while we have not received a shutdown event yet.

Chapter 6 Communication Between Asyncio Components

120

Note I t is important that we have an async.sleep somewhere in
the body of our worker so that other workers have a chance to grab
a workload too. It is also important to have an async.sleep(0)
inside the producer so that the workers have a chance to grab a
workload out of the queue. Otherwise, the workers will not start until
the producer has finished filling up the queue completely.

�Communicating with a Subprocess Using
Streams
The subprocesses API provides the means to spawn and entertain

subprocesses using underlying tools like fork and spawn in a more high-

level fashion.

Usually, we want to deploy IPC channels like pipes to talk to our

subprocess, but for multiple processes this method might get a bit clumsy.

Given that asyncio provides a nice asynchronous streaming API, we

will leverage it as a communication channel to our subprocesses.

Note that on a UNIX system, we recommend the second solution

using the UNIX server and connections that use UNIX domain sockets. The

benefits are that you can use the sophisticated UNIX file permission system

on your sockets for access control and benefit from speed improvements

since the IP stack mechanisms are bypassed.

To keep the argument parsing straightforward, we have decided to

separate these examples.

Chapter 6 Communication Between Asyncio Components

121

�Solution #1: Windows and UNIX
Using the asyncio.start_server and asyncio.open_connection APIs, we

can have two subprocesses communicate with each other, besides using

pipes for IPC.

This example uses TCP sockets for communication and hence is

cross-platform.

import argparse

import asyncio

import sys

parser = argparse.ArgumentParser("streamserver")

subparsers = parser.add_subparsers(dest="command")

primary = subparsers.add_parser("primary")

secondary = subparsers.add_parser("secondary")

for subparser in (primary, secondary):

 subparser.add_argument("--host", default="127.0.0.1")

 subparser.add_argument("--port", default=1234)

async def connection_handler(reader: asyncio.StreamReader,

writer: asyncio.StreamWriter):

 print("Handler started")

 writer.write(b"Hi there!")

 await writer.drain()

 message = await reader.read(1024)

 print(message)

async def start_primary(host, port):

 �await asyncio.create_subprocess_exec(sys.executable,

__file__, "secondary", "--host", host, "--port",str(port),)

Chapter 6 Communication Between Asyncio Components

122

 �server = await asyncio.start_server(connection_handler,

host=host, port=port)

 async with server:

 await server.serve_forever()

async def start_secondary(host, port):

 reader, writer = await asyncio.open_connection(host, port)

 message = await reader.read(1024)

 print(message)

 writer.write(b"Hi yourself!")

 await writer.drain()

 writer.close()

 await writer.wait_closed()

async def main():

 args = parser.parse_args()

 if args.command == "primary":

 await start_primary(args.host, args.port)

 else:

 await start_secondary(args.host, args.port)

try:

 import logging

 logging.basicConfig(level=logging.DEBUG)

 logging.debug("Press ctrl+c to stop")

 if sys.platform == 'win32':

 �asyncio.set_event_loop_policy(asyncio.

WindowsProactorEventLoopPolicy())

 asyncio.run(main())

except KeyboardInterrupt:

 logging.debug("Stopped..")

Chapter 6 Communication Between Asyncio Components

123

�Solution #2: UNIX Only
This example is UNIX only, since it uses UNIX domain sockets for

communication.

To start the server, we use asyncio.start_unix_server and asyncio.

open_unix_connection instead of the asyncio.start_server and

asyncio.open_connection APIs.

import argparse

import asyncio

import sys

parser = argparse.ArgumentParser("streamserver")

subparsers = parser.add_subparsers(dest="command")

primary = subparsers.add_parser("primary")

secondary = subparsers.add_parser("secondary")

for subparser in (primary, secondary):

 �subparser.add_argument("--path", default="/tmp/asyncio.socket")

async def connection_handler(reader: asyncio.StreamReader,

writer: asyncio.StreamWriter):

 print("Handler started")

 writer.write(b"Hi there!")

 await writer.drain()

 message = await reader.read(1024)

 print(message)

async def start_primary(path):

 �await asyncio.create_subprocess_exec(sys.executable,

__file__, "secondary", "--path", path)

Chapter 6 Communication Between Asyncio Components

124

 �server = await asyncio.start_unix_server(connection_

handler, path)

 async with server:

 await server.serve_forever()

async def start_secondary(path):

 reader, writer = await asyncio.open_unix_connection(path)

 message = await reader.read(1024)

 print(message)

 writer.write(b"Hi yourself!")

 await writer.drain()

 writer.close()

 await writer.wait_closed()

async def main():

 args = parser.parse_args()

 if args.command == "primary":

 await start_primary(args.path)

 else:

 await start_secondary(args.path)

try:

 import logging

 logging.basicConfig(level=logging.DEBUG)

 logging.debug("Press ctrl+c to stop")

 asyncio.run(main())

except KeyboardInterrupt:

 logging.debug("Stopped..")

Chapter 6 Communication Between Asyncio Components

125

�How It Works
This section applies to both solutions. The program can be started by

invoking it in this fashion (on a UNIX system):

env python3 primary --host 127.0.0.1 --port <portnumber>

Or using this for the UNIX domain socket solution:

env python3 primary --path <path>

It will automatically spawn a child process using this:

await asyncio.create_subprocess_exec(sys.executable, __file__,

"secondary", "--host", host, "--port",str(port),)

or this for the UNIX domain socket solution:

await asyncio.create_subprocess_exec(sys.executable, __file__,

"secondary", "--path", path)

The following part is responsible for spawning the server and will

call the connection_handler on every connection attempt. It will inject a

StreamWriter and StreamReader instance:

server = await asyncio.start_unix_server(connection_handler, path)

async with server:

 await server.serve_forever()

The read API for the StreamReader is completely asynchronous and

blocks until it there is actual data to read.

The writer API is not symmetrical, because the write* methods cannot

be awaited.

Flow control has to be achieved via awaiting writer.drain, which

blocks until the size of the buffer is drained down to the low watermark

and writing can be resumed. It will immediately return if there is nothing

to wait for.

Chapter 6 Communication Between Asyncio Components

126

To establish a connection to our stream server, we can use the

following:

 reader, writer = await asyncio.open_connection(host, port)

or use this for the UNIX domain socket solution:

 reader, writer = await asyncio.open_unix_connection(path)

We receive stream readers and writers, which we can use to transfer

payloads back and forth:

 message = await reader.read(1024)

 print(message)

 writer.write(b"Hi yourself!")

 await writer.drain()

 writer.close()

 await writer.wait_closed()

Note that we await writer.wait_closed() after the call to writer.

close(), which is a new Python 3.7 API intended for this particular use.

Note also that we don’t need to close in the StreamReader case.

�Writing a Simple RPC System with Asyncio
Using asyncio and MQTT as our transport layer, we can build a simple

async RPC (remote procedure call) system.

Using RPC basically means that we can call a function/procedure

defined in another program as if it belongs to our code. Choosing MQTT

as a transport layer is best when we need to entertain a steady connection

between the involved parties of our system in order to react to remote

procedure calls between parties.

Chapter 6 Communication Between Asyncio Components

127

The parties involved are as follows:

•	 RPCRegistrar: The place where you register your

remote procedures to signal availability to clients

•	 RPCClients: The consumers of remote procedures that

were registered before

•	 RPCService: The provider of a remote procedure

This example assumes that you are running an instance of the

Mosquitto MQTT server locally on the default port. It can be found for

download here:

https://mosquitto.org/download/

Optionally, you can switch out the MQTT URL in the example with the

official Mosquitto test server. See mqtt://test.mosquitto.org.

The example also assumes that you have installed the hbmqtt library.

If you haven’t installed it, you can do so via:

pip3 install hbmqtt

#or

pipenv install hbmqtt

�Solution
Using the hbmqtt library, we can build an async MQTT binding for remote

procedure calling. We will define a multi-stage protocol for invoking

and getting the result of the call in a Pythonic way. MQTT works in a

publish-subscribe fashion, which makes it perfect for interoperability with

asyncio.Future.

import abc

import asyncio

import collections

Chapter 6 Communication Between Asyncio Components

https://mosquitto.org/download/

128

import inspect

import logging

import pickle

import typing

from contextlib import asynccontextmanager

from pickle import PickleError

from uuid import uuid4

from hbmqtt.client import MQTTClient, ConnectException

from hbmqtt.mqtt.constants import QOS_0

GET_REMOTE_METHOD = "get_remote_method"

GET_REMOTE_METHOD_RESPONSE = "get_remote_method/response"

CALL_REMOTE_METHOD = "call_remote_method"

CALL_REMOTE_METHOD_RESPONSE = "call_remote_method/response"

REGISTER_REMOTE_METHOD = "register_remote_method"

REGISTER_REMOTE_METHOD_RESPONSE = "register_remote_method/response"

logging.basicConfig(level=logging.INFO)

@asynccontextmanager

async def connect(url):

 client = MQTTClient()

 try:

 await client.connect(url)

 yield client

 except ConnectException:

 logging.exception(f"Could not connect to {url}")

 finally:

 await client.disconnect()

Chapter 6 Communication Between Asyncio Components

129

@asynccontextmanager

async def pool(n, url):

 clients = [MQTTClient() for _ in range(n)]

 try:

 �await asyncio.gather(*[client.connect(url) for client

in clients])

 yield clients

 except ConnectException:

 logging.exception(f"Could not connect to {url}")

 finally:

 �await asyncio.gather(*[client.disconnect() for client

in clients])

def set_future_result(fut, result):

 if not fut:

 pass

 if isinstance(result, Exception):

 fut.set_exception(result)

 else:

 fut.set_result(result)

class RPCException(Exception):

 def __init__(self, message):

 self.message = message

 def __str__(self):

 return f"Error: {self.message}"

class RegisterRemoteMethodException(RPCException):

 def __init__(self):

 �super(RegisterRemoteMethodException, self).__init__

(f"Could not respond to {REGISTER_REMOTE_METHOD} query")

Chapter 6 Communication Between Asyncio Components

130

class GetRemoteMethodException(RPCException):

 def __init__(self):

 �super(GetRemoteMethodException, self).__init__(f"Could

not respond to {GET_REMOTE_METHOD} query")

class CallRemoteMethodException(RPCException):

 def __init__(self):

 �super(CallRemoteMethodException, self).__init__(f"Could

not respond to {CALL_REMOTE_METHOD} query")

class RCPBase:

 �def __init__(self, client: MQTTClient, topics: typing.

List[str], qos=QOS_0):

 self.client = client

 self.running_fut = None

 self.topics = topics

 self.qos = qos

 @abc.abstractmethod

 �async def on_get_remote_method(self, uuid_, service_name,

function_name):

 �raise NotImplementedError("Not implemented on_get_

remote_method!")

 @abc.abstractmethod

 �async def on_register_remote_method(self, uuid_, service_

name, function_name, signature):

 �raise NotImplementedError("Not implemented on_register_

remote_method!")

 @abc.abstractmethod

 �async def on_call_remote_method(self, uuid_, service_name,

function_name, args, kwargs):

Chapter 6 Communication Between Asyncio Components

131

 �raise NotImplementedError("Not implemented on_call_

remote_method!")

 @abc.abstractmethod

 �async def on_get_remote_method_response(self, uuid_,

service_name, function_name, signature_or_exception):

 �raise NotImplementedError("Not implemented on_get_

remote_method_response!")

 @abc.abstractmethod

 �async def on_register_remote_method_response(self, uuid_,

service_name, function_name, is_registered_or_exception):

 �raise NotImplementedError("Not implemented on_register_

remote_method_response!")

 @abc.abstractmethod

 �async def on_call_remote_method_response(self, uuid_,

service_name, function_name, result_or_exception):

 �raise NotImplementedError("Not implemented on_call_

remote_method_response!")

 async def next_message(self):

 message = await self.client.deliver_message()

 packet = message.publish_packet

 �topic_name, payload = packet.variable_header.topic_

name, packet.payload.data

 return topic_name, payload

 async def loop(self):

 while True:

 topic, payload = await self.next_message()

 try:

 yield topic, pickle.loads(payload)

Chapter 6 Communication Between Asyncio Components

132

 �except (PickleError, AttributeError, EOFError,

ImportError, IndexError):

 �logging.exception("Could not deserialize

payload: %s for topic: %s", payload, topic)

 async def __aenter__(self):

 self.running_fut = asyncio.ensure_future(self.start())

 await self.client.subscribe([

 (topic, self.qos) for topic in self.topics

])

 return self

 async def __aexit__(self, exc_type, exc_val, exc_tb):

 await self.stop()

 await self.client.unsubscribe(self.topics)

 async def start(self):

 async for topic, payload in self.loop():

 try:

 if topic == REGISTER_REMOTE_METHOD:

 �await self.on_register_remote_

method(*payload)

 elif topic == GET_REMOTE_METHOD:

 await self.on_get_remote_method(*payload)

 elif topic == CALL_REMOTE_METHOD:

 await self.on_call_remote_method(*payload)

 elif topic == REGISTER_REMOTE_METHOD_RESPONSE:

 �await self.on_register_remote_method_

response(*payload)

 elif topic == GET_REMOTE_METHOD_RESPONSE:

 �await self.on_get_remote_method_

response(*payload)

 elif topic == CALL_REMOTE_METHOD_RESPONSE:

Chapter 6 Communication Between Asyncio Components

133

 �await self.on_call_remote_method_

response(*payload)

 except TypeError:

 �logging.exception(f"Could not call handler for

topic: %s and payload: %s", topic, payload)

 except NotImplementedError:

 pass

 async def stop(self):

 if self.running_fut:

 self.running_fut.cancel()

 async def wait(self):

 if self.running_fut:

 await asyncio.shield(self.running_fut)

class RemoteMethod:

 �def __init__(self, rpc_client, signature, function_name,

qos=QOS_0):

 self.rpc_client = rpc_client

 self.signature = signature

 self.function_name = function_name

 self.qos = qos

 async def __call__(self, *args, **kwargs,):

 uuid_ = str(uuid4())

 service_name = self.rpc_client.service_name

 �payload = (uuid_, service_name, self.function_name,

args, kwargs)

 fut = asyncio.Future()

 �self.rpc_client.call_remote_method_requests.

setdefault(service_name, {}).setdefault(self.function_

name, {})[

 uuid_] = fut

Chapter 6 Communication Between Asyncio Components

134

 �await self.rpc_client.client.publish(CALL_REMOTE_METHOD,

pickle.dumps(payload), qos=self.qos)

 return await fut

class RPCClient(RCPBase):

 �def __init__(self, client, service_name, topics=None,

qos=QOS_0):

 if not topics:

 �topics = [CALL_REMOTE_METHOD_RESPONSE, GET_REMOTE_

METHOD_RESPONSE,]

 �super(RPCClient, self).__init__(client, topics, qos=qos)

 �self.call_remote_method_requests = collections.

defaultdict(dict)

 �self.get_remote_method_requests = collections.

defaultdict(dict)

 �self.list_remote_methods_requests = collections.

defaultdict(dict)

 self.responses = collections.defaultdict(dict)

 self.service_name = service_name

 �self.remote_methods_cache = collections.defaultdict(dict)

 def __getattr__(self, item):

 �return asyncio.ensure_future(self.get_remote_method(item))

 async def get_remote_method(self, function_name):

 while True:

 uuid_ = str(uuid4())

 payload = (uuid_, self.service_name, function_name)

 fut = asyncio.Future()

 �self.get_remote_method_requests.setdefault(self.

service_name, {}).setdefault(function_name, {})[uuid_] = fut

Chapter 6 Communication Between Asyncio Components

135

 �await self.client.publish(GET_REMOTE_METHOD, pickle.

dumps(payload), qos=QOS_0)

 # Might throw GetRemoteMethodException

 try:

 signature = await asyncio.shield(fut)

 �return RemoteMethod(self, signature, function_

name)

 except GetRemoteMethodException:

 await asyncio.sleep(0)

 �async def on_call_remote_method_response(self, uuid_, service_

name, function_name, result_or_exception):

 �fut = self.call_remote_method_requests.get(service_name,

{}).get(function_name, {}).pop(uuid_, None)

 set_future_result(fut, result_or_exception)

 �async def on_get_remote_method_response(self, uuid_, service_

name, function_name, signature_or_exception):

 �fut = self.get_remote_method_requests.get(service_name,

{}).get(function_name, {}).pop(uuid_, None)

 set_future_result(fut, signature_or_exception)

class RPCService(RCPBase):

 �def __init__(self, client: MQTTClient, name: str, topics:

typing.List[str] = None, qos=QOS_0):

 if not topics:

 �topics = [REGISTER_REMOTE_METHOD_RESPONSE, CALL_

REMOTE_METHOD]

 �super(RPCService, self).__init__(client, topics, qos=qos)

 self.name = name

 self.client = client

 self.qos = qos

Chapter 6 Communication Between Asyncio Components

136

 �self.register_remote_method_requests = collections.

defaultdict(dict)

 self.remote_methods = collections.defaultdict(dict)

 async def register_function(self, remote_function):

 function_name = remote_function.__name__

 uuid_ = str(uuid4())

 �payload = pickle.dumps((uuid_, self.name, function_name,

inspect.signature(remote_function)))

 fut = asyncio.Future()

 �self.register_remote_method_requests.setdefault(self.name,

{}).setdefault(function_name, {})[uuid_] = fut

 �self.remote_methods[self.name][function_name] = remote_

function

 �await self.client.publish(REGISTER_REMOTE_METHOD, payload,

qos=self.qos)

 return await asyncio.shield(fut)

 �async def on_register_remote_method_response(self, uuid_,

service_name, function_name, is_registered_or_exception):

 �fut = self.register_remote_method_requests.get(service_

name, {}).get(function_name, {}).get(uuid_, None)

 set_future_result(fut, is_registered_or_exception)

 �async def on_call_remote_method(self, uuid_, service_name,

function_name, args, kwargs):

 �remote_method = self.remote_methods.get(service_name, {}).

get(function_name, None)

 if not remote_method:

 �payload = pickle.dumps((uuid_, service_name, function_

name, CallRemoteMethodException()))

 �return await self.client.publish(CALL_REMOTE_METHOD_

RESPONSE, payload, qos=self.qos)

Chapter 6 Communication Between Asyncio Components

137

 try:

 result = await remote_method(*args, **kwargs)

 �payload = pickle.dumps((uuid_, service_name, function_

name, result))

 �return await self.client.publish(CALL_REMOTE_METHOD_

RESPONSE, payload, qos=self.qos)

 except Exception as err:

 �payload = pickle.dumps((uuid_, service_name, function_

name, err))

 �return await self.client.publish(CALL_REMOTE_METHOD_

RESPONSE, payload, qos=self.qos)

class RemoteRegistrar(RCPBase):

 �def __init__(self, client: MQTTClient, topics: typing.

List[str] = None, qos=QOS_0):

 if not topics:

 topics = [REGISTER_REMOTE_METHOD, GET_REMOTE_METHOD]

 �super(RemoteRegistrar, self).__init__(client, topics,

qos=qos)

 self.registrar = collections.defaultdict(dict)

 �async def on_register_remote_method(self, uuid_, service_name,

function_name, signature):

 try:

 �self.registrar.setdefault(service_name, {})[function_

name] = signature

 �payload = pickle.dumps((uuid_, service_name, function_

name, True),)

 �await self.client.publish(REGISTER_REMOTE_METHOD_

RESPONSE, payload)

Chapter 6 Communication Between Asyncio Components

138

 except Exception:

 �# A broad exception clause like this is bad practice

but we are only interested in the outcome of saving

the signature, so we convert it

 �logging.exception(f"Failed to save signature: {signature}")

 �payload = pickle.dumps((uuid_, service_name, function_

name, RegisterRemoteMethodException()))

 �await self.client.publish(REGISTER_REMOTE_METHOD_

RESPONSE, payload,)

 �async def on_get_remote_method(self, uuid_, service_name,

function_name):

 �signature = self.registrar.get(service_name, {}).

get(function_name, None)

 if signature:

 �payload = pickle.dumps((uuid_, service_name, function_

name, signature),)

 �await self.client.publish(GET_REMOTE_METHOD_RESPONSE,

payload)

 else:

 �payload = pickle.dumps((uuid_, service_name, function_

name, GetRemoteMethodException()),)

 �await self.client.publish(GET_REMOTE_METHOD_RESPONSE,

payload)

async def remote_function(i: int, f: float, s: str):

 print("It worked")

 return f

async def register_with_delay(rpc_service, remote_function,

delay=3):

 await asyncio.sleep(delay)

 await rpc_service.register_function(remote_function)

Chapter 6 Communication Between Asyncio Components

139

async def main(url="mqtt://localhost", service_name="TestService"):

 async with pool(3, url) as (client, client1, client2):

 async with RemoteRegistrar(client):

 �async with RPCService(client1, service_name) as rpc_

service:

 �async with RPCClient(client2, service_name) as

rpc_client:

 �asyncio.ensure_future(register_with_delay(rpc_

service, remote_function))

 �handler = await asyncio.wait_for(rpc_client.

remote_function,timeout=10)

 res = await handler(1, 3.4, "")

 print(res)

if __name__ == '__main__':

 asyncio.run(main())

�How It Works
MQTT uses so-called topics, which you can send payloads to and

subscribe on.

We use three topics and their respective “response” topics to facilitate

our RPC bus. They are defined as follows:

GET_REMOTE_METHOD = "get_remote_method"

GET_REMOTE_METHOD_RESPONSE = "get_remote_method/response"

CALL_REMOTE_METHOD = "call_remote_method"

CALL_REMOTE_METHOD_RESPONSE = "call_remote_method/response"

REGISTER_REMOTE_METHOD = "register_remote_method"

REGISTER_REMOTE_METHOD_RESPONSE = "register_remote_method/response"

Chapter 6 Communication Between Asyncio Components

140

We implement our own simple message ID on MQTT using its least

reliable modus operandi in terms of quality of service, which means that

every message is sent at most once, with no acknowledgment message.

For convenience, we define async context managers for MQTTClient

that handle the disconnections and a pool that creates multiple

MQTTClient instances.

@asynccontextmanager

async def connect(url):

 # snip ..

@asynccontextmanager

async def pool(n, url):

 # snip ..

We will use the pool in this example because the MQTTClient instance

cannot be shared across our three aforementioned parties. We will invoke

the whole machinery in one process for ease of demonstration. (Ideally,

we should have three separate processes and hence three instances.)

We define a helper function that we use to interact with futures hassle-

free. If we pass it a non-exception value, we want it to be set as such;

otherwise, we call set exception. We need to do this because we are

listening to MQTT messages on their respective (non-async) loops. When

we find a message to a topic that our party has subscribed to, we check if

the IDs of the message and the stored future match and use this helper to

wake the party from awaiting the future.

We also define a couple of exceptions that are thrown when something

goes wrong on the respective topics.

def set_future_result(fut, result):

 if not fut:

 pass

 if isinstance(result, Exception):

 fut.set_exception(result)

Chapter 6 Communication Between Asyncio Components

141

 else:

 fut.set_result(result)

class RPCException(Exception):

 # snip...

class RegisterRemoteMethodException(RPCException):

 # snip...

class GetRemoteMethodException(RPCException):

 # snip...

class CallRemoteMethodException(RPCException):

 # snip...

Next, we define the RCPBase class, which defines an interface to be

implemented by parties that want to define callbacks to the respective

topics.

It can be passed topics that it will unsubscribe/subscribe upon

entering/exiting if it is used as an async context manager.

Furthermore, it will take care of starting its message loop and calling

the correct callbacks.

By awaiting its wait method, we can block indefinitely. This is useful

for the RPCRegistrar and the RPCService.

The RemoteMethod class abstracts away a method belonging to a

remote service. Note that __call__ is a coroutine (!) and it takes care

of publishing the *args and **kwargs parameters to the CALL_REMOTE_

METHOD topic, using pickle as a serializing mechanism.

class RemoteMethod:

 # snip ..

The RPCClient starts with the service name set to the name of the

RPCService instance that we are interested in.

Chapter 6 Communication Between Asyncio Components

142

We override the __getattr__ to schedule a get_remote_method call,

which in turn returns a future we can await. It returns if the remote method

was registered and turns into a RemoteMethod. It will block indefinitely if

this doesn’t happen, so we await it with a timeout.

We use the RPCService to register a function. It publishes the intent

on the respective topic that the registrar is listening to when calling its

register_function coroutine method.

The communication happens on the topic and its corresponding

<topicname>/response channel where the subscribing party answers.

The registrar saves the serialized signature object of the respective

function, which could, for instance, be used for parameter validation.

The main coroutine is straightforward. It shows the delayed registration

of a function that we embedded to demonstrate that you could very well

use these components in different processes/call order.

async def main(url="mqtt://localhost", service_

name="TestService"):

 async with pool(3, url) as (client, client1, client2):

 async with RemoteRegistrar(client):

 �async with RPCService(client1, service_name) as

rpc_service:

 �async with RPCClient(client2, service_name) as

rpc_client:

 �asyncio.ensure_future(register_with_

delay(rpc_service, remote_function))

 �handler = await asyncio.wait_for(rpc_

client.remote_function,timeout=10)

 res = await handler(1, 3.4, "")

 print(res)

Chapter 6 Communication Between Asyncio Components

143

�Writing Callbacks that Have a “Memory”
Using Contextvars
Sometimes it is nice to have “coroutine-local” context that can be shared

across runs, but is private inside the run. This basically means that two

coroutines that access the same key should have their private version/view

on their context variable.

Fortunately, PEP 567 introduced such a concept through the

contextvars module.

It provides three new APIs that can be used from the world of asyncio:

•	 ContextVar

•	 Context

•	 Token

�Solution #1
We demonstrate that ContextVar instances are indeed coroutine-local by

constructing an example with multiple accesses to the value stored in the

same key from different coroutines.

import contextvars

from contextvars import ContextVar

import asyncio

context = contextvars.copy_context()

context_var = ContextVar('key', default=None)

async def memory(context_var, value):

 old_value = context_var.get()

 context_var.set(value)

 print(old_value, value)

Chapter 6 Communication Between Asyncio Components

144

async def main():

 �await asyncio.gather(*[memory(context_var, i) for i in

range(10)])

asyncio.run(main())

�How It Works
Using context = contextvars.copy_context(), we get a copy of the

current Context object which is a “[..] new generic mechanism of

ensuring consistent access to non-local state in the context of out-of-

order execution [..]” (Source: https://www.python.org/dev/peps/pep-

0550/) for the current OS thread, which is just shallow. So, the caller is

the sole owner of the Context object.

The ContextVar must be defined outside of a function scope and

is used for a lookup on the “current” coroutine-local context object by

passing itself as a key.

By calling memory simultaneously multiple times, we can see that the

access to context_var is indeed coroutine-local, since it always starts with

the default value.

�Solution #2
We demonstrate how synchronous callbacks use ContextVar instances for

context awareness.

import contextvars

import functools

from contextvars import ContextVar

context = contextvars.copy_context()

context_var = ContextVar('key', default=None)

def resetter(context_var, token, invalid_values):

Chapter 6 Communication Between Asyncio Components

https://www.python.org/dev/peps/pep-0550/
https://www.python.org/dev/peps/pep-0550/

145

 value = context_var.get()

 if value in invalid_values:

 context_var.reset(token)

def blacklist(context_var, value, resetter):

 old_value = context_var.get()

 token = context_var.set(value)

 resetter(context_var, token)

 print(old_value)

for i in range(10):

 �context.run(blacklist, context_var, i, functools.

partial(resetter, invalid_values=[5, 6, 7, 8, 9]))

�How It Works
Synchronous callbacks can also benefit from context-aware storage.

By using context.run, we can ensure that the context is not accessed

from more than one OS thread. This is because context.run raises a

RuntimeError when it’s called on the same context object from more than

one OS thread, or when it’s called recursively.

We also learned about the Token API, which can be used to reset

the context to a previously set value. Tokens are returned by invoking a

ContextVar.set method. To return to a previous state given by a token

object, we invoke ContextVar.reset(token).

Chapter 6 Communication Between Asyncio Components

147© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_7

CHAPTER 7

Synchronization
Between Asyncio
Components
Asyncio enables us to write cooperative concurrent systems. There are no

mechanisms to ensure their correctness in terms of safety and liveness.

Safety in this context means to remain in an “intended” state and not divert

from it. Liveness in this context means to “make progress,” basically that the

intended states of the program are reached.

A program consists of critical and uncritical paths of execution.

A critical path is characterized by the access of a shared resource.

Synchronization in our context means that we ensure mutually exclusive

access of the shared resource for one coroutine. Ironically, claiming

exclusive control over a shared resource inside a critical path is one of the

Coffman conditions. We need to be careful to not run into deadlocks while

trying to fix our synchronization problems.

It’s the responsibility of the developer to ensure that the code

demonstrates named properties. We want to narrow down our understanding

of safety in the realm of concurrency for asyncio to a very practical one:

The (critical) paths of our application allow access of shared data;

allow one coroutine exclusively to access the shared data from the

coroutine’s beginning until the coroutine’s ending.

148

To ensure the liveness of the asyncio program, we need to ensure

we do not construct code that runs into a deadlock. A deadlock can

be understood as a situation in time where the system fulfills the four

Coffman conditions simultaneously:

•	 Tasks claim exclusive control of the resources they

require (the mutual exclusion condition).

•	 Tasks hold resources already allocated to them

while waiting for additional resources (the wait for

condition).

•	 Resources cannot be forcibly removed from the

tasks holding them until the resources are used to

completion (the no preemption condition).

•	 A circular chain of tasks exists, such that each task

holds one or more resources that are being requested

by the next task in the chain (the circular wait

condition).

Note  These are necessary but not sufficient conditions for a
deadlock. Removing them however is sufficient to not have deadlock,
i.e., to ensure the liveness of the program.

�Using Locks for Mutual Exclusive Access
to a Shared Resource
�Problem
You want to provide mutual exclusive access to coroutines concerning a

shared resource.

Chapter 7 Synchronization Between Asyncio Components

149

�Solution
Using knowledge about async context managers, we can use asyncio.Lock

on context exclusively for one coroutine to access some resource:

import asyncio

NON_ATOMIC_SUM_KEY = 'non_atomic_sum'

ATOMIC_SUM_KEY = 'atomic_sum'

DATABASE = {ATOMIC_SUM_KEY: 0, NON_ATOMIC_SUM_KEY: 0}

async def add_with_delay(key, value, delay):

 old_value = DATABASE[key]

 await asyncio.sleep(delay)

 DATABASE[key] = old_value + value

async def add_locked_with_delay(lock, key, value, delay):

 async with lock:

 old_value = DATABASE[key]

 await asyncio.sleep(delay)

 DATABASE[key] = old_value + value

async def main():

 �# An asyncio lock can be used to guarantee exclusive access

to a shared resource

 lock = asyncio.Lock()

 atomic_workers = [

 add_locked_with_delay(lock, ATOMIC_SUM_KEY, 1, 3),

 add_locked_with_delay(lock, ATOMIC_SUM_KEY, 1, 2),

]

 non_atomic_workers = [

 add_with_delay(NON_ATOMIC_SUM_KEY, 1, 3),

 add_with_delay(NON_ATOMIC_SUM_KEY, 1, 2),

]

Chapter 7 Synchronization Between Asyncio Components

150

 await asyncio.gather(*non_atomic_workers)

 await asyncio.gather(*atomic_workers)

 assert DATABASE.get(ATOMIC_SUM_KEY) == 2

 assert DATABASE.get(NON_ATOMIC_SUM_KEY) != 2

asyncio.run(main())

�How It Works
The CPython interpreter has a global lock that influences the interpreter’s

process parallelism. Only one native thread can effectively operate at a

time, meaning executing bytecode. This means since asyncio, we have

three ways in Python to run into synchronization issues/data races:

•	 Threaded code that gets non-cooperatively preempted

(suspended)

•	 Multi-process code

•	 Asyncio code that yields control back to the event loop

via await asyncio.sleep(n) inside the critical path

that accesses the shared memory

Asyncio gets interfaces for coroutines (event loops and the async def

keyword), multiprocessing (using subprocesses), and to threads (using the

event loop’s executor API).

In asyncio, the asyncio.Lock async context manager is the correct way

to provide mutual exclusive access to a shared resource.

Note  Using the lock interface directly by awaiting the acquire and
release coroutine methods is considered deprecated! The threading
module and the multiprocessing module provide their version of a
lock context manager to ensure mutual exclusive access to shared
resources for threads and processes.

Chapter 7 Synchronization Between Asyncio Components

151

The asyncio version allows only one coroutine to enter its scope.

We compare access to a data race and one without and see how the lock

came into the picture to enable a data-race-free access.

Note E very access to a resource must happen under the same lock
to ensure data-race freeness. If you enter the async context manager
lock's scope, it will call acquire in its __aenter__ hook for you.

This call blocks until all the other parties that tried to call acquire have

returned. To signal to the lock that it is free again, the release coroutine

method is called in __aexit__ by the lock. This will ensure that the first

waiter in the dequeue is notified. This way, only one coroutine is “inside”

the lock’s context at any time.

In our example, we construct two coroutine functions—add_with_

delay and add_locked_with_delay. They access a dictionary value via the

same key, suspend themselves with asyncio.sleep, and write the initial

value they have read into the dictionary while adding a value they were

passed as a parameter.

They differ in their behavior based on how they behave in this critical

path. add_with_delay does not bother about synchronization and

dd_locked_with_delay locks the whole critical path up. This way, only

one coroutine can access the dictionary at the same time in reading and

writing.

Note  The interesting bit here is that the presence of the lock
indicates that the context switch is useless. We could also have
chosen a more elaborate example—splitting, getting, and adding the
value into two coroutines—but we chose not to, since both examples
demonstrate the same principle.

Chapter 7 Synchronization Between Asyncio Components

152

�Using Events for Notification
�Problem
You want to notify waiting tasks that an event they are waiting on has

occurred.

�Solution
asyncio events are intended to signal to multiple coroutines, hence the

coroutine method can be reused and will block until the event is “set”.

We demonstrate how a (service) cleanup pattern could be built using an

event loop.

import asyncio

import logging

import random

logging.basicConfig(level=logging.INFO)

async def busy_loop(interval, work, worker, shutdown_event):

 while not shutdown_event.is_set():

 await worker(work)

 await asyncio.sleep(interval)

 logging.info("Shutdown event was set..")

 return work

async def cleanup(mess, shutdown_event):

 await shutdown_event.wait()

 logging.info("Cleaning up the mess: %s...", mess)

 # Add cleanup logic here

async def shutdown(delay, shutdown_event):

 await asyncio.sleep(delay)

 shutdown_event.set()

Chapter 7 Synchronization Between Asyncio Components

153

async def add_mess(mess_pile,):

 mess = random.randint(1, 10)

 logging.info("Adding the mess: %s...", mess)

 mess_pile.append(mess)

async def main():

 shutdown_event = asyncio.Event()

 shutdown_delay = 10

 work = []

 await asyncio.gather(*[

 shutdown(shutdown_delay, shutdown_event),

 cleanup(work, shutdown_event),

 busy_loop(1, work, add_mess, shutdown_event),

])

asyncio.run(main())

�How It Works
We await three coroutines in our main method:

•	 shutdown(shutdown_delay, shutdown_event)

•	 cleanup(work, shutdown_event)

•	 busy_loop(1, work, add_mess, shutdown_event)

Shutdown is a helper coroutine method that “sets” the event instance

we pass to all coroutines. In other words, it notifies all coroutines currently

waiting or checking its status via event.is_set that it’s finished. Since

the busy_loop needs to perform work periodically, it doesn’t make sense

for it to await the event signal, so it’s polling it via event.is_set before

starting to invoke the worker. The cleanup coroutine, on the other hand,

demonstrates how you wait for the event to be set by awaiting its event.

wait() coroutine.

Chapter 7 Synchronization Between Asyncio Components

154

�Using Condition Variables for
Control Flow
�Problem
You want to grant mutually exclusive access to a shared resource.

�Solution
Condition variables were introduced in a prior chapter, but not as a

synchronization mechanism. Basically, condition variables can be best

understood as locks coupled with event variables. The following example

shows us to build a stock watcher given multiple condition variables the

share one lock instance:

import asyncio

import random

STOCK_MARKET = {

 "DAX": 100,

 "SPR": 10,

 "AMAZON": 1000,

}

INITIAL_STOCK_MARKET = STOCK_MARKET.copy()

class MarketException(BaseException):

 pass

async def stock_watcher(on_alert, stock, price, cond):

 async with cond:

 print(f"Waiting for {stock} to be under {price}$")

 �await cond.wait_for(lambda: STOCK_MARKET.get(stock) <

price)

 await on_alert()

Chapter 7 Synchronization Between Asyncio Components

155

def random_stock():

 while True:

 yield random.choice(list(STOCK_MARKET.keys()))

async def twitter_quotes(conds, threshold):

 for stock in random_stock():

 STOCK_MARKET[stock] -= random.randint(1, 10)

 new_value = STOCK_MARKET[stock]

 print(f"New stock market value for {stock}: {new_value}")

 if new_value < threshold:

 cond = conds.get(stock)

 async with cond:

 cond.notify()

 await asyncio.sleep(.1)

async def governmental_market_surveillance():

 raise MarketException()

async def main():

 lock = asyncio.Lock()

 �conditions = {stock: asyncio.Condition(lock) for stock in

STOCK_MARKET}

 threshold = -50

 stock_watchers = [

 stock_watcher(

 governmental_market_surveillance,

 stock,

 threshold,

 conditions.get(stock)

) for stock in STOCK_MARKET

]

Chapter 7 Synchronization Between Asyncio Components

156

 �await asyncio.gather(*[twitter_quotes(conditions, threshold),

*stock_watchers], return_exceptions=False)

try:

 asyncio.run(main())

except MarketException:

 print("Restoring the stock market..")

 STOCK_MARKET = INITIAL_STOCK_MARKET.copy()

�How It Works
The solution demonstrates how we can await dynamically calculated

conditions. We create a stock_watcher instance for each stock and pass it

a condition variable that has an instance of the same lock.

Using the same lock is important, otherwise awaiting condition.wait_

for will block indefinitely! The acquire, release, and locked methods of

the condition variable are just pass-throughs of the lock methods. If you

don’t use the same lock, the coroutines will not be governed by the same

context and in consequence not synchronized.

condition.wait_for is passed a callable. As long as the callable

returns a false value awaiting, the condition.wait_for coroutine will

block. Nonetheless, the condition variable needs to be signaled as to when

to check for the condition using cond.notify.

To call the method, we need to acquire the lock first by using the async

context manager protocol on the condition variable:

async with cond:

 cond.notify()

Chapter 7 Synchronization Between Asyncio Components

157

Note  This check is redundant: if new_value < threshold:.
It can be removed, since we use cond.wait_for and not cond.
wait. The context switch after invoking cond.notify via await
asyncio.sleep(.1) is necessary since it gives the condition
variable the chance to check if the condition became true.

The delay is not important as long it is bigger than or equal to zero.
Equal to zero would skip exactly one loop iteration.

�Using Semaphores to Restrict Concurrent
Resource Access
�Problem
You want to allow only a limited number of coroutines operating in a

context.

�Solution
We see how to have 10 concurrent workers at most using asyncio.

Semaphores in this example:

import asyncio

async def run(i, semaphore):

 async with semaphore:

 print(f"{i} working..")

 return await asyncio.sleep(1)

Chapter 7 Synchronization Between Asyncio Components

158

async def main():

 semaphore = asyncio.Semaphore(10)

 �await asyncio.gather(*[run(i, semaphore) for i in

range(100)])

asyncio.run(main())

�How It Works
Semaphores operate like locks in the sense that they allow only a limited

number of coroutines operating in their context (they are implemented as

async context managers as well). This way, we can implement techniques

like paging or restrict simultaneous connections quite easily.

We can restrict simultaneous connections quite easily by adding a

semaphore to the async with clause like this:

async with semaphore, connect as connection:

 # continue...

Semaphores entertain a dequeue of “waiters”. They let the dequeue

fill up until they hit their cap. If one of the currently executing coroutine

finishes and drops out of the context scope, __aexit__ will wake the next

waiter if there is one. This way, we always have a maximum of 10 workers

operating at the same time.

Note  Using the semaphore interface directly by awaiting the
acquire and release coroutine methods is considered deprecated!

Chapter 7 Synchronization Between Asyncio Components

159

�Using Bounded Semaphores to Restrict
Concurrent Resource Access with Stricter
Release Heuristics
�Problem
We want to use a drop-in replacement for asyncio.Semaphore with a

stricter release heuristic.

�Solution
Bounded semaphores are the same as semaphores, but have an additional

sanity check in their release method:

def release(self):

 if self._value >= self._bound_value:

 �raise ValueError('BoundedSemaphore released too many

times')

 super().release()

Note  Since it is discouraged to use the acquire and release
methods directly, this situation is highly unlikely to happen unless you
tamper with the value manually.

We see how to have a maximum of 10 concurrent workers using

asyncio.BoundedSemaphores in this example:

import asyncio

async def run(i, semaphore):

 async with semaphore:

Chapter 7 Synchronization Between Asyncio Components

160

 print(f"{i} working..")

 return await asyncio.sleep(1)

async def main():

 semaphore = asyncio.BoundedSemaphore(10)

 �await asyncio.gather(*[run(i, semaphore) for i in

range(100)])

asyncio.run(main(),debug=True)

�How It Works
We demonstrated that the asyncio.BoundedSemaphore can be used as a

drop-in replacement for asyncio.Semaphore for our purposes, since it is

actually inheriting from it and simply adds a sanity check to the release

method.

�Detecting Asyncio Code That Might Have
Race Conditions
�Problem
Given the prelude about race conditions and possible race condition

vectors in asyncio applications, we want to understand where exactly the

data race happens in our application.

�Solution #1
This solution provides a reproducible case of a data race—much like the

one we saw in this chapter—where we can annotate exactly where the data

race happens.

Chapter 7 Synchronization Between Asyncio Components

161

import asyncio

import typing

async def delayed_add(delay, d: typing.Dict, key: typing.

Hashable, value: float):

 �last = d[key] # This is where the critical path starts, d

is the shared resource and this is a read access

 await asyncio.sleep(delay)

 �d[key] = last + value # This is where the critical path

ends, d is the shared resource and this is a write access

async def main():

 d = {"value": 0}

 �await asyncio.gather(delayed_add(2, d, "value", 1.0),

delayed_add(1.0, d, "value", 1.0))

 print(d)

 assert d["value"] != 2

asyncio.run(main())

�How It Works
This case falls under the category of coroutine data races induced by

context switches (asyncio.sleep). We have touched upon the fact that

our example with delayed_add was designed for educational value rather

than being a realistic example. The reason it’s not realistic is evident in the

critical path of the application. There is no chaining of coroutines involved,

so we can easily see where the access to the shared resource happens.

Strong indicators for a possible asyncio race condition is the use of

asyncio.sleep.

Using asyncio.sleep destroys the invariant that the (coroutine)

function body is executed completely.

Chapter 7 Synchronization Between Asyncio Components

162

This means that other coroutines could alter the resources accessed by

the first coroutine.

In other words, asyncio.sleep has the potential to render access to

a shared resource non-exclusively, corresponding to the first Coffman

condition.

Thus, it is imperative to inspect all coroutine functions/methods that

have context switches using asyncio.sleep and follow all the calls to

asyncio.ensure_future, asyncio.create_task, loop.create_task, and

uses of the await keyword for interactions with your shared resources.

�Solution #2
The next example demonstrates a data race case involving the loop’s

executor API in conjunction with the ThreadPoolExecutor.

import asyncio

import threading

import time

from concurrent.futures.thread import ThreadPoolExecutor

def add_from_thread(delay, d, key, value):

 print(f"Thread {threading.get_ident()} started...")

 old = d[key]

 print(f"Thread {threading.get_ident()} read value {old}")

 time.sleep(delay)

 �print(f"Thread {threading.get_ident()} slept for {delay}

seconds")

 d[key] = old + value

 print(f"Thread {threading.get_ident()} wrote {d[key]}")

async def main():

 loop = asyncio.get_running_loop()

 d = {"value": 0}

Chapter 7 Synchronization Between Asyncio Components

163

 executor = ThreadPoolExecutor(10)

 �futs = [loop.run_in_executor(executor, add_from_thread, 1,

d, "value", 1),

 �loop.run_in_executor(executor, add_from_thread, 3,

d, "value", 1)]

 await asyncio.gather(*futs)

 assert d["value"] != 2

asyncio.run(main())

�How It Works
This case falls under the category of thread data races induced by the

executor API. Threads are governed by non-cooperative preemption. This

means that the scheduler (OS, in the case of native threads) decides when

to suspend the thread.

Additionally, preemption might happen if we call time.sleep inside

the thread. An easy way to see if we have two agents simultaneously

accessing the same shared resource (dictionary “d”) is to add print

statements with the current thread identifier and the currently executed

operation.

Note  The overhead of the print operation might skew the results
of our observations since it deploys global locking.

In this case, we can clearly see that the threads access the shared

resource in an intervened, race-prone way:

Thread 123145539575808 started...

Thread 123145539575808 read value 0

Thread 123145544830976 started...

Chapter 7 Synchronization Between Asyncio Components

164

Thread 123145544830976 read value 0

Thread 123145539575808 slept for 1

Thread 123145539575808 wrote 1

Thread 123145544830976 slept for 3

Thread 123145544830976 wrote 1

Both threads start reading the value before one thread can successfully

read and write it to the dictionary. Thus, the initial value 0 was used both

places to write to the dictionary instead of 1 (in the case of a successful

read sequential, write).

In a completely sequential example, we would assume the result of the

computation is 2, whereas in this case it is 1.

Chapter 7 Synchronization Between Asyncio Components

165© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_8

CHAPTER 8

Improving Asyncio
Applications
To be able to determine if we have improved the code quality of our

asyncio code, we must come to common terms about which parts of

the code concern us. One universal, non-functional measure of code

quality that we will apply is memory and time consumption of code.

The other measure used in this chapter is to avoid using APIs that have

been deprecated.

To do that, the sections of this chapter illustrate how to build and

use profiling tools to measure the allocated memory and duration of

coroutines. Also, we learn which asyncio patterns have been deprecated

and build a tool that uses the ast module to automatically recognize them.

In the last example, we learn about an anti-pattern called busy loops and

how to avoid it using future objects.

�Profiling Asyncio Applications
�Problem
You are concerned about the memory and time used by an application in

the course of a coroutine call.

166

�Solution
Profiling in this context is measuring non-functional parameters of program

execution. To do this, the Python standard library includes the tracemalloc

module outlined in PEP 454. The tracemalloc module was introduced

in the CPython interpreter due to a need for a Python-specific memory

monitoring API. Memory management in CPython is handled by two APIs—

PyMem_Malloc and pymalloc. These allocators don’t play well with generic

memory debuggers like Valgrind, which can give you the C traceback to

your allocations, which would result in tracebacks ending in CPython C APIs

like PyMem_Malloc and pymalloc. We use the tracemalloc module and a

profiler class with a decorator to print our coroutine’s memory usage.

import asyncio

import logging

import tracemalloc

from functools import wraps

logging.basicConfig(level=logging.DEBUG)

class Profiler:

 def __init__(self):

 self.stats = {}

 self.logger = logging.getLogger(__name__)

 def profile_memory_usage(self, f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 snapshot = tracemalloc.take_snapshot()

 res = await f(*args, **kwargs)

 �self.stats[f.__name__] = tracemalloc.take_

snapshot().compare_to(snapshot, 'lineno')

 return res

 return wrapper

Chapter 8 Improving Asyncio Applications

167

 def print(self):

 for name, stats in self.stats.items():

 for entry in stats:

 self.logger.debug(entry)

 def __enter__(self):

 tracemalloc.start()

 return self

 def __exit__(self, exc_type, exc_val, exc_tb):

 tracemalloc.stop()

 self.print()

profiler = Profiler()

@profiler.profile_memory_usage

async def main():

 pass

with profiler:

 asyncio.run(main())

�How It Works
The profiler class is used as a container for the coroutine function-

related memory statistics. For this purpose, it defines a stats attribute in

its __init__ method:

class Profiler:

 def __init__(self):

 self.stats = {}

 self.logger = logging.getLogger(__name__)

Chapter 8 Improving Asyncio Applications

168

Next, we want to define a decorator that we can use to mark the

coroutines we are interested in:

def profile_memory_usage(self, f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 snapshot = tracemalloc.take_snapshot()

 res = await f(*args, **kwargs)

 �self.stats[f.__name__] = tracemalloc.take_snapshot().

compare_to(snapshot, 'lineno')

 return res

 return wrapper

We invoke tracemalloc.take_snapshot() to save the current memory

allocations before we await the wrapped coroutine.

Then we compute the delta (change) from the first snapshot and save

the result for the invoked coroutine:

self.stats[f.__name__] = tracemalloc.take_snapshot().compare_

to(snapshot, 'lineno')

Note  We lose all but the memory information of the last call to the
decorated coroutine function!

We define a convenient print method to output the saved

StatisticDiff:

 def print(self):

 for name, stats in self.stats.items():

 for entry in stats:

 self.logger.debug(entry)

Chapter 8 Improving Asyncio Applications

169

We create the profiler a (synchronous) context manager to wrap our call

to asyncio.run while calling tracemalloc.start and tracemalloc.stop.

Furthermore, we print the function-specific memory information upon

exiting the context manager scope:

 def __enter__(self):

 tracemalloc.start()

 return self

 def __exit__(self, exc_type, exc_val, exc_tb):

 tracemalloc.stop()

 self.print()

After defining the profiler class, we instantiate an instance that we use

to decorate a coroutine function and wrap the asyncio.run call:

profiler = Profiler()

@profiler.profile_memory_usage

async def main():

 pass

with profiler:

 asyncio.run(main())

�Building a Simple Profiling Library
�Problem
In the last recipe, we demonstrated how a profiler class and its method

decorator can be used to provide context to the memory allocations of

coroutines, but the solution had many drawbacks due to its simplistic

nature. These drawbacks include:

•	 No separation of concerns. The “view” layer (printing

out to stdout) and the business logic are stuck together

Chapter 8 Improving Asyncio Applications

170

•	 Only considers coroutine functions

•	 Saves only the memory delta of the last coroutine

function call

•	 Hardcodes the type of StatisticDiff generated to

lineno

•	 Does not provide a functionality to profile the

execution time of coroutines

�Solution
In this example, we refine the profiler class to a small memory and

timing profiling library and try to resolve some of the drawbacks we

experienced due to the simple nature of the profiling library.

import asyncio

import contextlib

import inspect

import json

import logging

import pickle

import sys

import tracemalloc

from collections import defaultdict, namedtuple

from contextlib import asynccontextmanager

from functools import wraps

from inspect import iscoroutinefunction

from time import time

from tracemalloc import Filter, take_snapshot, start as

tracemalloc_start, \

 stop as tracemalloc_stop

Chapter 8 Improving Asyncio Applications

171

logging.basicConfig(level=logging.DEBUG, stream=sys.stdout)

Timing = namedtuple("Timing", ["start", "end", "delta"])

class Profiler:

 �def __init__(self, key_type="lineno", cumulative=False,

debug=False, excluded_files=None):

 self.time_stats = defaultdict(list)

 self.memory_stats = defaultdict(dict)

 self.key_type = key_type

 self.cumulative = cumulative

 self.logger = logging.getLogger(__name__)

 self.debug = debug

 if not excluded_files:

 �excluded_files = [tracemalloc.__file__,

inspect.__file__, contextlib.__file__]

 self.excluded_files = excluded_files

 self.profile_memory_cache = False

 def time(self):

 try:

 return asyncio.get_running_loop().time()

 except RuntimeError:

 return time()

 def get_filter(self, include=False):

 �return (Filter(include, filter_) for filter_ in

self.excluded_files)

 def profile_memory(self, f):

 self.profile_memory_cache = True

 if iscoroutinefunction(f):

 @wraps(f)

Chapter 8 Improving Asyncio Applications

172

 async def wrapper(*args, **kwargs):

 �snapshot = take_snapshot().filter_traces

(self.get_filter())

 result = await f(*args, **kwargs)

 current_time = time()

 �memory_delta = take_snapshot().filter_traces

(self.get_filter()).compare_to(snapshot,

self.key_type, self.cumulative)

 �self.memory_stats[f.__name__][current_time] =

memory_delta

 return result

 else:

 @wraps(f)

 def wrapper(*args, **kwargs):

 �snapshot = take_snapshot().filter_trace

s(self.get_filter())

 result = f(*args, **kwargs)

 current_time = time()

 �memory_delta = take_snapshot().filter_traces

(self.get_filter()).compare_to(snapshot,

self.key_type, self.cumulative)

 �self.memory_stats[f.__name__][current_time] =

memory_delta

 return result

 return wrapper

 def profile_time(self, f):

 if iscoroutinefunction(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 start = self.time()

 result = await f(*args, **kwargs)

Chapter 8 Improving Asyncio Applications

173

 end = self.time()

 delta = end - start

 �self.time_stats[f.__name__].

append(Timing(start, end, delta))

 return result

 else:

 @wraps(f)

 def wrapper(*args, **kwargs):

 start = self.time()

 result = f(*args, **kwargs)

 end = self.time()

 delta = end - start

 �self.time_stats[f.__name__].

append(Timing(start, end, delta))

 return result

 return wrapper

 def __enter__(self):

 if self.profile_memory_cache:

 self.logger.debug("Starting tracemalloc..")

 tracemalloc_start()

 return self

 def __exit__(self, exc_type, exc_val, exc_tb):

 if self.profile_memory_cache:

 self.logger.debug("Stopping tracemalloc..")

 tracemalloc_stop()

 if self.debug:

 self.print_memory_stats()

 self.print_time_stats()

Chapter 8 Improving Asyncio Applications

174

 def print_memory_stats(self):

 for name, stats in self.memory_stats.items():

 for timestamp, entry in list(stats.items()):

 �self.logger.debug("Memory measurements for call

of %s at %s", name, timestamp)

 for stats_diff in entry:

 self.logger.debug("%s", stats_diff)

 def print_time_stats(self):

 for function_name, timings in self.time_stats.items():

 for timing in timings:

 �self.logger.debug("function %s was called at %s

ms and took: %s ms",

 function_name,

 timing.start,

 timing.delta)

async def read_message(reader, timeout=3):

 data = []

 while True:

 try:

 �chunk = await asyncio.wait_for(reader.read(1024),

timeout=timeout)

 data += [chunk]

 except asyncio.TimeoutError:

 return b"".join(data)

class ProfilerServer:

 def __init__(self, profiler, host, port):

 self.profiler = profiler

 self.host = host

 self.port = port

Chapter 8 Improving Asyncio Applications

175

 async def on_connection(self,

 reader: asyncio.StreamReader,

 writer: asyncio.StreamWriter):

 message = await read_message(reader)

 logging.debug("Message %s:", message)

 try:

 event = json.loads(message, encoding="UTF-8")

 command = event["command"]

 if command not in ["memory_stats", "time_stats"]:

 raise ValueError(f"{command} is illegal!")

 handler = getattr(self.profiler, command, None)

 if not handler:

 raise ValueError(f"{message} is malformed")

 reply_message = handler

 writer.write(pickle.dumps(reply_message))

 await writer.drain()

 �except (UnicodeDecodeError, json.JSONDecodeError,

TypeError,)as err:

 �self.profiler.logger.error("Error occurred while

transmission: %s", err)

 writer.write(pickle.dumps(err))

 await writer.drain()

 finally:

 writer.close()

class ProfilerClient:

 def __init__(self, host, port):

 self.host = host

 self.port = port

Chapter 8 Improving Asyncio Applications

176

 async def send(self, **kwargs):

 message = json.dumps(kwargs)

 �reader, writer = await asyncio.open_connection(self.

host, self.port)

 writer.write(message.encode())

 message = await reader.read()

 writer.close()

 try:

 return pickle.loads(message)

 except pickle.PickleError:

 return None

 async def get_memory_stats(self):

 return await self.send(command="memory_stats")

 async def get_time_stats(self):

 return await self.send(command="time_stats")

@asynccontextmanager

async def start_profiler_server(profiler, host, port):

 profiler_server = ProfilerServer(profiler, host, port)

 try:

 �server = await asyncio.start_server(profiler_server.

on_connection, host, port)

 async with server:

 yield

 await server.serve_forever()

 finally:

 pass

profiler = Profiler(debug=True)

@profiler.profile_time

@profiler.profile_memory

Chapter 8 Improving Asyncio Applications

177

async def to_be_profiled():

 await asyncio.sleep(3)

 list(i for i in range(10000))

async def main(profiler):

 host, port = "127.0.0.1", 1234

 client = ProfilerClient(host, port)

 async with start_profiler_server(profiler, host, port):

 await to_be_profiled()

 memory_stats = await client.get_memory_stats()

 logging.debug(memory_stats)

try:

 logging.debug("Press CTRL+C to close...")

 with profiler:

 asyncio.run(main(profiler))

except KeyboardInterrupt:

 logging.debug("Closed..")

�How It Works
The design of this version of the profiling library provides a profiling

interface that can be used by coroutine and non-coroutine functions alike.

It needs to provide a profiling interface for memory and time complexity.

Also, it must expose its current state via a simple TCP endpoint that can be

queried via a JSON request and respond with the current state serialized

by the pickle module.

Note  If the request fails, there is no retransmission. Furthermore, to
avoid blocking the request timeout after three seconds (by default),
the timeout parameter can be tweaked.

Chapter 8 Improving Asyncio Applications

178

To save the timing measurements, we generate a lightweight timing entity:

Timing = namedtuple("Timing", ["start", "end", "delta"])

Next, we create the profiler class that is much like the one from

the last example. Except that this time, the whole profiling process is

customizable:

class Profiler:

 �def __init__(self, key_type="lineno", cumulative=False,

debug=False, excluded_files=None):

 self.time_stats = defaultdict(list)

 self.memory_stats = defaultdict(dict)

 self.key_type = key_type

 self.cumulative = cumulative

 self.logger = logging.getLogger(__name__)

 self.debug = debug

 if not excluded_files:

 �excluded_files = [tracemalloc.__file__,

inspect.__file__, contextlib.__file__]

 self.excluded_files = excluded_files

 self.profile_memory_cache = False

The first two parameters—key_type and cumulative—are directly

passed to the compare_to method of the tracemalloc.Snapshot instances.

The debug flag prints the measurements when exiting the context manager.

excluded_files is used to exclude certain files from the memory snapshot

via the tracemalloc.Filter API. The profile_memory_cache attribute

is used to not invoke tracemalloc.start needlessly, but rather only if at

least one memory profile decorator was used. Next, we define two helpers:

 def time(self):

 try:

 return asyncio.get_running_loop().time()

Chapter 8 Improving Asyncio Applications

179

 except RuntimeError:

 return time()

 def get_filter(self, include=False):

 �return (Filter(include, filter_) for filter_ in self.

excluded_files)

Since our profiler can be used for coroutine functions and non-

coroutine functions alike, we need to provide an abstract way to get the

current timestamp. Hence, our time method. get_filter generates an

iterable of tracemalloc.Filter instances to pass to the tracemalloc.

Snapshot instances in the memory profiler. The following methods are the

heart of the profiler:

 def profile_memory(self, f):

 self.profile_memory_cache = True

 if iscoroutinefunction(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 �snapshot = take_snapshot().filter_traces

(self.get_filter())

 result = await f(*args, **kwargs)

 current_time = time()

 �memory_delta = take_snapshot().filter_traces

(self.get_filter()).compare_to(snapshot,

self.key_type, self.cumulative)

 �self.memory_stats[f.__name__][current_time] =

memory_delta

 return result

 else:

 @wraps(f)

 def wrapper(*args, **kwargs):

 �snapshot = take_snapshot().filter_traces

(self.get_filter())

Chapter 8 Improving Asyncio Applications

180

 result = f(*args, **kwargs)

 current_time = time()

 �memory_delta = take_snapshot().filter_traces

(self.get_filter()).compare_to(snapshot,

self.key_type, self.cumulative)

 �self.memory_stats[f.__name__][current_time] =

memory_delta

 return result

 return wrapper

 def profile_time(self, f):

 if iscoroutinefunction(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 start = self.time()

 result = await f(*args, **kwargs)

 end = self.time()

 delta = end - start

 �self.time_stats[f.__name__].

append(Timing(start, end, delta))

 return result

 else:

 @wraps(f)

 def wrapper(*args, **kwargs):

 start = self.time()

 result = f(*args, **kwargs)

 end = self.time()

 delta = end - start

 �self.time_stats[f.__name__].

append(Timing(start, end, delta))

 return result

 return wrapper

Chapter 8 Improving Asyncio Applications

181

profile_memory and profile_time are the memory and time profile

decorators that we can attach to coroutines and functions alike. They will

append the recent memory StatisticDiff for a given (coroutine) function

and timestamp (queried by the Profiler.time method) or the execution

duration of a call saved as a Timing object per the (coroutine) function.

profile_memory will additionally filter out the excluded_files (as you

can see, we use the __file__ attribute of some built-in modules to exclude

them by default) from the memory snapshots.

As alluded to, we improve the profiler context manager by invoking

tracemalloc.start (tracemalloc_start is an alias) only when necessary

and conditionally printing the memory and time stats depending on the

debug flag:

 def __enter__(self):

 if self.profile_memory_cache:

 self.logger.debug("Starting tracemalloc..")

 tracemalloc_start()

 return self

 def __exit__(self, exc_type, exc_val, exc_tb):

 if self.profile_memory_cache:

 self.logger.debug("Stopping tracemalloc..")

 tracemalloc_stop()

 if self.debug:

 self.print_memory_stats()

 self.print_time_stats()

The ProfilerServer and ProfilerClient are the foundation of our

transportation layer. Both parts use the read_message coroutine function

helper to query the reader with a timeout.

Chapter 8 Improving Asyncio Applications

182

async def read_message(reader, timeout=3):

 data = []

 while True:

 try:

 �chunk = await asyncio.wait_for(reader.read(1024),

timeout=timeout)

 data += [chunk]

 except asyncio.TimeoutError:

 return b"".join(data)

The ProfilerServer responds with a serialized version of the

underlying profiler’s class ProfilerServer:

 def __init__(self, profiler, host, port):

 self.profiler = profiler

 self.host = host

 self.port = port

The memory_stats and time_stats attributes, if queried with the right

attribute names marshaled in a JSON payload, look like this:

{

 "command": "memory_stats" | "time_stats"

}

The bit that does this handling is the on_connection coroutine

method:

 async def on_connection(self,

 reader: asyncio.StreamReader,

 writer: asyncio.StreamWriter):

 message = await read_message(reader)

 logging.debug("Message %s:", message)

Chapter 8 Improving Asyncio Applications

183

 try:

 event = json.loads(message, encoding="UTF-8")

 command = event["command"]

 if command not in ["memory_stats", "time_stats"]:

 raise ValueError(f"{command} is illegal!")

 handler = getattr(self.profiler, command, None)

 if not handler:

 raise ValueError(f"{message} is malformed")

 reply_message = handler

 writer.write(pickle.dumps(reply_message))

 await writer.drain()

 �except (UnicodeDecodeError, json.JSONDecodeError,

TypeError,)as err:

 �self.profiler.logger.error("Error occurred while

transmission: %s", err)

 writer.write(pickle.dumps(err))

 await writer.drain()

 finally:

 writer.close()

The profiler client respects the protocol and returns a valid value if it

was able to unpickle the message:

class ProfilerClient:

 def __init__(self, host, port):

 self.host = host

 self.port = port

 async def send(self, **kwargs):

 message = json.dumps(kwargs)

 �reader, writer = await asyncio.open_connection(self.

host, self.port)

Chapter 8 Improving Asyncio Applications

184

 writer.write(message.encode())

 message = await reader.read()

 writer.close()

 try:

 return pickle.loads(message)

 except pickle.PickleError:

 return None

 async def get_memory_stats(self):

 return await self.send(command="memory_stats")

 async def get_time_stats(self):

 return await self.send(command="time_stats")

We define a start_profiler_server asynccontextmanager that

wraps asyncio.start_server and takes care of calling server.serve_

forever(). We need to pass the profiler from the outside, since it decorates

functions and methods. Mind you, async with can only be used in the

context of a coroutine function body:

@asynccontextmanager

async def start_profiler_server(profiler, host, port):

 profiler_server = ProfilerServer(profiler, host, port)

 try:

 �server = await asyncio.start_server(profiler_server.

on_connection, host, port)

 async with server:

 yield

 await server.serve_forever()

 finally:

 pass

Chapter 8 Improving Asyncio Applications

185

Next, we decorate our time- and memory-intensive coroutine function

to_be_profiled:

profiler = Profiler(debug=True)

@profiler.profile_time

@profiler.profile_memory

async def to_be_profiled():

 await asyncio.sleep(3)

 list(i for i in range(10000))

And query our instance of the ProfilerServer with a ProfilerClient

instance:

sync def main(profiler):

 host, port = "127.0.0.1", 1234

 client = ProfilerClient(host, port)

 async with start_profiler_server(profiler, host, port):

 await to_be_profiled()

 memory_stats = await client.get_memory_stats()

 logging.debug(memory_stats)

Don’t forget to wrap asyncio.run with the profiler context manager:

try:

 logging.debug("Press CTRL+C to close...")

 with profiler:

 asyncio.run(main(profiler))

except KeyboardInterrupt:

 logging.debug("Closed..")

Chapter 8 Improving Asyncio Applications

186

�Spotting a Long-Running Coroutine
�Problem
You need to spot a coroutine that runs too long.

�Solution
We will write a decorator factory that tracks the time a coroutine was

running and invokes a formerly passed handler function if it surpasses a

certain threshold. Using the sys.set_coroutine_origin_tracking_depth

API, we can track the coroutine origin, meaning the place where the

coroutine was created, with the most recent call first.

import asyncio

import logging

import sys

from functools import wraps

THRESHOLD = 0.5

sys.set_coroutine_origin_tracking_depth(10)

def time_it_factory(handler):

 def time_it(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 loop = asyncio.get_running_loop()

 start = loop.time()

 coro = f(*args, **kwargs)

 result = await coro

 delta = loop.time() - start

 handler(coro, delta)

 return result

Chapter 8 Improving Asyncio Applications

187

 return wrapper

 return time_it

@time_it_factory

def log_time(coro, time_delta):

 if time_delta > THRESHOLD:

 �logging.warning("The coroutine %s took more than %s

ms", coro, time_delta)

 for frame in coro.cr_origin:

 �logging.warning("file:%s line:%s function:%s", *frame)

 else:

 logging.warning("Coroutine has no origin !")

@log_time

async def main():

 await asyncio.sleep(1)

asyncio.run(main())

�How It Works
We define a threshold of 0.5 seconds and make sure that at least 10

frames of a coroutine stack are stored inside the coroutine’s cr_origin by

invoking sys.set_coroutine_origin_tracking_depth(10):

THRESHOLD = 0.5

sys.set_coroutine_origin_tracking_depth(10)

Note T he sys.set_coroutine_origin_tracking_depth
API replaces the set_coroutine_wrapper() API, which has
been deprecated and will be removed in Python version 3.8.
See bpo-32591 or the next section for more details.

Chapter 8 Improving Asyncio Applications

188

Next up is our decorator factory:

def time_it_factory(handler):

 def time_it(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 loop = asyncio.get_running_loop()

 start = loop.time()

 coro = f(*args, **kwargs)

 result = await coro

 delta = loop.time() - start

 handler(coro, delta)

 return result

 return wrapper

 return time_it

If you look closely, you might see that the time_it decorator resembles

the profiler’s profile_time method. It is just more lightweight since it

targets only coroutines and calls a handler function with the coro and the

time_delta as a parameter:

handler(coro,delta)

You can decorate a function you intend to use with a coroutine

decorator, like so:

@time_it_factory

def log_time(coro, time_delta):

 if time_delta > THRESHOLD:

 �logging.warning("The coroutine %s took more than %s

ms", coro, time_delta)

Chapter 8 Improving Asyncio Applications

189

 for frame in coro.cr_origin:

 �logging.warning("file:%s line:%s function:%s",

*frame)

 else:

 logging.warning("Coroutine has no origin !")

Now the log_time decorator will be injected with the currently used

coroutine and the time it took to run. As you can see, we use the coroutine

cr_origin member to print the call chain.

You can then, for instance, use the decorator on the callers of the

coroutine if you suspect them to be the source of the bottleneck. Or you

can write more sophisticated decorators that do this by automatically

using the decorator_factory.

�Refactoring “Old School” Asyncio Code
�Problem
You need to find replacements for some of the deprecated APIs and anti-

patterns of asyncio.

�Solution #1
In this solution, we show examples of deprecated asyncio code alongside

the newer code.

import asyncio

import sys

async def coro():

 print("This works!")

Chapter 8 Improving Asyncio Applications

190

async def ensure_future_deprecated():

 # Up to Python 3.6

 task = asyncio.ensure_future(coro())

 # In Python 3.7+

 task_2 = asyncio.create_task(coro())

async def main():

 pass

Up to Python 3.6

asyncio.get_event_loop().run_until_complete(main())

Python 3.7+

asyncio.run(main())

async def wait_deprecated():

 # Passing coroutines objects to wait() directly is deprecated:

 coros = [asyncio.sleep(10), asyncio.sleep(10)]

 done, pending = await asyncio.wait(coros)

 # Use asyncio.create_task

 �futures = [asyncio.create_task(coro) for coro in (asyncio.

sleep(10), asyncio.sleep(10))]

 done, pending = await asyncio.wait(futures)

async def tasks_deprecated(loop):

 # Using Task class methods is deprecated:

 task = asyncio.Task.current_task(loop)

 tasks = asyncio.Task.all_tasks(loop)

 # Use the asyncio module level functions instead:

 task = asyncio.current_task(loop)

 tasks = asyncio.all_tasks(loop)

Chapter 8 Improving Asyncio Applications

191

async def coroutine_deprecated():

 @asyncio.coroutine

 def gen_coro():

 yield from asyncio.sleep(1)

 async def native_coroutine():

 await asyncio.sleep(1)

async def passing_loop_deprecated():

 loop = asyncio.get_running_loop()

 # This is deprecated

 await asyncio.sleep(10, loop=loop)

 �await asyncio.wait_for(asyncio.create_task(asyncio.

sleep(10)), 11, loop=loop)

 �futures = {asyncio.create_task(asyncio.sleep(10,

loop=loop))}

 done, pending = await asyncio.wait(futures, loop=loop)

 await asyncio.sleep(10)

 �await asyncio.wait_for(asyncio.create_task(asyncio.

sleep(10)), 11, loop=loop)

 futures = {asyncio.create_task(asyncio.sleep(10))}

 done, pending = await asyncio.wait(futures)

async def coroutine_wrapper_deprecated():

 �# set_coroutine_wrapper() and sys.get_coroutine_wrapper()

will be removed in Python 3.8

 sys.set_coroutine_wrapper(sys.get_coroutine_wrapper())

 # and are deprecated in favor of

 �sys.set_coroutine_origin_tracking_depth(sys.get_coroutine_

origin_tracking_depth())

 # Of course passing sensible values!

Chapter 8 Improving Asyncio Applications

192

�How It Works
Using asyncio.ensure_future is considered deprecated, but it will not

be removed soon to maintain backward compatibility with older versions.

asyncio.create_task is to be used now:

async def coro():

 print("This works!")

async def ensure_future_deprecated():

 # Up to Python 3.6

 task = asyncio.ensure_future(coro())

 # In Python 3.7+

 task_2 = asyncio.create_task(coro())

To hide complexity away from users who have a simple “one-loop-in-

a-process-and-thread” setting, we can use asyncio.run instead of dealing

with the somewhat confusing details of asyncio.get_event_loop and the

like:

async def main():

 pass

Up to Python 3.6

asyncio.get_event_loop().run_until_complete(main())

Python 3.7+

asyncio.run(main())

Passing coroutines directly to asyncio.wait is supported but might

have a surprising result since this approach schedules the coroutines and

wraps them in tasks under the hood. Hence, checking for the coroutines in

the returned “done and pending” sets will fail. The recommended way to

use asyncio.wait is to schedule the coroutines as task objects first, before

passing them:

Chapter 8 Improving Asyncio Applications

193

async def wait_deprecated():

 �# Passing coroutines objects to wait() directly is deprecated:

 coros = [asyncio.sleep(10), asyncio.sleep(10)]

 done, pending = await asyncio.wait(coros)

 # Use asyncio.create_task

 �futures = [asyncio.create_task(coro) for coro in (asyncio.

sleep(10), asyncio.sleep(10))]

 done, pending = await asyncio.wait(futures)

Using asyncio.Task class methods current_task and all_tasks is

also considered deprecated. We use asyncio.current_task and asyncio.

all_tasks instead:

async def tasks_deprecated(loop):

 # Using Task class methods is deprecated:

 task = asyncio.Task.current_task(loop)

 tasks = asyncio.Task.all_tasks(loop)

 # Use the asyncio module level functions instead:

 task = asyncio.current_task(loop)

 tasks = asyncio.all_tasks(loop)

Of course, messing around with generator coroutines is considered

deprecated and a design mistake. Use native coroutines instead (which

disallow yield from in their function bodies):

async def coroutine_deprecated():

 @asyncio.coroutine

 def gen_coro():

 yield from asyncio.sleep(1)

 async def native_coroutine():

 await asyncio.sleep(1)

Chapter 8 Improving Asyncio Applications

194

Passing a loop parameter was optionally possible in a few APIs,

namely:

•	 asyncio.sleep

•	 asyncio.wait_for

•	 asyncio.wait

This has been deprecated as of Python 3.7:

async def passing_loop_deprecated():

 loop = asyncio.get_running_loop()

 # This is deprecated

 await asyncio.sleep(10, loop=loop)

 �await asyncio.wait_for(asyncio.create_task(asyncio.

sleep(10)), 11, loop=loop)

 �futures = {asyncio.create_task(asyncio.sleep(10,

loop=loop))}

 done, pending = await asyncio.wait(futures, loop=loop)

 await asyncio.sleep(10)

 �await asyncio.wait_for(asyncio.create_task(asyncio.

sleep(10)), 11, loop=loop)

 futures = {asyncio.create_task(asyncio.sleep(10))}

 done, pending = await asyncio.wait(futures)

Also, as mentioned in the last section, using the coroutine wrapper

API in the sys module has also been deprecated. It was considered too

powerful and generally added too much overhead, in that it was able to

change the behavior of all native coroutines.

Since the initial idea was to provide a way to track the origin of a

coroutine, the sys.*_coroutine_origin_tracking_depth APIs and the

cr_origin native coroutine attribute were added:

Chapter 8 Improving Asyncio Applications

195

async def coroutine_wrapper_deprecated():

 �# set_coroutine_wrapper() and sys.get_coroutine_wrapper()

will be removed in Python 3.8

 sys.set_coroutine_wrapper(sys.get_coroutine_wrapper())

 # and are deprecated in favor of

 �sys.set_coroutine_origin_tracking_depth(sys.get_coroutine_

origin_tracking_depth())

 # Of course, passing sensible values!

More details can be found in bpo-32591.

�Solution #2
Using the ast module, we can find occurrences of generator-based

coroutines and other deprecated asyncio APIs. This solution demonstrates

how to do so for decorated and non-decorated generator-based coroutines

using function bodies. It also detects if you have imported the @asyncio.

coroutine decorator using from asyncio import coroutine.

How to refactor "old school" asyncio code

import argparse

import ast

import asyncio

import functools

import os

from asyncio import coroutine

parser = argparse.ArgumentParser("asyncompat")

parser.add_argument("--path", default=__file__)

Chapter 8 Improving Asyncio Applications

196

TEST SECTION

@coroutine

def producer():

 return 123

@asyncio.coroutine

def consumer():

 value = yield from producer()

 return value

def consumer2():

 value = yield from producer()

 return value

TEST SECTION END

def is_coroutine_decorator(node):

 return (isinstance(node, ast.Attribute) and

 isinstance(node.value, ast.Name) and

 hasattr(node.value, "id") and

 �node.value.id == "asyncio" and node.attr ==

"coroutine")

def is_coroutine_decorator_from_module(node, *, imported_asyncio):

 return (isinstance(node, ast.Name) and

 node.id == "coroutine" and

 isinstance(node.ctx, ast.Load) and

 imported_asyncio)

class FunctionDefVisitor(ast.NodeVisitor):

 def __init__(self):

 self.source = None

 self.first_run = True

 self.imported_asyncio = False

Chapter 8 Improving Asyncio Applications

197

 def initiate_visit(self, source):

 self.source = source.splitlines()

 node = ast.parse(source)

 self.visit(node)

 self.first_run = False

 return self.visit(node)

 def visit_Import(self, node):

 for name in node.names:

 if name.name == "asyncio":

 self.imported_asyncio = True

 def visit_FunctionDef(self, node):

 if self.first_run:

 return

 �decorators = list(filter(is_coroutine_decorator,

node.decorator_list))

 decorators_from_module = list(

 �filter(functools.partial(is_coroutine_decorator_from_

module, imported_asyncio=self.imported_asyncio),

 node.decorator_list))

 if decorators:

 �print(node.lineno, ":", self.source[node.lineno],

"is an oldschool coroutine!")

 elif decorators_from_module:

 �print(node.lineno, ":", self.source[node.lineno],

"is an oldschool coroutine!")

if __name__ == '__main__':

 v = FunctionDefVisitor()

 args = parser.parse_args()

 �path = os.path.isfile(args.path) and os.path.abspath(args.path)

Chapter 8 Improving Asyncio Applications

198

 if not path or not path.endswith(".py"):

 �raise ValueError(f"{path} is not a valid path to a

python file!")

 with open(path) as f:

 v.initiate_visit(f.read())

�How It Works
In this solution, we wanted to demonstrate how to use the ast module to

find coroutines defined in the old generator decorator fashion. For this

matter, we provide two predicate functions that test an ast node to see if it

contains such a decorator:

def is_coroutine_decorator(node):

 return (isinstance(node, ast.Attribute) and

 isinstance(node.value, ast.Name) and

 hasattr(node.value, "id") and

 �node.value.id == "asyncio" and node.attr ==

"coroutine")

def is_coroutine_decorator_from_module(node, *, imported_

asyncio):

 return (isinstance(node, ast.Name) and

 node.id == "coroutine" and

 isinstance(node.ctx, ast.Load) and

 imported_asyncio)

Next, we write a two-pass ast.NodeVisitor that traverses the

program’s abstract syntax tree to look for function definitions that contain

a @asyncio.coroutine or a @coroutine decorator, since this is where we

could have imported the decorator:

Chapter 8 Improving Asyncio Applications

199

from asyncio import coroutine:

class FunctionDefVisitor(ast.NodeVisitor):

 def __init__(self):

 self.source = None

 self.first_run = True

 self.imported_asyncio = False

 def initiate_visit(self, source):

 self.source = source.splitlines()

 node = ast.parse(source)

 self.visit(node)

 self.first_run = False

 return self.visit(node)

 def visit_Import(self, node):

 for name in node.names:

 if name.name == "asyncio":

 self.imported_asyncio = True

In the first pass, we check for the import. We save how asyncio was

imported and inject it as an additional parameter into our predicate

functions, which we use to filter the function definitions:

def visit_FunctionDef(self, node):

 if self.first_run:

 return

 �decorators = list(filter(is_coroutine_decorator,

node.decorator_list))

 decorators_from_module = list(

 �filter(functools.partial(is_coroutine_decorator_

from_module, imported_asyncio=self.imported_

asyncio),

 node.decorator_list))

Chapter 8 Improving Asyncio Applications

200

 if decorators:

 �print(node.lineno, ":", self.source[node.lineno],

"is an oldschool coroutine!")

 elif decorators_from_module:

 �print(node.lineno, ":", self.source[node.lineno],

"is an oldschool coroutine!")

For the sake of our example, we defined a test section as follows:

 @coroutine

def producer():

 return 123

@asyncio.coroutine

def consumer():

 value = yield from producer()

 return value

def consumer2():

 value = yield from producer()

 return value

This should be found by our command-line tool using the

FunctionDefVisitor:

if __name__ == '__main__':

 v = FunctionDefVisitor()

 args = parser.parse_args()

 �path = os.path.isfile(args.path) and os.path.abspath

(args.path)

 if not path or not path.endswith(".py"):

 �raise ValueError(f"{path} is not a valid path to a

python file!")

 with open(path) as f:

 v.initiate_visit(f.read())

Chapter 8 Improving Asyncio Applications

201

�Avoiding Busy Loops
�Problem
Busy loops actively poll resources to determine their states. You want to

rewrite a (multi-threaded) busy loop doing some I/O more elegantly with

asyncio.

�Solution
Given the asyncio.Future object, we can await the completion of a

coroutine very elegantly.

import asyncio

import random

async def fetch(url, *, fut: asyncio.Future):

 �await asyncio.sleep(random.randint(3, 5)) # Simulating work

 fut.set_result(random.getrandbits(1024 * 8))

async def checker(responses, url, *, fut: asyncio.Future):

 result = await fut

 responses[url] = result

 print(result)

async def main():

 loop = asyncio.get_running_loop()

 future = loop.create_future()

 responses = {}

 url = "https://apress.com"

 �await asyncio.gather(fetch(url, fut=future),

checker(responses, url, fut=future))

asyncio.run(main())

Chapter 8 Improving Asyncio Applications

202

�How It Works
A busy loop is generally considered an anti-pattern, since it is very

resource intensive and wasteful of the CPU’s time. Given an event loop, we

can instead be notified when the resource state has changed. Consider the

following example, which uses threads and a busy loop:

import random

import threading

import time

def fetch(responses, url, *, lock: threading.Lock):

 time.sleep(random.randint(3, 5)) # Simulating work

 with lock:

 responses[url] = random.getrandbits(1024 * 8)

def checker(responses, url, interval=1, timeout=30, *,

lock: threading.Lock):

 i�nterval, timeout = min(interval, timeout), max(interval,

timeout)

 while timeout:

 with lock:

 response = responses.get(url)

 if response:

 print(response)

 return

 time.sleep(interval)

 timeout -= interval

 raise TimeoutError()

def main():

 lock = threading.Lock()

 responses = {}

Chapter 8 Improving Asyncio Applications

203

 url = "https://apress.com"

 �fetcher = threading.Thread(target=fetch, args=(responses,

url,), kwargs=dict(lock=lock))

 �worker = threading.Thread(target=checker, args=(responses,

url,), kwargs=dict(lock=lock))

 for t in (fetcher, worker):

 t.start()

 fetcher.join()

 worker.join()

if __name__ == '__main__':

 main()

The fetch function simulates I/O work by using the time.sleep

function. It saves random bytes in a response dict guarded by a threading

lock to simulate a returned response:

def fetch(responses, url, *, lock: threading.Lock):

 time.sleep(random.randint(3, 5)) # Simulating work

 with lock:

 responses[url] = random.getrandbits(1024 * 8)

The checker function, on the other hand, tries to retrieve the response

guarded by a lock. If it fails to do so (while responses.get(url) is a false

value), it retries until the timeout is reached. If the timeout is reached, it

raises a TimeoutError:

def checker(responses, url, interval=1, timeout=30, *,

lock: threading.Lock):

 �interval, timeout = min(interval, timeout), max(interval,

timeout)

 while timeout:

 with lock:

 response = responses.get(url)

Chapter 8 Improving Asyncio Applications

204

 if response:

 print(response)

 return

 time.sleep(interval)

 timeout -= interval

 raise TimeoutError()

Our main function schedules both functions using threads and the

same lock instance. It joins on them to await the busy loop:

def main():

 lock = threading.Lock()

 responses = {}

 url = "https://apress.com"

 �fetcher = threading.Thread(target=fetch, args=(responses,

url,), kwargs=dict(lock=lock))

 �worker = threading.Thread(target=checker, args=(responses,

url,), kwargs=dict(lock=lock))

 for t in (fetcher, worker):

 t.start()

 fetcher.join()

 worker.join()

asyncio is made for I/O. You can easily create a good example in less

space and with explicit preemption of your coroutines simply by using a

asyncio.Future object:

async def fetch(url, *, fut: asyncio.Future):

 �await asyncio.sleep(random.randint(3, 5)) # Simulating work

 fut.set_result(random.getrandbits(1024 * 8))

Chapter 8 Improving Asyncio Applications

205

By using an asyncio.Future, we can set the result when it is actually

ready and signal to the coroutine that is awaiting the future. This allows it

to store the result and handle it (printing it like shown here):

async def checker(responses, url, *, fut: asyncio.Future):

 result = await fut

 responses[url] = result

 print(result)

In this case, the logical counterpart to threading.Thread.join is

asyncio.gather:

async def main():

 loop = asyncio.get_running_loop()

 future = loop.create_future()

 responses = {}

 url = "https://apress.com"

 �await asyncio.gather(fetch(url, fut=future),

checker(responses, url, fut=future))

asyncio.run(main())

The future instance can be conveniently created by using

loop.create_future().

Note R efrain from instantiating asyncio.Future. You might
end up with exotic loop implementations that have enhanced future
classes that they only expose through loop.create_future()!

Chapter 8 Improving Asyncio Applications

207© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_9

CHAPTER 9

Working with Network
Protocols
Network communication is governed by networking protocols. This is

the umbrella term used for rulesets that lay out how data is transported

and formatted across (or inside) the boundaries of a network node.

For instance, they might define in which byte order a payload is to be

transferred, the encoding, the length of the payload, if the payload is

retransferred upon a failed attempt, etc.

These networking protocols, if crafted to be fit for one single purpose

like transportation or authentication, can interact with each other to a

degree where they seem to seamlessly inter-opt.

Well known cases for this pattern are HTTP, FTP, SSH, SFTP, and

HTTPS, which leverage more low-level transportation protocols like TCP

and UDP, use routing protocols like IP, and use TLS as an authentication or

integrity protocol.

These protocols are built around a message-exchange mechanism

called the request-response model. The party that initiates the

communication is usually known as the client. The answering party is

known as the server. Communication that is designed like this involves I/O

roundtrip times, where the requester/client/callee awaits a response.

A synchronous program that implements such a protocol would wait on

any responses that are being pending and hence unnecessarily use CPU time.

208

Asyncio provides tools to write implementations for these protocols or even

craft your own protocol that will run on asyncio’s powerful event loop system.

asyncio.BaseProtocol subclasses are asyncio primitives that declare

which bytes are transported by the asyncio.BaseTransport subclasses,

which on the other hand govern how bytes are sent. asyncio provides four

out-of-the-box transportation layers: UDP, TCP, TLS, and subprocess pipes.

The asyncio.BaseProtocol subclasses that are of interest to us are:

•	 asyncio.Protocol for streaming protocols like TCP and

UNIX sockets

•	 asyncio.BufferedProtocol for implementing streaming

protocols with manual control of the receive buffer

•	 asyncio.DatagramProtocol for implementing

datagram (UDP) protocols

•	 asyncio.SubprocessProtocol for implementing

protocols communicating with child processes

(unidirectional pipes)

In the highly unlikely case that you want to add more asyncio.

BaseTransport subclasses, you need to provide your own loop

implementation, since no loop API exposes a way to pass asyncio.

BaseTransport factories as an argument through. These can be used to

create clients or servers that run on an asyncio.BaseLoop subclass. To

create clients/servers for a certain protocol, you pass a protocol factory

function to one of the following asyncio.BaseLoop methods:

•	 loop.create_connection

•	 loop.create_datagram_endpoint

•	 loop.create_server

•	 loop.connect_accepted_socket

•	 loop.subprocess_shell

Chapter 9 Working with Network Protocols

209

•	 loop.subprocess_exec

•	 loop.connect_read_pipe

•	 loop.connect_write_pipe

•	 loop.create_unix_connection

•	 loop.create_unix_server

The different connection methods return different transports. They

differ in how they transport the data. There are transports that use sockets

of different families like AF_INET, AF_UNIX, etc., and types like SOCK_STREAM

(TCP) and SOCK_DGRAM (UDP).

The asyncio.transports.SubprocessTransport subclasses

communicate via pipes. They are used in the context of subprocesses.

The create_unix_connection and create_unix_server methods are

only available on UNIX hosts. Subprocesses on Windows work only on the

ProactorEventLoop, as seen in earlier examples:

if sys.platform == "win32":

 asyncio.set_event_loop_policy(asyncio.

WindowsProactorEventLoopPolicy())

In the course of this chapter, we discuss a subset of the loop methods

and some of the asyncio.BaseProtocol subclasses that are critical for

understanding how these networking primitives are used.

�Writing a Protocol Subclass for a Simple
Remote Command Server
�Problem
We want to implement a server for a custom network protocol with binary

payloads in asyncio.

Chapter 9 Working with Network Protocols

210

�Solution
As established, asyncio provides an implementation of the asyncio.

BaseProtocol class that helps us implement network protocols. They

define callbacks that are then called by the asyncio.Transport object.

They have a strict 1:1 mapping to asyncio.BaseProtocol objects.

Implementing our own simple protocol, we will write a server that

receives a serialized Python function and runs it inside of a subprocess

pool. It then returns the result to the callee over TCP. For better pickling

support, we use the third-party library cloudpickle. It enables us to

serialize responses, like functions, that might not be importable.

To install it, we use the following:

pipenv install cloudpickle==0.6.1

or

pip3 install cloudpickle==0.6.1

import asyncio

import functools

import inspect

import logging

import sys

from multiprocessing import freeze_support, get_context

import cloudpickle as pickle

logging.basicConfig(level=logging.DEBUG, stream=sys.stdout)

def on_error(exc, *, transport, peername):

 try:

 �logging.exception("On error: Exception while handling a

subprocess: %s ", exc)

 transport.write(pickle.dumps(exc))

Chapter 9 Working with Network Protocols

211

 finally:

 transport.close()

 logging.info("Disconnected %s", peername)

def on_success(result, *, transport, peername, data):

 try:

 �logging.debug("On success: Received payload from %s:%s

and successfully executed:\n%s", *peername, data)

 transport.write(pickle.dumps(result))

 finally:

 transport.close()

 logging.info("Disconnected %s", peername)

def handle(data):

 f, args, kwargs = pickle.loads(data)

 if inspect.iscoroutinefunction(f):

 return asyncio.run(f(*args, *kwargs))

 return f(*args, **kwargs)

class CommandProtocol(asyncio.Protocol):

 def __init__(self, pool, loop, timeout=30):

 self.pool = pool

 self.loop = loop

 self.timeout = timeout

 self.transport = None

 def connection_made(self, transport):

 peername = transport.get_extra_info('peername')

 logging.info('%s connected', peername)

 self.transport = transport

Chapter 9 Working with Network Protocols

212

 def data_received(self, data):

 peername = self.transport.get_extra_info('peername')

 �on_error_ = functools.partial(on_error, transport=self.

transport, peername=peername)

 �on_success_ = functools.partial(on_success,

transport=self.transport, peername=peername, data=data)

 �result = self.pool.apply_async(handle, (data,),

callback=on_success_, error_callback=on_error_)

 self.loop.call_soon(result.wait)

 �self.loop.call_later(self.timeout, self.close, peername)

 def close(self, peername=None):

 try:

 if self.transport.is_closing():

 return

 if not peername:

 �peername = self.transport.get_extra_

info('peername')

 finally:

 self.transport.close()

 logging.info("Disconnecting %s", peername)

async def main():

 loop = asyncio.get_running_loop()

 fork_context = get_context("fork")

 pool = fork_context.Pool()

 �server = await loop.create_server(lambda:

CommandProtocol(pool, loop), '127.0.0.1', 8888)

 try:

 async with server:

 await server.serve_forever()

Chapter 9 Working with Network Protocols

213

 finally:

 pool.close()

 pool.join()

if __name__ == '__main__':

 freeze_support()

 asyncio.run(main())

�How It Works
We can see in the imports that we will use the multiprocessing.Pool to

schedule the serialized function (and its arguments):

import asyncio

import inspect

import functools

import logging

import os

import pickle

import sys

from multiprocessing import Pool

Since we will use the asynchronous pool.apply_async API for that, we

need to provide callbacks that are called on results and errors. We define

them outside our asyncio.BaseProtocol class definition:

logging.basicConfig(level=logging.DEBUG, stream=sys.stdout)

def on_error(exc, *, transport, peername):

 try:

 �logging.exception("On error: Exception while handling a

subprocess: %s ", exc)

 transport.write(pickle.dumps(exc))

Chapter 9 Working with Network Protocols

214

 finally:

 transport.close()

 logging.info("Disconnected %s", peername)

def on_success(result, *, transport, peername, data):

 try:

 �logging.debug("On success: Received payload from %s:%s

and successfully executed:\n%s", *peername, data)

 transport.write(pickle.dumps(result))

 finally:

 transport.close()

 logging.info("Disconnected %s", peername)

def handle(data):

 f, args, kwargs = pickle.loads(data)

 if inspect.iscoroutinefunction(f):

 return asyncio.run(f(*args,*kwargs))

 return f(*args, **kwargs)

The reason we don’t have them as methods of the CommandProtocol

is that calling result.wait on the ApplyResult instance will try to pickle

the callbacks provided. Since the callbacks are methods, it will also try to

pickle the instance and fail because of the unpickleable multiprocessing.

Pool attribute.

An easy solution to this problem is to use functions that are pickleable

(if importable) and then pass additional values via functools.partial

(as we will see later). The on-error callback is called when exceptions

are raised inside the process pool. Since we inject the transport instance,

we can transfer the serialized exception back to the callee, who can then

proceed to handle it appropriately.

Of course, we close the transport at the end of the usage to not run

into resource leakages. Very similarly we serialize the result and close the

transport afterward. Using a try-finally block, we ensure the transport

Chapter 9 Working with Network Protocols

215

is always closed. handle basically deserializes the passed data and tries to

unpack it since our “contract” is to send a serialized tuple of a function,

a tuple of positional arguments, and a dict with keyword arguments. We

don’t handle exceptions here since they bubble up and are handled by

on_error. The return value is the one passed to on_success.

Next up is the CommandProtocol class. First of all, we define the

constructor, which needs to pass us the pool instance to handle the

different requests. The loop instance is for scheduling callbacks and the

timeout is for force-closing the transport if the result takes too long to

compute. A transport attribute is initialized to None to hold a reference to

the current transport.

 Class CommandProtocol(asyncio.BaseProtocol):

 def __init__(self, pool, loop, timeout=30):

 self.pool = pool

 self.loop = loop

 self.timeout = timeout

 self.transport = None

Next, we need to implement the callbacks that are invoked by the

asyncio.Transport instance:

 def connection_made(self, transport):

 peername = transport.get_extra_info(‘peername’)

 logging.info(‘%s connected’, peername)

 self.transport = transport

command_protocol.connection_made is invoked when a client

connects to the server. In that case, we store the IP and port information

by querying the transport for the peername. We also store a reference to the

transport for further use.

The command_protocol.data_received callback is where the better

part of the protocol lies. Here we receive the data, which we then pass to

the pool. We do not serialize the data here. Rather we wait for the handle

callback to be invoked.

Chapter 9 Working with Network Protocols

216

We use functools.partial to pass the transport instance, so that the

callbacks can return the payload. We also schedule self.close after self.

timeout seconds, which force-closes the transport if it is taking too long.

 def data_received(self, data):

 peername = self.transport.get_extra_info('peername')

 �on_error_ = functools.partial(on_error, transport=self.

transport, peername=peername)

 �on_success_ = functools.partial(on_success,

transport=self.transport, peername=peername, data=data)

 �result = self.pool.apply_async(handle, (data,),

callback=on_success_, error_callback=on_error_)

 self.loop.call_soon(result.wait)

 �self.loop.call_later(self.timeout, self.close, peername)

The close method is only invoked when we do not close the

transport by querying transport.is_closing(). If it is not closed yet, we

close it; otherwise, we try to get the peername and close the transport in a

finally block:

 def close(self, peername=None):

 try:

 if self.transport.is_closing():

 return

 if not peername:

 �peername = self.transport.get_extra_

info('peername')

 finally:

 self.transport.close()

 logging.info("Disconnected %s", peername)

Chapter 9 Working with Network Protocols

217

To start our server, we need to get a loop instance, get a

multiprocessing.Pool instance, and create a CommandProtocol factory

that we can pass to loop.create_server.

For that matter, we inline a lambda that returns a new

CommandProtocol instance that reuses our pool. Now on every connect,

a new CommandProtocol instance is spawned, but we use the same pool

instance. We spawn the server on localhost and port 8888. We serve forever

and close the pool in the finally block.

async def main():

 loop = asyncio.get_running_loop()

 pool = Pool()

 server = await loop.create_server(

 lambda: CommandProtocol(pool, loop),

 '127.0.0.1', 8888)

 try:

 async with server:

 await server.serve_forever()

 finally:

 pool.close()

 pool.join()

asyncio.run(main())

Note T he (cloud)pickle package does not protect against
malicious code. Don't run this server on networks you do not trust. No
measurements were taken to harden this server example to keep it
focused on the protocol part.

Chapter 9 Working with Network Protocols

218

�Writing a Protocol Subclass for a Simple
Remote Command Client
�Problem
We want to implement a client for a custom network protocol with binary

payloads in asyncio.

�Solution
Due to limitations of the pickle package, it can only load serialized

functions that are importable. Since that is not always the case, this

solution is less powerful.

For better pickling support, we will use the third-party library called

cloudpickle. It will enable us to serialize locally (client-side) defined and

remotely inaccessible functions.

To install it, use the following:

pipenv install cloudpickle==0.6.1

or

pip3 install cloudpickle==0.6.1

Given our CommandProtocol we are now equipped to call serialized

Python functions.

import asyncio

import logging

import cloudpickle as pickle

import sys

logging.basicConfig(level=logging.DEBUG, stream=sys.stdout)

Chapter 9 Working with Network Protocols

219

class CommandClientProtocol(asyncio.Protocol):

 def __init__(self, connection_lost):

 self._connection_lost = connection_lost

 self.transport = None

 def connection_made(self, transport):

 self.transport = transport

 def data_received(self, data):

 result = pickle.loads(data)

 if isinstance(result, Exception):

 raise result

 logging.info(result)

 def connection_lost(self, exc):

 logging.info('The server closed the connection')

 self._connection_lost.set_result(True)

 def execute_remotely(self, f, *args, **kwargs):

 self.transport.write(pickle.dumps((f, args, kwargs)))

async def remote_function(msg):

 print(msg) # This will be printed out on the host

 return 42

async def main():

 loop = asyncio.get_running_loop()

 connection_lost = loop.create_future()

 transport, protocol = await loop.create_connection(

 lambda: CommandClientProtocol(connection_lost),

 '127.0.0.1', 8888)

 protocol.execute_remotely(remote_function, "This worked!")

Chapter 9 Working with Network Protocols

220

 try:

 await connection_lost

 finally:

 transport.close()

asyncio.run(main())

�How It Works
First we call the imports and alias the cloudpickle package as pickle:

import asyncio

import logging

import cloudpickle as pickle

import sys

Next up is our CommandClientProtocol class. We pass an asyncio.

Future instance that we use to make sure our program does not exit

until the connection is lost. Also we initialize an empty attribute for the

asyncio.Transport object:

logging.basicConfig(level=logging.DEBUG, stream=sys.stdout)

class CommandClientProtocol(asyncio.Protocol):

 def __init__(self, connection_lost):

 self._connection_lost = connection_lost

 self.transport = None

Now the callback functions. They are similar to the CommandProtocol.

When the connection is made, connection_made is called with the

respective transport instance, which we save in the same named attribute:

 def connection_made(self, transport):

 self.transport = transport

Chapter 9 Working with Network Protocols

221

Next, we define the data_received callback, which we also know from

the CommandProtocol. The on_error and on_success handler send back

either the result of invoking the function or any exceptions that happen

in the CommandProtocol.handle method. We deserialize the payload and

raise it if it happens to be an exception. Otherwise, we log it.

 def data_received(self, data):

 result = pickle.loads(data)

 if isinstance(result, Exception):

 raise result

 logging.info(result)

The connection_lost method is invoked if we are not in contact

with the server anymore. In that case, we want to signal to our future it is

consumed by using future.set_result:

 def connection_lost(self, exc):

 logging.info('The server closed the connection')

 self._connection_lost.set_result(True)

For convenience, we define the execute_remotely method, which

takes a function or coroutinefunction and arguments and then invokes

them remotely:

 def execute_remotely(self, f, *args, **kwargs):

 self.transport.write(pickle.dumps((f, args, kwargs)))

We define a coroutine that is invoked on the server:

async def remote_function(msg):

 print(msg) # This will be printed out on the host

 return 42

To connect to the server, we pass a protocol factory to the loop.

create_connection method of the currently running loop. Then

we invoke our convenience method protocol.execute_remotely.

Chapter 9 Working with Network Protocols

222

We await the connection_lost future, which we have passed inside our

CommandClientProtocol instance. At last, we close the transport in the

finally block.

async def main():

 loop = asyncio.get_running_loop()

 connection_lost = loop.create_future()

 transport, protocol = await loop.create_connection(

 lambda: CommandClientProtocol(connection_lost),

 '127.0.0.1', 8888)

 protocol.execute_remotely(remote_function, "This worked!")

 try:

 await connection_lost

 finally:

 transport.close()

asyncio.run(main())

�Writing a Simple HTTP Server
�Problem
You need to build a very simple but functional HTTP server using

asyncio.start_server.

�Solution
For this matter, we install the third-party httptools package. Follow the

installation instructions at https://github.com/MagicStack/httptools.

At the point of writing this, you could use:

Chapter 9 Working with Network Protocols

https://github.com/MagicStack/httptools

223

pip3 install httptools==0.0.11

or

pipenv install httptools==0.0.11

Using the httptools module and asyncio.Futures for HTTP parsing,

we will write an AsyncioHTTPHandler class, which we will use for an

asynchronous HTTP server.

import asyncio

from collections import defaultdict, OrderedDict

from json import dumps

from urllib.parse import urljoin

from wsgiref.handlers import format_date_time

from httptools import HttpRequestParser

class HTTPProtocol():

 def __init__(self, future=None):

 self.parser = HttpRequestParser(self)

 self.headers = {}

 self.body = b""

 self.url = b""

 self.future = future

 def on_url(self, url: bytes):

 self.url = url

 def on_header(self, name: bytes, value: bytes):

 self.headers[name] = value

 def on_body(self, body: bytes):

 self.body = body

 def on_message_complete(self):

 self.future.set_result(self)

Chapter 9 Working with Network Protocols

224

 def feed_data(self, data):

 self.parser.feed_data(data)

MAX_PAYLOAD_LEN = 65536

DEFAULT_HTTP_VERSION = "HTTP/1.1"

NOT_FOUND = """<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>404 | Page not found</title>

 �<meta name="viewport" content="width=device-width, initial-

scale=1">

 <meta name="description" content="404 Error page">

 </head>

 <body>

 �<p>"Sorry ! the page you are looking for can't be found"</p>

 </body>

</html>"""

REASONS = {

 100: "Continue",

 101: "Switching Protocols",

 200: "OK",

 201: "Created",

 202: "Accepted",

 203: "Non-Authoritative Information",

 204: "No Content",

 205: "Reset Content",

 206: "Partial Content",

 300: "Multiple Choices",

 301: "Moved Permanently",

Chapter 9 Working with Network Protocols

225

 302: "Found",

 303: "See Other",

 304: "Not Modified",

 305: "Use Proxy",

 307: "Temporary Redirect",

 400: "Bad Request",

 401: "Unauthorized",

 402: "Payment Required",

 403: "Forbidden",

 404: "Not Found",

 405: "Method Not Allowed",

 406: "Not Acceptable",

 407: "Proxy Authentication Required",

 408: "Request Time-out",

 409: "Conflict",

 410: "Gone",

 411: "Length Required",

 412: "Precondition Failed",

 413: "Request Entity Too Large",

 414: "Request-URI Too Large",

 415: "Unsupported Media Type",

 416: "Requested range not satisfiable",

 417: "Expectation Failed",

 500: "Internal Server Error",

 501: "Not Implemented",

 502: "Bad Gateway",

 503: "Service Unavailable",

 504: "Gateway Time-out",

 505: "HTTP Version not supported"

}

Chapter 9 Working with Network Protocols

226

class HTTPError(BaseException):

 def __init__(self, status_code):

 assert status_code >= 400

 self.status_code = status_code

 self.reason = REASONS.get(status_code, "")

 def __str__(self):

 return f"{self.status_code} - {self.reason}"

class Response:

 def __init__(self, status_code, headers,

 http_version=DEFAULT_HTTP_VERSION, body=""):

 self.http_version = http_version

 self.status_code = status_code

 self.headers = headers

 self.reason = REASONS.get(status_code, "")

 self.body = body

 def __str__(self):

 �status_line = f"{self.http_version} {self.status_code}

{self.reason}\r\n"

 headers = "".join(

 �(f'"{key}": {value}\r\n' for key, value in self.headers.

items())

)

 return f"{status_line}{headers}\r\n{self.body}"

 def get_default_headers():

 return OrderedDict({

 "Date": format_date_time(None).encode("ascii"),

 "Server": AsyncioHTTPHandler.banner

 })

Chapter 9 Working with Network Protocols

227

def response(headers=None, status_code=200, content_type="text/

html", http_version=DEFAULT_HTTP_VERSION, body=""):

 if not headers:

 headers = get_default_headers()

 headers.update({"Content-Type": content_type,

 "Content-Length": str(len(body))})

 return Response(status_code, headers, http_version, body)

def json(headers=None, status_code=200, content_type="application/

json", http_version=DEFAULT_HTTP_VERSION, body=None):

 if not body:

 body = {}

 �return response(headers, status_code, content_type, http_

version, dumps(body))

class AsyncioHTTPHandler:

 allowed_methods = ["GET"]

 version = 1.0

 banner = f"AsyncioHTTPServer/{version}".encode("ascii")

 default_timeout = 30

 def __init__(self, host, timeout=default_timeout):

 self.host = host

 self.routes = defaultdict(dict)

 self.timeout = timeout

 def route(self, *args, method="GET", path=None):

 def register_me(f):

 nonlocal path, self

 if not path:

 path = f.__name__

 http_method = method.upper()

Chapter 9 Working with Network Protocols

228

 �assert http_method in AsyncioHTTPHandler.allowed_

methods

 if not path.startswith("/"):

 path = urljoin("/", path)

 self.routes[http_method][path] = f

 return f

 if args:

 f, = args

 return register_me(f)

 return register_me

 async def on_connection(self, reader, writer):

 try:

 �request = await asyncio.wait_for(reader.read(MAX_

PAYLOAD_LEN), self.timeout)

 await self.send(writer, await self.handle(request))

 except HTTPError as err:

 if err.status_code == 404:

 �await self.send(writer, response(status_

code=err.status_code, body=NOT_FOUND))

 elif err.status_code == 405:

 headers = get_default_headers()

 �headers.update(Allow=",

".join(AsyncioHTTPHandler.allowed_methods))

 �await self.send(writer, json(headers, status_

code=err.status_code))

 else:

 �await self.send(writer, json(status_code=err.

status_code))

 except TimeoutError:

 await self.send(writer, json(status_code=408))

Chapter 9 Working with Network Protocols

229

 finally:

 writer.close()

 async def handle(self, request):

 �finish_parsing = asyncio.get_running_loop().create_

future()

 proto = HTTPProtocol(future=finish_parsing)

 try:

 proto.feed_data(request)

 await finish_parsing

 path = proto.url.decode("UTF-8")

 method = proto.parser.get_method().decode("UTF-8")

 except (UnicodeDecodeError, HttpParserUpgrade):

 raise HTTPError(500)

 �if not method.upper() in AsyncioHTTPHandler.allowed_

methods:

 raise HTTPError(405)

 handler = self.routes[method].get(path)

 if not handler:

 raise HTTPError(404)

 return await handler(self)

 async def send(self, writer, response):

 writer.write(str(response).encode("ascii"))

 await writer.drain()

host = "127.0.0.1"

port = 1234

server = AsyncioHTTPHandler(host)

Chapter 9 Working with Network Protocols

230

@server.route()

async def test_me(server):

 return json(body=dict(it_works=True))

async def main():

 �s = await asyncio.start_server(server.on_connection, host,

port)

 async with s:

 await s.serve_forever()

try:

 asyncio.run(main())

except KeyboardInterrupt:

 print("Closed..")

�How It Works
The steps are described in the following sections.

�Imports

First the imports:

import asyncio

from collections import defaultdict, OrderedDict

from json import dumps

from urllib.parse import urljoin

from wsgiref.handlers import format_date_time

from httptools import HttpRequestParser

Chapter 9 Working with Network Protocols

231

�Protocol Class Definition

Next, we define an HTTPProtocol class that will interact with the HTTP

requests and handle parsing via the httptools.HttpRequestParser.
All methods prefixed with on_* will be called upon the respective state

given by the suffix of the name. For instance, on_body will be invoked on

receiving the body of the HTTP request.

The feed_data method is being passed through to httptools.

HttpRequestParser, which enables parsing the HTTP request parsing.

class HTTPProtocol():

 def __init__(self, future=None):

 self.parser = HttpRequestParser(self)

 self.headers = {}

 self.body = b""

 self.url = b""

 self.future = future

 def on_url(self, url: bytes):

 self.url = url

 def on_header(self, name: bytes, value: bytes):

 self.headers[name] = value

 def on_body(self, body: bytes):

 self.body = body

 def on_message_complete(self):

 self.future.set_result(self)

 def feed_data(self, data):

 self.parser.feed_data(data)

Chapter 9 Working with Network Protocols

232

�Global Definitions

Other definitions include the maximal payload size, the default HTTP

version of this server, and a small template in the case of a 404 error:

MAX_PAYLOAD_LEN = 65536

DEFAULT_HTTP_VERSION = "HTTP/1.1"

NOT_FOUND = """<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>404 | Page not found</title>

 �<meta name="viewport" content="width=device-width,

initial-scale=1">

 <meta name="description" content="404 Error page">

 </head>

 <body>

 �<p>"Sorry ! the page you are looking for can't be

found"</p>

 </body>

</html>"""

We also must define some messages that accompany the HTTP

status codes:

REASONS = {

 100: "Continue",

 # Snip...

 505: "HTTP Version not supported"

}

Chapter 9 Working with Network Protocols

233

�Exception Definition

Next, we define an exception that is raised upon HTTP errors, which refers

to status codes greater than or equal to 400:

class HTTPError(BaseException):

 def __init__(self, status_code):

 assert status_code >= 400

 self.status_code = status_code

 self.reason = REASONS.get(status_code, "")

 def __str__(self):

 return f"{self.status_code} - {self.reason}"

�Response Class Definition

For sending out responses to HTTP clients that connect to our HTTP

server, we define a convenience class response. An HTTP response

contains the status code, headers, the HTTP version, and optionally a

body. We override the __str__ method to dump the correct representation

of the response for transport (before the encoding).

class Response:

 �def __init__(self, status_code, headers, http_

version=DEFAULT_HTTP_VERSION, body=""):

 self.http_version = http_version

 self.status_code = status_code

 self.headers = headers

 self.reason = REASONS.get(status_code, "")

 self.body = body

 def __str__(self):

 �status_line = f"{self.http_version} {self.status_code}

{self.reasone}\r\n"

Chapter 9 Working with Network Protocols

234

 headers = "".join(

 �(f'"{key}": {value}\r\n' for key, value in self.

headers.items())

)

 return f"{status_line}{headers}\r\n{self.body}"

�Defining Utilities

Next, we define the default headers as a function that returns an

OrderedDict since the order of the headers is important. Also, the date is

considered to be non-optional in most cases, according to the HTTP/1.1

specification: https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.

html#sec14.18.

def get_default_headers():

 return OrderedDict({

 "Date": format_date_time(None).encode("ascii"),

 "Server": AsyncioHTTPHandler.banner

 })

The following two functions are used by route handlers to return their

payloads in an appropriate format conveniently. The JSON handler is

based on the response handler, which returns a response object. It adds

a parameter for the Content-Type and calculates the Content-Length

header. Additionally, the JSON handler provides a Content-Type that’s

suitable for a JSON payload ("application/json") and returns an empty

JSON body instead of an empty body:

def response(headers=None, status_code=200, content_type="text/

html", http_version=DEFAULT_HTTP_VERSION, body=""):

 if not headers:

 headers = get_default_headers()

Chapter 9 Working with Network Protocols

https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.18

235

 headers.update({"Content-Type": content_type,

 "Content-Length": str(len(body))})

 return Response(status_code, headers, http_version, body)

def json(headers=None, status_code=200, content_type="application/

json", http_version=DEFAULT_HTTP_VERSION, body=None):

 if not body:

 body = {}

 �return response(headers, status_code, content_type, http_

version, dumps(body))

�Defining the AsyncioHTTPHandler

The heart of our HTTP server is the AsyncioHTTPHandler. Its duties are

to respond to connection attempts and then try to parse and route the

message based on the parsed header information, such as the path, etc.

Additionally, it provides an easy way to register coroutines as handlers

to requests. To build the AsyncioHTTPHandler, we define the class

attributes allowed_methods, where we store the currently supported HTTP

methods. For simplicity, we support the GET method for now. We have

a version flag that we can use in our banner, which we encode as ASCII

bytes. And we have a default timeout of 30 seconds for HTTP connections.

class AsyncioHTTPHandler:

 allowed_methods = ["GET"]

 version = 1.0

 banner = f"AsyncioHTTPServer/{version}".encode("ascii")

 default_timeout = 30

Next, we define the __init__ method, where we store the current host

and are passed the actual timeout value we want to use. We also initialize a

defaultdict with a dict factory as the data structure for our routes.

Chapter 9 Working with Network Protocols

236

The rationale behind this is that we don’t want to defensively access

our route table. Rather, we want to receive a false value if there is no

handler for a particular route. We store the routes by the HTTP method

and the routes.

 def __init__(self, host, timeout=default_timeout):

 self.host = host

 self.routes = defaultdict(dict)

 self.timeout = timeout

The next method is used to register HTTP handlers to the provided

path. If not passed, the path defaults to the function name. The method

parameter is normalized with str.upper and then checked in the

allowed_methods. If the path does not start with a leading forward slash,

it is joined via urllib.parse.urljoin. Then the route is saved via the

normalized HTTP method and path. The lookup is analogue.

 def route(self, *args, method="GET", path=None):

 def register_me(f):

 nonlocal path, self

 if not path:

 path = f.__name__

 http_method = method.upper()

 �assert http_method in AsyncioHTTPHandler.allowed_

methods

 if not path.startswith("/"):

 path = urljoin("/", path)

 self.routes[http_method][path] = f

 return f

Chapter 9 Working with Network Protocols

237

 if args:

 f, =args

 return register_me(f)

 return register_me

This last part of the decorator ensures that you can use it either as

@server.route or @server.route():

 if args:

 f, =args

 return register_me(f)

 return register_me

The on_connection coroutine method is the entry point to the HTTP

server. It handles all the incoming HTTP requests. First the request is

awaited for the timeout period via asyncio.wait_for and reader.read.

If it times out, we send an HTTP response with HTTP status 408 -

request timeout. If we receive a payload as big as MAX_PAYLOAD_LEN or

smaller, we pass the payload to self.handle for parsing and either receive

a response object back or raise an HTTPError. If the error stems from a miss

in the route lookup, we send an HTTP response with a 404-status code.

If a client requests a method that is not allowed, we send an HTTP

response with a 405-status code. The HTTP specification requires us to

send an Allow header with a comma-separated list of all the allowed

HTTP methods.

 async def on_connection(self, reader, writer):

 try:

 �request = await asyncio.wait_for(reader.read(MAX_

PAYLOAD_LEN), self.timeout)

 await self.send(writer, await self.handle(request))

 except HTTPError as err:

Chapter 9 Working with Network Protocols

238

 if err.status_code == 404:

 �await self.send(writer, response(status_

code=err.status_code, body=NOT_FOUND))

 elif err.status_code==405:

 headers = get_default_headers()

 �headers.update(Allow=",

".join(AsyncioHTTPHandler.allowed_methods))

 �await self.send(writer, json(headers,status_

code=err.status_code))

 else:

 �await self.send(writer, json(status_code=err.

status_code))

 except TimeoutError:

 await self.send(writer, json(status_code=408))

 finally:

 writer.close()

In self.handle, we instantiate a new HttpProtocol instance to handle

the response. As of this writing, we can handle the following issues:

•	 An HTTP header that’s not UTF-8 decodable or an

HTTP Upgrade request raises an HTTPError with 500,

which is the "Internal Error" HTTP status code.

•	 A non-allowed HTTP method raises an HTTPError with

405, which is the "Not allowed" HTTP status code.

•	 A failed route lookup raises an HTTPError with 404,

which is the (infamous) "Not found" HTTP status code.

We pass a future object into the HTTPProtocol instance, which is set

when the whole request is handled. After being awaited, the HTTPProtocol

instance contains the request past and method.

Chapter 9 Working with Network Protocols

239

 async def handle(self, request):

 �finish_parsing = asyncio.get_running_loop().create_

future()

 proto = HTTPProtocol(future=finish_parsing)

 try:

 proto.feed_data(request)

 await finish_parsing

 path = proto.url.decode("UTF-8")

 method = proto.parser.get_method().decode("UTF-8")

 except (UnicodeDecodeError, HttpParserUpgrade):

 raise HTTPError(500)

 �if not method.upper() in AsyncioHTTPHandler.allowed_

methods:

 raise HTTPError(405)

 handler = self.routes[method].get(path)

 if not handler:

 raise HTTPError(404)

 return await handler(self)

Finally, we define a convenience method for writing to the

StreamWriter in an ASCII encoding (we do not support charsets yet) and

use drain afterward to make sure the payload is transported.

 async def send(self, writer, response):

 writer.write(str(response).encode("ascii"))

 await writer.drain()

Chapter 9 Working with Network Protocols

240

�Starting the Web Server

To start the web server and expose a coroutine method, we create

AsyncioHTTPHandler under the loopback IP address and port 1234. We

then write a handler for the /test_me route and register it via @server.

route. By default, it will be available under /<function_name>, as

explained in the decorator section.

host = "127.0.0.1"

port = 1234

server = AsyncioHTTPHandler(host)

@server.route

async def test_me(server):

 return json(body=dict(it_works=True))

The important bit here is the call to asyncio.start_server, which

returns a TCP server instance that uses our callback on every new

connection under the given host and port:

async def main():

 �s = await asyncio.start_server(server.on_connection, host, port)

 async with s:

 await s.serve_forever()

try:

 asyncio.run(main())

except KeyboardInterrupt:

 print("Closed..")

We can test it via Python like this:

import urllib.request

with urllib.request.urlopen("http://127.0.0.1:1234/test_me") as f:

 print(f.read().decode())

Chapter 9 Working with Network Protocols

241

Or we could use curl:

→ curl http://127.0.0.1:1234/test_me

{"it_works": true}%

�Executing Shell Commands Remotely
Over SSH
�Problem
You want to write a small library that can execute remote commands

defined in Python and resembling OS commands.

�Solution
SSH is a network protocol for secure remote login and securely accessing

remote services. It establishes a secure channel between a client and a

server in an untrusted network. To do this, it usually runs on top of TCP/

IP and provides features like integrity protection, encryption, and strong

server authentication.

The OpenSSH suite offers an SSH client implementation. The

installation of the OpenSSH suite is outlined in the bottom.

The example leverages the OpenSSH userland tools by writing

subprocess wrappers around them. To provide a cross-platform

experience, we deploy a decorator pattern where we can pass different

system commands per OS using keyword parameters.

import asyncio

import getpass

import inspect

import logging

import shutil

Chapter 9 Working with Network Protocols

242

import subprocess

import sys

import itertools

from functools import wraps

logging.basicConfig(level=logging.INFO)

class NotFoundError(BaseException):

 pass

class ProcessError(BaseException):

 def __init__(self, return_code, stderr):

 self.return_code = return_code

 self.stderr = stderr

 def __str__(self):

 �return f"Process returned non 0 return code {self.

return_code}.\n" \

 f"{self.stderr.decode('utf-8')}"

def get_ssh_client_path():

 executable = shutil.which("ssh")

 if not executable:

 raise NotFoundError(

 �"Could not find ssh client. You can install OpenSSH

from https://www.OpenSSH.com/portable.html.\nOn Mac

OSX we recommend using brew: brew install OpenSSH.\

nOn Linux systems you should use the package

manager of your choice, like so. apt-get install

OpenSSH\nOn windows you can use Chocolatey: choco

install OpenSSH.")

 return executable

Chapter 9 Working with Network Protocols

243

def get_ssh_client_path():

 executable = shutil.which("ssh")

 if not executable:

 raise NotFoundError(

 �"Could not find ssh client. You can install OpenSSH

from https://www.OpenSSH.com/portable.html.\nOn Mac

OSX we recommend using brew: brew install OpenSSH.

\nOn Linux systems you should use the package

manager of your choice, like so: apt-get install

OpenSSH\nOn windows you can use Chocolatey: choco

install OpenSSH.")

 return executable

class Connection:

 �def __init__(self, user=None, host="127.0.0.1", port=22,

timeout=None, ssh_client=None):

 self.host = host

 self.port = port

 if not user:

 user = getpass.getuser()

 self.user = user

 self.timeout = timeout

 if not ssh_client:

 ssh_client = get_ssh_client_path()

 self.ssh_client = ssh_client

 async def run(self, *cmds, interactive=False):

 commands = [self.ssh_client,

 f"{self.user}@{self.host}",

 f"-p {self.port}",

 *cmds]

 logging.info(" ".join(commands))

Chapter 9 Working with Network Protocols

244

 proc = await asyncio.create_subprocess_exec(*commands,

 �stdin=subprocess.

PIPE, stdout=

 �subprocess.

PIPE, stderr=

 �subprocess.

PIPE,)

 if not interactive:

 �stdout, stderr = await asyncio.wait_for(proc.

communicate(), self.timeout)

 if proc.returncode != 0:

 raise ProcessError(proc.returncode, stderr)

 return proc, stdout, stderr

 else:

 return proc, proc.stdout, proc.stderr

def command(*args, interactive=False, **kwargs):

 def outer(f):

 cmd = f.__name__

 for key, value in kwargs.items():

 if sys.platform.startswith(key) and value:

 cmd = value

 if inspect.isasyncgenfunction(f):

 @wraps(f)

 async def wrapper(connection, *args):

 �proc, stdout, stderr = await connection.

run(shutil.which(cmd), *args,

interactive=interactive)

 async for value in f(proc, stdout, stderr):

 yield value

Chapter 9 Working with Network Protocols

245

 else:

 @wraps(f)

 async def wrapper(connection, *args):

 �proc, stdout, stderr = await connection.

run(shutil.which(cmd), *args,

interactive=interactive)

 return await f(proc, stdout, stderr)

 return wrapper

 if not args:

 return outer

 else:

 return outer(*args)

@command(win32="dir")

async def ls(proc, stdout, stderr):

 for line in stdout.decode("utf-8").splitlines():

 yield line

@command(win32="tasklist", interactive=True)

async def top(proc, stdout, stderr):

 c = itertools.count()

 async for value in stdout:

 if next(c) >1000:

 break

 print(value)

async def main():

 con = Connection()

 try:

 async for line in ls(con):

 print(line)

Chapter 9 Working with Network Protocols

246

 await top(con)

 except Exception as err:

 logging.error(err)

if sys.platform == "win32":

 �asyncio.set_event_loop_policy(asyncio.

WindowsProactorEventLoopPolicy())

asyncio.run(main())

�How It Works
�Assumptions

Note that this code makes assumptions about the OpenSSH client on your

machine. It assumes that you have an OpenSSH daemon running on your

machine and the OpenSSH server authenticates via a certificate that you

have configured in the SSH configuration. It disregards that the first new

connection attempt might require a validity confirmation of the offered

fingerprint.

First, we need to install an OpenSSH client (if not already installed on

your system). You can install OpenSSH from https://www.OpenSSH.com/

portable.html.

•	 On MacOS X, we recommend using brew: brew

install OpenSSH

•	 On Linux systems, you should use the package manager

of your choice, like so: apt-get install OpenSSH

•	 On Windows, you can use Chocolatey: choco install

OpenSSH

Chapter 9 Working with Network Protocols

https://www.openssh.com/portable.html
https://www.openssh.com/portable.html

247

�Imports

We will start by importing the required modules:

import asyncio

import inspect

import logging

import shutil

import subprocess

import sys

import itertools

from functools import wraps

import getpass

logging.basicConfig(level=logging.INFO)

�Defining Exceptions

Next we define some exception classes that might occur inside our

program:

class NotFoundError(BaseException):

 pass

This exception is raised if the user did not install the OpenSSH client

on his system.

class ProcessError(BaseException):

 def __init__(self, return_code, stderr):

 self.return_code = return_code

 self.stderr = stderr

 def __str__(self):

 �return f"Process returned non 0 return code {self.

return_code}.\n" \

 f"{self.stderr.decode('utf-8')}"

Chapter 9 Working with Network Protocols

248

This exception is raised on a non-zero return code, which indicates

an error code. Next, we write a little helper to get the path to the open SSH

client. It raises our defined NotFoundError if it cannot retrieve the path to

the OpenSSH client.

def get_ssh_client_path():

 executable = shutil.which("ssh")

 if not executable:

 �raise NotFoundError("Could not find ssh client. You can

install OpenSSH from https://www.OpenSSH.com/portable.

html.\nOn Mac OSX we recommend using brew: brew install

OpenSSH.\nOn Linux systems you should use the package

manager of your choice, like so: apt-get install

OpenSSH\nOn windows you can use Chocolatey: choco

install OpenSSH.")

 return executable

�Defining a Connection Class

A connection class encapsulates a simple subset of the information we

need in order to have a working minimal wrapper around the OpenSSH

client. The connection class captures:

•	 User

•	 Host

•	 Port

•	 Timeout

•	 Path to the OpenSSH client

Chapter 9 Working with Network Protocols

249

class Connection:

 �def __init__(self, user=None, host="127.0.0.1", port=22,

timeout=None, ssh_client=None):

 self.host = host

 self.port = port

 if not user:

 user = getpass.getuser()

 self.user = user

 self.timeout = timeout

 if not ssh_client:

 ssh_client = get_ssh_client_path()

 self.ssh_client = ssh_client

The connection class receives a method that runs the commands that

are passed to it with the given user, host, port, timeout, and interpreter.

Note I f you run interactive programs like top, you might run into
issues because awaiting the Process.communicate() coroutine
will block until it raises the timeout. The purpose of the interactive
flag is to return the stdout and stderr pipes instead of awaiting
Process.communicate() to read from them for us.

In this case, the return code of the program is not clear, so we do not

check it!

 async def run(self, *cmds, interactive=False):

 commands = [self.ssh_client,

 f"{self.user}@{self.host}",

 f"-p {self.port}",

 *cmds]

 logging.info(" ".join(commands))

Chapter 9 Working with Network Protocols

250

 proc = await asyncio.create_subprocess_exec(*commands,

 �stdin=subprocess.

PIPE, stdout=

 �subprocess.PIPE,

 �stderr=subprocess.

PIPE,)

 if not interactive:

 �stdout, stderr = await asyncio.wait_for(proc.

communicate(), self.timeout)

 if proc.returncode != 0:

 raise ProcessError(proc.returncode, stderr)

 return proc, stdout, stderr

 else:

 return proc, proc.stdout, proc.stderr

�Defining a Command Decorator

The command wrapper does the heavy lifting in terms of OS operability

and finding the correct path to our executable.

We can pass the sys.platform names win32, darwin, linux, or

cygwin as keyword argument keys to provide a command alias for the

target platforms.

The command name defaults to the function name. The interactive

flag is passed to connection.run and its purpose and semantics are

defined above.

We need to differentiate between async generators and coroutines for

our wrapper, because we might want to use the yield keyword inside our

command functions.

Chapter 9 Working with Network Protocols

251

The commands are expected to have a signature that receives

a process instance and a stdout/stderr buffer (bytes), or an async

generator that can be queried for the lines depending on the interactive

flag, in that particular order:

def command(*args, interactive=False, **kwargs):

 def outer(f):

 cmd = f.__name__

 for key, value in kwargs.items():

 if sys.platform.startswith(key) and value:

 cmd = value

 if inspect.isasyncgenfunction(f):

 @wraps(f)

 async def wrapper(connection, *args):

 �proc, stdout, stderr = await connection.

run(shutil.which(cmd), *args,

interactive=interactive)

 async for value in f(proc, stdout, stderr):

 yield value

 else:

 @wraps(f)

 async def wrapper(connection, *args):

 �proc, stdout, stderr = await connection.

run(shutil.which(cmd), *args,

interactive=interactive)

 return await f(proc, stdout, stderr)

 return wrapper

This part is so we can use @command or @command() in case we are

satisfied with the default options.

Chapter 9 Working with Network Protocols

252

 if not args:

 return outer

 else:

 return outer(*args)

�Remote Command Examples

We define two examples of remote commands. One is the ls command. Its

Windows equivalent is dir, so we pass it with a win32 key to the command

decorator.

@command(win32="dir")

async def ls(proc, stdout, stderr):

 for line in stdout.decode("utf-8").splitlines():

 yield line

We also sport an example for an interactive program top.

Note T here is no non-GUI equivalent to top on Windows (to our
knowledge), so we used tasklist, which resembles ps.

Since calling process.communicate would block, we instead

asynchronously iterate on the stdout stream for 1,000 lines:

@command(win32="tasklist", interactive=True)

async def top(proc, stdout, stderr):

 c = itertools.count()

 async for value in stdout:

 if next(c) >1000:

 break

 print(value)

Chapter 9 Working with Network Protocols

253

�Invoking the Commands

This is how we invoke the commands. We pass the connection instance

to them and await them if they are coroutines or consume them via async

for if they are async generators:

async def main():

 con = Connection()

 try:

 async for line in ls(con):

 print(line)

 await top(con)

 except Exception as err:

 logging.error(err)

This part is necessary since the SelectorEventLoop, which is the

asyncio default, does not provide subprocess support on Windows:

if sys.platform == "win32":

 �asyncio.set_event_loop_policy(asyncio.

WindowsProactorEventLoopPolicy())

asyncio.run(main())

Chapter 9 Working with Network Protocols

255© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2_10

CHAPTER 10

Preventing Common
Asyncio Mistakes
Asyncio comes with mistakes of its own. For example, you can forget to

await a coroutine, write code that is blocking for too long, or run into data

races and deadlocks. Errors can occur inside scheduled tasks, coroutines,

and event loops. All of this-in addition to the complexity of learning new

APIs and concepts like coroutines and event loops-can discourage people

from using asyncio. In this chapter, we learn about common places where

mistakes are made and how to pinpoint them, the standard asyncio ways

of handling exceptions, and how to craft our own solutions when no

corresponding asyncio API is available.

�Handling Asyncio-Related Exceptions
�Problem
In this example, we find out where we can-but not necessarily should-

intercept exceptions that we raise in different asyncio-related scenarios.

�Solution #1
As usual, exceptions can bubble up from business code and third-party

libraries up to the callee. The exceptions are raised along the chain of

256

callers up to the outermost frame. Since asyncio introduces new ways to

schedule functions and coroutine calls, it is not straightforward anymore

where to handle respective exceptions. In this solution, we shed light on

how to handle exceptions inside coroutines.

import asyncio

import sys

class MockException(Exception):

 def __init__(self, message):

 self.message = message

 def __str__(self):

 return self.message

async def raiser(text):

 raise MockException(text)

async def main():

 �raise MockException("Caught mock exception outside the

loop. The loop is not running anymore.")

try:

 asyncio.run(main())

except MockException as err:

 print(err, file=sys.stderr)

async def main():

 �await raiser("Caught inline mock exception outside the loop."

 "The loop is not running anymore.")

try:

 asyncio.run(main(), debug=True)

except MockException as err:

 print(err, file=sys.stderr)

Chapter 10 Preventing Common Asyncio Mistakes

257

async def main():

 try:

 await raiser(�"Caught mock exception raised in an

awaited coroutine outside the loop."

"The loop is still running.")

 except MockException as err:

 print(err, file=sys.stderr)

asyncio.run(main(), debug=True)

�How It Works
We have divided Solution #1 and Solution #2 in the exception handling for

exceptions raised inside the loop.call_* methods and the ones raised by

coroutines.

The solution for coroutines is simple. You need to guard the awaits

with a try-except block if you want to handle exceptions. If not handled,

the exception will bubble up to the code that started your loop (asyncio.

run or more low-level mechanisms). The first part defines a convenience

Exception class that makes printing the error easier:

import asyncio

import sys

class MockException(Exception):

 def __init__(self, message):

 self.message = message

 def __str__(self):

 return self.message

Chapter 10 Preventing Common Asyncio Mistakes

258

We also define a coroutine that raises a MockException when we chain

awaits and have exceptions in between:

async def raiser(text):

 raise MockException(text)

Next, we run our main method and show some inline exception raising:

async def main():

 �raise MockException("Caught mock exception outside the

loop. The loop is not running anymore.")

We decide to catch the exception from the outside, which has the

drawback that the loop is not running anymore:

try:

 asyncio.run(main())

except MockException as err:

 print(err, file=sys.stderr)

It is trivially possible to catch it inline, so we skip demonstrating that

case and show the more interesting case of chained coroutines with an

inline try-except block:

async def main():

 try:

 await raiser(�"Caught mock exception raised in an

awaited coroutine outside the loop."

"The loop is still running.")

 except MockException as err:

 print(err, file=sys.stderr)

asyncio.run(main(), debug=True)

Here, we catch the exception that is raised by the raiser coroutine

inside the parent coroutine.

Chapter 10 Preventing Common Asyncio Mistakes

259

Note T he loop is still running in this case after the exception
handling. We caught the exception at the point where the coroutine
was awaited, which is the crucial part.

�Solution #2
In this solution, we discuss how to handle exceptions raised inside the

loop.call_* callback scheduling methods.

import asyncio

import sys

class MockException(Exception):

 def __init__(self, message):

 self.message = message

 def __str__(self):

 return self.message

def raiser_sync(text):

 raise MockException(text)

async def main():

 loop = asyncio.get_running_loop()

 loop.call_soon(raiser_sync, "You cannot catch me like this!")

 await asyncio.sleep(3)

try:

 asyncio.run(main(), debug=True)

except MockException as err:

 print(err, file=sys.stderr)

Chapter 10 Preventing Common Asyncio Mistakes

260

async def main():

 try:

 loop = asyncio.get_running_loop()

 �loop.call_soon(raiser_sync, "You cannot catch me like

this!")

 except MockException as err:

 print(err, file=sys.stderr)

 finally:

 await asyncio.sleep(3)

asyncio.run(main(), debug=True)

def exception_handler(loop, context):

 exception = context.get("exception")

 if isinstance(exception, MockException):

 print(exception, file=sys.stderr)

 else:

 loop.default_exception_handler(context)

async def main():

 loop: asyncio.AbstractEventLoop = asyncio.get_running_loop()

 loop.set_exception_handler(exception_handler)

 �loop.call_soon(raiser_sync, "Finally caught the loop.call_*

mock exception!")

asyncio.run(main(), debug=True)

�How It Works
In this example, we demonstrate how to catch the errors raised by the

loop.call_* methods. Similar to Solution #1, we define our boilerplates:

import asyncio

import sys

Chapter 10 Preventing Common Asyncio Mistakes

261

class MockException(Exception):

 def __init__(self, message):

 self.message = message

 def __str__(self):

 return self.message

def raiser_sync(text):

 raise MockException(text)

Next, we try to catch the exceptions raised by loop.call_soon at

different points (outside the asyncio.run call and at the loop.call_soon

call) to no avail:

async def main():

 loop = asyncio.get_running_loop()

 loop.call_soon(raiser_sync, "You cannot catch me like this!")

 await asyncio.sleep(3)

try:

 asyncio.run(main(), debug=True)

except MockException as err:

 print(err, file=sys.stderr)

async def main():

 try:

 loop = asyncio.get_running_loop()

 �loop.call_soon(raiser_sync, "You cannot catch me like

this!")

 except MockException as err:

 print(err, file=sys.stderr)

 finally:

 await asyncio.sleep(3)

asyncio.run(main(), debug=True)

Chapter 10 Preventing Common Asyncio Mistakes

262

The right way to catch a loop.call_* call is via the loop.set_

exception_handler API. We need to define an exception handler that will

get the currently running loop and a dict object containing the following

key-value pairs:

•	 message: Error message

•	 exception (optional): Exception object

•	 future (optional): asyncio.Future instance

•	 handle (optional): asyncio.Handle instance

•	 protocol (optional): Protocol instance

•	 transport (optional): Transport instance

•	 socket (optional): socket.socket instance

Our simple exception handler handles all the MockExceptions that

we define and relays to the loop.default_exception_handler in the

other cases.

We could also re-raise the exception if we think we have handled all

the non-fatal exception cases, but this is up to the developer to decide.

def exception_handler(loop, context):

 exception = context.get("exception")

 if isinstance(exception, MockException):

 print(exception, file=sys.stderr)

 else:

 loop.default_exception_handler(context)

async def main():

 loop: asyncio.AbstractEventLoop = asyncio.get_running_loop()

 loop.set_exception_handler(exception_handler)

 �loop.call_soon(raiser_sync, "Finally caught the loop.call_*

mock exception!")

asyncio.run(main(), debug=True)

Chapter 10 Preventing Common Asyncio Mistakes

263

�Spotting a Long-Running Task
�Problem
Coroutines are the first level citizens of asyncio. They operate inside the

event loop using Task objects. What if we wanted to know in detail how

long our task runs?

�Solution
We will write a Task wrapper that records how long our tasks run and teach

our loop to create instances of that type.

import asyncio

import logging

logging.basicConfig(level=logging.DEBUG)

class MonitorTask(asyncio.Task):

 def __init__(self, coro, *, loop):

 super().__init__(coro, loop=loop)

 self.start = loop.time()

 self.loop = loop

 def __del__(self):

 super(MonitorTask, self).__del__()

 self.loop = None

 def __await__(self):

 it = super(MonitorTask, self).__await__()

 def awaited(self):

 try:

 for i in it:

 yield i

Chapter 10 Preventing Common Asyncio Mistakes

264

 except BaseException as err:

 raise err

 finally:

 try:

 �logging.debug("%r took %s ms to run", self,

self.loop.time() - self.start)

 except:

 �logging.debug("Could not estimate endtime

of %r")

 return awaited(self)

 @staticmethod

 def task_factory(loop, coro):

 task = MonitorTask(coro, loop=loop)

 �# The traceback is truncated to hide internal calls in

asyncio show only the traceback from user code

 if task._source_traceback:

 del task._source_traceback[-1]

 return task

async def work():

 await asyncio.sleep(1)

async def main():

 loop = asyncio.get_running_loop()

 loop.set_task_factory(MonitorTask.task_factory)

 await asyncio.create_task(work())

asyncio.run(main(), debug=True)

Chapter 10 Preventing Common Asyncio Mistakes

265

�How It Works
First, we write our subclass MonitorTask in which we store a reference to

our current loop. To avoid a reference circle, we set it to None in __del__:

class MonitorTask(asyncio.Task):

 def __init__(self, coro, *, loop):

 super().__init__(coro, loop=loop)

 self.start = loop.time()

 self.loop = loop

 def __del__(self):

 super(MonitorTask, self).__del__()

 self.loop = None

Next, we override the __await__ function to be able to call our timing

logic after the task is completely consumed. For this matter, we await the

awaitable returned by the super call and re-raise all exceptions that may

occur. Using a finally block, we reliably time when the task was awaited:

 def __await__(self):

 it = super(MonitorTask, self).__await__()

 def awaited(self):

 try:

 for i in it:

 yield i

 except BaseException as err:

 raise err

 finally:

 try:

 �logging.debug("%r took %s ms to run", self,

self.loop.time() - self.start)

Chapter 10 Preventing Common Asyncio Mistakes

266

 except:

 �logging.debug("Could not estimate endtime

of %r")

 return awaited(self)

Note T he for i in it: yield i syntax is equivalent to a
yield from statement but, unlike yield from, it can be used
syntactically in a function that’s not decorated by asyncio.
coroutine.

The most important part is arguably the task factory. It creates

MonitorTask objects and truncate the traceback so the outputs show only

user code information:

 @staticmethod

 def task_factory(loop, coro):

 task = MonitorTask(coro, loop=loop)

 �# The traceback is truncated to hide internal calls in

asyncio show only the traceback from user code

 if task._source_traceback:

 del task._source_traceback[-1]

 return task

Next, we set our task factory on the loop via loop.set_task_factory

and create a task using asyncio.create_task.

The duration of our call to work() will be logged via the logging module.

async def work():

 await asyncio.sleep(1)

Chapter 10 Preventing Common Asyncio Mistakes

267

async def main():

 loop = asyncio.get_running_loop()

 loop.set_task_factory(MonitorTask.task_factory)

 await asyncio.create_task(work())

asyncio.run(main(), debug=True)

For more sophisticated instrumentation, we could use the asyncio.

Task methods asyncio.Task.print_stack or asyncio.Task.get_stack.

�Spotting a Long-Running Callback
�Problem
Writing a custom task class for a day-to-day use case like spotting long-

running callbacks is too complicated.

�Solution
We can use a much simpler API to spot a long-running callback (scheduled

via loop.call_*). asyncio natively provides the slow_callback_duration

property in its loops to achieve the same effect as in the last example.

import asyncio

import time

def slow():

 time.sleep(1.5)

async def main():

 loop = asyncio.get_running_loop()

 �# This will print a debug message if the call takes more

than 1 second

Chapter 10 Preventing Common Asyncio Mistakes

268

 loop.slow_callback_duration = 1

 loop.call_soon(slow)

asyncio.run(main(), debug=True)

�How It Works
Using the loop.slow_callback_duration attribute, we control at which

threshold in seconds the loop prints the traceback for a long-running

callback. This example will notify us that our slow() callback exceeded the

threshold and print out the information on stderr.

�Building a Coroutine Debugging Macro
Library
�Problem
Using our knowledge about how errors are handled in asyncio, we want to

write a little library that helps us find exceptions when they occur in our

coroutines.

�Solution
For this solution, we use the pdb module in three instances:

•	 Inject pdb.post_mortem in an except clause around all

non-caught exceptions

•	 Inject pdb.set_trace before the call

•	 Inject pdb.set_trace after the call

Chapter 10 Preventing Common Asyncio Mistakes

269

Our design goals for our debugging macro library are as follows:

•	 Not to be invasive on our code, meaning write as little

code for debugging as possible

•	 (Virtually) no execution speed penalty if we do not have

the debugging mechanisms enabled to avoid timing-

related bugs to be obfuscated

import argparse

import inspect

import os

import pdb

from functools import wraps

import asyncio

def get_asyncio_debug_mode_parser():

 parser = argparse.ArgumentParser()

 �parser.add_argument("--asyncio-debug", action="store_true",

dest="__asyncio_debug__", default=False)

 return parser

def is_asyncio_debug_mode(parser=get_asyncio_debug_mode_parser()):

 �return parser and parser.parse_args().__asyncio_debug__ or

os.environ.get("CUSTOM_ASYNCIO_DEBUG")

__asyncio_debug__ = is_asyncio_debug_mode()

def post_mortem(f):

 if not __asyncio_debug__:

 return f

 if inspect.isasyncgenfunction(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

Chapter 10 Preventing Common Asyncio Mistakes

270

 try:

 async for payload in f(*args, **kwargs):

 yield payload

 except BaseException as err:

 pdb.post_mortem()

 raise err

 else:

 @wraps(f)

 async def wrapper(*args, **kwargs):

 try:

 return await f(*args, **kwargs)

 except BaseException as err:

 pdb.post_mortem()

 raise err

 return wrapper

def pre_run(f):

 if not __asyncio_debug__:

 return f

 if inspect.isasyncgenfunction(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 pdb.set_trace()

 async for payload in f(*args, **kwargs):

 yield payload

 else:

 @wraps(f)

 async def wrapper(*args, **kwargs):

 pdb.set_trace()

 return await f(*args, **kwargs)

Chapter 10 Preventing Common Asyncio Mistakes

271

 return wrapper

def post_run(f):

 if not __asyncio_debug__:

 return f

 if inspect.isasyncgenfunction(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 async for payload in f(*args, **kwargs):

 yield payload

 pdb.set_trace()

 else:

 @wraps(f)

 async def wrapper(*args, **kwargs):

 result = await f(*args, **kwargs)

 pdb.set_trace()

 return result

 return wrapper

@post_mortem

async def main():

 raise Exception()

asyncio.run(main())

�How It Works
We will use a decorator solution that can be enabled via a command-line

argument called --asyncio-debug or via an environment variable called

CUSTOM_ASYNCIO_DEBUG which we will save in a new flag called __asyncio_

debug__.

Chapter 10 Preventing Common Asyncio Mistakes

272

For this matter, we define two helper methods that provide the

necessary parser and check for the command-line argument/environment

variable in the listed order:

def get_asyncio_debug_mode_parser():

 parser = argparse.ArgumentParser()

 �parser.add_argument("--asyncio-debug", action="store_true",

dest="__asyncio_debug__", default=False)

 return parser

def is_asyncio_debug_mode(parser=get_asyncio_debug_mode_parser()):

 �return parser and parser.parse_args().__asyncio_debug__ or

os.environ.get("CUSTOM_ASYNCIO_DEBUG")

Note T here is a Python built-in constant called __debug__. It is a
globally accessible, read-only variable that is used to implement the
assert mechanism. It defaults to True and can be set to False
via the -O Python interpreter flag. We decided against using this
mechanism since many third-party libraries wrongly use assert
statements for invariants in production code. Hence, using this
mechanism - the -O flag, would render their code unusable.

We initialize the __asyncio_debug__ global with a call to is_asyncio_

debug_mode:

__asyncio_debug__ = is_asyncio_debug_mode()

Next, we write a coroutine/async generator decorator that respects the

__asyncio_debug__ flag. In essence, it catches all not caught exceptions

and uses pdp.post_mortem to give us a shell into the coroutine that threw

the BaseException subclass instance.

Chapter 10 Preventing Common Asyncio Mistakes

273

Here, we just return the coroutine if __asyncio_debug__ is false:

def post_mortem(f):

 if not __asyncio_debug__:

 return f

In the case of an async generator function, we use async for to

delegate it and wrap it with a try-except block with our pdb.post_

mortem call.

We re-raise the exception to not manipulate the behavior of the

coroutine.

 if inspect.isasyncgenfunction(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 try:

 async for payload in f(*args, **kwargs):

 yield payload

 except BaseException as err:

 pdb.post_mortem()

 raise err

Very similarly, we consume a coroutine with an await statement, but

invoke pdb.post_mortem() on exceptions:

 else:

 @wraps(f)

 async def wrapper(*args, **kwargs):

 try:

 return await f(*args, **kwargs)

 except BaseException as err:

 pdb.post_mortem()

 raise err

 return wrapper

Chapter 10 Preventing Common Asyncio Mistakes

274

Our @pre_run decorator calls pdb.set_trace before it consumes the

async generator or the coroutine function.

Other than that, the mechanism is the same as the @post_mortem

decorator’s mechanism:

def pre_run(f):

 if not __asyncio_debug__:

 return f

 if inspect.isasyncgenfunction(f):

 @wraps(f)

 async def wrapper(*args, **kwargs):

 pdb.set_trace()

 async for payload in f(*args, **kwargs):

 yield payload

 else:

 @wraps(f)

 async def wrapper(*args, **kwargs):

 pdb.set_trace()

 return await f(*args, **kwargs)

 return wrapper

If we are interested in the state after consuming the coroutine/async

generator, we can use the @post_run decorator. Here, we can see our

@post_mortem decorator in action:

@post_mortem

async def main():

 raise Exception()

asyncio.run(main())

Chapter 10 Preventing Common Asyncio Mistakes

275

We find ourselves inside the frame in which the exception was raised:

/tmp/preventing_common_asyncio_mistakes.py(94)main()

-> raise Exception()

(Pdb)

�Writing Tests for Asyncio
�Problem
We cannot rely on the execution order of a concurrently executed asyncio

program to follow the order of instructions. Effects of concurrently

accessing resources-like race conditions, time-related phenomena, etc.

are prone to happen in asyncio applications and cannot be covered by

testing measures that are “not aware” of coroutines.

�Solution
The term “software-testing” in the context of this chapter is “software that

is able to deterministically assert that other software behaves as specified”.

Software testing can be conducted on many levels, as follows (in the order

of descending granularity):

•	 Unit testing

•	 Integration testing

•	 System testing

All these still have the goal in common that they want to

“deterministically assert that other software behaves as specified”. Here,

we’ll focus on the role of unit testing since it is the most common.

Picking the right assertions that the tests must ensure becomes more

critical in the context of concurrency. Furthermore, it dictates in a way how

the concurrent code is written. It implies the need for invariants that hold

true irrespective of the concurrent nature of the program. For instance,

Chapter 10 Preventing Common Asyncio Mistakes

276

testing timing-related properties of a concurrent program does not make

much sense to ensure its correctness.

To help us with that, we can use packages like pytest, pytest-

asyncio, doctest, and asynctest. For this solution, we write our own

unittest.TestCase subclass that allows us to test coroutines. We also

learn how to deal with the unittest.mock.patch API around coroutines to

intercept calls to asyncio.sleep or stdout output.

import asyncio

import functools

from io import StringIO

from unittest import TestCase, main as unittest_main

from unittest.mock import patch

def into_future(arg, *, loop=None):

 fut = (loop or asyncio.get_running_loop()).create_future()

 �fut.set_exception(arg) if isinstance(arg, Exception) else

fut.set_result(arg)

 return fut

class AsyncTestCase(TestCase):

 def __getattribute__(self, name):

 attr = super().__getattribute__(name)

 �if name.startswith('test') and asyncio.

iscoroutinefunction(attr):

 return functools.partial(asyncio.run, attr())

 else:

 return attr

class AsyncTimer:

 �async def execute_timely(self, delay, times, f, *args,

**kwargs):

Chapter 10 Preventing Common Asyncio Mistakes

277

 for i in range(times):

 await asyncio.sleep(delay)

 �(await f(*args, **kwargs)) if asyncio.

iscoroutine(f) else f(*args, **kwargs)

class AsyncTimerTest(AsyncTestCase):

 async def test_execute_timely(self):

 times = 3

 delay = 3

 �with patch(�"asyncio.sleep", return_value=into_

future(None)) as mock_sleep, \

 �patch('sys.stdout', new_callable=StringIO) as

mock_stdout:

 async_timer = AsyncTimer()

 �await async_timer.execute_timely(delay, times,

print, "test_execute_timely")

 mock_sleep.assert_called_with(delay)

 �assert mock_stdout.getvalue() == "test_execute_timely\

ntest_execute_timely\ntest_execute_timely\n"

if __name__ == '__main__':

 unittest_main()

�How It Works
We will start with our imports:

import asyncio

import functools

We are importing functools to enable the TestCase subclasses to run

coroutine test methods.

Chapter 10 Preventing Common Asyncio Mistakes

278

from io import StringIO

StringIO will be used to intercept the stdout output.

from unittest import TestCase, main as unittest_main

We import the TestCase class to provide an async one, which can

test coroutine methods. We also import unittest.main under an alias to

put it into an if __name__ == '__main__' guard. Every time this class is

invoked as the first script, all our test cases will run.

from unittest.mock import patch

We also import the unittest.mock.path function, which we will use to

intercept asyncio.sleep and everything printed to stdout. Next, we write

a helper that wraps an argument into an future, which we will use to mock

out asyncio.sleep.

def into_future(arg, *, loop=None):

 fut = (loop or asyncio.get_running_loop()).create_future()

 �fut.set_exception(arg) if isinstance(arg, Exception) else

fut.set_result(arg)

 return fut

The TestCase class of the unittest module provides APIs for unit

testing by declaring synchronous methods that start with test. You cannot

use coroutine methods as of now. So we subclass the TestCase class to

be able to intercept every attribute access to the respective test methods.

If the user tries to access a method of the AsyncTestCase class whose

name starts with "test", we need to wrap the requested method into a

partial that can schedule the coroutine in a synchronous fashion. For this

matter, we use functools.partial to provide a callable, which wraps the

coroutine inside asnycio.run.

Chapter 10 Preventing Common Asyncio Mistakes

279

class AsyncTestCase(TestCase):

 def __getattribute__(self, name):

 attr = super().__getattribute__(name)

 �if name.startswith('test') and asyncio.

iscoroutinefunction(attr):

 return functools.partial(asyncio.run, attr())

 else:

 return attr

Next, we write a simple class called AsyncTimer that we will unit test.

The class has only one method, called execute_timely, which schedules

a (coroutine) function multiple times and adds a delay in between the

calls via asyncio.sleep. execute_timely accepts functions, coroutine

functions, and arguments passed after the function are passed through (to

the scheduled coroutine function/function). The method has parameters

to tweak how often the function/coroutine function is called and how long

the delay is called delay and times.

class AsyncTimer:

 �async def execute_timely(self, delay, times, f, *args,

**kwargs):

 for i in range(times):

 await asyncio.sleep(delay)

 �(await f(*args, **kwargs)) if asyncio.

iscoroutine(f) else f(*args, **kwargs)

Next, we write an AsyncTestCase subclass to test AsyncTimer. We will

call the subclass AsyncTimerTest. Since we have altered the behavior of

__getattribute__ inside of AsyncTestCase to wrap all test coroutine

methods on our AsyncTestCase class into partials, we can use the await

keyword with asyncio.run inside of test_execute_timely. Prefixing the

name with test ensures that the test will be executed if we invoke the unit

test runner on this file.

Chapter 10 Preventing Common Asyncio Mistakes

280

class AsyncTimerTest(AsyncTestCase):

 async def test_execute_timely(self):

 times = 3

 delay = 3

We declare the class and the test coroutine method with the correct

name and set up two variables that determine how often the passed

(coroutine) function is scheduled and how long the time is in between.

 �with patch(�"asyncio.sleep", return_value=into_

future(None)) as mock_sleep, \

 �patch('sys.stdout', new_callable=StringIO) as

mock_stdout:

 async_timer = AsyncTimer()

 �await async_timer.execute_timely(delay, times,

print, "test_execute_timely")

Using unittest.mock.path, we now can intercept all calls to asyncio.

sleep. To do so, we need the return value of our mock function to be an

awaitable since asyncio.sleep is being awaited in AsyncTimer.execute_

timely. The return_value we pass is an empty future where the result is

already set (in this case, it is None because the return value of asyncio.

sleep is not used). Why? Because when the result is already set on a

future, it returns immediately upon awaiting. The resulting behavior is that

awaiting our patched versions of asyncio.sleep causes await asyncio.

sleep to return directly. Next, we patch sys.stdout to be a StringIO

instance. This way, we can intercept every print call that was made:

 mock_sleep.assert_called_with(delay)

 �assert mock_stdout.getvalue() == "test_execute_timely\

ntest_execute_timely\ntest_execute_timely\n"

Chapter 10 Preventing Common Asyncio Mistakes

281

Using our mock objects, we can assert now that asyncio.sleep was

indeed called with delay seconds and that test_execute_timely\ntest_

execute_timely was printed three times on stdout.

if __name__ == '__main__':

 unittest_main()

Last but not least, we called our aliased unittest.main function to

make it easier to run the unit test. All we need to do is to run this file and

our test cases will be discovered.

�Writing Tests for Pytest (Using
Pytest-Asyncio)
�Problem
We want to write unit tests for asyncio with less boilerplate code.

�Solution
Python 3 includes the unittest standard library module, which does

a good job at giving us an interface for writing unit tests in the Python

language. Pytest is a third-party package that helps us write unit tests with

less boilerplate code involved. Using Pytest and pytest-asyncio, we will

create a simple example to test coroutines.

You need to install pytest via your package manager of choice. For

example, via pip or pipenv:

pip3 install pytest==3.8.0

pip3 install pytest-asyncio==0.9.0

or

Chapter 10 Preventing Common Asyncio Mistakes

282

pipenvinstall pytest==3.8.0

pipenv install pytest-asyncio==0.9.0

import asyncio

import sys

from types import SimpleNamespace

import pytest

def check_pytest_asyncio_installed():

 import os

 from importlib import util

 if not util.find_spec("pytest_asyncio"):

 �print("You need to install pytest-asyncio first!",

file=sys.stderr)

 sys.exit(os.EX_SOFTWARE)

async def return_after_sleep(res):

 return await asyncio.sleep(2, result=res)

async def setattr_async(loop, delay, ns, key, payload):

 loop.call_later(delay, setattr, ns, key, payload)

@pytest.fixture()

async def loop():

 return asyncio.get_running_loop()

@pytest.fixture()

def namespace():

 return SimpleNamespace()

@pytest.mark.asyncio

async def test_return_after_sleep():

 expected_result = b'expected result'

 res = await return_after_sleep(expected_result)

 assert expected_result == res

Chapter 10 Preventing Common Asyncio Mistakes

283

@pytest.mark.asyncio

async def test_setattr_async(loop, namespace):

 key = "test"

 delay = 1.0

 expected_result = object()

 �await setattr_async(loop, delay, namespace, key, expected_

result)

 await asyncio.sleep(delay)

 assert getattr(namespace, key, None) is expected_result

if __name__ == '__main__':

 check_pytest_asyncio_installed()

 pytest.main(sys.argv)

�How It Works
We define a helper function that asserts that we have the pytest-asyncio

plugin installed:

def check_pytest_asyncio_installed():

 import os

 from importlib import util

 if not util.find_spec("pytest_asyncio"):

 �print("You need to install pytest-asyncio first!",

file=sys.stderr)

 sys.exit(os.EX_SOFTWARE)

It checks for the existence of the module without importing via

importlib.

Next, we define coroutine functions we want to test:

async def return_after_sleep(res):

 return await asyncio.sleep(2, result=res)

Chapter 10 Preventing Common Asyncio Mistakes

284

async def write_async(loop, delay, ns, key, payload):

 loop.call_later(delay, setattr, ns, key, payload)

The @pytest.fixture decorator allows us to inject parameters into the

test functions on every new run.

Using the pytest-asyncio module, it also supports coroutine functions:

@pytest.fixture()

async def loop():

 return asyncio.get_running_loop()

Since it runs in the context of a running loop, we can query the running

loop via asyncio.get_running_loop and inject it into our test functions.

Our first simple test asserts that the resulting value of our function is equal

to the one given as input:

@pytest.mark.asyncio

async def test_return_after_sleep():

 expected_result = b'expected result'

 res = await return_after_sleep(expected_result)

 assert expected_result == res

Next, we ensure that our write_async function does in fact set an

attribute asynchronously given a specific delay. To await the delay, we use

asyncio.sleep as opposed to time.sleep to not block the coroutine. After

the delay, we assert that the attribute was indeed set.

@pytest.mark.asyncio

async def test_setattr_async(loop, namespace):

 key = "test"

 delay = 1.0

 expected_result = object()

 �await setattr_async(loop, delay, namespace, key, expected_

result)

Chapter 10 Preventing Common Asyncio Mistakes

285

 await asyncio.sleep(delay)

 assert getattr(namespace, key, None) is expected_result

To make this example easier to execute, we defined a __main__ hook

for easier script usage:

if __name__ == '__main__':

 check_pytest_asyncio_installed()

 pytest.main(sys.argv)

�Writing Tests for Asynctest
�Problem
This example solves the problem of knowing whether your coroutine was

awaited and with which arguments, etc.

�Solution
Seasoned Pythonists know that the standard library module unittest

provides a patch context manager that can help mock objects and

functions. The third-party module asynctest provides a CoroutineMock

object (among other features) that we can use to integrate our coroutines

with the unittest mock API. For this example, you need to install it via

your package manager of choice, such as pip or pipenv:

pip3 install asynctest==0.12.2

pip3 install asynctest==0.12.2

or

pipenvinstall asynctest==0.12.2

pipenv install asynctest==0.12.2

Chapter 10 Preventing Common Asyncio Mistakes

286

Using the asynctest module’s CoroutineMock object and the mock

context manager of the unittest module, we can intercept calls to our

coroutine object and its return values.

import sys

from unittest.mock import patch

import asynctest

import pytest

def check_pytest_asyncio_installed():

 import os

 from importlib import util

 if not util.find_spec("pytest_asyncio"):

 �print("You need to install pytest-asyncio first!",

file=sys.stderr)

 sys.exit(os.EX_SOFTWARE)

async def printer(*args, printfun, **kwargs):

 printfun(*args, kwargs)

async def async_printer(*args, printcoro, printfun, **kwargs):

 await printcoro(*args, printfun=printfun, **kwargs)

@pytest.mark.asyncio

async def test_printer_with_print():

 text = "Hello world!"

 dict_of_texts = dict(more_text="This is a nested text!")

 with patch('builtins.print') as mock_printfun:

 �await printer(text, printfun=mock_printfun, **dict_of_

texts)

 �mock_printfun.assert_called_once_with(text, dict_of_

texts)

Chapter 10 Preventing Common Asyncio Mistakes

287

@pytest.mark.asyncio

async def test_async_printer_with_print():

 text = "Hello world!"

 dict_of_texts = dict(more_text="This is a nested text!")

 �with patch('__main__.printer', new=asynctest.

CoroutineMock()) as mock_printfun:

 �await async_printer(text, printcoro=mock_printfun,

printfun=print, **dict_of_texts)

 �mock_printfun.assert_called_once_with(text,

printfun=print, **dict_of_texts)

if __name__ == '__main__':

 check_pytest_asyncio_installed()

 pytest.main(sys.argv)

�How It works
We skip our check_pytest_asyncio_installed helper since we have

defined the function in the upper example. First, we define the coroutine

functions to be tested.

Note  We designed the helper coroutine functions to illustrate how
to use asynctest.CoroutineMock but not to be useful beyond
that purpose.

Here, we basically pass all arguments nearly unaltered to printfun

(besides not unpacking kwargs):

async def printer(*args, printfun, **kwargs):

 printfun(*args, kwargs)

Chapter 10 Preventing Common Asyncio Mistakes

288

And analogue for async_printer as follows:

async def async_printer(*args, printcoro, printfun, **kwargs):

 await printcoro(*args, printfun=printfun, **kwargs)

We know from the last section that we can run coroutine test functions

in pytest with the pytest-asyncio plugin:

@pytest.mark.asyncio

async def test_printer_with_print():

 text = "Hello world!"

 dict_of_texts = dict(more_text="This is a nested text!")

Using unittest.patch, we can mock the print built-in. Using the

identifier builtins.print, we can use the instance stored in the builtins

module and pass it (instead of print) as the printfun parameter.

mock_printfun is a proxy object that delegates the call to the original

implementation and exposes methods that we can use to view what

happened inside of it. For instance, we use the mock.assert_called_

once_with method to see if mock_printfun was indeed passed the

arguments as we would expect:

 with patch('builtins.print') as mock_printfun:

 �await printer(text, printfun=mock_printfun, **dict_of_

texts)

 �mock_printfun.assert_called_once_with(text, dict_of_

texts)

We can similarly check in the coroutine case if the arguments where

passed correctly by passing an asynctest.CoroutineMock instance to the

path function:

 with patch('__main__.printer', new=asynctest.

CoroutineMock()) as mock_printfun:

Chapter 10 Preventing Common Asyncio Mistakes

289

Note  We need to name the printer __main__.printer because
we have defined the function in the same document as the script we
use for running.

After awaiting async_printer, we can check if the patched coroutine

mock_printfun was indeed called with the correct arguments:

await async_printer(text, printcoro=mock_printfun,

printfun=print, **dict_of_texts)

 �mock_printfun.assert_called_once_with(text,

printfun=print, **dict_of_texts)

asynctest.CoroutineMock exposes more APIs, which you can look up

on the offical GitHub page at https://github.com/Martiusweb/asynctest.

�Writing Tests for Doctest
�Problem
We want to write interactive tests inline inside the Python docstring.

�Solution
Doctest is a neat tool in the standard library, but it’s not well known

among Python developers. It provides a convenient interface to write

interactive tests inline inside the Python docstring. Its uses, according to

the documentation, are three-fold:

•	 To check that a module’s docstrings are up-to-date

•	 To perform regression testing

•	 To write interactive tutorial documentation for a package

Chapter 10 Preventing Common Asyncio Mistakes

https://github.com/Martiusweb/asynctest

290

In this solution, the doctest module will be used to test the function

called complicated.

async def complicated(a,b,c):

 """

 >>> import asyncio

 >>> asyncio.run(complicated(5,None,None))

 True

 >>> asyncio.run(complicated(None,None,None))

 Traceback (most recent call last):

 ...

 ValueError: This value: None is not an int or larger than 4

 �>>> asyncio.run(complicated(None,"This","will be printed

out"))

 This will be printed out

 :param a: This parameter controls the return value

 :param b:

 :param c:

 :return:

 """

 if isinstance(a,int) and a > 4:

 return True

 elif b and c:

 print(b,c)

 else:

 �raise ValueError(f"This value: {a} is not an int or

larger than 4")

if __name__ == "__main__":

 import doctest

 doctest.testmod()

Chapter 10 Preventing Common Asyncio Mistakes

291

�How It Works
Since doctest mimics an interactive interpreter, we cannot just use awaits

inside of it. Instead, we can asyncio.run wherever an await is needed.

First, we import asyncio:

 """

 >>> import asyncio

Next, we use asyncio.run to schedule the coroutine and (since it

returns the return value) write the result on the next line:

 >>> asyncio.run(complicated(5,None,None))

 True

In the case of an exception we write the following:

 Traceback (most recent call last):

 ...

Then the representation (given by __repr__) of the exception:

 ValueError: This value: None is not an int or larger than 4

The next important bit is some convenience code used to run the file’s

documentation tests if they run as a script:

if __name__ == "__main__":

 import doctest

 doctest.testmod()

Chapter 10 Preventing Common Asyncio Mistakes

293© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2

APPENDIX A

�Setting Up Your
Environment
Choosing the correct tools to work with asyncio is a non-trivial choice,

since it can significantly impact the availability and performance of

asyncio. In this appendix, we discuss the interpreter and the packaging

options that influence your asyncio experience.

�The Interpreter
Depending on the API version of the interpreter, the syntax of declaring

coroutines change and the suggestions considering API usage change.

(Passing the loop parameter is considered deprecated for APIs newer than

3.6, instantiating your own loop should happen only in rare circumstances

in Python 3.7, etc.)

�Availability
Python interpreters adhere to the standard in varying degrees. This is

because they are implementations/manifestations of the Python language

specification, which is managed by the PSF.

At the time of this writing, three relevant interpreters support at least

parts of asyncio out of the box: CPython, MicroPython, and PyPy.

https://doi.org/10.1007/978-1-4842-4401-2

294

Since we are ideally interested in a complete or semi-complete

implementation of asyncio, our choice is limited to CPython and PyPy.

Both of these products have a great community.

Since we are ideally using a lot powerful stdlib features, it is

inevitable to pose the question of implementation completeness of a given

interpreter with respect to the Python specification.

The CPython interpreter is the reference implementation of the

language specification and hence it adheres to the largest set of features

in the language specification. At the point of this writing, CPython was

targeting API version 3.7.

PyPy is a close second, but it’s a third-party implementation and

therefore adopts new features a bit slower. At the point of this writing, PyPy

was targeting API version 3.5 (or just in alpha quality).

�Performance
Since asyncio is implementation dependent, CPython and PyPy can

yield substantially different performance footprints. For example, a

program using aiohttp (an asyncio library for interaction over the

HTTP protocol) and running on PyPy overpowers an instance running

on CPython after the fourth second in terms of requests per seconds, by

magnitudes up to 6.2.

�Summing It Up
For the sake of this book, we give precedence to feature completeness.

Therefore, we use CPython release 3.7.0. You can find the interpreter that

matches your OS environment here:

https://www.python.org/downloads/release/python-370/

For reproducible installs, you may choose to follow the rest of this

appendix.

APPENDIX A Setting Up Your Environment

https://www.python.org/downloads/release/python-370/

295

�The Setup
At the time of this writing, Python is shipped by most *nix operating

systems. However, that version probably will not satisfy our needs.

There are concerns about pre-3.7 versions. Versions 3.3-3.4 expose a

decorator-based API for declaring coroutines and for yielding control back

to the event loop.

As the changelog indicates, there are fixes included in the 3.7.0 version

that address serious issues like the following:

•	 bpo-33674: Fixed a race condition in SSLProtocol.

connection_made() of asyncio.sslproto: start

the handshake immediately instead of using call_

soon(). Previously, data_received() could be called

before the handshake started, causing the handshake

to hang or fail.

•	 bpo-32841: Fixed an asyncio.Condition issue, which

silently ignored cancellation after notifying and

cancelling a conditional lock.

•	 bpo-32734: Fixed an asyncio.Lock() safety issue,

which allowed acquiring and locking the same lock

multiple times, without it being free.

•	 bpo-26133: Don’t unsubscribe signals in an asyncio

UNIX event loop upon interpreter shutdown.

•	 bpo-27585: Fixed waiter cancellation in asyncio.Lock.

•	 bpo-31061: Fixed a crash when using asyncio and

threads.

•	 bpo-30828: Fixed an out-of-bounds write in asyncio.

CFuture.remove_done_callback().

APPENDIX A Setting Up Your Environment

296

�Windows
The Windows operation system does not come with a Python version

installed. Python 2 support is better for newer versions of Python 2 and

Windows:

“[…] Up to 2.5, Python was still compatible with Windows 95,
98 and ME (but already raised a deprecation warning on
installation). For Python 2.6 (and all following releases), this
support was dropped, and new releases are just expected to
work on the Windows NT family. […]”

Source: https://docs.python.org/2/using/windows.html

For Python 3, the official statement is:

“As specified in PEP 11, a Python release only supports a
Windows platform while Microsoft considers the platform
under extended support. This means that Python 3.6 supports
Windows Vista and newer. If you require Windows XP sup-
port, then please install Python 3.4.”

Source: https://docs.python.org/3/using/windows.html

This means to run Python 3.7.0, you have to run Windows Vista.

�Installing Python 3.7.0 on Vista

Browse to https://www.python.org/downloads/release/python-370/ or

find the link to the Windows x86-64 executable installer here:

https://www.python.org/ftp/python/3.7.0/python-3.7.0-amd64.exe

After the download, make sure the MD5 sums match via this command:

CertUtil -hashfile python-3.7.0-amd64.exe MD5

If it matches the one on the website, proceed with the installation.

Otherwise, redo the procedure.

APPENDIX A Setting Up Your Environment

https://docs.python.org/2/using/windows.html
https://docs.python.org/3/using/windows.html
https://www.python.org/downloads/release/python-370/

297

Follow the installation procedure and make sure to add the home

folder of your Python installation to the path. Python 3.7.0 is usually

installed under C:\Python37.

�Installing Python 3.7.0 on Windows 7+

The recommended way to install Python 3.6 on Windows 7+ is to use

Chocolatey. Chocolatey is a community system package manager

for Windows 7+. It is something like apt-get/pacman/yast2 in Linux

distributions or brew on MacOS X.

You can read about Chocolatey’s installation procedure here:

https://chocolatey.org/docs/installation

To install Python 3, we specify the correct package when invoking

Chocolatey like so:

choco install python -version 3.7.0

Once Chocolatey runs, you should be able to launch Python directly

from the console since Chocolatey adds it to the path automatically.

�Setuptools and Pip
To be able to download, install, and uninstall any compliant Python

software product, you need setuptools and pip. This way, you can install

third-party Python packages with a single command. Also, they allow you

to enable network installation capabilities on our own Python software

with just a little work. All supported versions of Python 3 include pip, so

just make sure it’s up to date:

python -m pip install -U pip

APPENDIX A Setting Up Your Environment

https://chocolatey.org/docs/installation

298

�MacOS
MacOS users are presented with an outdated Python 2.7 version, which we

cannot use with asyncio:

“MacOS X 10.8 comes with Python 2.7 pre-installed by Apple.
If you wish, you are invited to install the most recent version of
Python 3 from the Python website (https://www.python.org).
A current “universal binary” build of Python, which runs
natively on the Mac’s new Intel and legacy PPC CPU’s, is
available there.”

Source: https://docs.python.org/3/using/mac.html

This means we can pretty much run Python 3.7.0 on newer MacOS

X versions. The recommend way to install Python 3.7.0 is to install it via

brew, which is a community system package manager for MacOS X. It is

something like apt-get/pacman/yast2 in Linux distributions.

brew can be used to install the Python distribution of our choice. You

can find it under https://brew.sh or, at the time of this writing, you can

use this code snippet:

$ /usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.

com/Homebrew/install/master/install)"

Make sure the packages installed by brew are the first ones to be

recognized by your system:

export PATH="/usr/local/bin:/usr/local/sbin:$PATH"

Install the Python distribution of our choice. Since we want to

specifically install the Python 3.7.0 version, just doing the following will

result in irreproducible configurations, which we want to avoid:

$ brew install python

APPENDIX A Setting Up Your Environment

https://www.python.org
https://docs.python.org/3/using/mac.html
https://brew.sh

299

We can instead refer to the commit version more explicitly (which will

install the Python 3.7.0 version to our system) by issuing:

$ brew install https://raw.githubusercontent.com/Homebrew/

homebrew-core/82038e3b6de9d162c7987b8f2f60d8f538591f15/Formula/

python.rb

The Python installation by default comes with pip and setuptools

included, so you are ready to go. To test it, you may execute the following:

$ which python3

Which should yield the following:

/usr/local/bin/python3

Executing this:

$ python3

Should yield (besides the second line, which depends on your Xcode

toolchain) the following:

Python 3.7.0 (default, <current date>)

[GCC 4.2.1 Compatible Apple LLVM 8.0.0 (clang-800.0.42.1)] on

darwin

Type "help", "copyright", "credits" or "license" for more

information.

>>>

�Linux
Linux users may find a Python 3 version installed on their operation

systems. For example, Debian flavors ship with versions ranging from

3.3 to 3.5 (Jessy - Stretch), which are all unacceptable for our asyncio use

APPENDIX A Setting Up Your Environment

300

case. To install the CPython 3.7.0 release version on Debian flavors, add

deadsnakes ppa and install Python 3.7.0 like this:

$ sudo apt-get install software-properties-common

$ sudo add-apt-repository ppa:deadsnakes/ppa

$ sudo apt-get update

$ sudo apt-get install python3.7

Note T his will install a global version of the Python interpreter on
your system.

Debian-based systems have an update-alternatives mechanism, which

you can use to ensure the system picks the right interpreter. You can list all

the possible alternatives for a tool like so:

$ update-alternatives --list python

You can install a new version like so:

$ update-alternatives --install /usr/bin/python python /usr/

bin/python3.7 1

Where 1 is the priority (a higher score means more significance) and /

usr/bin/python is the symlink target.

To install pip, do not pick the version provided by your system packaging

tools. Rather, download it manually, as described on the official page:

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

python get-pip.py

You may choose to update it from time to time via this command:

pip install -U pip

The testing procedure for a Linux distribution is the same as the

MacOS one.

APPENDIX A Setting Up Your Environment

301© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2

�APPENDIX B

Event Loops
An event is a message that is emitted in a certain condition by one part of

the program. A loop, on the other hand, is a construct that finishes under a

certain condition and executes a certain program until it does so.

An event loop therefore is a loop that allows one to subscribe to the

event transmission and register handlers/callbacks. It enables the program

to run in an asynchronous fashion. The event loop delegates all the events

it receives to their respective callbacks.

Most implementations of callback patterns have one major drawback:

they dictate the programming style in a way that introduces a lot of nesting.

This happens because the execution of synchronous code follows the

order of its instructions.

Hence, to express that certain parts of a program depend on each

other, we use ordering. In the case of dependence on an asynchronous

result, however, the following patterns have evolved:

•	 Nesting callbacks, so that the inner callback can access

the outer callback’s results (closures)

•	 Using objects that act as proxies of a future result (so-

called futures or promises)

•	 Coroutines, which are suspendible functions that run

in event loops

https://doi.org/10.1007/978-1-4842-4401-2

302

�Nesting Callbacks
The rule of thumb for nesting callbacks is that if there is a need to wait

for the result of a callback, it is necessary to embed your code inside

the respective callback. You quickly end up with a situation that is

infamously coined callback hell. Callback hell is the point where the depth

of the callback nesting makes reasoning and improving the program a

maintenance nightmare.

�Futures/Promises
Futures or promises are objects that encapsulate the result and error

handling of an asynchronous call.

They eventually provide APIs to query the current state of the results/

exceptions and ways to register a callback for handling results/exceptions.

Since they encapsulate the future context of the asynchronous call and

need nesting, the resulting program appears to be written in a more top-

down fashion.

�Coroutines
You can think of coroutines as suspendible functions.

Being suspendible means that we can pause the coroutine at any given

point. This means there must be some sort of atomic unit that it consists of.

This is what we might refer to and measure as a tick. A tick is the time

unit of the event loop. It encompasses all the actions that happen in one

iteration step of the event loop.

Coroutines can in fact do more: they can suspend themselves and

await the result of another coroutine.

All the logic behind the waiting is coordinated by the event loop since

it is aware of the respective coroutine state.

APPENDIX B Event Loops

303

�The Lifecycle of Event Loops in Asyncio
Event loops in asyncio have four states they can be in:

•	 Idle

•	 Running

•	 Stopped

•	 Closed

You can interact with the lifecycle of the event loop by means of four

event loop methods, which can be split into starting, stopping, and closing

methods.

They constitute the event loop lifecycle interface that all asyncio/third-

party event loops need to provide for compatibility:

•	 run_forever

•	 run_until_complete

The run_forever method is called without a parameter, whereas the

run_until_complete method consumes a coroutine. To stop, we use the

stop method and to close, we use the close method.

�The Idle State
The idle state is the state the loop is in after creation. It cannot consume

any coroutine or any callback in this state.

In this state, loop.is_running returns the value False.

�The Running State
The running state is the state the loop is in after either calling loop.run_

forever or loop.run_until_complete.

APPENDIX B Event Loops

304

In this state, the loop.is_running method returns the value True.

The difference between the methods is that, in the case of loop.

run_until_complete, the coroutine—passed as an argument to loop.

run_until_complete—is wrapped in an asyncio.Future.

A callback is registered as a handler on the asyncio.Future object that

runs the loop.stop method after the coroutine is fully consumed.

�The Stopped State
The stopped state is the state the loop is in after calling the stop command.

The loop does not return False for the is_running method just after

calling the stop method.

Any batch of pending callbacks are consumed first. Only after they are

consumed does the loop move into the idle state.

Note  Callbacks scheduled after calling loop.stop will be
disregarded/not scheduled. Instead, they are executed when the
event loop moves back into a running state.

�The Closed State
The loop enters the closed state by calling the close method. It can only

be called if the loop is not in the running state. The documentation states

further that it:

“[..] clears the queues and shuts down the executor but does
not wait for the executor to finish. It is idempotent and irre-
versible. No other methods should be called after this one.”

APPENDIX B Event Loops

305

�Basic Classes for Event Loops
There are two options for shipping your own event loops in Python 3.

Abstract event loops are provided by the asyncio.events and asyncio.

base_events modules. AbstractEventLoop and BaseEventLoop represent

two potential classes for an event loop implementation.

�AbstractEventLoop
The AbstractEventLoop class defines the interface of an event loop in the

asyncio ecosystem. The interface methods can be roughly split into the

following sections:

•	 Lifecycle methods (running, stopping, querying the

state of, and closing the loop)

•	 Scheduling methods

•	 Callbacks

•	 Coroutines

•	 Future creation

•	 Thread-related methods

•	 I/O-related methods

•	 Low-level APIs (socket, pipe, and reader/writer APIs)

•	 High-level APIs (server, pipe, and subprocess-related

methods)

•	 Signal methods

•	 Debug flag management methods

The API is stable and can be subclassed in the case of a manual event

loop implementation.

APPENDIX B Event Loops

306

�BaseEventLoop
Despite being more high-level component based, the BaseEventLoop class

should not be used to create a manual loop implementation because its

API is not stable. But it can be used as guidance on how to implement one.

Its BaseEventLoop._run_once method is called on every tick of the

loop and therefore encompasses all the actions needed in one iteration.

This calls all currently ready callbacks, polls for I/O, schedules the

resulting callbacks, and then schedules call_later callbacks.

If you plan to implement an event loop yourself, you will need to

provide a method that’s similar to it. The name and body of the function

are just implementation details.

�Are Event Loops OS Specific?
Yes, event loops are OS specific. This may affect API availability and the

speed of the event loop. For instance, add_signal_handler and remove_

signal_handler are UNIX-only loop APIs.

One of the reasons behind the OS specificity—besides missing

corresponding native bindings—is that most of the loops are implemented

based on the selectors module.

The selectors module provides a high-level I/O multiplexing

interface based on the select module. The selectors module is built

on top of Select, poll, devpoll, epoll, or kqueue, depending on the

underlying OS. The block in the selectors module is responsible for

setting DefaultSelector, which in turn is used by the asyncio module (see

Listing B-1).

APPENDIX B Event Loops

307

Listing B-1.  Selectors Selection in the Selectors Module

if 'KqueueSelector' in globals():

 DefaultSelector = KqueueSelector

elif 'EpollSelector' in globals():

 DefaultSelector = EpollSelector

elif 'DevpollSelector' in globals():

 DefaultSelector = DevpollSelector

elif 'PollSelector' in globals():

 DefaultSelector = PollSelector

else:

 DefaultSelector = SelectSelector

Note  Windows also has a ProactorEventLoop implementation
that is based on I/O completion ports or short IOCP.

The official documentation of IOCP describes them as “an efficient

threading model for processing multiple asynchronous I/O requests on a

multiprocessor system”.

The ProactorEventLoop may, for example, be used on Windows if the

need arises to use the asyncio subprocess APIs. See https://www.python.

org/downloads/release/python-370/.

APPENDIX B Event Loops

https://www.python.org/downloads/release/python-370/
https://www.python.org/downloads/release/python-370/

309© Mohamed Mustapha Tahrioui 2019
M. M. Tahrioui, asyncio Recipes, https://doi.org/10.1007/978-1-4842-4401-2

Index

A
AbstractEventLoop class, 305
aclose, 79, 90, 91
acquire, 156
add_locked_with_delay, 151
__aenter__, 151
__aexit__, 151, 158
agen, 115
__aiter__, 78
__anext__, 78
approach, 2–4
as_completed, 102
as directive, 102
asend, 79, 85, 116, 117
ast, 165, 195
async comprehensions, 81, 84
asynccontextmanager, 98, 115
@asynccontextmanager, 99
async def, 51, 83
async for, 79
async generators, 78, 90
asynchronous context

manager, 98, 102
asyncify, 35
asyncio, 1
asyncio.AbstractEventLoop, 16
asyncio.all_tasks(), 34

asyncio.BaseTransport, 208
asyncio.BoundedSemaphore, 159
asyncio.BufferedProtocol, 208
asyncio.CancelledError, 60
@asyncio.coroutine, 50
asyncio.create_task, 32, 55, 58, 162
asyncio.DatagramProtocol, 208
asyncio.ensure_future, 31, 32,

40, 162
asyncio.Future, 127, 201
asyncio.gather, 30, 60, 102

return_exceptions, 61, 62
asyncio.get_child_watcher, 20
asyncio.get_event_loop, 7, 9, 10, 24
asyncio.iscoroutine, 52
asyncio.iscoroutinefunction, 52
asyncio.Lock, 75, 149
asyncio.new_event_loop, 9, 24
asyncio.open_connection,

105, 121, 123
asyncio.open_unix_

connection, 123
asyncio.Protocol, 208
asyncio.Queue, 117
asyncio.QueueFull, 119
asyncio.run, 22, 23, 31, 80, 169
asyncio.SelectorEventLoop, 28

https://doi.org/10.1007/978-1-4842-4401-2

310

asyncio.Semaphore, 159

asyncio.set_event_loop, 8, 12

asyncio.shield, 63, 64, 104

asyncio.sleep, 32, 79, 151

asyncio.start_server, 121, 123

asyncio.start_unix_server, 123

asyncio.StreamReader, 123

asyncio.StreamWriter, 123

asyncio.Subprocess

Protocol, 208

asyncio.TimeoutError, 57

asyncio.Transport, 220

asyncio.transports.

SubprocessTransport, 209

asyncio.wait, 102

asyncio.ALL_COMPLETED, 68

asyncio.FIRST_COMPLETED,

70, 71

asyncio.FIRST_EXCEPTION, 69

return_when, 71

asyncio.wait_for, 57, 102

asyncio.WindowsProactorEvent

LoopPolicy, 45, 122

asynctest, 276

asynctest.Coroutine

Mock, 288

async with, 100, 102

async with cond, 154

await, 32, 50, 52, 53, 65

awaitable, 28

await asyncio.create_

subprocess_exec, 125

ayncio.wait_for, 112

B
BaseEventLoop class, 306
BaseEventLoop.shutdown_

asyncgens, 91
BaseEvent.shutdown_asyncgens, 92
blocking, 53–55
busy loops, 153, 165
bytecode, 150

C
callback, 30
cancel, 64
certifi, 35
ChildWatcher

AbstractChildWatcher, 45
circular wait, 148
cloudpickle, 210, 211
Coffman conditions, 148
concurrent access control

asyncio.Semaphore, 157
concurrent execution, 5
concurrent.futures.Future

asyncio.wrap_future, 112
condition.notify, 75
condition.notify_all, 75
cond.notify, 156
context.run, 145
ContextVar.reset, 145
contextvars, 114, 143–145
contextvars.copy_context, 144
ContextVar.set, 145
cooperative, 49
cooperative concurrency, 1

INDEX

311

coroutines, 5, 53, 73
CPython, 37, 166
cr_origin, 187
current loop, 6
custom loop, 31–33, 35

D
decorator, 168

inspect.isasyncgenfunction, 269
DefaultLoopPolicy, 10
deprecated

asyncio coroutine, 189–191
passing loop parameter, 194
yield from, 191

doctest, 290
asyncio.run, 291

E
event.is_set, 153
Event loops

AbstractEventLoop
class, 305

in asyncio
states, 303, 304

BaseEventLoop class, 306
coroutines, 302
nesting callbacks, 302
OS specific, 306, 307
patterns, 301

event.set(), 118
event.wait(), 153
executor, 37
expected_result, 282, 284

F
fork, 13
freeze_support, 110
FTP, 207
functools.partial, 42, 43, 145
Future, 30
future.add_done_callback, 30, 107
Future.exception, 72

G
GatheringFuture, 33, 62, 73
generator-based coroutine, 50, 51
GeneratorExit, 90
GIL, 15

H
hbmqtt, 127
HTTP, 207
HTTPS, 36, 207
HTTP server, 222–241
httptools, 223
httptools.HttpRequestParser, 231

I, J
inspect.isawaitable, 66
interfacing with other event loops

and futures, 140
Interpreter

availability, 293, 294
performance, 294

I/O roundtrip times, 207
IP, 207

Index

312

K
KeyboardInterrupt, 27

L
Linux, 299, 300
Liveness, 147
locked, 156
loop, 11, 12
loop.call_at, 26, 60
loop.call_later, 26
loop.call_soon, 26, 60
loop.call_soon_threadsafe, 26, 59
loop.connect_accepted_socket, 208
loop.connect_read_pipe, 209
loop.connect_write_pipe, 209
loop.create_connection, 208
loop.create_datagram_endpoint, 208
loop.create_server, 208, 217
loop.create_task method, 32, 39, 162
loop.create_unix_connection, 209
loop.create_unix_server, 209
loop_factory, 20
loop.getaddrinfo, 105
LoopPolicy

DefaultLoopPolicy, 7
loop.run_forever, 20, 21
loop.run_in_executor, 81, 84,

93, 95, 110
loop.run_until_complete, 20, 21, 32
loop.run_until_complete/loop.

run_forever, 92
loop.shutdown_asyncgens,

20, 22, 41, 92

loop.subprocess_exec, 209
loop.subprocess_shell, 208

M
MacOS, 298, 299
mainthread, 24
malloc

pymalloc, 166
PyMem_Malloc, 166
tracemalloc, 166

Mosquitto, 127
MQTT, 126

client, 140
topics, 139

multiprocessing, 15
get_context, 210
Pool, 213

multiprocessing.Queue, 117
mutual exclusion, 148
mutual exclusive access, 148–151

N
native coroutine, 51, 52
Nesting callbacks, 302
next, 95

O
OpenSSH, 241
operator precedence, 54
os.register_at_fork, 13
overview, 2–4

INDEX

313

P
passing loop parameter, 39
patch

mock, 276
pdb.post_mortem, 268
pdb.set_trace, 268, 274
pickle, 128
Pickleable, 214
pool.apply_async, 212
precedence, 54, 55
ProactorEventLoop, 21
Process, 12
process.communicate, 46
ProcessPoolExecutor, 110, 112
process.returncode, 47
Profiling

ProfilerClient, 175, 177
ProfilerServer, 174, 175
valgrind, 166

Protocol
close, 216
connection_made, 215
data_received, 215
peername, 216
timeout, 215

publish-subscribe, 127
_PyAsyncGenWrapped

Value, 116
pytest

decorator, 284
pytest-asyncio, 283, 288
@pytest.fixture, 284
@pytest.mark.asyncio,

283, 286, 288

Q
queue.get_nowait(), 118
queue.join, 35

R
read, 100
readlines, 100
refactoring, 189–200
release, 156
return_exceptions, 74
RPC system, 126
Runnable

async comprehensions, 113
async context managers, 113
async generators, 113
coroutines, 113
subprocesses, 113
tasks, 113

running a loop, 19–21
RuntimeError, 8, 24

S
Safety, 147
schedule callback, 26–30
SchedulerLoop, 28
SchedulerLoopPolicy, 109
SelectorEventLoop, 30
Selectors module, 306
Setuptools and Pip, 297
SFTP, 207
side effect, 9
SIGCHLD, 46

Index

314

SIGINT, 48
signal handler, 41–43
SIGTERM, 48
single core, 15
spawn, 110
SSH, 207, 241–253
state machine, 85
StatisticDiff, 168
StopAsyncIteration, 78, 116
stop/close loop, 40, 41
StopIteration, 78
StringIO, 278
subprocess, 43

multi OS support, 242
Sync

sync.schedule_coro, 104
synchronization, 150
SyntaxError, 50
syscall, 48
sys.platform, 20
sys.set_coroutine_origin_tracking_

depth, 186

T
task, 71
TCP, 207
testing

pytest, 276, 281
threading, 8
threading.Thread, 10, 203
threading.Thread.join, 10
ThreadPoolExecutor, 37, 93, 162

threadsafe, 27, 58
loop.call_soon_threadsafe, 22

timeout, 56
time profiling, 170–174, 176, 177
time.sleep, 163
TLS, 207
Token, 145
traceback, 266, 268, 290
tracemalloc

tracemalloc.filter_traces, 171
tracemalloc.start, 167
tracemalloc.stop, 167
tracemalloc.take_snapshot, 166

tracemalloc.Filter, 178
TypeError, 51
typing.Coroutine, 17

U, V
UDP, 207
UNIX, 13
urllib3, 35
urllib3.PoolManager, 38

W, X
wait_for, 75
waiting on condition

asyncio.Condition, 74
synchronization

primitive, 74
waitpid(2), 48
watcher.attach_loop, 20

INDEX

315

while True, 197
Windows, 43

Python version, 296, 297
worker, 12
wrap_async, 95
wrap_in_asyngen, 116
write, 100

writer.close, 126
writer.drain, 125
writer.wait_closed, 126

Y, Z
yield from, 50

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Preparing for the Recipes
	What Is Asyncio?
	What Is This Book’s Approach to asyncio?

	Chapter 2: Working with Event Loops
	Locating the Currently Running Loop
	Problem
	Solution
	Option 1
	Option 2

	How It Works

	Creating a New Loop Instance
	Problem
	Solution
	How It Works

	Attaching a Loop to the Thread Problem
	Solution
	How It Works

	Attaching a Loop to the Process
	Problem
	Solution #1 (UNIX Only)
	How It Works
	Solution #2
	How It Works

	Running a Loop
	Problem
	Solution
	How It Works

	Running Async Code Without Bothering About Loops
	Problem
	Solution
	How It Works

	Running a Loop Until a Coroutine Finishes
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works
	Solution #3
	How It Works

	Scheduling Callbacks on a Loop
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Scheduling Coroutines on a Loop
	Problem
	Solution #1
	Option 1
	Option 2

	How It Works
	Solution #2
	How It Works

	Calling Blocking Code on a Loop
	Problem
	Solution
	How It Works

	Running a Coroutine Specifically on One Loop
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Stopping and Closing a Loop
	Problem
	Solution
	How It Works

	Adding a Loop Signal Handler
	Problem
	Solution (UNIX Only)
	How It Works

	Spawning a Subprocess from a Loop
	Problem
	Solution
	How It Works

	Waiting for Subprocess Termination
	Problem
	Solution
	How It Works

	Chapter 3: Working with Coroutines and Async/Await
	Writing Generator-Based Coroutine Functions
	Problem
	Solution
	How It Works

	Writing a Native Coroutine
	Problem
	Solution
	How It Works

	Running a Coroutine and Blocking/Waiting Until It Finishes
	Problem
	Solution
	How It Works

	Running a Coroutine and Waiting for It to Finish
	Problem
	Solution
	How It Works

	Waiting on a Coroutine with a Timeout
	Problem
	Solution
	How It Works

	Cancelling a Coroutine
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Cancelling Multiple Coroutines
	Problem
	Solution
	How It Works

	Shielding a Coroutine from Cancellation
	Problem
	Solution
	How It Works

	Chaining Coroutines
	Problem
	Solution
	How It Works

	Waiting on Multiple Coroutines
	Problem
	Solution
	How It Works

	Waiting on Multiple Coroutines with Different Heuristics
	Problem
	Solution #1
	Solution #2
	Solution #3
	How It Works

	Waiting on Multiple Coroutines and Ignoring Exceptions
	Problem
	Solution
	How It Works

	Waiting for a Specific Condition
	Problem
	Solution
	How It Works

	Chapter 4: Working with Async Generators
	Writing an Async Generator
	Problem
	Solution
	How It Works

	Running an Async Generator
	Problem
	Solution
	How It Works

	Wrapping an Async Generator in an Async Comprehension
	Problem
	Solution
	How It Works

	Writing a State Machine with an Async Generator
	Problem
	Solution
	How It Works

	Cleaning Up After Using Async Generators
	Problem
	Solution
	Option 1

	How It Works
	Option 2

	How It Works

	Wring an Asynchronous Generator Based Web Crawler
	Problem
	Solution
	How It Works

	Chapter 5: Working with Async Context Manager
	Writing an Async Context Manager
	Solution
	How It Works

	Running an Async Context Manager
	Solution
	How It Works

	Synchronizing Pending Coroutines to Finish Cleanly
	Solution
	How It Works

	Interacting Asynchronously with a Closeable Resource
	Solution
	How It Works

	Writing a Loop Worker Pool Async Context Manager
	Solution
	How It Works

	Writing a Subprocess Worker Pool Async Context Manager
	Solution
	How It Works

	Chapter 6: Communication Between Asyncio Components
	Sending Additional Information to an Asynchronous Generator
	Problem
	Solution
	How It Works

	Using Queues with Coroutines
	Problem
	Solution
	How It Works

	Communicating with a Subprocess Using Streams
	Solution #1: Windows and UNIX
	Solution #2: UNIX Only
	How It Works

	Writing a Simple RPC System with Asyncio
	Solution
	How It Works

	Writing Callbacks that Have a “Memory” Using Contextvars
	Solution #1
	How It Works
	Solution #2
	How It Works

	Chapter 7: Synchronization Between Asyncio Components
	Using Locks for Mutual Exclusive Access to a Shared Resource
	Problem
	Solution
	How It Works

	Using Events for Notification
	Problem
	Solution
	How It Works

	Using Condition Variables for Control Flow
	Problem
	Solution
	How It Works

	Using Semaphores to Restrict Concurrent Resource Access
	Problem
	Solution
	How It Works

	Using Bounded Semaphores to Restrict Concurrent Resource Access with Stricter Release Heuristics
	Problem
	Solution
	How It Works

	Detecting Asyncio Code That Might Have Race Conditions
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Chapter 8: Improving Asyncio Applications
	Profiling Asyncio Applications
	Problem
	Solution
	How It Works

	Building a Simple Profiling Library
	Problem
	Solution
	How It Works

	Spotting a Long-Running Coroutine
	Problem
	Solution
	How It Works

	Refactoring “Old School” Asyncio Code
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Avoiding Busy Loops
	Problem
	Solution
	How It Works

	Chapter 9: Working with Network Protocols
	Writing a Protocol Subclass for a Simple Remote Command Server
	Problem
	Solution
	How It Works

	Writing a Protocol Subclass for a Simple Remote Command Client
	Problem
	Solution
	How It Works

	Writing a Simple HTTP Server
	Problem
	Solution
	How It Works
	Imports
	Protocol Class Definition
	Global Definitions
	Exception Definition
	Response Class Definition
	Defining Utilities
	Defining the AsyncioHTTPHandler
	Starting the Web Server

	Executing Shell Commands Remotely Over SSH
	Problem
	Solution
	How It Works
	Assumptions
	Imports
	Defining Exceptions
	Defining a Connection Class
	Defining a Command Decorator
	Remote Command Examples
	Invoking the Commands

	Chapter 10: Preventing Common Asyncio Mistakes
	Handling Asyncio-Related Exceptions
	Problem
	Solution #1
	How It Works
	Solution #2
	How It Works

	Spotting a Long-Running Task
	Problem
	Solution
	How It Works

	Spotting a Long-Running Callback
	Problem
	Solution
	How It Works

	Building a Coroutine Debugging Macro Library
	Problem
	Solution
	How It Works

	Writing Tests for Asyncio
	Problem
	Solution
	How It Works

	Writing Tests for Pytest (Using Pytest-Asyncio)
	Problem
	Solution
	How It Works

	Writing Tests for Asynctest
	Problem
	Solution
	How It works

	Writing Tests for Doctest
	Problem
	Solution
	How It Works

	Appendix A: Setting Up Your Environment
	The Interpreter
	Availability
	Performance
	Summing It Up

	The Setup
	Windows
	Installing Python 3.7.0 on Vista
	Installing Python 3.7.0 on Windows 7+

	Setuptools and Pip
	MacOS
	Linux

	Appendix B: Event Loops
	Nesting Callbacks
	Futures/Promises
	Coroutines
	The Lifecycle of Event Loops in Asyncio
	The Idle State
	The Running State
	The Stopped State
	The Closed State

	Basic Classes for Event Loops
	AbstractEventLoop
	BaseEventLoop
	Are Event Loops OS Specific?

	Index

