Scraping
with Python

Using BeautifulSoup and Scrapy

Gabor LaszIo Hajba

ApPress’

Website Scraping
with Python

Using BeautifulSoup
and Scrapy

Gabor Laszl6 Hajba

Apress’

Website Scraping with Python

Gébor Laszl6 Hajba
Sopron, Hungary

ISBN-13 (pbk): 978-1-4842-3924-7 ISBN-13 (electronic): 978-1-4842-3925-4
https://doi.org/10.1007/978-1-4842-3925-4

Library of Congress Control Number: 2018957273
Copyright © 2018 by Gabor Laszlé Hajba

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green

Development Editor: James Markham

Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,

233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484239247.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-3925-4

To those who are restless, like me,
and always want to learn something new.

Table of Contents

About the AUhOFcccmmmnmmmmsensssssss s xi
About the Technical ReVIEWErcusssssmssssnsssassssasssassssassssnsssassssannsns Xiii
Acknowledgments.......cccccurmsssssssmssnmmmsmssssssssssssnssessssssssssnnnnsssssssssssnnnnns XV
Introduction.........ccccinsmmmnnmmmmnsnns s ————————— Xvii
Chapter 1: Getting Started.........ccccuscmmnsmmmmssnsmsssnnmsssssmsssssmsssssssssssssssnns 1
WEDSItE SCrAPINGcvvverrerrererrerere s s e s e e s sa s e s aesa e e nae s 1
Projects for Website SCrapingcoovvvvrierevnsnienens s sese s sesessenes 2
Websites Are the BotEnecK............cccvrricnnennsssssssssese s 3
TOOIS iN ThiS BOOKc.cceiereiirinirircinee s 3
Preparation ... s 4
Terms and RODOTS.......ccccerrirce e 5
Technology of the WeDSIte..........ccccververiririnnrcrcer s 7
Using Chrome Developer TOOIScccvvverereenersersersesessersessessssessessessssessessensens 8

TOOI CONSIAEIALIONSvevveeccererrsreesese e 12
Starting t0 COUR ..o 13
Parsing robots.Xt ... ———— 13
Creating a Link EXEractor........ccccocvvnniniennsns s e 15
EXtracting IMages.......cccucereinininennsinsse s s 17
SUMIMANY.....eieeeeceree e e s se e s s e re e e e e 18

TABLE OF CONTENTS

Chapter 2: Enter the Requirementscccevssemmnmnsssssnnmsssssssssssssnnnns 19
The ReqUIrEMENTS.......cocceeecr e 20
Preparation ... e 21

Navigating Through “Meat & fishFish”c.cccrininininininnrne e, 23
Outlining the Application............cccvivninrnn s 31
Navigating the WebSIteccucvreirnnnnnrnsess e 32

Creating the Navigationc.cccvvrnneneninsesnsesse s 33

The requests LiDrary........cccoevernennesss s sessesens 36

SWiItching 10 reqUESTS......cccvecerccrrr s 37

Putting the Code TOgether ... 38
SUMMANY....ceitieiresere e n e p e e 39

Chapter 3: Using Beautiful Soup.......ccccussemmmnsssennmmssssnnnsnssssssnsnssssnnnnnnd 1

Installing BEAULITUl SOUPcvevreverieriere st rersere s se e se s sresessessesnens 4
Simple EXAMPIES ..ot st 42
Parsing HTML TeXI......cccoiirrsreners s ses e snes 42
Parsing Remote HTML ... ses e 44
Parsing @ File........ccccvvercereerercirsir e rer s s 45
Difference Between find and find_all...........cccooeornvnnnennesnnserrcnereenne 45
EXtracting All LINKScccoerervriirre s s e sse e se e s s 45
Extracting All IMAQES.......ceccerververrererrirres s s s s e e 46
Finding Tags Through Their Attributes ..., 46
Finding Multiple Tags Based on Propertycccccvvvvinvnnnneniensensenssesessenns 47
Changing Content........c.coivvririerenr s s sa e sne s 48
Finding COMMENTS......cccvierereriereresrssereresss s s e sessessessessssessessesassessessesaes 52
Converting a Soup t0 HTML TEXT.......cccvierererrerieresessessese s sessessessesessessessees 53
Extracting the Required Informationccccovvrvnininncncnn e 53
Identifying, Extracting, and Calling the Target URLS..........ccccocvvrvererenseniernenns 54
Navigating the Product Pagescccccvveverrirsensesercerses s s 56

TABLE OF CONTENTS

Extracting the Information.........ccccvvrvninnninins 58
UNFOreseen ChANGEScocvververerreversersesessssessessessessssessessessssessessessesssssssesseses 63
Exporting the Data ..o 65
TO BV b p s 66
TO JSON ... nn e e e nn s 73
To a Relational Databaseccovererenernsereneneree e 76
To an NOSQL Databasecccvvrremnmrerermssssesesesssssssese e sesssssssssesens 83
Performance IMprovements ... ssesnens 85
Changing the Parser ... s 86
Parse Only What's Needed...........ccoovcnirinnnnsnicns s sessesnns 87
Saving While WOrking........cccoveevrenrnscrncsere e ses s e ssssesessesessesesessesens 88
Developing on @ Long RUN ... 90
Caching Intermediate Step ReSUIScccovvvrvriinncncn e 90
Caching Whole WEDSILES.........ccccerernrrininnninsinse s 91
Source Code for this Chapter ... 95
SUMMANY....ceitieernesrrre s r e e s n e nr e e 95

Chapter 4: USing SCrapycuucermrsssssnnsssssssssssssssssssssssssssssssssssnsssssnnnnsss3 7

INSTAIING SCrAPY ..vvverrerreririere s s s ae s se s s s e e s e saesaess e e nsesaees 98
Creating the Projectcccoceerecvnerns e 98
Configuring the ProjeCt ... 100
L= 10T 10 (0T SRR 102
MiIAAIEBWAIE.........coereeerreerereere s 102
PIPEIINE ...t 103
=] 1] TSRS 104
L LTI (0] S 104
Implementing the Sainsbury SCrapercoccvvvvniesnncnnes e 106
What'’s This allowed_domains ADOUL?..........ccceveriniiniinsinssnssses e 107
Preparation........ccoccvinnesinsen s e 108

TABLE OF CONTENTS

def parse(Self, FESPONSE)ccvvvcerreeririrrr e 110
Navigating Through Categoriesccccvrerererrersersessnsessersessesessessessessesessessens 112
Navigating Through the Product Listings........c.cccevvrrinvnnnnininsenseenenienens 116
Extracting the Data...........cccccvvrinninininin e e 118
Where t0 Put the Data?..........ccoovvnnnnscssnssses e 123
RUNNINg the SPIET.....cccvevererrere s rere e sre s e e ssesnens 127
EXporting the RESUILS.......ccceveeercerere e 133
TO BVt s bbb 134

TO JSON ... bbb e e 135

TO DALADASES ..o 137
Bring YOUr OWN EXPOILETccvvveruerrererseressessssessessessssessessessessssessessessesensensens 143
Caching With SCrapycccccvrivrierrcr e e 153
Storage SOIULIONSccoveeerercrrerrc e 154

(07 T 1 Lo o] 1T T 156
Downloading IMAQESccoeriinirircrirrre e 158
Using Beautiful Soup With SCrapy........ccccvevrrrrrnnenesenesnseseseses s 161
[0 o T OSSR 162
(A Bit) Advanced Configurationccccveeriennnnsninesnsensese s sessessens 162
LOG_LEVEL ...t ssss s s s e ss s ssssssssanas 163
CONCURRENT_REQUESTScocerertrrirerenis s sse e s e s e ssssessessesnes 164
DOWNLOAD_DELAY.....cccerertertrrereresessere et sesse e ssssesessessssessessesssssssessessens 164
AULOENrOtHING......cceeerecerese e ———— 165
COOKIES_ENABLEDcoeitriererierinserese s sese e ses e ssesassessessessssessensesnes 166
SUMMAIY.c.ueiteirerere e s s e s s e e s e s s sae e e e e e s aese e e e e s aesae e e e naenaees 167
Chapter 5: Handling JavaScript........cccccmmusmmmssmmmsssssmssssssssssssssssnsnas 169
Reverse ENGINEEIiNg.......c.ooorererernererereseseressese s ses e se e seenes 169
Thoughts on Reverse ENgiNEering..........ccovoererrencrersererenersesesenesessesesessesenns 172
1T 172

viii

TABLE OF CONTENTS

3] 0] 2T £ RS 172
RS o o 173

A DynamiC EXAMPIE.......ccceririeriierererser e sses e sesses s s ssesssesnessesnens 176
Integration With SCIapycccvrerererrrieniesrsersere s ses e saesessesaesnes 177
Adapting the basic SPIErccvcvvriererrrrrere e 179
What Happens When Splash Isn’t RUNNING?.........ccccvvvevnnnsenienenessensenens 183

RS 111111 R 183

B3 T=] T 1] RS 183
PrereqUISITES ...cvevveverieriee e rerrer e s e s s 184
BaSIC USAQE......cevverriririirrierirersie s s e s s s s s ss e s s sn e s s 185
Integration With SCrapycccvrerernrrienieneserserese s s s s seesessesaesnes 186

RS 11111 189
Solutions for Beautiful SOUPcccvvcerninncnnsrn e 189
SPIASH....ce e ———————— 190

R T=] 1] 11T 191

RS 111111 192
SUMMAIY..c..citiiiire e e e e s e e R p e e e nne s 192
Chapter 6: Website Scraping in the Cloudccccccmmrrrrnnsssssnnnnnnnnnns 193
SCrapy ClOUd.........cccorieireerre e e e e 193
Creating @ ProjECt........coucvvcernesinssersse s 194
Deploying YOUr SPIerccvvveriserrnesereser s se s s snssenens 195
Start and Wait.........coccoveeernnesnesnnesersse s s s snens 196
Accessing the Data...........ccovevnenenesennssnese s 198
AP ————————————————— 200
LimMItationS......ccoveeereceresers s 202
SUMMANY ..ot se s nn e nra s 203

ix

TABLE OF CONTENTS

PYINONANYWREIE ...t s s 203
The EXample SCriPL.......cccvirirerrrerrere s s ssssessesessessssessessesssssssessessens 203
PythonAnywhere Configurationcceveevvrerveriesssensensesesessessesessssessensens 204
Uploading the SCHPL.......ccccvvvririerr s snes 204
RunNing the SCHIPL.....ccccviivrirrerr s s sse e sseenens 206
This Works Just Manually..........c.ccerrererennnieniesssensessesesessessessesessssessessens 207
Storing Data in @ DAtabase?.........cccvvvverierrnnsenese s sees 210
RS 111111 R 214

What About Beautiful SOUP?ceeveveererrerereresrereressssesesse e sessessessesssssssessesees 214

SUMMANY..c..citiiiire e e s e e b s r e e e s ae e e e e nne s 216

INA@X..ueeeiiienssssnnssssnnsssssnsssssnsssssnsssssnnssssnnssssnnsnssnnnnssnnnnssnnsnssnnnnssnnnnnnns 219

About the Author

Gabor Laszl6 Hajba is a Senior Consultant

at EBCONT enterprise technologies, who
specializes in Java, Python, and Crystal. He

is responsible for designing and developing
customer needs in the enterprise software
world. He has also held roles as an Advanced
Software Engineer with Ziihlke Engineering,
and as a freelance developer with Porsche
Informatik. He considers himself a workaholic,

(hard)core and well-grounded developer,
pragmatic minded, and freak of portable apps
and functional code.

He currently resides in Sopron, Hungary
with his loving wife, Agnes.

About the Technical Reviewer

Chaim Krause is an expert computer
programmer with over thirty years of
experience to prove it. He has worked as a lead
tech support engineer for ISPs as early as 1995,
as a senior developer support engineer with
Borland for Delphi, and has worked in Silicon
Valley for over a decade in various roles,
including technical support engineer and

developer support engineer. He is currently
a military simulation specialist for the US Army’s Command and General
Staff College, working on projects such as developing serious games for
use in training exercises.

He has also authored several video training courses on Linux topics
and has been a technical reviewer for over twenty books, including iOS
Code Testing, Android Apps for Absolute Beginners (4ed), and XML
Essentials for C# and .NET Development (all Apress). It seems only natural
then that he would be an avid gamer and have his own electronics lab
and server room in his basement. He currently resides in Leavenworth,
Kansas with his loving partner, Ivana, and a menagerie of four-legged
companions: their two dogs, Dasher and Minnie, and their three cats,
Pudems, Talyn, and Alaska.

xiii

Acknowledgments

Many people have contributed to what is good in this book. Remaining
errors and problems are the author’s alone.

Thanks to Apress for making this book happen. Without them, I'd have
never considered approaching a publisher with my book idea.

Thanks to the editors, especially Jill Balzano and James Markham.
Their advices made this book much better.

Thanks to Chaim Krause, who pointed out missing technical
information that may be obvious to me but not for the readers.

Last but not least, a big thank you to my wife, Agnes, for enduring the
time invested in this book.

I hope this book will be a good resource to get your own website
scraping projects started!

Introduction

Welcome to our journey together exploring website scraping solutions

using the Python programming language!
As the title already tells you, this book is about website scraping with
Python. I distilled my knowledge into this book to give you a useful manual

if you want to start data gathering from websites.

Website scraping is (in my opinion) an emerging topic.

I expect you have Python programming knowledge. This means I won’t

clarify every code block I write or constructs I use. But because of this,

you're allowed to differ: every programmer has his/her own unique coding

style, and your coding results can be different than mine.

This book is split into six chapters:

1.

Getting Started is to get you started with this book:
you can learn what website scraping is and why it
worth writing a book about this topic.

Enter the Requirements introduces the
requirements we will use to implement website
scrapers in the follow-up chapters.

Using Beautiful Soup introduces you to Beautiful
Soup, an HTML content parser that you can use to
write website scraper scripts. We will implement

a scraper to gather the requirements of Chapter 2
using Beautiful Soup.

xvii

INTRODUCTION

4. Using Scrapy introduces you to Scrapy, the (in my

opinion) best website scraping toolbox available

for the Python programming language. We will use
Scrapy to implement a website scraper to gather the
requirements of Chapter 2.

Handling JavaScript shows you options for how
you can deal with websites that utilize JavaScript to
load data dynamically and through this, give users
a better experience. Unfortunately, this makes basic
website scraping a torture but there are options that
you can rely on.

Website Scraping in the Cloud moves your scrapers
from running on your computer locally to remote
computers in the Cloud. I'll show you free and paid
providers where you can deploy your spiders and
automate the scraping schedules.

You can read this book from cover to cover if you want to learn the

different approaches of website scraping with Python. If you're interested

only in a specific topic, like Scrapy for example, you can jump straight to

Chapter 4, although I recommend reading Chapter 2 because it contains

the description of the data gathering task we will implement in the vast
part of the book.

xviii

CHAPTER 1

Getting Started

Instead of installation instructions, which follow later for each library, we
will dive right into deep water: this chapter introduces website scraping in
general and the requirements we will implement throughout this book.

You may expect a thorough introduction into website scraping, but
because you are reading this book I expect you already know what website
scraping is and you want to learn how to do it with Python.

Therefore, I'll just give you a glance at the topic and jump right into the
depths of creating a script that scrapes websites!

Website Scraping

The need to scrape websites came with the popularity of the Internet,
where you share your content and a lot of data. The first widely known
scrapers were invented by search engine developers (like Google or
AltaVista). These scrapers go through (almost) the whole Internet, scan
every web page, extract information from it, and build an index that you
can search.

Everyone can create a scraper. Few of us will try to implement such a
big application, which could be new competition to Google or Bing. But
we can narrow the scope to one or two web pages and extract information
in a structured manner—and get the results exported to a database or
structured file (JSON, CSV, XML, Excel sheets).

© Gabor Lészl6 Hajba 2018
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_1

CHAPTER 1 GETTING STARTED

Nowadays, digital transformation is the new buzzword companies use
and want to engage. One component of this transformation is providing
data access points to everyone (or at least to other companies interested
in that data) through APIs. With those APIs available, you do not need to
invest time and other resources to create a website scraper.

Even though providing APIs is something scraper developers won't
benefit from, the process is slow, and many companies don’t bother creating
those access points because they have a website and it is enough to maintain.

Projects for Website Scraping

There are a lot of use cases where you can leverage your knowledge of
website scraping. Some might be common sense, while others are extreme
cases. In this section you will find some use cases where you can leverage
your knowledge.

The main reason to create a scraper is to extract information from a
website. This information can be a list of products sold by a company,
nutrition details of groceries, or NFL results from the last 15 years. Most of
these projects are the groundwork for further data analysis: gathering all
this data manually is a long and error-prone process.

Sometimes you encounter projects where you need to extract data
from one website to load it into another—a migration. I recently had a
project where my customer moved his website to WordPress and the
old blog engine’s export functionality wasn’t meant to import it into
WordPress. I created a scraper that extracted all the posts (around
35,000) with their images, did some formatting on the contents to use
WordPress short codes, and then imported all those posts into the new
website.

A weird project could be to download the whole Internet! Theoretically
itis not impossible: you start at a website, download it, extract and follow
all the links on this page, and download the new sites too. If the websites

CHAPTER 1 GETTING STARTED

you scrape all have links to each other, you can browse (and download)
the whole Internet. I don’t suggest you start this project because you won't
have enough disk space to contain the entire Internet, but the idea is
interesting. Let me know how far you reached if you implement a scraper
like this.

Websites Are the Bottleneck

One of the most difficult parts of gathering data through websites is that
websites differ. I mean not only the data but the layout too. It is hard to
create a good-fit-for-all scraper because every website has a different
layout, uses different (or no) HTML IDs to identify fields, and so on.

And if this is not enough, many websites change their layout
frequently. If this happens, your scraper is not working as it did previously.
In these cases, the only option is to revisit your code and adapt it to the
changes of the target website.

Unfortunately, you won't learn secret tricks that will help you create a
scraper that always works—if you want to write specialized data extractors.
I will show some examples in this book that will always work if the HTML

standard is in use.

Tools in This Book

In this book you will learn the basic tools you can use in Python to do your
website scraping. You will soon realize how hard it is to create every single
piece of a scraper from scratch.

But Python has a great community, and a lot of projects are available
to help you focus on the important part of your scraper: data extraction.
I will introduce you to tools like the requests library, Beautiful Soup, and
Scrapy.

CHAPTER 1 GETTING STARTED

The requests library is a lightweight wrapper over the tedious task of
handling HTTP, and it emerged as the recommended way:

The Requests package is recommended for a higher level HT'TP
client interface.

— Python 3 documentation

Beautiful Soup isa content parser. It is not a tool for website scraping
because it doesn’t navigate pages automatically and it is hard to scale. But
it aids in parsing content, and gives you options to extract the required
information from XML and HTML structures in a friendly manner.

Scrapy is a website scraping framework/library. It is much more
powerful than Beautiful Soup, and it can be scaled. Therefore, you can
create more complex scrapers easier with Scrapy. But on the other side,
you have more options to configure. Fine-tuning Scrapy can be a problem,
and you can mess up a lot if you do something wrong. But with great power
comes great responsibility: you must use Scrapy with care.

Even though Scrapy is the Python library created for website
scraping, sometimes I just prefer a combination of requests and
Beautiful Soup because it is lightweight, and I can write my scraper in a
short period—and I do not need scaling or parallel execution.

Preparation

When starting a website scraper, even if it is a small script, you must
prepare yourself for the task. There are some legal and technical
considerations for you right at the beginning.

In this section I will give you a short list of what you should do to be
prepared for a website scraping job or task:

1. Do the website’s owners allow scraping? To find out,
read the Terms & Conditions and the Privacy Policy
of the website.

CHAPTER 1 GETTING STARTED

2. Canyou scrape the parts you are interested in? See
the robots. txt file for more information and use a
tool that can handle this information.

3. What technology does the website use? There are free
tools available that can help you with this task, but
you can look at the website’s HTML code to find out.

4. What tools should I use? Depending on your task
and the website’s structure, there are different paths
you can choose from.

Now let’s see a detailed description for each item mentioned.

Terms and Robots

Scraping currently has barely any limitations; there are no laws defining
what can be scraped and what cannot.

However, there are guidelines that define what you should respect.
There is no enforcing; you can completely ignore these recommendations,
but you shouldn't.

Before you start any scraping task, look at the Terms & Conditions and
Privacy Policy of the website you want to gather data from. If there is no
limitation on scraping, then you should look at the robots. txt file for the
given website(s).

When reading the terms and conditions of a website, you can search
for following keywords to find restrictions:

e scraper/scraping
o crawler/crawling
e bot

o spider

. program

CHAPTER 1 GETTING STARTED

Most of the time these keywords can be found, and this makes your
search easier. If you have no luck, you need to read through the whole legal
content and it is not as easy—at least I think legal stuff is always dry to read.

In the European Union there’s a data protection right that has been
live for some years but strictly enforced from 2018: GDPR. Keep the
private data of private persons out of your scraping—you can be held
liable if some of it slips out into public because of your scraper.

robots.txt

Most websites provide a file called robots.txt, which is used to tell web
crawlers what they can scrape and what they should not touch. Naturally, it
is up to the developer to respect these recommendations, but I advise you
to always obey the contents of the robots. txt file.

Let’s see one example of such a file:

User-agent: *

Disallow: /covers/

Disallow: /api/

Disallow: /*checkval

Disallow: /*wicket:interface

Disallow: ?print view=true

Disallow: /*/search

Disallow: /*/product-search

Allow: /*/product-search/discipline

Disallow: /*/product-search/discipline?*facet-subj=
Disallow: /*/product-search/discipline?*facet-pdate=
Disallow: /*/product-search/discipline?*facet-type=category

The preceding code block is from www.apress.com/robots.txt. As
you can see, most content tells what is disallowed. For example, scrapers
shouldn’t scrape www.apress.com/covers/.

6

http://www.apress.com/robots.txt
http://www.apress.com/covers/

CHAPTER 1 GETTING STARTED

Besides the Allow and Disallow entries, the User-agent can be
interesting. Every scraper should have an identification, which is provided
through the user agent parameter. Bigger bots, created by Google and Bing,
have their unique identifier. And because they are scrapers that add your
pages to the search results, you can define excludes for these bots to leave
you alone. Later in this chapter, you will create a script which will examine
and follow the guidelines of the robots.txt file with a custom user agent.

There can be other entries in a robots.txt file, but they are not
standard. To find out more about those entries, visit
https://en.wikipedia.org/wiki/Robots_exclusion_standard.

Technology of the Website

Another useful preparation step is to look at the technologies the targeted
website uses.

There is a Python library called builtwith, which aims to detect the
technologies a website utilizes. The problem with this library is that the last
version 1.3.2was released in 2015, and it is not compatible with Python 3.
Therefore, you cannot use it as you do with libraries available from the PyPI.!

However, in May 2017, Python 3 support has been added to the
sources, but the new version was not released (yet, I'm writing this in
November 2017). This doesn’t mean we cannot use the tool; we must
manually install it.

First, download the sources from https://bitbucket.org/
richardpenman/builtwith/downloads/. If you prefer, you can clone the
repository with Mercurial to stay up to date if new changes occur.

After downloading the sources, navigate to the folder where you
downloaded the sources and execute the following command:

pip install .

'PyPI - the Python Package Index

https://en.wikipedia.org/wiki/Robots_exclusion_standard
https://bitbucket.org/richardpenman/builtwith/downloads/
https://bitbucket.org/richardpenman/builtwith/downloads/

CHAPTER 1 GETTING STARTED

The command installs builtwith to your Python environment and you
can use it.

Now if you open a Python CLI, you can look at your target site to see
what technologies it uses.

>>> from builtwith import builtwith

>>> builtwith("http://www.apress.com")
{'javascript-frameworks': ['AngularJS', 'jQuery'],
"font-scripts': ['Font Awesome'], 'tag-managers':
['CGoogle Tag Manager'], 'analytics': ['Optimizely']}

The preceding code block shows which technologies Apress uses for
its website. You can learn from Angular]S that if you plan to write a scraper,
you should be prepared to handle dynamic content that is rendered with
JavaScript.

builtwith is not a magic tool, it is a website scraper that downloads
the given URL; parses its contents; and based on its knowledge base,
it tells you which technologies the website uses. This tool uses basic
Python features, which means sometimes you cannot get information
in the website you are interested in, but most of the time you get enough

information.

Using Chrome Developer Tools

To walk through the website and identify the fields of the requirements, we
will use Google Chrome’s built-in DevTools. If you do not know what this

tool can do for you, here is a quick introduction.

The Chrome Developer Tools (DevTools for short), are a set of
web authoring and debugging tools built into Google Chrome.

The DevTools provide web developers deep access into the
internals of the browser and their web application. Use the
DevTools to efficiently track down layout issues, set JavaScript
breakpoints, and get insights for code optimization.

CHAPTER 1 GETTING STARTED

As you can see, DevTools give you tools to see inside the workings of
the browser. We don’t need anything special; we will use DevTools to see
where the information resides.

In this section I will guide us with screenshots through the steps
I usually do when I start (or just evaluate) a scraping project.

Set-up

First, you must prepare to get the information. Even though we know
which website to scrape and what kind of data to extract, we need some
preparation.

Basic website scrapers are simple tools that download the contents of
the website into memory and then do extraction on this data. This means
they are not capable of running dynamic content just like JavaScript, and
therefore we have to make our browser similar to a simple scraper by
disabling JavaScript rendering.

First, right-click with your mouse on the web page and from the menu
select “Inspect,” as shown in Figure 1-1.

Back

Reload

Save as... Ctrl+S
Print... Ctrl+P
Cast...

Translate to English

View page source

Inspect [} Ctrl+Shift+l

Figure 1-1. Starting Chrome’s DevTools

CHAPTER 1 GETTING STARTED

Alternatively, you can press CTRL+SHIFT+I in Windows or 38+{+I on a

Mac to open the DevTools window.
Then locate the settings button (the three vertically aligned dots, as

shown in Figure 1-2.) and click it:

[w ﬂ Elements Console Sources Network Performance Memory Application Security Audits P X
v vels ¥

© top Filte Default levels bockside O O O OO

3
Hide console drawer Esc
Search all files Ctrl + Shift + F
Open file Ctrl+P
Mare tools >
Shortcuts
Help >

Figure 1-2. The Settings menu is located under the three dots

Alternatively, you can press F1 in Windows.
Now scroll down to the bottom of the Seftings screen and make sure

Disable JavaScript is checked, as shown in Figure 1-3.

10

CHAPTER 1

Settings Preferences

Preferences IJ Record heap allocation stack traces
Workspace [Hide chrome frame in Layers view

Blackboxing @ Show native functions in JS Profile

Devices

Throttling Console

Shortcuts) Hide network messages

1) Selected context only
J User messages only

L) Log XMLHttpRequests

L) Show timestamps

W Autocomplete from history
| Enable custom formatters

\J Preserve log upon navigation
Extensions

Link handling:

Debugger
& Disable JﬁaScript

| Disable async stack traces

DevTools

L) Auto-open DevTools for popups

Restore defaults and reload

Figure 1-3. Disabling JavaScript

GETTING STARTED

Now reload the page, exit the Settings window, but stay in the inspector
view because we will use the HTML element selector available here.

11

CHAPTER 1 GETTING STARTED

Note Disabling JavaScript is necessary if you want to see how your
scraper sees the website.

Later in this book, you will learn options how to scrape websites that
utilize JavaScript to render dynamic content.

But to fully understand and enjoy those extra capabilities, you must
learn the basics.

Tool Considerations

If you are reading this book, you will write your scrapers most likely with
Python 3. However, you must decide on which tools to use.

In this book you will learn the tools of the trade and you can decide
on your own what to use, but now I'll share with you how I decide on an
approach.

If you are dealing with a simple website—and by simple, I mean
one that is not using JavaScript excessively for rendering—then you
can choose between creating a crawler with Beautiful Soup +
requests or use Scrapy. If you must deal with a lot of data and want
to speed things up, use Scrapy. In the end, you will use Scrapy in 90%
of your tasks, and you can integrate Beautiful Soup into Scrapy and
use them together.

If the website uses JavaScript for rendering, you can either reverse
engineer the AJAX/XHR calls and use your preferred tool, or you can reach
out to a tool that renders websites for you. Such tools are Selenium and
Portia. I will introduce you to these approaches in this book and you can
decide which fits you best, which is easier for you to use.

12

CHAPTER 1 GETTING STARTED

Starting to Code

After this lengthy introduction, it is time to write some code. I guess you
are keen to get your fingers “dirty” and create your first scrapers.

In this section we will write simple Python 3 scripts to get you started
with scraping and to utilize some of the information you read previously in
this chapter.

These miniscripts won’t be full-fledged applications, just small demos
of what is awaiting you in this book.

Parsing robots.txt

Let’s create an application that parses the robots. txt file of the target
website and acts based on the contents.

Python has a built-in module that is called robotparser, which
enables us to read and understand the robots.txt file and ask the parser if
we can scrape a given part of the target website.

We will use the previously shown robots. txt file from Apress.com.

To follow along, open your Python editor of choice, create a file called
robots.py, and add the following code:

from urllib import robotparser
robot parser = robotparser.RobotFileParser()

def prepare(robots txt url):
robot parser.set url(robots txt url)
robot_parser.read()

def is allowed(target url, user agent="*"):
return robot parser.can fetch(user agent, target url)

13

CHAPTER 1 GETTING STARTED

if _name_ == "' main_ ':
prepare('http://www.apress.com/robots.txt")

print(is_allowed('http://www.apress.com/covers/"))
print(is_allowed('http://www.apress.com/gp/python"'))

Now let’s run the example application. If we have done everything right
(and Apress didn’t change its robot guidelines), we should get back False
and True, because we are not allowed to access the covers folder, but there
is no restriction on the Python section.

> python robots.py
False
True

This code snippet is good if you write your own scraper and you don’t
use Scrapy. Integrating the robotparser and checking every URL before
accessing it helps you automate the task of honoring the website owners’
request what to access.

Previously, in this chapter, I mentioned that you can define user agent-
specific restrictions in a robots. txt file. Because I have no access to the
Apress website, I created a custom entry on my own homepage for this
book and this entry looks like this:

User-Agent: bookbot
Disallow: /category/software-development/java-software-
development/

Now to see how this works. For this, you must modify the previously
written Python code (robots.py) or create a new one to provide a user
agent when you call the is_allowed function because it already accepts a
user agent as argument.

from urllib import robotparser

robot_parser = robotparser.RobotFileParser()

14

CHAPTER 1 GETTING STARTED

def prepare(robots txt url):
robot parser.set url(robots txt url)
robot parser.read()

def is allowed(target url, user agent="*"):
return robot parser.can fetch(user agent, target url)

if _name__ == "' main_ ':
prepare('http://hajba.hu/robots.txt")

print(is_allowed('http://hajba.hu/category/software-
development/java-software-development/", 'bookbot'))

print(is_allowed('http://hajba.hu/category/software-
development/java-software-development/', 'my-agent'))

print(is_allowed('http://hajba.hu/category/software-
development/java-software-development/', 'googlebot'))

The preceding code will result in the following output:

False
True
True

Unfortunately, you cannot prevent malicious bots from scraping
your website because in most cases they will ignore the settings in your
robots. txt file.

Creating a Link Extractor

After this lengthy introduction, it is time to create our first scraper, which
will extract links from a given page.

This example will be simple; we won’t use any specialized tools for
website scraping, just libraries available with the standard Python 3
installation.

15

CHAPTER 1 GETTING STARTED

Let’s open a text editor (or the Python IDE of your choice). We will
work in a file called 1ink_extractor.py.

from urllib.request import urlopen
import re

def download page(url):
return urlopen(url).read().decode('utf-8")

def extract links(page):
link regex = re.compile('<a[*>]+href=["\"](.*?)["\"']",
re.IGNORECASE)
return link regex.findall(page)

if _name_ ==" main_"':
target url = 'http://www.apress.com/'
apress = download page(target url)
links = extract links(apress)

for link in links:
print(link)

The preceding code block extracts all the links, which you can find at
the Apress homepage (on the first page only). If you run the code with the
Python command link_extractor.py, you will see a lot of URLs that start
with a slash (/) without any domain information. This is because those are
internal links on the apress.com website. To fix this, we could manually
look for such entries in the links set, or use a tool already present in the
Python standard library: urljoin.

from urllib.request import urlopen, urljoin
import re

def download page(url):
return urlopen(url).read().decode('utf-8")

16

CHAPTER 1 GETTING STARTED

def extract links(page):
link regex = re.compile('<a[">]+href=["\"](.*?)["\']",
re.IGNORECASE)
return link regex.findall(page)

if _name__ == "'_ main_"':
target _url = 'http://www.apress.com/'
apress = download page(target url)
links = extract links(apress)

for link in links:
print(urljoin(target_url, link))

As you can see, when you run the modified code, this new method
adds http://www.apress.comto every URL that is missing this prefix,
for example http://www.apress.com/gp/python, butleaves others like
https://twitter.com/apress intact.

The previous code example uses regular expressions to find all the
anchor tags (<a>) in the HTML code of the website. Regular expressions
are a hard topic to learn, and they are not easy to write. That’s why we
won'’t dive deeper into this topic and will use more high-level tools, like
Beautiful Soup, in this book to extract our contents.

Extracting Images

In this section we will extract image sources from the website. We won't
download any images yet, just lay hands on the information about where
these images are in the web.

Images are very similar to links from the previous section, but they are
defined by the tag and have a src attribute instead of an href.

With this information you can stop here and try to write the extractor
on your own. Following, you'll find my solution.

17

http://www.apress.com
http://www.apress.com/gp/python
https://twitter.com/apress

CHAPTER 1 GETTING STARTED

from urllib.request import urlopen, urljoin
import re

def download page(url):
return urlopen(url).read().decode('utf-8")

def extract image locations(page):
img regex = re.compile('<img[~>]+src=["\"](.*?)["\"']",
re.IGNORECASE)

return img regex.findall(page)

if name_ ==" main_"':
target url = 'http://www.apress.com/'
apress = download page(target url)
image locations = extract image locations(apress)

for src in image locations:
print(urljoin(target url, src))

Ifyou take a close look, I modified just some variable names and the
regular expression. I could have used the link extractor from the previous
section and changed only the expression.

Summary

In this chapter you've gotten a basic introduction to website scraping and
how to prepare for a scraping job.

Besides the introduction, you created your first building blocks for
scrapers that extracted information from a web page, like links and image
sources.

As you may guess, Chapter 1 was just the beginning. There is a lot more
coming up in the following chapters.

You will learn the requirements for which you must create a scraper,
and you will write your first scrapers using tools like Beautiful Soup and
Scrapy. Stay tuned and continue reading!

18

CHAPTER 2

Enter the
Requirements

After the introductory chapter, it is time to get you started with a real
scraping project.

In this chapter you will learn what data you must extract throughout
the next two chapters, using Beautiful Soup and Scrapy.

Don’t worry; the requirements are simple. We will extract information
from the following website: https://www.sainsburys.co.uk/.

Sainsbury’s is an online shop with a lot of goods provided. This makes
a great source for a website scraping project.

I'll guide you to find your way to the requirements, and you'll learn
how I approach a scraping project.

Sainsbury’s five well for fess

Happy Halloween « HAPPY +
T e ok HALLOWEEN

SOMA Craapy recipa ideas

Find what you're looking for

Sainsburys.co.uk uses cookies to enhance your experience.,
W s cockies 1 give yos the best anline experience. By eontiuing In e our aebsile, youTe agroeing 1o ou yae of Coskies m ————
Figure 2-1. The landing page of Sainsbury'’s at Halloween 2017

© Gabor Lészl6 Hajba 2018 19
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_2

https://www.sainsburys.co.uk/

CHAPTER 2 ENTER THE REQUIREMENTS

The Requirements

If you look at the website, you can see this is a simple web page with a lot of
information. Let me show you which parts we will extract.

One idea would be to extract something from the Halloween-themed
site (see Figure 2-1. for their themed landing page). However, this is not an
option because you cannot try this yourself; Halloween is over when you
read this—at least for 2017, and I cannot guarantee that the future sales will
be the same.

Therefore, you will extract information on groceries. To be more
specific, you will gather nutrition details from the “Meat & fish”
department.

For every entry, which has nutrition details, you extract the following
information:

e Name of the product

e URL of the product

o Item code

e Nutrition details per 100g:
o Energy in kilocalories
e Energy in kilojoules
o Fat
o Saturates
e Carbohydrates

o Total sugars

e Starch
o Fibre

e Protein
o Salt

20

CHAPTER 2 ENTER THE REQUIREMENTS

o Country of origin

o Price per unit

e Unit

e Number of reviews
o Average rating

This looks like a lot, but do not worry! You will learn how to extract this
information from all the products of this department with an automated
script. And if you are keen and motivated, you can extend this knowledge
and extract all the nutrition information for all the products.

Preparation

As I mentioned in the previous chapter, before you start your scraper
development, you should look at the website’s terms and conditions, and
the robots.txt file to see if you can extract the information you need.

When writing this part (November 2017), there was no entry on scraper
restrictions in the terms and conditions of the website. This means, you
can create a bot to extract information.

The next step is to look at the robots. txt file, found at
http://sainsburys.co.uk/robots.txt.

PUBLIC IP _ADDR__ - Internet facing IP Address or
Domain name.

User-agent: *

Disallow: /webapp/wcs/stores/servlet/OrderItemAdd
Disallow: /webapp/wcs/stores/servlet/OrderItemDisplay
Disallow: /webapp/wcs/stores/servlet/OrderCalculate
Disallow: /webapp/wcs/stores/servlet/QuickOrderCmd
Disallow: /webapp/wcs/stores/servlet/InterestItemDisplay

21

http://sainsburys.co.uk/robots.txt

CHAPTER 2

Disallow:
Disallow:
Disallow:
Disallow:

Disallow:
Disallow:

Disallow:
Disallow:
Disallow:
Disallow:
Disallow:
Disallow:

Disallow:
Disallow:

ENTER THE REQUIREMENTS

/webapp/wcs/stores/servlet/ProductDisplaylargeImageView
/webapp/wcs/stores/servlet/QuickRegistrationFormView
/webapp/wcs/stores/servlet/UserRegistrationAdd
/webapp/wcs/stores/servlet/
PostCodeCheckBeforeAddToTrolleyView
/webapp/wcs/stores/servlet/Logon
/webapp/wcs/stores/servlet/
RecipesTextSearchDisplayView
/webapp/wcs/stores/servlet/PostcodeCheckView
/webapp/wcs/stores/servlet/ShoppinglListDisplay
/webapp/wcs/stores/servlet/gb/groceries/get-ideas/
advertising
/webapp/wcs/stores/servlet/gb/groceries/get-ideas/
development
/webapp/wcs/stores/servlet/gb/groceries/get-ideas/
dormant

/shop/gb/groceries/get-ideas/dormant/
/shop/gb/groceries/get-ideas/advertising/
/shop/gb/groceries/get-ideas/development

Sitemap: http://www.sainsburys.co.uk/sitemap.xml

In the code block you can see what is allowed and what is not, and this

robots.txt is quite restrictive and has only Disallow entries but this is for

all bots.

What can we find out from this text? For example, you shouldn’t create

bots that order automatically through this website. But this is unimportant

for us because we only need to gather information—no purchasing. This

robots.txt file has no limitations on our purposes; we are free to continue

our preparation and scraping.

22

CHAPTER 2 ENTER THE REQUIREMENTS

What would limit our purposes? Good question. An entry in the
robots.txt referencing the “Meat & fish” department could limit
our scraping intent. A sample entry would look like this:

User-agent: *
Disallow: /shop/gb/groceries/meat-fish/
Disallow: /shop/gb/groceries/

But this won’t allow search engines to look up the goods Sainsbury’s
is selling, and that would be a big profit loss.

Navigating Through “Meat & fishFish”

As mentioned at the beginning of this chapter, we will extract data from
the “Meat & fish” department. The URL of this part of the website is
www.sainsburys.co.uk/shop/gb/groceries/meat-fish.

Let’s open the URL in our Chrome browser, disable JavaScript,
and reload the browser window as described in the previous chapter.
Remember, disabling JavaScript enables you to see the website’s HTML
code as a basic scraper will see it.

While I am writing this, the website of the department looks like
Figure 2-2.

23

http://www.sainsburys.co.uk/shop/gb/groceries/meat-fish

CHAPTER 2 ENTER THE REQUIREMENTS

Hutowoan Chintmirs Frul & vogeéstks Moot & fsh Doy Chlod Ruwy Froon Food cupbonrd Diks. M & ooty Rty & Lok
b o

L
Vst & s Already a custoamer?

Mook yo rogestoract® Regisker Mo

Pew Cusiomer?

o yous perstcnedo I chack wo dolvet
your ava

]

Don't miss
Herta Frankfurters

. dm o conee 5 el Wt Do st
Voria Frankfuners

Figure 2-2. The “Meat & fish” department’s page inspected with
Chrome’s DevTools

For our purposes, the navigation menu on the left side is interesting. It
contains the links to the pages where we will find products to extract. Let’s
use the selection tool (or hit CTRL-SHIFT-C) and select the box containing
these links, as shown in Figure 2-3.

Lo i] SRR
e - am
- i -
Mot et reeoere 47 Raglster Now
ot & ey » THE ORGIMAL
ot »
e i . i o - 5 How customer?
e -
a3 et B S5 :r;‘ posiood 10 Chack we doelives in
ot e
i
e [creck postcoce]
o
Dont miss

S

Herta Frankfurters @ trgorant Informatian

T e Db A ek

C200, @i0e o7 creene & class Hot Dog wih
Harta Frankbhuters

S At L R
ety

= -aTm

Figure 2-3. Selecting the navigation bar on the left

Now we can see in the DevTools that every link is in a list element
(<1i> tag) of an unordered list (), with class categories departments.
Note down this information because we will use it later.

24

CHAPTER 2 ENTER THE REQUIREMENTS

Links, which have a little arrow pointing to the right (>), tell us they
are just a grouping category and we will find another navigation menu
beneath them if we click them. Let’s examine the Roast dinner option, as
shown in Figure 2-4.

Top sellers Beef b
Roast dinner > Chicken

Chicken & turkey Duck

Beef Gammaon

Fish & seafood Lamb

Bacon & sausages Pork

Ham, deli meats & dips Gravy & sauce

Pork & gammon Yorkshire puds, stuffing & sides

Mince Vegetables

Lamb

Duck, game & venison
Ready to cook

Taste the Difference & organic

Figure 2-4. The “Roast dinner” submenu

Here we can see that the page has no products but another list with
links to detailed sites. If we look at the HTML structure in DevTools, we can
see that these links are again elements of an unordered list. This unordered
list has the class categories aisles.

Now we can go further into the Beef category, and here we have
products listed (after a big filter box), as shown in Figure 2-5.

25

CHAPTER 2 ENTER THE REQUIREMENTS

E} Sort by: (Favourites First ~)
Perpage [36 v) 12
© offer

Sainsbury’s 21 Day Matured Sainsbury's 21 Day Matured
British Fatted Medium Beef British or Insh Beef Roasting
Sainsbury's 30 Day Matured Roasting Jeint Joint, Large
British Beef Roasting Joint
Large, Taste the Difference
Save £3.00: Was £12.00 Now
£9.00 £11.500kg £11.50kgq £8.00ka £8.00/kg
Price shown is the maximum Price shown is the maximum
£9.00lkg £9.00xa price for the weight range price for the weight range
Price shown is the maximum indicated indicated
price for the weight range
indicated Likg-129kg/€1484 W 15kg-172kg /€1376 ¥)
12kg-153kg/£1377 ¥) 1 1 Add
1 m Reviaws (T) Reviews (58)

Figure 2-5. Products in the “Beef” category

@ 1mportant I

Alcohol promotions av
customers serviced fr
stores may differ from
browsing our site. Fle
full range of promotion

Here we need to examine two things: one is the list of products; the

other is the navigation.

If the category contains more products than 36 (this is the default
count to show on the website), the items will be split into multiple pages.
Because we want to extract information on all products, we must navigate

through all those pages. If we select the navigation, we can see it is again

an unordered list of the class pages, as shown in Figure 2-6.

26

CHAPTER 2 ENTER THE REQUIREMENTS

e me_pmgemmm— e mmemei mmemges pmmmp
method get >l fFOrm>
¥ <ul class="pages"> == 5@
P <1i class="previous">.</1li>
h P <1i class="current”>..</1i>
P <lir.
¥<li class="next">
® <a href="https://ww.sainsburys.co.uk/shop/CategoryDisplay?
pageSize=36&searchTe..
stld=&categoryld=289463&langld=44&beginIndex=36&storeld=19151¢
promotionld=">.
<fli>
<ful>

Figure 2-6. Unordered list with the class “pages”

From those list elements, we are interested in the one with the right-
pointing arrow symbol, which has the class next. This tells us if we have a
next page we must navigate to or not.

Now let’s find the link to the detail page of the products. All
the products are in an unordered list (again). This list has the class
productlLister gridView, as shown in Figure 2-7.

& = o (ronimee - ED
g 5e mrn t Doy Mt Samburys 21 Duy Matuvd
Lotk e S0t R Dol Pt S NEY] S ——

Sowmbarrys 30 Dy Slatrind Romting ot et | =

Eriw Bt Rossing Joat et
Lage. Taste T Dederaace

S £3 50 W £17.00 Nowr _

o £ 580711 kg €8 ek 7 00y -

fL P w1 e s [T r— e b e
siiton L Frcn K o gt s T o o gt T
ncaed L

Fres st an sy

Figure 2-7. Selecting the product list from the DevTools

Every product is in a list element with the class gridItem. If we open up
the details of one of those products we can see where the navigation link
is: located in some divs and an h3. We note that the last div has the class
productNameAndPromotions, as shown in Figure 2-8.

27

CHAPTER 2 ENTER THE REQUIREMENTS

Sarvtarys 10 Do Mamend .
4 el Hramieg ot

[ST S —

Figure 2-8. Selecting the product’s name

Now we reached the level of the products, and we can step further and
concentrate on the real task: identifying the required information.

Selecting the Required Information

We will discover the elements where our required information resides,
based on the product shown in Figure 2-9.

Sainsbury's 30 Day 0,000k £0 001
Matured British Beef 00k 20 000
Roasting Joint ";fz :‘;;{“;;a‘s_::fg;’:zf’g‘:"
Large, Taste the indicated
Difference

izkgasikg €13 W

Save £3.00: Was £1200

Now £900 :

Revisws (30)
llem code. 74806 3 Tweet
TR AT
Description 3

Taste the Difference British beef roasting joint - Topside or Toprump
or Siverside (large)

Nutrition

(COOKED AS PER INSTRUCTIONS)

ENERGY
876kJ .
210kcal

Figure 2-9. The detailed product page we will use for the example

28

CHAPTER 2 ENTER THE REQUIREMENTS

Now that we have the product, let’s identify the required information.

As previously, we can use the select tool, locate the required text, and read

the properties from the HTML code.

The name of the product is inside a header (h1), which is inside a div

with the class productTitleDescriptionContainer.

The price and the unit are in a div of the class pricing. The price itself

is in a paragraph (p) of the class pricePerUnit; the unitis in a span of the

class pricePerUnitUnit.

Extracting the rating is tricky because here we only see the stars for
the rating, but we want the numeric rating itself. Let’s look at the image’s

HTML definition, as shown in Figure 2-10.

Sainsbury's 30 Day
Matured British Beef
Roasting Joint
Large, Taste the

Difference
Save £3.00: Was £1200

Now £900 1
[~ -]

Figure 2-10. The image’s HTML code

We can see the location of the image is inside a 1label of class

numberOfReviews and it has an attribute, alt, which contains the decimal

value of the averages of the reviews. After the image, there is the text

containing the number of the reviews.
The item code is inside a paragraph of class itemCode.

29

CHAPTER 2 ENTER THE REQUIREMENTS

The nutrition information, as shown in Figrue 2-11, is inside a table
of class nutritionTable. Every row (tr) of this table contains one entry
of our required data: the header (th) of the row has the name and the
first column (td) contains the value. The only exception is the energy
information, because two rows contain the values but only the first one
the header. As you will see, we will solve this problem too with some
specific code.

Table of Nutritional Information

(cooked as per Per % based on RI for Average
instructions) 100g Adult
Energy 876kJ -
210kcal 11%
Saturates 5.6g 28%
Mono unsaturates 5.8g0 -
Carbohydrate <0.5g -
Fibre <0.59 -
Protein 25.29 50%
salt 0.25g 4%

RI= Reference Intakes of an average adult (8400kJ / 2000kcal)

Figure 2-11. The nutrition table

The country of origin, as shown in Figure 2-12, is inside a paragraph of
a div of class productText. This field is not unique: every description is in
aproductText div.This will make the extraction a bit complicated, but
there is a solution for this too.

30

CHAPTER 2 ENTER THE REQUIREMENTS

“Countey of Ordginc/bd

Country of Origin [
Produced in Unied Kingdom, Backed i Usited Kngdom. Produced
using Enfish Beef

Produced da United Kingdon, Pocked in Unized Kingden. Prodaced
wairg British Beef”
Ip

<l

Figure 2-12. Selecting the “Country of Origin” in Chrome’s DevTools

Even though we must extract many fields, we identified them easily
in the website. Now it is time to extract the data and learn the tools of the
trade!

Outlining the Application

After the requirements are defined and we’ve found each entry to extract, it
is time to plan the applications structure and behavior.

If you think a bit about how to approach this project, you will start with
big-bang, “Let’s hammer the code” thinking. But you will realize later that
you can break down the whole script into smaller steps. One example can
be the following:

1. Download the starting page, in this case the
“Meat & fish” department, and extract the links to
the product pages.

2. Download the product pages and extract the links to
the detailed products.

3. Extract the information we are interested in from the

already downloaded product pages.
4. Export the extracted information.

And these steps could identify functions of the application we are
developing.

31

CHAPTER 2 ENTER THE REQUIREMENTS

Step 1 has a bit more to offer: if you remember the analysis with
DevTools you have seen, some links are just a grouping category and you
must extract the detail page links from this grouping category.

Navigating the Website

Before we jump into learning the first tools you will use to scrape website
data, I want to show you how to navigate websites—and this will be another
building block for scrapers.

Websites consist of pages and links between those pages. If you
remember your mathematic studies, you will realize a website can be
depicted as a graph, as shown in Figure 2-13.

< T e

AN e

TR santunssetam sch beet et stk xZew

Figure 2-13. The navigation path

Because a website is a graph, you can use graph algorithms to navigate
through the pages and links: Breadth First Search (BFS) and Depth First
Search (DFS).

32

CHAPTER 2 ENTER THE REQUIREMENTS

Using BFS, you go one level of the graph and gather all the URLs
you need for the next level. For example, you start at the “Meat & fish”
department page and extract all URLs to the next required level, like
“Top sellers” or “Roast dinner.” Then you have all these URLs and go to
the Top sellers and extract all URLs that lead to the detailed product pages.
After this is done, you go to the “Roast dinner” page and extract all product
details from there too, and so on. At the end you will have the URLSs to all
product pages, where you can go and extract the required information.

Using DFS, you go straight to the first product through “Meat & fish,”
“Top sellers,” and extract the information from its site. Then you go to the
next product on the “Top sellers” page and extract the information from
there. If you have all the products from “Top sellers” then you move to
“Roast dinner” and extract all products from there.

If you ask me, both algorithms are good, and they deliver the same
result. I could write two scripts and compare them to see which one is
faster, but this comparison would be biased and flawed.*

Therefore, you will implement a script that will navigate a website, and
you can change the algorithm behind it to use BFS or DFS.

If you are interested in the Why? for both algorithms, I suggest you
consider Magnus Hetland’s book: Python Algorithms.?

Creating the Navigation

Implementing the navigation is simple if you look at the algorithms,
because this is the only trick: implement the pseudo code.

OK, I'was a bit lazy, because you need to implement the link extraction
too, which can be a bit complex, but you already have a building block
from Chapter 1 and you are free to use it.

'Read more on this topic here: www.ibm.com/developerworks/library/
j-jtp02225/index.html

Zwww . apress.com/gp/book/9781484200568

33

https://www.ibm.com/developerworks/library/j-jtp02225/index.html
https://www.ibm.com/developerworks/library/j-jtp02225/index.html
https://www.apress.com/gp/book/9781484200568

CHAPTER 2 ENTER THE REQUIREMENTS

def extract links(page):
if not page:
return []
link regex = re.compile('<a[*>]+href=["\"](.*?)["\"']",
re.IGNORECASE)
return [urljoin(page, link) for link in link regex.
findall(page)]

def get links(page url):
host = urlparse(page url)[1]
page = download page(page url)
links = extract links(page)
return [link for link in links if urlparse(link)[1] == host]

The two functions shown extract the page, and the links still point to
the Sainsbury’s website.

Note If you don’t filter out external URLs, your script may never
end. This is only useful if you want to navigate the whole WWW to see
how far you can reach from one website.

The extract links function takes care of an empty or None page.
urljoin wouldn’t bleat about this but re.findall would throw an
exception and you don’t want that to happen.

The get_links function returns all the links of the web page that
point to the same host. To find out which host to use, you can utilize the
urlparse function,® which returns a tuple. The second parameter of this
tuple is the host extracted from the URL.

*https://docs.python.org/3/1library/urllib.parse.html

34

https://docs.python.org/3.libraty/urllib.parse.html

CHAPTER 2 ENTER THE REQUIREMENTS

Those were the basics; now come the two search algorithms:

def depth first search(start url):
from collections import deque
visited = set()
queue = deque()
queue.append(start url)
while queue:
url = queue.popleft()
if url in visited:
continue
visited.add(url)
for link in get_links(url):
queue.appendleft(link)
print(url)

def breadth first search(start url):
from collections import deque
visited = set()
queue = deque()
queue.append(start_url)
while queue:
url = queue.popleft()
if url in visited:
continue
visited.add(url)
queue.extend(get links(url))
print(url)

If you look at the two functions just shown, you will see only one
difference in their code (hint: it’s highlighted): how you put them into the
queue, which is a stack.

35

CHAPTER 2 ENTER THE REQUIREMENTS

The requests Library

To implement the script successfully, you must learn a bit about the
requests library.

I really like the extendedness of the Python core library, but sometimes
you need libraries developed by members of the community. And the
requests library is one of those.

With basic Python urlopen you can create simple requests and
corresponding data, but it is complex to use. The requests library adds
a friendly layer above this complexity and makes network programming
easy: it takes care of redirects, and can handle sessions and cookies for you.
The Python documentation recommends it as the tool to use.

Again, I'won’t give you a detailed introduction into this library, just the
necessary information to get you going. If you need more information, look
at the project’s website.*

Installation

You, as a “Pythonista,” already know how to install a library. But for the
sake of completeness I include it here.

pip install requests

Now you are set up to continue this book.

Getting Pages

Requesting pages is easy with the requests library: requests.get(url).
This returns a response object that contains basic information, like
status code and content. The content is most often the body of the website

you requested, but if you requested some binary data (like images or
sound files) or JSON, then you get that back. For this book, we will focus on
HTML content.

‘Requests: HTTP for Humans: http://docs.python-requests.org/en/master/

36

http://docs.python-requests.org/en/master/

CHAPTER 2 ENTER THE REQUIREMENTS

You can get the HTML content from the response by calling its text
parameter:

import requests
r = requests.get("http://www.hajba.hu")
if r.status _code == 200:
print(r.text[:250])
else:
print(r.status_code)

The preceding code block requests my website’s front page, and if the
server returns the status code 200, which means OK, it prints the first 250
characters of the content. If the server returns a different status, that code
is printed.

You can see an example of a successful result as follows:

<!DOCTYPE html>
<html lang="en-US">
<head>

<meta property="og:type" content="website" />

<meta property="og:url" content="http://hajba.hu/2017/10/26/
red-hat-forum-osterreich-2017/" />

<meta name="twitter:card" content="summary large image" />

With this we are through the basics of the requests library. As I
introduce more concepts of the library later in this book, I will tell you
more about it.

Now it is time to skip the default url1lib calls of Python 3 and change
to requests.

Switching to requests

Now it is time to finish the script and use the requests library for
downloading the pages.

37

CHAPTER 2 ENTER THE REQUIREMENTS

By now you know already how to accomplish this, but here is the code
anyway.

def download page(url):
try:
return requests.get(url).text
except:
print('error in the url', url)

I surrounded the requesting method call with a try-except block
because it can happen that the content has some encoding issues and we
get an exception back that kills the whole application; and we don’t want
this because the website is big and starting over would require too much
resources.’

Putting the Code Together

Now if you put everything together and run both functions with 'https://
www. sainsburys.co.uk/shop/gb/groceries/meat-fish/" as starting url,
then you should get a similar result to this one.

starting navigation with BFS
https://www.sainsburys.co.uk/shop/gb/groceries/meat-ftish/
http://www.sainsburys.co.uk
https://www.sainsburys.co.uk/shop/gb/groceries
https://www.sainsburys.co.uk/shop/gb/groceries/favourites
https://www.sainsburys.co.uk/shop/gb/groceries/great-offers

starting navigation with DFS
https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/

°I'll share a writing secret with you: I encountered six exceptions caused by
encoding problems when I created the code for this chapter, and one was in the
“Meat & fish” department.

38

https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/
https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/

CHAPTER 2 ENTER THE REQUIREMENTS

http://www.sainsburys.co.uk/accessibility
http://www.sainsburys.co.uk/shop/gb/groceries
http://www.sainsburys.co.uk/terms
http://www.sainsburys.co.uk/cookies

If your result is slightly different, then the website’s structure changed
in the meantime.

As you can see from the printed URLs, the current solution is
rudimentary: the code navigates the whole website instead of focusing
only on the “Meat & fish” department and nutrition details.

One option would be to extend the filter to return only relevant links,
but I don'’t like regular expressions because they are hard to read. Instead
let’s go ahead to the next chapter.

Summary

This chapter prepared you for the remaining parts of the book: you’ve met
the requirements, analyzed the website to scrape, and identified where in
the HTML code the fields of interest lay. And you implemented a simple
scraper, mostly with basic Python tools, which navigates through the
website.

In the next chapter you will learn Beautiful Soup, a simple extractor
library that helps you to forget regular expressions, and adds more features
to traverse and extract HTML-trees like a boss.

39

CHAPTER 3

Using Beautiful Soup

In this chapter, you will learn how to use Beautiful Soup, a lightweight
Python library, to extract and navigate HTML content easily and forget
overly complex regular expressions and text parsing.

Before I let you jump right into coding, I will tell you some things about
this tool to familiarize yourself with it.

Feel free to jump to the next section if you are not in the mood
for reading dry introductory text or basic tutorials; and if you don’t
understand something in my later approach or the code, come back here.

Ifind Beautiful Soup easy to use, and it is a perfect tool for handling
HTML DOM elements: you can navigate, search, and even modify a
document with this tool. It has a superb user experience, as you will see in
the first section of this chapter.

Installing Beautiful Soup

Even though we both know you can install modules into your Python
environment, for the sake of completeness let me (as always in this book)
add a subsection for this trivial but mandatory task.

pip install beautifulsoup4

The number 4 is crucial because I developed and tested the examples
in this book with version 4.6.0.

© Gabor Lészl6 Hajba 2018 41
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_3

CHAPTER 3 USING BEAUTIFUL SOUP

Simple Examples

After a lengthy introduction, it is time to start coding now, with simple
examples to familiarize yourself with Beautiful Soup and try out some
basic features without creating a complex scraper.

These examples will show the building blocks of Beautiful Soup and
how to use them if needed.

You won’t scrape an existing site, but instead will use HTML text
prepared for each use case.

For these examples, I assume you've already entered from bs4 import
BeautifulSoup into your Python script or interactive command line, so
you have Beautiful Soup ready to use.

Parsing HTML Text

The very basic usage of Beautiful Soup, which you will see in every
tutorial, is parsing and extracting information from an HTML string.

This is the basic step, because when you download a website, you send
its content to Beautiful Soup to parse, but there is nothing to see if you
pass a variable to the parser.

You will work most of the time with the following multiline string:

example html =
<html>

<head>
<title>Your Title Here</title>

</head>

<body bgcolor="#ffffff">

<center>

</center>

<hr/>

42

CHAPTER 3 USING BEAUTIFUL SOUP

Link Name is a link to
another nifty site

<h1>This is a Header</h1>

<h2>This is a Medium Header</h2>

Send me mail at <a href="mailto:support@yourcompany.
com">support@yourcompany.com.

<p>This is a paragraph!</p>

<p>

This is a new paragraph!

<i>This is a new sentence without a paragraph break, in bold
italics.</i>

<a>This is an empty anchor

</p>

<hr/>

</body>

</html>

To create a parse tree with Beautiful Soup, just write the
following code:

soup = BeautifulSoup(example html, "html.parser"')

The second argument to the function call defines which parser to use.
If you don’t provide any parser, you will get an error message like this:

UserWarning: No parser was explicitly specified, so I'm
using the best available HTML parser for this system
("html.parser"). This usually isn't a problem, but if you
run this code on another system, or in a different virtual
environment, it may use a different parser and behave
differently.

43

CHAPTER 3 USING BEAUTIFUL SOUP

The code that caused this warning is on line 1 of the file
<stdin>. To get rid of this warning, change code that looks
like this:

BeautifulSoup(YOUR_MARKUP)
to this:
BeautifulSoup(YOUR_MARKUP, "html.parser")

This warning is well defined and tells you everything you need
to know. Because you can use different parsers with Beautiful Soup
(see later in this chapter), you cannot assume it will always use the same
parser; if a better one is installed, it will use that. Moreover, this can lead to
unexpected behavior, for example, your script slows down.

Now you can use the soup variable to navigate through the HTML.

Parsing Remote HTML

Beautiful Soup is notan HTTP client, so you cannot send URLs to it to do
extraction. You can try it out.

soup = BeautifulSoup('http://hajba.hu’, 'html.parser')
The preceding code results in a warning message like this one:

UserWarning: "http://hajba.hu" looks like a URL. Beautiful Soup
is not an HTTP client. You should probably use an HTTP client
like requests to get the document behind the URL, and feed that
document to Beautiful Soup.

To convert remote HTML pages into a soup, you should use the
requests library.

soup = BeautifulSoup(requests.get('http://hajba.hu’).text,
"html.parser"')

44

CHAPTER 3 USING BEAUTIFUL SOUP

Parsing a File

The third option to parse content is to read a file. You don’t have to read
the whole file; it is enough for Beautiful Soup if you provide an open file
handle to its constructor and it does the rest.

with open('example.html') as infile:
soup = BeautifulSoup(infile , "html.parser"')

Difference Between find and find_all

You will use two methods excessively with Beautiful Soup: find and
find all.

The difference between these two lies in their function and return
type: find returns only one—if multiple nodes match the criteria, the first is
returned; None, if nothing is found. find_all returns all results matching
the provided arguments as a list; this list can be empty.

This means, every time you search for a tag with a certain id, you can
use Tind because you can assume that an id is used only once in a page.
Alternatively, if you are looking for the first occurrence of a tag, then you can
use find too. If you are unsure, use find_all and iterate through the results.

Extracting All Links

The core function of a scraper is to extract links from the website that lead
to other pages or other websites.

Links are in anchor tags (<a>), and where they point to is in the href
attribute of these anchors. To find all anchor tags that have an href
attribute, you can use following code:

links = soup.find all('a', href=True)
for link in links:
print(1link["href'])

45

CHAPTER 3 USING BEAUTIFUL SOUP

Running this code against the previously introduced HTML, you get
the following result:

http://somegreatsite.com
mailto:support@yourcompany.com

The find_all method call includes the href=True argument. This
tells Beautiful Soup to return only those anchor tags thaat have an href
attribute. This gives you the freedom to access this attribute on resulting
links without checking their existence.

To verify this, try running the preceding code, but remove the
href=True argument from the function call. It results in an exception
because the empty anchor doesn’t have an href attribute.

You can add any attribute to the find_all method, and you can search
for tags where the attribute is not present too.

Extracting All Images

The second biggest use case for scrapers is to extract images from websites
and download them or just store their information, like where they are
located, their display size, alternative text, and much more.

Like the link extractor, here you can use the find_all method of the
soup, and specify filter tags.

images = soup.find all('img', src=True)

Looking for a present src attribute helps to find images that have
something to display. Naturally, sometimes the source attribute is added
through JavaScript, and you must do some reverse engineering—but this is
not the subject of this chapter.

Finding Tags Through Their Attributes

Sometimes you must find tags based on their attributes. For example,
we identified HTML blocks for the requirements in the previous chapter
through their class attribute.

46

CHAPTER 3 USING BEAUTIFUL SOUP

The previous sections have shown you how to find tags where an
attribute is present. Now it’s time to find tags whose attributes have certain
values.

Two use cases dominate this topic: searching by id or class attributes.
soup.find('p', id="first")
soup.find all('p', class ='paragraph')

You can use any attribute in the find and find_all methods. The only
exception is class because it is a keyword in Python. However, as you can

see, you can use class_ instead.
This means you can search for images, where the source is clouds. jpg.

soup.find('img', src="clouds.jpg")

You can use regular expressions too to find tags that are of a specific
type, and their attributes qualify them through some condition. For
example, all image tags that display GIF files.

soup.find('img', src=re.compile('\.gif$"))

Moreover, the text of a tag is one of its attributes too. This means you
can search for tags that contain a specific text (or just a fragment of a text).

soup.find_all('p', text='paragraph')
soup.find all('p', text=re.compile('paragraph'))

The difference between the two preceding examples is their result.
Because in the example HTML there is no paragraph that contains only the
text “paragraph’, an empty list is returned. The second method call returns
a list of paragraph tags that contain the word “paragraph.”

Finding Multiple Tags Based on Property

Previously, you have seen how to find one kind of tag (<p>,) based
on its properties.

47

CHAPTER 3 USING BEAUTIFUL SOUP

However, Beautiful Soup offers you other options too: for example,
you can find multiple tags that share the same criteria. Look at the next
example:

for tag in soup.find all(re.compile('h')):
print(tag.name)

Here, you search for all tags that start with an h. The result would be
something like this.

html
head
hr
h1
h2
hr

Another example would be to find all tags that contain the text
“paragraph.”

soup.find all(True, text=re.compile('paragraph'))

Here you use the True keyword to match all tags. If you don’t provide
an attribute to narrow the search, you will get back a list of all tags in the
HTML document.

Changing Content

I rarely use this function of Beautiful Soup, but valid use cases exist.
Therefore I think you should learn about how to change the contents of
a soup. Moreover, because I don’t use this function a lot, this section is
skinny and won't go into deep details.

48

CHAPTER 3 USING BEAUTIFUL SOUP

Adding Tags and Attributes

Adding tags to the HTML is easy, though it is seldom used. If you add a tag,
you must take care where and how you do it. You can use two methods:
insert and append. Both work on a tag of the soup.

insert requires a position where to insert the new tag, and the new tag
itself.

append requires only the new tag to append the new tag to the parent
tag’s end on which the method is called.

Because the soup itself is a tag, you can use these methods on it too,
but you must take care. For example, try out the following code:

h2 = soup.new_tag('h2")
h2.string = 'This is a second-level header’
soup.insert(o, h2)

Here you want to insert the new tag, h2, into the soup at first place. This
results in the following code (I omitted most of the HTML):

<h2>This is a second-level header</h2><html>

Alternatively, you can change the 0 to a 1, to insert the new tag at the
second position. In this case, your tag is inserted at the end of the HTML,
after the </html> tag.

soup.insert(1, h2)
This results in
</html><h2>This is a second-level header</h2>

For the two methods just shown, there are convenience methods too:
insert before, insert after.

The append method appends the new tag at the end of the tag. This
means it behaves like the insert_after method.

soup.append(soup.new_tag('p'))

49

CHAPTER 3 USING BEAUTIFUL SOUP
The preceding code results in the following:
</html><p></p>

The only difference is that the insert_after method is not
implemented on soup objects, just on tags.

Anyway, with these methods you must pay attention where you insert
or append new tags into the document.

Adding attributes to the tags is easy. Because tags behave like
dictionaries, you can add new attributes the way you add keys and values
to dictionaries.

soup.head['style'] = 'bold’

Even though the preceding code doesn’t affect the rendered output, it
added the new attribute to the head tag.

<head style="bold">

Changing Tags and Attributes

Sometimes you don’t want to add new tags but want to change existing
content. For example, you want to change the contents of paragraphs to
be bold.

for p in soup.find all('p', text=True):
p.string.wrap(soup.new tag('b"))

If you would like to change the contents of a tag that contains some
formatting (like bold or italic tags), but you want to retain the contents, you
can use the unwrap function.

soup = BeautifulSoup('<p> This is a new paragraph!</p>")
p = soup.p.b.unwrap()
print(soup.p)

50

CHAPTER 3 USING BEAUTIFUL SOUP

Another example would be to change the id or the class of a tag. This
works the same way as with adding new attributes: you can get the tag
from the soup, and change the dictionary values.

for t in soup.findAll(True, id=True):
t['class'] = "withid'
print(t)

The preceding example changes (or adds) the class withid to all tags
that have an id attribute.

Deleting Tags and Attributes

If you want to delete a tag, you can use either extract() or decompose()
on the tag.
extract() removes the tag from the tree and returns it, so you can use
it in the future or add it to the HTML content at a different position.
decompose() deletes the selected tag permanently. No return values,
no later usage; it is gone forever.

print(soup.title.extract())
print(soup.head)

Running the preceding code example with the example HTML of this
section results in the following lines:

<title>Your Title Here</title>
<head>

</head>
Alternatively, you can change extract() to decompose().

print(soup.title.decompose())
print(soup.head)

51

CHAPTER 3 USING BEAUTIFUL SOUP

Here, the result changes only in the first line where you don’t get back
anything.

None
<head>

</head>

Deletion doesn’t only work for tags; you can remove attributes of
tags too.

Imagine, you have tags that have an attribute called display, and you
want to remove this display attribute from each tag. You can do it the
following way:

for tag in soup.find all(True, display=True):
del tag['display']

If you now count the occurrences of tags having a display attribute,
you will get 0.

print(len(soup.find all(True, display=True)))

Finding Comments

Sometimes you need to find comments in HTML code to reverse-engineer
JavaScript calls, because sometimes the content of a website is delivered in
a comment and JavaScript renders it properly.

for comment in soup.find all(text=lambda text:isinstance
(text, Comment)):
print(comment)

The preceding code finds and prints contents of all comments. To
make it work, you need to import Comments from the bs4 package too.

52

CHAPTER 3 USING BEAUTIFUL SOUP

Converting a Soup to HTML Text

This is one of the easiest parts for Beautiful Soup because as you may
know from your Python studies, everything is an object in Python, and
objects have a method __str__ that returns the string representation of
this object.

Instead of writing something like soup. _str () every time, this
method is called every time you convert the object to a string—for example
when you print it to the console: print(soup).

However, this results in the same string representation as you provided
in the HTML content. Moreover, you know, you can do better and provide
a formatted string.

That's why Beautiful Soup has the prettify method. Per default, this
method prints the pretty formatted version of the selected tag-tree. Yes,
this means you can prettify your whole soup or just a selected subset of the
HTML content.

print(soup.find('p").prettify())

This call results in (soup was created using the HTML from the
beginning of this section)

<p>
This is a new paragraph!
</p>

Extracting the Required Information

Now it is time to prepare your fingers and keyboard because you are about
to create your first dedicated scraper, which will extract the required
information, introduced in Chapter 2, from the Sainsbury’s website.

All the source code shown in this chapter can be found in the file called
bs_scraper.py in the source codes of this book.

53

CHAPTER 3 USING BEAUTIFUL SOUP

However, I suggest, you start by trying to implement each functionality
yourself with the tools and knowledge learned from this book already.
I promise, it is not hard—and if your solution differs a bit from mine, don’t
worry. This is coding; every one of us has his/her style and approach. What
matters is the result in the end.

Identifying, Extracting, and Calling the Target
URLs

The first step in creating the scraper is to identify the links that lead us
to product pages. In Chapter 2 we used Chrome’s DevTools to find the
corresponding links and their locations.

Those links are in an unordered list (), which has the class
categories departments. You can extract them from the page with
following code:

links = []
ul = soup.find('ul', class_='categories departments')
if ul:
for 1i in ul.find all('1li'):
a = li.find('a', href=True)
if a:
links.append(a["href'])

You now have the links that lead to pages listing products, each
showing 36 at most.

However, some of these links lead to other groupings, which can lead
to a third layer of grouping before you reach the product pages, just as you
can see in Figure 3-1.

54

Top sellers

Roast dinner

Chicken & turkey
Beef

Fish & seafood

Bacon & sausages
Ham, deli meats & dips
Pork & gammon
Mince

Lamb

Duck, game & venison

Ready to cook

CHAPTER 3 USING BEAUTIFUL SOUP

All chicken Gravy, stock & sauces

All turkey Yorkshire puddings, stuffing &
sides

Chicken essentials

Stir fry sauces
Organic, free range & comn fed

BBQ sauce & marinades
Breast & fillet
Whole birds
Thighs
Drumsticks & wings
Breaded & Kiev
Ready to cook

Cooked chicken & turkey

Sauces, marinades & >

Yorkshire puddings
Taste the Difference & organic

Figure 3-1. Three layers of navigation

The navigation goes from “Chicken & turkey” to “Sauces, marinades &

Yorkshire puddings,” which leads to the third layer of links.

Therefore, your script should be able to navigate such chains too and

get to the product listings.

product pages = []
visited = set()
queue = deque()
queue.extend(department links)
while queue:
link = queue.popleft()
if link in visited:
continue
visited.add(1link)
soup = get page(link)

ul = soup.find('ul', class ='productLister gridView')

55

CHAPTER 3 USING BEAUTIFUL SOUP

if ul:
product pages.append(link)
else:
ul = soup.find('ul', class ='categories shelf")
if not ul:
ul = soup.find('ul', class ='categories aisles')
if not ul:
continue

for 1i in ul.find all('1i'):
a = li.find('a', href=True)
if a:
queue.append(a["href'])

The preceding code uses the simple Breadth First Search (BFS) from
the previous chapter to navigate through all the URLs until it finds the
product lists. You can change the algorithm to Depth First Search(DFS);
this results in a logically cleaner solution because if your code finds a URL
that points to a navigation layer, it digs deeper until it finds all the pages.

The code looks first for shelves (categories shelf), which are the last
layer of navigation prior to extracting categories aisles. This is because
if it would extract aisles first and because all those URLSs are already visited,
the shelves and their content will be missing.

Navigating the Product Pages

In Chapter 2 you have seen that products can be listed on multiple pages.
To gather information about every product, you need to navigate between
these pages.

If you are lazy like me, you might come up with the idea to use the filter
and set the product count to 108 per page, just like in Figure 3-2.

56

CHAPTER 3 USING BEAUTIFUL SOUP

« Filter your list Clear fillers

ﬂ =) Sort by: (Favourites First v Per page| 108 1
Figure 3-2. Filter set to show 108 results

Even though this is a good idea, it can happen that a category holds at
least 109 products—and in this case, you need to navigate your script.

products = []
visited = set()
queue = deque()
queue.extend(product pages)
while queue:
product page = queue.popleft()
if product_page in visited:
continue
visited.add(product page)
soup = get page(product page)
if soup:
ul = soup.find('ul', class ='productlLister gridView')
if ul:
for 1i in ul.find all('li', class ='gridItem'):
a = li.find('a", href=True)
if a:
products.append(a["href'])
next_page = soup.find('li’, class _="next")
if next_page:
a = next_page.find('a', href=True)
if a:
queue.append(a["href'])

The preceding code block navigates through all the product lists and
adds the URLs of the product sites to the list of products.

57

CHAPTER 3 USING BEAUTIFUL SOUP

I used a BFS again, and a DFS would be OK too. The interesting thing is
the handling of the next pages: you don’t search for the numbering of the
navigation but consecutively for the link pointing to the next page. This
is useful for bigger sites, where you have umpteen-thousand pages. They
won't be listed on the first site.

Extracting the Information

You arrived at the product page. Now it is time to extract all the
information required.

Because you already identified and noted the locations in Chapter 2,
it will be a simple task to wire everything together.

Depending on your preferences, you can use dictionaries, named
tuples, or classes to store information on a product. Here, you will create
code using dictionaries and classes.

Using Dictionaries

The first solution you create will store the extracted information of
products in dictionaries.

The keys in the dictionary will be the fields’ names (which will be later
used as a header in a CSV [Comma Separated Value], for example), the
value the extracted information.

Because each product you extract has a URL, you can initialize the
dictionary for a product as follows:

product = {'url': url}

I could list here how to extract all the information required, but I will
only list the tricky parts. The other building blocks you should figure out
yourself, as an exercise.

"Unless you are lucky. Once I encountered a site where all the links to the remaining
pages were there in the HTML code but had been hidden with some JS-magic.

58

CHAPTER 3 USING BEAUTIFUL SOUP

You can take a break, put down the book and try to implement the
extractor. If you struggle with nutrition information or product origin,
you will find help below.

If you are lazy, you can go ahead and find my whole solution later in
this section or look at the source code provided for this book.

For me, the most interesting and lazy part is the extraction of the
nutrition information table. It is a lazy solution because I used the table
row headings as keys in the dictionary to store the values. They match
the requirements, and therefore there is no need to add custom code that
reads the table headers and decides which value to use.

table = soup.find('table', class ='nutritionTable")
if table:
rows = table.findA11l('tr")
for tr in rows[1:]:
th = tr.find('th', class ='rowHeader")
td = tr.find('td")
if not th:
product['Energy kcal'] = td.text
else:
product[th.text] = td.text

Extracting the product’s origin was the most complicated part, at
least in my eyes. Here you needed to find a header (<h3>) that contains
a specific text and then its sibling. This sibling holds all the text but in a
sheer format, which you need to make readable.

product origin header = soup.find('h3’,
class_='productDataltemHeader', text='Country of Origin')

59

CHAPTER 3 USING BEAUTIFUL SOUP

if product_origin_header:
product_text = product origin_header.find next sibling
('div', class_='productText")
if product_text:
origin info = []
for p in product text.find all('p'):
origin_info.append(p.text.strip())
product['Country of Origin'] = '; '.join
(origin_info)

After implementing a solution, I hope you’ve got something similar to
the following code:

Extracting product information into dictionaries
product_information = []
visited = set()
for url in product_urls:
if url in visited:
continue
visited.add(url)
product = {'url': url}
soup = get page(url)
if not soup:
continue # something went wrong with the download
hi = soup.find('h1")
if hi1:
product['name'] = hi.text.strip()

pricing = soup.find('div', class ='pricing")
if pricing:
p = pricing.find('p', class_='pricePerUnit")
unit = pricing.find('span', class ='pricePerUnitUnit')
if p:
product['price'] = p.text.strip()

60

CHAPTER 3 USING BEAUTIFUL SOUP

if unit:
product['unit'] = unit.text.strip()

label = soup.find('label', class ='numberOfReviews")
if label:
img = label.find('img', alt=True)
if img:
product['rating'] = img['alt'].strip()
reviews = reviews_pattern.findall(label.text.strip())
if reviews:
product['reviews'] = reviews[0]

item code = soup.find('p', class ="'itemCode")
if item code:
item codes = item_code_pattern.findall(item code.text.
strip())
if item codes:
product['itemCode'] = item codes[0]

table = soup.find('table', class ='nutritionTable'")
if table:

rows = table.findAl1l('tr")

for tr in rows[1:]:

th = tr.find('th', class ='rowHeader")
td = tr.find('td")
if not th:

product['Energy kcal'] = td.text
else:

product[th.text] = td.text

product origin header = soup.find('h3",
class_='productDataltemHeader', text='Country of Origin')
if product origin header:
product_text = product origin header.find next_
sibling('div', class_='productText")

61

CHAPTER 3 USING BEAUTIFUL SOUP

if product_text:
origin info = []
for p in product text.find all('p'):
origin info.append(p.text.strip())
product['Country of Origin'] = '; '.join(origin_ info)

product_information.append(product)

As you can see in the preceding code, this is the biggest part of the
scraper. But hey! You finished your very first scraper, which extracts
meaningful information from a real website.

What you have probably noticed is the caution implemented in
the code: every HTML tag is verified. If it does not exist, no processing
happens; it would be a disaster and the application would crash.

The regular expressions to extract item codes and review counts is
again a lazy way. Even though I am not a regex guru, I can create some
simple patterns and use them for my purposes.

reviews pattern = re.compile("Reviews \((\d+)\)")
item code pattern = re.compile("Item code: (\d+)")

Using Classes

You can implement the class-based solution similarly to the dictionary-
based one. The only difference is in the planning phase: while using a
dictionary you don’t have to plan much ahead, but with classes, you need
to define the class model.

For my solution, [used a simple, pragmatic approach and created two
classes: one holds the basic information; the second is a key-value pair for
nutrition details.

I don’t plan to go deep into OOP? concepts. If you want to learn more,
you can refer to different Python books.

200P: object-oriented programming

62

CHAPTER 3 USING BEAUTIFUL SOUP

As you already know, filling these objects is different too. There are
different options for how to solve such a problem,® but I used a lazy version
where I access and set every field directly.

Unforeseen Changes

While implementing the source code yourself, you may have found some
problems and needed to react.

One of such changes could be the nutrition table. Even though we
scrape one website, the rendering is not the same for all pages. Sometimes
they display different elements or different styles. Moreover, sometimes
the nutrition table contains different values than in the requirements, just
like in Figures 3-3 and 3-4.

Table of Nutritional Information

(cooked on the hob) per 100g % adult RI per 100g adult RI
Energy kJ 865 - 8400
Energy keal 206 10% 2000
Fat 71g 10% 709
of which
- saturatesl"\’ 2.9g 15% 20g
- mono-unsaturates 39g - -
- polyunsaturates 0.3g - =
Carbohydrate <0.5g <1% 260g
of which sugars <0.5g <1% 90g
Fibre <0.5g -
Protein 3559 71% 509
salt 1.359 23% 6g

RI = Reference Intakes of an average adult (8400k1/2000kcal)

Figure 3-3. A different kind of nutrition table

3For example, the Builder or Factory patterns, a constructor with all arguments.

63

CHAPTER 3 USING BEAUTIFUL SOUP

Table of Nutritional Information

per 100g per slice % adult RI per slice adult RI
Energ¥ kJ 505 141 - 8400
Energy kcal 120 33 2% 2000
Fat 2.4g 0.7g 1% 709
of which
- saturates 1.1g 0.3g 2% 20g
- mono-unsaturates 11g 0.3g - -
- polyunsaturates <0.1g <0.1g - -
Carbohydrate =0.5g <0.5g <1% 2609
of which
- sugars =0.5g <0.5g <1% 90g
- starch <0.5g <0.5g - -
Fibre <0.5¢g <0.5¢g . -
Protein 24 4qg 6.8g 14% 509
Salt 1.00g 0.28g 5% 6g

RI = Reference Intakes of an average adult (84001/2000kcal)

Figure 3-4. A third type of nutrition table

What to do in such cases? Well, first, mention to your customer (if you
have any) that you've found tables that contain nutrition information but
in different details and format. Then think out a solution that is good for
the outcome, and you don'’t have to create extra errands in your code to let
it happen.

In my case, I went with the easiest solution and exported all I could
from those tables. This means my results have fields that are not in the
requirements and some can be missing, like Total sugars. Moreover,
because the sublist of fats and carbohydrates has awkward dashes before
each entry, or there are rows that contain only the text “of which,”

I adjusted the preceding code a bit to handle these cases.

64

CHAPTER 3 USING BEAUTIFUL SOUP

table = soup.find('table', class ='nutritionTable")
if table:
rows = table.findAll('tr")
for tr in rows[1:]:
th = tr.find('th', class_='rowHeader')
td = tr.find('td")
if not td:
continue
if not th:
product['Energy kcal'] = td.text
else:
product[th.text.replace('-', ").strip()] = td.text

The exceptional case of Energy and Energy kcal (if not th)in the
preceding code is fixed automatically in tables, which provide labels for
every row.

Such changes are inevitable. Even though you get requirements and
prepare your scraping process, exceptions in the pages can occur.
Therefore, always be prepared and write code that can handle the
unexpected, and you don’t have to redo all the work. You can read
more about how | deal with such thing later in this chapter.

Exporting the Data

Now that all information is gathered, we want to store it somewhere
because keeping it in memory does not have much use for our customer.
In this section, you will see basic approaches to how you can save your
information into a CSV or JSON file, or into a relational database, which
will be SQLite.
Each subsection will create code for the following export objects:
classes and dictionaries.

65

CHAPTER 3 USING BEAUTIFUL SOUP

To CSV

A good old friend to store data is CSV. Python provides built-in
functionality to export your information into this file type.

Because you implemented two solutions in the previous section,
you will now create exports for both. But don’t worry; you will keep both
solutions simple.

The common part is the csv module of Python. It is integrated and has
everything you need.

Quick Glance at the csv Module

Here you get a quick introduction into the csv module of the Python standard
library. If you need more information or reference, you can read it online.*

I will focus on writing CSV files in this section; here I present the
basics to give you a smooth landing on the examples where you write the
exported information into CSV files.

For the code examples, | assume you did import csv.

Writing CSV files is easy: if you know how to write files, you are almost
done. You must open a file-handle and create a CSV writer.

with open('result.csv', 'w') as outfile:
spamwriter = csv.writer(outfile)s

The preceding code example is the simplest example I can come up
with. However, there are a lot more options to configure, which sometimes
will be important for you.

*https://docs.python.org/3/library/csv.html

°I have to admit, every time I write CSV files I use spamwriter as my variable’s
name. I guess this gives me a global understanding on what’s happening.

66

https://docs.python.org/3/library/csv.html

CHAPTER 3 USING BEAUTIFUL SOUP

o dialect: With the dialect parameter, you can specify
formatting attributes grouped together to represent
a common formatting. Such dialects are excel (the
default dialect), excel tab, or unix_dialect. You can
define your own dialects too.

e delimiter: If you do/don’t specify a dialect, you can
customize the delimiter through this argument. This
can be needed if you must use some special character
for delimiting purposes because comma and escaping
don’t do the trick, or your specifications are restrictive.

o quotechar: As its name already mentions, you can
override the default quoting. Sometimes your texts
contain quote characters and escaping results in
unwanted representations in MS Excel.

e quoting: Quoting occurs automatically if the writer
encounters the delimiter inside a field’s value. You can
override the default behavior, and you can completely
disable quoting (although I don’t encourage you to do
this).

e lineterminator: This setting enables you to change the
character at the line’s ending. It defaults to '\r\n' but
in Windows you don’t want this, just '\n".

Most of the time, you are good to go without changing any of these
settings (and relying on the Excel configuration). However, I encourage
you to take some time and try out different settings. If something is wrong
with your dataset and the export configuration, you'll get an exception
from the csv module—and this is bad if your script already scraped all the
information and dies at the export.

67

CHAPTER 3 USING BEAUTIFUL SOUP

Line Endings

If you're working in a Windows environment like T do most of the time, it is
arecommended practice to set the line ending for your writer. If not, you
will get unwanted results.

with open('result.csv', 'w') as outfile:
spamwriter = csv.writer(outfile)
spamwriter.writerow([1,2,3,4,5])
spamwriter.writerow([6,7,8,9,10])

The preceding code results in the CSV file in Figure 3-5.

Eresultcsvﬂ]l
i, 2,3,4,5
3 6,7,8,9,10
4
5

Figure 3-5. The CSV file with too many empty lines

To fix this, set the lineterminator argument to the writer’s creation.

with open('result.csv', 'w') as outfile:
spamwriter = csv.writer(outfile, lineterminator='\n'")
spamwriter.writerow([1,2,3,4,5])
spamwriter.writerow([6,7,8,9,10])

Headers

What are CSV files without a header? Useful for those who know what to
expect in which order, but if the order or number of columns changes, you
can expect nothing good.

68

CHAPTER 3 USING BEAUTIFUL SOUP

Writing the header works the same as writing a row: you must do it
manually.

with open('result.csv', 'w') as outfile:
spamwriter = csv.writer(outfile, lineterminator='\n")
spamwriter.writerow(['average', 'mean’', 'median’', 'max’,
"sum'])
spamwriter.writerow([1,2,3,4,5])
spamwriter.writerow([6,7,8,9,10])

This results in the CSV file of Figure 3-6.

= resultcsv E3 |
1 average,mean,median,max, sum
2 1,2,3,4,5
2 6,7,8,9,10
-

Figure 3-6. CSV file with header

Saving a Dictionary

To save a dictionary, Python has a custom writer object that handles this
key-value pair object: the DictWriter.

This writer object handles mapping of dictionary elements to lines
properly, using the keys to write the values into the right columns.
Because of this, you must provide an extra element to the constructor of
DictWriter: the list of field names. This list determines the order of the
columns; and Python raises an error if a key is missing from the dictionary
you want to write.

If the order of the result doesn’t matter, you can easily set the field
names when writing the results to the keys of the dictionary you want to
write. However, this can lead to various problems: the order is not defined;
itis mostly random on every machine you run it on (sometimes on the
same machine too); and if the dictionary you choose is missing some keys,
then your whole export is missing those values.

69

CHAPTER 3 USING BEAUTIFUL SOUP

How to overcome this obstacle? For a dynamic solution, you can
calculate the union® of all keys over all the resulted dictionaries. This
ensures you won't encounter errors like the following:

ValueError: dict contains fields not in fieldnames:
'Monounsaturates', 'Sugars’

Alternatively, you can define the set of headers to use beforehand. In
this case, you have power over the order of the fields, but you must know
all the fields possible. This is not easy if you deal with dynamic key-value
pairs just like the nutrition tables.

Asyou see, for both options you must create the list (set) of possible
headers before you write your CSV file. You can do this by iterating through
all product information and put the keys of each into a set, or you can add
the keys in the extraction method to a global set.

Exporting to a CSV file looks like this.

with open('sainsbury.csv', 'w') as outfile:
spamwriter = csv.DictWriter(outfile, fieldnames=get field
names (product_information), lineterminator="\n")
spamwriter.writeheader()
spamwriter.writerows(product information)

I hope your code is like this one. As you can see, I used an extra
method to gather all the header-fields. However, as mentioned earlier,
use the version that fits you better. My solution is slower because I iterate
multiple times over the rows.

Saving a Class

The problem with using a class when working with a data-set like we get as
we scrape Sainsbury’s products is that we have no idea how the item will
look in the end. That’s because the nutrition tables can vary between two

SSet theory: https://en.wikipedia.org/wiki/Union_(set_theory)
70

https://en.wikipedia.org/wiki/Union_(set_theory)

CHAPTER 3 USING BEAUTIFUL SOUP

products. To overcome this obstacle, you could write a key-normalization
function that tries to map different keys of the product to one, and you can
use this to map to the right property of your class. But this is a hard task
and it won't fit into the scope of this book. Therefore, we will stick with the
basic information we defined in the previous chapter and create a class
based on that information.

class Product:
def init (self, url):

self.url = url
self.name = None
self.item code = None
self.product_origin = None
self.price per unit = None
self.unit = None
self.reviews = None
self.rating = None
self.energy kcal = None
self.energy kj = None
self.fat = None
self.saturates = None
self.carbohydrates = None
self.total sugars = None
self.starc = None
self.fibre
self.protein = None
self.salt = None

None

Even with this structure, you will need a minimal key-mapping from
the table to the properties of the Product class. This is because there are
some properties that need to be filled with values from the table that have
a different name, for example total sugars will get the value from the
field Total Sugars.

71

CHAPTER 3 USING BEAUTIFUL SOUP

Now with the class ready, let’s modify the scraper to use Products
instead of a dictionary. To save some space, I will only include the first few
lines of the changed function.

def extract product information(product urls):
product_information = []
visited = set()
for url in product urls:
if url in visited:
continue
visited.add(url)
product = Product(url)
soup = get page(url)
if not soup:
continue
h1 = soup.find('h1")
if h1:
product.name = hi.text.strip()

As you can see, the code didn’t change much; I highlighted the parts
that are different. And you must modify your code in a similar fashion to
fill the class’ fields.

Now it is time to save the class to CSV. Without much fuss, here is my
solution.

def write results to csv(filename, rows):
with open(filename, 'w') as outfile:
spamwriter = csv.DictWriter(outfile, fieldnames=get
field names(rows), lineterminator="\n")
spamwriter.writeheader()
spamwriter.writerows(map(lambda p: p.__dict__, rows))

72

CHAPTER 3 USING BEAUTIFUL SOUP
And here is the get_field names function.

def get field names(product information):
return set(vars(product information[0]).keys()))

Using the get_field names method seems like a bit of overwork. If you
feel like it, you can add the function’s body instead of the method call, or
create a method in the Product class that returns you the field names.

Again, this approach results in a nonpredictable order of columns
in your CSV file. To ensure the order between runs and computers, you
should define a fixed list for the fieldnames and use it for the export.

Another interesting code part is using the dict method of the
Product class. This is a handy built-in method to convert the properties of
an instance object to a dictionary. The vars built-in function works like the
__dict__ function and returns the variables of the given instance object as
a dictionary.

To JSON

An alternative and more popular way to hold data is as JSON files.
Therefore, you will create code blocks to export both dictionaries and
classes to JSON files.

Quick Glance at the json module

This will be a quick introduction too. The json module of the Python

standard library is huge, and you can find more information online.”
As in the CSV section, I'll focus on writing JSON files because the

application writes the product information into JSON files.

| assume you did import json for the examples in this section.

"https://docs.python.org/3/1library/json.html

73

https://docs.python.org/3/library/json.html

CHAPTER 3 USING BEAUTIFUL SOUP

Writing a JSON object to a file is as easy as it is with CSV, if not easier.
You can simply tell the json module to write its contents to the given
file-handle.

with open('result.json', 'w') as outfile:
json.dump([{'average':12, 'median': 11}, {'average': 10,
'median': 10}], outfile)

The preceding example writes the content (two dictionaries in a list) to
the result. json file.

You can have some more control over the results. Because JSON
objects in Python are most often dictionaries, you cannot guarantee the
order of the keys in which they appear in the exported file. If you care
about this (to have a consistent representation between runs), then you
can set the sort_keys argument of the dump method to True. This will sort
the dictionaries by their keys before writing them to the output.

with open('result.json', 'w') as outfile:
json.dump([{'average':12, 'median': 11}, {'average': 10,
'median’: 10}],outfile, sort_keys=True)

Moreover, this is everything you need to know for now about writing
data to JSON files.

Saving a Dictionary

As you have read in the previous section, writing results to JSON is easy,
even easier than with CSV. Not just because JSON files are dictionaries
(or lists of dictionaries), but also you don’t have to care about the keys in
the dictionary: if something is missing it won’t bother the export. Sure,
if you try to import the file’s contents, then you must check if the current
JSON object has the key you want to extract.

with open('sainsbury.json', 'w') as outfile:
json.dump(product_information, outfile)

74

CHAPTER 3 USING BEAUTIFUL SOUP

The preceding code saves the list filled with product information into
the designated JSON file.

Saving a Class

Saving a class to a JSON file is not a trivial task, because classes are not
your typical object to save into a JSON file.

Let’s jump right into the code and write the method for exporting the
results to a JSON file like the dictionary solution.

def write results to json(filename, rows):
with open(filename, 'w') as outfile:
json.dump(rows, outfile)

Now if you run the scraper and arrive at the export method call, you
will get an error like this one.

TypeError: Object of type 'Product’' is not JSON serializable

The message tells you everything: an instance of the Product class is
not serializable. To overcome this little obstacle, let’s use our trick learned
while exporting Product instances to a CSV file.

def write results to json(filename, products):
with open(filename, 'w') as outfile:
json.dump(map(lambda p: p.__dict__, products), outfile)

This is not the final solution because a map isn’t serializable either; we
have to wrap it to an iterable.

def write results to json(filename, rows):
with open(filename, 'w') as outfile:
json.dump(list(map(lambda p: p. dict , rows)),
outfile)

75

CHAPTER 3 USING BEAUTIFUL SOUP

To a Relational Databhase

Now you will learn how to connect to a database and write data into it.
For the sake of simplicity, all the code will use SQLite because it doesn’t
require any installation or configuration.

The code you will write in this section will be database agnostic; you
can port your code to populate any relational database (MySQL, Postgres).
The data you extracted in this chapter (and you will see throughout

this book) doesn’t need a relational database because it has no relations
defined. Iwon’t go into deeper detail on relational databases because

my purpose is to get you going on your way to scraping, and many clients
need their data in a MySQL table. Therefore, in this section, you will see
how you can save the extracted information into an SQLite 3 database. The
approach is similar to other databases. The only difference is that those
databases need more configuration (like username, password, connection
information), but there are plenty of resources available.

The first step is to decide on a database schema. One option is to
put everything in a single table. In this case, you will have some empty
columns, but you don’t have to deal with dynamic names from the
nutrition table. The other approach is to store common information
(everything but the nutrition table) in one table and reference a second
table with the key-value pairs.

The first approach is good when using dictionaries in the way this
chapter uses them, because there you have all entries in one dictionary
and it is hard to split the nutrition table from the other content. The second
approach is good for classes, because there you already have two classes
storing common information and the dynamic nutrition table.

Sure, there is a third approach: set the columns in stone and then
you can skip the not needed/unknown keys, which result from different
nutrition tables across the site. With this, you must take care of error
handling and missing keys—but this keeps the schema maintainable.

76

CHAPTER 3 USING BEAUTIFUL SOUP

To keep the example simple, I'm going with this third approach. The
expected fields are defined in Chapter 2, and you can create a schema
based on this list.

CREATE TABLE IF NOT EXISTS sainsburys (
item code INTEGER PRIMARY KEY,
name TEXT NOT NULL,
url TEXT NOT NULL,
energy kcal TEXT,
energy kjoule TEXT,
fat TEXT,
saturates TEXT,
carbohydrates TEXT,
total sugars TEXT,
starch TEXT,
fibre TEXT,
protein TEXT,
salt TEXT,
country_of origin TEXT,
price_per unit TEXT,
unit TEXT,
number of reviews INTEGER,
average_rating REAL

This DDL is SQLite 3; you may need to change it according to what
database you're using. As you can see, we create the table only if it does not
exist. This avoids errors and error handling when running the application
multiple times. The primary key of the table is the product code. URL and
product name cannot be null; for the other attributes you can allow null.

The interesting code comes when you add entries to the database.
There can be two cases: you insert a new value, or the product is already in
the table and you want to update it.

77

CHAPTER 3 USING BEAUTIFUL SOUP

When you insert a new value, you must make sure the information
contains every column by name, and if not, you must avoid exceptions. For
the products of this chapter you could create a mapper that maps keys to
their database representation prior to saving. I won’t do this, but you are
free to extend the examples as you wish.

When updating, there is already an entry in the database. Therefore,
you must find the entry and update the relevant (or all) fields. Naturally, if
you work with a historical dataset, then you don’t need any updates, just
inserts.

With SQLite, you can have both solutions in one query.

INSERT OR REPLACE INTO sainsburys

values (2, 2, 2,2, 2,2, 2,2, 2,2, 2,2,2,2,2,2,2,2)

Insert or replace solves the problem of identifying already existing
entries in the database and updating them separately. Naturally, this
solution works only for items where you have a fixed ID derived from
the information to store in the database. If you use dynamically created
technical IDs, then you need to figure out a way to find the corresponding
entry in the database and update it, unless you want historical data stored
in your database.

def save to sqlite(database path, rows):
global connection
connection = _ connect(database path)
__ensure_table()
for row in rows:
__save_row(row)
__close_connection()

def _ connect(database):
return sqlite3.connect(database)

78

CHAPTER 3 USING BEAUTIFUL SOUP

def _ close connection():
if connection:
connection.close()

def _ensure table():
connection.execute(table_ddl)

def _ save row(row):
connection.execute(sqlite insert, (

row.get('item code'), row.get('name'), row.get('url'),
row.get('Energy kcal'), row.get('Energy'),
row.get('Fat'), row.get('Saturates'), row.
get('Carbohydrates'), row.get('Total Sugars'),
row.get('Starch'),
row.get('Fibre'), row.get('Protein'), row.get('Salt'),
row.get('Country of Origin'), row.get('price'),
row.get('unit'), row.get('reviews'),
row.get('rating')))

The preceding code is a sample example to save the entries in the
database.

The main entry point is the save_to_sqlite function. The database_
path variable holds the path to the target SQLite database. If it doesn’t
exist, the code will create it for you. The rows variable contains the
data-dictionaries in a list.

The interesting partis the __save_row function. It saves a row, and as
you can see, it requires a lot of information on the object you want to save.
I use the get method of the dict class to avoid Key Errors if the given key

is not present in the row to persist.

79

CHAPTER 3 USING BEAUTIFUL SOUP

If you are using classes, I suggest you look at peewee,® an ORM? tool
that helps you map objects to the relational database schema. It has built-in
support for MySQL, PostgreSQL, and SQLite. In the examples, I will use
peewee too because I like the tool.!°

Here you can find a quick primer to peewee, where we will save data
gathered into classes to the same SQLite database schema as previously.

To get started, you have to adapt the Product class; it has to extend the
peewee.Model class, and the fields have to be peewee field types.

from peewee import Model, TextField, IntegerField, DecimalField

class ProductOrm(Model):
url = TextField()
name = TextField()
item_code = IntegerField
product origin = TextField()
price per unit = TextField()
unit = TextField()
reviews = IntegerField()
rating = DecimalField
energy kcal = TextField()
energy kj = TextField()
fat = TextField()
saturates = TextField()
carbohydrates = TextField()
total sugars = TextField()
starch = TextField()
fibre = TextField()
protein = TextField()
salt = TextField()

8https://github.com/coleifer/peewee
0Object-relational mapping

9] have worked since 2007 with ORM tools, and I like the idea, but some queries
can become quite complex.

80

https://github.com/coleifer/peewee

CHAPTER 3 USING BEAUTIFUL SOUP

This structure enables you to use the class later with peewee and store
the information using ORM without any conversion. I named the class
ProductOrm to show the difference from the previously used Product class.

To save an instance of the class, you simply must adapt the functions of
the previous section.

We still must ensure that the database connection is open, and the
target table exists. To do this, we utilize the functions we know, and which
peewee has to offer.

import peewee
from product import ProductOrm

def save to sqlite(database path, rows):
This function saves all entries into the database
:param database path: the path to the SQLite file. If not
exists, it will be created.
:param rows: the list of ProductOrm objects elements to
save to the database
__connect(database_path)
__ensure_table()
for row in rows:
row.save()

def _ connect(database):
ProductOrm. meta.database = peewee.SqliteDatabase(database)

def _ensure table():
ProductOrm.create_table(True)

Here you can see that using peewee offers a slick version of saving. The
database connection must be provided to the Model we use, and to adapt
it dynamically, you have to access a protected field while you connect to

81

CHAPTER 3 USING BEAUTIFUL SOUP

the database. Alternatively, if you don’t want to provide the target database
dynamically, you could define it in the ProductOrm class too.

import peewee

class ProductOrm(Model):
url = TextField()
name = TextField()
item_code = IntegerField
product origin = TextField()
price per unit = TextField()
unit = TextField()
reviews = IntegerField()
rating = DecimalField
energy kcal = TextField()
energy kj = TextField()
fat = TextField()
saturates = TextField()
carbohydrates = TextField()
total sugars = TextField()
starch = TextField()
fibre = TextField()
protein = TextField()
salt = TextField()

class Meta:
database = peewee.SqliteDatabase('sainsburys.db")

Any way you proceed, you can use peewee to take over all the action of
persisting the data: creating the table and saving the data.

To create the table, you must call the create_table method on the
ProductOrm class. With the True parameter provided, this method call
will ensure that your target database has the table and if the table isn’t
there, it will be created. How will the table be created? This is based

82

CHAPTER 3 USING BEAUTIFUL SOUP

on the ORM model provided by you, the developer. peewee creates the
DDL information based on the ProductOrm class: text fields will be TEXT
database columns,and IntegerField fields will generate an INTEGER
column.

And to save the entity itself, you must call the save method on the
instantiated object itself. This removes all knowledge from you about the
name of the target table, which parameters to save in which column, how
to construct the INSERT statement... And this is just great if you ask me.

To an NoSQL Database

It would be a shame to forget about modern databases, which are state of
the art. Therefore, in this section, you will export the gathered information
into a MongoDB.

If you are familiar with this database and followed along with my
examples in this book, you already know how I will approach the solution:
I will use previous building blocks. In this case, the JSON export.

An NoSQL database is a good fit because most of the time they are
designed to store documents that share few or no relations with other
entries in the database—at least they shouldn’t do it excessively.

Installing MongoDB

Unlike SQLite, you must install MongoDB on your computer to get it
running.

In this section, I won’t go into detailed instructions on how to install
and configure MongoDB; it is up to you, and their homepage has very good
documentation,!! especially for Python developers.

I assume for this section you installed MongoDB and the Python
library: PyMongo. Without this, it will be hard for you to follow the code
examples.

"https://docs.mongodb.com/getting-started/python/

83

https://docs.mongodb.com/getting-started/python/

CHAPTER 3 USING BEAUTIFUL SOUP

Writing to MongoDB

As previously, I will focus only on writing to the target database because
the scraper stores information but won’t read any entries from the
database.

Writing to an NoSQL database like MongoDB is easier because it
doesn’t require a real structure and you can put everything into it as you
wish. Sure, it would be ridiculous to do such things; we need structure to
avoid chaos. However, theoretically, you can just jam everything into your
database.

Saving the “basic” dictionary to the MongoDB database works straight
out of the box. Because the database stores objects as they are, you don'’t
have to do any conversions. And you can reuse the code for saving to a
JSON file. Yes, even for classes.

import pymongo

connection = None
db = None

def save to database(database name, products):
global connection
__connect(database_name)
for product in products:
__save(product)
__close_connection()

def _ save(product):
db["sainsburys'].insert one(product.__dict__)

def _ connect(database):
global connection, db
connection = pymongo.MongoClient()
db = connection[database]

84

CHAPTER 3 USING BEAUTIFUL SOUP

def _ close connection():
if connection:
connection.close()

My version is like the SQL-version. I open the connection to the
provided database and insert each product into the MongoDB database.
To get the JSON representation of the product, Iuse the _dict__ variable.

If you want to insert a collection into the database, use insert_many
instead of insert_one.

If you are interested in using a library like peewee just for MongoDB
and ODM (Object-Document Mapping), you can take a look at
MongoEngine.

Performance Improvements

If you put the code of this chapter together and run the extractor, you will
see how slow it is.

Serial operations are always slow, and depending on your network
connection, it can be slower than slow. The parser behind Beautiful Soup
is another point where you can gain some performance improvements, but
this is not a big boost. Moreover, what happens if you encounter an error
right before finishing the application? Will you lose all data?

In this section, I'll try to give you options for how you can handle such
cases, but it is up to you to implement them.

You could create benchmarks of the different solutions in this section,
but as mentioned earlier in this book, it makes no sense because the
environment always changes, and you cannot ensure that your scripts run
in exactly the same conditions.

85

CHAPTER 3 USING BEAUTIFUL SOUP

Changing the Parser

One way to improve Beautiful Soup is to change the parser that it uses to
create the object model out of the HTML content.
Beautiful Soup can use the following parsers:

e html.parser
o 1xml (install with pip install 1xml)
o html51ib (install with pip install html51ib)

The default parser, which is already installed with the Python standard
library, is html.parser—as you have already seen in this book.

Changing the parser doesn’t give such a speed boost that you will see
the difference right away, just some minor improvements. However, to see
some flawed benchmarking, I added a timer that starts at the beginning
of the script and prints the time needed to extract all the 3,005 products
without writing them to any storage.

Table 3-1 shows a comparison between the different parsers available
with Beautiful Soup while scraping the 3,005 products of the “Meat & fish”
department.

Table 3-1. Some Execution Speed Comparisons

Parser Entries Time taken (in seconds)

html.parser 3,005 2,347.9281

Ixml 3,005 2167.9156
Ixml-xml 3,006 2457.7533
html51ib 3,005 2,544.8480

Asyou can see, the difference is significant. 1xml wins the game
because it is a well-defined parser written in C, and therefore it can work
extremely fast on well-structured documents.

86

CHAPTER 3 USING BEAUTIFUL SOUP

html51ib is very slow; its only advantage is that it creates valid HTML5
code from any input.

Choosing a parser has trade-offs. If you need speed, | suggest you
install 1xml. If you cannot rely on installing any external modules to
Python, then you should go with the built-in html.parser.

Any way you decide, you must remember: if you change the parser,
the parse tree of the soup changes. This means you must revisit and
perhaps change your code.

Parse Only What’s Needed

Even with an optimized parser, creating the document model of the HTML
text takes time. The bigger the page, the more slowly this model is created.
One option to tune the performance a bit is to tell Beautiful Soup
which part of the whole page you will need, and it will create the object

model from the relevant part. To do this, you can use a SoupStrainer
object.

A SoupStrainer tells Beautiful Soup what parts extract, and the parse
tree will consist only of these elements. This speeds up the process a bit, if
you can narrow down the required information to a smaller portion of the
HTML.

strainer = SoupStrainer(name='ul', attrs={'class':
"productlLister gridView'})

soup = BeautifulSoup(content, 'html.parser', parse_
only=strainer)

The preceding code creates a simple SoupStrainer that limits the
parse tree to unordered lists having a class attribute 'productLister
gridView'—which helps to reduce the site to the required parts—and it uses
this strainer to create the soup.

87

CHAPTER 3 USING BEAUTIFUL SOUP

Because you already have a working scraper, you can replace the soup
calls using a strainer to speed up things.

The following piece of information is hard to find on the Internet:
you can use multiple attributes in the strainer to parse the website. For
example, if you extract the links to product pages, you have three options
based on the level of the current department link:

e Thelinkleads to product pages.
o Thelinkleads to a first-level sublist.
¢ Thelinkleads from a first-level sublist to a second-level sublist.

In this case, you have three different classes but want to create the soup
if any of them is present. You can do something like this:

BeautifulSoup(content, "html.parser', name='ul',
attrs={"'class': ['productlLister gridView',
'categories shelf', 'categories aisles']})

Here, you have listed all three versions of the lists that can happen, and
the soup contains all the relevant information.

A (flawed) benchmark using a hard cache:'? my script gained 100%
speedup (from 158.907 seconds to 79.109 seconds) using strainers.

Saving While Working

If your application encounters an exception while running, the current
version breaks on the spot and all your gathered information is lost.

One approach is to use DFS. With this approach, you go straight down
the target graph and extract the products in the shortest way. Moreover,

?Hard cache: Get all information from the cache, and if there are attempts to
gather anything from the Internet, refuse it. This makes scraping a bit consistent
between runs.

88

CHAPTER 3 USING BEAUTIFUL SOUP

when you encounter a product, you save it to your target medium
(CSV, JSON, relational, or NoSQL database).

Another approach keeps the BFS and applies saving the products as
they are extracted. This is the same approach as using the DFS algorithm.
The only difference is when you reach the products.

Both approaches need a mechanism to restart work, or at least save
some time with skipping already written products. For this, you create a
function that loads the contents of the target file, stores the extracted URLs
in memory, and skips the download of already extracted products.

Staying with the BFS solution of this chapter, you must modify the
extract_product_information function to yield every piece of product
information when it is ready. Then you wrap the call of this method into a
loop and save the results to your target.

Surely, this creates some overhead: you open a file-handle every
time you save a piece, you must take care of saving the entries into a
JSON array, you open and close database connections for every write...
Alternatively, you do opening and closing (file-handle or database
connection) surrounding the extraction. In those cases, you must take
care of flushing/committing the results; if something happens, your
extracted data is saved.

What about try-except? Well, wrapping the whole extracting code
ina try-except block is a solution too, but you must ensure that
you don’t forget about the exceptions that happened and you can get
the missing data later. But such exceptions can happen while you’re
at a main page that leads to detail pages—and from my experience

| know that once you wrap code into an exception handling block, you
will forget to revisit the issues in the future.

89

CHAPTER 3 USING BEAUTIFUL SOUP

Developing on a Long Run

Sometimes you develop scrapers for bigger projects, and you cannot
launch your script after every change because it takes too much time.

Even though this scraper you implemented is short and extracts around
3,000 products, it takes some time to finish—and if you have an error in the
data extraction, it is always time-consuming to fix the error and start over.

In such cases I utilize caching of results of intermediate steps;
sometimes I cache the HTML codes themselves. This section is about my
approach and my opinions.

Because you already have deep Python knowledge, this section is again
an optional read: feel free if you know how to utilize such approaches.

Caching Intermediate Step Results

The first thing I always did when I started working with a basic, self-written
spider just like the one in this example was to cache intermediate step
results.

Applying this approach to this chapter’s code, you export the resulting
URLs after each step into a file and change the application so that it reads
the file of the last step back when it starts and skips the scraping until the
following step.

Your challenge in such cases is to write your code to continue work
where it went down. With intermediate results, this can mean you have
to scrape the biggest part of the websites again because your script died
before it could save all information on products—or it died while it was
about to save the extracted information.

This step is not bad, because you have a checkpoint where you can
continue if you step messes up. But honestly, this requires much extra
work, like saving the intermediate steps and loading them back for each
stage. And because I am lazy and learned a lot while on my development
journey, I use the next solution as the basis for all my scraping tasks.

90

CHAPTER 3 USING BEAUTIFUL SOUP

Caching Whole Websites

A better approach is to cache whole websites locally. This gives better
performance in the long run for rerunning your script every time.

When implementing this approach, I extend the functionality of the
website gathering method to route over a cache: if the requested URL is in
the cache, return the cached version; if it's not present, gather the site and
store the result in the cache.

You can use file-based or database caches to store the websites while
you're developing. In this section you will learn both approaches.

The basic idea for the cache is to create a key that identifies the
website. Keys are unique identifiers, and a web page’s URL is unique too.
Therefore, let’s use this as the key, and the content of the page is the value.

But we have some limitations (Table 3-2): these URLs can get very long,
and some solutions have limitations on the keys, like length or contained
characters.

Table 3-2. Limitations by Operating Systems

Operating File system Invalid filename Maximum filename
system characters length

Linux Ext3/Ext4 / and \0 255 bytes

0S X HFS Plus :and \o 255 UTF-16 code units
Windows NTFS \,/,2,:,% ", > <and | 255 characters

Therefore, I suggest a simple solution: create a hash based on the URL.

Hashes are short and if you choose a good algorithm, you can avoid
collision for a large number of pages. I'll use the hashlib.blake2b hash
function because it is faster than the commonly used hashes (MD5 for
example) and it’s as secure as SHA-3'3. Also, this algorithm generates 128
characters, which is short enough for all three dominating operating systems.

For more information, visit: https://blake2.net/

91

https://blake2.net/

CHAPTER 3 USING BEAUTIFUL SOUP

File-Based Cache

The first approach that comes into the mind of old-school developers
(like me) is to save pages to files. This is the easiest solution because to
write files you don’t need a database, you only write permissions. And
most of the time this is present because you develop your scrapers locally.
For the production run there is no need to cache the website if you run
once. If you do multiple runs, then you must deal with cache invalidation
(look at a later section).

The only things you must implement are three functions: initializing
the cache, retrieving the requested URLs content from the cache, and
saving a URLs content to the filesystem. Because the functionality can be
well encapsulated, I decided to implement my cache as a class. You don’t
need to follow my approach; use a programming style that best fits your
needs and skills (likes).'

Database Cache

An alternative solution is to save the websites into a database. There are
again two options: using a relational database or an NoSQL one. Because
websites are documents, I suggest you try using an NoSQL database. But
for completeness, I'll show you both approaches in this section.

As for the product details, in this section I'll use SQLite 3 as the
relational database. The cache is as simple as the file cache: the class must
load the cache from the database and save new content to the database.
The only difference is that the system in the background is a database.

My approach was the same as with the file-based version: load the
contents of the database into memory and use this cache to return the
contents. That’s because it makes the script much faster!

“Alternatively, to be more consistent, you can create a downloader, which hides
the cache from the users of your code.

92

CHAPTER 3 USING BEAUTIFUL SOUP

| don’t want to create benchmarks here. You must decide for yourself
how you can utilize your memory usage and disk reads. For many
websites, keeping the content in memory is cheap.

I use the same ID generated from the URL because it’s good enough
and makes a good primary key too. Some people rely on technical IDs
(autogenerated, numeric identifiers), but for this website the generated ID
or simply using the URL fits well.

Saving Space

Saving the target website locally can occupy a lot of space. Saving the
Sainsbury’s website with this approach takes 253 MB of space. With
current computers this is not a big thing, but this is only one web page-a
small portion of the whole website. Perhaps you have multiple websites
you scrape and with time the occupied space grows, and you want to save
space. If you don’t want to, then skip this section.

You can save space by compressing the contents of the page either
while using files or a database. This requires only a modification in your
saver and loader methods, and the usage of z1ib. When saving, you should
compress the contents, and when you're reading the file back, you should
decompress it.

Because you're using Python 3 and z1ib requires a bytes-like object to
compress, you must encode and decode the strings.

To compare the difference, my file-based cache requires 253 MB of
space; after I switched to compression, it required only 49 MB. What a
difference!

But every rose has its thorn: saving space requires more computation
time for decompressing the content. On my computer with the currently
saved dataset, the scraper runs 31 seconds slower when decompressing.
This may not sound bad, but proportionally this is 17% more time. But if

93

CHAPTER 3 USING BEAUTIFUL SOUP

you compare this result with the running times with different parsers, then
you saved over 90% of your running time while working on the fine details
of your script. And you don’t overload the website because you run your
script 100 times daily.

Updating the Cache

Another part to take into consideration while developing caches is the
invalidation time. When an entry in a cache is invalid, when should the
parser download it again?

There is no exact answer to this question. You should think about the
website you're scraping and then set a value for the timeout.

For a web shop I'd use one week, but one day at least because the
only thing that can change in a product is its price and its reviews. Other
information will not change so often.

Ifyou look at the example code and the target website of this chapter,
you will come up with the idea to store only product pages in the cache.
Why? If you store all the pages, you don’t get information on new products
added until the page containing the product details is discarded because
of its age. But you won’t navigate away from the product pages, so they are
a good target to cache every time and refresh them once a week—if reviews
don’t matter as much.

The approach of caching is nothing complicated. For file-based
caching you must look at the file’s modification date, and if it is older
than the grace period, you can remove it from the cache (and delete the
file). For databases, you should add the modification timestamp to the
entity you're saving. Then the protocol is the same: if the entry is too
old, delete it and then the scraper does its job and downloads the site
anew.

94

CHAPTER 3 USING BEAUTIFUL SOUP

Source Code for this Chapter

You can find all the code created for this chapter as whole parsers in the

chapter_03 folder of the sources.

basic_scraper.py contains the basic scraper, which
extracts the information into dictionaries. It doesn’t
have any performance tuning, but you can change the
parser used by Beautiful Soup to gain some minor
improvements.

basic_scraper using classes.py contains an
extended version of the basic scraper: it uses classes to
store the extracted information and saves those classes
to an SQLite and a MongoDB datasource.

file_cache.py contains the file-based cache that stores
the downloaded pages on your filesystem. The final
solution uses compression with z1ib and discards old
entries on startup.

downloader.py contains a downloader, which hides the
cache and downloading process from your scraper. You
can transparently switch caches and perhaps do some
combination on the caches too to enable migration
from one cache to another. Feel free to try things out!

Summary

In this chapter you learned a lot, such as how to use Beautiful Soup and

requests together, and you created your first full scraper application,

which gathers the requirements from Chapter 2.

95

CHAPTER 3 USING BEAUTIFUL SOUP

The scraper exported the gathered results into different stores, like
CSV, JSON, and databases.

But every rose has its thorn: you learned about bottlenecks of this
simpler solution, and applied some techniques to make it perform better.
And with this you've learned how complex it can be to write your own
scraper.

And even with such a lengthy chapter, there are some points still
untouched, for example, honoring the robots. txt file. You can extend the
code from this chapter to honor the robots.txt file of the website; you have
the building blocks to do so.

In the next chapter you will learn Scrapy, the website scraping tool for
Python, which leverages these optimizations from your shoulders. The
only things you must do are create the extractor code and configure Scrapy

properly.

96

CHAPTER 4

Using Scrapy

After a lengthy introduction to Beautiful Soup and custom scrapers, it’s
time to look at Scrapy: the website scraping tool for Python.

In my opinion, this is the only viable tool available currently for
Python, which can handle complex scraping tasks out of the box. You
can cache web pages, and add parallelism as you wish; you only need to
configure Scrapy properly and write the extraction code.

In this chapter you will learn how to get the most out of Scrapy for the
majority of your website scraping projects. You will write the Sainsbury’s
extractor, configure Scrapy to create a website-friendly spider, and you will
learn how to apply custom exporting options to the extracted information.

As opposed to the previous chapter, where I introduced Beautiful
Soup at the beginning and you created the project to scrape the Sainsbury’s
website afterward, now you will learn the basics of Scrapy through
implementing the project scraper. Toward the end of this chapter I'll add
more information and insights into the tools that we didn’t use for the
project, but I think it is useful to know if you write your own scrapers in the
future.

Ready? Why not!

© Gabor Lészl6 Hajba 2018 97
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_4

CHAPTER 4 USING SCRAPY

Installing Scrapy

Your first task is to install Scrapy to your Python environment.
To install Scrapy, simply execute

pip install scrapy

And that’s it. With this command you installed all requirements too, so
you're ready to create scraper projects.

Note The developers of Scrapy recommend installing the tool

into a virtual environment. This is a good practice to have a clean
version of your scraping tool; and this hinders you from updating a
dependency of Scrapy to a noncompatible version, which will render
your scraper nonworking.

If you have a hard time installing Scrapy, just read their instructions.

Creating the Project

To get started with Scrapy, you have to create a project. This helps you to
keep order in your files and focus on only one problem. To create a new
project, simply execute the following command:

scrapy startproject sainsburys
This call results in something like this:

New Scrapy project 'sainsburys', using template directory
"c:\\python\\scrapy\\1lib\\site-packages\\scrapy\\templates\\
project', created in:

C:\scraping book\chapter 4\sainsburys

'https://docs.scrapy.org/en/latest/intro/install.html#intro-install

98

https://docs.scrapy.org/en/latest/intro/install.html#intro-install

CHAPTER 4 USING SCRAPY

You can start your first spider with
cd sainsburys
scrapy genspider example example.com

Depending on the OS you use and the location where you have
your projects, the preceding text can vary. However, what matters is the
information about how you can create your first spider.

But before you create your first spider, let’s look at the file structure
created, as shown in Figure 4-1.

scrapy.cfa
tree.txt

sainsburys
items.py
middlewares.py
pipelines.py
settings.py
~_init .py

spiders
__1init .py
~_pycache
- pycache

Figure 4-1. The project structure

The structure should be similar; if not, perhaps something changed in
the new version of Scrapy you are using.

99

CHAPTER 4 USING SCRAPY

Configuring the Project

Before you dive into the code of the main scraper you will implement with
Scrapy, you should configure your project properly. Basic configuration is
required to show you are a “good citizen,” and your spider is a well-raised
tool too.

The basic configuration I suggest you do every time is to add the user
agent and see that the robots. txt file is honored.

Fortunately, the basic project skeleton of Scrapy comes with a
configuration file where most of the settings are set properly or are
commented out but tell you about the option and which values it accepts.
You can find the configuration of the project in the settings.py file.

If you take a look at it, you will see a lot of options added; most of
them are commented out. The default values work perfectly fine for most
scraping projects, but you can tune them if you think it gives you better
performance or you need some more complexity added.

The two properties I always use are

e USER_AGENT
« ROBOTSTXT OBEY

The names of these properties already tell you what they are good for.

For the USER_AGENT, you see a default that consists of the bot’s name
(sainsburys) and an example domain. I change it mostly to a Chrome
agent. You can obtain one through the DevTools of Chrome: you open
the Network tab, load a web page normally in your browser, click on
the request in the Network tab, and copy the value of User Agent in the
Headlers tab of the request. This works even if you are offline.

And to be a good citizen, leave the ROBOTSTXT OBEY on True. With this,
Scrapy takes care of handling the contents of the robots. txt file if one is
present.

100

CHAPTER 4 USING SCRAPY

| suggest you delete all commented-out settings. This will help you in
reading the file later and you see all active configuration at once; you
do not have to scroll through all the lines to see which is commented
out. It is hard even in an IDE with good color coding.

Besides these properties, I suggest you add CONCURRENT REQUESTS = 1.
This reduces the speed of the spider, but while testing, you will run the code
quite a lot and you don’t want to get banned from the website right at the
beginning—or you don’t want the website’s servers to be done just because
you (and 99,999 other readers) run the scraper simultaneously and the
servers cannot handle the load. If you look at the commented code, you'll
find that the default value for this is 16. I'll add a section where I will turn up
the number of parallel requests and will do a flawed microbenchmark.

To summarize: my final settings.py file looks like this:

-*- coding: utf-8 -*-
BOT_NAME = 'sainsburys'

SPIDER_MODULES = ['sainsburys.spiders’]
NEWSPIDER _MODULE = 'sainsburys.spiders'

USER_AGENT = 'Mozilla/5.0 (Windows NT 10.0; Win64; x64)
AppleWebKit/537.36" \
"(KHTML, like Gecko) Chrome/63.0.3239.84
Safari/537.36'

ROBOTSTXT_OBEY = True
CONCURRENT _REQUESTS = 1

In the preceding code you can see an example of a Windows 10
Chrome user agent string. You don’t have to stick with this: feel free to use
the one from your browser; it won’t make any difference.

101

CHAPTER 4 USING SCRAPY

Now that the basic configuration is done, we can implement the spider
that will do the work for us.

Terminology

While setting the configuration, you have had the option to learn some of
Scrapy’s terminology, like middleweare or pipeline. They are the building
blocks of this scraper, where you can implement your own code and
extend the functionality if it is missing something you need.

Middleware

Middlewares are hooks into Scrapy; this means, you can extend the
already available functionality. There are two types of middlewares in
Scrapy:

¢ Downloader middlewares
e Spider middlewares

As their names already suggest, you can either extend the downloader
(add your own cache, proxy the calls, modify requests prior sending, or
ignore requests, just as a few examples), or the parser functionality (filter
out some responses, handle spider exceptions, call different functions
based on the response, etc.).

For basic scraping there’s no need to write your own middlewares,
because you can get along well with the tools available—and as Scrapy is
evolving, more custom code gets into the standard library.

Middlewares need to be activated in the settings.py file.

DOWNLOADER _MIDDLEWARES = {
'yourproject.middlewares.CustomDownloader': 500

102

CHAPTER 4 USING SCRAPY

SPIDER MIDDLEWARES = {
'yourproject.middlewares.SpiderMiddleware': 211

If you have your middlewares but they don’t seem to work, you might
have forgotten to activate them. Another reason could be that they are
executed at the wrong position: the number you provide as the value in the
dictionary tells Scrapy about the order in which the middleware should be
executed:

o For downloader middlewares, the process request
method is called in increasing order.

o For downloader middlewares, the process_response
method is called in decreasing order.

o For spider middlewares, the process_spider input
method is called in increasing order.

o For spider middlewares, the process_spider_ output
method is called in decreasing order.

Therefore, it can happen that you expect something in the request/
response / input/output, but it was handled by a middleware with a lower/
higher priority.

Pipeline

Pipelines handle the extracted data. This involves cleaning, formatting,
and sometimes exporting the data. Even though Scrapy has built-in
pipelines that export your data in a given format (CSV, JSON-more on
these later in this chapter), sometimes you need to write your own pipeline
to configure the result to meet your (your customers’) expectations.

103

CHAPTER 4 USING SCRAPY

You will write more pipelines than middlewares while you're working
as a pro scraper. Nevertheless, it is not as bad as it might sound. In this
chapter we will create a simple item pipeline to show you how it is done.

Similar to middlewares, you have to activate your pipelines in the
settings.py file.

ITEM PIPELINES = {
'yourproject.pipelines.MongoPipeline': 418

Extension

Extensions are singleton classes that get instantiated once at startup and
contain custom code, which you can use to add some custom functionality
that is not related to downloading or scraping like a middleware does. Such
extensions can be used for logging, or monitoring memory consumption
(these are already built-in extensions).

Extensions can be loaded the same way as middlewares and pipelines
in settings.py.

EXTENSIONS = {
'scrapy.extensions.memusage.CoreStats': 500

Selectors

This is the most important term you will encounter while using Scrapy.
Selectors are the code parts that select certain parts of the HTML. As you
can see, selectors work similar to Beautiful Soup and 1xml but they are
the Scrapy version, and you can use XPath or CSS expressions.

I prefer XPath expressions because I worked for years with XML and XML
transformations; therefore, I know XPath expression well. You are free to
use any approach, but I will stick to XPath.

104

CHAPTER 4 USING SCRAPY

Selectors are objects in Scrapy, and because of this they can be
constructed from a text.

from scrapy.selector import Selector

selector = Selector(text='<html><body><hi>Hello Selectors!</h1>
</body></html>")

print(selector.xpath('//h1/text()").extract()) # ['Hello
Selectors!']

or from a response:

from scrapy.selector import Selector
from scrapy.http import HtmlResponse

response = HtmlResponse(url="http://my.domain.com’,
body="<html><body><hi>Hello Selectors!</h1></body></html>",
encoding="UTF-8")
print(Selector(response=response).css('hi::text').extract()) #
['Hello Selectors!']

However, because selectors are the way to extract data, you can
conveniently access them from your response using

response.xpath()
or
response.css()

And this makes Scrapy a great tool in my opinion: you don’t have to bother
creating selector objects, but use the available convenient method accesses.
Follow the links if you want to read more about CSS selectors® or XPath

expressions.?

“www.w3.0rg/TR/selectors/
*www.w3.0rg/TR/xpath/all/

105

http://www.w3.org/TR/selectors/
http://www.w3.org/TR/xpath/all/

CHAPTER 4 USING SCRAPY

Implementing the Sainsbury Scraper

To start working on the extraction code, you will need a spider generated.
As you have seen in the previous section, where you created and
configured the base of the project, you can do it with the genspider
command. Let’s do it right now. First change the directory to the one
where you generated your bot, and then execute the following command:

scrapy genspider sainsburys 'https://www.sainsburys.co.uk/shop/
gb/groceries/meat-fish/'

When executing the preceding command, you get a strange message:
Cannot create a spider with the same name as your project

Well, if we cannot get a spider with the same name, let’s give it a
different name. My suggestion is a name that is easy to remember for you.
Iuse mostly "basic" because it’s easy to write and I have a basic scraper to
do the extraction for me. The project already has a unique name; and with
basic I can always start my spiders, regardless of the project.

scrapy genspider basic https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish

The response now is different.

Created spider 'basic' using template 'basic' in module:
sainsburys.spiders.basic

With this command, Scrapy added a basic.py file to the project’s
spiders folder. This file will be the base of your spider; here will you
implement the extraction code.

The code looks normal, but if you look thoroughly, you will see that the
start_urls variable looks a bit weird.

start_urls = ["http://https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/']

106

CHAPTER 4 USING SCRAPY

It has an extra http://. This is because of the URL we provided for the
scraper generation. Scrapy is meant to scrape a domain; therefore, you
should provide a domain for the spider creation. However, in the particular
case of the example, we will scrape only a subset of the whole domain
(“Meat & fish”). There are two options:

e You create the spider using only the domain
‘www.sainsburys.co.uk' and add the remaining part
of the URL later to the start_urls (or change the entry
completely).

e yousimply remove the extra "http://" from the
start_urls entry.

What’s This allowed_domains About?

If you looked at the code thoroughly, you have seen there’s a list of allowed
domains. This list is used to give the spider a bound. Without setting the
allowed domains, you could write a script that goes through the Internet
(following every link on the pages it scrapes). For most purposes, you want
to keep your scraping in one domain. However, sometimes you have to
deal with internal or subdomains. In those cases, you can extend this list
manually to fix such “issues.”

And here you should set the domain only. When you generated the
spider, it added the whole URL to this list, but you need something like this:

allowed_domains = ['www.sainsburys.co.uk"]

You can find the source code for an empty project with my default
configuration among the sources for this chapter in the folder
01 _empty project.

107

https://www.sainsburys.co.uk/

CHAPTER 4 USING SCRAPY

Preparation

This section is brief. If you followed along, you have everything configured
and there is no need for any other preparation.
Just a quick checklist to see if you are ready to go:

e You've read the requirements of Chapter 2.
e You've created a Scrapy-project.

* You've configured the project as described in this
chapter.

e You've created a spider.

If anything is missing, take the time to fix it; then you are good to follow
along.

Using the Shell

One function of Scrapy I like to utilize for preparation work is to use its
shell, which gives us an environment to test and prepare code snippets for
extraction. And because the shell behaves just like your spider code will, it
is ideal for creating the building blocks of your application.

With a naive approach (or similar, like we did in the previous chapter),
you’d write a part of your code and run the spider. If there’s an error, you'd
fix the code and rerun the spider. This is OK if the website doesn’t limit
access based on requests. If there’s a limit, you may end up exceeding it
and your spider (and your computer, current IP, whole company network*)
is banned from the website. And, as I have seen, Sainsbury’s runs behind
CloudFlare—you better not send parallel requests to their website!

*Once our client was banned from StackOverflow (SO) for too many requests in a
minute. Around 100 software developers have had a hard time without SO.

108

CHAPTER 4 USING SCRAPY

The Scrapy shell works differently: it downloads your target web page
and you can create your extraction logic on this copy. If you need to move
to another page, you let the shell download it and you are good to write the
next chunk of code.

Starting the shell is easy.

scrapy shell

You can pass along a <url> parameter, which is your target URL.
For this book we will use https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/:

scrapy shell https://www.sainsburys.co.uk/shop/gb/groceries/
meat-fish/

Alternatively, you can also fetch the URL when you open Scrapy’s
shell without any, or with a different URL.

>>> fetch('https://www.sainsburys.co.uk/shop/gb/groceries/
meat-fish/")

Now the shell has downloaded the web page behind the URL. This
means two things: now you have access to the Meat & Fish page’s content
and can try your extractors; and second, you have to download every page
you want to use in the shell. Even though the second point sounds bad, it is
not: getting other pages is made easy in Scrapy and therefore in the shell too.

In the shell you have access to a response object (just like in the parse
method, which we will write later in this chapter), and with this response
you can use the available selectors.

I don’t want to dig very deep into how to use the shell to prepare your
scraper script. Therefore, we will do one example: we get the URLSs to the
next page. This will give you a good start and the feel of using the shell for
further preparation.

109

https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/
https://www.sainsburys.co.uk/shop/gb/groceries/meat-fish/

CHAPTER 4 USING SCRAPY

As you may remember, the links that lead to the detailed pages can be
found in an unordered list (<ul class="categories departments">). The
list’s elements (<1i>) have an anchor child (<a>), and the value of the href
attribute of these anchors is the URL we are looking for.

To get the list of these URLSs, you can write the following code using XPath:

urls = response.xpath('//ul[@class="categories departments"]/
li/a/@href").extract()

Using CSS selectors, this would look like this:

urls = response.css('ul.categories.departments > 1i >
a::attr(href)').extract()

And that is it. You have all the URLSs that lead to either product listings
of the category or to a site containing more subcategories, just like in the
previous chapter.

I suggest you dig a bit deeper into XPath and CSS selectors for now,
to understand the extractor code that you will write starting with the next
section.

def parse(self, response)

Now we are good to go to write the code in the basic.py file.

The parse method is the core of every spider. This method is called
every time Scrapy downloads a URL, and most of the time you write your
extraction code in this method.

The response argument holds the response from calling the URL. It
can contain the website’s content but sometimes you can get back error
codes, for example, when the website is down or nonexistent.

You can write a whole scraper into the parse method, but I suggest
organizing your code into methods (and actually, this is the suggested
practice of many developers). This helps you in the future to understand
what the code wants to achieve.

110

CHAPTER 4 USING SCRAPY

Therefore, the parse function will be very sparse: it extracts only the
URLs to the category pages (the same from the preparation with the shell),
and initiates the download and parsing of those pages.

from scrapy import Request
some code left out...

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments”]/1i/a/@href").extract()

for url in urls:
yield Request(url, callback=self.parse department

pages)

The preceding code extracts the href attributes of every anchor
element of the list of the desired class. The interesting part is how the
scraping is continued: you yield a new Request object with the target URL
as the first parameter and the callback function that should be called if
the server returns an OK-ish response for the given URL. In this case it will
be the parse_department_pages method of this same class.

There’s an alternative way to get to the next page with writing less code.

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

Here we use the syntactic sugar of Scrapy: under the hood the same
code is executed, but you don’t have to bother with extracting the exact
reference from the anchor tags. And sometimes you don’t get a fully

111

CHAPTER 4 USING SCRAPY

qualified (absolute) URL in web page links but relative references, and you
have to manually add the host (or use urljoin). By using response.follow
you get this out of the box too. Therefore, I suggest you use this syntax, and
I'll use this in the book too!

Currently, as of version 1.4.0, you have to provide a single URL or Link-
type object to the follow method. I bet that someone will add a method
that accepts a list (for example follow_all) too, because we like make
things easier.

With this, we are done with this section. Let’s move on and see how to
get to the product pages.

At the end of this section, your basic. py file should look like this:

-*- coding: utf-8 -*-
import scrapy

class BasicSpider(scrapy.Spider):
name = 'basic’
allowed_domains = ['www.sainsburys.co.uk"]
start_urls = ["https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/"]

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

Navigating Through Categories

Your first task is to navigate through the category pages of the Sainsbury’s
website. You have seen in the previous chapter how complex it can get to
find the page where the item details are.

112

CHAPTER 4 USING SCRAPY

As you have seen in the previous chapter, each category’s link can lead
either to the product listing or to a page containing subcategories and their
links, which can lead to either the product listing page or a third page with
sub-subcategories. Fortunately, there is no deeper layering.

In this section we will handle the case wherin your code in the
previous section resulted in a sub- or sub-subcategory page and not the
product detail.

We sent requests with Scrapy in the previous section and told the tool
to handle the responses with the parse_department_pages method.

To implement this method, we have to take care of the three versions of
the response:

e We get a product listing page.
o We get a sub-category page.
e We get a sub-sub-category page.

If the response is a product listing, the idea is to forward the response
to the next section’s method. However, we must take care of triggering the
requests. The resulting block will look like this one:

product grid = response.xpath('//ul[@class="productLister
gridview"]")
if product grid:
for product in self.handle product listings(response):
yield product

In the preceding code, we call the handle_product_listings method
with the response object. We could provide the product grid too (or just
the grid) because we have it already extracted but, as you will see later, we
need the response to navigate between the pages of the product grid.

Then we yield the result, which is the trigger for Scrapy to scrape these
URLs too.

113

CHAPTER 4 USING SCRAPY

The next step is to get through the deeper layers of categories, which
are represented by CSS classes like aisles (class="category aisles")and
shelves (class="category shelves")—justlike in your supermarket.

The trick here is to check if the page’s source contains shelves and if
not, then go for aisles. This is because a page containing shelves contains
aisles too, and if you get the aisles links first you can end up in a never-
ending circle of getting the same pages over and over again if you don’t
use caching. And getting the same pages means slower scraping (actually,
never ending) and a lot of duplicate items in your scraping result.

pages = response.xpath('//ul[@class="categories shelf"]/1li/a")
if not pages:
pages = response.xpath('//ul[@class="categories aisles"]
/1i/a")
if not pages:
here is something fishy
return

for url in pages:
yield response.follow(url, callback=self.parse department

pages)

The preceding code follows the approach mentioned previously: it
looks for shelves and if they are not found, it looks for aisles. If nothing
is found, then we are at a page from which we cannot gather more
information: we have extracted the links to the product listings or there are
no links to aisles or shelves on the page.

At the end of this section, your basic. py file should look something
like this:

-*- coding: utf-8 -*-
import scrapy

class BasicSpider(scrapy.Spider):

114

CHAPTER 4 USING SCRAPY

name = 'basic’

allowed domains = ['www.sainsburys.co.uk']
start_urls = ["https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/"]

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

def parse_department pages(self, response):
product grid = response.xpath('//ul[@class="product
Lister gridview"]")
if product_grid:
for product in self.handle product listings
(response):
yield product

pages = response.xpath('//ul[@class="categories
shelf"]/1i/a")
if not pages:
pages = response.xpath('//ul[@class="categories
aisles"]/1i/a")
if not pages:
here is something fishy
return

for url in pages:
yield response.follow(url, callback=self.parse_
department_pages)

115

CHAPTER 4 USING SCRAPY

Navigating Through the Product Listings

Now your code leads at some point to a product listing page. In this section
we will navigate through these pages if they have too many elements to
display on one page, and we will request a download for the detailed item
pages.

We are currently in the handle_product listings function.

Let’s start with the item details.

urls = response.xpath('//ul[@class="productLister gridview"]
//1i[@class="gridItem"]//h3/a")
for url in urls:

yield response.follow(url, callback=self.parse product detail)

The preceding code extracts the URLs to the detailed pages, and these
URLs are then returned to the parse_department_pages method where
their scraping is triggered.

next_page = response.xpath('//ul[@class="pages"]/1i
[@class="next"]/a")
if next_page:
yield response.follow(next page, callback=self.handle_
product listings)

This code looks for the link to the next page. If one is found (on
the website, it’s under the > symbol) then it is returned to the parse_
department_pages method. Note here the callback method: Because
we know that we get another page of product listing, we can use the same
method as a callback.

After finishing this section, your basic.py file should look like this:

-*- coding: utf-8 -*-
import scrapy

116

CHAPTER 4 USING SCRAPY

class BasicSpider(scrapy.Spider):
name = 'basic’
allowed domains = ['www.sainsburys.co.uk']
start_urls = ["https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/"]

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

def parse department pages(self, response):
product grid = response.xpath('//ul[@
class="productLister gridview"]")
if product grid:
for product in self.handle product_
listings(response):
yield product

pages = response.xpath('//ul[@class="categories
shelf"]/1i/a")
if not pages:
pages = response.xpath('//ul[@class="categories
aisles"]/1i/a")
if not pages:
here is something fishy
return

for url in pages:
yield response.follow(url, callback=self.parse_
department_pages)

117

CHAPTER 4 USING SCRAPY

def handle product listings(self, response):
urls = response.xpath('//ul[@class="productlLister
gridview"]//1i[@class="gridItem"]//h3/a")
for url in urls:
yield response.follow(url, callback=self.parse_
product detail)

next_page = response.xpath('//ul[@class="pages"]/1i
[@class="next"]/a")
if next_page:
yield response.follow(next page, callback=self.
handle product 1istings)

Extracting the Data

Now that your code can handle the complex navigation and find the item
details page, it’s time to extract the required information from the website.

We are currently in the parse_product_detail method.

Now it is time to extract all the required information from the item
page. Actually, this process is the same as you did in the previous chapter
(if you coded along): you can use the queries; however, you can save some
lines of code on validating every find or find_all call.

Without talking too much, let’s jump into the code.

If you want, you can put down the book and implement the extraction
logic. It is not hard, and you can use the information from the
previous two chapters to go with.

My solution looks like this (yours may differ):

def parse product detail(self, response):
product _name = response.xpath('//h1/text()").extract()[0].
strip()

118

CHAPTER 4 USING SCRAPY

product_image = response.urljoin(response.xpath('//div
[@id="productImageHolder"]/img/@sxrc").extract()[0])

price per unit = response.xpath('//div[@
class="pricing"]/p[@class="pricePerUnit"]/text()").
extract()[0].strip()
units = response.xpath('//div[@class="pricing"]/span
[@class="pricePerUnitUnit"]").extract()
if units:

unit = units[o].strip()

ratings = response.xpath('//label[@class="number
OfReviews"]/img/@alt").extract()
if ratings:

rating = ratings[0]
reviews = response.xpath('//label[@class="number
OfReviews"]").extract()
if reviews:

reviews = reviews pattern.findall(reviews[0])

if reviews:

product _reviews = reviews[O]

item code = item code pattern.findall(response.xpath('//p
[@class="itemCode"]/text()").extract()[0].strip())[0]

nutritions = {}
for row in response.xpath('//table[@class="nutrition
Table"]/tr'):

th = row.xpath('./th/text()").extract()

if not th:

th = ['Energy kcal']
td = row.xpath('./td[1]/text()").extract()[0]
nutritions[th[0]] = td

119

CHAPTER 4 USING SCRAPY

product_origin = ' '.join(response.xpath(
".//h3[@class="productDataltemHeader" and text()=
"Country of Origin"]/following-sibling::div[1]/p/
text()").extract())

And that is it. Extracting information on a product takes up to 30 lines
of code (with my custom formatting settings). And this is just great!

As you can see in the code, there are some interesting code blocks. For
example, every xpath call returns a list, even if you know there has to be
at most one result. And some of those lists are empty because the product
doesn’t have ratings or unit information. As with Beautiful Soup, you
must handle such cases with Scrapy too.

After this section, your basic.py file should look something like this:

-*- coding: utf-8 -*-
import scrapy

reviews pattern = re.compile("Reviews \((\d+)\)")
item _code pattern = re.compile("Item code: (\d+)")

class BasicSpider(scrapy.Spider):
name = 'basic’
allowed domains = ['www.sainsburys.co.uk']
start urls = ["https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/"]

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a")

for url in urls:
yield response.follow(url, callback=self.parse_
department_pages)

120

CHAPTER 4 USING SCRAPY

def parse department pages(self, response):
product grid = response.xpath('//ul[@class="product
Lister gridview"]")
if product_grid:
for product in self.handle_product listings
(response):
yield product

pages = response.xpath('//ul[@class="categories
shelf"]/1i/a")
if not pages:
pages = response.xpath('//ul[@class="categories
aisles"]/1i/a")
if not pages:
here is something fishy
return

for url in pages:
yield response.follow(url, callback=self.parse_
department_pages)

def handle product listings(self, response):
urls = response.xpath('//ul[@class="productLister
gridview"]//1i[@class="gridItem"]//h3/a")
for url in urls:
yield response.follow(url, callback=self.parse_
product detail)

next_page = response.xpath('//ul[@class="pages"]/1i[
@class="next"]/a")
if next_page:
yield response.follow(next page, callback=self.
handle product 1listings)

121

CHAPTER 4 USING SCRAPY

def parse product detail(self, response):
product _name = response.xpath('//h1/text()").extract()
[0].strip()
product image = response.urljoin(response.xpath('//
div[@id="productImageHolder"]/img/@src").extract()[0])

price per unit = response.xpath('//div[@
class="pricing"]/p[@class="pricePerUnit"]/text()").
extract()[o0].strip()
units = response.xpath('//div[@class="pricing"]/span
[@class="pricePerUnitUnit"]").extract()
if units:

unit = units[o].strip()

ratings = response.xpath('//label[@class="number
OfReviews"]/img/@alt").extract()
if ratings:

rating = ratings[o]
reviews = response.xpath('//label[@class="number
OfReviews"]").extract()
if reviews:

reviews = reviews pattern.findall(reviews[0])

if reviews:

product_reviews = reviews[O]

item code = item code pattern.findall(response.
xpath('//p[@class="itemCode"]/text()").extract()[0].

strip())[o]

nutritions = {}
for row in response.xpath('//table[@class="nutrition
Table"]/tr"):

th = row.xpath('./th/text()").extract()

122

CHAPTER 4 USING SCRAPY

if not th:

th = ["Energy kcal']
td = row.xpath('./td[1]/text()").extract()[0]
nutritions[th[0]] = td

product origin = ' '.join(response.xpath(
".//h3[@class="productDataltemHeader" and
text()="Country of Origin"]/following-
sibling::div[1]/p/text()").extract())

Where to Put the Data?

OK: you have followed along, implemented the product extractor, and you
have a lot of variables in your spider that contain the information for the
project, but where to store them?

With Scrapy, you have to store data in so-called items. These items are
plain old Python classes and can be found in the items.py file. Besides
this, these items behave as dictionaries: you declare them as Python
classes and can fill them like dictionaries using a key-value assignment.

If you have run your spider after the previous step, you might have seen
entries in the console like this one:

2018-02-11 11:06:03 [scrapy.extensions.logstats] INFO: Crawled
47 pages (at 47 pages/min), scraped 0 items (at 0 items/min)

Here you can see that there were no items scraped. We will fix this now.

Let’s adapt the parse_product detail method to put the data into an
item. To do this, first of all we need an item, which is already there in the
items.py file

class SainsburysItem(scrapy.Item):
define the fields for your item here like:
name = scrapy.Field()
pass

123

CHAPTER 4 USING SCRAPY

This class is currently empty; we must add fields to it. Because I don’t
like to write scrapy.Field() every time (even if it is just copy+paste), I like
to do “static” imports (from scrapy import Item, Field).

My solution looks like this; yours may differ, depending on how you
named your fields.

class SainsburysItem(Item):
url = Field()
product _name = Field()
product_image = Field()
price per unit = Field()
unit = Field()
rating = Field()
product reviews = Field()
item code = Field()
nutritions = Field()
product origin = Field()

The only thing I changed is the nutritions field: I didn’t add all the
possible fields to the item definition. This makes writing the file easier and
exporting to JSON (see later) more convenient.

A flat (a.k.a. all fields included) class would look like this:

class FlatSainsburysItem(Item):
url = Field()
product name = Field()
product_image = Field()
price per unit = Field()
unit = Field()
rating = Field()
product reviews = Field()
item code = Field()
product_origin = Field()

124

CHAPTER 4 USING SCRAPY

energy = Field()
energy kj = Field()

kcal = Field()

fibre g = Field()
carbohydrates g = Field()
of which sugars = Field()

As you can see, the problem with this approach will come in the code:
for the nutrition table you get strings as keys and you have to map them to
these field names. This makes things complicated. Besides this, there are
over 70 different fields that you must map.

I don’t think it useful to include such mapping code here. If you are
interested, you can give it a try, but it is not a requirement of this book or
website scraping in general.

When we export the results to files later in this chapter, we will take a
closer look at how fields containing dictionaries are exported by default
and what we can do to get the same results as in Chapter 2.

Now to add and use items, you have to adapt the parse_product_
detail method like this:

def parse product detail(self, response):

item = SainsburysItem()

item['url'] = response.url

item['product name'] = response.xpath('//h1/text()").

extract()[0].strip()

item['product image'] = response.urljoin(
response.xpath('//div[@id="productImageHolder"]/img/
@src').extract()[0])

item['price per unit'] = response.xpath('//div[@class=

"pricing"]/p[@class="pricePerUnit"]/text()").extract()
[0].strip()

units = response.xpath('//div[@class="pricing"]/span

[@class="pricePerUnitUnit"]").extract()
125

CHAPTER 4 USING SCRAPY

if units:
item['unit'] = units[o0].strip()

ratings = response.xpath('//label[@class="number
OfReviews"]/img/@alt").extract()
if ratings:

item['rating'] = ratings[o]
reviews = response.xpath('//label[@class="number
OfReviews"]").extract()
if reviews:

reviews = reviews_pattern.findall(reviews[0])

if reviews:

item['product reviews'] = reviews[0]

item['item code'] = \

item code pattern.findall(response.xpath('//p[@class=
"itemCode"]/text()").extract()[0].strip())[0]

nutritions = {}
for row in response.xpath('//table[@class="nutrition
Table"]/tr'):
th = row.xpath('./th/text()").extract()
if not th:
th = ["Energy kcal']
td = row.xpath('./td[1]/text()").extract()[0]
nutritions[th[0]] = td
item["nutritions'] = nutritions

item['product origin'] = ' '.join(response.xpath(
".//h3[@class="productDataltemHeader" and
text()="Country of Origin"]/following-
sibling::div[1]/p/text()").extract())

yield item

126

CHAPTER 4 USING SCRAPY

This involves defining the new item (add the import to the file:
from sainsburys.items import SainsburysItem)and then use it like
a dictionary. I used the variable names from the previous version as the
Field names in my item definition, but it is up to you how to name your
fields. You just must find the right mapping.

Finally, you must yield the item, which makes Scrapy know there’s an
item to handle.

The current state of the spider can be found in the folder 02_basic_
spider among the sources of this chapter.

Why ltems?

Good question! Because items are dictionary-like objects; alternatively,

you can use dictionaries to store your information.
item = {}

This doesn’t result in any difference in coding or handling results,
although Scrapy’s items hold some extended information that some
components use. For example, exporters look at which fields to export,
serialization can be customized by Items metadata, and you can use them
to find memory leaks.

You will see later in this chapter that sometimes it is convenient to use
a simple dictionary instead of an item. But for now, you should use items.

Running the Spider

Now it is time to start our spider, because we finished the extractor
methods and added the items to export.
To start the spider, execute

scrapy crawl basic

127

CHAPTER 4 USING SCRAPY

from your crawler-projects main folder (where the scrapy. cfg file is
located). In my case, this is

C:\wswp\chapter_4\sainsburys

Depending on your logging configuration, you either see something
similar to this:

018-02-11 13:52:20 [scrapy.utils.log] INFO: Scrapy 1.5.0

started (bot: sainsburys)

2018-02-11 13:52:20 [scrapy.utils.log] INFO: Versions: lxml

4.1.1.0, libxml2 2.9.5, cssselect 1.0.3, parsel 1.4.0, w3lib

1.19.0, Twisted 17.9.0, Python 3.6.3 (v3.6.3:2c5fed8, Oct 3

2017, 18:11:49) [MSC v.1900 64 bit (AMD64)], pyOpenSSL 17.5.0

(OpenSSL 1.1.0g 2 Nov 2017), cryptography 2.1.4, Platform

Windows-10-10.0.16299-SP0

2018-02-11 13:52:20 [scrapy.crawler] INFO: Overridden settings:

{"BOT_NAME': 'sainsburys', 'CONCURRENT REQUESTS': 1, 'LOG_

LEVEL': '"INFO', 'NEWSPIDER MODULE': 'sainsburys.spiders’,

"ROBOTSTXT _OBEY': True, 'SPIDER MODULES': ['sainsburys.

spiders'], 'USER_AGENT': 'Mozilla/5.0 (Windows NT 10.0; Win64;

x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/63.0.3239.84

Safari/537.36'}

2018-02-11 13:52:20 [scrapy.middleware] INFO: Enabled

extensions:

['scrapy.extensions.corestats.CoreStats’,
'scrapy.extensions.telnet.TelnetConsole’,
"scrapy.extensions.logstats.LogStats']

2018-02-11 13:52:20 [scrapy.middleware] INFO: Enabled

downloader middlewares:

['scrapy.downloadermiddlewares.robotstxt.RobotsTxtMiddleware",
'scrapy.downloadermiddlewares.httpauth.HttpAuthMiddleware',

128

CHAPTER 4 USING SCRAPY

'scrapy.downloadermiddlewares.downloadtimeout.
DownloadTimeoutMiddleware',
'scrapy.downloadermiddlewares.defaultheaders.
DefaultHeadersMiddleware',
'scrapy.downloadermiddlewares.useragent.UserAgentMiddleware’,
'scrapy.downloadermiddlewares.retry.RetryMiddleware',
'scrapy.downloadermiddlewares.redirect.MetaRefreshMiddleware',
'scrapy.downloadermiddlewares.httpcompression.
HttpCompressionMiddleware',
'scrapy.downloadermiddlewares.redirect.RedirectMiddleware’,
'scrapy.downloadermiddlewares.cookies.CookiesMiddleware',
'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware',
"scrapy.downloadermiddlewares.stats.DownloaderStats']

2018-02-11 13:52:20 [scrapy.middleware] INFO: Enabled spider

middlewares:

['scrapy.spidermiddlewares.httperror.HttpErrorMiddleware',
'scrapy.spidermiddlewares.offsite.OffsiteMiddleware',
'scrapy.spidermiddlewares.referer.RefererMiddleware’,
'scrapy.spidermiddlewares.urllength.UrlLengthMiddleware’,
'scrapy.spidermiddlewares.depth.DepthMiddleware"]

2018-02-11 13:52:20 [scrapy.middleware] INFO: Enabled item

pipelines:

[]

2018-02-11 13:52:20 [scrapy.core.engine] INFO: Spider opened

2018-02-11 13:52:20 [scrapy.extensions.logstats] INFO: Crawled

0 pages (at 0 pages/min), scraped 0 items (at 0 items/min)

2018-02-11 13:53:20 [scrapy.extensions.logstats] INFO: Crawled 220

pages (at 220 pages/min), scraped 205 items (at 205 items/min)

2018-02-11 13:54:20 [scrapy.extensions.logstats] INFO: Crawled 442

pages (at 222 pages/min), scraped 416 items (at 211 items/min)

129

CHAPTER 4 USING SCRAPY

2018-02-11 13:55:20 [scrapy.extensions.logstats] INFO: Crawled 666
pages (at 224 pages/min), scraped 630 items (at 214 items/min)
2018-02-11 13:56:20 [scrapy.extensions.logstats] INFO: Crawled 883
pages (at 217 pages/min), scraped 834 items (at 204 items/min)

2018-02-11 14:12:20 [scrapy.extensions.logstats] INFO: Crawled
4525 pages (at 257 pages/min), scraped 4329 items (at 246
items/min)
2018-02-11 14:13:01 [scrapy.core.engine] INFO: Closing spider
(finished)
2018-02-11 14:13:01 [scrapy.statscollectors] INFO: Dumping
Scrapy stats:
{'downloader/request bytes': 11644228,
"downloader/request_count': 4720,
"downloader/request_method count/GET': 4720,
"downloader/response bytes': 72337636,
"downloader/response _count': 4720,
"downloader/response_status_count/200': 4718,
"downloader/response_status_count/302': 1,
"downloader/response status count/404': 1,
'finish reason': 'finished',
"finish time': datetime.datetime(2018, 2, 11, 13, 13, 1, 337489),
"item scraped count': 4515,
'log_count/INFO': 27,
'offsite/domains': 1,
'offsite/filtered': 416,
'request_depth max': 13,
'response_received count': 4719,
"'scheduler/dequeued': 4719,
'scheduler/dequeued/memory": 4719,

130

CHAPTER 4 USING SCRAPY

'scheduler/enqueued': 4719,

'scheduler/enqueued/memory': 4719,

"start_time': datetime.datetime(2018, 2, 11, 12, 52, 20,
860026) }
2018-02-11 14:13:01 [scrapy.core.engine] INFO: Spider closed
(finished)

or a lot more information buzzing through your screen. This is because
of the default logging level. If you don't set it explicitly to INFO, you get all
information Scrapy-developers thought useful. And one portion of this
information is the item that was gathered. It is good to see on the console
which items are processed, but for more than 3,000 entries this generates a
lot of unwanted output.

These first lines of the prcedimg output tell you what configuration
runs Scrapy. Here you can see the middlewares, pipelines, extensions, and
all the important stuff to analyze if you encounter strange results.

2018-02-11 13:53:20 [scrapy.extensions.logstats] INFO: Crawled 220
pages (at 220 pages/min), scraped 205 items (at 205 items/min)

Over time, a new line like the preceding one pops up on the screen.
This tells you the current progress: how many pages are scraped, how
many items are extracted, and how fast the scraping is. These numbers
vary on your settings: if you increase the concurrent requests and decrease
the delay between requests, this will get faster (depending on the target
website, of course). If you find such statistics annoying, you can disable
them by adding the following to your spider’s settings.py:

EXTENSIONS = {
"scrapy.extensions.logstats.LogStats': None

131

CHAPTER 4 USING SCRAPY
When the scraping is done, you will see a similar summary to this:

2018-02-11 14:13:01 [scrapy.core.engine] INFO: Closing spider
(finished)
2018-02-11 14:13:01 [scrapy.statscollectors] INFO: Dumping
Scrapy stats:
{'downloader/request bytes': 11644228,
"downloader/request_count': 4720,
"downloader/request_method count/GET': 4720,
"downloader/response bytes': 72337636,
"downloader/response_count': 4720,
"downloader/response_status_count/200': 4718,
"downloader/response status count/302': 1,
"downloader/response _status_count/404': 1,
‘finish reason': 'finished',
'"finish time': datetime.datetime(2018, 2, 11, 13, 13, 1, 337489),
'item scraped count': 4515,
"log_count/INFO': 27,
'offsite/domains': 1,
'offsite/filtered': 416,
'request_depth max': 13,
'response_received count': 4719,
'scheduler/dequeued': 4719,
'scheduler/dequeued/memory': 4719,
'scheduler/enqueued’: 4719,
'scheduler/enqueued/memory': 4719,
"'start time': datetime.datetime(2018, 2, 11, 12, 52, 20, 860026)}
2018-02-11 14:13:01 [scrapy.core.engine] INFO: Spider closed
(finished)

In these statistic dumps you can find the summary of the whole
scraping process: requests, errors, different HTTP codes, number of items
scraped, memory usage, and many other useful things. This can give you

132

CHAPTER 4 USING SCRAPY

ideas about where to enable extensions (for example finding which outside
domains were triggered or which page wasn’t found).

Download finished in 20 minutes. This is way better than the run using
my basic scraper from Chapter 3 (I let it run prior to this run and it took
4,009 seconds). And we didn’t have to write so much code.

Exporting the Results

Now you have the extracted data, you have the items representing the
information, but the results are gone as soon as the spider finishes, and the
Python process is gone from the memory of your computer.

Fortunately, Scrapy offers you built-in solutions, but they are very
basic (you can call them primitive). But there’s a way to plug in your
custom solution and make the scraper behave.

In this section we will first explore the built-in options and see if
they’re really so primitive. Then we will take a look at how to shape the
export to our needs—and yes, this requires writing some code.

Because Scrapy knows that scraping results in saving extracted
information, it doesn’t require you to configure the exporter pipeline. You
can tell Scrapy to export the scraped results easily via the command-line
using the -0 option. From this, Scrapy will figure out what type of file you
want to save if you provide the right file-extension (. csv for CSV, . json for
JSON), or you can add the -t option too and tell in what format you want
the data in your specified output file (the value provided with -t has to be
a valid feed exporter—-more on those later).

The only problem I encountered with these default exporters is that they
append the results to the file: if the file doesn’t exist, there’s no problem.
However, if the file exists and has contents (for example from a previous run)
then the new data is simply appended to the file, resulting in invalid content.

Besides the JSON and CSV exporters I will discuss in the next section,
you can export your items in XML, Pickle, or Marshal format. They are
done with built-in item exporters and use already provided functionality.

133

CHAPTER 4 USING SCRAPY

To CSV

The first approach is to export everything to CSV. As you can see in the
previous paragraph, you simply have to run the spider with the -0 option
providing a CSV file.

scrapy crawl basic -o sainsburys.csv

If the scraper is finished, you can open the sainsburys.csv file and
look at its contents.

item code,nutritions,price per unit,product image,product_
name,product origin,product reviews,rating,unit,url
7906825,"{"'Energy ': '762kJ/', 'Fat ': '9.8g', 'Saturates':
'3.5g", 'Carbohydrates': '6.6g', 'Sugars': '3.5g', 'Protein

': '16g', 'Salt ': '1.71g'}",£3.00,https://www.sainsburys.
co.uk/wcsstore7.25.53/ExtendedSitesCatalogAssetStore/images/
catalog/productImages/23/5060084344723/5060084344723_L.
jpeg,Black Farmer Reduced Fat Sausages 400g,,0,0.0,,https://
www.sainsburys.co.uk/shop/ProductDisplay?storeId=10151&product
Id=1200360&urlRequestType=Base&categoryld=352852&catalogId=1019
48%langId=44

Note For Windows users, you may encounter extra blank lines in
your file. This is because of a currently open bug in Scrapy but the
main reason is in the line-ending differences between the operating
systems. There’s already a pull-request at GitHub® when I’'m writing
this; it has been merged and | hope it’s available with the next
released Scrapy version.

https://github.com/scrapy/scrapy/pull/3039
134

https://github.com/scrapy/scrapy/pull/3039

CHAPTER 4 USING SCRAPY

Because each line has a lot of content, I don’t want to list more
here. But you can already see the interesting part: the nutrition column
(in my example the second column). It has curly braces ({}) with the
nutrition dictionary written out as text. This is not good; therefore, we will
implement a custom item exporter to handle this case.

To JSON

Exporting to JSON works similar to CSV: you provide a JSON file as output.
scrapy crawl basic -o sainsburys.json

The result is a JSON file containing entries like this one:

"url": "https://www.sainsburys.co.uk/shop/ProductDisplay?store
Id=101518productId=1200360&urlRequestType=Basedcategoryld=352
8528catalogId=1012381langld=44",
"product_name": "Black Farmer Reduced Fat Sausages 400g",
"product_image": "https://www.sainsburys.co.uk/
wcsstore7.25.53/ExtendedSitesCatalogAssetStore/images/
catalog/productImages/23/5060084344723/5060084344723_L. jpeg",
"price_per unit": "\u00Oa33.00",
"rating": "0.0",
"product_reviews": "0",
"item_code": "7906825",
"nutritions": {

"Energy ": "762k3/",

"Fat ": "9.8g",

"Saturates": "3.5g",

"Carbohydrates": "6.6g",

"Sugars": "3.5g",

"Protein ": "16g",

135

CHAPTER 4 USING SCRAPY

"Salt ": "1.71g"
}

"product_origin":

}

Using JSON, the nutrition dictionary fits great into the exported
result. The keys could use a bit of tidying, but for now the structure looks
great.

There’s a little flaw in there: those nasty Unicode characters. To fix this,
add the following line to your settings.py file:

FEED _EXPORT_ENCODING = 'utf-8'

After running the scraper again, the same entry looks like this:

"url": "https://www.sainsburys.co.uk/shop/ProductDisplay?store
Id=101518productId=12003608urlRequestType=Base8categoryId=276
0418catalogld=1017281angId=44",
"product _name": "Black Farmer Reduced Fat Sausages 400g",
"product_image": "https://www.sainsburys.co.uk/
wcsstore7.25.53/ExtendedSitesCatalogAssetStore/images/
catalog/productImages/23/5060084344723/5060084344723_L. jpeg",
"price_per unit": "£3.00",
"rating": "0.0",
"product_reviews": "0",
"item code": "7906825",
"nutritions": {

"Energy ": "762k3/",

"Fat ": "9.8g",

"Saturates": "3.5g",

"Carbohydrates": "6.6g",

"Sugars": "3.5g",

136

CHAPTER 4 USING SCRAPY

"Protein ": "16g",
Ilsalt ll: "1.71gll
}
"product_origin": ""

}

As an alternative to whole JSON files, you can use JSON-lines. This
format exports every item as a single JSON object, which enables handling
alarge amount of data because you don’t have to load everything into
memory and put it together into a megaobject to write to a file—or be read
by your target platform.

Scrapy has a built-in exporter for this result type too, and you can
access it with the following command:

scrapy crawl basic -o sainsburys.jl

If you look at your file system while running the spiders, you will see
that JSON-lines files are written to the disk as soon as they’re processed by
the item pipelines! You don’t have to wait till the scraping is done to get a
valid file.

To Databases

Well, for databases there’s no out of the box solution; you cannot add an
extra parameter to the command line to write your results into a database.

If you want your data stored in a database, then you have to write your
own solution. However, because storing in a database is a use-case I often
encounter, I wanted to add it into this section and not in the next one when
I write about bringing your own exporter.

We will take a look at two different types of databases: MongoDB and
SQLite. They represent the approach to the majority of databases currently
in use, although other cloud-based storage solutions are rising, but most of
the clients are still using these types of databases.

137

CHAPTER 4 USING SCRAPY

MongoDB

First let’s go and create the item pipeline.
import pymongo
class MongoDBPipeline(object):

def init (self, mongo uri, mongo db, collection name):
self.mongo_uri = mongo_uri
self.mongo_db = mongo_db
self.collection name = collection_name

@classmethod
def from crawler(cls, crawler):
return cls(

mongo_uri=crawler.settings.get('MONGO URI"),
mongo_db=crawler.settings.get('MONGO DATABASE',
"items'),
collection _name=crawler.settings.get('MONGO
COLLECTION', 'sainsburys')

)

def open_spider(self, spider):
self.client = pymongo.MongoClient(self.mongo uri)
self.db = self.client[self.mongo db]

def close spider(self, spider):
self.client.close()

def process item(self, item, spider):
self.db[self.collection name].insert one(dict(item))
return item

138

CHAPTER 4 USING SCRAPY

The idea while using any database is that you need a connection to the
target database and you must clean up after you are finished. The pipeline
above does this.

open_spider is called every time the spider is started, when the scrape
starts. close_spider is called when the spider finishes its work and is
dismissed. And these are the two methods where you have to open and
close the connection to the database.

process_item processes the item, and in this case this item is stored in
the database.

But the most interesting method is the from _crawler. If present, it
has to return a new instance of the pipeline. The crawler provided to the
method should be used to access the crawler-specific settings. In the case
of the example, we get the connection, database, and collection settings—
where the last two have default values and you don’t have to provide them.

To have your pipeline working, you have to configure itin settings.py.

ITEM PIPELINES = {
"sainsburys.pipelines.MongoDBPipeline': 300

Then you need to provide the database configuration. You can do it
either in the settings.py file (which makes the configuration
hard-coded):

MONGO_URI = 'localhost:27017'
or you can provide it through the command line when starting the spider:
scrapy crawl basic -s MONGO URI=localhost:27017

Because we’re using pymongo, we don’t even have to provide the
database URI. In such cases, pymongo creates a default connection to
localhost:27017.

139

CHAPTER 4 USING SCRAPY

After running the spider, we can see the results in the database, as
shown in Figure 4-2.

> 1 System

« B items
v | Collections (1)
b ,_ SNy) arsburys (L) 0,000 sec.
3 1 Functions Key Volue Tipe
3 7 Users w3 (1) Objectia["53808 880000 1d2MbcIBL3L") 110 fiedcs } !
L d Objectid Sa808ad0afd2 fhea860307)
= il Fittps. £t 10151 &pro.. S
= productname Black Farmer Reduced Fat Sausages 400g
= product image hops ins 35,53 ABIOGASS... Sir
< price_per_unit £200
rating oo
=2 product_reviews [
== itemn_code TI0GEES
w43 putritions. 17 fieids |
== Energy T2k
= Fat 959
Saturates 35
=5 Casbohydrates 6ig
=5 Sugars i5g
= Praotein 165

== Salt 17g
== product_ornigin

Figure 4-2. The same item as previously—now in MongoDB

You can find a spider using MongoDB to store the extracted
information in the folder 03_mongodb among the sources for this
chapter.

SQLite

Similar to the MongoDB solution, when using a SQLite database, you have
to open and close the connection when the spider is started and finished,
respectively.

Because handling the nutrition table gets too complex (with the
70 fields, which could be reduced), | won’t implement this part of
the export. If you’re interested and want to give it a try, don’t feel
intimidated by my approach!

140

CHAPTER 4 USING SCRAPY
First, I defined the table DDL and the insert statement.

sqlite ddl = """

CREATE TABLE IF NOT EXISTS {} (
item code INTEGER PRIMARY KEY,
product_name TEXT NOT NULL,
url TEXT NOT NULL,
product_image TEXT,
product origin TEXT,
price_per_unit TEXT,
unit TEXT,
product reviews INTEGER,
rating REAL

)

sqlite insert =
INSERT OR REPLACE INTO {}
values (2, 2, 2, 2, 2, 2, 2, 2, ?)

Then I've written the code.

class SQLitePipeline:
def _init (self, database location, table name):
self.database location = database location
self.table name = table name
self.db = None

@classmethod
def from crawler(cls, crawler):
return cls(
database location=crawler.settings.get('SQLITE
LOCATION'),

141

CHAPTER 4 USING SCRAPY

table name=crawler.settings.get('SQLITE_TABLE',
"sainsburys'),

)

def open_spider(self, spider):
self.db = sqlite3.connect(self.database location)
self.db.execute(sqlite ddl.format(self.table name))

def close spider(self, spider):
if self.db:
self.db.close()

def process item(self, item, spider):
if type(item) == SainsburysItem:
self.db.execute(sqlite _insert.format(self.table
name),

item['item code'],

item['product name'],
item['url'], item['product
image'],

item['product_origin'],
item['price_per unit'],
item['unit'] if hasattr(item,
'unit') else None,
int(item['product reviews'])
if hasattr(item, 'product
reviews') else None,
float(item['rating']) if
hasattr(item, 'rating') else
None

self.db.commit()

142

CHAPTER 4 USING SCRAPY

As you can see, the class works almost the same as the MongoDB
pipeline from the previous example. The interesting part comes when
you insert it into the database. Because we have some nullable fields (and
properties that don’t have to exist in the item), we have to ensure that we
don’t encounter a Python error while saving.

To test out the code, you have to add the pipeline to settings.py.

ITEM PIPELINES = {
'sainsburys.pipelines.MongoDBPipeline': None
'sainsburys.pipelines.SQLitePipeline': 300

Now you can run the application.
scrapy crawl basic -s SQLITE LOCATION=sainsburys.db

Don'’t forget to add the SQLite location with the -s settings flag.
Without this you’ll get an exception.

You can find a spider using SQLite to store the extracted information
in the folder 04_sqlite among the sources for this chapter.

Bring Your Own Exporter

This section is the most interesting if you followed along and think the
default exporting solution doesn't fit your needs.

Besides item pipelines (which we implemented for database
connections), you can define your own feed exporters. These work like the
built-in CSV, XML, and JSON exporters but adapted to your taste. In this
section we will take a look at both approaches, even though you've already
written two item pipelines for database storage.

143

CHAPTER 4 USING SCRAPY

You will now implement a CSV pipeline that will handle the
nutritions field properly: instead of writing the whole dictionary as plain
text, you will append the fields to the main content.

This requires you to store the extracted items in a cache just like with
Beautiful Soup, because you cannot know the possible fields you may
encounter in all the items. Remember: The website has multiple different
nutrition tables that have more or less the same fields.

Filtering Duplicates

You remember the SQLite pipeline. There we defined INSERT OR REPLACE
INTO when we saved an item into the database. This is because there are
duplicate items that can be found from different pages on the website.

With SQLite you can easily overcome this problem, but with other
exports you get too much data, and duplicates are never good. Sure, the
postprocessing (your customer or data mining algorithm) can fix this, but
why not you?

Because Scrapy is highly extensible, you will create a duplicate filter
based on the item code.

from scrapy.exceptions import DropItem

class DuplicateItemFilter:
def init (self):
self.item codes seen = set()

def process item(self, item, spider):
if item['item code'] in self.item codes seen:
raise DropItem("Duplicate item found: %s" %
item['item code'])

self.item codes seen.add(item['item code'])
return item

144

CHAPTER 4 USING SCRAPY

The preceding code stores seen item codes in an internal set, and if
the item code was seen already then it discards the item.
To enable this pipeline, add the following code to your settings.py file:

ITEM PIPELINES {
"sainsburys.pipelines.DuplicateltemFilter': 1

Setting a low value for the pipeline ensures that duplicates are filtered
as soon as they arrive, saving a lot of work for other tasks.

And you can use such filter pipeline items for every possible kind of
filtering. If you don’t want an item to be present in the final export, then
you can create a filter pipeline, add it to your settings.py, and it handles
missing values.

Silently Dropping ltems

If you add the item filter from the previous section and run your spider,
you will see a lot of entries like this one:

2018-02-13 09:48:42 [scrapy.core.scraper] WARNING: Dropped:
Duplicate item found: 7887890
{"'image urls': ['https://www.sainsburys.co.uk/wcsstore7.25.53/
ExtendedSitesCatalogAssetStore/images/catalog/productImages/74/
0000000306874/0000000306874 L.jpeg'],
'item_code': '7887890',
‘nutritions': {'Carbohydrate': '13.7g',
"Energy': '664kJ',
"Energy kcal': '158kcal’,
'"Fat': '6.0g"',
'Fibre': '2.6g',
'Mono-unsaturates': '3.5g',
'Polyunsaturates’: '1.5g",

145

CHAPTER 4 USING SCRAPY

'Protein': '11.1g',
'Salt': '0.91g’,
'Saturates': '0.5g',
"Starch': '10.5g',
"Sugars': '3.2g'},
'price per unit': '£2.50',
'product_image': "https://www.sainsburys.co.uk/
wcsstore7.25.53/ExtendedSitesCatalogAssetStore/images/
catalog/productImages/74/0000000306874/0000000306874 L.jpeg’,
‘product_name': "Sainsbury's Mediterranean Tuna Fishcakes,
Taste the "
'Difference 300g’,
"product_origin': 'Produced in United Kingdom Produced using
Yellowfin tuna '
"caught by hooks and lines in the Western
Indian Ocean, '
'"Eastern Indian Ocean, Western Central
Pacific Ocean and '
"Eastern Central Pacific Ocean',
‘product_reviews': '4',
‘rating': '2.0',
‘url': 'https://www.sainsburys.co.uk/shop/gb/groceries/all-
fish-seafood/sainsburys-mediterranean-tuna-fishcakes--taste-
the-difference-300g'}

One solution would be to raise the LOG_LEVEL to ERROR, but with
this approach you end up skipping other warnings that can be useful in
analyzing not expected behavior.

The other solution would be to write your own log-formatter for
dropped items.

from scrapy import logformatter
import logging

146

CHAPTER 4 USING SCRAPY

class SilentlyDroppedFormatter(logformatter.LogFormatter):
def dropped(self, item, exception, response, spider):
return {
'‘level': logging.DEBUG,
'‘msg': logformatter.DROPPEDMSG,
‘args': {
"exception’: exception,
"item': item,

}

To use this formatter, you must enable it in the settings.py file.

LOG_FORMATTER = 'sainsburys.formatter.SilentlyDroppedFormatter'

You can find a spider using the duplicate item filter in the folder
05_item_filter among the sources for this chapter.

Fixing the CSV File

Do you remember what problem the currently exported CSV files have?
Yes, they write the nutrition information as plain text into one column of
the CSV file. This is not ideal.

Besides this, the order of the columns may vary between runs because
they're stored in a dictionary.®

You will implement an item pipeline that stores every item during the
scraping process and exports only when the spider finishes.

®In the current version of Python, the dictionaries are ordered by their key per
default. This means every time you run your spider on the same 3.6 CPython
implementation, the order of the columns will stay the same.

147

CHAPTER 4 USING SCRAPY
class CsvItemPipeline:

def _init (self, csv_filename):
self.items = []
self.csv_filename = csv_filename

@classmethod
def from crawler(cls, crawler):
return cls(
csv_filename=crawler.settings.get('CSV_FILENAME',
"sainsburys.csv'),

)

def open_spider(self, spider):
pass

def close spider(self, spider):
import csv
with open(self.csv_filename, 'w', encoding='utf-8') as
outfile:
spamwriter = csv.DictWriter(outfile, fieldnames=self.
get fieldnames(), lineterminator="\n")
spamwriter.writeheader()
for item in self.items:
spamwriter.writerow(item)

def process item(self, item, spider):
if type(item) == SainsburysItem:
new item = dict(item)
new_item.pop('nutritions")
new_item.pop('image urls")
self.items.append({**new_item, **item['nutritions']})
return item

148

CHAPTER 4 USING SCRAPY

def get fieldnames(self):
field names = set()
for product in self.items:
field names.update(product.keys())
return field names

You can see that every processed item is converted to a new dictionary
that contains all the fields of the original item, then nutritions and
image urls are removed, finally the original nutritions dictionary is
added to this new item by combining the two dictionaries, and the result is
stored in memory for later usage.

When the spider finishes, all the different field names are extracted
from all the items and are used as the CSV header. The order still varies
between Python installations. To fix the order (at least for the standard
properties that are not nutrition information) you can define a base list of
properties and then add the missing values—something like this:

class CsvItemPipeline:
fieldnames standard = ['item code', 'product name',
'url', 'price_per unit', 'unit', 'rating', 'product_
reviews', 'product origin', 'product image']

def get fieldnames(self):
field names = set()
for product in self.items:
for key in product.keys():
if key not in self.fieldnames standard:
field names.add(key)
return self.fieldnames standard + list(field names)

As always, you can add this pipeline to your settings.py file.

ITEM_PIPELINES = {
"sainsburys.pipelines.CsvItemPipeline': 800,

149

CHAPTER 4 USING SCRAPY

However, using this approach, the CSV file will be written every time
you run the spider, even if you export into a different format or don’t want
any export.

To solve this problem, let’s implement a feed exporter.

You can find a spider using this CSV item pipeline in the folder
06_csv_pipeline among the sources for this chapter.

CSV Item Exporter

Feed exports are similar to item pipelines, but you can write them in
a general fashion and use them on-demand, without changing the
settings.py file.

You already used feed exporters (an alternative name for item
exporters) when you saved information to CSV, JSON, or JSON-lines files
using the -o output file and Scrapy could derive the exporter to use, or you
can provide the -t option and tell Scrapy which exporter you want to use.
The following list contains the currently built-in feed exporters:

e csv:saves information as CSV

e json:saves information as JSON

e jsonlines: saves information as JSON-lines
o xml:saves information as XML

o pickle: saves information as Pickle data

o marshal: saves information in Marshal format, which is
similar to Pickle (specific to Python) but doesn’t have
any machine architectural issues

Because item exporters are similar to item pipelines, they process only
one item at a time, we have to be tricky and save the items in memory just

150

CHAPTER 4 USING SCRAPY

like for the CsvItemPipeline class. Basically, we will reuse the already
written code and rename some methods.

from scrapy.exporters import BaseItemExporter
import io
import csv

class CsvItemExporter(BaseItemExporter):
fieldnames standard = ['item code', 'product name', 'url’,
'price per unit', 'unit', 'rating', 'product reviews',
"product_origin', 'product_image']

def _init_(self, file, **kwargs):
self. configure(kwargs)
if not self.encoding:
self.encoding = 'utf-8'

self.file = io.TextIOWrapper(file,
line_buffering=False,
write through=True,
encoding=self.encoding)
self.items = []

def finish_exporting(self):
spamwriter = csv.DictWriter(self.file,
fieldnames=self. get fieldnames(),
lineterminator="\n")
spamwriter.writeheader()
for item in self.items:
spamwriter.writerow(item)

def export item(self, item):
new item = dict(item)
new_item.pop('nutritions")

151

CHAPTER 4 USING SCRAPY

new_item.pop('image urls")
self.items.append({**new_item, **item['nutritions']})

def _get fieldnames(self):
field names = set()
for product in self.items:
for key in product.keys():
if key not in self.fieldnames standard:
field names.add(key)
return self.fieldnames standard + list(field names)

But item exporters have a problem: they don’t delete the file, they
append to it. Fortunately, there is a solution: you can truncate the file to 0
bytes using the truncate() method. The extended constructor would look
like this:

def _init (self, file, **kwargs):
self. configure(kwargs)
if not self.encoding:
self.encoding = 'utf-8'

self.file = io.TextIOWrapper(file,
line_buffering=False,
write_through=True,
encoding=self.encoding)

self.file.truncate(0)

self.items = []

And again, we must add the item exporter to the settings.py to let
Scrapy know that there’s another option you can use.

FEED_EXPORTERS = {
'mycsv': 'sainsburys.exporters.CsvItemExporter'

152

CHAPTER 4 USING SCRAPY

Here you provided mycsv as the name of the feed exporter. This means,
later you can call the spider using the -t option and mycsv as argument.

scrapy crawl basic -o mycsv.csv -t mycsv

You can find an example spider using the just-created feed exporter
in the folder 07_csv_feed_exporter among the sources for this
chapter.

Caching with Scrapy

Even though I think using caching is an advanced configuration option,
I've added an extra section for this topic to cover. This is because it
improves your execution time by multiple times, and once you cache the
website locally you can tweak your scraper script as you wish without
overloading the target server.

If you want to configure caching, for example while developing your
scripts, there are some options in Scrapy. Naturally, you can write your
own cache just like you did in the previous chapter but before you invest
time, sweat, and brain cells into coding your cache, let’s see what is
present, what can we utilize.

Scrapy offers caching. The default configuration disables caching; this
means, every page is downloaded every time you request it. But as you
know, there are a lot of knobs you can turn, and you can enable caching
with the HTTPCACHE_ENABLED = True setting.

There are three HTTP cache options you can utilize out of the box:

o File system storage
o DBM storage

e LevelDB storage

153

CHAPTER 4 USING SCRAPY

And as always, you can write your own solution too; however,
I consider this scenario unlikely, because 90% of use-cases can be covered
with the built-in solutions.

My default caching configuration looks like this:

HTTPCACHE_ENABLED = True
HTTPCACHE _EXPIRATION SECS = 0
HTTPCACHE DIR = 'httpcache’
HTTPCACHE_IGNORE_HTTP_CODES = []

With this you can enable caching, and when you run your spider it
stores every request-response pair on your file system in the . scrapy/
httpcache folder in your project’s directory, and from now on it uses this
cache when you rerun your spider. This is ideal for tweaking your script:
download a snapshot of the target website and use it for fine-tuning your
item extraction.

If you have any HTTP response codes that you don’t want cached, you
can add them in the HTTPCACHE_IGNORE_HTTP_CODES list, for example:

HTTPCACHE_IGNORE_HTTP CODES = [503, 418]

Setting HTTPCACHE_EXPIRATION_SECS to 0 keeps files always in the
cache. If you give it a positive value, older cached files are discarded.
Note that this setting requires values in seconds!

Let’s see what caching has to offer!

Storage Solutions

In this section we will look at the different storage solutions Scrapy has to
offer for caching. Out of the box you have the following options available:

o File System Storage
e DBM Storage

e LevelDB Storage

154

CHAPTER 4 USING SCRAPY

But because you can extend Scrapy easily, you can write your own
storage solution (for example to use a custom database, like MongoDB).

If you ask me, I am fine with a file system-based solution. However,
if you're running on-demand (for example in the cloud or in a container
environment), you may favor a remote caching service, which is most
likely based on a database.

File System Storage

If you enable HTTP caching, this is the default solution used. Even though
it's the default, you can add the following line to your settings.py file:

HTTPCACHE STORAGE = 'scrapy.extensions.httpcache.
FilesystemCacheStorage'

Using this storage option, all requests and responses are downloaded
and stored in a folder whose name is unique for this scraper and is 40
characters long. In these folders is all the information identifying the
request and the response the middleware will need to identify pages that
should be served from the cache.

DBM Storage

To activate the DBM storage, just add (or replace if it exists).

HTTPCACHE_STORAGE = 'scrapy.extensions.httpcache.
DbmCacheStorage'

The default setting is to use the anydbm module, but you can change it
using the HTTPCACHE_DBM_MODULE setting.

"https://en.wikipedia.org/wiki/Dbm

155

https://en.wikipedia.org/wiki/Dbm

CHAPTER 4 USING SCRAPY

LevelDB Storage

You can also use LevelDB? (a fast key-value storage) for your cache, but it is
not encouraged in the development phase of your project because it allows
only a single process to access the database at the same time. This is OK if
you just run your spider, but if you want to have the Scrapy shell open for
your project and run the spider you will end up with an error.

To use Level DB you can change the HTTPCACHE_STORAGE to 'scrapy.
extensions.httpcache.LeveldbCacheStorage' in the settings.py file
and install Level DB with the following command:

pip install leveldb

Cache Policies

Scrapy comes with two default policies for caching:
e Dummy policy

o RF(C2616 policy

Dummy Policy

The Dummy policy is the default setting. Here, every request and its
response are stored, and when the same request is seen again, the stored
response is returned. This is useful if you are testing your spider and want
to replay runs at the same.

Because this is the default policy, you don’t have to add anything to
your project’s settings.py file.

8https://github.com/google/leveldb

156

https://github.com/google/leveldb

CHAPTER 4 USING SCRAPY

RFC2616 Policy

This policy is aware of cache-control settings and is aimed at production
use to avoid downloading unchanged pages, save bandwidth, and
speed-up crawls.

To enable this policy, add the following setting to your settings.py file:

HTTPCACHE POLICY = scrapy.extensions.httpcache.RFC2616Policy

What does aware of cache-control settings mean? It means that the
scraper works according to the RFC2616 caching specification. If you are
lazy and don’t want to read the whole specification, here is a small excerpt
of what Scrapy can do for you:

o Ifthe website provides a no-store response, Scrapy
won'’t try to store requests or responses.

o Ifthe no-cache directive is set, Scrapy won't return
the response from the cache, even it is downloaded
recently.

o It computes the current age from the Age or the Date
headers.

o It computes the freshness lifetime from the max-age
directive, the Expires, and the Last-Modified
response headers.

However, when writing this book, some RFC2616 compliance
requirements are not met, such as:

e Pragma: no-cache support
o Vary header support

o Invalidation after updates or deletes

157

CHAPTER 4 USING SCRAPY

Downloading Images

Even though this is not a requirement for our project, you will encounter
many tasks where you must download images besides data. Fortunately,
Scrapy has a built-in solution for this problem too.

For this section, let’s extend our requirements to gather images along
with the items. These images will be saved on your file system besides your
project files, but you can configure your spider to store the downloaded
files at Amazon S3 or Google Cloud.

Because Scrapy uses Pillow for image resizing and thumbnail
generation, you must install it before you can start gathering images.

pip install pillow
To get started, first add the following to your settings.py file:

ITEM_PIPELINES = {
'scrapy.pipelines.images.ImagesPipeline': 5

And you have to tell Scrapy where to save the downloaded images.
I use the images folder inside the project.

IMAGES_STORE = 'images'

The folder you provide to IMAGES STORE must exist.

The combination of those two settings activates the image pipeline,
which downloads the files and stores them on your computer’s hard disk.
To get items into this pipeline, you must add

image urls = Field()
images = Field()

to your Item. This is because the ImagesPipeline works using the
image urls field and adds the resulting images to the images field.

158

CHAPTER 4 USING SCRAPY

In the case of the Sainsbury’s scraper, we must rename product_image

to image_urls, add images in the SainsburysItem, and change the spider

code to fill image_urls with a list instead of a URL.

item['image urls'] = [response.urljoin(

response.xpath('//div[@id="productImageHolder"]/img/@sxc").

extract()[0])]

Now if you run your spider and save the results (for example using

scrapy crawl basic -o images.jl), you will see the downloaded images

in the images/full folder, similar to the one shown in Figure 4-3.

MName

B

¥ 01554ca3924bd70f2564ef51b9ef9873084b8b8c
e 01c8eb751d4fc0f35dab497bb7a19e72bbb1484d
¥ 024ef67b6ba3d13c9a81815b4a761fe92f474760
$0258c6884eaa2199dd53f80e400ac9b782ea842d
$026308dc6fe278a390810d87dd6790163d3c23b3
¥ 0314ab1317a2600cb4ed19106494660482783c9
¥ 03f4f9c000bf8aa753d06304b169ece4b8b4f1c8
$040676510238bac65e621ae4168d292296075197
£ 041c61322681b47ed4591f11f9de8e9f1fb028e1

ke 0433aa23e7e71ff6a9¢ca5da8c87beefed29f283e
$04851a3c7abc3171bdbcfa8a2eb4925e7ca0d184
§05014cf44ea1275204c2c8cT744e23854416fd37b
$05107856d6203c135b2eebe318a42558d9867493
¥ 056fcd928588581da576ba3ebbcff83a790efSbf
$057e32749e676a0f2683691c4f0d922770a25¢93
§058c4bc619d9f7e81feSedb0ec9b0f20b88b5215
f06bbb21e9c4e4887ad44f2391bbed36e9811e05f
¥ 06d0c073bfdc917e058bf9f3a7f2e68927 26649
$0737393d450d5475b744081b32ffe31e5a082¢6b
¥ 0742003¢95181¢516e631534808¢36eb1f9ce500

¥ 074e0db6681d2b78d900d02025d13912e64916¢0
$08429e7b75560bd62ecd0fdd8c42cd57ed597bed
e 085b3c1465669b6d3463 1efa35ad0a76c44c9a40
$0862a0807d8c2e3ac604226d0b556945d 1efebed
$08cb661734cf8db220a3d10961d09¢157891f6bb
¥ 096f723551780bb35da78bd72dae9234f382da5d
$0982299bb2ec5d06b0c1eaec27b961ad89039a6¢

B AR e e VA Ed A el A A P F A TAA . IS AN e = A e

ipg
ipg
ipg
ipg
ipg
ipg
ipg
irg
ipg
ipg
ipg
ipg
ipg
ipg
ipg
ipg
ipg
ipg
ipg
ipg
ipg
jpg
ipg
ipg
ipg
ipg
ipg

Figure 4-3. Images downloaded when Scrapy ran

159

CHAPTER 4 USING SCRAPY

The values in the images. j1 file are inserted into the item’s images
field. A sample value looks like this:

"images": [
{
“url”: "https://www.sainsburys.co.uk/wcsstore7.25.53/
ExtendedSitesCatalogAssetStore/images/catalog/product
Images/23/5060084344723/5060084344723_L.jpeg",
"path": "full/4ae5a3aodfaofac7f3728d76b788716e8a2bcofb.jpg",
"checksum": "132512348d379f8365ca02082a16adf1"

This tells you not only how the file is named on your file system and
where it’s downloaded from, but you get a checksum too to verify that the
image on your file system is really the same that Scrapy downloaded.

In the preceding example, the file can be found under images/full

/4ae5a3a0dfaofac713728d76b788716e8a2bc9ofb. jpg and is shown in
Figure 4-4.

Note You can find the sources for this section in the
08 image pipeline folder among the sources for this chapter.

)

.
f
o

===ty W

REDUCED FAT

L TERIT X3S

(

Figure 4-4. An example of a downloaded image

160

CHAPTER 4 USING SCRAPY

Scrapy uses its own algorithm to generate the file names. This means
you can encounter different file names than me if you run the spider
on your computer.

Using Beautiful Soup with Scrapy

Sometimes you already have an HTML extractor ready, created with
Beautiful Soup, and you don’t want to convert it to Scrapy code. Or you
have a team member who is a pro at Beautiful Soup and she creates the
extraction code; you only have to take care of configuring Scrapy.

In such cases you use the already existing code because you can
integrate Beautiful Soup and Scrapy.

def parse product details bs(self, response):
item = SainsburysItem()

from bs4 import BeautifulSoup
soup = BeautifulSoup(response.text, 'lxml')
hi = soup.find('h1")
if h1:
item['product name'] = hi.text.strip()

In the preceding code you can see the integration of Beautiful Soup
and Scrapy with a subset of the code from the previous chapter. I explicitly
use 1xml for speed while parsing but you can use any of the available
parsers (and by the way, 1xml is available out of the box when you install
Scrapy).

With this information, you can rewrite the spider to use the
functionality written in Chapter 3. You can find a sample solution in
the 09_beautifulsoup folder among the sources for this chapter.

161

CHAPTER 4 USING SCRAPY

Logging

Sometimes you prefer to see custom messages in the console while
scraping. This is useful if you cut back the log level of Scrapy to INFO but
you want to see a little more of the current process.

Every spider comes with a logger, which you can access right in its
methods. For example, logging the response’s URL would look like this:

self.logger.info("URL: %s", response.url)

The logger uses the same log levels that you configured in settings.py.
If you don’t see a log output on the console, you can turn up the logging
(decrease the level to DEBUG). If it still doesn’t show up, then you can be
sure that the code is not reached while running.

If you want to do standard logging and not use the logger in your
spider (for example because you are in a different file where you don’t
have access to a spider), you can either use Scrapy’s 1log module (which
is deprecated so you shouldn’t use it) or Python’s built-in logger module.
There are no considerations; logger works the same way as it would in a
“standard” Python application.

(A Bit) Advanced Configuration

Because there are a lot of knobs you can turn on your Scrapy project, I add
a section to get you started and try out some different combinations.

This book has size limitations; therefore, I won't list every setting you
can toggle, but just the most used ones. For more settings, take a look at
Scrapy’s documentation: https://doc.scrapy.org.

162

https://doc.scrapy.org

CHAPTER 4 USING SCRAPY

LOG_LEVEL

Working through this chapter gave you a lot of output while running the
spider. However, you can restrict the information to a subset.

As a default, Scrapy uses the DEBUG log-level for its output. It logs you
every bit of information you can get from the code, and most of the time
this is too much.

However, you can restrict the log level in the settings.py file by
adding the following line:

LOG_LEVEL = "INFO'

This sets the log level to log only information, and warning and error
messages. This is because of how logging levels work. Each has a priority,
and with the log level setting you tell the application to “log the items with
this priority and above.”

You can use the following list as a reference to the log-level priority:

1. CRITICAL
2. ERROR

3. WARNING
4. INFO

5. DEBUG

This list contains Scrapy’s log level settings. DEBUG is a good setting
while developing, but in a running/live system I prefer INFO or sometimes
WARNING as the log level. Depending on the developer, you get the right
amount of information using this level.

163

CHAPTER 4 USING SCRAPY

CONCURRENT_REQUESTS

You have already seen this setting at the beginning of this chapter. As its
name already tells you, you can limit the number of concurrent requests to
one website.

Depending on the website, it makes sense to turn this number up
a bit or stay with the default value. This is because network operations
(downloading the website’s code) take time, and while the thread waits
the process/application is hanging idle. In such cases, even with the GIL
present, Python can execute multiple threads parallel, and therefore while
your code is waiting for one page to load you can download more.

However, you cannot turn the knob forever. Your computer has its
limits too, and having 16 or 160 concurrent requests doesn’t make a
difference. I suggest you start with 1 request while developing, then use
the default setting of 16. This is good for you because you get the required
data faster, and this is good for the targeted website too because it’s not
overwhelmed by you.

Moreover, sometimes it happens that the target website has request
monitoring enabled. This means, requests and their interval are monitored
and evaluated, and if your IP exceeds a threshold you get banned for a
time from the website—sometimes forever. Therefore, be responsible with
your configuration.

DOWNLOAD DELAY

Accompanying the concurrent requests, you can set the delay between two
downloads too. The download delay tells the spider how many seconds it
should wait between downloading another page from the same domain or IP
address (if CONCURRENT REQUESTS PER_IP is set to a nonzero positive number).

This configuration awaits seconds as value, but you can provide
decimal values too.

DOWNLOAD DELAY = 0.125 # 125 milliseconds

164

CHAPTER 4 USING SCRAPY

This setting is used to not hit the target servers too hard with your
requests. Sometimes this setting is useful to avoid detection and mock
human-like behavior.

Autothrottling

Previously, you have seen how to set hard download delays and concurrent
requests, to act like a good citizen. However, with this approach you can
end up with many requests waiting for completion if the server is busy. Or
if the server starts to send back error messages, those are returned faster
than 200 OK responses, which generate more requests per second because
errors are handled faster by Scrapy. However, in case of errors, the scraper
should send fewer requests to help the server to recover itself from its
(hopefully temporary) failure state.

A solution, and an alternative approach, is to use Scrapy’s
autothrottling feature. This is not enabled by default; you must enable it
with the following setting:

AUTOTHROTTLE_ENABLED = True

What the algorithm behind this setting does is adjust the download
delay based on the response times of the server. If the server is busy,
it sends the responses later, and Scrapy adjusts the download delay
to send requests less frequently. If the server has no difficulties, the
download delay is reduced, and more requests are sent to the server.
And most importantly: non-200-0K responses do not decrease the
download delay.

You can configure some settings for autothrottling too. For example,
setting

AUTOTHROTTLE_START DELAY = 15

165

CHAPTER 4 USING SCRAPY

You tell Scrapy to wait 15 seconds initially between two requests.
Based on the server’s response time, Scrapy can reduce or extend this
waiting time. If the latency is big, Scrapy raises this delay. However, you

can give it a maximum where it won’t wait longer.
AUTOTHROTTLE_MAX DELAY = 25

This setting tells Scrapy to wait at most 25 seconds until the next request.
To have detailed information on all the requests and their responses,
you can enable debugging for auto-throttling.

AUTOTHROTTLE_DEBUG = True

COOKIES ENABLED

You know cookies. They are settings stored in your browser and exchanged
by every request with the server. They store information regarding your
session, browsing preferences, or settings at the website. Sometimes they
are required to prove you are using a browser. Sometimes you have to
avoid a subset, because they tell the server you're not using a browser. If
you're browsing in the European Union (EU), you get a notification about
cookies by visiting almost every EU website. This is quite annoying, but a
regulation to be aware of that websites store (let store) information about
your browsing history.

As you may think, sometimes it is required to use cookies (for example
websites that require login), but sometimes it’s better to avoid them.

The default setting in Scrapy is to use cookies. This means that every
time the target web server returns an HTTP parameter Set-Cookie its
value is stored internally by Scrapy and is sent back to the server with
every new request.

You can disable this setting by adding the following configuration to
your settings.py file:

COOKIES ENABLED = False

166

CHAPTER 4 USING SCRAPY

If you want to debug which cookies are exchanged between the server
and your spider, you can add the following configuration:

COOKIES DEBUG = True

This will log every sent cookie (the Cookie header in your request) and
received cookie (the Set-Cookie header in the response) to the console, or
the logging framework you specified.

Summary

In this chapter you learned about Scrapy, the tool for website scraping.
You implemented the scraper for the requirements of Chapter 2 with
Scrapy. You have seen that you need to write much less than when you use
a homemade spider where you have to handle requests—just to mention
one example.

You learned some advanced topics too like writing your own
middleware, pipelines, and extensions, and what the result is if you turn
some knobs on the configuration panel.

Now you are a full-fledged website scraper. You have the tools with
which you can complete 75% of all scraping jobs. Feel free to stop reading
here, but keep in mind that these 75% are decreasing with the emerging
number of JavaScript-heavy websites that render data dynamically.

The next chapter will cover an advanced topic I rarely use: handling
web pages with JavaScript. There are different approaches, and we will go a
bit deeper because I will show you options other than Selenium. If you are
interested in the “Why?,” keep on reading!

167

CHAPTER 5

Handling JavaScript

This chapter is all about handling websites that utilize JavaScript to render
information dynamically.

You have seen in the previous chapters that a basic website scraper
loads the web page’s contents and does its extraction on this source code.
And if there’s JavaScript included, it’s not executed, and the dynamic
information is missing from the page.

This is bad, at least in those cases where you need that dynamic data.

Another interesting part of scraping websites that use JavaScript is that
you may need clicks or button presses to go to the right page / get the right
content, because these actions call a chain of JavaScript functions.

Now I will give you options for how you can deal with these problems.
Most of the time you will find Selenium as the solution, if you Google or
search the Internet with other engines. However, there are other options
present, and I will give you more insight. Perhaps those other options will
fit your needs better.

Reverse Engineering

This first option is for advanced developers—at least I feel advanced
developers will do more reverse engineering.

The idea here is to use the DevTools from Chrome (or similar
functionality in other browsers), enable JavaScript, and monitor the XHR
network flow to find out which data is requested from the server and
rendered separately.

© Gabor Lészl6 Hajba 2018 169
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_5

CHAPTER 5 HANDLING JAVASCRIPT

With the target endpoint (either a GET or a POST request) in your hands,
you see which parameters to provide and how they affect the results.

Let’s look at a simple example: at kayak.comyou can search for
flights and, therefore, airports too. In this simple example we will reverse
engineer the destination search endpoint to extract some information,
even if this information is not valuable.

I'll use Chrome for these examples. This is because | use Chrome for
all my scraping tasks. It will work with Firefox too, if you know how to
handle the developer tools.

First let’s go to kayak.com, open up the DevTools window, and locate
the Network tab there, as shown in Figure 5-1.

COEEE soe rows e Pachiges Mow s P Ty Ter— S towwm Goace Bowek w o143 i X
@O BT e BN O Ocwtybre | @ hnmeis @

Tew £ e catauitis
a5 5 €5 twe Medin Fom Doc WS Wantem Coher
e - e s 1

Search hundreds of travel sites at once.

Figure 5-1. Kayak.com with DevTools open

As you can see in the image, I already navigated to the XHR tab inside
the Network tab because all AJAX and XHR calls are listed here.

Now let’s click the field on the website labeled To? and type in a letter,
for example S, and watch the values on the right side inside the XHR tab, as
shown in Figure 5-2.

170

CHAPTER5 HANDLING JAVASCRIPT

B o Hoes Can Fecaps Mam B e & Wpacowt U5 011 Denews Comsi Newok # erai i %
B8 BT v 55w O et | Al @

tr 3 e ot s
a0 5 c35 iwo Mofin fomt Dox WS asien Gober

Search hundreds of travel sites at once. | e e e e |

Foandirip~ 1addi~ Economy v

e
A Viwana (VIE) s " € Lmavgwe 20 b embe. ko L.
.

Heacky Misports

» SFO San Francisco, CA - San Francisco

¥ SEA Ssatths, WA - SeattieTaccma Intl

PHX Phoonix, AZ - Sky Harbor Intl

Figure 5-2. A small list of airports

Now you get a list of some possible airports on the website, but two
XHR requests too. We're interested in the request starting with marvel:

www. kayak . com/mv/marvel ?f=h&where=so&s=5081c_cc=US&Lc=en8v=v2&cv=5.

This is the request that returns the information about the airport. It has
some parameters where I have no idea what they do and how the results
are affected if changed, but here’s what I know:

e where is the key you're searching for
e sisthe type of the search; 58 is for airports

o lcisthelocale; you can change it and get different
results—more on this later

o visthe version; there’s a small difference in the result
format if you choose v1 instead of the default v2

Based on this information, what can we get out of it? We get some
airports, and some idea about how to reverse engineer JavaScript and
when to decide to use a different tool.

In this example, the JavaScript rendering is a simple HTTP GET
call-nothing fancy, and I bet you already have an idea how to extract
information delivered from these endpoints. Yes, using either the requests
and Beautiful Soup libraries or Scrapy and some Request objects.

171

CHAPTER 5 HANDLING JAVASCRIPT

Back to the example: when you vary the 1c value, for example, to de
or es in the request, you get back different airports and the description
of these airports in the locale you chose. This means JavaScript reverse
engineering is not just about finding the right calls you want to use but also
requires a bit of thinking.

Thoughts on Reverse Engineering

If you find yourself having a search that utilizes an HTTP endpoint to get the
data, you can try to figure out how the search works. For example, instead
of sending some values you expect to deliver results, try to add search
expressions. Such expressions could be * to match all, .+ to evaluate regular
expressions, or % if it has some kind of SQL query in the back.

Summary

You see, sometimes JavaScript reverse engineering pays off: you learned
that those nasty XHR calls are simple requests and you can cover them
from your scripts. However, sometimes JavaScript makes more complex
things like rendering and loading data after the initial page is loaded. And
you don’t want to reverse engineer this, believe me.

Splash

Splash' is an open-source JavaScript rendering engine written in Python. It
is lightweight and has a smooth integration with Scrapy.

It is maintained, and new versions are released every few months,
when need arises.

'https://splash.readthedocs.io/en/stable/

172

https://splash.readthedocs.io/en/stable/

CHAPTER 5 HANDLING JAVASCRIPT

Set-up

The basic and easiest usage of Splash is getting a Docker image from the
developers and running it. This ensures that you have all the dependencies
required by the project and can start using it. In this section we will use
Docker.

To get started, install Docker if you don’t have it already. You can find
more information on installing Docker here: https://docs.docker.com/
manuals/.

If this is done, you can get the image executing the following
commands on your console:

docker pull scrapinghub/splash
docker run -p 5023:5023 -p 8050:8050 -p 8051:8051
scrapinghub/splash

Note On some machines, administrator rights are required to start
Splash. For example, on my Windows 10 computer, | had to run

the docker container from an administrator console. On Unix-like
machines, you may need to run the container using sudo.

Now Splash is running on localhost:8050, and it should look something
like Figure 5-3.

173

https://docs.docker.com/manuals/
https://docs.docker.com/manuals/

CHAPTER 5 HANDLING JAVASCRIPT

Splash v3.2

Splash is a javascript rendering service. It's a lightweight http/igoogis.com
browser with an HTTP API, implemented in Python using
Twisted and QT.

+ Process multiple webpages in poralicl

+ Got HTML results and) take screenshots

+ Turn OFF images sxamgle] or use Adblock Plus rules to make rendering
faster

Splash is free & open source. Commercial support is also
available by Scrapinghub.

o

Figure 5-3. Splash welcome screen

Now you can enter a URL at the top right corner and hit Render me! to
get the website rendered. If you input http://sainsburys.co.uk you get a
similar result to the one shown in Figure 5-4 (the image will vary).

[Splash v3.2 Doumentetion Source Code Sucos it/ feainsburys.couk mm

splash Rasponsa: Chject
prg: Tmage [png, 1824xT58) download

Henders Sent
o emwidsssad
eaders Rocelved it

Bodles Racaived

& GET minshurmconde 2000¢ xeakn [N 000w

§ GET mmconefs 16K B 7 ots

4 GET main.castv=THedsd 3 5LTKB H 7o

GET main jehe=bdd4408E 146.7K8 0w

il GET v wedmin=sainshe 200 41 3KB S00Ma

GET mmpackage L1L}s 534 KB & so0oms

7 GET utag. s PRI [

Figure 5-4. Splash rendered Sainsbury’s

174

http://sainsburys.co.uk

CHAPTER 5 HANDLING JAVASCRIPT

As you can see, you get a screenshot from the page you are scraping,
and below it some statistics and timing of the requests rendering the

website involved. At the bottom of the page you see the source code of the
website, as shown in Figure 5-5.

htel:

=retitlesSalnsbury ' se/titlescneta o
eetricals and sore. We alse effer &
al-scalesl®rinets nases"google-site
ut dcon” hrafs"favicon, ico">imeta
ebrighttag. conftag!

well for Jess. “dimets neses"viewport™ contents®wi
contents5oan
content-"TE-edge, chrone- ﬂa 3tseript type"te. n

366847 Mhanp ;

BT sainsbury o
Can LK207 SndK2Bvarabl Eg italDatN22XICK 2L 15 i "

x e 14%: p_—
M(]fwk

ot ypes"test] Jav
ipt typo="tost/: o
ript Lype="Lest/javascript” async="" charset="utf-8"

Figure 5-5. Splash with sources

This source code is the one you get after the page is rendered. To verify

this, you can open an interactive Python shell and get the website using
requests.

>>> import requests

>>> 1 = requests.get('http://sainsburys.co.uk")

>>> r.text

"<IDOCTYPE html><html class="no-js" lang="en"><head><meta
charset="utf-8"><title>Sainsbury\'s</title><meta
name="description" content="Shop online at Sainsbury\'s

for everything from groceries and clothing to homewares,
electricals and more. We also offer a great range of
financial services. Live well for less."><meta name="viewport"

175

CHAPTER 5 HANDLING JAVASCRIPT

content="width=device-width,initial-scale=1"><meta
name="google-site-verification" content="s00zMsGig7xqxpw]QWd8qJ
kfOQQvL0j-ZS9fI9eSDiE"><1link rel="shortcut icon" href="favicon.
ico"><meta http-equiv="X-UA-Compatible" content="IE=edge,
chrome=IE8"><script type="text/javascript" src="//service.
maxymiser.net/cdn/sainsburyscoUK/js/mmcore.js"></script>
<!--[if 1t IE 9]>\n <script src="https://cdn.polyfill.io/
vl/polyfill.min.js"></script>\n <link rel="stylesheet"
href="homepage/css/main_ie8.css?v=65f0de0508c75d5aac750158
oddf4e0a">\n <I[endif]--><!--[if gte IE 9]>\n <link
rel="stylesheet" href="homepage/css/main.css?v=2fadbf3f7bfoaa
1b5e3613ec6lebabf7">\n <![endif]--><1link rel="stylesheet"
href="homepage/css/main.css?v=2fadbf3f7bfoaalb5e3613ec6leba
bf7"><!1--[if 1IE]><!--><!--<I[endif]--></head><body><script
type="text/javascript">(function(a,b,c,d)

The preceding example result is just an excerpt. If you save this code
into an HTML file and open it in a browser and do the same with the
sources returned by Splash, you will see the same page. The difference is
in the sources: Splash has more lines and contains expanded JavaScript
functions.

A Dynamic Example

To see how to get Splash working with dynamic websites (which utilize
JavaScript a lot), let’s see a different example. For instance, http://www.
protopage.com/ generates you a web page based on a prototype, which
you can customize. If you visit the site, you must wait some seconds until
the page gets rendered.

176

http://www.protopage.com/
http://www.protopage.com/

CHAPTER5 HANDLING JAVASCRIPT

If we want to scrape data from this site (there’s not much available
either, but imagine it has a lot to offer) and we use a simple tool (the
requests library, Scrapy) or Splash with the default settings, we only get
the base page that tells us that the page is currently rendered.

To have the rendered site rendered with Splash, I altered the script
(which is written in Lua by the way) and turned up the wait time to three
seconds.

function main(splash, args)
assert(splash:go(args.url))
assert(splash:wait(3))
return {
html = splash:html(),
png = splash:png(),
har = splash:har(),

}

end

Depending on the network speed and load on the target website, three
seconds can be too short. Feel free to experiment with different values for
your target websites to have the page rendered.

Now all this is good, but how to use Splash to scrape websites?

Integration with Scrapy

The recommended way by Splash developers is to integrate this tool with
Scrapy, and because we use Scrapy as our scraping tool, we will take a
thorough look at how it can be accomplished.

First, we need to install the Splash Python package using pip.

pip install scrapy-splash

177

CHAPTER5 HANDLING JAVASCRIPT

Now that this library is installed, we need to enable the middlewares
that have been delivered with scrapy-splash.

DOWNLOADER _MIDDLEWARES = {
"scrapy_splash.SplashCookiesMiddleware': 720,
"scrapy_splash.SplashMiddleware': 725,

'scrapy.downloadermiddlewares.httpcompression.Http

CompressionMiddleware': 810,

}

The prceding numbers are not fully empiric: the Splash middlewares
must have a higher order than the HttpProxyMiddleware, which has a
default value of 750. To be on the safe side (for example Scrapy changes
the default value of this proxy middleware), we could alter the middleware
configuration like this:

DOWNLOADER_MIDDLEWARES = {
"scrapy_splash.SplashCookiesMiddleware': 720,
'scrapy_splash.SplashMiddleware': 725,

'scrapy.downloadermiddlewares.httpproxy.HttpProxyMiddleware': 750,

'scrapy.downloadermiddlewares.httpcompression.

HttpCompressionMiddleware': 810,

}

Then we must add the spider middleware to save disk space and
network traffic. This is optional; if you don’t do this, duplicate Splash
arguments are stored on your disk and sent to your Splash server (this will
be interesting in the Cloud—-see next chapter for more on that topic).

SPIDER_MIDDLEWARES = {
'scrapy_splash.SplashDeduplicateArgsMiddleware': 100,

178

CHAPTER5 HANDLING JAVASCRIPT

Now we can define some variables required for Splash to work. One
of these is the SPLASH_URL, which (obviously) tells the middleware where
your Splash instance is available for rendering.

SPLASH URL = 'http://localhost:8050/"

The next two variables come because Scrapy doesn’t provide a way to
override request fingerprints, and this makes routing those requests and
responses between your script and Splash a bit complicated. However,
the developers of Splash came up with a solution and you can use their
configuration.

DUPEFILTER _CLASS = 'scrapy splash.SplashAwareDupeFilter'
HTTPCACHE_STORAGE = 'scrapy_splash.SplashAwareFSCacheStorage'

The second variable points to a cache storage solution, which is aware
of Splash. If you're using another custom cache storage, you must adapt
it to work with Splash. This requires you to subclass the aforementioned
storage class and replace all calls to scrapy.util.request.request_
fingerprint with scrapy splash.splash request fingerprint to have
those nasty changed fingerprints work out.

The last change we must adapt is the usage of Requests: instead of
using the default Scrapy Request we need to use SplashRequest.

Now let’s adapt the Sainsbury’s spider to use Splash.

Adapting the basic Spider

In an ideal world, you would only need to alter the configuration as we
did in the previous section, and all requests and responses would go over
Splash because we don’t have any usages of Scrapy’s Request objects.

Unfortunately, we need some more configuration in the code of the
scraper too. If you don’t believe me, just start the scraper without having
Splash running.

179

CHAPTER 5 HANDLING JAVASCRIPT

To get our scraper running through Splash, we need to adapt every
request call to use a SplashRequest, and every time we initiate a new
request (either when starting the scraper or yield-ing some response.
follow calls).

To get the first start right, we can add the following function to our
script:

from scrapy splash import SplashRequest

def start requests(self):
for url in self.start urls:
yield SplashRequest(url, callback=self.parse)

This is the bare minimum to get the spider operating through Splash.
The parameters speak for themselves: URL is the target URL, and callback
defines the method to use. There are some options to configure how
Splash should behave, for example, waiting some time to get the website
rendered. Say, if we want to wait one second for loading the page, we can
alter the calls of SplashRequests like this:

yield SplashRequest(url, callback=self.parse,
args={'wait':1.0})

So, we're good and we render the first page through Splash, but what
about the other calls like navigating to the detail pages or the next page?

To adapt these, I changed the XPath extraction code a bit. Until now,
we used the response.follow approach where we could provide the
selector containing the potential next URL we want to scrape.

Using Splash, we need to extract these URLs and provide them as
parameters to the SplashRequest constructor. I'll use the parse method as
an example. It looked like this at the end of Chapter 4:

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments”]/1i/a")

180

CHAPTER5 HANDLING JAVASCRIPT

for url in urls:
yield response.follow(url, callback=self.parse
department_pages)

Now it looks like this:

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments”]/1i/a/@href").extract()

for url in urls:
if url.startswith('http'):
yield SplashRequest(url, callback=self.parse_
department_pages)

I added the filter for url.startswith("http") to avoid potential errors
that may happen if the url doesn’t contain an absolute URL. In some
cases, you need to join the URL together with the base URL of the response
to get the target domain (because url is a relative URL to the domain).
Following is an example again with the parse method.

def parse(self, response):
urls = response.xpath('//ul[@class="categories
departments"]/1i/a/@href").extract()

for url in urls:
yield SplashRequest(response.urljoin(url),
callback=self.parse department pages)

One change I made besides the ones mentioned previously was to
rename the spider to splash.
Running the scraper stays the same.

scrapy crawl splash -o splashburys.jl

181

CHAPTER5 HANDLING JAVASCRIPT

After the scraper finishes, you will find records similar to the following
excerpt in the splashburys. jl file.

{"url": "https://www.sainsburys.co.uk/shop/ProductDisplay
?storeld=101518productId=1153156&urlRequestType=Basedcate
goryId=312365&catalogld=10216&langId=44", "product name":
"Sainsbury's Venison Steak, Taste the Difference 250g",
"product_image": "https://www.sainsburys.co.uk/wcsstore7.25.53/
ExtendedSitesCatalogAssetStore/images/catalog/productImages
/90/0000001442090/0000001442090 L.jpeg", "price per unit":
"£7.50", "rating": "3.0", "product_reviews": "2", "item code":
"6450995", "nutritions": {"Energy ": "583kJ/", "Fat ": "2.6g",
"of which saturates ": "0.9g", "mono-unsaturates ": "1.0g",
"polyunsaturates ": "0.6g", "Carbohydrate ": "<0.5g", "of which
sugars ": "<0.5g", "Fibre ": "<0.5g", "Protein ": "28.2g",
"Sodium ": "0.05g", "Salt ": "0.13g"}, "product origin": ""}

"url": "https://www.sainsburys.co.uk/shop/gb/groceries/
special-offers-314361-44/sainsburys-salmon-with-lemon-butter-
-taste-the-difference-145g", "product_name": "Sainsbury's
Lightly Smoked Salmon with Wild Garlic Butter, Taste the
Difference 145g", "product_image": "https://www.sainsburys.
co.uk/wcsstore7.25.53/ExtendedSitesCatalogAssetStore/images/
catalog/productImages/27/0000000301527/0000000301527 L. jpeg",
"price per unit": "£3.00", "rating": "2.3333", "product_
reviews": "3", "item code": "7880107", "nutritions": {"Energy":
"990kJ", "Energy kcal": "238kcal", "Fat": "16.9g", "Saturates":
"4.6g", "Mono-unsaturates": "7.5g", "Polyunsaturates": "3.8g",
"Carbohydrate": "1.6g", "Sugars": "1.2g", "Fibre": "0.6g",
"Protein": "19.6g", "Salt": "0.63g"}, "product origin": "Packed
in United Kingdom Farmed in Scotland Produced from Farmed
Scottish (UK) Atlantic Salmon (Salmo salar)"}

And that is it: we converted the Sainsbury’s scraper to use Splash.

182

CHAPTER 5 HANDLING JAVASCRIPT

What Happens When Splash Isn’t Running?

Good question, but I bet you already have the answer. The scraper won’t
do anything, and exits with an error message containing the following
valuable information to identify this particular error cause.

2018-04-27 16:07:19 [scrapy.core.scraper| ERROR: Error
downloading <GET https://www.sainsburys.co.uk/shop/gb/
groceries/meat-fish/ via http://localhost:8050/render.html>:
Connection was refused by other side: 10061:

Summary

Splash is a nice Python-based website rendering tool that you can integrate
easily with Scrapy.

One drawback is that you must install it manually through a somewhat
complicated process or using Docker. This makes porting it to the cloud
complicated (see Chapter 6 for Cloud solutions), therefore you should
use Splash only for a local scraper. However, locally it can give you a great
benefit with its seamless integration with Scrapy for scraping websites
using JavaScript to render content dynamically.

Another drawback is the speed. When I used Splash on my local
computer, it barely scraped 20 pages per minute. This is too slow for my
taste, but sometimes I cannot get around it.

Selenium

If you search the Internet about website scraping, you will most often
encounter articles and questions about Selenium. Originally, I wanted to
leave Selenium out of this book because I don’t like its approach; it’s a bit
clumsy for my taste. However, because of its popularity, I decided to add a
section about this tool. Perhaps you will embed a Selenium-based solution
to your Scrapy scripts (for example you already have a Selenium-scraper
but want to extend it), and I want to help you with this task.

183

CHAPTER 5 HANDLING JAVASCRIPT

First we will look at Selenium and how to use it in a stand-alone
fashion, then we will add it to a Scrapy spider.

Prerequisites

To have Selenium working on your computer, you must install it like most
Python libraries through the Python Package Index.

pip install selenium

To use Selenium for website scraping, you will need a web browser.
This means you will see the configured web browser (let’s say Firefox or
Chrome) open up, load the website, and then Selenium does its work and
extracts the script you defined.

To enable linking between Selenium and your browser, you must
install a specific WebDriver.

For Chrome, visit https://sites.google.com/a/chromium.org/
chromedriver/home. I downloaded version 2.38.

For Firefox, you need to install GeckoDriver. It can be found at GitHub.
I downloaded version 0.20.1.

These drivers must be on the PATH when you’re running your Python
script. I put all of them inside a folder, because in this case I have to add
only this one folder and all my web drivers are available.

Note that these web drivers require a specific browser version.
For example, if you already have Chrome installed and download the
latest version of the web driver, you may encounter an exception like
the one following if you miss updating your browser:

raise exception class(message, screen, stacktrace)
selenium.common.exceptions.SessionNotCreatedException:
Message: session not created exception: Chrome version
must be >= 65.0.3325.0

184

https://sites.google.com/a/chromium.org/chromedriver/home
https://sites.google.com/a/chromium.org/chromedriver/home

CHAPTER5 HANDLING JAVASCRIPT

(Driver info: chromedriver=2.38.552522 (437e6fbedfa
8762dec75e2c5b3ddb86763dc9dcb),platform=Windows NT
10.0.16299 x86_64)

Basic Usage

Now to verify if everything is working fine, let’s write a simple script to
open the Sainsbury’s website for us using Selenium.

from selenium.webdriver import Chrome, Firefox

chrome = Chrome()
firefox = Firefox()

chrome.open() # this opens a Chrome window
firefox.open() # this opens a Firefox window

chrome.get('https://sainsburys.co.uk') # navigates to the
target website in Chrome
firefox.get('https://sainsburys.co.uk') # navigates to the
target website in Firefox

OK, it’s nice to have the browser open automatically and navigate to
the target website. But what about scraping information?

Because we have a website in our reach (in the browser), we can parse
the HTML-almost like we did in the previous chapters or use Selenium’s
offering for data extraction from the HTML of the web page.

Iwon’t go into detail on Selenium’s extractors because it would exceed
the boundaries of this book, but let me tell you that by using Selenium you
have access to a different set of extraction functions, which you can use on
your browser instances.

185

CHAPTER5 HANDLING JAVASCRIPT

Integration with Scrapy

Selenium can be integrated with Scrapy. The only thing you need is to
configure Selenium properly (have the web drivers on the PATH and the
browsers installed) and then the fun can begin.

What I like to do is to disable the browser window for my scrapes.
That'’s because I get distracted every time I see a browser window if it
navigates the pages automatically, and it would go crazy if you combine
Scrapy with Selenium.

Besides this, you will need a middleware that will intercept calls prior
to sending them directly through Scrapy and will use Selenium instead of
normal requests.

A rudimentary middleware would look like this one:

-*- coding: utf-8 -*-

from scrapy import signals

from scrapy.http import HtmlResponse

from scrapy.utils.python import to bytes

from selenium import webdriver

from selenium.webdriver.firefox.options import Options

class SeleniumDownloaderMiddleware:

def _init (self):
self.driver = None

@classmethod

def from crawler(cls, crawler):
middleware = cls()
crawler.signals.connect(middleware.spider opened,
signals.spider opened)
crawler.signals.connect(middleware.spider closed,
signals.spider closed)
return middleware

186

CHAPTER 5 HANDLING JAVASCRIPT

def process request(self, request, spider):
self.driver.get(request.url)
body = to bytes(self.driver.page source)
return HtmlResponse(self.driver.current url, body=body,
encoding="utf-8", request=request)

def spider opened(self, spider):
options = Options()
options.set _headless()
self.driver = webdriver.Firefox(options=options)

def spider closed(self, spider):
if self.driver:
self.driver.close()
self.driver.quit()
self.driver = None

The preceding code uses Firefox as the default browser and starts it
in headless mode when the spider is opened. When the spider closes, the
web driver is closed too.

The interesting part is when the request happens: it is intercepted and
routed through the browser and the response HTML code is wrapped into
an HtmlResponse object. Now your spider gets the Selenium-loaded HTML
code and you can use it for scraping.

scrapy-selenium

Recently, I have found a fresh project at GitHub called scrapy-selenium.? It
is a convenient project to have you install and use it to combine the powers
of Scrapy and Selenium. I think it is worth sharing this project with you.

*https://github.com/clemfromspace/scrapy-selenium

187

https://github.com/clemfromspace/scrapy-selenium

CHAPTER5 HANDLING JAVASCRIPT

Note Because this project is a private one, it may have issues. If
you find something not working, feel free to raise an issue for this
project and the developer will help you out to fix that problem. If not,
shoot me an email and I'll see if | can give you a solution or perhaps
maintain the application myself and deliver newer versions.

This project works just like the custom middleware we implemented in
the previous section: it intercepts requests and downloads the pages using
Selenium.

Let’s start with the configuration.
from shutil import which

SELENIUM DRIVER NAME = 'firefox'
SELENIUM_DRIVER EXECUTABLE_PATH = which('geckodriver")
SELENIUM DRIVER ARGUMENTS = ['-headless']

Alternatively, you can use Chrome instead of Firefox, but in this case
take care of the --headless argument: it requires two dashes.

from shutil import which

SELENIUM DRIVER NAME = 'chrome’

SELENIUM DRIVER_EXECUTABLE PATH = which('geckodriver")

SELENIUM DRIVER ARGUMENTS = ['--headless']

And we need the right middleware:

DOWNLOADER _MIDDLEWARES = {
'scrapy_selenium.SeleniumMiddleware': 800

For the spider, I reused the code of the Splash section but changed the
used Request implementation to the scrapy-selenium one:

from scrapy selenium import SeleniumRequest

188

CHAPTER5 HANDLING JAVASCRIPT

and I had to adapt the constructor calls to contain the URL as a named
parameter.

def start requests(self):
for url in self.start urls:
yield SeleniumRequest(url=url, callback=self.parse)

Be sure you change all these calls. If you miss one, you'll get an error
like this:

yield SeleniumRequest(url, callback=self.parse)
File "c:\dev__py venv\scrapy\lib\site-packages\scrapy
selenium\http.py", line 29, in _ init _
super(). init (*args, **kwargs)
TypeError: _ init () missing 1 required positional argument:
‘url’

Summary

Selenium is an alternative tool that website scraper developers use
because it supports JavaScript rendering through a browser. We saw some
solutions on how to integrate Selenium with Scrapy but skipped the built-
in methods to extract information.

Again, using an external tool like Selenium makes your scraping
slower, even in headless mode.

Solutions for Beautiful Soup

Until now, we looked at solutions where we can integrate JavaScript-based
website scraping with Scrapy. But some projects are fine using Beautiful
Soup and don’t need a full scraper environment.

189

CHAPTER 5 HANDLING JAVASCRIPT

Splash

Splash offers manual usage too. This means, you have an alternative option to
get Splash to render a website and return the source code back to your code.
And we can utilize this to have a simple scraper written with Beautiful Soup.

The idea here is to send an HTTP request to Splash, providing the URL
to render (and any configuration parameters) and get the result back, and
then use Beautiful Soup on this result, which is a rendered HTML.

To stick with the previous example, we will convert the scraper form
Chapter 3 into a tool that utilizes Splash to render the pages of Sainsbury’s.
The idea here is to simply call Splash’s HTTP API to render the web
page instead of getting the page through the requests library. This means
our only change will be in the get_page function, where we forward the

URL we want to scrape to Splash.

def get page(url):
try:
r = requests.get('http://localhost:8050/render.
html?url=" + url)
if r.status code == 200:
return BeautifulSoup(r.content, bs parser)
except Exception as e:
pass
return None

As you can see, we call the render . html endpoint of our Splash
installation and provide the target URL as a simple GET parameter.

If you're more into POST requests, you can change the prceding
function to look like this:

def get page(url):
try:
r = requests.post('http://localhost:8050/render.html’,
data="{'url': "+ url + '}")

190

CHAPTER5 HANDLING JAVASCRIPT

if r.status_code == 200:
return BeautifulSoup(r.content, bs parser)
except Exception as e:
pass
return None

Selenium

Of course, we can integrate Selenium to our Beautiful Soup solutions too.
It works the same way as it did with Scrapy.

Again, l won’t use the built-in Selenium methods to extract
information from the website. I use Selenium only to render the page and
extract the information I require.

To do this, I'll add two helper functions to the scraper, which initialize
and tear down Selenium at the required places.

def initialize():
global selenium
if not selenium:
selenium = Firefox()

def tear down():
global selenium
if selenium:
selenium.quit()
selenium = None

To be on the safe side, I'll add a call to initialize() every time we
want to download a page; however, I'll call tear _down() only when the
script finishes.

def get page(url):
initialize()

191

CHAPTER5 HANDLING JAVASCRIPT

try:

selenium.get(url)

return BeautifulSoup(selenium.page source, bs parser)
except Exception as e:

pass
return None

Summary

Even though we focus on Scrapy, because in my opinion it’s currently the
website scraping tool for Python, you can see that options that make
Scrapy handle JavaScript can be added to “plain” Beautiful Soup scrapers.
And this gives you options to stay with the tools you already know!

Summary

In this chapter we looked at some approaches to scrape websites that
utilize JavaScript. We looked at the mainstream Selenium using a web
browser to execute JavaScript and then went to the headless world, where
you don’t need any window to execute JavaScript and this makes your
scripts portable and easier to execute.

Naturally, using another tool to get some extra rendering done takes
time and provides overhead. If you don’t require JavaScript rendering,
create your scripts without any add-ons like Splash or Selenium. You'll
benefit from the speed gain.

Now we are ready to see how we can deploy our spiders to the Cloud!

192

CHAPTER 6

Website Scraping
in the Cloud

Running website scraping locally is fine for do-once tasks and small
amounts of data, where you can easily trigger the crawl manually.

However, if you want reoccurring tasks and automatic scheduling,
you should think about other solutions such as deploying your spiders
somewhere into the cloud or a bought server slot.

In this chapter we will look at the virtual network of servers, the cloud,
and what options you have if you want to use website scraping in the
cloud. I'll focus on Scrapy because it is the tool for website scraping and
there are services provided and matched for use with Scrapy.

Scrapy Cloud

The name tells you everything: Scrapy Cloud' is a cloud solution where
you can deploy your Scrapy spiders. As the website states: “Think of it as a
Heroku for web crawling”

'https://scrapinghub.com/scrapy-cloud

© Gabor Lészl6 Hajba 2018 193
G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4_6

https://scrapinghub.com/scrapy-cloud

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

Creating a Project

When you arrive at ScrapingHub, you will want to create a project because
the page you get is empty, as shown in Figure 6-1.

scrapinghub ® SeepyCled + Porls v Crawies < Dstases = Help - s By

EJ @ Scrapy Cloud Projects

No Projects
JoPy Seofme

b

Figure 6-1. My company’s empty ScrapingHub overview

Fortunately, it is intuitive: we must click the green button in the upper
right corner.
We will use Scrapy spiders, so select this option, as shown in Figure 6-2.

Create A New Project

Name

Sainsbury's

Deploy Your Spiders

Choose the technology that you are using for your project

& v

PORTIA SCRAPY

Not sure which one to pick? Read this to help you decide

CANCEL CREATE

Figure 6-2. Creating a new project

194

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

Now that the project is created, we must upload our spider to the
cloud. There are two options: over the command line or cloning a GitHub
repository, as you can see in Figure 6-3. We will go with the command line
solution because I am a nerd, and because most of the time I use some
internal Git system and not GitHub to store my code.

scrapinghub e 3 SeapyGeus = Pertia - Crowkes = Datasens - Help - * g'l- prrsener

siders O memsens Code & Deploys watcH -

Deploy Management

DEFLOY YOUR CODE

Semngs

€9 Gitus

Figure 6-3. New project and upload options

If you decide to use the command line, you have two options: to
deploy directly or a Docker image. I will stay with the simple deploy
version for now.

Deploying Your Spider

Because I use the basic command line deployment, I go to the spider’s
base folder (where the scrapy.cfg file is located) and execute the
following commands:

pip install shub
shub login
shub deploy

195

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

After you run the shub deploy command the first time, you will see
following message among others:

Saved to scrapinghub\sainsburys\scrapinghub.yml.

This file is important because you must edit this file if you deploy
a Python 3 spider. And because I focused on Python 3, we will use this
configuration. Let’s do this now and add the following line to your
scrapinghub.yml:

stack: scrapy:1.5-py3

This tells ScrapingHub that you want to use Scrapy version 1.5 running
in a Python 3 environment.

After this change, run shub deploy again to update the spider on the
server. The deployment information is then something similar to what is
shown in Figure 6-4.

Current Deploy

e

Deploys History ke

1 iil48:21

FAILED
aga from Command line

Figure 6-4. Deployment info and history

Start and Wait

After deployment, in the upper left corner you will see that you have one
spider, like in Figure 6-5. Clicking this link (or the Dashboard menu entry in
the Spiders section) navigates you to your spiders.

196

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

scrapinghub

Sainsbury's

1 spider, 0 members

Figure 6-5. Spiders in the project

Clicking the basic spider (for me the only spider deployed) will get you
to the spider’s page, as shown in Figure 6-6. Here you can change some

project specific settings, and you can run the spider.

Basic Spider wach -
Details Setting: Raw Setting
Spider Details
b
Name: basic
Type: mans
Versior: A0dbeT-master
Tage wir

Defaut job units

Total jobs:

Figure 6-6. Spider details

Running the Sainsbury’s spider takes some time. But you can do it
and wait for its completion. After running the spiders, you will see all
information about runs—even if you had errors while running your spiders,

as shown in Figure 6-7.

Shaw only jobs with comments () & =

w Completed jobs @)
! ok Spider Lleg Runtime Started Fenmished Dutzome
2080512 191356 UITC

e w3

1143 20180512 190213 UTC

Figure 6-7. Completed jobs
197

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

As you can see, you get information about loaded items, sent requests,
and some statistics. If you click the job’s number, you will get some
detailed statistics and you can look at the items extracted by the run, as
shown in Figure 6-8.

Job 4 SR oo [

Ieb tems EZD kequests EZ) [N =) st @) Cansole

Job Overview

REQUESTS & ITEMS SCHEDULED REQUESTS.

Regquests: 0 ltem

Figure 6-8. Some basic statistics of the run

Accessing the Data

You can access the extracted information in some ways. The most common
access is to download your results in some format, as you would export it
while running Scrapy from your command line, as shown in Figure 6-9.

Spaders | o |

ST0P THIS jOb

Job 4 waren - EETNRITTE
Job e (GED Fequests €3 Les €D stats @) Console
Jo tms I i R
Fiter by Fleid: Chone fleld. v | Chooie action * Allisems + cuian TS - SHOW SCRAPED AIFLDS
== av
= 180N
Iem 0 3018-05-12 190258 UTC meomeans [ITETN
IS0 Lines
image_uris hizpasi insburys.co.uk 2711 0/Extendeds k mages /produtimages 3OO gy Lipeg

e sode THIE64

trithans. Enurgy 1o

Figure 6-9. Export options

198

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

As you can see, you get some options and one will fit your project’s needs.

An alternative option is to publish your dataset. This makes it available
to people even without knowing how you gathered the data. Publishing
comes in three flavors:

o Public: Everyone has access to the data, no need for
ScrapingHub account, and search engines can index it.

e Protected: Only users with ScrapingHub account can
access this data.

e Private: Oonly members of your ScrapingHub
organization can access the data.

If you have confident information, then use private. ScrapingHub has
some issues with publicly available datasets, and you cannot access them
without a ScrapingHub account.

Anyhow, if you want to publish a dataset, you must provide a
description and a logo to it to be publicly available. I agree with the
description, but a logo is in my eyes too much. Sure, if you look at the

catalog,” you will see why a logo is required, as shown in Figure 6-10.

=
®

Datasets Browser

+ SrapyClood v Pora v Crawlers + Daasers - Help - 'y i Gabor Lasila Hajha =

Lest Updated Fers Lt ated eerma L ipeiet

herss

" s
t=& Tjad Maarks Breaking News.

by by s e

SEE- =RAR AT AR EE MOESAE sy brasking news

Dl

Gewind Bargeni Boaks Wabsite Soraping With Python s
oy gz by el Slary Seatver s

Figure 6-10. The public dataset catalog

*https://app.scrapinghub.com/datasets
199

https://app.scrapinghub.com/datasets

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

From these datasets, you can download the items the same way you
can through your job’s page. Note, that you have to be logged in to
see the available datasets.

API

ScrapingHub provides an API that you can use to access your data
programmatically. Let’s examine this option too.

I suggest you use the scrapinghub Python library, because accessing
the API directly (with curl for example) doesn’t work the way it is
described in the documentation.

pip install scrapinghub[msgpack]

Now we're ready to access our data from a simple Python code. I'll use
the interactive interpreter so you can follow along.

>>> from scrapinghub import ScrapinghubClient
>>> apikey = 'YOUR-API-KEY'

>>> client = ScrapinghubClient(apikey)

>>>

>>> client.projects.list()

[310577]

The first step, after logging in, is to get the ID of our project. Because
I have only one project, I get only one ID back. You'll get back a different
one, so replace accordingly.

>>> project = client.get project(310577)
>>> [j['key'] for j in project.jobs.list()]
['310577/1/4']

200

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

Above we list all the jobs associated with the project. This job key is
needed to access the data. If you have long-running jobs, you can use the
state flag of the job’s metadata information:

>>> job = project.jobs.get('310577/1/4")
>>> job.metadata.get('state')
'finished'

Now that we have the job we're interested in, let’s retrieve all the items.

>>> job.items.iter()

<generator object mpdecode at 0x000001DAC5092D58>

>>> for item in job.items.iter(count=1):
print(item)

{'url': 'https://www.sainsburys.co.uk/shop/ProductDisplay
?storeld=10151&productId=1219376&urlRequestType=Baselcate
goryId=275324&catalogId=10100&langld=44", 'product_name':
"Sainsbury's British Pork Mince 20% Fat 500g", 'product
image': 'https://www.sainsburys.co.uk/wcsstore7.27.110/
ExtendedSitesCatalogAssetStore/images/catalog/productl
mages/93/0000000327893/0000000327893 L.jpeg', 'image

urls': ["https://www.sainsburys.co.uk/wcsstore7.27.110/
ExtendedSitesCatalogAssetStore/images/catalog/productImages
/93/0000000327893/0000000327893_L.jpeg'], 'price per unit':
'£1.65', 'rating': '0.0', 'product reviews': '0', 'item_
code': '7916164', 'nutritions': {'Energy kJ': '1104', 'Energy
kcal': '265"', 'Fat': "18.9g', 'of which saturates': '6.5g',
'- mono-unsaturates': '8.0g', '- polyunsaturates': '3.5g',
'Carbohydrate': '1.0g', 'of which sugars': '<0.5g', 'Fibre':
'0.6g", 'Protein': '22.5g', 'Salt': '0.50g'}, 'product origin': ",
' type': 'SainsburysItem'}

201

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

Asyou can see in the preceding code, you can get a generator over
the items associated with the job; I printed out the first result of the list. If
you're interested in how many items have been extracted, you can use the
metadata of the job again.

>>> job.metadata.get('scrapystats')['item scraped count']
923

As you can see, the API is very useful to split up data extraction from
websites and process them automatically with scripts later.

Limitations

Free accounts have some limitations. Let’s look at them, even if you can go
along very well with these limits.

First, there is a limitation of one concurrent crawl, which means you
can only run one spider at a time. For starting out, this is not a problem
because you will rarely want to run spiders in parallel. If the number of
your customers is growing, then you can encounter occasions when you
need parallel runs to gather data faster.

The second limitation, which can be annoying if you have jobs that
should be run frequently, is no periodic jobs. You can configure them, but
they won’t run until you subscribe to a paid plan, which start currently at
$9 per month.

The third big limitation is data storage. Your scraped results are stored
only for seven days. After that time, your crawl result is history. You can
extend this period to 120 days if you subscribe to a paid plan. But you can
overcome this problem if you have automatic data processing (through the
API), or if you store your data in a database.

202

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

Summary

ScrapingHub is the ideal solution in my eyes, if you have bigger Scrapy
projects, because it offers an easy to use platform for setting up and
evaluating your project. The presence of the Python library to access your
scraped data (and interacting with your spiders too) makes it convenient
both to automate data extraction and work with this data. The free plan
gives you a lot, and help is there to get you started.

PythonAnywhere

OK, there are other options besides ScrapingHub, of course. One is
PythonAnywhere,? a platform solution that enables you to run Python
in the cloud. It has a free “beginner” account, which has limitations on
outbound internet access, CPU, and memory usage, but it will fit our
purposes.

In this section we will create a simple scraper written in Scrapy, and we

will upload it to the cloud.

The Example Script

We will use a different Scrapy script, because the free account has
limitations on websites that you can reach from your scripts and
Sainsbury’s is not listed.

Therefore, I picked a website and created a simple scraper that will
extract the name and the description of the sights and attractions in Berlin.

*https://www.pythonanywhere.com/

203

https://www.pythonanywhere.com/

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

PythonAnywhere Configuration

Now it’s time to configure our PythonAnywhere account and get the script

in the cloud. I'll give you a step-by-step description here for the current

version of the PythonAnywhere solution—as it is on the 3rd April 2018.
Install Scrapy with the following command:

pip install --user scrapy

The --user flag is required because you are not allowed to modify
the global Python package installations, and you cannot ad Scrapy
to it either.

Now we have everything set up for our scraper. To verify this, you can
execute the following command:

~ $ scrapy version
Scrapy 1.5.0

Well, installing Scrapy and all its dependencies consumes the daily
assigned CPU capacity. If you want to continue with this chapter’s
examples, you can, but it can get slow on a free PythonAnywhere
account.

Uploading the Script
There are some ways to get your scripts up to PythonAnywhere:
e cloning from Github / BitBucket

o uploading as a ZIP file (actually, you can upload it
file-by-file, but ZIP is more convenient)

e SFTP and Rsync for paying accounts

204

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

I used the ZIP approach: compressed the Scrapy project; uploaded
it from the “Files” menu in PythonAnywhere; and then uncompressed it
using the unzip command, as shown in Figures 6-11 and 6-12.

5&3’ puthenanywhere Dashboard Consoles Flles Web Tasks Databases
Jhomes B GHajoa [Eopen Bash consolehere 19% full - 57.8 MB of your 512.0 MB quota
Directories Files
Enter new directory nams Hew directory Enter new file name, eg hello.py
cache/ :
ocalf 4
-

virtualenvs,/

W README. it
b B Gerdinzip

[©usicadaie]

10:46 ~ § unzip berlin
Archive: berlin.zip
creating: berlin/
creating: berlin/berlin/
inflating: berlin/berlin/items.py
inflating: berlin/berlin/middlewares.py
inflating: berlin/berlin/pipelines.py
inflating: berlin/berlin/settings.py
creating: berlin/berlin/spiders/
inflating: berlin/berlin/spiders/sights.py
inflating: berlin/berlin/spiders/__init__.py
creating: berlin/berlin/spiders/__pycache__/
inflating: berlin/berlin/spiders/__pycache__/sights.cpython-36.pyc
inflating: berlin/berlin/spiders/__pycache__/__init__.cpython-36.pyc
extracting: berlin/berlin/__init__.py
creating: berlin/berlin/__pycache__/
inflating: berlin/berlin/__pycache__/items.cpython-36.pyc
inflating: berlin/berlin/__pycache__/pipelines.cpython-36.pyc
inflating: berlin/berlin/__pycache__/settings.cpython-36.pyc
inflating: berlin/berlin/_pycache__/__init__.cpython-36.pyc
oing'lating: berlin/scrapy.cfg
10:46 ~ §

Figure 6-12. Unzipping the package

Now the folder is available under the Files section of the dashboard, as
shown in Figure 6-13.

205

CHAPTER 6 WEBSITE SCRAPING IN THE CLOUD
5&@* pythonanywhere

/home/ @ GHajba

Directories
Enter new directory name New directory .

.cache/
Jlocal/
.virtualenvs/
berlin/

Eb Eb Eb Eb

Figure 6-13. The files containing the berlin folder

Running the Script

Now we can run the script from our Bash console the same way as locally,
as shown in Figure 6-14. And because we have a file system, we can export
the results as files too. For example, to get the sights and attractions in a
JSON-lines file, we can execute the following command:

scrapy crawl sights -o sights.jl

o
e/ Bosh conacke £556505 A B mtotan)| =

BB LA
1 18

tota
drmcrwr-x 3 gHajba registered users 4095 Apr 6 13:36 .

semraer - aeao v ad_users 4095 May 5 13:36

drmxresr-x 4 m;n adusars 4g% Jor § 1334 Beslin

=rm=rwer== 1 GHa; gistered_users 255 5 09:32 scrapy.cfy

10332 —/barlin :m‘l Fghte -0 signte. il

2018-05-05 10: 53 5« 1 Scrap: 1. 0 started m Blr'lm S1ﬂ\ts}

2008-05-05 10:53: 19 ap)- xw o«nrt trings: “berlin.spiders’, lzm_un aimu 317, "srroEm_moouLEs®: ["berlin.spiders'], 'BOT_wamE
: ‘werlin sights ROBOTST) Y’ T thn +hrep:, ,.fM yourdenatin. con) 1%}

xT_ow e

2008705 06 10%53:25 Jasreey] Thro: mhd gxtensions:

[[scrapy. extem ions. feeduzport . FeedExportes
*scrapy.extensions, logstats. Logstats

*scrapy.extensions. te Inet. T!'Inn((ol\so1. f

"sCrapy . extensions . corestats.Corestats']
018-05-05 10:53:19 [scrapy] INFO: b!abhd gomnloader middlemares:
Faerapy i lemares. r ohatatat, Rebots el
serapy edlaras hutpn i
acrapy cdlena Ocw | oadT
‘scrapy Cdlaaras. unr-wnt uuraywtunmmru
*scrapy ddlenaras.ratry
wer
lanaras HEtoCompr
‘acrapy icdlewares.rec rect . Rediresti ddlemre’,
‘scrapy 1cdlawaras . cock {as. Cook1asa o] awas
ser
22 dlanaras. chunked. émmmrmmmm“n :
‘aer . cemnlcadermicdlenares. stats
1018-05-05 10:53:19 [scrapy] 1Wr0: Enabled spi ider =i ddlewares:
[Iscrapy :}parrur LK .
‘scrapy. te. O‘FFntemﬁd'lmru
*scrapy.3p il Craferer_feferarsidd] ema:
‘scrapy. sp 1 -r'nuum m—h.-ogxmuhnu
faer d el W
201505208 10153119 Tacrapy] TR ekl ed Trem pipelinus:
-05-05 10:53:19 [scrapy] INFO: Spider
2018-05-05 10:53:19 [scrapy] InFo: cruhd a panu fat 0 Danlbjhfn; u:r:p-d 0 items (at O items/min)
2018-05-05 10:53:19 urupy DOBUS: Telnet console Tisteming on 0.0, 1160

Figure 6-14. Running the spider

206

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

When the script finishes, like in Figure 6-15, a new file is written into
the project’s folder. If there’s already a file, Scrapy will append the new
information to it instead of recreating the file from scratch. Remember this!

" ——

T Bash corode 8556508
with the fancis glass doms 73 cie of the mast Frequently visited sights in Berlin. Tt 13 seat of the German parliassent, the B

T mmp:im "The Reichstag Building
“dasta

‘name’: u'hedchat
2078-05-05 1053151 tu rapy] camuc: scraped fron [fones B, e fan fat
®

rac a5
(dagcriprion’s U The victary olusn wi \1=|eﬁa lN Badass ot \ﬂﬂafy in"the centre

he 1\'«»':«! 18 one of Barlin's most famcus Tandmarks and 3 pepular tourd

B mal g vinv T).
018-05-05 10 51 scrapy] INFO: chmnn soider (finiche
2018-05-05 1.(:5!:11 scrapy] INFO: Stored j1 feed (21 items) in: sights.jl
2018-05-08 10:33:21 [scrapy] Inro: o.-plnn scrapy stats:

: es.: BI1,

aquest_ceunt: 4.
raUSFE_pachod o (AT : 4,
TR kY
rasponse_count

rnuwm “awn <w /200

' 3ponse_status cmu)nl 2
: nish.ruuoﬂ ‘Fimished’,
‘Fimish_time': dotetime.datetime(2018, §, §, 10, 53, 21, 132524),
:iten_siraped_coune’: 2,

+log_coume/UuRug”: 2

; u_eeum-':nm

vo_racuived ¢
" Ehieda o7 (e paed 1

scheduler fon: d": 3,
's:hﬂﬂl"cr.ﬁlﬂww.d."
‘start, datétime. ﬁ.lmunl(018, 5. 18, 6477500}
2018 -05~ os 10:51: 11 [apy] InFo: spider chua (ﬁm had)
L0=53 <bar Hn §
toral 2
s cHMajba registerec users 4096 may 5 10:53 .
én!mzr x & Olnzbl registerec _users 4096 May 5 10:46 ..
roanear-x 4 GMajba registerec_aser > em saay 5 10:53 barlin
- -1 w:ha reogisterac_usar. § Apr & 09:32 scrapy.cfg
.-'b- {. @Haita | ;eq;:t?;:u e Way 5 10:53 sights.sl
rlin
o artat ety Academy of Arts is the oldest and most prestigicus cultural institution in Germany. Its tasks are to promote contespora
mnuma and to uh ard c.hural harit. i

age
P18tz 13 @ cantra] square and traffic juacticn 1n merlin's witte disteict. one of city’s the sest visited squares,
h?'q ey ﬁﬁll in Berlin.)

el public 8T Unter den Linden boulevard in the Mitte district in Barlin, Tt mas the site of the notorious Wa

Figure 6-15. Spider finished and the first three lines of the file

You can access the file through the Files page. Here you can download
the file, but it is possible to edit it in your browser, as shown in Figure 6-16.

%j‘ pythonanywhere Dashboard Consoles Flles Web Tasks Databases
feme/GHajba/ B berlin [cpen Bash console bere 9% full - 97.8 M3 of your 512.0 MB quota
Directories Files

berlin i W scrapy.cfy
[sights.jl

100MIE maxmum sleoe

Figure 6-16. Download the exported file

This Works Just Manually...

For now, we only ran the script manually. But this is not the way we sought

when we deployed the scraper in the cloud.

207

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

The solution is to add a scheduler, which automatically starts the

scraper at a defined time.

Remember if you are using a scheduler, make sure you remove
the already present export file, because Scrapy doesn’t overwrite it.
If you’re using a custom item exporter, then you may already rewrite
the contents of the file.

One option is to set up a Task right at Python Anywhere. Here you
must configure what command to execute. And because we know our
command, we can add it right to the scheduler, as shown in Figure 6-17.

5&9" pythonanywhere Dashboard Consoles Files Web Tasks Databases

CPU Usage: &% used = 6,618 of 100s. Resets in 20 hours, 42 minutes ({ELIED

Scheduled tasks

Server time- 11:33UTC

Daillyat 03 |3 00 |UTCrun cd /home/GHajbasberlin &2 rm sightsj| &4 scrapy crawl sights ¢ sights jI Create
Frequency Time Command Expiry Actions =)

You have no lasks ye.

Your Scheduled task is a soript that will run every day at & time of your choosing — you can ug= it to do stuff like
scraping websies, or checking that your senver is running.

Paying users can schedule several 1asks, can run them both hourly and daily, and they never expire. Just sayin..

Figure 6-17. Creating the task using a three-piece script

After the scheduled time up, you have access to the task log that
contains the console output, and perhaps some errors, as shown in
Figure 6-18.

208

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

ﬁ@; pythonanywhere Dashboard Consoles Files Web Tasks Databases
CPU Usage: 32% used = 32,82 of 1008 Resets i 1§ hours, 30 minutes (ERIRED
Scheduled tasks

Server time: 12244 UTC
You have reached your maxmum number of scheduled 13sics. Contact us via the “Send feeddack” link above if you need mare.

Frequency Time Command Expiry Actions. -
Daily 1225 od Mome/GHapaberkin 4 m sights | L& scrapy cramd sghts 0 sights 20180602 5 e °°
T

Figure 6-18. Accessing the log for a task

The second approach is the extended version of the previous one: we
create a script that executes the command sequence defined earlier, and
we point the scheduler to this script.

The first step is to create a script that changes to the project’s folder
and executes the spider (make sure, you're pointing to your home folder!).

#!/bin/bash

cd /home/GHajba/berlin

m sights.jl

scrapy crawl sights -o sights.jl

The preceding script is the same we provided previously to the task,
but we placed every command on its own line and this makes it readable.

I created the file right in my browser using PythonAnywhere’s editor, as
shown in Figure 6-19.

5@’ puthonanywhere Dashboard Consoles Files Web Tasks Databases
fhomes B GHajba [Elopen Bash consale here 19% full - 978 MB of your $12.0 MB quota
Directories Files
Enter new tirectory name berlin_scheduler.sh Newje)
&
eache! o] £Ycy:]
locals =] IGE
virtualenvs/ o] £)
beriin/ | EXcy -
iGE
1GE
iGE
LGE
[besiinzip & o

L 7
V0BG maximum aize

Figure 6-19. Creating a new file

209

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

Caveat If you're using a Windows computer, the file editor will add
Windows line-endings to your file. To fix this issue (and be able to run
the script in a Bash shell) execute the following command from the
console: sed -i -e 's/\r$//' berlin scheduler.sh

Because a free account has limitations on the number of scheduled
tasks (you can have only one), we will drop the previously created one and
create a new one that will execute only the previously created berlin_
scheduler.sh, as shown in Figure 6-20.

S&g’p.::i—-cnangwhere Dashboard Consoles Files Web Tasks Databases

CPU Usage: 32% used - 32628 of 100s. Resets in 19 hours, 30 minutes (EIEEY

Scheduled tasks
Server time: 12:44 UTC

Dalyat 12 @ 48 UTC.run home/GHafba/berfin_scheduler sh @

Frequency Time Command Expiry Acticns

You have no tasks yer.
Figure 6-20. Creating the new scheduler

After the task is available, you have access to the task log, which
contains the same information as previously.

Storing Data in a Database?

It would be a viable option to store the extracted results in a database.
Because we're in the cloud and using PythonAnywhere for now, it would
be ideal to have cloud storage—for example, mLab, which is a cloud-based
MongoDB.

The problem is that a free account allows only HTTP and HTTPS
connections to servers. This means, even though you set-up a Mongo
database with mLab, you cannot create a connection to store the data.

210

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

However, Python Anywhere offers MySQL for free users. This means,
you can have storage for your extracted information, and you don’t have to
store everything in a file.

Let’s look at how to configure MySQL and store the extracted data in
the database.

First, let’s create a database. You can do this on the Databases. I named
mine berlinsights, as shown in Figure 6-21.

f,&(; puthonanywhere Dashboard Consoles Files Web Tasks Databases
-

MySQL settings

Pastgres
Connecting:
Use these settings in your web applications.
Database host address: GHajba.sysql.pythonamywbere-services.con
Username: GHajba
Your databases:

Click & database’s name to s1art a MySOL console logged into it

Start a console on:

Create a database
Your database names ahways start with your usemame + °57. There's no need 10 type that
prefix in below, though: Pythonanywhere will automatically add it

Database name:

& berlinsights

Figure 6-21. Creating a new database is easy

Now we must configure our Scrapy project to be able to connect to the
database and write information to the given table.

We will use a simple item pipeline that will insert the sights into the
database.

And we need the database table. I created it through the database
console using the following script:

create table berlinsights(name varchar(1024) not null,
description varchar(4096));

211

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

5@@? MySOL: GHajbaSberlinsights

welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 16622989
Server version: 5.6.27-log MySQL Community Server (GPL)

Copyright (c) 2000, 2016, oracle and/or its affiliates. A1l rights reserved.

oracle is a reﬁ'istered trademark of oracle l:orﬂorat'ion and/or its
affiliates. other names may be trademarks of their respective
owners.

Type 'help;' or "\h' for help. Type '\c' to clear the current input statement.

mysql> use GHajbaSberlinsights

patabase change

mysql> create table berlinsights(name varchar(1024) not null, description varchar(4096));
Query OK, 0 rows affected (0.04 sec)

mysql>

Figure 6-22. Creating the table using the console

Asyou can see in Figure 6-22: make sure, you're using the right
database! If you're not sure which database you’re running on, type status
and it will tell you which database you're on.

If you forget your database password, you can simply set a new one at
the database dashboard.

Now we can create our middleware. We will use the pymysql library.

-*- coding: utf-8 -*-
import pymysql.cursors

insert template = """INSERT INTO berlinsights (name,
description) VALUES (%s, %s)"""

class BerlinMySQLPipeline(object):

def process item(self, item, spider):
connection = pymysql.connect(host="CHajba.mysql.
pythonanywhere-services.com',
user="'GHajba',
password="'YourDbPassHere',
db="GHajba$berlinsights’,
charset="utf8mbg"',

212

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

cursorclass=pymysql.cursors.
DictCursor)
try:
with connection.cursor() as cursor:
cursor.execute(insert template, (item['name'],
item['description’]))
connection.commit()
finally:
connection.close()

return item

The prceding example uses my database, so make sure you're filling in
your data! And because this MySQL database is a PythonAnywhere service,
you can test your connection only when you've deployed your scraper.

Again, this script doesn’t validate if an entry is already in the database.
If you run it twice, you will get every entry duplicated. Feel free to adapt the
script to filter or update already present entries.

After running the spider, we can verify that information is in the
database, as shown in Figure 6-23.

S5x] upsan OMepaSbermights

Pysal> salact * from berlinsights:

titetion in cermany. Tt

1
ry artisiic pﬂuw- i te safoquard cultural herit

1
| Al .--:ﬂn 15 & central square and traffic junction in Berlin’s Mitte district. Ome of c¥ wost visited squares,
..m"m T St et et it o oo
|

ts
) l.bqlpl Bebalglatzts a pubTic square at unter dun Linden boulevard 1n the Witte district in Serlin. It was the site of the astorso
- -ﬂ'ﬂ"l- n 1955

| The Protestant Serlin Cathedral on Miseum I3land in the witte district s Berlin's largest church and cne of the majer sigh
ty's centre
| The TV Towsr at Alexanderplatz 15 Berlin's mest prowinent landmark and the tallest building in Germany. Its steal sphere co
I‘l"w--d- revelving restaurant.
| Wrandenburg Gate is Berlin's most fasous landmark. & sysbo] of merlin and German division during the cold war, it is now &
of pasce and umity.

nt Charlie | Chackseint Charlie was the best-known border crossing between Last and west Berlin during the Cold war. At the height of th
B Boriin crisis in 1981 u.3. and Soviet taks Toced sach cthmr heare

| Kast Side Galler; G2t Side Gallary, ane of arlin's mort pesular S1ghCs, 15 & former saction of the Sarlin Ml ArEists have turned 1%
73 the largest open-air gallery in the erld with cver

paintings
T aandarmermarkt In the Witee SISITICt 13 arguably Borlin's most basutife] squars. Tt 15 the site of thee {apressive buildin
' l'- wrl.! and the srench cathedral and K-h'"ll.‘ § Kerzerthass

Figure 6-23. Verifying the data in the console

If didn’t installed pymysql already, you can do it with the following
command:

pip install --user pymysq

213

CHAPTER 6 WEBSITE SCRAPING IN THE CLOUD

Summary

Python Anywhere offers you cloud hosting and scheduling for free;
however, it has limitations on the outgoing connections for the free plan.
And this makes it only valuable for practicing. On the other side, if you pay
$5 a month, you get an upgraded account where you don’t have to limit
your scrapings to the whitelist.*

What About Beautiful Soup?

PythonAnywhere is a cloud platform for Python. This means you can not
only run Scrapy spiders there but Beautiful Soup scrapers too. And this is
what we will look at in a nutshell.

The approach is the same as previously: we will extract the same sights
but using Beautiful Soup.

Fortunately, the requests and beautifulsoup4 libraries are already
installed on the host computer, so you do not need to install anything.

The first step is to write and upload the script. Actually, I have already
written the code, but this doesn’t mean you cannot do it for yourself. As
always: my code examples are just one solution and there are many paths
that lead to the final goal.

import requests
from bs4 import BeautifulSoup

bs parser = 'html.parser'

def get page(url):
try:
r = requests.get(url)
if r.status code == 200:

*https://www.pythonanywhere.com/whitelist/

214

https://www.pythonanywhere.com/whitelist

def

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

return BeautifulSoup(r.content, bs parser)
except Exception as e:
pass
return None

get sights():
soup = get page('https://www.berlin.de/en/attractions-and-
sights/")
if not soup:
return

for sight in soup.select('div[class*="teaser"]"):
h3 = sight.find('h3")
if not h3:
continue
a = h3.find('a")
if not a:
continue
name = a.text
if not name:
continue

description =
div = sight.find('div', class_='inner")
if div:

p = div.find('p")

if p:

description = p.text

if not description:

continue
yield (name, description)

215

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

if _name_ == "' main_ ':
with open('berlin sights.jl', 'w") as outfile:
for sight in get sights():
outfile.write('{" + '"name": "{}", "description":
"{}"".format(sight[0], sight[1]) + '}\n")

After uploading, we can run the script. Running the script works as it
would in a normal terminal window.

python3 berlin.py

After the process finishes, you can access the results in the berlin_
sights.jl file. The first entry looks like this:

"name": "Academy of Arts", "description": "The Academy of
Arts is the oldest and most prestigious cultural institution
in Germany. Its tasks are to promote contemporary artistic
positions and to safeguard cultural heritage. more »"}

Scheduling a script works the same way it did for Scrapy scripts, so
I'won’t go into detail. Think of PythonAnywhere as your remote Python
terminal if you're using Beautiful Soup.

Summary

In this chapter we looked at options for how to run scrapers in the cloud.
This is the solution if you don’t want to run your extractors every time
manually, or you don’t want to have them run on your computer because
they eat a lot of resources and your computer gets slow for a long time.

We looked at Scraping Hub, which provides services specific for Scrapy
and this makes it unique. Besides this, they’re the developers of Splash too
and they have a solution for how you can run your Splash-based spiders in
the cloud.

216

CHAPTER6 WEBSITE SCRAPING IN THE CLOUD

As an alternative, we looked at PythonAnywhere, where you can
upload Python scripts and execute them. This is not only useful for Scrapy
but for scripts using Beautiful Soup too, and this moves your simple
scrapers into the Cloud too.

217

Index

A

Autothrottling, 165-166

B

Beautiful Soup, 4, 12
with scrapy, 161
Selenium, 191-192
Splash, 190-191
Beautiful Soup scrapers, 214-216
converting Soup to
HTML text, 53
to CSV (see CSV module)
developing long run
cache intermediate step
results, 90
database cache, 92
file-based cache, 92
saving space, 93
updating cache, 94
exporting data
JSON files, 73-75
NoSQL database, 83-85
relational database, 76-82
saving class, 70-73
saving dictionary, 69-70
extracting all images, 46
extracting all links, 45-46

© Gabor Lészl6 Hajba 2018

extracting required
information, 53
navigating product
pages, 56-57
target URLs, 54-56
using classes, 62
using dictionaries, 58-62
find and find_all, 45
finding comments, 52
finding tags on property, 48
finding tags through
attributes, 46-47
installing, 41
nutrition table, 63-64
parsing file, 45
parsing HTML text, 42-43
parsing remote HTML, 44
performance improvements
changing parser, 86
parse only needed, 87-88
saving while working, 88-89
source code, 95
tags and attributes
adding, 49-50
changing, 50-51
deleting, 51
unforeseen changes, 63-64

Breadth First Search (BFS), 56
builtwith library, 7-8

219

G. L. Hajba, Website Scraping with Python, https://doi.org/10.1007/978-1-4842-3925-4

https://doi.org/10.1007/978-1-4842-3925-4

INDEX

C

Caching, scrapy
DBM storage, 155
default, 153-154
dummy policy, 156
file system storage, 155
HTTP options, 153-154
LevelDB storage, 156
RFC2616 policy, 157
Chrome Developer Tools,
see DevTools
Cookies, 166-167
CSV file
contents, 134-135
feed exporter
file format, 150
mycsy, 153
truncate() method, 152
item pipeline, 147, 149
CSV module
headers, 68
line endings, 68
quick glance, 66-67

D E
DBM storage, 155
Depth First Search (DFS), 56
DevTools

definition, 8-9

website scrapers, 9-11
Digital transformation, 2
Dummy policy, 156

220

F G, H
Feed exporter

file format, 150

mycsy, 153

truncate() method, 152
File system storage, 155

Image extraction, 17-18

J

JSON file, 135-137

K

Kayak.com, 170-171

L

LevelDB storage, 156
Link extractor, 15-17

M,N, O
“Meat & fish”
department, 23

Middlewares, 102-103

MongoDB, 83
database, 138-140
installing, 83
writing to, 84-85

PQ
Parse method, 110-112
Parsing robots.txt, 13-15
Pipelines, 103
Portia tools, 12
Protopage.com, 176-177
PythonAnywhere, 203
configuration, 204
running the script, 206-207
script, 203
script manually, 207-210
storing data in database, 210-213
uploading script, 204-205

R

Requests library, 36

Reverse engineering
kayak.com, 170-171
search expressions, 172

RFC2616 policy, 157

S, T,U, Vv
Sainsbury scraper
allowed_domains, 107
checklist, 108
CSV file (see CSV file)
database
MongoDB, 138-140
SQLite, 140
downloading images, 158, 160
duplicate filter, 144-145

INDEX

extensions, 104
extracting information, 118, 120
genspider command, 106
items
dictionary-like objects, 127
dropping, 145-146
flat class, 124
parse_product_detail
method, 123, 125
static imports, 124
JSON file, 135-137
middlewares, 102-103
navigation
category pages, 112-115
product listing pages, 116
parse method, 110-112
pipelines, 103
project structure, 99
robots.txt file, 100
ROBOTSTXT_OBEY
property, 100
selectors, 104-105
settings.py file, 101
spider, 127
start_urls variable, 107
USER_AGENT property, 100
using shell, 108-110

Sainsbury’s Halloween 2017

Beef category, 25-26
country of origin, 30
detailed product page, 28-29
image’s HTML code, 29
landing page, 19

221

INDEX

Sainsbury’s Halloween 2017 (cont.)

“Meat & fish” department, 23-24
navigation websites
BFS and DFS code, 33, 38-39
graph, 32
HTML content, 37
installation, 36
link extraction, 33-34
Requests library, 36
search algorithms, 35
nutrition details, 20
nutrition information, 30
unordered list class pages,
26-27
productLister class, 27
productNameAndPromotions
class, 27
Roast dinner option, 25
robots.txt file, 21-22

Sainsbury’s scraper to Splash,

179-180, 182

ScrapingHub, 194, 203
Scrapy

autothrottling feature, 165-166
caching (see Caching, scrapy)
concurrent requests, 164
cookies, 166-167

download delay, 164
framework, 4

logging, 162

log level, 163

scrapy-selenium, 187-188

222

with Selenium, 186-187
with Splash, 177-179
tool, installing, 98
using Beautiful Soup, 161
Scrapy Cloud
accessing data, 198-200
API, 200, 202
creating project, 194-195
deploying spider, 195-196
limitations, 202
start and wait, 196-198
Selectors, 104-105
Selenium
Beautiful Soup, 191-192
installation, 184
integration with scrapy, 186-187
Sainsbury’s website, 185
scrapy-selenium, 187-188
Selenium tools, 12
Splash
Beautiful Soup, 190-191
converting Sainsbury’s scraper,
179-180, 182
drawback, 183
error message, 183
install Docker, 173
integration with scrapy, 177-179
protopage.com, 176-177
Sainsbury’s, 174
welcome screen, 174
with source code, 175-176
SQLite database, 140

W, XY Z
Web drivers, 184
Website scraping
Beautiful Soup scrapers,
214-216
layout, 3
preparation steps
robots.txt, 6
terms and conditions, 5
website technologies, 7-8
PythonAnywhere, 203
configuration, 204
running the
script, 206-207

INDEX

script, 203
script manually, 207-210
storing data in
database, 210-213
uploading script, 204-205
Requests library, 4
Scrapy Cloud, 193
accessing data, 198-200
API, 200, 202
creating project, 194-195
deploying spider, 195-196
limitations, 202
start and wait, 196-198
WordPress, 2

223

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Getting Started
	Website Scraping
	Projects for Website Scraping
	Websites Are the Bottleneck

	Tools in This Book
	Preparation
	Terms and Robots
	robots.txt

	Technology of the Website
	Using Chrome Developer Tools
	Set-up

	Tool Considerations

	Starting to Code
	Parsing robots.txt
	Creating a Link Extractor
	Extracting Images

	Summary

	Chapter 2: Enter the Requirements
	The Requirements
	Preparation
	Navigating Through “Meat & fishFish”
	Selecting the Required Information

	Outlining the Application
	Navigating the Website
	Creating the Navigation
	The requests Library
	Installation
	Getting Pages

	Switching to requests
	Putting the Code Together

	Summary

	Chapter 3: Using Beautiful Soup
	Installing Beautiful Soup
	Simple Examples
	Parsing HTML Text
	Parsing Remote HTML
	Parsing a File
	Difference Between find and find_all
	Extracting All Links
	Extracting All Images
	Finding Tags Through Their Attributes
	Finding Multiple Tags Based on Property
	Changing Content
	Adding Tags and Attributes
	Changing Tags and Attributes
	Deleting Tags and Attributes

	Finding Comments
	Conver ting a Soup to HTML Text

	Extracting the Required Information
	Identifying, Extracting, and Calling the Target URLs
	Navigating the Product Pages
	Extracting the Information
	Using Dictionaries
	Using Classes

	Unforeseen Changes

	Exporting the Data
	To CSV
	Quick Glance at the csv Module
	Line Endings
	Headers

	Saving a Dictionary
	Saving a Class

	To JSON
	Quick Glance at the json module
	Saving a Dictionary
	Saving a Class

	To a Relational Database
	To an NoSQL Database
	Installing MongoDB
	Writing to MongoDB

	Per formance Improvements
	Changing the Parser
	Parse Only What’s Needed
	Saving While Working

	Developing on a Long Run
	Caching Intermediate Step Results
	Caching Whole Websites
	File-Based Cache
	Database Cache
	Saving Space
	Updating the Cache

	Source Code for this Chapter
	Summary

	Chapter 4: Using Scrapy
	Installing Scrapy
	Creating the Project
	Configuring the Project
	Terminology
	Middleware
	Pipeline
	Extension
	Selectors

	Implementing the Sainsbury Scraper
	What’s This allowed_domains About?
	Preparation
	Using the Shell

	def parse(self, response)
	Navigating Through Categories
	Navigating Through the Product Listings
	Extracting the Data
	Where to Put the Data?
	Why Items?

	Running the Spider

	Exporting the Results
	To CSV
	To JSON
	To Databases
	MongoDB
	SQLite

	Bring Your Own Exporter
	Filtering Duplicates
	Silently Dropping Items
	Fixing the CSV File
	CSV Item Exporter

	Caching with Scrapy
	Storage Solutions
	File System Storage
	DBM Storage
	LevelDB Storage

	Cache Policies
	Dummy Policy
	RFC2616 Policy

	Downloading Images
	Using Beautiful Soup with Scrapy
	Logging
	(A Bit) Advanced Configuration
	LOG_LEVEL
	CONCURRENT_REQUESTS
	DOWNLOAD_DELAY
	Autothrottling
	COOKIES_ENABLED

	Summary

	Chapter 5: Handling JavaScript
	Reverse Engineering
	Thoughts on Reverse Engineering
	Summary

	Splash
	Set-up
	A Dynamic Example
	Integration with Scrapy
	Adapting the basic Spider
	What Happens When Splash Isn’t Running?
	Summary

	Selenium
	Prerequisites
	Basic Usage
	Integration with Scrapy
	scrapy-selenium

	Summary

	Solutions for Beautiful Soup
	Splash
	Selenium
	Summary

	Summary

	Chapter 6: Website Scraping in the Cloud
	Scrapy Cloud
	Creating a Project
	Deploying Your Spider
	Start and Wait
	Accessing the Data
	API
	Limitations
	Summary

	PythonAnywhere
	The Example Script
	PythonAnywhere Configuration
	Uploading the Script
	Running the Script
	This Works Just Manually…
	Storing Data in a Database?
	Summary

	What About Beautiful Soup?
	Summary

	Index

