

Visual Studio® Code
for Python® Programmers

April Speight

Copyright © 2021 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

ISBN: 978-1-119-77336-8

ISBN: 978-1-119-77338-2 (ebk)

ISBN: 978-1-119-77337-5 (ebk)

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section
107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or
authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood
Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the
Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street,
Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with respect to the accuracy or completeness of the contents
of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose.
No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies
contained herein may not be suitable for your situation. You should consult with a professional where appropriate.
Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but
not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974, outside the United States at (317) 572-3993 or fax (317) 572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available
in electronic formats. For more information about Wiley products, visit our web site at www.wiley.com.

Library of Congress Control Number: 2021937124

Trademarks: WILEY and the Wiley logo are trademarks or registered trademarks of John Wiley & Sons, Inc. and/or
its affiliates, in the United States and other countries, and may not be used without written permission. Visual Studio
is a registered trademark of Microsoft Corporation. Python is a registered trademark of Python Software Foundation.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not associated with any
product or vendor mentioned in this book.

Cover image: © JuSun / Getty Images
Cover design: Wiley

For Python developers in need of a home for their code.

And Eric—you were right. But with that aside, you’re the most supportive partner
an author could ever ask for in this thing we call life. We’re two halves of a whole.

My success is your success, and your success is my success.

v

About the Author

April Speight is a developer who specializes in Python and conversational
design for chatbots and AI assistants. Her passion for learning and teaching
Python led to her first published title, Bite-Size Python: An Introduction to Python
Programming. She currently works on content creation and developer community
engagement for Spatial Computing and Mixed Reality at Microsoft.

vii

About the Technical Editor

Kraig Brockschmidt has worked on technical developer content for more than
30 years, publishing books, articles, sample code, and documentation for mul-
tiple programming languages and development platforms. He currently works
on developer documentation at Microsoft, specializing in using Python on
Microsoft’s cloud computing platform, Azure. He also authored the original set
of documentation for the Python extension for Visual Studio Code.

ix

Acknowledgments

Many thanks to those who have spent time creating, contributing, and improving
what I consider to be the optimal solution for a code editor. I would be com-
pletely remiss if I didn’t personally thank Kraig Brockschmidt, my technical
editor on this book; thanks again for your time and commitment.

Also, thanks goes to Rob for being an open ear throughout this entire process.
Although I didn’t understand what coding was in undergrad, the fact that you
did it so often intrigued me. Because of you, I’ve discovered a new skillset that
has evolved into where I am professionally in my career.

xi

Contents at a Glance

Introduction� xix

Part I	 Welcome to Visual Studio Code� 1

Chapter 1	 Getting Started� 3

Chapter 2	 Hello World for Python� 21

Chapter 3	 Editing Code� 33

Part II	 Additional Visual Studio Code Features� 51

Chapter 4	 Managing Projects and Collaboration� 53

Chapter 5	 Debugging� 83

Chapter 6	 Unit Testing� 105

Chapter 7	 Jupyter Notebook� 117

Chapter 8	 Using Git and GitHub with Visual Studio Code� 135

Chapter 9	� Deploy a Django App to Azure App Service with
the Azure App Service Extension� 157

Chapter 10	 Create and Debug a Flask App� 177

Chapter 11	� Create and Deploy a Container with Azure
Container Registry and Azure App Service� 189

Chapter 12	 Deploy an Azure Function Trigger by a Timer� 209

Appendix	 Getting Started with Azure� 221

Index	� 225

Speight773368_ftoc01.indd 11Speight773368_ftoc01.indd 11 22-05-2021 15:27:0722-05-2021 15:27:07

Speight773368_ftoc01.indd 12Speight773368_ftoc01.indd 12 22-05-2021 15:27:0722-05-2021 15:27:07

xiii

Contents

Introduction� xix

Part I	 Welcome to Visual Studio Code� 1

Chapter 1	 Getting Started� 3
Installing Visual Studio Code� 4
The Visual Studio Code User Interface� 4

Activity Bar� 5
Side Bar� 6
Editor� 7
Panels� 11
Status Bar� 12

Command Palette� 12
Extensions� 14
Customizations� 15

Settings� 16
Color Themes and Icons� 18
Keybindings� 18
Display Langage� 18

Summary� 19

Chapter 2	 Hello World for Python� 21
Installing a Python Interpreter� 21

macOS� 22
Linux� 22
Windows� 22

Installing the Python Extension for Visual Studio Code� 22
Creating a Python File� 23
Selecting an Interpreter� 24

Setting a Default Interpreter� 26

xiv	 Contents

Settings Editor� 26
settings.json File� 26

Selecting a Linter� 26
Editing a Python File� 27
Running a Python File� 29
Workflow Recap� 30
Summary� 31

Chapter 3	 Editing Code� 33
Quick Fixes� 34
Code Completion, Definitions, and Declarations� 35
Formatting� 38

Edit Formatting Settings in the Settings Editor� 39
Edit Formatting Settings in settings.json� 40

Linting� 41
Enable and Disable Linting� 41
Run Linting� 42
Linting Settings� 43

Refactoring� 44
Extract Variable� 44
Extract Method� 45
Sort Imports� 46

Snippets� 47
Summary� 48

Part II	 Additional Visual Studio Code Features� 51

Chapter 4	 Managing Projects and Collaboration� 53
Files and Folders� 53

Open a Project� 54
Navigate Files� 56
Search across Files� 57
Close a File or Folder� 60

Environments� 60
Virtual Environments� 61
Conda Environments� 61

Source Control� 63
Initialize a Repository� 65
Commit Changes� 66
Branches� 69
Remotes� 70
Gutter Indicators� 71
View Diffs� 71
Push and Merge Commits� 73
Pull Requests� 74

Live Share� 74

	 Contents	 xv

Install Live Share� 75
Sign In to Live Share� 76
Share a Project� 76
Join a Session� 78
Editing and Collaboration� 80

Follow a Participant� 80
Share a Terminal� 81

Summary� 82

Chapter 5	 Debugging� 83
Starting a Debug Session� 84
Debug Commands� 89

Continue� 89
Step Over� 90
Step Into� 90
Step Out� 91
Stop� 91
Restart� 92

Call Stack� 92
Triggering a Breakpoint� 93
Logpoints� 95
Watch� 96
The Debug Console� 98
Launch Configurations� 101
Summary� 104

Chapter 6	 Unit Testing� 105
Enable and Discover Tests� 105
Run Tests� 109
Debug Tests� 113
Summary� 115

Chapter 7	 Jupyter Notebook� 117
Creating and Opening a Jupyter Notebook� 118
Code Cell Modes� 120
Adding Cells� 121
Editing Cells� 122
Running a Cell� 124

Running a Single Cell� 124
Running All Code Cells� 124
Running Cells Above and Below a Code Cell� 125
Additional Commands� 126

Viewing Variables and Data� 126
Viewing Plots� 128
Debugging a Jupyter Notebook� 129
Connecting to a Remote Server� 130

xvi	 Contents

Exporting a Notebook� 131
Summary� 132

Chapter 8	 Using Git and GitHub with Visual Studio Code� 135
Getting Started� 135
GitHub Pull Requests and Issues Extension� 136
Publish a Project to GitHub� 139
Push Changes to GitHub� 141
Manage Pull Requests and Issues� 143

Pull Requests� 144
Issues� 147

Clone Repository� 152
Timeline View� 154
Summary� 156

Chapter 9	� Deploy a Django App to Azure App Service with
the Azure App Service Extension� 157
Getting Started� 157
Creating a Django Project� 159
Creating an App� 161
Creating a Home Page� 163
Creating Website Pages� 166
Deploying to Azure� 168
Summary� 175

Chapter 10	 Create and Debug a Flask App� 177
Getting Started� 177
Create a Flask App� 178
Create and Render a Template� 180
Debug the Flask App� 184
Summary� 187

Chapter 11	� Create and Deploy a Container with Azure
Container Registry and Azure App Service� 189
Getting Started� 189
Create a Container� 191

Add Docker Files to the Project� 191
Build an Image� 193
Build and Run a Container� 195

Debug a Container� 197
Push an Image to the Registry� 197

Create an Azure Container Registry� 198
Determine the Image’s Registry Location� 199

Deploy the Container Image to Azure� 201
Make Changes to the App and Deploy� 205
Multicontainer Apps� 206
Summary� 207

	 Contents	 xvii

Chapter 12	 Deploy an Azure Function Trigger by a Timer� 209
Getting Started� 210
Create an Azure Function� 211
Invoke the Function Locally� 213
Add the Code to the Function� 214
Deploy the Function to Azure� 215
Summary� 220

Appendix 	 Getting Started with Azure� 221

Index� 225

xix

Introduction

What started as an announcement at Microsoft Build 2015 has evolved into the
Most Popular Development Environment, as ranked in the 2019 Stack Overflow
Developer Survey. Visual Studio Code is a free, open-source, cross-platform code
editor developed by Microsoft as part of the Visual Studio family. In comparison
to its Visual Studio counterpart, Visual Studio Code is a streamlined code editor
for a quick code-build-debug cycle. This feature-rich editor includes support for
code completion, refactoring, formatting, managing source code, collaboration,
debugging, unit testing, and more.

This book introduces Visual Studio Code through the lens of a Python devel-
oper. Editor features are introduced and explored with examples applicable to
Python development. The goal of this book is to help acclimate you to Visual
Studio Code features and to help you develop an efficient development workflow.

Stay up-to-date with new Visual Studio Code and Python features by visiting
the Microsoft Developer Blog at devblogs.microsoft.com/python.

Who Will Benefit Most from This Book

Those who are in search of a comprehensive introduction to Visual Studio Code
for Python development will benefit most from reading this book. It was written
for developers with a working knowledge of Python. Although this book does
not provide instruction for learning Python development, it includes general
programming concepts, such as managing source control, unit testing, and
debugging to name a few, which are explored as they relate to Visual Studio
Code features. Python tools and libraries that fall outside of the Python Standard
Library are also explored and provided with a foundational understanding to
complete the exercises throughout this book.

http://devblogs.microsoft.com/python

xx	 Introduction

Looking Ahead in This Book
Here’s the book at a glance:

Chapter 1: Getting Started introduces the Visual Studio Code interface and
the Extension Marketplace. Instructions on how to customize the editor are
provided, alongside keyboard shortcuts for quickly executing commands.
The keyboard shortcuts are also provided, following the convention of
iOS/Windows and Linux (e.g., Cmd+C/Ctrl+C is the shortcut to Copy).

Chapter 2: Hello World for Python prepares your workspace for Python
development. After installing a Python interpreter and the Python extension
for Visual Studio Code, you are tasked to create and run your first Hello
World program in the editor.

Chapter 3: Editing Code explores standard Visual Studio Code editing features
in addition to features provided by the Python extension.

Chapter 4: Managing Projects and Collaboration discusses how to open
and navigate files in addition to collaborating with others in Visual Studio
Code. An introduction to managing Python environments is also provided
as it relates to global, virtual, and conda environments.

Chapter 5: Debugging takes you beyond print statements and instead
shows you how to use the built-in debugger. Instructions for configuring
the debugger are provided as well.

Chapter 6: Unit Testing explains how to create, run, and debug unit tests
within the Test Explorer. Examples are provided for both the unittest and
pytest frameworks.

Chapter 7: Jupyter Notebook introduces Jupyter Notebook support in Visual
Studio Code. Learn how to create, edit, and run cells within the editor.
An overview of how to debug a notebook and connect to a remote are
provided as well.

Chapter 8: Using Git and GitHub with Visual Studio Code explains how
to extend your GitHub workflow in the editor without navigating to the
browser. The GitHub Pull Requests and Issues extension is installed and
used to maintain source code within a GitHub repository.

Chapter 9: Deploy a Django App to Azure App Service using the Azure
App Service Extension takes you through the basic workflow of creating
a Django app and how to deploy to Azure within the editor.

Chapter 10: Create and Debug a Flask App provides instruction for how to
debug a website created with Flask in Visual Studio Code.

Introduction	 xxi

Chapter 11: Create and Deploy a Container with Azure Container Registry
and Azure App Service takes you through the basic workflow of contain-
erizing a project with the Visual Studio Code Docker extension.

Chapter 12: Deploy an Azure Function Trigger by a Timer explains how
to create a daily RSS feed summary using a function created with Azure
Functions that is deployed to Azure.

Special Features

The project files for this book are found on the book page at www.wiley.com. Each
chapter introduction states which folder to refer to for the project file(s) required
to complete the exercises.

	 N OT E     Boxes like this are used to expand on some aspect of the topic, without
interrupting the flow of the narrative.

How to Contact Wiley

Wiley strives to keep you supplied with the latest tools and information you
need for your work. If you believe you have found an error in this book, and it
is not listed on the book’s web page, you can report the issue to Wiley Customer
Technical Support at wileysupport@wiley.com.

www.wiley.com

Welcome to Visual Studio Code

In This Part

Chapter 1: Getting Started
Chapter 2: Hello World for Python
Chapter 3: Editing Code

Par t

I

C H A P T E R

3

1

When you began your Python development journey, you were most likely intro-
duced to Python’s Integrated Development and Learning Environment (IDLE).
IDLE’s simplicity is ideal for newcomers but leaves much to be desired by those
who are more comfortable with the language and are in need of an efficient
and productive workflow. A range of code editors and integrated development
environments (IDEs) are available for Python development—some for general
development with multilanguage support (such as Atom or Sublime) and others
built exclusively for Python (such as PyCharm). Selecting a development envi-
ronment is a matter of personal preference. As an experienced programmer, you
might have already tried a few editors and thus are aware of what features you
most desire. If you’re in need of an extensible code editor that provides ample
flexibility, efficiency, and productivity for managing Python source code, then
Visual Studio Code is well worth your consideration.

Visual Studio Code (also referred to as VS Code) is a free, open-source, and
cross-platform code editor developed by Microsoft. Ranked as the Most Popular
Development Environment in the 2019 Stack Overflow Developer Survey,
Visual Studio Code is a feature-rich highly customizable code editor that not
only is great for editing source code but has built-in support for collaboration
and cloud-hosted environments. Visual Studio Code’s source code is available
in the product’s GitHub repository at github.com/microsoft/vscode. You’re
welcome to contribute to the project and can also view the product roadmap
within the repository. Visual Studio Code is updated monthly with new features

Getting Started

https://github.com/microsoft/vscode

4	 Chapter 1 ■ Getting Started

and bug fixes. For early adopters, the VS Code Insiders build provides a new
build at least every day with features and bug fixes.

Visual Studio Code has built-in support only for JavaScript, TypeScript,
HTML, and CSS, but it supports many additional languages, such as Python,
through extensions. Before you begin programming in Python, you must install
the extension. You can then begin to familiarize yourself with the editor’s inter-
face within the context of Python.

Installing Visual Studio Code

As a free, cross-platform code editor, Visual Studio Code runs on macOS, Linux,
and Windows. Download Visual Studio Code from code.visualstudio.com.
If the browser doesn’t detect your operating system, visit code.visualstudio
.com/#alt-downloads for more options. Platform-specific installation steps are
available at code.visualstudio.com/docs/setup/setup-overview. Both macOS
and Windows provide the option to add Visual Studio Code to your PATH
environment variable. Adding Visual Studio Code to your PATH environment
variable provides the convenience of opening a folder directly from the console
using the command code <folder> or code. (to open the current folder).

As mentioned, Microsoft releases a new version of Visual Studio Code often
with new features and important bug fixes. If your platform supports auto-
updating, Visual Studio Code prompts you to install the new release when it
becomes available. As an alternative, you can manually check for updates by
running Help ➪ Check For Updates on Linux and Windows or by running Code
➪ Check For Updates on macOS.

	 N OT E     If you’re interested in trying the VS Code Insiders build, you can download a
copy from code.visualstudio.com/insiders/. You can install the Insiders build
side by side with the latest monthly build, which enables you to use both versions of
the code editor independently.

The Visual Studio Code User Interface

Visual Studio Code’s user interface (UI) provides a simple minimal layout that
keeps your source code as the focus of the development environment. When
you first start Visual Studio Code, it displays a default layout. Each time you
start Visual Studio Code going forward, the editor opens in the same state it
was in when last closed.

You can make yourself at home by customizing the layout to your liking.
However, before you start moving things around, you should get to know the
main areas of the UI and their respective function (see Figure 1.1).

http://code.visualstudio.com
http://code.visualstudio.com/#alt-downloads
http://code.visualstudio.com/#alt-downloads
http://code.visualstudio.com/docs/setup/setup-overview
https://code.visualstudio.com/insiders/

	 Chapter 1 ■ Getting Started	 5

Activity Bar
The Activity Bar, located on the far-left side, lets you switch between views.
Views provide quick access to common tasks such as the following:

■■ Explorer—File and folder management

■■ Search—Global search and replace across open folders using plain text
or regular expressions

■■ Source Control—Git source control for maintaining code repositories

■■ Run—Features used during debugging, such as variables, call stacks, and
breakpoints

■■ Extensions—Browsing, installation, and management of extensions from
the Extension Marketplace

In addition to the default views, the Activity Bar can also include custom
views provided by extensions that you install from the Extension Marketplace.
Each view has an icon that reflects its respective function.

Side Bar Editor

Activity Bar Status Bar

Panels

Figure 1.1: The Visual Studio Code user interface.

6	 Chapter 1 ■ Getting Started

You can reorder views by dragging and dropping them in the Activity Bar.
Views can also be hidden if you right-click the view and select Hide From
Activity Bar. Views are part of your custom layout that is preserved each time
you run Visual Studio Code.

Side Bar
The Side Bar, located to the right of the Activity Bar, displays the active view.
If no view is selected, the Side Bar is collapsed. You can resize the Side Bar by
clicking and dragging the edge that it shares with the editor. The default views
for the Side Bar are Explorer, Search, Source Control, Run, and Extensions (see
Figures 1.2 through 1.6, respectively).

Figure 1.2: Explorer view.

Figure 1.3: Search view.

	 Chapter 1 ■ Getting Started	 7

Editor
The editor, which fills most of the screen, is where you edit files. You can resize
the editor by clicking and dragging the edges that it shares with the Side Bar
and the panels.

Figure 1.4: Source Control view.

Figure 1.5: Run view.

Figure 1.6: Extensions view.

8	 Chapter 1 ■ Getting Started

The top editor region can change depending on the type of file that’s active
in the editor. For example, if you edit a Markdown file, a Preview icon appears,
thus enabling Visual Studio Code’s Markdown Preview (see Figure 1.7).

When you open a Python file, you instead see a Run Python File In Terminal
icon (displayed as a Play button) in the top editor region. (The Run Python
File In Terminal icon is a quick way for you to run a Python program.) When
selected, a terminal opens, and the Python file is run (see Figure 1.8).

For most file types, the top editor region also includes an Open Changes
icon for viewing changes in the file since the last commit to source control (see
Figure 1.9). Selecting the icon opens the Diffs editor (see Figure 1.10). The Diffs
editor opens in a new tab with a side-by-side view of the diffs. You could also
access the Diffs editor by selecting the file in the Source Control view.

Figure 1.7: In the top image, the Preview icon appears in the top editor region since a
Markdown file is opened. Clicking the icon displays a preview of the Markdown file, as shown in
the bottom image.

Figure 1.8: The Run Python File In Terminal icon displays at the top of the editor region. Clicking
the icon runs the Python file.

Figure 1.9: When the Open Changes icon is clicked, a new tab opens that shows the diffs
for the file.

	 Chapter 1 ■ Getting Started	 9

The region also contains a Split Editor Right icon for splitting the editor (see
Figure 1.11). When selected, a new editor group opens to the right of the initial
editor. You can open and modify files in either editor window.

An opened and active file displays the source code in the middle of the editor,
and a Minimap is located at the top right (see Figure 1.12). The Minimap provides
a condensed miniature view of the entire file and is great for quick navigation
and visually knowing where you are in the context of the entire file.

Figure 1.10: The Diffs editor shows the changes made in the file since the last commit.

Figure 1.11: When the Split Editor Right icon is clicked, a new editor group is opened
to the right.

Figure 1.12: A Minimap displays at the right of the bankaccount.py file. You can click
anywhere in the Minimap to quickly navigate to the code at that location.

10	 Chapter 1 ■ Getting Started

You can open as many files as you like in the editor. Each opened file is dis-
tinguishable by a tabbed header. The active file is the file in which your cursor
appears. You can drag tabs to reorder them and also pin tabs (Cmd+K Shift+Enter/
Ctrl+K Shift+Enter1) to keep your most used files within reach. A pinned tab
displays with the language icon for the respective file (see Figure 1.13).

For the sake of organization, you can group opened files into separate editor
groups (see Figure 1.14) within the split window.

New editors can be opened in multiple ways:

■■ In the Explorer view, press Ctrl+click/Alt+click and click a file.

■■ In the Explorer view, select a file and press Ctrl+Enter/Ctrl+\ to open a
file to the right of an existing editor group.

■■ Click the Split Editor icon in the top editor region.

■■ Drag and drop a file to any side of the editor region.

■■ In the Quick Open (Cmd+P/Ctrl+P) list, highlight a file and press
Cmd+Enter/Ctrl+Enter.

Figure 1.13: The helloworld.py file is a pinned tab. A pin icon next to the filename in the
tab indicates that the file is pinned.

Figure 1.14: Editor groups are used to edit source code for a Python program that creates bank
accounts.

1 Keystrokes presented in this book are provided for macOS first followed by Windows/Linux.

	 Chapter 1 ■ Getting Started	 11

	 N OT E     To open a file in a specific editor group, the editor group must be active.

By default, files and editor groups display vertically adjacent to the right of
one another (see Figure 1.15). However, you can drag and drop the editor title
area to reorder and resize the editors.

	 N OT E     When you have more than one editor open, you can switch between them
quickly by holding Cmd/Ctrl and pressing 1, 2, or 3.

Panels
The panels below the editor contain one or more areas for program output,
debug information, errors and warnings, and so on. You can also drag some of
the views from the Activity Bar (such as Search) into the Panels area.

You can also open the integrated terminal in the Panels area. The integrated
terminal provides a command-line interface for your operating system. The
default layout of Visual Studio Code includes an integrated terminal that’s open
to the root of your project. You can also open a REPL terminal for your Python
interpreter within Visual Studio Code. The integrated terminal is activated
whenever you run a Python program. You can manually start a terminal with
the keyboard shortcut Ctrl+~/Ctrl+Shift+`. Additional information on how to
run Python programs is given in Chapter 2, “Hello World for Python.”

Figure 1.15: Three editor group windows are used within the editor to display the content
within each file. Two editor group windows display vertically, and one displays horizontally at
the bottom of the editor.

12	 Chapter 1 ■ Getting Started

Status Bar
The Status Bar, located along the bottom of the VS Code window, contains
information about the opened project and files you edit. Some of the basic fea-
tures of the Status Bar include the following:

■■ Source control management with Git

■■ Total number of problems for the opened programs (e.g., undefined
variables)

■■ Line/column

■■ Indentation setting for spaces or tabs

■■ Encoding setting

■■ End-of-line sequence setting

■■ Language mode

■■ Visual Studio Code feedback mechanism

■■ Notifications

Clicking an item in the Status Bar either executes a command or opens a
window for you to modify the respective setting. For Python development, an
additional label appears in the Status Bar for the selected Python interpreter.

Extensions that you install from the Extension Marketplace may add addi-
tional labels to the Status Bar to provide quick access to trigger extension com-
mands. For example, with the GitHub Pull Requests and Issues extension, you
can publish your source code to GitHub from the Status Bar.

Command Palette

Visual Studio Code provides access to every available command through the
Command Palette, and many of these commands are not available through menus
or other UI elements. Within the Command Palette, you can run commands to
execute editor tasks in addition to extension commands (see Figure 1.16). You
can access the Command Palette with the keyboard shortcut Cmd+Shift+P/
Ctrl+Shift+P. Get used to this keystroke; you’ll be using it a lot with Visual
Studio Code!

Once the Command Palette is open, you can search for extension commands
by typing a few characters of the extension name. In the list that appears, scroll
through the results to find the command you need; then press Enter. Figure 1.17
shows an example.

	 Chapter 1 ■ Getting Started	 13

Scroll through the Command Palette to view a complete list of commands.
Most commands follow a naming convention of Function/Extension: Action (e.g.,
Python: Select Interpreter). If there is a keybinding configured for the command,
the keyboard shortcut displays to the right of the command. As you repeatedly
use a command, the command appears at the top of the Command Palette as
a recently used command. This provides quick access to your most frequently
used commands.

	 N OT E     Unsure of which actions you can take from wherever you are in your source
code? From the Command Palette, type ? to get a list of available commands that you
can execute.

	 N OT E     In this book, you are prompted to run commands from the Command
Palette whenever the naming convention Function/Extension: Action appears.

Figure 1.16: The Command Palette displays at the top of the editor.

Figure 1.17: By entering Python, a list of commands for the Python extension displays in the
Command Palette.

14	 Chapter 1 ■ Getting Started

Extensions

You can extend the functionality of Visual Studio Code by installing extensions
from the Visual Studio Code Marketplace. The Visual Studio Code Marketplace
contains more than 1,500 extensions created by both Microsoft and the developer
community. Such extensions add more features, themes, tools, and language
support for your development workflow. You can search the Marketplace for
extensions within the Extensions view (see Figure 1.18).

	 N OT E     The Visual Studio Code Marketplace can also be accessed via the browser at
marketplace.visualstudio.com/VSCode. If you choose to install an browser
extension, you are prompted to open Visual Studio Code to complete the installation.

In the Extensions view, you can type directly into the search bar to search for
an extension. The search results display the name of the extension, the extension
version, a brief extension description, and the publisher’s name. When you
select an extension from the search results, the editor displays the extension
details page (see Figure 1.19).

You install an extension by clicking the Install button on the extension details
page. Changed your mind and find that you no longer need an extension? You
can uninstall an extension from the extension details page by clicking Uninstall
(see Figure 1.20).

The More Actions menu (i.e., the triple dot icon located at the top right of the
Extensions view) provides access to view all of your installed, recommended,
enabled, and disabled extensions. If you’re in the market for a new extension to
support your development workflow, check out the recommended extensions.
The Extensions view provides extension recommendations based on recently
opened files as well as other extensions installed.

Figure 1.18: The Extension Marketplace is accessed via the Extensions view in the Activity Bar.

http://marketplace.visualstudio.com/VSCode

	 Chapter 1 ■ Getting Started	 15

	 N OT E     Anyone can write an extension for personal use or publication to the
Marketplace. For more information, see the Extension application programming inter-
face (API) documentation at code.visualstudio.com/api.

Customizations

Essentially, every UI element and function within Visual Studio Code can be cus-
tomized. While some customizations are purely aesthetic in nature, a significant
number of customizations in Visual Studio Code can turn your development
environment into an accessible and productive environment. You can choose to
make customizations either globally for the editor or for a specific workspace.
A project folder in Visual Studio Code is considered to be a workspace. The
workspace itself consists of the files and folders within the project.

Figure 1.19: The Python extension page displays helpful information about the extension.

Figure 1.20: The Uninstall button appears only once an extension is installed. Clicking the
button removes the extension from Visual Studio Code.

http://code.visualstudio.com/api

16	 Chapter 1 ■ Getting Started

Settings
Settings in Visual Studio Code can be managed both globally and by workspace.
Global settings are managed within the User settings and apply to any instance
of Visual Studio Code you open. Workspace settings apply only when a work-
space is opened and can be shared across developers on a project. Workspace
settings also override User settings.

You can manage the User and Workspace settings in the Settings editor (press
Cmd+,/Ctrl+, or select Preferences ➪ Open Settings; see Figure 1.21). In the
editor, the settings are categorized into their respective groups. All extension
settings are grouped under the Extensions heading. The search bar provides a
quick way to find the setting you need.

Changes are automatically saved as you make selections in the editor. If you
want to revert to the default value for a setting, click the gear icon next to the
setting and select Reset Setting (see Figure 1.22).

Figure 1.21: The Settings editor lists all settings for Visual Studio Code and the installed
extensions.

Figure 1.22: The Reset Settings menu option resets the setting to the default value.

	 Chapter 1 ■ Getting Started	 17

Visual Studio Code saves your settings in a file named settings.json within
a .vscode folder. You can work with settings directly in this file, if you prefer,
rather than the UI. If you prefer to manage the underlying settings.json file,
click the Open Settings (JSON) icon at the top of the editor region (see Figure 1.23).
Alternatively, you can run the command Open Settings (JSON).

Although you can manually edit the settings.json file, Visual Studio Code
provides a shortcut for modifying some of the settings. If you hover over a setting
and see a pencil icon display to the left of the key, you can click the pencil icon
to view a list of possible values (see Figure 1.24).

Unlike the Settings editor, you must save (Cmd+S/Ctrl+S) the settings.json
file for the changes to take effect. If Visual Studio Code detects any syntax errors
in the file, a prompt displays requesting that you fix the errors in the file. The
syntax for settings follows the category/extension: setting format (e.g.,
python: pythonPath is the setting for the Python interpreter path for the Python
extension).

	 N OT E     Need to reset all of your User settings to the default settings? In the
settings.json file, delete everything between the curly braces and save the file.

Figure 1.23: Clicking the Open Settings (JSON) icon opens the settings.json file in a new
editor.

Figure 1.24: In the settings.json file, clicking the pencil icon next to a setting provides a
list of possible values for the setting.

18	 Chapter 1 ■ Getting Started

Color Themes and Icons
Aesthetics can truly enhance one’s experience by providing color combinations
and iconography to meet one’s visual needs and preferences. Color themes enable
you to change the color of both the editor UI and the syntax highlighting for
your code. The Color Theme picker (Cmd+K, Cmd+T/Ctrl+K, Ctrl+T provides
access to the available color themes. You can install additional color themes from
the Visual Studio Code Marketplace or create your own custom color theme.

File icon themes enable you to change the file icons shown in the File Explorer
and tabbed headings. The File Icon Theme picker (Preferences ➪ File Icon Theme)
provides access to the available file icon themes. Like with color themes, you
can install additional themes from the Visual Studio Code Marketplace or create
your own custom file icon theme.

Keybindings
Once you become experienced with Visual Studio Code, you’ll likely want to
improve your efficiency by learning keyboard shortcuts for your most common
commands. Keybindings give you the ability to execute most Visual Studio Code
commands with the help of keyboard shortcuts. Although some keybindings
are preset by default, you can manage all keybindings yourself in the Keyboard
Shortcuts editor (Cmd+K, Cmd+S/Ctrl+K, Ctrl+S). The Keyboard Shortcuts
editor lists all available commands with and without keybindings.

To change a keybinding in the Keyboard Shortcuts editor, select the command
and use the keyboard shortcut Cmd+K, Cmd+K/Ctrl+K, Ctrl+K. In the window
that appears, enter your desired key combination and press Enter. If there is a
keybinding conflict, an alert appears at the bottom of the window that tells you
how many existing commands have the keybinding. Selecting the alert displays
a list of all commands that have the assigned key combination.

Prefer to use the keyboard shortcuts from another development environ-
ment? No problem! Keymap extensions (Cmd+K, Cmd+M/Ctrl+K, Ctrl+M)
are available in the Extensions Marketplace for Vim, Sublime, and Atom, to
name a few. These extensions port the keybindings from the other editors into
Visual Studio Code.

Display Language
The default display language for Visual Studio Code is English. You can modify
this setting with Language Pack extensions. When you first open Visual Studio
Code, the editor auto-detects the operating system’s UI language. If the lan-
guage is not English, Visual Studio Code prompts you to install the appropriate
Language Pack (if available). Once the Language Pack is installed, restart Visual
Studio Code to apply the changes.

	 Chapter 1 ■ Getting Started	 19

If you prefer to override the default UI language, use the Configure Display
Language command and select from one of the available languages.

Summary

In this chapter, you learned how to do the following:

■■ Download and install Visual Studio Code from code.visualstudio
.com/#downloads

■■ Navigate the Visual Studio Code interface

■■ Reorder views in the Activity Bar

■■ Create an editor group and open a new editor

■■ Access the Command Palette

■■ Search for and install extensions in the Extensions view

■■ Manage settings both globally and by workspace

■■ Change color themes

■■ Create custom keybindings

■■ Change the display language

Over time, you will be able to better determine which additional extensions,
customizations, and settings can help you foster an efficient and productive
workflow. If you’re ever in need of additional information on Visual Studio
Code features, browse the documentation at code.visualstudio.com/docs.

http://code.visualstudio.com/#downloads
http://code.visualstudio.com/#downloads
http://code.visualstudio.com/docs

C H A P T E R

21

2

As mentioned in Chapter 1, “Getting Started,” support for most languages in
Visual Studio Code, including Python, comes through means of extensions. To
use Python, then, you must install the extension along with a suitable Python
interpreter. Creating and running your first Hello World Python file sets the
stage for upcoming features and examples explored in this book. As you will
learn in this chapter, there are various ways to perform the same task, such as
creating, saving, and executing programs. Consider using the approaches explored
as guidance to determine which options are best for your programming style.

Installing a Python Interpreter

Visual Studio Code supports both Python 2.7 and Python 3.6 or later. Although
Python 2.7 support is available, it is recommended you use Python 3.6 or later
due to version deprecation. You can confirm the version of Python 3.x installed
on your computer with the command python3 --version (Linux/macOS) or
py -3 --version (Windows). In addition, it is recommended to add Python to
your PATH environment variable so that you can type code . in any folder to
start editing files in that particular folder with Visual Studio Code.

Hello World for Python

22	 Chapter 2 ■ Hello World for Python

Try It Out: Install a Python interpreter for your respective operating system.
The recommended installation instructions in this section are summarized for
each supported platform.

macOS
On macOS, you’ll likely need to upgrade your installed version of Python. It
is recommended that you complete an installation of Python with Homebrew.

1.	 In the terminal, enter the command brew install python3 to install
Python 3.

2.	 In the Command Palette in Visual Studio Code, enter the command Shell
Command: Install ‘code’ command in PATH.

3.	 After the installation is complete, restart the terminal for the new PATH
value to take effect.

Linux
The built-in Python 3 installation on Linux is supported. However, to install
a later version of Python, visit python.org/downloads. After the download is
complete, follow the instructions in the installation wizard to install Python.

Windows
Python can be installed from the Microsoft Store.

1.	 In the Microsoft Store, search for Python.

2.	 In the search results, select the latest version of the language.

3.	 Click the Get button to start the download.

4.	 After the download is complete, follow the instructions in the installation
wizard to install Python. When prompted, be sure to check the Add Python
3.x To PATH box.

Installing the Python Extension for Visual Studio Code

The Python extension for Visual Studio Code provides support for the Python
language and includes features such as syntax coloring, code completion, linting,
debugging, code navigation, and code formatting, along with Python-specific
features like Jupyter Notebook support. You install the Python extension within
the Extensions view of Visual Studio Code. Like any extension installed from the
Extension Marketplace, you can modify the settings for the Python extension
within the Settings editor or settings.json file. The Featured Contributions
tab on the extension details page provides a complete list of settings.

https://python.org/downloads

	 Chapter 2 ■ Hello World for Python	 23

	 N OT E     In the Settings Editor, extension settings are located within the Extensions
category. To quickly find a specific Python extension setting, search for the setting in
the search bar.

Try It Out: Install the Python extension from the Extensions Marketplace.

1.	 In the Activity Bar, select the Extensions view.

2.	 Search for Python and select the extension published by Microsoft.

3.	 On the extension details page, click Install (see Figure 2.1).

After installation, confirm that the extension is installed from the extension
details page.

4.	 Confirm that the extension is installed by checking for the Uninstall
button (see Figure 2.2).

Creating a Python File

Use one of the following actions to create a new file:

■■ In the menu, select File ➪ New File.

■■ Press the keyboard shortcut Cmd+N/Ctrl+N.

■■ In the Explorer view, click the New File icon.

Figure 2.1: To install the Python extension, click the Install button on the extension
details page below the extension description.

Figure 2.2: If the Python extension is installed, an Uninstall button displays below the
extension description.

24	 Chapter 2 ■ Hello World for Python

Creating a new file using one of the first two methods creates and opens a
new unsaved Untitled file in the editor. If a file extension is not provided in the
filename, the default file type is Plain Text. When Visual Studio Code doesn’t
know the file type, the editor can’t provide any syntax highlighting or other
language-specific features. Always name Python files with the .py file extension,
which is how Visual Studio Code knows to activate the Python interpreter and
otherwise treat the file as Python. If you create a new file from the Explorer view,
a new file appears in the folder tree in addition to an edit cursor waiting for you
to enter a name for the file. This method of creating a new file not only enables
you to name the file with the respective extension but also initially saves the file.
After the file is named, the file opens automatically in the editor. There’s much
to be said about how you could organize your files, however, that is explored
more in Chapter 4, “Managing Projects and Collaboration.”

Try It Out: Using the Explorer view, create a new Python file named helloworld.py
(see Figure 2.3).

1.	 Open your preferred folder for saving Python files by either navigating
to File ➪ Open or pressing the keyboard shortcut Cmd+O/Ctrl+O.

2.	 In the Explorer view, click the New File icon.

3.	 Name the file helloworld.py and press Enter to open the file in the
editor.

Selecting an Interpreter

As previously mentioned, the Python extension for Visual Studio Code works
in tandem with a Python interpreter to provide some of the language features.
There is a label for the Python extension in the Status Bar (see Figure 2.4). This
label appears only if a Python file is open. When a Python file is open, the label
displays either the currently selected interpreter or a warning prompt to select
an interpreter.

Figure 2.3: The New File icon in the Explorer view creates a new file in the folder.

Figure 2.4: The Status Bar indicates the selected Python interpreter.

	 Chapter 2 ■ Hello World for Python	 25

By default, the Python extension looks for and uses the first Python inter-
preter it finds in the system path. If the extension does not find an interpreter,
the Status Bar prompts you with a warning to select one (see Figure 2.5).

You can select an interpreter from either the Status Bar warning or the command
Python: Select Interpreter.

■■ Status Bar—In the Status Bar, click the Select Python Interpreter warning.
In the window that appears, select an interpreter from the list of available
interpreters.

■■ Python: Select Interpreter—Run the command in the Command Palette
and select an interpreter from the list of available interpreters.

When selecting an interpreter, Visual Studio Code provides you with a list
of global, virtual, and conda environments (see Figure 2.6). Alternatively, you
can select Enter Interpreter Path to provide a custom path to an interpreter.

Additional information on managing environments is explored in Chapter 4,
“Managing Projects and Collaboration.”

Try It Out: Select an interpreter for the helloworld.py file. Try both methods
of selecting an interpreter.

Figure 2.5: The Status Bar warning to select a Python interpreter

Figure 2.6: A list of Python interpreters displays in a window after executing the command to
select an interpreter.

26	 Chapter 2 ■ Hello World for Python

Setting a Default Interpreter
The default interpreter is managed by the Default Interpreter Path setting
(python.pythonPath). You can manually set a default interpreter within the
Settings editor or the settings.json file.

Settings Editor

1.	 In the Settings editor, search for python.pythonPath.

2.	 In the Python: Python Path setting, enter the path to the interpreter (see
Figure 2.7).

settings.json File

1.	 Run the Open Settings (JSON) command.

2.	 In the settings.json file, create a new line for python.pythonPath (see
Figure 2.8).

3.	 For the value of python.pythonPath, enter the path to the interpreter.

Selecting a Linter

The Python extension for Visual Studio Code is equipped with linting, a feature
that helps detect issues in your program. Although you’re not required to use
a linter, Visual Studio Code prompts you with the option to install one (Pylint,
the default) if the editor detects that a Python file is open.

Figure 2.7: The path to a Python interpreter can be entered directly in the Settings Editor
UI for the Python: Python Path setting.

Figure 2.8: A new line is created in the settings.json file for the Python interpreter
path setting.

	 Chapter 2 ■ Hello World for Python	 27

Visual Studio Code supports the following linters:

■■ Pylint (default)

■■ Flake8

■■ mypy

■■ pydocsstyle

■■ pycodestyle (pep8)

■■ prospector

■■ pylama

■■ bandit

You can select a linter by either clicking the prompt to install Pylint or by
selecting one with the Command Palette command Python: Select Linter. The
Python: Select Linter command can be used to disable linting.

Try It Out: Select a linter for the helloworld.py file.

1.	 Run the command Python: Select Linter from the Command Palette.

2.	 Select your preferred linter. If you do not have a preference, select Pylint.

Editing a Python File

As you begin to edit files in Visual Studio Code, a variety of features work
together to help you maintain your code. IntelliSense is one such feature that
provides code completion, parameter information, quick information, and
member lists. Another feature is Formatting, which provides consistency for
how code is written and doesn’t affect the code’s functionality.

Visual Studio Code provides several visual indicators to let you know whether
your changes have been saved.

■■ Explorer Icon—In the Activity Bar, an encircled number icon displays on
top of the Explorer icon to indicate the number of opened unsaved files
(see Figure 2.9).

Figure 2.9: The number 1 on the Explorer icon indicates that there is one opened
unsaved file in the editor.

28	 Chapter 2 ■ Hello World for Python

■■ Open Editors—In the Explorer view, unsaved files are listed in the Open
Editors section. The label # Unsaved to the right of the section heading
indicates the number of unsaved files (see Figure 2.10).

■■ Dot on Filename—In Explorer view, a dot appears to the right of a file-
name if changes are not saved (see Figure 2.11).

■■ Close Saved (Cmd+K, U/Ctrl+K, U)—In the top editor region, click the
three dots followed by Close Saved menu item to close all files that have
been saved (see Figure 2.12).

Like most commands in Visual Studio Code, there are various ways to save
a file.

■■ In the menu, select File ➪ Save or File ➪ Save All.

■■ Press Cmd+S/Ctrl+S (to save).

■■ Press Option+Cmd+S/Ctrl+K+S (to save all).

Figure 2.10: The 1 Unsaved label in the Open Editors section indicates that there is one
opened unsaved file in the editor.

Figure 2.11: The dot icon next to the filename indicates that changes made in the file
have not been saved.

Figure 2.12: The Close Saved menu item is accessed by selecting the three dots in the
top editor region.

	 Chapter 2 ■ Hello World for Python	 29

Note that running a Python file, as described in the next section, automati-
cally saves the file before executing the program.

Changes can also be autosaved rather than explicitly saved. The Auto Save
toggle saves your changes after a configured delay or when your focus leaves
the editor. To enable Auto Save, navigate to File ➪ Auto Save. Before enabling
Auto Save, consider whether this feature is ideal for your project. If you’re using
source control in conjunction with your project, Auto Save can provide a previous
version to which you can revert. However, if you’re not using source control,
Auto Save may overwrite a previous file, thus making a previous version more
difficult to recover. If you haven’t closed the editor after a recent autosave, you
could use Undo (Cmd+Z/Ctrl+Z) to undo changes. Unfortunately, if you closed
the editor after changes are saved, a previous version of the file is unrecoverable.

Additional configuration settings for Auto Save can be set in either the User
or Workspace settings.

files.autoSave can have these values:

■■ off—to disable auto save

■■ afterDelay—to save files after a configured delay (default 1,000 ms)

■■ onFocusChange—to save files when the focus moves out of the editor of
the unsaved file

■■ onWindowChange—to save files when the focus moves out of the Visual
Studio Code window

The files.autoSaveDelay setting configures the delay in milliseconds when
files.autoSave is configured to afterDelay.

Try It Out: In the helloworld.py file, make a change and save the file.

Running a Python File

In Visual Studio Code, Python files are run in the integrated terminal using
the currently selected Python interpreter. When a file is run, the integrated
terminal opens in the Panels area. The integrated terminal starts at the root of
your workspace.

Files can be run in one of three ways:

■■ Click the Play button (see Figure 2.13).

■■ Right-click anywhere in the editor and select Run Python File In Terminal.

■■ Run the command Python: Run Python File In Terminal.

The Run command opens the integrated terminal, activates the Python inter-
preter you chose for the file, and then starts the Python interpreter with the file
as input.

30	 Chapter 2 ■ Hello World for Python

Try It Out: Try each method of running a Python file in the integrated terminal.
Each time you try a new method, modify the string in the print statement and
run the method without explicitly saving the file.

Workflow Recap

After selecting a Python interpreter for the editor, at its simplest, the workflow
to create and run Python files requires the following:

1.	 Create a new file in Visual Studio Code and name the file with the Python
extension (see Figure 2.14).

2.	 Enter code into the editor for the file and save (see Figure 2.15). If there
are any errors, be sure to fix them.

Figure 2.13: The Play button displays at the top right of the editor.

Figure 2.14: Select the New File icon in the Explorer view and name with the
.py extension.

Figure 2.15: In the editor, enter code into the file.

	 Chapter 2 ■ Hello World for Python	 31

3.	 Run the Python file (see Figure 2.16).

Summary

In this chapter, you learned how to do the following:

■■ To edit and run Python code in Visual Studio Code, you must install the
Python extension and a suitable Python interpreter version 3.6+.

■■ Visual Studio Code visually indicates unsaved files in three ways: the
Explorer icon, the Unsaved label, and a dot icon next to the filename.
Alternatively, you could also select the Close Saved menu item in the top
editor region.

■■ To set a default interpreter, select the interpreter in the Settings editor or
enter the path for python: pythonPath in settings.json.

■■ Although Pylint is the default linter, you can run the command Python:
Select Linter to select a different linter.

■■ Save files using either the File menu or keyboard shortcuts.

■■ There are multiple ways to run a Python file such as the Play button and
the command Python: Run Python File In Terminal.

At this stage, your environment is configured and ready for Python development.
Chapter 4, explores more ways in which you could manage your Python pro-
grams and projects. Be sure to familiarize yourself with the basic workflow of
creating, saving, and executing programs before proceeding to complete the
upcoming examples in later chapters.

Figure 2.16: Click the Play button in the top editor region to open the integrated terminal and
run the file.

C H A P T E R

33

3

Visual Studio Code provides a number of standard editing features that work
for all programming languages.

■■ Quick Fixes

■■ Code completion

■■ Definitions

■■ Declarations

■■ Formatting

■■ Linting

■■ Refactoring

■■ Code snippets

These built-in editing features save time by reducing the number of manual
tasks and typing that might usually be necessary to edit code.

The Python extension extends the functionality of the code editing features
by providing Python-specific support. With the Python extension, importing
libraries requires minimal effort, as the extension can suggest installed pack-
ages to import into a program. More often, after just a few typed characters,
the editor can auto-complete lines of code, provide definitions, and even locate
declarations.

Editing Code

34	 Chapter 3 ■ Editing Code

Whether you prefer autopep8, Black, or YAPF, you can set your desired for-
matter and customize the settings to ensure that the source code is formatted
to your liking. As you run your Python code, linting analyzes how the code
runs and outputs errors in the Problems panel. If you find the need to refactor
a Python program, commands are available to extract variables, methods, and
sort imports. Furthermore, you could save time using code snippets to avoid
manually entering repeating code patterns.

In this chapter, each editing feature is explored in a script named circle_area.py
that uses the math module to calculate the area of a circle. Before trying the exam-
ples in this chapter, create a new Python file called circle_area.py in a suitable
project folder.

Quick Fixes

Quick Fixes help fix issues identified by warnings or errors. If there’s a poten-
tial solution available, Visual Studio Code shows a blue squiggly line under the
source code and a lightbulb icon in the left margin of the editor. Clicking the
lightbulb either displays the Quick Fix option or performs the action.

In addition to the Quick Fixes that are available by default with Visual Studio
Code, extensions installed from the Marketplace may also include their own
set of Quick Fixes. The Python extension, for example, has an add imports
Quick Fix that quickly completes import statements. As you begin to type a
package name in the editor, you’ll notice a Quick Fix appears to automatically
complete the import statement. Selecting the lightbulb icon displays a list of
import suggestions. import statements for packages are listed first, followed
by statements for additional modules and/or members (classes, objects, etc.)
from specified packages.

	 N OT E     This functionality requires use of the Microsoft Python Language Server.
To enable the language server, set "python.jediEnabled ": false in your
settings.json file.

	 N OT E     The add imports Quick Fix requires that the module you want to import is
already installed in the environment.

Try It Out: In the editor, type math to invoke the add imports Quick Fix. Select
the Code Action (e.g. the lightbulb). Visual Studio Code suggests import math
as m (see Figure 3.1). Select to add the import statement to the code.

	 Chapter 3 ■ Editing Code	 35

Once the import statement is added, Visual Studio Code deletes math from
the code and replaces with the import statement.

The add imports Code Action also recognizes other common abbreviations
for the following Python packages: NumPy as np, TensorFlow as tf, pandas as
pd, matplotlib.pyplot as plt, matplotlib as mpl, SciPi as spio, and SciPy as sp.

Code Completion, Definitions, and Declarations

IntelliSense is the name Microsoft uses to identify a variety of useful tools to
assist with programming such as code completion, object definition, and the
location of object or variable declarations. Such features are triggered by either
pressing Ctrl+spacebar or typing a trigger character (such as the dot character
in Python).

As you type, the Python extension provides intelligent code completions
based on Python semantics and an analysis of the source code. If a possible
completion is known, Visual Studio Code provides suggestions.

Try It Out: In circle_area.py, use code completion to view the suggested
Python methods.

1.	 On a new line, create a variable radius. This variable holds the input for
the radius that’s to be used in the calculation.

2.	 For the radius variable assignment, type f. Notice that Visual Studio Code
suggests methods as you type (see Figure 3.2). Use the arrow keys followed
by the Tab key to select the float method.

Figure 3.1: The add imports Code Action suggests import math as m.

Figure 3.2: Visual Studio Code suggests the float method.

36	 Chapter 3 ■ Editing Code

3.	 Inside the float method, type i. In the list of suggestions, select the input
method.

4.	 Complete the variable assignment with the following:

radius = float(input('Radius: '))

In a simple example such as this exercise, the benefits of auto-completion
are minimal. However, auto-completion is valuable when the code becomes
more complicated and you’re using objects, methods, and properties that are
several levels deep. All in all, these prompts relieve you from having to look at
reference documentation for every detail. Instead, Visual Studio Code brings
the reference to you.

Definitions bring external reference documentation for imported libraries
into the context of your source code. As mentioned, the dot character triggers
code completion along with a list of module functions.

Try It Out: In circle_area.py, use definitions to view a list of constants and
functions within the math module.

1.	 On a new line, create a area = variable. The variable holds the request of
the equation to calculate the area of a circle (A = π r2).

2.	 The value of π needed in the equation is available in the math library as
math.pi. After area =, start typing m. and notice that VS Code provides
a list of constants and functions in the math module (see Figure 3.3).

3.	 Use the arrow keys to scroll through the list to locate pi. Once found, click
the right arrow to view the object type (see Figure 3.4). After viewing the
object type, select pi.

4.	 Continue the area equation with a calculation for r2. In the editor, enter
m.p and use the arrow keys to locate the pow function. Once found, select
the function.

Figure 3.3: Definitions provides a list of constants and functions within the math
module.

	 Chapter 3 ■ Editing Code	 37

5.	 The editor provides further guidance for using the function once a pair
of parentheses is added (see Figure 3.5). Type (to add a pair of parentheses
to the pow function to view further guidance provided by Visual Studio
Code.

6.	 Complete the variable assignment, add a print statement to print area,
and run the code.

import math as m

radius = float(input('Radius: '))
area = ma.pi * (m.pow(radius, 2))
print(area)

As Python programs become more complex, it can become a challenge to
keep track of where objects or variables are declared in the source code. Decla-
rations help you locate where an object or variable is declared: simply place the
editing cursor in an object or variable, and Visual Studio Code highlights every
reference to that object or variable, all the way up to its declaration.

Try It Out: Locate where area is declared in the code by placing the cursor
into the area variable in the print statement. Notice that each instance of the
area variable is now highlighted in the editor (see Figure 3.6).

Figure 3.4: The object type for pi is float.

Figure 3.5: Visual Studio Code provides a description for the pow function in addition to
parameter guidance.

38	 Chapter 3 ■ Editing Code

Formatting

Formatters automatically provide a consistent style for formatting code, thus
enabling developers to spend more time writing code instead of worrying about
the minutiae of following a style guide. For collaborative projects, formatters
also have the potential to reduce the number of merge conflicts as a result of
contributors using the same formatter, thereby providing in a similar style.
Consider the block of the following code of the for loop that takes a number
from the list numbers and multiples by 2:

numbers = [2, 4, 6, 8]

for num in numbers :
 num = num * 2
 print (num)

Note the improper use of spacing. In this instance, a formatter could be used
to automatically format the code in accordance with a defined style guide. For
example, the autopep8 formatter would format the code as follows:

numbers = [2, 4, 6, 8]

for num in numbers:
 num = num * 2
 print(num)

As programs become longer, formatting automation provided by a formatter
becomes invaluable to a developer’s workflow.

The Python extension for Visual Studio Code supports the following formatters:

■■ autopep8 (default)—Formats Python code to conform to the PEP 8 style
guide. autopep8 utilizes the linting tool pycodestyle to determine which
parts of the code need to be formatted and tries to fix it.

■■ Black—Focuses on consistency and is not configurable. Black provides
few command-line options in comparison to other Python formatters.

Figure 3.6: The area variable is highlighted twice in the editor up to its declaration.

	 Chapter 3 ■ Editing Code	 39

■■ YAPF—Configurable and focuses only on formatting code. YAPF takes
code and reformats it to the best formatting that conforms to the style
guide, even if the original code did not violate the style guide. YAPF does
not fix linting errors.

Selecting one formatter over another is a matter of personal preference. If
you prefer to adhere to the PEP 8 style guide while fixing issues discovered
by a linter, then autopep8 would be the formatter best for you. If you’d rather
configure a formatter to follow a preferred style guide, format your code in
accordance with the style guide, and avoid fixing linting issues, then YAPF
would be the recommended formatter. However, if consistency is your priority
or you’re working with a relatively old codebase, which lacked formatting but
is in need of a consistent format, then Black would be best.

To specify a formatter in Visual Studio Code, the formatter must first be
installed and then selected as the formatting provider in the settings for the
Python extension. Refer to the following list for installation commands:

■■ autopep8—pip install pep8

■■ Black—pip install black

■■ YAPF—pip install yapf

When you select a formatter, the Python extension looks in the current
pythonPath for the formatter. If the formatter is installed in another location,
you can specify the location in the custom path setting for the formatter. Addi-
tional settings for the formatter can be managed in both the Settings editor and
settings.json file. To use the formatter, use the following keyboard shortcuts:

■■ Mac—Shift+Option+F

■■ Windows—Shift+Alt+F

■■ Linux—Shift+Ctrl+I

Edit Formatting Settings in the Settings Editor
In the Settings editor, the formatter is selected from the drop-down list for the
Python ➪ Formatting: Provider setting. In Figure 3.7, the YAPF formatter is
selected.

Figure 3.7: In the Settings editor, YAPF is selected as the Python formatting provider.

40	 Chapter 3 ■ Editing Code

Custom arguments can be added by clicking the Add Item button for the respec-
tive formatter. A string value must be entered for the argument. In Figure 3.8,
custom arguments are provided for the YAPF formatter.

If the formatter is not installed in the current pythonPath, specify the full path
of the formatter’s location in the custom path setting for the respective formatter.
In Figure 3.9, a custom path is provided for the YAPF formatter.

Edit Formatting Settings in settings.json
In the settings.json file, you specify a formatter by adding an entry for
python.formatting.provider. Supported values are autopep8, black, and yapf.
Here is an example entry for setting YAPF as the formatter:

"python.formatting.provider": "yapf"

Custom arguments can be added as an entry as well. Refer to the following
list for each formatter’s custom argument setting:

■■ autopep8—python.formatting.autopep8Args

■■ Black—python.formatting.blackArgs

■■ YAPF—python.formatting.yapfArgs

For custom arguments, each top-level element of an argument string that’s
separated by a space on the command line must be a separate item in the args
list. An example entry for YAPF is provided here:

"python.formatting.yapfArgs": ["--style", "{based_on_style: google,
spaces_before_comment: 4}"]

Figure 3.8: In the Settings editor, custom arguments for style and spaces before comment are
added for the YAPF formatter.

Figure 3.9: In the Settings editor, a custom path is provided for the YAPF formatter.

	 Chapter 3 ■ Editing Code	 41

If the formatter is not installed in the current pythonPath, add an entry to
specify the location for the respective formatter using the full path. Refer to the
following list for each formatter’s custom path setting:

■■ autopep8—python.formatting.autopep8Path

■■ Black—python.formatting.blackPath

■■ YAPF—python.formatting.yapfPath

Here is an example entry for YAPF:

"python.formatting.yapfPath": "c:/yapfPath/yapf.exe"

Linting

As one might expect, it would be nearly impossible to always type error-free
code or catch every mistake possible before running code. Linting analyzes how
the code runs and detects potential errors as you type. Consider the following
block of code of a function fullname that returns a concatenated value of the
arguments passed into the function call:

def fullname(fname, lname):
 return fname + " " + lname

print(name("April", "Speight"))

The function call within the print statement uses the incorrect function call
name. A linter would detect this problem as an undefined variable ″name″. You
might consider both linting and formatting to be similar in function. However,
formatting only restructures how code appears.

A variety of linters are available that can be enabled for use. However, it isn’t
required to enable linting should you choose to code without a linter. If linting
is enabled, the linter runs automatically whenever you save a file. You can also
invoke a linter manually at any time using the Python: Run Linting command
from the Command Palette.

Enable and Disable Linting
The Python extension for Visual Studio Code supports the following linters:

■■ Pylint (default)—Checks for errors and tries to enforce a coding
standard

■■ Flake8—Checks code against style conventions in PEP 8, programming
errors, and cyclomatic complexity

42	 Chapter 3 ■ Editing Code

■■ mypy—Checks for optionally enforced static types

■■ pydocstyle—Checks compliance with Python docstring conventions

■■ pycodestyle (pep8)—Checks Python code against some of the style con-
ventions in PEP 8

■■ prospector—Analyze Python code and output information about errors,
potential problems, convention violations, and complexity

■■ pylama—A wrapper for multiple Python tools (pycodestyle, pydocstyle,
PyFlakes, Mccabe, Pylint, Radon, gjslint, eradicate, mypy)

■■ Bandit—Finds common security issues in Python code

Pylint is the default linter and is therefore enabled when creating a new
Python program. However, if Visual Studio Code doesn’t detect a linter enabled,
it displays a prompt to install Pylint.

You can choose to enable a different linter using the Command Palette command
Python: Select Linter. Select a linter from the list to install its package and to
enable the linter for the environment.

If there’s no need for linting, you can disable all Python linting using the
Command Palette command Python: Enable Linting. Select Off to disable linting.

Run Linting
When the linter is run, the results appear in the Problems panel, and specific
issues are underlined in the code editor. To see details in the editor, hover over
an underlined issue.

Try It Out: Create a syntax error in the circle_area.py file so that the error
is detected by the linter and displayed in the Problems panel.

1.	 Add a period after input, before the parentheses and save the file.

import math as m

radius = float(input.('Radius: '))
area = m.pi * (m.pow(radius, 2))
print(area)

2.	 Click the Problems panel to view the syntax error detected by the linter
(see Figure 3.10). An unknown syntax error is detected by line 3.

Figure 3.10: In the Problems panel, one syntax error is detected.

	 Chapter 3 ■ Editing Code	 43

You can also hover the mouse cursor over the math variable in the editor to
view the error (see Figure 3.11). If a Quick Fix were available, the suggested fix
would display in the issue.

Remove the period before proceeding to the next exercise.

Linting Settings
Linting settings can be modified both globally and per linter. You can apply all
setting changes within the settings.json file. Provided next are global settings
that can be modified to change linting behavior across all enabled linters.

Global Linting Settings

FEATURE SETTING (PYTHON.LINTING.) DEFAULT VALUE

Linting in general enabled true

Linting on file save lintOnSave true

Maximum number of
linting messages

maxNumberOfProblems 100

Exclude file and folder
patterns

ignorePatterns [".vscode/*.py",
"**/site-
packages/**/*.py"]

	 N OT E     If lintOnSave is enabled, you might also want to enable the generic
files.autoSave option. Auto Save saves your changes after a configured delay
or when focus leaves the editor. If Auto Save is enabled, there is no need to manually
save a file. The combination of lintOnSave and files.autoSave provides fre-
quent linting feedback in your code as you type.

For more information on specific linter settings, visit code.visualstudio
.com/docs/python/linting#_specific-linters.

Figure 3.11: Hovering the mouse cursor over the red squiggle error in the editor displays the
error detected by the linter. The error states “invalid syntax (<unknown>, line 3)
pylint(syntax-error).”

http://code.visualstudio.com/docs/python/linting#_specific-linters
http://code.visualstudio.com/docs/python/linting#_specific-linters

44	 Chapter 3 ■ Editing Code

Refactoring

The purpose of refactoring is to maintain functionality while improving the
internal structure or architecture of a program. Refactoring should be a routine
task that occurs before any updates or new features are added to a program.
The benefits of refactoring include improved stability and performance, reduced
complexity, and less time testing and finding bugs.

Although you could manually refactor your code, such a task would become
taxing for a lengthy program. Fortunately, Visual Studio Code provides three
commands to help quickly make changes.

■■ Extract Variable

■■ Extract Method

■■ Sort Imports

Each command can be invoked from either the Command Palette or a context
menu that appears when you right-click a selection.

Refactoring requires the Rope library, which you install with pip install
rope or conda install -c anaconda rope.

Extract Variable
If you find that you’re using the same constant value or expression in multiple
places throughout your code, such as the same string or number, consider extract-
ing all similar occurrences and replace with a variable. The Extract Variable
(Python Refactor: Extract Variable) command provides such functionality. When
invoked, the new variable is given the name newvariableNNN, where NNN is a
random number.

Try It Out: Refactor the line of code in circle_area.py that reflects the
calculation for r2 with a variable.

1.	 In the editor, highlight m.pow(radius, 2).

2.	 Right-click and select Extract Variable from the context menu. A new
variable is created in the editor (see Figure 3.12).

Figure 3.12: A new variable is created for m.pow(radius, 2). The editor prompts
you to enter a name for the variable.

	 Chapter 3 ■ Editing Code	 45

3.	 Name the new variable radiusSqr and press Enter. Notice that the calcula-
tion for r2 is now replaced with the radiusSqr variable. Your code should
display as such:

import math as m

radius = float(input('Radius: '))
radiusSqr = m.pow(radius, 2)
area = m.pi * (radiusSqr)
print(area)

4.	 Run the code to view that the program maintains the same logic.

Extract Method
The Extract Method command (Python Refactor: Extract Method) extracts all
similar occurrences of the selected expression or block, creates a method, and
replaces the expression with a method call. The new method is given the name
newmethodNNN where NNN is a random number.

Try It Out: All code after the import statement in circle_area.py could be
refactored into a method. Refactor the code into a method.

1.	 In the editor, highlight all code after the import statement and before the
print statement.

2.	 Right-click and select Extract Method from the context menu. A new
method is created in the editor. See Figure 3.13.

3.	 Name the new method circleArea and press Enter. Notice that all of the
code is now placed inside the body of the circleArea() method and a
return statement is added to return area. In addition, the function call is
assigned to the variable area.

Figure 3.13: A new method is created for the code after the import statement. The
editor prompts you to enter a name for the method.

46	 Chapter 3 ■ Editing Code

Your code should display as such:

import math as m

def circleArea():
 radius = float(input('Radius: '))
 radiusSqr = m.pow(radius, 2)
 area = m.pi * (radiusSqr)
 return area

area = circleArea()
print(area)

4.	 Run the code to view that the program maintains the same logic.

Sort Imports
The Sort Imports command (Python Refactor: Sort Imports) uses the isort
package to consolidate specific imports from the same module into a single
import statement and organizes import statements in alphabetical order. No
selection of code is necessary to invoke the command. This feature is useful to
clean up and simplify your import statements.

Try It Out: Use Sort Imports to consolidate and sort all import statements in
alphabetical order.

1.	 Create a new file imports_example.py and add the following import
statements:

from my_lib import Object
import os
from third_party import lib1, lib2
from my_lib import Object3
from my_lib import Object2
import sys
from third_party import lib3

2.	 Right-click in the editor and select Sort Imports from the context menu.
Notice that the my_lib and third_party imports have all been consoli-
dated. In addition, all import statements are sorted in alphabetical order.

Your code should display as such:

import os
import sys

from my_lib import Object, Object2, Object3
from third_party import lib1, lib2, lib3

	 Chapter 3 ■ Editing Code	 47

Snippets

If you find yourself repeating a code pattern within a file or across multiple files,
consider putting the pattern into a snippet. Snippets are templates of code that
can be added to the editor as you type, thus reducing the number of keystrokes
needed to create a program. Visual Studio Code has a number of built-in snippets.
However, language extensions such as the Python extension for Visual Studio
Code further expands the list of available snippets by providing a standard set
of language specific snippets.

Snippets are invoked with the keyboard shortcut Ctrl+spacebar or Insert Snip-
pet command. When invoked, Visual Studio Code displays a list of available
snippets. Selecting a snippet from the list adds the code template to whichever
line your cursor is placed in the editor.

Try It Out: Run the command Insert Snippet to view a list of available snip-
pets provided by the Python extension. As you arrow through the list, read the
description provided for the snippet (see Figure 3.14).

In most cases, when a snippet is added to a file, placeholder text is high-
lighted (see Figure 3.15). To navigate placeholder text, press Tab and replace
the text as needed.

Although the Python extension provides a variety of general-purpose snip-
pets, you’ll likely want to create your own for your most common code patterns.

Snippets are created in JSON within a snippet file. The snippet file supports
C-style comments and can define an unlimited number of snippets. To create a
snippet, navigate to Code or select File ➪ Preferences ➪ User Snippets. When
prompted, select Python for the language. The python.json snippet file that
opens contains instructions for how to create a snippet. Be sure to create the
snippet inside the curly braces and save the file once done.

Figure 3.14: A list of available snippets alongside its description displays in the
Command Palette.

48	 Chapter 3 ■ Editing Code

{
 // Place your snippets for python here. Each snippet is defined
under a snippet name and has a prefix, body and
 // description. The prefix is what is used to trigger the snippet
and the body will be expanded and inserted. Possible variables are:
 // $1, $2 for tab stops, $0 for the final cursor position, and
${1:label}, ${2:another} for placeholders. Placeholders with the
 // same ids are connected.
 // Example:
 // "Print to console": {
 // "prefix": "log",
 // "body": [
 // "console.log('$1');",
 // "$2"
 //],
 // "description": "Log output to console"
 // }
}

For additional information on how to create a snippet, review
code.visualstudio.com/docs/editor/userdefinedsnippets#_create-your-

own-snippets.

Summary

In this chapter, you learned about the following:

■■ Quick Fixes help fix issues identified by code errors if a potential solution
is available.

■■ The add imports Quick Fix completes import statements and recognizes
common abbreviations for NumPy, TensorFlow, pandas, matplotlib.pylot,
matplotlib, SciPi, and SciPy.

Figure 3.15: The try/except/else/finally snippet includes placeholder text for pass,
expression, and identifier.

http://code.visualstudio.com/docs/editor/userdefinedsnippets#_create-your-own-snippets
http://code.visualstudio.com/docs/editor/userdefinedsnippets#_create-your-own-snippets

	 Chapter 3 ■ Editing Code	 49

■■ Code completion, object definition, and the location of object or variable
declarations are triggered either by pressing Ctrl+spacebar or typing a
trigger character (such as a dot in Python).

■■ The Python extension supports the following formatters: autopep8 (default),
Black, and YAPF.

■■ Formatting settings can be customized in settings.json.

■■ If linting is enabled, the linter runs automatically whenever a file is saved.

■■ The Python extension supports the following linters: Pylint (default),
Flake8, Mypy, pydocstyle, pycodestyle, prospector, pylama, and Bandit.

■■ Linting settings can be modified both globally and per linter within
settings.json.

■■ You can refactor code with three commands: Extract Variable, Extract
Method, and Sort Imports.

■■ Snippets provide a template of code added to the editor when invoked
with Ctrl+spacebar or the Insert Snippet command.

Additional Visual Studio Code
Features

In This Part

Chapter 4: Managing Projects and Collaboration
Chapter 5: Debugging
Chapter 6: Unit Testing
Chapter 7: Jupyter Notebook
Chapter 8: Using Git and GitHub with Visual Studio Code
Chapter 9: �Deploy a Django App to Azure App Service with the Azure App

Service Extension
Chapter 10: Create and Debug a Flask App
Chapter 11: �Create and Deploy a Container with Azure Container Registry

and Azure App Service
Chapter 12: Deploy an Azure Function Trigger by a Timer

Par t

II

C H A P T E R

53

4

Managing source code within the context of a project requires being able to
navigate and maintain files, work within the appropriate Python environment,
and maintain changes with source control. Each of these tasks is available in
Visual Studio Code as either standard functionality or with the installation of an
extension. In this chapter, the core features for managing projects are explored in
a chatbot application created with the ChatBotAI library. (To learn more about
the ChatBotAI library, visit pypi.org/project/chatbotAI.) The application uses
the Wikipedia library to search for information from Wikipedia articles. (To learn
more about the Wikipedia library, visit pypi.org/project/wikipedia/.) The
exercises within this chapter are completed within the Wikipeida_Chatbot folder.

Files and Folders

In Visual Studio Code, working with files and folders goes beyond simply access-
ing a file. You can open a complete project in the editor and manage multiple
files across subfolders simultaneously. Once a project is opened in the editor,
Visual Studio Code provides helpful features for navigating and searching
across folders. The Explorer view displays the contents of an opened project,
thus providing easy access to manage and open files in the editor.

Managing Projects
and Collaboration

https://pypi.org/project/chatbotAI
http://pypi.org/project/wikipedia/

54	 Chapter 4 ■ Managing Projects and Collaboration

Open a Project
To manage a project in Visual Studio Code, first open its folder in the editor
using one of these methods:

■■ External terminal: Navigate to the location of the folder and enter
code . to open in Visual Studio Code.

■■ Menu: Select File ➪ Open Folder or File ➪ Open Recent.

■■ Keyboard shortcut: Press Cmd+K, O/Ctrl+K, O.

■■ Welcome page: Select Open Folder or an item under Recent. See Figure 4.1.

■■ Explorer View: If no folder is opened, click Open Folder (see Figure 4.2).

Try It Out: Use your preferred method to open the Wikipedia_Chatbot folder.
When a folder is opened, the Explorer view displays the folder contents. Files

can be opened with either a single-click or a double-click; however, the outcome
differs for each action. A single-click opens a file in a tab within the editor. If
you happen to single-click another file, the initial file tab is replaced with the
subsequent file. If edits are made to a file in an editor tab, single-clicking a file
in the Explorer view opens the file in a new tab.

A double-click opens the file in an editor tab. A subsequent single-click on
another file in the editor opens the file in a new tab in the editor. The benefit of

Figure 4.1: The Open Folder link displays on the Visual Studio Code Welcome page.

Figure 4.2: The Open Folder button is available on the Explorer view when no
folder is opened.

	 Chapter 4 ■ Managing Projects and Collaboration	 55

a double-click is that you are able to open multiple files within a project in new
editor tabs without the need to edit any files within the editor.

Try It Out: In the Explorer view, open the README.md file. Next, navigate to
the examples folder and open the Example.py file to display in the editor (see
Figure 4.3).

	 N OT E     To open multiple files in the editor at once, select each file and use the key-
board shortcut Ctrl+Enter.

	 N OT E     You can toggle between the editor and Explorer view with the keyboard
shortcut Cmd/Ctrl+Shift+E.

If there are files or folders that you’d like Visual Studio Code to hide in the
Explorer and search feature, you can define the pattern with the File: Exclude
setting (see Figure 4.4).

Figure 4.3: The README.md and Example.py files are opened in the editor.

Figure 4.4: The Files: Exclude setting is available in Settings. Click Add Pattern to include a new
entry for the setting.

56	 Chapter 4 ■ Managing Projects and Collaboration

Navigate Files
Navigation history is saved each time you navigate between files in the editor.
If there are multiple files opened in the editor, you can view all files in an editor
group with the keyboard shortcut Ctrl+Tab. A list of opened files displays at the
top of the editor. You can change the active file by holding Ctrl while pressing
Tab to select the file and then release Ctrl to apply the selection. The keyboard
shortcut Ctrl+Shift+Tab navigates the list in reverse order when there are many
files open.

Try It Out: Press Ctrl+Tab to change the active file (see Figure 4.5).

You can also navigate files in a folder using the Breadcrumbs. The Breadcrumbs
display can be found at the top of the editor and shows the file path. Selecting
a breadcrumb in the path displays a drop-down with the level’s siblings. You
can then select a sibling to navigate to other folders and files (see Figure 4.6).

The Command Palette command Focus Breadcrumbs is used to interact with
breadcrumbs. When used, the last element in the breadcrumb trail is selected,
and a drop-down opens that enables you to navigate to a sibling file or folder.
Use the up and down arrow keys to select a sibling element. To navigate to the
children elements of a sibling, use the left and right arrow keys (see Figure 4.7).

	 N OT E     You can disable breadcrumbs with the Show Breadcrumbs toggle (View ➪
Show Breadcrumbs) or with the breadcrumbs.enabled setting.

Figure 4.5: Each opened file appears in the list of available files to switch.

Figure 4.6: The breadcrumbs display the path to the Example.py file.

	 Chapter 4 ■ Managing Projects and Collaboration	 57

Search across Files
Searching across files in an opened folder can be done quickly with the Search
view (Cmd+Shift+F/Ctrl+Shift+F). Search results display below the search bar
as you type in the search term. Search results are grouped into files contain-
ing the search term. The search term results (see Figure 4.8) include the term’s
total number of occurrences in each file and the respective location(s). You can
expand a file to see a preview of all occurrences within the file and single-click
an occurrence to view in the editor.

	 N OT E     Search results are dependent upon the settings for Search: Exclude.

Try It Out: Search for the term wikipedia across all files in the Wikipedia_Chatbot
folder. Once found, click an occurrence in the Example.py file to view in the editor.

1.	 In the Search view, enter the search term wikipedia. The results show that
there are 22 results in 4 files with the term wikipedia (see Figure 4.9).

Figure 4.7: The child element of the examples folder displays.

Figure 4.8: The search results show that there are 22 results in 4 files with the term wikipedia.

58	 Chapter 4 ■ Managing Projects and Collaboration

	 N OT E     The Toggle Collapse and Expand icon (see Figure 4.9) collapses and expands
all search results. To dismiss files in the search results, click the X next to the filename.

2.	 Select the first occurrence in the Example.py file to view the file and term
location in the editor (see Figure 4.10)

You can filter your search by selecting whether you want the results to match
the case (Option+Cmd+C/Alt+C) or match the whole word (Option+Cmd+W/
Alt+W). In addition to the keyboard shortcuts, each filter can be accessed using
the icons in the search bar (see Figure 4.11).

Figure 4.9: Search for wikipedia in the search bar.

Figure 4.10: Selecting the first occurrence of wikipedia in the Example.py file opens
the file in the editor and highlights the term in the file.

Figure 4.11: In the Search view, the Match Case (A), Match Whole Word (B), and Use Regular
Expression (C) icons display next to the search bar.

	 Chapter 4 ■ Managing Projects and Collaboration	 59

The search feature supports regular expression searching as well. To toggle
regular expression searching, click the Use Regular Expression icon in the search
bar (see Figure 4.11, C) or use the keyboard shortcut Option+Cmd+R/Alt+R.

Search results could also be replaced by another term. Click the arrow next
to the search field, which opens the Replace field (see Figure 4.12, A). This fea-
ture enables you to preserve the case (see Figure 4.12, B) and replace all (see
Figure 4.12, C) instances of the term in the project.

To specify which files to include or exclude from search results, click the
Toggle Search Details (see Figure 4.13) icon below the search field. Enter the
name of the files in the appropriate field.

Search results could also display in the editor by clicking Open In Editor
(see Figure 4.14). When selected, search results display in a new tab, which
lists every instance of the search term and the respective location by line in a
scrollable format.

There’s also the ability to search for a term directly from the editor. The key-
board shortcut Cmd+F/Ctrl+F opens a search bar inside the active tab (see
Figure 4.15). Enter the search term into the tab to search the file. The editor
search bar includes some similar commands from the Search view. In addition,
there is a Find In Selection as indicated by the triple line icon.

Figure 4.12: The Replace (A) field displays when the arrow next to the Search field is selected.
The icons to the right of the Replace field enables you to select Preserve Case (B) or
Replace All (C).

Figure 4.13: The Toggle Search Details icon opens the Files To Include and Files To
Exclude fields.

60	 Chapter 4 ■ Managing Projects and Collaboration

Close a File or Folder
Visual Studio Code refreshes when a folder is closed. You can close a file or
folder in the editor in various ways.

■■ Menu: Select File ➪ Close Window or Close Folder.

■■ Editor (close file): Click the X on the File tab.

■■ Keyboard shortcut (close window): Press Cmd+W/Ctrl+W.

■■ Keyboard shortcut (close folder): Press Cmd+K, F/Ctrl+K, F.

Environments

The Python extension for Visual Studio Code provides integration features
for working with global, virtual, and conda environments. Although a global
environment provides the fastest way to get started with writing a Python

Figure 4.14: When search results are opened in the editor, each instance of the term is listed
alongside the respective line in the file.

Figure 4.15: The keyboard shortcut Cmd+F/Ctrl+F opens a search bar within the active tab.
Although most functionality from the Search view is available for this feature, there is an
additional feature to find a term in a selection.

	 Chapter 4 ■ Managing Projects and Collaboration	 61

program, it is recommended to manage projects in their own isolated virtual or
conda environments to avoid library version conflicts across different projects.
Using isolated environments also helps you clearly understand what libraries
are used with each specific project.

To select an environment, run the Python: Select Interpreter command in the
Command Palette. The Command Palette provides a list of Python interpreters.
In the interpreter list, virtual and conda environments are indicated by either
env or conda in parentheses. Global environments are presented without the
parentheses. See Figure 4.16.

Virtual Environments
Visual Studio Code automatically detects when you create a new virtual environ-
ment and prompts you to select whether the new virtual environment should be
selected for the workspace (see Figure 4.17). If selected, Visual Studio Code saves
the path to the Python interpreter in the virtual environment to the Workspace
settings.

Conda Environments
Before you can create a conda environment, conda must be set as the default
integrated terminal shell to use conda commands in Visual Studio Code. The
shell can be set in the User settings.

1.	 Run the command Preferences: Open User Settings.

2.	 In the left navigation, select Features ➪ Terminal. Scroll down to the set-
tings for Integrated ➪ Shell.

Figure 4.16: A list of environments available displays in the environment list. There are two
global environments and one virtual environment.

Figure 4.17: After a virtual environment is created, Visual Studio Code provides a notification
requesting whether to select the environment for the workspace folder. Clicking Yes activates
the virtual environment and selects the virtual environment as the interpreter.

62	 Chapter 4 ■ Managing Projects and Collaboration

3.	 Select the applicable Edit in settings.json link for your operating system
(see Figure 4.18).

4.	 In the settings.json file, set terminal.integrated.shell.<platform>,
in addition to terminal.integrated.shellArgs.<platform>. For example,
for Windows, the entry would be as follows:

"terminal.integrated.shell.windows": "C:\\Windows\\System32\\
cmd.exe",
"terminal.integrated.shellArgs.windows": ["/K", "C:\\<path to
conda installation>\\Scripts\\activate.bat C:\\<path to conda
installation>"],

When selecting an interpreter, Visual Studio Code automatically detects
existing conda environments that contain a Python interpreter. If you create a
conda environment while Visual Studio Code is running, you must first reload
the window to refresh the environment list that is available when selecting a
Python interpreter. To refresh the window, run the command Developer: Reload
Window.

It may take a moment for the conda environment to appear in the list. If the
conda environment doesn’t at first appear, try the command again in 15 seconds.

Try It Out: Create either a virtual or conda environment for the Wikipedia_
Chatbot project. After the isolated environment is activated, install ChatBotAI
and Wikipedia.

■■ Virtual environment: pip install chatbotAI, pip install
wikipedia

■■ Conda environment: conda install -c anaconda chatbotAI, conda
install -c anaconda wikiedpia

Run Examples.py to try the application; see Figure 4.19. When the applica-
tion starts, the chatbot greets and continues to ask a series of questions related
to your response. To make a Wikipedia inquiry, ask the chatbot Who/What is
<query> (e.g., What is Visual Studio Code). Assuming that there is a Wikipedia
page for the topic, the chatbot returns the introductory paragraph for the topic.
If there is no relevant Wikipedia article, the chatbot returns with the string I
don’t know about <query>.

To stop the program, enter quit.

Figure 4.18: Edit in settings.json is selected for the Windows operating system.

	 Chapter 4 ■ Managing Projects and Collaboration	 63

Source Control

Visual Studio Code is equipped with integrated source control that enables you
to track and manage changes to code. Source control also provides a way to
collaborate with others across a project by connecting to a remote repository,
such as a repository on GitHub. Although the editor comes with the Git source
control manager (SCM) built in, you can install an additional SCM from the
Extension Marketplace. Git version 2.0.0 or newer must be installed to use Git
features. To install or update Git, visit git-scm.com/download.

	 N OT E     In the Extension Marketplace, you can filter to the SCM providers by search-
ing for @category:"scm providers".

The Source Control view provides version control information for your project,
such as Changes, Staged Changes, and Merge Changes. The Source Control icon
always indicates an overview of how many files have been changed in your
repository (see Figure 4.20).

Figure 4.19: An inquiry is made to the chatbot about Visual Studio Code. The response
provided by the chatbot is the introductory paragraph for the Visual Studio Code
Wikipedia page.

Figure 4.20: The Source Control icon in the Activity Bar indicates that there is one
pending change.

http://git-scm.com/download

64	 Chapter 4 ■ Managing Projects and Collaboration

If you do not have a folder opened, the Source Control view instructs you
to either open a folder that contains a Git repository or clone a repository. See
Figure 4.21.

The Status Bar contains a Git status bar that displays the checked-out branch
(see Figure 4.22, A) and either a Synchronize Changes or Publish action (see
Figure 4.22, B). Additional information regarding each action is explained in
the later section titled “Remotes.”

Visual Studio Code detects changes made within the Visual Studio Code
UI in addition to changes made through the command-line interface (CLI).
Therefore, you can run CLI commands in another shell or in the Visual Studio
Code integrated terminal given that Visual Studio Code syncs with the current
state. If you’re entering commands within the Visual Studio Code UI, you can
open the Git output window to view the commands. To access the Git output
window, navigate to View ➪ Output (Ctrl+Cmd+U/Ctrl+Shift+U) and select
Git from the Output window drop-down menu (see Figure 4.23).

Figure 4.21: In the Source Control view, you can initialize a Git repository by clicking the
Initialize Repository button.

Figure 4.22: The Git status bar indicates the checked-out branch (A) and displays an icon to
publish to GitHub (B).

Figure 4.23: The Output window displays the Git output for the repository.

	 Chapter 4 ■ Managing Projects and Collaboration	 65

Initialize a Repository
The Source Code view displays a “No source control providers registered”
message if Visual Studio Code doesn’t detect an existing Git repository. To
initialize a repository, click the Initialize Repository command that appears in
the view. Alternatively, run the Git: Initialize Repository command from the
Command Palette.

When you initialize a repository, Visual Studio Code creates the necessary
Git repository metadata files and shows your files as files that have not yet
been committed for the first time. Such files are referred to as untracked changes
(indicated by a U icon) ready to be staged.

Try It Out: Initialize a repository for chatbot.

1.	 Run the command Git: Initialize Repository and select the Wikipedia_
Chatbot folder. Notice that the files within Wikipedia_Chatbot now have
a U icon (indicative of untracked changes) next to the filename. The Source
Control view also displays the total of number of pending changes (see
Figure 4.24).

The Views And More Actions (see Figure 4.25) icon within the Source Control
view provides a list of options for changing how the files within the Changes
section are viewed and sorted. The View and Sort menu option provides the
option to view changes as either a list or a tree. The default setting is to view
as a list. If the Changes section is set to view as a list, you could sort the list by
name, path, or status.

Figure 4.24: The Source Control view icon indicates that there are 982 pending changes.
In addition, an untracked icon displays next to each file in the Explorer view.

Figure 4.25: Clicking the Views And More Actions icon provides options for changing how the
list of changes is sorted.

66	 Chapter 4 ■ Managing Projects and Collaboration

Try it Out: Change the view of changes to view them as a tree (see Figure 4.26).

Commit Changes
You can conveniently commit changes for your project from the Source Control
view. The Changes section within the view displays all changes made within
the project. Next to each file is the Git status indicated by a letter.

■■ U—Untracked

■■ M—Modified

■■ A—Added

	 N OT E     The Git status also displays in the Explorer view next to the changed file.

You can discard all changes (see Figure 4.27) or stage all changes using the
icons in the Changes header. To view the icons, hover over the header.

If you hover over a file within the Changes section, you’re given the option
to either open the file (A), discard the changes (B) or stage the changes (C). See
Figure 4.28.

Figure 4.26: Changing the view to a tree displays the project files within their
respective folders.

Figure 4.27: The first icon (A), Discard All Changes, is used to discard all staged changes. The
second icon (B), Stage All Changes (B), is used to stage all pending changes for the repository.

	 Chapter 4 ■ Managing Projects and Collaboration	 67

Once a change is staged, the file is moved to the Staged Changes section. If
you hover over a file within the Staged Changes section, you’re given the option
to either open the file (A) or unstage the changes (B). See Figure 4.29.

Commit messages are entered in the Message bar (see Figure 4.30). To commit
the changes, either press Cmd+Enter/Ctrl+Enter or select the Commit icon.

Before committing project files to the repository, it’s likely that you’d want
to ignore some files such as the virtual environment folder or any file which
contains environment variables. Visual Studio Code provides two quick ways

Figure 4.28: The icons that display next to the file enable you to manage changes for the
singular file. The first icon (A), Open File, opens the file in the editor window. The second icon (B),
Discard Changes, is used to discard the change. The third icon (C), Stage Changes, is used to
stage the pending change.

Figure 4.29: The first icon (A), Open File, opens the file in the editor window. The second icon
(B), Unstage Changes, unstages the change.

Figure 4.30: Commit messages are entered in the Message bar.

68	 Chapter 4 ■ Managing Projects and Collaboration

to add files to a .gitignore file. After the .gitignore file is created, you can
add files directly from either the Source Control view or the Command Palette.
When a file is added to .gitignore, Visual Studio Code opens the .gitignore
file in a new tab.

Before adding a file to .gitignore, the file must be unstaged. To add a file
to .gitignore from the Source Control view, right-click the file and select Add
To .gitignore (see Figure 4.31).

Alternatively, you could add a file from the Command Palette with the
command Git: Add To .gitignore. Before you run the command, ensure that
the file is active in the editor.

Try It Out: Stage and commit the files in the Wikipedia_Chatbot project to
the master branch.

1.	 In Source Control view, select the appropriate folders/files to add to
.gitignore (e.g. the virtual environment folder).

2.	 Click the + icon to stage all the files within Changes (see Figure 4.32).

3.	 Enter a commit message in the Message bar (e.g., “add project files to
repo”; see Figure 4.33).

Figure 4.31: In the Source Control view, select the Add To .gitignore menu option to add the
.env files to .gitignore.

Figure 4.32: The + icon is selected to stage all changes.

	 Chapter 4 ■ Managing Projects and Collaboration	 69

4.	 Commit the changes (see Figure 4.34).

Branches
When collaborating with others, code changes, such as new features or bug fixes,
are often created on a branch. Branches enable collaborators to branch from the
codebase and complete their work in an isolated environment independent of
others. With Git, changes made on a branch can be merged with the codebase or
master branch. In Visual Studio Code, there are two ways to create a new branch:

■■ Command Palette: Run the command Git: Create Branch. When prompted,
enter a name for the branch.

■■ Status Bar: Click the branch indicator and select + Create New Branch
(see Figure 4.35).

When you create a new branch, the branch is automatically checked out.
Checking out a branch updates the files in the working directory to match the
version stored in that branch. When a branch is checked out, Git records all new
commits on the branch. There are two ways to manually check out a branch:

Figure 4.33: The commit message “add project files to repo” is entered into the
Message bar.

Figure 4.34: The Commit Changes icon is used to commit the staged changes.

Figure 4.35: In the window that appears, click + Create New Branch to create a new
branch for the repository.

70	 Chapter 4 ■ Managing Projects and Collaboration

■■ Command Palette: Run the command Git: Checkout To. When prompted,
select a branch from the list.

■■ Status Bar: Click the branch indicator and select a branch from the list.

Try It Out: Create a new branch for the Wikipedia_Chatbot project. In Example
.py, change the string assigned to the first_question variable to Hi, what
would you like to know?.

1.	 Run the command Git: Create Branch.

2.	 When prompted, name the branch vscode-chatbot-exercises. See
Figure 4.36.

3.	 Confirm the vscode-chatbot-exercises branch is checked out in the
Status Bar (see Figure 4.37).

4.	 Change the string assigned to the first_question variable to Hi, what
would you like to know?

Remotes
Visual Studio Code also supports repositories connected to a remote, such as
GitHub. You can push, pull, and sync a branch to its origin all within the editor.
The aforementioned Git commands are available in the Source Control view
within the More Actions menu. See Figure 4.38.

Figure 4.36: The name of the branch is entered to create a new branch.

Figure 4.37: The branch indicator in the Status Bar shows that the vscode-chatbot-
exercises branch is checked out.

Figure 4.38: The More Actions menu can be accessed from the top of the Source Control view.

	 Chapter 4 ■ Managing Projects and Collaboration	 71

The Synchronize Changes action in the Git status bar pulls remote changes
down to your local repository and then pushes local commits to the remote
repository. If there is no remote repository configured, the Publish action is
enabled, which lets you publish the current branch to a remote.

Visual Studio Code can also fetch changes from a remote. The benefit of this
feature is that the editor can show you how many changes your local repository
is ahead or behind the remote. Although this feature is disabled by default, you
can modify the setting git.autofetch to true to enable it.

Gutter Indicators
If you’re making changes to a file within a folder that is a Git repository, Visual
Studio code adds annotations to the left of the editor window—referred to as
the gutter (see Figure 4.39). There are three visual indicators:

■■ Label A—Lines have been deleted

■■ Label B—Modified lines

■■ Label C—New added lines

View Diffs
Changes are compared in the Diff editor. To view diffs for a file, select the file in
the Source Control view. The Diff editor opens in a new tab with a side-by-side
view of the diffs (see Figure 4.40).

Figure 4.39: For the Example.py file, the gutter indicates that a line has been deleted (A), a
line has been modified (B), and a new line has been added (C).

Figure 4.40: Diffs are displayed in the Diff editor for the original Example.py file and the
newly modified version.

72	 Chapter 4 ■ Managing Projects and Collaboration

You can toggle to the inline view by opening the More Actions menu at the
top of the Diff editor and selecting Toggle Inline View (see Figure 4.41).

The Previous Change (Ctrl+Option+F5/Shift+Alt+F3) and Next Change
(Option+F5/Alt+F3) icons are used to navigate the diffs. See Figure 4.42.

Try It Out: In the Example.py file, change the string assigned to the first_
question variable to Hi, what would you like to know?. Save the file.

from chatbot import Chat, register_call
import wikipedia
import os
import warnings
warnings.filterwarnings("ignore")

@register_call("whoIs")
def who_is(session, query):
 try:
 return wikipedia.summary(query)
 except Exception:
 for new_query in wikipedia.search(query):
 try:
 return wikipedia.summary(new_query)
 except Exception:
 pass
 return "I don't know about "+query

Figure 4.41: The Toggle Inline View menu item can be accessed from the More Actions menu at
the top of the Diff editor.

Figure 4.42: The Previous Change (A) icon is an up arrow. The Next Change (B) icon is a
down arrow.

	 Chapter 4 ■ Managing Projects and Collaboration	 73

first_question = "Hi, what would you like to know?"
chat = Chat(os.path.join(os.path.dirname(os.path.abspath(__file__)),
"Example.template"))
chat.converse(first_question)

Select the Example.py file in the Source Control view to view the diffs in the
Diffs editor (see Figure 4.43) and then commit the changes.

You can also manually select any two files to view diffs:

■■ Explorer View: Right-click the file in the Explorer or Open Editors list
and select Select For Compare. Next, right-click the second file to compare
with and select Compare With <filename_you_chose>.

■■ Keyboard shortcut: Select a file in the editor window to make it the active
file. Enter the keyboard shortcut Cmd+Shift+P/Ctrl+Shift+P and select
File: Compare Active File With. Select the file for comparison from the list
of recent files.

Push and Merge Commits
As changes are committed, the Status Bar lists the total number of commits to
push to the origin. Selecting the status bar item executes the task to push and
pull to origin. See Figure 4.44.

After the commits are pushed, the status bar item changes to display only
the Synchronize Changes icon (see Figure 4.45).

Figure 4.43: The Diff editor displays the original Example.py file and the newly
modified version.

Figure 4.44: The number of commits to be pushed to the remote server displays in the Status
Bar next to the checked-out branch.

74	 Chapter 4 ■ Managing Projects and Collaboration

Pull Requests
The pull request workflow is supported in Visual Studio Code with pull request
extensions. One such extension is the GitHub Pull Requests and Issues extension.
Pull request extensions enable you to review, comment, and merge pull requests
all within the editor for a remote (see Figure 4.46).

Live Share

The Live Share extension enables sharing and collaboration across multiple
users but within Visual Studio Code. A host shares a project in Visual Studio
Code with guests who can remotely view or edit the project. Collaborators are
able to work together simultaneously across a project, thus eliminating the
back-and-forth tasks for commits, pushes, pull requests, and merge conflicts.
Live Share provides full-feature functionality for all participants regardless of
whether they join a session in the Visual Studio Code desktop client (on any
operating system) or a web browser. In the end, a collaborative session results
in a single commit. Either a Microsoft or GitHub account is required to partic-
ipate in a Live Share session. Sharing or joining the session itself occurs within
seconds and maintains access to your preferred environment configurations
and settings.

Figure 4.45: The Synchronize Changes icon displays next to the checked-out branch.

Figure 4.46: The GitHub Pull Requests and Issues extension provides a view in the Explorer (A),
which is used to manage pull request. The view displays Pull Requests (B) and Issues (C).

	 Chapter 4 ■ Managing Projects and Collaboration	 75

Install Live Share
Download the Live Share extension from the Extension Marketplace. The extension
page includes requirements that are necessary to use the extension.

Once it’s installed, reload and wait for dependencies to download and install.
You can check the status of the installation within the Status Bar. After installation
is complete, a few additional UI elements and features are added to the editor.

	 N OT E     For Linux users, if you’re promoted to install libraries, click Install, enter your
password, and restart Visual Studio Code once complete.

■■ Status Bar: Live Share—The Live Share status bar item is used to sign in
to Live Share and also provides session states that update throughout an
active collaboration. See Figure 4.47. You can also view a list of partici-
pants by selecting the people icon.

■■ Activity Bar: Live Share Explorer view—The Live Share Explorer view
within the Activity Bar displays the active shared project in addition to
session participants (see Figure 4.48). You can also access all Live Share
functions within this view.

Figure 4.47: The Live Share status bar item displays in the Status Bar. Selecting the bar
signs you into Live Share. If signed in and currently hosting or attending an active
session, you can view session states and session participants.

Figure 4.48: The Live Share Explorer icon is used to open the Live Share Explorer view.
This view displays session details and contacts.

76	 Chapter 4 ■ Managing Projects and Collaboration

■■ Command Palette—All Live Share functions are available within the
Command Palette. To view a complete list of commands, type Live Share
into the Command Palette. A contextualized list of commands is available
by selecting the Live Share status bar item.

Sign In to Live Share
For security purposes, sign-in is required to use Live Share. The following
account types are required:

■■ Microsoft personal account (e.g., @outlook.com)

■■ Microsoft-backed work or school account (Azure Active Directory—
AAD)

■■ GitHub account

To sign in, click the Live Share status bar item. A notification appears that
requests you to log in via the browser. Click Launch Sign In to open the browser
to a sign-in page. Alternatively, you can run the command Live Share: Sign In
With Browser to access the sign-in page. Once signed in, close the browser and
return to Visual Studio Code.

If you signed in without joining a session, the Status Bar reflects that you
are signed in (see Figure 4.49) and displays an icon for you to share a project.

If you signed in after accessing a link to join a session, the Status Bar initially
reflects that you are joining a session followed by a change in state to indicate
that you’ve joined the session.

	 N OT E     If you are experiencing issues with Visual Studio Code detecting a success-
ful login, you can enter a user code instead. Run the command Live Share: Sign In With
User Code to open the browser. After you log in, click the link Having trouble? Click here
for user code directions. to see the user code. In Visual Studio Code, enter the code into
the input field that appeared when you ran the command. Once done, press Enter to
complete the sign-in process.

Share a Project
A host provides access to a Live Share session by sharing an invite link with
guests. Before you can generate an invite link, the project must first be opened

Figure 4.49: After signing into Live Share, the Status Bar displays the name provided for the
logged in account.

http://outlook.com

	 Chapter 4 ■ Managing Projects and Collaboration	 77

in Visual Studio Code. Hosts have complete flexibility in regard to which files/
folders are visible for guests. In addition, hosts can select whether the session
enables edits or is read-only.

The steps to share a project are as follows:

1.	 Open a folder you’d like to share with guests.

	 N OT E     By default, Live Share hides any files/folders referenced in .gitignore
files. Hiding a file prevents the file from appearing in the guest’s file tree. You can also
exclude a file, which prevents Live Share from opening the file for guests. You can hide/
exclude files by creating a .vsls.json file in your project. For additional information
on creating a .vsls.json file, visit docs.microsoft.com/visualstudio/
liveshare/reference/security.

2.	 In the Status Bar, click the Live Share status bar item or run the command
Live Share: Start a Collaboration Session (Share).

After sharing, a notification appears to let you know that the invite link has
been copied to your clipboard (see Figure 4.50). The link is always available for
access by clicking on the status bar item and selecting Invite Others (Copy Link).
The notification also enables you to set the session to read-only. A read-only
session prevents others from editing the project. This setting may be useful for
a session with external guests you may not trust or when pair programming.

3.	 Share the link with a guest. When a guest clicks the link, they are prompted
to log in to join the session. If the guest chooses to sign in as anonymous,
Visual Studio provides a notification to the host requesting approval to
allow the anonymous guest to join the session (see Figure 4.51).

Figure 4.50: A notification appears in the editor to inform you that the invite link has
been copied to the clipboard. The notification also provides the option to make the
session read-only.

Figure 4.51: Visual Studio Code displays a notification requesting whether the anony-
mous guest John Doe should be allowed to join the session. The host could also select
the option to always allow anonymous guests to join. Selecting the latter option lets
anonymous guests automatically join future sessions without host approval.

http://docs.microsoft.com/visualstudio/liveshare/reference/security
http://docs.microsoft.com/visualstudio/liveshare/reference/security

78	 Chapter 4 ■ Managing Projects and Collaboration

	 N OT E     If you’d prefer to require approval for joining a session, add the following
entry to settings.json: "liveshare.guestApprovalRequired": true.

Once the session is active, the Status Bar reflects that a collaboration session
is active (see Figure 4.52) and provides a total count of guests. Guests are auto-
matically taken to the file you’re editing once they join the session.

	 N OT E     The terminal is not shared by default. The host must manually share the
terminal for guests to run commands. Refer to “Share a Terminal” for more information.

When you are done sharing the project, stop sharing by clicking the Stop Col-
laboration Session icon in the Live Share view (see Figure 4.53). Once sharing
has stopped, all guests are notified that the session has ended. At that point,
guests no longer have access to the project, and any temp files are automati-
cally cleaned up.

Join a Session
Guests receive access to a Live Share session by navigating to the invite link
shared by the host. Guests can join a session either via a web browser or via the
Visual Studio Code desktop client (see Figure 4.54). Joining via the browser is
ideal for guests who may not have the necessary tools installed and provides
quicker access to the session. Browser access is optimal for short-term guests
who wouldn’t need to install Visual Studio Code locally. The browser is also
an alternative for collaborators working on a tablet, smartphone, or any other
device that cannot run Visual Studio Code, whereas joining with Visual Studio
Code is ideal for guests who may already have the editor running or who are
experiencing issues joining with the invite link.

To join a session via the web browser, click the invite link provided by the
host. The link takes you to a web page that provides the option to continue to
the browser. Once you join the session, you have full access to all Visual Studio
Code editing features. To leave the session, close the browser window.

Figure 4.52: The Status Bar shows that one guest is currently in the session.

Figure 4.53: The Stop Collaboration Session icon displays in the Session Details section of the
Live Share view. Click the icon to stop the session.

	 Chapter 4 ■ Managing Projects and Collaboration	 79

Joining a session through the desktop client requires that the Live Share
extension is already installed in the editor. After signing into Live Share, navi-
gate to the Live Share view in the Activity Bar and click the Join Collaboration
Session icon (see Figure 4.55).

You can paste the invite link URL and press Enter to confirm (see Figure 4.56).
Once confirmed, you are connected to the session, and the Status Bar is updated
to reflect both that you’ve joined and the total count of guests.

Figure 4.54: When a guest clicks the invite link to join the session, they’re given the option to
either join via Visual Studio Code or continue in the browser.

Figure 4.55: The Join Collaboration Session icon displays in the Session Details section of the
Live Share view.

Figure 4.56: The invite URL is entered when prompted to join the session.

80	 Chapter 4 ■ Managing Projects and Collaboration

To leave the session, close the Visual Studio Code window (see Figure 4.57).
Alternatively, if you’d prefer to keep the window open, click the Leave Collab-
oration Session icon in the Live Share view.

Editing and Collaboration
During the session, everyone has the ability to simultaneously edit code (if the
session is not read-only) and to navigate the project’s files and folders. Both the
host and guests can see each other’s edits and selections in real time. Visual
Studio Code displays a flag next to a guest’s cursor on hover or when they edit,
highlight, or move their cursor (see Figure 4.58).

Follow a Participant

Following enables you to follow everything the host or another guest does in
the editor. You can follow a person by selecting their name in the participant’s
list. If you are following someone, the circle next to their name is filled in, and
the line number in their active file displays as well (see Figure 4.59).

Figure 4.57: To leave a session, select the Leave Collaboration Session icon in the Live
Share view.

Figure 4.58: Visual Studio Code indicates where session participants have their cursor
in the editor.

Figure 4.59: When a person is followed, a filled-in circle displays next to their name.

	 Chapter 4 ■ Managing Projects and Collaboration	 81

You could also follow someone by clicking the pin icon in the right corner of
the editor group (see Figure 4.60). If more than one other person is in the session,
you will be asked to select the participant you want to follow.

	 N OT E     Because following is tied to an editor group, you can use split view to follow
a participant in one group and then work on something else independently in another.

You can stop following someone by selecting the pin icon again or with the
keyboard shortcut Cmd+Alt+F/Ctrl+Alt+F. Furthermore, following automat-
ically stops if you do any of the following:

■■ Start editing the currently active file

■■ Open a different file

■■ Close the currently active file

Share a Terminal

Hosts can also share terminals with guests (see Figure 4.61). Sharing a terminal
enables guests to run commands on their own without the need to rely on the
host. This may be helpful in cases where it may be more efficient for a guest
to run a series of commands rather than walk the host through the commands
to run within the terminal. Although terminals are not shared by default, the
host can share a terminal by clicking the Share Terminal icon or entry in the
Live Share view. Before the terminal is shared, Visual Studio Code provides the
option to select one of the following two access modes:

■■ Read-only access: Guests can only view the host’s terminal input and
output.

■■ Read/write access: Guests can view the host’s terminal, type in the terminal,
and run commands.

	 N OT E     Read-write access should only be given to guests when they actually need it.
Read-write access gives guests the ability to run any command on the host’s computer.

Figure 4.60: The pin icon in the editor window can be used to follow a session participant.

82	 Chapter 4 ■ Managing Projects and Collaboration

Visual Studio Code provides a new shared terminal once the access mode
is selected. When a shared terminal session ends, all guests are disconnected.
Hosts can stop a shared terminal session one of three ways:

■■ Type exit into the terminal

■■ Close the terminal window

■■ Click the Unshare Terminal icon in the Live Share view

	 N OT E     For additional information on Live Share and to view a video example of a
session, refer to visualstudio.microsoft.com/services/live-share/.

Summary

In this chapter, you learned how to do the following:

■■ Navigate project files in the Explorer view or with breadcrumbs

■■ Search across project files in the Search view

■■ Activate a virtual or conda environment for a project

■■ Manage version control with Git

■■ Collaborate with others remotely using Live Share

You’re now prepared to manage a Python project and collaborate with others
in Visual Studio Code.

Figure 4.61: The host can select a terminal in the workspace to share with guests.

http://visualstudio.microsoft.com/services/live-share/

C H A P T E R

83

5

When the terminal outputs an error while running a program, you can refer
to the Problems panel in the editor to resolve the issue you’re experiencing.
However, not all bugs result in errors. It may be the case that your program
executes successfully, but the output is not what you expected. When such a
scenario occurs, the next step is to identify and remove errors in the program.
This process is referred to as debugging.

You could attempt to locate and resolve the issue through trial and error by
commenting lines of code (thus disabling the code blocks from running), adding
more print statements to output when code blocks have executed, or modifying
lines within the program. While each approach may help you get to a point
where you can identify the bug and a potential fix, this process is inefficient.
Fortunately, that’s where using a debugger comes in handy.

Visual Studio Code has a built-in debugger in which its features are further
extended with the Python extension. While the debugger is useful to help you
identify and fix the bug, it is still your responsibility to identify where the bug
may be located in your code. Once you identify where the bug potentially
exists, use the debugger to help you keep track of the state of your program as
it executes.

Before you begin the exercises in this chapter, open the debugger folder in
Visual Studio Code and create and activate a virtual environment. The exercises
in this chapter instruct you to open each file as needed in the editor.

Debugging

84	 Chapter 5 ■ Debugging

Starting a Debug Session

As the codes stands, if you were to run the debugger, the debugging session
would start and stop relatively quickly as all code in the program would have
been executed, given that there are no errors in the code. To get the debugger to
pause during execution, a breakpoint must be set on a line of the code. Breakpoints
are set wherever you want to examine the runtime state of the program and then
possibly step line by line through the code. In Visual Studio Code, breakpoints
appear as a red dot in the editor margin (see Figure 5.1). When a debug session
starts, the debugger executes all lines of code up to the breakpoint and high-
lights the next line to be executed. (The exception to this is if you’re stepping,
which is later explained in the “Debug Commands” section.)

	 N OT E     You can connect to a program that runs on a remote computer
by setting up a tunnel, which enables you to work on your local machine as
if you were working directly on the remote. For a secure connection, con-
sider using Secure Shell (SSH). Once it’s set up, you can step through a program
locally within Visual Studio Code. For general instructions on how to set
up an SSH tunnel, refer to code.visualstudio.com/docs/python/
debugging#_debugging-by-attaching-over-a-network-connection.

To add a breakpoint, hover over the editor margin for the current line of code
and click to add a breakpoint. Alternatively, use the keyboard shortcut F9 for the
current line of code. To remove a breakpoint, select the breakpoint in the editor
margin or press F9 again. You could also remove all breakpoints by selecting
Run in the top menu followed by Remove All Breakpoints.

Try It Out: Refer to the following comments and add a breakpoint for each
respective line in times_two.py:

This program takes a value in a list, multiples the value by 2, and
adds the product to a variable total.

numbers = [2, 4, 6, 8] # add a breakpoint to this line

Figure 5.1: A breakpoint is set on line 1 of the code.

http://code.visualstudio.com/docs/python/debugging#_debugging-by-attaching-over-a-network-connection
http://code.visualstudio.com/docs/python/debugging#_debugging-by-attaching-over-a-network-connection

	 Chapter 5 ■ Debugging	 85

def times_two(values): # add a breakpoint to this line
 total = 0
 for num in numbers:
 total += (num * 2)
 return total

print(times_two(numbers))

You could force a breakpoint by calling debugypy.breakpoint() at any point
where you want to pause the debugger during a session. If forcing a breakpoint,
import debuypy must be within the code. When called, the debugger stops on
the next line of code. This approach hard-codes the breakpoint in the program.
A scenario in which this might be useful is if you have some callback functions
that happen asynchronously and you don’t want to set, clear, enable, or disable
them with other breakpoints. By hard-coding a few of the breakpoints, you can
catch if and when the callback functions happen.

You can start a debug session in these ways:

■■ Menu: Select Run ➪ Start Debugging.

■■ Keyboard shortcut: Press F5.

■■ Run view: Click Run And Debug (appears if no debug session is active,
as shown in Figure 5.2).

■■ Run view: Click Start Debugging (appears after a debug session is initi-
ated, as shown in Figure 5.3).

Figure 5.2: The Run And Debug button appears in the Run view if there is no debug
session active.

86	 Chapter 5 ■ Debugging

The editor’s behavior during the debug session is controlled by the Debug
Configuration. Consider the debug configuration as a list of settings for how the
debugger functions (see Figure 5.4). The Python extension provides several con-
figurations that are later explored in “Launch Configurations.” When prompted
during the exercises in this chapter, click the Python File configuration, which
debugs the currently active Python file.

Try It Out: Run the debugger.
After starting a debug session, the Run view opens. The Run view is used

to manage a debug session (see Figure 5.5). While a debug session is active,
the panels in the Run view dynamically change, depending on what is
being executed.

As breakpoints are added to the code, the Breakpoints panel adds the module
name (e.g., times_two.py) and its respective breakpoint line(s) to the list. Cur-
rently, there are two breakpoints in times_two.py—one on line 4 and the other
on line 6. Selecting one of the breakpoints in the Breakpoints panel highlights
the breakpoint in the editor (see Figure 5.6).

Figure 5.4: A list of configurations that are available appears before a debug session starts.
Select a configuration to start the debugger.

Figure 5.3: If there is an active debug session, click Start Debugging in the Run view to
start the debugger.

	 Chapter 5 ■ Debugging	 87

Suppose you have a program in which you’ve set up several breakpoints. While
debugging, you decide that there’s only select breakpoints you want to include
during the session, thus avoiding the need to have the debugger pause at every
breakpoint. Removing the unneeded breakpoints would delete the breakpoints,
which may not be your intention if you intend to maintain the breakpoints for

Figure 5.5: The Run view is where you can manage a debug session.

Figure 5.6: In the Breakpoints panel, the first breakpoint is selected, which highlights the
breakpoint on line 3 of the program.

88	 Chapter 5 ■ Debugging

a subsequent debug session. Instead, you could disable the breakpoints. Break-
points can be disabled in the Breakpoints panel by unchecking the box next to the
breakpoint. Alternately, you could right-click the breakpoint and click Disable
Breakpoint. If you’d rather disable all the breakpoints at once, you could do so
by clicking the Deactivate Breakpoints (see Figure 5.7, A) button. However, if it
is your intention to remove all breakpoints, click the Remove Breakpoints (see
Figure 5.7, B) button. Removing all breakpoints is helpful if you want to ensure
you’ve cleaned up all breakpoints you’ve set in a program.

As the debugger runs, the current state of the variables is reflected in the
Variables panel (see Figure 5.8). The Variables panel organizes variables into
local and global scopes.

As you continue to debug, take note of how the variables within the panel
change. Although the variables populate as the program executes, it’s possible
that the variable value produces an error, thus stopping the execution of your
code. If you’ve identified that a different value would continue the execution
of the program, you can change the value in the Variable panel. To change the
value, highlight the variable and press Enter. After you enter a new variable,
press Enter once more to save that modified value in the program state.

Figure 5.7: The button to deactivate all and remove all breakpoints are at the top right of the
Breakpoint panel.

Figure 5.8: The Variables panel shows the current state of the variables as the
program executes.

	 Chapter 5 ■ Debugging	 89

Debug Commands

In addition to the Run view, the Debug toolbar appears in the editor (see
Figure 5.9). The Debug toolbar provides quick access to these debug commands:

■■ A—Continue (F5)

■■ B—Step Over (F10)

■■ C—Step Into (F11)

■■ D—Step Out (Shift+F11)

■■ E—Restart (Shift+Cmd/Ctrl+F5)

■■ F—Stop (Shift+F5)

The debug commands work together rather than independently; that is, you
typically use a combination of commands to debug various lines of code.

In addition to the Debug toolbar commands, additional commands are avail-
able in the right-click context menu in the editor. These features include the
following:

■■ Add Inline Breakpoint—Adds a breakpoint in line with the code, spe-
cifically at the code under the cursor. This is useful for a compound expres-
sion in a single statement in which you want to break on that specific part
of the expression. Alternately, you could navigate to Run ➪ New Breakpoint
➪ Inline Breakpoint or use the keyboard shortcut Shift+F9.

■■ Run to Cursor—Runs a section of code without setting another
breakpoint.

■■ Jump to Cursor—Skips lines or goes back and repeat lines of code.

Continue
When the debugger is stopped at a breakpoint, clicking Continue runs all the
code after that breakpoint up to the next breakpoint or to the end of the program
(see Figure 5.9, A). Given that there are two breakpoints within times_two.py,
clicking Continue runs the debugger until the debugger pauses at the break-
point for the times_two() function. Clicking Continue once more completes
the execution and ends the debug session.

Try It Out: Click Continue to continue and complete the debug session. Once
complete, remove the breakpoint set at the times_two() function.

Figure 5.9: The Debug toolbar

90	 Chapter 5 ■ Debugging

Step Over
So far, you’ve used the Continue command to continue the debugger after it
pauses at a breakpoint. To step line by line over the code, you can use the Step
Over command. The Step Over command runs the line of code at which the
debugger is presently paused and then pauses automatically at the next line
without the need for another breakpoint (see Figure 5.9, B). If the current line
is a function call, the debugger runs the function in its entirety and then pauses
at the next line after the function call. Essentially, the Step Over command steps
line by line at the current scope.

Try it Out: Run the debugger and step over each line of code. Notice that
when the debugger reaches the times_two() function definition, the debugger’s
next step is the print() statement.

Step Into
Because the logic within the times_two() function is in a nested scope, the
debugger would need a way to access those lines of code to step over each line
within the function body. The Step Into command provides such functionality.
When the debugger is paused at a function, the Step Into command steps into
the function scope (see Figure 5.9, C). From there you can step over each line
within the function scope and perhaps step into additional function calls. In
short, stepping into any function enables you to see how the function works
line by line.

Try It Out: Start the debugger and step into the times_two() function.
When the debugger steps into a function, the Locals subsection in the Vari-

ables panel updates each time a variable gets modified. Thus, for each iteration
of the function, the variables within Locals are assigned new values.

Try It Out: Step over each line of the times_two() function and view the
variable assignments in the Variables panel.

Before Iteration 1:
Before the first iteration occurs, the local variables reflect values: [2, 4, 6, 8].

So far, values is the only variable that has been set given that it is passed into
the function call.

Iteration 1:
When the debugger steps over the for loop for the first iteration, the num and

total variables appear in the Variables panel. You can confirm the current iter-
ation from the value assigned to the num variable (see Figure 5.10). In this case,
the value is 2, which indicates that the first item in the numbers list is currently
being evaluated in the for loop. As the debugger steps over each line to execute
the first iteration, the value for total updates from 0 to 4.

	 Chapter 5 ■ Debugging	 91

When the debugger enters the function, values is set as it’s a function param-
eter. Stepping over total = 0 initializes the variable. At this point, total
appears in Locals within the Variables panel. For the first iteration, the first item
within numbers (e.g., 2) is evaluated in the for loop. Stepping over for num in
numbers: initializes num to 2. Stepping over total + = (num * 2) updates total to 4.

Iteration 2:
For the second iteration, the value for num is 4. The initial value for total

is also 4 until the total += (num * 2) statement executes, at which point the
value updates to 12.

Iteration 3:
For the third iteration, the value for num is 6. The initial value for total is

12 until the total += (num * 2) statement executes, at which point the value
updates to 24.

Iteration 4:
For the fourth iteration, the value for num is 8. The initial value for total is

24 until the total += (num * 2) statement executes, at which point the value
updates to 40.

Step Out
If you find yourself at a point where you want to exit from within a function
to the scope that called it, you could do so with the Step Out command (see
Figure 5.9, D). For example, selecting Step Out during the iterations for times_
two() would return the debugger to the module, thus executing the remainder
of the program.

Stop
During a debug session, you can stop all execution with the Stop command
(see Figure 5.9, F). Stopping a session stops the debugger without finishing

Figure 5.10: The num variable reflects which number in the numbers list is currently used in
the iteration. Because 2 is the first item in the list, it’s clear that the for loop is currently going
through the first iteration.

92	 Chapter 5 ■ Debugging

the program. Suppose during a debug session you find the error(s) within the
program and come to the conclusion that if you were to continue, there may
be side effects that impact the program, such as overwriting the wrong file. In
such a scenario, select the Stop command to quit the debugger.

Restart
As you debug and correct errors in your program, you often don’t want to
continue running a program in its present (and often erroneous) state. You
instead want to stop execution and restart the debugging session. The Restart
command (see Figure 5.9, E) , which conveniently stops the debugger, saves the
current file and then restarts the debugger with your recent changes. Example
scenarios include passing new arguments into a function call or wanting to set a
breakpoint at a point in which the code has already ran past. In either scenario,
make the change and then click the Restart command.

Call Stack

The module and its function calls are referred to as frames. Frames stack on top
of one another, and as the function returns, its respective frame is cleared from
the stack. In reference to the times_two.py program, the module frame is at
the bottom of the stack, whereas the times_two() function frame is at the top
of the stack. If the times_two() function made a function call, the function that
is called would be at the top of the stack. The stack of calls itself is referred to
as a call stack.

The Call Stack panel within the Debug view shows the whole chain of function
calls leading up to the current point of execution (see Figure 5.11). The Call
Stack panel lists the file that is being debugged and the line within the file that
is being run. The call stack is especially useful if calls go through other files in
your project because the call stack keeps track of where you are in the chain.

Figure 5.11: The Call Stack panel lists two frames, times_two and module. The current frame
being evaluated is the times_two frame.

	 Chapter 5 ■ Debugging	 93

Furthermore, if you are at a breakpoint, you can select a frame in the call stack,
and the Variables panel shows the state of the program at that breakpoint in
the stack. This is useful for locating the origin of an incorrect value by tracing it
back up through the stack and all the code that went into generating the value.

Try It Out: Run the debugger. When the debugger pauses at the breakpoint,
take note of the Call Stack panel. Given the debugger’s current position, the
module frame is the only frame in the list (see Figure 5.12).

Step over each line of code until you reach the times_two() function call.
Step into the function and take note of the call stack. The times_two() frame is
now added to the call stack (see Figure 5.13).

After the debugger completes the function call and returns total, the times_
two() frame is cleared from the Call Stack panel.

Triggering a Breakpoint

A typical breakpoint stops program execution every time the debugger encoun-
ters that breakpoint. This behavior, however, can be inconvenient for code that’s
inside a loop or code that’s called frequently in some other way. For this reason,

Figure 5.12: Only the module frame appears in the Call Stack panel.

Figure 5.13: The times_two() frame has been added to the Call Stack panel.

94	 Chapter 5 ■ Debugging

you can configure a breakpoint to trigger when a specific condition is true (a
conditional breakpoint) or when it’s been hit a certain number of times.

Conditional breakpoints break when the expression you assign to the break-
point evaluates to true. For example, if you were to debug data within a data-
base, you could break when a particular record comes up.

A hit count enables the debugger to execute up until a specified number of
occurrences. The Python extension supports hit counts that are integers preceded
by the ==, >, >=, <, <=, and % operators. Referring to the database example, sup-
pose you’re aware of an error that occurs on the 1500th time through a process.
Rather than step through each iteration until you reach the 1500th, set a hit count
that breaks when == 1500.

Both conditional breakpoints and hit counts display as a red circle with two
white lines in the middle (see Figure 5.14).

To add a conditional breakpoint, right-click the editor margin for the respec-
tive line and click Add Conditional Breakpoint. In the drop-down menu that
appears, click Expression (see Figure 5.15) . You could also use the same drop-
down menu to add a hit count.

Try It Out: In the editor, open the students_grades.py file. The student_
grades.py program contains sample code for processing data that’s coming
from a database of student grades. The program takes a list of grades for the
student, calculates the average, and returns the average score and letter grade.
Add a conditional breakpoint in the for loop that breaks if the student ID is
0003 (see Figure 5.16).

Figure 5.14: A conditional breakpoint displays in the editor margin as a red circle with two
white lines in the middle.

Figure 5.15: You can select a trigger from the list available. The current selection is Expression.

	 Chapter 5 ■ Debugging	 95

1.	 Right-click the editor margin for the first line of the for loop and click
Add Conditional Breakpoint.

2.	 Click Expression in the drop-down.

3.	 Enter the following expression and press Enter:

score_list['ID'] == '0003'

4.	 Run the debugger.

Notice that the debugger breaks when the student ID is 0003. Within the
Variables panel, the local variables reflect the iteration for student ID 0003.

Logpoints

While debugging, adding print statements to your code to output the current
state results in unnecessary code. Furthermore, you have to remember to remove
them all once you’re done debugging. Rather than litter your code with extra
print statements, use a logpoint instead. A logpoint outputs a message to the
Debug Console without breaking the debugger. Logpoints appear as a diamond
in the editor margin (see Figure 5.17).

Figure 5.16: The debugger breaks when the student ID is 0003. The Variables panel reflects the
local variables for student ID 0003.

Figure 5.17: A logpoint displays as a diamond in the editor margin.

96	 Chapter 5 ■ Debugging

To add a logpoint, right-click the editor margin for the respective line and
click Add Logpoint. Although log messages are plain text, you can include
expressions to be evaluated within curly braces. Press Enter when you’ve fin-
ished writing the message.

Try It Out: In student_grades.py, log the student ID, list of Scores, and
the mod intermediate variable in grade_suffix() for each iteration of the loop.

1.	 To log the student ID and Scores values, set the following logpoint on the
line that defines the avg variable:

D: {score_list['ID']} Scores: {score_list['scores']}

2.	 To log the mod intermediate variable in grade_suffix(), set the following
logpoint on the return statement of the function:

Mod: {mod}

3.	 Run the debugger and open the Debug Console to view the logpoint mes-
sages (see Figure 5.18).

Watch

When a program has a few variables, the Variables panel may be sufficient for
keeping track of variable states. However, what happens when your program
has dozens or even hundreds of variables? Keeping focus on how a single var-
iable is impacted by everything that is executing becomes troublesome.

If there’s a variable (or variables) you’d like to focus on without referring to
the Variables panel, add the variable to the Watch panel (see Figure 5.19). The
Watch panel tracks the state of selected variables while the debugger runs. The
panel takes an expression as an input and updates the variable as each line of
the code executes. To add a variable to the Watch panel, click Add Expression
and enter the name of the variable. Alternately, you could highlight the variable
in the editor, right-click, and click Add To Watch.

Figure 5.18: The logpoint messages display in the Debug Console with the student ID,
scores, and the modulo for their score average.

	 Chapter 5 ■ Debugging	 97

Try It Out: Open watch.py in the editor, set a breakpoint at greeting = ’Hello
World', and start the debugger. After the debugger pauses at the breakpoint,
add the variable total to the Watch panel.

Step over each line of the code and take note of how the variable assignment
changes as the code executes (see Figure 5.20).

	 N OT E     When the debugger starts, the value for total reflects NameError:
name 'total' is not defined. This occurs given that the program has not yet
executed a line of code that defines the variable. Once the program executes total =
0, the value for the variable updates to 0. If the same variable name is used at different
points in the call stack (e.g., different scopes), the most recent one applies. When the
frame is exited and removed from the stack, the Watch panel shows the value of the
variable in the next highest scope.

There are six variables in watch.py: greeting, total, iteration, numbers,
num, and iteration_num. As the debugger steps over each line of the program,

Figure 5.19: As the program executes, the total value is isolated in the Watch panel.

Figure 5.20: The Watch panel displays the variable total with value of 2.

98	 Chapter 5 ■ Debugging

the list grows to include each variable that executes. As the debugger steps
over each line of code, you can better focus on the state of total by referring
to the Watch panel.

The Debug Console

As you debug a program, you can try potential fixes for bugs within the Debug
Console (see Figure 5.21) rather than modifying your code and restarting. The
Debug Console enables you to try code in the context of the program’s current
state without stopping the debugger. You can try different scenarios within the
Debug Console and copy your fix into the program while the debugger is paused.

The Debug Console provides the Python Read-Eval-Print-Loop (REPL) in the
editor. The Debug Console lets you access and modify all the program’s var-
iables, call functions, evaluate expressions, and otherwise run whatever code
you like using the program’s current state. Anything done in the console affects
the program’s current state. Furthermore, the Debug Console input supports
syntax coloring, indentation, auto closing of quotes, and other language features
of the mode for the active editor.

You can access the Debug Console in these three ways:

■■ Run view: Click the Debug Console icon (see Figure 5.22).

Figure 5.22: The Debug Console icon displays at the top of the Run view.

Figure 5.21: The Debug Console.

	 Chapter 5 ■ Debugging	 99

■■ Keyboard shortcut: Press Cmd/Ctrl+Shift+Y.

■■ Command Palette: Click View: Debug Console.

The Debug Console shows suggestions as you type. Once you press Enter,
the expression is evaluated. To enter multiple lines, press Shift+Enter between
the lines.

Within the Debug Console, you can call functions directly and evaluate the
results. If you call a function that has breakpoints, you can step through the
function code. Once you exit the function, you’re still in the same program state
as before. You can also alter variables and run code that’s not in the program
as well using the Debug Console.

Try It Out: In the editor, open the Fibonacci_generator.py file. The
Fibonacci_generator.py file contains a program that generates a list of Fibo-
nacci numbers. Fibonacci numbers form a sequence in which the next number
in the sequence is the sum of the previous two numbers in the sequence (e.g.,
1, 1, 2, 3, 5, 8, 13, 21). When the program starts, the user is prompted to input
the total amount of numbers in which the program should generate. For the
purpose of demonstrating the Debug Console, an intentional bug is added to
the program. Follow these instructions to use the Debug Console to fix the bug:

1.	 Run the program in the terminal, and when prompted, enter 1 as the
number of Fibonacci numbers to generate. The program runs successfully
and returns [1].

2.	 Run the program again in the terminal, and when prompted, enter 2 as
the number of Fibonacci numbers to generate. The program runs success-
fully and returns [1, 2].

3.	 Run the program once more in the terminal, and when prompted, enter
3 as the number of Fibonacci numbers to generate. This time when the
program runs, it stalls. On your keyboard, press Ctrl+C to quit the pro-
gram. After the quitting the program, an error appears in the terminal:

^CTraceback (most recent call last):
 File "/Users/aspeight/Desktop/debugging/car.py", line 18, in
<module>
 print(gen_fib())
 File "/Users/aspeight/Desktop/debugging/car.py", line 14, in
gen_fib
 i == 1
KeyboardInterrupt

It would appear that there’s a problem with i == 1 in the elif statement
for when count > 2. You can assume that this is where the bug is in the
program.

4.	 Set a breakpoint at i == 1 and start the debugger. When prompted, enter 3.

100	 Chapter 5 ■ Debugging

5.	 After the debugger pauses at the breakpoint, look at the Variables panel
to confirm whether the variables reflect the appropriate values (see
Figure 5.23).

6.	 Step over the final line in the while loop and notice that the loop starts
another iteration despite that the requested number of Fibonacci numbers
has already been generated. As you continue to step over the while loop,
the program generates the same Fibonacci number, and the while loop
never breaks (see Figure 5.24). The program has an infinite loop.

The while loop should break once the value assigned to i is less than
count – 1. As the code is written, the value for i is never less than count –
1 since i never increments. You can try a fix in the Debug Console.

7.	 Start the debugger and open the Debug Console.

8.	 After the debugger stops at the breakpoint, enter i += 1 to increment the
value for i.

Figure 5.24: The fib variable has a repeating 2 in the Fibonacci sequence.

Figure 5.23: The Variables panel reflects the current variables for the first three numbers
in the Fibonacci sequence. The current value for count and i are displayed as well. All
variable values are correct.

	 Chapter 5 ■ Debugging	 101

9.	 In the Variables panel, the value for i changes from 1 to 2. Now, when
you continue the debugger, the remainder of the code executes and only
three Fibonacci numbers are generated.

10.	 In the program, change i == 1 to i += 1 and verify that the program
works as expected.

Launch Configurations

When it comes to debugging, there’s no one-size-fits-all method with regard
to debugging modes. It may be necessary to sometimes debug a program with
different initial conditions, in a different folder, with different command-line
arguments, and so on. The launch configurations let you configure how dif-
ferent debug sessions will run and saves those configurations persistently in
the launch.json file. The launch.json file is stored in a .vscode folder in the
project root folder and can also be accessed in the user or workspace settings.
To debug, at least one configuration is required in launch.json.

To create a launch.json file, in the Run view click Create A launch.json
File. Alternatively, you could create a launch.json file from the Run menu by
selecting Run ➪ Open Configurations.

Visual Studio Code opens the configuration menu from the Command Palette,
which prompts you to choose a default configuration as the starter template for
the new configuration (see Figure 5.25).

The Python extension provides the following default configurations:

■■ Python file—Debug the currently active Python file.

■■ Module—Debug a Python module by invoking it with -m.

■■ Remote Attach—Provide a host name and port number for the debug
server to listen on.

Figure 5.25: A list of debug configurations appears when you create a new launch.json file.

102	 Chapter 5 ■ Debugging

■■ Attach using Process ID—Attach the debugger to a Python process while
running a Python script launched outside Visual Studio Code that’s not
in debug mode. The process ID is needed to attach to the process.

The extension also provides three default configurations for web apps:

■■ Django

■■ Flask

■■ Pyramid

For more information on the debugging a Django application, refer to the
Django tutorial at code.visualstudio.com/docs/python/tutorial-django#_
explore-the-debugger. To learn more about debugging a Flask application,
refer to the Flask tutorial at code.visualstudio.com/docs/python/tutorial-
flask#_run-the-app-in-the-debugger.

After the starter template is selected, the launch.json file is added to the
.vscode folder and is opened in the editor (see Figure 5.26).

When editing the launch.json file, IntelliSense suggests (Ctrl+spacebar) a list
of available attributes. You could also use hover help for all attributes within
the file. Because attributes may differ across languages, use hover help to learn
more about the attribute.

The launch.json file can contain any number of configurations. To add a
configuration, click Add Configuration from either the Run menu or within the
launch.json editor (see Figure 5.27).

Figure 5.26: The launch.json file uses the Python configuration for the new launch.json
file. The launch.json file is also saved to the .vscode folder of the project.

http://code.visualstudio.com/docs/python/tutorial-django#_explore-the-debugger
http://code.visualstudio.com/docs/python/tutorial-django#_explore-the-debugger
http://code.visualstudio.com/docs/python/tutorial-flask#_run-the-app-in-the-debugger
http://code.visualstudio.com/docs/python/tutorial-flask#_run-the-app-in-the-debugger

	 Chapter 5 ■ Debugging	 103

The core settings available for the launch.json file are provided here:

■■ name—Provides the name for the debug configuration that appears in the
Visual Studio Code drop-down list.

■■ type—Identifies the type of debugger to use; leave this set to python for
Python code.

■■ request—Specifies the mode in which to start debugging:

■■ launch: Starts the debugger on the file specified in the program.

■■ attach: Attaches the debugger to an already running process on a
remote server that you cannot restart at will. You need the same
source code file locally that is specified in the program.

■■ program—Provides the fully qualified path to the Python program’s entry
module (startup file). The value ${file}, often used in default configu-
rations, uses the currently active file in the editor. By specifying the startup
file, you can always be sure of launching your program with the same
entry point regardless of which files are open.

■■ python—Full path that points to the Python interpreter to be used for
debugging. If not specified, this setting defaults to the interpreter identi-
fied in the python.pythonPath setting, which is equivalent to using the
value ${config:python.pythonPath}. To use a different interpreter, specify
its path instead in the python property of a debug configuration.

■■ args—Specifies arguments to pass to the program. Each element of the
argument string that’s separated by a space should be contained within
quotes.

■■ cwd—Specifies the current working directory for the debugger, which is
the base folder for any relative paths used in code. If omitted, the current
working directory defaults to ${workspaceFolder}, which is the folder
open in the editor.

Alternatively, you can use a custom environment variable that’s defined on
each platform to contain the full path to the Python interpreter to use so that
no additional folder paths are needed.

Additional configurations are available at code.visualstudio.com/docs/
python/debugging#_set-configuration-options. There are also addi-
tional attributes available that are not specific to Python, which can be set in

Figure 5.27: The Add Configuration button displays at the bottom of the launch.json
editor. Click the button to add a configuration.

http://code.visualstudio.com/docs/python/debugging#_set-configuration-options
http://code.visualstudio.com/docs/python/debugging#_set-configuration-options

104	 Chapter 5 ■ Debugging

launch.json. To learn more, refer to code.visualstudio.com/docs/editor/
debugging#_launchjson-attributes.

Summary

In this chapter, you’ve learned how to do the following:

■■ To access the Run view, either click the Run icon in the Activity Bar or use
the keyboard shortcut Cmd+Shift+D/Ctrl+Shift+D.

■■ A debug configuration must be selected to start a debug session.

■■ The Run menu provides the most common debugging commands.
Additional commands are accessible in the Run view or Command Palette.

■■ The Debug toolbar provides quick access to the following commands for
debugging: Continue, Step Over, Step Into, Step Out, Restart, and Stop.

■■ The Variables panel updates as variables are defined, and its values are
assigned when the program runs.

■■ Variables can be watched in the Watch panel to provide better focus on a
variable while the program runs.

■■ Setting a breakpoint causes the debugger to pause and highlights the next
line of code to be executed.

■■ The Call Stack panel shows the whole chain of function calls, referred to
as frames, leading up to the current point of execution. Selecting a frame
goes to another point in the stack and enables you to examine the vari-
ables at that scope.

■■ The Debug Console enables you to try code in the context of the program’s
current state without stopping the debugger.

■■ Expressions can be entered and evaluated in the Debug Console during
a debug session.

■■ Breakpoints can be set to trigger based on a condition. The editor supports
expression conditions, hit counts, and logpoints.

■■ Custom debug configurations are created in a launch.json file. Once a
debug configuration is created and saved, you can reuse it in future debug
sessions.

At this stage, you are able to debug Python programs with the Visual Studio
Code debugger.

http://code.visualstudio.com/docs/editor/debugging#_launchjson-attributes
http://code.visualstudio.com/docs/editor/debugging#_launchjson-attributes

C H A P T E R

105

6

Visual Studio Code and the Python extension provide a great interface for
testing within the Test Explorer view. You can use Visual Studio Code to work
with unit tests written in unittest, pytest, and nose. This chapter walks through
unit testing for unittest and pytest with a simple example from the Python
Koans repository.

	 N OT E     Although the editor supports nose, the framework is in maintenance mode.
Therefore, only unittest and pytest are explored in this chapter.

The exercises within this chapter are completed within the Triangles folder. The
Triangles folder contains two subfolders: unittest and pytest. Each subfolder
contains code and a test file for the respective framework. Before proceeding
with the exercises, open the subfolder for the preferred framework in Visual
Studio Code and activate a virtual or conda environment for the workspace.

Enable and Discover Tests

Unit testing in the Python extension is disabled by default. You must enable
a test framework to run unit tests, and only a single test framework can be
enabled at a time. (To switch frameworks, disable the current framework and
enable the new one.)

Unit Testing

106	 Chapter 6 ■ Unit Testing

To enable a test framework, complete the following:

1.	 Run the command Python: Configure Tests.

2.	 Select the framework.

3.	 Select the directory that contains the test.

4.	 Select the pattern to identify test files.

	 N OT E     pytest must be installed before the framework can be enabled. The
command to install pytest is pip install pytest.

Upon opening a project, if Visual Studio Code discovers potential tests,
the editor prompts by default to configure a test framework. This is useful
for a collaborator that has cloned the project and opens for the first time in
Visual Studio Code. You could change this behavior in settings by setting
python.testing.promptToConfigure to false.

Given that unittest is built into the standard Python framework, there is no
further installation that needs to occur before using the framework. However,
should you select to use pytest, Visual Studio Code prompts you to install the
framework if the framework is not already installed. The prompt displays after
the framework is enabled. If pytest is located outside the current environment,
within the settings set python.testing.pytestPath to the path to pytest. The
default value is pytest.

	 N OT E     The pytest framework can be further configured by modifying the argu-
ments within the settings for python.testing.pytestArgs. For a complete list of
available arguments, refer to docs.pytest.org/en/latest/customize
.html#command-line-options-and-configuration-file-settings.

The structure of the project has a significant impact on how tests are discov-
ered. For example, if your project structure organizes all tests into a singular
folder and the code in a separate folder, specifying an optional working directory
for tests would be optimal. The python.testing.cwd setting enables you to
specify such an optional working directory for tests. The default for the python
.testing.cwd setting is null. To specify a directory, set python.testing.cwd
in the settings to the folder that contains the code files (e.g., if all code files are
within a src folder, cwd would be set to src).

	 N OT E     For the unittest framework, the python.testing.unitTestArgs
argument -s . specifies the starting directory for discovering tests. If you have tests
in a test folder, change the python.testing.unitTestArgs argument within
the settings to -s test.

http://docs.pytest.org/en/latest/customize.html#command-line-options-and-configuration-file-settings
http://docs.pytest.org/en/latest/customize.html#command-line-options-and-configuration-file-settings

	 Chapter 6 ■ Unit Testing	 107

Discovery patterns are dependent on the selected framework. The default
behavior for unittest and pytest follow:

■■ unittest—Looks for any Python file with test in the name in the top-level
project folder. All test files must be importable modules or packages. To
specify a discovery pattern for a specific naming convention (e.g., append-
ing _test to every test filename), change the pattern within settings for
python.testing.unitTestArgs. The default argument is -p *test*.py.

■■ pytest—Looks for any Python (.py) file whose name begins with test_
or ends with _test, located anywhere within the current folder and all
subfolders.

	 N OT E     Any subfolder with test files need to be structured as a module and include
an an empty __init__.py file. Otherwise, the tests are undiscoverable.

When a test is enabled, the python.testing.unittestEnabled or python.
testing.pyttestEnabled setting is set to true. The advantage of enabling a
framework using the command Python: Configure Tests is that when a frame-
work is enabled, the command automatically disables any other framework.

Once a framework is enabled, Visual Studio Code begins test discovery. Test
discovery could also be triggered manually with the command Python: Discover
Tests. If tests are found, the Status Bar shows “Run Tests” (see Figure 6.1). If
discovery fails, the Status Bar shows “Test discovery failed.”

	 N OT E     By default, test discovery is performed automatically whenever a test
file is saved. To modify this behavior, within the settings set python.testing.
autoTestDiscoverOnSaveEnabled to false.

Try It Out: Enable either unittest or pytest and execute a test discovery for
either test_unittest.py or test_pytest.

unittest:

1.	 Run the command Python: Configure Tests.

Figure 6.1: When a test is discovered, the Status Bar displays a lightning icon and the phrase
“Run Tests.”

108	 Chapter 6 ■ Unit Testing

2.	 Select the unittest framework (see Figure 6.2).

3.	 Select the option . Root Directory for the directory that contains the test
(see Figure 6.3).

4.	 Select the test_*.py pattern to identify test files (see Figure 6.4).

5.	 Verify whether the Status Bar says “Run Tests.”

pytest:

1.	 Run the command Python: Configure Tests.

2.	 Select the pytest framework (see Figure 6.5).

Figure 6.3: The . Root Directory option is selected as the directory that contains the test.

Figure 6.2: The unittest framework is selected as the framework.

Figure 6.4: The pattern test_*.py is selected to identify test files.

Figure 6.5: The pytest framework is selected as the framework.

	 Chapter 6 ■ Unit Testing	 109

3.	 Select . Root Directory for the directory that contains the test (see Figure 6.6).

4.	 Select the test_*.py pattern to identify test files (see Figure 6.7).

5.	 Verify whether the Status Bar say “Run Tests.”

Run Tests

The Test Explorer view (see Figure 6.8) provides a convenient way for you to
visualize, navigate, and run tests. The view becomes activated only after a test
is discovered as a result of test discovery. Once activated, a Test Explorer icon
is added to the Activity Bar.

	 N OT E     If the Test Explorer icon is not visible, right-click the Activity Bar and select
Test.

The Test Explorer contains the following tasks at the top of the view:

■■ Run All Tests (A)—Runs all discovered tests

■■ Debug All Tests (B)—Debugs all discovered tests

Figure 6.6: The option . Root Directory is selected as the directory that contains the test.

Figure 6.7: The pattern test_*.py is selected to identify test files.

Figure 6.8: The Test Explorer view.

110	 Chapter 6 ■ Unit Testing

■■ Discover Tests (C)—Triggers test discovery

■■ Show Test Output (D)—Opens the Output panel to view test output

■■ Collapse All (E)—Collapses all discovered tests within the Test Explorer

The Run Test and Debug tasks also appear inline with each file, class, and test.
You can run a test in Visual Studio Code in various ways:

■■ Status Bar—Click Run Tests (see Figure 6.9) and select one of the com-
mands (e.g., Run All Tests or Run Test Method).

■■ Explorer view—Right-click a test file and select Run All Tests.

■■ Editor—Click Run Test above the test case (see Figure 6.10).

■■ Test Explorer View

■■ Run all tests—Click the Play button at the top of the Test Explorer
view.

■■ Run a specific group of tests or a single test—Select the file, class, or
test, and then click the Play button to the right of the item.

■■ Command Palette—Select any of the run test commands.

COMMAND DESCRIPTION

Run All Tests Runs all tests in the workspace and its subfolders.

Run Current Test File Runs the test in the file that’s currently active in the
editor.

Run Failed Tests Reruns any tests that failed in a previous test run. Runs
all tests if no tests have yet been run.

Figure 6.9: The list of commands that appear after clicking Run Tests in the Status Bar.

Figure 6.10: “Run Test” displays above the test case in the editor.

Continues

	 Chapter 6 ■ Unit Testing	 111

COMMAND DESCRIPTION

Run Test File Prompts for a specific test filename; then runs the test in
that file.

Run Test Method Prompts for the name of a test to run, providing auto-
completion for test names.

Try It Out: Run all tests for the framework you enabled in the prior exercise.
An intentional fail is included in the example to demonstrate a failed test.

Visual Studio Code displays test results in the following locations:

■■ Test Explorer view—Results display as either pass (green circle with a
checkmark) or fail (red circle with an X; see Figure 6.11) next to the file,
class, or test.

■■ Output panel—The Python Test Log provides a complete log of the test
results (including any exceptions thrown anywhere in the unit code or
the test code). To access the panel, select View ➪ Output to show the
Output panel (see Figure 6.12); then click Python Test Log from the drop-
down menu on the right. Alternatively, click Show Test Output in the Test
Explorer view.

Figure 6.11: The Test Explorer view shows that the test failed. The first and third test
cases passed, and the second test case failed.

Figure 6.12: The Output panel shows which test failed.

(continues)

112	 Chapter 6 ■ Unit Testing

	 N OT E     For the unittest framework, the python.testing.unitTestArgs -v
argument sets the default output verbosity. If you’d prefer a simpler output, remove
the argument -v.

■■ Editor—Above each test case, either a check mark (pass) or triangle with
an exclamation mark (fail) displays. See Figure 6.13.

■■ Problems panel—If using pytest, failed tests display in the Problems
panel (see Figure 6.14). Double-click an issue to navigate directly to the
test.

Try It Out: View the test results from the previous exercise. Although you
might spot the error right away, you’ll debug the assertion in the next section.

Figure 6.13: The first test case displays a triangle with an exclamation mark indicating
that the test failed. The second test case displays a check mark indicating that the test
passed.

Figure 6.14: The Problems panel shows the failed test for a test that uses the pytest
framework.

	 Chapter 6 ■ Unit Testing	 113

unittest:
Notice that a test failed within the def test_isosceles_triangle (self)

case for self.assertEqual('isosceles', triangle(4, 5, 3)).

pytest:
Notice that a test failed within the def test_isosceles_triangle case for

assert triangle(4, 5, 3) == 'isosceles'.

Debug Tests

Debugging tests include the same functionality and commands used to debug
Python files for test files. Debugging is often necessary if you suspect that your
test has a bug. A breakpoint can be placed in the test file wherever desired prior
to running the debugger. In addition to the Command Palette and Status Bar, you
can start the debugger either within the editor or within the Test Explorer view.

■■ Debugger—Click Debug Test above the test case (see Figure 6.17).

■■ Test Explorer View—Click the bug icon for the test.

Figure 6.15: A test failed for the self.assertEqual case.

Figure 6.16: A test failed for the test_isosceles_triangle case.

Figure 6.17: “Debug Test” displays above the test case in the editor.

114	 Chapter 6 ■ Unit Testing

	 N OT E     To specify a port for the unittest framework, set python.testing.
debugPort within the settings to the preferred port. The default port is 3000.

Try It Out: Set a breakpoint in the test file for the test that is failing and run
the debugger for the test. Though the bug may be obvious, the purpose is to
use the debugger to illustrate the debugging process.

unittest:

1.	 Set a breakpoint for self.assertEqual('isosceles', triangle(4, 5,
3)).

2.	 Click Debug Test in the editor to debug the test.

3.	 After the debugger pauses at the breakpoint, click Continue.

4.	 In the Debug Console, view the AssertionError (see Figure 6.18).

5.	 In test_unittest.py, change self.assertEqual('isosceles ',
triangle(4, 5, 3)) to self.assertEqual('isosceles', triangle
(4, 4, 3) and save the file.

6.	 Run all tests. Each test within test_unittest.py should pass.

pytest:

1.	 Set a breakpoint for assert triangle(4, 5, 3) == 'isosceles'.

2.	 Click the inline Debug icon in the Test Explorer to debug the test.

3.	 After the debugger pauses at the breakpoint, click Continue.

4.	 In the Debug Console, view the “short test summary info” message
(see Figure 6.19).

Figure 6.18: The Debug Console displays AssertionError: ' isosceles '
!= ' scalene '.

	 Chapter 6 ■ Unit Testing	 115

5.	 In test_unittest.py, modify assert triangle(4, 5, 3) == 'isosceles'
to assert triangle(4, 4, 3) == 'isosceles'

6.	 Run all tests. Each test within test_unittest.py should pass.

Summary

In this chapter, you learned about the following:

■■ The Python extension supports three frameworks: unittest, pytest, and
nose.

■■ Each test framework has its own unique structure and naming
conventions.

■■ A test framework must first be configured with either the command Python:
Configure Tests or within settings.json before running a test.

■■ Only one test framework can be enabled at a time. Using the Python:
Configure Tests command automatically disables a framework when
another is enabled.

■■ Test discovery occurs either after a framework is configured or by man-
ually executing discovery with either the command Python: Discover
Tests or the Discover Tests icon in the Test Explorer view.

■■ The Test Explorer helps visualize, navigate, and run tests.

■■ Test results display in the Test Explorer, the editor, the Output panel, and
in the Problems panel (for pytest).

■■ All debugger functionality and commands are available to aid in debug-
ging a test.

■■ Test configuration settings are available for both general settings and by
framework.

At this stage, you are able to conduct unit testing for Python in Visual Studio
Code.

Figure 6.19: The Debug Console displays AssertionError: ' isosceles '
!= ' scalene '.

C H A P T E R

117

7

A Jupyter Notebook provides a shell for performing computation and data analysis
and is often used by data scientists and others in scientific fields. The notebook
consists of cells, each of which is a multiline text input field. The output of the
cell can be HTML, rich text, values, and charts, as well as tables. The Python
extension for Visual Studio Code provides Jupyter Notebook support. You
can open, create, and modify .ipynb files directly in the editor. Within Visual
Studio Code, you can take advantage of all its editing and debugging features
that aren’t typically available for notebooks in a browser.

This chapter explores Jupyter Notebook features using data provided
by Kaggle for the World Happiness Report 2019. The report ranks
155 countries by their happiness levels based on happiness scores and rank-
ings data from the Gallup World Poll. To learn more about the data set, visit
www.kaggle.com/unsdsn/world-happiness. The files for the exercises in this
chapter are in the world_happiness_report folder.

	 N OT E     This chapter assumes that you have familiarity and experience with creating
and managing a Jupyter Notebook. For more information on Jupyter Notebook, visit
jupyter.org.

Jupyter Notebook

http://www.kaggle.com/unsdsn/world-happiness
http://jupyter.org

118	 Chapter 7 ■ Jupyter Notebook

Before proceeding with the exercises, open the folder and activate a virtual
or Conda environment. If using a virtual environment, install the following
packages that are used to create visualizations:

pip install pandas
pip install matplotlib.pylot
pip install seaborn

	 N OT E     If you are using a Conda environment, no further installation is required. The
Anaconda distribution includes matplotlib and seaborn.

Creating and Opening a Jupyter Notebook

The Python: Create New Blank Jupyter Notebook command creates a new
Jupyter Notebook. Alternatively, creating a new .ipynb file in the File Explorer
also creates a new notebook. To open an existing notebook, open it in the same
manner as you would for any file. New and existing notebooks are opened in
the Jupyter Notebook Editor interface (see Figure 7.1).

A.	Jupyter Notebook commands—Commands for executing cells in the
notebook.

B.	 Status—Displays whether the notebook is Trusted or Not Trusted.

C.	 Server—Indicates whether the notebook is run locally or on an external
server. Connecting to an external server is discussed in the section
“Connecting to a Remote Server.”

Figure 7.1: The Notebook Editor interface

	 Chapter 7 ■ Jupyter Notebook	 119

D.	Python Interpreter—The selected Python interpreter for the notebook.

E.	 Editor—Area where notebook cells are created, modified, arranged,
and run.

Regarding status, Visual Studio Code classifies a Jupyter Notebook as either
Trusted or Not Trusted. This classification is a security measure to prevent you
from opening a Jupyter Notebook that may contain malicious source code.
Notebooks created locally on your computer in Visual Studio Code default to
Trusted. Otherwise, the notebook is considered Not Trusted. The status of the
notebook displays in the Jupyter Notebook Editor toolbar (see Figure 7.1, B).

When a Not Trusted notebook is opened, Visual Studio Code displays a noti-
fication requesting whether the notebook should be trusted (see Figure 7.2). You
can select to either Trust, Do Not Trust, or Trust All Notebooks.

If the notebook is Not Trusted, Visual Studio Code does not render Markdown
cells or display the output of cells within the notebook. Instead, the notebook
is opened in read-only mode—only the source of Markdown and code cells
are shown (see Figure 7.3). The toolbar within the Jupyter Notebook Editor is
disabled, and you cannot edit the notebook.

Figure 7.2: A notification displays to select whether to Trust, Do Not Trust, or Trust
All Notebooks.

Figure 7.3: A Not Trusted notebook is opened in read-only mode in the Jupyter Notebook
Editor interface.

120	 Chapter 7 ■ Jupyter Notebook

	 N OT E     Selecting Trust All Notebooks navigates the editor to Settings. Once in
Settings, you can confirm that all notebooks opened in Visual Studio Code are Trusted.
Going forward, the prompt that requests whether to trust the notebook no longer
appears for any .ipynb file when opened in the editor.

You are responsible for determining whether the file is safe. Visual Studio
Code does not validate trustworthiness or identify potential malicious code.
Rather, the editor only prevents you from running a Not Trusted notebook until
you explicitly set the notebook to Trusted.

To change the status from Not Trusted to Trust, click the Not Trusted status
in the toolbar. Selecting the status launches the trust notification prompt. When
prompted, select Trust.

Try It Out: In the editor, open the world_happiness_report.ipynb file. When
prompted, click Trust. The notebook is necessary for completing the exercises
in this chapter.

Code Cell Modes

The editor visualizes the state of a code cell to the left of the cell. When a cell is
in edit mode, the vertical bar has diagonal lines (see Figure 7.4). When a cell is
in command mode, the vertical bar is solid (see Figure 7.5).

You can switch between modes by selecting the vertical bar to the left of the
cell. Alternatively, you can use the keyboard shortcut Esc to switch modes,
assuming that the cursor is in the code cell editor.

Figure 7.4: A cell in Edit mode is indicated by a vertical bar with diagonal lines.

Figure 7.5: A cell in Command mode is indicated by a solid vertical bar.

	 Chapter 7 ■ Jupyter Notebook	 121

Adding Cells

Both code and Markdown cells can be added to the notebook. A code cell is
the default cell type. To change to Markdown, click the Change To Markdown
icon in the cell toolbar (see Figure 7.6). Once the cell is switched to Markdown,
a pair of curly braces appears at the top of the cell. Selecting the curly braces
changes the cell back to code input (see Figure 7.7).

The cell type could also be switched when a cell is in command mode. The
M key switches the type to Markdown, whereas the Y key switches to code.

	 N OT E     Line numbering for a cell is enabled by pressing the keyboard shortcut L
when the cell is in command mode.

New cells are added below an existing cell. There are four ways to add a
new cell:

■■ Press the keyboard shortcut Alt+Enter.

■■ In the Command Palette, click Jupyter: Add Empty Cell to Notebook File.

■■ Click the + icon to the left of the cell (see Figure 7.8).

Figure 7.6: Click the Change To Markdown icon in the cell toolbar to switch the cell type to
Markdown.

Figure 7.7: Select the curly braces icon in the cell toolbar to switch the cell type to code.

122	 Chapter 7 ■ Jupyter Notebook

■■ Click the + icon in the toolbar (see Figure 7.9).

To save your changes, click the Save icon in the toolbar or press the keyboard
shortcut Cmd+S/Ctrl+S (see Figure 7.10).

Try It Out: At the bottom of the world_happiness_report.ipynb notebook
(see Figure 7.11), add a new Markdown cell followed by a code cell.

Editing Cells

To edit an existing cell, place the cursor in the cell. Placing the cursor in the cell
changes the cell to edit mode. Once the cell is in edit mode, enter either code
or Markdown into the cell. The Jupyter Notebook Editor has the same editing

Figure 7.8: Click the + icon to the left of a cell to add a new cell.

Figure 7.9: Click the + icon in the toolbar to add a new cell.

Figure 7.10: Click the Save icon in the toolbar to save a notebook.

Figure 7.11: A Markdown and code cell has been added to the world_happiness_report
.ipynb notebook.

	 Chapter 7 ■ Jupyter Notebook	 123

features discussed in Chapter 3, “Editing Code,” such as code completion, def-
initions, declarations, and formatting.

Try It Out: In world_happiness_report.ipynb, edit the previously added
Markdown cell to reflect the following:

Hello World!

To rearrange cells in a Notebook, use the up and down arrows to the left of
the cell (see Figure 7.12). The up arrow moves the cell up, and the down arrow
moves the cell down. Cells can be rearranged regardless of the mode. However,
if the cell is not selected, the up and down arrows are not visible. Hover the
mouse to the left of the unselected cell to access the arrows.

Try It Out: In world_happiness_report.ipynb, reverse the order of the newly
created Markdown and code cells (see Figure 7.13).

To delete a code cell, hover the mouse over the cell and click the Delete A
Cell icon, indicated by a trash icon (see Figure 7.14). Alternatively, the dd key-
board combination also deletes a cell. Running the command Jupyter: Delete
All Notebook Editor Cells deletes all cells within the notebook.

Try It Out: In world_happiness_report.ipynb, delete the newly added Mark-
down and code cells. The notebook should reflect the initial state of the notebook.

Figure 7.12: The up and down arrows are used to rearrange code cells.

Figure 7.13: The new code cell displays above the new Markdown cell.

Figure 7.14: Click the Delete cell icon to delete a cell.

124	 Chapter 7 ■ Jupyter Notebook

Running a Cell

The notebook kernel (computational engine) serves as its runtime environment.
State accumulates in the kernel so long as the kernel is running. Not all cells
run at once; rather, cells run in sequence. A [*] next to a cell indicates that the
cell hasn’t been run yet and that the kernel can be interrupted. The output for
executed cells display below the cell.

Running a Single Cell
Running an individual cell requires that the cell is in command mode. To run
a single cell, select the Run Cell command indicated by a green play button in
the code cell (see Figure 7.15). You could also run a single cell by running the
command Jupyter: Run Selected Notebook Cell.

Code cells that occur later in a notebook likely depend on variables and
other state generated by previous cells. Thus, testing or running a single cell
may require running all the previous cells. Otherwise, you’ll produce an error.

Running All Code Cells
All cells within a Notebook can be run with the Run All Cells icon (see Figure 7.16,
A) in the toolbar. You could also run all cells by running the command Jupyter:
Run All Notebook Cells.

Figure 7.15: To run a single cell, select the Run Cell command within the code cell.

Figure 7.16: The Run All Cells icon in the toolbar

	 Chapter 7 ■ Jupyter Notebook	 125

Try It Out: In the Notebook Editor interface, run all cells in the
world_happiness_report.ipynb notebook (see Figure 7.17).

Ideally, you’d want to clear all output prior to running all cells to ensure
that you see the latest output. Thus, you can clear the output with the Clear All
Output icon (see Figure 7.18).

Running Cells Above and Below a Code Cell
To run cells above a cell, change the cell to command mode and click Run Cells
Above (see Figure 7.19, A) in the toolbar. Likewise, you could also run a cell and
in addition the cells below it. To do so, change the cell to command mode and
click Run Cell And Below (refer to Figure 7.19, B) in the toolbar.

Figure 7.17: The output from running the world_happiness_report.ipynb notebook

Figure 7.18: The Clear All Output icon in the toolbar

Figure 7.19: The Run Cells Above (A) and Run Cell And Below (B) icons in the toolbar

126	 Chapter 7 ■ Jupyter Notebook

Additional Commands
As mentioned, [*] next to a cell indicates that the kernel is busy and can be inter-
rupted. Stopping the kernel is useful in scenarios such as a computation that’s
taking a while to complete or stopping the execution after identifying an error.
Stopping the kernel doesn’t remove the variables stored in memory. Click the
Interrupt Jupyter Kernel icon to stop the kernel (see Figure 7.20).

State can be restarted with the Restart Jupyter Kernel icon (see Figure 7.21).
Restarting the kernel clears old data and restarts a computation from scratch.
All objects stored in memory are cleared, and your code starts from the top of
the file.

Viewing Variables and Data

Within the editor, you can view and inspect the current state of all variables
active in the kernel in the Variables panel. This panel is useful for keeping track
of variables such as lists, NumPy arrays, Pandas data frames, and their data.
To access the panel, click the Show Variables Active In Jupyter Kernel icon in
the top toolbar (see Figure 7.22).

Figure 7.20: The Interrupt Jupyter Kernel icon in the toolbar

Figure 7.21: The Restart Jupyter Kernel icon in the toolbar

Figure 7.22: The Show Variables Active In Jupyter Kernel icon opens the Variables panel above
the output cells in the Interactive window.

	 Chapter 7 ■ Jupyter Notebook	 127

The state of the variables updates as cells execute. The following variable
information is provided in the table:

■■ Name—Name of the variable

■■ Type—Data type of the value assigned to the variable

■■ Size—Size of the variable in memory

■■ Value—Value assigned to the variable

Some variables can be further analyzed by filtering with the Data Viewer.
The first column in the Variables table indicates whether the variable can be
viewed in the Data Viewer. An icon, Show Variable In Data Viewer, appears
(see Figure 7.23). When selected, the Data Viewer opens in a tab labeled Data
Viewer with the variable name appended.

Within the Data Viewer, a table is provided that you can filter by clicking
Filter Rows (see Figure 7.24). You can also sort the table by selecting one of the
table headings.

Try It Out: Run all cells within world_happiness_report.ipynb and use the
Data Viewer to locate which country ranked #58 in happiness:

Figure 7.23: The Show Variable In Data Viewer opens the Data Viewer.

Figure 7.24: In the Data Viewer, click Filter Rows to filter the rows within the table.

128	 Chapter 7 ■ Jupyter Notebook

1.	 Run all cells in the world-happiness.py file.

2.	 In the editor, click Show Variables Active In Jupyter Kernel.

3.	 In the Variables table, select the wh variable to open the variable in the
Data Viewer.

4.	 In the Data Viewer, click Filter Rows and filter the Overall Rank column
for the value 58 (see Figure 7.25).

The country ranked #58 is Japan.

Viewing Plots

Graphs and charts (referred to as plots) can be further analyzed in the Plot
Viewer. The Plot Viewer enables you to pan, zoom, and navigate plots. Plots can
export to PDF, SVG, and PNG formats for sharing. To access the Plot Viewer,
click the Expand Image icon (see Figure 7.26) at the top left of the plot or simply
double-click a plot. When selected, the Plot Viewer opens in a tab labeled Plot.

Figure 7.25: The Overall Rank column is filtered to 58.

GDP Per Captia Effect on Healthy Life Expectancy

H
ea

lth
y

Li
fe

 E
xp

ec
ta

nc
y

GDP Per Captia
0.00

1.0

0.8

0.6

0.4

0.2

0.0

0.25 0.50 0.75 1.00 1.25 1.50 1.75

Figure 7.26: The Expand image icon opens the plot in the Plot Viewer.

	 Chapter 7 ■ Jupyter Notebook	 129

As you select plots within the output, they’re added at the top of the viewer,
which provides easy navigation between the plots. At the top of the Plot Viewer
are the following icons and their respective function:

■■ Previous—View the previous plot in the notebook (see Figure 7.27, A).

■■ Next—View the next plot in the notebook (see Figure 7.27, B).

■■ Pan—Move the chart around in the Plot Viewer (see Figure 7.27, C).

■■ Zoom in—Zoom in on the plot (see Figure 7.27, D).

■■ Zoom out—Zoom out on the plot (see Figure 7.27, E).

■■ Export to different formats—Export the plot to PDF, SVG, or PNG (see
Figure 7.27, F).

■■ Remove—Remove the plot from the Plot Viewer (see Figure 7.27, G).

	 N OT E     Plots within the Plot Viewer retain the state in which the plots are viewed.
Thus, if you reselect a plot from the notebook output to expand the image, a duplicate
of the plot is added to the list of plots in the Plot Viewer.

Try It Out: Open the Plot Viewer to view each chart within the world-
happiness.py output.

Debugging a Jupyter Notebook

Debugger functionality extends to debugging a Jupyter Notebook. Debugging
requires that the .ipynb file is converted to a .py file. The command Import
Jupyter Notebook loads an .ipynb file directly as .py. You could also export
an opened .ipynb file as a Python script. The latter option is introduced in the
section “Exporting a Notebook.” After the conversion completes, the #%% and
#%%[markdown] delimiters specify the cells within the notebook.

Above each cell is a CodeLens to either Run Cell, Run Below, or Debug Cell
(see Figure 7.28). Given that cells are in a Python file, you can set breakpoints
on lines of code as you would for any .py file. As is, Jupyter Notebook does
not have debugging capabilities, which makes this feature ideal for identifying
bugs in a notebook.

Figure 7.27: The Plot Viewer commands

130	 Chapter 7 ■ Jupyter Notebook

Starting the debugger opens the Python Interactive window. In addition, the
CodeLens above the cells in the Python file changes to Continue, Stop, and Step
Over (see Figure 7.29).

	 NOTE    To learn more about the Python Interactive window, visit code.visualstudio
.com/docs/python/jupyter-support-py.

Either the entire file or individual cells can be debugged. Run the command
Jupyter: Debug Current File in Python Interactive Window to debug the entire
file. To debug an individual cell within the file, click the Debug Cell CodeLens
above the respective cell. When a single cell is debugged, the debugger stops
after all the code in the cell is run. It doesn’t go to the next cell. Herein is an
important aspect of the kernel retaining the state, because you can run and
rerun and debug a single cell in the middle of a notebook if you’ve already run
the previous cells.

As you debug, refer to the Run view for full debugger capabilities. For
more information on how to debug in Visual Studio Code, review Chapter 5,
“Debugging.”

Connecting to a Remote Server

Oftentimes, in many situations, the notebook and the data it uses exist only on
a remote server. The data may be too large to manage locally, the computation
requirements may far exceed a single computer’s power, or the data is required
for various reasons (privacy, local law, etc.) to be hosted on the server exclusively.

Figure 7.28: The CodeLens to Run Cell, Run Below, or Debug Cell displays above the cell.

Figure 7.29: When debugging, the CodeLens above the cell displays the debug commands
Continue, Stop, and Step Over.

http://code.visualstudio.com/docs/python/jupyter-support-py
http://code.visualstudio.com/docs/python/jupyter-support-py

	 Chapter 7 ■ Jupyter Notebook	 131

To overcome this, you can offload the data processing to a remote server. Thus,
when the cells run, the cells are run on the remote rather than locally. You can
do everything with a remote server that you can locally.

To connect to a remote Jupyter server, follow these instructions:

1.	 From the Command Palette, run the command Jupyter: Specify Local Or
Remote Jupyter Server For Connections.

2.	 When prompted, click Existing: Specify The URI Of An Existing Server
(see Figure 7.30).

3.	 Next, provide the server’s URI (hostname) with the authentication token
included with a ?token= URL parameter (see Figure 7.31).

To locate the URL, first start the server in the integrated terminal with an
authentication token enabled. The URL with the token typically appears in the
terminal output. Alternatively, you could specify a username and password
after providing the URI.

Exporting a Notebook

Exporting a notebook converts the notebook into a browser-ready format (or
another document) so a consumer doesn’t need Jupyter directly. The editor can
export the notebook into the following formats:

■■ Python file (.py)

■■ PDF

■■ HTML file

Figure 7.30: Click Existing: Specify The URI Of An Existing Server
to connect to a remote server.

Figure 7.31: Enter the server’s URI and authentication token.

132	 Chapter 7 ■ Jupyter Notebook

To export a notebook, click the Export As icon within the toolbar (see
Figure 7.32).

When a file exports as a Python file, Visual Studio Code opens the new file
in the editor. The #%% and #%%[markdown] delimiters specify the cells within the
notebook. The #%% delimiter reflects a code cell, whereas #%%[markdown] reflects
a Markdown cell. Be sure to save the file given that Visual Studio Code does
not save the export. Exporting to a Python Script requires nbconvert, a tool
that enables conversion of a notebook to another format. To install the package,
run the command pip install nbconvert or conda install -c anaconda
nbconvert in the integrated terminal.

Exporting to PDF requires that TeX is installed. TeX is a rendering engine,
used by nbconvert. Installation of TeX is platform dependent:

■■ macOS—Download MacTeX from tug.org/mactex/

■■ Windows—Download MikTeX from miktex.org/download

■■ Linux—Download TeX Live from tug.org/texlive/

	 N OT E     For more information and further instructions for downloading and
installing TeX, view https://nbconvert.readthedocs.io/en/latest/
install.html#installing-tex.

Summary

In this chapter you learned the following:

■■ The Command Palette command Python: Create New Blank Jupyter
Notebook creates a new Jupyter Notebook. Alternatively, saving a file
with the extension .ipynb creates a new Jupyter Notebook.

■■ A Jupyter Notebook is classified as either Trusted or Not Trusted. By
default, a notebook created locally is Trusted. Otherwise, an external
notebook is classified as Not Trusted. Output cells and Markdown are not
rendered for a Not Trusted notebook.

■■ Editing features, such as code completion, definitions, declarations, and
formatting, are available for creating/modifying a Jupyter Notebook.

Figure 7.32: The Export As icon in the toolbar

http://tug.org/mactex/
http://miktex.org/download
http://tug.org/texlive/
https://nbconvert.readthedocs.io/en/latest/install.html#installing-tex
https://nbconvert.readthedocs.io/en/latest/install.html#installing-tex

	 Chapter 7 ■ Jupyter Notebook	 133

■■ The up and down arrows next to a cell enable you to reorder cells.

■■ Cells can be run in one of four ways: single cell, all code cells, above or
below a code cell, and by line.

■■ The Variables panel helps to keep track of variables and is updated as the
notebook cells are run.

■■ The Data Viewer provides full data for a variable and enables you to filter
and sort variables in a table.

■■ The Plot Viewer enables you to pan, zoom, and navigate plots.

■■ A Jupyter Notebook can be connected to a remote server by running the
Command Palette command Jupyter: Specify Local Or Remote Jupyter
Server For Connections.

■■ A Jupyter Notebook can be exported into three file formats: Python script,
PDF, and HTML file.

At this stage, you are able to create, modify, and debug a Jupyter Notebook.

C H A P T E R

135

8

GitHub is a platform that provides hosting for software development and
version control using Git. Ranked as the number-one collaboration tool in the
Stack Overflow Developer Survey 2020, GitHub is used by many developers
for maintaining repositories and collaborating with others. The platform pro-
vides an interface that mirrors Git commands that are used within the terminal.
Although you could maintain repositories within the GitHub interface, the
built-in source control features and GitHub Pull Requests and Issues extension
brings the same GitHub features and functionality inside Visual Studio Code.

This chapter explores how to use the extension in the editor. To complete
the exercises in this chapter, either create a GitHub account at github
.com or use an existing one. If you’re unfamiliar with GitHub, consider review-
ing the “Hello World” tutorial provided by GitHub at guides.github.com/
activities/hello-world/.

Getting Started

The project example used in this chapter is a currency converter created by Data
Flair that uses ExchangeRate-API to provide currency conversion rates for 160
currencies. The interface for the converter is created using Tkinter, Python’s
standard GUI package (see Figure 8.1).

Using Git and GitHub with Visual
Studio Code

http://www.github.com
http://www.github.com
http://guides.github.com/activities/hello-world/
http://guides.github.com/activities/hello-world/

136	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

The complete Python script is available in the Currency_Converter_Completed
folder. The currency_converter_completed.py and pull_request_template.md
files are referenced to complete the exercises in this project.

To get started, create a new folder called currency_converter and open it
in Visual Studio Code. After the folder is opened, create and activate a virtual
environment.

Next, install the requests package within the integrated terminal. This instal-
lation is necessary to make a call to ExchangeRate-API for the conversion.

install the Requests package
pip install requests

GitHub Pull Requests and Issues Extension

The GitHub Pull Requests and Issues extension enables you to work with GitHub
inside Visual Studio Code. With the extension, you can perform most GitHub
tasks within Visual Studio Code such as creating and cloning repositories,
pushing changes to the remote, and managing pull requests and issues. Access
to your GitHub account is provided by signing into GitHub via the extension.
Together, GitHub and Visual Studio Code sets up authentication, thus elimi-
nating the need for you to manually do so.

	 N OT E     To use Git features in Visual Studio Code, Git 2.0.0 or later must be installed.
To install or update Git, visit git-scm.com/download.

To sign into GitHub, click the Accounts icon at the bottom of the Activity
Bar (see Figure 8.2) and click Sign In To Use GitHub Pull Requests And Issues.

A new browser window opens for you to enter your GitHub credentials.
Upon successful sign-in, you’re prompted to authorize Visual Studio Code to
access GitHub. Click Continue to continue the sign-in process (see Figure 8.3).

Figure 8.1: The currency converter interface

http://git-scm.com/download

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 137

	 N OT E     If your GitHub account is linked to GitHub organizations, it’s likely that you
are given the option Single Sign-On To Your Organizations. If this occurs, there are
Authorize buttons for each organization. Click Authorize where applicable followed by
the Continue button.

After providing authorization, the Visual Studio Code window prompts
whether to allow the extension to open the URI (see Figure 8.4). Click Open to
complete the sign-in process.

Figure 8.2: The Accounts icon provides an option to sign into GitHub to use the GitHub Pull
Requests and Issues extension.

Figure 8.3: You are prompted to authorize Visual Studio Code to access GitHub within the
browser window.

Figure 8.4: Visual Studio Code asks whether it should allow the GitHub Pull Requests and Issues
extension to open the URI.

138	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

After completing the sign-in process, click the Accounts icon to view the
signed-in account (see Figure 8.5).

Try It Out: Install the GitHub Pull Requests and Issues extension and sign
in to your GitHub account.

Once you are signed into the GitHub Pull Requests and Issues extension,
certain installed Visual Studio Code extensions can access your GitHub account
information. Within the Accounts menu, select the signed-in user followed by
Manage Trusted Extensions to select which extensions should be allowed to
use your GitHub authentication.

The Manage Trusted Extensions menu lists all extensions that currently have
access to your GitHub authentication. In addition, the menu displays the last
time the extension used the GitHub account. See Figure 8.6.

To remove access for an extension, unselect the box next to the extension.

Try It Out: View the list of extensions allowed to access your GitHub authen-
tication. If necessary, uncheck the extensions in which you do not want to have
access to your GitHub authentication.

To sign out of the GitHub Pull Requests and Issues extension, click the Accounts
icon followed by the signed-in user and the menu option Sign Out.

Figure 8.5: Clicking the Accounts icon shows which GitHub account is signed in to the GitHub
Pull Requests and Issues extension.

Figure 8.6: The Manage Trusted Extensions menu lists all extensions that have access to the
GitHub authentication in addition to the last time the extension used the GitHub account.

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 139

Publish a Project to GitHub

Although you could create and publish a repository to GitHub via the command
line with the GitHub CLI, the GitHub Pull Requests and Issues extension pro-
vides a way for you to do so through the Visual Studio Code interface. The
extension automates the process without the need to enter a series of commands
into the terminal. This is convenient given that Git commands can get rather
complicated. The extension hides a lot of that complexity similar to the editor’s
built-in source control commands.

A folder must be open to create and publish a repository to GitHub. If there’s
no code yet in the repository, use the Initialize Repository command first. Oth-
erwise, if there is code, publish a repository to GitHub in either of the following
manners:

■■ Source Control view: Click Publish To GitHub (see Figure 8.7).

■■ Command Palette: Run the command Publish to GitHub.

	 N OT E     In the Source Control view, the Publish To GitHub button appears only if a
folder is opened in the editor and the project has not been published to GitHub.

Figure 8.7: Clicking the Publish To GitHub button publishes the project to GitHub.

140	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

Whether you start the publishing process from the Source Control View or
Command Palette, the workflow to publish the project to GitHub is the same.
First, enter a name for the repository and select whether to create a private or
public repository for the project (see Figure 8.8).

Next, Visual Studio Code lets you select which files should be included in the
repository (see Figure 8.9). You can select from the files that appear in the list.

After the files are selected, Visual Studio Code begins to publish the project
to GitHub. You can follow the publishing progress in the lower right side of
the editor (see Figure 8.10).

Once the upload is complete, a notification appears to inform you that the
publish was successful and provides a button to open the repository in GitHub
(see Figure 8.11). Clicking the button opens the repository in the browser.

	 N OT E     In addition, after the publish is successful, a second notification appears
requesting whether you’d like Visual Studio Code to periodically run git fetch.
Periodically running git fetch keeps you up-to-date with changes to the remote
by showing how many changes your local repository is ahead or behind. This feature
is useful if there are multiple contributors to a repository. The changes found by git
fetch are added to your local repository only if you run the command git pull.
Otherwise, your local repository remains unchanged despite remote changes.

Figure 8.8: Select whether the new repository should be private or public.

Figure 8.9: The README.md file is selected to be included in the repository.

Figure 8.10: Publishing progress is provided at the bottom right of the editor. The notification
updates to let you know which step is currently being done in the process.

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 141

When you publish a project to GitHub, the extension automatically creates a
.gitignore file that lists all the files you didn’t select to publish (see Figure 8.12).

If you create a .gitignore file prior to publishing the project to GitHub, the
extension uses that existing file and doesn’t ask which files to include during
the publishing workflow.

Try It Out: Add a README.md file for the currency_converter project and pub-
lish the project to GitHub. When prompted, select Publish To GitHub Private
Repository and only select the README.md file for upload. After the project is
published to GitHub, view the newly created repository in GitHub. In addition,
view the .gitignore file to view the list of files added to the newly created
.gitignore file.

Push Changes to GitHub

In Visual Studio Code, once a project is connected to the GitHub remote, you’re
given access to both Git and GitHub features. Rather than manually enter Git
commands in a terminal to stage, commit, and push changes, you can do so
through the editor interface. As you make changes to your project, use the source
control features introduced in Chapter 4, “Managing Projects and Collaboration.”

	 N OT E     You can @-mention a GitHub user when creating commit messages.

Figure 8.11: A notification appears in the lower right of the editor to inform you that the reposi-
tory was successfully published to GitHub. You have the option to open the repository in GitHub.

Figure 8.12: The files that were not selected to add to the new repository are listed in the
.gitignore file.

142	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

Once you’re ready to push your changes to GitHub, you can do so in one of
three ways:

■■ Source Control view: Select Push in the More Actions menu (indicated
by three dots, as shown in Figure 8.13).

■■ Command Palette: Select Git: Push.

■■ Status Bar: Click the Synchronize Changes action. After selecting the
action, Visual Studio Code provides a prompt to confirm whether you
want to push/pull commits to and from origin/master (see Figure 8.14).

Once changes are pushed, they’re reflected in the remote (see Figure 8.15).

Try It Out: Create two new files, currency_converter.py and pull_request_
template.md. After creating the file, stage, commit, and push changes to GitHub.

1.	 Create a new file called currency_converter.py and add the code from
the currency_converter_completed.py file.

Figure 8.13: The More Actions menu is accessed by clicking the three dots.

Figure 8.14: In the Status Bar, the Synchronize Changes action indicates that there is one
change to push to the remote.

Figure 8.15: The changes pushed for the currency_converter.py script is reflected in the
GitHub repository.

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 143

2.	 Save and run the script to try the currency converter. When run, the
currency_converter.py script opens a window, which displays the cur-
rency converter interface. Enter a numerical value to be converted and
click Convert for the default EUR > USD conversion.

3.	 Stage the changes, enter the commit message add conversion script,
and commit the change.

4.	 Create a new file called pull_request_template.md and add the copy
from the pull_request_template.md file.

5.	 Stage the changes, enter the commit message add pull request template,
and commit the change.

6.	 In the Status Bar, click Synchronize Changes to push the changes to GitHub.
After the changes are pushed, you can view the recent push on GitHub
within the browser.

Most often, changes to repository files are made on a branch. You can create
new branches and switch between branches within the editor. Selecting the
branch within the Status Bar provides a prompt to either check out an existing
branch or create a new branch (see Figure 8.16).

Alternatively, you could create or check out a branch with the More Actions
menu in the Source Control view.

Try It Out: Create a new branch called readme-update and add descriptive
text in the README.md file for the currency converter project. Save, stage, and
commit the changes. See Figure 8.17.

Manage Pull Requests and Issues

Whether you’re contributing to an external repository or maintaining an open-
source project, the process of managing pull requests and issues requires careful
review, conversation among collaborators, and the necessity of Git metadata
to track changes that have been made. Though the aforementioned tasks and
information are available within the browser on GitHub, the GitHub Pull Requests
and Issues extension brings the same features directly inside Visual Studio Code.

Figure 8.16: To create or switch to another branch, click the branch in the Status Bar.

Figure 8.17: The new branch name is readme-update.

144	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

	 N OT E     If the GitHub view icon is not visible in the Activity Bar, click the triple dots
below the view icons to display a list of additional views available. If the triple dots are
not visible, right-click the Activity Bar to display a list of additional views available.

Each section of the GitHub view consists of subsections that group the pull
requests and issues into organized categories. As you carry out the process of
managing pull requests and issues (e.g., creating pull requests in the editor),
additional sections are added to the view to help further manage the task at hand.

Pull Requests
The + icon in the Pull Requests section enables you to create a pull request
directly in the editor (see Figure 8.18). Alternatively, you could run the command
GitHub Pull Requests: Create Pull Request in the Command Palette.

When Create Pull Request is clicked, you’re first prompted to select a target
branch for the repository (see Figure 8.19).

After a target branch is selected, the editor begins to create the pull request.
While the pull request is being created, the editor prompts you to select a title
for the pull request using one of these three options:

■■ Commit—use the latest commit message

■■ Branch—use the branch name

■■ Custom—specify a custom title

If a pull request template is available in the project files, the extension locates
the template for the repository. Once located, the pull request is created and is
opened in a new tab in Review Mode (see Figure 8.20).

Figure 8.18: Click the + icon to create a new pull request.

Figure 8.19: The master branch is selected as the target branch.

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 145

Try It Out: Create a pull request for the readme-update branch. Edit the com-
ment created by the pull request template, and save the pull request.

	 N OT E     To edit the comment, hover over the comment and click the pencil icon (see
Figure 8.21). When in edit mode, a text box appears in which you can enter Markdown.

Within Review Mode, you can manage the pull request as you would in the
browser on GitHub. In the GitHub view, a new Changes In Pull Request section
appears (see Figure 8.22).

The Changes In Pull Request section provides the following:

■■ The author’s GitHub avatar

■■ Description for the pull request

Figure 8.20: The pull request opens in a new Pull Request tab in the editor. You can manage the
pull request in Visual Studio Code using the same features available on GitHub.

Figure 8.21: Edit the comment by hovering over the command and clicking the pencil icon.

146	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

■■ Files changed within the pull request

■■ Commits within the pull request

Selecting any file within the Pull Requests section opens the diff editor for
the file.

In addition to the ability to create pull requests, the Pull Requests section
organizes all pull requests for the repository into the follow subsections (see
Figure 8.23):

■■ Local Pull Request Branches—Lists all pull request branches that are
local

■■ Waiting For My Review—Lists all pull requests that are waiting for your
review prior to sign-off

■■ Assigned To Me—Lists all pull requests that are assigned to you

■■ Created By Me—Lists all pull requests that you’ve created for the
repository

■■ All—Lists all pull requests for the repository

Figure 8.22: The Changes In Request section appears after a new pull request is created in the
editor.

Figure 8.23: Pull requests are organized into subsections within the Pull Request view.

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 147

Once you’re ready to merge the pull request, within the Pull Requests tab
select the appropriate method and click Merge Pull Request (see Figure 8.24).

Next, add a title and comment (if applicable) for the merge commit. Once
complete, click Merge Commit (see Figure 8.25).

Try It Out: Merge the readme-update pull request into the master branch.
Once complete, switch to the master branch to view the merged changes in the
README.md file.

Issues
The + icon in the Issues section enables you to create an issue directly in the
editor. When an issue is created, a NewIssue.md file is opened as a new tab in
the editor (see Figure 8.26).

The issue template includes the following:

■■ Issue title

■■ Assignees

Figure 8.24: Select the merge method followed by Merge Pull Request.

Figure 8.25: Click Merge Commit to commit the merge.

148	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

■■ Labels

■■ A space to provide the issue

After completing the template, click Create Issue (Shift+S) at the top of the
editor tab (see Figure 8.27).

	 N OT E     The @-mention feature is also available for adding Assignees to the issue.

	 N OT E     The labels created for the repository are provided when selecting labels for
the issue.

Alternatively, you could run one of these commands in the Command Palette:

■■ GitHub Issues: Create An Issue

■■ GitHub Issues: Create Issue From Clipboard

■■ GitHub Issues: Create Issue From Selection

Figure 8.26: A NewIssue.md tab opens in the editor when a new issue is created.

Figure 8.27: The Create Issue command is indicated by a check mark.

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 149

The Command Palette command GitHub Issues: Create Issue From Clipboard
pastes the clipboard item in the NewIssue.md file (see Figure 8.28). Ensure you
have first copied the line (or lines) to the clipboard.

The command GitHub Issues: Create Issue From Selection adds the path
to the file in which the issue exists into the NewIssue.md file (see Figure 8.29).

Try It Out: In currency_converter.py, select lines 5–8. Using the Create
Issue From Selection command, create an issue (see Figure 8.30). For title, enter
Issue Exercise.

Figure 8.28: Clicking Create Issue From Clipboard pastes the lines of code into the NewIssue.md
file.

Figure 8.29: Clicking Create Issue From Selection adds the link to the issue in the NewIssue.md
file.

150	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

After an issue is created in the editor, click Refresh (the circle arrow icon) in the
Issues section of the GitHub view to view the issue in the list (see Figure 8.31).

In the Issues section of the GitHub view, hovering over an issue displays the
issue details (see Figure 8.32).

Figure 8.30: A new issue is created for lines 5–8 of the currency_converter.py file. A link
to the lines of code is added to the NewIssue.md file.

Figure 8.31: After the Refresh icon is clicked, the list of issues updates to include the newly
created issue.

Figure 8.32: The issue details display when hovering over the issue in the Issues view.

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 151

To the right of the issue title are the actions Start Working on Issue and
Checkout Issue Branch (see Figure 8.33, A) and Open Issue (see Figure 8.33, B),
which open the issue in the browser.

Clicking the former action checks out the issue branch and replaces the action
with Stop Working In Issue And Close Topic Branch. To stop working on the
issue, select the action to close the branch. Closing the topic branch checks out
the Master branch (see Figure 8.34).

When ready, stage and commit the changes made for the issue. In the Source
Control view, the commit message is populated as a fix for the issue (see Figure 8.35).

After the commit is complete, a check mark displays next to the issue in the
GitHub view (see Figure 8.36).

Figure 8.33: The issue has two commands: Start Working On Issue and Checkout Issue Branch
And Open Issue.

Figure 8.34: The topic branch is checked out while working on the issue.

Figure 8.35: A commit message is autopopulated for the issue.

Figure 8.36: A check mark displays next to the issue once the commit is complete.

152	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

Before you can merge changes, you first need to create a pull request. Right-
click the issue in the GitHub view and click Create A Pull Request. The option
to create a pull request is available only when working on the issue. Therefore,
ensure that you are on the topic branch.

Try It Out: Select the Issue Exercise issue to work on the issue. Make a change
in the currency_converter.py file and save it. Next, stage and commit the
change. Afterward, create a pull request and then merge the changes.

Permalinks provide another means for providing direct navigation to a line or
lines of code within a file. When a permalink is selected, the browser opens the
specific file on GitHub to the line numbers. The lines highlighted in the browser
on GitHub reflect the cursor placement or lines selected in Visual Studio Code
from when the permalink was created. The permalink is useful for sharing with
others in issues, pull requests, email, etc.

To generate a permalink, in the Command Palette run the command GitHub
Issues: Copy GitHub Permalink or GitHub Issues: Open Permalink In GitHub.
The first command copies the permalink, whereas the second command opens
a new browser window for the permalink.

Clone Repository

With Visual Studio Code’s built-in repository clone features, you’re not limited
to working with repositories created locally. You can clone repositories that exist
within your personal GitHub account or clone an existing public repository on
GitHub. The clone features enable you to do the following:

■■ Clone a repository from your GitHub account

■■ Provide a link to a repository to clone

■■ Search for a repository on GitHub to clone

You can clone a repository in one of two places within the editor:

■■ Command Palette: Run the command Git: Clone

■■ Explorer view: Click Clone Repository. The Clone Repository button dis-
plays in the Explorer view only if no folder is opened.

■■ Welcome tab: Click Clone Repository under the Start section.

Regardless of how you invoke cloning, the workflow to clone is consistent.
The editor first prompts you to provide the repository URL or pick a reposi-
tory source. In this case, the repository source is GitHub. If you’d rather select
a repository within your GitHub account or search GitHub for a repository,
select Clone From GitHub (see Figure 8.37).

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 153

Clicking Clone From GitHub first provides a list of the repositories that you
own (see Figure 8.38).

To search across all public repositories on GitHub, enter a search term into
the prompt (see Figure 8.39).

Once you’ve selected a repository to clone, the editor prompts you to select a
location on your computer to save the cloned repository. After selecting a loca-
tion, Visual Studio Code begins to clone the GitHub repository. When cloning
is complete, Visual Studio Code sets up a remote URL to the repository. The
editor also prompts you to open the cloned repository either in the current
window or in a new window.

Try It Out: Clone the scikit-learn repository into Visual Studio Code.

	 N OT E     Scikit-Learn is a machine learning repository designed for data mining
and analysis techniques such as classification, regression, clustering, dimensionality
reduction, model selection, and preprocessing. Given that Scikit-Learn is a public

Figure 8.37: To clone a repository from GitHub, click Clone From GitHub when prompted.

Figure 8.38: A list of repositories within the signed-in GitHub account

Figure 8.39: The search term machine-learning is used to find all public repositories that
include the term machine-learning.

154	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

open-source project, be careful not to create pull requests or issues while com-
pleting the exercises for this chapter. If you want to contribute to such a project,
you typically fork a copy of the repository into your own GitHub account first and
then submit pull requests with your changes between the fork and the original
repository. For more information on forks, see docs.github.com/en/github/
collaborating-with-issues-and-pull-requests/about-forks.

1.	 Open a new Visual Studio Code window.

2.	 In the Explorer view, click Clone Repository.

3.	 At the prompt, enter github.com/scikit-learn/scikit-learn and click
Clone From URL (see Figure 8.40).

4.	 Select a location on your computer in which to create the cloned reposi-
tory. A subfolder is created with the repository name within the selected
folder.

5.	 After cloning is complete, open the repository in the editor (see Figure 8.41).

Timeline View

In the Explorer view is a Timeline view that lists all changes for any given file
(see Figure 8.42). To view a list of changes, select a file in the explorer and expand
the Timeline section. Each change is listed with the name of the respective pull
request, the GitHub user who created the pull request, and how long ago the
pull request was merged.

Figure 8.41: Open the repository in the current window.

Figure 8.40: The URL for the Scikit-Learn repository is entered as the repository to
clone.

http://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-forks
http://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/about-forks
http://github.com/scikit-learn/scikit-learn

	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code	 155

Hovering over the change in the list displays the following additional
information:

■■ GitHub user and their email address

■■ Commit hash

■■ Date and time of the merge

■■ Pull request title and number

■■ Pull request description

Selecting a change from the list opens the change in the diff editor (see
Figure 8.43).

Figure 8.42: A list of changes for the CONTRIBUTING.md file displays in the Timeline view.

Figure 8.43: The changes for the selected change display in the diff editor.

156	 Chapter 8 ■ Using Git and GitHub with Visual Studio Code

Try It Out: In the Explorer view, select the CONTRIBUTING.md file and expand
the Timeline section. Select the most recent change from the list to open the diff
editor to view the changes.

Summary

In this chapter, you learned how to do the following:

■■ Sign in to GitHub to authorize Visual Studio Code to access your GitHub
account and organizations.

■■ Create a public and private repository in Visual Studio Code and publish
to GitHub.

■■ Push and synchronize changes to/from GitHub.

■■ Create and manage pull requests and issues within Visual Studio Code.

■■ Clone a repository on GitHub within Visual Studio Code.

■■ Use the Timeline view to view all changes for a given file.

You are now prepared to manage projects in Visual Studio Code with Git
and GitHub.

C H A P T E R

157

9

Django is a free open-source Python web framework for developing web apps.
The framework encourages rapid development by providing the architecture to
create database-connected web apps and thus enabling developers to focus more
on writing the app. The framework’s primary strength is how it manages data
models and database connectivity. Each model maps to a single database table
that can be leveraged to store data for your app. By default, the database con-
figuration uses SQLite. However, Django also supports the following relational
databases: PostgreSQL, MariaDB, MySQL, and Oracle.

In this project, you’ll learn how to create a Django project in Visual Studio
Code and deploy to production with Azure App Service. To get started with
Azure, refer to the appendix, “Getting Started with Azure.”

This project provides a high-level overview of how to set up a Django project
in preparation for deploying the app to Azure. Sample code is provided in the
Django-website folder to help expediate the app creation. For a detailed review
of how to create and manage a Django project, visit djangoproject.com.

Getting Started

The project example in this chapter uses the Django framework to create a website
that is deployed to Azure App Service (see Figure 9.1). The website template
is provided by Start Bootstrap, a resource for free, open-source, MIT-licensed

Deploy a Django App to Azure
App Service with the Azure App

Service Extension

http://djangoproject.com

158	 Chapter 9 ■ Deploy a Django App to Azure App Service

Bootstrap themes, templates, and code snippets. To learn more about Start
Bootstrap, visit startbootstrap.com.

The files within the Django-website-complete folder are necessary for
completing the exercises in this project. The files within the folder are used
to create a multipage website that will be deployed to Azure from Visual
Studio Code.

To get started, create a new folder called Django-website and open it in Visual
Studio Code. After the folder is opened, create and activate a virtual environment.

Next, create a requirements.txt file in your project root that lists the fol-
lowing dependencies:

Django==3.1.5
Whitenoise==5.2.0

Finally, run the command pip install -r requirements.txt to install the
dependencies.

	 N OT E     WhiteNoise is a library used to serve static files in production. Additional
information on WhiteNoise is provided in the section “Creating Website Pages.”

Figure 9.1: The website created in this project.

http://startbootstrap.com

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 159

Creating a Django Project

A Django project is technically a Python package that contains all the settings
for an instance of Django. This includes database configuration, Django-specific
options, and application-specific settings. The code that establishes a Django
project is generated by running the following command:

django-admin startproject mysite

	 N OT E     mysite reflects the project name. You can name the project whatever you’d
like so long as you avoid using Python or Django components (e.g., tests or Django).

After startproject is run, the following files are created:

mysite/
 manage.py
 mysite/
 __init__.py
 settings.py
 urls.py
 asgi.py
 wsgi.py

A description of each file is provided here:

■■ mysite/—The parent mysite/ root directory is a container for your project.

■■ manage.py—This is a command-line utility that lets you interact with the
project in various ways. You run commands by using python manage.py
<command>.

■■ mysite/—The child mysite/ directory is the actual Python package for
your Django project. Its directory name is the Python package name you’ll
need to use to import anything inside it.

■■ __init__.py—This is an empty file that tells Python that this directory
contains a Python package.

■■ settings.py—This contains the settings/configuration for the project.

■■ urls.py—This contains the URL declarations for the project; it’s a “table
of contents” of the site.

■■ asgi.py—This is an entry point for ASGI-compatible web servers to serve
your project.

■■ wsgi.py—This is an entry point for WSGI-compatible web servers to serve
your project.

Try It Out: Create a new Django project. Run the following command in the
integrated terminal:

django-admin startproject mysite

160	 Chapter 9 ■ Deploy a Django App to Azure App Service

You can view the site created within the project by running the Django
development server. The Django development server is a lightweight web
server included with Django so that you can develop things rapidly, without
having to deal with configuring a production server. To view the site, first use
cd to navigate into the mysite folder and run the runserver command.

cd mysite
python manage.py runserver

Once run, the following output appears in the terminal:

Performing system checks...

System check identified no issues (0 silenced).

You have unapplied migrations; your app may not work properly until they
are applied.
Run 'python manage.py migrate' to apply them.

January 07, 2021 - 15:50:53
Django version 3.1, using settings 'mysite.settings'
Starting development server at http://127.0.0.1:8000/
Quit the server with CONTROL-C.

The output includes an HTTP address, which you can visit in the browser to view
your site. In the integrated terminal, Cmd+click/Ctrl+click the address to open
the browser and navigate to the site. A successful Django installation and valid
project reflects a “Congratulations!” page with a rocket taking off (see Figure 9.2).

Figure 9.2: The “Congratulations!” page displays in the browser, which indicates the Django
installation was successful and the project is valid.

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 161

The integrated terminal also shows the server log.
After viewing the site, close the browser and press Ctrl+C in the editor to

quit the server.

	 N OT E     By default, the runserver command starts the development server on the
internal IP address at port 8000. To change the server’s port, pass it as a command-line
argument (e.g., python manage.py runserver 8080).

Try It Out: Start the Django development server to view the site in the browser.

1.	 In the integrated terminal, use the command cd to change into the inner
mysite/ directory.

2.	 Run the following command to start the development server:

 python manage.py runserver

3.	 Click the HTTP address that appears in the output to view the site in the
browser.

4.	 After viewing the site, close the browser. In Visual Studio Code, press
Ctrl+C to quit the server.

Creating an App

The Django project itself is a collection of configurations. In addition, the project
contains apps created within the project. An app is a web application that does
something (e.g., a website or a database of records). A Django project can consist
of multiple apps. The benefit in creating multiple apps is that you can better
organize your code and also reuse apps in multiple projects. To create an app,
run the following command within the preferred directory:

python manage.py startapp <app-name>

	 N OT E     You can create your app anywhere on your Python PATH.

When an app is created, Django automatically generates a directory structure
of an app. An example of the directory structure is provided here:

<app-name>/
migrations/
 __init__.py
 admin.py
 apps.py
 models.py
tests.py
views.py

162	 Chapter 9 ■ Deploy a Django App to Azure App Service

A description of each file is provided here:

■■ <app-name>/—The root directory for the app

■■ migrations/—Where Django stores migrations, which describe changes
to your database

■■ __init__.py—An empty file that tells Python that this directory contains
a Python package

■■ admin.py—Where you register your app’s models with the Django admin
application

■■ apps.py—A configuration file common to all Django apps

■■ __init__.py—Tells Python that the app is a package

■■ models.py—The module containing the models for your app

■■ tests.py—Contains test procedures that run when testing the app

■■ views.py—The module containing the views for your app

Try It Out: Create an app demosite within the same directory as the
manage.py file.

	 N OT E     Creating the app in the same directory as manage.py imports the app as its
own top-level module rather than a submodule of mysite.

After an app is created, it must be added to the project’s settings.py file.
The settings.py file is in the mysite/mysite folder. Within settings.py, add
the app to the list of INSTALLED_APPS. The INSTALLED_APPS list consists of all
apps that are enabled in the Django project. Each string within the list should
be a dotted Python path to one of the following:

■■ An application configuration class (preferred)

■■ A package containing an application

The string itself consists of an application name and label. The application
name is the dotted Python path to the application package. The label is the final
part of the name. Both the application name and label must be unique.

Try It Out: In the editor, navigate to mysite/mysite and open the project’s
settings.py file. Add 'demosite' to the INSTALLED_APPS list.

INSTALLED_APPS = [
 'django.contrib.admin',
 'django.contrib.auth',
 'django.contrib.contenttypes',
 'django.contrib.sessions',
 'django.contrib.messages',
 'django.contrib.staticfiles',
 'demosite',
]

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 163

The next step is to configure a database. As mentioned, by default the con-
figuration uses SQLite. Given its lightweight nature, opting to use SQLite in
production is dependent on the app. With regard to concurrency, only one thread
or process can make changes to a SQLite database at a time. Thus, all other
concurrent processes are forced to wait until the currently running process has
finished. This is not ideal if there are multiple users sending data to a database.
Furthermore, the db.sqlite3 file becomes a source file in your repository. The
database deploys as a source file and overwrites the production db.sqlite3
file. Thus, information stored through the live web app is erased. In most cases,
the general rule of thumb is to only use SQLite for development and testing.
However, for the purpose of completing the project in this chapter, the SQLite
configuration will suffice.

	 N OT E     For more information on how to deploy a Django web app with PostgresSQL
to Azure, review docs.microsoft.com/azure/developer/python/
tutorial-python-postgresql-app-portal.

The final step is to create a migration. A migration is helpful for working
with databases. The Django Project documentation refers to migrations as a
version control system for your database schema. To create a migration, run
the following command:

python manage.py migrate

Try It Out: Create a migration for the project.

Creating a Home Page

Django uses templates to dynamically generate the HTML needed for your web
app’s user interface. HTML templates separate the HTML from code. Django
has a built-in back end for its template system referred to as the Django template
language. The template itself is a text document or a Python string marked up
using the Django template language. The template contains the static parts of
the HTML output as well as syntax describing how dynamic content is inserted.

Django looks for templates inside a templates subdirectory within each
item of the INSTALLED_APPS list. To create a template for your app, add a new
templates directory into the app directory followed by a directory for the app.
Inside the app directory, create an HTML file named index.html. The index
.html file is where you’ll place the HTML.

Try It Out: Create a templates directory that stores the index.html file.

1.	 Inside the demosite directory, create a templates subdirectory followed
by a nested demosite directory.

http://docs.microsoft.com/azure/developer/python/tutorial-python-postgresql-app-portal
http://docs.microsoft.com/azure/developer/python/tutorial-python-postgresql-app-portal

164	 Chapter 9 ■ Deploy a Django App to Azure App Service

demosite/
 migrations/
 templates/
 demosite/
 __init__.py
 admin.py
 apps.py
 models.py
 tests.py
 views.py

2.	 Create a new file index.html inside the nested demosite directory. The
file structure should reflect the following:

demosite/
 migrations/
 templates/
 demosite/
 index.html
 __init__.py
 admin.py
 apps.py
 models.py
 tests.py
 views.py

3.	 Inside the index.html directory, add the basic structure for an HTML
document and include a title and body for the web page. If you create the
structure manually, IntelliSense is available to autocomplete as you type.

<!DOCTYPE html>
<html>
 <head>
 <title>Hello World</title>
 </head>

 <body>
 Welcome to my website.
 </body>
</html>

	 N OT E     Alternately, you could create a code snippet of the standard structure of
an HTML document. Chapter 3, “Editing Code,” provides instruction for how to cre-
ate a custom code snippet. A code snippet avoids manually entering repeating code
patterns.

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 165

In Django, web pages and other content are delivered by views. A view is a
web page in your Django application. Views for a website may include a home
page, about page, and a contact page. Each view is represented by a Python
function that Django chooses by examining the URL that’s requested. The function
returns a response for the HTML file passed into the function call.

The function itself is stored in the views.py file within the demosite folder.
To create a function, add the following to views.py:

from django.shortcuts import render

def <function name>(request):
 return render(request, '<app-name>/<file-name>.html')

Try It Out: Add a function for index.html into the views.py file.

from django.shortcuts import render

def index(request):
 return render(request, 'demosite/index.html')

There are no limitations for URL naming conventions for your app. The URL
for each web page is listed in the urls.py file within the mysite/mysite folder.
The urlpatterns list within urls.py contains the list of URLs. The syntax for
a listing is as such:

path('<url-path>/', views.home)

Ensure that you import views from the app’s directory so that you can access
the function for the respective view.

Try It Out: Navigate to mysite/mysite and open the urls.py file. Add
an import statement for views followed by an item to urlpatterns for the
index view.

from django.contrib import admin
from django.urls import path
from demosite import views

urlpatterns = [
 path('admin/', admin.site.urls),
 path('', views.index),
]

Run the command python manage.py runserver to view the home page in
the browser.

166	 Chapter 9 ■ Deploy a Django App to Azure App Service

Creating Website Pages

It’s likely that when you create a website, your website needs to serve addi-
tional static files such as images, JavaScript, or CSS. Static files are stored in a
static folder within the root directory of the Django project, which is in turn
referred to in the project’s settings.py file in the variables STATIC_URL and
STATICFILE_DIRS. When in development, static files are served when you run
the command python manage.py runserver.

However, Django does not serve static files automatically when in a produc-
tion environment. For simplicity, this project uses WhiteNoise to serve static
files in production. WhiteNoise allows your Python web app to serve its own
static files, making it a self-contained unit that can be deployed anywhere. To
learn more about WhiteNoise, visit whitenoise.evans.io/en/stable/. An
alternative for serving static files in production is Azure Blob Storage. Azure
Blob Storage provides storage and delivers your static files to users over HTTP.
To learn more about Azure Blob Storage, visit azure.microsoft.com/services/
storage/blobs/.

There are a few additional modifications that need to be done in the project files
before you can render a web page that includes the static files. For convenience,
the static files and the completed version of each Django project file are included in
the Django-website-complete folder. To learn more about configuring static files
for a Django app, visit docs.djangoproject.com/en/3.1/howto/static-files/.

Try It Out: Add static files to the subdirectory mysite and run the server to
view the website.

1.	 Create a new static folder within mysite.

mysite/
 demosite/
 mysite/
 static/
 db.sqlite3
 manage.py

2.	 Copy the assets, css, and js folders within Django-website-complete
into the static folder.

3.	 Inside the demosite folder, navigate to templates/demosite and open
index.html. Replace the code within index.html with the code that’s in
the corresponding file in Django-website-complete.

4.	 Run the server to view the website. Once you are done, close the browser
and stop the server. See Figure 9.3.

http://azure.microsoft.com/services/storage/blobs
http://azure.microsoft.com/services/storage/blobs
http://docs.djangoproject.com/en/3.1/howto/static-files

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 167

Azure App Service requires additional configuration to serve static files. The
following modifications must be made to the settings.py file:

Add an import statement for os.

import os

Add the following to the ALLOWED_HOSTS list:

ALLOWED_HOSTS = [os.environ['WEBSITE_HOSTNAME']] if 'WEBSITE_HOSTNAME'
in os.environ else []

Add the following to the INSTALLED_APPS list:

'whitenoise.runserver_nostatic'

Add the following to the MIDDLEWARE list:

'whitenoise.middleware.WhiteNoiseMiddleware'

Add the following at the end of the file:

STATIC_ROOT = os.environ.get("mysite", "./static/")

STATICFILES_DIRS = [
 os.path.join(BASE_DIR, 'static')
]

STATICFILES_STORAGE = ('whitenoise.storage
.CompressedManifestStaticFilesStorage')

Figure 9.3: The browser reflects the website that includes the static files to render the CSS and
JavaScript files.

168	 Chapter 9 ■ Deploy a Django App to Azure App Service

Try It Out: Navigate to mysite/mysite and open the settings.py file. Make
the modifications for serving static files with Azure App Service.

Azure App Service uses the Gunicorn web server by default. During startup,
the app service on Linux container looks for your app object or a wsgi.py folder.
Azure App Service then runs Gunicorn using the following command:

<module> is the name of the folder that contains wsgi.py
gunicorn --bind=0.0.0.0 --timeout 600 <module>.wsgi

If your app does not contain a wsgi.py file, you must create a custom startup
file in the root directory of the project. The startup file can use whatever name
you choose, such as startup.sh, startup.cmd, startup.txt, etc. The file itself
contains the Django startup commands.

For more information on configuring a Linux Python app for Azure App Service,
refer to docs.microsoft.com/azure/app-service/configure-language-python.

Deploying to Azure

Now that the website renders locally in the browser, the next step is to deploy
the Python app to Azure. Deployment functionality is available within Visual
Studio Code using the Azure App Service extension. For this project, the Django
website project is deployed to Azure App Service on Linux.

Azure App Service is an HTTP-based service for hosting web applications,
REST APIs, and mobile back ends. A web app in Azure App Service parlance
is the process that hosts your web app code and various languages including
Python. With Azure App Service, you’re able to use DevOps capabilities, package
management, staging environments, custom domain, and TLS/SSL certificates.
To learn more about Azure App Service, visit docs.microsoft.com/azure/
app-service/overview.

Once installed, the Azure App Service extension is accessed via the Azure
logo in the Activity Bar. All Azure extensions installed appear in the Azure view
and are separated by sections. Thus, you can find all installed Azure extensions
in a single view.

The extension itself syncs with your Azure account by signing into Azure.
To sign in to Azure, select the Azure view and select Sign In To Azure (see
Figure 9.4). The browser opens and prompts you to enter the credentials for
your Azure account. Upon successful sign-in, you can close the browser and
return to Visual Studio Code. The signed-in account displays in the Status Bar.

http://docs.microsoft.com/azure/app-service/configure-language-python
https://docs.microsoft.com/azure/app-service/overview
https://docs.microsoft.com/azure/app-service/overview

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 169

Try It Out: Sign in to Azure.

1.	 In the Extension Marketplace, search for and install the Azure App Service
extension.

2.	 In the Azure view, click Sign In To Azure.

3.	 In the browser, enter your Azure credentials.

4.	 Close the browser and return to Visual Studio Code.

5.	 Check the Status Bar to confirm that you are signed in to Azure.

There are four commands available within the Azure view for Azure: App
Service.

■■ Create New Web App (see Figure 9.5, A)—Creates a new web app resource

■■ Deploy To Web App (see Figure 9.5, B)—Deploys the web app to Azure

■■ Refresh (see Figure 9.5, C)—Refreshes the web app resource in Visual
Studio Code to sync with changes made in the Azure portal

■■ Collapse All (see Figure 9.5, D)—Collapses all folders within Azure: App
Service

Additional commands are available within the Command Palette and are
prepended with Azure App Service. Below the commands in the Azure view are
headings for each of your Azure subscriptions. Within each subscription head-
ing are your existing Web App resources.

The Web App service requires a requirements.txt file in your project root
that lists your dependencies for your service. Azure App Service installs the
dependencies automatically.

Figure 9.4: The Azure view is accessed by clicking the Azure logo in the Status Bar. To sign in to
Azure, click Sign In To Azure.

Figure 9.5: The commands in the Azure: App Service view

170	 Chapter 9 ■ Deploy a Django App to Azure App Service

Before you begin the deployment workflow, an Azure App Service web app
must be created for the project. Either select the Create New Web App command
in the Azure view or run the command Azure App Service: Create New Web
App in the Command Palette.

For the first prompt, enter a globally unique name for your app (see Figure 9.6).
The name must be unique across all Azure customers. Consider using a
combination of company/personal name + app name + any other identifier.

	 N OT E     You can assign a registered domain name in App Service later.

For the second prompt, select Python 3.7 as the runtime (see Figure 9.7).

You can follow the status of creating the web app in the bottom of the editor
(the process takes a few minutes). After the new web app is created, the extension
prompts you to either deploy to Azure or view the output. Before deploying to
Azure, confirm that app service is running properly. You can view the website
for the app by clicking the link to the site in the Output panel (see Figure 9.8).

Alternatively, you can access the website by expanding your subscription
in the Azure view within Azure: App Service, right-clicking the app service
name, and clicking Browse Website or Cmd+clicking/Ctrl+clicking the URL
in the output.

Figure 9.6: Enter a globally unique name for your app.

Figure 9.7: Select Python 3.7 as the runtime.

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 171

If creation is successful, the default app appears in the browser (it might take
a few moments for the web app to start the first time). The default app appears
since your project code has not yet been deployed to Azure App Service (see
Figure 9.9).

Try It Out: Create a new web app and confirm that creation was successful
by viewing the default app in the browser.

After a web app is created, you are ready to deploy your app to an Azure
App service. There are three ways to start the deployment workflow:

■■ Command Palette: Run the command Azure App Service: Deploy to Web
App.

Figure 9.8: The output for creating the new web app

Figure 9.9: The default app appears in the browser after the successful creation of a web app.

172	 Chapter 9 ■ Deploy a Django App to Azure App Service

■■ Azure view: Click the Deploy To Web App command.

■■ Azure view: Right-click the app service name and select Deploy To Web
App.

For prompts in the deployment workflow, provide the following details:

■■ Select the folder to deploy: Select your current app folder (see Figure 9.10).

■■ Select Web App: Select the app service (see Figure 9.11).

■■ Update your build configuration: Yes.

■■ Overwrite the existing deployment: Deploy (see Figure 9.12).

■■ Always deploy the workspace: Yes (see Figure 9.13).

Figure 9.10: Select the current app folder to deploy.

Figure 9.11: Select the app service previously created.

Figure 9.12: Select Deploy to overwrite any previous deployment.

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 173

Once the deployment process starts, you can view the progress in the Output
panel. Deployment may take a few minutes to complete and is dependent on
the number of dependencies that need to be installed. After deployment is
complete, Visual Studio Code provides a notification to confirm. Before you
navigate to the site, the startup command must be configured in the app service
within the Azure Portal.

In the Azure view, right-click the app and click Open In Portal. In the App
Service resource, navigate to Settings ➪ Configuration ➪ General Settings. Enter
the following in the Startup Command field and save:

<module> is the name of the folder that contains wsgi.py
gunicorn --bind=0.0.0.0 --timeout 600 <module>.wsgi

If the wsgi.py file is within a subfolder, use the --chdir command to specify
the parent folder.

example
gunicorn --bind=0.0.0.0 --timeout 600 --chdir mysite mysite.wsgi

On the Overview tab of the App Service resource, select the URL to view the
website. See Figure 9.14.

	 N OT E     If you still see the default app, wait a minute or two for the con-
tainer to restart after the deployment and try again. If you continue to
have trouble, refer to docs.microsoft.com/azure/app-service/
configure-language-python#troubleshooting.

Figure 9.13: Select Yes to always deploy the workspace Django-website to django-demosite.

Figure 9.14: Select the URL link to view the website.

http://docs.microsoft.com/azure/app-service/configure-language-python#troubleshooting
http://docs.microsoft.com/azure/app-service/configure-language-python#troubleshooting

174	 Chapter 9 ■ Deploy a Django App to Azure App Service

You can verify that your files have deployed by first expanding the app
service in the Azure view for Azure: App Service and then expanding Files (see
Figure 9.15).

	 N OT E     The files .deployment, antenv.tar.gz, and oryx-manifest.toml
are used by the Azure App Service build system. The hostingstart.html file is the
default app page.

Try It Out: Deploy the web app to Azure.
If you need to update the website content, make your updates in the editor

and then repeat the deploy workflow.
Now that the web app is deployed, you can stream logs directly in Visual

Studio Code. To do so, right-click the app service in the Azure view within
Azure: App Service and click Start Streaming Logs (see Figure 9.16).

Figure 9.15: The Files directory includes the deployment files.

Figure 9.16: Right-click the app service and click Start Streaming Logs to stream logs to the
Output panel in the editor.

	 Chapter 9 ■ Deploy a Django App to Azure App Service	 175

Logging must be enabled before you can stream logs. If the editor prompts
to enable file logging and restart the web app, click Yes. After the app restarts,
click the Start Streaming Logs command again.

The Output panel first displays Start Live Log Stream followed by the log
output. You can refresh the web app in the browser to generate more log
information. To stop streaming logs, right-click the app in Azure: App Service
and select Start Streaming Logs.

Try It Out: Stream logs for the web app in Visual Studio Code.

Summary

In this chapter, you learned how to do the following:

■■ Create a Django project.

■■ Create an app with a Django project.

■■ Dynamically generate HTML with templates.

■■ Create web pages (e.g., views) in a Django project.

■■ Serve static files with WhiteNoise.

■■ Configure a Django project for Azure App Service to serve static files.

■■ Create a web app and deploy a Django project to Azure App Service.

■■ Stream logs for the web app in Visual Studio Code.

You are now prepared to create and deploy Django projects in Visual Studio
Code.

C H A P T E R

177

10

Flask is a lightweight Web Server Gateway Interface (WSGI) web application
framework. Often referred to as a microframework, Flask is designed to keep the
core of the application simple and scalable. Though Flask offers suggestions,
the framework does not enforce any dependencies or project layouts. Instead,
developers have the ability to add new functionality to their app with exten-
sions provided by the community.

In this project, you learn how to create a Flask app and debug it in Visual
Studio Code. Sample code is provided in the Flask-app-complete folder to help
expediate the app creation. For a detailed review of how to create and manage
a Flask app, visit flask.palletsprojects.com.

Getting Started

The project example in this chapter uses the Flask framework to create a web
application that generates Lorem ipsum (see Figure 10.1). Lorem ipsum is a Latin-
character placeholder text often used to demonstrate document or user-interface
layout without relying on meaningful content. The generator takes two input values:

■■ Length of Lorem ipsum to generate

■■ Format of generated Lorem ipsum (i.e., word or paragraph)

Thus, entering 3 and word generates three words.

Create and Debug a Flask App

http://flask.palletsprojects.com

178	 Chapter 10 ■ Create and Debug a Flask App

The files within the Flask-app-complete folder are necessary for completing
the exercises in this project and are used to create a single page app that is later
debugged in Visual Studio Code.

To get started, create a new folder called Flask-app and open it in Visual
Studio Code. After the folder is opened, create and activate a virtual environment.

Next, create a requirements.txt file in your project root that lists the fol-
lowing dependencies:

Flask==1.1.2
Lorem-text==1.5

Finally, run the command pip install -r requirements.txt to install the
dependencies.

	 N OT E     Lorem Text is a Python package that generates Lorem ipsum sentences, par-
agraphs, and words. For more information, visit pypi.org/project/lorem-text/.

Create a Flask App

The Flask app is created in a Python file (e.g., app.py) within the root directory
of the project. By default, when the server starts, it looks for a file named app.py.
At its simplest, a minimal Flask app is created with a few lines of code:

from flask import Flask
app = Flask(__name__)

Figure 10.1: The Lorem ipsum app created in this project

http://pypi.org/project/lorem-text/

	 Chapter 10 ■ Create and Debug a Flask App	 179

@app.route('/')
def hello_world():
 return 'Hello, World!'

The code contains an instance of the Flask class and a function that returns
the page contents. Following the import statement to import the Flask class,
the variable app is assigned an instance of the class. The first argument of the
Flask class is import_name. The Flask instance is usually created by passing
__name__ for this argument. The __name__ argument reflects the name of the
current Python module. Flask uses the argument to know where to look for
templates and static files. Such templates and static files define the look of the
web application.

The route() decorator binds a URL to a function that tells Flask which URL
should trigger the function. In the example provided, '/' is a route. The argument
for app.route() is the path component of the URL. The route URL itself is case
sensitive. The function itself returns the string 'Hello, World!'. This entire
block of code is referred to as a view.

Try It Out: In the Flask-app folder, create a file app.py. In app.py, enter the
following and save it:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():
 return 'Hello, World!'

To view the app, start the Flask development server in one of these ways:

■■ Run python -m flask run from the project folder.

■■ Run flask run from the project folder.

■■ Add app.run() to the end of app.py and then run the file with python
app.py.

	 N OT E     The latter method is useful with Visual Studio Code as it allows you to use
the Play button from within the editor.

The development server ’s output shows the app’s URL, typically
http://127.0.0.1:5000/. In the integrated terminal, Cmd+click/Ctrl+click
the address to open the browser and navigate to the app. A successful Flask app
creation reflects “Hello World!” in the browser (see Figure 10.2). The integrated
terminal also shows the server log.

http://127.0.0.1:5000/

180	 Chapter 10 ■ Create and Debug a Flask App

After viewing the app, close the browser and press Ctrl+C in the editor to
quit the server.

	 N OT E     By default, the development server starts on the internal IP at port 5000. To
run the development server on a different address or port, pass it as a command-line
argument (e.g., flask run host-0.0.0.0 --port=2000).

Try It Out: Add app.run() at the end of app.py and then use the Play button
to start the Flask development server. After the server starts, view the app in
the browser.

1.	 On the last line of app.py, add app.run().

2.	 Press the Play button to start the development server.

3.	 Click the HTTP address that appears in the output to view the app in the
browser.

4.	 After viewing the app, close the browser. In Visual Studio Code, enter
Ctrl+C to quit the server.

Create and Render a Template

Flask uses templates to dynamically generate the HTML needed for your
Flask app in the browser. Templates promote a clear separation of concerns
between the HTML markup for a page and any page-related Python code.
Flask looks for templates inside a templates directory within the root of the
Flask project. The template itself is a file that contains static data as well as
placeholders for dynamic data (which is to say, Python variables). The Flask
render_template() method is used to return HTML pages. The render_tem-
plate() method takes both the template and variables you want to pass to
the template engine as keyword arguments. render_template() combines the
Python variables and the HTML template into full HTML output, which is what
the view function returns as the HTTP response. When the page contents are
returned, the respective HTML is rendered in the browser for the respective
route. Be sure to include render_template within the flask import statement
to use the method.

Figure 10.2: “Hello World!” displays in the browser, which indicates the Flask app was success-
fully created.

	 Chapter 10 ■ Create and Debug a Flask App	 181

To create a template for your app, first add a new templates directory into
the root directory. Inside the templates directory, create an HTML file with your
desired name. In this example, the name of the file is home.html. The HTML file
is where you’ll place the HTML:

<!DOCTYPE html>
<html>
 <head>
 <title>Home</title>
 </head>
 <body>
 <h1>Hello, {{name}}!</h1>
 </body>
</html>

Within the HTML file, you can refer to Python variables within {{ }} char-
acters. When the template is rendered, Flask replaces these placeholders with
the value of the referenced variable. In app.py, the variable is defined within
the view. The variable is included as a keyword argument in the function call
for render_template().

@app.route('/')
def home():
 name = 'April'
 return render_template('home.html', name=name)

Try It Out: Inside the Flask-app folder, create a new templates folder. Inside
the templates folder, create a home.html file. Within the home.html file, enter
the following:

<!DOCTYPE html>
<html>
 <head>
 <title>Home</title>
 </head>
 <body>
 <h1>Hello, {{name}}!</h1>
 </body>
</html>

In app.py, modify the import statement to include render_template. In the
view, add a variable name and assign the value of your name to the variable.
Next, modify the return statement so that home.html and the value for name are
returned in the HTML output. The file should reflect the following:

from flask import Flask, render_template

app = Flask(__name__)

Continues

182	 Chapter 10 ■ Create and Debug a Flask App

@app.route('/')
def home():
 name = 'April'
 return render_template('home.html', name=name)
app.run()

Finally, start the Flask development server to view the app in the browser.
After viewing the app, close the browser. In Visual Studio Code, press Ctrl+C
to quit the server.

It’s likely that when you create an app, the app needs to serve additional static
files such as images, JavaScript, or CSS. Static files are stored in a static folder
within the root directory of the Flask project. templates refers to the files in the
static folder when rendered. The chapter exercises leverage Skeleton, which is
a collection of CSS files that can help you rapidly develop sites. A link to the
external stylesheet is included in home.html. To learn more about Skeleton, visit
cdnjs.com/libraries/skeleton.

Try It Out: Replace the HTML in home.html with the code from Flask-app-
complete/templates/home.html and click Save.

The Lorem ipsum generator contains the following HTML elements:

■■ An input field

■■ A select field

■■ A button

■■ A field for the generated output

The home.html document organizes these elements into the body of a <form>
element. The <form> element is used to create an HTML form for user input.
Within the form is an action attribute and POST method. The action attribute
specifies the URL to which the form data is sent when submitted. The POST
method sends the user’s input (or data) to the server as an HTTP post transaction.

A placeholder for {{ generated_ipsum }} is used to pass the output of the
generated Lorem ipsum into the app. There is a corresponding generated_ipsum
variable in app.py that stores the generated Lorem ipsum.

The Lorem ipsum generator requires two routes:

■■ A route to render home.html without generated output

■■ A route to render home.html with the POST method, which contains the
generated Lorem ipsum

Using the POST method requires that request is added to the flask import
statement. An additional import statement is needed that imports lorem from
lorem_text. This import statement is necessary for using the module to gen-
erate Lorem ipsum.

(Continued)

http://cdnjs.com/libraries/skeleton

	 Chapter 10 ■ Create and Debug a Flask App	 183

The first route (e.g., '/') specifies the app’s home page. The function name
for the route is changed to home, respectively.

@app.route('/')
def home():
 return render_template('home.html')

Next, an additional route is added to app.py to render home.html with the
generated Lorem ipsum output. The argument '/ipsum', methods=['POST'] is
passed into the route()decorator, whereas methods=['POST'] reflects the HTTP
POST request. Inside the function body are nested conditional statements that
execute dependent upon the user input. However, before the nested conditional
statements are executed, an exception executes to validate whether the user
input for the Length field is an integer.

	 N OT E     The type for Length is converted into int to later pass the int value into
the lorem_text methods. If the user’s input type cannot be converted to int, the
assumption is that the input value is not valid.

@app.route('/ipsum', methods=['POST'])
def ipsum():
 if request.method == 'POST':
 try:
 num = int(request.form['num'])
 except ValueError:
 message = "'Length' requires a number value. Please try again."
 return render_template('home.html', generated_ipsum=message)
 output_format = request.form['output format']

 if output_format == 'Word(s)':
 generated_ipsum = lorem.words(num)
 return render_template('home.html', generated_ipsum=
 generated_ipsum)
 elif output_format == 'Paragraph(s)':
 generated_ipsum = lorem.paragraphs(num)
 return render_template('home.html', generated_ipsum=
 generated_ipsum)
 else:
 return render_template('home.html')

Try It Out: Replace the code in app.py with the code from Flask-project-
completed/app.py into the file and save it. Start the development server to view
and try the generator. Notice that when the Lorem ipsum is generated, the URL
for the app changes to the /ipsum route (see Figure 10.3).

184	 Chapter 10 ■ Create and Debug a Flask App

In most cases, a Flask app contains multiple pages. In this case, you can create
multiple templates, one for each page. In addition, each template likely shares
some common elements such as a header, footer, and menu. Rather than rewrite
the entire HTML structure in each template, the templates inherit such common
elements. This process is referred to as template inheritance. Template inheri-
tance enables you to define a base template and then build upon that base with
page-specific additions. Template inheritance is a feature of Jinja, the template
engine Flask uses to render templates. The base template includes all common
elements of each page that’s within the app. Within each template are block
tags (e.g., {% block <name> %} and {% endblock %}), which define blocks that
child templates can override. For more information on template inheritance,
visit flask.palletsprojects.com/en/1.1.x/patterns/templateinheritance/.

Debug the Flask App

Debugging functionality in Visual Studio Code extends to debugging Flask
apps. The Python extension provides a Flask run configuration, which tells
Visual Studio Code to run python -m flask when the debugger starts. To cre-
ate a debug configuration for Flask, follow these steps:

1.	 In the Run view, select Create A launch.json File.

2.	 Select Flask from the drop-down for the debug configuration (see
Figure 10.4). Selecting Flask populates a new launch.json file with the
Flask run configuration template.

3.	 Enter the path to the application (e.g., app.py).

Figure 10.3: Lorem ipsum app with generated Lorem ipsum. The URL address reflects the
/ipsum route.

https://flask.palletsprojects.com/en/1.1.x/patterns/templateinheritance/

	 Chapter 10 ■ Create and Debug a Flask App	 185

Here is the configuration:

{
 // Use IntelliSense to learn about possible attributes.
 // Hover to view descriptions of existing attributes.
 // �For more information, visit: https://go.microsoft.com/

fwlink/?linkid=830387
 "version": "0.2.0",
 "configurations": [
 {
 "name": "Python: Flask",
 "type": "python",
 "request": "launch",
 "module": "flask",
 "env": {
 "FLASK_APP": "app.py",
 "FLASK_ENV": "development",
 "FLASK_DEBUG": "0"
 },
 "args": [
 "run",
 "--no-debugger"
],
 "jinja": true
 }
]
}

The configuration defines the FLASK_APP environment variable in the env
property to identify the startup file. The default startup file is app.py. You can
change the value of FLASK_APP in the env property if you’re using a different
filename. You can also change the host and/or port using the args array.

Once launch.json is saved, the debug configuration appears in the debug
configuration drop-down list.

Figure 10.4: Flask is selected in the debug configuration drop-down menu.

186	 Chapter 10 ■ Create and Debug a Flask App

Try It Out: Create a debug configuration for Flask as described earlier.

Before starting a debug session, ensure that the app is not currently running
in the terminal. Otherwise, the app continues to own the port. If the debug con-
figuration is set to use the same port, you won’t see any activity in the app being
debugged as the original running app handles all of the requests. Furthermore,
the program won’t stop at breakpoints. When you are ready to start the debug
session, select the Python: Flask configuration from the list (see Figure 10.5).

When the debugger starts, output appears in the Python Debug Console
terminal. In the terminal, Cmd+click/Ctrl+click the address to open the browser
and navigate to the app. You can use the debug commands and Run view panels
as described in Chapter 5, “Debugging.”

Try It Out: Set a breakpoint at the first line of code in the ipsum() function.
Next, select Python: Flask as the debug configuration in the Run view and start
the debugger. When the debugger starts, click the URL in the terminal to view
the app in the browser. In the browser, enter the value 3 in the length field, select
Words as the output, and select Generate. After selecting Generate, navigate
back to Visual Studio Code. Step through the function to view how the vari-
able values in the Variable panel change at each step of the if output_format
== 'Word(s)' conditional statement. After the function execution is complete,
view the output in the browser (see Figure 10.6).

Figure 10.5: In the Run view, the selected debug configuration is the Python: Flask
configuration.

Figure 10.6: After the Debugger executes the if output_format == 'Words(s)'
conditional statement, the Variables panel in the Run view displays the values for the variables
generated_ipsum, num, and output_format.

	 Chapter 10 ■ Create and Debug a Flask App	 187

As you already learned in Chapter 5, when the editor pauses at a breakpoint,
you can use the Debug Console (Cmd+Shift+Y/Ctrl+Shift+Y) to try code in
the context of the program’s current state without stopping the debugger. This
feature is useful if you want to try potential fixes for bugs.

Summary

In this chapter, you learned how to do the following:

■■ Create a Flask app

■■ Create a route that defines the URL for a page within the Flask app

■■ Dynamically generate HTML with templates and pass Python variables
into an HTML template with the {{ }} character

■■ Create a POST request within an HTML file

■■ Pass a POST request into the route() decorator

■■ Create a launch.json file that uses the Flask debug configuration
template

■■ Debug a Flask app in the Run view

You now have a basic understanding of how to create and debug a simple
Flask app in Visual Studio Code.

C H A P T E R

189

11

A container is a reliable solution for running a project in any computing envi-
ronment. Inside a container is a packaged project and its dependencies, which
can be run anywhere. Thus, a containerized Python project enables you to run
a single service or an entire application environment while keeping everything
inside the container isolated from the host system. Attempting to run a project
locally that isn’t containerized may result in project dependencies that conflict
with what’s installed on your computer; you can anticipate this happening if
you’re working with a team of developers, as no two developers have the same
computer configurations.

Various platforms are available for containerizing projects. The platform
discussed in this chapter is named Docker, which is an open platform for devel-
oping, shipping, and running applications. Microsoft provides a Visual Studio
Code Docker extension, which makes it easy to create, manage, and debug
containerized applications. To learn more about Docker, visit docs.docker
.com/get-started/overview/.

Getting Started

Using Docker to containerize a project in Visual Studio Code requires Docker
Desktop, which is an application for building and sharing containerized appli-
cations. In the browser, navigate to www.docker.com/products/docker-desktop

Create and Deploy a Container
with Azure Container Registry

and Azure App Service

http://docs.docker.com/get-started/overview/
http://docs.docker.com/get-started/overview/
http://www.docker.com/products/docker-desktop

190	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

to download and install Docker Desktop. Once installed, verify the installation
by running the command docker -v in the command prompt. After verifying
Docker Desktop is installed, navigate to the Extensions view and install the
Docker extension. Ensure that you install the Docker extension by Microsoft
(see Figure 11.1).

The project example in this chapter uses the Flask framework to create a
website. The website template (the default view of which is in Figure 11.2) is
provided by Start Bootstrap, a resource for free, open-source, MIT-licensed
Bootstrap themes, templates, and code snippets. To learn more about Start
Bootstrap, visit startbootstrap.com.

The files within the Docker project folder are necessary for completing the exer-
cises in this project. The files within the folder will be containerized, debugged,

Figure 11.1: The Docker extension by Microsoft in the Extension Marketplace

Figure 11.2: The website created using Start Bootstrap with the Flask framework

http://startbootstrap.com

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 191

and deployed to Azure. To get started, open the Docker project folder in Visual
Studio Code. After opening the folder, create and activate a virtual environ-
ment. Finally, run the command pip install -r requirements.txt to install
the dependencies.

	 N OT E     To get started with Azure, refer to the appendix, “Getting Started with Azure.”

Create a Container

The basis of a container is called an image. You can think of an image as the
“blueprint” for a container. This blueprint is referred to as a Dockerfile. The
relationship between an image and a container is like that of a class and an
object. Like a class, a container is an instance of an image. This image includes
all the dependencies that should be in the container. The Dockerfile is a read-
only template that includes instructions for creating a Docker container. Images
must first be built before a container is run.

Add Docker Files to the Project
Before you can build the image, the project must at least contain the Dockerfile
and a requirements.txt file (i.e., a file for all app dependencies that is created
only if one does not exist). The Docker extension eliminates the need to cre-
ate the files manually. In Visual Studio Code, the Docker: Add Docker Files to
Workspace command initiates a prompt which guides you through the process of
creating the Dockerfiles. At the final prompt’s completion, the Docker extension
creates the Dockerfile, requirements.txt files, and a .dockerignore file. The
.dockerignore file reduces the image’s size by excluding files and folders that
aren’t needed, such as .git, .vscode, and pycache. You can learn more about
the Dockerfile by visiting docs.docker.com/engine/reference/builder/.

The initial prompt requests that you select the app type. The app types avail-
able for Python are Python: Django, Python: Flask, and Python: General (see
Figure 11.3).

Figure 11.3: The available app types are Python: Django, Python: Flask, and Python: General.

http://docs.docker.com/engine/reference/builder/

192	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

Next, the prompt requests that you enter the relative path for the app’s
entry point (this excludes the workspace folder you start from, as shown in
Figure 11.4). For Django apps, this path is commonly manage.py (root folder) or
subfolder_name/manage.py. For Flask apps, this is the path where you create
your Flask instance.

	 N OT E     You may also enter the path to a folder name as long as this folder includes a
__main__.py file.

For Django and Flask apps, you’re then prompted to specify the app port for
local development (see Figure 11.5). Django defaults to port 8000, while Flask
defaults to port 5000. In either case, any port will work. Visual Studio Code rec-
ommends selecting port 1024 or above to mitigate security issues from running
as a root user.

Finally, the prompt then requests that you select whether to include Docker
Compose files. For now, click No. To learn more about Docker Compose files,
read the section “Multicontainer Apps.”

Try It Out: Run the Docker: Add Docker Files to Workspace command to cre-
ate and add Docker files to the workspace. Select the following for the prompts:

■■ App type—Python: Flask

■■ App’s entry point—app.py

■■ App port—5000

■■ Include Docker Compose files—No

Figure 11.4: Select or enter the app’s entry point.

Figure 11.5: Enter the app port for local development.

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 193

For Django and Flask apps, Gunicorn is the default web server. Gunicorn
is referenced in the Dockerfile and included as a dependency in the require-
ments.txt file. Additional configuration in the Dockerfile may be necessary if
the following applies to your Django or Flask app:

■■ Django—If your project does not follow Django’s default project structure
(i.e., a workspace folder and wsgi.py file within a subfolder named the
same as the workspace), you must overwrite the Gunicorn entry point in
the Dockerfile to locate the correct wsgi.py file.

■■ Flask—If your Flask instance variable isn’t named app, you must change
the variable in the Dockerfile for the Gunicorn command line. The Docker
extension assumes that your Flask instance variable is named app.

Build an Image
After the Docker files are added to the workspace, you’re ready to build the
image. Each image consists of a series of layers. Layers make it efficient to upload
changes to an image to a container registry, given that you don’ have to upload
the entire image every time. Thus, only the layer with the changes is uploaded.
Layers are generated when a Docker image builds and reflects a change on an
image. For each command in the Dockerfile, a new layer is created, given that
each command causes the previous image to change.

In the Explorer view, right-click the Dockerfile and click Build Image. When
the build is complete, click the Docker icon (depicted as a whale, as shown in
Figure 11.6) in the Activity Bar to open the Docker Explorer. The Docker Explorer
lets you examine and manage Docker assets: containers, images, volumes, net-
works, and container registries. Panels within the explorer can be rearranged
by dragging a panel to a new position.

	 N OT E     If the Docker icon is not visible, click the trip dots (. . .) in the Activity Bar and
select Docker. If you do not see the triple dots, right-click the Activity Bar and select
Docker.

Figure 11.6: The Docker extension icon in the Activity Bar is a whale.

194	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

After the image build completes, the image is added to the Images panel, and
an alias (another name for the image) is created to reference the image (i.e., an
image tag). Within the Images panel, you can do the following:

■■ Prune—Removes all dangling images, which are layers that have no rela-
tionship to any tagged images. They no longer serve a purpose and con-
sume disk space (see Figure 11.7, A).

■■ Configure Explorer—Changes settings for the explorer (see Figure 11.7, B).

■■ Refresh—Refreshes the list of images (see Figure 11.7, C).

■■ Docker Help—Accesses Docker documentation, reviews/reports Docker
extension issues, and edits settings (see Figure 11.7, D).

Click the expand arrow to the left of the image to view the tag that states
when the image was last updated. Hovering over the tag provides the following
information about the image (see Figure 11.8):

■■ Image ID

■■ Size

Figure 11.7: Command within the Images panel

Figure 11.8: Additional information about the image displays on hover.

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 195

■■ Associated containers

■■ Exposed ports

The Docker desktop application syncs with the Docker extension activity.
When the Docker desktop application is opened, click Images to view the image.
Similar information available in the Docker Explorer view is available in the
Docker desktop application (see Figure 11.9).

Try It Out: In the Explorer view, right-click the Dockerfile and click Build
Image. After the image builds, navigate to the Docker Explorer to confirm the
image build.

Build and Run a Container
The final step is to build and run the container. In the Images panel, select the
drop-down next to the image to access its tag. Next, right-click the tag to access
the Run and Run Interactive commands (see Figure 11.10). The Run command
runs the app. The Run Interactive command enables you to execute commands
inside the container while it is still running. This option provides access to a
command prompt inside the running container.

Figure 11.9: The Docker desktop application contains similar information available in the
Docker Explorer.

Figure 11.10: The Run and Run Interactive commands are available when you right-click
the image tag.

196	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

Once run, the container is added to the Containers panel (see Figure 11.11,
A). The Containers panel provides similar commands to those provided for the
Images panel. One major difference for the top commands is that the Remove
icon removes stopped containers (see Figure 11.11, B). There is also an expanding
arrow to the left of the container’s name. Clicking this arrow provides access
to the container’s files (see Figure 11.11, C).

Additional commands are provided in the right-click menu:

■■ View Logs—Shows information logged by the container

■■ Attach Shell—Allows you to connect to a running container

■■ Inspect—Provides detailed low-level information on Docker objects inside
a .json file

■■ Open in Browser—Views a containerized web app in the browser

■■ Stop—Stops the container

■■ Restart—Restarts the container

■■ Remove—Removes the container

In the Docker desktop application, the Containers/Apps tab lists the running
container and the respective port. Additional commands are available to the
right of the container to complete the following:

■■ Open in Browser—Opens the app in the browser (see Figure 11.12, A)

■■ CLI—Opens the command-line interface to enter and run Docker com-
mands (see Figure 11.12, B)

■■ Stop—Stops the container (see Figure, 11.12, C)

■■ Restart—Restarts the container (see Figure 11.12, D)

■■ Delete—Deletes the container (see Figure 11.12, E)

Figure 11.11: Containers appear in the Containers panel. Additional commands for managing
containers are also available in the panel.

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 197

You can stop the container with the Stop command. If changes are made to
the app, build the image once more before you build and run the container.

Try It Out: Build and run the container. Once the container is added to the
Containers panel, right-click the container and select Open In Browser to view
the app in the browser (see Figure 11.13). It’ll take 15–20 seconds for the con-
tainer to start before the web server can respond.

Debug a Container

When you run the Docker: Add Docker Files to Workspace command, the
Docker extension creates a Docker launch configuration, which builds and runs
the container in debug mode. Debugging functionality in Visual Studio Code
extends to debugging containers. When the debugger starts, the Docker image
builds, the container runs, and the debugger stops at the breakpoint you place
in the app. For web apps, after the HTML content is returned, Visual Studio
Code opens the browser and displays the web app.

Try It Out: In app.py, place a breakpoint at @app.route('/')and start the
debugger using the Docker: Python – Flask configuration. After the debugger
pauses at the breakpoint, step over each line of the code until the editor opens
the browser to display the web app.

Push an Image to the Registry

Now that you’ve created a container image, you need somewhere to store the
container image. A container registry provides such a service. A container reg-
istry is a repository, or collection of repositories, used to store container images.
You can push changes to an image and pull an image to run from this registry.

Figure 11.12: Container commands within the Docker desktop application

Figure 11.13: Right-click the container and select Open In Browser.

198	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

There are two types of container registries: public and private. A public reg-
istry is basic in features but lacks the benefit of security and privacy provided
by that of a private registry. The Docker Hub is an example of a public registry,
which is appropriate for widely used base images (like that used in the project’s
Dockerfile) and open-source projects. Azure provides its own private registry
service, known as Azure Container Registry. Azure Container Registry provides
users with direct control of their Docker-compatible container images. What
makes this service private is that there is integrated security with Azure Active
Directory (Azure AD) authentication, role-based access control, Docker Content
Trust, and virtual network integration. With the Azure Container Registry
extension, you can create and push an image to a registry. For more information
about Azure Container Registry, visit docs.microsoft.com/azure/container-
registry/container-registry-intro.

Create an Azure Container Registry
The extension itself syncs with your Azure account by signing in to Azure. To sign
in to Azure, select the Azure view and click Sign In To Azure (see Figure 11.14).
The browser opens and prompts you to enter the credentials for your Azure
account. Upon successful sign-in, you can close the browser and return to Visual
Studio Code. The signed-in account displays in the Status Bar.

Try It Out: Sign in to Azure.

1.	 In the Azure view, click Sign In To Azure.

2.	 In the browser, enter your Azure credentials.

3.	 Close the browser and return to Visual Studio Code.

4.	 Check the Status Bar to confirm that you are signed in to Azure.

You can create an Azure Container Registry with the help of the Docker
extension. To create a registry, run the Azure Container Registry: Create Reg-
istry command. For the prompts, enter the following:

■■ Select the registry provider—Click Connect Registry.

■■ Select the provider for your registry—Click Azure.

Figure 11.14: The Azure view is accessed by clicking the Azure logo in the Status Bar. To sign in
to Azure, click Sign In To Azure.

https://docs.microsoft.com/azure/container-registry/container-registry-intro
https://docs.microsoft.com/azure/container-registry/container-registry-intro

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 199

■■ Registry name—Enter a name that is globally unique in Azure and con-
tains 5–50 alphanumeric characters.

■■ SKU—Click Basic.

■■ Resource group—Select or create a new resource group.

■■ Location—Select a region based on where users of your app reside.

The registry is then created in Azure. Once complete, a notification displays in
the editor to confirm that the registry was successfully created (see Figure 11.15).

After the registry is created, you can navigate to the Docker Explorer and
expand Registries to view the registry. See Figure 11.16.

Try It Out: Create an Azure Container Registry.

For each registry, you can right-click the registry to complete the following
actions:

■■ Delete registry—Deletes the registry permanently

■■ Open in portal—Opens the browser and navigates to the registry in the
Azure Portal

■■ View properties—Opens the registry properties in a JSON format

■■ Refresh—Refreshes the registry to reflect changes

Determine the Image’s Registry Location
After the registry is created, the next step is to push the local image to the reg-
istry. The first time you push an image, Visual Studio Code uploads each layer
the image is comprised of. For subsequent pushes to the registry, only changed
layers are updated.

Figure 11.15: The notification confirms that the registry was created successfully.

Figure 11.16: Expand the Registries panel to view the registry.

200	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

	 N OT E     For Django apps, the ALLOWED_HOSTS list in the settings.py file must
include the root URL to which you intend to deploy the app.

To push the image to the registry, run the Docker Images: Push command.
First, select the image group (see Figure 11.17).

Next, select the image (see Figure 11.18).

After, select the registry (see Figure 11.19).

Finally, enter a name for the tag (see Figure 11.20). The name should be the
registry name.

After the final step is complete, the image is pushed to the Azure Container
Registry. You can view upload progress in the Terminal window. This may take
some time, depending on your upload speed. As a reminder, the first time you
upload the image, you have to upload all the layers. Subsequent uploads will
be faster because you upload only those layers that have changed.

Figure 11.17: Select the image group in the prompt.

Figure 11.18: Select the image in the prompt.

Figure 11.19: Select the registry in the prompt.

Figure 11.20: Enter a name for the tag in the prompt.

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 201

Once the push is complete, you can view the image in the Docker Explorer.
To view, first navigate to the Docker Explorer. In the explorer, expand Regis-
tries ➪ Azure. Next, expand your subscription followed by the registry. Finally,
expand the registry to view the image. If the image does not appear, refresh the
Docker Explorer (see Figure 11.21).

Alternatively, you can right-click the image in the Docker Explorer and click
Push. Either method can be used for subsequent pushes to the registry.

When any image is pushed, Docker first checks its tag to determine where
to push the image. The Docker extension conveniently completes the tagging
for you.

Deploy the Container Image to Azure

Now that the image is pushed to the registry, the next step is to deploy the con-
tainer image to Azure. Deployment functionality is available within Visual Studio
Code using the Azure App Service extension. As explored in Chapter 9, “Deploy
a Django App to Azure App Service with the Azure App Service Extension,”
Azure App Service can host web apps. It can also host web apps in containers.

To deploy your image to a web app, you need to enable Admin access on
your registry in the Azure Portal. To do so, in the Docker Explorer right-click
the registry name and click Open In Portal (see Figure 11.22). This opens your
registry in the Azure Portal.

Figure 11.21: Right-click the registry and select Refresh to refresh the Docker Explorer.

Figure 11.22: Right-click the registry and click Open In Portal to open the
Azure portal in the browser.

202	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

Next, click Access Keys in the sidebar and then toggle the Admin User setting
to Enabled (see Figure 11.23).

A container can now be deployed from the Docker Explorer for an image in
the registry. In the Docker Explorer, expand Registries ➪ Azure. Next, expand
your image name until you see the image with the latest tag (see Figure 11.24).

After, right-click the image and click Deploy Image To Azure App Service
(see Figure 11.25).

Before deployment starts, a series of prompts displays. For the prompts,
enter the following:

■■ Name—Enter a name that is globally unique in Azure and contains 5–50
alphanumeric characters.

Figure 11.23: Toggle the Admin User setting to Enabled.

Figure 11.24: The latest tag displays when the image is expanded.

Figure 11.25: Right-click the image and select Deploy Image To Azure App Service.

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 203

■■ Resource Group—Select or create a new resource group.

■■ Linux App Service Plan—Select + Create New App Service Plan.

■■ App Service Plan Name—Enter a name for the App Service Plan.

■■ Pricing Tier—For this exercise, B1 is the least expensive plan that supports
Docker containers.

■■ Location—Select a region based on where users of your app reside.

After the prompts are completed, the App Service is created. Once complete,
a notification displays in the editor to confirm that the web app was successfully
created (see Figure 11.26).

Try It Out: Deploy the container image to Azure.

After the container image is deployed, you must add a setting named
WEBSITES_PORT to the App Service to specify the port on which the container is
listening. To set WEBSITES_PORT, first navigate to the Azure: App Service explorer.
Next, expand the new App Service. Then right-click Application Settings and
click Add New Setting (see Figure 11.27).

For the prompts, enter WEBSITES_PORT as the key and enter the port number
for the value. To view the setting, in the Azure: App Service explorer, expand
the App Service and click Application Settings (see Figure 11.28).

Figure 11.26: The notification states that the web app was successfully created.

Figure 11.27: Right-click Application Settings and click the Add New Setting.

204	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

Try It Out: In the Application Settings for the App Service, add a WEBSITES_PORT
setting and set the port to 5000.

When the settings change, the App Service restarts automatically. Alternatively,
you can right-click the App Service and click Restart. After the service has restarted,
you can browse to the site in the following ways:

■■ Browser—Enter the name of the site address (e.g., http://<name>
.azurewebsites.net).

■■ Output panel—Cmd+click/Ctrl+click the URL in the Output panel.

■■ Azure: App Service explorer—Right-click the App Service and click Browse
Website.

Try It Out: View the site in the browser.

	 N OT E     It may take 15–20 seconds for the changes to reflect on the site.

Now that the container is deployed, you can stream logs directly into Visual
Studio Code’s Output panel. To do so, right-click the app service in the Azure:
App Service explorer and click Start Streaming Logs (see Figure 11.29).

Figure 11.28: Expand the App Service followed by the Application Settings to view the setting.

Figure 11.29: Right-click the app service and click Start Streaming Logs to stream logs to the
Output panel in the editor.

http://<name>.azurewebsites.net
http://<name>.azurewebsites.net

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 205

Logging must be enabled before you can stream logs. If the editor prompts
to enable file logging and restart the app, then click Yes. After the app restarts,
click the Start Streaming Logs command again.

The Output panel first displays “Connecting to log stream. . .” followed by
the log output. You can refresh the app in the browser to generate more log
information. To stop streaming logs, right-click the app in Azure: App Service
and select Stop Streaming Logs.

Try It Out: Stream logs for the web app in Visual Studio Code.

Make Changes to the App and Deploy

In most cases, you can anticipate making changes to the app. When a change
occurs, you can redeploy the container to Azure App Service. Give this a try by
completing these instructions:

1.	 In the index.html file, modify the target launch date on line 41 to June
2022.

<p class="mb-5">We're working hard to finish the development of
this site. Our target launch date is June 2022!
Sign up for updates using the form below!</p>

2.	 Next, right-click the Dockerfile and click Build Image.

3.	 After, navigate to the Docker Explorer. In the explorer, right-click the
image under Images and click Push to start the workflow (see
Figure 11.30).

Figure 11.30: Right-click the image and click Push.

206	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

4.	 Complete the prompts within the workflow. Once the push starts, you
can see which layers are getting pushed again given that only changed
layers are pushed (see Figure 11.31).

5.	 In the Azure: App Service explorer, right-click the app service and click
Restart. Next, in the Azure: App Service explorer, right-click the app service
and click Restart (see Figure 11.32).

Multicontainer Apps

As your application becomes more complex, a viable solution for your app is
to create multiple containers, each dedicated to a singular function. Docker
insists that “each container should do one thing and do it well.” The reasons
are as follows:

■■ APIs and front ends may need to be scaled differently than databases.

■■ Separate containers let you version and update versions in isolation.

Figure 11.31: The Output panel logs which layers are getting pushed.

Figure 11.32: The web page in the browser reflects the changes
made to the target launch date.

	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry	 207

■■ You might use a container for the database locally, but use a managed
service for the database in production. Thus, you don’t want to ship your
database engine with your app.

■■ Running multiple processes requires a process manager (i.e., the container
starts only one process), which adds complexity to container startup/
shutdown.

The caveat of having an app with multiple containers is that containers run
one at time, which is likely not an ideal scenario for your app. To solve for this,
use Docker Compose to run all your containers at once. Compose is a tool that
enables you to define a multicontainer app in a single YAML file, which can
create and start all services with a single command. During the workflow to
add Docker files, click Yes when prompted to include Docker Compose files
(see Figure 11.33). You will need to verify the path to your wsgi.py file in the
Dockerfile to run the Command Up command successfully. When the Docker
files are later created, a docker-compose.yml and docker-compose.debug.yml
file are created.

Each file referenced requires a specific configuration to properly containerize
and run your app.

Summary

In this chapter, you learned how to do the following:

■■ Add Docker files to a project by running the command Docker: Add
Docker Files to Workspace.

■■ Build an image.

■■ Use the Docker Explorer to examine and manage Docker assets, including
containers, images, volumes, networks, and container registries.

■■ View an image’s ID, size, associated containers, and exposed ports in the
Images panel.

■■ View images in the Docker Desktop application.

■■ Build and run a container with the Run and Run Interactive commands.

■■ Debug a container with the Visual Studio Code debugger.

Figure 11.33: Select whether to include optional Docker Compose files.

208	 Chapter 11 ■ Create and Deploy a Container with Azure Container Registry

■■ Create an Azure Container Registry by running the command Azure
Container Registry: Create Registry .

■■ Access additional commands in the Docker Explorer for each registry,
repository, and tagged image.

■■ Tag and push Docker images to the registry by running the command
Images: Push. Alternatively, you can right-click the image in the Docker
Explorer and click Push.

■■ Deploy the container to Azure from the Docker Explorer.

■■ Redeploy a container to Azure after making changes to the app by first
rebuilding the Docker image and pushing the image to the registry. After,
restart the app service.

■■ Stream logs for the web app in Visual Studio Code.

You are now ready to create and deploy a container with Azure Container
Registry and Azure App Service.

C H A P T E R

209

12

Suppose you were tasked to develop a mobile e-commerce app to support your
employer’s omnichannel approach to engaging with customers. Like most
e-commerce apps, customers can view products, make purchases, and manage
their customer profile. Depending on how a customer engages with the app, a
workflow is triggered, whether that’s writing data to a data table or providing
a notification to the warehouse to kick off the supply chain workflow. You can
anticipate app usage to dynamically change and would, therefore, need a hosting
solution to scale to meet customer demand. Not to mention, spending less time
managing servers and configuring the flow of data would be ideal so that you can
focus more on the business logic. Serverless computing provides such a solution.

With serverless computing, servers are still used; however, a cloud provider such
as Azure manages the infrastructure. Furthermore, you’re only charged based on
usage. The mobile e-commerce app example represents several event-based trig-
gers, which could be managed with Azure Functions. Azure Functions provides
a serverless solution for executing snippets of code (referred to as a function) with
an event-based trigger. There are various use cases for functions such as executing
code at a scheduled time, responding to database changes, and even real-time bot
messaging to name a few. As requests increase, Azure Functions adjusts to the
demand by providing as many resources and function instances necessary. As
requests decrease, so do the resources that were added to support the demand.

Azure Functions can access and process data that is connected to the code with
input and output bindings. Bindings provide a configuration between a service

Deploy an Azure Function
Trigger by a Timer

210	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer

(or services) without the need to worry about data flow. In the mobile e-commerce
app example, customer profile data would be stored in a data table. As a customer
creates or modifies their profile in the app, a trigger would execute a function
to write to the mobile app’s data table. Writing to the mobile app’s data table is
possible with a mobile app binding. You can review the available bindings at
docs.microsoft.com/azure/azure-functions/functions-triggers-bindings.

Microsoft provides Azure Functions Core Tools, a command-line interface
to develop and test your function locally prior to deployment. Rather than
develop your function in the CLI, you can do so in Visual Studio Code with the
Azure Functions extension. The extension sits on top of the Azure Functions
Core Tools and offers a more user-friendly experience. Your local functions can
connect to live Azure services, and you can debug your functions on your local
computer using the full Azure Functions runtime. In this project, you’ll learn
how to create and deploy Azure Functions with the Visual Studio Code editor.
To get started with Azure, refer to Appendix A, “Getting Started with Azure.”

Getting Started

In this chapter, you will create a function that generates an output of the latest
three blog posts in the Visual Studio Code RSS feed. The function is triggered to
run daily at a defined time. The project example in this chapter uses Beautiful
Soup, a library that pulls data out of HTML and XML files. To learn more about
Beautiful Soup, visit www.crummy.com/software/BeautifulSoup/bs4/doc/.

Before you open Visual Studio Code, install Azure Functions Core Tools
following the instructions for your operating system at docs.microsoft.com/
azure/azure-functions/functions-run-local. Once installed, restart either
the terminal or Visual Studio Code. Next, confirm that Azure Functions Core
Tools is installed by running the command func in the terminal. If the terminal
returns the Azure Functions logo (you may need to scroll the output upward
to view), then the installation was successful (Figure 12.1).

Figure 12.1: The Azure Functions logo is returned in the output, which confirms that Azure
Functions Core Tools is installed.

http://docs.microsoft.com/azure/azure-functions/functions-triggers-bindings
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
http://docs.microsoft.com/azure/azure-functions/functions-run-local
http://docs.microsoft.com/azure/azure-functions/functions-run-local

	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer	 211

The file within the VSCode-RSS-feed folder is necessary for completing the
exercises in this project. The rss-feed.py file contains code that scrapes the
Visual Studio Code RSS feed and parses the data into a structured organized
output. To get started, open the VSCode-RSS-feed folder in Visual Studio
Code. After the folder is opened, create and activate a virtual environment.
Next, run the command pip install -r requirements.txt to install the
dependencies.

Finally, install the Azure Functions extension provided by Microsoft from
the Extension Marketplace.

Before you proceed with creating the Azure function, run the rss-feed.py
file to view the output of the code.

Output of the latest 3 Visual Studio Code articles (as of March 2021)

Title: Visual Studio Code February 2021
Updated: https://code.visualstudio.com/updates/v1_54
Published: 2021-03-04

Title: Visual Studio Code extension bisect utility
Updated: https://code.visualstudio.com/blogs/2021/02/16/extension-bisect
Published: 2021-02-16

Title: Visual Studio Code January 2021
Updated: https://code.visualstudio.com/updates/v1_53
Published: 2021-02-04

For this example, you’d want the code to run automatically. However, it
wouldn’t be efficient to run this function on a local machine 24/7. It would be
excessively expensive to provision a virtual machine or web app (App Service),
which also runs 24/7—especially for such a small snippet of code that runs
once daily. A better solution would be to deploy this function to the cloud and
let Azure manage your function code.

Create an Azure Function

The functions created by Azure Functions are created in a project folder
within the Functions section of the Azure view (Figure 12.2). The section
contains its own set of commands for managing a function. You can create
multiple functions for your project; however, only one function can be used
at a time.

212	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer

	 NOTE    Creating and modifying an Azure Function with Python is only supported using
the command line and Visual Studio Code (using the Azure Functions extension). To
learn how to create an Azure Function via the command line, view docs.microsoft
.com/azure/azure-functions/create-first-function-cli-python.

During the workflow in the editor, you’re prompted to select a template
for the function. The template provides sample code for creating a function
respective of your selected trigger. As you create your own function, use the
sample code as guidance and modify it as necessary to suit your needs. Your
code to be executed goes inside the main() function of the template. Since the
project in this chapter creates a function that runs on a schedule, you will use
the Timer trigger.

Try It Out: Create an Azure function using the Timer trigger.

1.	 In the Functions section of the Azure view, click the Create New Project
icon.

2.	 Next, select the VSCode-RSS-feed folder that is opened in the editor.

3.	 For the language, select Python.

4.	 Select Timer trigger as the template.

5.	 Next, enter a name for the function (e.g., rss-feed).

6.	 Finally, modify the CRON expression to */10 * * * * * to set the timer
interval to ten seconds instead of the default 5 minutes.

	 N OT E     A CRON expression is used to define the schedule for when the function trig-
gers. This string consists of six fields that represent a given schedule via patterns. This is
the syntax for a CRON expression:

 {second} {minute} {hour} {day} {month} {day-of-week}

For additional configurations for the Timer Trigger, view docs.microsoft.com/
azure/azure-functions/functions-bindings-timer.

When prompted, do not overwrite requirements.txt. Instead, manually
add azure.functions to the file. All dependencies must be included in
requirements.txt prior to deploying the function to Azure.

Figure 12.2: The Functions section within the Azure view

http://docs.microsoft.com/azure/azure-functions/create-first-function-cli-python
http://docs.microsoft.com/azure/azure-functions/create-first-function-cli-python
http://docs.microsoft.com/azure/azure-functions/functions-bindings-timer
http://docs.microsoft.com/azure/azure-functions/functions-bindings-timer

	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer	 213

After the function is created, a new folder that uses the function name is cre-
ated in the Functions section of the Azure view. Provided here is a description
of each file:

■■ init__.py—The code that’s run when the function is invoked, initially
provided by the template. This is where you’ll place your specific code.

■■ function.json—Defines the function’s trigger, bindings, and other
configuration settings.

■■ readme.md—Provides an overview of the TimerTrigger and how it works.

■■ sample.dat—A placeholder data file to demonstrate that you can have
other files in the folder.

In addition, new files are added to the project root (i.e., VSCode-RSS-feed).
To view the new files, navigate to the Explorer view. Provided here is a descrip-
tion of each file:

■■ .funcignore—A list of files that the function should ignore when deployed
to Azure.

■■ host.json—Global configuration options that affect all functions for a
Function App.

■■ proxies.json—Proxies configured for your app. A proxy is used to specify
endpoints for your Function App that are implemented by another resource.

■■ requirements.txt—A list of dependencies required to execute the function.

Invoke the Function Locally

At this stage, when __init__.py is active in the editor, you can press F5 in
Visual Studio Code to invoke the function in the debugger. This command
attaches to the Azure Functions host and uses the debug configuration that
Azure Functions created for you.

The first time you call the function in the editor, you are prompted to select
a storage account. Complete the workflow in the prompts to create the storage
account. Once the storage account is created, Visual Studio Code starts the
debugger and Azure Functions Core Tools. The function is then triggered respec-
tive of the schedule.

	 N OT E     The open-source emulator Azurite is not compatible with Azure Functions.
Therefore, a cloud account must be created for running the function locally.

214	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer

Each time the function is triggered, the string Python timer trigger function
ran at <time> is logged. If the function is late to trigger, the string The timer
is past due! is logged.

Try It Out: Make the __init__.py file active in the editor and start the debugger
by pressing F5. Create the storage account when prompted. Once the debugger
starts, view the output to confirm that the function triggers every 10 seconds
(Figure 12.3). You can refer to the output of the trigger for time confirmation.
After you are done, press Ctrl+C to stop Azure Functions Core Tools.

Add the Code to the Function

As mentioned, the code snippet to execute when the function is invoked goes
inside the main() function of the __init__.py file. Thus, add the import state-
ments from rss-feed.py at the top of the file and replace the code within the
main() function with the remaining code in rss-feed.py. When adding the
code snippet to the function, ensure that you also include any relevant import
statement(s) in the script.

Try It Out: Replace the entire contents of __init__.py with the code in rss-
feed.py. Then run the debugger to confirm that the code snippet triggers and
provides the output successfully.

The following code reflects the complete __init__.py after adding the code
from rss-feed.py:

import datetime
import logging

import azure.functions as func
import requests
from bs4 import BeautifulSoup

def main(mytimer: func.TimerRequest) -> None:
 headers = {

Figure 12.3: The output for the function shows that the trigger was successful in addition to
when the timer fired.

	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer	 215

 'Access-Control-Allow-Origin': '*',
 'Access-Control-Allow-Methods': 'GET',
 'Access-Control-Allow-Headers': 'Content-Type',
 'Access-Control-Max-Age': '3600',
 'User-Agent': 'Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:52.0) Gecko/
 20100101 Firefox/52.0'
 }

 url = "https://code.visualstudio.com/feed.xml"
 req = requests.get(url, headers)
 soup = BeautifulSoup(req.content, 'html.parser')

 article_list = []
 articles = soup.findAll('entry', limit=3)

 for a in articles:
 article_title = a.title.text
 article_link = a.id.text
 article_date = a.updated.text[:10]

 print ("Title: {}".format(article_title))
 print ("Updated: {}".format(article_link))
 print ("Published: {} \n".format(article_date))

Deploy the Function to Azure

Before the function is deployed to Azure, ensure that you list any files that
should not be included in the deployment within .funcignore. For this project,
the rss-feed.py file should be listed, as the function does not depend on this
file to execute. Provided here is an example of the files listed in .funcignore:

.git

.vscode
local.settings.json
test
.env
rss-feed.py

In addition, requirements.txt should reflect all dependencies for the code
snippet that is run when the function is called. For this project, the request and
Beautiful Soup libraries should be added to the file. Provided here is an example
of the dependencies listed in requirements.txt:

azure-functions
requests
bs4

216	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer

Try It Out: Modify the .funcignore and requirements.txt files in prepara-
tion for deploying the function to Azure.

The Functions section of the Azure view provides a Deploy To Function App
command for deploying the function to Azure (Figure 12.4).

When you’re ready to deploy the function, select the project in the Functions
section and click the Deploy icon. When prompted, select the folder that contains
the Function App followed by your Azure subscription. Next, click Create A
Function App in Azure. When you first created the function, the Function App
was created locally and wasn’t deployed to Azure. You now need to create a
Function App in Azure to continue with deployment. There is also an Advanced
option available, which gives you more control over the resources you create in
Azure (such as choosing the resource name instead of using the default provided
by Azure). However, do not select this option, as it is not necessary to complete
the exercises in this project.

The next step is to provide a globally unique name for the Function App. The
name must also be valid in a URL path. Azure validates whether this name exists
across all functions. Finally, select a runtime stack (i.e., your Python version)
and the appropriate region.

After the workflow is complete, Azure will begin the process to deploy the
function. You can follow the progress in the Status Bar at the bottom right of
the screen as well as in the Output console. It takes a few minutes for your
first deployment to complete; however, your subsequent deployments for the
function will happen faster. After the deployment is complete, the function
triggers at the defined interval.

Try It Out: Deploy the function to Azure.

There are three resources created in the Azure Portal once deployment is
complete:

■■ Function App—The Function App created, which contains a collection of
functions

■■ Storage Account—Contains all your Azure Storage data objects such as
blobs, files, queues, tables, and disks

■■ Application Insights—Displays data about your application

Figure 12.4: The Deploy To Function command reflects a horizontal line above an up arrow.

	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer	 217

The Function App resource is where you can find performance information
for the function. Within the Azure Portal, the Overview page for the Function
App provides key information to help you keep track of how the Function App
is performing. While enabled, the status of the web app is set to Running (see
Figure 12.5). You can stop the web app by clicking Stop in the top menu.

Given that a Function App can contain multiple functions, you can view met-
rics for a specific function by navigating to Functions and selecting the desired
function from the table (see Figure 12.6).

The Overview page provides Total Execution Count and Successful Execution
Count charts (see Figure 12.7). These charts are useful for keeping track with
how the function is performing.

Figure 12.5: The Essentials section of the Overview page provides the status of the function.

Figure 12.6: Click Functions to view a list of all functions within the Function App.

218	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer

The Monitor window provides more detailed information about each execu-
tion. On the Invocations tab, each individual execution is listed and includes
information such as the date, time, success, and duration for each execution
(see Figure 12.8).

The Logs tab provides output such as what is available in Visual Studio Code
when running the function (see Figure 12.9). So long as the function is enabled,
each execution is logged.

Figure 12.7: Total Execution Count and Successful Execution Count charts

Figure 12.8: The Invocations tab lists each individual execution along with information for the
execution such as data, time, success, and duration.

	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer	 219

As a reminder, for Python Azure Functions, you cannot modify the function
in the Azure Portal. Instead, you can make changes locally in Visual Studio
Code (and alternatively the command line). Within Visual Studio Code, make
the necessary changes and save the modified file(s). Next, in the Functions sec-
tion of the Azure view, select the project and then click the Deploy To Function
App command. The editor will prompt you to confirm overwriting the existing
deployment. Each time you make a subsequent deployment, you must over-
write the pre-existing ones for your changes to take effect. As mentioned, all
subsequent deployments should be quicker than your initial deployment. Once
the deployment is complete, your function triggers and reflects any changes
you’ve made.

The scenario provided in this project insists that the function should trigger
daily at a specified time. As written, the function triggers every ten seconds. If
you’re interested in modifying the CRON expression to trigger every day, feel
free to modify the schedule parameter in the function.json file. By default,
Azure Functions uses the Coordinate Universal Time (UTC) time zone. To
have your expression based on another time zone, create an app setting for the
function named WEBSITE_TIME_ZONE within the function.json file. The value
for the setting depends on the operating system in which the function runs.
Refer to docs.microsoft.com/azure/azure-functions/functions-bindings-
timer?#ncrontab-time-zones for instructions on how to determine the value for
your operating system. Once the app setting is created for WEBSITE_TIME_ZONE,
the time is adjusted for time changes in the respective time zone, including
daylight saving time and changes in standard time. As an example, the CRON
expression to trigger daily at 9 a.m. would be 0 * 9 * * *.

You incur a cost each time the function triggers. Given that the CRON expres-
sion for the function deployed in this chapter is configured to trigger every 10
seconds, you can quickly utilize your Azure credits. Therefore, be sure to clean
your Azure resources if you are no longer using the function. To do so, first
navigate to All Resources within the Azure Portal. Next, select the Function
App created in this chapter and click Delete in the top menu.

Figure 12.9: The Logs tab provides a log for each execution.

http://docs.microsoft.com/azure/azure-functions/functions-bindings-timer?#ncrontab-time-zones
http://docs.microsoft.com/azure/azure-functions/functions-bindings-timer?#ncrontab-time-zones

220	 Chapter 12 ■ Deploy an Azure Function Trigger by a Timer

Summary

In this chapter, you learned how to do the following:

■■ Create a function locally in Visual Studio Code with the Azure Functions
extension.

■■ Test the function in the editor using Azure Functions Core Tools and the
debugger.

■■ Define a CRON expression for your desired schedule.

■■ Prepare for deployment by adding relevant files to .funcignore and add-
ing dependencies to requirements.txt.

■■ Deploy and redeploy a function to Azure.

■■ View performance information for Azure Functions in the Azure Portal.

■■ Stop a Function App from running once deployed.

■■ Create an app setting for WEBSITE_TIME_ZONE to use a time zone different
than the default UTC.

221

A P P E N D I X

Deploying to Azure requires an Azure account. If you do not already have an
Azure account, you can create a free account at signup.azure.com. The Azure
free account includes the following:

■■ Free access to Azure products for 12 months

■■ A credit to spend for the first 30 days

■■ Access to more than 25 products that are always free

Sign-up requires a phone number, a credit card, and a Microsoft or GitHub
account. The credit card information is required for identity verification. You
won’t be charged for any services until you upgrade to a paid subscription. If
you do not have a Microsoft or GitHub account, you can create a free Microsoft
account instead when prompted to sign in during account creation. After your
account is created, you are taken to the Azure Portal (see Figure A.1).

Getting Started with Azure

http://signup.azure.com

222	 Getting Started with Azure

The Azure Portal is the online interface for managing your account and all
the resources you provision on Azure. You can access the Azure Portal at any
time by visiting portal.azure.com. As resources are used, the total credits
available for your account decreases according to the resource’s service plan.
Azure provides six pricing tiers:

Free—Intended to be used for development and testing purposes

Shared—Intended to be used for development and testing purposes

Basic—Designed for apps that have lower traffic requirements and don’t
need advanced autoscale and traffic management features

Standard—Designed for running production workloads

Premium—Designed to provide enhanced performance for production apps

Isolated—Designed to run mission-critical workloads that are required to
run in a virtual network

To learn more about pricing, visit azure.microsoft.com/pricing/.
Azure products are referred to as services. One exception is the Subscriptions

service, which is not an Azure product. Rather, it is a resource for monitoring
costs and billing. To access the Subscriptions service, search for subscriptions
in the search bar at the top of the portal (see Figure A.2).

Figure A.1: The home page for the Azure Portal

http://portal.azure.com
http://azure.microsoft.com/pricing/

	 Getting Started with Azure	 223

The Overview page for the Subscriptions service provides the remaining
balance for your account credits (see Figure A.3).

Figure A.2: Enter subscriptions into the search bar to access the service.

Figure A.3: The number of credits remaining for your account is available in the Subscriptions
overview.

224	 Getting Started with Azure

At a minimum, all Azure resources require the following:

■■ Subscription—Users can have multiple Azure subscriptions and/or access
to multiple subscriptions (such as those belonging to an organization).
Each subscription populates in a drop-down list. Select the subscription
in which the resource should be created.

■■ Name—The name must be unique. However, whether the name must be
globally unique across Azure is dependent on the scope of the resource.

■■ Resource Group—A resource group groups multiple resources together
so they can be managed as a single entity.

■■ Service Plan—The service plan determines the rate at which your Azure
account is charged per resource usage. All pricing tiers follow a “pay-as-
you-go” model.

■■ Location—The location, also referred to as a region, is a set of data centers
deployed within a latency-defined perimeter and connected through a
dedicated regional low-latency network. The location is selected based
on where users of your app reside. You also have the option to deploy
across multiple regions. Some Azure services are not available in all regions.
To explore resources available by region, visit azure.microsoft.com/
global-infrastructure/services/.

Because the project examples elsewhere in this book create billable resources,
it is suggested to delete the respective resource group to avoid incurring ongoing
costs. To do so, first navigate to the Azure Portal (portal.azure.com). Next,
select Resource Groups, followed by the resource used for the web app. On
the Resource Group page, select the Delete Resource Group command (see
Figure A.4).

For more information about Azure, visit azure.microsoft.com.

Figure A.4: Click the Delete Resource Group button to delete the resource group.

https://azure.microsoft.com/global-infrastructure/services/
https://azure.microsoft.com/global-infrastructure/services/
https://portal.azure.com
http://azure.microsoft.com

225

A
Access Keys, 202
Accounts icon, 136, 137, 138
Accounts menu, 138
Activity Bar, 5–6, 11, 14, 23, 27, 63, 75, 79,

109, 136, 144, 168, 192
Add Conditional Breakpoint, 94, 95
Add Configuration button, 102, 103
Add Inline Breakpoint, 89
Add Item button, 40
Add New Setting (Azure), 203
Admin access (Azure Portal), 201
Admin User setting, 202
All (pull requests), 146
All Resources (Azure), 219
app ports, specifying of, 192
application configuration class, 162
Application Insights (Azure), 216
Application Settings (Azure), 203, 204
app.py, 178, 179, 180, 181, 182, 183, 184,

185, 192, 197
apps

creating and debugging Flask app,
177–187

creating Django app, 161–163
defined, 161
multicontainer apps, 206–207
naming Django app, 165
naming Function App, 216
specifying app ports, 192

asgi.py file, 159
Assigned To Me (pull requests), 146
asterisk [*], use of, 124, 126
Atom, 3, 18
authentication, 136, 138, 198
authentication token, 131
Auto Save/Auto Save, 29, 43
auto-complete, 33, 36
autopep8 (formatter), 34, 38, 39, 40,

 41
Azure

creating Django project in VSC and
deploying to production with
Azure App Service, 157

creating free account on, 221
more information about, 224
pricing tiers, 222
products referred to as services, 222
requirements for all resources of,

224
Azure Active Directory (Azure AD), 76,

198
Azure App Service

All Resources, 219
Azure: App Service, 170, 174
Azure App Service: Create New Web

App, 170
Azure: App Service explorer, 203, 204,

206
Azure Functions, 209–210, 211

Index

226	 Index ■ A–C

Azure Portal, 201, 216, 217, 219,
222, 224

Azure view, 198, 211, 212, 216
configuring Linux Python app for, 168
Create A Function App in Azure, 216
Create New Web App, 170
creating and deploying a container

with, 189–208
Deploy Image To Azure App Service,

202
Deploy To Function App, 216
deploying Azure function trigger by

timer, 209–220
deploying container image to, 201–205
described, 168, 201
getting started with, 221–224
Invocations tab, 218
Logs tab, 218, 219
making changes to app and deploying,

205–206
Monitor window, 218
multicontainer apps, 206–207
Overview page, 217
Sign In To Azure, 168, 169, 198
Start Streaming Logs, 174, 175, 204
Successful Execution Count chart, 217,

218
Total Execution Count chart, 217, 218
using Django framework to create

website deployed by, 157, 16168
Azure Blob Storage, 166
Azure Container Registry, 198–199
Azure Functions

adding code to, 214–215
Azure Functions Core Tools, 210, 213
Azure Functions extension, 211
creating, 211–213
deploying function to, 215–219
described, 209–210, 211
invoking of locally, 213–214

Azure Portal, 201, 216, 217, 219, 222, 224
Azure view, 198, 211, 212, 216
Azurite, 213

B
Bandit (linter), 27, 42
Beautiful Soup, 210
Black (formatter), 34, 38, 39, 40, 41
branches

changes to repository files as made on,
143

Checkout Issue Branch, 151
code changes as often created on, 69
creating new ones, 143
display of check-out branch in Status

Bar, 64, 73
Local Pull Request Branches, 146
new branches as automatically

checked out, 69–70
publishing of to remote, 71
pushing, pulling, and syncing of to its

origin, 70
readme-update branch, 145
selecting target branch for repository,

144
staging and committing files in

Wikipedia_Chatbot project to
master branch, 68

Stop Working In Issue And Close Topic
Branch, 151

switching between, 143
Synchronize Changes icon as

displaying next to checked-out
branch, 74

topic branch, 151, 152
breakpoints. See also specific breakpoints

adding of, 84
disabling of, 87–88
features used during as on Activity

Bar, 5
forcing of, 85
removing of, 84, 88
selecting of, 86, 87
setting of, 84, 92, 113, 114, 129, 186, 197
triggering of, 93–95

Breakpoints panel, 86, 87
brew install python3 command, 22
Build Image (Dockerfile), 193, 195, 205

C
Call Stack panel (in debugger), 92–93
category/extension: setting, as syntax

for settings, 17
cd command, 161
cells, working with in Jupyter Notebook,

121–124
Change To Markdown icon, 121
changes, committing of, 66–69
Changes header, 66
Changes In Pull Request section,

145–146
Changes section, 65, 66

	 Index ■ C–D	 227

ChatBotAI library, 53, 62
Checkout Issue Branch, 151
circle_area.py file, 34, 35, 36, 42,

44, 45
circleArea method, 45
Clear All Output icon, 125
(CLI) command-line interface, 64, 139,

196, 210
Clone From GitHub, 152, 153
clone repository, 152–154
code, editing of, built-in features for, 33
code <folder> command, 4
Code Action, 34, 35
code cell modes, 120
code command, 4
code completion, 22, 27, 33, 35, 36, 123
code snippets, 33, 34, 47–48, 158, 190
CodeLens, 129, 130
collaboration

GitHub ranked as number-one
collaboration tool in Stack
Overflow Developer Survey 2020,
135

with Live Share, 80–82
Visual Studio Code as having built-in

support for, 3
Collapse All (E), 110
color themes, customization of, 18
command mode, 120, 121, 124, 125
Command Palette, 12–13, 56, 61
command-line interface (CLI), 64, 139,

196, 210
commands, naming convention of, 13
commit messages, 68, 69, 141, 143,

144, 151
conda environments, 25, 60–63, 105, 118
conda install -c anaconda

nbconvert command, 132
Configure Display Language command,

19
Configure Explorer (Docker), 194
“Congratulations” page (Django), 160
container

building and running of, 195–197
creating of, 191–197
debugging of, 197
defined, 189
deploying container image to Azure,

201–205
getting started in creating and

deploying, 189–191

image as basis of, 191
registries, 198

Containers panel, 196, 197
Containers/Apps tab (Docker), 196
Continue command (in debugger), 89,

90, 130
Coordinate Universal Time (UTC) time

zone, 219
Create A Function App in Azure, 216
Create A launch.json File (Flask), 101,

184
Create A Pull Request, 144, 145, 152
Create Issue, 148, 149
Create New Web App (Azure), 169, 170
Created By Me (pull requests), 146
CRON expression, 212, 219
currency converter interface, 135
customizations, 15–19

D
Data Flair, 135
Data Viewer, 127, 128
Debug All Tests (B), 109
Debug Cell CodeLens, 130
Debug Cell, in Jupyter Notebook, 129
Debug Configuration, 86, 213
Debug Console, 95, 96, 98–101, 114, 115,

186, 187
Debug Test, 113, 114
Debug toolbar, 89
debugging

Call Stack panel, 92–93
container, 197
debug commands, 89–92
Debug Console, 96, 98–101
defined, 83
Flask app, 184–187
Jupyter Notebook, 129–130
launch configurations, 101–104
logpoints, 95–96
overview, 83
starting a debug session, 84–88
tests, 113–115
triggering breakpoint, 93–95
Watch panel, 96–98

debugypy.breakpoint (), 85
declarations, 33, 35, 37–38, 122–123
Default Interpreter Path setting, 26
definitions, as built-in editing feature,

33, 36–37
Delete A Cell icon, 123

228	 Index ■ D–E

Delete Resource Group (Azure), 224
Deploy Image To Azure App Service,

202
Deploy To Function App, 216, 219
deployment functionality, 168, 201
Developer: Reload Window command,

62
development environment, 3, 4, 15, 18
Diff editor, 9, 71, 72, 73, 146, 155, 171
Disable Breakpoint, 88
Discover Tests (C), 107, 110
display language, customization of,

18–19
Django

configuring database in Django app,
163

creating app, 161–163
creating home page, 163–165
creating project, 159–161
creating website pages, 166–168
debugging applications of, 102
as defaulting to port 8000, 192
deploying to Azure, 168–175
described, 157
development server, 160
Django Project documentation, 163
Django-website folder, 158
Django-website-complete folder,

158
getting started deploying Django app

to Azure App Service, 157–158
Gunicorn as default web server for, 193
naming app, 165
relational databases supported by, 157

Docker
assets, 193
Build Image, 193, 195, 205
Configure Explorer, 194
Containers panel, 196
Containers/Apps tab, 196
Docker: Add Docker Files To

Workspace, 191, 192, 197
Docker Compose, 206
Docker Compose files, 192
Docker Content Trust, 198
Docker Desktop, 189–190
Docker Explorer, 193, 195, 199,

201, 202
Docker Explorer View, 195
Docker Help, 194

Docker Hub, 198
Docker Images: Push, 199
Docker: Python – Flask configuration,

197
docker -v command, 190
Dockerfile, 191, 205
extension icon, 193
getting started with, 189–191
Images panel, 194, 195
Open in Browser, 197
Prune, 194
Refresh, 194
Remove icon (Containers panel), 196
rule on containers, 206
Run, 195
Run Interactive, 195

dot character, 35, 36
dot icon, 28

E
Edit mode, 120, 122, 145
editing, 33, 80–82
editor

described, 7–11
Diff editor, 9, 71, 72, 73, 146, 155, 171
Keyboard Shortcuts editor, 18
Settings editor, 16, 17, 22, 23, 26, 39–40

editor groups, 10, 11
elif statement, 99
environments

conda environments, 25, 60–63, 105,
118

development environment, 3, 4, 15, 18
PATH environment, 4, 21
virtual environments. See virtual

environments
working with, 60–63

Essentials section (Azure), 217
ExchangeRate-API, 135
Existing: Specify The URI Of An

Existing Server, 131
Expand Image icon, 128
Explorer icon, 27, 75, 109
Explorer view, 6, 10, 23, 24, 28, 30, 53, 54,

55, 65, 66, 73, 152, 154, 156, 193, 195,
213. See also Test Explorer view

Export As icon, 132
Expression, 94, 95
Extension Marketplace, 5, 12, 14, 22, 23,

63, 75, 169, 190, 211

	 Index ■ E–I	 229

extensions, 14–15
Extract Method command, 44, 45–46
Extract Variable command, 44–45

F
Featured Contributions tab, 22
files

creating new Python file, 23–24
working with, 53–60

files.autoSave, 29, 43
Filter Rows, 127, 128
Flake8 (linter), 27, 41
Flask

creating and rendering template in,
180–184

creating of, 178–180
debugging applications of, 102,

184–187
as defaulting to port 5000, 192
getting started in creating app in,

177–178
Gunicorn as default web server for, 193
Python: Flask, 186
website created using Start Bootstrap

with Flask framework, 190
Flask class, 179
flask import statement, 180, 182
float method, 35–36
Focus Breadcrumbs command, 56
folders, working with, 60
formatting, 27, 33, 38–41
frames, defined, 92
fullname function, 41
.funcignore command, 213, 215, 216
function

adding code to, 214–215
creating, 211–213
defined, in Azure, 209
deploying of to Azure, 215–219
getting started in creating, 210–211
invoking of locally, 213–214

Function App, 213, 216, 217, 219
function call, 41, 45, 90, 92, 93, 165
Function/Extension: Action, as naming

convention, 13
function.json file, 213, 219

G
Gallup World Poll, 117
Generate (Flask), 186

Git: Add To .gitignore command, 68
Git: Checkout To command, 70
Git: Create Branch command, 69, 70
git fetch command, 140
Git: Initialize Repository command, 65
git pull command, 140
Git status bar, 64, 71
GitHub

authentication, 138
Clone From GitHub, 152, 153
clone repository, 152–154
creating account with, 135
overview, 135
Publish to GitHub, 139
publishing project to, 139–141
pushing changes to, 141–143
signing into, 136–137

GitHub Issues: Copy GitHub Permalink,
152

GitHub Issues: Create An Issue, 148
GitHub Issues: Create Issue From

Clipboard, 148, 149
GitHub Issues: Create Issue From

Selection, 148, 149
GitHub Issues: Open Permalink In

GitHub, 152
GitHub Pull Requests and Issues

extension
described, 74, 136
installation of, 138
managing issues with, 147–152
managing pull requests with, 143–147
publishing project to GitHub using,

139–141
GitHub Pull Requests: Create Pull

Request, 144
GitHub view, 144, 145, 150, 151, 152
.gitignore file, 68, 77, 141
Gunicorn, 193
gutter, definition and indicators, 71

H
home page, creating in Django, 163–165

I
icons, customization of, 18
if output_format == ‘Word(s)’

conditional statement, 186
image

as basis of container, 191

230	 Index ■ I–L

building of, 193–195
deploying container image to Azure,

201–205
determining image’s registry location,

199–201
pushing of to registry, 197–201

Images panel (Docker), 194, 195, 196
Import Jupyter Notebook command,

129
import statement, 34, 35, 45, 46, 165,

167, 179, 181, 182, 214
import_name argument, 179
_init__.py file, 107, 159, 162, 213, 214
Initialize Repository command, 64–65,

139
Insert Snippet command, 47
Integrated Development and Learning

Environment (IDLE), 3
integrated development environments

(IDEs), 3
integrated terminal, 11, 29, 30, 31, 61, 64,

131, 132, 136, 159, 160, 161, 179
IntelliSense, 27, 35, 102, 164
Interrupt Jupyter Kernel icon, 126
Invocations tab (Azure), 218
ipsum () function, 186
'/ipsum,' methods=['POST']

argument, 183
issues, managing of, 147–152

J
Jump to Cursor, 89
Jupyter Notebook

adding cells, 121–122
code cell modes, 120
connecting to remote server with,

130–131
creating and opening of, 118–120
Data Viewer, 127, 128
Debug Cell CodeLens, 130
debugging of, 129–130
editing cells, 122–123
Editor, 122–123
Existing: Specify The URI Of An

Existing Server, 131
Expand Image icon, 128
exploring a notebook, 131–132
Export As icon, 132
Filter Rows, 127, 128
Interrupt Jupyter Kernel icon, 126

Jupyter: Add Empty Cell to Notebook
File, 121

Jupyter: Debug Current File, 130
Jupyter: Delete All Notebook Editor

Cells, 123
Jupyter: Run All Notebook Cells, 124
Jupyter: Specify Local Or Remote

Jupyter Server For Connections,
131

Notebook Editor interface, 125
Overall Rank column, 128
overview, 117
Plot Viewer, 128–129
rearranging cells, 123
Restart Jupyter Kernel icon, 126
running cells, 124–126
Show Variable In Data Viewer icon,

127
Show Variables Active In Jupyter

Kernel icon, 126, 127
as Trusted or Not Trusted, 119–120
Variables panel, 126, 128
viewing plots, 128–129
viewing variables and data, 126–127

K
Kaggle, 117
keybindings, customization of, 18
keyboard shortcuts, 11, 12, 13, 23, 24, 39,

47, 54, 55, 56, 58, 59, 60, 73, 81, 84, 85,
89, 99, 120, 121, 122

Keyboard Shortcuts editor, 18

L
Language Pack, 18–19
language server, 34
launch configurations (in debugger),

101–104
launch.json file, 101, 102, 103, 184, 185
lightning icon, 107
linter, selection of, 26–27
linting, 33, 41–43
Linux, installing Python interpreter for,

22
Linux Python app, configuring of for

Azure App Service, 168
Live Share extension, 74–82
Local Pull Request Branches, 146
logpoints, 95–96
Logs tab (Azure), 218, 219

	 Index ■ L–P	 231

Lorem ipsum, defined, 177
Lorem ipsum generator, 178, 182–184
Lorem Text, 178
lorem-text methods, 182, 183

M
macOS, installing Python interpreter for,

22
main () function, 212, 214
Manage Trusted Extensions, 138
manage.py file, 159, 161, 192
MariaDB, 157
Markdown cells, 119, 121, 122, 123, 132
Marketplace, 14. See also Extension

Marketplace
Merge Commit (pull requests), 147
Merge Pull Request, 74, 147
Message bar, 67, 68, 69
microframework, 177
Microsoft

Azure Functions Core Tools, 210
Azure Functions extension, 211
Python Language Server, 34
Visual Studio Code Docket extension,

189, 190
Visual Studio Code (VS Code) as

product of, 4
migration, creating in Django app, 163
Minimap, 9
Monitor window (Azure), 218
More Actions menu, 14, 70, 72, 142, 143
mypy (linter), 27, 42
mysite/ file/directory, 159, 161
mysite/mysite folder, 162, 165, 166,

168
MySQL, 157

N
__name__ argument, 179
naming

of Django app, 165
of Function app, 165
Function/Extension: Action as

convention for, 13
of Python file, 24

nested conditional statements, 183
New File icon, 23, 24, 30
NewIssue.md file, 147, 149, 150
NewIssue.md tab, 148
Next Change icon, 72

Not Trusted notebook, 118, 119–120
Notebook Editor interface, 118, 119, 125

O
Open Changes icon, 8
Open Editors section, 28
Open In Browser (Docker), 196, 197
Open in Portal, 173, 199, 201
Open Settings (JSON) command, 17, 26
Oracle, 157
Output panel, 110, 111, 170, 173, 174,

175, 204, 205, 206
Output window, 64
Overall Rank column, 128
Overview page (Azure), 217
Overview page (Subscriptions service),

223

P
-p *test*.py argument, 107
panels/Panels area, 11, 29
PATH environment, adding Python to,

4, 21
PDF, exporting from Jupyter Notebook

to, 132, 313
permalinks, 152
pinned tab, 10
pip install nbconvert command,

132
pip install pytest, 106
pip install -r requirements.txt,

158, 178, 191, 210
Play button, 8, 29, 30, 31, 110, 124, 179,

180
Plot Viewer, 128–129
plots, 128–129
POST method, 182
PostgreSQL, 157
pow function, 36, 37
Previous Change icon, 72
print statement, 30, 37, 41, 45, 83, 90, 95
private registry (containers), 198
Problems panel, 34, 42, 83, 112
projects, management and collaboration

of, 53–82
prospector (linter), 27, 42
Prune (Docker), 194
public registry (containers), 198
Publish to GitHub, 139
pull requests

232	 Index ■ P–R

All, 146
Assigned To Me, 146
Changes In Pull Request section,

145–146
Create A Pull Request, 152
Created By Me, 146
Local Pull Request Branches, 146
managing of, 143–147
Merge Commit, 147
Merge Pull Request, 147
Pull Request tab, 145
Pull Request view, 146
Pull Requests section, 144, 146
in VSC, 74
Waiting For My Review, 146

push and merge commits, 73–74
PyCharm, 3
pycodestyle (pep 8) (linter), 27, 38, 42
pydocstyle (linter), 27, 42
pylama (linter), 27, 42
Pylint (linter), 26, 27, 31, 41, 42
Pyramid, debugging applications of,

102
pytest framework, 108, 112
pytest subfolder, 105, 107
Python 2.7, 21
Python 3.6, 21
Python Azure Functions, 219
Python: Configure Tests, 106, 107, 108
Python: Create New Blank Jupyter

Notebook, 118
Python: Discover Tests command, 107
Python: Django, as app type, 191
Python: Enable Linting command, 42
Python extension, 22–23, 33
Python file, 23–24, 27–31
Python: Flask, 186, 191
Python: General, 191
Python Interactive window, 130
Python interpreter, 21–22, 24–26, 61
python manage.py migrate, 163
python manage.py runserver, 161,

165, 166
Python Refactor: Extract Method

command, 45
Python Refactor: Sort Imports

command, 46
Python: Run Linting command, 41
Python: Run Python File In Terminal

command, 29, 31

Python: Select Interpreter command, 25,
27, 61

Python: Select Linter command, 27, 31,
42

Python Test Log, 111
Python timer trigger function, 214
python3 --version command, 21
python.testing.cwd, 106
python.testing.unitTestArgs

argument, 106, 107, 112

Q
Quick Fixes, 33, 34

R
Read-Eval-Print-Loop (REPL), 11, 98
readme-update branch, 145
refactoring, as built-in editing feature,

33, 34, 44–46
Refresh (Docker), 194
Refresh icon, 150
Registries panel, 199
registry, pushing of image to, 197–201
relational databases, supported by

Django, 157
remote server, connecting to with

Jupyter Notebook, 130–131
Remove icon (Containers panel), 196
render_template () method, 180,

181
REPL (Read-Eval-Print-Loop), 11, 98
Replace field, 59
repository

changes to repository files as made on
a branch, 142

initializing, 65–66
in publishing project in GitHub, 140

repository clone features, 152–154
requirements.txt file, 158, 169, 178,

191, 193, 213, 215, 216
Reset Settings menu option, 16
Resource Groups (Azure), 224
Restart command (in debugger), 92
Restart Jupyter Kernel icon, 126
return statement, 45, 96, 181
Review Mode, 144, 145
.Root Directory, 108, 109, 159, 162, 166,

168, 178, 181, 182
Rope library, 44
rss-feed.py file, 210, 211, 214, 215

	 Index ■ R–S	 233

Run (Docker), 195
Run All Cells icon, 124
Run All Tests (A), 109, 110
Run Below, in Jupyter Notebook, 129
Run Cell And Below, 125
Run Cell command, 124
Run Cell, in Jupyter Notebook, 129
Run Cells Above, 125
Run command, 29
Run Current Test File, 110
Run Failed Tests, 110
Run Interactive (Docker), 195
Run Python File In Terminal, 8, 30
Run Test File, 111
Run Test Method, 110, 111
Run to Cursor, 89
Run view, 86, 87
runserver command, 160, 161

S
schedule parameter, 219
Scikit-Learn, 153–154
SCM (source control manager), 63
Search view, 48
serverless computing, described, 209
services, as term for Azure products,

222
settings

Application Settings (Azure), 203, 204
customization of, 16–18
Open Settings (JSON) command, 26
Open Settings (JSON) icon, 17
Reset Settings menu option, 16
syntax for, 17
User settings, 16, 17, 61
Workspace settings, 16

Settings editor, 16, 17, 22, 23, 26, 39–40
settings.json file, 17, 22, 26, 34, 39,

40–41, 43, 62
settings.py file, 159, 162, 166, 167,

168, 200
Shell Command: Install ‘code’

command in Path command, 22
Show Breadcrumbs, 56
Show Test Output (D), 110, 111
Show Variable In Data Viewer icon, 127
Show Variables Active In Jupyter Kernel

icon, 126, 127
Side Bar, 6–7
Sign In To Azure, 168, 169, 198

Sign In To Use GitHub Pull Requests
And Issues, 136

Skeleton, defined, 182
snippets. See code snippets
Sort Imports command, 44, 46
source code, remotes, 70–71
source control

branches, 69–70
commit changes, 66–69
gutter indicators, 71
initializing repository, 65–66
overview, 63–64
pull requests, 74
push and merge commits, 73–74
view diffs, 71–73

Source Control icon, 63
source control manager (SCM), 63
Source Control view, 7, 8, 63, 64, 65, 66,

68, 70, 71, 73, 139, 140, 142,
143, 151

Split Editor Right icon, 9
SQLite, 157, 163
Stack Overflow Developer Survey 2020,

GitHub ranked as number-one
collaboration tool in, 135

Staged Changes section, 67
Start Bootstrap, 157–158, 190
Start Debugging, 85, 86, 103
Start Live Log Stream (Azure), 175
Start Streaming Logs (Azure), 174, 175,

204
Start Working On Issue, 151
static files/folders (in Django), 166–168
Status Bar, 5, 12, 24, 25, 64, 69, 70, 71, 73,

75, 76, 77, 78, 79, 107, 108, 109, 111,
113, 139, 143, 168–169, 198, 216

Step Into command (in debugger), 90–91
Step Out command (in debugger), 91
Step Over command (in debugger), 90,

130
stepping, 84
Stop command (in debugger), 91–92,

130
Stop Working In Issue And Close Topic

Branch, 151
Storage Account (Azure), 216
Sublime, 3, 18
Subscriptions service, 222, 223
Successful Execution Count chart

(Azure), 217, 218

234	 Index ■ S–Y

Synchronize Changes action, 71, 142
Synchronize Changes icon, 73, 74

T
template, creating and rendering of in

Flask, 180–184
template inheritance, defined, 184
Terminal window, 200
Test Explorer icon, 109
Test Explorer view, 109, 110, 111, 113
test_*.py, 108, 109
tests, 105–115
TeX, 132
time zones, Coordinate Universal Time

(UTC) time zone, 219
Timeline view, 154–156
Timer trigger, 212
timer trigger function ran at

<times>, 214
times_two () function, 89, 90, 91, 92,

93
times_two.py, 80, 86, 89, 92
Tkinter, 135
Toggle Collapse and Expand icon,

48
Toggle Inline View menu, 72
Toggle Search Details, 48
total += (num * 2) statement, 91
Total Execution Count chart (Azure),

217, 218
Triangles folder, 105
trigger extension commands, 12
triple dot icon, 14, 144, 193
Trusted notebook, 119–120

U
UI (user interface), 4–12
unit testing, 105–115
untracked changes, 65
urls.py file, 159, 165
Use Regular Expression icon, 48
user interface (UI), 4–12

User settings, 16, 17, 61
(UTC) Coordinate Universal Time, 219

V
Variables panel, 88, 90, 91, 93, 95, 96, 100,

101, 126, 128, 186
view diffs, 71–73
views, as defined in Django app, 165
Views And More Actions icon, 65
Vim, 18
virtual environments, 61, 62, 67, 68, 83,

118, 136, 158, 178, 191, 210
Visual Studio Code Marketplace, 14. See

also Extension Marketplace
Visual Studio Code (VS Code)

customizations, 15–19
extensions, 14–15
installation of, 4
new versions of, 3, 4
overview, 3–4
source code for, 3
user interface (UI), 4–12

VS Code Insiders build, 4

W
Waiting For My Review (pull requests),

146
Watch panel (in debugger), 96–98
Web Server Gateway Interface (WSGI),

177
WhiteNoise, 158, 166, 167
Wikipedia library, 53
Windows, installing Python interpreter

for, 22
Words (Flask), 186
Workspace settings, 16
World Happiness Report 2019, 117
wsgi.py file, 159, 168, 173, 193

Y
YAML files, 207
YAPF (formatter), 34, 39, 40, 41

WILEY END USER LICENSE
AGREEMENT

Go to www.wiley.com/go/eula to access Wiley’s ebook
EULA.

http://www.wiley.com/go/eula

	Cover
	Title Page
	Copyright Page
	About the Author
	About the Technical Editor
	Acknowledgments
	Contents at a Glance
	Contents
	Introduction
	Who Will Benefit Most from This Book

	Part 1 Welcome to Visual Studio Code
	Chapter 1 Getting Started
	Installing Visual Studio Code
	The Visual Studio Code User Interface
	Activity Bar
	Side Bar
	Editor
	Panels
	Status Bar

	Command Palette
	Extensions
	Customizations
	Settings
	Color Themes and Icons
	Keybindings
	Display Language

	Summary

	Chapter 2 Hello World for Python
	Installing a Python Interpreter
	macOS
	Linux
	Windows

	Installing the Python Extension for Visual Studio Code
	Creating a Python File
	Selecting an Interpreter
	Setting a Default Interpreter

	Selecting a Linter
	Editing a Python File
	Running a Python File
	Workflow Recap
	Summary

	Chapter 3 Editing Code
	Quick Fixes
	Code Completion, Definitions, and Declarations
	Formatting
	Edit Formatting Settings in the Settings Editor
	Edit Formatting Settings in settings.json

	Linting
	Enable and Disable Linting
	Run Linting
	Linting Settings

	Refactoring
	Extract Variable
	Extract Method
	Sort Imports

	Snippets
	Summary

	Part 2 Additional Visual Studio Code Features
	Chapter 4 Managing Projects and Collaboration
	Files and Folders
	Open a Project
	Navigate Files
	Search across Files
	Close a File or Folder

	Environments
	Virtual Environments
	Conda Environments

	Source Control
	Initialize a Repository
	Commit Changes
	Branches
	Remotes
	Gutter Indicators
	View Diffs
	Push and Merge Commits
	Pull Requests

	Live Share
	Install Live Share
	Sign In to Live Share
	Share a Project
	Join a Session
	Editing and Collaboration

	Summary

	Chapter 5 Debugging
	Starting a Debug Session
	Debug Commands
	Continue
	Step Over
	Step Into
	Step Out
	Stop
	Restart

	Call Stack
	Triggering a Breakpoint
	Logpoints
	Watch
	The Debug Console
	Launch Configurations
	Summary

	Chapter 6 Unit Testing
	Enable and Discover Tests
	Run Tests
	Debug Tests
	Summary

	Chapter 7 Jupyter Notebook
	Creating and Opening a Jupyter Notebook
	Code Cell Modes
	Adding Cells
	Editing Cells
	Running a Cell
	Running a Single Cell
	Running All Code Cells
	Running Cells Above and Below a Code Cell
	Additional Commands

	Viewing Variables and Data
	Viewing Plots
	Debugging a Jupyter Notebook
	Connecting to a Remote Server
	Exporting a Notebook
	Summary

	Chapter 8 Using Git and GitHub with Visual Studio Code
	Getting Started
	GitHub Pull Requests and Issues Extension
	Publish a Project to GitHub
	Push Changes to GitHub
	Manage Pull Requests and Issues
	Pull Requests
	Issues

	Clone Repository
	Timeline View
	Summary

	Chapter 9 Deploy a Django App to Azure App Service with the Azure App Service Extension
	Getting Started
	Creating a Django Project
	Creating an App
	Creating a Home Page
	Creating Website Pages
	Deploying to Azure
	Summary

	Chapter 10 Create and Debug a Flask App
	Getting Started
	Create a Flask App
	Create and Render a Template
	Debug the Flask App
	Summary

	Chapter 11 Create and Deploy a Container with Azure Container Registry and Azure App Service
	Getting Started
	Create a Container
	Add Docker Files to the Project
	Build an Image
	Build and Run a Container

	Debug a Container
	Push an Image to the Registry
	Create an Azure Container Registry
	Determine the Image’s Registry Location

	Deploy the Container Image to Azure
	Make Changes to the App and Deploy
	Multicontainer Apps
	Summary

	Chapter 12 Deploy an Azure FunctionTrigger by a Timer
	Getting Started
	Create an Azure Function
	Invoke the Function Locally
	Add the Code to the Function
	Deploy the Function to Azure
	Summary

	Appendix: Getting Started with Azure
	Index
	EULA

VISUAL
STUDIEO

