Tkinter GUI
Programming
by Example

Learn to create modern GUIs using Tkinter by building
real-world projects in Python

L1 Packh

Tkinter GUI Programming by Example

Learn to create modern GUIs using Tkinter by building
real-world projects in Python

David Love

Pack®

BIRMINGHAM - MUMBAI

Tkinter GUI Programming by
Example

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical
articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However,
the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt
Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to have been caused directly
or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in
this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

Commissioning Editor: Aaron Lazar

Acquisition Editor: Denim Pinto

Content Development Editor: Anugraha Arunagiri
Technical Editor: Subhalaxmi Nadar

Copy Editor: Safis Editing

Project Coordinator: Ulhas Kambali
Proofreader: Safis Editing

Indexer: Aishwarya Gangawane

Graphics: Tania Dutta

Production Coordinator: Arvindkumar Gupta

First published: April 2018
Production reference: 1240418

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78862-748-1

www . packtpub.com

http://www.packtpub.com

. Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and
videos, as well as industry leading tools to help you plan your personal development
and advance your career. For more information, please visit our website.

https://mapt.io/

Why subscribe?

Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.packtpub.con and as
a print book customer, you are entitled to a discount on the eBook copy. Get in touch
with us at service@packtpub.com for more details.

At waw.Packtpub.com, yOU can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books
and eBooks.

http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

David Love is a web developer from Kent, England. He has worked on a multitude of
different systems over his career. Programming languages in his arsenal include
Python, PHP, and JavaScript. He is well-trained in Linux server management and its
relevant technologies, including MySQL, PostgreSQL, NGINX, and supervisor.

David has written an e-book called Tkinter By Example, which is available for free
under a Creative Commons licenses and maintains an ever-growing blog post named
The Tkinter Cookbook, full of small examples on how to perform some specific tasks.

About the reviewer

Erik S. Rapert is a programmer and a twin who loves Linux and video games. He
lives in Dallas with his wife, who is also a software engineer. Erik has a wide range of
experience, which includes creating blinking LEDs using Arduino, building small
desktop apps using Python and Tkinter, web development with PHP or Ruby, and
developing cutting-edge virtual reality using C++. He has used a very broad range of
programming languages, but Python is one of his favorites.

Thank you William C. Slater for teaching me how to write software. Thank you Andrew Closson for being a teacher. Thank
you Ashley N. Tharp for being you.

Packt is searching for authors
like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.con and
apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an
author for, or submit your own idea.

http://authors.packtpub.com

Table of Contents

Title Page
Copyright and Credits

Tkinter GUI Programming by Example
Packt Upsell

Why subscribe?

PacktPub.com
Contributors

About the author
About the reviewer

Packt is searching for authors like you
Preface

wWho this book is for

What this book covers
To get the most out of this book

Download the example code files
Download the color images

Conventions used
Get in touch

Reviews
14 Meet Tkinter

Installation

How will the code be structured?
Geometry managers

pack

grid
place

To pack or to grid?
Getting going

Adding interactivity
Using variables

Our first try
Creating Tkinter-compatible variables

Using and updating

Fixing our application
Showing messages

Showing information with showinfo
Showing warnings or errors
Getting feedback from the user
Getting text input
Summary

2. Back to the Command Line – Basic Blackjack
Python's class system

Instances

Inheritance
Blackjack's classes

The Card class

The Deck class
The Hand class

The Game class and main loop
Command line versus GUI

Interactivity
Familiarity
Ease of use
Size and portability
Summary
3. Jack is Back in Style – the Blackjack GUI
Moving from the command line to a graphical interface

The Canvas widget
Creating a graphical blackjack game

Card, Deck, and Hand
The GameState class
The GameScreen class
Playing our game
Summary
4u The Finishing Touches – Sound and Animation

Python's module system
The blackjack packages

The casino package
The casino_sounds package

Setting up a virtual environment

Creating the package
The blackjack.py file

Initializing the GameWindow class
The GameScreen class
The GameState class
Choosing to hit
Choosing to stick
Running out of money
Finishing off
Summary

5. Creating a Highly Customizable Python Editor
The ttk submodule

Styling a tk widget
Styling a ttk widget
Ttk style inheritance

Beginning our text editor
Tkinter's event system

Binding an event
Overwriting default events
Generating events

Events in our text editor

A second top-level window

Summary

6. Color Me Impressed! – Adding Syntax Highlighting

Tkinter's indexing system
Getting the cursor's position

Named indexes
Special strings

Line endings
Horizontal movement
Vertical movement
Line beginning and end
Word beginning and end
Expanding our demo
Using tags

Searching text
Adding syntax highlighting to our text editor

The Highlighter class

Using our Highlighter class

The LineNumbers class

Using our LineNumbers class

Integrating our FindwWindow class

Using our FindwWindow class
Summary

7. Not Just for Restaurants – All About Menus
The Menu widget

A menu bar

A floating menu
Adding a menu bar to our text editor
Adding a context menu to our text editor
Handling files

Changing the syntax highlighting
Changing the editor's font

The Listbox widget

The Spinbox widget

Saving the user's choices
Changing the editor's color scheme
Summary

8. Talk Python to Me – a Chat Application

Creating a scrollable frame
Creating our FriendsList class
Creating our ChatWindow class
Creating our SmilieSelect class
Summary

9. Connecting – Getting Our Chat Client Online
Introduction to flask

Our first web page

Using JSON
The requests module

Sending a GET request

Sending a POST request
The sqlite3 module

Creating a database and table
Adding data to a SQLite database
Selecting data from a SQLite database
Linking flask and sqlite
Updating our FriendsList class
Creating the Requester class

Connecting our FriendsList to our web service

Connecting our ChatWindow
Updating our server to store conversations

Creating the Conversation class
Using the Conversation class in our server
Adding the new endpoints to our Requester
Updating our ChatWindow class to send requests to the server
Summary

1(). Making Friends – Finishing Our Chat Application
Using threads

Why use a thread with a GUI application?

Using a thread
Adding a Thread to our ChatWindow

Creating new endpoints
The ListeningThread class

Implementing the ListeningThread class in our ChatWindow
Allowing users to upload avatars

The AvatarWindow class
Adjusting the database

Adding server endpoints
Updating the FriendsList class

Manipulating images with PIL
Adding and blocking other users

New database table
Creating the server endpoints
Tying it all together

Summary

114 Wrapping Up – Packaging Our Applications to Share
Unexplored widgets

The LabelFrame widget
The Checkbutton and Radiobutton widgets
The OptionMenu and Combobox widgets

The Notebook widget
Packaging applications

Adjusting our text editor for portability

Preparing to package with setup.py
Installing our text editor

Cross-platform using Pip
Windows

Linux

mac0S

sSummary
Other Books You May Enjoy

Leave a review - let other readers know what you think

Preface

Welcome to Tkinter GUI Programming by Example. We will be exploring how to use
the Tkinter library, which is included alongside most Python installs. This framework
is very simple to use, and has a powerful event-handling system and an open license,
perfect for anyone who wishes to quickly write and share graphical applications.

Throughout this book, we will be creating three powerful desktop applications,
learning about the variety of widgets available in Tkinter. After we have these
applications polished, we will then learn how to share them with other people by
packaging them up for sharing. When you have finished this book, you will have in-
depth knowledge of Tkinter, its widgets, GUI-design principles, and packaging Python
projects.

Who this book is for

Do you have a great Python script, which runs via the command line that you wish
could have a nice user interface? Or, do you know of a problem which could be
resolved with a program containing a graphical interface? If so, this book is for you.
All you need is some basic Python knowledge—things such as function declarations, if
statements, for loops, and writing to files via the with statement. Everything else,
including the use of Python's class system, will be covered in as much detail as you
should need to complete each chapter.

What this book covers

chapter 1, Meet Tkinter, introduces us to the Tkinter library itself. We will look at
ensuring that it is installed, how to use its widget system, and how to display widgets
inside a window. Once the basics are down, we will have a play with some of the
easier widgets, including using a Label widget to display text and a Button widget to
provide interactivity.

chapter 2, Back to the Command Line — Basic Blackjack, has us return to our roots as
Python programmers and create a command-line only version of blackjack. This will
get us up to speed with the common situation where we a command-line application,
which we want to convert to a nicer interface. We will also discuss Python's class
system and how to structure an application for conversion to a graphical interface.

chapter 3, Jack is Back in Style — the Blackjack GUI, starts off the process of converting
command-line blackjack to a graphical application. We will learn about the powerful
Canvas widget and how we can use it to draw both shapes and images on the user's
screen. This chapter will end with us having a working game of blackjack with a
graphical interface.

chapter 4, The Finishing Touches — Sound and Animation, teaches how to use the
Canvas widget to create animations, which we will use to spruce up our game of
blackjack. Of course, animations wouldn't be complete without accompanying sounds,
so we will also have a look at how to play sound effects.

chapter 5, Creating a Highly Customizable Python Editor, begins our second
application, a text editor. We explore Tkinter's Text widget and its capabilities for
handling events. We will also look at the themed widgets, which come with Tkinter in
its ttk module, giving our applications a much more professional look.

chapter 6, Color Me Impressed! — Adding Syntax Highlighting, covers how we can use
Tkinter's tag system to affect different parts of certain widgets. We will be taking
advantage of this system to add syntax highlighting for the Python language to our text
editor. We will also explore the indexing system, which Tkinter uses to locate items
inside some of its widgets.

chapter 7, Not Just for Restaurants — All about Menus, teaches how we can add different
types of menu to our applications—from the top menu bar that most applications have,
to right-click context menus.

chapter 8, Talk Python to Me — a Chat Application, begins our third and final
application, an online instant messenger. We will learn how to plan the layout for a
more complicated application, then piece together all of the different components
needed for a chat program. We will also learn how to combine images and text by
implementing smileys into the chat.

chapter 9, Connecting — Getting our Chat Application Online, explains how we can use
web technologies, including flask, requests, and sqlite3, to get desktop GUI
applications communicating with the internet.

chapter 10, Making Friends — Finishing our Chat Application, covers adding a friend's
system and blocking system to improve socializing within our application. We will
also learn how to manipulate images in Python using PIL by introducing user avatars.
We will also learn why threads are great for computationally expensive or repeated
tasks inside a GUI application.

chapter 11, Wrapping Up — Packaging our Applications to Share, finishes off the book
by briefly covering some widgets, which we did not get the opportunity to use in our
three example application. Afterward, we will look at packaging a Python and Tkinter
application up for distribution among users of the three biggest desktop operating
systems, Windows, Linux, and macOS.

To get the most out of this book

This book assumes that you have:

e A basic understanding of the Python language and its syntax, including functions,
if statements, while and for loops, and file handling

e A computer (desktop or laptop) running Windows, Linux, or macOS, which has
Python version 3.6 (or higher) installed

e Pip and Virtualenv installed along with Python

e An internet connection to download any external dependencies, which will be
needed for our projects

Download the example code files

You can download the example code files for this book from your account at ww. packtpu
b.com. If you purchased this book EISeWhere, you can visit www . packtpub.com/support and
register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.

Select the SUPPORT tab.

Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

=

Once the file is downloaded, please make sure that you unzip or extract the folder
using the latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at nttps://github.com/PacktPublishing/
Tkinter-GUI-Programming-by-Example. In case there's an update to the COde, it will be updated on
the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at nttps://github.com/PacktPublishing/. Check them out!

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Tkinter-GUI-Programming-by-Example
https://github.com/PacktPublishing/

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in
this book. You can download it here: http://www.packtpub.com/sites/default/files/downloads/Tkinte

rGUIProgrammingbyExample_ColorImages.pdf.

http://www.packtpub.com/sites/default/files/downloads/TkinterGUIProgrammingbyExample_ColorImages.pdf

Conventions used

There are a number of text conventions used throughout this book.

codeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "To specify the position within the grid, the row, and co1umn keywords are
used."

A block of code is set as follows:

self.label_ text = tk.StringVvar()
self.label text.set("Choose One")

When we wish to draw your attention to a particular part of a code block, the relevant
lines or items are set in bold:

def say_hello(self):
message = "Hello there " + self.name_entry.get()
msghox.showinfo("Hello", message)

Any command-line input or output is written as follows:

>>> import tkinter
>>> tkinter.TkVersion

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an
example: "The last thing to do is to create the method that will be responsible for
placing it into our Tools menu."

0 Warnings or important notes appear like this.

9 Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedbackepacktpub.com and mention the book title in the subject
of your message. If you have questions about any aspect of this book, please email us
at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content,
mistakes do happen. If you have found a mistake in this book, we would be grateful if
you would report this to us. Please Visit ww.packtpub.con/submit-errata, Selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet,
we would be grateful if you would provide us with the location address or website
name. Please contact us at copyright@packtpub.con With a link to the material.

If you are interested in becoming an author: If there is a topic that you have
expertise in and you are interested in either writing or contributing to a book, please

ViSit authors.packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/

Reviews

Please leave a review. Once you have read and used this book, why not leave a review
on the site that you purchased it from? Potential readers can then see and use your
unbiased opinion to make purchase decisions, we at Packt can understand what you
think about our products, and our authors can see your feedback on their book. Thank
you!

For more information about Packt, please visit packtpub.con.

https://www.packtpub.com/

Meet Tkinter

Hello, and welcome to Tkinter GUI Programming by Example. In this book, we will
be building three real-world desktop applications using Python and Tkinter. You will
gain the knowledge to fully utilize Tkinter's vast array of widgets to create and lay out
any application you choose.

So why use Tkinter? Tkinter comes bundled with Python most of the time, meaning
there's no arduous installation process. It's also licensed under a free software license,
meaning, unlike some other GUI frameworks, there's no complicated licensing model
to battle against when you want to release your software to the outside world.

Tkinter is also very quick and easy to learn. Code can be written both procedurally or
using object-oriented practices (which is the preferred style for anything non-
experimental), and runs perfectly on any operating system supporting Python
development, including Windows, macOS, and Linux.

In this first chapter, we will cover the following topics:

Ensuring Tkinter is installed and available

Creating a main window in which to display your application
Laying out widgets inside the window via geometry managers
Creating widgets and displaying them inside your main window
Displaying static information via a 1abe1 widget

Creating interactivity with the sutton widget

Tying widgets to Python functions

Using Tkinter's special variables

Displaying pop-up messages easily

Getting information from the user

Installation

Most of the time, you will not need to install Tkinter as long as you have Python
installed. To check, open an instance of the interactive interpreter and type import
tkinter (Python 3) or import Tkinter (Python 2). If you don't see an error, then Tkinter is
already installed and you are ready to go! Some flavors of Linux will not come with
Tkinter by default, and if you receive an error message while performing the previous
step, search your distribution's package manager. On Debian-based distributions such
as Ubuntu, the package should be called pythons-tk. On RPM-based distributions,
including Fedora, you may instead find a package called pythons-tkinter.

Examples in this book will be written using Python 3.6.1 and Tkinter 8.6. I
recommend you also use these versions, or as close to them as possible, when
following along. To check your Tkinter version, open an interactive Python prompt
and type the following:

>>> import tkinter
>>> tkinter.TkVersion

Once you've got Tkinter installed and ready, we can move on to a brief overview of
how we will be structuring a Tkinter application and then dive in and write our first
program.

How will the code be
structured?

Tkinter exposes many classes. These are known as widgets. A widget is typically any
part of the application that needs to be drawn onto the screen, including the main
window.

A Tkinter application always needs to have a main window. This is what will be drawn
on the screen for the user to see. This is crucial for any GUI application, so much so
that if you do not define one, Tkinter will try to create one for you (though you should
never rely on this!). The widget that performs this job is called T«.

The T« widget exposes various window properties, such as the text within the top bar of
the application, the size of the application, its position on screen, whether it can be
resized, and even the icon which appears in the top right-hand corner (on Windows
only).

Because of this feature exposure, it is very common for the main class of an
application to inherit from the v« widget, though any Tkinter widget can be subclassed
to add program-specific functionality.

There is no set convention for what the subclass should be called. Some like to call it

root, Some choose app, and others (such as myself) prefer to name it after the program

itself. For example, a shopping list program would have a class called shoppingList that
inherits from v«. Bear this in mind when looking through other sources of information
on Tkinter.

Once you have a main window defined, you can begin adding other widgets into it. All
other widgets must belong to a parent which has the ability to display them, such as a
Tk or rrame. Each widget is only visible if its parent is. This allows us to group widgets
into different screens and show or hide groups of them as need be.

Widgets are placed into their parents using special functions called geometry
managers. There are three geometry managers available in Tkinter — pack, grid, and
place. Let's take a look at each of them in detail.

Geometry managers

Geometry managers serve the purpose of deciding where in the parent widget to render
its children. Each of the three geometry managers uses a different strategy and
therefore takes different arguments. Let's go over each one in detail, looking at how it
decides the positions of new widgets and what sort of arguments need to be provided.

pack

The pack geometry manager acts based on the concept of using up free space within the
parent widget. When packing, you can specify at which end of the free space to put the
widget, and how it will grow along with said free space (as the window itself grows
and shrinks). The geometry manager than assigns widgets into said free space, leaving
as little empty space as possible.

The pack geometry manager is primarily controlled by three keyword arguments:

e side: On which end of the available space do you want to place the widget? The
options are defined as constants within Tkinter, as Lert, ricuT, ToP, and sotTom.

e ri11: Do you want the widget to fill any available space around it? The options are
also constants: x or v. These are Cartesian, meaning x is horizontal and v is
vertical. If you want the widget to expand in both directions, use the sotx constant.

® expand: Should the widget resize when the window does? This argument is a
Boolean, so you can pass True or 1 to make the widget grow with the window.

These are not the only arguments that can be provided to pack; there are others which
handle things such as spacing, but these are the main ones you will use. The pack
geometry manager is somewhat difficult to explain, but tends to create very readable
code thanks to its use of words to describe positions.

The order in which widgets are packed matters greatly. Suppose you have two buttons
which you wish to stack vertically, with one underneath the other. The first button,
which you call pack(side=tk.sotTomM) On, will be at the very bottom of the main window.
The next widget, which is packed with side=tk.sotTomM, Will then appear above it. Bear
this in mind if your widgets appear to be out of order when using pack as your geometry
manager.

orid

The gric-—as the name suggests—treats the parent widget as a grid containing rows and
columns of cells. If you are familiar with spreadsheet software, grid will work in the
same way. The grid lines will not be visible, they are just conceptual.

To specify the position within the grid, the row and coiunn keywords are used. These
accept integer values and begin at o, not 1. A widget placed with grid(row=6, column=e)
will be to the left of a widget at grid(row=e, column=1). Underneath these would sit a
Widget placed at grid(row=1, column=0).

To make a widget span more than one cell, use columnspan for a horizontal size increase
and rowspan for a vertical increase. So, to make our hypothetical bottom widget sit
below both, the full argument set would be grid(row=1, column=e, columnspan=2).

By default, a widget will sit in the center of its assigned cell(s). In order to make the
widget touch the very edge of its cell, we can use the sticky argument. This argument
takes any number of four constants: v, s, g, and w. These are abbreviations for North,
South, East, and West. Passing in w or e will align the widget to the left or right,
respectively. s and n will align to the bottom and top.

These constants can be combined as desired, so ne will align top right and sw will sit the
widget bottom left.

If you wish for the widget to span the entire vertical space, use rs. Similarly, use ew to
stretch to the full size in the horizontal direction.

If you instead want the widget to fill the whole cell edge to edge, nsew will let you do
this.

The pack and grid are both intended to lay out the entire content of a parent widget and apply different logic to
decide where each new widget added should go. For this reason, they cannot be combined inside the same

0 parent. Once one widget is inserted using pack or grid, all other widgets must use the same geometry manager.
You can, however, pack widgets into one rrame, grid widgets into another, then pack/grid both of those rrame widgets
into the same parent.

place

Unlike pack and grid, which automatically calculate where each new widget is added,
place can be used in order to specify an exact location for a particular widget. piace
takes either x and y coordinates (in pixels) to specify an exact spot, which will not
change as the window is resized, or relative arguments to its parent, allowing the
widget to move with the size of the window.

To place a widget at (5, 10) within the window, you would write widget.place(x=5, y=10).
To keep a widget in the direct center, you would use widget.place(relx=0.5, rely=e.5).

place also takes sizing options, so to keep a widget at 50 percent width and 25 percent
height of the window, add (reiwidth=e.5, relheight=0.25).

place is rarely used in bigger applications due to its lack of flexibility. It can be
tiresome keeping track of exact coordinates for a widget, and as things change with the
application, widgets may resize, causing unintended overlapping.

For a smaller window with only one or two widgets — say a custom pop-up message —
place could be a viable choice of geometry manager, since it allows for very easy
centering of said widgets.

One thing to note is that piace can be used alongside pack or grid within the same parent
widget. This means that if you have just one widget which you need to put in a certain
location, you can do so quickly without having to restructure your already packed or
gridded widgets.

To pack or to grid?

Using pack versus grid in your application is mostly down to personal preference. There
doesn't seem to be a particularly dominant reason to use one over the other.

The main advantage of pack is the code tends to be very readable. pack uses words such
as left and top to make it clear where the programmer wants the widget to go.

When using pack, sections of the window are also split using frames to allow for much
greater control. When variables are named sensibly, this allows anyone changing the
code to know exactly which part of a window the widget will end up in (by its parent
rrame) and prevents them from having unexpected consequences when changing
widgets, such as resizing a widget in the top-left corner of an application, knocking a
widget at the bottom out of alignment.

9 The gria can also take advantage of rrame Widgets too, but this can sometimes cause alignment issues.

Finally, pack works out widget positions based mainly on the argument and the order in
which they are added. This means that when a new widget is added among existing
ones, it is usually quite easy to get it into the correct spot. Simply adjust the order in
which your widget.pack() calls occur. When using grid, you may need to change quite a
few row and column arguments in order to slot the widget where you need it and keep
everything else in their correct positions.

The great advantage of grid is its code simplicity to layout complexity ratio. Without
the need to split your application into frames, you can save many lines of code and lay
out a complicated window design with essentially just one line of code per widget.

You also don't need to worry about the order in which you add your widgets to their
parent as the numerical grid system will apply regardless.

In the end, both prove to be good tools for the job and there is no need to use one if
you prefer the other.

My personal preference is to use pack for main windows which may change quite a bit
during development, and sometimes grid for smaller windows or layouts which are
written in one go. Any additional windows for an application which would require
more than two rrame widget are often better off being managed by grid for simplicity's
sake.

Examples in this book will cover both grid and pack, so you will be able to practice both
and decide which you prefer.

Getting going

Now that we have the basic understanding of the concept of widgets and how to add
them into a window, it's time to put this into practice and make ourselves an
application!

As with almost all programming examples, we will start with a He110 wor1d application.
Don't feel cheated though, it will have interactive aspects too! Let's begin with the
most important step for any GUI application—showing a window. Start by opening
your choice of text editor or IDE and putting in the following code:

import tkinter as tk

class Window(tk.Tk):
def __init_ (self):
super().__init_ ()
self.title("Hello Tkinter™")

label = tk.Label(self, text="Hello World!")
label.pack(fill=tk.BOTH, expand=1, padx=100, pady=50)

if _npame_ == "_main__":
window = Window()
window.mainloop()

Let's break this first step down. We begin by importing Tkinter and giving it the alias
of tk for brevity. Every example in this book should include this line so that we have
access to all of Tkinter's widgets, including the main window.

Speaking of widgets, we begin this example by subclassing Tkinter's main window
widget—rk. Doing so allows us to change various aspects of it, including the title
which will display inside the window's top bar. We set the title to He11o Tkinter in this
example.

Next, we want to display some text within our window. To do this, we use a Label
widget. A rabe1 widget is typically non-interactive and is used to display either text or
an image.

When defining Tkinter widgets, the first argument is always the parent (sometimes
called master) which will hold the widget. We use seir to refer to our main window in
this case. Afterward, we have a vast array of keyword arguments to use in order to
change their properties. The text argument here will take a string which tells the label
what to display. Our label will say Hello World!

Now that we have two widgets, we need to place the label inside of our main window
(tk) so that they both display. To do this with Tkinter, we utilize one of the geometry
managers we covered earlier. For our first example, we will be using pack. Pack has
been given the following arguments:

e ri11: This tells the widget to take all the space in both directions

® expand: This tells the widget to expand when the window is resized

® padx: Padding (empty space) of 100 pixels in the x direction (left, right)
® pady: Padding of 50 pixels in the y direction (above, below)

With that, our ne11o wor1d is ready to run. In order to tell the main window to show
itself, we call the main100p method. This is all enclosed within the (hopefully familiar) ir
_name__ == "__main__" block. Utilizing this block allows widgets from one file to be
imported into another file for reuse without creating multiple main windows.

Execute the code via your preferred method and you should see a little window appear.
Congratulations! You have now written your first GUI application with Tkinter!:

x # HelloTkinter v A e

Hello World!

Our Hello World application

Adding interactivity

Of course, without any interactivity, this is just a message box. Let's add something for
the user to do with our application. Bring the source code back up and change the
_init__method to look like this:

class Window(tk.Tk):
def __init_ (self):
super().__init_ ()
self.title("Hello Tkinter")

self.label = tk.Label(self, text="Choose One")
self.label.pack(fill=tk.BOTH, expand=1, padx=100, pady=30)

hello_button = tk.Button(self, text="Say Hello",
command=self.say_hello)
hello_button.pack(side=tk.LEFT, padx=(20, 0), pady=(0, 20))

goodbye_button = tk.Button(self, text="Say Goodbye",
command=self.say_goodbye)
goodbye_button.pack(side=tk.RIGHT, padx=(0, 20), pady=(0, 20))

Our label has changed to say choose one to indicate that the user can now interact with
the application by selecting one of the two buttons to click. A button in Tkinter is
created by adding an instance of the sutton widget.

The sutton widget is exactly what you would imagine; something the user can click on
to execute a certain piece of code. The text displayed on a sutton is set via the text
attribute, much like with a Lave1, and the code to run when clicked is passed via the
command argument.

adding parentheses). This means your code will not behave as intended if you use commanda=runc() instead of

command=func.

0 Be sure to remember that the argument passed to command must be a function, and should not be called (by

Our two buttons are placed within our main window using pack. This time, we use the
side keyword argument. This tells the geometry manager where to place the item inside
the window. Our he11o_button Will go on the left, and our goodbye button will go on the
right.

We also use padx and pady to give some spacing around the buttons. When a single value
is given to these arguments, that amount of space will go on both sides. When a tuple
is passed instead, the format is (above, below) for pady and (left, right) for padx. You
will see in our example that both buttons have 20 pixels of padding below them; our
leftmost button has 20 pixels of padding to its left, and our rightmost has 20 pixels to
its right. This serves to keep the buttons from touching the edge of the window.

We now need to define the functions which will run when each button is pressed. Our
Say Hello button calls say_he110 and our Say Goodbye button calls say_goodbye. These are
both methods of our window class and so are prefixed with seir. Let's write the code for
these two methods now:

def say_hello(self):
self.label.configure(text="Hello World!")

def say_goodbye(self):
self.label.configure(text="Goodbye! \n (Closing in 2 seconds)")
self.after (2000, self.destroy)

In say_ne110, we will update the text of our label widget to ve11o world: as it was before.
We can change attributes of Tkinter widgets using the configure method. This then takes
a keyword argument and value, just like when we created them initially.

Our say_goodbye method will also update the label's text and then close the window after
two seconds. We achieve this using the arter method from our T« widget (which we
have subclassed into window). This method will call a piece of code after a certain
amount of time has elapsed (in milliseconds).

The destroy method can be called on any Tkinter widget, and will remove it from the
application. Destroying the main window will cause your application to exit, so use it
carefully.

Leave the if _name_ == "_main_" block as it was before and give this application a try.
Y ou should see now that both buttons will do something. It may not look like many
lines of code, but we have now covered quite a lot of the things a GUI application will
need to do. You may be getting the following output:

X 2 HeloTkinter v ~ @

Choose One

Say Hello Say Goodbye

Our application now with two buttons

We have provided user interactivity with sutton widgets and seen how to link a button
press to a piece of code. We've also covered updating elements of the user interface by
changing the text displayed in our rabe1 widget. Performing actions outside of the main
loop has also happened when we used the arter method to close the window. This is an
important aspect of GUI development, so we will revisit this later.

Using variables

Instead of using configure to repeatedly change the text within our label, wouldn't it be
better if we could assign a variable to it and just change this variable? The good news
is you can! The bad news? Regular Python variables aren't perfectly compatible with
Tkinter widgets. Shall we take a look?

Our first try

Let's give it a try the regular way. Open up your previous code and change it to look
like this:

class Window(tk.Tk):
def __init_ (self):
super().__init_ ()
self.title("Hello Tkinter")
self.label_text = "Choose One"

self.label = tk.Label(self, text=self.label_text)
self.label.pack(fill=tk.BOTH, expand=1, padx=100, pady=30)

hello_button = tk.Button(self, text="Say Hello",
command=self.say_hello)
hello_button.pack(side=tk.LEFT, padx=(20, 0), pady=(0, 20))

goodbye_button = tk.Button(self, text="Say Goodbye",
command=self.say_goodbye)
goodbye_button.pack(side=tk.RIGHT, padx=(0, 20), pady=(0, 20))

def say_hello(self):
self.label_text = "Hello World"

def say_goodbye(self):
self.label_ text="Goodbye! \n (Closing in 2 seconds)"
self.after (2000, self.destroy)

if __name__ == "__main__":
window = Window()
window.mainloop()

Give this code a whirl and click on your Say Hello button. Nothing happens. Now try
your Say Goodbye button. The label will not update, but the window will still close
after 2 seconds. This goes to show that the code written is not invalid, but will not
behave as we may expect it to.

Creating Tkinter-compatible
variables

So, how would we go about using a variable to update this label? Tkinter comes with
four built-in variable objects for us to handle different data types:

stringvar: This holds characters like a Python string.

mntvar: This holds an integer value.

poublevar: This holds a double value (a number with a decimal place).
Booleanvar: This holds a Boolean to act like a flag.

To create a variable, just instantiate it like any other class. These do not require any
arguments. For example:

| label_text = tk.Stringvar()

Using and updating

Since these variables are objects, we cannot assign to them a statement like 1abel_text

"Hello world!". Instead, each variable exposes a get and set method. Let's have a play
with these in the interactive shell:

>>> sV
>>> sV

>>> sv

'Hello

"Hello

>>> SvV.
>>> SV.

>>> from tkinter import *
>>> win = Tk()

= StringVvar()

<tkinter.StringVar object at 0x05F82D50>
>>> sv,

get()

.set("Hello World!")
>>> sv.

get()

World!'

set(sv.get() + " How's it going?")
get()

World! How's it going?"

These variables are passed to widgets inside their keyword arguments upon creation
(or at a later stage, using configure). The keyword arguments expecting these special
variables will usually end in var. In the case of a label, the argument is textvar.

Fixing our application

Let's get our Hello world application working as intended again using our new
knowledge of Tkinter variables. After setting the title, change the 1abe1_text property as
follows:

self.label_text = tk.Stringvar()
self.label text.set("Choose One")

Now, alter our other two methods like so:

def say_hello(self):
self.label_text.set("Hello World")

def say_goodbye(self):
self.label_text.set("Goodbye! \n (Closing in 2 seconds)")
self.after (2000, self.destroy)

Once again, run the application and click both buttons. Everything should now be all
working as before.

Great! We now know how to take advantage of Tkinter's special variables, and it's
super easy.

Showing messages

Often, a GUI application will need to tell the user something. Using what we have
learned at the moment, we could make several Labe1 widgets which update depending
on the results of some other functions. This would get tedious and take up a lot of
space within the application's window.

A much better way to achieve this is to use a pop-up window. These can be created
manually, but Tkinter also comes with a few pre-built pop-ups which are already laid
out and ready to display any message the programmer passes to them.

Let's adjust our Hello worid application to utilize these windows to display the chosen
message to the user.

Import the messagebox module with the following statement:

| import tkinter.messagebox as msgbox

Now update the non-init methods to utilize this module:

def say_hello(self):
msgbox.showinfo("Hello", "Hello World!")

def say_goodbye(self):
self.label_text.set("Window will close in 2 seconds")
msgbox.showinfo("Goodbye!", "Goodbye, it's been fun!")
self.after (2000, self.destroy)

Run this version of our application and try out both buttons.

Showing information with
showinfo

You should be able to see what the two arguments to showinfo do.

The first argument is the window's title bar text. If you didn't notice, click the Say
Hello button again — you should see the word Hello inside the title bar of the pop-up
window.

Clicking the Say Goodbye button will yield a pop-up message with Goodbye! in the
title bar.

The second argument is a string containing the information which will be written
inside the box.

The showinfo box contains just one button—an OK button. Clicking this button
dismisses the window:

fx b 4 Hello v A 6

Hello World!

A showinfo box

While a messagebox window is displayed, the main window is effectively paused. The
Say Goodbye button demonstrates this well. The line which tells the main window to
close after 2 seconds does not get executed until the messagebox is dismissed.

Try clicking the Say Goodbye button and waiting for more than 2 seconds. You will
see that the main window stays open until 2 seconds after you click OK to close the
messagebox window. This is important to remember.

If, for example, you are processing a large list of items and you wish to alert the user
to their status, it's best to wait until all of the items are processed before using showinfo.
If you put a showinfo box after each item, the user will have to continually close them in
order to allow the main window to continue processing.

Showing warnings or errors

If the information to convey is more serious, you can let the user know with showwarning.
If something goes wrong, tell the user with showerror instead.

Both of these function the same as the showinfo box that we have practiced but display a
different image inside the box.

Try Changing the showinfo in say_hello tO @ showwarning and the showinfo iN say_goodbye tO a
showerror t0 see what these boxes will look like.

Getting feedback from the user

Should you require something back from the user, Tkinter has four more message
boxes for you:

® askquestion
® askyesno

® askokcancel
°

askretrycancel

askquestion Will allow any question to be passed in and provides Yes and No answers.
These are returned to the program as the string literals "yes" and "no".

askyesno does the same, but will return 1 on Yes and nothing on No.

askokcancel provides OK and Cancel buttons to the user. OK returns 1 and
Cancel nothing.

askretrycancel provides Retry and Cancel buttons. Retry returns 1 and Cancel nothing.

Despite the seemingly large number of choices, these all do pretty much the same
thing. There doesn't seem to be much of a use case for askquestion OVer askyesno since
they provide the same button choices, but askquestion Will produce cleaner code thanks
to the return values.

Let's see askyesno in action within our xe11lo wor1d application.

Change the say_goodbye method to the following:

def say_goodbye(self):
if msgbox.askyesno("Close Window?", "Would you like to
close this window?"):
self.label_ text.set("Window will close in 2 seconds")
self.after (2000, self.destroy)
else:
msgbox.showinfo("Not Closing", "Great! This window
will stay open.")

Run this application and try clicking the say coodbye button. You will now be asked
whether you want to close the window. Give both No and Yes a try:

:x b 4 Close Window? v A e

@ Would you like to close this window?

....................................

Yes ! No

Our askyesno box

From the code for this function, you should see that the askyesno method can be treated
like a Boolean statement. If you don't like doing this in one go, you could always use a
variable such as the following:

close = msghbox.askyesno('"Close Window?", "Would you like to close this window?")

if close:
self.close()

Getting text input

We now know how to get Boolean information from our user, but what if we want to
get something more detailed, such as text?

Tkinter provides us with the perfect widget to do just this — entry.

An entry widget is a one-line text entry box which is put into a parent widget just like a
Label OT Button. The special Tkinter variables can be attached to an entry to make getting
the value out a breeze.

Why don't we add some personalization to our e1lo wor1d application? Grab your code
and adjust it to the following;:

class Window(tk.Tk):
def __init__ (self):
super().__init_ ()
self.title("Hello Tkinter")
self.label_text = tk.StringVar()
self.label_text.set("My Name Is: ")

self.name_text = tk.StringVar()

self.label = tk.Label(self, textvar=self.label_text)
self.label.pack(fill=tk.BOTH, expand=1, padx=100, pady=10)

self.name_entry = tk.Entry(self, textvar=self.name_text)
self.name_entry.pack(fill=tk.BOTH, expand=1, padx=20, pady=20)

hello_button = tk.Button(self, text="Say Hello",
command=self.say_hello)
hello_button.pack(side=tk.LEFT, padx=(20, 0), pady=(0, 20))

goodbye_button = tk.Button(self, text="Say Goodbye",
command=self.say_goodbye)
goodbye_button.pack(side=tk.RIGHT, padx=(0, 20), pady=(0, 20))

If you run this version of the code, you will now see a text box in which to enter your
name. As we enter our name in the entry widget, its value is automatically assigned to
the name_text stringvar thanks to the textvar kEYWOFd argument:

X » Hello Tkinter v A 6

My Name Is:

Say Hello Say Goodbye

Our application now with an Entry widget

The buttons will still function the same, however, so let's do something about that:

def say_hello(self):
message = "Hello there " + self.name_entry.get()
msgbox.showinfo("Hello", message)

def say_goodbye(self):
if msgbox.askyesno('"Close Window?", "Would you like to
close this window?"):
message = "Window will close in 2 seconds - goodybye " + self.name_text.get()
self.label_text.set(message)
self.after (2000, self.destroy)
else:
msgbox.showinfo("Not Closing", "Great! This window
will stay open.")

These functions demonstrate both of the ways we can now grab the value back out of
our entry widget. We can either call the get method of the entry itself, or grab the value
out of our stringvar (also with the get method).

If the entry box itself is the only part of your application which will need to use its
value, I would recommend just grabbing it directly via .get() and foregoing the use of a
stringvar. If, however, its value will be needed by other parts of your application, using
a stringvar is probably the best way. This allows you to use the set method to adjust its
value programmatically.

Summary

With this, our He110 wor1d application has taught us all we should need to know with
regard to basic GUI functionality. We have learned how to spawn a window
containing various GUI elements by utilizing Tkinter's built-in widgets. We can place
these widgets into the window using special functions called geometry managers, of
which we have three to choose from.

The messagebox module allows us to easily convey information to the user without
having to use any widgets within our main window, and can also be used to get
feedback from a user and control how our window will behave.

We've added three simple, but effective widgets to our arsenal (not including the main
window): the Labe1, for displaying static information; the sutton, which allows a user to
execute functions by clicking on it; and the entry, which gathers textual information
and allows for its use by our applications.

Next on our agenda is something a little different—a game of blackjack! By writing
this game, we will also cover a very common starting point among programmers
interested in GUI development: having a command-line application which could be
improved by becoming a graphical one. In order to do this, we will briefly step back to
the world of the CLI.

Back to the Command Line —
Basic Blackjack

Blackjack is a casino game involving just a deck of cards. The aim of the game is to
get as close as possible to a hand worth 21 points — but go over and you're out!

Number cards are worth their face value, picture cards are worth 10, and an ace is
worth either 1 or 11 depending on your other cards. Players are initially dealt two
cards and can either choose to hit (receive another card) or stick (submit their current
hand).

Players face off against the dealer, who has one card face down and one face up. When
all players have chosen to stick or are out (having a hand over 21), the winner is the
one with a hand closest to 21.

Why am I telling you about blackjack? Because we're going to make a blackjack game
using Tkinter! Not only will this chapter introduce you to powerful widgets, such as
the canvas and rrame widgets, but it will also teach something that I come across a lot in
the world of GUI programming—having a CLI program and the desire to make it a
GUI, but not knowing how.

We will begin with a simple CLI version of blackjack that is playable, then build the
interface around it, keeping the core functionality and logic the same.

Within this chapter, we will cover the following topics:

What a class is and how to create one in Python
How inheritance works

How to apply polymorphism

Using classes to model aspects of blackjack
Creating and exiting a game loop

Before we begin coding our blackjack game, it's important we clear up how object-
oriented programming works, since we will need to utilize classes even for the
command-line version of our game.

Python's class system

A class can be thought of as a way of assigning a name to a set of specific functions
and variables that are all associated with a common piece of an application.

The code for a class differs in two main ways from regular Python code.

Firstly, you will see the ciass keyword before the name of the class, followed by a
colon and an indented scope. This is the syntax for telling Python that everything
within this scope belongs to the class.

Secondly, all functions defined will have seif as their first argument (unless they are
static or class methods). This is automatically passed in via Python itself and so will
cause calls to the function to appear to need one fewer argument than the definition.

The purpose of the seir argument is to give each function (which, when in the scope of
a class, is known as a method instead) access to the instance's other attributes and
methods.

Certain types of variables called attributes are available when using classes. Attributes
function as regular variables do, but their scope extends to the class instance itself.
This means these variables can be shared among all functions defined within the class
without the need to use the gioba1 keyword.

Attributes are differentiated from regular variables by the use of seif. in front of them.
For example, the line age = 20 creates a variable called age, whereas seif.age = 20 creates
an attribute against the class instance.

Once you have determined which attributes and methods to bundle together into a
class, you can then create instances of it.

Instances

An instance is one particular implementation of a class. Each separate instance of the
same class can be completely independent from the others, or they can share attributes
if the need arises.

Python uses a method called __init__ in order to initialize each instance of a class. This
method can be used to set initial variables which differ between instances.

The easiest way to wrap your head around using classes is to see an example:

class Dog:
def __init_ (self, name):
self.name = name

def speak(self):
print("woof! My name is", self.name)

This code gives us a class called pog. The _init_ function of pog takes two arguments:
self and name.

The methods of a class require the first argument to be seir in order to give them
access to the instance's attributes. This argument is passed automatically, so you will
not need to worry about it. You will also see that the se1f argument is required for the
speak method too.

All arguments following seir are passed to the methods when calling them as normal.

Now, any instance of a bog has access to its attributes (name) and its methods (speak).
Let's create some instances of pog:

dog_one
dog_two

Dog('Rover')
Dog('Rex")

dog_one.speak()
dog_two.speak()

Run this code and you should see two lines printed:

Woof! My name is Rover
Woof! My name is Rex

Both pog instances have access to the same speak method, but each one calls it
differently based on its attributes. This is the core concept of a class instance in a
nutshell. The print function itself has been reused but has produced a slightly different
outcome depending on the instance's attributes.

The main reason we use classes so much in GUI development is the ability to inherit
the abilities of a widget but to better customize them to our particular application.
Inheritance in Python is very simple to do.

Inheritance

Inheritance is the idea that a class which is created off the back of another class can
use features from said other class. This subclass can also change them, or build upon
them as necessary.

Let's use inheritance to alter the behavior of some dogs. Add these new classes
underneath your pog class:

class Greyhound(Dog):
def __init_ (self, name):
super().__init__(name)

def speak(self):
print("Zoom! My name is", self.name)

def race(self, opponent):
print(self.name, "is running faster than", opponent.name)

class JackRussell(Dog):
def __init__ (self, name, color):
super().__init__(name)
self.color = color

def get_color(self):
print(self.name, "is", self.color)

In order to inherit from an existing class, we place its name in brackets after the name
of our new class. This ensures that ereyhound is a subclass of pog.

When initializing our creyhound instance, we can reuse the initializing code from our oog
class by accessing it via super(). Once again, the se1r argument is passed automatically,
so we only need to pass the name over to the __init__ function of pog. The name attribute
of our creyhound will be set using the code from oog, S0 we do not need to do anything
more in our init Of ereyhound.

The ereyhound class also demonstrates the ability to overwrite methods in the original
class by simply declaring another one with the same name. We redefine speak here so
that our more specific speak method of our creyhound will be called instead of the pog one
from any creyhound instance.

We can add new methods to the ereyhound class as normal. Here, we have added a race
method.

The race method demonstrates another important concept which occurs with using

classes: polymorphism. The argument passed to this method can be anything, since
Python is dynamically typed. This means that we can use any class instance which has
an attribute called name as the opponent in our race method. Since our pog class defines a
name attribute, we can use any kind of pog to race against our sreyhound.

The sackrusse11 class shows that additional, more specific attributes can be added onto
classes which derive from another within the init method. These attributes behave
as normal.

Let's try out these new classes. Remove the code regarding dog_one and dog_two and add
this in its place:
greyhound = Greyhound("Tessa")

jack_russell = JackRussell("Jack", "brown")
dog = Dog("Boris")

greyhound.speak()
jack_russell.speak()
dog.speak()

greyhound.race(jack_russell)
greyhound.race(dog)

jack_russell.get_color()

The preceding code first demonstrates that each oog still has the ability to speak, and
the creynound will speak differently to the others. Note that even though the sackrusse11
class does not have a speak method defined, it has acquired it from the base class — pog.

We then show that either type of bog will work for racing against the creyhound, since
both have a nane attribute.

Finally, we demonstrate that the sackrusse11 has access to its unique color attribute as
normal.

Try adding dog.get_color() after the sackrusse11 class call. You should get an
AttributeError, Since inheritance is only one way. sackrusse11 can call the pog speak
method, since the sackrussel1 inherits from it, but the pog class does not receive anything
back from the sackrusse11 class. This is important to remember when using
polymorphism to accept multiple classes as method arguments. Always ensure that the
method relies on attributes of the base class, not a specific attribute from a subclass.

Now that we have an understanding of how to write and use classes, we can begin
writing our blackjack game.

Blackjack's classes

We will begin by defining the classes which will be used in order to separate out
different aspects of the game of blackjack. We will model three of the components of
the game:

e card: A basic playing card. The card belongs to a suit and is worth a certain value.

® peck: A collection of cards. The deck shrinks as cards are drawn and contains 52
unique cards.

e and: Each player's assigned cards. A hand is what defines each player's score and
thus who wins.

Let's begin with the simplest concept—the carad.

The Card class

The card class will be the first class we define, as both of our other classes will need to
use it. Open up a new file and type the following code:

import random

class Card:
def __init_ (self, suit, value):
self.suit = suit
self.value = value

def __repr__(self):
return " of ".join((self.value, self.suit))

The only import we will need for our game is the randon module. This will allow us to
shuffle our virtual deck of cards at the beginning of every game.

Our first class will be one representing the playing cards. Each card will have a suit
(hearts, diamonds, spades, and clubs) and a value (ace to king). We define the _ repr__
function in order to change how the card is displayed when we call print on it. Our
function will return the value and the suit, for example, king of spades. This is all we
need to do for a card.

Next up, we need to create a peck of these card classes.

The Deck class

The peck will need to contain 52 unique cards and must be able to shuffle itself. It will
also need to be able to deal cards and decrease in size as cards are removed:

class Deck:
def __init_ (self):
self.cards = [Card(s, v) for s in ["Spades", "Clubs", "Hearts",
IIDlamondsll] -f:or V ln [IIAII, ll2l|, ||3|l’ |I4Il’ ”5”, IIGII,
II7I|, ”8", ll9l|, II10|I, IIJH’ IlQII’ IIKII]]

def shuffle(self):
if len(self.cards) > 1:
random.shuffle(self.cards)

def deal(self):
if len(self.cards) > 1:
return self.cards.pop(0)

When creating an instance of the peck, we simply need to have a collection of every
possible card. We achieve this using a list comprehension which contains lists of every
suit and value. We pass each combination over to the initialization for our card class to
create 52 unique card instances.

Our peck will need to be able to be shuffled, so that every game is different. We use the
shuffle function in the random library to do this for us. To avoid any potential errors, we
will only shuffle a deck which still has two or more cards in it, since shuffling one or
zero cards is pointless.

After shuffling, we will need to deal cards too. We utilize the pop function of a list
(which is the data structure holding our cards) to return the top card and remove it
from the deck so that it cannot be dealt again.

The final utility concept to be created for our game to work is the concept of a wand. All
players have a hand of cards, and each hand is worth a numerical value based on the
cards it contains.

The Hand class

A wand class will need to contain cards just like the peck class does. It will also be
assigned a value by the rules of the game based on which cards it contains.

Since the dealer's hand should only display one card, we also keep track of whether the
Hand belongs to the dealer to accommodate this rule:

class Hand:
def __init__ (self, dealer=False):
self.dealer = dealer
self.cards [1]
self.value 0

def add_card(self, card):
self.cards.append(card)

Much like the peck, a nand Will hold its cards as a list of card instances.
When adding a card to the hand, we simply add the card instance to our cards list.

Calculating the value of a Hand is where the rules of the game come into play the most:

def calculate_value(self):
self.value = 0
has_ace = False
for card in self.cards:
if card.value.isnumeric():
self.value += int(card.value)
else:
if card.value == "A":
has_ace = True
self.value += 11
else:
self.value += 10

if has_ace and self.value > 21:
self.value -= 10

def get_value(self):
self.calculate_value()
return self.value

We first initialize the value of the hand to ¢ and assume the player does not have an ace
(since these are a special case). We then loop through the card instances and try to add
their value as a number to the player's total.

If the card's value is not numerical, we will then check to see whether the card is an
ace. If it is, we begin by adding 11 to the hand's value and setting the has_ace flag to True.
If this increase of 11 points brings the hand's value over 21, we make the ace worth 1

point instead, and so subtract 10 from the hand's value.
If the card is not numerical or an ace, we simply add 10 to the hand's value.

We need some way for the game to display each hand's cards, so we use a simple
function to print each card in the hand, and the value of the player's hand too. The
dealer's first card is face down, so we print hidden instead:

def display(self):

if self.dealer:
print("hidden")
print(self.cards[1])

else:
for card in self.cards:

print(card)

print("value:", self.get_value())

Now that we have all of our underlying data structures written, it's time for the game
loop. This will be contained in a came class for simplicity's sake.

The Game class and main loop

We will define the game's main loop within the class __init_ method so that to begin
playing, we simply need to create an instance of this class:

class Game:
def __init_ (self):
playing = True

while playing:
self.deck = Deck()
self.deck.shuffle()

self.player_hand
self.dealer_hand

= Hand()

= Hand(dealer=True)

for i in range(2):
self.player_hand.add_card(self.deck.deal())
self.dealer_hand.add_card(self.deck.deal())

print("Your hand is:")
self.player_hand.display()
print()

print("Dealer's hand is:")
self.dealer_hand.display()

We start off our loop with a Boolean which will be used to track whether or not we are
still playing the game.

If we are, we need a shuffled peck and two rand instances—one for the dealer and one
for the player.

We use the range function to deal two cards each to the player and the dealer. Our dea1
method will return a card instance, which is passed to the add_card method of our
Hand Instances.

We now want to display the hands to our player. We can use the dispiay method on our
and instances to print this to the screen.

This marks the end of the code which needs to run at the beginning of every new
game. Now we enter a loop which will run until a winner is decided. We again control
this with a Boolean:

game_over = False

while not game_over:
player_has_blackjack, dealer_has_blackjack = self.check_for_blackjack()

We first need to check for blackjack. If either player has been dealt an ace and a

picture card, their hand will total 21, so they automatically win. Let's jump to the
function which does this:

def check_for_blackjack(self):
player = False
dealer = False
if self.player_hand.get_value() == 21:
player = True
if self.dealer_hand.get_value() == 21:
dealer = True

return player, dealer

We need to keep track of which player may have blackjack, so we will keep a Boolean
for the player and dealer.

Next, we need to check whether either's hand totals 21, which we will do using two if
statements. If either has a hand value of 21, their Boolean is changed to True.

If either of the Booleans are true, then we have a winner, and will print the winner to
the screen and continue, thus breaking us out of the game loop:

if player_has_blackjack or dealer_has_blackjack:
game_over = True
self.show_blackjack_results(player_has_blackjack, dealer_has_blackjack)
continue

To print the winner to the screen, we have another function named show_blackjack_results
which will handle displaying the correct winner:

def show_blackjack_results(self, player_has_blackjack,
dealer_has_blackjack):
if player_has_blackjack and dealer_has_blackjack:
print("Both players have blackjack! Draw!")

elif player_has_blackjack:
print("You have blackjack! You win!")

elif dealer_has_blackjack:
print("Dealer has blackjack! Dealer wins!")

If neither player had blackjack, the game loop will continue.

The player can now make a choice—whether or not to add more cards to their hand
(hit) or submit their current hand (stick):
choice = input("Please choose [Hit / Stick] ").lower ()

while choice not in ["h", "s", "hit", "stick"]:
choice = input("Please enter 'hit' or 'stick' (or H/S) ").lower()

We use the input function to collect a choice from the user. This will always return us a
string containing the text the user typed into the command line.

If you are following along with Python 2, make sure to use raw_input in place of input. In Python 2, input will try
and evaluate what is typed in, which is not what we need here.

Since we have a string, we can cast the user's input to lowercase using the 1ower
function to avoid having to check combinations of upper case and lower case when
parsing their reply.

If their input is not recognized, we will simply keep asking for it again until it is:

if choice in ['hit', 'h']:
self.player_hand.add_card(self.deck.deal())
self.player_hand.display()

Should the player choose to hit, they will need to add an extra card to their hand. This
is done in the same way as before—using dea1() and add_card().

Since their total has changed, we will now need to check whether they are over the
allowed limit of 21. We'll jump to a function which does this now:

def player_is_over(self):
return self.player_hand.get_value() > 21

This simple function merely checks whether the player's hand value is over 21 and
returns the information as a Boolean. Nothing too complicated here. Back to our main
loop:

if self.player_is_over():

print("You have lost!")
has_won = True

If the player’s hand has a value over 21, they have lost, so the game loop needs to break
and we set has_won t0 True (indicating that the dealer has won).

When the player decides to stick with their hand, it is time for their score to be
compared with the dealer's:

else:
print("Final Results")
print("Your hand:", self.player_hand.get_value())
print("Dealer's hand:", self.dealer_hand.get_value())

if self.player_hand.get_value() > self.dealer_hand.get_value():
print("You win!")

else:
print("Dealer Wins!")
has_won = True

We use the e1se statement here because we have already established that the user's
answer was either nit or stick, and we have just checked nit. This means we will only
get into this block when the user answers stick.

The value of both the player's and the dealer's hand are printed to the screen to give the
final results. We then compare the values of each hand to see which is higher.

If the player's hand is a higher value than the dealer's, we print vou win:. If the scores
are equal, then we have a tie, so we print tie!. Otherwise, the dealer must have a higher
hand than the player, so we show pealer wins!:

again = input("Play Again? [Y/N] ")

while again.lower() not in ["y", "n"]:
again = input("Please enter Y or N ")
if again.lower() == "n":

print("Thanks for playing!")
playing = False
else:
has_won = False

Outside of our while loop, we check whether the user wishes to play again.

We once again use the combination of 1ower and a while loop to ensure our answer is a
y OI n.

If the player answers with n, we thank them for playing and set our piaying Boolean to
False, thus breaking us out of the main game loop and ending the program.

If not, they must have answered y, so we set has_won t0 False and let our main loop run
again. This will take us right back to the top at seif.deck = peck() to set up a brand new
game.

To run this code, we simply create an instance of the came class:

if __name__ == "_ _main__":
game = Game()

Now we have a game, give it a play. While playing, be sure you can follow exactly
where you are in the game's main loop.

This version of blackjack is kept simple in order to give us a command-line application
which we can now convert to a GUI-based game. The dealer will never hit and there is
no concept of betting. Feel free to try and add these features yourself if you wish, or
carry on with the next chapter, where we will begin to add graphics by going back over
to the Tkinter library.

Command line versus GUI

Since we now have a working game, what is the motivation to continue with this
project? Isn't the command-line interface good enough for a lot of games?

Let's briefly compare the suitability of command-line interfaces versus graphical
interfaces for Python programs.

Interactivity

When creating a program which runs on the command line, there are essentially only
two ways to get input from the user.

The first is by parsing command-line arguments. These are the extra information
written on the same line when running an executable from the command line. For
example: pythons -i blackjack.py. Here, we have passed in a flag of -i telling the
interpreter to end in interactive mode, and the filename biackjack. py.

The second is the one which we have used throughout our blackjack game — input. The
input function allows the user to type anything in to the command line and returns this
as a string. As you may have noticed from our constant need to use the 1ower function
and a while loop to validate the user's choices, this is far from ideal.

Compare this to the various ways with which we collected information from the user
in chapter 1, Meet Tkinter. We replicated the input function's capabilities with an entry
widget. Whilst we could use multiple entry widgets and validation loops in a graphical
interface, this would not solve the problem.

In order to collect a choice of two options from the user, such as in the case of
choosing between hit and stick, we could simply use two buttons. This means the user
cannot pick an option which was not given.

When choosing to play again, it would make more sense to use one of the message box
windows to get the user's choice. The askyesno box seems like the perfect choice for this
job. This again removes the need to validate whether the user's answer is one we
expected.

Even if the command-line version of the game had a way of conveniently gathering
user input, there's also the question of familiarity.

Familiarity

While developers may be very used to using the command line to interact with
programs, the average user may not even know how to use it.

The majority of applications which people use come with some sort of graphical
interface. It is only usually very niche and specific tools which will come with only a
command-line interface.

If you want your applications to be accessible to as many people as possible, it is
worth creating a graphical interface to make as many people as possible feel familiar
when using them.

Ease of use

When a user needs help with a command-line-based application, they usually have two
options for documentation: a website or the command-line manual, also called man

pages.

Having to locate and read a web page in order to use an application could be
considered a lot of hassle, which could deter new users of an application.

Similarly, the man pages within a terminal can be difficult to navigate. It is not
intuitive how to search them for a specific keyword and the inability to scroll with a
mouse can be offputting to some people.

Within most GUI applications, you will likely see a menu bar at the top. Inside this
menu bar can often be found a Help option. This is a rather self-explanatory way for a
user to locate instructions on how to use a particular application. The developer also
has all of the tools to lay out this section of the application as they have for the main
application itself, so they can enable things such as mouse scrolling and hyperlinks to
make searching and navigating the help document very easy.

On the flip side of this, if an application has a huge number of different functions,
translating this into a graphical interface can get very messy. There may simply be too
many buttons and configuration choices to cram into a graphical window whilst
retaining all possible features. Something like the Git version control system comes to
mind here. Whilst graphical interfaces do exist, they can be much more complicated to
use than simply memorizing the command-line options.

Size and portability

The main advantage a command-line application has over a graphical one is the file
size. Without the need to include a graphical library and all of its code, a command-
line application can be significantly smaller. This not only allows for quicker
downloads, but the ability to package the application on smaller forms of physical
media.

Since all OSes will have a command-line interface by default, the potential issue of
incompatibilities between a user's system and the graphical library in use will also be
eliminated. Your application will also be able to run on machines which do not include
a means of drawing graphical windows, such as servers, ensuring it can be run by as
many users as possible.

Overall, the choice of interface for an application is largely down to what the
application itself does and its intended audience. If you are building a simple
application which you wish as many people as possible to use, then a graphical
interface seems to be the way to go.

If you are creating a specific and very complicated program which is tailored toward
people who are familiar enough with computers to not be intimidated by the command
line, then the time and disk space savings of a command-line interface could be of real
benefit.

Summary

In this chapter, we have gone over how to create and use classes in Python. We have
seen that they allow for code reuse by defining methods, but these methods can have

different outcomes depending on which attributes the particular instance of a class
holds.

We have briefly looked at the concept of polymorphism and how easy it is to do using
Python's dynamic typing.

Our basic command-line version of the blackjack game has been written and is fully
playable. We are now prepared to take this up to the next level in the following chapter
by utilizing some new Tkinter widgets.

The choice of interface options has been discussed so that we now know why learning
a graphical framework such as Tkinter is a good idea to allow for familiarity and ease
of use for our applications. This serves as our motivation for the next step with our
game, so that we may make it interesting and enjoyable for as many people as
possible.

Jack is Back in Style — the
Blackjack GUI

Now that we have a working game with a solid, reusable data structure in place, it's
time to take it to the next level by adding graphics. Not only will the graphics make the
game look so much nicer to play, but we can take advantage of the ease of taking user
input via graphical means.

At the end of this chapter, we will have the same blackjack game as before but with a
completely new look and feel.

In this chapter, we will cover the following:

Converting a CLI application to use a GUI

Collecting user input via sutton widgets

Creating images that can be used by Tkinter

Displaying images with a canvas widget

Controlling the layout using the pack geometry manager
Separating display logic from application logic

Moving from the command line
to a graphical interface

It is very common to see people asking for advice on how to move a command-line-
only application that they have already written to a graphical interface, for reasons
discussed at the end of the previous chapter, such as ease of use and familiarity.

How easy this is to do is largely dependent on the choice of data structure used within
the application. If the application's main logic is too intertwined with data collection
and storage, then porting can become a nightmare. If you find yourself with a
command-line application that you wish to convert, take the time to consider how
separable these two pieces are.

If you are not using classes, could you split certain pieces out into small, reusable
classes which could then be shared into a new file? Since classes are almost a necessity
for building graphical applications, it's a good idea to ensure that your current
application takes advantage of them before attempting to make it graphical.

If your application takes a lot of text input from the user via the input (Or raw_input)
function, think about what type of information you need from it. Since the input
function will always return a string, consider which information you may be casting to
an integer (via the int function), what is being treated as some sort of list (a big clue is
if you are asking the user to comma-separate words), and what things require the user
to enter a choice of predetermined responses.

Whilst numerical entries can be made using a text field (known as the entry widget to
Tkinter), there is also a numerical field known as the spinbox widget which will ensure
that the value entered is a number between a certain range.

Lists of multiple values can be collected in multiple ways depending on whether or not
the options are set by the developer or the user. If the options are limited, then a Listbox
widget will allow the user to select multiple options from a preset list, or the good old
checkbox widget could be used as well. If the user decides exactly what will be entered,
then the GUI programmer can use dynamically created widgets to collect as many
options as can fit on the screen.

When providing a single choice from a predetermined set of responses, Tkinter
provides regular buttons, radio buttons, a drop-down menu, and a single-choice vListbox,
depending on the designer's preference.

If your command-line application collects many different forms of input from the user,
it is recommended that you take the time to decide what type of information each input
statement is after and map out what widgets would do the job of collecting this
information in the right way. Familiarize yourself with each widget that you intend to
use and make sure it can do what you would need it to, for example, in terms of
validation of data.

As well as this, make sure that your choice of widgets can be laid out in a way that will
look appealing. If you have too many individual data-entry widgets, the user interface
may look cluttered, so see what can be grouped in a logical way and perhaps look into
using a menu widget to hide anything non-essential away from your main window.

Applying this advice to our blackjack game, we know that we have chosen a reusable
data structure in the form of our wand, peck, and card classes. Whilst these depend on
each other, and the nand class knows a bit about the rules of the game of blackjack via
its get_value method, the classes are not dependent on any form of data collection or
display in order to function properly.

There are two main points at which user input is collected — when deciding whether to
hit or stick, and when choosing whether to play another game or quit. Since both of
these points in the game involve a specific choice of one of two predetermined
answers, we can use two sutton widgets to collect an answer from the user.

In terms of layout, we will need only three interactive widgets—a canvas widget to
display our game's graphics, and two button widgets to collect the hit or stick choices
from our user. These buttons can change, based on which stage of the game we are at,
since we don't need to display one set while the other set is active. This allows us to
help keep the interface as uncluttered as possible and avoids confusing the users.

We have had a look at using a sutton widget in chapter 1, Meet Tkinter, but have not yet
looked at the extremely powerful canvas widget. Before we begin writing our code, let's
look at an overview of this crucial part of our game.

The Canvas widget

The canvas widget is Tkinter's primary widget for displaying graphics. With a vast
range of built-in functions for creating graphics manually, it is the perfect choice for
the display piece of a computer game.

Let's have a quick introduction to the canvas widget's built-in drawing capabilities.
Open up a new file and type in the following:

import tkinter as tk

window = tk.Tk()

canvas = tk.Canvas(window, bg="white", width=300, height=300)
canvas.pack()

canvas.create_oval((@, 0, 300, 300), fill="yellow")

canvas.create_arc((50, 100, 100, 150), extent=180, fill="black")
canvas.create_arc((200, 100, 250, 150), extent=180, fill="black")

canvas.create_line((50, 200, 110, 240), fill="red", width=5)
canvas.create_line((110, 240, 190, 240), fill="red", width=5)
canvas.create_line((190, 240, 250, 200), fill="red", width=5)

window.mainloop()
Run this code and you should see a nice smiley face appear on your computer screen:

x* tk Qv/\e

Let's go over exactly how we create this image:

1. We begin by importing tkinter and abbreviating it to tk as usual.
2. Next, we create a main window using the T« widget.
3. Inside our main window, we place a 300 pixel by 300 pixel canvas. We color this

v e

white to make it more apparent.

We use the pack geometry manager to get this canvas into our main window.
Now that we have our canvas inside a window, we are ready to begin drawing.
In order to create the face's shape, we use a circle. The canvas widget has a
create_oval method which will create circles (provided we make the bounding box
a square).

The canvas widget handles coordinates with a Cartesian system, with the origin in the
top-left of the window. The Y coordinate will go down the window as its value
increases, which may take some getting used to if you are familiar with other software
in which a positive Y value instead goes upwards. The X coordinate goes further right
as it increases, as with most other systems.

The first argument of create_oval is a 4-tuple containing the coordinates of the bounding
box in which the oval will be contained. In order, these are top left X, top left Y,
bottom right X, bottom right Y.

7.

10.
11.

12.

For this demo, we will use the entire canvas to display our face, so we put the top
left of the bounding box at the origin: o, o. We then place the bottom right of the

bounding box at the bottom-right corner of our canvas widget: seo, 300 (we know
this because we specified the size of our canvas as 300 by 300).

We use the fi11 argument to specify that we want our face to be yellow. Luckily,

Tkinter can recognize a large number of strings and interpret them as colors. This
allows us to use the string literal ye11ow to color our face.

This code creates a yellow circle which spans the entirety of our window, since
the window only contains the canvas.

To draw the eyes, we need a semi-circle. The canvas widget has a create_arc method
which allows us to do this.

The create_arc method relies on the same bounding box principle as create_oval.
We again use a 4-tuple to specify the coordinates of the bounding box.

The default size of an arc is 90 degrees, which will only make a quarter-circle.
To instead achieve a semi-circle, we use the extent argument and set this to 180.

We again use the ri11 argument to color our eyes black.
Finally, to draw a smile, we will use three individual lines. The canvas widget
provides draw_1ine to let us do this.

Another 4-tuple of coordinates specifies where the line begins and where it
ends.

We color the line red using the ri11 argument, and make it much thicker than the

default by specifying the width argument.

Now all of our drawing is done, we simply need to display our main window. We do
this with the usual main100p method.

While this image isn't going to win any design competitions, hopefully you now have
an idea of the drawing capabilities of a Tkinter canvas.

Other drawing methods include create_rectangie, create_polygon, and create_text. We will certainly make use of
create_text Within our blackjack game in order to convey information to the user.

The rest of the graphics of our game will be displayed by converting existing image
files into a format usable by Tkinter's canvas, so don't fret about having to draw each
playing card using lines and rectangles!

When it comes to animations, the canvas widget also has us covered there. Not only can
we delete and then redraw elements, but the canvas widget contains methods like move
and itemconfig which will allow us to update positions and sizes of elements to create
easy animation.

These methods can be bound to keyboard and mouse events (we will learn how to do
this later), creating game-like interaction capabilities, too.

Speaking of which, let's get going with porting our command-line game over to a
canvas widget. You can either open a new file or try just modifying your code from chapt
er 2, Back to the Command Line — Basic Blackjack. Let's get started.

Creating a graphical blackjack
game

In order to display images within our blackjack game, we need to obtain them first. If you are the arty kind,
you can draw them yourself. I am not a great artist so I have chosen to acquire artwork online. The images
used in the pictures in this book came from the Open Game Art website, and can be downloaded from nttps://op

engameart.org/content/playing-cards-0.

As usual, we will begin our file with the necessary imports:

import os
import random
import tkinter as tk

This project will need three imports now:

® os: To access the assets folder
® random: T0 shuffle the peck
e tkinter: To use graphical features

We begin with a variable that will be used by multiple classes, and so is defined
outside of the scope of a class, the assets_folder. We use the os module to construct the
full path to our images so that this will work on multiple machines:

|assets_folder = os.path.abspath(os.path.join(os.path.dirname(__file_), '..', ‘'assets/'

In this case, the images are stored in a folder named assets, which is in the same
directory as our code folder.

We use os.path.dirname to get the directory of the current file, then we use os.path.join to
join up .., which goes back one directory, then assets, which is the name of the folder
full of our images.

We wrap this all up in os.path.abspath, s0 that we have the absolute path to this folder,
allowing us to use it anywhere.

To clarify the directory structure being used, it looks like this:

- D: Code/
- D: assets/
- F: imagel.png
- F: image2.png
- F: o
- F: blackjack.py

https://opengameart.org/content/playing-cards-0

p represents a directory and r represents a file. All of our images are placed into the
assets folder.

Now that we have this variable available, we can begin defining the classes which will
make up our game.

Card, Deck, and Hand

First, copy over the card class from the code you wrote for chapter 2, Back to the
Command Line - Basic Blackjack. There are no changes to the existing methods in this
class, but we need to add one more for our graphical implementation:

@classmethod
def get_back_file(cls):
cls.back = tk.PhotoImage(file=assets_folder + "/back.png")

return cls.back

This new method will use a decorator to make it into a class method. A class method
functions much like a regular method (or function), except that it does not require an
instance of the class to work.

For this reason, we name the first variable c1s instead of seir. Python will automatically
pass a reference to the class itself to a class method, meaning just as is the case with a
regular method, we will call it with one fewer argument than it is defined with.

Our get_back_file class method returns the image back.png stored in our assets folder. This
allows the graphical piece of our application to acquire and draw this particular image
onto the screen when the dealer has a card which is face down.

In order for an image to be usable by Tkinter, we need to create a photoimage instance.
When we initialize a rhotormage, we can use the file argument to supply the path to the
image file, then Tkinter will handle the rest.

Something important to note when using a pnotormage in Tkinter is that the object will be garbage collected if no
0 reference to it is kept. In order to avoid this, we assign the protormage to the back attribute of our cara class. This
allows us to keep a reference to it for as long as a card instance sticks around.

Our peck class does not need to change for now. If you are using a new file, simply
copy and paste this code over from the previous chapter.

Our Hand class does not need anything new either, although there is no longer any need
for the dispiay method since we are not using print at all anymore, so either delete the
method or don't copy it over.

Instead of a class holding our game loop, we will maintain a camestate class which
handles the state of the current game. Our camescreen class, which handles the graphical
elements of the game, can use this class to access the state of the game at any time it
needs to redraw graphics.

The GameState class

We will put the code which needs to run at the beginning of any game into the
camestate __init__ method. This code will then run any time we make a new game:

class GameState:
def __init_ (self):
self.deck = Deck()
self.deck.shuffle()

self.player_hand
self.dealer_hand

Hand ()
Hand(dealer=True)

for 1 in range(2):
self.player_hand.add_card(self.deck.deal())
self.dealer_hand.add_card(self.deck.deal())

self.has_winner = ''

Inside the __init_ method, we create and shuffle our peck, assign a nand to our player
and dealer, and initialize the winner as nobody (using an empty string).

Our piayer_is_over method now sits in this class. Copy it over if you are using a new
file.

We will slightly modify our old check_for_blackjack function, and rename it
someone_has_blackjack 1O 51gn1fy the difference:

def someone_has_blackjack(self):
player False
dealer False
if self.player_hand.get_value() == 21:
player = True
if self.dealer_hand.get_value() == 21:
dealer = True

if player and dealer:
return 'dp'

elif player:
return 'p'

elif dealer:
return 'd'

return False

Since we no longer are using a terminal window to display results, there is no longer
any need for the previous calls to the print function.

As graphical displaying of information to the user is now separate from the game
logic, we need to indicate to the caller of this function which contestant (if any) is the
one with blackjack. We use a simple string to indicate this information: ¢ for the

dealer, p for the player, and dp for both.

If nobody has blackjack, then we will just return raise. This allows the results of this
method to be treated as a Boolean and used in the condition of an if statement.

Now we will need a way for the player to add cards to their hand when they choose to
hit.

When the player chooses to hit, we will call the nhit method from this class. The body
of this method is much like it was in the previous chapter:

def hit(self):
self.player_hand.add_card(self.deck.deal())
if self.someone_has_blackjack() == 'p':
self.has_winner = 'p'
if self.player_is_over():
self.has_winner = 'd'

return self.has_winner

We add a card to the user's hand with the familiar add_card method, called with the peck
class' deal method as an argument.

Since their hand's value has changed, we should check for blackjack. We use the
someone_has_blackjack method and check if it returns the p string indicating that the
player's hand is worth 21. If it is, we assign this p string to our has_winner attribute to
indicate that the game has finished and the player has won.

We should also check if the player is now over 21. If so, we assign the d string to
our has_won attribute to indicate that the dealer has won this round.

Between each hit, we need to send information about the table's state over to our
graphical camescreen class so that the board can be drawn and shown to the user.

We will represent the board state using a simple dictionary.
The camescreen Will need to know:

The cards in the player's hand
The cards in the dealer's hand

If there is a winner or not

If the winner has blackjack or not

We will need a method to obtain this dictionary, which we will call get_tab1e_state:

def get_table_state(self):
blackjack = False
winner = self.has_winner
if not winner:
winner = self.someone_has_blackjack()

if winner:
blackjack = True
table_state = {
'player_cards': self.player_hand.cards,
'dealer_cards': self.dealer_hand.cards,
'has_winner': winner,
'blackjack': blackjack,
}

return table_state

We will use a Boolean to store whether a user has blackjack.

The winner will be represented by the use of a string, 4 for the dealer, p for the player,
and dp for a tie. This is all handled by the someone_has_biackjack method from before.

Before checking for blackjack, we will see if our has_winner attribute contains a winner
string already. If so, the player has gone over 21 and so there's no need to check for
blackjack.

We do not need to check whether the player has over 21 in this method, as the initial deal cannot produce a
hand of more than 21, and there is already a call to piayer_is_over in the hit method.

Once we have determined whether or not we have a winner, we can begin building our
return dictionary, which will be used by the camescreen class.

The player's and dealer's cards are accessed via their attributes in this class.

When the player chooses to stick with their hand, then the game enters the final state.
This means there will be no more changes to the cards in the player's hand, and so we
will need to compare their score with the dealer's and determine a final winner:

def calculate_final_state(self):
player_hand_value self.player_hand.get_value()
dealer_hand_value self.dealer_hand.get_value()

if player_hand_value == dealer_hand_value:
winner = 'dp'

elif player_hand_value > dealer_hand_value:
winner = 'p'

else:
winner = 'd'

table_state = {
'player_cards': self.player_hand.cards,
'dealer_cards': self.dealer_hand.cards,
'has_winner': winner,

}

return table_state

In order to obtain the final state, we first obtain both the player's and the dealer's score
from our attributes. We now need to compare them to see which is higher.

We do not need to check for a loss or blackjack here since this is checked after each

time the player decides to hit.

If the player and the dealer have the same value in their hand, the winner is assigned as
the string dp.

If the player has a higher score, the winner becomes ».
If the dealer has the larger hand, we use the string .

We now pass this information over as a dictionary, very similar to the get_table_state
method, so that it can be used by the camescreen class in the same way.

The final piece of information the camescreen will need from the camestate is the player's
score. This will be displayed as text on our canvas. Since this is stored as an integer,
we need to convert it to a string before it can be displayed:

def player_score_as_text(self):
return "Score: " + str(self.player_hand.get_value())

We concatenate the word score: to the player's hand value so that the camescreen can just
display all of the text returned by this method. This also tells the user what they are
looking at, as a number by itself on the screen may not be all that self explanatory.

Now that we have completed the class which will hold all of the information about our
game state and logic, we can move on to displaying our graphical elements.

The GameScreen class

Our camescreen class will hold the window attributes for our game as well as all of the
graphical widgets. It makes sense for us to make this the main window of our
application too, so we will inherit from the vk widget in order to do this. Let's have a
look at how we are going to set up our application:

class GameScreen(tk.Tk):
def __init__ (self):
super().__init_ ()
self.title("Blackjack")
self.geometry("800x640")
self.resizable(False, False)

We begin by initializing the T« superclass. This ensures all of our graphical elements
behave as they should.

We set the title of our application to siackjack. If you can think of a quirkier name for
the application, then feel free to change this!

The geometry method of a Tk widget is used to set the size of the window which is
spawned. It can also set the location on screen at which the window initially opens up
if desired. We use the string 800 x 600 to set the width of our window to 800 pixels
and the height to 600 pixels.

The resizable method allows us to control which directions, horizontally or vertically,
the window is allowed to be stretched and shrunk.

The first argument to the resizable method controls the X direction, and the second the
Y direction.

We will set both of these to raise, preventing the user from resizing the window
entirely. This is for the purpose of simplicity. If we allow the user to resize the
window, we would have to constantly change the size of our canvas and alter and
redraw the images. To prevent this hassle, we do not allow the user to adjust the
window's size.

After we set the window size and disable resizing, we need to define a few constants
which will be used to position graphical elements on the screen:

self.CARD_ORIGINAL_POSITION = 100
self.CARD_WIDTH_OFFSET = 100

self.PLAYER_CARD_HEIGHT = 300
self.DEALER_CARD_HEIGHT = 100

self.PLAYER_SCORE_TEXT_COORDS = (400, 450)
self .WINNER_TEXT_COORDS = (400, 250)

carp_oRIGINAL_posITION iS the X coordinate at which we will place the first card dealt to the
player and dealer. This is set to 1ee, meaning the first card will appear 100 pixels to the
right of the left edge of the window.

caro_wInTH_orrseT is how much space will be between each playing card in the X
direction. The center of each card will be 100 pixels to the right of the previous card.

pLAYER_cARD_HEIGHT Sets the Y coordinate at which the player's cards will be displayed.
DEALER_CARD_HEIGHT iS the Y coordinate at which the dealer's cards are drawn.

Since a higher Y value actually goes down the window as opposed to up, the player has
a higher Y value for its card display. This means the player's cards will be shown at the
bottom of the screen and the dealer's cards toward the top of the screen.

PLAYER score_TEXT_coorps defines the coordinates at which the score: xx text will be
displayed inside the canvas.

winner_TexT_coorps defines where on the canvas to place the text, which indicates the
winner of the game. Since our display area will be 800 pixels wide and 500 pixels tall,
the value of winner_Text_cooros places the text in the center of the screen.

With the constants taking care of positioning for images drawn on our canvas, we can
now begin creating graphical elements which will be stored as attributes of our
GamesScreen Class:

| self.game_state = GameState()

We store an instance of the camestate class covered earlier. This will keep track of the
game logic and allow us to draw the state of the game onto our canvas. In order to
begin a new game, all we will need to do is replace our game_state instance with a fresh

copy:

| self.game_screen = tk.Canvas(self, bg="white", width=800, height=500)

The canvas on which we will draw all of our graphics is created next. We set the width
and height of our game_screen to fixed values of 800 pixels and 500 pixels respectively.
This allows us to know the exact coordinates of where to place images (as defined
earlier in our constants) and allows us to create a background image which will always
be the exact size of our canvas.

We also know that since our application is 800 pixels by 640, we have 140 pixels left

to function as the bottom part of our application. This is where we will display our
buttons for the user to interact with.

In order to claim this space and make it usable, we will use a rrame widget:

self.bottom_frame = tk.Frame(self, width=800, height=140, bg="red")
self.bottom_frame.pack_propagate(0)

Our rrame widget also has a fixed width and height, as well as a background color
specified by the bg argument. Feel free to change this to suit your own preferences.

rrane Widgets behave differently to canvas widgets when they have their sizes specified.
By default, a rrane widget will only be as big as it needs to be in order to hold all of its
child widgets. If we want to force the size when placing our rrame widget into its parent
using the pack geometry manager, we need to call pack_propagate(e) on it. This forces the
rrame t0 be the size specified by the keyword arguments of width and heignht.

Now that we have a rrame to hold our sutton widgets, let's add some sutton widgets to our
class:

self.hit_button = tk.Button(self.bottom_frame, text="Hit", width=25, command=self.hit)
self.stick_button = tk.Button(self.bottom_frame, text="Stick", width=25, command=self.s

self.play_again_button = tk.Button(self.bottom_frame, text="Play Again", width=25, comm
self.quit_button = tk.Button(self.bottom_frame, text="Quit", width=25, command=self.des

We define four buttons, which can go into our rrame.

The nhit_button and stick_button act as our main gameplay controls. These will call the
hit and stick methods which will be defined on this class, so we pass seif.hit and
self.stick tO their command argument.

For consistency, we want the buttons to all be the same size. We achieve this by
passing in the width argument of 2s.

We also define two more buttons: piay_again_button and quit_button. At the end of the
game, these buttons will display, allowing the user to decide whether or not they wish
to play another game. These will also call functions defined on this class, so we pass
these to the command argument.

self.hit_button.pack(side=tk.LEFT, padx=(100, 200))
self.stick_button.pack(side=tk.LEFT)

We only pack our hit_button and stick_button in the __init_ method since we do not need
to show the other buttons until a game is over.

We pack these over to the left so that they line up side by side. We also add some
padding to the hit_button, which will be over on the left-hand side, to space it away

from the left edge of the screen, and to put some spacing between itself and our

stick_button.

We now need to place our rrame and canvas into our window to complete the layout:

self.bottom_frame.pack(side=tk.BOTTOM, fill=tk.X)
self.game_screen.pack(side=tk.LEFT, anchor=tk.N)

We put our bottom frame at the bottom of the window by using side=tk.sortom and
stretch it horizontally by using fi1i=tk.x.

We pack our game_screen to the left and use anchor=tk.n to ensure that this begins in the
very top-left corner of the window.

Now all we need to do is draw the graphical elements into our canvas, and we will use a
method named display_table to do so:

| self.display_table()

With that, our __init__ is complete. Let's take a look at what disp1ay_table will do to give
Our game_screen SOIMe life:

def display_table(self, hide_dealer=True, table_state=None):
if not table_state:
table_state = self.game_state.get_table_state()

player_card_images = [card.get_file() for card in
table_state['player_cards']]
dealer_card_images = [card.get_file() for card in
table_state['dealer_cards']]
if hide_dealer and not table_state['blackjack']:
dealer_card_images[0] = Card.get_back_file()

We allow for two arguments for this method.

The first tells the game_screen whether or not to hide the dealer's first card. During the
gameplay, the dealer's first card will need to be face down, but when the user chooses
to stick with their hand, we will flip the dealer's card face up to reveal their score.

We may also need to call the method with a pre-calculated table state. This also
happens when the user decides to stick with their hand.

By default, the dealer's first card will be hidden and we will not have a tabie_state.

If a table state was not provided, then we need to ensure we get it. We call the
get_table_state Method from our game_state instance to generate one.

Now that we definitely have our table state, we can display some card images. We
grab both the player's and dealer's cards from the tabie state dictionary and use them
within a list comprehension, calling their get_rile method to return the location of the

relevant image file to our assets folder.

If we are hiding the dealer's first card then we do not want to display its image. We
instead replace the first element in our dealer_card_images list with the back file, which
we obtain using the card class's get_back_file method. This means the first card will
appear to be face down to the player.

Now that we have some image file locations, it's time to start drawing them onto the
game_screen. We begin by drawing the tabletop, which will function as our background:

self.game_screen.delete("all")
self.tabletop_image = tk.PhotoImage(file=assets_folder + "/tabletop.png")

self.game_screen.create_image((400, 250), image=self.tabletop_image)

Between each draw of the screen, we will delete everything currently drawn onto our
canvas. This ensures that we are only drawing what we need, and anything old will not
be left over. We do this using the canvas widget's delete method and by passing the
string a11 to instruct it to delete everything.

Now that we have a clean slate, we will begin by drawing the background. We create a
PhotoImage iNStance containing the tabietop.png image from our assets folder and keep a
reference to it as the seif.tabletop_image attribute.

The tabietop.png file can be any image which is 800 pixels wide and 500 pixels tall. The one which is used in the
images of this book was created by me, so is included in the code bundle which goes along with this book.

Our photoImage can now be drawn onto our game_screen. We do this llSil’lg the create_image
method in our canvas.

The first argument to create_image is a 2-tuple of the coordinates for the center of the
image. Since the image is the exact size of our canvas, we want to put the center of the
image at the center of our canvas. We know they are both 800 by 500, so we pass (4e0,
250) as our coordinates.

The image to place onto the canvas is passed to the image argument. We pass our
PhotoImage instance as the value here.

With that, we now have our background on our game_screen. The next thing we need to
draw is the cards:

for card_number, card_image in enumerate(player_card_images):
self.game_screen.create_image(
(self.CARD_ORIGINAL_POSITION + self.CARD_WIDTH_OFFSET * card_number, self.PLAYE
image=card_image

)

for card_number, card_image in enumerate(dealer_card_images):
self.game_screen.create_image(
(self.CARD_ORIGINAL_POSITION + self.CARD_WIDTH_OFFSET * card_number, self.DEALE

image=card_image

)

To correctly position our player's cards, we need to know which card we are drawing
—their first, second, third, and so on. We use the enumerate function to loop over our list
of player_card_images and also obtain the index each is at.

Calculating the coordinates at which to place each card is done using our classes
constants.

Each card is initially placed at the X coordinate defined by our caro_or16InNAL_POSITION
constant, then subsequent cards will be placed a distance of 100 pixels (as defined by
caro_wipTH_oFrseT) to the right of this. We get these numbers by multiplying the list index
of the card we are looking to place by the caro_wipth_orrser constant and adding the
result to the caro_orIGINAL PosITION Value.

The Y value of our card's coordinates is always going to be the same as the number we
have stored in pLaver_caro_xe1eHT, since that defines how close to the bottom of the
game_screen t0 draw our cards, and we always want them to line up horizontally.

We apply the same logic when placing the dealer's card images, except we use our
DEALER_CARD_HEIGHT constant to set the Y coordinate.

Now that the player can see their cards, we should show their score as well so that they
do not have to tally their total in their head:

| self.game_screen.create_text(self.PLAYER_SCORE_TEXT_COORDS, text=self.game_state.player
We use the create_text method from our canvas widget to draw text onto our screen.

The first argument to this method is once again the coordinates as a 2-tuple. We have
these defined as a constant, pLaver_score_TExT_coorps, SO we use that as the first argument.

The text argument controls what the text drawn to the screen actually says. We have
the score as a string available in our game_state instance, so we can call this method and
use the result as the value passed.

In order to change the font size, we can use the font argument. The font argument takes
a tuple.

The first value in the tuple will be a string containing the font name, for example, arie1.
Since we are providing none in this case, the system's default font will be used.

The second value defines the font's size. We pass in 20 to make the text bigger and thus
more readable.

With that added, all of the graphics which should always be drawn are accounted for.
However, if somebody wins, we should display a message portraying this:

if table_state['has_winner']:
if table_state['has_winner'] == 'p':
self.game_screen.create text(self WINNER_TEXT_COORDS,
text="YOU WIN!", font=(None, 50))
elif table_state['has_winner'] == 'dp':
self.game_screen.create_text(self.WINNER_TEXT_COORDS, text="TIE!",
font=(None, 50))
else:
self.game_screen.create_text(self.WINNER_TEXT_COORDS,
text="DEALER WINS!", font=(None, 50))

self.show_play_again_options()

We first check whether or not the tabie_state contains a winner. If it does not, then we
won't want to display any more text.

If we do have a winner, then we will once again use the create_text method to draw
some text onto the screen, letting the player know that the current game is now over.

If our winner string is set to p, then the player has won and we will show vou win:.
If our winner string is dp, then we have a tie and we will show T1e:.
Otherwise, the dealer must have won, so we show peaLer wins!.

The location of this text is stored in our winner_TexT_coorps constant, and so this is the
first argument passed to our call to create_text. These coordinates are again the middle
point of the canvas so that this text will be centered on the screen.

We again use the font argument to increase the size of our default font. This time, we
want it even bigger, so we set it to se.

As the game is now over, we no longer need to offer the nit_button Or stick_button—we
instead need to ask the player if they would like to play another game. We handle the
replacing of these buttons with a method called show_p1ay_again_options. Let's look at this
now:

def show_play_again_options(self):

self.hit_button.pack_forget()
self.stick_button.pack_forget()

self.play_again_button.pack(side=tk.LEFT, padx=(100, 200))
self.quit_button.pack(side=tk.LEFT)

In order to unpack the hit_button and stick_button, we call the pack_forget method on
them. This does not delete them but simply removes them from being displayed by the
parent widget.

To show our piay_again_button and quit_button, we pack them with the same parameters as
attributed to our hit_button and stick_button. This ensures that they will be put in the
exact same place as the previous buttons.

Since we are on the topic of our game's buttons, let's have a look at what each will do,
starting with our hit_button:
def hit(self):

self.game_state.hit()
self.display_table()

This method simply calls the hit method over on our game_state instance which deals
with the game logic side of the player receiving a card. Once that has happened, the
state of the table will have changed, so we need to draw it again. We call
self.display_table tO do this.

If they instead click the stick_button, we will do the following:

def stick(self):
table_state = self.game_state.calculate_final_state()
self.display_table(False, table_state)

Since clicking the stick_button ends any further game logic, we need to obtain the final
table state from our game_state instance. We can then pass this over to display_table in
order to draw it on the screen. We also pass ralise to the hide_dealer argument in order to
show the player what the dealer had in their hand.

Now that the game has ended, our other two buttons will be displayed. The quit_button
calls the built-in destroy method of the 1« widget in order to close the window.

Our play_again_button Will reset the game_state so that a new game can begin:

def play_again(self):
self.show_gameplay_buttons()
self.game_state = GameState()
self.display_table()

When a new game begins, the user will need to see the hit and stick buttons again. We
do this by using a method called show_gamep1ay_buttons, which will be covered next.

The game_state instance we store is replaced by a new one, meaning we have a new
shuffled deck and two new hands, as well as no winner.

We then dlsplay this new game_state by calling display_table:

def show_gameplay_buttons(self):
self.play_again_button.pack_forget()
self.quit_button.pack_forget()

self.hit_button.pack(side=tk.LEFT, padx=(1600, 200))

| self.stick_button.pack(side=tk.LEFT)

The show_gameplay_buttons method jllSt does what our show_play_again_options method did
but in reverse. Instead of forgetting the nit and stick buttons, it forgets the quit and piay
again buttons and re-packs the nit and stick buttons in their place.

This is all that is needed in order to have our game function. Now we just need to piece
it together.

Playing our game

To make and display a window for our game, we just need an instance of our
camescreen. Since this inherits from the T« widget, we will also need to call its mainioop
method to make it show.

We will do this within an if __name__ == "_main__" block to allow our classes from this
file to be imported into another, in case someone wanted to write another card game
using our card and peck classes, for example:

if __pname__ == "__main__":

gs = GameScreen()
gs.mainloop()

Add the preceding code to the very bottom of your code file of this chapter and run the
program. You should now have a fully working game of blackjack:

Our game of blackjack

Hopefully, you will agree that this is much more enjoyable than the command-line
version. Feel free to have a play around with any of the constants, colors, or image
files in order to make the game more personal to you.

Summary

With the completion of this chapter, we now have a fully graphical version of a game
which was previously playable only over the command line. We have identified the
key decisions to make before porting the interface of a command-line application over
to a graphical one.

The benefits of making programs follow a reusable, class-based data structure have
been made clear during the upgrading of our interface, allowing for a lot of code reuse
between the previous chapter and this one.

We have learned about the drawing abilities of Tkinter's canvas widget—we practiced
drawing natively via lines and polygons, as well as inserting an image file at certain
coordinates.

More detailed controls of the pack geometry manager have been shown, including the
use of pack_propagate(o) to keep a rrame at its defined size and pack_forget to replace
widgets with others.

While impressive, our blackjack game is not quite complete yet. We will be adding the
ability to bet money and continue playing until we run out (or cash out early with a
profit). Most games on sale also feature more flashy features, including animations and
sound effects. Next on our agenda is to make our game feel more lifelike by adding
these features.

The Finishing Touches — Sound
and Animation

With our game now wearing its flashy graphical outfit, it's time to step it up one more
notch on the scale of professionalism with some sound effects. These will help to
engage the user by tapping into another of their senses.

To go along with the sound, we should also make some of the movement more
realistic so that it better appears that our game is generating these noises.

Luckily, Tkinter's canvas widget is well equipped to handle displaying animations and
comes with some great built-in tools to make animating a breeze.

We can also take advantage of a popular Python game development library called
pygame t0 make playing sounds incredibly simple.

By the end of this chapter, we will have covered the following:

e Making graphics move on a canvas

e Keeping control of the GUI while animations are playing

¢ Integrating the pygame library with Tkinter and playing sounds

e Expanding and re-structuring a larger application using Python's module system

With such a vast expansion of our application's features, it makes sense to try and
abstract some of it into easily reusable chunks. We have already seen that defining
classes can help to achieve this, but there is also one further step we can take — using
Python's module system. Let's have a look into how this works before we begin
refactoring our game.

Python's module system

Python's module system is something we have been using throughout the book. It is
what lies behind the import statements.

All that we need to do in order to create a module is make a Python file. It really is that
simple. Let's take a small example. Create a new folder to hold our example and add a
short simple file:

mymod. py
myvariable = 15

def do_a_thing():
print('mymod is doing something')

def do_another_thing():
print('mymod is doing something else, and myvariable is', myvariable)

This may look the same as any normal Python file, but we can treat this as a reusable
module if we want to. To demonstrate, open up a terminal window, change into the
directory you have just created with this file in, and then run the Python REPL:

>>> import mymod

>>> mymod.do_a

mymod.do_a_thing(mymod.do_another_thing(

>>> mymod.do_a_thing()

mymod is doing something

>>> mymod.do_another_thing()

mymod is doing something else, and myvariable is 15

Since we are in the directory in which the mymod.py file is stored, we are able to import it
in the same way as anything from the standard library. This is due to how importing
works.

When you add import mymod to a Python file, you are telling it to look for a file or
package with the name mymod. Python won't scan the whole computer though, only the
places defined in your Python install's default path, as well as in a special os variable
called pytHoneath. These variables simply tell the Python interpreter which folders to
check for the imported files or packages.

To check out our path and pytHoneaTH, we can go back to our REPL and do this:

>>> import sys
>>> import os
>>> sys.path
['', '/usr/lib/python36.zip', '/usr/1ib64/python3.6', '/usr/1lib64/python3.6/1lib-dynload
>>> os.environ['PYTHONPATH']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

File "/usr/1ib64/python3.6/0s.py", line 669, in _ getitem__
raise KeyError(key) from None
KeyError: 'PYTHONPATH'

From the previous code, we can note that my machine does not have a pyTHonpATH
environment variable configured, so all modules will be located from the default path
found in sys.path.

Speaking of which, the locations listed in sys.path are all displayed, the first of which is
an empty string, signaling that the first place that will be searched is the current
directory that the file is being executed from. This is why the interpreter was able to
find my mymod.py file even though we had just created it in a normal folder.

Once a module has been imported, its classes, functions, and variables are all
accessible to the importer (unless specifically protected). Depending on the type of
import performed, they will be accessed differently.

To better demonstrate this point, we'll need to change myvariabie to a list:

|myvariable = ['important', 'list']

Now let's have a look at importing mymod the regular way:

>>> import mymod

>>> dir()

['_annotations__', '_ builtins__ ', '__doc__', '__loader__', '__name__', '_ package__',
>>> dir(mymod)

['__builtins_ ', '__cached__', '_doc_ ', ' file ', '_loader__', '__name__', '_ pack

>>> mymod.myvariable

['important', 'list']

>>> mymod.do_another_thing()

mymod is doing something else, and myvariable is ['important', 'list']
>>> myvariable = ['silly', 'list']

>>> mymod.myvariable

['important', 'list']

>>> mymod.do_another_thing()

mymod is doing something else, and myvariable is ['important', 'list']

When importing with a plain import mymod Statement, we are able to inspect the module
via Python's dir function. This lists all of the available attributes, methods, and
variables within the module.

We also use dir to inspect the global namespace to see that we do not have direct
access to anything inside mymod. To use its features, we must prepend mymod. to them.

You will notice that the variable myvariabie is accessed as mymod.myvariable, meaning we
are free to define another myvariabie without affecting the one used by our mymod module.
Even when we redefine myvariable t0 ['silly', 'list'], our mymod module will still have
access to the original value of ['important', '1ist'].

Let's try the other import type using from and =:

>>> from mymod import *

>>> dir()

['__annotations__ ', '_ builtins_ ', '_doc__ ', '__loader__', '__name__', '_ package_ ',
>>> myvariable

['important', 'list']

>>> myvariable.append('junk')

>>> do_another_thing()

mymod is doing something else, and myvariable is ['important', 'list', 'junk']
>>> myvariable.remove('important')

>>> do_another_thing()

mymod is doing something else, and myvariable is ['list', 'junk']

When using a wildcard import, all features are added to the global namespace.
Whereas before we had to use mymod. t0 access parts of it, they are now available
without that prefix.

While this offers a bit of brevity, the trade-off is the ability to accidentally overwrite
parts of a module without realizing it. In this example, we were able to access
myvariable from the global namespace and change it. In doing this, we have also
changed the result produced by the do_another_thing function. Needless to say, this could
cause some unwanted effects and difficult-to-trace bugs.

While in the first example we still could have changed the value of myvariabie and affected the result of

0 do_another_thing, the need to place the modulus's name directly in front of it acts as a safequard against
accidental modification. This means the regular import Statement is just as capable as the wildcard, but safer to
do. This is why the plain import is considered preferable to a wildcard.

If we find ourselves with many different modules that belong to an overall group, we
can make them easier to import by combining them into a package.

A package is defined by a folder containing a file named __init__.py. This __init_ .py
file is run when the package is imported and anything within its namespace becomes
available to the importer.

To try creating a package, let's make a new folder called counter and place three files
inside it:

counter/countdown.py
def count_down(max):
numbers = [i for i in range(max)]
for num in numbers[::-1]:
print(num, end=', ')

This module provides a function that will simply count down from the specified
number.

If you are not familiar with the syntax, [::-1] is used to reverse an iterable:

counter/countup.py
def count_up(max):
for i in range(max):
print(i, end=', ')

This module gives us a function that will count up from the given number.

The final file to make is __init__.py, which tells the Python interpreter that the folder
containing this file is a package that is importable. In our case, this file can be
completely blank, it just needs to exist.

Now we have created a package called counter. If we launch the REPL from the folder
containing our counter folder (not the counter folder itself), we are able to make use of
the counter package:

>>> from counter import countdown

>>> countdown.count_down(10)

9, 8, 7, 6, 5, 4, 3, 2,1, 0,

>>> from counter.countup import count_up
>>> count_up(10)

0, 1, 2, 3, 4, 5, 6, 7, 8, 9,

>>> import counter

>>> counter.countdown.count_down(3)

2, 1, o,

From the preceding example it is clear that we can use the functions provided by our
modules in three ways.

Firstly, we can use a from Sstatement to import just the module we require from the
countdown package. This gives us access to the functions provided by that module, but
this requires the module's name as a prefix much like with our first mymod example. We
demonstrate this by executing the count_down function.

Secondly, the function can be brought into the global namespace by importing it
directly from the package and the module. We access a module within a package by
putting a dot between them, as we have with counter.countup. This allows us to use the
count_up function without the need to prepend the countup module's name, but does not
expose any underlying variables that may be used by the function. We again
demonstrate this by executing the function.

Finally, we can import the counter package, as a whole. This provides the most
protection against accidentally changing parts of a program used by modules, but
requires the most amount of typing in order to access functions and variables exposed
by the package's modules.

After importing the whole counter package we need to prepend the package name first,
followed by the module name, and finally the function name. This is a lot more
verbose, but ensures the programmer knows exactly which function is being run.

That's all there is to grouping modules into packages. We will be using packages to
split up some aspects of our blackjack game so that we do not get distracted by one
very large file as we add more and more depth to the game.

We will also then have created a package that allows us to quickly emulate another
casino card game in the future without re-writing any of the underlying structural
pieces.

Let's begin creating the packages needed for the new and improved blackjack game.

The blackjack packages

Begin the rejuvenation of the blackjack game by creating a new folder to hold our new
game. For simplicity, I will call this folder biackjack.

Within this folder, create two others: casino and casino_sounds.

The casino folder will become a package holding various aspects of a typical casino.
This includes our old Hand, peck, and card classes.

The casino package

Within your casino folder, create three files to house these. Name them hand.py, deck.py,
and card. py.

In each one, paste in the code from the relevant class.

If you are using an IDE with syntax checking, you may notice a few errors. These are
due to the now-missing imports.

In deck.py, ensure you have the following imports:

import random

from .card import Card
The random module is needed to shuffle our deck.

The peck class also relies on having instances of our card class, so we need to ensure we
have access to it. We achieve this by using a relative import.

The relative import is indicated by a single or double dot in front of the module name.
In this case, .card tells Python to import from a module named card, which is in the
same directory as our deck.py file.

To fix our card.py file, ensure you have the following at the top of the file:

import os
from tkinter import PhotoImage

assets_folder = os.path.abspath(os.path.join(os.path.dirname(__file_), '../..', 'asset

The os module will allow us to build the path to our assets_foider, which will live in this
file for simplicity's sake.

The p1ayer class will represent the user who is playing our game. We will use it to hold
their hand of cards and control their money, as well as shorten certain function calls
that are repeatedly used in the main flow of the game by utilizing Python's @property
decorator:

from .hand import Hand

class Player:
def __init__ (self):
self.money = 50

self.hand = Hand()

def add_winnings(self, winnings):
self.money += winnings

def can_place_bet(self, amount):
return self.money >= amount

def place_bet(self, amount):
self.money -= amount

def receive_card(self, card):
self.hand.add_card(card)

def empty_hand(self):
self.hand.cards = []

When initializing our riayer, we need their hand and money. For simplicity we will
start each player off with a fixed £50 of stake money. Their hand will be an instance of
the nand class, as expected.

If the player wins a round, they should receive the money that was bet. To achieve this,
we use an add_winnings method, which increases their money attribute by the specified
amount.

Before a player can place their share of the bet, we need to check whether they have
sufficient funds. The can_p1ace_bet method handles this by comparing the player's
money total with the amount to bet against. We return whether or not the player has as
much, or more, than the required bet.

In order to place a bet, we remove the needed amount from the player's total money.

The Hand instance assigned to the player will be managed via the piayer instance. In
order to add a card to the player's hand, we now need simply to call the
Player Class' receive_card method with the relevant card instance.

To clear the r1ayer class' hand between rounds, we have an empty_hand method.

Now we will use some class properties to streamline accessing the player's statistics
from within the game logic:

@property
def score(self):
return self.hand.get_value()

@property
def is_over(self):
return self.hand.get_value() > 21

@property
def has_blackjack(self):
return self.hand.get_value() == 21

@property
def cards(self):

| return self.hand.cards

Instead of calling get_value on the wand instance every time, we can now get the player's
score by accessing piayer.score.

We can remove the piayer_is_over method from our game logic by accessing

player.is_over.

Similarly, the someone_has_blackjack method can be shortened by accessing the
player.has_blackjack property from our r1ayer instance.

Finally, the player's cards are accessed by piayer.cards.

With these changes, we no longer need to directly access any nand instances from the
game logic—all classes that need to affect a hand will now just deal with the player
instances. This ensures that our game logic is as loosely coupled with our
implementations of the casino elements as possible.

For the sake of naming clarity, we also define a pealer class in this module. The pealer
will be a subclass of riayer with no additional logic. This allows us to create an
instance of a pealer within our game logic, and if we decide that we want to add any
dealer-specific functionality at a later date, we are already set up to do so:

class Dealer(Player):
pass

With these two classes, our casino modules are complete.

Now we need to make sure that we can import them easily when we need to use them
in our main biackjack.py file. To do this, we simply need to create a file called __init__.py
in our casino folder. Inside this file, type the following:

from .card import Card, assets_folder
from .deck import Deck

from .hand import Hand

from .player import Player, Dealer

These import statements don't appear to do anything in this file, but they will allow us to
access each of these classes from the casino package's namespace. This means we do
not need to know about the internal file structure used by our casino package in order to
use its classes.

In practical terms, this means we only need to type from casino import peck instead of from

casino.deck import Deck.

Just like that, our casino package is finished! We now have a simple, reusable
collection of classes that emulate various aspects of a real-life casino.

There is just one more package that we will need to make: the casino_sounds. This will
be a simple package containing a class that makes playing audio clips easy.

The casino_sounds package

We will use the popular game development library called pygame in order to play our
audio. pygame is primarily a game-development library for Python, providing its own set
of game-related features, one of which is a very simple API for playing audio files.
This is how we will handle adding sound to our game.

You may not already have this library installed. This presents us with a good
opportunity to look at using virtual environments in order to manage our Python
libraries.

Setting up a virtual environment

A virtual environment is simply a set of folders created in a project's directory that
contain all of the necessary binaries and libraries needed to run that project.

To create a virtual environment for our blackjack game to use, open up a terminal
window and move into the outer biackjack directory. Now type the following:

$ python3 -m venv env
$ source env/bin/activate

This first command will create a folder called env in your biackjack folder. This folder
contains everything that will be needed to run our blackjack application.

The next command tells our terminal to use the content of our virtual environment
instead of the system-wide versions of Python and its packages.

To confirm this, open up the REPL now and check out the system path:

>>> import sys
>>> sys.path
['', '/usr/lib/python36.zip', '/usr/1ib64/python3.6', '/usr/1lib64/python3.6/1lib-dynload

Take note of the last two items in my path. Both now contain my virtual environment's
env folder, showing that the Python interpreter is checking inside it for packages.

Now that we have created a separate environment for our blackjack game to run from,
we can install the pygame library. We could do this in one of two ways.

If we have no intentions of moving or sharing our blackjack game, simply running pip
install pygame Will bring in the library ready for use.

However, if we wish to make our game as portable as possible, or if we had a much
larger amount of external dependencies, we could create a requirements.txt file. This file
would contain a newline-separated list of packages that our application requires to run
and ensures that anyone else obtaining the code is able to easily locate and install them
all.

As our application only requires the pygame library, this requirements.txt file would just
contain the word pygame. We would then install the pygame library with the command pip

install -r requirements.txt.

Go ahead and install pygame by either of the two methods mentioned earlier.

With the dependencies handled, we can now create our casino_sounds package.

Creating the package

Create another __init__.py file, this time in your casino_sounds folder. Add the following
code:

import os

import pygame
from casino import assets_folder

class SoundBoard:
def __init__ (self):
pygame.init()
self.sound_folder = os.path.join(assets_folder, 'sounds')
self.place_sound = self.load_sound('cardPlacel.wav')
self.shuffle_sound = self.load_sound('cardShuffle.wav')
self.chip_sound = self.load_sound('chipsStack6.wav')

Our soundsoard class will make use of the inbuilt os module for some file path validation,
as well as make use of our newly-installed pygame. We also import the assets_fo1der from
our casino package to allow us to store sound files inside it.

We begin our soundsoard class's __init__ method by initializing pygame. Without this, our
sound will not work.

The next thing we need is access to the folder that holds our audio files. I have placed
these in the assets folder, under a new folder named sounds. We access this path by
combining the string "sounds" with the assets_folder variable that we imported from our
casino module. We use os.path.join to achieve platform-independent file paths.

Each sound we wish to play will become its own attribute of our soundeoard class. We
assign each attribute by passing the name of the audio file to a method called 10ad_sound.
Let's check this out:

def load_sound(self, sound):
file_location = os.path.join(self.sound_folder, sound)
if os.path.isfile(file_location):
return pygame.mixer.Sound(file_location)
else:
raise Exception('file ' + file_location + ' could not be found')

We combine the passed-in audio filename with the sounds folder, which we have saved
as our sound_folder attribute. This creates the full path to the supplied audio file.

https://opengameart.org/content/54-casino-sound-effects-cards-dice-chips. Due to ﬂexible licensing, they are also included

0 The audio files I have used in this chapter were obtained from the Open Game Art website, and are located at
in the assets folder for this chapter in the GitHub repository, which accompanies this book.

https://opengameart.org/content/54-casino-sound-effects-cards-dice-chips

Before trying to load this with pygame, we need to check that it is indeed an existing file
path. We achieve this using os.path.isfile. This will check that there is a file at the
supplied path. If there is not, we will raise an exception, letting the user know that they
require this file in order to run the game.

If the isfile check passes, we can use pygame.mixer.sound tO create a playable sound object,
passing it along the full path to our specified audio file. This sound object is what will
be assigned to each class attribute.

Now that this is done, all we need to do to play one of these sounds is call .p1ay() on
OUr soundBoard instance's relevant attribute.

That's all there is to adding sound effects to our blackjack game. We now have a
reusable class that will play any sound effect we decide to put into our assets folder and
assign as an attribute.

With the casino_sounds package finished, we have all of the necessary tools to begin
refactoring our game.

The blackjack.py file

Before we begin adjusting our game's main engine, take a moment to clarify that the
directory structure for your project matches the following exactly:

- D: assets/
- D: sounds/
F: cardPlace.wav
F: cardShuffle.wav
F: chipsStack6.wav
: tabletop.png
: back.png
: Clubs2.png
: Clubs3.png

1
T T T

- D: blackjack/

: casino/
F: __init__.py
F: card.py

- F: hand.py
F:
F:

1
1 O

deck.py
- player.py

- D: casino_sounds/
- F: __init__.py
F: blackjack.py

Change things around to match this if necessary, then open up biackjack.py for editing.
If you still have this file left over from the previous chapter, it will probably be easier
to begin a new one and copy over some parts from it where possible, instead of trying
to re-work the old file.

Begin in your new biackjack.py file with the following imports:

import tkinter as tk
from functools import partial

from casino import Card, Deck, Player, Dealer, assets_folder
from casino_sounds import SoundBoard

As well as the usual tkinter import, we will also make use of the functoo1s module from
the Python standard library. We only need the partia1 function, so we do not need to
import the entirety of functoo1s. The use of this will become clear later on.

We will also grab what we need from our casino and casino_sounds packages.

Our camescreen logic from before will now be handled by a class called camewindow. We
will instead use the name camescreen for our canvas widget, which will need to be
subclassed now in order to handle a lot more logic.

Initializing the GameWindow
class

Let's look at the new camewindow class and how it manages our application's main
window and widgets. A lot of this code will feel familiar from our previous camescreen
class:

class GameWindow(tk.Tk):
def __init__ (self):
super().__init__ ()
self.title("Blackjack")
self.geometry("800x640")
self.resizable(False, False)

self.bottom_frame = tk.Frame(self, width=800, height=140, bg="red")
self.bottom_frame.pack_propagate(0)

self.hit_button = tk.Button(self.bottom_frame, text="Hit",
width=25, command=self.hit)
self.stick_button = tk.Button(self.bottom_frame, text="Stick",
width=25, command=self.stick)

self.next_round_button = tk.Button(self.bottom_frame,
text="Next Round", width=25, command=self.next_round)
self.quit_button = tk.Button(self.bottom_frame, text="Quit",
width=25, command=self.destroy)

self.new_game_button = tk.Button(self.bottom_frame,
text="New Game", width=25, command=self.new_game)

self.bottom_frame.pack(side=tk.BOTTOM, fill=tk.X)

You should see that the majority of the initialization code has remained from our
earlier camescreen class.

One new button is now added, the new_game_button, which will allow the user to start a
new game when they have run out of money.

Our game_screen attribute is no longer a stock canvas widget, but a new subclass, which
we will call camescreen. This will allow us to handle animations separately and separate
the game logic from the game's main window.

Instead of displaying the table at the end of this function, we now pass over to the
game_screen instance to display the opening animation:
self.game_screen = GameScreen(self, bg="white", width=800, height=500)

self.game_screen.pack(side=tk.LEFT, anchor=tk.N)
self.game_screen.setup_opening_animation()

Since the rest of the methods in this class revolve around packing and unpacking
certain buttons, let's jump to the new camescreen class to see where our camewindow class is
leading us.

The GameScreen class

Our camescreen Will be a subclass from Tkinter's powerful canvas widget and contain all
of the logic to do with our window's graphics and animations:

class GameScreen(tk.Canvas):
def __init_ (self, master, **kwargs):
super().__init__ (master, **kwargs)

self.DECK_COORDINATES = (700, 100)

self.CARD_ORIGINAL_POSITION = 100
self.CARD_WIDTH_OFFSET = 100

self.PLAYER_CARD_HEIGHT
self.DEALER_CARD_HEIGHT

300
100

self.PLAYER_SCORE_TEXT_COORDS = (340, 450)
self.PLAYER_MONEY_COORDS = (490, 450)
self.POT_MONEY_COORDS = (500, 100)
self.WINNER_TEXT_COORDS = (400, 250)

We begin by initializing the super class, canvas, with the arguments passed over by our
camewindow. We use the **kwargs argument to pass all of our options over to the canvas'
__init_ method.

The first argument to our camescreen is called master, and this will refer to our camewindow
instance. This allows our camescreen to alter the GUI elements of the game by calling
methods defined within our camewindow class, referring to it by seif.master.

Our constants will now sit in this class, with a few new ones added.

self.peck_coornInaTEs holds the position at which we will draw a card back image
representing the deck of cards being dealt from. When a card is dealt to a player it will
appear to slide from the deck of cards over to the calculated position on the table.

self.PLAYER_MONEY_coorps holds the coordinates for text displaying the player's current
amount of money.

self.poT_moneY_cooros holds the coordinates for text displaying the amount of money in
the pot. The pot holds the total amount of money that will be given to the winner of the
round.

With the constants taken care of, we can now define some regular attributes:

self.game_state = GameState()
self.sound_board = SoundBoard()

self.tabletop_image = tk.PhotoImage(file=assets_folder + "/tabletop.png")
self.card_back_image = Card.get_back_file()

self.player_score_text = None
self.player_money_text = None
self.pot_money_text = None
self.winner_text = None

self.cards_to_deal pointer = 0
self.frame = 0

We grab instances of our soundsoard and camestate classes so that we can access their
methods within all methods in this class.

The images that we will need to draw every game are stored as attributes for our
camescreen Class. This includes the tabletop background and the card back.

Each piece of text that needs to be drawn to the camescreen has an attribute reserved for
it, which is initially set to none.

The cards_to_deal_pointer and frame attributes will be used for displaying animations, and
are covered in the relevant method explanation.

Now that we know what happens when creating a samescreen, let's look at how it
displays the opening animation of our game:

def setup_opening_animation(self):
self.sound_board.shuffle_sound.play()
self.create_image((400, 250), image=self.tabletop_image)

self.card_back_1 = self.create_image(self.DECK_COORDINATES,
image=self.card_back_image)
self.card_back_2 = self.create_image((self.DECK_COORDINATES[O] + 20,
self.DECK_COORDINATES[1]), image=self.card_back_image)

self.back_1_movement
self.back_2_movement

([10] * 6 + [-10] * 6) * 7
([-10] * 6 + [10] * 6) * 7

self.play_card_animation()
This animation will simply show the deck of cards being shuffled.

We start by playing the sound for our deck shuffling so that the user knows what is
being shown. We do this by calling the p1ay method of the shuffie_sound attribute on our
sound_board instance. This instructs pygame to play the audio file cardshuffie1.wav.

We now need to draw the tabletop, which serves as the background image for our

GameScreen.

In order to give the illusion of a shuffling deck of cards, we will use two card back
images moving back and forth horizontally.

To set this up, we need to draw two card back images on our canvas. These will be
referred to as card_back_1 and card_back_2.

We will draw one of them at the location of our peck_cooronates and one 20 pixels over
to the right.

The next thing to do is to make a list of steps to move each card back by. This may
look a little strange if you are not familiar with list multiplication. The first step is to
multiply a list of one value (such as [10]) by 6 to make a list of 6 x 10s ([10, 10, 10, 10,
10, 10]). Next, we reverse these steps by multiplying a list of—10s by 6 to make
another list of 6 items. We add these together to create one list of 12 items. We
multiply the resulting list by 7 in order to create a single list of 84 items.

To see the result of this, you can enter ({107 * 6 + [-16] * 6) * 7 in the Python REPL.

We reverse the signs of the initial lists for the second card back so that both card backs
will move in opposite directions each time. We store both of these lists as

back_1_movement and bac k_2_movement.

Now that we have prepared the variables needed for our opening animation, it's time to
make it play. We now call piay_card_animation to get things moving;:

def play_card_animation(self):

if self.frame < len(self.back_1_movement):
self.move(self.card_back_1, self.back_1_movement[self.frame], 0)
self.move(self.card_back_2, self.back_2_movement[self.frame], 0)
self.update()
self.frame += 1
self.after (33, self.play_card_animation)

else:
self.delete(self.card_back_2)
self.frame = 0
self.display_table()

We use the frame attribute to keep a reference of how far along each list we currently
are.

While our frame number is less than the total number of steps in one of our back_movement
variables, we call the move method to move each card back image by the number
contained in that step (10 or -10).

To show these changes, we use the update method to refresh our camescreen and re-draw
the images in their new positions.

We increase the frame value so that we will call the next step of our animation the next
time our loop runs, and finish off by scheduling this function once again after 33
milliseconds. The 33 milliseconds is chosen in order to approximate 30 frames per
second as our animation speed.

Once we have exhausted all 84 of our frames, we remove one of the card back images,
leaving one remaining to represent our shuffled deck.

We reset our current frame to o, allowing us to play another animation if need be.

Now that all of our frames have played, our animation will have finished showing, and
we can draw the initial table state as we did in the previous chapter. Unlike before, the
initial table will also feature animations—cards will move across the table as if being
dealt from the deck:

def display_table(self, hide_dealer=True, table_state=None):
if not table_state:
table_state = self.game_state.get_table_state()

player_card_images = [card.get_file() for card in
table_state['player_cards']]
[card.get_file() for card in
table_state['dealer_cards']]
if hide_dealer and not table_state['blackjack']:
dealer_card_images[0] = Card.get_back_file()
The get_table_state method can be copied over from the previous chapter and added to the new canestate class.
0 The only change to be made is replacing seif.player_hand.cards With selr.piayer.cards to make use of our new
properties

dealer_card_images

The beginning of this method looks the same as before. We once again grab the initial
state of the table from our camestate instance, extract the player's and dealer's cards, and
grab the card images from our card class:

self.cards_to_deal_images = []
self.cards_to_deal_positions = []

for card_number, card_image in enumerate(player_card_images):
image_pos = self.get_player_card_pos(card_number)
self.cards_to_deal_images.append(card_image)
self.cards_to_deal_positions.append(image_pos)

for card_number, card_image in enumerate(dealer_card_images):
image_pos = (self.CARD_ORIGINAL_POSITION + self.CARD_WIDTH_OFFSET * card_number, se
self.cards_to_deal_images.append(card_image)
self.cards_to_deal_positions.append(image_pos)

self.play_deal_animation()

while self.playing_animation:
self.master.update()

In order to set up for an animation, we need to pass two lists of information back over
to our animating method — the card image files and the position at which to place them.
We will use two list attributes in order to store them.

We again loop over the cards held by the player and calculate the position at which to
place it within the canvas. This has been abstracted out to a new
method, get_piayer_card_pos, but the code is the same as it was in the previous chapter:

def get_player_card_pos(self, card_number):

| return (self.CARD_ORIGINAL_POSITION + self.CARD_WIDTH_OFFSET * card_number, self.PL

We append each position and card image to our cards_to_deal attributes before doing the
same process with the dealer's cards.

Now that we have the required information, we can play the deal animations by calling

play_deal_animation.

Once the animation has begun playing, we want to wait for it to finish playing before
continuing in this method, so we use an attribute called p1aying_animation to
communicate this. We wait on this using a while loop, which simply tells the window to
update its content, thus playing each frame of the animation. This has the added bonus
of blOCkiI‘lg in this method until the piay deal animation method sets piaying animation tO

False.

Let's have a look at how the piay_deal animation Will handle all of this:

def play_deal_animation(self):
self.playing_animation = True
self.animation_frames = 15

self.card_back_2 = self.create_image(self.DECK_COORDINATES,
image=self.card_back_image)

target_coords = self.cards_to_deal_positions
[self.cards_to_deal pointer]

X_diff = self.DECK_COORDINATES[@] - target_coords[0]
y_diff = self.DECK_COORDINATES[1] - target_coords[1]
x_step = (x_diff / self.animation_frames) * -1
y_step = (y_diff / self.animation_frames) * -1

self.move_func = partial(self.move_card, item=self.card_back_2,
x_dist=x_step, y_dist=y_step)
self.move_func.__name__ = 'move_card'

self.move_card(self.card_back_2, x_step, y_step)
We begin by setting piaying_animation to True and blocking the previous function.

Another attribute called animation_frames is used to control how long each card deal
animation will play for. A value of 15 at roughly 30 frames per second means each
deal animation will take around half a second.

To simulate a card being dealt from the deck, we will begin by drawing another card
back image on top of the one that represents the deck. We use the peck_coorbinaTes
constant to ensure that they are perfectly aligned.

We now need to calculate each of the 15 positions that the card will need to be drawn
in to place it in the target position obtained from the cards_to_deal_positions.

The relevant target position is extracted from cards_to_deal positions using our
cards_to_deal_pointer, Which was initialized to o in our __init_ method.

With this, we now need to find the total distance between the target position and the
coordinates of our deck. We store these as x_diff and y_diff.

To calculate each step, we divide these total differences by the number of animation
frames. This gives us how much we need to move in each direction per frame.

Since our deck is placed top-right of the dealing positions and our cards need to move
to the bottom-left, we need to reverse the sign of each of our steps. We achieve this by
multiplying the steps by -1. These steps are stored as x_step and y_step.

As we did when playing our shuffle animation, we need a function that we can
repeatedly call using Tkinter's after method. The partia1 function from the functoois
library will allow us to do that.

A partial function is a function that has some (or all) of its arguments frozen at certain
values. You can think of it as cloning another function but setting the default values of
all of its arguments.

The first argument to the partial function is the function that needs its arguments fixed.
We pass this through the move_card method, which will be detailed next. We then pass
the item argument as our card_back_2 image, the x_step as our calculated x_step, and

the y_step as our calculated y_step.

In order to avoid an error, we set the _name__ attribute of this partial function to
"move_card". This allows our partial function to be compatible with Tkinter's after
method.

Now we can call the first round of this method to begin the chain:

def move_card(self, item, x_dist, y_dist):

self.move(item, x_dist, y_dist)

self.update()

self.frame += 1

if self.frame < self.animation_frames:
self.after (33, self.move_func)

else:
self.frame = 0
self.delete(self.card_back_2)
self.show_card()
self.sound_board.place_sound.play()

As with the previous animation function, we move our image the required distances
with the move method, update the canvas to show the image in its new position, and then
update our frame attribute to advance the animation counter.

If we still have frames left to display, then we reschedule our move_func partial for 33
milliseconds later using the after method.

Once we have exhausted all of our frames, we reset the frame counter back to e again.
Next, the card back image needs to be removed and the face-up card image needs to be
drawn in its place. We do this using the show_card method, which will be shown next. A
sound is also played to represent the card hitting the table.

Showing the face up card simply involves creating the card image in the target position
and updating our canvas to display it:

def show_card(self):
self.create_image(
self.cards_to_deal positions[self.cards_to_deal_pointer],
image=self.cards_to_deal_images[self.cards_to_deal_pointer]

)
self.update()

Back inside our eise statement in move_card, we need to check if there are any more cards
to play the dealing animation for:

if self.cards_to_deal_pointer < (len(self.cards_to_deal_images) - 1):
self.cards_to_deal_pointer += 1
self.play_deal_animation()
else:
self.cards_to_deal_pointer = 0
self.cards_to_deal_images = []
self.cards_to_deal_positions = []
self.playing_animation = False

If we have more cards to display, we update the pointer to refer to the next item in our
cards_to_deal lists and call play_deal animation ONCE again.

When we have played our animation for each necessary card, our pointer is reset back
to o, OUr cards_to_deal lists are emptied out, and we set playing_animation tO False,
UDbIOCkng the display_table method.

Speaking of which, let's carry on with the rest of dispiay_tabie. This code will sit
underneath our whiie loop:

self.sound_board.chip_sound.play()
self.update_text()

if table_state['blackjack']:
self.master.show_next_round_options()
self.show_winner_text(table_state['has_winner'])
else:
self.master.show_gameplay_buttons()

Since all of the cards have been dealt, it's time for the money to be bet. To indicate
this, we play the sound of a casino chip being placed down.

We then call the update_text method to display various pieces of information on the
screen.

The method is finished off by checking the game state for a winner. If someone was
dealt blackjack from the beginning, we need to indicate the winner and tell the
camewindow t0 Show the appropriate buttons at the bottom of the window. Otherwise, we
get our camewindow tO display the hit and stick buttons with show_gamep1ay_buttons.

The update_text method is responsible for all create_text calls on our canvas:

def update_text(self):
self.delete(self.player_money_text, self.player_score_text, self.pot_money_text)

self.player_score_text = self.create_text(self.PLAYER_SCORE_TEXT_COORDS, text=self.
self.player_money_text = self.create_text(self.PLAYER_MONEY_COORDS, text=self.game_
self.pot_money_text = self.create_text(self.POT_MONEY_COORDS, text=self.game_state.

When updating the text displayed, we first delete all of our text from the canvas. This
ensures that there is no old text hanging around.

The three text items we create will display the player's score (as in the previous

chapter), the player's money, and the money in the pot (which will be won at the end
of the round).

All three of our text items are drawn at locations specified in our class' constants. Each
item also has a method within the camestate to return their values as a string:

def player_score_as_text(self):
return "Score: " + str(self.player.score)

def player_money_as_text(self):
return "Money: £" + str(self.player.money)

def pot_money_as_text(self):
return "Pot: £" + str(self.pot)

The only remaining text items that are not displayed by this method are the winner
text, which gets its own method as it is not drawn at the beginning of each round, and
the out-of-money text, which only displays at the end of a game. These also live in the
Gamestate Class:

def show_winner_text(self, winner):
if winner == 'p':
self.winner_text = self.create_text(self.WINNER_TEXT_COORDS,
text="YOU WIN!", font=(None, 50))
elif winner == 'dp':
self.winner_text

self.create_text(self.WINNER_TEXT_COORDS,

text="TIE!", font=(None, 50))

else:
self.winner_text

self.create_text(self.WINNER_TEXT_COORDS,
text="DEALER WINS!", font=(None, 50))

def show_out_of_money_text(self):
self.winner_text = self.create_text(self.WINNER_TEXT_COORDS,

| text="0ut Of Money - Game Over", font=(None, 50))

These should seem familiar from the previous chapter — the relevant text is drawn at
the center of our canvas.

With the animations displayed and the camewindow Showing our hit and stick buttons, it's
time for the game logic to begin. Let's create our camestate class to handle the rules and
variables we need to begin playing.

The GameState class

As in the previous chapter, the camestate class is responsible for all of the game logic,
including handling the deck, determining each player's score, and who has won.

This time around, it will also determine how much money is needed to play each
round:

class GameState:
def __init__ (self):
self.BASE_BET = 5
self.minimum_bet = self.BASE_BET
self.current_round = 1
self.pot = 0

self.deck = Deck()
self.deck.shuffle()

self.player
self.dealer

Player()
Dealer()

self.begin_round()

This class contains one constant, ease_set, which defines both the original bet and how
much the bet will increase per round. We have set this to 5, meaning the minimum_bet
will be 5, 10, 15, and so on.

As we increase the bet based on the current round, we need to keep track of it. We use
a current_round attribute to accomplish this.

The money in the pot will also be stored as an attribute of our camestate.

As with every iteration of our game, we begin by creating a deck and shuffling it.
Instead of creating nand instances to represent our player and dealer, we can now just
create player and pealer instances.

With the variables initialized, it's time to begin the first round:

def begin_round(self):
self.has_winner = ''

for i in range(2):
self.player.receive_card(self.deck.deal())
self.dealer.receive_card(self.deck.deal())

self.player.place_bet(self.minimum_bet)
self.add_bet(self.minimum_bet * 2)

At the beginning of each round, we need to ensure that we do not still have a winner

set, SO we update our has_winner attribute to an empty string.

We then deal both players two cards as usual, this time using the piayer class' new
receive_card method.

The player then needs to place their bet, removing the minimum bet from their total
money. The pot will increase by twice the minimum bet, so we use the add_bet method
to add this amount to the game's pot:

def add_bet(self, amount):
self.pot += amount

Now that our camestate has begun the round, we wait for the player to choose an action
by clicking the hit or stick button.

Choosing to hit

When the player decides to click the hit button, the camewindow's hit method is called.
This simply passes over to the camescreen class to handle playing the deal animation:

def hit(self):
self.game_screen.hit()

The nit method on our camescreen needs to set up for the deal animation in much the
same way as it did when displaying the initial table:

def hit(self):
self.master.remove_all_buttons()
new_card = self.game_state.draw()
card_number = len(self.game_state.player.hand.cards)
image_pos = self.get_player_card_pos(card_number)

self.cards_to_deal_images.append(new_card.get_file())
self.cards_to_deal_positions.append(image_pos)

self.play_deal_animation()

while self.playing_animation:
self.master.update()

Before playing our animation, we need to remove the hit and stick buttons from our
camewindow. This prevents double-taps of the hit button from causing animation
problems.

We draw a card from the deck, check the number of cards the player will now have,
calculate its position on the table, and set up the deal animations using our cards_to_deal
lists. The deal animation is played and we again wait for it to complete with another
while loop:

self.game_state.hit(new_card)

self.update_text()
self.check_for_winner()

Once the animation has finished, we add the card to the camestate, update the text on
screen, and check for a winner.

Adding the card on the game state simply passes the card instance over to our player:

def hit(self, card):
self.player.receive_card(card)

To check for a winner, we pass back to the samestate object's check_for_winner method. If
it finds a winner, we need to show the dealer's face-down card and the winner text in

the middle of the screen. Then we can pass back to the camewindowobject's on_winner
method to display the relevant GUI options:

def check_for_winner(self):
winner = self.game_state.check_for_winner()

if winner:
self.show_dealers_cards(self.game_state.get_table_state())
self.show_winner_text(winner)
self.master.on_winner()

else:
self.master.show_gameplay_buttons()

The camestateobject's check_for_winner method is much like it was previously, except we
can use the player's properties to shorten it slightly:

def check_for_winner(self):
if self.player.has_blackjack:

self.has_winner = 'p'
elif self.player.is_over:
self.has_winner = 'd'

return self.has_winner

If we did not find a winner, the samewindow Will just show our gameplay buttons. These
are the usual hit and stick buttons:

def show_gameplay_buttons(self):
self.next_round_button.pack_forget()
self.quit_button.pack_forget()

self.hit_button.pack(side=tk.LEFT, padx=(1600, 200))
self.stick_button.pack(side=tk.LEFT)

If, however, we did indeed create a winner from the last draw, we need to reveal the
dealer's face-down card. We do this by using the card class' get_rile method to find the
image of its front, then drawing it over the top of the card back image:

def show_dealers_cards(self, table_state):
dealer_first_card = table_state['dealer_cards'][0].get_file()
self.create_image((self.CARD_ORIGINAL_POSITION, self.DEALER_CARD_HEIGHT), image=dea

The rest of the logic is handed over to the GUI elements under the camewindow class:

def on_winner(self):
self.show_next_round_options()

def show_next_round_options(self):
self.hit_button.pack_forget()
self.stick_button.pack_forget()

self.next_round_button.pack(side=tk.LEFT, padx=(100, 200))
self.quit_button.pack(side=tk.LEFT)

When a winner is found, the nit and stick buttons are removed from the bottom of the
window and they are replaced with next round and quit buttons.

The quit button is the same as before, calling the T« widget's destroy method:

def next_round(self):
self.remove_all_buttons()
self.game_screen.next_round()

Our next_round method removes all buttons from the GUI once again and passes over to
the camescreen, telling it to begin the next round:

def next_round(self):

self.delete(self.winner_text)

self.winner_text = None

self.game_state.assign_winnings()

if self.game_state.player_can_place_bet():
self.game_state.next_round()
self.display_table()

else:
self.show_out_of_money_text()
self.master.on_game_over()

With the new round beginning, we no longer need to display who has won, so we
delete the winner text with the canvas' delete method. We also remove the attribute's
value by setting it back to none.

The camestate now needs to give all of the money from the pot to the winner. This is
handled by the assign_winnings method:

def assign_winnings(self):
winner = self.has_winner
if winner == 'p':
self.player.add_winnings(self.pot)
self.pot = 0
elif winner == 'd':
self.pot = 0

Should the player win the round, their money will increase by the amount in the pot. If
the dealer won, there is no need to assign them the money since they cannot go bust, so
the pot is just emptied. If the result was a tie, the pot will remain full, and the whole
amount is left to play for in the next round (on top of that round's bet).

The camestate is then free to move on to the next round:

def next_round(self):
self.current_round += 1
self.minimum_bet = self.BASE_BET * self.current_round

self.player.empty_hand()
self.dealer.empty_hand()

self.begin_round()

The current_round attribute is incremented and the new minimum bet is calculated from
it. Both players then empty their hands to receive new cards, and the new round
begins.

Choosing to stick

As you may remember from the previous chapters, when the player chooses to stick,
the round is automatically over, and the winner needs to be determined by comparing
the player's hand to the dealer's.

The method called by our stick button is that of the camewindow itself. This method only
passes on the stick choice to the camescreen:

def stick(self):
self.game_screen.stick()

The camescreen grabs the final state from our camestate, then performs the same steps as it
did when we found a winner during our nit logic:

def stick(self):
table_state = self.game_state.calculate_final_state()

self.show_dealers_cards(table_state)
self.show_winner_text(table_state['has_winner'])
self.master.on_winner()

The final state is calculated in the same way as in previous chapters. The code is
shortened slightly by our new player properties:

def calculate_final state(self):
player_hand_value self.player.score
dealer_hand_value self.dealer.score

if player_hand_value == dealer_hand_value:
winner = 'dp'

elif player_hand_value > dealer_hand_value:
winner = 'p'

else:
winner = 'd'

self.has_winner = winner

table_state = {
'player_cards': self.player.cards,
'dealer_cards': self.dealer.cards,
'has_winner': winner,

}

return table_state

This dictionary is returned to the camescreen so that it can flip the dealer's card and
display the winner as text. The camescreen will then pass back to the camewindow to display
the relevant buttons back to the user.

Running out of money

As the rounds go on, the amount of money needed to satisfy the minimum bet will
grow. This means that if the player loses enough rounds, they will be unable to
continue playing.

When this happens, the camescreen will call the on_game_over method within our camewindow
so that it can adjust the GUI elements accordingly:

def on_game_over(self):
self.hit_button.pack_forget()
self.stick_button.pack_forget()
self.new_game_button.pack(side=tk.LEFT, padx=(100, 200))
self.quit_button.pack(side=tk.LEFT)

The hit and stick buttons are replaced with a new game button as well as our familiar
quit button. The new game button will call a method named new_game On our camewindow:

def new_game(self):
self.remove_all_buttons()
self.game_screen.refresh()
self.game_screen.setup_opening_animation()

Upon starting a new game, the camewindow Will remove its buttons to prevent a double-
click, then pass back over to the camescreen to refresh its camestate instance and play the
opening shuffle animation:

def refresh(self):
self.game_state = GameState()

All that's needed from the camescreen to restart itself is a new instance of the camestate,
which will be set back at around 1.

With that, the game logic is all finished. You should now have three fairly big classes
containing all of the window widgets, canvas animations, and game logic. All that's
left to do is make it run.

Finishing off

To make our game runnable, we just need an instance of the samewindow class. This class
will handle the creation and initializing of the other two classes, making running the
game effortless:

if __name__ == "__main__":
gw = GameWindow()
gw.mainloop()

As usual, we contain the creation of our window within an if _ name_ == "_ main_ "
block, create our instance, and call its main100p method.

Make sure you have sourced your virtual environment, then give this code a run with
python3 blackjack.py. You should be greeted by a window that looks much like the one
from chapter 3, Jack is Back in Style - the Blackjack GUI, but with a fancy shuffling
animation playing. You should then see and hear each individual card being dealt to
you, rather than have them appear all at once.

Give the game a play for a few rounds to get a feel for how each new round will begin,
and see the minimum bet increase until you can no longer afford to play.

Congratulations, you have now finished a fully-working game featuring both sounds
and animations!:

This is where we will leave our blackjack game. We have now created a fully playable
game with both sound effects and animation. We also have a few reusable pieces of a
casino card game that you may use to create other card games, such as poker, if you

wish to continue along this path.

Summary

With the end of this chapter, and the end of our blackjack project as a whole, we now
know how to add animations to a Tkinter project by making use of the powerful canvas
widget and its methods, such as create_image, create_text, move, and update. We know how
to control their frame rate with the use of Tkinter's arter method and how to block
other functions until the animation is finished with a whiie loop.

Adding sound into a project has been made very easy by the use of the pygame library.
Although the package we made for this chapter used casino-specific sounds, we have
learned enough about reusability in order to create a sound collection package for any
type of game and application, all we need is the audio files.

By looking into Python's packaging system, we have learned how to import and use
other pieces of code within an application — both code written by us and external
libraries. The advantages and dangers of specific import styles have been demonstrated
so that we know how to balance conciseness of code with safety from accidentally
editing things we should not.

Python's virtual environments have been explored and practiced so that we can
consider portability of our applications as a whole, ensuring anybody who has the code
will also have a list of its dependencies and the correct Python interpreter to go along
with it.

In the next chapter, we will begin a new project—a text editor that handles syntax
highlighting. With this project, we will be learning all about Tkinter's powerful text
widget, as well as general concepts of event handling and tagging.

Creating a Highly Customizable
Python Editor

The next project we will be undertaking is a smart text editor for writing Python code.
This text editor will have all of the features you would normally expect a text editor to
have, including line numbers, a top menu bar, a right-click menu, various customizable
key-bindings, a find/replace window, configurable syntax highlighting, and more!

Our first iteration will set up the foundations for our editor. We will start with the basic
layout, some of the least complicated and familiar widgets, some key-bindings, and the
creation of our find window.

In this chapter, we will cover:

Using themed ttk widgets instead of regular t« ones
Styling tk and ttk widgets

Handling a large amount of text with the text widget
Scrolling with the scro11bar widget

Tkinter's event system

Creating a second top-level window

With the increase in complexity of this new project, we should also ensure it looks as
professional as possible. In order to improve the look and feel of our text editor, we
will move on from Tkinter's stock widgets to those provided by a submodule named
ttk. These will give our editor a much more native feel to the user. So, what is the ttk
submodule?

The ttk submodule

The ttk submodule contains themed widgets that match those native to the system they
are being run on. You may have noticed that the sutton widgets used by our blackjack
game looked a little out of place compared to buttons on a native application for your
operating system. This is because Tkinter's regular widgets have a consistent look
across all platforms and were likely designed before the operating system you are
using was created.

To demonstrate what a difference ttk themed widgets make, open up a Python file and
add the following code:

import tkinter as tk
import tkinter.ttk as ttk

win = tk.Tk()

button_tk = tk.Button(win, text="tk")
button_ttk = ttk.Button(win, text="ttk")

button_tk.pack(padx=10, pady=10)
button_ttk.pack(padx=10, pady=10)

win.mainloop()

Run this code and carefully study each button. The ttk button should appear below the
tk button, and should look similar to the buttons you are used to seeing on desktop
applications for your operating system:

7 t - o X

Given the native look, there is little reason to use regular tk widgets when there is a
themed alternative provided in ttk.

The small advantage of a tk widget over a ttk equivalent is the ease of styling. If you
plan on custom-styling a widget, then it is usually easier to stick with the tk version,
since it will likely not look native after heavy custom styling is applied anyway.

Styling a tk widget

In order to style a tk widget, we simply use keyword arguments upon its creation, or
the configure method if we wish to alter it afterwards.

Let's open up another Python file and have a go at styling some tk widgets:

import itertools
import tkinter as tk

style_ 1 {'fg': 'red', 'bg': 'black', 'activebackground': 'gold',6 'activeforeground':
style_2 {'fg': 'yellow', 'bg': 'grey', 'activebackground': 'chocolate',6 'activeforegr
style_cycle = itertools.cycle([style_1, style_2])

def switch_style():
style = next(style_cycle)
button.configure(**style)

win = tk.Tk()

button = tk.Button(win, text="style switch", command=switch_style)
button.pack(padx=50, pady=50)

win.mainloop()

In this file, we begin by creating two dictionaries full of keyword-argument to value
mappings. The dictionary keys (fg, bg, and so on) are arguments which can be passed
when initializing a widget, or to the configure method, to change its styling. The values
of the dictionary are color names which will be assigned to these attributes.

The attributes we will be changing are:

fg: The button's foreground (text) color

bg: The button's background color

activebackground: The button's background color when pressed
activeforeground: The button's foreground (text) color when pressed

These two dictionaries are put into a list and passed to the cycie function from the
itertools module. This function simply takes an iterable and returns each value when
next 1S called on it. Once it reaches the end of the iterable, it then continues from the
beginning, thus creating a cycle.

A function is then created named switch_style. This function will call next on our cycle
and pass the arguments from the dictionary to the button's configure method. This will
call the method and update the styling of our button.

The last four lines should look familiar. A main window is created with the « widget,

a sutton widget is created and bound to our switch_style function, the button is packed,
and the window is displayed with main1oop.

Run this code and give the button a few clicks. Hold the mouse down on it and note
the color change when the button is active which is shown in the following screenshot:

This is styling tk widgets in a nutshell. While I haven't covered every possible aspect
of a widget that can be styled, the method of doing so will be the same.

0 A list of aspects and values can be found online. One possible source is

http://effbot.org/tkinterbook/tkinter-widget-styling.htm.

Styling a ttk widget is quite different. These require a special styie object to be created
for each widget type. Let's have a go at styling some ttk widgets.

http://effbot.org/tkinterbook/tkinter-widget-styling.htm

Styling a ttk widget

In order to emulate the previous example with a ttk button, open up a new file and add
the following code:

import itertools
import tkinter as tk
import tkinter.ttk as ttk

win = tk.Tk()
style = ttk.Style()

style_ 1 = {'foreground': 'red', 'background': 'black'}

style_2 = {'foreground': 'yellow',6 'background': 'grey'}

mapping_1 = {'background': [('pressed', 'gold'), ('active', 'magenta')]}
mapping_2 = {'background': [('pressed', 'chocolate'), ('active', 'blue4')]}

style_cycle = itertools.cycle([style_1, style_2])
mapping_cycle = itertools.cycle([mapping_1, mapping_2])

To set up our style switching button, we use the following steps:

1. Though the imports are the same as before, we will also add tt« this time, so we
start by adding this.

2. We create a main window, followed by the ttk sty1e object. This is the object that
will be configured in order to affect multiple widgets in the application.

3. Another two style dictionaries are created, this time without activebackground Or
activeforeground, which are configured differently in ttk.

4. Two mapping dictionaries are created which will handle changing colors when
the buttons are hovered over and pressed. These are in the form of a list of 2-
tuples. The first value in the tuple is the state and the second is the color (as a
string in this case).

5. Create two cycles to hold our styles and mappings.

Now that we have these variables set up, we can continue with the logic:

def switch_style():
style_choice = next(style_cycle)
mapping_choice = next(mapping_cycle)
style.configure('TButton', **style_choice)
style.map('TButton', **mapping_choice)

button = ttk.Button(win, text="style switch", command=switch_style, style="TButton")
button.pack(padx=50, pady=50)

win.mainloop()

Our switch_style function now looks a bit different.

6. We get the next style and mapping dictionary from our cycles.

The confrigure method is called as before, but this time on the styie object rather

than the button itself.

8. The string tsutton is passed as the first argument to configure. This is a special
string within ttk which will tell the styie object to apply the given styling to all
sutton widgets. The keyword arguments passed here come from our style_choice
dictionary, as before.

9. In order to add the highlighting logic, we need to use the map function. This will
mabp the attributes in the keys of our mapping dictionaries (just background in this
case) to different style options, depending on their states.

10. The button is created. Upon creation, it is mapped to the tsutton style. This
assignment is actually pointless because the tsutton styles will apply to all sutton
widgets by default, but it can be helpful to pass it as the argument to sty1e just for
clarification.

11. We finish the file by packing the button and displaying the window.

N

Give this file a try. Click the button a few times, again making sure to hold down the
button to see how the coloring changes based on its state:

style switch

Now that we have a grasp of how to change some styling with both tk and ttk widgets,
it is clear that styling a tk widget is much simpler, so it may be tempting to stick with
tk widgets.

However, aside from the native look, there is another huge benefit to ttk widget styling
—inheritance. One more example will allow us to explore how this concept works.

Ttk style inheritance

You know the drill by now—open up a blank file and fill in the following code:

import tkinter as tk
import tkinter.ttk as ttk

win = tk.Tk()

regular_button = ttk.Button(win, text="regular button")

small_button = ttk.Button(win, text="small button", style="small.TButton")

big_button = ttk.Button(win, text="big button", style="big.TButton")
big_dangerous_button = ttk.Button(win, text="big dangerous", style="danger.big.TButton"
small_dangerous_button = ttk.Button(win, text="small dangerous", style="danger.small.TB

After the imports and main window, we create five buttons. Each button will have
different styling added to it:

The first has no style argument, so will only have the global styling applied to it.
The second has sma11.7sutton styling applied.

The third has big.tButton styling applied.

The fourth has danger.big.TButton styling applied.

The fifth has danger.smal1.TButton StYliIlg apphed

These style arguments are just strings. They won't do anything until we get a sty1e
object to configure them:

style = ttk.Style()

style.configure('TButton', foreground="blue4")
style.configure('small.TButton', font=(None, 7))
style.configure('big.TButton', font=(None, 20))
style.configure('danger.small.TButton', foreground="red")
style.configure('danger.big.TButton', foreground="dark red")

We call configure with each of our styie choices as the first argument:

e The global Teutton sets the foreground (text) color to biuea.
The sma11.78utton reduces the font size down to 7.

The big.TButton increases the font size to zo.

The danger.smal1.TButton Sets the foreground color to red.
The danger.big.TButton sets the foreground to dark red.

Now that we have the styles all set up, all we have left to do is pack the buttons and
display the window:

regular_button.pack(padx=50, pady=50)
small_button.pack(padx=50, pady=50)

big_button.pack(padx=50, pady=50)
big_dangerous_button.pack(padx=50, pady=50)
small_dangerous_button.pack(padx=50, pady=50)

win.mainloop()

Run this code and look at the styling of each button. Hopefully, the way inheritance
works is clear just from this example.

When defining a style name, the string which is used determines the logic used when
styling the widget. Inheritance is applied via the use of the dots within the string.

Think of the rightmost word as the base of the inheritance chain. This will almost
always be named after one of the ttk special strings, as they define exactly which
widget the styling is applied to.

0 A list of all of these can be found online; for example, at
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html.

Once you have found the appropriate base, you can edit all widgets of that type by
configuring the base. This is what we did with this line of code:

| style.configure('TButton', foreground="blue4")

Using this line, we changed all buttons to have blue text, unless overwritten by a new
style.

In order to create a style which is only applied to certain widgets, add a new style
name, followed by a dot, before the name of the base style. We did this as follows:

style.configure('small.TButton', font=(None, 7))
style.configure('big.TButton', font=(None, 20))

Any buttons using one of these two styles will have the relevant font size
modifications from their leftmost style name. As well as this, they will inherit the blue
text modification from the tsutton base style. This is why all of the first three buttons
have blue text.

This chain of inheritance can continue as far as necessary. In our example, we
extended both big and small buttons one further time:

style.configure('danger.small.TButton', foreground="red")
style.configure('danger.big.TButton', foreground="dark red")

Each of these two buttons inherits both the font size and blue text from its middle and
right style names, but the base name of rsutton, which sets the text to blue, has been
overwritten by the leftmost style name's shade of red:

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html

regular button

big dangerous

This inheritance allows us to achieve effortless consistency across widgets of the same
type within an application. We can configure a base style for each widget and update
certain features of any widget which may need a slight difference in style without
having to re-declare the base styling.

It also shortens our initializations significantly if we want to apply multiple default
styles upon creation.

Now that we have an understanding of the differences between tk and ttk widgets, let's
begin using some by building the first version of our text editor application.

Beginning our text editor

Before writing any code, be sure to make a new folder to hold the files for this chapter.
Inside this folder, create a file called textarea.py. This file will hold the main part of our
text editor—a subclass of the text widget.

The text widget is such as a textarea tag within HTML. It holds multiple lines of text
and many formatting options. In the next chapter, we will see just how powerful this
widget can be with the use of concepts like tags and indexing, which alter the text's
appearance and give us control over certain regions of the text, allowing us to search
all over the document within.

For now, we will just need a simple instance of the widget with a couple of
configuration options set:

import tkinter as tk

class TextArea(tk.Text):
def __init_ (self, master, **kwargs):
super().__init__ (**kwargs)

self.master = master

self.config(wrap=tk.WORD)
Although initially short, this is all we need at the moment for our rext widget subclass.

After initializing the Text widget superclass, we assign the master widget as an attribute
which will allow us to send information back to the main application window in the
future.

We use the config method to tell our widget to wrap text on a whole word where
possible. This will be configurable in a later iteration.

The next file to create in this folder will hold our main window, so I have called it
texteditor.py.

import tkinter as tk
import tkinter.ttk as ttk

from textarea import TextArea
class MainwWindow(tk.Tk):

def __init__ (self):
super().__init__ ()

TextArea(self, bg="white", fg="black", undo=True)

self.text_area

self.scrollbar = ttk.Scrollbar(orient="vertical",
command=self.scroll_text)
self.text_area.configure(yscrollcommand=self.scrollbar.set)

self.scrollbar.pack(side=tk.LEFT, fill=tk.Y)
self.text_area.pack(side=tk.LEFT, fill=tk.BOTH, expand=1)

As usual, our main window will inherit from the T« widget. We make an instance of
our Textarea class, passing a default background and foreground color. The undo
keyword argument is used to tell the widget that we want to keep a history of the user's
actions to allow the familiar undo and redo commands to function.

After our Textarea, We create a scrollbar widget. This will allow the user to quickly
scroll around the Textarea widget by dragging the bar with their mouse.

We want this scro1ibar to be down the left-hand side of our window and handle
scrolling up and down. We achieve this by passing the string "vertical" to the orient
keyword. Much like a sutton, the scro11bar widget can take a command argument to call
a piece of code when it is interacted with.

To tell the textarea widget to receive scrolling information from our scroiibar, we
configure it with the yscrolicommand attribute assigned to the scroiibar set property.

Both widgets are packed into the main window. We pack the scro1ibar in first to ensure
it goes on the very left and tell it to fill the entire v (vertical) space above and below it.
We then pack the textarea widget next to our scroiibar, instructing it to take up all
remaining space with the fi11 and expand arguments.

If you were to run this code as is (after making an instance of the mainwindow and calling
mainloop ON it), you would see that scrolling the text area will move the scroiibar along
with it, but you cannot click and drag the scroi1bar yet. In order to make that work, we
need to assign its command function, which in our case is the scro11_text method:

def scroll_text(self, *args):
self.text_area.yview_moveto(args[1])

The arguments supplied to this method will be the string moveto and an integer
containing the position at which to move. We are catching these with a starred args
parameter, for a reason which will become clear later on.

For now, all we need to do is call the text_area yview_moveto method with the supplied
position and our text_area Will be scrollable via the scroiibar.

Finish up with the usual creation of an instance of the main window to allow the
application to run:

if __name__ == '__main__':
mw = MainWindow()
mw.mainloop()

We can now run this file and have a look at our text editor. Try typing a lot of text and
scrolling the widget with your mouse. Now try grabbing and pulling the scroiibar as
well.

Once you've explored scrolling, try some common keyboard shortcuts which you
would expect to work. You should find that some of them will work fine, but others
either do nothing or will do something different.

For example, Ctrl + A usually selects all text within a document, but this won't happen
by default. Ctrl + O is usually to open a new file, but this will insert a blank line
instead.

If we want to change these bindings, we will need to begin using Tkinter's event
system to bind custom events to key combinations. Before diving in, let's take a brief
look at how this event system is going to work.

Tkinter's event system

Each time the user interacts with a program in some way—usually via the use of a
mouse and keyboard—an event is sent to the application. It is these events that cause
things to happen, such as the letters appearing on my screen as I press keys on the
keyboard while writing this book.

Tkinter's widgets have a default behavior for certain keys, and the operating system
you are using will have default behaviors too. For example, Alt + F4 will close the
active window on a lot of operating systems, unless specifically unbound from this
action.

When writing an application using Tkinter, there is a very simple and succinct API
which allows the programmer to listen for keyboard presses or mouse movement and
execute code in response.

Binding an event

The basic format of an event binding is as follows:

|widget.bind('<Event-String>', function_name)

Each widget has the ability to listen to the system for one of many event types. Each
event type has a particular string defined within Tkinter to allow it to be mapped over
to the Python interface. When the event passed via this string occurs, the function
passed as the second parameter is executed. Note that the function is passed and not
executed, just like the command argument of a sutton widget.

When an application is written in an object-oriented manner, the function passed to the vind method is typically

0 a regular class method. If the code is instead written procedurally, you will often see 1ambda functions used in
order to access previously defined widgets. If you are not familiar with the way a 1ambda Works, it is a good idea
to familiarize yourself with that before continuing.

To try out some event bindings, get yourself another blank Python file and add the
following code to it:

import tkinter as tk

win tk.Tk()

can tk.Canvas(win, width=300, height=300)
strvar = tk.StringVar()

lab = tk.Label(win, textvar=strvar)
strvar.set("Press a key")

Begin the file by creating a main window, canvas, stringvar, and rabe1. The stringvar is set
to a default value to make the Labe1 show something when the window is first
initialized.

Now we need a few functions to be called when our events are triggered, which are as
follows:

def on_click(event=None):
can.create_oval((event.x - 5, event.y - 5, event.x + 5, event.y + 5),
fill="red")

def on_key_down(event=None):
strvar.set(event.keysym)

def on_ctrl_d(event=None):
top = tk.Toplevel(win)
top.geometry("200x200")
sv = tk.StringVar()
sv.set("Hover the mouse over me'")
label = tk.Label(top, textvar=sv)
label.pack(expand=1, fill=tk.BOTH)

We have three functions which will be used to demonstrate three different events:

® on_click. When the left mouse button is clicked, we will draw a small red dot in
our canvas.

® on_key_down: When a key on the keyboard is pressed, we will display it using our
Label.

e on_ctrl d: When the control key is held and the d key is pressed, we will display a
second window. There will be more to this function added shortly.

Each function takes a single argument—event. This is a special object that Tkinter will
pass to a function which has been bound via the bind method. This object contains
information regarding the event which took place, and has different properties based
on the type of event which was captured.

When this object is spawned from a mouse event, for instance, it will contain the
coordinates of where on the widget the user has clicked. These are stored in its x and y
properties. We use these x and y properties in order to create the bounding box for our
dot with our on_c1ick function. This is how we know the dot will appear underneath
where the user has clicked.

During a keyboard event, the event object will hold information about what key has
been pressed. There are multiple properties holding various different bits of data, but
the human-readable representation of the key will be stored in its keysym property. We
set the value of the stringvar referenced by our Labe1 to this string, allowing us to show
the user what key has been pressed.

Now that we have the functions to be bound, all that's left is to do the binding. Add
this to the following functions:
can.bind('<Button-1>', on_click)

win.bind('<KeyPress>', on_key_down)
win.bind('<Control-d>', on_ctrl_d)

can.pack()
lab.pack(side=tk.BOTTOM)

win.mainloop()

To bind to the left-click of the mouse, the special string is <sutton-1>. Since the canvas is
what will draw our dots, we call the bind method on its instance.

On each keyboard's key press, both the <keypress> and <keyrelease> events will trigger.
The first occurs when the key is pushed in and the latter when the key is released.

In order to bind to a modifier key (such as control) and a regular key, we use the
modifier key first, joined to the regular key with a hyphen. To bind to Ctrl and D, the
string will be <contro1-d>. Similarly, holding the shift key and pressing the s key would

be <shift-s>.
Our widgets are packed and our window is displayed.

Save and run this code, then try clicking over the canvas. You should be spawning
small red dots each time you click.

Then try pressing keys on the keyboard and observe the text appearing at the bottom of
the window. You can use this feature any time you are unsure of what the special name
is for a key you are trying to bind an event to.

If you hold Ctrl and press the letter D, you should see a second window appear.
Although it tells you to hover the mouse over it, nothing happens when you do. Let's
fix this. Add the following to the on_ctr1_d function:

label.bind("<Enter>", lambda e, sv=sv: sv.set("Hello mouse!"))
label.bind("<Leave>", lambda e, sv=sv: sv.set("Goodbye mouse!"))

At first glance, you may assume the <enter> event is the enter key, but it is actually used
to detect the mouse cursor entering the boundaries of a widget.

Conversely, the <Leave> binding detects the mouse leaving the bounds of a widget.

Using these two events, we can detect when the mouse is hovering over the Lave1 and
change its text. A 1ambda function is used to change the text of our stringvar variable
depending on the position of the mouse.

Run this updated version of the code, press Ctrl + D, then move the mouse cursor in
and out of the newly spawned window. You should see the text change as you do so.

Now we know how to add behavior to certain events. We also saw in our text editor
application that some widgets will come with default events already programmed.
These are changeable, too, but require an extra step.

Overwriting default events

What happens if we bind a key which already has default behavior on the target
widget? Let's take a look at one example. You should remember from our text editor
example that the combination of Ctrl + O inserted blank lines. We should overwrite
that:

import tkinter as tk

win = tk.Tk()

text = tk.Text(win, fg="black", bg="white")

text.bind('<Control-o>', lambda e, t=text: t.insert(1.0, 'aaa'))

text.pack()
win.mainloop()

Run this example, type three lines of dummy text, then place your cursor in the middle
somewhere. When you press Ctrl + O, you would expect the letters aaa to be inserted at
the beginning of the editor. Well, they are, but the default behavior of adding blank
lines also happens. If we are going to bind this shortcut to open a file, we don't want
blank lines being added into the current file first!

When an event occurs in Tkinter, it will propagate from the instance level down to the
class level. This means that any bindings which occur on the rext widget class itself,
not specifically our instance, will also happen. This is why we get the additional blank
line—the behavior has been bound to the text widget at a class level.

To prevent this propagation, we need to return the string break during the instance level
bindings.

Update the previous code snippet to do this:

def on_control_o(event=None):
t.insert(1.0, 'aaa')

return "break"

t.bind('<Control-o>', on_control_o)

When running this version of the code, pressing Ctrl + o will only add the

aaa characters and no longer create the blank lines. This is because returning the
special break string has prevented Tkinter from passing the keyboard event down to the
class level.

With that cleared up, the last thing to look at regarding events is generating them.

Generating events

When generating a custom event, we first need to name it in a way Tkinter will
recognize. We can name an event anything we want (assuming it is not already
reserved), as long as we enclose it between two less-than and greater-than signs, for
example <<custom_event>>,

We can emit this event whenever we like by using the event_generate method of a
Tkinter widget. The first argument to this widget will be our custom name, and the
remaining keyword arguments will define some properties which will be sent to the
handler via the usual event object.

To receive and handle this event, the bind method is used just like before.

Let's have a go at an example program which uses custom events:

import random
import tkinter as tk

win = tk.Tk()

sv = tk.Stringvar()

sv.set('You are walking around with an open wallet...')
lab = tk.Label(win, textvar=sv)

Our program will feature a main window, a stringvar, and a Lave1. It tells the story of the
user walking with an open wallet. They will both drop and find money. Since this is
only a demo program, there's no need to try and keep track of total money. The
amounts dropped and picked up are merely for demonstration.

We now need a couple of functions which will act as event handlers to display each
gain or loss of money:

def user_found_money(event):
amount = event.x
sv.set('You found £' + str(amount))

def user_lost_money(event):
amount = event.x
sv.set('You dropped £' + str(amount))

Each function updates the value of our stringvar to show how much money was picked
up or dropped. This will be sent to the event handler by the event x attribute (since we
cannot define arbitrary attributes):

lab.pack(padx=50, pady=50)

win.bind("<<Find>>", user_found_money)
win.bind("<<Lose>>", user_lost_money)

Our Lave1 is packed and we bind the window to two custom events. These are named
<<Find>> and <<Lose>> to fit in with Tkinter's demand for event name formatting. Each
time one of these events is emitted, we will call the appropriate function to update the
stringvar and show the user how much money was found or lost:

def emit_custom_event():
choices = ['find', 'lose']
choice = random.choice(choices)
if choice == 'find':
win.event_generate("<<Find>>", x=random.randint(0, 50))
else:
win.event_generate('"<<Lose>>", x=random.randint(0, 50))
win.after (2000, emit_custom_event)

win.after (2000, emit_custom_event)

win.mainloop()

A function to emit these events is defined as emit_custom_event. We use the random
module to choose between a find Or a 1ose string, then generate the relevant event using
event_generate. We pass the necessary custom event name as the first argument and a
random number to be stored in the x attribute of the event object which will be given to
the handling functions.

Tkinter's arter method is used to call the emit_custom_event function after 2 seconds, and
the function will call itself every 2 seconds after that. This means the user will find or
drop a random amount of money every 2 seconds while the application is open.

We finish up by calling main1oop to ensure our window displays when the program is
run.

Run this program and watch as you find and lose money, all handled by our custom
event objects.

With that, we now know how to create and listen for events within Tkinter. We can
use this knowledge to build additional features into our basic text editor.

Events in our text editor

First things first: we should ensure that we have some expected key-bindings
happening within our text widget. We'll collate these in a method called bind_events and
call this method from within our __init_ :

def __init_ (self):
self.bind_events()

def bind_events(self):
self.bind('<Control-a>', self.select_all)
self.bind('<Control-c>', self.copy)
self.bind('<Control-v>', self.paste)
self.bind('<Control-x>', self.cut)
self.bind('<Control-y>', self.redo)
self.bind('<Control-z>"', self.undo)

This function now ensures that six commonly used keyboard shortcuts will perform
their expected behaviors.

Since these behaviors are already handled by the rext widget (except for select_a11), we
only need to emit the relevant events in order to get them to function. The select_al1
method is the only one we need to perform the logic for:

def cut(self, event=None):
self.event_generate("<<Cut>>")

def copy(self, event=None):
self.event_generate("<<Copy>>")

def paste(self, event=None):
self.event_generate("<<Paste>>")

def undo(self, event=None):
self.event_generate('"<<Undo>>")

return "break"

def redo(self, event=None):
self.event_generate("<<Redo>>")

return "break"

Our five built-in behaviors simply emit an event of the same name which will be
handled by the text widget at a class level. We return the break string in two of them in
order to prevent the default behavior of their key combinations.

Now that we have defined these methods, we can be certain that key-bindings such as
Ctrl + c will definitely copy text, and Ctrl + v will paste text. We do not need to return
break for three of the events as there is no further default behavior, but if you wanted to

do so for extra certainty, then it would not hurt:

def select_all(self, event=None):
self.tag_add("sel", 1.0, tk.END)

return "break"

In order to implement the seiect_a11 method, we add a tag of se1 to the entire document.
Don't worry about understanding how this works yet; we will go over tags and
indexing in great detail in the next chapter.

That's all of the events for the Textarea widget. We can now make some more
improvements to the mainwindow class.

A common feature of text editors is the ability to display line numbers. With the first
iteration of our editor, we can implement a rough version of this feature (to be
improved in chapter 6, Color Me Impressed! — Adding Syntax Highlighting).

Go ahead and add the following to the __init_ method of the mainwindow class:

self.line_numbers
first_100_numbers

tk.Text(self, bg="grey", fg="white")
[str(n+1) for n in range(100)]

self.line_numbers.insert(1.0, "\n".join(first_100_numbers))
self.line_numbers.configure(state="disabled", width=3)

In order to represent the line numbers, we will be using another text widget. The colors
will be different from the textarea widget to help differentiate between the two.

We use the range function to generate the first 100 numbers and insert them into our
Text widget, separated by new line characters.

The configure method is then used to disable the widget, preventing the user from
entering different text inside it, and also to set the widtn to three characters, which is as
wide as it needs to be at the moment.

The line numbers will live on the left-hand side of the application now, so we will
move the scroi1bar over to the right to make the interface a bit nicer:

self.scrollbar.pack(side=tk.RIGHT, fill=tk.Y)
self.line_numbers.pack(side=tk.LEFT, fill=tk.Y)
self.text_area.pack(side=tk.LEFT, fill=tk.BOTH, expand=1)

Give this code a whirl and check out the new layout.

If you enter many lines of text, you will still use the mouse and scro11bar to scroll the
TextArea widget, but you will notice that our line numbers don't move along with it. To
fix this, we will revisit our scroi1_text method:

|def scroll_text(self, *args):

self.line_numbers.yview_moveto(args[1])
self.text_area.yview_moveto(args[1])

Running the code now, you will see that the scro11bar will move the line numbers and
TextArea together, but the mouse wheel still operates on each independently. To alter
this behavior, we will need to use some event bindings.

We'll go ahead and use another bind_events method to collate all of these:

def bind_events(self):
self.text_area.bind("<MouseWheel>", self.scroll_ text)
self.text_area.bind("<Button-4>", self.scroll_text)
self.text_area.bind("<Button-5>", self.scroll_text)

Different operating systems will report different events, so we bind each possible one
to our scro1l_text method. This ensures all platforms will behave correctly.

We will now need to update the scro11_text method to handle the event argument which
is passed by Tkinter's event system:

def scroll_text(self, *args):
if len(args) > 1:
self.text_area.yview_moveto(args[1])
self.line_numbers.yview_moveto(args[1])
else:
event = args[0]
if event.delta:
move = -1 * (event.delta / 120)

else:
if event.num == 5:
move = 1
else:
move = -1

self.text_area.yview_scroll(int(move), "units")
self.line_numbers.yview_scroll(int(move), "units")

Since the event system will pass a single event object as the only argument, we will
only have one argument caught by our args* parameter. We can use this to detect
whether or not we have entered this method by dragging the scro11bar or moving the
mouse wheel.

Our previous code is now in an if eise block, with all new logic inside the eise.

We grab the event object from the args list and check its properties. Again, different
operating systems will populate different attributes in our event object.

If the de1ta attribute has been populated, we will need to scale it down to fit with
Tkinter's scale. We do this by dividing it by 12e. We also need to reverse the direction,
so we multiply it by -1. The result is stored in a variable named move which will be used
to adjust how far, and in which direction, the widgets are scrolled.

If we do not have a de1ta attribute, then we should have a num attribute instead. Much
like the mouse button codes, a nun of 4 is a scroll up and a nun of 5 is a scroll down. We
decide the appropriate unit of movement with an ir statement and again store it in our
move variable.

Now that we have the unit of movement, we apply it to the widgets using the
yview_scroll method. We cast this to an integer to ensure that the division from the de1ta
attribute has not resulted in a float, and use the special units string to tell Tkinter that
we are scrolling by one unit each time. The other option is pages, which would result in
a much larger scroll.

With this method finished, our line numbers and textarea will scroll together via both
means. Despite this, the line numbers can still be scrolled by themselves, which we do
not want to happen. We need to remove the default binding from the mouse wheel on
this widget. We can use the break string to achieve this.

Add these three lines into the bind_events function:

self.line_numbers.bind("<MouseWheel>", lambda e: "break")
self.line_numbers.bind("<Button-4>", lambda e: "break")
self.line_numbers.bind("<Button-5>", lambda e: "break")

Using a 1ambda function to return the string break will prevent the class-level scrolling
bindings from occurring on the text widget we are using as line numbers.

Run this version of the text editor and try playing around with the scrolling properties.
You should see that the line numbers and rtextarea now scroll together, and you cannot
scroll the line numbers independently by scrolling within their widget.

Due to the hardcoded amount of line numbers at the side, you will be able to scroll
them down further than the textarea widget, but this last small detail will be fixed in the
next chapter when we begin dynamically populating the line numbers, so there is no
need to worry about that yet.

The last thing to cover in this chapter will be creating a second top-level window.
Luckily for us, Tkinter has a widget which will allow us to do just that. This widget
will be great for our find/replace box.

A second top-level window

The new window that will spawn for our find/replace box shall be stored in a new file.
Create a new script called findwindow.py and begin by entering the following:

import tkinter as tk
import tkinter.ttk as ttk

class Findwindow(tk.Toplevel):
def __init__ (self, master, **kwargs):
super().__init__ (**kwargs)

self.geometry('350x100")
self.title('Find and Replace')

self.text_to_find = tk.StringVvar()
self.text_to_replace_with = tk.StringVar()

top_frame = tk.Frame(self)
middle_frame = tk.Frame(self)
bottom_frame = tk.Frame(self)

We will only need our usual Tkinter and ttk imports for this class.

We subclass Tkinter's topievel widget, which is a window that can act as a pop-up
window to be displayed on top of a main window. It can be configured much like a
regular T« widget, but requires a master which needs to be an instance of the v« widget as
it cannot act as the main window of an application. A widget such as this is a great fit
for our find/replace window, since it is much easier to spawn a new, smaller window
above the main one than to try and place the relevant widgets somewhere around our

TextArea.

After initializing the Top1eve1 widget class, we set this window's size to 350 pixels wide
and 100 pixels tall using the geometry method. Then its title is changed to "rind and
rReplace" SO that the user knows what it does.

We need two stringvars which will hold the text to be found and the text to replace that
with.

To lay out our application, we will be using three rrame widgets. These will be stacked
top, middle, and bottom, and span the entire horizontal space.

With the layout taken care of, we can begin adding functional widgets:

find_entry_label = tk.Label(top_frame, text="Find: ")
self.find_entry = ttk.Entry(top_frame, textvar=self.text_to_find)

replace_entry_label = tk.Label(middle_frame, text="Replace: ")
self.replace_entry = ttk.Entry(middle_frame, textvar=self.text_to_replace_with)

self.find_button = ttk.Button(bottom_frame, text="Find", command=self.on_find)
self.replace = ttk.Button(bottom_frame, text="Replace", command=self.on_replace)
self.cancel_button = ttk.Button(bottom_frame, text="Cancel", command=self.destroy)

The find window will need two places for the user to enter text, and these will need to
be labeled so that they know which is which. We achieve this with two entry widgets
and two accompanying Labe1 widgets. The Labe1 widgets will have set text since they
will not need to update, whereas the entry widgets are bound to our stringvar so that we
can easily get their values and adjust them if need be.

Along the bottom rrame, we will have three sutton widgets. These buttons will be
responsible for finding text in the textarea widget which matches that in our text_to_find
variable, replacing text in the textarea widget with the text held in our
text_to_replace_with Variable, and canceling any further operations and closing the
window.

The first two buttons are bound to methods within our rindwindow class, and the cancel
button is bound to the top-level widget's destroy method, which we have looked at
before.

The two methods will not do anything while our rindwindow is treated as its own class,
but later on, when we link it to the rest of our application, it will be able to call
methods from our other classes.

For now, enter the following code as these two methods:

def on_find(self):
self.master.find(self.text_to_find.get())

def on_replace(self):
self.master.replace(self.text_to_find.get(), self.text_to_replace_with.get())

In order to preview our rindwindow before the next chapter, we will include a T« widget
as its master. Simply create an instance and call its mainloop as you usually would:
if __name__ == '__main__':
mw = tk.Tk()

fw = FindWindow(mw)
mw.mainloop()

Run this code and you should have two windows pop up. One will be an empty main
window, and the other our new Findwindow:

X # Find and Replace A v A e

Find. |

Replace: |

This is where we shall leave the first iteration of our text editor. We have a solid base
on which we can add some sophisticated new features in the next chapter.

Summary

With the end of this chapter, the ttk set of widgets has now been added to our arsenal
of tools, and we know why they would be used (to capture a more native feel) and how
to style them using a styie object. Learning about style inheritance will enable us to
better plan how we go about styling ttk widgets in a larger application.

We have also had a look at the styling options of the built-in widgets should we prefer
to stick with those for their ease of use.

We have had a brief look at how Tkinter handles a large body of formatted text with
the text widget. We've previewed a couple of configurations and are ready to take a

deeper dive into this widget in the next chapter, learning how to style and search this
widget.

The built-in event system in Tkinter has been explored, allowing us to listen for
keyboard and mouse input and execute Python code in response. We also understand
that widgets may have their own default responses to some input, but we can overwrite
them using the break string.

Our text editor application has its roots set with three classes handling the main
window and widgets, the text widget subclass, and a separate find/replace window,
which we will be able to spawn atop our main window when we have combined them.

Next in line for our editor will be syntax highlighting. We will learn how to search
around our Text widget quickly, finding keywords in the Python language and changing
their color. We can then combine this ability to search with our find/replace window to
make this function as it should.

Color Me Impressed! — Adding
Syntax Highlighting

Now that we have a basic application laid out, it's time to dig deep into the text widget
and learn all about how to control its content while navigating around it. We will apply
these concepts by adding syntax highlighting to our existing textarea class. Along the
way, we will also touch upon the concepts of tagging areas and parsing config files.

In this chapter, we will cover:

Tkinter's indexing system for text widgets

Using the tag system to alter the display of text

Locating specific content with the search function of a text widget
Parsing config files

Let's begin by looking at how we can use the indexing system to pinpoint locations
within a rext widget.

Tkinter's indexing system

Indexing is handled in a somewhat coordinate-based way. An index is represented by
two numbers separated by a single full stop. For example: 4.s.

The first number (before the .) in this index can be thought of as the line number. This
begins at 1.

The second number (after the .) is how many characters into the line we are. This
begins at e.

The first character within a rext widget will therefore be located at 1.e. This means line
1, o characters in.

To ensure we fully understand this concept, let's create a demo application which will
show us where the cursor is located at all times.

Getting the cursor's position

Open up a new Python file and enter the following code:

import tkinter as tk

win = tk.Tk()

current_index = tk.StringVar()

text = tk.Text(win, bg="white", fg="black")
lab = tk.Label(win, textvar=current_index)

Begin with the normal importing and creation of a main window.

The things we will need for this application are a stringvar to hold the current cursor
location, a Text widget to navigate around, and a rabe1 to display our stringvar.

Now we need a function to hook to the <keyrelease> event which will update our
stringvar with the current cursor coordinates:
def update_index(event=None):

cursor_position = text.index(tk.INSERT)
cursor_position_pieces = str(cursor_position).split('.")

cursor_position_pieces[0]
cursor_position_pieces[1]

cursor_line =

cursor_char =

current_index.set('line: ' + cursor_line + ' char: ' + cursor_char +
' index: ' + str(cursor_position))

In order to get the cursor's current position, we use the index method of the rext widget.
This method will return the index of certain items which can reside within it. Since we
want the location of the cursor, we use the built-in constant insert which refers to it.

This returns the index in the previously mentioned format of line number, full stop,
and character number.

To separate these two pieces of information, we cast this to a string and use the sp1it
method to separate the two numbers from the full stop.

Each number is then stored in its own variable.

To make this information visible to the user, we create a string that contains the line
number, character number, and complete index. This is then assigned to our stringvar
with its set method.

Now we need to put these widgets into our main window, bind the <keyrelease> event,

and run the application:

text.pack(side=tk.TOP, fill=tk.BOTH, expand=1)
lab.pack(side=tk.BOTTOM, fill=tk.X, expand=1)

text.bind('<KeyRelease>', update_index)

win.mainloop()

Launch this application and type away in the Text widget (or copy and paste a bit of
text) and move the cursor around. You should be shown the position at the bottom, and
what it means:

X » tk Av ~Q

Python is an interpreted high-level programming language for general-purpose pro
gramming. Created by Guido van Rossum and first released in 1991, Python has a d
esign philosophy that emphasizes code readability, and a syntax that allows prog
rammers to express concepts in fewer lines of code,[25][26] notably using signif
icant whitespace. It provides constructs that enable clear programming on both s
mall and large scales.[27]

Python features a dynamid type system and automatic memory management. It suppor
ts multiple programming paradigms, including object-oriented, imperative, functi
onal and procedural, and has a large and comprehensive standard library.[28]

Python interpreters are available for many operating systems. CPython, the refer
ence implementation of Python, is open source software[29] and has a community-b
ased development model, as do nearly all of its variant implementations. CPython
is managed by the non-profit Python Software Foundation.

line: 3 char: 25 index: 3.25

This covers the basics of cursor positioning. Most of the indexing you will need to do
can be done like this, but there are certain tasks that will be tedious to calculate, for
example, finding the last character of a line, or moving three characters forward.
Luckily, Tkinter has a way of making this easy to do.

Named indexes

Much like the insert name we saw previously, Tkinter has many others we can use as
shortcuts to finding locations within our text widget. These include:

e current: The character closest to the mouse cursor. This updates when the mouse is
moved and no buttons are pressed.

e eno: The final character of the document. This is very useful for clearing the entire
widget, as we know the start is always 1.e.

e sec_rirsT: The first character which is selected.

e sec_tast: The last character which is selected.

These named indexes are not the only conveniences offered; there are also special
strings that can be used to calculate indexes, but that do not reside in the built-in
constants.

Special strings

There are some words that can be used in place of one of the numbers within a Tkinter
index, which will remove the need to calculate them.

Line endings

To refer to the end of a line, for example, line five, we can use the word end instead of
calculating and specifying a character number. With this example, we can use
the s.end index.

Horizontal movement

If we want to specify an index which is a certain number of characters forward from an
existing index, we can append +nc, where n will be the amount of characters. Likewise,
-nc will move backward n characters.

Suppose we want the range of the word python, which we know begins at index 1.4. We
could cast this to a float, add o.6 to it (since we know it is six characters long), and then
cast back to a string. However, this becomes tedious and is unnecessary. Instead, we
can refer to the ending index of this word with 1.4+6c.

Vertical movement

To go up and down lines, you could again cast the index to a float and add n.e to it, but
there is once again a much neater shortcut. This time, it is +n1 or -n1, depending on the
direction.

For example, if we had a shortcut to move the cursor three lines down, we could get its
position with pos = text.index(tk.1nserT) and then set it to three lines lower with pos = pos
+ l|+31ll.

Line beginning and end

The 1inestart and 1ineend strings will refer to the start and end of an index, respectively.
These are most useful when you do not explicitly know the index you are working
with.

For example, if you wish to add a feature that highlights the entire line at which the
cursor is residing, you could get the necessary indexes with the following:
start = str(text.index(tk.INSERT)) + " linestart"

end = str(text.index(tk.INSERT)) + " lineend"
text.tag_add("sel", start, end)

This again removes the need for splitting off the line number and adding a .e and .end
to it.

Word beginning and end

The last special strings to mention are wordstart and wordend. If you have an index which
is in the middle of a word, you can use these two strings to refer to the beginning and
end of it.

For example, if you knew that the y of python was at 3.2, then 3.2 wordstart and 3.2
wordend would refer to the beginning and end of this word.

Let's build upon our demo application by creating some keyboard shortcuts which will
utilize a few of these tools.

Expanding our demo

Open back up the demo file we created earlier, which shows off the current cursor
location. Underneath your update_index function, we will add four more bindings which
will be used to practice the utilization of these special strings:

def

def

down_three_lines(event=None):
current_cursor_index = str(text.index(tk.INSERT))
new_position = current_cursor_index + "+31"
text.mark_set(tk.INSERT, new_position)

return "break"

back_four_chars(event=None):

current_cursor_index = str(text.index(tk.INSERT))
new_position = current_cursor_index + "-4c"

text.mark_set(tk.INSERT, new_position)

return "break"

These two functions demonstrate the use of the +n1 and -nc strings.

We get the cursor's current position in the same way as before, then add either "+31" or
n.ac" to create the new index at which we will move it to.

In order to move the cursor, we need to use the mark_set method, passing it the name of
the mark (which is the inoex constant again) and the new index which we have created.

Since these functions will be bound to keyboard shortcuts, we will return the
break string to prevent any default behaviors:

def highlight_line(event=None):
start = str(text.index(tk.INSERT)) + " linestart"
end = str(text.index(tk.INSERT)) + " lineend"
text.tag_add("sel", start, end)

return "break"

def highlight_word(event=None):
word_pos = str(text.index(tk.INSERT))
start = word_pos + " wordstart"
end = word_pos + " wordend"
text.tag_add("sel", start, end)

return "break"

To demonstrate the line and word navigations, we create two more functions which

will be used to select different regions of the rext widget.

Demonstrating the line management, we will use a function which highlights the
current line. This was mentioned before and is now demonstrated within our
application.

We add the special tag se1, which is used to indicate selection, to the start and end of
the cursor's current line, which we refer to by adding the 1inestart and 1ineend strings to
its current index.

We then define a function that will highlight the word the cursor currently sits inside.
We do this by again getting the cursor's current index, then appending wordstart and
wordend tO get our two indexes.

Once again, the se1 tag is added between these indexes in order to create the selection.

Now we just need to bind these functions to keys as before:

text.bind('<Control-h>"', highlight_line)
text.bind('<Control-w>', highlight_word)
text.bind('<Control-d>', down_three_lines)
text.bind('<Control-b>', back_four_chars)

Give this new version of the demo application a try. Again, type or copy over a few
lines of text and press each keyboard shortcut to get a feel for how everything is
working.

Hopefully, now you have a good grasp of how Tkinter's text widget handles indexing
and positioning. This will come in very handy when we search through our text to find
Python keywords that require highlighting.

Speaking of which, it is now time to move on to tags. Tags are how the text widget can
style individual elements differently, and will be used to add the syntax highlighting.

We have already been adding one tag to our applications—se1—since this is a special
tag which refers to the boundaries within the widget which are selected.

Using our knowledge of indexing, let's begin experimenting with adding tags to areas
within a rext widget.

Using tags

In essence, a tag is simply a way of adding a name to certain parts of a widget. These
names are then used as identifiers, and can be used either to separate certain parts, or
group them, depending on your implementation of the principle.

To tag an area of text, you need:

e The starting index
e The ending index
e A tag name

The starting and ending indexes are as discussed in the previous section—they can be
numbers joined by a full stop, or they can use any of the special strings as shortcuts,
too.

The tag name is simply a user-defined string; the only rule is that it cannot contain
spaces. It is therefore up to the developer to give their tags a meaningful name. The
exception to this is the se1 tag, which is reserved for selecting text, so should not be
overwritten.

Once you have assigned tags to the necessary parts of the content, nothing new will
happen by default—the tags themselves must be configured first (with the exception of
sel ONce again).

Configuring a tag allows us to change certain styling properties of any areas which
have that tag applied. Some of the options available are:

background: The background (highlight) color of that area

foreground: The foreground (text) color of that area

font: The font and font size applied to that area

justify: Whether the text is aligned to the left, right, or center

offset: Vertically raise or lower the tagged text based on the argument provided
(positive integer to raise, negative to lower)

® underline: Add a line underneath the tagged area

These configuration options are passed as keyword arguments to the tag_configure
method of a Text widget.

Let's once again adjust our demo application to practice the use of tags.

Open up the demo file and add the following functions underneath the others:

def tag_alternating(event=None):
for i in range(0, 27, 2):
index = "1.' + str(1i)
end = index + '+1c'
text.tag_add('even', index, end)

text.tag_configure('even', foreground='orange')

return "break"
Our first function will tag each alternating character with a tag named even.

We use the range function to generate all of the even numbers between o and 27, passing
a 2 to the step argument so that we count up by two each time. We then add this
number to a 1 and a full stop in order to create the full index.

To ensure we only tag one character, our ending index is created by adding the special
string +1c to the end of the beginning index.

Now that we have the starting and ending index, we assign the tag to that area with the
tag_add method, passing all three of the required arguments to it.

Once we have tagged all relevant areas, we need to make the tag we have defined
actually do something. We achieve this by using the tag_configure method to set the
foreground argument to orange for everything that has been tagged with our even tag. This
means that each even character on the first line (for the first 26 characters) will become
orange after this function has been run.

We end up returning the oreak string to prevent any default behavior from our chosen
keyboard shortcut.

This example uses hard-coded indexes, which works for a small example such as this,
but is not desirable for a proper application. There is a method called tag_ranges which
will get the start and end indexes of all regions with a specific tag. Since the selection
is defined with a tag, we can use this method to get the selected area.

Let's add two more methods which utilize this method to have a look at a couple more
of the possible styling changes that can be applied by tags:

def raise_selected(event=None):
text.tag_configure('raise', offset=5)
selection = text.tag_ranges('"sel")
text.tag_add('raise', selection[0], selection[1])

return "break"

def underline_selected(event=None):
text.tag_configure('underline', underline=1)

selection = text.tag_ranges('"sel")
text.tag_add('underline', selection[0], selection[1])

return "break"

These functions begin again by configuring a tag name to have a particular styling
change.

The raise_selected function assigns a positive integer to the offset option, which will
raise the tagged area higher than the rest of the text on that line. Our underline_selected
method sets the under1ine option to 1, which will underline the tagged text.

We use the tag_ranges method to get the start and end index of text which has the
sel tag, meaning the selected text. A tag is then added to text between these ranges in
order to change their properties, and the usual break string is returned.

To play with these functions, all we need to do is bind them to a keyboard shortcut:

text.bind('<Control-t>', tag_alternating)
text.bind('<Control-r>', raise_selected)
text.bind('<Control-u>"', underline_selected)

Run this version of the demo application, add some dummy text, and press Ctrl + t.
You should see each letter at an even index has now become orange.

Now select a small part of the text and press Ctrl and r. You should see the text rise
above the rest of the text on that same line. Then give Ctrl + u a try; even on the same
text range, it will add the underlining on top of all previous style changes. This is
because the same range of text can have multiple tags affecting its styling:

X # tk A VA ‘E’

ython is an dnterpreted high-level programming language for general-purpose pro

gramming. Created by Guido van Rossum .. first released in 1991, Python has a d

esign philosophy that emphasizes code readability, and a syntax that allows prog
rammers to express concepts in fewer lines of code,[25][26] notably using signif

icant whitespace. It provides CONSTrUCTS that enable clear programming on both s

mall and large scales. [27]

Python features a dynamic type system and automatic MEMOTY management ¢ suppor

ts multiple programming paradigms, including object-oriented, imperative, functi
onal and procedural, and has a large and comprehensive standard library.[28]

Python interpreters are available for many operating systems. CPython, the refer

ence implementation of Python, is open source software[29] and has a community-b

ased development model, as do 1early all of +its variant implementations. CPython

is managed by the non-profit Python Software Foundation

line: 5 char: 191 index: 5.191

When multiple tags conflict, the tag that was configured last will have priority,
regardless of what order they were added to the range in.

Now that we know how to apply a tag to an index range which will change its color,
all we need to learn is how to discover the index ranges so that we can begin coloring
certain words in our text editor. There's a very convenient method of text widgets
which will allow us to do just that.

Searching text

When we need to find a specific piece of text within a Text widget, there is a method
called search which will allow us to do this easily.

The search method can take quite a lot of arguments:

® pattern: The pattern to match. This can be either an exact match or a regular
expression.

® index: Where to begin the search from.

stopindex: Where to stop ending a search. If this is not specified, the search will

loop.

forwards: Whether to search from the top to the bottom (this is the default).

backwards: Whether to search from bottom to top.

exact: Exact match instead of a regular expression (this is the default).

regexp: Indicates that the pattern supplied is a regular expression.

nocase: Whether to ignore case.

count: A variable which will be updated with the length of the match.

The only mandatory arguments are the search pattern and the starting index.

The search method will return the index of the beginning of the match and, if supplied,
a variable for the count argument; the length of the match will be stored inside it.

For example, if your Text widget had one line containing 1 1ike python programming and
you passed the string python to the pattern argument, the return value of the function
would be 1.s, since the word Python begins at the eighth character of the line. Our count
variable, if supplied, would contain the number e.

We can use these two pieces of information to construct the starting and ending index
which we will need to tag this match. The easiest way to do this is using the special
string of +nc along with the count variable—append this to the index which is returned
by the method.

In our example, the tagging indexes would be 1.s for the start and 1.s+sc for the end.

Since this method returns after the first match is found, we will often need to run this
in some sort of loop in order to find all pattern matches.

Let's get our heads around this by adding some code to our demo application which
will detect and tag the word python throughout the text widget.

Add this function alongside the others:

def tag_python(event=None):
text.tag_configure('python', foreground="green")
start = 1.0
idx = text.search('python', start, stopindex=tk.END)
while idx:
tag_begin = idx
tag_end = f"{idx}+6c"
text.tag_add('python', tag_begin, tag_end)

start = tag_end
idx = text.search('python', start, stopindex=tk.END)

return "break"

We will be using a tag called python to turn instances of the word green. We begin by
configuring that tag and setting a starting variable to 1.e (the beginning of the rext
widget).

We then use the search method to find the word python. We use the start variable as the
beginning index and the exo constant to specify that we will finish at the end of the
area.

The result of this method is stored in a variable called idx. This will contain the first
occurrence of the word. Now, in order to find any further matches, we need to begin a
loop. We use a while loop, which will exit once we no longer have a match index. This
also ensures that the code inside will only run if we have at least one match.

Inside this loop, we create the tag range as mentioned before and add the Python tag to
this range. We then update the start index to the calculated end index to ensure we
begin searching from right after the match, and call the search method again.

This loop will continue to run until we reach the end of the text input area.

Bind this to a keyboard shortcut and run the application:

| text.bind('<Control-p>', tag_python)

Write some text in the application which contains the word Python a few times.
Pressing this keyboard combination will color all of them green.

This is the technique we will be using in order to implement syntax highlighting in our
text editor. Instead of binding this to a keyboard combination, we will need our
highlighting method to run as the user types, so we will be binding it to either <keypress>

OrI <KeyRelease>.

Now that we have all of the tools and knowledge we need, we can finally begin with
the syntax highlighting in our main text editor application.

Adding syntax highlighting to
our text editor

Let's recap a bit and plan our next action before diving back into our text editor
application.

We know that in order to add syntax highlighting, we will need to change the color of
certain words which are considered keywords within the Python programming
language. In order to change their colors, we must apply a tag to the range at which
they appear within the Text widget.

Tkinter's indexing system is now familiar to us. We know that the general syntax is
line number, full stop, and character number, and some special strings also exists
which reduce the need to use mathematical calculations upon those numbers. This
means we know exactly how to format the ranges to add our tags to.

In order to locate each range, the search method can be used to locate matches of
provided words giving us the beginning index of a range, and we can use a special
string +nc to make finding the end even easier.

In order to find every instance of a keyword match, we have a simple loop structure
which we can transfer to our main application and use to find every occurrence of a
given word.

In order for a tag to do anything, it must be configured to change the styling properties
of all words sharing that tag. We have practiced this a couple of times and know that
the foreground argument can be used to change text color.

To avoid putting too much logic in our Textarea class, this logic can all be encapsulated
into a new class, which we will call nighiighter, to keep our Textarea as neat as possible.

The Highlighter class

Open up your text editor project from the last chapter and create a new file in its root
folder called nhighiighter.py. We can now write our wighlighter class in here:

import tkinter as tk

class Highlighter:

def __init__ (self, text_widget):
self.text_widget = text_widget
self.numbers_color = "blue"
self.keywords_color = "orange"
self.keywords = ["True", "False", "def", "for", "while", "import",

llifll, "elif”, llelsell]

self.disallowed_previous_chars = ["_", "-", "."]

self.tag_configure("keyword", foreground=self.keywords_color)
self.tag_configure("number", foreground=self.numbers_color)

self.text_widget.bind('<KeyRelease>', self.on_key_release)

Our nighiighter class will need to keep a reference to the rext widget which it is
highlighting, so we require this as a parameter within our __init_ method.

To start with, we will use a couple of attributes to hold the color of our numbers and
keywords (we will make a more elegant solution shortly). Numbers will be blue and
keywords will be orange. We also need a way of determining what a keyword is, so we
hold a list of them too.

Both of the tags we will be using are configured to change the text color of any ranges
which have the tags applied, and we bind a method to the <keyrelease> event:

def on_key_release(self, event=None):
self.highlight()

The on_key_release method will jUSt call a high1ight method, which is responsible for
changing the color of our numbers and keywords:

def highlight(self, event=None):
length = tk.IntVar()
for keyword in self.keywords:
start = 1.0
keyword = keyword + "[AA-Za-z_-]"
idx = self.text_widget.search(keyword, start, stopindex=tk.END,
count=length, regexp=1)

We begin the high1ight method with an 1ntvar which will hold the length of any match.
We now need to iterate through all of our keywords and search for them inside the rext
widget.

Since we want to start at the beginning of the text, we set the start variable to 1.e.

As we want only whole-word matches, we are going to need to use the power of regex.
The string [7a-za-z_-] is added onto the end of each keyword. This small piece of regex
is saying that we only want to match the word if it does not have any alphabet
characters, an underscore, or a dash after it. For example, if we are searching to
highlight the word for, we do not want to highlight the first three letters of fortress.
This regex will prevent a match on the word fortress as it has an alphabet character (a
¢y after the word for.

Our syntax highlighting will rely on regular expressions a lot. All programming languages have slight
differences in capabilities when it comes to interpreting them. Tcl, the language behind Tkinter, differs from
Python itself. To learn about Tcl's implementation of regular expressions, visit the Tcl documentation at nttp: /s

wiki.tcl.tk.

We now search for the modified keyword with the rext widget's search method, passing
in the argument regexp=1 to tell it that our pattern text should be interpreted as a regular
expression:

while idx:
char_match_found int(str(idx).split('."')[1])
line_match_found = int(str(idx).split('."')[0])
if char_match_found > 0:
previous_char_index = str(line_match_found) + '.' +
str(char_match_found - 1)
previous_char = self.text_widget.get(previous_char_index,
previous_char_index + "+1c")

As we have seen before, a while loop is utilized to ensure we will find every match
within the rext widget.

To continue safeguarding against non-whole-word matches, we will need to check the
character before the beginning of our match index. We cannot use the same regex
expression as before since this would prevent matches which occur at the very
beginning of a line (as is common with import statements).

In order to do this, we first split the index of the match on the full stop, separating the
line number from the character number. We then check whether the character number
is greater than e, since this implies that the match was not the first word on this line. If
it is indeed greater, then we will need to check if the preceding character is one of our
disallowed ones:

if previous_char.isalnum() or previous_char in self.disallowed_previous_chars:
end = f"{idx}+{length.get() - 1}c"
start = end
idx = self.text_widget.search(keyword, start, stopindex=tk.END,
regexp=1)

If the character before our match is a letter, number, underscore, hyphen, or full stop,
then we do not want to highlight the match. We do, however, need to continue the

http://wiki.tcl.tk

search from the end of our detected word.

To find the ending index of our match, we will use the +nc string. We add on the length
of the match, which is stored in our length variable, but take one away to account for
the character which will have been captured by our [ra-za-z_-] regex.

We then set the start of our search to this ending index and fire off the search method
once again to continue the loop:

else:
end = f"{idx}+{length.get() - 1}c"
self.text_widget.tag_add(category, idx, end)

start = end
idx = self.text_widget.search(keyword, start, stopindex=tk.END,
regexp=1)

If the previous character was not a disallowed one, then we can add the tag. We get the
ending index in the same way as in the preceding code and use the tag_add method to
add the necessary tag to the discovered range.

We then set the start to the calculated end and resume the search:

else:
end = f"{idx}+{length.get() - 1}c"
self.text_widget.tag_add(category, idx, end)

start = end
idx = self.text_widget.search(keyword, start, stopindex=tk.END,
regexp=1)

If the match was found at character o, then we do not need to check the previous
character since there isn't one. We can go ahead and add the tag and continue the
search in the same way.

Once all of our keywords are tagged, we need to do the same with numbers. As we
cannot store a list of all numbers we will need to use another regular expression. We
can then run this through much the same loop as before:

start = 1.0
idx = self.text_widget.search(r"(\d)+[.]?(\d)*", start, stopindex=tk.END, regexp=1, cou
while idx:

end = f"{idx}+{length.get()}c"

self.text_widget.tag_add("number", idx, end)

start = end
idx = self.text_widget.search(r"(\d)+[.]?(\d)*", start,
stopindex=tk.END, regexp=1l, count=length)

The regular expression used here can be broken down as follows:

e (\d)+: Match one or more numbers
e [.12: Match zero or one decimal point

e (\d)*: Match zero or more numbers following the decimal point
This regex will allow us to tag and color both integers and floating point numbers.

We have now tagged all of the keywords in our keywords attribute, as well as all
numbers. Another thing which most editors will highlight is strings. These can be
detected by searching for characters between either two speech mark characters (") or
two apostrophe characters ('). Again, we would need to use a regular expression to
match these.

To avoid repeatedly copying the number-highlighting code and making our highlight
method huge, let's split it off into a new method. We can call this method
highlight_regex and write it to perform our usual tagging loop on any regular expression.

Cut the last block of code from the nign1ight function and replace it with this:

| self.highlight_regex(r"(\d)+[.]?(\d)*", "number")

Now, let's create a function called nhigh1ight_regex and paste the number-highlighting
code inside it. Replace the number-detecting regex with an argument called regex, and
the number tag with an argument called tag, so that it looks like this:

def highlight_regex(self, regex, tag):
length = tk.IntVvar()
start = 1.0
idx = self.text_widget.search(regex, start, stopindex=tk.END, regexp=1,
count=length)
while idx:
end = f"{idx}+{length.get()}c"
self.text_widget.tag_add(tag, idx, end)

start = end
idx = self.text_widget.search(regex, start, stopindex=tk.END,
regexp=1, count=length)

Now that we have this function, we can add two more lines to the end of our high1ight
method:

self.highlight_regex(r"[\']J[A\']*[\']", "string")
self.highlight_regex(r"[\"J[A\']*[\"]", "string")

These regexes can be broken down as follows:

e [\"]1: Match the string opening character ()
e [n\"]1*: Match any number of characters which are not the string-closing character
e 1\"1: Match the string-closing character

This will now add the string tag to any matches found in the text widget.

Since we do not have a configured string tag, this will currently not do anything.

Hard-coding colors and keywords can get very tedious and clog up the code
dramatically. As well as this, all of our keywords will be the same color, which is less
than ideal. Instead of continuing our keyword configuring in this way, let's pass the
configuration on to something which is better suited for it and utilize that.

The particular technology I have decided to use for this project is YAML. YAML is a
configuration file syntax which has a Python library available to parse it.

Create a folder inside your root named 1anguages and place a file called python.yam1
inside. The following will go into that file:

categories:
keywords:
color: orange
matches: [for, def, while, from, import, as, with, self]

variables:
color: red4
matches: ['True', 'False', None]

conditionals:
color: green
matches: [try, except, if, else, elif]

functions:
color: blue4
matches: [int, str, dict, list, set, float]

numbers:
color: purple

strings:
color: '#e1218b'

The syntax of YAML should be straightforward. Keys are marked by an ending colon,
subkeys are indicated by indentation, and values follow keys on the same line.

A comment in YAML is indicated by a hash () character, just like in Python. If we
want to use this character when defining a color, we need to enclose it in quotation
marks to indicate that it is a string instead.

9 YAML's syntax is somewhat similar to Python's, so it should be fairly easy to pick up.

In order to read YAML files, we will need an external package. We can once again use
a virtual environment to manage these. Enter the following three commands in your
terminal, ensuring that you are in the root folder at which you are writing your text
editor:

python3 -m venv env
source env/bin/activate
pip install pyyaml

This will install the yan1 package into your Python environment, which you can now

import at the top of the nighlighter.py file, like so:

import yaml
| import y

We are now ready to write ourselves a method which will read and parse a given .yam1
or .ym file and convert it into a Python dictionary:

def parse_syntax_file(self):
with open(self.syntax_file, 'r') as stream:
try:
config = yaml.load(stream)
except yaml.YAMLError as error:
print(error)
return

If you have ever worked with opening files in Python before, this should seem very
familiar to you.

We use the with keyword in order to open the file which we will have set in our
syntax_file attribute. We open it in read mode because we don't need to make any
changes to it.

Within a try: except block, we attempt to load the content of the file into our yam
module using its 10ad method. The module will return a vamcerror exception if the file's
syntax is incorrect, so we catch that with our except statement, print the error to the
console, and return, preventing any highlighting from taking place.

Assuming our YAML file loads without any problems, we can begin reading from the
config variable as if it were just a Python dictionary.

If you want to see what the config variable looks like, add a print(config) call after the
with Statement:

self.categories = config['categories']
self.numbers_color = config['numbers']['color"']
self.strings_color config['strings']['color']

self.configure_tags()

Within our categories, we have stored different types of keywords, which we can
assign different colors. We extract each category from our config dictionary and keep a
record of it in our categories attribute. These contain the keyword patterns and colors,
so there is no need to keep a separate reference to those anymore.

Our number and string colors are also found in the dictionary and stored in attributes,
since this is the only information we need about these.

Now that we have extracted the information we need, it's time to configure our tags so
they they have the ability to change the color of any matches.

In order to configure our tags properly, we must get the category name and color out of
our categories attribute and pass them to the tag_configure method of our rext widget.

Our categories attribute is a dictionary of dictionaries; one entry will look as follows:

{
'keywords': {
'color': 'orange',
'matches': ['for', 'def', 'while', 'from', 'import',6 'as',
'with', 'self']
}
}

To get the relevant information out of this data structure, we will need to iterate over
the keys of our categories dictionary and use each key to access its inner color data. We
then have the key as our tag name, and the color as its foreground color:

def configure_tags(self):
for category in self.categories.keys():
color = self.categories[category]['color']
self.text_widget.tag_configure(category, foreground=color)

self.text_widget.tag_configure('"number", foreground=self.numbers_color)
self.text_widget.tag_configure("string", foreground=self.strings_color)

Using the keys method of our dictionary, we are able to iterate over each category and
pass it back into the seif.categories dictionary, along with the string co1or, to access each
category's assigned color.

These two pieces of information are then passed to the tag_configure method to set up a
matching tag.

We finish up the method by configuring tags for our numbers, and strings too. These
are passed to the numbers_color and strings_color, which we extracted earlier.

In order to make this code run, we need to kick-off the chain of methods in our _ init__
method. We will also need to receive a path to the YAML file to parse, which we will
take as an argument.

Our __init_ method should now look like this:

def __init_ (self, text_widget, syntax_file):
self.text_widget = text_widget
self.syntax_file = syntax_file
self.categories = None

self.numbers_color = "blue"
self.strings_color = "red"
self.disallowed_previous_chars = ["_", "-", "."]

self.parse_syntax_file()

self.text_widget.bind('<KeyRelease>', self.on_key_ release

Now that our __init__file has been taken care of, we still need to adjust our highlight

method to allow it to create multiple tags, as it currently still only uses the keyword tag.

Luckily, only the beginning loop of this method will need altering:

def highlight(self, event=None):
length = tk.IntVar()
for category in self.categories:
matches = self.categories[category]['matches']
for keyword in matches:
start = 1.0

Everything after the ellipses (...) here can be left the same as before; it is mainly the
outer loop which needs to change. We now iterate over each category in our categories
attribute and grab its matches by passing it back in, along with the matches string.

All calls to tag_add should be using our category variable instead of the hard-coded
keyword tag. Replace all calls to tag_add with this:

| self.text_widget.tag_add(category, idx, end)

We finish up this class running this code as an independent module:

if __name__ == '__main__':
w = tk.Tk()
h = Highlighter(tk.Text(w), 'languages/python.yaml')
w.mainloop()

We can now launch this file with pythons highiighter.py and test it out. Try typing the
words in your YAML file and watching them all change to their assigned color. Also
try out numbers and strings. Perhaps copy the content of this file back into the window
to see real Python code get highlighted:

1 update_index(event=None): =
2 cursor_position = text.index(tk.INSERT)

3 cursor_position_pieces = str(cursor_position).split('.")

4

5 cursor_line = cursor_position_pieces[0]

6 cursor_char = cursor_position_pieces[1] Wi
7

8 current_index.set('line: ' + cursor_line + ' char: ' + cursor_char + '

9 index: ' + str(cursor_position)ﬂ

10

11

12 highlight_line(event=None):

13 start = str(text.index(tk.INSERT)) + " linestart"

14 end = str(text.index(tk.INSERT)) + " lineend"

15 text.tag_add("sel", start, end)

16

i} return "break"

18

19

20 highlight_word(event=None) :

21 word_pos = str(text.index(tk.INSERT))

22 start = word_pos + " wordstart"

23 end = word_pos + " wordend"

24 text.tag_add("sel", start, end) -

Once we are satisfied that everything is working as intended, it's time to integrate this
class back into our main Texteditor application.

Using our Highlighter class

Before we can make use of our new nighiighter class, we need to import it:

| from highlighter import Highlighter

We now simply need an instance of it, which we will pass to our Textarea instance and
the path to a YAML file. Since we only have one YAML file currently, we will just
hard-code the path to it. In the next chapter, we will add the ability to load different
YAML files:

| self.highlighter = Highlighter(self.text_area, 'languages/python.yaml')

That's all we need to do to get syntax highlighting into our textarea, since the nighlighter
class will bind to events in our textarea and cause it to update itself.

With syntax highlighting complete, the next item on our agenda is to fix the line
numbers. We will again split this into a new class to keep things organized.

Create a file in the same directory called 1inenumbers.py, ready for this class.

The LineNumbers class

Our Linenumbers class will remain as a disabled text widget but will no longer just hold
100 numbers all of the time. Instead, it will respond to the size of the Textarea (or any
Text widget) it is linked to and update its own content accordingly:

import tkinter as tk

class LineNumbers(tk.Text):
def __init__ (self, master, text_widget, **kwargs):
super().__init__ (master, **kwargs)

self.text_widget = text_widget
self.text_widget.bind('<KeyPress>', self.on_key_press)

self.insert(1.0, '1')
self.configure(state="'disabled"')

Since the Linenumbers widget is just a text widget, it will need a reference to a master
object as well as the text widget it will be paired to. We then capture any keyword
arguments and pass them to the superclass's __init__ method.

The text widget it is paired to is assigned to an attribute and a method is bound to its
<keypress> event. Note that we cannot bind to its <keyrelease> event since that is already
being handled by our nignlighter class.

After binding, the widget's content is set to just the number 1 and it is disabled as
before.

The only method needed on this class is the one bound to our Text widget's
class <KeyPress>.

def on_key_press(self, event=None):
final_index = str(self.text_widget.index(tk.END))
num_of_lines = final_index.split('.')[0]
line_numbers_string = "\n".join(str(no + 1) for no in
range(int(num_of_lines)))
width = len(str(num_of_lines))

self.configure(state='normal', width=width)
self.delete(1.0, tk.END)

self.insert (1.0, line_numbers_string)
self.configure(state="'disabled')

Whenever a character is added to our Text widget, we will need to find the final index
inside it again. This will tell us the total amount of lines, since the first character of the
index is the line number.

We gather this information by calling the index method of the eno constant and casting
the resulting index to a string. This string is then split on the full stop character and we
take off the first number—our final line number.

This line number is passed to the range function, allowing us to get every previous
number, which we join into a string on a newline character just like before.

We can use this line number to calculate the necessary width of our Linenumbers widget.
Calling the 1en function on it gives us this number.

Now that we have all of the necessary information, we can begin configuring.

The state is changed back to norma1 to allow text updates, and the width is set to our
calculated width. All current content is cleared and the new line numbers string is
added in. Finally, the widget is disabled again so that the user cannot type into it.

Once again, we can make this module usable on its own if we want to try it out:

if __name__ == '__main__ ':

tk.Tk()

tk.Text(w)

LineNumbers(w, t, width=1)
.pack(side=tk.LEFT)
.pack(side=tk.LEFT, expand=1)
.mainloop()

St
|

Run this file as before and have a go at typing into it. You should see the line numbers
change to always be in accordance with the amount of text in the accompanying text
widget.

With this class finished, we can begin using it within our Texteditor in a similar way to
the High1lighter.

Using our LineNumbers class

Once again, we simply need to import the Linenumbers class at the top of our texteditor.py
file:

| from linenumbers import LineNumbers

With that taken care of, we just need to instantiate the class in our __init_ method.
Since the code is already set up to apply our custom scrolling to an attribute named
1ne_numbers, let's delete all references to that attribute in __init_, except for the call to
pack at the end, and replace them with this one line:

|self.line_numbers = LineNumbers(self, self.text_area, bg="grey", fg="white", width=1)

This ensures that our custom scrolling and event bindings will still apply to this newly
created class.

Give the editor another whirl and check out the new dynamic line numbers.

There remains one more thing to take care of in this chapter, while the idea of indexing
and tagging is fresh in our memories—the find/replace window.

At the end of the last chapter, we left this just as a pop-up box with no real
functionality. It's time to bring it to life!

Integrating our FindWindow
class

In order to integrate our rindwindow class with our textarea, we will need to add some
functionality to one of them. We can choose to keep the logic inside either class. For
this example, I will put all of the searching logic into the Textarea instead of the
Findwindow, but it could easily be kept in either one.

Bring back up your textarea.py file ready for editing. We are going to begin with one
more import Statement at the top:

|import tkinter .messagebox as msg

We will be using the messagebox module to convey information to the user regarding the
results of their searches. We have met this module already in chapter 1, Meet Tkinter.

When the user enters text to be searched for in the find area, we will highlight it as
yellow within our textarea widget and scroll the view down to it. In order to do that, we
will again take advantage of the tagging abilities of our text widget.

As we know, a tag does nothing until we configure it. Within our __init_ method, we
shall configure a tag and keep a reference to some variables as class attributes:

self.tag_configure('find_match', background="yellow")
self.find_match_index = None
self.find_search_starting_index = 1.0

We create a tag called find_match and tell our widget to color the background of any
range tagged by this in yellow.

The find_match_index attribute will hold a reference to the last beginning index
discovered by our search method, and the find_search_starting_index will hold an index at
which we want to begin each subsequent search.

If you look back into your rindwindow class, you will see that it calls a method called find
on its master. Let's implement this method in our textarea class now:
def find(self, text_to_find):

length = tk.IntVvar()

idx = self.search(text_to_find, self.find_search_starting_index,
stopindex=tk.END, count=length)

if idx:

self.tag_remove('find_match', 1.0, tk.END)

end = f'{idx}+{length.get()}c'
self.tag_add('find_match', idx, end)
self.see(idx)

self.find_search_starting_index = end
self.find_match_index = idx

The method will take one argument—a string of text to search for.

Much like before, we create an ntvar to hold the length of a match and find the first
occurrence with the search method.

Instead of the normal whiie loop, we instead use an ir statement to handle the tagging.
All matches we find are given our find_match tag and the range at which to match is
calculated using the +nc capabilities we saw in our wighlignter.

Once the tag is added, we can use a method called see on our Textarea in order to scroll
the match into view. This method takes an index as its argument and will scroll the text
widget until that index is viewable to the user. We pass the index of the beginning of
our match to this method so that our user will instantly see their matches.

Now that the tagging and scrolling has been completed, we need to update our
attributes which keep track of where we need to begin and end searching. This is
because we don't want to find all matches in one go—we must wait for the user to
press the rind button once again before we do the next search attempt.

Once the search reaches the end of the widget and finds no more matches, we will
inform the user using a message box:

else:
if self.find_match_index != 1.0:
if msg.askyesno('"No more results", "No further matches.
Repeat from the beginning?"):
self.find_search_starting_index = 1.0
self.find_match_index = None
return self.find(text_to_find)
else:
msg.showinfo('"No Matches", '"No matching text found")

The message box will display different information depending on whether or not any
matches were found. In order to detect this, we will call upon our find_match_index
variable, since this kept a reference to the beginning index of a match. If this is still the
initial value of 1.e, then we know that we did not find any matches.

If this attribute is a value other than 1.e, then a match occurred somewhere within the
Text widget. We will ask the user if they wish to repeat the search from the beginning.
This question is asked via an askyesno box.

Should the user wish to repeat the search, we need to reset the attributes, keeping track
of search indexes to their default values and call the find method once again.
Otherwise, we do not need to perform any action.

If no matches were found during the search, we will simply display this information to
the user with a showinfo box.

That completes all of the logic necessary for the rind button. Now, onto the repiace
button. Once again, checking our findwindow.py file, we can see that this calls a method
called repiace_text and passes it the contents of both entry widgets. Let's create this
functionality in our Textarea class:
def replace_text(self, target, replacement):
if self.find_match_index:

end = f"{self.find_match_index}+{len(target)}c"
self.replace(self.find_match_index, end, replacement)

When replacing text, we must make sure that we have first found a match. If we have,
then the value of our find_match_index will be set. We check for this before performing
any logic.

Supposing we have a match, we need to get the range of its indexes, much like if we
were adding a tag to it. Instead of adding a tag, however, we will be replacing its
content with the replacement string.

We calculate the indexes of our needed range using the same method as always.
Instead of having an 1ntvar with the length of the match, we instead need to call the 1en
function on it. We add the length of the string to the find_match_index to calculate the end
of the needed range.

The rep1ace method of a text widget will erase the content between the range of the first
two arguments and insert the replacement text, given as the third argument, in its
place. We can use this to easily replace a match with the provided replacement text.

Once a replacement has taken place, we need to adjust where the next call to the find
method will begin its search, since the content of the rext widget has changed. A
suitable place to resume searching from is the beginning of the line at which the
replacement was made:

self.find_search_starting_index = f"{self.find_match_index} linestart"
self.find_match_index = None

To get this index, we just have to add the word 1inestart to the end of the index of our
replacement. This value is then set as our find_search_starting_index attribute, to be used
by our find method.

To prevent another attempt at replacement, we set our find_match_index back to none to
avoid any more calls to repiace_text from happening until another match is found.

The final thing to implement for our rindwindow is @ method which will remove the
find_match tags when the user closes the find/replace window. We will call this

cancel_find.

def cancel_find(self):
self.find_search_starting_index = 1.0
self.find_match_index = None
self.tag_remove('find_match', 1.0, tk.END)

All that needs to be done is resetting the attributes back to their default values and
using the tag_remove method to remove all tags called find_match throughout the whole of
the widget.

We will now need to update our rindwindow class to make it call this method. Open up
findwindow.py and make the following changes:

self.cancel_button = ttk.Button(bottom_frame, text="Cancel", command=self.on_cancel)
def on_cancel(self):

self.master.cancel_find()
self.destroy()

In the _init_ method, we need to change the command attribute of the cance1_button from

self.destroy tO self.on_cancel.

The on_cance1 method will call cance1l_find on the Text widget before calling self.destroy aS
before.

Like with the others, we now need to add this class into our texteditor in order to make
it usable.

Using our FindWindow class

As you may have guessed, the rindwindow class needs to be imported at the beginning of
the file:

| from findwindow import FindwWindow

Now, we need to create an instance whenever the user presses a key combination.
Typically, a Find and Replace window appears on Ctrl and F or Ctrl and R. I will use
Ctrl and F for this application:

def bind_events(self):
self.bind('<Control-f>', self.show_find_window)

def show_find_window(self, event=None):
FindwWindow(self.text_area)

A method called show_find_window is created, which will be responsible for showing our
Findwindow POPUp.

Inside this method, all we need to do is instantiate the rindwindow Class, passing it our
TextArea tO act as its master. The Toplevel class which it inherits from will handle
displaying the window itself.

That's everything for this chapter! Run this version of your text editor application and
give the find/replace window a try. See how it highlights all matches in yellow and
replaces words with others, even when they are of different lengths:

Python is an interpreted high-level programming language general-purpose
programming. Created by Guido van Rossum and first released in 1991, Python has
a design philosophy that emphasizes code readability, and a syntax that allows
programmers to express concepts in fewer lines of code,[25][26] notably using
significant whitespace. It provides constructs that enable clear programming on
both small and large scales.[2

- ! X » Find and Replace Av ~Q
Python featur?s a dynamic pr- % Python
supports multiple programming

library.[28]

‘ . e m
Python 1interpreters are availa

reference implementation of P o op o

community-based development model, do nearly all of its variant
implementations. CPython is managed by the non-profit Python Software
Foundation.Python is an interpreted high-level programming language
general-purpose programming. Created by Guido van Rossum and first released in
1991, Python has a design philosophy that emphasizes code readability, and a
syntax that allows programmers to express concepts in fewer lines of

code, [25][26] notably using significant whitespace. It provides constructs that
enable clear programming on both small and large scales.[27]

1
2
E
4
5
6
7
8
9
L

Python features a dynamic type system and automatic memory management. It wil

To try out automatic scrolling, enter (or paste) a large amount of text and search for a
word which is not on display. You should see the widget automatically scroll down so
that the highlighted match in yellow appears. Pretty cool, right?

Now that we have learned all about navigating Tkinter's powerful text widget, we can
move on to some more advanced parts of the application. These include menus and
customization options.

Summary

In this chapter, we have learned all about Tkinter's indexing system. We know how to
structure an index, combining the line number and character number with a full stop
character to create an index such as s.1s.

We then covered how this system is applied to provide greater functionality, including
tags and searches.

Tags are Tkinter's way of adjusting the styling options of a certain range of text,
marked by beginning and end indexes. We have seen a lot of different styling options
which we can change using tags, including the text color, which allows us to achieve
syntax highlighting. We know how to configure and remove tags as we need them.

Searching a text widget using a loop is well-practiced. We know how to use Tkinter's
special strings to very quickly create the ending indexes from the established
beginning and length of the match. We can use these to apply tags or replace text with
something else.

Along our journey, we also picked up some knowledge of YAML files and their
syntax. We can now utilize YAML files to enable the user to adjust the styling of their
syntax highlighting without having to dig into the underlying Python code at all.

Our text editor is now knowledgeable of the Python language, but why stop there? In
the next chapter, we will be adding menus to our application. Along with the menus
will come new functionalities, including the ability to load syntax for any language we
wish to write a YAML file for. We will also be able to adjust the colors of our
application window itself.

Not Just for Restaurants — All
About Menus

To finish off our text editor, we will be adding menus. This includes a menu bar at the
top of the application—the kind where you will find options such as file and edit—and
a context menu, which typically appears when the user right-clicks.

Of course, along with the menus will come some new functionality. This includes the
ability to control the styling of the application, the color scheme of the textarea widget,
the ability to open and save files, and more!

In this chapter, we will cover:

The menu widget

Adding a menu to an application

Creating submenus inside a menu

Getting file information using the filedialog module
Using the colorchooser widget to get a color choice

Let's start with a look over Tkinter's wenu widget, since this is the main new widget we
will be focusing on in this chapter.

The Menu widget

As its name implies, the wenu widget is a widget that can hold many selectable options.
Each option can be assigned a label, such as paste, and a command, which (like many
other widgets) allows us to call a Python function when the user clicks on it.

We will be adding two different types of menus to our text editor in this chapter: a
menu bar along the top of the window and a right-click context menu. Both are
implemented using the same widget, but the way in which the widgets are added to the
application differs.

Let's take some time to look at each method we will be using to add menus into our
text editor, beginning with the top menu bar.

A menu bar

The top menu bar of an application usually just contains other menus, such as file and
edit. These are known as "cascades" in Tkinter, and are essentially a menu inside a
menu. This may be confusing at first, so let's begin with a very simple example to
demonstrate the difference between a menu and a cascade.

Create a new Python file called menu.py and add the following code:

import tkinter as tk

win = tk.Tk()
win.geometry('400x300"')

lab = tk.Label(win, text="Demo application")

menu = tk.Menu(win)

After importing Tkinter and creating a main window and Labe1, we make our first menu
widget. As with a lot of widgets, the first argument needed is the master, or parent, in
which the widget will be drawn. We draw this menu in our main window as expected.

The menu won't actually do anything until we add some commands to it:

menu.add_command(label="'Change Label Text', command=lambda: lab.configure(text='Menu It
menu.add_command(label="'Change Window Size', command=lambda: win.geometry('600x600'))

We create two commands to sit in this menu using the add_command method. This method
takes two keyword arguments (in this case) called 1abe1 and command. The 1abe1 argument
is the text to display (which the user will click on). The command argument is a function
to be called when the menu item is clicked on, much like with a sutton widget.

For our demo application we have two menu commands. The first of which says change
Label Text and when clicked will update the existing Labe1 widget to say menu 1tem clicked.
The second command says change window size and will call the geometry method of our
main window to increase its size.

Now that we have a venu widget with some commands we need to draw it inside its
parent. We use the configure method to achieve this:

|win.configure(menu=menu)

A 1k widget, among others, can take a menu keyword argument, which tells it to draw a
menu bar along the top. We use this argument to place our venu widget into our main
window. This is instead of using a geometry manager, such as pack, to handle inserting

the widget.

Speaking of which, let's add our Lave1 and finish off the demo script:
lab.pack(padx=50, pady=50)

win.mainloop()

Run this file and you should see a small window, which now contains a menu bar at
the top:

X » tk

Change Label Text Change Window Size

Demo application

Give each option a click and see it execute the command assigned to it.

This is how commands within a menu work, in a nutshell. Now let's check out
cascades and how they differ.

In the same menu.py file we are going to add a cascade to the beginning of our menu. A
cascade can be thought of as a submenu, since it will also contain a menu widget. Add
this code between creating your menu variable and your calls to add_command:

cascade = tk.Menu(win)

cascade.add_command(label="'Change Label color', command=lambda: lab.configure(fg="blue4
cascade.add_command(label="'Change Label Highlight', command=lambda: lab.configure(bg="y

menu.add_cascade(label="Label colors", menu=cascade)

Another wenu widget is created, this time called cascade. We will be placing this menu
inside our other venu widget as a submenu.

As before, we add two commands to our cascade that will alter the styling of our Labe1
llSil‘lg d lambda.

In order to place this menu into another the add_cascade method is used. Much like with
add_command, this takes only keyword arguments. The 1abe1 argument is the text that the
user will see on the clickable area of the menu. The menu argument specifies which wenu
widget we want to add as our cascade. We give this our cascade object so that this will
become a submenu of our menu Object.

Leave the rest of the code as it was and run this version of the file. You should see a

new option as the left-most item in the window's menu bar. When you click this you
will see the two commands we added to our cascade appear. Give each a try and see that
it changes our Lave1 just like the commands in the outer menu:

X » tk Av ~Q

Label Colours | Change Label Text Change Window Size

|Change Label Colour

Change Label Highlight
' Demo application

This is all there is to creating a menu bar along the top of an application. We simply
need an instance of a menu widget for each submenu, then one more to act as the top
menu bar itself.

With the menu bar covered, let's have a look at adding a context menu that appears
when the user right-clicks within the window.

A floating menu

In order to place a venu at a specific location we can use the piace method. The piace
method takes two arguments: x and y. As the names imply these are coordinates of the
exact location at which to draw the menu.

Since we will be binding this menu's creation to the right-click of a mouse, we will
have access to an event object inside the bound function. It may seem intuitive,
therefore, to just pass the x and y attributes of the event object to the p1ace method and
assume this will put the menu where the mouse was clicked.

The problem with this, however, is that the event object's coordinates are relative to
the widget that was bound, whereas the piace system is relative to the user's screen.
This means if the user is not running our application full-screen, the menu could be
drawn somewhere completely outside the application!

In order to solve this problem we can use the winfo_x and winfo_y methods on the main
window (our Tk widget). These will get the coordinates of our window relative to the
user's screen, which we can then add to the x and y attributes of our event to get the
location of the click.

To see all of this in action, open up your menu.py file and add in the following code
-betvveerlwindow.configure(menu:menu) anfllab.pack(padx:SO, pady=50).

context_menu = tk.Menu(win)
context_menu.add_command(label="'close', command=win.destroy)

def on_right_click(event):
X = win.winfo_x() + event.Xx
y = win.winfo_y() + event.y

context_menu. post(x, y)

win.bind('<Button-3>', on_right_click)

Once again we need a menu widget to act as our right-click menu. We add a command
called ciose, which calls the destroy method on our main window, exiting our
application.

A function is defined that will be bound to the right-click event, which is <sutton-3>.

This function does what was described previously in order to calculate the x and y
positions at which we want to place our menu. We then call post with these coordinates
to spawn our context menu.

Run this final version of our demo application and try right-clicking somewhere inside
the window. You should see a menu come up with a close option. Click this to close
the application again:

(Xl tk Av/\e

Label Colours Change Label Text Change Window Size

Demo application

With knowledge of Tkinter's venu widget fresh in our minds let's grab our text editor
application and add in some menus.

Adding a menu bar to our text
editor

Since the menu bar will sit directly in our T« widget we can put all of the menu logic in
our texteditor.py file. Open this file up and add the following into the _init_ method
underneath the creation of our wighiighter:

| self.menu = tk.Menu(self, bg="lightgrey", fg="black")

This line creates us a menu widget, which we will store a reference to under a menu
attribute. We configure the colors to specific values for now, but this will change later.

After the creation of our main menu widget we could define several more here in the
init method. However, this will quickly get very cluttered, not to mention it will
require a lot of new code each time we want to add a new submenu into our menu bar.

Instead of this approach, we will write a method that automatically figures out what
menu commands we want from just a list of strings representing the submenu labels:

sub_menu_items = ["file", "edit", "tools", "help"]
self.generate_sub_menus(sub_menu_items)
self.configure(menu=self.menu)

We decide in advance what menu options we want as cascades in our top menu bar.
We then store a list of these in the variable sub_menu_items. These should look familiar to
those of you who use graphical applications a lot.

This list is then passed to a method called generate_sub_menus, which will search our
Texteditor class for methods that start with the given submenu name and add them in as
commands to the relevant cascade.

Let's have a look at how this function will work:

def generate_sub_menus(self, sub_menu_items):
window_methods = [method_name for method_name in dir(self)
if callable(getattr(self, method_name))]
tkinter_methods = [method_name for method_name in dir(tk.Tk)
if callable(getattr(tk.Tk, method_name))]

We begin with two variables called window_methods and tkinter_methods. These are defined
as list comprehensions, which may seem a little confusing. Allow me to break them
down for clarity:

® method_name for method_name in dir(self): The dir function, as we have seen when
looking at imports, lists all available attributes. We use the se1r argument to get
each attribute of our rexteditor instance instead of the whole application. This part
will therefore return each attribute of our rexteditor instance and store it under
method_name.

® if callable(getattr(self, method_name)): We want to filter only methods, not regular
variable attributes, so we add an ir statement to our list comprehension. Elements
will only be returned if they are callable, which we check for using the cai1abie
function.

In order to get an attribute using a string variable, we need to pass the instance and the
string to the getattr method. This attribute is then passed to the caiiabie function to
check that it is a method and not simply a variable.

We perform this list comprehension again, this time for the v« widget itself. This gives
us a list of everything available to a subclass of the Tk widget, since we want to ignore
this when searching our Texteditor instance for methods to put in the menu:

my_methods
my_methods

[method for method in set(window_methods) - set(tkinter_methods)]
sorted(my_methods)

To filter out only the methods that we have defined in this file we need to cast both
lists to sets and then we can take the Tkinter methods away from our methods to get
only the newly-defined ones. Again a list comprehension is used to cast this set back to
a list.

To ensure that our commands will appear in the same order each time we call the sorted
method on this newly returned list to ensure they are ordered alphabetically.

Now that we have all of the methods defined in this file we can begin building menus
and commands:
for item in sub_menu_items:

sub_menu = tk.Menu(self.menu, tearoff=0, bg="lightgrey", fg="black")
matching_methods = []

It is now time to iterate over our sub_menu_items list and create a new cascade for each
one.

Each cascade has the main menu bar as its parent and the previously mentioned color
scheme for its foreground and background (which again will change later).

The tearoff argument is used to indicate whether or not the user can grab the menu with
their mouse and move it around the screen. We do not want this to happen, so we set it
to e and prevent that behavior.

A list of all methods that begin with the word that defines our cascade now need to be
found. We create a list called matching_methods to hold them. We now need to use a loop
to search through our filtered my_nethods and check to see if they belong in this
particular cascade:

for method in my_methods:
if method.startswith(item):
matching_methods.append(method)

The startswith method of a string will allow us to check whether each of our methods
begins with the relevant string of the cascade, for example, file.

If this method returns true then we append it to our list of matching_methods.

Once we have built up this list, we can convert each method to a command in our
cascade. We can do this by adding another loop that runs after the for method in
my_methods IOOPI

for match in matching_methods:
actual_method = getattr(self, match)
method_shortcut = actual_method.__doc__.strip()
friendly_name = ' '.join(match.split('_")[1:])
sub_menu.add_command(label=friendly_name.title(),
command=actual_method, accelerator=method_shortcut)

The getattr function is once again used to get the actual attribute of our Texteditor
instance to pass as the command argument when calling add_command.

Since most applications will display a keyboard shortcut for commands within their
top menu, we are going to do the same in our text editor. Since there is no automatic
way of achieving this we will set up a convention. The convention will be to put the
keyboard shortcut as the docstring of each relevant method.

To parse this, we can use the __doc__ attribute of the found method to grab its docstring,
calling strip to remove any excess whitespace.

The 1ave1 for this command will be generated from the method name. This line does a
few things in one go, so I will separate them to better explain each:

e The method name is sp1it on an underscore to receive a list of each word

e We use a slice of [1:] to remove the first word from the list, since this word will
be the cascade's label

e We re-join each piece on a space character

This process will convert a method name of file open file t0 open file, which is much
nicer to read.

We pass these three variables to the add_command method on our cascade to complete the

process. The tit1e method is used on our friend1y_name in order to capitalize each word
for neatness.

The accelerator argument is responsible for displaying the keyboard shortcut next to a
menu item.

The accelerator only displays the keyboard shortcuts, it does not create them. They still need to be bound using
the bind or bind_a11 methods that we have been using.

Now that our cascade has all of its commands added we just need to place it into the
menu bar:

| self.menu.add_cascade(label=item.title(), menu=sub_menu)
Again the tit1e method is used for neatness.

That is all that we need to do in order to get our top menu into our application. Give
this version of the code a run and check out our new menu:

Python Text Editor v3

You will notice, however, that the menus are currently all blank. Don't worry, as we go
through the chapter we will be adding methods which begin with one of our cascade
words, and these will automatically appear in the relevant menu. By the end of this
chapter each option will have some commands in it.

With one type of menu out of the way, let's move on to the context menu.

Adding a context menu to our
text editor

Once again we will need to add some code to our __init_ method. Since there will only
be one venu needed for our context menu we can just define this directly instead of
making another function. Type this code underneath the previous menu code:

self.right_click_menu = tk.Menu(self, bg="lightgrey", fg="black", tearoff=0)
self.right_click_menu.add_command(label='Cut', command=self.edit_cut)
self.right_click_menu.add_command(label='Copy', command=self.edit_copy)
self.right_click_menu.add_command(label="'Paste', command=self.edit_paste)

Another menu widget is created using the same arguments as all of our cascades. We
then add three commands to it—cut, copy, and paste. These will still do nothing at the
moment, but first things first let's bind this menu to the right mouse button in our
bind_events method:

def bind_events(self):

self.text_area.bind("<Button-3>", self.show_right_click_menu)

Now let's define the methods that will allow our right-click context menu to function.
We need three new methods named after the arguments to our add_command calls:

def edit_cut(self, event=None):

mon

Ctrl+X
self.text_area.event_generate("<Control-x>")
self.line_numbers.force_update()

def edit_paste(self, event=None):

mon

Ctrl+v
self.text_area.event_generate("<Control-v>")
self.line_numbers.force_update()
self.highlighter.force_highlight()

def edit_copy(self, event=None):

Ctrl+C

mon

self.text_area.event_generate("<Control-c>")

Since these methods all start with the word edit, they will automatically be pulled into
the edit cascade in our top menu. In order to fit in with our convention they require a
docblock containing their keyboard shortcut.

Each method here has already been defined in our textarea widget, so all we need to do
is pass the event over to it with event_generate.

In the case of cut and paste, the line numbers and keywords are going to change, so we
need to ensure both our wighlighter and Linenumbers class are told to update. We will need
to add a method to each so that these methods do not error:

class Highlighter:
def force_highlight(self):
self.highlight()
class LineNumbers(tk.Text):

def force_update(self):
self.on_key_press()

No complex logic in either of these functions; they merely call the method, which is
bound to a key event on our Textarea class.

With all of this added, go ahead and run your texteditor.py file. Check out the right-
click menu, and make sure that the new methods have appeared in your Edit cascade,
too:

Python Text Editor v3

File Edit Tools Help

Copy
Paste

Both of our menus are now taken care of. If you want to add more functionality to
your right-click menu at the end of this chapter, feel free to add more commands to it
then. For now, we are going to move on to a new topic—handling files. This will allow
us to add New, Open, and Save functionality to our file menu.

Handling files

We have already covered the usual handling of files in Python when parsing our yaml
configurations. The basic syntax is as follows:

with open("path/to/file/", "r") as file:
file.read()

with open("path/to/file", "w") as file:
file.write("file contents")

This is very easy to do when we have a file path we are defining ourselves. The
problem comes when we want the user to be able to open any file, and save a new file
to any location on their computer. In this case we do not have the exact path, and it
isn't very user-friendly to expect the user to be able to type in the full path either.

Luckily, Tkinter has a module that comes to our aid in this situation: filedialog. The
filedialog module comes with a few different methods that allow us to easily get full
paths to files, both for opening existing files and saving new ones, all with a user-
friendly GUI.

We will be using two functions in this module for our text editor:

® askopenfilename: This asks the user for an existing file path on their computer. A
window will open up displaying the contents of the current folder. The shown
files can be filtered by using a keyword argument fiietypes.

® asksaveasfilename: ThiS displays a similar window to askopenfilename but does not
enforce that the provided path already exists. If the user selects an existing file, an
information box will appear telling the user that the path already exists, and
asking them for confirmation to overwrite it.

Let's get straight into using this module in our text editor. Make sure you have the
texteditor.py file open and add the import statement at the top:

| from tkinter import filedialog

We will begin with the ability to open a file for editing. We want this functionality to
appear under our file cascade, and the shortcut will be Ctrl and O:

def file_open(self, event=None):

Ctrl+0
file_to_open = filedialog.askopenfilename()
if file_to_open:

self.open_file = file_to_open

self.text_area.display_file_contents(file_to_open)
self.highlighter.force_highlight()
self.line_numbers.force_update()

The method name will be fi1e open, since the file_ prefix is needed to get this method
to appear in our cascade.

When called by the menu there will not be an event object passed, but if called by the
keyboard shortcut there will be. To accommodate for this we accept an event argument
but default it to none, since we do not actually need it.

The first thing we need to do is get the path to the file that the user wishes to open. We
do this by calling the askopenfilename function from the filedialog module. This presents
the user with a window showing their computer's files and allows them to click on the
one they want.

This window also has a Cancel button, which will cause the function to return nothing.
Because of this, we only want to perform the rest of the logic if the user actually chose
a file, so the rest of this function will go inside an ir statement, which checks if
askopenfilename returned a non-empty Stl‘iﬂg.

The path to the chosen file is stored as an attribute called open_file, before being passed
over to a method of our Textarea widget called dispiay_file contents, which will handle
writing the text contained in the file into itself.

As with some of our edit methods, since this method will change the contents of our
Textarea We force the line numbers and syntax highlighting to update afterwards.

Let's hop on over to our textarea.py file and check out what needs to happen in
display_file_contents:
def display_file_contents(self, filepath):
with open(filepath, 'r') as file:

self.delete(1.0, tk.END)
self.insert(1.0, file.read())

To add the text from the supplied file path into our textarea, we first need to open the
file using the open method.

Inside this block we first delete the entire contents of the Textarea using the deiete
method. The range passed to this method is the beginning index (always 1.e) and the
eno constant. This ensures that everything inside the widget will be deleted.

Now that the widget is empty we can write the contents of the opened file inside. We
use the insert method to achieve this. The first argument is the beginning index,
indicating that we want this content inserted at the beginning of our textarea. The

content to be written is the text within our rile, which we extract using the read method.

You can now see the window created by the askopenfilenane method by running
texteditor.py and selecting the Open option from the File menu. Try opening the
texteditor.py file itself inside the text editor application to see all of the syntax
highlighting in action:

X #

Python Text Editor v3 A v A 9

File Edit Tools Help

I

Directory: ~ /home/Dvlv/Dropbox/packtbook/Code/Ch7 — ‘ l@

= B E

= B B

) B

= E B

= B

E El

(Kl |

File name: Open

_4‘ Cancel ‘

With opening a file sorted, the next thing to do is saving files. Once again we will
define a method in our texteditor.py file to handle this:

def file_save(self, event=None):

Ctrl+s
current_file = self.open_file if self.open_file else None
if not current_file:

current_file = filedialog.asksaveasfilename()

if current_file:
contents = self.text_area.get(1.0, tk.END)
with open(current_file, 'w') as file:
file.write(contents)

When saving a file, we need to know the location at which to write the new file
contents. If we already have a file open, then our open_fiie attribute will be set and we
can assume that the user is updating the same file. If not, we need to ask the user for
the destination file path.

We get this information from the user with the asksaveasfilenane method of the filedialog

module. This will open a similar window to askopenfilename but with a Save button in
place of the Open button.

Again, this window features a Cancel button, which will not return a file path, so we
need to use an if statement to ensure the user did not cancel the operation.

If the user chose a destination, we need to open that path as a file handler and write the
contents of our Textarea widget into it.

We get the contents of our textarea using the get method, passing this the beginning
index and eno constant. This ensures that we have all of the content inside it.

The file handler is opened using the open function as before, but instead we pass w as the
second argument to open the file in write mode. We then use the write method to insert
the contents of our textarea widget into this file.

That's all there is to saving a file. You can now run the texteditor.py file again and
check out the Save option in your File menu. Try saving a new file, then try to save
over it again afterwards. You should be presented with a confirmation message box.
This is all built in to the filedialog module, we didn't need to do any of it ourselves!

Let's finish off the File menu with a New option, which will clear the currently open
file from our textarea and give the user a blank area to type into:

def file_new(self, event=None):

mon

Ctrl+N

self.text_area.delete(1.0, tk.END)
self.open_file = None
self.line_numbers.force_update()

This method should be self-explanatory, since each line has been encountered recently.
We simply delete the entirety of our Textarea widget, remove any reference to our
open_file attribute (so that the save option does not overwrite it), and force the line
numbers to update.

With that, all options from our File menu are now complete.

We can also quickly add a couple more methods to our Edit menu and finish that off
too:

def edit_select_all(self, event=None):

Ctrl+A

mon

self.text_area.event_generate("<Control-a>")

def edit_find_and_replace(self, event=None):

Ctrl+F

self.show_find_window()

Since we have defined select all functionality in our textarea widget we may as well
add this to our Edit menu. We just need to pass along the event like we have done with
cut, copy, and paste.

Since find/replace windows usually exist in the Edit menu of other text editors, we can
also add a menu option for this in our text editor. The method just needs to call the
same method as is bound to Control + F already.

With this, two of our four cascade menus are now filled. The next one to focus on is
the Tools menu, which will contain functions that allow the user to customize the
editor to their liking, including loading different syntax highlighting files.

Changing the syntax
highlighting

As you may remember from the previous chapter, syntax highlighting is defined in a
.yanl file stored in a folder named 1anguages. We want to allow the user to easily define
their own syntax highlighting keywords and schemes by simply creating another .yam1
file.

To experiment with this feature, create yourself a .yam1 file in the 1anguages folder.
Ensure it contains numbers, strings, and any other category of keywords you like.

If you want to, you can copy this small example for SQL.:

categories:
keywords:
color: orange
matches: [select, where, and, from, order, by, group]

dangerous:
color: red4
matches: [set, update, drop, replace]

numbers:
color: purple

strings:
color: red

Now that we have another syntax highlighting file to test with we can write a method
to load it:

def load_syntax_highlighting_file(self):
syntax_file = filedialog.askopenfilename(filetypes=[("YAML file",
(”*-yaml", ll*.ymlll))])
if syntax_file:
self.highlighter.clear_highlight()
self.highlighter = Highlighter(self.text_area, syntax_file)
self.highlighter.force_highlight()

Once again we need the path to the new .yam1 file. We get this from the user with the
askopenfilename function. This time we want to ensure that the user only chooses a .yam1
file, so we let them know by using the filetypes keyword argument.

The filetypes argument needs a list of available file types. This list should contain a
tuple for each type. This tuple should contain a string to tell the user what the file type
should be, followed by a string (or tuple of strings if there are more than one), which
indicates the file extension of any allowed files.

For our example, we want to enable any .yam1 file, which could be indicated by a .ym1
or .yami file extension. The strings to represent these are "=.ym1" and "*.yam1". We then
signal the file types to the user with the string "vam. file". We combine these two
arguments into a tuple of ("vamL file", ("*.yami", "=.ymi")). Since the only file type we
want to allow is .yam1 files, our list will only contain this one item.

This function will now show the usual GUI window but will only allow the user to
select files that end with .ym1 or .yam1.

If the user does not cancel the operation, we need to create a new instance of our
Highlighter class, which uses the selected .yam: file.

We first clear the current highlighting from our rextarea, create a new instance of the
nighlighter class with the chosen file path, then re-highlight the textarea's contents with
the new scheme.

Now that we have this method available we can add it to our Tools menu by wrapping
it in another function:

def tools_change_syntax_highlighting(self, event=None):

Ctrl+m

self.load_syntax_highlighting_file()

The last thing to address is the ciear_nighiight method in our nighlighter class:

def clear_highlight(self):
for category in self.categories:
self.text_widget.tag_remove(category, 1.0, tk.END)

In this method we just loop through each category for our keywords and remove the
associated tags. We can leave the numbers and strings since they will be used by any
other syntax file, and the tags will be reconfigured to use the new colors when our new
Highlighter instance is created.

With that added, we can now switch syntax to a different language. Run your editor
and type some code in the language that you created a .yam file for. Now open the
tools menu and select change syntax Highlighting and open your .yam1 file. You should see
the keywords of your language change color.

Now that this feature has been added our editor is no longer strictly a Python editor. If
you prefer another language, you can change the .yam1 file opened in the __init__
method of your texteditor.py file to point to that language instead.

Now that the user has some control over what language they wish to work in, we
should also give them some choices over how the editor looks. Let's add the ability for

them to change the font of their editor, then afterwards we can allow them to set their
own colors, too.

Changing the editor's font

As we saw from our blackjack game, fonts in Tkinter are usually handled by a font
argument against a widget. The text widget is no exception, this takes the same
argument in the same format—a tuple of (family, size, styles).

To change the font in our text editor, we could decide ourselves what font the editor
should be in and hard-code that into the declaration of our textarea instance. However,
we cannot guarantee that the user has that font installed, nor can we assume that they
like writing in that font! We also cannot assume what font size the user can read best.
The only solution is to allow the user to choose their own font settings and find a way
of saving their chosen configuration for the next time they open our application.

Since .yam1 files are working out so well, we shall just use these for persistent storage.

Other options for persistent storage include plain text files, pickle, shelve or SQLite (which will be covered in
a later chapter of this book).

To keep the interface of our text editor clean, we will use a second Ttop1evel window to
display the font choosing screen. Go ahead and create a file named fontchooser.py in the
same folder as the rest of your Python code:

import tkinter as tk
import tkinter.ttk as ttk
from tkinter.font import families

For this class we will be using a new module called font. This is a module that handles
some font-related logic. In particular we only need one function from it—ranilies. This
function returns all available font families on the user's system. We can use this to
build a list of available fonts for the user to choose from, and we know that they will
definitely be installed.

As mentioned, this class will inherit from the Ttop1eve1 class, much like our rindwindow:

class FontChooser(tk.Toplevel):
def __init__ (self, master, **kwargs):
super().__init__ (**kwargs)
self.master = master

self.transient(self.master)
self.geometry('500x250")
self.title('Choose font and size')

Most of this code should look familiar. We initialize the Toplevel superclass with all
of our keyword arguments, set a reference to the master widget, assign this window as

a transient of its master, adjust its default size, and give the window a title of "choose

font and size".

We now need to find a way of displaying all of the available fonts to the user. We
haven't really met a widget that will do this in a particularly friendly way yet, but one
does exist—the Listbox widget.

The Listbox widget

The Listbox widget displays a large scrollable box with vertically-stacked options.
Depending on the configuration, the user can select either one or multiple items from
within the widget.

Methods that act on the Listbox widget may seem familiar from our work with the rext
widget. These include insert, delete, and get. The indexing system is simpler, however,
being just an integer representing how many items down the list the indicated entry is
(for example, the third entry in the box has index 3).

Let's create a Listbox widget to hold our choices of font family:

self.font_list = tk.Listbox(self, exportselection=False)
self.available_fonts = sorted(families())

for family in self.available_fonts:
self.font_list.insert(tk.END, family)

We create a Listbox widget and store a reference to it under an attribute named font_1ist.
As always, the first argument to a widget is its parent, and we use the keyword
argument exportselection=False t0 prevent the Listbox from losing its selected option when
the widget loses focus.

The font families are sorted so they appear in alphabetical order, then we loop over
them and use the insert method to add them into our Listbox. The eno constant is used to
ensure that each new item is pushed to the end of the listbox, keeping the alphabetical
order.

We now need to select the currently chosen font in our Listbox So that the user can see
what font they are currently writing in. This information will be available in the
Texteditor class later, but we can refer to it by the font_family attribute in this class:

current_selection_index = self.available_fonts.index(self.master.font_family)

if current_selection_index:
self.font_list.select_set(current_selection_index)
self.font_list.see(current_selection_index)

To get the location of the currently set font, we just need to pass the font family (as a
string) to the index method, which returns us an integer representing its index. Since our
master will have a reference to the chosen font family, we can pass this to the index
method to get its index.

If we have received an index, we can use the select_set method to automatically select
the currently set font family in our Listbox. The see method can also be used to scroll
the chosen family into view.

That's it for our Listbox widget. We now have an easy to use interface for the user to
select a font family that is installed on their system.

We now need to allow them to set the font size. To do this we could use a simple entry
widget, but we would have to write validation to prevent them from submitting any
letters, since the font size should only contain numbers.

Thankfully, Tkinter provides a number-only input widget called a spinbox.

The Spinbox widget

The spinbox widget is a widget that allows the programmer to set specified values,
either as a single tuple of choices or two keyword arguments that specify the beginning
and end of a range.

Since we want to force the font size to be an integer, and we can assume that nobody
will want a font size under 5 or over 99, we can use these things to form our spinbox:

| self.size_input = tk.Spinbox(self, from_=5, to=99, value=self.master.font_size)
We create a spinbox widget, passing the parent widget as normal.

The from_ keyword argument is used to specify the minimum selectable value. The
argument requires a trailing underscore because the word from is a keyword in Python.
Likewise, the to argument specifies the maximum value.

To specify the default value we can supply a vaiue argument. Again this will be stored
in our Texteditor class as the font_size attribute, so we pass this over to the vaiue
argument.

This finishes off the two pieces of information that we need to get from our user, so we
just need a way to save this information permanently.

Saving the user's choices

To ensure the user is able to save their choices, we need a Save button:

| self.save_button = ttk.Button(self, text="Save", command=self.save)

Now we can finish off our __init_ method by packing all of our widgets:

self.save_button.pack(side=tk.BOTTOM, fill=tk.X, expand=1, padx=40)
self.font_list.pack(side=tk.LEFT, fill=tk.Y, expand=1)
self.size_input.pack(side=tk.BOTTOM, fill=tk.X, expand=1)

Since our Save button calls a method called save, let's define this now.

def save(self):
font_family = self.font_list.get(self.font_list.curselection()[0])
font_size = self.size_input.get()
yaml_file_contents = f"family: {font_family}\n" \
+ f'size: {font_size}"

with open('schemes/font.yaml', 'w') as file:
file.write(yaml_file_contents)

self.master.update_font()

When saving our user's choices, we first need to extract them from their respective
widgets.

The curselection method of a Listbox returns a tuple of all selected indexes. Since we are
only allowing for the selection of one item (the default behavior) we will always want
the first entry in this tuple. We can then pass this to the get method to obtain the string
at this index, which will be the chosen font family.

The font size can be obtained by simply calling the get method on our spinbox.

Now that we have these two choices we can write them into a .yam1 file to ensure they
remain persistent. We use formatted strings to construct the contents of the .yam file,
open a file handle (which will be stored in schemes/font.yam1), and use the write method to
put that string in the file.

With the storage taken care of we now need to pass over to the Texteditor widget to
update the styling of our textarea. We call a method named update_font, which we will
write now:

class TextEditor(tk.Tk):

def update_font(self):
self.load_font_file('schemes/font.yaml")

| self.text_area.configure(font=(self.font_family, self.font_size))

The update_font method will pass over to another method that handles loading the .yam1
file which we just created. It then configures the text_area widget, passing its attributes
to the font argument.

Let's now look at the 10ad font_file method:

def load_font_file(self, file_path):
with open(file_path, 'r') as stream:
try:
config = yaml.load(stream)
except yaml.YAMLError as error:
print(error)
return

self.font_family = config['family']
self.font_size = config['size']

This method looks very similar to all of our other methods that load and parse a .yam1
file. We simply extract the family and size variables from the provided .yam file and
assign them to our font_family and font_size attributes.

With this all finished, our rontchooser is now fully functioning. The last thing to do is to
create the method that will be responsible for placing it into our Tools menu. We will
also need to import the class before we can begin to use it:

from fontchooser import FontChooser

class TextEditor(tk.Tk):

def change_font(self):
FontChooser ()

def tools_change_font(self, event=None):

Ctrl+L

nmon

self.change_font()

After writing these two methods, we can now try out our font selection window. First
create a folder named schemes alongside YOur languages fOldEl‘, then run YOUr texteditor.py
file and type some text (or open a file). Choose change Font from the Tools menu, and
try changing the font and size from this window:

Choose font and size

URW Palladio L
Ubuntu

Ubuntu

Ubuntu Condensed
Ubuntu Mono
Utopia

cursor.pcf
deccurs.pcf
decsess.pcf

micro.pcf

Save \

Now that we can change the font family and size, we should allow the user to change
the editor's colors. We can approach this in a similar way to how we handled the font
by making a new window that writes some options to a .yam1 file for persistence.

Changing the editor's color
scheme

Begin with a new file named colorchooser.py in the same directory as the rest of your
Python files. In this file, we will be creating another topieve1 window, which gives the
user the ability to set some color variables.

Once again, we have the problem of needing to get some information from a user in a
specified format. Luckily, Tkinter is on our side once again, and has provided a
colorchooser module that allows us to collect color choices from the user. We again need
only one function from this module, called askco1or:

import tkinter as tk
import tkinter.ttk as ttk
from tkinter.colorchooser import askcolor

We begin this file by importing this function from the colorchooser module found within
Tkinter. We can now begin creating our class:

class colorChooser(tk.Toplevel):
def __init_ (self, master, **kwargs):
super().__init_ (**kwargs)
self.master = master

self.transient(self.master)
self.geometry('400x300"')
self.title('color Scheme')

This class begins in almost exactly the same way as our rontchooser, so it should not
need explaining:

self.chosen_background_color tk.StringVvar ()
self.chosen_foreground_color = tk.StringVar()
self.chosen_text_background_color = tk.StringVar()
self.chosen_text_foreground_color = tk.StringVar()

Four stringvars are created. These will hold the following:

The background color of the texteditor (and all secondary Topievel windows)
The foreground color of the Texteditor (and all secondary topievel windows)
The background color of the Textarea widget
The foreground color of the Textarea widget

The four stringvars are defaulted to attributes that will be stored in the Texteditor class.
We will add these later:

self.chosen_background_color.set(self.master.background)
self.chosen_foreground_color.set(self.master.foreground)
self.chosen_text_background_color.set(self.master.text_background)
self.chosen_text_foreground_color.set(self.master.text_foreground)

To lay out the window we will need a few different rrame widgets:

window_frame = tk.Frame(self, bg=self.master.background)
window_foreground_frame = tk.Frame(window_frame, bg=self.master.background)
window_background_frame = tk.Frame(window_frame, bg=self.master.background)

text_frame = tk.Frame(self, bg=self.master.background)
text_foreground_frame tk.Frame(text_frame, bg=self.master.background)
text_background_frame tk.Frame(text_frame, bg=self.master.background)

self.all_frames = [window_frame, window_foreground_frame,
window_background_frame, text_frame,
text_foreground_frame, text_background_frame]

We create two main rrame instances, one for the window settings and one for the text
settings. Each of these then contain a rrame for the foreground settings and one for the
background settings.

Each of these rrame instances has its background color set to the background attribute of
the Texteditor.

Since we want to be changing the color of these frames as the user updates them, we
keep a reference to all of them as an a11_frames attribute. That way we can easily loop
over this list and configure them to the new color.

Now that we have our layout elements in place we can start adding widgets.
For each configurable option we will need:

® A Label to indicate what the user is changing
e A way for the user to choose a color
e A preview of the chosen option

To achieve this, we will be using two Labe1 widgets for the textual information, and a
sutton Which will utilize the askcolor function to display a color chooser to the user.

We also require a Label to indicate whether the color changes will impact the
application window or the rextarea.

Let's begin by adding some Labe1 widgets into our window:

window_label = ttk.Label(window_frame, text="Window:", anchor=tk.W, style="editor.TLabe
foreground_label = ttk.Label(window_foreground_frame, text="Foreground:", anchor=tk.E,
background_label = ttk.Label(window_background_frame, text="Background:", anchor=tk.E,

The first group handles the window subtitle and both of the indicator labels. Each Labe1

in this class will have a style of editor.TLabe1. This will be configured by the Texteditor
class once we are finished on this window:

text_label = ttk.Label(text_frame, text="Editor:", anchor=tk.W, style="editor.TLabel")

text_foreground_label = ttk.Label(text_foreground_frame, text="Foreground:", anchor=tk.

text_background_label ttk.Label(text_background_frame, text="Background:", anchor=tk.

The second group does the same but for the text area configurations.

Now that we have our indication Labe1 widgets in place we can get on with the actual
functionality—the color chooser:

foreground_color_chooser ttk.Button(window_foreground_frame, text="Change Foreground

background_color_chooser = ttk.Button(window_background_frame, text="Change Background

text_foreground_color_chooser = ttk.Button(text_foreground_frame, text="Change Text For

text_background_color_chooser = ttk.Button(text_background_frame, text="Change Text Bac

Four sutton widgets are created. Each is essentially the same, the differences are which
rrame is the parent and which stringvar we want to store the color choice in. Just like our
Label Widgets, all sutton widgets in our application will need a style named
editor.TButton.

To get a feel of how the sutton widgets will function let's jump to the method they are
all calling: set_color:

def set_color(self, sv):
choice = askcolor()[1]
sv.set(choice)

This function takes a stringvar argument, calls the askcolor function, parses the second
return value from it, and stores the result in the stringvar.

The askcolor function pops up a window with three color sliders—red, green, and blue.
The user can then slide each primary color to create the color they are after. There is
also an entry in which they can enter the hex value of their color choice if they know it:

Selection:

: [28
. #1c2122 ‘

Green:

Blue:

Cancel

This function returns a tuple of two items. The first is another tuple of the chosen red,
green, and blue amounts as floating point numbers. The second is the nex string of their
chosen color. Since Tkinter works with nex strings by default, we can disregard the
tuple of floats and just grab the nex string.

With this covered we can return to the __init_ method and continue setting up our
widgets:

foreground_color_preview ttk.Label(window_foreground_frame, textvar=self.chosen_foreg
background_color_preview = ttk.Label(window_background_frame, textvar=self.chosen_backg

text_foreground_color_preview = ttk.Label(text_foreground_frame, textvar=self.chosen_te

text_background_color_preview ttk.Label(text_background_frame, textvar=self.chosen_te

Four more Labe1l widgets will show the user their choice of color next to each sutton.
Since the chosen colors are stored in each stringvar, we just need to set these Label
widgets to display the stringvar's value.

Just one more widget to define now—a Save button. This will write the user's choices
to a .yam1 file once again, so that each time they open the editor it is in the same color
scheme as when they closed it:

| save_button = ttk.Button(self, text="save", command=self.save, style="editor.TButton")

That's it for the widgets! We will finish off our __init_ method with some calls to pack:

window_frame.pack(side=tk.TOP, fill=tk.X, expand=1)
window_label.pack(side=tk.TOP, fill=tk.X)

window_foreground_frame.pack(side=tk.TOP, fill=tk.X, expand=1)
window_background_frame.pack(side=tk.TOP, fill=tk.X, expand=1)

foreground_label.pack(side=tk.LEFT, padx=30, pady=10)
foreground_color_chooser.pack(side=tk.LEFT)
foreground_color_preview.pack(side=tk.LEFT, expand=1, fill=tk.X, padx=(15, 0))

background_label.pack(side=tk.LEFT, fill=tk.X, padx=(30, 27))
background_color_chooser.pack(side=tk.LEFT)
background_color_preview.pack(side=tk.LEFT, expand=1, fill=tk.X, padx=(15, 0))

Begin by packing our application settings. We first pack the rrame widgets, then our

three widgets for the foreground, and finally our three widgets for the background:

text_frame.pack(side=tk.TOP, fill=tk.X, expand=1)
text_label.pack(side=tk.TOP, fill=tk.X)

text_foreground_frame.pack(side=tk.TOP, fill=tk.X, expand=1)
text_background_frame.pack(side=tk.TOP, fill=tk.X, expand=1)

text_foreground_label.pack(side=tk.LEFT, padx=30, pady=10)
text_foreground_color_chooser.pack(side=tk.LEFT)
text_foreground_color_preview.pack(side=tk.LEFT, expand=1, fill=tk.X, padx=(15, 0))

text_background_label.pack(side=tk.LEFT, fill=tk.X, padx=(30, 27))
text_background_color_chooser.pack(side=tk.LEFT)
text_background_color_preview.pack(side=tk.LEFT, expand=1, fill=tk.X, padx=(15, 0))

The same is repeated for the Textarea widgets.

Finally, just our Save button left to pack:

| save_button.pack(side=tk.BOTTOM, pady=(0, 20))

That's our huge __init_ method completed! If you want to preview it, add an if _ name
== '_main__' block and give this file a run.

Otherwise, we'll finish off this class by writing our save method, which will write a
.yami file for persistent storage:

def save(self):
yaml_file_contents = f"background: '{self.chosen_background_color.get()}'\n" \

+ f'"foreground: '{self.chosen_foreground_color.get()}'\n" \

+ f'"text_background: '{self.chosen_text_background_color.get()}'

+ f'"text_foreground: '{self.chosen_text_foreground_color.get()}'

with open("schemes/default.yaml", "w") as yaml_file:
yaml_file.write(yaml_file_contents)

The .yam1 file will contain our user's four choices. We use a formatted string to inject
the values of our stringvars into a basic .yam1 syntax. Be sure to notice that each injected
variable should be wrapped in a string, since the # character will be in our values and
this constitutes a comment in .yan1.

We then open a .yam1 file stored in our schemes folder and write the contents of our string
into that file.

Now that we have saved the user's choices, we need to pass over to our Texteditor class
and tell it to recolor the application:

self.master.apply_color_scheme(self.chosen_foreground_color.get(),
self.chosen_background_color.get(),

self.chosen_text_foreground_color.get(),
self.chosen_text_background_color.get())

A method called app1y_color_scheme is called and we pass the four stringvar's values as

arguments.

To finish off our save method we also need to update the colorchooser window itself, so
we need to configure the visible widgets. This is where our a11_frames list comes in
handy:

for frame in self.all frames:
frame.configure(bg=self.chosen_background_color.get())

self.configure(bg=self.chosen_background_color.get())

We loop through all of our rrame widgets and configure their background to the value
of the relevant stringvar. The window itself is also configured to use the new
background color.

All of the Labe1 and sutton widgets are handled by the texteditor class (using the styie
argument mentioned earlier). Let's write this code now:
class TextEditor(tk.Tk):
def _ init_ (self):
ééif.background '"lightgrey'

self.foreground '"black'
self.all_menus = [self.menu, self.right_click_menu]

def generate_sub_menus(self, sub_menu_items):

self.all_menus.append(sub_menu)
def apply_color_scheme(self, foreground, background,
text_foreground, text_background):
self.background background
self.foreground = foreground
self.text_area.configure(fg=text_foreground, bg=text_background)

for menu in self.all_menus:
menu.configure(bg=self.background, fg=self.foreground)
self.configure_ttk_elements()

Inside apply_color_scheme the user's chosen values from the colorchooser window are now
saved as attributes of the Texteditor class so that they can be sent around to any other
windows that may need them.

The textarea widget is configured to use the foreground and background, which were
passed to this function. This is all we need to do for this widget.

In order to change all of our menus we will need to loop through them. This requires a
list of them, much like we did with the rrame widgets back in our colorchooser class. This
list is defined in our __init__ method after creating the menu bar and right-click menu,
then appended to at the end of each loop in our generate_sub_menus method.

Once all of the configure calls are done we still need to update our ttk widgets. The
configure_ttk_elements method lets us do this:

def configure_ttk_elements(self):
style = ttk.Style()
style.configure('editor.TLabel', foreground=self.foreground, background=self.backgr
style.configure('editor.TButton', foreground=self.foreground, background=self.backg

A style object is created, which is how the application will handle ttk element styling.
The sty1e then configures the two style strings, which we saw in our colorchooser
—editor.TLabel and editor.TButton. These have their foreground set to the value in our
foreground attribute, and their background set to the value of our background attribute.

To ensure the new colors are applied when the application loads, make sure you
change every hard-coded bg='1ightgrey' tO bg=self.background and every fg='black' t0
fg=self.foreground. These should be at the creation of seif.menu, the creation of each
submenu in generate_sub_menus, and the creation of our right-click context menu.

You can now go ahead and run the texteditor.py file to see the colorchooser in action. Go
ahead and change some of the colors and watch how the editor reacts:

File Edit Tools Help

X 2 Colour Scheme Av ~Q
Window:
Foreground: Change Foreground Colour ‘ #000000
Background: Change Background Colour ‘ #dddddd
JEditor:
Foreground: Change Text Foreground Colour ‘ #000000
Background: Change Text Background Colour ‘ #fffef
save

There are now some tweaks we need to make to the other classes to make sure they use
the chosen color scheme.

In the rontchooser's __init__ method, we need to set its background color to that of the
application. The Save button also needs to take the editor.TButton style:

class FontChooser(tk.Toplevel):
def __init__ (self, master, **kwargs):

self.configure(bg=self.master.background)

self.save_button = ttk.Button(self, text="Save",
style="editor.TButton", command=self.save)

Similarly, our rindwindow NOW needs to be updated. The three sutton widgets should get
our editor.TButton Style, the Labe1 widgets need to become ttk Labe1 widgets with our
editor.TLabel Style, and all rrane and window colors need to reflect the application's.

Since the master widget of our rindwindow is actually the textarea, we need to use
self.master.master tO refer to our Texteditor:

class Findwindow(tk.Toplevel):
def __init_ (self, master, **kwargs):

self.configure(bg=self.master.master.background)

top_frame = tk.Frame(self, bg=self.master.master.background)
middle_frame = tk.Frame(self, bg=self.master.master.background)
bottom_frame = tk.Frame(self, bg=self.master.master.background)

find_entry_label = ttk.Label(top_frame, text="Find: ",
style="editor.TLabel")

replace_entry_label = ttk.Label(middle_frame, text="Replace: ",
style="editor.TLabel")

self.find_button = ttk.Button(bottom_frame, text="Find",
command=self.on_find, style="editor.TButton")
self.replace_button = ttk.Button(bottom_frame, text="Replace",
command=self.on_replace, style="editor.TButton")
self.cancel_button = ttk.Button(bottom_frame, text="Cancel",
command=self.on_cancel, style="editor.TButton")

And with that we are finished with our color changing code! All we need to do is wrap
it in a function, which will add it to the Tools menu:

def change_color_scheme(self):
colorChooser(self)

def tools_change_color_scheme(self, event=None):

Ctrl+G

self.change_color_scheme()

This also marks the end of the Tools menu. That leaves us with just one more submenu
to add something to—the Help menu.

In the Help menu we can just add some information about our application. If you
would like, you can add some detail and images here. For the sake of this example I
will just keep it simple:

import tkinter.messagebox as msg

def show_about_page(self):
msg.showinfo("About", "My text editor, version 3, written in
Python3.6 using tkinter!")

def help_about(self, event=None):

Ctrl+H

mon

self.show_about_page()

A simple showinfo box displays some information to the user about the version number
and technologies of the application.

All of the functionality of our editor is now finished.

The last thing to do to fully complete the application is to bind all of the keys that are
displayed in our submenus, since unfortunately they do not bind automatically:
def bind_events(self):

ééif.bind('<Control—n>', self.file_new)

self.bind('<Control-o>', self.file_open)

self.bind('<Control-s>', self.file_save)

self.bind('<Control-h>', self.help_about)

self.bind('<Control-m>', self.tools_change_syntax_highlighting)

self.bind('<Control-g>', self.tools_change_color_scheme)
self.bind('<Control-1>', self.tools_change_font

With that our text editor application is complete! We have now created a functioning
text editor which boasts:

A working menu bar and right-click context menu

The ability to open and save files

Keyboard shortcuts and context menu items to cut, copy, and paste text
The ability to choose the font and font size

Syntax highlighting for any file type we can write a .yam1 file for

A customizable color scheme for both the application and the text area
A functioning find/replace window

This is where we shall leave this project. If you feel that there is some functionality
that another text editor has which you like, feel free to try and implement it into this
project as an exercise.

The third and final application we will move on to will be an online instant messaging
program. We may even see our old friend the rext widget there!

Summary

In this chapter we have learned all about menus. There are many different ways in
which the flexible menu widget can be utilized, and we have practiced three.

We first created a main menu bar along the top of our application where we could
provide access to functions of the editor. Afterwards we added menus into this bar by
creating a cascade. This gave us File, Edit, Tools, and Help menus sitting at the top of
our editor. We also looked at a solution that allows these items to auto-populate with
functions and keyboard shortcuts providing we follow a naming convention for our
editor's methods.

Finally, we created a separate right-click context menu. This allows the user to
manipulate the text in our Ttextarea widget without having to know the keyboard
shortcuts or move the mouse all the way to the top of the screen.

In order to create these menus we learned about the two main ways of adding items
—add_command and add_cascade. We saw that add_cascade allows us to create a submenu
inside another menu by passing the 1ave1 as the text to show and menu as the menu widget
to insert, and add_command allows us to call a function when the user clicks this entry,
provided we pass that function to the command argument.

Creating the file menu allowed us to make use of the filedialog module. We made use
of two functions from this module—askopenfilename and asksaveasfilename. We now know
just how simple Tkinter makes it to get file path choices from a user who may not
know how to build a full path to a file, since with this module they don't have to! We
also got a glimpse of how to force a file type when asking the user to open a file,
meaning they should not be able to pick an incorrect file and have the application
behave in an unexpected way.

Additional Topieve1 windows were added to our application and configured to share the
color scheme of the rexteditor class itself. This also allowed us to see a practical
example of how ttk's style object allows for very easy application-wide styling of the
widgets it includes, such as Labe1 and sutton widgets.

The colorchooser and font modules were briefly looked at, and we learned how to make
use of one function in each—ranilies and askcolor. We saw that the families function
makes it super easy to get a tuple of all fonts available on the user's system, making
font selection worry-free. Getting a color choice from a user was also made incredibly
simple via the askcolor function—providing the user with sliders and a hex code entry

so that they can see exactly what color they are selecting.

In the next chapter, we shall be moving on to an online chat application. Here we will
be making use of the ever-powerful canvas widget, as well as the Text widget we have
learned a lot about from this project. We will eventually set up a chat server using the
simple yet powerful f1ask module and maintain a list of friends using sq1ite for
permanent storage.

Talk Python to Me — a Chat
Application

The next project we will undertake is an online instant messaging application. This
will allow us to manage a list of friends who we can chat to. When chatting, a user will
have access to a list of smileys to add character to their messages.

In this chapter, we will cover:

Creating a scrollable rrame

Using the grid geometry manager

Positioning a topievel window relative to its parent
Embedding images into a text widget

Creating a scrollable frame

There will come a time when writing applications with Tkinter when you will want to
add a scro11bar to the application as a whole, rather than an individual widget (such as
the text widget, which we have already covered). This is not a trivial task, since
Tkinter will usually expand itself to show all of its containing widgets, or if the
geometry is already set, will simply hide them underneath the bottom border of the
window.

Let's take a look at what I mean. Open a new Python script and type the following
short snippet:

import tkinter as tk

win = tk.Tk()

for _ in range(30):
tk.Label(win, text="big label").pack(pady=20)

win.mainloop()

If you run this file you should see a very tall window open up. You will see a certain
number of Labe1 widgets (depending on your monitor's resolution) but will likely not
see all 30.

If you have the ability to move the window above the top of your screen (on my Linux
machine I can hold Alt and drag the middle of the window upwards) you can then
expose the bottom of the window. Drag the bottom of the window downwards (thus
increasing the window's height) and you will see more Labe1 widgets lie underneath:

XD

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

big label

To solve this problem, we obviously just need a scroi1bar! Let's try adding one:

import tkinter as tk

win = tk.Tk()
f = tk.Frame(win)
for _ in range(30):
tk.Label(win, text="big label").pack(pady=20)

scroll = tk.Scrollbar(win, orient='vertical', command=win.yview)
scroll.pack(side=tk.RIGHT, fill=tk.Y)

win.mainloop()

This code should allow us to scroll the window with the scro11bar. However, if you try
executing this file you will be shown the following error:

Traceback (most recent call last):
File "demo/demo.py", line 8, in <module>
scroll = tk.Scrollbar(win, orient='vertical', command=win.yview)
File "/usr/l1ib64/python3.6/tkinter/__init__.py", line 2095, in __getattr__
return getattr(self.tk, attr)
AttributeError: '_tkinter.tkapp' object has no attribute 'yview'

How about a rrame widget instead?

Traceback (most recent call last):
File "demo/demo.py", line 8, in <module>
scroll = tk.Scrollbar(win, orient='vertical', command=f.yview)
AttributeError: 'Frame' object has no attribute 'yview'

No, that didn't work either. There must be some way we can get our window to scroll
though, right?

The solution is to use the canvas widget to embed a rrame widget as a window. Since the
canvas widget can handle scrolling, we can use this trick to get ourselves a scrollable

Frame.

import tkinter as tk

win = tk.Tk()
canvas = tk.Canvas(win)
frame = tk.Frame(canvas)

scroll = tk.Scrollbar(win, orient='vertical', command=canvas.yview)
scroll.pack(side=tk.RIGHT, fill=tk.Y)

canvas.configure(yscrollcommand=scroll.set)
canvas.pack(fill=tk.BOTH, expand=1)
canvas.create_window((0, 0), window=frame, anchor='nw'")

for _ in range(30):
tk.Label(frame, text="big label").pack(pady=20)

win.mainloop()

This time we create a canvas first, then a rrame inside it. Our scro11bar's command can
then be set to the yview of our canvas.

To create the rrame widget as a window inside our canvas, the create_window method is
used. The first argument to this method is the coordinates within the canvas at which to
place this window. (e, e) puts the window at the upper-left corner of the canvas. Next,
the window argument is what we want to draw as the window, so we pass this our rrane.
Finally, the anchor allows us to align the window, and we use nw to keep everything
aligned in the upper-left corner.

When using the create_window method, do not also use a geometry manager (such as pack) on the widget that you
are using as a window. This will prevent the widget from displaying at all!

Now that our window is created, we can add our 30 Labe1 widgets to it.

Give this version of the code a try. You should now see we have a normal-sized
window with a scrollbar. However, the scrollbar still doesn't seem to work!

X »

big label

big label

big label

big label

big label

In order to make the rrame widget inside the canvas scrollable we have one final thing
left to do—configure its scroliregion. As the name suggests, this defines where in the
canvas can be scrolled.

Add this function and binding to your code and give it another try:

def on_frame_resized(self, event=None):
canvas.configure(scrollregion=canvas.bbox("all"))

win.bind('<Configure>', on_frame_resized)

The on_frame_resized function will configure the scroliregion Of the canvas. The bbox("a11")
grabs the bounding box coordinates of the whole canvas, and we pass this as the
scrollregion to allow us to scroll the entire canvas.

This function is bound to the <configure> event, which is called when the window is
created and resized. This ensures that, as our canvas grows and shrinks along with the
main window, we will still be able to scroll all of it.

If you run this version of the code, you should now be presented with a completely
scrollable window.

This is the basic recipe for creating a window that can be scrolled via a scrolibar. You
can also use the mouse wheel bindings we have practiced in previous chapters to allow
the window to be scrolled using the mouse wheel.

Now that we know how to make a scrollable window, let's begin by creating one. We
will be using this to create our friends list window, which will feature information
about all of the people we are able to chat to.

Creating our FriendsList class

Begin with a new folder, which will hold all of the code for our chat application.
Inside this folder, create a file called friends1ist.py. In this file, we will begin writing
OUr FriendsList class:

import tkinter as tk
import tkinter.ttk as ttk

class FriendsList(tk.Tk):
def __init_ (self, **kwargs):
super().__init__ (**kwargs)

self.title('Tk Chat')
self.geometry('700x500")

self.canvas = tk.Canvas(self, bg="white")
self.canvas_frame = tk.Frame(self.canvas)

self.scrollbar = ttk.Scrollbar(self, orient="vertical",
command=self.canvas.yview)
self.canvas.configure(yscrollcommand=self.scrollbar.set)

self.scrollbar.pack(side=tk.LEFT, fill=tk.Y)
self.canvas.pack(side=tk.LEFT, expand=1, fill=tk.BOTH)

self.friends_area = self.canvas.create_window((0, 0),
window=self.canvas_frame, anchor="nw")

self.bind_events()

self.load_friends()

Hopefully everything here looks very familiar. We import the usual tkinter and ttk
modules, set a few window properties, then get straight into creating the components
for our scrollable window.

After the scrolibar, canvas, and rrame are all taken care of, we call bind_events to handle
binding of our necessary functions, followed by 10ad_friends to populate the window
with all of our added friends:

def bind_events(self):
self.bind('<Configure>', self.on_frame_resized)

def on_frame_resized(self, event=None):
self.canvas.configure(scrollregion=self.canvas.bbox("all"))

In bind_events we bind a method to our window's <configure> event, which takes care of
setting up the scroliregion Of our canvas, as we saw with the previous demo.

To add friends to our window, we will first create all of the necessary widgets inside

their own rrame then add this to the canvas_frame, which is inside our canvas:

def load_friends(self):
friend_frame = ttk.Frame(self.canvas_frame)

profile_photo = tk.PhotoImage(file="images/avatar.png")
profile_photo_label = ttk.Label(friend_frame, image=profile_photo)
profile_photo_label.image = profile_photo

friend_name = ttk.Label(friend_frame, text="Jaden Corebyn",
anchor=tk.w)

message_button = ttk.Button(friend_frame, text="Chat",
command=self.open_chat_window)

profile_photo_label.pack(side=tk.LEFT)
friend_name.pack(side=tk.LEFT)
message_button.pack(side=tk.RIGHT)

friend_frame.pack(fill=tk.X, expand=1)
Each friend will consist of three widgets:

1. A photormage holding their avatar of choice.
2. A Labe1 showing their name.
3. A sutton that opens up their chat window.

Since there will be no server-side code in this iteration, I will be using placeholder information in this method
At a later point we will be able to pull this information from a database.

We can now run this initial version of the window. You should see a wide window
with a small section containing the friend information:

X 2 Tk Chat Av ~AQ
Jaden Corebyn Chat

This doesn't look very nice; we should make the friends span the entire window width.
In order to do this we just need one more binding;:

|def bind_events(self):

self.canvas.bind('<Configure>', self.friends_width)

def friends_width(self, event):
canvas_width = event.width
self.canvas.itemconfig(self.friends_area, width=canvas_width)

This time we bind to our canvas' <configure> event. Whenever our canvas is resized, we
grab its new width from the event object and apply it to the window within. In order to
access the window in our canvas, we use the itemconfig method. This method is like
configure but it references items that have been created inside another widget, such as
windows or images.

We pass this method our friends_area attribute, which holds the result of our
create_window Call, and the new width we want it to be set to.

Run this updated version of the file and you should see the friend will span the entire
window width now. It will also stay at full width as you resize the window:

X 2 Tk Chat Av ~Q

Jaden Corebyn Chat

]

The last thing to do is create the ability to add a new friend. We can use our knowledge
of the menu widget to present this feature:

def __init_ (self, **kwargs):
self.menu = tk.Menu(self, bg="lightgrey", fg="black", tearoff=0)

self.friends_menu = tk.Menu(self.menu, fg="black", bg="lightgrey",
tearoff=0)
self.friends_menu.add_command(label="Add Friend",
command=self.add_friend)
self.menu.add_cascade(label="Friends", menu=self.friends_menu)

self.configure(menu=self.menu)

We can create a menu in our __init__ method, which contains a rriends submenu. Inside

here will be an add Friend Option.

Since we have no way of getting friend information yet, we can just call our
load_friends method to act as a placeholder:

def add_friend(self):
self.load_friends()

One final method remains now—open_chat_window. This will require us to create a new
class that will act as the chat window. Create a new file in your folder called
chatwindow. py, then add this code to finish off your friends1ist.py file:

from chatwindow import ChatWindow

def open_chat_window(self):
cw = ChatWindow(self, 'Jaden Corebyn', 'images/avatar.png')

With this done we can move on to our chatwindow Class.

Creating our ChatWindow class

Before we begin coding our chatwindow, let's have a brief overview of the design.
The window will contain the following elements:

e A messages area, showing all messages sent by you to this friend, and sent by this
friend to you

e A scrollbar that allows you to scroll up to view older messages

e A text area for you to type a message to send to this friend

e A button that sends the contents of your message to your friend, then clears the
text area

e A button that lets the user pick a smiley to include in their message

e Your avatar

e This friend's avatar

From a layout point of view, the message area is the primary part of the application, so
it will take up the most space within the window, and be central.

The text area and buttons will be placed below the messages area so that they are
nearby but do not draw the eye away from the messages area.

The avatars will be off to the right-hand side of the window, with your friend's image
above yours. This keeps your avatar near your message input, and again prevents
stealing focus from the message area.

From this information we can begin to figure out what widgets we will need to achieve
this design.

The messages area could be achieved by a few different means, but in this case the
best option is a disabled Text widget. We know exactly how to dynamically update
these from our text editor application, and we will soon look at how we can add
images into one as well.

The scrollbar can be handled by the normal scro11bar widget, which we have used to
control a text widget in the past.

The user's messages will be typed into a second text widget, allowing them to send
messages longer than the one line allowed by an entry widget.

The buttons can be handled by the normal sutton widget. These can display both text

and images, as we will see shortly.
Finally, the avatars will be handled with a photormage and displayed using a Labe1 widget.

With regard to structuring the layout, we have three distinct areas, which can be
separated like so:

We can represent each area with its own rrame. This allows us to control the layout very
easily.

With these decisions in mind we can begin structuring the chatwindow class.

Since the rriendsList class inherits from the t« widget, and we want to be able to have
multiple chat windows open at once, the chatwindow Will need to inherit from the Topieve1
widget:

import tkinter as tk
import tkinter.ttk as ttk

class ChatWindow(tk.Toplevel):
def __init_ (self, master, friend_name, friend_avatar, **kwargs):
super().__init__ (**kwargs)
self.master = master
self.title(friend_name)
self.geometry('540x640"')
self.minsize (540, 640)

self.right_frame = tk.Frame(self)
self.left_frame = tk.Frame(self)

| self.bottom_frame = tk.Frame(self.left_frame)

The minimum information each chatwindow will need passed from the rriendstist is the
friend's name and avatar image. We also accept the standard master argument, and any
further keyword arguments, which will be passed back to the Topieve1 base class.

The ninsize method is used to prevent the user from shrinking the window too small,
making their conversations unreadable. This method takes two numbers: the first is the
minimum width, and the second is the minimum height. You will notice that these
match the default size passed to the geometry method.

We begin our layout by creating three rrame widgets. The rignht_frame will hold our
avatars, the 1eft_frame Our messages area, and the bottom_frame our text input and buttons:

self.messages_area = tk.Text(self.left_frame, bg="white", fg="black", wrap=tk.WORD, wi
self.scrollbar = ttk.Scrollbar(self.left_frame, orient='vertical', command=self.messag
self.messages_area.configure(yscrollcommand=self.scrollbar.set)

The first widgets we create are those that handle reading messages. Our messages area,
as mentioned, will be a text widget. As well as some color information, we initialize
this with the wrap argument set to the woro constant, meaning the messages will not
break up words as a message reaches the edge of the widget, and the width argument to
30, setting the default size of the widget.

Alongside our messages_area We create a scrollbar as normal and set it up to affect the
messages_area With the usual yview and yscrollcommand arguments:

self.text_area = tk.Text(self.bottom_frame, bg="white", fg="black", height=3, width=30)
self.send_button = ttk.Button(self.bottom_frame, text="Send", command=self.send_message

The widgets that will sit in our bottom_frame come next. Another rext widget is created
for the user to type their message into, and a sutton is made, which will send their
message when clicked:

self.profile_picture = tk.PhotoImage(file="images/avatar.png")
self.friend_profile_picture = tk.PhotoImage(file=friend_avatar)

self.profile_picture_area = tk.Label(self.right_frame, image=self.profile_picture, reli
self.friend_profile_picture_area = tk.Label(self.right_frame, image=self.friend_profile

To finish off our widgets, we create the two images that will act as avatars in our
right_frame. AS we have seen before, we begin by creating photormage objects that Tkinter
can use, then we use a Labe1 widget in order to display them.

In order to display a photormage using a Lane1, all we need to do is pass it as the image
argument. We also set the relief argument to the rioce constant as a way of placing a
small border around the image.

Now that all of our widgets have been defined we can begin packing them into the
window:

self.left_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=1)
self.scrollbar.pack(side=tk.LEFT, fill=tk.Y)
self.messages_area.pack(side=tk.TOP, fill=tk.BOTH, expand=1)
self.messages_area.configure(state="'disabled"')

The 1eft_frame is packed into the window and its widgets are packed into it. The
messages_area 1S then disabled USng the state argument:

self.right_frame.pack(side=tk.LEFT, fill=tk.Y)
self.profile_picture_area.pack(side=tk.BOTTOM)
self.friend_profile_picture_area.pack(side=tk.TOP)

The right_frame then follows suit. The user's avatar is added to the bottom of the rFrame
widget, and the friend's at the top:
self.bottom_frame.pack(side=tk.BOTTOM, fill=tk.X)

self.text_area.pack(side=tk.LEFT, fill=tk.X, expand=1, pady=5)
self.send_button.pack(side=tk.RIGHT, pady=5)

We finish packing with the botton_frame and its widgets. Some padding around them is
added with the pady argument for aesthetics:

self.configure_styles()
self.bind_events()

The _init_ method is finished off by configuring the styles of our ttk widgets and
binding any necessary events.

We'll start the bind_events method by allowing the user to send their message with the
Return/Enter key as well as by clicking the button:

def bind_events():
self.bind("<Return>", self.send_message)
self.text_area.bind("<Return>", self.send_message)

Now that we are all set up to send our messages, let's write the send_message method to
get things going:

def send_message(self, event=None):
message = self.text_area.get(1.0, tk.END)

if message.strip():
message = "Me: " + message
self.messages_area.configure(state='normal')
self.messages_area.insert(tk.END, message)
self.messages_area.configure(state="'disabled')

self.text_area.delete(1.0, tk.END)

return "break"

Since we can call this method from an event binding, we need to catch the event object

as a parameter.

The message is extracted from the text_area using its get method. To avoid sending
empty messages of just spaces, we first use the strip method on the message, then
check that it still has content.

If it does, we add the word we: to the beginning to indicate that the message was
written by us, then enable the messages_area, add our message, and disable it again.

The text_area is then cleared out so that the user does not have to manually delete their
last message.

The string break is returned to avoid the default behavior of the Return/Enter key.

One last thing we should do before previewing our chatwindow is handle adjusting the ttk
styling:
def configure_styles(self):

style = ttk.Style()
style.configure("send.TButton", background='#dddddd', foreground="black", padding=1

This method only affects our send_button at the moment. It gives the button a light gray
background with black text, and adds some padding to make it the same height as the

text_area.

Now that this is in place, we can take a look at our chatwindow in action. Add this small
block to the bottom of the file and run it:

if __name__ == '__main__ ':
w = tk.Tk()
c = ChatWindow(w, 'friend', 'images/avatar.png')

c.protocol("WM_DELETE_WINDOW", w.destroy)
w.mainloop()

You should now have a chat window appear. Go ahead and type some messages and
send them. You should see them appear in the messages area:

‘)(g friend

—|Me: Hello
Me: How are you?

While sending text messages is nice, people often want to send images known as

smileys or emojis. Luckily, the text widget we are using to display messages can
support images.

Before we add these to our chatwindow class, we should create a user-friendly way for
the user to select their choice of smiley.

Creating our SmilieSelect class

We are going to pop up a small window that contains all available smileys as buttons.
When the user clicks on one of these smiley buttons, the image will be inserted into
their text_area.

Create a new Python file in your folder called smilieselect.py. In that file, begin with the
following code:

import os
import tkinter as tk
import tkinter.ttk as ttk

class SmilieSelect(tk.Toplevel):
smilies_dir = os.path.abspath(os.path.join(os.path.dirname(__file_),
'smilies/'))

Our application needs to keep track of where these images are stored on the filesystem,
since multiple classes will need to access them. We achieve this by setting a class
variable on the smilieselect window called smilies_dir.

The smiley images will be stored in a folder named smi1ies, which will live in the
folder holding the rest of our scripts. Go ahead and create this folder now:

def __init_ (self, master, **kwargs):
super().__init__ (**kwargs)
self.master = master
self.transient(master)
self.position_window()

Our _init_ method begins by setting the window to a transient of its master, then calls
a method called position_window. This will allow us to place the smiley window relative
to the chat window every time. Let's jump to this method now:

def position_window(self):

master_pos_x = self.master.winfo_x()
master_pos_y self.master.winfo_y()

master_width = self.master.winfo_width()
master_height = self.master.winfo_height()

my_width = 100
my_height = 100

(master_pos_x + (master_width // 2)) - (my_width // 2)
(master_pos_y + (master_height // 2)) - (my_height // 2)

poS_X
pos_y

geometry = f"{my_width}x{my_height}+{pos_x}+{pos_y}"
self.geometry(geometry)

In order to place our smiley window in the center of the chat window, we need to
know three things:

e The chat window's position on the user's screen
e The chat window's width and height
e The smiley window's width and height

We can obtain the chat window's position by calling its winfo_x and winfo_y methods. Its
width and height are accessed with winfo_width and winfo_neight respectively. Finally, we
define the smiley window's size as 100 x 100.

We can then use these numbers to calculate the x and y position to place the window
at, which we store as pos_x and pos_y.

The geometry method can control not only the default size of a window, but its
position as well. It does this when you pass its argument in the following format: widtn,

X, height, +, x_coordinate, +, and y_coordinate.

Or, in Python terms:

| "{Ix{3+{3+{}".format(width, height, x_coordinate, y_coordinate)

We can see this in action in the call to the geometry method of our position_window code,
except using the formatted string syntax, which is available in Python version 3.6.

With this method written we can go back and finish off the __init_ method, which is
where the bulk of our logic lies:
def __init_ (self, master, **kwargs):
smilie_files = [file for file in os.listdir(self.smilies_dir) if file.endswith(".pn
self.smilie_images = []
for file in smilie_files:
full_path = os.path.join(self.smilies_dir, file)

image = tk.PhotoImage(file=full_path)
self.smilie_images.append(image)

This class needs to hold a list of all available smiley images. This will take a few steps
to accomplish.

We create a list of the filenames using the 1istdir method of the os module. This
method simply performs a directory listing of the supplied folder. We provide this
method our smilies_dir and filter out for files that don't have the .png extension.

used in my implementation are available on the Open Game Art website at nttps://opengameart . org/content/mikulka%e2

0 In order for this code to function you will need some .png files inside your smi1ies directory. The ones I have
%so%99s-smile. DUe to permissive licensing, they are available on this book's GitHub repository as well.

https://opengameart.org/content/mikulka%E2%80%99s-smile

Now that we have the filenames of our smileys, we need to turn them into photormage
objects, which Tkinter can utilize.

In order to do this, we loop over our list of smiley files and use the os.path.join method
to join the file name to the smilies_dir location. This gives us the full path to our image
files, which we can use to create a photoimage Object. We then append this to our
smilie_images list for later use.

With a full list of photormage Objects, we can now create sutton widgets, which will allow
the user to select that particular smiley for inclusion in their message.

The most logical way to display these buttons is in a grid. Since I will be using seven
images in my implementation of this application, I will be using a 3 x 3 grid. If you
have more smiley images available, feel free to adjust the numbers for a more suitable
grid.

As the name suggests, the grid geometry manager makes creating grid layouts very
easy, so we will be using this (instead of pack) to put our sutton wWidgets into the
window:

for index, file in enumerate(self.smilie_images):
row, col = divmod(index, 3)
button = ttk.Button(self, image=file,
command=lambda s=file: self.insert_smilie(s))
button.grid(row=row, column=col, sticky='nsew')

When adding our smi1ie buttons to the window, we loop over our list of photormages
using the enumerate function, which keeps track of the index within the list. We can use
that index to figure out which cell to place the sutton in via the divmod function. This
function takes a number to be divided as the first argument, and a number to divide
that number by as its second. We supply our index value as the to-be-divided number,
and 3 (the number of rows and columns in our resultant grid) as the to-be-divided-by
number. The divmod function returns a 2-tuple containing the amount of times the first
number can be wholly divided by the second, and the remainder.

For example, since the number 4 can be divided by 3 once, with a remainder of 1, the
result of divmod(4, 3) will be (1, 1). The result of dgivmod(s, 3) would be (2, o) since the
number 6 is divided by 3 twice with no remainder.

We can use this tuple to decide the row and column at which to place each sutton.

A sutton widget is created using the photormage as the image argument to display the
smiley. This sutton is then put into the window with the grid geometry manager,
passing the nsew string to the sticky argument, causing each button to expand as the
window's grid expands.

In order to make the window's grid expand when the window changes size, we need to
set the weight of each cell to the same value:
for i in range(3):

tk.Grid.columnconfigure(self, i, weight=1)
tk.Grid.rowconfigure(self, i, weight=1)

To adjust the WEight of each cell, we need to use the columnconfigure and rowconfigure
methods of the crid class itself. Since we have 3 columns and 3 rows, we loop over the
range Of 3 and pass each value to this method, along with weignht=1 to set each to the
same weight.

With that, our __init_ method is finished. Now we need to write the method that each
smilie button will call to add its image to the text_area of the chat window:

def insert_smilie(self, smilie):
self.master.add_smilie(smilie)
self.destroy()

This method is provided the pnotomage of the clicked button, and simply passes this
along to the add_smi1ie method of the master widget, which will be our chatwindow.

That completes all of the functionality needed for our smilieselect class.

To test our smilieselect window, all we need to do now is add an if _ name_ == "_ main_ "
block:
if _ _name__ == '_ _main__':
w = tk.Tk()

s = SmilieSelect(w)
w.mainloop()

Give your smilieselect.py file a run and check out your grid of available smileys. Note
that the buttons will not function, since the plain Tk widget we are using as its master
has no add_smilie method:

Now we just need to link this window back to our chatwindow to start sending smileys in
our messages. Go back to your chatwindow.py file and create the add_smi1lie method:

def __init_ (self, master, friend_name, friend_avatar, **kwargs):

self.text_area.smilies = []

def add_smilie(self, smilie):
smilie_index = self.text_area.index(self.text_area.image_create(tk.END, image=smili
self.text_area.smilies.append((smilie_index, smilie))

In order to link smileys back to our text_area, we will need to add an attribute to it
named smilies. This will be a list of 2-tuples containing the index at which the image
should be added and the photoimage instance that was used.

Of course, we also need a way to bring up the smiley window from within the

Chatwindow.

from smilieselect import SmilieSelect
def __init_ (self, master, friend_name, friend_avatar, **kwargs):

self.smilies_image = tk.PhotoImage(file="smilies/mikulka-smile-cool.png")

self.smilie_button = ttk.Button(self.bottom_frame,
image=self.smilies_image, command=self.smilie_chooser,
style="smilie.TButton")

self.bottom_frame.pack(side=tk.BOTTOM, fill=tk.X)
self.smilie_button.pack(side=tk.LEFT, pady=5)
self.text_area.pack(side=tk.LEFT, fill=tk.X, expand=1, pady=5)
self.send_button.pack(side=tk.RIGHT, pady=5)

def smilie_chooser(self, event=None):
SmilieSelect(self)

The smilieselect class is imported and a method named smilie chooser is created, which
simply instantiates the class.

In our __init_ method, we make a button that will spawn this window. The button will
feature one of the smileys itself, so a rhotormage with one of them is created and passed
to the image argument of the sutton. This sutton is then packed on the left of the text_area.

Running this file will show us a message window that allows us to pick a smiley from
the menu and have it appear in our message. However, when we send the message it
will disappear:

X friend

s send

To get the image to appear in our messages_area, we Will have to adjust our send_message
method:

def send_message(self, event=None):
message = self.text_area.get(1.0, tk.END)

if message.strip() or len(self.text_area.smilies):
message = "Me: " + message
self.messages_area.configure(state='normal')
self.messages_area.insert(tk.END, message)

The first change we need is to check for the presence of any smileys in our message,
since there's no need to add images if none were selected. The logic for adding the text
content of our message is unchanged.

If we do have some smileys in the message then we will have two pieces of
information about each—the index at which they were inserted and the photomage
instance that represents them. Since we never know how many lines will already be in
OUr messages_area, We can ignore the line number portion of the index and just get the
character number from it.

To know where to place the image in our messages_area, we need to get the last line
number from it. We can then join that to the character number from the smiley index
and create the index at which we need to insert the image:

if len(self.text_area.smilies):
last_line_no self.messages_area.index(tk.END)
last_line_no str(last_line_no).split('.')[0Q]
last_line_no str(int(last_line_no) - 2)

The line with our previous message in it is calculated by getting the index of the end of

the text widget and taking off 2 from the line number to accommodate for newline
characters:

for index, file in self.text_area.smilies:
char_index = str(index).split('."')[1]
char_index = str(int(char_index) + 4)
smilile_index = last_line_no + '.' + char_index
self.messages_area.image_create(smilile_index, image=file)

self.text_area.smilies = []

Now that we have the correct line number, we can loop through any smileys added by
the submitted message and find their character number. Note that we need to add 4 to
this to take into account the me: which has been added to the beginning of our message.

This character number is then joined to our calculated line number with a full stop
character to create a Tkinter index, and we give this to the image_create method to add
our smiley image.

Once we have added all of the chosen smileys to the messages_area, we need to clear the
smilies attribute of our text_area, S0 that the smileys that were added in this message are
not sent along with the next message as well:

self.text_area.delete(1.0, tk.END)

return "break"

The method is finished off in the same way as before, by removing the contents of the
text_area and returning the obreak string to prevent any default behaviors.

Give this file a run now and see your messages get sent along with any smileys you
included!

X friend
—[Me: Hi =
Me: L How are you? T

L
= Send

That is where we will finish off this chapter. We have now laid out some components
of a chat system that we are ready to connect to the internet. Soon, our application will

send its messages to a server as well as update the window itself, and our friends will
be able to see our messages and talk back, too!

Summary

In this chapter, we covered something that inevitably comes up when making GUI
applications—scrolling a window.

We saw that in order to scroll a window we need to use a widget that supports it, such
as a canvas widget. The advantage of the canvas widget is that we can use the create_window
method to insert other widgets inside of it to act as windows. These windows function
as their regular widget, and are then able to be scrolled.

Speaking of creating widgets inside others, we also learned how to add images inside a
Text widget by using the image_create method. This method only needs the index at
which to create the image and a photoimage instance.

The design implementation for our chat application has been considered, and the
necessary windows and widgets are all in place and ready to connect.

We have now practiced using one of the alternate geometry managers—grid. We have
seen how easily this allows us to lay out our widgets in an even grid, and we also saw
how to make the grid expand when the window is resized using columnconfigure and

rowconfigure.

In the next chapter, we will get our application online! We will be using the fiask
module to write a simple web server that our application can connect to. This server
will handle sending messages from us to our friends, and vice versa. We will also be
able to create user accounts so that actual friends can be added and removed.

Connecting — Getting Our Chat
Client Online

In this chapter, we will be connecting our chat application to a web service written
using the flask microframework. We will learn how to write a small flask application
that handles HTTP requests and updates a sqlite database in the process. We will then
take advantage of the requests module to allow for easy communication between a
graphical application and a web service.

In this chapter, we will cover the following topics:

Using the f1ask module to create a web service
Handling both GET and POST requests in flask
Using a sqlite database for persistent storage
Making HTTP requests using the requests module

Let's begin by having a look at flask. We'll take a tour of what it is and how it works
before using it to create a web service that can handle which users exist in our chat
application and who is allowed to talk to whom.

Introduction to flask

The f1ask module provides a microframework for creating web applications with
Python. It makes heavy use of decorators to make handling HTTP requests very
simple. It also keeps a lot of the internals away from your code, making what you
write very easy to read, even with little knowledge of flask itself.

Since this book teaches by example, let's get right into setting up a flask server.

Our first web page

The first step is to install flask. As usual, we can install flask using pip inside a virtual
environment.

Using the command line, navigate to the folder where you have been writing your chat
application and enter the following commands:

python3 -m venv env

source env/bin/activate

pip install flask

Pip should take care of installing flask, along with its dependencies, inside your new
virtual environment.

Once this has finished, create a folder named server alongside your Python files for the
previous chapter. This is where we will be placing our web service for the chat
application.

Inside this folder, create a file named server.py and place the following code inside:

from flask import Flask

app = Flask(__name__)
app.config.from_object(__name__)

@app.route("/")
def index():
return "This is a flask website!"

if __name__ == '__main__"':
app.run(debug=True)

With these few lines of code, we now have a functioning web server. We just need to
run it before we can visit it in a web browser.

If you have closed your terminal session from earlier, open a new one and navigate
into your root directory for this project. Load the virtual environment with source
env/bin/activate, move into the server folder, and run python3 server.py. Your terminal
should respond with something like this:

Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
Restarting with stat

Debugger is active!

Debugger PIN: 143-718-128

* ¥ F *

Head on over to nttp://127.0.0.1:5000/ in @ web browser and see your web page in
action:

127.0.0.1:5000/

& c @ # 127.0.0.1

Thisis aflask website!

You should be able to see the string that was returned in your index function appear in
your web browser. So, how did this happen? Let's break down the code sample:

from flask import Flask

app = Flask(__name__)
app.config.from_object(__name__)

The first three lines are very standard flask setup. You will likely see every flask
application include these three.

In order to use flask, we obviously need to import it. The main class which handles a
flask application is called riask.

It is convention for your instance of the riask class to be named app. The next two lines
simply handle creating the f1ask instance and configuring it.

After our application is configured, we need to assign some URLs to it. We do this
using decorators:
@app.route("/")

def index():
return "This is a flask website!"

One particular decorator we can use is the eapp.route decorator. This adds a route to
your application using the specified string as the path.

In this example, we used the string /, which means the root of your URL.

To experiment with this, try changing this parameter to /nhe110, then

visiting http://127.0.0.1:5000/. Since there is no longer a route at your root URL, this
will result in a 404 error. If you instead visit nttp://127.0.0.1:5000/hello, you will once
again see your message appear.

Once all of our routes are configured, we just need to run the application. Luckily,
flask provides an easy way to achieve that:

if __name__ == '__main__"':
app.run(debug=True)

We simply need to call the run method on our app to get our server running. We pass

debug=True While developing, as this gives us a very detailed stack trace if any errors
occur.

Now we know how to return a simple web page from a flask application. However, we
won't be dealing with web pages in our chat application. Instead, we just want raw
data.

In order to receive this data from a web service, we can return something called
JavaScript Object Notation (JSON). It provides a nice way of sending data over the
internet, and is very similar to a Python dictionary. So similar, in fact, that JSON data
is written as a dictionary and read back into one too.

Using JSON

Let's modify our simple example to return JSON instead of a web page:

from flask import Flask, jsonify

@éﬁp.route("/”)
def index():

data = {
"cats": 5,
"people": 8,
"dogs": 4

}

return jsonify(data)

Flask comes with a module called jsonify, which translates a dictionary into JSON and
returns it as the response. This makes handling JSON data very easy.

In this example, we create a dictionary with some example values. In a proper
application, this could instead be data which has been pulled from a database and
manipulated in some way.

This data is then passed to the jsonify function and given to the requesting application
in JSON format.

Make sure your web server is running (run pythons server.py if it isn't), then open up a
web browser and go over to nttp://127.0.0.1:5000 again. This time, you should see your
response laid out differently. The exact format will depend on the web browser you are
using. This screenshot shows how the response looks in Firefox version 60:

& (& ﬁg 127.0.0.1

JSON RawData Headers

Save Copy

So, now that we have JSON coming from our web service, how do we use it in
practice?

This question leads us nicely to the next topic—the requests module.

The requests module

Requests was written to make HTTP requests very simple and human-readable. In
simple terms, it lets us visit a web address directly in Python code instead of having to
use a browser. This also gives us back the data returned from the server, meaning we
can make use of it in our Python code.

We can use requests to grab data back from our flask web service and use it in some
Python code. We will begin with a small demo script which will make use of the data
which is being returned from our index function.

First things first; we need to install the requests module via pip. Make sure your virtual
environment is sourced and run pip install requests in your command line.

Sending a GET request

A GET request allows the requester (often called a client) to receive some information
from a server. We can use a GET request to ask our server for some data in JSON
format, which we can then use in the rest of the script.

Ensure your flask server is still running, then, open up a new Python file. Add the
following content:

import requests

r = requests.get("http://127.0.0.1:5000")
data = r.json()

print(f"There are {data['people']} people. {data['cats']} of them have a cat, and {data

In this example, we import the requests module and use it to send a GET request to our
server using its get method.

Since our server returns JSON, we can use the json method to parse the result into a
Python dictionary, which we call data.

This data dictionary is then available to be used as a regular Python dictionary, which
is demonstrated by using its attributes in a call to print.

Run the example and you should see the following output:

> python3 demo/req.py
There are 8 people. 5 of them have a cat, and 4 of them have a dog

From this, you can see that the content of our data dictionary on the server was
transferred successfully to this new script.

So, we've seen that we can get data from a server into an arbitrary script easily using
the requests module, but what about sending data from our script to the server?

Thankfully, requests allows us to do that too, using an HTTP POST request.

Sending a POST request

A POST request allows us to send data over to the server which it can then process as
it needs to. It is a common method for saving or updating data that is stored in a
database on the server machine.

Let's try this out now; open up your server and add a new endpoint as follows:

from flask import Flask, jsonify, request

@app.route("/send_me_data", methods=["POST"])
def send_me_data():
data = request.form
for key, value in data.items():
print("received", key, "with value", value)

return "Thanks"

This function includes a second argument in the route decorator called methods. This
argument specifies the HTTP methods, which are allowed to be sent to this endpoint.
Since we want to send data using a POST request, we set this value to a list containing
just the string posr.

To access the data sent over a POST request, the request object itself must be first
imported from the r1ask module. r1ask module then provides an immutablenict class which
can be found in the request.forn 0bject. We can loop over this dictionary and do
whatever we need to do with its data. In this case, we just print everything received to
the command-line window.

To ensure the requester receives a response, we return the string thanks.

Now, let's adjust our requesting script to use this new endpoint:

import requests

data = {
"pens": 12,
"pencils": "eight",
}

r = requests.post("http://127.0.0.1:5000/send_me_data", data=data)
print(r.text)

We now create some data in our script and use the post method of the requests module
to send this to our new endpoint. The data argument of this method is a dictionary of
data to send over.

Since our endpoint is no longer returning JSON, we can print r.text to display its
response.

Give this script a run and you should see thanks come back from the server:

> python3 demo/req.py
Thanks

If you then check on your server, you should see, amongst some of the normal output
of riask, that the data that was sent over has also been printed:

Restarting with inotify reloader

* Debugger is active!

* Debugger PIN: 232-123-067

received pens with value 12

received pencils with value eight
127.0.0.1 - - [27/Feb/2018 16:39:47] "POST /send_me_data HTTP/1.1" 200 -

This means that our sending of data from the requester to the server was successful!

That's the basics of sending and receiving data over HTTP covered. It's now time to
make some of the data meaningful and introduce some form of permanent storage.

The sqlite3 module

SQLite is a database technology which comes included with Python, via the sq1ites
module. It works by creating a file on the user's filesystem which is then altered using
basic SQL syntax.

Since data stored in a SQLite database is stored on disk, it can be used as a form of
permanent storage for web and GUI applications.

Using sqlite in Python is as easy as importing the built-in sq1ites module and then
sending it several SQL queries.

We will be using sqlite to store some data about our chat application on the server.
Let's have an introduction to sqlite by creating data storage for the users of our chat
application.

Creating a database and table

Inside your server folder, create a new Python file named create_database.py and add the
following code:
import sqlite3

database = sqlite3.connect("chat.db")
cursor = database.cursor()

create_users_sgl = "CREATE TABLE users (username TEXT, real_name TEXT)"
cursor.execute(create_users_sql)

database.commit()
database.close()

After importing the sq1ites module, we connect to a database named chat.db. This
database will become a file inside our server folder once the code has run.

We use this connection to receive a cursor, which is able to perform SQL queries over a
database.

The SQL query to create a table inside our database comes next. It is customary to
write the keywords of SQL in capital letters to easily distinguish your databases,
tables, and columns from the rest of the query. We create a table named users, which
will hold two columns—username and real_name.

We can then pass this query to our cursor and use its execute method to carry out the
query. This will create our table inside the database.

SQL relies on things called transactions, which allow for a user to roll back any
updates which they may not want to keep. This is useful if a database is updated at one
point in a script but, later on, an error occurs, which means we no longer want to keep
that update.

In order to tell our transaction that we do indeed want to make it persist, we call the
commit method. This makes our users table permanent.

Once we are done with a database connection, we can then close it to free up
resources. This is achieved with the c10se method.

Run this file and your database should be created! You will see a file named chat.db has
appeared in your server folder which holds the database and its users table.

Now that we have this prepared and readys, it's time to begin adding data to it.

Adding data to a SQLite
database

In order to add data to our SQLite database, we need to use an insert statement. We
provide the insert statement with the name of the table we are updating and the values
we wish to add to this table. We can then execute this as a query in the same way as
before.

The insert syntax is as follows:

|INSERT INTO table (columni, column2) VALUES (valuel, value2);

So, for our users table, we could use the following:

| INSERT INTO users (username, real_name) VALUES ("davidlove", "David Love");

Since we are going to be doing this from various flask endpoints, we should establish a
method of doing this easily. To achieve this, make a file in your server folder, called
database.py and add the following code:
import sqglite3
def add_user(username, real_name):

sgl = "INSERT INTO users (username, real_name) VALUES (?, ?)"

query_params = (username, real_name)

perform_insert(sql, query_params)

This function will allow us to easily add new users by just providing their username and
real_name @S Strings.

You may notice that our query contains question marks. When using variables as part
of a database query there is the potential for abuse, known as SQL injection, which
could allow someone with malicious intent to gain unauthorized access to data.

To mitigate this, database-related libraries typically allow the user to enter question
marks in place of variables within a query, then pass in the variable to insert as a
second parameter. The library will then take care of sanitizing the user's input and
building the full query to execute.

In this example, the question marks take the place of the provided username and rea1_name,
which are instead stored as a tuple named query_params and passed to the perform_insert
function.

This function will then take care of running a query with the given arguments:

def perform_insert(sql, params):
conn = sqglite3.connect('chat.db')
cursor = conn.cursor()
cursor.execute(sql, params)
conn.commit()
conn.close()

This function should look familiar, as it does a lot of what we did in order to create the
database.

It opens a connection to the chat.db file, gets a cursor from it, executes the SQL query
(along with the given parameters), commits, and, finally, closes the connection.

Since we need to perform these steps every time we want to run a query, we have
separated this piece of code into a function, avoiding repetition, and making the other
functions smaller and easier to understand.

Now that we have the ability to enter some users, let's try it out from the REPL:

Python 3.6.4 (default, Jan 03 2018, 13:52:55) [GCC] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import database

>>> database.add_user("davidlove", "David Love")

>>>

Well, it looks like we added a user, but there's no actual feedback. How can we check
which users we have now?

In order to see the content of a database, we need to perform a seiect Statement.

Selecting data from a SQLite
database

A select statement needs to know the table being read and the fields which the user
wants returned. The basic syntax is as follows:

| SELECT field1, field2 FROM table;

So, to read the users from our users table, we can do the following:

|SELECT username, real_name from users;

Again, as we will be doing this repeatedly, writing a function that will do it for us is a
good idea.

Add the fOHOWiI‘lg 1O database.py:

def get_all_users():
sgql = "SELECT username, real_name FROM users"
params = []

return perform_select(sql, params)

Here, we provide the basic select statement as the sq1 variable and an empty list as the
params variable, since we do not need to include any user-supplied data.

Once again, everything which handles the database connection has been separated into
a new function, this time named perform_select:

def perform_select(sql, params):
conn = sqglite3.connect('chat.db')
cursor = conn.cursor()
cursor.execute(sql, params)
results = cursor.fetchall()
conn.close()

return results

This function, unlike perform_insert, does not modify the data inside our database. This
means we do not need to call commit as there are no changes.

Instead, we need to call fetcha11, which will return a list of all results which are
returned by the query. After closing the connection, we return this list.

Now that we have implemented this, we can head back to our REPL and check

whether our insert was successful:

Python 3.6.4 (default, Jan 03 2018, 13:52:55) [GCC] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import database

>>> database.get_all users()

[('davidlove', 'David Love')]

Great! Looks like our insert statement was successful and we have our user inside the
users table.

That covers the basics of using sqlite. We will learn some more advanced features
while developing our chat application, but the basics are in place for now.

Now that our database is in place, we can hook it up to the web service we have
running. This will allow us to use fiask and requests to query the database from within a
Tkinter GUI, such as our chat application.

Linking flask and sqlite

We now need to import and use our database module inside our server module. In
order to make this easier, we should first wrap all of our functions in a class.

Update your database.py file, creating a class named patabase and adding the necessary
self instances to your methods. We can also move the database name out to an attribute
in the __init_ method:
import sqglite3
class Database:

def __init_ (self):

self.database = "chat.db"
def perform_insert(self, sql, params):

conn = sqglite3.connect(self.database)

def perform_select(self, sql, params):
conn = sglite3.connect(self.database)

update the rest of your methods to include self where necessary

Now that we have that done, we can import and instantiate the database in our server.py
file:

from database import Database

database = Database()

With our database in place, we can go ahead and turn the get_a11_users method into an
endpoint available via our flask server.

Get rid of the testing endpoints and add this one in their place:

@app.route("/get_all_users")
def get_all_users():
all users = database.get_all_users()

return jsonify(all_users)

This will simply call the method from our patabase class with the same name and return
the results as JSON.

Visit http://1227.0.0.1:5000/get_all_users in your web browser and view the results. You
should see the user you created has appeared on screen. You will notice, however, that

the data is not labeled in any way. It would be much more useful if we could have this
as a dictionary instead.

To make this change, we shall go back to our patabase class and modify the
perform_select method to return a list of dictionaries instead of a list of tuples:

def perform_select(self, sql, params):
conn = sqlite3.connect(self.database)
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute(sql, params)
results = [dict(row) for row in cursor.fetchall()]
conn.close()

return results

We can pass the row class from sqlites as the row_factory attribute of our connection to
receive row instances instead of tuples as the result of our seiect statement.

These row instances are similar to dictionaries, but are not compatible with JSON. To
ensure that our results can be returned as JSON, we need to explicitly convert them to
dictionaries. We do this using the dict method inside a list comprehension, so that the
results we return will definitely be a list of dictionaries.

Head back to your web browser and refresh the page. You should now see dictionary
results come back from your endpoint:

[
{

"real_name": "David Love",
"username": "davidlove"

}
]

We now can simply visit a server endpoint to perform a select query! How about an
insert?

To perform an insert, we would need to send data to our web server from our Python
application, then have flask store it in sqlite. To try this out, let's write an endpoint that
will create new users:

@app.route("/add_user")
def add_user():
data = request.form
username = data["username"]
real_name = data["real_name"]
database.add_user(username, real_name)

return jsonify(
"User Created"
)

As before, we use request.form to access POST data, then extract values from it like a

normal dictionary. We grab the username and rea1_name values and pass them over to our
Database'S add_user method.

We need to return something for the requester to see; so, we just return the string user

Created.

One last endpoint to make is to check whether a user already exists. After that, we can
go ahead and begin linking our chat application to our web server:

@app.route("/user_exists", methods=["POST"])
def user_exists():
username = request.form.get("username'")
exists = database.user_exists(username)

return jsonify({
"exists": exists
1)

This endpoint will return JSON with one key—exists. The requester can then extract
the value of this key to tell whether or not the username is already in the database.

Of course, we need a method of the same name in our patabase class now:

def user_exists(self, username):
sgql = "SELECT username FROM users WHERE username = ?"
params = (username,)

results = self.perform_select(sql, params)

if len(results):
return True

return False

The SQL used by this method uses a new element of a select query—the where clause.
As you may be able to tell, this is a way of filtering the results to include only those
which match certain criteria. In this case, we want to return records which have a
username which matches a provided variable. To achieve this, we add wxere username = 2
to the end of our seilect statement. Recall that the question mark will be replaced with
our username Variable when executing the query.

Since we do not actually want the returned record, merely to check for its existence,
we can use len(results) to check how many records were returned. If this function
returns any number above 0, the username must exist; so, we return true. Otherwise,
the username is not in our database and we can return raise.

With the setup finished, we can finally go back to our chat application and begin
utilizing our web service.

Updating our FriendsList class

The first thing we can do with our rriendList class is provide some sort of login system.
Since each user has a unique username and real name, we can use these credentials to
identify the user who runs the application. Normally, a system would also require a
password, but we can skip that for this implementation.

In order to display the login screen to the user, we will need to take away the default
behavior of showing the friends list straight away and instead display some widgets for
the user to enter their details.

Open your friendist.py file again and begin by extracting parts of the _init_ method to
a new one. Your new __init__ will look like this:

class FriendsList(tk.Tk):
def __init_ (self, **kwargs):
super().__init__ (**kwargs)

self.title('Tk Chat')
self.geometry('700x500")

self.menu = tk.Menu(self, bg="lightgrey", fg="black", tearoff=0)
self.friends_menu = tk.Menu(self.menu, fg="black",
bg="1lightgrey", tearoff=0)
self.friends_menu.add_command(label="Add Friend",
command=self.add_friend)

self.menu.add_cascade(label="Friends", menu=self.friends_menu)

self.show_login_screen()

The code which has been removed from here will go into a method called show_friends,
as follows:
def show_friends(self):

self.configure(menu=self.menu)
self.login_frame.pack_forget()

self.canvas = tk.Canvas(self, bg="white")
self.canvas_frame = tk.Frame(self.canvas)

self.scrollbar = ttk.Scrollbar(self, orient="vertical",
command=self.canvas.yview)
self.canvas.configure(yscrollcommand=self.scrollbar.set)

self.scrollbar.pack(side=tk.LEFT, fill=tk.Y)
self.canvas.pack(side=tk.LEFT, expand=1, fill=tk.BOTH)

self.friends_area = self.canvas.create_window((0, 0),
window=self.canvas_frame, anchor="nw"

self.bind_events()

| self.load_friends()

Looking over our new __init__, you will see that, once the normal variables are set and
the menu is created, we go off to a method called show_1ogin_screen. This will put a rrame
in the window, which contains entry widgets for the user to enter their username and
real name, and buttons to either log in or create a new account:

def show_login_screen(self):
self.login_frame = ttk.Frame(self)
username_label = ttk.Label(self.login_frame, text="Username'")
self.username_entry = ttk.Entry(self.login_frame)

real_name_label = ttk.Label(self.login_frame, text="Real Name")
self.real_name_entry = ttk.Entry(self.login_frame)

We begin by making a rrame to hold all of our widgets. Since the layout will represent a
grid, we will be using the grid geometry manager in this frame, meaning there will be
no need to add additional rrame widgets inside of it.

As we want the user to be able to enter their username and real name, we will need two
entry Widgets for them to type in, as well as two Labe1 widgets to indicate what
information goes into each.

The entry widgets will need to be attributes, so that we can get their values in other
methods, but the rest will not need to be referenced, so they can be regular variables:

login_button = ttk.Button(self.login_frame, text="Login", command=self.login)
create_account_button = ttk.Button(self.login_frame, text="Create Account", command=sel

We also have two sutton widgets, which will let the user have the ability to either log in
with the provided credentials or use them to create a new account:

username_label.grid(row=0, column=0, sticky='e')
self.username_entry.grid(row=0, column=1)

real_name_label.grid(row=1, column=0, sticky='e')
self.real_name_entry.grid(row=1, column=1)

login_button.grid(row=2, column=0, sticky='e')
create_account_button.grid(row=2, column=1)

With all of our widgets defined, we can begin adding them to our rrame. We use grid to
create a 2 x 3 grid inside the rrame:

for i in range(3):
tk.Grid.rowconfigure(self.login_frame, i, weight=1)
tk.Grid.columnconfigure(self.login_frame, i, weight=1)

self.login_frame.pack(fill=tk.BOTH, expand=1)

We again loop over each cell and set them to an equal weight, allowing our layout to
persist as the user resizes their window.

Finally, we use pack to add our 1ogin_frame to the window, telling it to fill both directions
and expand to the full size.

Before we can see this in action, we will need to define the two methods called by the
new buttons. We can just use placeholder methods for now:

def login(self):
pass

def create_account(self):
pass

You should now be able to run your friendsiist.py file and see your new login screen,
as follows:

X Tk Chat A v oA e

Username

Real Name

Login Create Account

To actually complete the methods that these buttons will call, we are going to need to
connect our rriendsList class up to our web service. In order to keep the logic nicely
contained, we will be creating a new class to handle all of this.

Creating the Requester class

Make yourself a new file in the same folder as your friends1ist.py file named
requester.py.

import json
import requests

class Requester:
def __init__ (self):
self.url = "http://127.0.0.1:5000"

As the name implies, the requester class will be making use of the requests module to
communicate with our web service. We will also need to use the json module to read
any data which is returned.

In our __init_, we just need to keep a reference to the URL at which our web service
operates. Keeping it here means that, if we change it for any reason, we only have one
place in this class to update.

Since our web service uses both GET and POST endpoints, we can generalize our
requesting by extracting it to a method:

def request(self, method, endpoint, params=None):
url = self.url + endpoint

if method == "GET":

r = requests.get(url, params=params)
return r.text

else:
r = requests.post(url, data=params)

return r.json()

This method will take the request method (GET or POST), the endpoint (Which should
match that in the relevant app.route decorator in our server file) and any parameters
which need to be passed.

Based on the request method, it will send our parameters using a different keyword
argument to the method provided by requests and return different parts of the response.

If it was a GET request, we will return r.text, which contains any text returned from
the server. If it was a POST request instead, our server will have returned JSON, so we
need to use the json method to convert it to a Python dictionary.

Now that we have this method in place, we can begin implementing our login and
account creation calls.

When logging in, we just need to check that the provided username and real name
exist in our database, so we have to call the /user_exists endpoint:

def login(self, username, real_name):
endpoint = "/user_exists"
params = {"username": username}

user_exists = self.request("POST", endpoint, params)

return user_exists["exists"]

We pass the endpoint the provided username and return the value of the exists key in the
JSON returned by the server.

When creating an account, we should also first check whether the user exists and only
create the account if they do not:

def create_account(self, username, real_name):
endpoint = "/user_exists"
params {"username": username}
exists self.request("POST", endpoint, params)

if exists["exists"]:
return False

endpoint = "/add_user"
params["real_name"] = real_name

self.request("POST", endpoint, params)

return True

Here, we see much the same code as before, except if the user does already exist, we
want to return raise. If they do not, we then call the /add_user endpoint, providing the
real name as well, then return True.

Now that our requester is in place, we can import it in our rriendsList and connect it to
the web service.

Connecting our FriendsList to
our web service

To get our rriendstist talking to our web service, we first need an instance of our new
rRequester. We will also import messagebox, SO that we can show some pop-up windows if
there are any errors:

import tkinter.messagebox as msg
from requester import Requester

def __init_ (self, **kwargs):

self.requester = Requester()

With this in place, we can write the actual 10gin and create_account methods:

def login(self):
username = self.username_entry.get()
real_name = self.real_name_entry.get()

if self.requester.login(username, real_name):
self.username = username
self.real_name = real_name

self.show_friends()
else:
msg.showerror("Failed", f"Could not log in as {username}")

To log in, we first use the get method to retrieve the text inside our two entry widgets,
then pass them to the 10gin method of our requester.

If the call to the web service is successful, we set the current username and real_name to
attributes of this class, then call the show_friends method, which will display our test
friend as before.

If the provided details do not exist in our database, we will receive a negative response
from our web service. We will show this to the user using a message box, letting them
know they were not able to log in.

If they instead pick the create account button, we will call this method:

def create_account(self):
username = self.username_entry.get()
real_name = self.real_name_entry.get()

if self.requester.create_account(username, real_name):
self.username = username

self.real_name = real_name

self.show_friends()
else:
msg.showerror("Failed", "Account already exists!")

This method is very similar to the 109in method, but calls the create_account method of
our requester and displays a different message if the call to the web service returned a
negative response.

You can now run your friendslist.py file and try creating an account and logging in.

Once logged in, you will still see the placeholder friend which we set up last chapter.
Since we have a database full of accounts now, we can go ahead and replace this with
the other people in our database.

To make our rriendsList display existing users, we need to create a method in our
requester which will fetch them all:

def get_all_users(self):
endpoint = "/get_all_users"
users = self.request("GET", endpoint)

return json.loads(users)

The endpoint to fetch all users is a GET endpoint which takes no parameters; so, we
only need to specify the endpoint argument in order to make this request.

As our web service returns a JSON object with no particular key, we can just parse it
using the json module's 10ads method and return it to our rriendstist.

Now, we can loop over the returned users and display them in our application:

def load_friends(self):
all users = self.requester.get_all_users()

for user in all_users:
if user['username'] != self.username:
friend_frame = ttk.Frame(self.canvas_frame)

We call the get_a11_users method we just wrote, then use a for loop to iterate over each
user. This user will be a dictionary containing their username and real name.

Since we don't need to be able to talk to ourselves, we can ignore a user who has a
username matching the one we have set as our username attribute.

For each user, we will create a rrame to hold their related widgets. These widgets will
be the same as they were before:
profile_photo = tk.PhotoImage(file="images/avatar.png")

profile_photo_label = ttk.Label(friend_frame, image=profile_photo)
profile_photo_label.image = profile_photo

friend_name = ttk.Label(friend_frame, text=user['real_name'], anchor=tk.W)

message_this_friend = partial(self.open_chat_window, username=user["username"], real_na
message_button = ttk.Button(friend_frame, text="Chat", command=message_this_friend)

There are two main changes we have made to the widgets this time — the friend_name
Label NOW contains the real_name attribute from the user dictionary, and each cnat button
will now need to open a specific conversation window (which we will make
adjustments for next).

In order to create a different function for each user in our dictionary, we will be using
a partial function. This allows us to freeze the arguments of a provided function. Here,
we have giVEI‘l the open_chat_window method and frozen the username and real name
arguments as those from our dictionary.

We then finish off the method by packing our widgets, as normal:

profile_photo_label.pack(side=tk.LEFT)
friend_name.pack(side=tk.LEFT)
message_button.pack(side=tk.RIGHT)

friend_frame.pack(fill=tk.X, expand=1)

With this method updated, we now need to adjust our open_chat_window method to accept
the username and real_name arguments and do something with them:

def open_chat_window(self, username, real_name):
cw = ChatWindow(self, real_name, username, 'images/avatar.png')

As this method just instantiates the chatwindow class, all we need to do is pass the username
and real_name values over to it. We now need to implement these variables in this class,
too.

Connecting our ChatWindow

The first thing to do with our chatwindow is allow it to receive the username variable:

class ChatWindow(tk.Toplevel):
def __init_ (self, master, friend_name, friend_username, friend_avatar, **kwargs):

self.friend_username = friend_username

You may be wondering why we need this variable here. The reason we will be
requiring it is to help keep track of the conversation history.

There will be a separate database holding conversations between you and each
individual friend, to make for very easy retrieval of the conversation history. This will,
of course, require changes to our web service and, of course, our requester will need to
be updated too.

Let's begin with the necessary server adjustments to facilitate the conversation
databases.

Updating our server to store
conversations

As mentioned, each conversation will be contained to its own SQLite database. For
easy organization, go ahead and create a folder named conversations inside your server
folder to hold each of these.

We will use a clever naming convention, which ensures that the same database is
accessed by both users involved in the conversation, thus avoiding data duplication.

Creating the Conversation class

Inside your server folder (not the new conversations folder), create a file named
conversation.py. This will hold a class of the same name, which handles the sqlite side of
creating and interacting with these databases:

import sqlite3

class Conversation:
def __init_ (self, database):
self.database = database

This looks much like the _init_ method of our patabase class, but it will have its
SQLite database filename passed to it, allowing this class to work with multiple
different conversation databases.

The first method we will need to write is one that will create the table inside the
database:

def initialise_table(self):
sgql = "CREATE TABLE conversation (author text, message text, date_sent text)"
conn = sqglite3.connect(self.database)
cursor = conn.cursor()
cursor.execute(sql)
conn.commit()
conn.close()

From the create statement, we can see that each database will hold a single table called
conversation. This table will hold three pieces of information about each entry—the
author (who sent the message), the message text itself, and the date when the message
was sent.

()SWm@amewmmWmmmmwMGMmmwwﬂpMmMmmmmmmW&

After the creation of the sq1 statement follows all of the connection handling code we
have seen before. If you wish to extract this to a method again, feel free.

Now that we have the tables created, we can write a method to read the data from
them:

def get_history(self):
sgl = "SELECT * FROM conversation"
conn = sglite3.connect(self.database)
conn.row_factory = sqlite3.Row
cursor = conn.cursor()
cursor.execute(sql)
results = [dict(row) for row in cursor.fetchall()]
conn.close()

return results

This method creates a query which extracts all information from the database and
returns it as a dictionary. If you have not seen the select * statement before, this simply
tells the database to return all columns. This saves the need to type out each column
individually and update the query if a new column is added at a later point.

Returning data is nice, but there's no point if we cannot add data too!

def add_message(self, author, message, date_sent):
sgl = "INSERT INTO conversation VALUES (?, 2, ?)"
params = (author, message, date_sent)
conn = sqglite3.connect(self.database)
cursor = conn.cursor()
cursor.execute(sql, params)
conn.commit()
conn.close()

With this final method, we can now add data to our table. The author, message, and
date_sent passed to this method are stored in the relevant column of our conversation
table.

That finishes off our conversation class. We can now update our web service to
communicate with it.

Using the Conversation class in
our server

To integrate the conversation class with our flask server, we need to create some
endpoints that will call its methods. Since the conversation class needs a database passed
in, we will also have to deduce which database we are writing to in our endpoints.

The following naming conventions will be used for our databases:

Take the username of the author

Take the username of the person receiving the message
Arrange them alphabetically

Join them with an underscore

Add .qb as the file extension

When we name our database as such, we will only have one database per two people
conversing. Arranging the names alphabetically when determining the database to use
ensures that it doesn't matter which user opens the conversation; they will always refer
to the same database.

Since we are requiring usernames to be unique, we shouldn't ever have a clash of
database names, either.

Let's create the method which determines the database file from two provided
usernames. Since this is just a helper function, it does not need its own route:

from conversation import Conversation
conversations_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), 'conversati
def get_conversation_db_path_for_users(data):

user_one data["user_one"]
user_two data["user_two"]

users_in_order
users_in_order

sorted([user_one, user_two])
"_".join(users_in_order)

conversation_db = users_in_order + ".db"
conversation_db_path = os.path.join(conversations_dir, conversation_db)

return conversation_db_path

Since our conversation databases will all be kept in the conversations folder, we create

an absolute path to this directory and save it in a variable named conversations_dir. We
can then use this to keep the location of all the databases consistent.

Our get_conversation_db_path_for_users Will take a dictionary, which should have
user_one and user_two as keys. These will contain the two usernames of the people who
are talking.

As mentioned, these will be ordered alphabetically and joined with an underscore,
before .db is added on to create the full filename. The database filename is then joined
to the conversations_dir to create the full path to the file.

Now that we are able to determine the database file from two usernames, we can write
the endpoints which use this function.

The first endpoint will initialize the database with its table if it does not already exist:

@app.route("/create_conversation_db", methods=["POST"])
def create_conversation_db():
conversation_db_path = get_conversation_db_path_for_users(request.form)

if not os.path.exists(conversation_db_path):
conversation = Conversation(conversation_db_path)
conversation.initialise_table()

return jsonify({
"success": True,
1)

This method begins by figuring out the conversation database file path from the
supplied POST parameters. If this does not correspond to an existing file, we initialize
an instance of our conversation class and tell it to initialize the table.

We don't need any feedback from this endpoint, so, we can just return a simple JSON
object.

Now, we can write an endpoint which obtains the conversation history between two
users:

@app.route("/get_message_history", methods=["POST"])

def get_message_history():
conversation_db_path = get_conversation_db_path_for_users(request.form)
conversation = Conversation(conversation_db_path)

history = conversation.get_history()

return jsonify({
"history": history
1)

We again use the POST parameters to get the conversation database, and then use this
to create an instance of our conversation class.

The history is obtained with the get_history method of the conversation instance and this
is returned as JSON to the requester.

Finally, we need an endpoint to add messages to the conversation database, which can
be called by our chatwindow:

import arrow

@app.route("/send_message/<username>", methods=["POST"])
def send_message(username):

data = request.form

author = data["author"]

message = data["message"]

date_sent = arrow.now().timestamp

conversation_db_path = get_conversation_db_path_for_users({"user_one": author, "use
conversation = Conversation(conversation_db_path)
conversation.add_message(author, message, date_sent)

return jsonify({
"success": True
1)

This endpoint shows some syntax, which we have not yet come across. In order to
extract a part of a URL as a variable, we can wrap it in pointy brackets inside the route
string, then include it as an argument with the decorated function. In the preceding
example, we have done this with the username variable.

This now means that, if we visit http://127.0.0.1:5000/send_message/James, OUT username
variable will be sames.

Along with the receiver's username, we also extract the author and message from the
POST data. Our date_sent Will be set to the current timestamp.

0 I have used the arrow library to handle the timestamp, which can be installed with pip instai1 arrow. You could
also use the datetine module to get the timestamp if you would prefer.

We can construct the necessary parameters for our get_db_path_for_users function by
putting the author and username variables into a dictionary. This then gives us the path to
the conversation database, which we can use to create a conversation instance and use its
add_message method to insert our message.

Again, we shouldn't need any feedback from this endpoint, so we can just return
JSON, which lets the requester know that it has completed.

Our server is now equipped to update the relevant conversation database in response to
some web requests. The next thing to do is to update our requester to send them.

Adding the new endpoints to
our Requester

When the user opens up a chat window with a friend, our requester will need to contact
the web server to retrieve the conversation history. If there is no conversation history
to be obtained, then we will want to initialize the database to prevent errors.

Since initializing the database when it already exists will do nothing, we are safe to
call the endpoint even if a database already exists.

We can take advantage of this in our requester, so that we can skip adding a separate
method for initialization and, instead, handle it all when getting the history:

def prepare_conversation(self, user_one, user_two):
endpoint = "/create_conversation_db"
params = {"user_one": user_one, "user_two": user_two}

self.request("POST", endpoint, params)

endpoint = "/get_message_history"
history = self.request("POST", endpoint, params)

return history

The first method to add to our requester iS prepare_conversation. We can call this each time
the user opens a new chatwindow instance. It will create a conversation database if one
does not already exist and get the content if it does.

The JSON returned from the web service will just be returned so that the cai1ing class
has access to it.

We will also need a method to add a message to the database:

def send_message(self, author, friend_name, message):
endpoint = f"/send_message/{friend_name}"
params = {
"author": author,
"message": message,

}

self.request("POST", endpoint, params)

return True

The send_nmessage method will take the author name, friend name, and message, and then
send the appropriate POST request to our web service. Since we don't have any useful

information returned from the web service, we can just return true here.

Since the username of the person we are messaging is extracted from the URL, we use
a format string to insert the friend_name variable into the endpoint URL.

That concludes the changes we need to make to our requester. Now, everything is
finally set up ready for us to connect our chatwindow class!

Updating our ChatWindow
class to send requests to the
server

With all of the heavy lifting passed over to our other classes, the changes required to
our chatwindow class should be very simple.

Firstly, let's update it so that the messages we send are sent to the web service and
stored in a conversation database:

def send_message(self, event=None):
message = self.text_area.get(1.0, tk.END)

if message.strip() or len(self.text_area.smilies):
self.master.requester.send_message(
self.master.username,
self.friend_username,
message,

)

message = "Me: " + message
self.messages_area.configure(state='normal')
self.messages_area.insert(tk.END, message)

Before adding the ve : and incorporating the smileys into our messages_area, we fire off a
request to the web service containing our username, the friend's username, and the
unaltered message. We can access our username by referring to the username attribute of
the rriendsList class, which will be our master widget.

Likewise, instead of creating a requester per chatwindow, We can just use the one from our
master widget.

The rest of this method remains unchanged.
Yes, that's really all that we need to do here to get our chatwindow class connected!

The last thing to add is the conversation history when the user opens up the chat
window. For this, we will need two new methods.

We will add a method which updates the messages_area with a message without sending
it back to the requester:

def receive_message(self, author, message):
self.messages_area.configure(state='normal')

if author == self.master.username:
author = "Me"
message_with_author = author + ": " + message

self.messages_area.insert(tk.END, message_with_author)
self.messages_area.configure(state='disabled"')

This method looks like a very abridged version of send_message, since it will just receive
a message and its author, swap the author's name to we if the author matches the stored
username, and then add it to our messages_area.

With that in place, we can grab the conversation history from our web service and add
it to the messages_area with this method:

def __init_ (self, master, friend_name, friend_username, friend_avatar, **kwargs):

self.load_history()

def load_history(self):
history = self.master.requester.prepare_conversation(self.master.username, self.fri

if len(history['history']):
for message in history['history']:
self.receive_message(message['author'], message['message'])

When the chatwindow is first loaded, we want to prepare it with the chat history or by
initializing the conversation database if it does not already exist. We use the
prepare_conversation Method of the requester to achieve this.

Once we have the history, we loop over each message and pass the information to our
receive_message Method to add it to our messages_area.

That's it, our chatwindow is Now connected! Run your friendsiist.py file, log in and open
up a chat window with someone. Send them a few messages, then close the window.
When you open it again, you should see your old messages are still there!

With that, this chapter comes to an end. Our rriendsList and chatwindow are now both
connected to our web service via the requester class.

The current implementation works fine if two people want to close and re-open their
chat window between each method, but this is obviously not very user-friendly. In the
next chapter, we will look at getting messages to send in the background.

Summary

In this chapter, we have learned a lot about some non-Tkinter technologies which can
be used to supplement a GUI application.

We learned how to set up a very basic web service using the fiask module. We know
how to create URL routes using the app.route decorator and have learned how to handle
both GET and POST requests. We also had an introduction to JSON as a portable way
of sending information back to a client.

The SQLite database technology has been explored and we know how to create
databases in our filesystem. We have practiced querying them and seen some basic
SQL statement syntax. We have learned both how to put information into a database
table and how to retrieve it again. We also saw that we can use the row class to get
information as a dictionary, which is often preferable to the standard tuple responses.

We have looked at sending GET and POST requests using the requests module. We
have seen how to send data over to an endpoint, as well as parse the response with
either r.text oOr r.json(). We have also created a generic class wrapper around this
module which makes code from other classes much more succinct and readable.

After all of that knowledge was practiced, we then utilized it to get both our rriendsList
and chatwindow classes communicating with the new web service via requests, which
called a f1ask endpoint to communicate with an sq1ites database.

Our rriendstist class now knows what users exist on the server and the chatwindow is able
to keep and display a history of sent messages between two users.

In the next chapter, we will polish off our chat application by getting messages to
update in the background while the user has the window open. We will also sort out
the ability for each account to have its own avatar image and block other users from
contacting them.

Making Friends — Finishing Our
Chat Application

We will be finishing off our chat application by using threads to get it listening for
incoming messages in the background. We will explore the motivation for
incorporating threads in a GUI application, then learn how they can be implemented.

Once our application is listening for new messages, we will polish things off by
making the user-chosen avatars function properly and we will learn how to handle
manipulating images in Python.

We'll finish up by allowing users to add each other as friends and block friends if they
no longer wish to talk to them.

In this chapter, we will cover the following topics:

Why we may need to use threads when making a GUI application
How to create and use a thread in Python

Manipulating images using Python Imaging Library (PIL)
Uploading images to a web service

Using threads

When writing a Python application, all of the code will run in a single thread by
default. This means that, as you read down a file, each line will be carried out one at a
time. A piece of code cannot run if there is another piece above it which is executing a
large task.

If we wanted to carry out multiple tasks at the same time, there are a couple of
different ways we could go about doing so. One way is the use of a thread. When using
a thread, the operating system will be able to quickly switch between two running
pieces of code so quickly that it appears as if they are being executed at the same time.
This means that if you have a function which takes a lot of processing, you are able to
do multiple smaller tasks in the time it would take for that function to execute, thereby
speeding up the overall process.

Why use a thread with a GUI
application?

Graphical applications tend to execute everything in the main thread. This means that
updates to its widgets happen in line with all other code that is currently executing.

As a result of this, any slow processing will often block the updating of the GUI. We
can demonstrate this with a small example:

import tkinter as tk
import time

win = tk.Tk()
win.geometry("200x150")

counter = tk.IntVar()
label = tk.Label(win, text="Ready to Work")
counter_label = tk.Label(win, textvar=counter)

The example starts with a window which will contain a Labe1 displaying the value of an

IntVvar.

We will be creating a button that increases the value stored in the 1ntvar, as well as
another button which will simulate a very heavy processing task (using time.s1eep).

Before we can create the buttons, we will need the functions they will call:

def increase_counter():
counter.set(counter.get() + 1)

def work():
label.configure(text="Doing work")
time.sleep(5)
label.configure(text="Finished")

With these functions defined, we can finish the example off by creating the buttons
and then packing all of our widgets:

counter_button = tk.Button(win, text="Increase Counter", command=increase_counter)
work_button = tk.Button(win, text="Work", command=work)

label.pack()
counter_label.pack()

counter_button.pack()
work_button.pack()

win.mainloop()

Save and run this file and you should see a small window appear:

=) tk A v A X
Ready to Work
0
Increase Counter

Work

Click the Increase Counter button a few times and notice how it will add one to the
number above it.

Now, click the Work button and observe how it appears to get stuck in the pressed
state. While it is like this, the rest of the program doesn't appear to respond.

Once it has finished and the label shows Finished, try pressing it once more. While it is
stuck down, click the Increase Counter button a few times, then wait for it to finish
once again.

You should then notice that even though the Increase Counter button did not appear to
respond to your clicks, the number above it will increase as the other task completes.

Finally, press the Work button one more time, then close the window. You should see
that the window will not close until the five second sleep has finished.

This behavior is very undesirable. When a large task needs to execute, if the GUI
elements stop responding, a user may click something multiple times thinking it is not
working, only to realize that it was indeed functioning and they have now performed
an action more times than they intended.

We also do not want to prevent the user from closing an application for a long period
of time, since they may end up force-closing it, which can lead to problems such as
loss of data.

So, how do we perform a large task without locking up the GUI? One possible solution
is to use a separate thread.

Using a thread

In order to use a thread in Python, we can import a module named threading and
subclass its thread class. Inside our new class, we need to overwrite the run method and
perform our logic in there. Once we have done this, we can call the start method on an
instance of our class to execute its task in a separate thread.

Let's update our demo application to use a thread. We'll begin by importing the
threading module and creating a subclass of thread:

import tkinter as tk
import time
import threading

class WorkThread(threading.Thread):
def run(self):
label.configure(text="Doing work")
time.sleep(5)
label.configure(text="Finished")

return

Our old work function has been moved to the run method of our thread subclass. This
allows it to run in a separate thread when its start method is called.

Speaking of which, we now need to adjust our old work function to make use of this
class:
def work():

thread = WorkThread()
thread.start()

In this function, we just make an instance of our workthread class and call its start
method.

With these changes made, we are now ready to try out our new multithreaded
application.

Run this file once again and make sure the Increase Counter button still works. Now,
click the Work button and notice how it does not stay pressed in. This time, you will
be able to click the Increase Counter button while the application is still working and
see the number above increase.

That's how easy it is to integrate a separate thread in a GUI application.

With our new knowledge of how to run a task in the background, we can begin
implementing a background task which listens for new messages being sent by a friend
in our chat application.

Adding a Thread to our
ChatWindow

To get our chatwindow class listening for new messages, we will use a thread to
repeatedly poll our web service for messages which we haven't seen yet.

In order to determine what we have and have not already received, we will be using
the date_sent column in our conversation table.

Before we can implement a threaded solution, some modifications need to be made to
our database, server, and requester.

Creating new endpoints

The first thing we will need is the ability to select new messages from our conversation
databases. We will need to provide the current user's username and the last time when
we checked for messages. Our database will then return all new messages by a
different author since the last time we checked for messages.

Open up your conversation.py file and add the following method to it:

def get_new_messages(self, timestamp, username):
sgql = "SELECT author, message FROM conversation WHERE date_sent > ? AND author <> ?
params = (timestamp, username)

conn = sqglite3.connect(self.database)
conn.row_factory = sgqlite3.Row

cursor = conn.cursor()

cursor.execute(sql, params)

results = [dict(row) for row in cursor.fetchall()]
conn.close()

return results

Our SQL query grabs the author's name and message for any record matching the
aforementioned criteria. The <> in SQL is a not equal to operator.

With this in place, we can update our server.py file to add a matching endpoint:

@app.route("/get_new_messages", methods=["POST"])

def get_new_messages():
data = request.form
conversation_db_path = get_conversation_db_path_for_users(data)
conversation_db = Conversation(conversation_db_path)

timestamp = data["timestamp"]
requester_username = data["user_one"]

new_messages = conversation_db.get_new_messages(timestamp, requester_username)

return jsonify({
"messages": new_messages

1)

After constructing the path to the relevant conversation database, we pull the author's
username and the timestamp of the last check out of the POST parameters, then pass
these over to our new method.

Any messages returned from the database are then provided back to the requester in
JSON format.

Speaking of which, we will need a matching method in our requester class to call this

new endpoint:

def get_new_messages(self, timestamp, user_one, user_two):
""" uyser_one is the author's username, and user_two is the friend's """
endpoint = "/get_new_messages"
params = {
"timestamp": timestamp,
"user_one": user_one,
"user_two": user_two,

}

new_messages = self.request("POST", endpoint, params)

return new_messages

This method takes a timestamp of the last request, the author's username (as user_one),
and the friend's username (as user_two).

It then sends this data over to the server, via POST request, and returns the response.

Now that the web service work has been done, we can utilize the new endpoints inside
a thread. To keep things neat, we will be making a new file to hold our thread class.
Go ahead and create a file called 1isteningthread.py alongside your chatwindow. py file.

The ListeningThread class

Our ListeningThread class will need to inherit from threading.Thread and contain a run
method, which can happen in the background.

Since we want to be always checking for new messages until the user closes their
chatwindow, We shall put our request inside a loop which the chatwindow will be able to end
when closed.

Let's begin our ListeningThread class, as follows:

import arrow
import threading
import time

from requester import Requester
Our class will be making use of the following modules:

arrow: This is used to create the timestamps

threading: This is used to run in the background

time: This is used to sleep for two seconds between requests
requester: This is used to contact our web service

With the imports taken care of, we can begin writing the class.

class ListeningThread(threading.Thread):
def __init_ (self, master, user_one, user_two):

super().__init_ ()
self.master = master
self.user_one user_one
self.user_two user_two
self.requester = Requester()
self.running = True
self.last_checked_time = arrow.now().timestamp

Our _init_ method will create a few attributes. These do the following:

e master: This refers to our chatwindow widget and will be used later to handle stopping
the thread's infinite loop when the window is closed

user_one: The logged-in user of the application

user_two: The friend they are messaging

requester. Our Requester ObjECt

running: A variable which is used to begin and end the loop

last_checked_time: The timestamp sent to our web service to determine what
messages we have and have not seen

We are now prepared to write the run method, which will be called when this class is
started:

def run(self):
while self.running:
new_messages = self.requester.get_new_messages(self.last_checked_time, self.user
self.last_checked_time = arrow.now().timestamp
for message in new_messages['messages']:
self.master.receive_message(message["author"],
message['"message"])

time.sleep(2)
del self.master.listening_thread

return

In order to run in a constant loop, we use a while loop combined with our running
attribute. This way, in order to cancel the loop, we just need to set the thread instance's
running attribute to raise.

When in the loop, the thread is calling the get_new_messages endpoint, updating its
last_checked_time, then passing any returned messages over to the chatwindow's
receive_message method.

After each iteration, the thread will wait for two seconds before repeating.

When the loop is stopped, the thread will delete the 1istening_thread attribute from our
chatwindow Class, then return to exit the method. We will see why this happens shortly.

This completes our ListeningThread class. We can now import and implement it in our
chatwindow tO get new messages coming in.

Implementing the
ListeningThread class in our

ChatWindow

To make use of our new ListeningThread, we just need to import it and call its start
method:

from listeningthread import ListeningThread
def __init_ (self, master, friend_name, friend_username, friend_avatar, **kwargs):

self.listening_thread = None
self.listen()

After importing the class, we add a 1istening_thread attribute to our __init_ method, then

call the 1isten method to get our ListeningThread running:
def listen(self):
self.listening_thread = ListeningThread(self, self.master.username,

self.friend_username)
self.listening_thread.start()

We set our 1istening_thread attribute to an instance of the Listeningthread class, passing it
our username and friend username. We then call its start method to begin its IOOP in the
background of our application.

When our chatwindow is closed, we need to terminate the loop in our thread so that the
user will not need to force-close each window. To do that, we need to set the running
attribute of our 1istening thread tO False.

In order to hook an event to happen when the user closes a window, we can utilize the
protocol method of a widget, allowing us to execute a function when certain events
happen. The string wv_oeLete_winoow will correspond to the closing of a window.

Add the following to the __init__ method, just before creating our 1istening_thread
attribute, to hook the necessary event:

| self.protocol("WM_DELETE_WINDOW", self.close)

This allows us to run our c1ose method, when the user closes the window:

|def close(self):

if hasattr(self, "listening_thread"):
self.listening_thread.running = False
self.after (100, self.close)

else:
self.destroy()

In our c1ose method, we check for the presence of our 1istening thread attribute. If we
still have it, this means our thread is still running. We update its running attribute to
False, SO that it will break out of its loop, then schedule this same function to run again
after 100 milliseconds.

Since the ListeningThread class will delete its master's 1istening_thread attribute when it
breaks from its loop, when our ciose function runs again and sees we no longer have
this attribute, we will know that the thread has finished and we are safe to use the
destroy method to close our chatwindow.

Our application now has the ability to listen for incoming messages without locking up
the GUI. To test this out, run two instances of the friends1ist.py file, and one of the
server.py. Log into different accounts on each and open up a conversation with the
other.

When you type a message into one window, you should see it appear in the second
shortly after:

L] Jaden R v A X

=llMe: Hi A =|Jaden: Hi
James: Hello @ Me: Hello

i ‘ Q: = 4

Everybody having the default orange avatar can get a little bit confusing. We should
allow the users to upload their own avatar to use, instead.

Allowing users to upload
avatars

To create the ability for a user to upload their choice of avatar, we will need a new
place for them to do so. Let's create another topieve1 window, which will contain the
necessary widgets and functionality.

The AvatarWindow class

Make a new file alongside YOur friendslist.py file named avatarwindow. py.

import base64

import os

import tkinter as tk

import tkinter.ttk as ttk

from tkinter import filedialog

avatar_file_path = os.path.abspath(os.path.join(os.path.dirname(__file__), "images/avat

Our user's avatar will sit in a predefined file. This will be named avatar.png and will sit
in the images folder. We create a variable named avatar_file_path to hold the absolute
path to this file.

In order to store our image data in our database, we will be vases4 encoding the content
of the file. To do this, we will need to import the basesa module:

class AvatarWindow(tk.Toplevel):
def __init_ (self, master):
super().__init_ ()

self.master = master
self.transient(master)

self.title("Change Avatar")
self.geometry("350x200")

self.image_file_types = [
("Png Images", ("*.png", "*.PNG")),

After defining some usual features of the window, we create an attribute called
image_file_types, which will hold the possible file types which the user can use as their
avatar. Since we have already defined that our avatar will be a .png image, we will
restrict the user to only being able to upload .png files:

self.current_avatar_image = tk.PhotoImage(file=avatar_file_path)

self.current_avatar = ttk.Label(self, image=self.current_avatar_image)
choose_file_button = ttk.Button(self, text="Choose File", command=self.choose_image)

self.current_avatar.pack()
choose_file_button.pack()

We display two widgets in this window: a Labe1 showing the currently-set avatar image
and a sutton which will open up a file picker for the user to choose their new avatar
image.

We bind the button to a method named choose_image:

def choose_image(self):
image_file = filedialog.askopenfilename(filetypes=self.image_file_types)

if image_file:
img_contents = ""
img_b64 = ""
with open(avatar_file_path, "rb") as img:
img_contents = img.read()
img_b64 = base64.urlsafe_b64encode(img_contents)

self.master.requester.update_avatar(self.master.username, img_b64)
self.current_avatar_image = tk.PhotoImage(file=avatar_file_path)
self.current_avatar.configure(image=self.current_avatar_image)

The first thing to do in this method is to get the user to choose the path to an image
file. We use the askopenfilename method of the filedialog module in order to do this. We
pass our image_file_types OVer as the filetypes argument to ensure that the user chooses
only .png images.

If the user chooses an image file, then we will basess encode its content to send over to
our web service. After opening the chosen file, we use the urisafe_besencode method to
do this, since we will be sending the encoded content over HTTP.

To send this content over to our database, we call upon the update_avatar method of our
requester (Which we will write next), passing it our username and encoded avatar data.

To finish off, we create a new photormage Object of the user's new avatar and update our
Label to display it.

If we want to try this window out, without integrating it back into our rriendsList class,
we will need an if _name__ == "_ main__ " block:
if __name__ == "__main__":
win = tk.Tk()

aw = AvatarWindow(win)
win.mainloop()

Before we can get this working, we will need to update our database and web service
to handle avatars, since there is currently nowhere to store them.

Adjusting the database

To store an avatar against a particular user, we will need to add a column to our users
database. We can do this via the Python REPL from our server folder, as follows:

Python 3.6.4 (default, Jan 03 2018, 13:52:55) [GCC] on linux

Type "help", "copyright", "credits" or "license" for more information.
>>> import database

>>> d = database.Database()

>>> sql = "ALTER TABLE users ADD avatar text"

>>> params = []

>>> d.perform_insert(sql, params)

>>>

In order to add a column to an existing table, we use an aiter table command. We then
specify the table name, new column name, and new column type.

With the preceding statement, we have added a column named avatar of the text type.
This is the column which we will use to hold our avatar image.

We can now add some methods to the patabase class which will allow us to both store
and retrieve avatar data for a particular user:

def update_avatar(self, username, img_b64):
sql = "UPDATE users SET avatar=? WHERE username=?"
params = (img_b64, username)

return self.perform_insert(sql, params)

In order to alter an existing record without creating a new one, we can use an update
statement. We supply this statement with the table name, the columns to update, and
the where condition on which to filter the relevant records.

Since we want to update the avatar column for a record matching a supplied username,
we use seT avatar=2 t0 mark the avatar column for updating and provide were username=2
to say that we only want to update records which match a given username value.

This handles updating the avatars, but we will also want to be able to retrieve an avatar
for a given user:

def get_user_avatar(self, username):
sgql = "SELECT avatar FROM users WHERE username=?"
params = (username,)

return self.perform_select(sql, params)

Selecting a user's avatar requires just a simple select Statement, featuring a where clause

to specify the provided username.

Now that we have taken care of the database, we can create some server endpoints to
allow the use of this new column.

Adding server endpoints

We will need two endpoints to make full use of our avatars — one to upload a new one,
and one to fetch an avatar for a particular user.

Open up server.py and add the following functions:

@app.route("/update_avatar/<username>", methods=["POST"])
def update_avatar(username):
img_b64 = request.form.get("img_b64")
database.update_avatar(username, img_b64)

return jsonify({
"success": True
1)

This first endpoint will store the basess encoded image data in the database against the
username provided in the URL:

@app.route("/get_user_avatar/<username>")
def get_avatar(username):

avatar_b64 = database.get_user_avatar(username)['avatar']

return jsonify({
"avatar": avatar_b64
1)

The second endpoint will get the user's bases4 encoded avatar from the database and
return it in JSON format.

With the web service all set up, our avatarwindow should be ready to upload new avatars!
However, since it relies on the requester instance of our rriendstist, it will not function
fully until we integrate it.

Let's finish off our avatarwindow by creating a menu option for it in the rriendsList class.

Updating the FriendsList class

We still have a rriends menu at the top of our rriendstist class, but this doesn't make
much sense as a place to put our avatar uploading functionality. Instead, we can create
a new submenu called avatar:

from avatarwindow import AvatarWindow
def __init_ (self, **kwargs):

self.avatar_menu = tk.Menu(self.menu, fg="black",
bg="lightgrey", tearoff=0)
self.avatar_menu.add_command(label="Change Avatar",
command=self.change_avatar)

self.menu.add_cascade(label="Friends", menu=self.friends_menu)
self.menu.add_cascade(label="Avatar", menu=self.avatar_menu)

After importing our new class, we create a menu called avatar_menu to hold a change
avatar function. This will call a method named change_avatar:

def change_avatar(self):
AvatarwWindow(self)

All that our change_avatar method needs to do is spawn an instance of our avatarwindow,
since everything else is contained in that class.

With this finished, we can now spawn the avatarwindow and upload an image to serve as
our avatar. Go ahead and run your friendsiist.py file, log in, and then pick Avatar |
Change Avatar from the top-menu:

=] Change Avatar A v AaX

Choose File ‘

Allowing the user to choose any image could lead to problems with our layout if a user
chooses a very large one, since Tkinter itself cannot resize images. Try opening a very
big image and see how it does not properly fit into the avatarwindow. To handle this, we
will need to use a library called Python Imaging Library (PIL) to scale down the
chosen image.

Manipulating images with PIL

In order to use PIL, we will first need to install it. The version which I will be using is
available on pip and can be installed with the following command:

|pip install pillow

PIL provides multiple ways of resizing an image. Two possible methods we could use
in our application are resize and thumbnail.

The resize method will alter an image to be the exact size provided to the method (as a
two-tuple of width and height). On the other hand, the thumbnail1 method will preserve
the aspect ratio of an image, preventing skew, resizing the larger dimension of the
image to the provided maximum size, and keeping the smaller dimension at the same
ratio.

any rectangular images look nicer when scaled down. If you would prefer to keep images as squares, you may

0 For my implementation of this application, I will be using the tnumbnaii method to resize avatars, as it will make
replace the calls to thumbnai1 with resize to achieve this.

With 1L installed, head back over to YOUr avatarwindow.py file and edit the choose_image
function, as follows:

from PIL import Image

def choose_image(self):
image_file = filedialog.askopenfilename(filetypes=self.image_file_types)

if image_file:
avatar = Image.open(image_file)
avatar.thumbnail((128, 128))
avatar.save(avatar_file_path, "PNG")

img_contents = ""

After the user selects their image file, we want to overwrite the file stored at our
avatar_file_path with a scaled-down version. To do this, we use the open method of PIL's
mmage Class, passing it the path to their chosen image file.

Once we have this image, we use the thumbnail method to scale it down, passing it a
two-tuple of (128, 128) to act as the maximum width and height of the new image.

To save this scaled image over the one in our avatar_file path, we call the save method.
We pass this method the path at which to save the image and the format, in our
case, PnG.

The rest of the method then continues as normal.

Run your application once again, open the avatar window, and choose a large image.
You should now see that your chosen avatar fits nicely inside the window.

The last thing we need to address with our chat application is the management of
users. Currently, every user of the system is available to chat with every other user.
This is not ideal, since people will be able to talk to complete strangers. We need to
add a way for users to add other users as friends, thus giving them the ability to talk to
one another.

While we are at it, we should also allow users to block other users, should they wish to
cease contact.

Adding and blocking other users

To implement adding and blocking users, we are going to be creating a new table in
our chat database. This table will be called friends and will contain information about

each pairing of friends and whether or not communication between them has been
blocked.

New database table

Once again, we can use the Python REPL to create a new table. Access your server
folder and run a Python shell:

Python 3.6.4 (default, Jan 03 2018, 13:52:55) [GCC] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> import database

>>> d = database.Database()

>>> sql = "CREATE TABLE friends (user_one text, user_two text, blocked integer)"
>>> params = []

>>> d.perform_insert(sql, params)

>>>

Our database will contain two users, called user_one and user_two, as well as an integer
representing whether communication has been blocked. This integer will be treated as
a Boolean, where o represents no blocking and 1 represents the conversation being
blocked.

We now need to write some new methods in our patabase class to query and update this
table:

def add_friend(self, user_one, user_two):
sgl = "INSERT INTO friends (user_one, user_two, blocked) VALUES (?,?,0)"
query_params = (user_one, user_two)

self.perform_insert(sql, query_params)

When adding a friend pairing, we will assume that they wish to talk to each other, so
we will insert the blocked flag as a e by default.

This handles the ability to add a friend. We now will need to be able to get all friends
of a user for when they log into the chatwindow:

def get_friends(self, username):
all friends = []
sgql = "SELECT user_two FROM friends WHERE user_one=? AND blocked=0"
params = (username,)
friends = self.perform_select(sql, params)

sgl = "SELECT user_one FROM friends WHERE user_two=? AND blocked=0"
friends2 = self.perform_select(sql, params)

for friend in friends:
all_friends.append(friend["user_two"])

for friend in friends2:
all_friends.append(friend["user_one"])

return all_friends

Since we do not know which column the querying user's username will be in, we need

to select records from both columns and then merge the results into one list.

We first select records where our specified username is user_one, then user_two. We loop
over the returned lists of dictionaries and merge the records into our ai1_friends list.

This method gives us all usernames of friends added by a supplied user, but to display
them on our rriendsList window, we need their avatar and real name, too. This will
require one more method:
def get_users_by_usernames(self, usernames):

question_marks = ', '.join(['?' for user in usernames])

sgql = f"SELECT * FROM users WHERE username IN ({question_marks})"
params = [user for user in usernames]

friends = self.perform_select(sql, params)

return friends

Since we do not know how many usernames we got back from the previous query, we
don't know how many question marks to put into this one. For this reason, we use a
string join to create a list of question marks, providing one per username with a list
comprehension. We then use string formatting to put this list of question marks into
our query.

With SQL, in order to check whether a record is inside a list, we use an v clause, then
provide every possible value in regular brackets separated by a comma. For example,
to select the first three users, we could do seLecT * FRoM users WHERE id IN (1, 2, 3).

That takes care of adding and retrieving friends in our patabase class.

When it comes to blocking users, we need to find the record which contains the two
usernames and flip the biocked column to a 1:

def block_friend(self, username, contact_to_block):
sgl = "UPDATE friends SET blocked=1 WHERE (user_one = ? AND user_two = ?) OR (user_
query_params = (username, contact_to_block, username, contact_to_block)

self.perform_insert(sql, query_params)

Since we don't know which friend will be in which user column, we can use an
or clause to specify that we want either one of the two provided conditions to be true.

That's it for our patabase now. As usual, we will now need to add server endpoints to
interact with these new methods.

Creating the server endpoints

Our web service will need three new endpoints—one to add a friend, one to block a
friend, and one to grab all friends of a user.

Let's start with the endpoint to add a friend:

@app.route("/add_friend", methods=["POST"])
def add_friend():

data = request.form

user_one = data['user_one']

user_two datal'user_two']

if database.user_exists(user_two) and database.user_exists(user_one):
database.add_friend(user_one, user_two)
success = True

else:
success = False

return jsonify({
"success": success
1)

This endpoint will be supplied with the two usernames that we want added to the
friends table. Before we can add them, we need to check that they both exist in the users
table already.

If they do, we call our database's add_friend method and return a successful response. If
not, we will not add them to the friends table and, instead, we will return a negative
success response.

Now onto retrieving a user's friends:

@app.route("/get_friends/<username>")
def get_friends(username):
friends = database.get_friends(username)

if len(friends):
all_friends

else:
all_friends

database.get_users_by_usernames(friends)

[]

return jsonify({
"friends": all_friends
1)

This method requires a username, then passes that over to the database's get_friends
method. If we have any results come back, we pass them over to the
get_users_by_usernames method in order to grab their real name and avatar. Otherwise, we
return an empty list:

@app.route("/block_friend", methods=["POST"])
def block_friend():

data = request.form

user_one = data['user_one']

user_two = data['user_two']

database.block_friend(user_one, user_two)

return jsonify({
"success": True

1)

Finally, when blocking a user, we pass the two usernames over to the database's
block_friend method and return rrue.

With the endpoints taken care of, we now need to update our requester to pass them
data:

def add_friend(self, user_one, user_two):
endpoint = "/add_friend"
params = {
"user_one": user_one,
"user_two": user_two,

}

success = self.request("POST", endpoint, params)

When adding a friend, we POST the two usernames over to our endpoint and let it take
care of the rest:

def get_friends(self, username):
endpoint = f"/get_friends/{username}"

friends = self.request("GET", endpoint)

return json.loads(friends)

When retrieving friends, we send a GET request to the relevant endpoint, then use 1oads
to parse the returned JSON as a dictionary:

def block_friend(self, user_one, user_two):
endpoint = "/block_friend"
params = {
"user_one": user_one,
"user_two": user_two,

}

self.request("POST", endpoint, params)

return True

Much like adding a friend, we can just supply the two usernames to the endpoint when
blocking a friend.

That's all of the groundwork taken care of. Now, we can tie this new functionality back
into our chat application.

Tying it all together

Let's begin with the ability to add a friend, since we need this to make the rest of our
changes work properly.

We already have a rriends menu in the top menu bar of our rriendstist class containing
an add rriend command, which seems appropriate for this functionality. We'll replace
the placeholder method with a functioning one:
def __init_ (self, **kwargs):

ééif.friends_menu.add_command(label:"Add Friend", command=self.show_add_friend_wind

def show_add_friend_window(self):
AddFriendwindow(self)

In order to take the information, we need to add a friend and we will require a new
Toplevel window. Go ahead and create a file named addfriendwindow.py alongside your
friendslist.py file:

import tkinter as tk
import tkinter.ttk as ttk

class AddFriendwindow(tk.Toplevel):
def __init_ (self, master):
super().__init__ ()
self.master = master

self.transient(master)
self.geometry("250x100")
self.title("Add a Friend")

This class will be a fairly standard top1eve1 subclass. It needs to contain an entry widget
for gathering the friend's username and a sutton widget to submit the data:
main_frame = ttk.Frame(self)

username_label = ttk.Label(main_frame, text="Username")
self.username_entry = ttk.Entry(main_frame)

add_button = ttk.Button(main_frame, text="Add", command=self.add_friend)
username_label.grid(row=0, column=0)

self.username_entry.grid(row=0, column=1)
self.username_entry.focus_force()

As well as the entry and sutton widgets, we will also use a Labe1 widget to signal to the
user what they need to type into the entry widget.

When the window opens, we will force the focus to the username_entry. This means the

user will not have to click inside the widget in order to begin typing into it:

add_button.grid(row=1, column=0, columnspan=2)

for i in range(2):
tk.Grid.columnconfigure(main_frame, i, weight=1)
tk.Grid.rowconfigure(main_frame, i, weight=1)

main_frame.pack(fill=tk.BOTH, expand=1)

We are using the grid geometry manager to add the widgets to their rrame, and then pack
to add the frame to the window. As before, we use coiumnconfigure and rowconfigure to set
all cells to the same weight:

def add_friend(self):
username = self.username_entry.get()

if username:
if self.master.add_friend(username):
self.username_entry.delete(0, tk.END)

When adding a friend, we first need to get the value of our entry widget. If there is
something typed into it, we will pass it over to the add_friend method of the rriendsList
class. Should this return a positive response, we will clear the entry widget, so that
more friends can quickly be added if necessary.

This completes the functionality of this class. We can now move back to our rriendsList
class and implement its add_friend method:

def add_friend(self, username):

if self.requester.add_friend(self.username, username):
msg.showinfo("Friend Added", "Friend Added")
success = True
self.reload_friends()

else:
msg.showerror("Add Failed", "Friend was not found")
success = False

return success

If our friend was successfully added, we use a showinfo box to alert the user, then reload
our friends list to show them in it.

If the added user does not exist, we will receive a negative response from our requester.
We will relay this message to the user with a showerror box:

def reload_friends(self):
for child in self.canvas_frame.winfo_children():
child.pack_forget()
self.load_friends()

In order to reload our friends list, we first need to loop over all of the frames we have
added to our scrollable window and remove them.

To get the children of a widget in Tkinter, we can use the winfo_children method. This
will return an iterable of all widgets that have been added to that widget via a
geometry manager.

Once we have the child widgets, we need to remove them to avoid duplicates. We do
this using the pack_forget method. This method is a way of undoing a call to pack and
will remove them from display.

With our canvas_frame emptied, we now need to put back the list of friends. We do this
by calling the 10ad_friends method once again, which will now include any new friends.

On the topic of our 10ad_friends method, we need to change this to call the new endpoint
we have written to get all friends who are not blocked:

def load_friends(self):
my_friends = self.requester.get_friends(self.username)
for user in my_friends["friends"]:
if user['username'] != self.username:
friend_frame = ttk.Frame(self.canvas_frame)

block_this_friend = partial(self.block_friend,
username=user["username"])

block_button = ttk.Button(friend_frame, text="Block",
command=block_this_friend)

profile_photo_label.pack(side=tk.LEFT)
friend_name.pack(side=tk.LEFT)
message_button.pack(side=tk.RIGHT)
block_button.pack(side=tk.RIGHT, padx=(0, 30))

At the beginning of this method, we call the get_friends method of our requester, passing
it our username attribute. This will then return any friends we have added and not
blocked. We then loop over them as before, creating a rrame for each.

Included in our widgets now is a second button which we can use to block a friend.
We again use a partial function to freeze the username argument for each friend, and map
it to the biock_friend method.

We pack the button to the right after packing our message button, so that it appears to
the left of our chat button.

The final update we need to do to this class is to create the biock_friend method:

def block_friend(self, username):
self.requester.block_friend(self.username, username)
self.reload_friends()

This method passes our username and the friend's username to the biock_friend method
of our requester, then reloads the friends list to remove them.

That wraps up everything for our rriendsList class. Give it a run and check out its new
functionality. Try creating multiple accounts and adding, and then blocking, some
friends:

¢ Tk Chat A v A X

Friends Avatar
A
=

Q James Block Chat

L
v

Jaden Block Chat

This is where we will leave our chat application. We have now written a server, which
handles matching people to their friends and allowing them to send messages back and
forth, as well as choosing their own avatars for all of their friends to see.

Our GUI has been updated to make requests to our server and offer a nice interface to
each new endpoint. We also have a separate thread running, which will continually
fetch new messages very shortly after they have been sent.

Upon finishing this chapter, you can now boast that you have written three different
GUI applications using Python and Tkinter. The first was a game of blackjack
featuring animated images and text. The second was a powerful text editor with syntax
highlighting and dynamic line numbers. Now, you have also added a chat application
to your arsenal, as well as some knowledge on how to hook a GUI application up to a
web service to create the ability to share information with others.

In the final chapter of this book, we will learn how to package these applications up for
others to install. Currently, running our applications on a new machine requires
installing Python and executing scripts from the command line. For non-programmers,
this is a barrier to entry for our applications and we can benefit from learning some
tools which remove this need.

Summary

In this chapter, we have learned why using a second thread within a GUI application
can be beneficial. We have seen that large tasks can make the GUI look as if it has
stopped responding, which can confuse users. After introducing a separate thread, we
then eliminated this problem and made the application behave as a user would likely
expect.

Using our new knowledge of threads, we then improved our chat application by
allowing it to pull in new messages in the background, without disabling the GUI itself
while doing so.

Afterwards, we increased the quality of our application by allowing the user to choose
their own avatars. We learned how we can use the p1. module to resize and save
images, removing any restrictions on the user in terms of choosing the correct avatar
size, or the application developer in terms of accommodating any huge images the user
may wish to use.

Finally, to improve the social aspect of our application, we added the ability for the
user to choose which friends they wanted to be able to contact, and gave them the
option to block any other users who they did not wish to speak to any more.

Along the way, we have picked up some new features of SQL, such as urpate, set, and
1N, allowing us to manipulate existing rows in a database.

In the next chapter, we are going to cover packaging up applications into executables
for different OSes. This will allow people to run them without installing Python. We
will also touch upon several widgets which have not been utilized in any of our
example applications, but that deserve a mention anyway.

Wrapping Up — Packaging Our
Applications to Share

In this chapter, we are going to have a brief look at some of the widgets provided with

Tkinter (and ttk) that we did not find a use for during our application development. We
will go over very small samples of each and take a look at how each could be used in a
real application.

Afterward, we are going to cover how we can ship our GUI applications to users
without them needing to install Python or use the command line. Tools exist to pack
Python applications into a single program for many desktop OSes, including Linux,
Windows, and macOS.

In this chapter, we will cover the following topics:

o Unexplored widgets from Tkinter and ttk
e Packaging applications for Windows, Linux, and macOS

Let's begin with a look at a few widgets that we have not managed to make use of with
our three example applications.

Unexplored widgets

Before we begin packaging up our application, let's have a quick look at some widgets
which we have not seen yet. While reading about these widgets, have a think about
how you could implement them in one of our existing applications.

The LabelFrame widget

The Labe1rrame widget is included with your normal tkinter import and also has a ttk
version. Its purpose is to write a label and draw a border around a group of widgets.
The label can be either some static text or a reference to a Labe1 widget.

To demonstrate a possible use of this widget, let's make a small script:

import tkinter as tk
import tkinter.ttk as ttk

win = tk.Tk()
name_frame = ttk.Frame(win)
address_frame = ttk.Frame(win)

name_label frame = ttk.LabelFrame(name_frame, text="Name")
address_label = ttk.Label(win, text="Address")
address_label_frame = ttk.LabelFrame(address_frame, labelwidget=address_label)

Our demonstration window will contain some information collection fields for the
user's name and address. We will group these two pieces of information into their own
Labelrrame Widgets to give them a nice heading.

To define the text to show on the Labeirrame Widget, we can either pass the text keyword
argument, as we do with our name_1abel_frame, Or We can pass a Label widget to the
labelwidget argument (as seen for our address_label_frame):

first_name = ttk.Entry(name_label_frame)
last_name = ttk.Entry(name_label_frame)

first_name.pack(side=tk.TOP)
last_name.pack(side=tk.BOTTOM)

name_label_ frame.pack(fill=tk.BOTH, expand=1)
name_frame.pack(side=tk.LEFT, fill=tk.BOTH, expand=1)

We begin with the name collection, which we do using two entry widgets. These
widgets are packed into the Labe1rrame widget in the same way as they would be added
to a regular rrame widget:

address_1 = ttk.Entry(address_label_frame)
address_2 = ttk.Entry(address_label_frame)
address_3 = ttk.Entry(address_label_ frame)

address_1.pack(side=tk.TOP)
address_2.pack(side=tk.TOP)
address_3.pack(side=tk.TOP)

address_label_frame.pack(fill=tk.BOTH, expand=1)
address_frame.pack(side=tk.RIGHT, fill=tk.BOTH, expand=1)

|win.mainloop()

We can then do the same thing with the entry widget addresses, which are packed into
OUr address_label_frame.

Give this file a run and you should see how Labe1rrame looks:

~Name —Address

The Checkbutton and
Radiobutton widgets

The checkbutton and radiobutton widgets allow a user to select an option by clicking to
mark a box. A checkbutton will allow the user to turn an option either on or off, whereas
a radiobutton is used to give the user a choice of one option from a group of multiple
possibilities.

To get the values of each, a variable is passed to them via the variabie keyword
argument. With radiobutton widgets, all possible options should be pointed to the same
variable; then the user's chosen option can be obtained by querying this variable.

Let's have a look at the two in action:

import tkinter as tk
win = tk.Tk()

likes_python = tk.IntVvar()
has_laptop = tk.IntVar()

c = tk.Checkbutton(win, variable=likes_python, text="Likes Python")
ri tk.Radiobutton(win, variable=has_laptop, text="Has Laptop", value=1)
r2 tk.Radiobutton(win, variable=has_laptop, text="Does not have laptop", value=0)

We create two variables — one representing whether the user likes Python and one for
if they own a laptop.

The 1ikes_python variable is then bound to a checkbutton instance, along with the text Likes
Python.

The has_1aptop variable is assigned to two radiobutton instances. One represents the user
having a laptop and is assigned the value 1. The other represents the user not having a
laptop and is assigned the value o.

When the Likes python button is not checked, the 1ntvar it is bound to will have the value
o. When ticked, that will change to a 1. This is the default behavior of the checkbutton
widget and does not need to be changed.

Likewise, if the user selects that they do not have a laptop, the value of the has_1aptop
mntvar Will be o. If they instead select was Laptop, its value will become 1.

We can now finish off this demo by displaying the information and packing our
widgets.

labell
label2

tk.Label(win, textvar=likes_python)
tk.Label(win, textvar=has_laptop)

c.pack()
ri.pack()
r2.pack()
labell.pack()
label2.pack()

win.mainloop()

We create two Label widgets, which are bound to our intvar objects. This allows us to
see the values change as we check and uncheck the buttons. All widgets are then
packed and our window begins its main loop.

Give this demo file a run and see the results. Try clicking options and watching the
text at the bottom of the window change in response:

X o tk v A X
¥ Likes Python
"~ Has Laptop

'* Does not have laptop

1
0

The OptionMenu and
Combobox widgets

The optionmenu and combobox Widgets are used to give the user the choice of one option
from a group, much like a radiobutton. They both display in a similar manner to a drop-
down menu, or select menu, from HTML.

Whereas the optionmenu widget only allows the user to choose an option that is in the
menu, the combobox widget essentially combines an entry widget with the optionmenu
widget, allowing the user to type their own choice into the box as well.

We can have a look at these two widgets with a small piece of code:

import tkinter as tk
import tkinter.ttk as ttk

win = tk.Tk()

options = ("low", "medium", "high")
om_chosen = tk.StringVvar()

To prepare for these two widgets, we need a Tkinter variable to store the selection of
the optionmenu and a tuple of options which will be applied to each.

When instantiating the optionmenu, the arguments will be the following:

The parent widget (as usual)

The variable in which to store the chosen answer
The default answer

The selectable options

In contrast, when instantiating a combobox, we only need the parent widget, followed by
the selectable options as a keyword argument named options. Since the combobox is not
linked to a Tkinter variable, we have to obtain its selection by calling the get method
on the widget directly.

om = ttk.OptionMenu(win, om_chosen, "medium", *options)
cb = ttk.Combobox(win, values=options)

om.pack()

cb.pack()

win.mainloop()

Here, we create an optionmenu, passing it the stringvar we made earlier, the string
medium @s the default value, and all possible options are supplied by unpacking the
tuple options.

We then create a combobox With just the parent widget and the options keyword argument.

Give this file a run and have a play with both widgets:

medium

test| -

The Notebook widget

The notebook widget is only available in ttk, rather than the regular Tkinter. The widget
is used to create a tabbed interface for displaying multiple rrame widgets in one
window. A small example will demonstrate this nicely:

import tkinter as tk
import tkinter.ttk as ttk

win = tk.Tk()
win.geometry("400x400")

n = ttk.Notebook(win)

frame_one = ttk.Frame(n)
frame_two = ttk.Frame(n)
label_one = ttk.Label(frame_one, text="We are in frame 1")
label_two = ttk.Label(frame_two, text="We are in frame 2")

We create an instance of the notebook widget, then two rrame widgets to act as tabs.

Inside these two rrame widgets will be a Labe1 widget which informs us which rrame we
are seeing.

We now need to add these rrame widgets to our notebook, which we do using the add
method:

n.add(frame_one, text="Frame One")
n.add(frame_two, text="Frame Two")

n.pack(fill=tk.BOTH, expand=1)

label_one.pack(fill=tk.BOTH, expand=1)
label_two.pack(fill=tk.BOTH, expand=1)

win.mainloop()

Here, we add both of our rrame widgets to our notebook, passing the text argument to
control what will be written in the tab.

Since our rrame widgets are added to our notebook, we don't need to use a geometry
manager to display them, so we pack our rabe1 widgets and notebook, then fire off our
window's main loop.

Run this code and you should see you have a window containing two different tabs.
Click between them to see how each one contains a different rrame:

Frame One | |

We are in frame 2

Those are all of the widgets of note which we didn't get to use in our example
applications. If you would like to, have a think about how each could have been
implemented in one of our applications.

For example, we could have used the notebook widget to add file tabs to our text editor.
If you are feeling adventurous, give this a go!

Now that we have covered these, it's time to have a look at how we can distribute our
applications to other users who may want to install them.

Packaging applications

In order to easily share our applications with other users, we need an easy way for
people to obtain and install them. Different operating systems will require different
ways of accessing the needed libraries in order to run an application, and so the
process for packaging them will likely vary slightly.

We will explore the world of Python application packaging using our text editor from
chapters 5 - 7. Our goal will be to have it execute on three operating systems —
Windows, Linux, and macOS. To package this application, it needs a name. I will be
calling it tkedit for demonstration, but, if you have a better name, feel free to use that
instead.

Before we can ship this file to work on all OSes, we need to adjust the folder structure.
Recall that we were using local folders named schemes and 1anguages, which lived inside
the main folder for the editor. This will not translate when the application is packaged;
so, we will need to hold our YAML files in the user's home directory. Let's get this
change going.

Adjusting our text editor for
portability

The main changes we will need to make will be in the texteditor.py file. Open up this
file and add the following:

import os
from pathlib import Path

def __init_ (self):

self.config_dir = os.path.join(str(Path.home()), ".tkedit")
self.default_scheme_path = os.path.join(self.config_dir,
'schemes/default.yaml')
self.python_language_path = os.path.join(self.config_dir,
'languages/python.yaml')
self.font_scheme_path = os.path.join(self.config_dir,
'schemes/font.yaml"')
self.create_config _directory_if_needed()

In order to access the user's home directory independent of the OS, we will use the
pathlib module. The folder where we will be storing the user's YAML files will be
called .tkedit and will live inside the user's home folder. To obtain the home folder, we
can use path.home(). This resulting folder is then joined to the .tkedit folder with
os.path.join, and this is stored as our config_dir attribute.

Now that we have the folder stored, we can then construct paths inside of it where we
will be storing our schemes and languages folders.

Once that is taken care of, we call a new method named create_config_directory_if_needed,
which will take care of initializing these folders if they do not exist on the user's
system:

def create_config_directory_if_needed(self):
if not os.path.exists(self.config_dir):
os.mkdir(self.config_dir)
os.mkdir(os.path.join(self.config_dir, 'schemes'))
os.mkdir(os.path.join(self.config_dir, 'languages'))

self.create_default_scheme_if_needed()
self.create_font_scheme_if_needed()
self.create_python_language_if_needed()

In this method, we use os.path.exists to check whether there is already a .tkedit folder in
the user's home folder. If there is not, we use the os.mkdir method to create the
directory, as well as the schemes and 1anguages folders it needs to contain.

Since these folders may have just been created, we need to also put the default YAML
files inside them if they aren't there already. We have three new methods for doing
this:

def create_default_scheme_if_needed(self):
if not os.path.exists(self.default_scheme_path):
yaml_file_contents = "background: 'lightgrey'\n" \
"foreground: 'black'\n" \
"text_background: 'white'\n" \
"text_foreground: 'black'\n"

+ 4+ + 1

with open(self.default_scheme_path, 'w') as yaml_file:
yaml_file.write(yaml_file_contents)

In this first method, we check for the default scheme, which controls the color of our
application and the Text widget inside it. If the file does not exist, we use a string to
represent the default content and write this as the content of our schemes/default.yam file:

def create_font_scheme_if_needed(self):
if not os.path.exists(self.font_scheme_path):
yaml_file_contents = "family: Ubuntu Mono\n" \
+ "size: 14"

with open(self.font_scheme_path, 'w') as yaml_file:
yaml_file.write(yaml_file_contents)

This second method does much the same thing, but for our schemes/font.yam1 file, which
controls the editor's font family and size:

def create_python_language_if_needed(self):
if not os.path.exists(self.python_language_path):
yaml_file_contents = """
categories:
keywords:
color: orange

with open(self.python_language_path, 'w') as yaml_file:
yaml_file.write(yaml_file_contents)

Our final new method does the same thing again for our 1anguages/python.yami file. I have
omitted the content of this file for brevity; when following along, paste the content of
the file in between the sets of speech marks.

You will notice that the indentation looks a little off here, which is because YAML is
whitespace-sensitive. You may split each line as its own string for neatness, if you
wish.

Now that our YAML files are taken care of, we need to replace all hardcoded
references to them with the relevant attribute:
def __init_ (self):

self.load_scheme_file(self.default_scheme_path)
self.configure_ttk_elements()

def

self.font_size = 15
self.font_family = "Ubuntu Mono"
self.load_font_file(self.font_scheme_path)

self.highlighter = Highlighter(self.text_area, self.python_language_path)
update_font(self):

self.load_font_file(self.font_scheme_path)
self.text_area.configure(font=(self.font_family, self.font_size))

We will also have to update OUr fontchooser.py and colorchooser.py files to use the

attributes:

fontchooser.py

def save(self):
font_family = self.font_list.get(self.font_list.curselection()[0])
yaml_file_contents = f"family: {font_family}\n" \

+ f'"size: {self.size_input.get()}"
with open(self.master.font_scheme_path, 'w') as file:
file.write(yaml_file_contents)

self.master.update_font()

colorchooser.py

def save(self):

yaml_file_contents f"background: '{self.chosen_background_color.get()}'\n" \
f"foreground: '{self.chosen_foreground_color.get()}'\n" \
f"text_background: '{self.chosen_text_background_color.get(

f"text_foreground: '{self.chosen_text_foreground_color.get(

+ 4+ + 1l

)}
)}

with open(self.master.default_scheme_path, "w") as yaml_file:
yaml_file.write(yaml_file_contents)

With that, we are ready to package! We can now begin the steps necessary for
packaging up our application.

Preparing to package with
setup.py

When packaging an application, a special file called setup.py is required. This file will
be read by the packaging tool and used to determine things such as which libraries to
include, and which files should be run when the user executes the application.

Create a file named setup.py in your main text editor folder (which I have named tkedit)
and add the following content:

#!/usr/bin/env python3
from distutils.core import setup

setup(
name="'tkedit"',
version='0.1",
description='This is a python text editor with syntax highlighting',
author='David Love',
py_modules = [
"colorchooser",
"findwindow",
"fontchooser",
"highlighter",
"linenumbers",
"textarea",
"texteditor",
1
install_requires = [
"PyYAML",
1

entry_points = {
"console_scripts": ["tkedit = texteditor:main"]
}

)

To get our application building, we need to use a module designed to do that. Python
comes with pip, which does a great job at handling this. Pip will use a module called
distutils to prepare a package and we will need the setup function from its core module
to do this.

After importing the setup function, we just need to call it, passing quite a few keyword
arguments. These arguments represent the following:

name: The application's name

version: The application's version

description: A short description of the application
author: The author's name

® py_modules: The modules (Python files) which will be extracted from the current
project

® install_requires: ANy external libraries which need to be installed by pip to make
the application usable

® entry points: The commands which can be run once the package is installed, and
what Python function they correspond to

For this example, the entry_points argument defines a command tkedit which should run
the main function from the texteditor module. We don't have this function yet, so we
need to quickly go back to our texteditor.py file and add it. Note that this function will
need to be defined outside of the Texteditor class, just before the if _name == "_main_"
block:

def main():
mw = MainwWindow()
mw.mainloop()

With the setup file created, we are now one step closer to distributing our application.
Let's now have a look at exactly how this will be done.

Installing our text editor

How to build and install a Python application is dependent on the OS which is being
used to package it. Typically, each operating system only allows the application to be
built for the same platform, meaning only Windows can create Windows .exe files, and
so on. Pip, however, is able to run on all platforms, so can be used as a way of
packaging once for any system.

For a user who will already have Python installed, we can distribute our applications as
pip packages. This will work on all platforms, but requires the user to have the correct
version of Python and pip already installed, and also to be able to use the command
line.

Cross-platform using Pip

Our application is already set up to be distributed with pip. You can test this out
yourself by opening a terminal window inside the root folder for your text editor and
using the following commands:

$ python3 -m venv build-env

$ source build-env/bin/activate
$ pip install .

Provided that you are in the same directory as your setup.py file, pip should be able to
parse this and install your text editor to your new virtual environment. You should now
be able to run the tkedit command and be shown your text editor application!

If you wish to install the module globally, skip the creation of the virtual environment
and just run sudo pip install .. This should install your text editor on your system so
that it can be run from anywhere.

Whilst simple, the pip being used is a barrier to entry for any users who may not have
Python installed or who are put off by using the command line. Let's have a look at
how we can package our application into an executable file for each OS.

Windows

To package our text editor for Windows, we will need to use a module known as
cx_freeze. This module is installed LlSiIlg pip via pip install cx_freeze.

To tell cx_freeze about our application, we will need to adjust our setup.py file:

from cx_Freeze import setup, Executable

import sys
base = 'Win32GUI' if sys.platform=='win32' else None

import os

PYTHON_INSTALL_DIR = os.path.dirname(os.path.dirname(os.__ file_))
os.environ['TCL_LIBRARY'] = os.path.join(PYTHON_INSTALL_DIR, 'tcl', 'tcl8.6')
os.environ['TK_LIBRARY'] = os.path.join(PYTHON_INSTALL_DIR, 'tcl', 'tk8.6'")

options = {
'"build_exe': {
'include_files':[
os.path.join(PYTHON_INSTALL_DIR, 'DLLs', 'tk86t.dll'),
os.path.join(PYTHON_INSTALL_DIR, 'DLLs', 'tcls8ét.dll'),
1
3
}

executables = [
Executable('tkedit.py', base=base)
1

setup(name="'tkedit',
version = '1.0',
description = 'A tkinter text editor',
options = options,
executables = executables)

Instead of the setup function from distutils, we will be using the cx_freeze version. We
import the sys module and use it to set a special variable as if we are on a 32 bit
operating system.

Windows needs to know the location of the library of tc1 and tk (which power Tkinter).
To correctly form the paths to these files, we get the path to our Python installation,
then join the necessary folders to it. These are set as environment variables, since
cx_freeze Will need to reference them during the build process.

When buﬂdmg the .exe, file, cx_freeze will also need to find the .d11 files for tk and tc1.
We create the paths to them inside a dictionary named options, under the build_exe and
include_files keys.

With these libraries located, we now need to create an executable. We create an
instance of the executabie class from cx_freeze and pass it a filename of tkedit.py, as well

as the base which we defined earlier.

Once that is taken care of, we call the setup function as before, passing it our new
options and executables variables.

Before we can run this, we need to create tkedit.py. Luckily, this is a very small file:

from texteditor import main

main()

Much like we had to allude to with Pip's version of the setup.py file, we need to call a
function when the executable is run. This function will be the main function from our
texteditor.py file.

In this file, we just import the function and run it. This allows cx_freeze to just run the
tkedit.py file instead of parsing out the main function from our texteditor.py file.

With these two files taken care of, we can now build our application for windows.
Open a command line in your root folder and run the following command:

| python3 setup.py build

If everything has gone smoothly, you should see a lot of information about copying
libraries, and then find that a folder named buiid has been added to your project.

Open up explorer and navigate to this folder. You should see another folder beginning
with exe-wins2. Head to that folder and you should see tkedit.exe sitting there. Run this
file and check out your text editor!

Linux

Since Linux users will likely be familiar with command-line tools and most
distributions will come with Python and pip installed already. Using pip is the
recommended method for distributing your Python applications.

If you do not wish to use pip, there are many alternatives available, depending on the
particular distribution the user is running.

For steps to create an appimage binary, check out the official appimages GitHub repository.
There's a sample Python application available here: nttps://github.con/appimage/appImages/b1ob

/master/legacy/pythongtk3hello/Recipe.

This sample contains the shell commands which need to be run in order to package
your application as an appimage. Before following the instructions, you will need a
thumbnail image for you application (tkedit.png in our case) and a .desktop file to run it.

Here is an example .desktop file for our editor (tkedit.desktop):

[Desktop Entry]

Name=tkedit

Exec=tkedit

Icon=tkedit.png

Comment=A text editor with python syntax highlighting

You will need to create the icon, tkedit.png, yourself.

With these two files ready, you can then begin the process of creating an appimage for
your editor.

1. Download and source the helper functions from the apprmages repository:

$ wget -q https://github.com/AppImage/AppImages/raw/master/functions .sh -0
$ source ./functions.sh

2. Export variables which will be used throughout the script:

$ export APP=TKEDIT
$ export LOWERAPP=tkedit

3. Create the directory at which we will place our appimage:

$ mkdir -p $APP/$APP.AppDir/
$ cd $SAPP/$APP.AppDir

4. Create a virtual environment named usr inside this folder:

https://github.com/AppImage/AppImages/blob/master/legacy/pythongtk3hello/Recipe

10.

11.

12.

13.

14.

$ python3 -m venv usr
$ source usr/bin/activate

Install our external dependency in this virtual environment:

$ pip install PyYAML

Copy your python modules into the bin directory of the virtual environment (ensure
you have the tkedit.py file from the Windows section earlier):

$ cp *.py usr/bin/

Remove the file extension from tkedit.py and mark it as executable:

$ mv usr/bin/tkedit.py usr/bin/tkedit
$ chmod +x usr/bin/tkedit

Now, we can begin using the helper script functions to start doing the heavy
lifting for us:

$ get_apprun
$ get_desktopintegration tkedit

You will be asked if you want to add the desktop entry to your system. This is up
to you:

$ copy_deps; copy deps; copy_deps;
$ delete_blacklisted
$ move_lib

You application will now need a version number, set as an environment variable:

$ export VERSION=1

We are now ready to package. A file named apprun Will have been created in your
current directory. Run this file to test that the appimage will work when executed:

$./AppRun

If all looks good, we are ready to package the appimage:

$cd ..
$ generate_appimage

After this command runs, you should have a new folder called out. Inside here
should be a binary file called something like tkep1t-01.91ibc2.3.4-x86_64.AppImage.
This is your binary file and can be run as follows:

./TKEDIT-01.glibc2.3.4-x86_64.AppImage

If your appimage was created successfully, you can now give this file to other
people so that they can run your editor!

macOS

When packaging for macOS, cx_freeze may work for you. However, there is another
alternative named py2app, which we will take a look at now.

Ensure you have the tkedit.py file described in the Windows section earlier, then install
py2app into our virtual environment using pip. We will need version e.13, since later
versions do not support Tkinter properly:

$ source env/bin/activate
$ pip install py2app==0.13

With py2app installed, you can go ahead and let it generate a setup.py file using its setup
tools:

|$ py2applet --make-setup tkedit.py

This should overwrite your setup.py file with a new one. We will need to add our pyvamL
dependency to it, so it looks like so:

This is a setup.py script generated by py2applet

Usage:
python setup.py py2app

from setuptools import setup

APP = ['tkedit.py']
DATA_FILES = []
OPTIONS = {'includes': ['PyYAML']}

setup(
app=APP,
data_files=DATA_FILES,
options={'py2app': OPTIONS},
setup_requires=["'py2app'],

With this taken care of, we can now install our dependencies and then execute the
py2app command:

$ pip install PyYAML
$ python3 setup.py py2app

This should create two new folders for you, named buiid and dist. Your binary will be
in the qist folder. You can run it by referencing it from the terminal, a:

|$./dist/tkedit.app/Contents/Mac0S/tkedit

If your editor pops up, congratulations! You have now created a macOS binary.

That covers everything for building packaged binaries. You hopefully should now be
ready to port over your Tkinter GUI applications to distribute to the rest of the world.
Of course, the more complicated the application, the more steps will be involved in
getting it packaged; so, some in-depth reading of packaging Python applications is

recommended. The official guide can be found at nttps://docs.python.org/a/distutils/setupscri
pt.html

https://docs.python.org/3/distutils/setupscript.html

Summary

In this chapter, we have looked at a few widgets which did not make their way into our
example applications.

We saw that the Labe1rrane widget allows us to surround a group of widgets with a
heading, which can be either hardcoded or tied to a Labe1 widget.

The checkbutton and radiobutton widgets were demonstrated, and we saw how to bind
them to Tkinter's variables, such as ntvar objects, in order to return the user's choices.

We learned about the optionmenu and combobox widgets, which are used to make a choice
from a list of pre-defined options. The combobox acts as a combination of an entry widget
and an optionmenu Widget, also allowing the user to enter their own value if necessary.

If we want to have a tabbed interface, we have now looked at how the notebook widget
allows us to display multiple frames in a window using tabs and we can assign each
one a label to display in its tab.

After covering those widgets, we moved on to learning how to create binary packages
for our text editor project. After adjusting the application to store its configuration data
in the user's home directory, we saw how to create a setup.py file, which allows the
program to be installed with Python's package manager — pip.

The benefits and drawbacks of pip were mentioned and, then, we looked at packaging
for each major desktop operating system independently. We used cx_freeze t0 create a
.exe file for Windows, the appimage Suite to create a .appimage file for Linux, and py2app to
create a .app file for macOS.

That's it for Tkinter GUI Programming by Example. We have now built three working
desktop applications and are able to share them with the rest of the world via
packaging. I hope this book has shown you how easy it is to turn your simple Python
scripts into full graphical applications or build a desktop application from the ground
up. Go forth and create! Feel free to share your work with me over on GitHub, where I
can be found at nttps://github.con/pviv. I look forward to hearing from you.

https://github.com/Dvlv

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Alejandro Rodas de Paz

Tkinter GUI Application
Development

Cookbook

Tkinter GUI Application Development Cookbook
Alejandro Rodas de Paz

ISBN: 978-1-78862-230-1

e Add widgets and handle user events

e Lay out widgets within windows using frames and the different geometry
managers

Configure widgets so that they have a customized appearance and behavior
Improve the navigation of your apps with menus and dialogs

Apply object-oriented programming techniques in Tkinter applications

Use threads to achieve responsiveness and update the GUI

Explore the capabilities of the canvas widget and the types of items that can be
added to it

e Extend Tkinter applications with the TTK (themed Tkinter) module

ird A. Meier

Python GUI
Programming

Cookbook

Python GUI Programming Cookbook - Second Edition
Burkhard Meier

ISBN: 978-1-78712-945-0

e Create the GUI Form and add widgets

https://www.packtpub.com/web-development/tkinter-gui-application-development-cookbook
https://www.packtpub.com/application-development/python-gui-programming-cookbook-second-edition

Arrange the widgets using layout managers

Use object-oriented programming to create GUIs
Create Matplotlib charts

Use threads and talking to networks

Talk to a MySQL database via the GUI

Perform unit-testing and internationalizing the GUI
Extend the GUI with third-party graphical libraries
Get to know the best practices to create GUIs

Leave a review - let other
readers know what you think

Please share your thoughts on this book with others by leaving a review on the site that
you bought it from. If you purchased the book from Amazon, please leave us an honest
review on this book's Amazon page. This is vital so that other potential readers can see
and use your unbiased opinion to make purchasing decisions, we can understand what
our customers think about our products, and our authors can see your feedback on the
title that they have worked with Packt to create. It will only take a few minutes of your
time, but is valuable to other potential customers, our authors, and Packt. Thank you!

Table of Contents

Title Page

Copyright and Credits
Tkinter GUI Programming by Example

Packt Upsell
Why subscribe?
PacktPub.com

Contributors
About the author
About the reviewer
Packt is searching for authors like you

Preface

Who this book is for

What this book covers

To get the most out of this book
Download the example code files
Download the color images
Conventions used

Get in touch
Reviews

Meet Tkinter
Installation
How will the code be structured?
Geometry managers
pack
grid
place
To pack or to grid?
Getting going
Adding interactivity
Using variables
Our first try

Creating Tkinter-compatible variables

Using and updating
Fixing our application

© 0 g o Ul A WODN

_ =
_ O

NN DNDNNNR &= =
AUl W N RFR © o

DA A DM DM WWWWWWwwNoNDN
rEr WNRODIODXODRE WNRO O © I

Showing messages 45

Showing information with showinfo 46
Showing warnings or errors 47
Getting feedback from the user 48
Getting text input 50
Summary 52
Back to the Command Line – Basic Blackjack 53
Python's class system 54
Instances 55
Inheritance 57
Blackjack's classes 59
The Card class 60

The Deck class 61

The Hand class 62

The Game class and main loop 64
Command line versus GUI 68
Interactivity 69
Familiarity 70
Ease of use 71

Size and portability 72
Summary 73
Jack is Back in Style – the Blackjack GUI 74
Moving from the command line to a graphical interface 75
The Canvas widget 77
Creating a graphical blackjack game 80
Card, Deck, and Hand 82

The GameState class 83

The GameScreen class 87
Playing our game 96
Summary 97
The Finishing Touches – Sound and Animation 98
Python's module system 99
The blackjack packages 104
The casino package 105

The casino_sounds package 109
Setting up a virtual environment 110

Creating the package 112

The blackjack.py file 114

Initializing the GameWindow class 115

The GameScreen class 117

The GameState class 126
Choosing to hit 128
Choosing to stick 131
Running out of money 132
Finishing off 133
Summary 135
Creating a Highly Customizable Python Editor 136
The ttk submodule 137
Styling a tk widget 138
Styling a ttk widget 140

Ttk style inheritance 142
Beginning our text editor 145
Tkinter's event system 148
Binding an event 149
Overwriting default events 152
Generating events 154
Events in our text editor 156
A second top-level window 160
Summary 163
Color Me Impressed! – Adding Syntax Highlighting 164
Tkinter's indexing system 165
Getting the cursor's position 166
Named indexes 168
Special strings 169
Line endings 170
Horizontal movement 171
Vertical movement 172

Line beginning and end 173

Word beginning and end 174
Expanding our demo 175
Using tags 177
Searching text 181
Adding syntax highlighting to our text editor 183

The Highlighter class 184

Using our Highlighter class 193

The LineNumbers class 194
Using our LineNumbers class 196
Integrating our FindWindow class 197
Using our FindWindow class 201
Summary 203
Not Just for Restaurants – All About Menus 204
The Menu widget 205
A menu bar 206

A floating menu 209
Adding a menu bar to our text editor 211
Adding a context menu to our text editor 215
Handling files 217
Changing the syntax highlighting 223
Changing the editor's font 226
The Listbox widget 228

The Spinbox widget 230
Saving the user's choices 231
Changing the editor's color scheme 234
Summary 243
Talk Python to Me – a Chat Application 245
Creating a scrollable frame 246
Creating our FriendsList class 250
Creating our ChatWindow class 254
Creating our SmilieSelect class 260
Summary 268
Connecting – Getting Our Chat Client Online 269
Introduction to flask 270
Our first web page 271
Using JSON 274

The requests module 275
Sending a GET request 276
Sending a POST request 277

The sqglite3 module 279
Creating a database and table 280

Adding data to a SQLite database 282

Selecting data from a SQLite database
Linking flask and sqlite
Updating our FriendsList class
Creating the Requester class

Connecting our FriendsList to our web service
Connecting our ChatWindow
Updating our server to store conversations
Creating the Conversation class
Using the Conversation class in our server
Adding the new endpoints to our Requester
Updating our ChatWindow class to send requests to the server
Summary

Making Friends – Finishing Our Chat Application
Using threads
Why use a thread with a GUI application?
Using a thread
Adding a Thread to our ChatWindow
Creating new endpoints
The ListeningThread class
Implementing the ListeningThread class in our ChatWindow
Allowing users to upload avatars
The AvatarWindow class
Adjusting the database
Adding server endpoints
Updating the FriendsList class
Manipulating images with PIL
Adding and blocking other users
New database table
Creating the server endpoints
Tying it all together
Summary
Wrapping Up – Packaging Our Applications to Share
Unexplored widgets
The LabelFrame widget
The Checkbutton and Radiobutton widgets
The OptionMenu and Combobox widgets
The Notebook widget

284
286
289
292

294
297
298
299
301
304
306
308

309
310
311
313
315
316
318
320
322
323
325
327
328
329
331
332
334
336
340

341
342
343
345
347
349

Packaging applications 351

Adjusting our text editor for portability 352
Preparing to package with setup.py 355
Installing our text editor 357
Cross-platform using Pip 358
Windows 359

Linux 361

macOS 363
Summary 365
Other Books You May Enjoy 366

Leave a review - let other readers know what you think 368

	Title Page
	Copyright and Credits
	Tkinter GUI Programming by Example

	Packt Upsell
	Why subscribe?
	PacktPub.com

	Contributors
	About the author
	About the reviewer
	Packt is searching for authors like you

	Preface
	Who this book is for
	What this book covers
	To get the most out of this book
	Download the example code files
	Download the color images
	Conventions used

	Get in touch
	Reviews

	Meet Tkinter
	Installation
	How will the code be structured?
	Geometry managers
	pack
	grid
	place
	To pack or to grid?

	Getting going
	Adding interactivity
	Using variables
	Our first try
	Creating Tkinter-compatible variables
	Using and updating

	Fixing our application

	Showing messages
	Showing information with showinfo
	Showing warnings or errors
	Getting feedback from the user

	Getting text input
	Summary

	Back to the Command Line – Basic Blackjack
	Python's class system
	Instances
	Inheritance

	Blackjack's classes
	The Card class
	The Deck class
	The Hand class

	The Game class and main loop
	Command line versus GUI
	Interactivity
	Familiarity
	Ease of use
	Size and portability

	Summary

	Jack is Back in Style – the Blackjack GUI
	Moving from the command line to a graphical interface
	The Canvas widget
	Creating a graphical blackjack game
	Card, Deck, and Hand
	The GameState class
	The GameScreen class

	Playing our game
	Summary

	The Finishing Touches – Sound and Animation
	Python's module system
	The blackjack packages
	The casino package
	The casino_sounds package
	Setting up a virtual environment
	Creating the package

	The blackjack.py file
	Initializing the GameWindow class
	The GameScreen class
	The GameState class
	Choosing to hit
	Choosing to stick
	Running out of money
	Finishing off

	Summary

	Creating a Highly Customizable Python Editor
	The ttk submodule
	Styling a tk widget
	Styling a ttk widget
	Ttk style inheritance

	Beginning our text editor
	Tkinter's event system
	Binding an event
	Overwriting default events
	Generating events

	Events in our text editor
	A second top-level window
	Summary

	Color Me Impressed! – Adding Syntax Highlighting
	Tkinter's indexing system
	Getting the cursor's position
	Named indexes
	Special strings
	Line endings
	Horizontal movement
	Vertical movement
	Line beginning and end
	Word beginning and end

	Expanding our demo

	Using tags
	Searching text
	Adding syntax highlighting to our text editor
	The Highlighter class
	Using our Highlighter class
	The LineNumbers class
	Using our LineNumbers class
	Integrating our FindWindow class
	Using our FindWindow class

	Summary

	Not Just for Restaurants – All About Menus
	The Menu widget
	A menu bar
	A floating menu

	Adding a menu bar to our text editor
	Adding a context menu to our text editor
	Handling files
	Changing the syntax highlighting
	Changing the editor's font
	The Listbox widget
	The Spinbox widget
	Saving the user's choices

	Changing the editor's color scheme
	Summary

	Talk Python to Me – a Chat Application
	Creating a scrollable frame
	Creating our FriendsList class
	Creating our ChatWindow class
	Creating our SmilieSelect class
	Summary

	Connecting – Getting Our Chat Client Online
	Introduction to flask
	Our first web page
	Using JSON

	The requests module
	Sending a GET request
	Sending a POST request

	The sqlite3 module
	Creating a database and table
	Adding data to a SQLite database
	Selecting data from a SQLite database

	Linking flask and sqlite
	Updating our FriendsList class
	Creating the Requester class
	Connecting our FriendsList to our web service
	Connecting our ChatWindow
	Updating our server to store conversations
	Creating the Conversation class
	Using the Conversation class in our server
	Adding the new endpoints to our Requester

	Updating our ChatWindow class to send requests to the server

	Summary

	Making Friends – Finishing Our Chat Application
	Using threads
	Why use a thread with a GUI application?
	Using a thread

	Adding a Thread to our ChatWindow
	Creating new endpoints
	The ListeningThread class
	Implementing the ListeningThread class in our ChatWindow

	Allowing users to upload avatars
	The AvatarWindow class
	Adjusting the database
	Adding server endpoints
	Updating the FriendsList class
	Manipulating images with PIL

	Adding and blocking other users
	New database table
	Creating the server endpoints
	Tying it all together

	Summary

	Wrapping Up – Packaging Our Applications to Share
	Unexplored widgets
	The LabelFrame widget
	The Checkbutton and Radiobutton widgets
	The OptionMenu and Combobox widgets
	The Notebook widget

	Packaging applications
	Adjusting our text editor for portability
	Preparing to package with setup.py
	Installing our text editor
	Cross-platform using Pip
	Windows
	Linux
	macOS

	Summary

	Other Books You May Enjoy
	Leave a review - let other readers know what you think

