Bhaskar Chaudhary

Tkinter GUI Application
Development

Blueprints

Build nine projects by working with widgets, geometry
management, event handling, and more

L] Packt>

Tkinter GUI Application
Development Blueprints
Second Edition

Build nine projects by working with widgets, geometry
management, event handling, and more

Bhaskar Chaudhary

BIRMINGHAM - MUMBAI

Tkinter GUI Application Development
Blueprints
Second Edition

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editors: Aaron Lazar
Acquisition Editor: Denim Pinto

Content Development Editors: Lawrence Veigas
Technical Editor: Adhithya Haridas

Copy Editor: Safis Editing

Project Coordinator: Prajakta Naik

Proofreader: Safis Editing

Indexers: Pratik Shirodkar

Graphics: Jisha Chirayil

Production Coordinator: Deepika Naik

First published: November 2015
Second edition: March 2018

Production reference: 1160318

Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78883-746-0

www.packtpub.com

http://www.packtpub.com

Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author

Bhaskar Chaudhary is a professional programmer and information architect.

He has a decade of experience in consulting, contracting, and educating in the field of
software development. He has worked with a large set of programming languages on
various platforms over the years.

He is an electronics hobbyist and a musician in his free time.

L would like to thank my parents for everything that I am. Thanks to my wife Sangita, son
Chaitanya, sisters Priyanki and Shambhavi, niece Akanksha, nephew Praneet, and friend
Souvik for being around. Anurag, you are always remembered.

About the reviewer

Erik S. Rapert is a pale, slim programmer and a twin who loves Linux and video
games. He lives in Dallas with his wife, who is also a software engineer. Erik has a
wide range of experience, which includes creating blinking LEDs using Arduino,
building small desktop apps using Python and Tkinter, web development with PHP or
Ruby, and developing cutting-edge virtual reality using C++. He has used a very
broad range of programming languages, but Python is one of his favorites.

Thank you William C. Slater for teaching me how to write software. Thank you
Andrew Closson for being a teacher. Thank you Ashley N. Tharp for being you.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

http://authors.packtpub.com

Table of Contents

Preface 1
Chapter 1: Meet Tkinter 6
Technical requirements 7
Project overview 8
Getting started 8
GUI programming - the big picture 11
The root window — your drawing board 12
Widgets — the building blocks of GUI programs 14
Some important widget features 15
Ways to create widgets 15
Getting to know the core Tkinter widgets 16
Adding widgets to a parent window 17
The Tkinter geometry manager 19
The pack geometry manager 19
The grid geometry manager 23
The place geometry manager 28
Events and callbacks — adding life to programs 30
Command binding 30
Passing arguments to callbacks 31
Limitations of the command option 32

Event binding 32
Event patterns 34
Binding levels 36
Handling widget-specific variables 37
Event unbinding and virtual events 38
Doing it in style 39
Specifying styles 40
Some common root window options 44
Getting interactive help 44

Summary 45

Table of Contents

QA section 46
Further reading 46
Chapter 2: Making a Text Editor 47
Project overview 48
Getting started — setting up the editor skeleton 48
Adding a menu and menu items 50
Adding menu items 52
Implementing the View menu 55
Adding a built-in functionality 56
Indexing and tagging 58
Index 58
Tags 60
Implementing the Select All feature 61
Implementing the Find Text feature 61
Types of Toplevel window 65
Working with forms and dialogs 66
Working with message boxes 72
The icons toolbar and View menu functions 75
Displaying line numbers 76
Adding the cursor information bar 80
Adding themes 81
Creating a context/pop-up menu 83
Summary 84
QA section 84
Further reading 85
Chapter 3: Programmable Drum Machine 86
Getting started 87
Technical requirements 88
Setting up the GUIl in OOP 89
Finalizing the data structure 90
Creating broader visual elements 92
Defining getter and setter methods 97

The number of units and beats per unit features 99

[ii]

Table of Contents

Loading drum samples 100
Playing the drum machine 103
Initializing pygame 103
Playing complete patterns 104
Determining the tempo of a rhythm 105
Tkinter and threading 107
Tkinter and thread safety 109
Support for multiple beat patterns 111
Saving beat patterns 112
Working with ttk-themed widgets 116
Summary 123
QA section 124
Further reading 124
Chapter 4: Game of Chess 126
An overview of the chapter 126
Module requirements for this chapter 127
Structuring our program 127
Modeling the data structure 133
Convention on naming chess pieces 133
Convention for naming locations on the chessboard 134
Creating a Piece class 136
Displaying chess pieces on the chessboard 139
Defining rules for the chess pieces 142
Rules for the king, queen, rooks, and bishops 142
Rules for the Knight 145
Rules for a pawn 146
Movement validation of chess pieces 148
Tracking all available moves 148
Finding out the current position of the king 149
Checking whether the king is in check 149
Making the game functional 150
Getting the source and destination position 151
Collecting a list of the moves that need to be highlighted 152
Highlighting allowed moves 152
Pre-move validation 153

[iii]

Table of Contents

Check whether a move will cause check on the King 154
Recording a move in the data structure 155
Keep game statistics 155
Managing user preferences 156
Summary 159
QA section 160
Further reading 160
Chapter 5: Building an Audio Player 161
An overview of the chapter 161
External library requirements 162
The pyglet module 163
Pmw Tkinter extension 163
Program structure and broadview skeleton 164
Deciding the data structure 168
Creating the Player class 169
Adding and removing items from a playlist 173
Adding a single audio file 174
Removing the selected files from a playlist 175
Adding all files from a directory 175
Emptying the playlist 176
Playing audio and adding audio controls 176
Adding the play/stop function 177
Adding the pause/unpause function 178
Adding the mute/unmute function 179
Fast forward/rewind function 179
Adding the next track/previous track function 180
Adding the volume change function 180
Creating a seek bar 181
One-time updates during audio playback 184
Managing continuous updates 186
Looping over tracks 188
Adding a tooltip 190
Pmw list of extensions 191
Widgets 191
Dialogs 191

[iv]

Table of Contents

Miscellaneous 191
Summary 193
QA section 193
Further reading 193

Chapter 6: Paint Application 194
Overview of the application 195
Creating a tiny framework 196
Setting up a broad GUI structure 199
Dealing with mouse events 201
Adding toolbar buttons 203
Drawing items on the canvas 206
Adding a color palette 213
Adding top bar options for draw methods 216
Drawing irregular lines and super shapes 219

Drawing irregular lines 220

Drawing super shapes 221
Adding functionality to the remaining buttons 223
Adding functionality to menu items 229
Summary 231
QA section 232
Further reading 232

Chapter 7: Piano Tutor 233
Technical requirements 234
A brief primer on piano terms 234

Learning about scales 236
Learning about chords 236
Building the broad GUI structure 237
Putting up the skeleton structure 239
Making the piano keyboard 241
Putting the keyboard together 243
Playing audio 244
Building the scales tutor 246
Building the chord finder section 250

Building the chord progression tutor 252

[v]

Table of Contents

Building the score maker 257
A note on window responsiveness 261
Experimenting with the code 262
Handling widget resize with <Configure> 264
Summary 264
QA section 265
Further reading 265
Chapter 8: Fun with Canvas 267
Building a screen saver 268
Graphing with Tkinter 271
Polar plots with Tkinter 275
Gravity simulation 278
Drawing fractals 283
Voronoi diagrams 287
Spring pendulum simulation 290
Chaos game - building triangles out of randomness 295
Phyllotaxy 298
3D graphics with Tkinter 300
Summary 307
QA section 307
Further reading 308
Chapter 9: Multiple Fun Projects 309
Technical requirements 310
Building a Snake game 310
Understanding a race condition 310
Using synchronization primitives 311
Using queues 312
Building the Snake game 314
The View class 315

The Food class 316

The Snake class 317

Queue handler 319
Creating a Weather Reporter application 320
A simple socket demo 325

[vil

Table of Contents

Building a port scanner 327
Building a chat application 330
Creating a phone book application 336
Creating a new record 340
Reading from the database 340
Updating records 340
Deleting records 341
Using asyncio with Tkinter 341
Interfacing with hardware/serial communication 344
Hardware 344
Writing the Arduino sketch 346
Reading serial data 348
Summary 350
QA section 351
Further reading 352
Chapter 10: Miscellaneous Tips 353
Tracing Tkinter variables 354
Widget traversal 356
Validating user input 358
Key validation mode demo 361
Focus-out validation mode demo 362
Formatting widget data 364
More on fonts 366
Finer control over font 367
Building a font selector 368
Redirecting the command-line output to Tkinter 369
The class hierarchy of Tkinter 371
Tips for program design 376
The model-first policy versus the code-first policy 376
Separating the model from the view 376
Selecting the right data structure 377
Naming variables and methods 377
The Single Responsibility Principle 377
Loose coupling 377

[vii]

Table of Contents

Handling errors and exceptions 378
Handling cross-platform differences 378
Tips for program optimization 379

Using filter and map 379

Optimizing variables 380

Profiling your program 380

Other optimization tips 382
Distributing a Tkinter application 382

py2exe 383

py2app 383

Pylnstaller 383

Other freezing tools 383
The limitations of Tkinter 384

A limited number of core widgets 384

Non-Python objects 384

No support for printing 385

No support for newer image formats 385

Inactive development community 385
Alternatives to Tkinter 385

wxPython 386

PyQt 386

PySide 387

PyGTK 387

Other options 387
Tkinter in Python 2.x 387
Summary 389
QA section 390

Other Books You May Enjoy 391
Index 394

[viii]

Preface

Tkinter GUI Application Development Blueprints, Second Edition will walk you through the
process of developing real-world graphical applications using Python and Tkinter,
the built-in GUI module of Python.

This book attempts to highlight the features and capabilities of Tkinter while demonstrating
best practices involved in writing GUI programs, irrespective of the library that you choose
to build your application with. Here, you will learn how to use Tkinter to develop exciting,
fun, and useful GUI applications with Tkinter and Python.

We hope to take you on a fun journey through more than 10 projects from different problem
domains. As we develop new applications in each project, the book also builds up a catalog
of some commonly used strategies to develop real-world applications.

Who this book is for

Software developers, scientists, researchers, engineers, students, and programming
hobbyists with basic familiarity with Python will find this book interesting and informative.
A motivated Python newbie with a background in writing programs can fill in the gaps of
knowledge with a little outside research.

People familiar with basic programming constructs in other programming languages can
also catch up with some brief reading on Python. No GUI programming experience is
assumed.

What this book covers

Chapter 1, Meet Tkinter, begins from scratch, providing an overview of Tkinter and
covering details of how to create root windows, add widgets to a root window, handle
layout with geometry managers, and work with events.

Chapter 2, Making a Text Editor, develops a text editor using the procedural style of
programming. It gives readers their first taste of several features of Tkinter and what it is
like to develop a real application.

Preface

Chapter 3, Programmable Drum Machine, uses object-oriented programming to develop a
drum machine that is capable of playing user-composed rhythms. The application can also
save compositions and later edit or replay them. Here, you will learn the techniques of
designing a GUI application using a model-first philosophy and writing multithreaded GUI
applications.

Chapter 4, Game of Chess, introduces the key aspects of structuring a GUI application using
the model-view-controller (MVC) architecture. It also teaches the art of taking a real-world
object (chess) and modeling it in the notations that your program can manipulate. In
addition, it introduces readers to the power of the Tkinter Canvas widget.

Chapter 5, Building an Audio Player, covers the concepts of working with external libraries
while showing you how to work with many different Tkinter widgets. Most importantly, it
shows how to make your own Tkinter widgets, thereby extending the capabilities of the
Tkinter manifold.

Chapter 6, Paint Application, looks at the Tkinter Canvas widget in detail. As you will see,
the Canvas widget is truly a highlight of Tkinter. The chapter also introduces the concept of
the GUI framework, thereby creating reusable code for all your future programs.

Chapter 7, Piano Tutor, demonstrates how to represent the given domain information using
JSON and then apply the data thus created to create an interactive application. It also
discusses the concept of program responsiveness and how to handle it with Tkinter.

Chapter 8, Fun with Canvas, is dedicated to harnessing the powerful visualization
capabilities of Tkinter's canvas widget. It looks at examples from several important
mathematical domains to build different kinds of useful and beautiful simulations.

Chapter 9, Multiple Fun Projects, works through a series of small but functional projects,
demonstrating problems from different domains such as animation, network programming,
socket programming, database programming, asynchronous programming, and
multithreaded programming.

Chapter 10, Miscellaneous Tips, discusses some vital aspects of GUI programming that,
though not covered in the previous chapters, form a common theme in many GUI
programs.

[2]

Preface

To get the most out of this book

We assume an introductory level familiarity with the basic constructs of Python
programming language. We use Python version 3.6 with Tkinter 8.6, and it is recommended
to stick to these exact versions to avoid compatibility issues.

The programs discussed in this book have been developed on the Linux Mint platform.
However, given the multiplatform abilities of Tkinter, you can easily work on other
platforms such as Windows, Mac OS, and other distributions of Linux. The links to
download and install other project-specific modules and software are mentioned in the
respective chapters.

Download the example code files

You can download the example code files for this book from your account at
www . packtpub. com. If you purchased this book elsewhere, you can visit
www . packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

L e

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub at https://github.com/
PacktPublishing/Tkinter-GUI-Application-Development—-Blueprints-Second-Edition.
We also have other code bundles from our rich catalog of books and videos available at
https://github.com/PacktPublishing/. Check them out!

[3]

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this

book. You can download it here: https://www.packtpub.com/sites/default/files/
downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.

pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example:

"The reset_to_initial_locations () method initializes all the locations to reflect the
starting position of the game."

A block of code is set as follows:

def toggle_play_button_state (self):
if self.now_playing:
self.play_button.config(state="disabled")
else:
self.play_button.config(state="normal")

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

def on_loop_button_toggled(self):
self.loop = self.to_loop.get ()
self.keep_playing = self.loop
if self.now_playing:
self.now_playing = self.loop
self.toggle_play_button_state ()

Any command-line input or output is written as follows:

>>> import pyglet
>>> help (pyglet.media)

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"In our example, we will add menu items to the File, Edit, and About menu."

[4]

https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/TkinterGUIApplicationDevelopmentBlueprintsSecondEdition_ColorImages.pdf

Preface

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[5]

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

Meet Tkinter

Welcome to the exciting world of GUI programming with Tkinter. This chapter aims to get
you acquainted with Tkinter, the built-in Graphical User Interface (GUI) library for all
standard Python distributions.

Tkinter (pronounced tea-kay-inter) is the Python interface to Tk, the GUI toolkit for Tcl/Tk.

Tcl (Tool command language), which is pronounced as tickle, is a popular scripting
language in the domains of embedded applications, testing, prototyping, and GUI
development. On the other hand, Tk is an open source, multiplatform widget toolkit that is
used by many different languages to build GUI programs.

The Tkinter interface is implemented as a Python module— Tkinter.py in Python 2.x
Versions and tkinter/__init__.py in Python 3.x Versions. If you look at the source
code, Tkinter is just a wrapper around a C extension that uses the Tcl/Tk libraries.

Tkinter is suitable for a wide variety of areas, ranging from small desktop applications to
scientific modeling and research endeavors across various disciplines.

When a person learning Python needs to graduate to GUI programming, Tkinter seems to
be the easiest and fastest way to get the work done.

Meet Tkinter Chapter 1

Tkinter is a great tool for the programming of GUI applications in Python. The features that
make Tkinter a great choice for GUI programming include the following;:

e It is simple to learn (simpler than any other GUI package for Python)

Relatively little code can produce powerful GUI applications

Layered design ensures that it is easy to grasp

It is portable across all operating systems

It is easily accessible, as it comes pre-installed with the standard Python
distribution

None of the other Python GUI toolkits have all of these features at the same time.

The purpose of this chapter is to make you comfortable with Tkinter. It aims to introduce
you to the various components of GUI programming with Tkinter.

We believe that the concepts that you will develop in this chapter will enable you to apply
and develop GUI applications in your area of interest.

The key aspects that we want you to learn from this chapter include the following:

¢ Understanding the concept of a root window and the main loop

Understanding widgets—the building blocks of programs

Getting acquainted with a list of available widgets

Developing layouts by using different geometry managers

Applying events and callbacks to make a program functional

Styling widgets by using styling options and configuring the root widget

Technical requirements

We assume a basic working knowledge of Python. You must know how to write and run
basic programs in Python.

We will develop our application on the Linux Mint platform. However, since Tkinter
is multiplatform, you can follow along with the instructions in this book on Windows, Mac,
or any other Linux distribution, without making any modifications to the code.

[7]

Meet Tkinter Chapter 1

Project overview

By the end of this chapter, you will have developed several partly functional dummy
applications, such as the one shown in the following screenshot:

Iam a Top Level Widget, parent to other widgets

Menu Button Widget 1 Menu 2

I am a text-widget. ’—; Image displayed with
I am a Label widget Tkinter includes 21 core widgets. This p |/ Photolmage class widget:
I'am an entry widget rogram demonstrates all of them.

Button widget See if you can identify all of them

[~ CheckButton Widget 1) Toplevel Widget**
" Radio Button Un 2) Button Widget
. 3) Canvas Widget

o Rzily Baiom Bis 4) Checkbutton Widget

" Radio Button Tres . . .
Example of OptionMenu Widget: Below is an examplt_a of my_listbox widget:
I am a Canvas Widget Listbox Choice 1

= | Choice 2

- ! Choice 3
I F th Bit Class: i
mage Fun wi itmap Class: Choice 4

Below is an example of Paned window widget: Below is an example of spinbox widget:
Notice you can adjust the size of each pane by dragging it 1 £
Scale widget

0

R

Labelframe Widget

| am a Message
widget

We call these dummy applications because they are neither fully functional nor do they
serve any practical purpose other than to show a particular feature of Tkinter.

Getting started

We will write all our projects using Python Version 3.6.3, which is the latest stable release of
Python at the time of writing.

The Python download package and instructions for downloading for different platforms are
available at https://www.python.org/downloads/release/python-363/.

The installer binaries for macOS X and the Windows platform are available at the
aforementioned link.

[8]

https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/
https://www.python.org/downloads/release/python-363/

Meet Tkinter Chapter 1

If you are following along on Unix, Linux, or BSD, the following procedure will install
Python from the source.

First, install tk8. 6-dev and python3-tk packages on your computer using your
applicable package manager. For instance, on Debian-based systems such as Ubuntu and
Mint, run the following two commands from the Terminal:

sudo apt install tk8.6-dev
sudo apt install python3-tk

Download Python 3.6.3 from the preceding link and extract it to any location of your choice.
Open a Terminal in the location where you extracted Python and type in the following
commands:

./configure

make

make test

sudo make altinstall

This should install Python 3.6.3 on your computer. Now open a command line and enter the
following command:

$ python3.6

This will open the Python 3.6 interactive shell. Type in the following command:

>>> import tkinter

This command should execute without any errors. If there are no error messages, the
Tkinter module is installed on your Python distribution.

When working with examples from this book, we do not support any Python Version
except for Python 3.6.3, which comes bundled with Tkinter Tcl/Tk Version 8.6. However,
most of the examples should work out-of-the-box on other minor Python 3 Versions.

To check whether you have the correct Tkinter Version on your Python installation, type the
following commands in your IDLE or interactive shell:

>>> import tkinter
>>> tkinter._test ()

This should confirm the Tcl/Tk Version as 8.6. We are now ready to build our GUI
programs!

[9]

Meet Tkinter Chapter 1

The next steps are optional and you may skip them at your discretion. While the preceding
steps are sufficient for us to develop our programs, I highly recommend that you use a
virtual environment for developing your programs.

Virtual environments provide a secluded environment with no conflicts with system
programs, and they can be easily reproduced on any other system.

So now let's set up a virtual environment. First, create a folder where you will keep all
projects from this book. Let's call it myTkinterProjects or whatever suits you.

Next, find the location of the Python 3.6 installation on your computer. On my computer, I
can find the location of the Python installation by running the following command:

$ which python3.6

Take a note of the location. For me itis /usr/local/bin/python3.6. Now open a
Terminal in your myTkinterProjects folder and run the following command:

$ virtualenv -p /location/of /python3.6 myvenv/

This will create a new virtual environment in a folder named myvenv inside your project

folder.

Lastly, we need to activate this virtual environment. This is done by running the following
command:

$ source myenv/bin/activate

Now if you type the command python, it should pick up Python 3.6.3 from within your
virtual environment.

From now onward, every time we have to run a Python script or install a new module, we
will first activate the virtual environment using the preceding command and run or install
the module within this new virtual environment.

[10]

Meet Tkinter

Chapter 1

GUI programming

— the big picture

As a GUI programmer, you will generally be responsible for deciding the following three

aspects of your program:

e Which components should appear on the screen?

This involves choosing the components that make the user interface. Typical
components include things such as buttons, entry fields, checkboxes, radio
buttons, and scrollbars. In Tkinter, the components that you add to your GUI are
called widgets. Widgets (short for window gadgets) are the graphical components

that make up your application's frontend.

e Where should the components go?

This includes deciding the position and the structural layout of various

components. In Tkinter, this is referred to as geometry management.

e How do components interact and behave?

This involves adding functionality to each component. Each component or widget
does something. For example, a button, when clicked on, does something in
response. A scrollbar handles scrolling, and checkboxes and radio buttons enable
users to make some choices. In Tkinter, the functionality of various widgets is

managed by command binding or event binding using callbacks.

The following diagram shows the three components of GUI programming:

Three Components of GUI Programming

-..\ /.

Where to Place

b1
%

[WnattoPlace | | doete s | | HowdoWidgets
| on Screen ? »| thewidgets |i"| Behave ?
\ Geometry |
Management i | Events & Callbacks | /

O O

[11]

Meet Tkinter Chapter 1

The root window - your drawing board

GUI programming is an art, and like all art you need a drawing board to capture your
ideas. The drawing board that you will use is called the root window. Our first goal is to get
the root window ready.

The following screenshot depicts the root window that we are going to create:

tk

Drawing the root window is easy. You just need the following three lines of code:

import tkinter as tk
root = tk.Tk() #line 2
root.mainloop ()

Save this with the . py file extension or check out the code present in the 1.01 . py file. Open
it in the IDLE window or run it from within your activated virtual environment using the
following command:

$ python 1.01.py

Running this program should generate a blank root window, as shown in the preceding
screenshot. This window is equipped with functional minimize, maximize, and close
buttons, and a blank frame.

[12]

Meet Tkinter Chapter 1

Downloading the example code

You can download the example code files for all Packt books you

have purchased from your account at http://www.packtpub.com. Apart
from going to Packt's official website, you can also find the code files for
this book at https://github.com/PacktPublishing/Tkinter-GUI-
Application-Development-Blueprints-Second-Edition. If

you purchased this book elsewhere, you can visit http://www.packtpub.
com/support and register to have the files emailed directly to you.

The following is a description of the preceding code:

e The first line imported the tkinter module into the namespace with tk as its
alias. Now we can access all definitions of the classes, attributes, and methods of
Tkinter by appending the alias tk to the name as in tk. Tk ().

¢ The second line created an instance of the tkinter. Tk class. This created what is
called the root window, which is shown in the preceding screenshot. According
to the conventions, the root window in Tkinter is usually called root, but you are
free to call it by any other name.

e The third line executed the mainloop (that is, the event loop) method of the root
object. The mainloop method is what keeps the root window visible. If you
remove the third line, the window created in line 2 will disappear immediately as
soon as the script stops running. This will happen so fast that you will not even
see the window appearing on your screen. Keeping the mainloop method
running also lets you keep the program running until you press the Close button,
which exits mainloop.

¢ Tkinter also exposed the mainloop method as tkinter.mainloop (). So,
you can even call mainloop () directly instead of calling root .mainloop ().

Congratulations! You have completed your first objective, which was to draw the root
window. You have now prepared your drawing board (root window). Now, get ready to
paint it with your imagination!

[13]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
https://github.com/PacktPublishing/Tkinter-GUI-Application-Development-Blueprints-Second-Edition
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support
http://www.packtpub.com/support

Meet Tkinter Chapter 1

Commit the three lines of code (shown in code 1.01.py) to

memory. These three lines generate your root window, which will
accommodate all the other graphical components. These lines form the
skeleton of any GUI application that you will develop in Tkinter. The
entire code that will make your GUI application functional will go
between line 2 (new object creation) and line 3 (mainloop) of this code.

Widgets - the building blocks of
GUI programs

Now that we have our top level or the root window readyj, it is time to think over the
question: which components should appear in the window? In Tkinter jargon, these
components are called widgets.

The syntax that is used to add a widget is as follows:

my_widget = tk.Widget-name (its container window, ** its configuration
options)

In the following example (1.02.py), we will add two widgets, a label and a button, to the
root container. Also, note how all the widgets are added between the skeleton code that we

defined in the first example:

import tkinter as tk

root = tk.Tk()

label = tk.Label (root, text="I am a label widget")
button = tk.Button(root, text="I am a button")
label.pack ()

button.pack ()

root.mainloop ()

Running the preceding code(1 .02 .py) will generate a window with a label and a
button widget, as shown in the following screenshot:

tk
I am a label widget

| am a button

[14]

Meet Tkinter Chapter 1

The following is a description of the preceding code:

e This code added a new instance named label for the label widget. The first
parameter defined root as its parent or container. The second parameter
configured its text optiontoread I am a label widget.

e Similarly, we defined an instance of a Button widget. This is also bound to the
root window as its parent.

e We used the pack () method, which is essentially required to position the label
and button widgets within the window. We will discuss the pack () method and
several other related concepts when exploring the geometry management task.
However, you must note that some sort of geometry specification is essential for
the widgets to be displayed.

Some important widget features

Note the following few important features that are common to all widgets:

o All widgets are actually objects derived from their respective widget classes. So, a
statement such as button = Button (its_parent) actually creates a button
instance from the Button class.

¢ Each widget has a set of options that decides its behavior and appearance. This
includes attributes such as text labels, colors, and font size. For example, the
Button widget has attributes to manage its label, control its size, change its
foreground and background colors, change the size of the border, and more.

¢ To set these attributes, you can set the values directly at the time of creating the
widget, as demonstrated in the preceding example. Alternatively, you can later
set or change the options of the widget by using the .config() or
.configure () method. Note that the .config () or .configure () methods
are interchangeable and provide the same functionality. In fact, the . config ()
method is simply an alias of the .configure () method.

Ways to create widgets

There are two ways to create widgets in Tkinter.

[15]

Meet Tkinter Chapter 1

The first way involves creating a widget in one line and then adding the pack () method (or
other geometry managers) in the next line, as follows:

my_label = tk.Label (root, text="I am a label widget")
my_label.pack ()

Alternatively, you can write both the lines together, as follows:

tk.Label (root, text="I am a label widget") .pack()

You can either save a reference to the widget created (my_label, as in the first example), or
create a widget without keeping any reference to it (as demonstrated in the second
example).

You should ideally keep a reference to the widget in case the widget has to be accessed later
on in the program. For instance, this is useful in case you need to call one of its internal
methods or for its content modification. If the widget state is supposed to remain static after
its creation, you need not keep a reference to the widget.

Note that calls to pack () (or other geometry managers) always return
None. So, consider a situation where you create a widget, and add a
geometry manager (say, pack ()) on the same line, as follows: my_1label
= tk.Label (...) .pack ().In this case, you are not creating a reference
to the widget. Instead, you are creating a None type object for the
my_label variable. So, when you later try to modify the widget through
the reference, you get an error because you are actually trying to work on
a None type object. If you need a reference to a widget, you must create it
on one line and then specify its geometry (like pack ()) on the second line,

as follows:

my_label = tk.Label(...)

my_label.pack ()

This is one of the most common mistakes committed by beginners.

Getting to know the core Tkinter widgets

Now you will get to know all the core Tkinter widgets. You have already seen two of them
in the previous example—the Label and Button widgets. Now, let's explore all the other
core Tkinter widgets.

[16]

Meet Tkinter

Chapter 1

Tkinter includes 21 core widgets, which are as follows:

Top-level Label Button
Canvas Checkbutton | Entry
Frame LabelFrame Listbox
Menu Menubutton | Message
OptionMenu | PanedWindow | Radiobutton
Scale Scrollbar Spinbox
Text Bitmap Image

Let's write a program to display all of these widgets in the root window.

Adding widgets to a parent window

The format used to add widgets is the same as the one that we discussed in the previous
task. To give you an idea about how it's done, here's some sample code that adds some
common widgets:

Label (parent,
Button (parent,
Checkbutton (parent,
Entry (parent,
Radiobutton (parent,
Radiobutton (parent,
OptionMenu (parent,
Scrollbar (parent,

var,

text="Enter your Password:")
text="Search")
text="Remember Me",
width=30)

text="Male",
text="Female",
"Select Country",
orient=VERTICAL,

variable=v,
variable=v,

command= text.yview)

variable=v, value=True)

"India", "Others")

Can you spot the pattern that is common to each widget? Can you spot the differences?

As a reminder, the syntax for adding a widget is as follows:

Widget—-name (its_parent,

**its_configuration_options)

[17]

Meet Tkinter Chapter 1

Using the same pattern, let's add all the 21 core Tkinter widgets into a dummy application
(1.03.py). We do not reproduce the entire code here. A summarized code description
for 1.03.py is as follows:

1. We create a top-level window and a mainloop, as shown in the earlier examples.

2. We add a frame widget and name it menu_bar. Note that frame widgets are just
holder widgets that hold other widgets. Frame widgets are great for grouping
widgets together. The syntax for adding a frame is the same as that for all the
other widgets:

frame = Frame (root)
frame.pack ()

3. Keeping the menu_bar frame as the container, we add two widgets to it:
e Menubutton

e Menu
4. We create another frame widget and name it frame. Keeping frame as the

container/parent widget, we add the following seven widgets to it:
e Label

e Entry

Button
Checkbutton
Radiobutton
OptionMenu

Bitmap Class

5. We then proceed to create another frame widget. We add six more widgets to the
frame:

Image Class
Listbox
Spinbox

Scale

LabelFrame
e Message

6. We then create another frame widget. We add two more widgets to the frame:
o Text

e Scrollbar

[18]

Meet Tkinter Chapter 1

7. We create another frame widget and add two more widgets to it:
e Canvas

e PanedWindow

These constitute the 21 core widgets of Tkinter. Now that you have had a glimpse of all the
widgets, let's discuss how to specify the location of these widgets using geometry
managers.

The Tkinter geometry manager

You may recall that we used the pack () method to add widgets to the dummy application
that we developed in the previous section. The pack () method is an example of geometry
management in Tkinter.

The pack () method is not the only way of managing the geometry in your interface. In fact,
there are three geometry managers in Tkinter that let you specify the position of widgets
inside a top-level or parent window.

The three geometry managers are as follows:

¢ pack: This is the one that we have used so far. It is simple to use for
simpler layouts, but it may get very complex for slightly complex layouts.

e grid: This is the most commonly used geometry manager, and provides a table-
like layout of management features for easy layout management.

e place: This is the least popular, but it provides the best control for the absolute
positioning of widgets.

Now, let's have a look at some examples of all the three geometry managers in action.

The pack geometry manager

The pack manager can be a bit tricky to explain in words, and it can best be understood by
playing with the code base. Fredrik Lundh, the author of Tkinter, asks us to imagine the
root as an elastic sheet with a small opening at the center. The pack geometry manager
makes a hole in the elastic sheet that is just large enough to hold the widget. The widget is
placed along a given inner edge of the gap (the default is the top edge). It then repeats the
process till all the widgets are accommodated.

[19]

Meet Tkinter Chapter 1

Finally, when all the widgets have been packed in the elastic sheet, the geometry manager
calculates the bounding box for all the widgets. It then makes the parent widget large
enough to hold all the child widgets.

When packing child widgets, the pack manager distinguishes between the following three
kinds of space:

¢ Unclaimed space
¢ Claimed but unused space
¢ Claimed and used space

The most commonly used options in pack include the following:

e side: LEFT, TOP, RIGHT, and BOTTOM (these decide the alignment of the
widget)

e £111: X, Y, BOTH, and NONE (these decide whether the widget can grow in size)

e expand: Boolean values such as tkinter.YES/tkinter.NO, 1 /0, and
True/False

e anchor: NW, N, NE, E, SE, S, SW, W, and CENTER (corresponding to the cardinal
directions)

¢ Internal padding (ipadx and ipady) for the padding inside widgets
and external padding (padx and pady), which all default to a value of zero

Let's take a look at demo code that illustrates some of the pack features.

Two of the most commonly used pack options are £i11 and expand:

tk
Pack Demo of side and fill
B
A
D | C

Pack Demo of expand

| do not expand |

| do not fill x but | expand

| fill x and expand

[20]

Meet Tkinter Chapter 1

The following code (1 .04 .py) generates a GUI like the one shown in the preceding
screenshot:

import tkinter as tk

root = tk.Tk()

frame = tk.Frame (root)

demo of side and fill options

tk.Label (frame, text="Pack Demo of side and fill") .pack()

tk.Button (frame, text="A").pack(side=tk.LEFT, fill=tk.Y)

tk.Button (frame, text="B").pack (side=tk.TOP, fill=tk.X)

tk.Button (frame, text="C").pack(side=tk.RIGHT, fill=tk.NONE)
tk.Button (frame, text="D") .pack (side=tk.TOP, fill=tk.BOTH)
frame.pack ()

note the top frame does not expand or fill in X or Y directions

demo of expand options - best understood by expanding the root
#vwidget and seeing the effect on all the three buttons below.
tk.Label (root, text="Pack Demo of expand") .pack()

tk.Button (root, text="I do not expand") .pack()

tk.Button(root, text="I do not fill x but I expand") .pack (expand = 1)
tk.Button (root, text="I fill x and expand") .pack (fill=tk.X, expand=1l)
root.mainloop ()

The following is a description of the preceding code:

e When you insert the A button in the root frame, it captures the leftmost area of the
frame, expands, and fills the Y dimension. Because the fill option is specified as
fill=tk.Y, it claims all the area that it wants and fills the Y dimension of its
container frame.

¢ Because frame is itself packed with a plain pack () method with no mention of a
pack option, it takes the minimum space required to accommodate all of its child
widgets.

e If you increase the size of the root window by pulling it down or sideways, you
will see that all the buttons within the frame do not fill or expand with the root
window.

¢ The positioning of the B, C, and D buttons occurs on the basis of the side and fill
options specified for each of them.

¢ The next three buttons (after B, C, and D) demonstrate the use of the
expand option. A value of expand=1 means that the button moves its place
on resizing the window. Buttons with no explicit expand options stay in
their place and do not respond to changes in the size of their parent container (the
root window, in this case).

[21]

Meet Tkinter Chapter 1

¢ The best way to study this piece of code would be to resize the root window to
see the effect that it has on various buttons.

e The anchor attribute (not used in the preceding code) provides a means
to position a widget relative to a reference point. If the anchor attribute is
not specified, the pack manager places the widget at the center of the
available space or the packing box. The other options that are allowed include the
four cardinal directions (N, S, E, and W) and a combination of any two
directions. Therefore, valid values for the anchor attribute are CENTER (the
default value), N, S, E, w, NW, NE, SW, and SE.

The values for most Tkinter geometry manager attributes can either be
specified in capital letters without quotes (such as

side=tk.TOP and anchor=tk.SE) or in small letters within quotes (such
as side="'top'and anchor="se").

We will use the pack geometry manager in some of our projects. Therefore, it will
be worthwhile to get acquainted with pack and its options.

The pack manager is ideally suited for the following two kinds of situation:

e Placing widgets in a top-down manner
¢ Placing widgets side by side

1.05.py shows an example of both of these scenarios:

parent = tk.Frame (root)

placing widgets top-down

tk.Button (parent, text='ALL IS WELL').pack(fill=tk.X)
tk.Button (parent, text='BACK TO BASICS') .pack (fill=tk.X)
tk.Button (parent, text='CATCH ME IF U CAN').pack (fill=tk.X)
placing widgets side by side

tk.Button (parent, text='LEFT') .pack (side=tk.LEFT)

tk.Button (parent, text='CENTER') .pack (side=tk.LEFT)
tk.Button (parent, text='RIGHT') .pack (side=tk.LEFT)
parent.pack ()

[22]

Meet Tkinter Chapter 1

The preceding code produces a GUI, as shown in the following screenshot:

tk
ALL IS WELL

BACK TO BASICS

CATCH ME IF U CAN

LEFT CENTER RIGHT

For a complete pack reference, type the following command in the Python shell:

>> import tkinter
>>> help (tkinter.Pack)

Besides getting interactive help with documentation, Python's REPL is also a great tool for
iterating and quick prototyping of Tkinter programs.

Where should you use the pack() geometry manager?

Using the pack manager is somewhat complicated as compared to

the grid method, which will be discussed next, but it is a great choice
in situations such as the following;:

e Having a widget fill the complete container frame

e Placing several widgets on top of each other or side by side
(as shown in the preceding screenshot)

Although you can create complicated layouts by nesting widgets in multiple frames, you
will find the grid geometry manager more suitable for most complex layouts.

The grid geometry manager

The grid geometry manager is easy to understand and perhaps the most useful geometry
manager in Tkinter. The central idea of the grid geometry manager is to organize the
container frame into a two-dimensional table that is divided into a number of rows and
columns. Each cell in the table can then be targeted to hold a widget. In this context, a cell is
an intersection of imaginary rows and columns.

[23]

Meet Tkinter Chapter 1

Note that in the grid method, each cell can hold only one widget. However, widgets can be
made to span multiple cells.

Within each cell, you can further align the position of the widget using the sticky option.
The sticky option decides how the widget is expanded. If its container cell is larger than the
size of the widget that it contains, the sticky option can be specified using one or more of
the N, S, E, and w options or the NW, NE, SW, and SE options.

Not specifying stickiness defaults stickiness to the center of the widget in the cell.

Let's have a look at demo code that illustrates some features of the grid geometry manager.
The code in 1.06.py generates a GUI, as shown in the following screenshot:

tk
Username
Password

Login

The following code (1.06.py) generates the preceding GUI:

import tkinter as tk
root = tk.Tk ()

tk.
tk.
.Entry (root) .grid(row=0, column=1, sticky=tk.E)
.Entry(root) .grid(row=1, column=1, sticky=tk.E)
.Button (root, text="Login").grid(row=2, column=1, sticky=tk.E)

tk
tk
tk

Label (root, text="Username").grid(row=0, sticky=tk.W)
Label (root, text="Password").grid(row=1, sticky=tk.W)

root.mainloop ()

The following is a description of the preceding code:

e Take a look at the grid position defined in terms of the row and column positions
for an imaginary grid table spanning the entire frame. See how the use of
sticky=tk.W on both the labels makes them stick on the left-hand side, thus
resulting in a clean layout.

¢ The width of each column (or the height of each row) is automatically decided by
the height or width of the widgets in the cell. Therefore, you need not worry
about specifying the row or column width as equal. You can specify the width for
widgets if you need that extra bit of control.

® You can use the sticky=tk.NSEW argument to make the widget expandable
and fill the entire cell of the grid.

[24]

Meet Tkinter Chapter 1

In a more complex scenario, your widgets may span across multiple cells in the grid. To
make a grid to span multiple cells, the grid method offers handy options such
as rowspan and columnspan.

Furthermore, you may often need to provide some padding between cells in the grid. The
grid manager provides the padx and pady options to provide padding that needs to be
placed around a widget.

Similarly, the ipadx and ipady options are used for internal padding. These options add
padding within the widget itself. The default value of external and internal padding is 0.

Let's have a look at an example of the grid manager, where we use most of the common
arguments to the grid method, such as row, column, padx, pady, rowspan, and
columnspan.

1.07.py produces a GUI, as shown in the following screenshot, to demonstrate how to use
the grid geometry manager options:

Find & Replace
Find: Find
Replace: Find All
[~ Match whole word only Direction: Replace

[~ Match Case = Up = Down Replace All

fiEe

[~ Wrap around

The following code (1.07.py) generates the preceding GUI:

import tkinter as tk
parent = tk.Tk()
parent.title('Find & Replace')

tk.Label (parent, text="Find:").grid(row=0, column=0, sticky='e')

tk.Entry (parent, width=60).grid(row=0, column=1, padx=2, pady=2,
sticky='we', columnspan=9)

tk.Label (parent, text="Replace:").grid(row=1, column=0, sticky='e"')

tk.Entry (parent) .grid(row=1, column=1, padx=2, pady=2, sticky='we',
columnspan=9)
tk.Button (parent, text="Find").grid(row=0, column=10, sticky='e' + 'w',
padx=2, pady=2)
tk.Button (parent, text="Find Al1l").grid(
row=1, column=10, sticky='e' + 'w', padx=2)
tk.Button (parent, text="Replace").grid(row=2, column=10, sticky='e' +

[25]

Meet Tkinter Chapter 1

'w', padx=2)

tk.Button (parent, text="Replace All").grid(

row=3, column=10, sticky='e' + 'w', padx=2)
tk.Checkbutton (parent, text='Match whole word only') .grid(

row=2, column=1, columnspan=4, sticky='w')
tk.Checkbutton (parent, text='Match Case') .grid(

row=3, column=1, columnspan=4, sticky='w')
tk.Checkbutton (parent, text='Wrap around') .grid(

row=4, column=1, columnspan=4, sticky='w')
tk.Label (parent, text="Direction:").grid(row=2, column=6, sticky='w')
tk.Radiobutton (parent, text='Up', value=1l).grid(

row=3, column=6, columnspan=6, sticky='w')
tk.Radiobutton (parent, text='Down', value=2).grid(

row=3, column=7, columnspan=2, sticky='e')
parent.mainloop ()

Note how just 14 lines of the core grid manager code generate a complex layout such as the
one shown in the preceding screenshot. On the other hand, developing this with the pack
manager would have been much more tedious.

Another grid option that you can sometimes use is the widget .grid_forget () method.
This method can be used to hide a widget from the screen. When you use this option, the
widget still exists at its former location, but it becomes invisible. The hidden widget may be
made visible again, but the grid options that you originally assigned to the widget will be
lost.

Similarly, there is a widget .grid_remove () method that removes the widget, except that
in this case, when you make the widget visible again, all of its grid options will be restored.

For a complete grid reference, type the following command in the Python shell:

>>> import tkinter
>>> help (tkinter.Grid)

Where should you use the grid geometry manager?

The grid manager is a great tool for the development of complex
layouts. Complex structures can be easily achieved by breaking the
container widget into grids of rows and columns and then placing the
widgets in grids where they are wanted. It is also commonly used to
develop different kinds of dialog box.

Now we will delve into configuring a grid's column and row sizes.

[26]

Meet Tkinter Chapter 1

Different widgets have different heights and widths. So, when you specify the position of a
widget in terms of rows and columns, the cell automatically expands to accommodate the
widget.

Normally, the height of all the grid rows is automatically adjusted so it's the height of its
tallest cell. Similarly, the width of all the grid columns is adjusted so it's equal to the width
of the widest widget cell.

If you then want a smaller widget to fill a larger cell or to stay on any one side of the cell,
you can use the sticky attribute on the widget to control this aspect.

However, you can override this automatic sizing of columns and rows by using
the following code:

w.columnconfigure (n, option=value, ...) AND
w.rowconfigure (n, option=value, ...)

Use these to configure the options for a given widget, w, in either the n" column or the
n" row, specifying values for the options, minsize, pad, and weight. Note that the
numbering of rows begins from 0 and not 1.

The options available are as follows:

Options | Descriptions

This is the minimum size of a column or row in pixels. If there is no widget in a
minsize | given column or row, the cell does not appear in spite of this minsize
specification.

This is the external padding in pixels that will be added to the specified column

pad or row over the size of the largest cell.
This specifies the relative weight of a row or column and then distributes the
extra space. This enables making the row or column stretchable.

weight For example, the following code distributes two-fifths of the extra space to the

first column and three-fifths to the second column:
w.columnconfigure (0, weight=2)
w.columnconfigure (1, weight=3)

[27]

Meet Tkinter Chapter 1

The columnconfigure () and rowconfigure () methods are often used to implement the
dynamic resizing of widgets, especially on resizing the root window.

You cannot use the grid and pack methods together in the
same container window. If you try doing that, your program will raise a
_tkinter.TclError error.

The place geometry manager

The place geometry manager is the most rarely used geometry manager in
Tkinter. Nevertheless, it has its uses in that it lets you precisely position widgets within
their parent frame by using the (x,y) coordinate system.

The place manager can be accessed by using the place () method on any standard widget.
The important options for place geometry include the following:

e Absolute positioning (specified in terms of x=N or y=N)
¢ Relative positioning (the key options include relx, rely, relwidth, and
relheight)

The other options that are commonly used with place include width and anchor(the
default is NW).

Refer to 1.08.py for a demonstration of common place options:

import tkinter as tk

root = tk.Tk ()

Absolute positioning

tk.Button (root, text="Absolute Placement") .place (x=20, y=10)

Relative positioning

tk.Button (root, text="Relative") .place(relx=0.8, rely=0.2, relwidth=0.5,
width=10, anchor=tk.NE)

root.mainloop ()

[28]

Meet Tkinter Chapter 1

You may not see much of a difference between the absolute and relative positions simply by
looking at the code or the window frame. However, if you try resizing the window, you
will observe that the Absolute Placement button does not change its coordinates, while the
Relative button changes its coordinates and size to accommodate the new size of the root
window:

tk

Absolute Placement |

Relative

For a complete place reference, type the following command in the Python shell:

>>> import tkinter
>>> help (tkinter.Place)

When should you use the place manager?

The place manager is useful in situations where you have to implement
custom geometry managers, or where the widget placement is decided by
the end user.

While the pack and grid managers cannot be used together in the same frame, the place
manager can be used with any geometry manager within the same container frame.

The place manager is rarely used because, if you use it, you have to worry about the exact
coordinates. If you make a minor change to a widget, it is very likely that you will have to
change the x,y values for other widgets as well, which can be very cumbersome. We will use
the place manager in chapter 7, Piano Tutor.

This concludes our discussion on geometry management in Tkinter.

In this section, you had a look at how to implement the pack, grid, and place geometry
managers. You also understood the strengths and weaknesses of each geometry manager.

[29]

Meet Tkinter Chapter 1

You learned that pack is suitable for a simple side-wise or top-down widget placement. You
also learned that the grid manager is best suited for the handling of complex layouts. You
saw examples of the place geometry manager and explored the reasons behind why it is
rarely used.

You should now be able to plan and execute different layouts for your programs using
these Tkinter geometry managers.

Events and callbacks - adding life
to programs

Now that you have learned how to add widgets to a screen and position them where you
want, let's turn our attention to the third component of GUI programming.

This addresses the question of how to make widgets functional.

Making widgets functional involves making them responsive to events such as the pressing
of buttons, the pressing of keys on a keyboard, and mouse clicks.

This requires associating callbacks with specific events. Callbacks are normally associated
with specific widget events using command binding rules, which are discussed in the
following section.

Command binding

The simplest way to add functionality to a button is called command binding, whereby a
callback function is mentioned in the form of command = some_callback in the widget
option. Note that the command option is available only for a few selected widgets.

Take a look at the following sample code:

def my_callback ():
do something when button is clicked

After defining the preceding callback, we can connect it to, say, a button with the
command option referring to the callback, as follows:

tk.Button (root, text="Click me", command=my_callback)

[30]

Meet Tkinter Chapter 1

A callback is a function memory reference (my_callback in the preceding example) that is
called by another function (which is But ton in the preceding example) and that takes the
first function as a parameter. Put simply, a callback is a function that you provide to another
function so that it can calling it.

Note that my_callback is passed without parentheses, (), from within the
widget command option, because when the callback functions are set it is necessary to pass a
reference to a function rather than actually call it.

If you add parentheses, (), as you would for any normal function, it would be called as
soon as the program runs. In contrast, the callback is called only when an event occurs (the
pressing of a button in this case).

Passing arguments to callbacks

If a callback does not take any argument, it can be handled with a simple function, such as
the one shown in the preceding code. However, if a callback needs to take arguments, we
can use the 1ambda function, as shown in the following code snippet:

def my_callback (argument)
#do something with argument

Then, somewhere else in the code, we define a button with a command callback that takes
some arguments, as follows:

tk.Button (root, text="Click", command=lambda: my_callback ('some argument'))

Python borrows a specific syntax from functional programming, called the 1ambda
function. The lambda function lets you define a single-line, nameless function on the fly.

The format for using 1ambda is as follows:

lambda arg: #do something with arg in a single line
Here's an example:

square = lambda x: x**2
Now, we can call the square method, as follows:

>> print (square (5)) ## prints 25 to the console

[31]

Meet Tkinter Chapter 1

Limitations of the command option

The command option that is available with the Button widget and a few other widgets is a
function that can make the programming of a click-of-a-button event easy. Many other
widgets do not provide an equivalent command binding option.

By default, the command button binds to the left-click and the spacebar. It does not bind to
the Return key. Therefore, if you bind a button by using the command function, it will react
to the space bar and not the Return key. This is counter-intuitive for many users. What's
worse is that you cannot change the binding of the command function easily. The moral is
that command binding, though a very handy tool, is not flexible enough when it comes to
deciding your own bindings.

This brings us to the next method for handling events.

Event binding

Fortunately, Tkinter provides an alternative event binding mechanism called bind () to let
you deal with different events. The standard syntax used to bind an event is as follows:

widget.bind (event, handler, add=None)

When an event corresponding to the event description occurs in the widget, it calls not only
the associated handler, which passes an instance of the event object as the argument, but
also the details of the event. If there already exists a binding for that event for this widget,
the old callback is usually replaced with the new handler, but you can trigger both the
callbacks by passing add="+" as the last argument.

Let's look at an example of the bind () method (code 1.09.py):

import tkinter as tk

root = tk.Tk ()

tk.Label (root, text='Click at different\n locations in the frame
below') .pack ()

def callback (event) :
print (dir (event))
print ("you clicked at", event.x, event.y)

frame = tk.Frame (root, bg='khaki', width=130, height=80)
frame.bind ("<Button-1>", callback)

frame.pack ()

root.mainloop ()

[32]

Meet Tkinter Chapter 1

The following is a description of the preceding code:

¢ We bind the Frame widget to the <Button-1> event, which corresponds to the
left-click. When this event occurs, it calls the callback function, passing an
object instance as its argument.

e We define the callback (event) function. Note that it takes the event
object generated by the event as an argument.

e We inspect the event object by using dir (event), which returns a sorted list of
attribute names for the event object passed to it. This prints the following list:

['__doc__'" , '"_module__' , 'char' , 'delta' , 'height' ,
'keycode' , 'keysym' , keysym_num' , 'num' , 'send_event' ,
'serial' , 'state' ,'time' , 'type' , 'widget' , 'width' , 'x' ,

'x_root' , 'y' , 'y_root ']

e From the attributes list generated by the object, we use two attributes, event . x
and event .y, to print the coordinates of the point of click.

When you run the preceding code (code 1.09.py), it produces a window, as shown in the
following screenshot:

th

Click at different
locations in the frame below

When you left-click anywhere in the yellow colored frame within the root window, it
outputs messages to the console. A sample message passed to the console is as follows:

['_doc__'", '_module__', 'char', 'delta', 'height', 'keycode', 'keysym',
'keysym_num', 'num', 'send_event', 'serial', 'state', 'time', 'type',
'widget', 'width', 'x', 'x_root', 'y', 'y_root']

You clicked at 63 36.

[33]

Meet Tkinter Chapter 1

Event patterns

In the previous example, you learned how to use the <Button-1> event to denote a left-
click. This is a built-in pattern in Tkinter that maps it to a left-click event. Tkinter has an
exhaustive mapping scheme that perfectly identifies events such as this one.

Here are some examples to give you an idea of event patterns:

The event pattern The associated event

<Button-1> Left-click of the mouse
<KeyPress-B> A keyboard press of the B key
<Alt-Control-KeyPress— KP_Delete>|A keyboard press of Alt + Ctrl + Del

In general, the mapping pattern takes the following form:

<[event modifier-]...event type [-event detail]>
Typically, an event pattern will comprise the following:

¢ An event type: Some common event types include Button,

ButtonRelease, KeyRelease, Keypress, FocusIn, FocusOut, Leave (When
the mouse leaves the widget), and MouseWheel. For a complete list of event
types, refer to the event types section at http://www.tcl.tk/man/tcl8.6/TkCmd/
bind.htm#M7.

¢ An event modifier (optional): Some common event modifiers include A1t, Any
(used like <Any-KeyPress>), Control, Double (used like <Double-Button-1>
to denote a double-click of the left mouse button), Lock, and shift. For a
complete list of event modifiers, refer to the event modifiers section at http:/
/www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6.

e The event detail (optional): The mouse event detail is captured by the number 1
for a left-click and the number 2 for a right-click. Similarly, each key press on the
keyboard is either represented by the key letter itself (say, B in <KeyPress-B>) or
by using a key symbol abbreviated as keysym. For example, the up arrow key on
the keyboard is represented by the keysym value of KP_Up. For a complete
keysym mapping, refer to https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm.

[34]

http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M7
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
http://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm#M6
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/bind.htm

Meet Tkinter Chapter 1

Let's take a look at a practical example of event binding on widgets (refer to code 1.10.py
for the complete working example):

tk

Button Bound to:
Keyboard Enter & Mouse Click

Entry is Bound to Mouseclick
. Focusin and Keypress Event

Canvas Bound to Motion Event
(Hover over the area
to see motion event)

Entry Widget Bound to
<Any KeyPress>

The following is a modified snippet of code; it will give you an idea of commonly
used event bindings:

widget
widget
widget
widget
widget
widget
widget
widget
widget
widget

.bind ("<KeyPress-KP_5>", callback)# bind to keypad number 5
.bind ("<Motion>", callback) # bind to motion over widget
.bind ("<Any-KeyPress>", callback) # bind to any keypress

.bind ("<Button-1>", callback) #bind widget to left mouse click
.bind ("<Button-2>", callback) # bind to right mouse click
.bind ("<Return>", callback)# bind to Return (Enter) Key
.bind ("<FocusIn>", callback) #bind to Focus in Event
.bind ("<KeyPress-A>", callback)# bind to keypress A
.bind ("<KeyPress-Caps_Lock>", callback)# bind to CapsLock keysym
.bind ("<KeyPress-F1>", callback)# bind widget to F1 keysym
(
(
(

Rather than binding an event to a particular widget, you can also bind it to the top-level
window. The syntax remains the same except that now you call it on the root instance of the
root window such as root .bind ().

[35]

Meet Tkinter Chapter 1

Binding levels
In the previous section, you had a look at how to bind an event to an instance of a widget.
This can be called an instance-level binding.

However, there may be times when you need to bind events to an entire application. At
times, you may want to bind an event to a particular class of widget. Tkinter provides the

following levels of binding options for this:

¢ Application-level binding: Application-level bindings let you use the
same binding across all windows and widgets of an application as long as any
one window of the application is in focus. The syntax for application-level

bindings is as follows:

widget.bind_all (event, callback, add=None)

The typical usage pattern is as follows:

root.bind_all ('<F1>"', show_help)

Application-level binding here means that, irrespective of the widget that is
currently under focus, pressing the F1 key will always trigger the show_help

callback as long as the application is in focus.

e Class-level binding: You can also bind events at a particular class level. This is
normally used to set the same behavior for all instances of a particular widget
class. The syntax for class-level binding is as follows:

w.bind_class(class_name, event, callback, add=None)
The typical usage pattern is as follows:
my_entry.bind_class ('Entry', '<Control-V>', paste)

In the preceding example, all the entry widgets will be bound to the <Control-v> event,
which will call a method named paste (event).

[36]

Meet Tkinter Chapter 1

Event propagation

Most keyboard and mouse events occur at the operating system level. The
event propagates hierarchically upward from its source until it finds a
window that has the corresponding binding. The event propagation does
not stop there. It propagates itself upwards, looking for other bindings
from other widgets, until it reaches the root window:. If it does reach the
root window and no bindings are discovered by it, the event is
disregarded.

Handling widget-specific variables

You need variables with a wide variety of widgets. You likely need a string variable to track
what the user enters into the entry widget or text widget. You most probably need Boolean
variables to track whether the user has checked off the Checkbox widget. You need integer
variables to track the value entered in a Spinbox or Slider widget.

In order to respond to changes in widget-specific variables, Tkinter offers its own variable
class. The variable that you can use to track widget-specific values must be subclassed from
this Tkinter variable class. Tkinter offers some commonly used predefined variables.

They are StringVar, IntVar, BooleanVar, and DoubleVar

You can use these variables to capture and play with the changes in the values of variables
from within your callback functions. You can also define your own variable type, if
required.

Creating a Tkinter variable is simple. You simply have to call the constructor:

my_string = tk.StringVar ()
ticked_yes = tk.BooleanVar ()
group_choice = tk.IntVar ()
volume = tk.DoubleVar ()

Once the variable is created, you can use it as a widget option, as follows:

tk.Entry (root, textvariable=my_string)

tk.Checkbutton (root, text="Remember Me", variable=ticked_yes)
tk.Radiobutton (root, text="Optionl", variable=group_choice,
value="optionl")

tk.Scale (root, label="Volume Control", variable=volume, from =0, to=10)

[371]

Meet Tkinter Chapter 1

Additionally, Tkinter provides access to the values of variables via the set () and get ()
methods, as follows:

my_var.set ("FooBar") # setting value of variable
my_var.get () # Assessing the value of variable from say a callback

A demonstration of the Tkinter variable class is available in the 1.11.py code file. The
code generates a window, as shown in the following screenshot:

tk
Employee Number: 120350
Lﬂglrl Passwurd: xxxxxxxxxxxxxxxx

w Remember Me Login

This concludes our brief discussion on events and callbacks. Here's a brief summary of the
things that we discussed:

e Command binding, which is used to bind simple widgets to certain functions
¢ Event binding using the widget .bind_all(event, callback,
add=None) method to bind keyboard and mouse events to your widgets and
invoke callbacks when certain events occur
e The passing of extra arguments to a callback using the 1ambda function

¢ The binding of events to an entire application or to a particular class of widget by
using bind_all () and bind_class ()

¢ Using the Tkinter variable class to set and get the values of widget-specific
variables

In short, you now know how to make your GUI program responsive to end-user requests!

Event unbinding and virtual events

In addition to the bind method that you previously saw, you might find the following two
event-related options useful in certain cases:

¢ Unbind: Tkinter provides the unbind option to undo the effect of an
earlier binding. The syntax is as follows:

widget.unbind (event)

[38]

Meet Tkinter Chapter 1

The following are some examples of its usage:

entry.unbind ('<Alt-Shift-5>")
root.unbind_all ('<F1>")
root.unbind_class ('Entry', '<KeyPress-Del>"')

e Virtual events: Tkinter also lets you create your own events. You can give these
virtual events any name that you want. For example, let's suppose that you want
to create a new event called <<commit>>, which is triggered by the F9 key. To
create this virtual event on a given widget, use the following syntax:

widget.event_add('<<commit>>', '<KeyRelease-F9>")

You can then bind <<commit>> to a callback by using a normal bind () method,
as follows:

widget.bind ('<<commit>>', callback)

Other event-related methods can be accessed by typing the following line in the Python
Terminal:

>>> import tkinter
>>> help (tkinter.Event)

Now that you are ready to delve into real application development with Tkinter, let's spend
some time exploring a few custom styling options that Tkinter offers. We will also have a
look at some configuration options that are commonly used with the root window.

Doing it in style

So far, we have relied on Tkinter to provide specific platform-based styling for our widgets.
However, you can specify your own styling of widgets, such as their color, font size, border
width, and relief. A brief introduction to styling features that are available in Tkinter is
supplied in the following section.

You may recall that we can specify widget options at the time of its instantiation, as follows:

my_button = tk.Button(parent, **configuration options)

Alternatively, you can specify the widget options by using configure () in the following
way:

my_button.configure (**options)

[39]

Meet Tkinter Chapter 1

Styling options are also specified as options to the widgets either at the time of creating the
widgets, or later by using the configure option.

Specifying styles
Under the purview of styling, we will cover how to apply different colors, fonts, border

widths, reliefs, cursors, and bitmap icons to widgets.

First, let's see how to specify the color options for a widget. You can specify the following
two types of color for most widgets:

¢ The background color
e The foreground color

You can specify the color by using hexadecimal color codes for the proportion of
red(r), green(g), and blue(b). The commonly used representations are #rgb (4 bits), # rrggbb
(8 bits), and #rrrgggbbb (12 bits).

For example, # £££ is white, #000000 is black, #£00 is red (R=0x £, G=0x0 , B=0x0
),#OOffOOngan(R=OxOO,G=Oxff,B=OxOOLand#OOOOOOfffiSbhw(R=OxOOO
, G=0x000,B=0xfff).

Alternatively, Tkinter provides mapping for standard color names. For a list of predefined
named colors, visit http://wiki.tcl.tk/37701 Or http://wiki.tcl.tk/16166.

Next, let's have a look at how to specify fonts for our widgets. A font can be represented as
a string by using the following string signature:

{font family} fontsize fontstyle
The elements of the preceding syntax can be explained as follows:

e font family: Thisis the complete font family long name. It should preferably
be in lowercase, such as font="{nimbus roman} 36 bold italic".

e fontsize: This is in the printer's point unit (pt) or pixel unit (px).
e fontstyle: This is a mix of normal/bold/italic and underline/overstrike.

The following are examples that illustrate the method of specifying fonts:

widget.configure (font='Times 8')
widget.configure (font="'Helvetica 24 bold italic')

[40]

http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/37701
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166
http://wiki.tcl.tk/16166

Meet Tkinter Chapter 1

If you set a Tkinter dimension in a plain integer, the measurements take place in pixel units.
Alternatively, Tkinter accepts four other measurement units, which are m(millimeters),
c(centimeters), i(inches), and p(printer's points, which are about 1/72").

For instance, if you want to specify the wrap length of a button in terms of a printer's point,
you can specify it as follows:

button.configure (wraplength="36p")

The default border width for most Tkinter widgets is 2 px. You can change the border width
for widgets by specifying it explicitly, as shown in the following line:

button.configure (borderwidth=5)

The relief style of a widget refers to the difference between the highest and
lowest elevations in a widget. Tkinter offers six possible relief styles—f1lat, raised,
sunken, groove, solid, and ridge:

button.configure (relief="raised"')

Tkinter lets you change the style of the mouse cursor when you hover over a particular
widget. This is done by using the option cursor, as follows:

button.configure (cursor='cross"')

For a complete list of available cursors, refer to https://www.tcl.tk/man/tcl8.6/TkCmd/

cursors.htm.

Though you can specify the styling options at each widget level, sometimes it may be
cumbersome to do so individually for each widget. Widget-specific styling has the
following disadvantages:

e It mixes logic and presentation into one file, making the code bulky and difficult
to manage

¢ Any change in styling has to be applied to each widget individually

e It violates the don't repeat yourself (DRY) principle of effective coding, as you
keep specifying the same style for a large number of widgets

Fortunately, Tkinter now offers a way to separate presentation from logic and specify styles
in what is called the external option database. This is just a text file where you can specify
common styling options.

[41]

https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/cursors.htm

Meet Tkinter

Chapter 1

A typical option database text file looks like this:

*background: AntiqueWhitel

*Text*background: #454545

*Button*foreground: grayb5
*Button*relief:
*Button*width:

raised

In its simplest use, the asterisk (*) symbol here means that the particular style is applied to
all the instances of the given widget. For a more complex usage of the asterisk in styling,
refer to http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html.

These entries are placed in an external text (. txt) file. To apply this styling to a particular
piece of code, you can simply call it by using the option_readfile () call early in your
code, as shown here:

root.option_readfile('optionDB.txt")

Let's have a look at an example (see code 1.12.py) of using this external styling text file in
a program:

import tkinter as tk
root = tk.Tk()
root.configure (background="'#4D4D4D"') #top level styling
connecting to the external styling optionDB.txt
root.option_readfile('optionDB.txt")

#widget specific styling

mytext = tk.Text (root,
mytext.insert (tk.END,

mytext.grid (row=0,
all the below
.Button (
.Button (
.Button (root,
(
(

tk
tk
tk

tk.

tk

.Button

background='#101010"', foreground="#D6D6D6",

borderwidth=18, relief='sunken',width=17, height=5)

root,
root,
Button (root,
root,

cursor style

tk.
tk.
tk.
tk.

Button (root,
Button (root,
Button (root,
Button (root,

"Style is knowing who you are, what you want to

say, and not giving a damn.")

column=0, columnspan=6, padx=5, pady=5)

widgets get their styling from optionDB.txt file

text="*"') .grid(row=1, column=1)
text="""') .grid(row=1, column=2)
text="#"') .grid(row=1, column=3)
text="'<") .grid(row=2, column=1)
text="'0K', cursor='target').grid(row=2, column=2)#changing
text="'>"') .grid(row=2, column=3)
text="+"') .grid(row=3, column=1)
text="'v') .grid(row=3, column=2)
text="-") .grid(row=3, column=3)

for i in range(9):

tk.Button (root,

root.mainloop ()

text=str (i+1)) .grid(row=4+1i//3, column=1+1i%3)

[42]

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/resource-lines.html

Meet Tkinter Chapter 1

The following is a description of the preceding code:

¢ The code connects to an external styling file called opt ionDB. txt that defines
common styling for the widgets.

¢ The next segment of code creates a Text widget and specifies styling on
the widget level.

¢ The next segment of code has several buttons, all of which derive their styling
from the centralized optionDB.txt file. One of the buttons also defines a custom
cursor.

Specifying attributes such as font sizes, the border width, the widget width, the widget
height, and padding in absolute numbers, as we have done in the preceding example, can
cause some display variations between different operating systems such as Ubuntu,
Windows, and Mac respectively, as shown in the following screenshot. This is due to
differences in the rendering engines of different operating systems:

' © O O [« Style...

dall not
damn .

= || = #
< || OK >
] I [
1 || 2 3
4« || s 6
7 || = 9

[43]

Meet Tkinter Chapter 1

When deploying cross-platform, it is better to avoid specifying
attribute sizes in absolute numbers. It is often the best choice to let the
platform handle the attribute sizes.

Some common root window options

Now that we are done discussing styling options, let's wrap up with a discussion on some
commonly used options for the root window:

Method Description

You can specify the size and location of
*root .geometry ('142x280+150+200") a root window by using a string of the
widthxheight + xoffset + yoffset form.

self.root.wm_iconbitmap ('mynewicon.ico') OR This changes the title bar icon to something
self.root.iconbitmap ('mynewicon.ico ') that is different from the default Tk icon.

This removes the root border frame. It
root.overrideredirect (1) hides the frame that contains the minimize,
maximize, and close buttons.

Let's explain these styling options in more detail:

® root.geometry ('142x280+150+200"): Specifying the geometry of the
root window limits the launch size of the root window. If the widgets do not fit
in the specified size, they get clipped from the window. It is often better not to
specify this and let Tkinter decide this for you.

e self.root.wm_iconbitmap ('my_icon.ico') or
self.root.iconbitmap ('my_icon.ico '):This option is only applicable to
Windows. Unix-based operating systems do not display the title bar icon.

Getting interactive help

This section applies not only for Tkinter, but also for any Python object for which you may
need help.

Let's say that you need a reference to the Tkinter pack geometry manager. You can get
interactive help in your Python interactive shell by using the help command, as shown in
the following command lines:

>>> import tkinter
>>> help (tkinter.Pack)

[44]

Meet Tkinter Chapter 1

This provides detailed help documentation of all the methods defined under the Pack class
in Tkinter.

You can similarly receive help for all the other individual widgets. For instance, you can
check the comprehensive and authoritative help documentation for the Label widget in the
interactive shell by typing the following command:

>>>help (tkinter.Label)
This provides a list of the following:

e All the methods defined in the Label class
¢ All the standard and widget-specific options for the Label widget
e All the methods inherited from other classes

Finally, when in doubt regarding a method, look into the source code of Tkinter, which is
located at <location-of-python-installation>\11ib\. For instance, the Tkinter source
code is located in the /usr/1lib/python3.6.3/tkinter directory on my Linux Mint
operating system. You might also find it useful to look at the source code implementation
of various other modules, such as the color chooser, file dialogs, and ttk

modules, and the other modules located in the aforementioned directory.

Summary

This brings us to end of this chapter. This chapter aimed to provide a high-level overview of
Tkinter. We worked our way through all the important concepts that drive a Tkinter
program.

You now know what a root window is and how to set it up. You also know the 21 core
Tkinter widgets and how to set them up. We also had a look at how to lay out our programs
by using the Pack, Grid, and Place geometry managers, and how to make our programs
functional by using events and callbacks. Finally, you saw how to apply custom styles
to GUI programs.

To summarize, we can now start thinking about making interesting, functional, and stylish
GUI programs with Tkinter! In the next chapter, we will build our first real application - a
Text editor.

[45]

Meet Tkinter Chapter 1

QA section

Before you proceed to the next chapter, make sure you can answer these questions to your
satisfaction:

What is a root window?

What is the main loop?

How do you create a root window?

What are widgets? How do you create widgets in Tkinter?

Can you list or identify all available widgets in Tkinter?

What are geometry managers used for?

Can you name all the available geometry managers in Tkinter?
What are events in a GUI program?

What are callbacks? How are callbacks different from regular functions?
How do you apply callbacks to an event?

How do you style widgets using styling options?

What are the common configuration options for the root window?

Further reading

It would be a good idea to modify the examples from this chapter to lay out the widgets in
different ways or to tweak the code to function in other ways to get your feet wet.

We recommend that you take a look at the documentation for all three geometry managers
in your Python shell using the following commands:

>>>
>>>
>>>
>>>

import tkinter

help (tkinter.Pack)
help (tkinter.Grid)
help (tkinter.Place)

You can also find an excellent documentation of Tkinter at http://infohost.nmt.edu/tcc/
help/pubs/tkinter/web/index.html.

[46]

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/index.html

Making a Text Editor

We got a fairly high-level overview of Tkinter in chapter 1, Meet Tkinter. Now that we
know some things about Tkinter's core widgets, geometry management, and the binding of
commands and events to callbacks, let's use our skills in this project to create a text editor.

We will, in the process of creating a text editor, take a closer look at some widgets and learn
how to tweak them to meet our specific needs.

The following are the key objectives for this project:

¢ Delving into some commonly used widgets, such as the Menu, Menubutton, Text,
Entry, Checkbutton, and Button widgets

¢ Exploring the filedialog and messagebox modules of Tkinter
¢ Learning the vital concepts of indexing and tagging, as applied to Tkinter
e Identifying the different types of Toplevel windows

Making a Text Editor Chapter 2

Project overview

The goal here is to build a text editor with some nifty features. Let's call it the Footprint
Editor:

Footprint Editor
File Edit View About

DI) o o SN

A foolish consistency is the hobgoblin of [%
little minds, adored by little statesmen
and philosophers and divines.

With consistency a great soul has simply
nothing to do. He may as well concern
himself with his shadow on the wall.

Speak what you think now in hard words, an
® |to-morrow speak what to-mjne: 9 | Column: 1
E e 0

| e R

[= == B = T S W S]

We intend to include the following features in the text editor:

¢ Creating new documents, opening and editing existing documents, and saving
documents

¢ Implementing common editing options such as cut, copy, paste, undo, and redo
¢ Searching within a file for a given search term
¢ Implementing line numbering and the ability to show/hide line numbers

¢ Implementing theme selection to let a user choose custom color themes for the
editor

¢ Implementing the about and help windows

Getting started - setting up the editor
skeleton

Our first goal is to implement the broad visual elements of the text editor. As programmers,
we have all used text editors to edit code. We are mostly aware of the common GUI
elements of a text editor. So, without further ado, let's get started.

[48]

Making a Text Editor Chapter 2

The first phase implements the Menu, Menubutton, Label, Button, Text, and

Scrollbar widgets. Although we'll cover all of these in detail, you might find it helpful to
look at the widget-specific options in the documentation of Tkinter maintained by

its author, Frederick Lundh, at http://effbot.org/tkinterbook/. You can also use the
interactive shell, as discussed in chapter 1, Meet Tkinter.

You might also want to bookmark the official documentation page of Tcl/Tk at http://www.
tcl.tk/man/tcl8.6/TkCmd/contents.htm. This site includes the original Tcl/Tk reference.
While it does not relate to Python, it provides a detailed overview of each widget and is a
useful reference. Remember that Tkinter is just a wrapper around Tk.

In this iteration, we will complete the implementation of broader visual elements of the
editor.

We will use the pack () geometry manager to place all the widgets. We have chosen the
pack manager because it is ideally suited for the placing of widgets, either in a side-by-
side or top-down position.

Fortunately, in a text editor, we have all the widgets placed either side by side or in top-
down positions. Thus, it is beneficial to use the pack manager. We can do the same thing
with the grid manager as well.

A note on code styling

One of the key insights of the Python community is that code is read much
more often than it is written. Following good naming conventions and
consistency in code styling are key to maintaining readable and scalable
programs. We will try to stick to the official Python styling guide, which is
specified in the PEP8 documentation at https://www.python.org/dev/
peps/pep-0008.

Some important styling conventions that we will stick to include the following:

¢ Use four spaces per indentation level

e Variable and function names will be lowercase, with words separated by
underscores

e Class names will use the CapWords convention

Let's start by adding the Toplevel window using the following code:

from tkinter import Tk
root = Tk()

all our code goes here
root.mainloop ()

[49]

http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://effbot.org/tkinterbook/
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
http://www.tcl.tk/man/tcl8.6/TkCmd/contents.htm
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Making a Text Editor Chapter 2

Note a slight difference in the way we import tkinter here. In the last chapter, we
imported tkinter using this code:

import tkinter as tk

Since we used tk as an alias, we had to append the alias name to every call made to a
class defined in Tkinter, asin tk.Tk (), tk.Frame, tk.Button, tk.END, and so on.

From this chapter onward, we will directly import the individual class that we will need for
a given program. So, now that we need the Tk () class from Tkinter, we directly import it
into our namespace as:

from tkinter import Tk

This, in turn, means that we can now directly reference it as the Tk class in our program
without needing to append any alias name to it as in root = Tk ().

A third method is to import all (*) the classes from Tkinter into the namespace by using the
following command:

from tkinter import *

The asterisk symbol means we want everything from tkinter to be imported into the
namespace, regardless of whether we use it. This is, however, bad programming practice as
it leads to namespace pollution. Furthermore, in larger programs, it can be hard to tell
which module a particular class has been imported from, thus making debugging a difficult
task.

Adding a menu and menu items

Menus offer a very compact way of presenting a large number of choices to the user
without cluttering the interface. Tkinter offers the following two widgets to handle menus:

e Menu widget: This appears at the top of applications, which is always visible to
end users

e Menu items: These show up when a user clicks on a menu

We will use the following code to add Toplevel menu buttons:

my_menu = Menu (parent, **options)

[50]

Making a Text Editor Chapter 2

For example, to add a File menu, we will use the following code:

Adding Menubar in the widget

menu_bar = Menu (root)

file_menu = Menu (menu_bar, tearoff=0)

all file menu-items will be added here next
menu_bar.add_cascade (label='File', menu=file_menu)
root.config (menu=menu_bar)

The following screenshot is the result of the preceding code (2.01.py):

Footprint Editor
File Edit View About

Similarly, we will add the Edit, View, and About menus (2.01.py).

We will also define a constant as follows:

PROGRAM_NAME = " Footprint Editor "

Then, we'll set the root window tile, as follows:

root.title (PROGRAM_NAME)

Most Linux platforms support tear-off menus. When tearoff is set to 1 (enabled), the
menu appears with a dotted line above the menu options. Clicking on the dotted line
enables the user to literally tear off or separate the menu from the top. However, as this is
not a cross-platform feature, we have decided to disable tear-off, marking it as tearoff =
0

[51]

Making a Text Editor Chapter 2

Adding menu items

Next, we will add menu items in every individual menu. Not surprisingly, the code for the

menu items needs to be added in the respective menu instance, as shown in the following
screenshot:

Footprint Editor — + X Footprint Editor — + X Footprint Editor — + X
File | Edit View About File Edit| View About File Edit View About
|New Ctrl+N

™Redo Ctri+Y Al Help m

TQpen Ctrl+0
b Save Ctrl+5
Save as Shift+Ctrl+5

% Cut Ctri+X
Copy Ctrl+C
Paste Ctrl+V

Exit Alt+F4

Eind Ctri+F

o Select all Ctrl+A
Fi I 7

|-l

In our example, we will add menu items to the File, Edit, and About menus (2.02.py).

The View menu has certain menu item variations, which will be tackled in the following
section and are therefore not dealt with here.

Menu items are added by using the add_command () method. The format used to add menu
items is as follows:

my_menu.add_command (label="Menu Item Label", accelerator='KeyBoard
Shortcut', compound='left', image=my_image, underline=0, command=callback)

For example, you can create the Undo menu item by using the following syntax:

edit_menu.add_command (label="Undo", accelerator='Ctrl + Z',
compound="'left', image=undo_icon, command=undo_callback)

[52]

Making a Text Editor Chapter 2

Some new menu-specific options that are introduced in the preceding code are as follows:

e accelerator: This option is used to specify a string, typically a
keyboard shortcut, that can be used to invoke a menu. The string specified as
an accelerator appears next to the text of the menu item. Please note that
this does not automatically create bindings for the keyboard shortcut. We
will have to manually set them up. This will be discussed later.

e compound: Specifying a compound option for a menu item lets you add images
beside a menu label. A specification such as compound="'1left', label= 'Cut’,
image=cut_icon means that the cut icon will appear to the left of the Cut menu
label. The icons that we will use here are stored and referenced in a separate
folder called icons.

e underline: The underline option lets you specify the index of a character in
the menu text that needs to be underlined. The indexing starts at 0, which means
that specifying underline=1 underlines the second character of the text. Besides
underlining, Tkinter also uses it to define the default bindings for the keyboard
traversal of menus. This means that we can select the menu either with the mouse
pointer or with the Alt + <character_at_the_underlined_index> shortcut.

To add the New menu item in the File menu, use the following code:

file_menu.add_command (label="New", accelerator='Ctrl+N', compound='left',
image=new_file_icon, underline=0, command=new_file)

Menu separators

Occasionally, in menu items, you will come across code such

as my_menu.add_separator (). This widget displays a separator bar and
is solely used to organize similar menu items in groups, separating groups
by horizontal bars.

[53]

Making a Text Editor Chapter 2

Next, we will add a Frame widget to hold the shortcut icons. We will also add a Text widget
to the left to display line numbers, as shown in the following screenshot (2. 02 . py):

Footprint Editor - + X
File Edit View About

|

| I ¥

A Frame widget to hold icons

§

A Text widget to hold line numbers

When working with the pack geometry manager, it is important to add

widgets in the order in which they will appear because pack () uses the
concept of available space to fit the widgets. This is why the text content
widget will appear lower in the code compared to the two label widgets.

Having reserved the space, we can later add shortcut icons or line numbers and keep the
Frame widget as the parent widget. Adding frames is easy; we have done that in the past.
The code is as follows (refer to 2. 02 .py):

shortcut_bar = Frame (root, height=25, background='light sea green')
shortcut_bar.pack (expand='no', fill='x")

line_number_bar = Text (root, width=4, padx=3, takefocus=0, border=0,
background='khaki', state='disabled', wrap='none')
line_number_bar.pack (side="left', fill='y"')

We have applied a background color to these two widgets, for now, to differentiate them
from the body of the Toplevel window.

Lastly, let's add the main Text widget and the Scrollbar widget, as follows (2.02.py):

content_text = Text (root, wrap='word')
content_text.pack (expand='yes', fill='both')
scroll _bar = Scrollbar (content_text)

content_text.configure (yscrollcommand=scroll_bar.set)
scroll_bar.config(command=content_text.yview)
scroll_bar.pack(side='right', fill='y')

[54]

Making a Text Editor Chapter 2

The code is similar to how we instantiated all the other widgets so far. However, note that
the scrollbar is configured to yview of the Text widget, and the Text widget is configured to
connect to the Scrollbar widget. This way, the widgets are cross-connected to each other.

Now, when you scroll down the Text widget, the scrollbar reacts to it. Alternatively, when
you move the scrollbar, the Text widget reacts in turn.

Implementing the View menu

Tkinter offers the following three varieties of menu item:

¢ Checkbutton menu items: These let you make a yes/no choice
by checking/unchecking the menu item

¢ Radiobutton menu items: These let you choose an option from many different
options

¢ Cascade menu items: These menu items only open up to show another list of
choices

The following View menu shows these three menu item types in action:

Footprint Editor
File Edit View About

- v Show Line Number

" w Show Cursor Location at Bottom
Highlight Current Line

Themes I Aquamarine
Bold Beige
Cobalt Blue
« Default
Greygarious
Night Mode
Olive Green

id

The first three menu items in the View menu let users make a definite yes or no choice by
checking or unchecking thems. These are examples of the Checkbutton menu.

[551]

Making a Text Editor Chapter 2

The Themes menu item in the preceding screenshot is an example of a Cascade menu.
Hovering over this Cascade menu simply opens another list of menu items. However, we
can also bind a menu item by using the postcommand=callback option. This can be used
to manage something just before bringing up the cascading menu item's contents and is
often used for dynamic list creation.

Within the Cascade menu, you are presented with a list of choices for your editor's theme.
However, you can only select one theme. Selecting one theme deselects any previous
selections. This is an example of the Radiobutton menu.

We will not present the entire code here (refer to the 2. 03. py code in the code bundle).
However, the example code used to add these three types of menu item is as follows:

view_menu.add_checkbutton (label="Show Line Number", variable=show_line_no)
view_menu.add_cascade (label="Themes", menu=themes_menu)
themes_menu.add_radiobutton (label="Default", variable=theme_name)

Now, we need to track whether a selection has been made by adding a variable, which can
be Booleanvar (), IntVar (), or Stringvar (), as discussed in chapter 1, Meet Tkinter.

This concludes our first iteration. In this iteration, we laid down the majority of the visual
elements of the text editor. Now it's time to add some functionalities to the editor.

Adding a built-in functionality

Tkinter's Text widget comes with some handy built-in functionalities to handle common
text-related functions. Let's leverage these functionalities to implement some common
features in the text editor.

Let's start by implementing the cut, copy, and paste features. We now have the
editor GUI ready. If you open the program and play with the Text widget, you will see
that you can perform basic functions such as cut, copy, and paste in the text area by
using Ctrl + X, Ctrl + C, and Ctrl + V, respectively. All of these functions exist without
us having to add a single line of code for these functionalities.

The Text widget clearly comes with these built-in events. Now, we simply want to connect
these events to their respective menu items.

[561]

Making a Text Editor Chapter 2

The documentation of the Tcl/Tk universal widget methods tells us that we can
trigger events without an external stimulus by using the following command:

widget.event_generate (sequence, **kw)

To trigger the Cut event, all we need is the following line in the code:

content_text.event_generate ("<<Cut>>")

Let's call it by using a cut function and associate it with the Cut menu by using the callback
command (2.04.py):

def cut () :
content_text.event_generate ("<<Cut>>")

Then, define a callback command from the existing Cut menu, as follows:

edit_menu.add_command (label="'Cut', accelerator='Ctrl+X', compound='left',
image=cut_icon, command=cut)

Similarly, trigger the copy and paste functions from their respective menu items.

Next, we will move on to the implementation of the undo and redo features. The Tcl/Tk
text documentation tells us that the Text widget has an unlimited Undo and Redo
mechanism provided we set the undo option to true or 1. To leverage this option, let's first
set the Text widget's undo option to t rue or 1, as shown in the following code:

content_text = Text (root, wrap='word', undo=1)

Now, if you open the text editor and try out the undo feature by using Ctrl + Z, it should
work well. Now, we only have to associate the events to functions and call back the
functions from the Undo menu. This is similar to what we did for cut, copy, and paste.
Refer to the codein 2.03.py.

However, redo has a little quirk that needs to be addressed. By default, redo is not bound
to the Ctrl + Y keys. Instead, Ctrl + Y is bound to the paste functionality. This is not how we
expect the binding to behave, but it exists due to some historical reasons related to Tcl/Tk.

Fortunately, it is easy to override this functionality by adding an event binding, as follows:

content_text.bind('<Control-y>', redo) # handling Ctrl + small-case y
content_text.bind('<Control-Y>', redo) # handling Ctrl + upper-case y

[571

Making a Text Editor Chapter 2

Since an event binding like the one in the preceding code sends an event argument, the
undo function must be able to handle this incoming parameter. Therefore, we'll add the
event=None optional parameter to the redo function, as follows (2.04.py):

def redo (event=None) :
content_text.event_generate ("<<Redo>>")
return 'break'

Events propagate from the operating system level and are accessible to the window that
subscribes to the event or wants to make use of it. The return 'break' expression in the
preceding function tells the system that it has performed the event and that it should not be
propagated further.

This prevents the same event from firing the paste event even though it is the default
behavior in Tkinter. Now, Ctrl + Y fires the redo event instead of firing the paste event.

In fact, once we have performed an event, we do not want it to propagate further. Thus, we
will add return break to all event-driven functions.

Indexing and tagging

Though we managed to leverage some built-in functionalities to gain a quick advantage, we
need more control over the text area so that we can bend it to our will. This will require the
ability to target each character or text location with precision.

We will need to know the exact position of each character, the cursor, or the selected area in
order to do anything with the contents of the editor.

The Text widget offers us the ability to manipulate its content using index, tags, and mark,
which let us target a position or place within the text area for manipulation.

Index

Indexing helps you target a particular place within a piece of text. For example, if you want
to mark a particular word in bold, red, or in a different font size, you can do so if you know
the index of the starting point and the index of the endpoint that needs to be targeted.

[581]

Making a Text Editor

Chapter 2

The index must be specified in one of the following formats:

The index format | Description
X.y This refers to the character at row x and column vy.
ox This refers to the character that covers the x, y coordinate within the
Y text's window.
end This refers to the end of the text.
mark This refers to the character after a named mark.
. This refers to the first character in the text that has been tagged with a
tag.first)
given tag.
This refers to the last character in the text that has been tagged with a
tag.last

given tag.

selection (SEL_
FIRST, SEL_LAST)

This corresponds to the current selection. The SEL_FIRST and SEL_LAST
constants refer to the start position and end position in the selection.
Tkinter raises a Tc1Error exception if there is no selection.

window_name

This refers to the position of the embedded window
named window_name.

image_name

This refers to the position of the embedded image named image_name.

INSERT

This refers to the position of the insertion cursor.

CURRENT

This refers to the position of the character that is closest to the mouse
pointer.

Note a small quirk here. The counting of rows in a Text widget starts at 1, while
the counting of columns starts at 0. Therefore, the index for the starting position of the Text
widget is 1.0 (that is, row number 1 and column number 0).

An index can be further manipulated by using modifiers and submodifiers. Some examples
of modifiers and submodifiers are as follows:

e end - 1

charsorend - 1 c:This refers to the index of the character before

the one at the end

e insert +5lines: This refers to the index five lines ahead of the insertion cursor

e insertwordstart - 1 c: This refers to the character just before the first one in
a word containing the insertion cursor

e end linestart: This refers to the index of the line start of the end line

[591]

Making a Text Editor Chapter 2

Indexes are often used as arguments to functions. Refer to the following list for some
examples:

e my_text.delete(l.0,END): This means that you can delete from line 1 , column
0 until the end
e my_text.get(1.0, END): This gets the content from 1.0 (beginning) to the end

e my_text.delete('insert-1c’, INSERT): This deletes a character at the insertion
cursor

Tags

Tags are used to annotate text with an identification string that can then be used to
manipulate the tagged text. Tkinter has a built-in tag called SEL, which is automatically
applied to the selected text. In addition to SEL, you can define your own tags. A text range
can be associated with multiple tags, and the same tag can be used for many different text
ranges.

Here are some examples of tagging:

my_text.tag_add('sel', '1.0', 'end') # add SEL tag from start(1.0) to end
my_text.tag_add('danger', "insert linestart", "insert lineend+1c")
my_text.tag_remove ('danger', 1.0, "end")

my_text.tag_config('danger', background=red)
my_text.tag_config('outdated', overstrike=1)

You can specify the visual style for a given tag with tag_config, using options such as
background (color), bgstipple (bitmap), borderwidth (distance), fgstipple (bitmap),
font (font), foreground (color), justify (constant), lmarginl (distance), lmargin2
(distance), of fset (distance), overstrike

(flag), relief (constant), rmargin (distance), spacingl (distance), tabs (string),
underline (flag), and wrap (constant).

For a complete reference about text indexing and tagging, type the following command into
the Python interactive shell:

>>> import Tkinter
>>> help (Tkinter.Text)

Equipped with a basic understanding of indexing and tagging, let's implement some more
features in the code editor.

[60]

Making a Text Editor Chapter 2

Implementing the Select All feature

We know that Tkinter has a built-in sel tag that applies a selection to a given text range.
We want to apply this tag to the entire text in the widget.

We can simply define a function to handle this, as follows (2.05. py):

def select_all (event=None) :
content_text.tag_add('sel', '1.0', 'end')
return "break"

After doing this, add a callback to the select A1l menu item:

edit_menu.add_command (label='Select All', underline=7,
accelerator='Ctrl+A', command=select_all)

We also need to bind the function to the Ctrl + A keyboard shortcut. We do this by using the
following key bindings (2.05.py):

content_text.bind('<Control-A>"', select_all)
content_text.bind('<Control-a>"', select_all)

The coding of the Select All feature is complete. To try it out, add some text to the text
widget and then click on the menu item, Select All, oruse Ctrl+ A (accelerator
shortcut key).

Implementing the Find Text feature

Next, let's code the Find Text feature (2.05.py). The following screenshot shows an
example of the Find Text feature:

[61]

Making a Text Editor Chapter 2

File Edit View About

Founded in 2064 in Birmingham, UK, Packt's mission 1%
to help the world put software to work in new ways,
through the delivery of effective learning and

i

2 matches found X

; Find All: [Fpckt | Eind Al

v Ignore Case

5
!

Working towards that vision, Packt Publisher has
published over 5880 books and videos so far,
providing IT professionals with the actionable
knowledge they need to get the job done - whether |4

Here's a quick summary of the desired functionality. When a user clicks on the Find menu
item, a new Toplevel window opens up. The user enters a search keyword and specifies
whether the search needs to be case-sensitive. When the user clicks on the Find All button,
all matches are highlighted.

To search through the document, we rely on the text_widget.search () method. The
search method takes in the following arguments:

search (pattern, startindex, stopindex=None, forwards=None, backwards=None,
exact=None, regexp=None, nocase=None, count=None)

For the editor, define a function called find_text and attach it as a callback to the Find
menu (2.05.py):

edit_menu.add_command (label='Find',underline= 0, accelerator='Ctrl+F',
command=find_text)

Also, bind it to the Ctrl + F shortcut, as follows:

content_text.bind('<Control-£f>', find_text)
content_text.bind('<Control-F>"', find_text)

Then, define the find_text function, as follows (2.05.py):

def find_text (event=None) :
search_toplevel = Toplevel (root)
search_toplevel.title ('Find Text')
search_toplevel.transient (root)
Label (search_toplevel, text="Find All:").grid(row=0,
column=0, sticky="e"')
search_entry_widget = Entry (search_toplevel, width=25)

[62]

Making a Text Editor Chapter 2

search_entry_widget.grid(row=0, column=1, padx=2, pady=2,
sticky='we')
search_entry_widget.focus_set ()
ignore_case_value = IntVar()
. more code here to crate checkbox and button
def close_search_window () :
content_text.tag_remove ('match', '1.0', END)
search_toplevel.destroy ()
search_toplevel.protocol ('WM_DELETE_WINDOW',
close_search_window)
return "break"

The following is a description of the preceding code (2.05.py):

e When a user clicks on the Find menu item, it invokes a find_text callback.

e The first four lines of the find_text () function create a new Toplevel window,
add a window title, specify its geometry (size, shape, and location), and set it as a
transient window. Setting it as a transient window means that it is always drawn
on top of its parent or root window. If you comment out this line and click on the
root editor window, the Find window will go behind the root window.

¢ The next eight lines of code are pretty self-explanatory; they set the widgets of the
Find window. They add the Label, Entry, Button, and Checkbutton widgets, and
set up the search_stringand ignore_case_value variables to track the value
a user enters into the Entry widget and whether the user has checked
off Checkbutton. The widgets are arranged by using the grid geometry manager
to fit into the Find window.

¢ The Find All button has a command option that calls a search_output function,
passing the search string as the first argument and whether the search needs to be
case-sensitive as its second argument. The third, fourth, and fifth arguments pass
the Toplevel window, the Text widget, and the Entry widget as parameters.

e We override the Close button of the Find window and redirect it to a callback
named close_search (). The close_search function is defined within the
find_text function. This function takes care of removing the match tag that was
added during the search. If we do not override the Close button and remove
these tags, the matched string will continue to be marked in red and yellow even
after the search has ended.

[63]

Making a Text Editor Chapter 2

Next, we define the search_output function, which does the actual searching and
adds the match tag to the matching text. The code for this is as follows:

def search_output (needle, if_ignore_case, content_text,
search_toplevel, search_box):

content_text.tag_remove ('match', '1.0', END)
matches_found = 0
if needle:
start_pos = '1.0"
while True:
start_pos = content_text.search(needle, start_pos,

nocase=1if_ignore_case, stopindex=END)
if not start_pos:
break
end_pos = '{}+{}c'.format (start_pos, len(needle))
content_text.tag_add('match', start_pos, end_pos)
matches_found += 1
start_pos = end_pos
content_text.tag_config('match', foreground='red', background='yellow')
search_box.focus_set ()
search_toplevel.title('{} matches found'.format (matches_found))

The following is a description of the preceding code:

e This part of the code is the heart of the search function. It searches through the
entire document by using the while True loop, breaking out of the loop only if
no more text items remain to be searched.

¢ The code first removes the previous search-related match tags if there are any, as
we do not want to append the results of the new search to the previous search
results. The function uses the search () method, which is provided in Tkinter in
the Text widget. The search () method takes the following arguments:

search (pattern, index, stopindex=None, forwards=None,
backwards=None, exact=None, regexp=None, nocase=None, count=None)

e The search () method returns the starting position of the first match. We store it
in a variable named start_pos, calculate the position of the last character in the
matched word, and store it in the end_pos variable.

e For every search match that it finds, it adds the match tag to the text ranging from
the first position to the last position. After every match, we set the value of
start_pos to be equal to end_pos. This ensures that the next search starts after
end_pos.

e The loop also keeps track of the number of matches by using the count variable.

[64]

Making a Text Editor Chapter 2

¢ Outside the loop, the tag match is configured to have a red font and
yellow background. The last line of this function updates the title of the
Find window with the number of matches that were found.

In case of event bindings, interaction occurs between input

devices (keyboard/mouse) and your application. In addition to event
binding, Tkinter also supports protocol handling.

The term protocol refers to the interaction between your application
and the window manager. An example of a protocol is
WM_DELETE_WINDOW, which handles the close window event for your
window manager.

Tkinter lets you override these protocol handlers by mentioning your own
handler for the root or Toplevel widget. To override the window

exit protocol, we use the following command:

root.protocol (WM_DELETE_WINDOW, callback)

Once you add this command, Tkinter reroutes protocol handling to
the specified callback/handler.

Types of Toplevel window
Previously in this chapter, we used the following line of code:

search_toplevel.transient (root)

Let's explore what it means here. Tkinter supports the following four types of Toplevel
window:

¢ The main Toplevel window: This is the type we have been constructing so far.

e The child Toplevel window: This type is independent of the root. The Toplevel
child behaves independently of its root, but it gets destroyed if its parent is
destroyed.

e The transient Toplevel window: This always appears at the top of its parent, but
it does not entirely grab the focus. Clicking again on the parent window allows
you to interact with it. The transient window is hidden when the parent is
minimized, and it is destroyed if the parent is destroyed. Compare this to what is
called a modal window. A modal window grabs all the focus from the parent
window and asks a user to first close the modal window before regaining access
to the parent window.

[65]

Making a Text Editor Chapter 2

¢ The undecorated Toplevel window: A Toplevel window is undecorated if it
does not have a window manager decoration around it. It is created by setting the
overrideredirect flag to 1. An undecorated window cannot be resized or moved.

Refer to the 2. 06.py code for a demonstration of all four types of Toplevel window.

This concludes our second iteration. Congratulations! We have completed coding
the Select All and Find Text functionality into our program.

More importantly, you have been introduced to indexing and tagging—two very powerful
concepts associated with many Tkinter widgets. You will find yourself using these two
concepts all the time in your projects.

We also explored the four types of Toplevel window and the use cases for each of them.

Working with forms and dialogs

The goal for this iteration is to implement the functionality of the File menu options: Open,
Save, and Save As.

We can implement these dialogs by using the standard Tkinter widgets. However, since
these are so commonly used, a specific Tkinter module called filedialog has been
included in the standard Tkinter distribution.

Here's an example of a typical filedialog:

Save As

Directory: /home/gublu/Documents — ‘ @ ‘
[E5 android-studio [E5 emsdk-portable
[arduino-1.8.4 [hex
[BITWIGSOUNDCONTENT [E5 MusicProgramming
[book-musics [Python
[BOOKS [E5 salamanderGrandi
[chooha [sANGITA
4 H

File name: | Save
Files of type: All Files (*.*) — | Cancel ‘

[66]

Making a Text Editor Chapter 2

Tkinter defines the following common use cases for filedialogs:

Functions Description

askopenfile This returns the opened file object

askopenfilename |This returns the filename string, not the opened file object

askopenfilenames |[This returns a list of filenames

This returns a list of open file objects or an empty list if

askopenfiles .
P Cancel is selected

This asks for a filename to save as and returns the opened

asksaveasfile . K
file object

asksaveasfilename | This asks for a filename to save as and returns the filename

askdirectory This asks for a directory and returns the directory name

The usage is simple. Import the filedialog module and call the required function. Here's
an example:

import tkinter.filedialog
We then call the required function using the following code:
file_object = tkinter.filedialog.askopenfile (mode="r")
Or, we use this code:

my_file_name = tkinter.filedialog.askopenfilename ()

The mode="r" option specified in the preceding code is one of many configurable options
that are available for dialogs.

You can specify the following additional options for filedialog:

File dialog Configurable options

askopenfile parent, title, message, defaultextension, filetypes,
(mode="r", **options)|initialdir, initialfile, and multiple

askopenfilename parent, title, message, defaultextension, filetypes,
(**options) initialdir, initialfile, and multiple
asksaveasfile parent, title, message, defaultextension, filetypes,

(mode="w', **options)|initialdir, initialfile, and multiple

[67]

Making a Text Editor Chapter 2

asksaveasfilename parent, title, message, defaultextension, filetypes,
(**options) initialdir, initialfile, and multiple

askdirectory , C . .
parent, title, and initialdir must exist

(**options)

Equipped with a basic understanding of the filedialog module, let's now have a look at
its practical usage. We'll begin by implementing the File | Open feature.

Let's start by importing the required modules, as follows:

import tkinter.filedialog
import os # for handling file operations

Next, let's create a global variable, which will store the name of the currently open file, as
follows:

file_name = None

The use of global variables is generally considered bad

programming practice because it is very difficult to understand a program
that uses lots of global variables.

A global variable can be modified or accessed from many different

places in the program. Therefore, it becomes difficult to remember or work
out every possible use of the variable.

A global variable is not subject to access control, which may pose

security hazards in certain situations, say when this program needs to
interact with third-party code.

However, when you work on programs in a procedural style such as

this one, global variables are sometimes unavoidable.

An alternative approach to programming involves writing code in a

class structure (also called object-oriented programming), where a
variable can only be accessed by members of predefined classes. We will
see a lot of examples of object-oriented programming in the chapters that
follow.

The following code is present in open_file (2.07.py):

def open_file (event=None) :
input_file_name =
tkinter.filedialog.askopenfilename (defaultextension=".txt",
filetypes=[("All Files", "*.*"), ("Text Documents", "*.txt")])
if input_file_name:
global file_name

[68]

Making a Text Editor Chapter 2

file_name = input_file_name
root.title('{} - {}'.format (os.path.basename (file_name), PROGRAM_NAME))
content_text.delete (1.0, END)
with open(file_name) as _file:
content_text.insert (1.0, _file.read())
on_content_changed ()

Modify the Open menu to add a callback command to this newly defined method, as

follows:

file_ 1

menu.add_command (label='Open', accelerator='Ctrl+0', compound='left',

image=open_file_icon, underline =0, command=open_file)

The following is a description of the preceding code:

We declared a file_name variable in the global scope to keep track of

the filename of the opened file. This is required to keep track of whether a file has
been opened. We need this variable in the global scope as we want this variable
to be available to other methods, such as save () and save_as ().

Not specifying it as global would mean that it is only available within

the function. So, the save () and save_as () functions would not be able

to check whether a file is already open in the editor.

We use askopenfilename to fetch the filename of the opened file. If a user
cancels opening the file or no file is chosen, the file_name returned is None. In
that case, we do nothing.

However, if filedialog returns a valid filename, we isolate the filename using
the os module and add it as the title of the root window.

If the Text widget already contains some text, we delete it all.

We then open the given file in read mode and insert its content into the Content
widget.

We use the context manager (the with command), which takes care of closing the
file properly for us, even in the case of an exception.

Finally, we add a command callback to the File | Open menu item.

This completes the coding of File | Open. If you now navigate to File | Open, select a text
file, and click on Open, the content area will be populated with the content of the text file.

Next, we will have a look at how to save a file. There are two aspects to saving a file:

Save
Save As

[69]

Making a Text Editor Chapter 2

If the Content text widget already contains a file, we do not prompt the user for a filename.
We simply overwrite the contents of the existing file. If there is no filename associated with
the current content of the text area, we prompt the user with a Save As dialog. Moreover, if
the text area has an open file and the user clicks on Save As, we still prompt them with a
Save As dialog to allow them to write the contents to a different filename.

The code for save and save_as is as follows (2.07.py):

def save (event=None) :
global file_name
if not file_name:
save_as ()
else:
write_to_file(file_name)
return "break"

def save_as (event=None) :

input_file_name = tkinter.filedialog.asksaveasfilename
(defaultextension=".txt", filetypes=[("All Files", "*.*"),
("Text Documents"™, "*.txt")])

if input_file_name:
global file_name
file_name = input_file_name
write_to_file(file_name)
root.title('{} - {}'.format (os.path.basename (file_name), PROGRAM_ NAME))
return "break"

def write_to_file(file_name) :
try:
content = content_text.get (1.0, 'end')
with open(file_name, 'w') as the_file:
the_file.write (content)
except IOError:
pass
pass for now but we show some warning - we do this in next section

Having defined the save and save_as functions, let's connect them to the respective menu
callback:

file_menu.add_command (label="'Save', accelerator='Ctrl+S', compound="left"',
image=save_file_icon,underline=0, command= save)

file_menu.add_command (label="'Save as', accelerator='Shift+Ctrl+S’',
command= save_as)

[70]

Making a Text Editor Chapter 2

The following is a description of the preceding code:

¢ The save function first tries to check whether a file is open. If a file is open,
it simply overwrites the contents of the file with the current contents of the
text area. If no file is open, it simply passes the work to the save_as function.

¢ The save_as function opens a dialog by using asksaveasfilename and tries to
get the filename provided by the user for the given file. If it succeeds, it opens the
new file in write mode and writes the contents of the text under this new
filename. After writing, it closes the current file object and changes the title of the
window to reflect the new filename.

o If the user does not specify a filename or the user cancels the save_as operation,
it simply ignores the process by using a pass command.

e Weadded awrite_to_file(file_name) helper function to do the
actual writing to the file.

While we are at it, let's complete the functionality of File | New. The code is
simple (2.07.py):

def new_file (event=None) :
root.title ("Untitled")
global file_name
file_name = None
content_text.delete (1.0,END)

Now, add a callback command to this new function to the File | New menu item:

file_menu.add_command (label="'New', accelerator='Ctrl+N', compound='left',
image=new_file_icon, underline=0, command=new_file)

The following is a description of the preceding code:

1. The new_file function begins by changing the title attribute of the root window
toUntitled.

2. It then sets the value of the global filename variable to None. This is important
because the save and save_as functionalities use this global variable name to
track whether the file already exists or is new.

3. The function then deletes all the contents of the Text widget, creating a
fresh document in its place.

[71]

Making a Text Editor Chapter 2

Let's wrap up this iteration by adding keyboard shortcuts for the newly created features
(2.07.py):

content_text.bind('<Control-N>', new_file)

(l
content_text.bind('<Control-n>', new_file)
content_text.bind('<Control-0>', open_file)
content_text.bind('<Control-o>', open_file)
content_text.bind('<Control-S>', save)

(l

content_text.bind('<Control-s>"', save)

In this iteration, we implemented the coding functionality for the New, Open, Save, and
Save As menu items. More importantly, we saw how to use the filedialog module to
achieve certain commonly used file features in the program. We also had a look at how to
use indexing to achieve a wide variety of tasks for programs.

Working with message boxes

Now, let's complete the code for the About and Help menus. The functionality is simple.
When a user clicks on the Help or About menu, a message window pops up and waits for
the user to respond by clicking on a button. Though we can easily code new Toplevel
windows to show the About and Help messages, we will instead use a module called
messagebox to achieve this functionality.

The messagebox module provides ready-made message boxes to display a wide variety of
messages in applications. The functions available through this module include showinfo,
showwarning, showerror, askquestion, askokcancel, askyesno, askyesnocancel,
and askretrycancel, as shown in the following screenshot:

[72]

Making a Text Editor Chapter 2

ShowInfo X f show Warning x | Show Error X

g This is FYI A Don't be silly ° It leaked

Ask Yes-No

@ Say yes or no?

Ask Question X ' Ask OK Cancel X \
@ Can you read this ? @ Say Ok or Cancel?

= o

e

Cancel ‘

Ask Retry Cancel ®
A Retry or what?

Yes-No-Cancel X

@ Say yes no cancel

1&5; No ‘ Cancel ‘ Retry ‘ Cancel

To use this module, we simply import it into the current namespace by using the following
command:

import tkinter.messagebox

A demonstration of the commonly used functions of messagebox is provided in 2. 08 .py
in the code bundle. The following are some common usage patterns:

import tkinter.messagebox as tmb

tmb.showinfo (title="Show Info", message="This is FYI")

tmb.showwarning (title="Show Warning", message="Don't be silly")
tmb.showerror (title="Show Error", message="It leaked")
tmb.askquestion(title="Ask Question", message="Can you read this?")
tmb.askokcancel (title="Ask OK Cancel", message="Say Ok or Cancel?")
tmb.askyesno (title="Ask Yes-No", message="Say yes or no?")
tmb.askyesnocancel (title="Yes-No-Cancel", message="Say yes no cancel")
tmb.askretrycancel (title="Ask Retry Cancel", message="Retry or what?")

Equipped with an understanding of the messagebox module, let's code the about and
help functions for the code editor. The functionality is simple. When a user clicks on the
About or Help menu item, a showinfomessagebox pops up.

[73]

Making a Text Editor Chapter 2

To achieve this, include the following code in the editor (2.09.py):

def display_about_messagebox (event=None) :
tkinter.messagebox.showinfo ("About", "{}{}".format (PROGRAM_NAME,
"\nTkinter GUI Application\n Development Blueprints"))

def display_help_messagebox (event=None) :
tkinter.messagebox.showinfo ("Help", "Help Book: \nTkinter GUI
Application\n Development Blueprints", icon='question')

Then, attach these functions to the respective menu items, as follows:

about_menu.add_command (label="'About', command=display_about_messagebox)
about_menu.add_command (label="'Help', command=display_help_messagebox)

Next, we will add the quit confirmation feature. Ideally, we should have implemented file
saving in the event the text content has been modified, but for the sake of simplicity I am
not putting in that logic here and instead am displaying a prompt for the user to determine
whether the program should be closed or kept open. Accordingly, when the user clicks on
File | Exit, it prompts an Ok-Cancel dialog to confirm the quit action:

def exit_editor (event=None) :
if tkinter.messagebox.askokcancel ("Quit?", "Really quit?"):
root.destroy ()

Then, we override the Close button and redirect it to the exit_editor function that
we previously defined, as follows:

root.protocol ('WM_DELETE_WINDOW', exit_editor)

Then, we add a callback command for all the individual menu items, as follows:
file_menu.add_command (label="Exit', accelerator='Alt+F4', command=
exit_editor)
about_menu.add_command (label="'About', command = display_about_messagebox)
about_menu.add_command (label="'Help', command = display_help_messagebox)

Finally, add the bindings for the keyboard shortcut to display help:

content_text.bind('<KeyPress-F1>', display_help_messagebox)

This completes the iteration.

[74]

Making a Text Editor Chapter 2

The icons toolbar and View menu functions

In this iteration, we will add the following functionalities to the text editor:

¢ Showing shortcut icons on the toolbar
¢ Displaying line numbers

e Highlighting the current line

¢ Changing the color theme of the editor

Let's start with a simple task first. In this step, we will add shortcut icons to the toolbar, as
shown in the following screenshot:

Footprint Editor
File Edit View About

Ikl ¥]] 00 L

[Y

You may recall that we have already created a frame to hold these icons. Let's add these
icons now.

While adding these icons, we have followed a convention. The icons have been named
exactly the same as the corresponding function that handles them. Following this
convention has enabled us to loop through a list, simultaneously apply the icon image to
each button, and add the command callback from within the loop. All the icons have been
placed in the icons folder.

The following code adds icons to the toolbar (2.10.py):

icons = ('new_file', 'open_file', 'save', 'cut', 'copy', 'paste', 'undo',
'redo', 'find_text')
for i, icon in enumerate (icons) :

tool_bar_icon = PhotoImage (file='icons/{}.gif'.format (icon))

cmd = eval (icon)

tool_bar = Button(shortcut_bar, image=tool_bar_icon, command=cmnd)
tool_bar.image = tool_bar_icon

tool_bar.pack (side="left"')

[75]

Making a Text Editor Chapter 2

The following is a description of the preceding code:

e We have already created a shortcut bar in the first iteration. Now, we will simply
add buttons with images in the frame.

e We create a list of icons, taking care to name them exactly the same as the
name of the icons.

e We then loop through the list by creating a Button widget, adding an image to
the button, and adding the respective callback command.

¢ Before adding the callback command, we have to convert the string to
an equivalent expression by using the eval command. If we do not apply
eval, it cannot be applied as an expression to the callback command.

Thus, we've added shortcut icons to the shortcut bar. Now, if you run the code (refer to
2.10.py in the code bundle), it should show all of the shortcut icons. Moreover, as we have
linked each button to its callback, all of these shortcut icons should work.

Displaying line numbers
Let's work toward showing line numbers to the left of the Text widget. This will require us

to tweak the code in various places. So, before we start coding, let's look at what we are
trying to achieve.

The View menu has a menu item that allows users to choose whether to Show
Line Number. We only want to show line numbers if the option is selected, as shown in the
following screenshot:

Footprint Editor
File Edit ‘u’iew|Abc-ut

Jjﬂ v Show Line Number

" v Show Cursor Location at Bottom
Highlight Current Line
Themes -

Bl IF

If the option is selected, we need to display line numbers in the left frame that we created
earlier.

[76]

Making a Text Editor Chapter 2

The line number should update every time a user enters a new line, deletes a line, cuts or
pastes line text, performs an undo or a redo operation, opens an existing file, or clicks on the
New menu item. In short, the line number should be updated after every activity results in
a change of content. Therefore, we need to define a function called

on_content_changed (). This function should be called after the definitions of

every press, cut, paste, undo, redo, new, and open key, to check whether lines have been
added or removed from the text area and accordingly update the line numbers.

We achieve this by using the following two strategies (refer to 2.10.py in the code bundle):

def on_content_changed (event=None) :
update_line_numbers ()

Bind a key press event to the update_line_number () function, as follows:
content_text.bind('<Any-KeyPress>"', on_content_changed)

Next, add a call to the on_content_changed () function in each of the definitions of cut,
paste, undo, redo, new, and open.

Then define a get_line_numbers () function that returns a string containing all
the numbers until the last row, separated by line breaks.

So for instance, if the last non-empty row in the content widget is 5, this function returns us
astringofthel /n 2 /n 3 /n 4/n 5 /nform.

The following is the function definition:

def get_line_numbers() :

output = "'
if show_line_number.get () :
row, col = content_text.index ("end") .split('.")

for i in range(l, int (row)):
output += str(i)+ '\n'
return output

Now, let's define the update_line_numbers () function, which simply updates the text
widget that displays the line using the string output from the previous function:

def update_line_numbers (event = None) :
line_numbers = get_line_numbers ()
line_number_bar.config(state="'normal')
line_number_bar.delete('1.0', 'end')
line_number_bar.insert ('1.0', line_numbers)
line_number_bar.config(state='disabled')

v
v

[77]

Making a Text Editor Chapter 2

The following is a description of the preceding code:

You may recall that we assigned a show_1line_number variable to the menu item
earlier:

show_line _number = IntVar ()

show_line number.set (1)

view_menu.add_checkbutton (label="Show Line

Number", variable=show_line_number)

If the show_line_number option is set to 1 (that is to say, it has been checked off
in the menu item), we calculate the last line and last column in the text.

We then create a text string consisting of numbers from 1 to the number of the
last line, with each number separated by a line break (\n). This string is then
added to the left label by using the 1ine_number_bar.config () method.

If Show Line Number is unchecked in the menu, the variable text remains blank,
thereby displaying no line numbers.

Finally, we update each of the previously defined cut, paste, undo, redo, new,
and open functions to invoke the on_content_changed () function at its end.

We have finished adding the line number functionality to the text editor.
However, I would like to add that this implementation, though simple,
has some limitations in that it does not handle word wrapping and font
size variability very well. A foolproof line numbering solution would
require the use of the Canvas widget — something that we discuss Chapter
4 Game of Chess and onward. Meanwhile, if you are curious, take a look
at a sample Canvas-based implementation at https://stackoverflow.
com/a/16375233/2348704

Lastly, in this iteration, we will implement a feature where a user can choose to highlight
the current line (2.10. py).

The idea is simple. We need to locate the line of the cursor and add a tag to the line. We also
need to configure the tag so that it appears with a differently colored background to
highlight it.

You may recall that we have already provided a menu choice to users to decide whether to
highlight the current line. We will now add a callback command from this menu item to a
function that we will define as toggle_highlight:

to_highlight_line = BooleanVar ()
view_menu.add_checkbutton (label='Highlight Current Line', onvalue=1,
offvalue=0, variable=to_highlight_line, command=toggle_highlight)

[78]

https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704
https://stackoverflow.com/a/16375233/2348704

Making a Text Editor Chapter 2

Now, we define three functions to handle this for us:

def highlight_line(interval=100):

content_text.tag_remove ("active_line", 1.0, "end")
content_text.tag_add("active_line",
"insert linestart", "insert lineend+1c")

content_text.after (interval, toggle_highlight)

def undo_highlight () :
content_text.tag_remove ("active_line", 1.0, "end")

def toggle_highlight (event=None) :
if to_highlight_line.get () :
highlight_line ()
else:
undo_highlight ()

The following is a description of the preceding code:

¢ Every time a user checks/unchecks View | Highlight Current Line, this invokes
the toggle_highlight function. This function checks whether the menu item is
checked. If it is checked, it invokes the highlight_1ine function. Otherwise, if
the menu item is unchecked, it invokes the undo_highlight function.

e The highlight_line function simply adds a tag called active_line to
the current line, and after every 100 milliseconds it calls the
toggle_highlight function to check whether the current line should still be

highlighted.

e The undo_highlight function is invoked when the user unchecks highlighting
in the View menu. Once invoked, it simply removes the active_line tag from
the entire text area.

Finally, we can configure the tag named active_line so thatitis displayed with a
different background color, as follows:

content_text.tag_configure('active_line', background='ivory2"')

[79]

Making a Text Editor Chapter 2

We used the .widget.after (ms, callback) handler in the code.
Methods that let us perform some periodic actions are called

alarm handlers. The following are some commonly used Tkinter alarm
handlers:

e after (delay_ms, callback, args...):ThEIegEﬁHsa

callback alarm, which can be called after a given number of milliseconds.
* after_cancel (id): This cancels the given callback alarm.
*after_idle (callback, args...): This calls back only when there
are no more events to process in mainloop; that is, after the system
becomes idle.

Adding the cursor information bar

The cursor information bar is simply a small label at the bottom-right corner of the Text

widget that displays the current position of the cursor, as shown in the following
screenshot:

Footprint Editor
File Edit View About

IJ_'jﬂﬂJJﬂmJ

I am fine.
2 How are you 7

Line: 2 | Column: 13 ¥l

The user can choose to show/hide this info bar from the View menu (2.11.py).

Begin by creating a Label widget within the Text widget and pack it in the bottom-right
corner, as follows:

cursor_info_bar = Label (content_text, text='Line: 1 | Column: 1"')
cursor_info_bar.pack (expand=NO, fill=None, side=RIGHT, anchor='se')

[801]

Making a Text Editor Chapter 2

In many ways, this is similar to displaying line numbers. Here, too, the positions must be
calculated after every keystroke, after events such as cut, paste, undo, redo, new, and
open, or activities that lead to a change in cursor positions. Because this too needs to be
updated for all the changed content, for every keystroke, we will

update on_content_changed to update this, as follows:

def on_content_changed (event=None) :
update_line_numbers ()
update_cursor_info_bar ()

def show_cursor_info_bar () :
show_cursor_info_checked = show_cursor_info.get ()
if show_cursor_info_checked:

cursor_info_bar.pack (expand='no', fill=None, side='right', anchor='se')
else:

cursor_info_bar.pack_forget ()

def update_cursor_info_bar (event=None) :

row, col = content_text.index (INSERT) .split('.")

line_num, col_num = str(int(row)), str(int(col)+1) # col starts at O
infotext = "Line: {0} | Column: {1}".format (line_num, col_num)
cursor_info_bar.config(text=infotext)

The code is simple. We get the row and column for the current cursor position by using the
index (INSERT) method and update the labels with the latest row and column of the
cursor.

Finally, the function is connected to the existing menu item by using a callback command:

view_menu.add_checkbutton (label='Show Cursor Location at Bottom',
variable=show_cursor_info, command=show_cursor_info_bar)

Adding themes

You may recall that, while defining the Themes menu, we defined a color scheme dictionary
containing the name and hexadecimal color codes as a key-value pair, as follows:

color_schemes = {

'Default': '"#000000.#FFFFFF',
'Greygarious':'#83406A.#D1D4D1",
'Aquamarine': '#5B8340.#D1E7EQ’,
'Bold Beige': '#4B4620.#FFFOELl’,
'Cobalt Blue':'#ffffBB.#3333aa’',
'Olive Green': '#D1E7EO.#5B8340',

[81]

Making a Text Editor Chapter 2

'Night Mode': '"#FFFFFF.#000000',
}

The theme choice menu has already been defined. Let's add a callback command to handle
the selected menu (2.12.py):

themes_menu.add_radiobutton (label=k,
variable=theme_choice, command=change_theme).

Finally, let's define the change_theme function to handle the changing of themes, as
follows:

def change_theme (event=None) :
selected_theme = theme_choice.get ()
fg_bg_colors = color_schemes.get (selected_theme)
foreground_color, background_color = fg_bg_colors.split('.")
content_text.config(background=background_color, fg=foreground_color)

The function is simple. It picks up the key-value pair from the defined color
scheme dictionary. It splits the color into its two components and applies one color each
to the Text widget foreground and background using widget .config ().

Now, if you select a different color from the Themes menu, the background and foreground
colors change accordingly.

This completes the iteration. We completed coding the shortcut icon toolbar and

the functionality of the View menu in this iteration. In the process, we learned how

to handle the Checkbutton and Radiobutton menu items. We also had a look at how to
create compound buttons while reinforcing several Tkinter options that were covered in the
previous sections.

[82]

Making a Text Editor Chapter 2

Creating a context/pop-up menu

Let's complete the editor in this final iteration by adding a contextual menu to the editor
(2.12.py), as shown in the following screenshot:

Footprint Editor
File Edit View About

D T 11 o o 2N

E]

paste
undo
redo

Select All

Line: 1 | Column: 17;

The menu that pops up on a right-click at the location of the cursor is called the context
menu or the pop-up menu.
Let's code this feature in the text editor. First, define the context menu, as follows:
popup_menu = Menu (content_text)
for i in ('cut', 'copy', 'paste', 'undo', 'redo'):
cmd = eval (1)

popup_menu.add_command (label=i, compound='left', command=cmd)

popup_menu.add_separator ()
popup_menu.add_command (label='Select All',underline=7, command=select_all)

Then, bind the right-click of a mouse with a callback named show_popup_menu, as follows:
content_text.bind('<Button-3>"', show_popup_menu)
Finally, define the show_popup_menu function in the following way:

def show_popup_menu (event) :
popup_menu.tk_popup (event.x_root, event.y_root)

You can now right-click anywhere on the Text widget in the editor to open the contextual
menu.

[83]

Making a Text Editor Chapter 2

This concludes the iteration as well as the chapter.

Summary

In this chapter, we covered the following points:

e We completed coding the editor in twelve iterations. We started by placing all the
widgets on the Toplevel window.

¢ We then leveraged some built-in features of the Text widget to code some
functionality.

e We learned the important concepts of indexing and tagging.

e We also saw how to use the filedialog and messagebox modules to quickly
code some common features in programs.

Congratulations! You completed coding your text editor. In the next chapter, we will make
a programmable drum machine.

QA section

Here are a few questions to reflect upon:

e What's the difference between the Checkbutton menu item and the Radio button
menu item?

e What's the Cascade menu button used for?
e Identify different kinds of Toplevel window.
e List the different types of filedialogs and message boxes available in Tkinter.

e We used the pack geometry manager to build this text editor. Could we have
built this using the grid geometry manager? How would the grid geometry
manager fare against pack?

e How can we trigger events without an external stimulus in Tkinter?
e What are accelerator options in menu items?
e What is a transient window?

[84]

Making a Text Editor Chapter 2

Further reading

The source code for the filedialog module can be found within the Tkinter source code
in a separate file named filedialog.py. You are encouraged to take a look at its
implementation.

If you are feeling adventurous and want to further explore the Text Editor program, I
encourage you to have a look at the source code for Python's built-in editor named IDLE,
which is written in Tkinter. The source code for IDLE can be found in your local Python
library directory in a folder called idlelib. On Linux Mint, this is located at
/usr/lib/python3.4/idlelib.

Read the official Python styling guide, which is specified in the PEP8 documentation at
https://www.python.org/dev/peps/pep-0008.

If you like, try to implement syntax highlighting of Python code in the text editor. A naive
implementation would first involve defining a list of keywords. Then we can bind

the <KeyRelease> event to check whether the typed word is one of the keywords. We can
then add a custom tag to the word using tag_add. Finally, we can change its color by using
COdesudlaStextarea.tag_config("the_keyword_tag", foreground="blue").

A slightly advanced idea to read up on and implement is called lazy loading. This is
particularly helpful if you want to open a very large file in the text editor. In the present
implementation, it may take very long time to open a very large file. In contrast, lazy
loading will read only the section of the file that is currently visible in the text editor, thus
making the program much more responsive.

[85]

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Programmable Drum Machine

We looked at several common Tkinter widgets, such as Menu, Buttons, Label, and Text, in
Chapter 2, Making a Text Editor. Let's now expand our experience with Tkinter to make
some music. Let's build a cross-platform drum machine using Tkinter and some other
Python modules.

Some of the key objectives for this chapter are:

¢ Learning to structure Tkinter programs in the object-oriented style
of programming

¢ Delving deeper into a few more Tkinter widgets, such as Spinbox, Button, Entry,
and Checkbutton

¢ Applying the grid geometry manager in a practical project

¢ Understanding the importance of choosing the right data structure for our
programs

¢ Learning to bind higher-order callback functions to widgets

¢ Learning to use Tkinter in conjunction with some standard and third-party
modules

¢ Understanding the need for multithreading and how to write
multithreaded applications

¢ Learning about object serialization or pickling
¢ Learning about ttk widgets

Programmable Drum Machine Chapter 3

Getting started

Our goal here is to build a programmable drum machine. Let's call it the Explosion Drum
Machine.

The drum machine will let the user create an unlimited number of beat patterns using an
unlimited number of drum samples. You can then store multiple riffs in a project and
playback or edit the project later on. In its final form, the drum machine would look like the
following screenshot:

Explosion Drum Machine - + X

File About

Pattern Number: |0 < |Pattern 0 Number of Units: 4 = BPUs: 4 =

penmive | | AEEEE | | EEE
erighe Nl N e W[
convetvan N EEEEE N EEEEE
| RN || EeEe ||
| EEEN [EEEN [

e Stop ‘ M Loop | Beats Per Minute 140 = EXpIOSI on - 0
Drum Machine

To create your own drum beat patterns, simply load some drum samples (which can be any
audio file with a . wav or . ogg extension) using the buttons on the left. You can design your
beat patterns by clicking on the buttons on the right.

La Lo s e |l

You can decide the number of beats per unit (BPU). Most western beats have 4 BPU, a
Waltz would have 3 BPU, and some Indian and Arabic rhythms that I composed on this
machine had 3-16 BPU! You can also change the beats per minute (BPM), which in turn
decides the tempo of the rhythm.

A single pattern, as shown in the previous screenshot, constitutes a single beat pattern. You
can design multiple beat patterns by changing the Pattern Number Spinbox widget in the
top-left section.

[871]

Programmable Drum Machine Chapter 3

Once you have made some beat patterns, you can even save the pattern and later replay or
modify it. The saving and reloading of files are done from the File menu at the top.

A few drum samples are provided in the Loops subdirectory; however, you can load any
other drum sample. You can download a large number of samples for free from the
internet.

Technical requirements

We will use some more built-in libraries from the standard Python distribution for this
chapter. This includes tkinter, os, math, threading, and pickle modules.

To verify that these modules exist, simply run the following statement in your Python3
IDLE interactive prompt:

>>> import tkinter, os, math, time, threading, pickle

This should not cause an error, as Python3 comes with these modules built into the
distribution.

Other than this, you need to add an extra Python module called pygame. We will be using
the version named 1.9.3 Package, which can be downloaded at http://www.pygame.org/
download.shtml.

Linux users may additionally want to take a look at the following page for instructions on
getting pygame to work with Python 3.x: http://www.pygame.org/wiki/CompileUbuntu?

parent=Compilation.

pygame is a cross-platform package normally used for making games with Python.
However, we will just be using a small module from the package named pygame .mixer,
which is used for loading and playing sounds. The API documentation for this module can
be found at http://www.pygame.org/docs/ref/mixer.html.

After you have installed the module, you can verify it by importing it:

>>> import pygame
>>> pygame.version.ver

If no errors are reported and the version output is 1.9.3, you are ready to program the drum
machine. Let's start!

[881]

http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/download.shtml
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/wiki/CompileUbuntu?parent=Compilation
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html

Programmable Drum Machine Chapter 3

Setting up the GUI in OOP

The text editor we developed in the previous chapter was implemented in procedural code.
Although it offered some benefits for quick coding, it had some typical limitations:

e We started encountering global variables
¢ The function definitions needed to be defined above the code that called them
e Most importantly, the code was not reusable

Therefore, we need some way to ensure that our code is reusable. This is why programmers
prefer to use object-oriented programming (OOP) to organize their code into classes.

OOQP is a programming paradigm that shifts the focus onto the objects we want to
manipulate rather than the logic required to manipulate them. This is in contrast to
procedural programming, which views a program as a logical procedure that takes input,
processes it, and produces some output.

OOQOP provides several benefits, such as data abstraction, encapsulation, inheritance, and
polymorphism. In addition, OOP provides a clear modular structure for programs. Code
modification and maintenance are easy, as new objects can be created without modifying
the existing ones.

Let's build our drum program using OOP to illustrate some of these features. An indicative
OOP structure for our drum program could be as follows (code 3.01.py):

from tkinter import Tk
PROGRAM_NAME = ' Explosion Drum Machine '
class DrumMachine:

def _ _init_ (self, root):
self.root = root
self.root.title (PROGRAM_NAME)

if _ _name_ == '__main__ ':
root = Tk()
DrumMachine (root)
root.mainloop ()

[891]

Programmable Drum Machine Chapter 3

The description of the code is as follows:

e We create a class structure called DrumMachine and initialize the
Toplevel window passed as an argument to it

e If the script is run as a standalone program, thatis, if _ name__ ==
'__main__',anew Tk () root object is created and the root window is passed as
an argument to the DrumMachine object

¢ We then initiate an object from the DrumMachine class to get a Toplevel window

Now that we have our Toplevel window ready, let's stop adding any more visual elements
and think about something that is critical to how well our program will eventually turn out
to be. Let's spend some time finalizing the data structure for our program.

Finalizing the data structure

As Linus Torvalds, the developer of Linux, once said:

"Bad programmers worry about the code. Good programmers worry about data structures
and their relationships.”

What he means is that well-designed data structures make the code very easy to design,
maintain, and scale up. In contrast, if you start with a poor data structure, you can't make
up for that, even with the best of code.

Start with a good data structure and your code will naturally be more simple, elegant, and
easy to maintain.

With that in mind, let's try to decide on a suitable data structure for our program. Go back
and take a look at the previous screenshot (under the Getting started section). What kind of
data structure, do you think, would be needed to capture all the necessary fields of
information?

Well, first of all our drum machine needs to keep information about beat patterns. So let's
start by creating a list named all_patterns = [].

Now, each of the patterns within the list needs to capture information about the drum files
related to the pattern: the number of units in the pattern, the BPU for the pattern, the BPM,
and the buttons clicked to form the pattern.

[90]

Programmable Drum Machine Chapter 3

Accordingly, we need to come up with a data structure where all_patternsisa list
where each item represents a single pattern. Each pattern is then denoted by a dictionary, as
follows:

{

'list_of_drum_files': a list of location of audio drum files,
'number_of_units': an integer, 'bpu': an integer,
'beats_per_minute' : an integer, 'button_clicked_list' : a 2

dimensional list of boolean values where True means button is
clicked and false means button is not clicked in the pattern

}

It is very important that you get familiar with the preceding data structure definition for
our drum machine. Notice that, with just this data in hand, we can define the logic to
display everything that you see in the finalized drum machine.

Also notice that this data structure does not contain information about any GUI elements,
such as widget information or widget states. As far as possible, we should always strive to
cleanly separate the data of the backend (program logic) from the data related to the
frontend (user interfaces). Our data structure here merely represents the backend but is
sufficient enough to allow us to lay out the logic to determine our frontend.

The preceding data structure was what I found to be a

good representation of the data at hand. There could have been an equally
valid but altogether different representation of the data. There is no one
correct answer to the question of data representation. However, building
the representation around built-in collections of a language allows us to
work with highly optimized code and is generally a good idea. The choice
of data structure directly affects the performance of

an application—sometimes trivially but at other times very severely.

We modify our code accordingly (see code 3.02.py) to initialize this data structure:

def init_all patterns(self):
self.all_patterns = [
{
'list_of_drum_files': [None] * MAX_NUMBER_OF_DRUM_SAMPLES,
'number_of_units': INITIAL_NUMBER_OF_UNITS,
"bpu': INITIAL_BPU,
'is_button_clicked_list':
self.init_is_button_clicked_list (
MAX_NUMBER_OF_ DRUM_SAMPLES,
INITIAL_NUMBER_OF_UNITS * INITIAL_RPU

[91]

Programmable Drum Machine Chapter 3

for k in range (MAX_NUMBER_OF_PATTERNS)]

We also initialize is_button_clicked_list with all values set to False, as follows:

def init_is_button_clicked_list (self, num_of_rows, num_of_columns) :
return [[False] * num_of_columns for x in range (num_of_rows)]

To support this structure, we define a few constants (see code 3.02.py):

MAX_NUMBER_OF_PATTERNS = 10
MAX_NUMBER_OF_DRUM_SAMPLES = 5
INITIAL_NUMBER_OF_UNITS = 4
INITIAL_BPU = 4
INITIAL_BEATS_PER_MINUTE = 240

Now, if you run this program, you simply see a root window—nothing different from the
previous code. But internally our code is reserving memory for all the data we will need to
construct our logic. We have laid a strong foundation for our program to run. Believe it or
not, we have done half the job.

Creating broader visual elements

Next, let's lay out the broader visual elements of our program. For the sake of modularity,
we divide the program into four broad visual sections, as shown in the following diagram:

Explosion Drum Machine

Pattern Number: |0 :1_ Top Bar Number of Units: [4 = BPUs: (4 —

[92]

Programmable Drum Machine Chapter 3

Let's define a method called init_gui (), which is called from within the __init_
method as follows (see code 3.03.py):

def init_gui (self):
self.create_top_bar()
self.create_left_drum_loader ()
self.create_right_button_matrix()
self.create_play_bar()

We then proceed to define all four of these methods (3. 03.py). The code is not discussed
here, as we have done similar coding in previous chapters.

We begin with the Top Bar section. The Top Bar is simple. It has a few labels, three
Spinboxes, and an Entry widget. We will not reproduce the entire code here (see code
3.03.py) as we have already seen examples of creating Labels and Entry widgets several
times in the previous chapters. For Spinbox, the options are specified as follows:

Spinbox (frame, from_=1, to=MAX_BPU,
width=5, command=self.on_bpu_changed) .grid(row=0, column=7)

We set the class-level properties accordingly:

self.beats_per_minute = INITIAL_BEATS_PER_MINUTE
self.current_pattern_index = 0

Since we will allow multiple patterns to be designed, we need to keep track of the currently
showing or active pattern. The self.current_pattern_index property keeps track of
the currently active pattern.

Next, let's code the create_left_drum_loader () method. This again is pretty self-
explanatory. We create a loop (see code 3.03.py):

for i in range (MAX_NUMBER_OF_DRUM_SAMPLES) :
create compound button here
create entry widgets here and keep reference to each entry widget in
#a list for future update of values

Before we proceed to code the create_right_button_matrix () method, let's

finish coding the create_play_bar () method, as it is the simpler of the two. All it
contains is two Buttons, a Checkbutton, a Spinbox, and an image. We have coded similar
widgets earlier in the book, and so I will leave it for you to explore on your own (see code
3.03.py).

[93]

Programmable Drum Machine Chapter 3

Next, let's code the create_right_button_matrix () method. This is the most complex
of all.

The right button matrix comprises a two-dimensional array of rows and columns. The
number of rows in the matrix equals the constant, MAX_NUMBER_OF_DRUM_SAMPLES, and
the number of columns represents the number of beat units per cycle and is calculated by
multiplying the number of units and the number of beats per unit.

The code that creates the button matrix looks like this (see code 3.03.py):

self.buttons = [[None for x in range(self.find_number_of_columns())] for x

in range (MAX_NUMBER_OF_DRUM_SAMPLES)]

for row in range (MAX_NUMBER_OF_DRUM_SAMPLES) :

for col in range(self.find_number_of_columns()) :
self.buttons[row] [col] = Button(right_frame,
command=self.on_button_clicked(row, col))

self.buttons[row] [col].grid(row=row, column=col)
self.display_button_color (row, col)

The associated code for the find_number_ of columns () method is as follows:

def find_number_of columns (self):
return int (self.number_of_units_widget.get()) *
int (self.bpu_widget.get ())

We have already created the button matrix, but we want the buttons to be colored in two
alternating shades. Therefore, we define two constants:

COLOR_1 = 'grey55'
COLOR_2 = 'khaki'

This can be any hexadecimal color code or any color from Tkinter's predefined list of colors.
We also require a third color to represent the button in a pressed state.

The constant BUTTON_CLICKED_COLOR = 'green' takes care of that.

We then define two methods:

def display_button_color(self, row, col):
original_color = COLOR_1 if ((col//self.bpu)%2) else COLOR_2
button_color = BUTTON_CLICKED_COLOR if
self.get_button_value (row, col) else original_color
self.buttons[row] [col].config(background=button_color)

def display_all_button_colors(self):
number_of_columns = self.find_number_ of_ columns ()
for r in range (MAX_NUMBER_OF_DRUM_SAMPLES) :

[94]

Programmable Drum Machine Chapter 3

for ¢ in range (number_of_columns) :
self.display_button_color(r, c)

The idea is simple. A button is to be colored green if the value of the button is found to be
True in our data structure, or else the button is to be shaded in patterns of COLOR_1 and
COLOR_2 for each alternating unit of beats.

This alternating color is obtained by using this mathematical formula:

original_color = COLOR_1 if (col//bpu)%2) else COLOR_2

Remember that we had created a two-dimensional Boolean list called
is_button_clicked_list as a dictionary item in our original data structure to hold this
value.

We change the color of the button to BUTTON_CLICKED_COLOR if that value is found to be
True. Accordingly, we define a getter method to get the value of the button:

def get_button_value(self, row, col):
return
self.all_patterns[self.current_pattern.get ()]
['is_button_clicked_list'] [row] [col]

Now each button is attached to the command callback named on_button_clicked, which
is coded as follows (see code 3.03.py):

def on_button_clicked(self, row, col):
def event_handler () :
self.process_button_clicked(row, col)
return event_handler

Notice something fancy with this piece of code? This method defines a function within the
function. It does not return a value as is typical of functions. Instead, it returns a function
that can be executed at a later stage. These are called higher-order functions or, more
precisely, function closures.

Why did we need to do this? We had to do this because each button is identified by its
unique row and column-based indexes. The row values and column values are only
available when the loop runs at the time of creating the buttons. The row and col variables
are lost after that. We, therefore, need some way to keep these variables alive if we have to
identify which button was clicked later on.

These callback functions come to our rescue as they encapsulate the row and column values
in the function that they return at the time of creation.

[95]

Programmable Drum Machine Chapter 3

Functions are first-class objects in Python. This means that you can pass a
function to another function as a parameter and you can return a function
from another function. In short, you can treat a function as any other
object.

You can bind a method object to a particular context, as we did in the
previous code, by nested scoping of a method within a method. Higher-
order functions like these are a common way of associating functions with
widgets in GUI programming.

You can find more information about function closures at https://en.wikipedia.org/

wiki/Closure_ (computer_programming).

We then define a method called process_button_clicked:

def process_button_clicked(self, row, col):
self.set_button_value(row, col, not self.get_button_value(row, col))
self.display_button_color (row, col)

def set_button_value(self, row, col, bool_value)
self.all_patterns([self.current_pattern.get()][
'is_button_clicked_list'] [row] [col] =

bool_value

The key section in the preceding code is the line that sets the button value opposite to its
current value using the not operator. Once the value is toggled, the method calls the
display_button_color method to recolor the buttons.

Finally, let's complete this iteration by defining some dummy methods for now and attach
them as command callbacks to the respective widgets:

on_pattern_changed ()
on_number_of_units_changed()
on_bpu_changed ()
on_open_file_button_clicked()
on_button_clicked()
on_play_button_clicked()
on_stop_button_clicked()
on_loop_button_toggled()
on_beats_per_minute_changed()

[96]

https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)
https://en.wikipedia.org/wiki/Closure_(computer_programming)

Programmable Drum Machine Chapter 3

That completes the iteration. Now if you run the program (see code 3.03.py), it should
display all the broad visual elements:

Explosion Drum Machine - + X

Pattern Number: 0 | Number of Units: 4 < BPUs: 4 =

H | SHNSNE | Seess
| AN | Aee.
/AN E ENEs
[l | AN | AEe.
H | HEENE | Wees

= Play ‘ Stop | W Loop Beats Per Minute 240 3 EXplOSIOn _ |
Drum Machine

The buttons matrix should be colored in two alternating shades, and pressing the buttons
should toggle its color between green and its previous color.

La La [La

All other widgets remain non-functional at this stage as we have attached them to non-
functional command callbacks. We will soon make them functional but, before we do that,
let's do something to make all our future coding simple, clean, and elegant.

Defining getter and setter methods

In our previous section, we needed to know the value of a button in a given row and
column of the button matrix for a given pattern. If the value was True, we colored the
button green. If the value was False, we colored it in an alternative color.

We can get the value of the button by calling this line of code:

self.all _patterns|[self.current_pattern.get ()] ['is_button_clicked_list'] [row
1 [col]

Notice how this line has four sets of square brackets, []. Since this nested super-scripting
business can soon get ugly, we encapsulated this logic in a method named
get_button_value (row, col).Now, whenever we need to get a button's value, we can

simply call this method with the right parameters.

[97]

Programmable Drum Machine Chapter 3

Now our code will not be littered with those ugly nested superscripts. Whenever we want
to get the value of a button, we can call the get_button_value (row, col) method,
which has a nice indicative name for the work it does. Isn't this much more readable and
comprehensible than its rather ugly counterpart?

One thing is for sure: all logic that we build from now onward will heavily rely on data we
get from, or set to, our data structure. Given that we will need all this data all the time in
our program, let's write its getter and setter methods in advance. This will certainly
make our lives a lot easier.

The goal for this part of the iteration is simple—to define getter and setter methods for
all the data that we have decided to store in our data structure.

The code is as follows (see code 3.04.py):

def get_current_pattern_dict (self):
return self.all_patterns[self.current_pattern_index]

def get_bpu(self):
return self.get_current_pattern_dict () ['bpu']

def set_bpu(self):
self.get_current_pattern_dict () ['bpu'] = int (self.bpu_widget.get())

def get_number_of_units(self):
return self.get_current_pattern_dict () ['number_of_units']

def set_number_of_units(self):
self.get_current_pattern_dict () ['number_of_units']
= int (self.number_of_units_widget.get ())

def get_list_of_drum_files(self):
return self.get_current_pattern_dict () ['list_of_drum_files']

def get_drum_file_path(self, drum_index):
return self.get_list_of_drum_files () [drum_index]

def set_drum_file_path(self, drum_index, file_path):
self.get_list_of_drum_files () [drum_index] = file_path

def get_is_button_clicked_list (self):
return self.get_current_pattern_dict () ['is_button_clicked_list']

def set_is_button_clicked_list(self, num_of_rows, num_of_columns) :
self.get_current_pattern_dict () ['is_button_clicked_list']
= [[False] * num_of_columns for x in range (num_of_rows)]

[98]

Programmable Drum Machine Chapter 3

That is all there is to coding the getter and setter methods. The code should be self-
explanatory if you have understood the underlying data structure, as all that we do here is
either get a value or set a value for various items in the data structure.

With these methods now handy, let's complete coding the functionality of widgets we had
earlier left uncoded.

The number of units and beats per unit
features

We earlier coded the matrix called create_right_button_matrix, which creates a two-
dimensional matrix with the number of rows equal to MAX_NUMBER_OF_DRUM_SAMPLES.
The number of columns would be decided by multiplying the number of units by the beats
per unit values selected by the end user. Its formula can be given as follows:

Number of columns of buttons = Number of units x BPU

Explosion Drum Machine - + %

[Number of Units: 4 = BPUs: 4 =]

N HEEE L]

HEER: " |

This means that every time the user changes the number of units or the beats per unit, the
button matrix should be redrawn to change the number of columns. This change should
also be reflected in our underlying data structure. Let's add this feature to our drum
machine.

[991]

Programmable Drum Machine Chapter 3

We had earlier defined two dummy methods—on_number_of_units_changed ()
and on_bpu_changed () . We modify them now as follows (see code 3.04.py):

def on_number_of_units_changed(self) :
self.set_number_of_units/()
self.set_is_button_clicked_list (MAX_NUMBER_OF_DRUM_SAMPLES,
self.find _number_of_ columns())
self.create_right_button_matrix()

def on_bpu_changed (self):
self.set_bpul()
self.set_is_button_clicked_list (MAX_NUMBER_OF_DRUM_SAMPLES,
self.find _number_of columns())
self.create_right_button_matrix()

The preceding methods do two things:

¢ Modify the data structure to reflect the changes in BPU or number of units

o Call the create_right_button_matrix () method to recreate the button
matrix

Now if you go and run the code (see code 3.04.py) and change either the values
of number of units or BPU, the button matrix should redraw itself to reflect the change.

Loading drum samples

Our main objective is to play sound files in the order of a beat pattern decided by the user.
To do this, we need to add sound files to the drum machine.

Our program does not have any preloaded drum files. Instead, we want to let the user
select from a wide variety of drum files.

Thus, besides the normal drum, you can play a Japanese tsuzumi, an Indian tabla, Latin
American bongo drums, or just about any other sound that you want to add to your
rhythm. All you need is a small .wav or . ogg file containing that sound's sample.

[100]

Programmable Drum Machine Chapter 3

The drum sample is to be loaded on the left bar, as shown in the following screenshot:

File About

bassdrum.l.wav

snare.high.wav

cowbell.wav

claves.wav

naracas.wav

= Play Stop ‘

Let's code the ability to add drum samples to our program.

We have already created buttons with folder icons on the left-hand side of our drum pad.
Now we need to make it functional. The desired functionality is simple. When a user clicks
on any of the left buttons, they should open a file dialog letting the user choose a .wav or
.0gq file. When the user selects the file and clicks on Open, the Entry widget next to that
button should be populated with the name of the file.

Further, the location of the drum sample file should be added to our data structure at the
appropriate place.

First, we will import the required modules.

We will use the filedialog module to ask the user to select drum files. We have already
used the file dialog module in chapter 2, Making a Text Editor. The functionality here is
very similar. We will also need to extract the filename of the given sound sample using the
os module. Let's begin by importing the two modules (see code 3.05.py):

import os
from tkinter import filedialog

[101]

Programmable Drum Machine Chapter 3

The buttons we created for uploading drum files are attached to the
on_open_file_button_clicked method through a command callback. We created
a dummy method earlier by that name. We now modify that method to add the
required functionality (see code 3.05.py):

def on_open_file_button_clicked(self, drum_index) :
def event_handler () :
file_path = filedialog.askopenfilename

(defaultextension=".wav", filetypes=[("Wave Files",
"* . wav"), ("OGG Files", "*.ogg")])
if not file_path:
return

self.set_drum_file_path(drum_index, file_path)
self.display_all_drum_file_names ()
return event_handler

The preceding method again returns a function, as we need to track which of the drum files
was actually selected from all the rows of drum files.

The preceding code does three things:

o Asks the user for the file path using Tkinter's filedialog
e Modifies the underlying data structure to save the provided file path
¢ Calls another method to display the filename in the adjacent Entry widget

The next two methods are then responsible for displaying all drum names in the frontend
(see code 3.05.py):

def display_all_drum_file_names (self):
for i, drum_name in enumerate(self.get_list_of_drum_files()):
self.display_drum_name (i, drum_name)

def display_drum_name (self, text_widget_num, file_path):
if file_path is None: return
drum_name = os.path.basename (file_path)
self.drum_load_entry_widget [text_widget_num].delete (0, END)
self.drum_load_entry_widget [text_widget_num].insert (0, drum_name)

The preceding method uses os.path.basename from the os module to obtain the filename
from the file path.

This completes the section. Our code is now capable of loading drum samples and storing
records of all file paths in the data structure. Go ahead and try loading some drum samples
(see code 3.05.py) and the program should display the name of the drum file in the
adjacent Entry widget.

[102]

Programmable Drum Machine Chapter 3

Playing the drum machine

Now that we have a mechanism to load drum samples and a mechanism to define beat
patterns in place, let's add the ability to play these beat patterns. In many ways, this is the
core of our program.

Let's first understand the functionality that we want to achieve here.

Once the user has loaded one or more drum samples and has defined a beat pattern using
the toggle buttons, we need to scan each column of the pattern to see if it finds a green
button (a True value in our data structure).

If the value is True for a given location in the matrix, our code should play
the corresponding drum sample before moving ahead. If two or more drum samples
are selected in the same column, all the samples should play almost simultaneously.

Moreover, there should be a fixed time gap between the playing of each successive column,
which will define the tempo of the music.

To achieve this functionality, we need to import the pygame module to play the sounds, and
the t ime module to define the temporal gap between them.

Initializing pygame
The pygame module is a set of highly portable modules that runs on most operating

systems. We will use the mixer module from pygame to play the sound files.

Assuming that you have installed the package, let's begin by importing pygame (see code
3.06.py):

import pygame

According to the official API documentation of the mixer module at http://www.pygame.
org/docs/ref/mixer.html, we need to initialize pygame before we can play back the audio
files.

[103]

http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html
http://www.pygame.org/docs/ref/mixer.html

Programmable Drum Machine Chapter 3

We initialize pygame in a new method called init_pygame (see code 3.06.py):

def init_pygame (self):
pygame.mixer.pre_init (44100, -16, 1, 512)
pygame.init ()

The mixer.pre_init method is a special requirement for our drum machine because the
lack of it causes a lot of sound lagging. We will not get into the details of audio
programming here, but suffice to say that the arguments to the pre_init method are as
follows:

pre_init (frequency=22050, size=-16, channels=2, buffersize=512)

After pygame is initialized like this, the documentation suggests the following code to play
the sound. Let's add this to our code as well (see code 3.06.py):

def play_sound(self, sound_filename) :
if sound_filename is not None:
pygame.mixer.Sound (sound_filename) .play ()

Playing complete patterns

Now our program has the ability to play any sound. But we don't just need to play a single
sound. We need to play a pattern. Let's define a method called play_pattern, which reads
our internal data structure and plays files accordingly (see code 3.06.py):

import time
def play_pattern(self):
self.now_playing = True
while self.now_playing:
play_list = self.get_is_button_clicked_list ()
num_columns = len(play_list[0])
for column_index in range (num_columns) :
column_to_play = self.get_column_from _matrix(
play_list, column_index)
for i, item in enumerate (column_to_play):
if item:
sound_filename = self.get_drum_file_path (i)
self.play_sound (sound_filename)
time.sleep(self.time_to_play_each_column())
if not self.now_playing: break
if not self.loop: break
self.now_playing = False

[104]

Programmable Drum Machine Chapter 3

We also add an associated method that returns the i™ column from a matrix:

def get_column_from matrix(self, matrix, 1i):
return [row[i] for row in matrix]

The description of the preceding code is as follows:

We create a class attribute called self.keep_playing to decide whether the
pattern is to be played just once or continuously in a loop.

We create another class attribute called self.now_playing to track whether a
beat is currently playing. This will help us to make some decisions on how
to handle a sudden close of program or change of pattern by the user.

We then fetch the two-dimensional Boolean list from our data structure and scan
each column of the list to look for True values. We get the column data from the
matrix by defining a separate method called get_column_from_matrix(self,
matrix, 1i).

For every column, if a True value is encountered, we fetch the
corresponding drum file path and call the sel1f.play_sound () method to play
the file.

The code sleeps for a fixed duration of time before reading the second

column. This sleep duration defines the tempo of the drum beat. If the code does
not sleep for some time between each column, all the patterns would play

almost immediately and would not even sound like a rhythm. We need to import
the t ime module to use the time.sleep () method.

The amount of time the code sleeps between scanning each column is decided by
another method called self.time_to_play_each_column (), which we define
next.

Determining the tempo of a rhythm

The mathematics of defining the tempo of a rhythm is simple. We get the value associated
with the beats_per_minute attribute and divide it by 60 to get the beats per second. Then,
the time to play each beat (or group of beats simultaneously for a given column) is the
reciprocal of beats_per_second.

[105]

Programmable Drum Machine Chapter 3

The code is as follows (see code 3.06.py):

def time_to_play_each_column (self):
beats_per_second = self.beats_per_minute/60
time_to_play_each_column = 1/beats_per_second
return time_to_play_each_column

While we are handling the tempo for the pattern, let's also complete coding of the command
callback attached to our beats per minute Spinbox widget (see code 3.06.py):

def on_beats_per_minute_changed(self) :
self.beats_per_minute = int (self.beats_per_minute_widget.get())

Now let's code the functionality related to the loop Checkbox. We have already factored in
the looping issue in our play_pattern method using the self.loop variable. We simply
need to set the value of the self.loop attribute by reading the value of the Spinbox widget
(see code 3.06.py):

def on_loop_button_toggled(self):
self.loop = self.loopbuttonvar.get ()

With that out of the way, let's code the command callback attached to our Play button and
the Stop button (see code 3.06.py):

def on_play_button_clicked(self):
self.start_play ()

def start_play(self):
self.init_pygame ()
self.play_pattern()

def on_stop_button_clicked(self):
self.stop_play ()

def stop_play(self):
self.now_playing = False

Our drum machine is now operational (see code 3.06.py). You can load drum samples and
define beat patterns, and when you click on the Play button, the drum machine plays that
beat pattern!

However, there is a small problem. The play_sound method blocks the main loop of our
Tkinter program. It does not relinquish control back to the main loop until it is done playing
the sound sample.

[106]

Programmable Drum Machine Chapter 3

Since our self.loop variable is set to True, this means that pygame never returns back
control to Tkinter's main loop and our play button and program is stuck! This can be seen in
the following screenshot:

Explosion Drum Machine

Pattern Number: 0 = Number of Units: 4 = BPUs: |4 =

]| NENN
7| [snare.high.wav J

7| [bongo.low.wav this program plays the audio but the |Jl

= root window and all the widgets B

E become non responsive as soon as the B
playback starts (see the play button)

top [v Loop Beats Per Minute 240

This means that if you now want to click on the Stop button or change some other widget,
or even close the window, you will have to wait for the play loop to complete, which never
happens in our case.

7| |bassdrum.l.wav

This is clearly a glitch. We need some method to confer back the control to the Tkinter main
loop while the play is still in progress.

That brings us to the next iteration, where we discuss and implement multithreading in our
application.

Tkinter and threading

One of the simplest ways that we can make our root window responsive is to use the
root.update () method within our play_pattern loop. This updates the
root.mainloop () method after each sound sample is played.

However, this is an inelegant method because the control is passed to the main loop with
some staggering experienced in the GUI. Thus, you may experience a slight delay in the
responses of other widgets in the Toplevel window.

[107]

Programmable Drum Machine Chapter 3

Further, if some other event causes the method to be called, it could result in a nested event
loop.

A better solution would be to run the play_pattern method from a separate thread.

Let's use the threading module of Python to play the pattern in a separate thread. This way,
pygame will not interfere with Tkinter's main loop.

A thread is a coding construct that can advance two or more separate sets of logical
workflow together within an instance of a running program (process), context-switching
between the workflows. Each thread in a running program gets its own stack and its own
program counter, but all threads in a process share the same memory.

In contrast to threads, processes are independent execution instances of programs, each
maintaining its own state information and address space. Processes can only interact with
other processes using interprocess communication mechanisms.

Threading is a topic for a book in itself. However, we will not get into the details and
instead will use the threading module from the Python standard library. The threading
module provides a higher-level threading interface to hide away the inner complexities of
implementing a multithreaded program. To use the module, let's first import the threading
module into our namespace (see code 3.07.py):

import threading

Now, let's create a method, play_in_thread (), as follows (3.07.py):

def play_in_thread(self):
self.thread = threading.Thread(target = self.play_pattern)
self.thread.start ()

Finally, change the start_play method to call the play_in_thread rather than calling
the play_pattern directly:

def start_play(self):
self.init_pygame ()
self.play_in_thread() # deleted direct call to self.play_pattern()

Now if you load some drum samples, define the beat patterns, and hit the Play button, the
sound will play in a separate thread without causing other widgets to become unresponsive
(see code 3.07.py).

[108]

Programmable Drum Machine Chapter 3

However, this poses a new problem. What happens if the user clicks the Play
button multiple times? That would spawn multiple threads of beat patterns all
playing simultaneously.

We can overcome this problem by disabling the Play button when the audio is playing. This
can be achieved by defining toggle_play_button_state () (see code 3.07.py):

def toggle_play_button_state (self):
if self.now_playing:
self.play_button.config(state="disabled")
else:
self.play_button.config(state="normal")

We then attach this state toggling method onto the Play, Stop, and Loop widget command
callbacks, as follows (3.07.py):

def on_play_button_clicked(self):
self.start_play ()
self.toggle_play_button_state()

def on_stop_button_clicked(self):
self.stop_play ()
self.toggle_play_button_state()

def on_loop_button_toggled(self):
self.loop = self.to_loop.get ()
self.keep_playing = self.loop
if self.now_playing:
self.now_playing = self.loop
self.toggle_play_button_state()

We also modify our play_pattern () method to include a call to
toggle_play_button_state () at the end (see code 3.07.py). This will ensure that when
the pattern has ended playing, the Play button returns to its normal state.

The Play button now remains in a disabled state as long as some audio is playing. It returns
to a normal state when audio isn't playing.

Tkinter and thread safety

Tkinter is not thread safe. The Tkinter interpreter is valid only in the thread that runs the
main loop. Any calls to widgets must ideally be done from the thread that created the main
loop. Invoking widget-specific commands from other threads is possible but is not reliable.

[109]

Programmable Drum Machine Chapter 3

When you call a widget from another thread, the events get queued for the interpreter
thread, which executes the command and passes the result back to the calling thread. If the
main loop is running but not processing events, it sometimes results in unpredictable
exceptions.

In fact, if you find yourself calling a widget from a thread other than the main loop, chances
are that you have not separated the visual elements from the underlying data structure. You
are possibly doing it wrong.

Before we complete this iteration, let's take care of a small detail. What happens if a beat is
currently playing and the user hits the Close button on the window? The main loop will die
and our audio-playing thread will be left in an orphaned state. This can lead to ugly error
messages thrown at the user.

Let's, therefore, override the Close button and stop the audio play before we quit the
window. To override the Close button, we add a small line to our class __init__ method,
as follows (see code 3.07.py):

self.root.protocol ('"WM_DELETE_WINDOW', self.exit_app)

Then, we define a method called exit_app (), as follows (see code 3.07.py):

def exit_app(self):
self.now_playing = False
if messagebox.askokcancel ("Quit", "Really quit?"):
self.root.destroy ()

This completes the project iteration.

To summarize, we refined our start_play () method to play the audio files on a separate
thread. We also made sure to disable the Play button as long as the audio plays. Finally, we
overrode the Close button to handle exiting when some audio is currently playing.

We used Python's built-in threading module to play the loops in a separate thread. We also
looked at some of the threading-related limitations of Tkinter. However, threading is a vast
topic in itself and we have just scratched the surface here.

You can find more details about the threading module at https://docs.python.org/3/
library/threading.html.

[110]

https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html

Programmable Drum Machine Chapter 3

Support for multiple beat patterns

Our drum program is now functional. You can load drum samples and define a beat pattern
and our drum machine will play it.

Let's now extend our drum machine to create more than one pattern in the same program.
This will provide us with the ability to play different patterns simply by changing the
pattern number. This gives the user the ability to make different beats for the intro, verse,
chorus, bridge, and other parts of a song. The pattern-changing user interface is highlighted
in red in the following screenshot:

Explosion Drum

File About

I |

|

At the very outset, we have an Entry widget adjacent to the Pattern Number
Spinbox widget. We want to display the current pattern number in that Entry widget. We
accordingly create a method, display_pattern_name (), which does this task (see code

3.08.py):

def display_pattern_name (self):
self.current_pattern_name_widget.config(state="'normal')
self.current_pattern_name_widget.delete (0, 'end')
self.current_pattern_name_widget.insert (0,
'Pattern {}'.format (self.current_pattern_index))
self.current_pattern_name_widget.config(state='readonly"')

We want the pattern name to display in the text widget when the program
initially launches. Therefore, we modify our create_top_bar () method to include a call
to this newly defined method (see code 3.08.py).

A change of pattern requires several changes. First of all, let's modify
the on_pattern_changed () command callback to call a new
method, change_pattern (), as follows (see code 3.08.py):

def on_pattern_changed(self):
self.change_pattern()

[111]

Programmable Drum Machine Chapter 3

Next, let's define the change_pattern () method:

def change_pattern(self):
self.current_pattern_index = int (self.pattern_index_widget.get())
self.display_pattern_name ()
self.create_left_drum_loader ()
self.display_all_drum_file_names()
self.create_right_button_matrix()
self.display_all_button_colors()

The preceding code should almost read like plain English and the steps involved in a
change of pattern should be self-explanatory.

This completes coding our drum machine to support multiple beat patterns. Go ahead and
run code 3.08.py. Load some drum files, define the first beat pattern, and play it. Change
the beat pattern using the Spinbox widget at the top left,

load new drums, and define a new pattern. Then, play that pattern. While it is playing, try
switching to your first beat pattern. The change should happen seamlessly.

Saving beat patterns

In the preceding iteration, we added the capability to define multiple beat patterns.

However, the beat patterns can be played only on a single script run. When the program is
closed and restarted, all previous pattern data is lost.

We need a way to persist or store the beat patterns beyond a single program run. We need
the ability to store values in some form of file storage and reload, play, and even edit the
patterns. We need some form of object persistence.

Python provides several modules for object persistence. The module that we will use for
persistence is called the pickle module. Pickle is a standard library of Python.

An object represented as a string of bytes is called a pickle in Python. Pickling, also known
as object serialization, let's us convert our object into a string of bytes. The process of
reconstructing the object from the string of bytes is called unpickling or deserialization.

More information about the pickle module is available at http://docs.python.org/3/
library/pickle.html.

[112]

http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html
http://docs.python.org/3/library/pickle.html

Programmable Drum Machine Chapter 3

Let's illustrate it with a simple example:

import pickle
party_menu= ['Bread', 'Salad', 'Bordelaise', 'Wine', 'Truffles']
pickle.dump (party_menu, open ("my_menu", "wb"))

First, we serialize or pickle our list, party_menu, using pickle.dump, and save it in an
external file, my_menu.

We later retrieve the object using pickle.load:

import pickle
menu= pickle.load(open("my_menu", "rb"))
print (menu) # prints ['Bread', 'Salad', 'Bordelaise', 'Wine', 'Truffles']

Coming back to our drum machine—if we need to store and reuse the beat patterns, we
only need to pickle our data structure list, named self.all_patterns. Having saved the
object, we can later easily unpickle the file to reconstruct our beat patterns.

We first need to add three top-menu items to our program, as shown in the following
screenshot:

File | About

Load Project
Save Project

dumber

Exit

i)

The three top-menu items are:

e File | Load Project
e File | Save Project
e File | Exit

While we are creating our menu items, let's also add an About menu item.

[113]

Programmable Drum Machine Chapter 3

Here, we are particularly interested in saving the project (pickling), and loading the project
back (unpickling). The code for menu items is defined in a separate method called
create_top_menu, as shown in the following code (see code 3.09.py):

def create_top_menu(self):

self.menu_bar = Menu(self.root)
self.file_menu = Menu(self.menu_bar, tearoff=0)
self.file_menu.add_command (

label="Load Project", command=self.load_project)
self.file_menu.add_command (

label="Save Project", command=self.save_project)
self.file_menu.add_separator ()
self.file_menu.add_command (label="Exit", command=self.exit_app)
self.menu_bar.add_cascade (label="File", menu=self.file_menu)
self.about_menu = Menu(self.menu_bar, tearoff=0)
self.about_menu.add_command (label="About", command=self.show_about)
self.menu_bar.add_cascade (label="About", menu=self.about_menu)
self.root.config(menu=self.menu_bar)

The code is self-explanatory. We have created similar menu items in our last two projects.
Finally, to display this menu, we call this method from our init_gui () method.

To pickle our object, we first import the pickle module into the current namespace, as
follows (3.09.py):

import pickle

The Save Project menu has a command callback attached to self.save_project, whichis
where we define the pickling process:

def save_project (self):
saveas_file_name = filedialog.asksaveasfilename
(filetypes = [('Explosion Beat File', '*.ebt')],
title="Save project as...")
if saveas_file_name is None: return
pickle.dump(self.all_patterns, open(saveas_file_name, "wb"))
self.root.title (os.path.basename (saveas_file_name) +PROGRAM_NAME)

The description of the code is as follows:

e The save_project method is called when the user clicks on the Save
Project menu; hence, we need to give the user an option to save the project in a
file.

e We have chosen to define a new file extension (.ebt) to keep track of our beat
patterns. This is a completely arbitrary choice of extension name.

[114]

Programmable Drum Machine Chapter 3

e When the user specifies the filename, it is saved with a . ebt extension. The file
contains the serialized list se1f.all_patterns, which is dumped into the file
using pickle.dump.

e Lastly, the title of the Toplevel window is changed to reflect the filename.

We are done pickling the object. Let's now code the unpickling process. The unpickling
process is handled by a method, 1oad_project, which is called from the Load Project
menu, as follows:

def load_project (self):
file_path = filedialog.askopenfilename (

filetypes=[('Explosion Beat File', '*.ebt')], title='Load Project')
if not file_path:
return
pickled_file_object = open(file_path, "rb")
try:

self.all_patterns = pickle.load(pickled_file_object)
except EOFError:
messagebox.showerror ("Error", "Explosion Beat file seems corrupted
or invalid !'")
pickled_file_object.close()
try:
self.change_pattern()
self.root.title(os.path.basename (file_path) + PROGRAM_NAME)
except:
messagebox.showerror ("Error",
"An unexpected error occurred trying to process the beat file")

The description of the code is as follows:

e When a user clicks on the Load Project menu, it triggers a command
callback connected to this 1oad_project method.

e The first line of the method prompts the user with an Open File window. When
the user specifies a previously pickled file with a . ebt extension, the filename is
stored in a variable called pickled_file_object.

e If the filename returned is None because the user cancels the Open File dialog,
nothing is done. The file is then opened in read mode, and the contents of the file
are read into self.all_patterns using pickle.load.

e self.all_patterns now contains the list of beat patterns defined in
the previous pickle.

e The file is closed and the first pattern of se1f.all_patterns is reconstructed by
calling our previously defined change_pattern () method.

[115]

Programmable Drum Machine Chapter 3

This should load the first pattern on our drum machine. Try playing any of the patterns,
and you should be able to replay the pattern exactly as it was defined at the time of
pickling.

Note, however, that the pickled . ebt files are not portable from one computer to another.
This is because we have just pickled the file path for our drum files. We have not pickled
the actual audio files. So if you try to run the . ebt file on another machine or if the file path
to the audio files has changed since the pickling, our code will not be able to load the audio
files and will report an error.

The process of pickling uncompressed audio files like those in . wav files, . ogg files, or
PCM data is the same as the preceding process. After all, these uncompressed audio
files are nothing but lists of numbers.

However, trying to pickle audio files here would require us to deviate a lot from our current
topic. Therefore, we have not implemented it here.

Pickling, though great for serialization, is vulnerable to malicious

or erroneous data. You may want to pickle only if the data is from a
trusted source, or if proper validation mechanisms are in place.

You may also find the json module useful for serializing objects in JSON.
Also, the Element Tree and xml .minidom libraries are relevant for
parsing XML data.

To end this section, let's complete coding the response to clicking on the About menu item:

def show_about (self) :
messagebox.showinfo (PROGRAM_NAME,
"Tkinter GUI Application\n Development Blueprints")

This is self-explanatory. We have done similar coding in our previous project.

To summarize this iteration, we used Python's built-in pickle module to pickle and unpickle
the beat patterns defined by the user.

This now lets us save our beat patterns. We can later load, replay, and edit these saved
patterns in our drum machine (see code 3.09.py).

Working with ttk-themed widgets

We are almost done programming our drum machine. However, we would like to end this
chapter by introducing you to ttk-themed widgets.

[116]

Programmable Drum Machine Chapter 3

Tkinter does not bind to the native platform widgets on many platforms, such as Microsoft
Windows and X11.

The Tk toolkit (and Tkinter) originally appeared on X-Window systems; hence, it adopted
the motif style that was the de facto standard for GUI development on X-Window systems.

When Tk was ported to other platforms, such as Windows and Mac OS, this motif style
started appearing out of place with the look of these platforms.

Due to this, some even argue that Tkinter widgets are rather ugly and do not integrate well
with such desktop environments.

Another criticism of Tkinter is based on the fact that Tkinter mixes logic and styling by
allowing both to be changed as widget options.

Tkinter was also criticized for lacking any kind of theming support. Although we saw an
example of centralized styling via the option database, the method required styling to be
done at the widget level. It does not allow for selective styling of two Button widgets
differently, for example. This made it difficult for developers to implement visual
consistency for similar groups of widgets while differentiating them from other groups of
widgets.

As a result of this, many GUI developers moved to Tkinter alternatives, such as wxPython,
PySide, and PyQT.

With Tkinter 8.5, the makers of Tkinter have tried to address all these concerns
by introducing the ttk module, which may be considered as an advance to the
original Tkinter module.

Let's take a look at some of the features offered by the ttk-themed widgets module.

One of the first things that ttk does is provide a set of built-in themes that allows Tk widgets
to look like the native desktop environment in which the application is running.

Additionally, it introduces 6 new widgets—Combobox, Notebook, Progressbar, Separator,
Sizegrip, and Treeview to the list of widgets, in addition to supporting 11 core Tkinter
widgets, which are Button, Checkbutton, Entry, Frame, Label, LabelFrame, Menubutton,
PanedWindow, Radiobutton, Scale, and Scrollbar.

To use the ttk module, we first import it into the current namespace:

from tkinter import ttk

[117]

Programmable Drum Machine Chapter 3

You can display the ttk widgets as follows (see code 3.10.py):

ttk.Button (root, text='ttk Button').grid(row=1l, column=1)
ttk.Checkbutton (root, text='tkCheckButton').grid(row=2, column=1)

Code 3.10.py provides a comparison of displays between the normal Tkinter widgets and
the counterpart ttk widgets, as shown in the following screenshot:

& Thkinter Versus ttk Themed... E@lﬂ

Tkinter Yersus ttk

tk Button

| tk CheckButton [] ttk CheckButton

* tk Radio) ttk Radio

17 [

MEW WIDGETS INTRODUCED IM ttk

Column & Column B

Notice that the preceding screenshot is taken on a Microsoft Windows platform as the
differences are more marked on systems that do not explicitly use the X-Window system.
Notice how Tkinter widgets (on the left) look out of place on Microsoft Windows as

compared to ttk widgets (on the right), which is the native Microsoft Windows look and feel
(see code 3.10.py).

[118]

Programmable Drum Machine Chapter 3

You can even override the basic Tkinter widgets by importing ttk

after Tkinter as follows:

from tkinter import *

from tkinter.ttk import *

This causes all widgets common to Tk and ttk to be replaced by

ttk widgets.

This has the direct benefit of using the new widgets, which gives a
better look and feel across platforms.

However, the disadvantage of this kind of import is that you

cannot distinguish the module from which the widget classes are
imported. This is important because the Tkinter and ttk widget classes are
not completely interchangeable. In this case, an unambiguous solution is

to import them, as shown in the following code:
import tkinter as tk
from tkinter import ttk

Although most of the configuration options for Tkinter and ttk widgets are common, ttk-
themed widgets do not support styling options such as fg, bg, relief, and border. This is
purposefully removed from ttk in an attempt to keep logic and styling in different controls.

Instead, all styling-related options are handled by the respective style names. In a standard
ttk module, each widget has an associated style name. You can retrieve the default style
name of a widget using the widget .winfo_class () method.

For instance, consider a ttk Button:

>>> my_button = ttk.Button()
>>> my_button.winfo_class ()

This prints Thutton, which is the default style name for ttk.Button. For a list of default
ttk style names for different widgets, refer to http://infohost.nmt.edu/tcc/help/pubs/
tkinter/web/ttk-style-layer.html.

In addition to the default style, you can assign a custom style class to a widget or group of
widgets. To set up a new style, you use the following:

style = ttk.Style()

To configure the style options for a default style, you use the command:

style.configure ('style.Defaultstyle', **styling options)

[119]

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/ttk-style-layer.html

Programmable Drum Machine Chapter 3

To create a new style from the built-in styles, define a style name of the
form newName . o1dName. For instance, to create an Entry widget to hold a date, you can call
itDate.Tentry.

To use the new style on a widget, you use the command:

ttk.Widget (root, style='style.Defaultstyle')
Next, we will discuss ttk theming.

The Style is used to control the appearance for individual widgets. Themes, on the other
hand, control the appearance of the entire GUI. More simply put, a theme is a collection of
styles. Grouping styles into themes lets the user switch designs for the entire GUI all at
once. Like styles, all themes are uniquely identified by their name.

The list of available themes can be obtained as follows:

>> from tkinter.ttk import *

>>> style = Style()

>>> style.theme_names ()

('winnative', 'clam', 'alt', 'default', 'classic', 'xpnative')
To obtain the name of the currently active theme:

>>> style.theme_use ()

'default'’

You can change to another theme from the style.theme_names () list; use the following:

style.theme_use ('your_new_theme_name')

To explore various styling and theming-related options of ttk, refer to the dummy example
(see code 3.11.py):

from tkinter import Tk

from tkinter import ttk

root = Tk()

style = ttk.Style()

defining the global style - applied when no other style is defined

style.configure('.', font='Arial 14', foreground='brown',

background='yellow"')

this label inherits the global style as style option not specified for
it

ttk.Label (root, text='I have no style of my own') .pack()

defining a new style named danger and configuring its style only for the

button widget

style.configure ('danger.TButton', font='Times 12', foreground='red',
padding=1)

ttk.Button (root, text='Styled Dangerously',

[120]

Programmable Drum Machine Chapter 3

style='danger.TButton') .pack ()

Different styling for different widget states

style.map ("new_state_new_style.TButton", foreground=[('pressed',K 'red'),
('active', 'blue')])

ttk.Button (text="Different Style for different
states",style="new_state_new_style.TButton") .pack ()

Overriding current theme styles for the Entry widget

current_theme = style.theme_use ()
style.theme_settings(current_theme,
{"TEntry":

{"configure":
{"padding": 10},
"map": {"foreground": [("focus", "red")] }
}
})
print (style.theme_names|())
print (style.theme_use())
this is effected by change of themes even though no style specified
ttk.Entry () .pack()
root.mainloop ()

The description of the code is as follows:

e The first three lines of code import Tkinter and ttk, and set up a new root
window.

e The next line, style = ttk.Style (), defines a new style.

e The next line configures a program-wide style configuration
using style.configure. The dot character (.), which is the first argument
of configure, means that this style would apply to the Toplevel window and
to all its child elements. This is the reason why all of our widgets get to have
a yellow background.

¢ The next line creates an extension (danger) to the default style (TBut ton). This is
how you create custom styles, which are variations on a base default style.

¢ The next line creates a t tk.Label widget. Since we have not specified any style
for this widget, it inherits the global style specified for the Toplevel window.

¢ The next line creates a ttk.button widget and specifies it to be styled using our
custom style definition of danger . TButton. This is why the foreground color of

this button turns red. Notice how it still inherits the background color, yellow,
from the global Toplevel style that we defined earlier.

[121]

Programmable Drum Machine Chapter 3

¢ The next two lines of code demonstrate how ttk allows for styling
different widget states. In this example, we styled different states for a
ttk.Button widget to display in different colors. Go ahead and click on this
second button to see how different styles apply to different states of a button.
Here, we use map (style, query_options, **kw) to specify dynamic values
of style for changes in the state of the widget.

¢ The next line fetches the current applicable theme. It then overrides some of the
options for the theme's Entry widget
using style.theme_settings ('themename', ***options).

¢ The next line defines an Entry widget but does not specify any style to it. It,
therefore, inherits its properties from the theme we configured earlier. If you now
type anything in this Entry widget, you will notice that it gets a padding of 10 px
and the foreground text color is red inside the Entry widget.

Now that we know how to make our widgets look more like native platform widgets, let's
change the Play and Stop buttons for our drum machine to ttk.button. Let's also change
the Loop Checkbutton from Tkinter Checkbutton to ttk Checkbutton and add a few
separators in the Play Bar section.

The following screenshots show the Play Bar before and after making the changes:

= Play | Stop ‘ ¥ Loop Beats Per Minute|240 = EXplOSIOh i-i-il

Drum Machine

= Play Stop M Loop | Beats Per Minute 240 = EXp|OSI on ""‘t","- -
Drum Machine A

We first import ttk into our namespace and append ttk to the Play and Stop buttons as
follows (code 3.12.py):

from tkinter import ttk

We then simply modify the buttons and Checkbutton in the create_play_bar, replacing
button with ttk.Button, and loopbutton with ttk.Checkbutton:

button = ttk.Button|()
loopbutton = ttk.Checkbutton (**options)

[122]

Programmable Drum Machine Chapter 3

Note that these changes make the Buttons and the Checkbutton look more like the
native widgets of your working platform.

Finally, let's add ttk.separators to our Play Bar (see code 3.12.py). The format
for adding separators is as follows:

ttk.Separator (playbar_frame, orient='vertical').grid(row=start_row, column
= 5, sticky="ns", padx=5)

Note that we cannot change the buttons in the right-button matrix from button to
ttk.Button. This is because ttk buttons do not support specifying options like background
color.

This concludes the last iteration of this project. In this iteration, we first saw how and why
to use ttk-themed widgets to improve the look and feel of our programs.

We then used ttk Buttons and ttk Checkbuttons in our drum program to improve its look.
We also saw the reasons why certain Tkinter Buttons in our program could not be replaced
by ttk Buttons.

That brings us to the end of this chapter.

Summary

Here's a quick summary of things we covered in this chapter.
We started by learning how to structure the Tkinter program as classes and objects.

We then decided the data structure for our program. This enabled us to set the ground for
writing the rest of the program logic, maintaining a clean separation between data, logic,
and its visual representation. We saw the vital benefits of deciding the data structure in
advance.

We also worked with more Tkinter widgets such as Spinbox, Button, Entry, and
Checkbutton. We also saw the grid geometry manager in action in the chapter.

We then saw how to bind widgets to higher-order functions using command callbacks. This
is a very common technique used in GUI programming.

We then understood multithreaded programming in the context of Tkinter. We moved the
audio playback onto a separate thread. This enabled us to keep the audio playing without
hampering Tkinter's main loop in any way.

[123]

Programmable Drum Machine Chapter 3

We then understood how to persist an object's state with the pickle module and then how to
unpickle it later to retrieve the state of the object.

Finally, we saw how to use ttk-themed widgets to ensure that our GUI feels native on the
platform where it is run.

Congratulations! You have now completed coding your drum machine.

QA section

Before you proceed to the next chapter, make sure you can answer these questions to your
satisfaction:

e How do you organize a Tkinter program in an object-oriented fashion? What are
the advantages of using an object-oriented structure as apposed to writing pure
procedural code? What are the disadvantages?

¢ At what stage of programming should you consider drafting a data structure for
your GUI program? What are the benefits of having a data structure or model in
place?

e What are higher-order functions?

e Why is threading required? What are its advantages and disadvantages?

e What is the difference between a process and a thread?

e What is object persistence?

e How do you pickle and unpickle objects in Python?

e Besides pickling, what are the other common modes of persisting objects?

e What are ttk widgets? Why are they used?

Further reading

Read about object-oriented programming terminologies like class, objects, constructor,
inheritance, encapsulation, class methods, static methods, getters, setters, and their specific
implementation in Python. A good place to start would be the official documentation of
classes at https://docs.python.org/3/tutorial/classes.html.

[124]

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

Programmable Drum Machine Chapter 3

Read the official documentation of Python object serialization at https://docs.python.
org/3/library/pickle.html.

Read more about threading, context switching, and thread-based parallelism in general,
along with its specific implementation in Python. The official documentation for threading
is located at https://docs.python.org/3/library/threading.html.

[125]

https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/pickle.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html
https://docs.python.org/3/library/threading.html

Game of Chess

Let's build a game of chess in Tkinter. If you already know the basic rules of chess, you are
ready to write this program. However, if you do not know the rules, you should read them
before you start programming this application.

Some of the key objectives of this chapter are as follows:

Learning how to structure a program in a Model-View-Controller (MVC)
architecture

Learning how to tame complexity by implementing programs in a modular
structure

Taking a look at the versatility and power of the Tkinter Canvas widget
Learning the basic usage of canvas coordinates, object IDs, and tags
Learning the recommended error-handling practices

Learning how to extend Python's built-in data types

Using object inheritance to code classes with similar attributes and behavior
Using Python's built-in configparser module to store program preferences

Getting acquainted with several Python modules that you will often use in a
variety of application development projects

An overview of the chapter

We will now implement a human versus human chess game. Our chess game will enforce all
the standard rules that are applicable to a game of chess. Some advanced rules such as
castling and en passant are left as an exercise for you.

Game of Chess Chapter 4

In its final form, our chess program will look like this:

File Edit About

White to Start the Game

Module requirements for this chapter

We will not use any external third-party modules in this chapter. However, we will use
several built-in Python modules.

To check whether all the required libraries are indeed provided by your Python
distribution, type the following command in your Python command line:

>> import tkinter, copy, sys, configparser

This should be executed without an error message. If no errors are thrown back, you are
ready to build the chess application. Let's get started!

Structuring our program

In this section, we decide on an overall structure for our program.

[127]

Game of Chess Chapter 4

The development of large applications generally starts with recording the software
requirement specifications (SRS). This is generally followed by a graphical representation
of constructs, such as the class, composition, inheritance, and the hiding of information
using several modeling tools. These tools can be flow charts, Unified Modeling Language
(UML) tools, data flow diagrams, Venn diagrams (for database modeling), and so on.

These tools are very useful when the problem domain is not very clear. However, if you
have ever played the game of chess, you should be very well acquainted with the problem
domain. Furthermore, our chess program can be classified as a medium-sized program
spanning a few hundred lines of code. Therefore, let's bypass these visual tools and get to
the actual program design.

All of our previous projects have been structured as a single file. However, as programs
grow in complexity, we need to break programs into modules and class structures.

One of the key objectives of this chapter is to learn to write programs in
the MVC architecture. Some of the central aspects of the MVC architecture are as follows:

A model handles backend data and logic
A view handles the frontend presentation

The model and view never interact directly

Whenever the view needs to access backend data, it requests the controller to
intervene with the model and fetch the required data

Given these aspects, let's create three files for our chess program: model.py, view.py, and
controller.py (see 4.01.py).

Now, let's create an empty Model class, an empty View class, and a Controller classin
their respective files, as follows:

class Model(): #in model.py
def _ _init__ (self):
pass
class View(): #in view.py
def _ _init__ (self):
pass
class Controller(): # in controller.py

def _ _init__ (self):
self.init_model ()

def init_model (self) :
self.model = model.Model ()

[128]

Game of Chess Chapter 4

Note that since the Controller class needs to fetch data from the Model class, we
instantiated a new Model class from within the Controller class. This now provides us
with a way to fetch data from the Model class as and when needed.

Let's also add a separate file called exceptions.py. This will be our central place for the
handling of all errors and exceptions. Within this file, add the following single line of code:

class ChessError (Exception): pass

We created a custom ChessError class that was inherited from the standard Exception
class. This simple line of code now allows the ChessError class and all of its children to
raise errors, which can then be handled by using the try...except block. All the new error
classes that will be defined in our code from now on will derive from this ChessError base
class.

With this boilerplate code out of the way, let's create another blank file
called configurations.py (4.01).We will use this file to store all the constants
and configurable values in one place.

Let's define some constants right away, as follows (see code 4.01—configurations.py):

NUMBER_OF_ROWS = 8

NUMBER_OF_COLUMNS = 8

DIMENSION_OF_EACH_SQUARE = 64 # denoting 64 pixels
BOARD_COLOR_1 = "#DDB88C"

BOARD_COLOR_2 = "#A66D4F"

To make these constant values available to all files, let's import them in to the model . py,
view.py, and controller.py folders (see 4.01):

from configurations import *

As per the tenets of the MVC architecture, the View class is never supposed to interact
directly with the Model class. It should always interact with the Controller class, and the
Controller class is then responsible for fetching data from the Mode1l class. Accordingly,
let's import the controller in the View class and the model in the Controller class, as
follows:

import controller # in view.py
import model # in controller.py

Let's start by editing the view. py file to display a chessboard (see 4.01—view.py). Our
goal for this iteration is to display the empty chessboard as shown in the following
screenshot:

[129]

Game of Chess Chapter 4

File Edit About

White to Start the Game

Take a look at the code implementation in view.py (see 4.01).
The __init__ method of the View class calls a method called create_chess_base, which
is defined as follows:

def create_chess_base(self):
self.create_top_menu()
self.create_canvas ()
self.draw_board()
self.create_bottom_frame ()

We will not reproduce the code responsible for the creation of the root window, the menu at
the top, or the frame at the bottom. We have implemented similar widgets in previous
chapters (see 4. 01—view.py for a complete reference).

However, we will discuss the code that creates the chessboard:

def create_canvas(self):
canvas_width = NUMBER_OF_COLUMNS * DIMENSION_OF_EACH_SQUARE
canvas_height = NUMBER_OF_ROWS * DIMENSION_OF_EACH_SQUARE
self.canvas = Canvas (self.parent, width=canvas_width,
height=canvas_height)
self.canvas.pack (padx=8, pady=8)

[130]

Game of Chess Chapter 4

Nothing fancy here. Creating a Canvas widget is similar to creating other widgets
in Tkinter. The Canvas widget takes the width and height of two configurable
options. Next, paint the Canvas widget in alternating shades to form the
chessboard (view.py):

def draw_board(self) :
current_color = BOARD_COLOR_2
for row in range (NUMBER_OF_ROWS) :

current_color = self.get_alternate_color (current_color)
for col in range (NUMBER_OF_COLUMNS) :
x1, yl1 = self.get_x_y_coordinate (row, col)

x2, y2 = x1 + DIMENSION_OF_EACH_SQUARE, yl +DIMENSION_OF_EACH_SQUARE
self.canvas.create_rectangle (x1, vy1, x2, y2, fill=current_color)
current_color = self.get_alternate_color (current_color)

def get_x_y_coordinate(self, row, col):
x = (col * DIMENSION_ OF_ EACH SQUARE)
y = ((7 - row) * DIMENSION_OF_EACH_SQUARE)
return (x, V)

def get_alternate_color(self, current_color):

if current_color == self.board_color_2:
next_color = self.board_color_1
else:
next_color = self.board_color_2

return next_color
The following is the description of the code:

e We used the Canvas widget's create_rectangle () method to draw alternating
shades of squares to resemble a chessboard.

e The rectangles are drawn from point x1, y1, and they extend to x2, y2. These
values correspond to two diagonally opposite corners of the rectangle
(coordinates of the upper-left and lower-right edges).

e The x and y values are calculated by using a newly defined method
called get_x_y_coordinate (), which performs simple mathematics
depending on the dimensions of each square that was defined in pixel units
earlier.

The y value is calculated by first subtracting a row from (7-row) because the
Canvas widget measures the coordinates starting from the top left. The top-left
corner of the canvas has the coordinates (0, 0).

e The get_alternate_color method is a helper method that, not surprisingly,

returns the alternate color.

[131]

Game of Chess Chapter 4

The Tkinter Canvas widget lets you draw a line, an oval, a rectangle, an
arc, and polygon shapes at a given coordinate. You can also

specify various configuration options, such as fill, outline, width, and so
on for each of these shapes.

The Canvas widget uses a coordinate system to specify the position

of objects on the widget. Coordinates are measured in pixels. The top-
left corner of the canvas has the coordinates (0, 0).

The objects drawn on the Canvas widget are usually handled by
assigning them an ID or a tag. We will see an example of this later in the
chapter.

If an object on the Canvas widget is tagged to multiple tags, the

options defined for tags at the top of the stack have precedence.
However, you can change the precedence of tags by

using tag_raise (name) Or tag_lower (name).

For a complete list of Canvas widget-related options, refer to

the interactive help for the Canvas widget using

help (Tkinter.Canvas) in the command line, as follows:

>>> import tkinter

>>> help (tkinter.Canvas)

Next, let's bind the mouse click to the Canvas widget from the __init__ method of the
View class (see 4.01—view.py), as follows:

self.canvas.bind ("<Button-1>", self.on_square_clicked)

The bound method calls another method called get_clicked_row_column (), and
for now it prints the result on the console as follows:

def on_square_clicked(self, event):
clicked_row, clicked_column = self.get_clicked_row_column (event)
print ("Hey you clicked on", clicked_row, clicked_column)

The get_clicked_row_column () method is defined as follows:

def get_clicked_row_column (self, event):
col_size = row_size = DIMENSION_OF_EACH_SQUARE
clicked_column = event.x // col_size
clicked_row = 7 - (event.y // row_size)
return (clicked_row, clicked_column)

[132]

Game of Chess Chapter 4

Now, if you run the code (see 4.01—view.py) and click on different squares, it should
output a message like this to the console:

Hey you clicked on 0 7
Hey you clicked on 3 3

This completes our first iteration. In this iteration, we determined the broader file structure
for the chess program. We created the model, view, and controller classes. We also
decided to keep all the constants and configuration values in a separate file called
configurations.py.

We have now had a first taste of the Canvas widget. We created a blank canvas and
then added square areas using the canvas.create_rectangle method to create a
chessboard.

Now, if you run 4.01—view.py, you will see an empty chessboard. You will also find out
that the File menu and the Edit menu dropdowns are not functional. The About menu
should show a standard messagebox widget.

Before you proceed to the next section, you are encouraged to go and explore the code in
the 4.01 folder in its entirety.

Modeling the data structure

Coming back to the old adage, data structures, not algorithms, are central to writing good
programs. Therefore, it is important that we spend some time defining the data structure.

The key data that the model needs to record is the position of the chess pieces on

the chessboard. Accordingly, we first need a way to define these locations and a
unique way to identify the chess pieces. Let's first agree to the naming conventions that
we will stick to in the program.

Convention on naming chess pieces

Every chess piece is identified by a single letter (pawn = p, knight = n (yes knight with an
n!), bishop =b, rook =1, queen = q, and king = k).

[133]

Game of Chess Chapter 4

The white chess pieces are represented by uppercase letters (PNBRQK), and the black chess
pieces are represented by lowercase letters (pnbrgk).

Convention for naming locations on
the chessboard

In order to assign unique identifiers to every square on the chessboard, we will mark the
squares along the x axis by using the letters A to H. We will mark the y axis by using the
numbers 1 to 8.

Accordingly, the squares on the chessboard will be identified as follows:

8 | r|n|blal]k]|b]|n]|r]
7 | eNp ||| PNP|P]|P]
[6“8!!!!!
5
C3 E8S
N N I Za I e R
o 3 =
2 |pPlpPlP|lPlP|P|P]|]P]|
>1 |RIN|B|Q|K|B|N|R]
Al A B C D E F G H
X-axis —>

Thus, A1 denotes the leftmost square at the bottom of the chessboard. Currently, it is
occupied by a white rook. The C3 position is currently empty, E8 has a black king, and A8
has a black rook.

Let's add this to the configurations.py file (see 4.02):

X_AXIS_LABELS
Y_AXIS_LABELS

(IAII va, lcl’ va, lEl’ 'F', lGl’ IHI)
(1, 2, 3, 4, 5, 6, 7, 8)

Now, if you want to represent the chessboard at any point in time, all you need is a
mapping of the location to the chess piece at that location. Looks like a perfect candidate for
storing as a Python dictionary.

[134]

Game of Chess Chapter 4

Thus, the initial position of all the chess pieces on the chessboard can be represented as
follows:

START_PIECES_POSITION = {

"ag": "r", "B8": "n", "Ccg8": "b", "b", "G8": "n", "H8": "r",
"AT": "p", "B7": "p", "CT": "p", "p", "GT7": "p", "H7": "p",
"A2": "P", "B2": "P", "C2": "P", "P", "G2": "P", "H2": "P",
"A1": "R", "BL": "N", "C1": "B", "D8": "gq", "E8": "k", "F8":
"D7": "p", "E7": "p", "F7": "D2": "P", "E2": "P", "F2":
"D1": "Q", "EL": "K", "F1":"B", "G1": "N", "H1": "R"

}

We need this data to get started. So, let's add this as a constant to the configurations.py
file (see 4.02).

Now, let's move on to code the Model class for our program. We have already decided that
we will use a Python dictionary to store the position of chess pieces on the chessboard. We
can go ahead and add a dictionary attribute to the class.

However, we will take a slightly different approach.

Let's make the Model class a child class of the built-in dictionary class, as follows:

class Model (dict) :

Thus, the self variable that refers to the current class object instance will also have all the
properties and methods that are available to the dictionary. All the methods that are
available to the standard dictionary class can now be called on the Model object (self).

So now we can define a method that returns the short name of the chess piece at that
position when it's given a position on the chessboard, as follows (see 4 .02—model.py):

def get_piece_at (self, position):
return self.get (position)

If there is no chess piece at the position, this returns None rather than giving a
KeyError exception.

Next, let's add some more important attributes to the Model class, as follows (see
4.02—model .py):

captured_pieces = { 'white': [], 'black': [] }
player_turn = None

halfmove_clock = 0

fullmove_number = 1

history = []

[135]

Game of Chess Chapter 4

The half-move_clock keeps a track of the number of turns played since the last pawn's
advance or the last capture. This is used to determine whether a draw can be claimed under
the fifty-move rule.

The full-move number is a count that is incremented by 1 after every move of a black
piece. This is used to track the overall length of a game.

Finally, let's add another method that, given the row-column tuple for a square, returns its
alphanumeric position (for example, an input of (1, 2) returns B3):

def get_alphanumeric_position(self, rowcol):
if self.is_on_board(rowcol) :
row, col = rowcol
return "{}{}".format (X_AXIS_LABELS[col], Y_AXIS_LABELS[row])

Next, let's define an associated helper method to ensure that we only process mouse clicks
that occur on the Canvas widget and not anywhere else in the root window, as follows:

def is_on_board(self, rowcol):
row, col = rowcol
return 0 <= row <= 7 and 0 <= col <= 7

There is not much that can be added to the Model class for now until we lay down the code
logic to handle the chess pieces.

We can define the rules for all the chess pieces within the Model class, but that would make
the Model class too bulky.

Therefore, let's define the chess piece-related logic in a new file named piece.py. Since this
is inherently a part of the Model class but it is defined in a new file, let's add a reference to
the Model class within this file.

(see 4.02—piece.py)

Let's do this next.

Creating a Piece class

Think about it. We need to define rules for all the different chess pieces. Some attributes and
methods, such as color, will be common to all the chess pieces, while other
attributes/methods, such as rules for movement, will vary for each chess piece.

[136]

Game of Chess Chapter 4

First, we'll define a new Piece class. This class will have the attributes and methods that
are common to all the chess pieces. Then, we will define classes for every individual piece
as a subclass of this parent Piece class. We can then override all the attributes and methods
in these individual classes. The code will look like this (see 4.02—piece.py):

from configurations import *

class Piece():

def _ _init_ (self, color):
self.name = self._ _class__._ name__ .lower ()
if color == 'black':
self.name = self.name.lower ()
elif color == 'white':
self.name = self.name.upper ()
self.color = color

def keep_reference(self, model):
self.model = model

class King(Piece):
pass

class Queen (Piece) :
pass

class Rook (Piece):
pass

class Bishop (Piece) :
pass

class Knight (Piece) :
pass

class Pawn (Piece):
pass

Note that the Piece class needs color as an argument for object creation. We create two
attributes, named self.name and self.color, in the class.

Also note the keep_reference (self, model) method definition. Since the Piece class is
nothing but an extension of the Model class, we need to get a reference to the Model class in
this method to communicate with it.

[137]

Game of Chess Chapter 4

Similarly, the Model class needs a reference to the new Piece class. Accordingly, we add
this as an import to the Model class, as follows (see 4.02—model.py):

import piece

Finally, we need a method that takes a string pertaining to the name of a given piece object
and creates a new piece object. For example, we need a method that, given the arguments
(Pawn, black) or simply ("p"), dynamically creates a new Pawn object with the color
attribute defined as black.

Accordingly, let's define a helper method in the piece. py file but outside the Piece class,
as follows (see 4.02—piece.py):

def create_piece (piece, color='white'):
if isinstance (piece, str):
if piece.upper() in SHORT_NAME.keys () :
color = "white" if piece.isupper () else "black"
piece = SHORT_NAME [piece.upper ()]
pilece = piece.capitalize()
if piece in SHORT_NAME.values() :
return eval ("{classname} (color)".format (classname=piece))
raise exceptions.ChessError ("invalid piece name: '{}'".format (piece))

To support the preceding method, add the following constant to the configurations.py
file (see 4.02):

SHORT_NAME = {
'R':'Rook', 'N':'Knight', 'B':'Bishop', 'Q':'Queen', 'K':'King',
'P':'Pawn'

}

The preceding code simply takes a single character as an input. It then gets the full name for
the corresponding piece class (for example, if a p is given, it gets the full name, which is
Pawn). It then checks the case of the character and defines the color variable as white if the
input character is uppercase. Otherwise, the color is set to black. It then dynamically creates
a corresponding piece object.

This concludes the iteration. We have created the Piece class and all of its subclasses, and
we have the ability to create Piece objects dynamically from a given input character. This
class is simply an extension of the Model class, and each of the two classes can access each
other's methods by keeping a reference to each other.

[138]

Game of Chess Chapter 4

Displaying chess pieces on the chessboard

Now, let's turn our attention to displaying all the chess pieces on the chessboard.

First, we'll define a method named draw_single_piece, which draws a chess piece at the
given position when it's given a position, and the character representing the chess piece as
follows (see 4.03—view.py):

def draw_single_piece(self, position, piece):

x, y = self.controller.get_numeric_notation (position)
if piece:
filename = "../pieces_image/{}_{}.png".format (piece.name.lower (),

piece.color)
if filename not in self.images:
self.images[filename] = PhotoImage (file=filename)
x0, y0 = self.calculate_piece_coordinate(x, V)
self.canvas.create_image (x0, y0, image=self.images[filename],

tags=("occupied"), anchor="c")
The following is a description of the preceding code:

¢ The images of the chess pieces are stored in a folder named pieces_image and
are named with the chess piece's name in lowercase + _ + color.png
format. So for instance, the black queen is saved by the name queen_black.png.

¢ The images are added to the chessboard by using the canvas.create_image ()
method, which takes the x, y coordinates and a PhotoImage () object that relies
on the location of the image file as its argument.

e We used Tkinter's Phot oImage class to reference the .png files.

e In addition to creating and displaying a chess piece on the chessboard, we also
tagged them with a custom tag called occupied. Tagging is an important feature
of the Canvas widget which lets us uniquely identify items placed on the Canvas
widget.

We used the following helper method in the preceding code (see 4.03—view.py):

def calculate_piece_coordinate(self, row, col):
x0 = (col * DIMENSION_ OF_EACH SQUARE) + int (DIMENSION_ OF_ EACH SQUARE / 2)
y0 = ((7 - row) * DIMENSION_OF_EACH_SQUARE) +
int (DIMENSION_OF EACH_SQUARE / 2)
return (x0, yO0)

We also define another helper method that returns the numeric notation for the position of
a piece (see 4.03—controller.py):

[139]

Game of Chess Chapter 4

def get_numeric_notation(self, position):
return piece.get_numeric_notation (position)

This is just a wrapper around the following code from 4.03—piece.py:

def get_numeric_notation (rowcol) :
row, col = rowcol
return int (col)-1, X_AXIS_LABELS.index (row)

Now, it's time simply to call the preceding draw_single_piece method on all the chess
pieces (4.03—view.py):

def draw_all_pieces (self):
self.canvas.delete ("occupied")
for position, piece in self.controller.get_all_pieces_on_chess_board() :
self.draw_single_piece (position, piece)

A key aspect that you need to note here is that when we needed some data from the Model
class, say, a dictionary containing all the chess pieces on the chessboard, we did not directly
call the Model1 class for the data. Instead, we requested the controller get us the data from
the model. The get_all_pieces_on_chess_board () controller method is simply a
wrapper around the actual method from the Model class (see 4.03—controller.py):

def get_all_pieces_on_chess_board(self):
return self.model.items ()

Great! We now have the methods required to draw all the chess pieces on the chessboard.
But merely defining them does not help. These methods need to be called from somewhere.
Therefore, let's define a new method named start_new_game () and call it from the
__init__ method of the View class, as follows (see 4. 03—view.py):

def start_new_game (self):
self.controller.reset_game_data/()
self.controller.reset_to_initial_locations ()
self.draw_all_pieces()

In addition to calling the draw_all pieces () method, this method also resets the Model
via calls to two wrapper controller methods (see 4.03—controller.py):

def reset_game_data(self):
self.model.reset_game_data ()

def reset_to_initial_locations (self):
self.model.reset_to_initial_locations ()

[140]

Game of Chess Chapter 4

The actual methods are defined in the Mode1l class, as follows:

def reset_game_data(self):

captured_pieces = {'white': [], 'black': []}
player_turn = None

halfmove_clock = 0

fullmove_number = 1

history = []

def reset_to_initial_ locations (self):
self.clear ()
for position, value in START_PIECES_POSITION.items():

self[position] = piece.create_piece(value)
self[position] .keep_reference (self)
self.player_turn = 'white'

The reset_game_data () method is simple. It just resets all the attributes of the Model
class to their initial states.

The reset_to_initial_locations () method initializes all the chess piece locations to
reflect the starting position of the game. This too should be self-explanatory if you are
aware of the data structure that we discussed earlier.

Now, when you go ahead and run the code (see 4.03—view.py), the chessboard should
display all the chess pieces at the starting position of the game, as shown in the following
screenshot:

File Edit About

White to Start the Game

[141]

Game of Chess Chapter 4

This completes the current iteration. The next iteration will define the rules for
the movement of the chess pieces on the chessboard. We need this part done before we can
think of moving the chess pieces around.

Defining rules for the chess pieces

Different chess pieces have different rules of movement. Let's try to tabulate the rules:

The maximum number
Orthogonal movement | Diagonal movement | of places the chess piece
is allowed to move

Name of the
chess piece

King Yes Yes 1
Queen Yes Yes 8
Rook Yes No 8
Bishop No Yes 8
Knight N/A N/A N/A

Yes, but it captures

diagonally No lor2

Pawn

As evident from the table, the rules for all the chess pieces except for Knight and Pawn are
pretty straightforward.

Knights are different from the others. They must move two squares in one direction, and
then one more move at a 90-degree angle, following the shape of an L. Knights are also the
only chess pieces that can jump over other chess pieces.

Pawns move forward, but they capture diagonally. Pawns can only move forward one
square at a time, except for their very first move, where they can move forward by two
squares. Pawns can only capture one square diagonally in front of them.

Rules for the king, queen, rooks, and bishops

Let's first take a look at simple cases of orthogonally and diagonally moving chess pieces,
which are the king, queen, rooks, and bishops. We need somehow to figure out a way to
change the position of these chess pieces by using a mathematical rule.

[142]

Game of Chess Chapter 4

The following diagram shows what it takes to move a chess piece from its current position
(say x, y) both orthogonally and diagonally:

Orthogonal Movements Diagonal Moverments

If you look at the preceding diagram, x represents the column number and y represents the
row number. It is clear that we can represent the orthogonal movements by adding to the
current position the items from the tuples (-1, 0), (0, 1), (1, 0), (0, -1).

Similarly, diagonal movements can be represented by adding to the tuples (-1, 1), (1, 1), (1,
-1), (-1, -1).

Let's add these two tuples to configurations.py (see 4.04), as follows:

ORTHOGONAL_POSITIONS = ((-1,0), (0,1),(1,0), (0, -1))
DIAGONAL_POSITIONS = ((-1,-1), (-1,1),(1,-1), (1,1))

If a chess piece can move both orthogonally and diagonally, such as the queen,
the representative tuple is simply an addition of the preceding two tuples.

If a chess piece can be moved by more than one square, it's simply a matter of multiplying
the representative tuple by an integer to get all the other allowed positions on the
chessboard.

With this information in mind, let's code a moves_available method that, given

the current position of the chess piece, the directions tuple relevant to the chess piece, and
the maximum distance that the chess piece can move, returns a list of all

the allowed_moves, as follows (see 4.04—piece.py):

def moves_available(self, current_position, directions,distance):

model = self.model
allowed_moves = []
piece = self

[143]

Game of Chess Chapter 4

start_row, start_column = get_numeric_notation (current_position)
for x, y in directions:
collision = False
for step in range(l, distance + 1):
if collision: break
destination = start_row + step * x, start_column + step * y
if self.possible_position(destination) not in
model.all_occupied_positions():
allowed_moves.append (destination)
elif self.possible_position(destination) in
model.all positions_occupied_by_color
(piece.color):
collision = True
else:
allowed_moves.append (destination)
collision = True
allowed_moves = filter (model.is_on_board, allowed_moves)
return map (model.get_alphanumeric_position, allowed_moves)

The following is a description of the preceding code:

¢ Depending on the arguments, the method collects all the allowed moves for a
given chess piece in a list named allowed_moves.

¢ The code iterates through all the locations to detect a possible collision. If a
collision is detected, it breaks out of the loop. Otherwise, it appends the
coordinate to the allowed_moves list.

e The second to last line filters out the moves that fall outside the chessboard, and
the last line returns the equivalent position in alphanumeric notations for all the
allowed moves.

We can also define a few helper methods to support the preceding method, as follows:

def possible_position(self, destination): #4.04 piece.py
return self.model.get_alphanumeric_position (destination)

def all_positions_occupied_by_color(self, color): #4.04 model.py
result = []
for position in self.keys():
piece = self.get_piece_at (position)
if piece.color == color:
result.append (position)
return result

def all_occupied_positions(self): #4.04 model.py
return self.all_positions_occupied_by_color ('white') +\
self.all_positions_occupied_by_color ('black"')

[144]

Game of Chess Chapter 4

Next, let's modify the Piece child classes of king, queen, rooks, and bishops as follows (see

4.04—piece.py):

class King(Piece):
directions = ORTHOGONAL_POSITIONS + DIAGONAL_POSITIONS

max_distance = 1

def moves_available(self,current_position):
return super () .moves_available (current_position, self.directions,

self.max_distance)

class Queen (Piece):
directions = ORTHOGONAL_POSITIONS + DIAGONAL_POSITIONS

max_distance = 8

def moves_available(self, current_position):
return super (Queen, self).moves_available
(current_position, self.directions, self.max_distance)

class Rook (Piece) :
directions = ORTHOGONAL_POSITIONS
max_distance = 8
def moves_available(self,current_position):
return super (Rook, self) .moves_available (current_position,
self.directions, self.max_distance)

class Bishop (Piece):
directions = DIAGONAL_POSITIONS

max_distance = 8

def moves_available(self, current_position):
return super (Bishop, self) .moves_available
(current_position, self.directions, self.max_distance)

Rules for the Knight

The knight is a different beast because it does not move orthogonally or diagonally. It can
also jump over chess pieces.

Like the rules that we followed earlier to arrive at ORTHOGONAL_POSITIONS and
DIAGONAL_POSITIONS, we can similarly arrive at the rules that are required to determine
the KNIGHT_POSITIONS tuple. This is defined in 4. 04—configurations.py, as follows:

KNIGHT_POSITIONS =
((_21_1) ’ (_2/ 1) 14 (_11_2) 14 (_112) ’ (11_2) 14 (1/2) 14 (21_1) ’ (21 l))

[145]

Game of Chess Chapter 4

Next, let's override the moves_available method from the Knight class (see code
4.04—piece.py):

class Knight (Piece) :

def moves_available(self, current_position):

model = self.model
allowed_moves = []
start_position = get_numeric_notation (current_position.upper())

piece = model.get (pos.upper())
for x, y in KNIGHT_POSITIONS:

destination = start_position[0] + x, start_position[l] + y

if (model.get_alphanumeric_position(destination) not

in model.all_positions_occupied_by_color (piece.color)) :
allowed_moves.append (destination)

allowed_moves = filter (model.is_on_board, allowed_moves)
return map (model.get_alphanumeric_position, allowed_moves)

The following is a description of the preceding code:

¢ The method is quite similar to the previous superclass method. However, unlike
the superclass method, the changes are represented as capture moves using the
KNIGHT_POSITIONStupb.

¢ Unlike the superclass, we do not need to track collisions, because knights can
jump over other chess pieces.

Rules for a pawn

A pawn has a unique movement too in that it moves forward, but it captures diagonally.
Let's similarly override the moves_available class from within the Pawn class, as follows
(see 4.04—piece.py):

class Pawn (Piece):

def moves_available(self, current_position):
model = self.model
piece = self
if self.color == 'white':
initial_position, direction, enemy = 1, 1, 'black'
else:
initial_position, direction, enemy = 6, -1, 'white'
allowed_moves = []
Moving
prohibited = model.all_occupied_positions()

[146]

Game of Chess Chapter 4

start_position = get_numeric_notation (current_position.upper())
forward = start_position[0] + direction, start_position[1]
if model.get_alphanumeric_position(forward) not in prohibited:
allowed_moves.append (forward)
if start_position[0] == initial_position:
If pawn is in starting position allow double moves
double_forward = (forward[0] + direction, forward[1l])
if model.get_alphanumeric_position (double_forward) not in
prohibited:
allowed_moves.append (double_forward)
Attacking
for a in range (-1, 2, 2):
attack = start_position[0] + direction,
start_position[l] + a
if model.get_alphanumeric_position(attack) in
model.all positions_occupied_by_color (enemy) :
allowed_moves.append (attack)
allowed_moves = filter (model.is_on_board, allowed_moves)
return map (model.get_alphanumeric_position, allowed_moves)

The following is a description of the preceding code:

e We first assigned the initial_row_position, direction, and enemy variables
depending on whether the pawn is black or white.

e Similar to the previous moves_allowed methods, this method collects all the
allowed moves in a blank list named allowed_moves.

¢ Then, we collected a list of all the prohibited moves by concatenating two lists of
squares occupied by all the black and white chess pieces.

e We defined a variable named forward which holds the position of the square
immediately ahead of the current position of the pawn.

¢ A pawn cannot move forward if there is a chess piece in front of it. If the forward
position is not prohibited, the position is appended to the allowed_moves list. A
pawn can move two places forward from its starting position. We check whether
the current position is the starting position, and if it is the starting position, we
append the double move to the allowed_moves list.

e A pawn can capture only the diagonally adjacent chess pieces in front of it.
Therefore, we assigned a variable attack to track the diagonally adjacent positions
on the chessboard. If the diagonally adjacent square is occupied by an enemy,
that position qualifies to be appended to the allowed_moves list.

e Then, we filtered the list to remove all the positions that may fall outside the
chessboard. The last line returns all the allowed moves as a list of corresponding
alphanumeric notations, as we did in all the previous definitions.

[147]

Game of Chess Chapter 4

This completes the current iteration. We coded the logic needed to enforce the rules related
to the movement of chess pieces on the chessboard.

Movement validation of chess pieces

Before we allow chess pieces to move, we must have a record of all the possible movement
options on the chessboard. At every move, we also need to check whether it is a legitimate
turn for a given player and the proposed move should not cause check on the current
player's king.

Now, check may occur on the king not only from a chess piece that was moved, but from
any other chess piece on the chessboard as a consequence of such a movement. Thus, after
every move, we need to calculate the possible moves for all the chess pieces of the
opponent.

Accordingly, we will need two methods to do the following:

e Keep a track of all the available moves for a player
e Check whether there is check on the king

Let's add two new methods in the Mode1l class (see 4. 05—model . py).

Tracking all available moves

The code needed to keep track of all the available moves for a player is as follows:

def get_all_available_moves(self, color):
result = []
for position in self.keys():
piece = self.get_piece_at (position)
if piece and piece.color == color:
moves = pilece.moves_available (position)
if moves:
result.extend (moves)
return result

[148]

Game of Chess Chapter 4

The description of the code is as follows:

e We have already coded the moves_available method in the previous iteration

¢ The preceding method simply iterates through every item in the dictionary and
appends the moves_available result for every chess piece of a given color in a
list named result

Finding out the current position of the king

Before we code the method that checks whether a king is in check, we first need to know the
exact position of the king. Let's define a method to find out the current position of the king,
as follows (see 4 .05—model . py):

def get_alphanumeric_position_of_king(self, color):
for position in self.keys():
this_piece = self.get_piece_at (position)
if isinstance(this_piece, piece.King) and this_piece.color == color:
return position

The preceding code simply iterates through all the items in the dictionary. If a
given position is an instance of the King class, it simply returns its position.

Checking whether the king is in check

Let's define a method to check whether the king is in check from the opponent, as follows:

def is_king_under_check (self, color):
position_of_king = self.get_alphanumeric_position_of_king(color)
opponent = 'black' if color =='white' else 'white'
return position_of_king in self.get_all_available_moves (opponent)

The following is a description of the preceding code:

e First, we obtained the current position of the king and the color of the opponent.

e We then found out all the possible moves for all the chess pieces of the opponent.
If the position of the king coincides with any position from all the possible moves,
the king is in check and we return True. Otherwise, we return False.

[149]

Game of Chess Chapter 4

This accomplishes the objectives for the iteration. We are now in a position to check all the
available moves for a player at a given point in the game. We can also check whether a king
is in check from the opponent.

Making the game functional

Now that we have all the chess pieces and chessboard-related validation rules in place, let's
add life to our chess program. In this iteration, we will make our chess game fully
functional.

The objective of this iteration is to move the chess pieces with a click of the left mouse
button. When a player clicks on a chess piece, the code should first check whether it is a
legitimate turn for that chess piece.

On the first click, the chess piece that needs to be moved is selected, and all the allowed
moves for that chess piece are highlighted on the chessboard. The second click should be
performed on the destination square. If the second click is done on a valid destination
square, the chess piece should move from the source square to the destination square.

We also need to code the events of capturing chess pieces and the king being in check. The
other attributes that need to be tracked include a list of the captured chess pieces, the half-
move clock count, the full-move number count, and the history of all the previous moves.

You may recall that we created a dummy method which is bound to the left-click event. The
method, for now, simply prints the row and column value on the console.

Let's modify this method, as follows (see 4.06—view.py):

def on_square_clicked(self, event):
clicked_row, clicked_column = self.get_clicked_row_column (event)
position_of_click = self.controller.get_alphanumeric_position
((clicked_row, clicked_column))
if self.selected_piece_position: # on second click
self.shift (self.selected_piece_position, position_of_click)
self.selected_piece_position = None
self.update_highlight_list (position_of_click)
self.draw_board()
self.draw_all_pieces()

[150]

Game of Chess Chapter 4

The following is a description of the preceding code:

e The first part of the code calculates the coordinates for the chess piece on which
you clicked. Based on the calculated coordinates, it stores the corresponding letter
notation in a variable named position_of_click.

e It then tries to assign the piece variable to the corresponding piece instance. If
there is no piece instance on the clicked square, it simply ignores the click.

e The second part of the method checks whether this is the second click that was
intended to move a chess piece to a destination square. If this is the second click,
it calls the shift method, passing the source and destination coordinates as its
two arguments.

e If the shift method succeeds, it sets all the previously set attributes to their
original empty values and calls the draw_board and draw_pieces methods
to redraw the chessboard and chess pieces.

While coding the desired functionality for the on_square_clicked method, we called
several new methods from within it. We need to define these new methods.

Keep an eye on the on_square_clicked method. This is the central method around which
all the other methods will evolve over the course of our attempts to make the chess game
functional.

Getting the source and destination position

We have called the shift method from the on_square_clicked method. The code for the
shift method is responsible for the collection of the necessary arguments that are required
for the shift operation.

The code for the shift method is as follows:

def shift(self, start_pos, end_pos):
selected_piece = self.controller.get_piece_at (start_pos)
piece_at_destination = self.controller.get_piece_at (end_pos)
if not piece_at_destination or piece_at_destination.color
!= selected_piece.color:
try:
self.controller.pre_move_validation (start_pos, end_pos)
except exceptions.ChessError as error:
self.info_label["text"] = error._ class__ ._ _name_
else:
self.update_label (selected_piece, start_pos, end_pos)

[151]

Game of Chess Chapter 4

The code first checks whether a chess piece exists at the destination. If a chess piece does not
exist at the destination square, it calls on a method, shift, from the controller, which is a
wrapper around the actual shift method from the Mode1l class.

Collecting a list of the moves that need to
be highlighted

We also called the update_highlight_list (position) method from
the on_square_clicked method. The purpose of this method is to collect all the
possible moves for a given chess piece in a list named all_squares_to_be_highlighted.

The actual focusing of the available moves takes place in the draw_board method of the
GUI class. The code for this is as follows (see 4.06—view.py):

def update_highlight_list(self, position):
self.all_squares_to_be_highlighted = None

try:
piece = self.controller.get_piece_at (position)
except:
piece = None
if piece and (piece.color == self.controller.player_turn()):

self.selected_piece_position = position
self.all_ squares_to_be_highlighted =
list (map(self.controller.get_numeric_notation,
self.controller.get_piece_at (position) .moves_available (position)))

Highlighting allowed moves

In the on_square_clicked method, we called the draw_board method to take care of the
redrawing or changing of the chess pieces' coordinates. The current draw_board method is
not equipped to handle this because we only designed it in the first iteration to provide us
with a blank chessboard.

First, let's add a HIGHLIGHT_COLOR constant to the configurations.py file, as follows:
HIGHLIGHT_COLOR = "#2EF70D"
Then, modify the draw_board method to handle this, as follows (see 4.06—view.py):

def draw_board(self) :
current_color = BOARD_COLOR_2

[152]

Game of Chess Chapter 4

for row in range (NUMBER_OF_ROWS) :

current_color = self.get_alternate_color (current_color)
for col in range (NUMBER_OF_COLUMNS) :
x1, yl1 = self.get_x_y_coordinate (row, col)

x2, y2 = x1 + DIMENSION_OF_EACH_SQUARE, yl1 +
DIMENSION_OF_EACH_SQUARE
if(self.all_squares_to_be_highlighted and (row, col) in
self.all_squares_to_be_highlighted):
self.canvas.create_rectangle(x1l, v1, x2, y2,
fi1l1=HIGHLIGHT_COLOR)

else:
self.canvas.create_rectangle (x1, y1, x2, y2, fill=current_color)
current_color = self.get_alternate_color (current_color)

Pre-move validation

The chess piece must only be moved if it does not violate the rules of the game. For
example, a chess piece can move to a valid location only if that location is not already
occupied by a chess piece of the same color. Similarly, a piece can move only if it is the
player's turn to move. Another rule states that a piece can only move if the resulting move
does not result in check for the king of the same color.

This pre_move_validation method is responsible for checking all the rules. If all
validations pass, it calls the move method to update the move, as follows (see
4.06—model .py):

def pre_move_validation(self, initial_pos, final_pos):

initial_pos, final_pos = initial_pos.upper (), final_pos.upper ()
piece = self.get_piece_at (initial_pos)
try:

piece_at_destination = self.get_piece_at (final_pos)
except:

piece_at_destination = None
if self.player_turn != piece.color:

raise exceptions.NotYourTurn ("Not " + piece.color + "'s turn!")
enemy = ('white' if piece.color == 'black' else 'black')

moves_available = piece.moves_available(initial_pos)
if final_pos not in moves_available:
raise exceptions.InvalidMove
if self.get_all_available_moves (enemy) :
if self.will_move_cause_check (initial_pos, final_pos):
raise exceptions.Check
if not moves_available and self.is_king_under_check (piece.color):
raise exceptions.CheckMate
elif not moves_available:

[153]

Game of Chess Chapter 4

raise exceptions.Draw
else:
self.move (initial_pos, final_pos)
self.update_game_statistics(
piece, piece_at_destination, initial_pos, final_pos)
self.change_player_turn(piece.color)

If the rules are not being followed, this code raises several exceptions, which are defined in
the exceptions class as follows (see 4.06—exceptions.py):

class Check (ChessError): pass

class InvalidMove (ChessError): pass
class CheckMate (ChessError) : pass
class Draw (ChessError): pass

class NotYourTurn (ChessError): pass

We could have further coded the error classes, but we chose not to because we simply
updated the name of the error class to the bottom label, which is sufficient for our current
purpose. The error message is displayed from the shift method of the view class, as follows
(see 4.06—view.py):

self.info_label["text"] = error._ class__ _._ _name___

Check whether a move will cause check on the King

Though a major part of the validation check done in the preceding lines is simple, one of the
validation steps needs to check whether a movement will cause the king to be in check. This
is a tricky situation. We can only find this out after we have made the actual move.
However, we cannot allow that movement to happen on the chessboard.

To do this, the pre_move_validation method calls a method named
will_move_cause_check, which creates a copy of the Model class. Then, it performs a
move on the new temporary copy to check whether it does cause a king to be in check.
The code for this is as follows (4. 06—model .py):

def will_move_cause_check (self, start_position, end_position):
tmp = deepcopy (self)
tmp.move (start_position, end_position)
return tmp.is_king_under_check (self[start_position].color)

[154]

Game of Chess Chapter 4

Note that when you create a copy by simple assignment, Python creates a
shallow copy. In a shallow copy, the two variables now share the

same data. So, a modification in one place affects the other as well.

In contrast to this, deep copies create a copy of everything—the

structure as well as the elements. We need to create a deep copy of the
chessboard because we want to check whether the king makes a valid
move before it actually moves, and we want to do this without modifying
the original object's state in any way.

Recording a move in the data structure

The shift method defined in view.py is responsible for the actual moving of a chess piece
on the chessboard. However, this brings about a change in the underlying data structure.
The move method of the Model class is then responsible for updating the data structure.
This move method is called from the previously defined pre_move_validation () method
if and only if no errors are raised, as follows (4. 06—model .py):

def move (self, start_pos, final_pos):
self[final_pos] = self.pop(start_pos, None)

Note that as soon as this update is complete, the control returns to
the on_square_clicked () method in view.py. The method then calls the
draw_all_pieces () method, which updates the view.

Keep game statistics

The pre_move_validation () method also calls another method
called update_game_statistics () on successfully recording a move (see
4.06—model .py):

def update_game_statistics(self, piece, dest, start_pos, end_pos):
if piece.color == 'black':
self.fullmove_number += 1
self.halfmove_clock += 1
abbr = piece.name
if abbr == 'pawn':
abbr = "'
self.halfmove_clock = 0
if dest is None:
move_text = abbr + end_pos.lower ()
else:

[155]

Game of Chess Chapter 4

move_text = abbr + 'x' + end_pos.lower ()
self.halfmove_clock = 0
self.history.append (move_text)

Congratulations, our chess game is now functional!

Let's complete the iteration by binding the File | New Game menu item to start a new
game. Earlier, we defined the start_new_game () method. Now, it's simply a matter of
calling it from the on_new_game_menu_clicked () method, as follows (4.06—view.py):

def on_new_game_menu_clicked(self):
self.start_new_game ()

Managing user preferences

A very common theme in several GUI programs involves letting the user set the program's
preferences.

For example, what if we want users to be able to customize the chessboard colors? What if
we want users to select colors and, once selected, it is saved as a user preference and it is
loaded the next time the program is run? Let's implement this as a feature.

Python offers a standard module called configparser that lets us save user preferences.
Let's see the configparser module in action.

To begin with, import the ConfigParser class from the configparser module in the
configurations.py file, as follows (see 4.07 preferenceswindow.py):

from configparser import ConfigParser

The configparser module uses the . ini files to store and read the configuration values.
The file consists of one or more named sections. These sections contain individual options
with names and values.

To illustrate this, let's create a file called chess_options.ini in the project's root folder
(see 4.07). The file looks like this:

[chess_colors]
board_color_1 = #DDB88C
board_color_2 = #A66D4F
highlight_color = #2EF70D

[156]

Game of Chess Chapter 4

The first line of the file enclosed in square brackets ([chess_colors] in our example) is
called a section. A . ini file can have multiple sections. This file has a single section. Each
section can have multiple key-value options, as specified in the example.

We can read these values in our program by using the get ter methods, as follows (see
4.07—configurations.py):

config = ConfigParser ()

config.read('chess_options.ini')

BOARD_COLOR_1 = config.get ('chess_colors', 'board_color_1"',
fallback="#DDB88C")

BOARD_COLOR_2 = config.get ('chess_colors', 'board_color_2', fallback =
"#A66D4F")

HIGHLIGHT_COLOR =config.get ('chess_colors', 'highlight_color', fallback
= "#2EF70D")

The preceding code replaces the three color constants that we defined earlier in the code.

Now, if you change the options in the . ini file, the color of the chessboard

changes accordingly. However, we cannot expect end users to be conversant with
editing the . ini files. Therefore, we will let them choose the colors using the color
chooser module of Tkinter. A color that a user chooses gets reflected in the . ini file
and consequently on the chessboard.

When a user clicks on the Edit | Preference menu item, we want to open a transient window
with three different buttons to choose two chessboard colors and one highlight color.
Clicking on a single button opens a color select window, as shown in the following
screenshot:

Board Color 1 Select Board Color 1

Board Color 2 Select Board Color 2

Highlight Color Select Highlight Color
Cancel Save

230 Selection:
Red:
- #e63803

A
Green: 150 NN
A
A

cancel ‘

[157]

Game of Chess Chapter 4

We created this transient window in a new file called preferenceswindow.py (see
4.07.py). We will not discuss the code that creates this window, as this should be an easy
task for you now.

Note that this window is converted into a transient window with respect to the top-level
window by using the following code:

self.pref_window.transient (self.parent)

As a reminder, a transient window is one that always stays at the top of its parent window.
It gets minimized when its parent window is minimized. For a quick refresher on transient
windows, refer to chapter 2, Making a Text Editor,—2.06.py.

As we have created the window in preferencewindow.py, we'll import it into the View
class as follows (see 2.07—view.py):

import preferenceswindow

Then, command bind the preference menu by using the following two methods:

def on_preference_menu_clicked(self):
self.show_prefereces_window ()

def show_prefereces_window (self) :
preferenceswindow.PreferencesWindow (self)

When a user clicks on the Cancel button, we simply want the settings window to close. To
do this, use the following code (see 4.07—preferencewindow.py):

def on_cancel_button_clicked(self):
self.pref_window.destroy ()

When a user changes the colors and clicks on the Save button, the method calls
the set_new_values () method, which first writes the new values to the . ini file and then
returns the values to the View class to update the chessboard immediately:

def set_new_values (self) :
color_1 = self.board_color_1.get ()
color_2 = self.board_color_2.get ()
highlight_color = self.highlight_color.get ()
config = ConfigParser ()
config.read('chess_options.ini'")

config.set ('chess_colors', 'board_color_1',color_1)
config.set ('chess_colors', 'board_color_2',color_2)
config.set ('chess_colors', 'highlight_color', highlight_color)

configurations.BOARD_COLOR_1 = self.board_color_1.get ()
configurations.BOARD_COLOR_2 = self.board_color_2.get ()

[158]

Game of Chess Chapter 4

configurations.HIGHLIGHT_COLOR = self.highlight_color.get ()
with open('chess_options.ini', 'w') as config_file:
config.write (config_file)

When the preceding code writes the new values to the . ini file, call the reload_colors ()
method from the View class to update the chessboard's color immediately. If you do not do
this, the color change will take place the next time the chess program is run (see
4.07—view.py):

def reload_colors(self, color_1, color_2, highlight_color):
self.board_color_1 = color_1
self.board_color_2 = color_2
self.highlight_color = highlight_color
self.draw_board()
self.draw_all_pieces()

Having changed these attributes, we call draw_board () and draw_all_pieces () to
repaint the chessboard in the newly defined colors. (see 4.07—view.py).

This concludes the iteration. The users of the program can change the colors to match their
preferences, and the program will remember the chosen values.

Summary

We have come to the end of this chapter. So, what is it that we achieved here? Let's have a
look at all the key things that we learned from the chapter.

We learned how to structure programs using the MVC architecture.

We took a peek at the versatility and power of the Tkinter Canvas widget. This included a
tour through the basic usage of the canvas coordinates, object IDs, and tags.

We discussed how to handle complexity by implementing programs in a modular structure.
We achieved this modularity by breaking down the code into several smaller files. We
handled the entire configuration from a single file and all the errors in another file.

We explored how to extend Python's built-in error class to define a custom error

and exceptions. We also had a look at how we can extend Python's built-in data types, as in
the case of the Model class, which directly extended the dict class.

We studied how to use object inheritance to code classes with similar attributes

and behavior when building the Piece class and all its subclasses.

[159]

Game of Chess Chapter 4

Finally, you learned how to use Python's built-in configparser module to store user
preferences.

We will create an audio player in the next chapter. In addition to this, we'll work with
several new widgets. We will also take a look at how to create our own widgets!

QA section

Before you proceed to the next chapter, make sure you can answer these questions to your
satisfaction:

e What are the central tenets of the model-view-controller framework?

e What is modularity in programming? Why is modularity good?

e What are the advantages and disadvantages of using class inheritance in
programs?

e While inheritance provided us with a tool to reuse our code, multiple inheritance
is frowned upon by many experts. What could be the reason for this?

e What are tags used for in the Tkinter Canvas widget?

e Why do we use a configparser module? What are some of the alternatives to
using a configparser module?

Further reading

MVC is a popular software architectural pattern, but there are many more architectural
patterns that suit different use cases. Read about different architectural patterns at https://

en.wikipedia.org/wiki/Architectural_pattern.

If chess enthuses you, or if you would like to get started in artificial intelligence, you might
attempt to implement a chess engine that plays as an opponent. This would require some
reading on optimal search algorithms. Here's a tutorial that walks us through the
prOCQSS:https://medium.freecodecamp.org/simple—chess—ai—step—by—step—
1d55a9266977. The tutorial engine has been implemented in JavaScript, but we can use it as
a reference to build our own engine in Python.

[160]

https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977
https://medium.freecodecamp.org/simple-chess-ai-step-by-step-1d55a9266977

Building an Audio Player

Let's build an audio player! Our application should have the features offered by typical
audio players, such as play, pause, fast forward, rewind, next, mute, volume scale, time
seek, and more. It should let listeners easily access media files or a media library on their
local drive. The audio player should do all this and more. Let's begin!

The following are the key objectives of this chapter:

¢ Exploring Tkinter widgets, namely Slider, Listbox, Radiobutton, and Canvas
¢ Creating new widgets in Tkinter by extending the existing widgets

Understanding virtual events and their usage
¢ Learning the most common coding pattern used in Tkinter-based animations
¢ Learning some common Tkinter extensions such as Pmw, WCK, and TIX

An overview of the chapter

Let's call our audio player Achtung Baby.

The audio player will be capable of playing audio files in AU, MP2, MP3, OGG/Vorbis,
WAYV, and WMA formats. It will have all the controls that you would expect of a small
media player.

We will use cross-platform modules to write the code. This will ensure that the player can
play audio files on Windows, macOS X, and Linux platforms.

Building an Audio Player Chapter 5

On completion, the audio player will look as follows:

=

K:
Best of Classical Guitar.mp3
Sawaar Loon - Lotera Full Song With On Screen Lyrics _ All

A
d= = [J C3 ¢ Noloop Loop Current Loop All

Perhaps the most important takeaway from this chapter is to learn how to create your own
widgets in Tkinter.

The seek bar in the preceding screenshot is an example of a custom-made widget that was
not natively available in Tkinter, but was handcrafted for this particular use case.

After you learn how to create custom widgets, what you can then create will only be limited
by what you can imagine.

External library requirements

In addition to the several built-in modules of Python, we will use the following two external
modules in this project:

1. The pyglet library for audio manipulation

2. Pmw (short for Python megawidget) for the widgets that are not available in core
Tkinter

[162]

Building an Audio Player Chapter 5

The pyglet module

Pyglet is a cross-platform windowing and multimedia library for Python. It can
be downloaded at https://bitbucket.org/pyglet/pyglet/wiki/Download.

Pyglet can be installed using the pip installer, which is the default package manager for
Python by using the following command:

pip3 install pyglet

Windows users can also download and install binary packages for pyglet from http://
www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet.

Pyglet needs another module called Avbin to support playback of file formats such as MP2
and MP3. Avbin can be obtained for Windows, Linux, and macOS from the download
section at http://avbin.github.io.

Pmw Tkinter extension

We will use the Pmw Tkinter extension to code some widget features that are not available
in core Tkinter. Pmw can be installed by using the pip command-line tool, as follows:

pip3 install pmw

Pmw can also be installed from the source package for all the platforms. The package can be
downloaded from http://sourceforge.net/projects/pmw/.

After installing pyglet, AVbin, and Pmw, execute the following command from the Python
shell:

>> import pyglet, Pmw

>>> pyglet.version
'1.3.0"

>>> Pmw.version()
'2.0.1"

If the commands execute without an error message and the version of pyglet and Pmw are
the same as what's shown in the preceding code, you are ready to code your audio player.

[163]

https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
https://bitbucket.org/pyglet/pyglet/wiki/Download
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pyglet
http://avbin.github.io
http://avbin.github.io
http://avbin.github.io
http://avbin.github.io
http://avbin.github.io
http://avbin.github.io
http://avbin.github.io
http://avbin.github.io
http://avbin.github.io
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/
http://sourceforge.net/projects/pmw/

Building an Audio Player Chapter 5

Program structure and broadview skeleton

Our first goal is to build the broad modular structure for the program. As usual, we will
keep the data structure, audio-related logic, and the presentation logic in three separate
files. Therefore, we will create three separate files named model.py, player.py, and
view.py (see code 5.01).

Let's create an empty Model class and an empty Player class in their respective files. The
following is the code for 5.01—model . py:

class Model:
def _ _init_ (self):
pass

Here's the code for 5.01—player.py:

import pyglet
class Player():
def _ init_ (self):
pass

Next, let's create the View class. We will leave the Model and Player classes empty for
now. However, we will complete this iteration by coding the majority of the view elements
for the player.

Let's begin by importing the required modules in the View class, as follows:

import tkinter as tk
import tkinter.filedialog
import tkinter.messagebox
import tkinter.ttk

Also, import the blank Model and Player classes in the View namespace (see code
5.01—view.py):

import model
import player

However, since we do not want to mix the logic with its representation, we do not import
View in the Model class. In short, the Model class knows nothing about how its data will be

presented to the frontend user.

[164]

Building an Audio Player Chapter 5

Note that we are not using the Controller class in this program. We saw
how to use controllers in chapter 4, Game of Chess. While controllers are a
great way to avoid direct coupling between the Model and View classes,
they can be an overkill for small programs like this one.

Now, let's create the top-level window. Also, we'll create instances of the Model and
Player classes and pass them as arguments to the View class, as follows (see code
5.01—view.py):

if __name_ == '__ _main__ ':
root = Tk()
root.resizable (width=False, height=False)
player = player.Player ()
model = model.Model ()
app = View(root, model, player)
root.mainloop ()

Now that the boilerplate code is written, let's start coding the actual View class, as follows
(see code 5.01—view.py):

class View:
def __init__ (self,root, model, player):
self.root = root
self.model = model
self.player = player
self.create_gui ()

def create_gui (self):
self.root.title (AUDIO_PLAYER_NAME)
self.create_top_display ()
self.create_button_frame ()
self.create_list_box()
self.create_bottom_frame ()
self.create_context_menu ()

The __init__ method should look familiar to you by now. The final line of the __init__
calls a method called create_gui, which is responsible for the creation of the entire GUL
The create_gui method in turn simply calls five different methods, where each method is
responsible for the creation of different sections of the GUI.

We also made the root window nonresizable by adding root .resizable (width=False,
height=False) to the code.

[165]

Building an Audio Player Chapter 5

We will not reproduce the entire code that creates the GUI, since we have coded similar
widgets in the past. But all of these five methods, when combined, create the GUI shown in
the following screenshot:

+ - 4 Bottom Framerent « Lopal

For the sake of separation, we have also marked the four sections differently in
the preceding screenshot. The fifth method creates the right-click context menu and is not
visible here.

The code used to create all of these GUI elements should be familiar to you by
now. However, note a few things about the code (see code 5.01—view.py):

¢ All the images used in the preceding code have been stored in a separate folder
named icons.

e We have used the grid geometry manager to place all the elements on the top-
level window.

e The Top Display section creates a Canvas widget and places an overlay image
using the canvas.create_image () method. The currently playing text and the
timer displayed in the top display have been created by using the
canvas.create_text () method. The coordinates used to place these elements
have been decided on a trial-and-error basis. As a reminder, the canvas
coordinates are measured from the top-left corner.

¢ The Button Frame section simply creates buttons and uses images instead of text,
using the following code:

® button=tk.Button (parent, image=previous_track_icon)

[166]

Building an Audio Player Chapter 5

e The Button Frame section also uses a ttk Scale widget, which can be used as a
volume slider. This has been created by using the following code:

® self.volume_scale = tkinter.ttk.Scale(frame, from =0.0, to=1.0,
command=self.on_volume_scale_changed)

¢ The fromand to values for the Scale widget have been chosen as 0.0 and 1.0
because these are the numbers that the pyglet library uses to denote the
minimum and maximum volume, which will be seen in the following section.

e The Listbox section creates a playlist by using the Tkinter Listbox widget, which
uses the following code:

® self.list_box = tk.Listbox(frame, activestyle='none',
cursor='hand2', bg='#1C3D7D', fg='#AOB9E9', selectmode=tk.EXTENDED,
height=10)

e The select mode=EXTENDED option in the preceding code means that this list
box will allow multiple list items to be selected at once. If this line is omitted, the
default behavior of the Listbox widget is to allow only a single selection at a time.

e The activestyle="none' option means that we do not want to underline the
selected item.

¢ The Listbox section is attached to the Scrollbar widget, which is similar to what
we have done in the earlier chapters.

¢ The Bottom Frame section adds a few image buttons as we did earlier. It also
creates three Radiobutton widgets using a for loop.

e Finally, note that we have completely skipped the creation of the seek bar, as it is
a custom widget that is not natively defined in Tkinter. This is something that we
will create in a dedicated section of its own.

The Listbox widget offers the following four selection modes via
the selectmode option:

e SINGLE: This allows only a single row to be selected at a time
e BROWSE (the default mode): This is similar to SINGLE, but

it allows you to move a selection by dragging the mouse
e MULTIPLE: This allows for multiple selections by clicking

on items one at a time

e EXTENDED: This allows for the selection of a multiple range of
items using the Shift and Ctrl keys

[167]

Building an Audio Player Chapter 5

In addition to creating all of these widgets, we have also added a command callback to most
of these widgets. These command callbacks currently point to the following empty,
nonfunctional methods (see code 5.01—view.py):

on_previous_track_button_clicked()
on_rewind_button_clicked()
on_play_stop_button_clicked()
on_pause_unpause_button_clicked()
on_mute_unmute_button_clicked()
on_fast_forward_button_clicked()
on_next_track_button_clicked()
on_volume_scale_changed(, value)
on_add_file_button_clicked()
on_remove_selected_button_clicked()
on_add_directory_button_clicked()
on_empty_play_list_button_clicked()
on_remove_selected_context_menu_clicked()
on_play_list_double_clicked (event=None)

None of these methods are functional now. We will end the iteration here, as there are a few
other things that we need to do before we can think of making the widgets functional.

Deciding the data structure

Sticking to the model first philosophy, let's spend some time on deciding the appropriate
data structure or model for the program.

The data structure of the audio player is fairly simple. All that we expect of the model is to
keep a track of playlists. The main data then is a list called play_1list, and the Model class
is then simply responsible for the addition and removal of items to and from the playlist.

Accordingly we came up with the following Mode1l class for the program (see
code 5.02—model .py):

class Model:
def _ _init_ (self):
self.__play_list = []

@property
def play_list (self):
return self._ _play_list

def get_file_to_play(self, file_index):
return self._ _play_list[file_index]

[168]

Building an Audio Player Chapter 5

def clear_play_list (self):
self._play_list.clear()

def add_to_play_list(self, file_name):
self.__play_list.append(file_name)

def remove_item_from_play_list_at_index(self, index):
del self._ _play_list[index]

Nothing fancy in the preceding code. The object simply consists of a Python list
with various utility methods that can be used to add and remove items from the list.

The play_1list method has been declared as a property so that we need not write the
getter method for the playlist. This is definitely more Pythonic because a statement such
asplay_list = self.play_list is more readable thanplay_list =
self.get_play_list ().

Creating the Player class

Now, let's write the code for the P1ayer class. This class will be responsible for
the handling of audio playback and its related functions, such as pause, stop, seek,
fast forward, rewind, change of volume, mute, and so on.

We will use the pyglet library to handle these functions.

Pyglet is a cross-platform library that uses the Avbin module to support a large variety of
audio files.

You might want to look at the API documentation of the pyglet player, which is available
at https://bitbucket.org/pyglet/pyglet/wiki/Home.

You can also access the documentation for the pyglet media player class by typing the
following two lines in the Python interactive shell:

>>> import pyglet
>>> help (pyglet .media)

The online documentation at https://pyglet.readthedocs.org/ tells us that we can play
an audio file by using the following code:

player= pyglet.media.Player ()
source = pyglet.media.load(<<audio file to be played>>)
player.queue (source)

[169]

https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://bitbucket.org/pyglet/pyglet/wiki/Home
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/
https://pyglet.readthedocs.org/

Building an Audio Player

Chapter 5

player.play ()

Accordingly, the code for the Player class is as follows (see code 5.02—player.py):

import pyglet
FORWARD_REWIND_JUMP_TIME = 20

class Player:
def _ _init__ (self):
self.player = pyglet.media.Player ()
self.player.volume = 0.6

def play_media(self, audio_file):
self.reset_player()
self.player = pyglet.media.Player ()
self.source = pyglet.media.load(audio_file)
self.player.queue (self.source)
self.player.play ()

def reset_player (self):
self.player.pause ()
self.player.delete()

def is_playing(self):

try:

elapsed_time = int (self.player.time)

is_playing = elapsed_time < int (self.track_length)
except:

is_playing = False
return is_playing

def seek(self, time):
try:
self.player.seek (time)
except AttributeError:
pass

@property
def track_length(self):
try:
return self.source.duration
except AttributeError:
return 0

@property
def volume (self):
return self.player.volume

[170]

Building an Audio Player Chapter 5

@property
def elapsed_play_duration(self):
return self.player.time

@volume.setter
def volume (self, volume):
self.player.volume = volume

def unpause (self):
self.player.play ()

def pause(self):
self.player.pause ()

def stop(self):
self.reset_player()

def mute (self):
self.player.volume = 0.0

def unmute (self, newvolume_level) :
self.player.volume = newvolume_level

def fast_forward(self):
time = self.player.time + FORWARD_REWIND_JUMP_TIME
try:
if self.source.duration > time:
self.seek (time)
else:
self.seek (self.source.duration)
except AttributeError:
pass

def rewind(self):
time = self.player.time - FORWARD_REWIND_JUMP_TIME
try:
self.seek (time)
except:
self.seek (0)

The preceding code is built on the pyglet API which is quite intuitive. We will not get into
the details of audio programming here and trust the pyglet library as a black box that
delivers what it says, namely, to be able to play and control audio.

[171]

Building an Audio Player Chapter 5

The following are the important things that you should note about the preceding code:

e We defined the play_media method, which is responsible for the playing of
audio. All the other methods support other functions related to playback, such as
pause, stop, rewind, forward, mute, and so on.

¢ Note that the code defines a new pyglet Player class every time it wants to play
an audio file. Though we could have used the same player instance to play
multiple audio files, it turns out that the pyglet library does not have a stop
method. The only way we can stop an audio file from playing is by killing the
Player object and creating a fresh P1ayer object for the next audio file playback.

e When it came to choosing an external implementation as we did for the
audio API here, we first searched through the Python standard library at https:/
/docs.python.org/3.6/1library/.

¢ Because the standard library does not have a suitable package for us, we
turned our attention to the Python package index to check whether there exists
another high-level audio interface implementation. The Python package index
can be found at http://pypi.python.org/.

¢ Fortunately, we came across several audio packages. After comparing the
packages against our needs and seeing how active their communities were, we
settled for pyglet. The same program could have been implemented with
several other packages, though this would be done with varying levels of
complexity.

In general, the lower you go down the protocol stack, the more complex
your programs will get.

However, at the lower layers of the protocol, you will get a finer control
over the implementation at the cost of increasing learning curves.

Also, note that most of the audio libraries change over a period of time.
While this current audio library may become nonfunctional over time, you
can easily modify the Player class to use some other audio library and
still be able to use this program as long as you keep the interface defined
in the Player class.

This concludes the iteration. We now have a functional Player class that can manipulate
audio files. We have a data structure that consists of a play_1ist with various methods to
add and remove files from a playlist. We will next look at how to add and remove files from
a playlist from the frontend of the program.

[172]

https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
https://docs.python.org/3.6/library/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/
http://pypi.python.org/

Building an Audio Player Chapter 5

Adding and removing items from a playlist

Let's write some code for a feature that allows us to add and remove items from a playlist.
To be more specific, we will write the code for a function for the four buttons marked in the
following screenshot:

d =] Cx Mo Loop © Loop Current Loop All

The four buttons, from left to right, perform the following functions:

e The first button from the left adds individual audio files to a playlist

¢ The second button deletes all the selected items from the playlist

¢ The third button scans a directory for audio files and adds all the found audio
files to the playlist

¢ The last button empties the playlist

Since adding these features requires us to interact with the Listbox widget of Tkinter, let's
spend some time getting to know the Listbox widget:

We can create a Listbox widget like we'd create any other widget, as follows:

play_list = tk.ListBox(parent, **configurable options)

When you initially create a Listbox widget, it is empty. To insert one or more lines of text
into the Listbox, use the insert () method, which takes two arguments, namely an index of
the position where the text needs to be inserted and the actual string that needs to be
inserted, as follows:

play_list.insert (0, "First Item")
play_list.insert (1, "Second Item")
play_list.insert (END, "Last Item")

The curselection () method returns the index of all the items selected in the list, and the
get () method returns the list item for a given index, as follows:

play_list.curselection() # returns a tuple of all selected items
play_list.curselection () [0] # returns first selected item
play_list.get (1) # returns second item from the list
play_list.get (0, END) # returns all items from the list

[173]

Building an Audio Player Chapter 5

In addition to this, the Listbox widget has several other configurable options.

For a complete Listbox widget reference, type the following into the Python interactive
shell:

>>> import tkinter
>>> help (tkinter.Listbox)

Now that we know how to add and remove items from the Listbox widget, let's code these
functions into the player.

Let's begin by modifying the command callback attached to the four buttons, as follows (see
code 5.03—view.py):

def on_add_file_button_clicked(self):
self.add_audio_file ()

def on_remove_selected_button_clicked(self):
self.remove_selected_file ()

def on_add_directory_button_clicked(self):
self.add_all_audio_files_from_directory()

def on_clear_play_list_button_clicked(self):
self.clear_play_list ()

def on_remove_selected_context_menu_clicked(self):
self.remove_selected_file ()

All that these four methods do is call four other methods that do the actual task of adding
or removing items to the playlist. All the methods will update the play_1list items at the
following two places:

¢ In the visible Listbox widget
¢ In the backend data structure playlist maintained by the Model class

Let's define the four new methods.

Adding a single audio file

Adding a file involves asking for the location using Tkinter filedialog and updating the
frontend and backend, as follows (see code 5.03—view.py):

def add_audio_file(self):

[174]

Building an Audio Player Chapter 5

audio_file = tkinter.filedialog.askopenfilename (filetypes=][(
'All supported', '.mp3 .wav'), ('.mp3 files', '.mp3'), ('.wav files',
".wav')1])
if audio_file:
self.model.add_to_play_list (audio_file)
file_path, file_name = os.path.split (audio_file)
self.list_box.insert (tk.END, file_name)

Removing the selected files from a playlist

Since the Listbox allows for multiple selections, we iterate through all the selected items,
removing them from the frontend Listbox widget as well as from the model play_list, as
follows (see code 5.03—view.py):

def remove_selected_files(self):
try:
selected_indexes = self.list_box.curselection ()
for index in reversed(selected_indexes) :
self.list_box.delete (index)
self.model.remove_item_from_play_list_at_index (index)
except IndexError:
pass

Note that we reverse the tuple before removing items from the playlist because we want to
start removing items from the end, as a removal causes a change in the index of playlist
items. If we do not remove items from the end, we may end up removing the wrong items
from the list, as its index gets modified in each iteration.

Since we have defined this method here, let's add it as a command callback to the right-click
delete menu, as follows:

def on_remove_selected_context_menu_clicked(self):
self.remove_selected_files ()

Adding all files from a directory

The following code uses the os.walk () method to recursively walk through all the files
looking for .wav and .mp3 files, as follows (see code 5.03—view.py):

def add_all_audio_files_from_directory(self):
directory_path = tkinter.filedialog.askdirectory ()
if not directory_path: return
audio_files_in_directory =

[175]

Building an Audio Player Chapter 5

self.get_all_audio_file_from_directory(directory_path)
for audio_file in audio_files_in_directory:
self.model.add_to_play_list (audio_file)
file_path, file_name = os.path.split (audio_£file)
self.list_box.insert (tk.END, file_name)

def get_all_audio_file_from_directory(self, directory_path):
audio_files_in_directory = []
for (dirpath, dirnames, filenames) in os.walk(directory_path):
for audio_file in filenames:
if audio_file.endswith(".mp3") or audio_file.endswith(".wav"):
audio_files_in_directory.append(dirpath + "/" + audio_file)
return audio_files_in_directory

Emptying the playlist
The code is as follows (see code 5.03—view.py):
def empty_play_list (self):
self.model.empty_play_list ()
self.list_box.delete (0, END)

This completes our third iteration. In this iteration, we saw how to work with the Listbox
widget. In particular, we saw how to add items to the Listbox widget, select a particular
item from the Listbox widget, and delete one or more items from it.

You now have a playlist where you can add and delete items using the four buttons at the
bottom-left corner of the audio player.

Playing audio and adding audio controls

In this iteration, we will code the features marked in the following screenshot:

S

This includes the play/stop, pause/unpause, next track, previous track, fast
forward, rewind, volume change, and mute/unmute features.

[176]

Building an Audio Player Chapter 5

Adding the play/stop function

Now that we have a playlist and a P1layer class that can play audio, playing audio
is simply about updating the current track index and calling the play method.

Accordingly, let's add an attribute, as follows (see code 5.04—view.py):

current_track_index = 0

Furthermore, the Play button should act as a toggle between the play and stop functions.
The Python itertools module provides the cycle method, which is a very convenient
way to toggle between two or more values.

Accordingly, import the itertools module and define a new attribute, as follows (see
code 5.04—view.py):

toggle_play_stop = itertools.cycle(["play", "stop"])

Now, every time we call next (toggle_play_stop), the value returned toggles between
the play and stop strings.

Itertools is a very powerful standard library of Python that can emulate
many iterables from a functional programming paradigm. An iterable in
Python is an interface that implements the next () method. Every
subsequent call to next () is lazily evaluated—thereby making them
suitable for iterating over large sequences in the most efficient manner.
The cycle () tool used here is an example of an iterator that can provide
infinite sequences of alternating values without the need to define a large
data structure.

The following is the documentation of the itertools module:
https://docs.python.org/3/library/itertools.html

Next, modify the on_play_stop_button_clicked () method so that it looks like this (see
code 5.04—view.py):

def on_play_stop_button_clicked(self):
action = next (self.toggle_play_stop)

if action == 'play':
try:
self.current_track_index = self.list_box.curselection () [0]

except IndexError:
self.current_track_index
self.start_play ()

0

[177]

https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html
https://docs.python.org/3/library/itertools.html

Building an Audio Player Chapter 5

elif action == 'stop':
self.stop_play ()

The preceding method simply toggles between calling the start_play ()
and stop_play () methods, which are defined as follows:

def start_play(self):

try:

audio_file = self.model.get_file_to_play(self.current_track_index)
except IndexError:

return

self.play_stop_button.config(image=self.stop_icon)
self.player.play_media (audio_file)

def stop_play(self):
self.play_stop_button.config(image=self.play_icon)
self.player.stop ()

The preceding code calls the play and st op methods defined in the Player class. It also
changes the button image from the play icon to the stop icon by using the
widget.config(image=new_image_icon) method.

While we are handling the play function, let's modify the command callback so that a user
can play a track simply by double-clicking on it. We have already defined a method named
on_play_list_double_clicked earlier, which is currently empty.

Simply modify it, as follows:
def on_play_list_double_clicked(self, event=None) :

self.current_track_index = int (self.list_box.curselection () [0])
self.start_play ()

Adding the pause/unpause function

Since we need a single button to toggle between pause and unpause, we will again use the
cycle () method from the itertools module. Define an attribute, as follows (see code
5.04—view.py):

toggle_pause_unpause = itertools.cycle (["pause", "unpause"])
Then, modify the command callback attached to the button, as follows:
def on_pause_unpause_button_clicked(self) :

action = next (self.toggle_pause_unpause)
if action == 'pause':

[178]

Building an Audio Player Chapter 5

self.player.pause ()
elif action == 'unpause':
self.player.unpause ()

This takes care of the pause and unpause features of the program.

Adding the mute/unmute function

This is similar to coding the pause/unpause feature. We need an attribute that can toggle
between the mute and unmute strings. Accordingly, add an attribute, as follows (see code

5.04—view.py):

toggle_mute_unmute = itertools.cycle(["mute", "unmute"])

Then, modify the command callback to call the mute or unmute functions from the player
class, change the button icon to the mute or unmute image, and shift the volume scale
accordingly, as follows (see code 5.04—view.py):

def on_mute_unmute_button_clicked(self) :

action = next (self.toggle_mute_unmute)

if action == 'mute':
self.volume_at_time_of_mute = self.player.volume
self.player.mute ()
self.volume_scale.set (0)
self.mute_unmute_button.config(image=self.mute_icon)

elif action == 'unmute':
self.player.unmute (self.volume_at_time_of_mute)
self.volume_scale.set (self.volume_at_time_of_mute)
self.mute_unmute_button.config(image=self.unmute_icon)

Fast forward/rewind function

The codes for fast forward and rewind are the simplest. We have already defined
the methods to handle this in the P1ayer class. Now, it's only a matter of connecting
them to the concerned command callback, as follows:

def on_fast_forward_button_clicked(self):
self.player.fast_forward()

def on_rewind_button_clicked(self):
self.player.rewind ()

[179]

Building an Audio Player Chapter 5

Adding the next track/previous track function

While we had defined the code for fast forward and rewind in the Player class, we did not
define the method related to next track and previous track there, because this can be
handled by the existing play method. All that you need to do is simply increment or
decrement the value of current_track and then call the play method. Accordingly,
define two methods in the View class, as follows (see code 5.04—view.py):

def play_previous_track(self):
self.current_track_index = max (0, self.current_track_index - 1)
self.start_play ()

def play_next_track(self):
self.current_track_index = min(self.list_box.size() - 1,
self.current_track_index + 1)
self.start_play ()

Then, simply attach these two methods to the respective command callback, as follows (see
code 5.04—view.py):

def on_previous_track_button_clicked(self):
self.play_previous_track()

def on_next_track_button_clicked(self):
self.play_next_track()

Adding the volume change function

We have already defined the volume method in the Player class. Now, all that you need to

do is simply get the value of the Volume Scale widget and set the volume in the Player
class.

Also, ensure that in case the volume becomes zero, we change the volume button icon to the
mute image (see code 5.04—view.py):

def on_volume_scale_changed(self, value):
self.player.volume = self.volume_scale.get ()
if self.volume_scale.get () == 0.0:
self.mute_unmute_button.config(image=self.mute_icon)
else:
self.mute_unmute_button.config(image=self.unmute_icon)

[180]

Building an Audio Player Chapter 5

This concludes the iteration. The player is now functional enough to be called an audio
player. Go ahead and add some music files to the player. Press the play button and enjoy
the music! Try out other player controls that we defined in this iteration and they should
work as expected.

Creating a seek bar

Now, let's add a seek bar to the audio player. Tkinter offers the Scale widget that we used
for the volume scale. The Scale widget could have functioned as a seek bar.

But we want something fancier. Moreover, the Scale widget would look different on
different platforms. Instead, we want the seek bar to look uniform on all platforms. This is
where we can create our own widget to meet the custom needs of the audio player.

Let's create our own Seekbar widget, as shown in the following screenshot:

00:00 of 00:00

The simplest way to create our own widget is to inherit one from an existing widget or the
Widget class.

When you look at the source code of Tkinter, you will find that all the widgets inherit from
a class named Widget. The Widget class, in turn, inherits from another class called
BaseWidget. The BaseWidget class contains the code that is used to handle a widget's
destroy () method, but it is not aware of a geometry manager.

Therefore, if we want our custom widget to be aware of and use geometry managers such
as pack, grid, or place, we need to inherit from the Widget class or from another Tkinter
widget.

Let's assume that we want to create a widget named Wonderwidget. We can do so simply
by inheriting from the widget class, as follows:

from tkinter import *

class Wonderwidget (Widget) :
def __init__ (self, parent, **options):
Widget.__init__ (self, parent, options)

[181]

Building an Audio Player Chapter 5

These four lines of code create a widget named Wonderwidget, which can be positioned
with geometry managers such as pack, place, or grid.

However, for more practical use cases, we generally inherit from the existing
Tkinter widgets, such as Text, Button, Scale, Canvas, and so on. In our case, we will
create the Seekbar widget by inheriting from the Canvas class.

Create a new file called seekbar.py (see code 5.05.py). Then, create a new class named
Seekbar that inherits from the Canvas widget, as follows:

from tkinter import *

class Seekbar (Canvas) :
def __init__ (self, parent, called_from, **options):
Canvas.__init__ (self, parent, options)
self.parent = parent
self.width = options['width']
self.red_rectangle = self.create_rectangle(0, 0, 0, 0,fill="red")
self.seekbar_knob_image = PhotoImage (file="../icons/seekbar_knob.gif")
self.seekbar_knob = self.create_image (0, O,
image=self.seekbar_knob_image)

The preceding code calls the __init__ method of the parent Canvas class to initialize the
underlying canvas with all the canvas-related options that are passed as an argument.

With as little code as that, let's go back and modify the create_top_display () method in
the View class to add this new widget, as follows:

self.seek_bar = Seekbar (frame, background="blue", width=SEEKBAR_WIDTH,
height=10)
self.seek_bar.grid(row=2, columnspan=10, sticky='ew',6 padx=5)

Here, SEEKBAR_WIDTH is a constant that we defined as equal to 360 pixels in the program.
If you now run view.py, you will see the seekbar widget at its place.
The seek bar is not functional, as it does not move when the seek bar knob is clicked.

In order to make the seek bar slide along, we will bind the mouse buttons by defining a new
method and calling it from the __init__ method, as follows (see code
5.05—seekbar.py):

def bind_mouse_button(self) :
self.bind('<Button-1>"', self.on_seekbar_clicked)
self.bind('<Bl1-Motion>"', self.on_seekbar_clicked)
self.tag_bind(self.red_rectangle, '<Bl-Motion>"',

[182]

Building an Audio Player Chapter 5

self.on_seekbar_clicked)
self.tag _bind(self.seekbar_knob, '<Bl-Motion>',
self.on_seekbar_clicked)

We bind the entire canvas, the red rectangle, and the seek bar knob to a single method
named on_seekbar_clicked, which can be defined as follows (see code
5.05—seekbar.py):

def on_seekbar_clicked(self, event=None) :
self.slide_to_position(event.x)

The preceding method simply calls another method named slide_to_position, whichis
responsible for changing the position of the knob and the size of the red rectangle (see
code 5.05—seekbar.py):

def slide_to_position(self, new_position):
if 0 <= new_position <= self.width:
self.coords (self.red_rectangle, 0, 0, new_position, new_position)
self.coords (self.seekbar_knob, new_position, 0)
self.event_generate ("<<SeekbarPositionChanged>>", x=new_position)

The preceding code slides the knob to the new position. More importantly, the last line
creates a custom event named SeekbarPositionChanged. This event will let any code that
uses this custom widget handle the event appropriately.

The second argument, x=new_position, adds the value of x to event . x, making
it available to the event handler.

So far, we have only been handling events. Tkinter also lets us create our own events, which
are called virtual events.

We can specify any name for the event by enclosing the name in double pairs of <<...>>.

In the preceding code, we generated a virtual event
named <<SeekbarPositionChanged>>.

We then bound it to the appropriate event handler in the View class, as follows:

self.root.bind("<<SeekbarPositionChanged>>", self.seek_new_position)

[183]

Building an Audio Player Chapter 5

That's all that there is to the custom Seekbar widget. We can write a small test in
seekbar . py that will check whether the seekbar widget works as expected:

class TestSeekBar :
def _ _init_ (self):

root = tk.Tk ()
root.bind ("<<SeekbarPositionChanged>>", self.seek_new_position)
frame = tk.Frame (root)
frame.grid(row=1, pady=10, padx=10)
c = Seekbar (frame, background="blue", width=360, height=10)
c.grid(row=2, columnspan=10, sticky='ew',6 padx=5)
root.mainloop ()

def seek_new_position(self, event):

print ("Dragged to x:", event.x)
if _ name_ == '_ main__':
TestSeekBar ()

Go ahead and run the 5. 05—seekbar.py program; it should produce a seek bar. The seek
bar should slide when you drag the seek bar knob or click at various places on the canvas.

This concludes the iteration. We will make the audio player's seek bar functional in the next
iteration.

One-time updates during audio playback

The audio program must update some information as soon as an audio track starts playing.
Broadly speaking, there are two kinds of updates that the program needs to monitor and
update:

¢ One-time updates: Examples of this include the name of the track and the total
length of the track.

e Continuous updates: Examples of this include the position of the seek bar knob
and the elapsed play duration. We also need to check continuously whether a
track has ended either to play the next track, play the current track again, or stop
playing, depending on the loop choice made by the user.

These two kinds of updates will affect sections of the audio player, as shown in
the following screenshot:

[184]

Building an Audio Player Chapter 5

Let's start with the one-time updates, as they are relatively simple to implement.

Since these updates must occur when the playback starts, let's define a method named
manage_one_time_updates () and call it from within the start_play () method of the
View class, as follows (see code 5.06—view.py):

def manage_one_time_track_updates_on_play_start (self):
self.update_now_playing_text ()
self.display_track_duration()

Next, define all the methods called from within the preceding method, as follows:

def update_now_playing_text (self) :
current_track = self.model.play_list[self.current_track_index]
file_path, file_name = os.path.split (current_track)
truncated_track_name = truncate_text (file_name, 40)
self.canvas.itemconfig(self.track_name, text=truncated_track_name)

def display_track_duration(self):
self.track_length = self.player.track_length
minutes, seconds = get_time_in_minute_seconds (self.track_length)
track_length_string = 'of {0:02d}:{1:02d}'.format (minutes, seconds)
self.canvas.itemconfig(self.track_length_text, text=track_length_string)

These two methods simply find out the track name and track duration and update the
related canvas text by using a call to canvas.itemconfig.

Just like we use config to change the value of widget-related options, the Canvas widget
uses itemconfig to change the options for individual items within the canvas. The format
for itemconfig is as follows:

canvas.itemconfig(itemid, **options).

[185]

Building an Audio Player Chapter 5

Let's define two helper methods in a new file named helpers.py and import the methods
in the view namespace. The two methods are truncate_text and
get_time_in_minutes_seconds. The code for this can be found in

the 5.06—helpers.py file.

That takes care of one-time updates. Now, when you run 5. 06—view.py and play some
audio file, the player should update the track name, and the total track duration in the top
console, as shown in the following screenshot:

Hackground Music _ Beautiful Cinematic Mus..

01:10 ofD2:48

We will take care of periodic updates in the next iteration.

Managing continuous updates

Next, we will update the position of the seek bar knob and the elapsed play duration, as
shown in the following screenshot:

01:10) of 02:48

This is nothing but a simple form of Tkinter-based animation.

The most common pattern of animating with Tkinter involves drawing a single frame and
then calling the same method using the after method of Tkinter, as follows:

def animate (self):
self.draw_frame ()
self.after (500, self.animate)

[186]

Building an Audio Player Chapter 5

Take a note of the self.after method, which calls the animate method
in a loop. Once called, this function will keep updating frames once every
500 milliseconds. You can also add some conditions to break out of the
animation loop. This is generally how all animations are handled in
Tkinter. We will use this technique over and over again in several
upcoming examples.

Now that we know how to manage animations in Tkinter, let's use the pattern to define a
method that takes care of these periodic updates.

Define a method named manage_periodic_updates_during_play, which calls itself
every 1 second to update the timer and the seek bar, as follows (see code 5.07—view.py):

def manage_periodic_updates_during_play(self):
self.update_clock ()
self.update_seek_bar ()
self.root.after (1000, self.manage_periodic_updates_during_play)

Then, define two methods named update_clock and update_seek_bar, which update
the sections highlighted in the preceding screenshot.

The update_clock method gets the elapsed duration in seconds from the Player class,
converts it into minutes and seconds, and updates the canvas text
using canvas.itemconfig, as follows (see code 5.07—view.py):

def update_clock (self):
self.elapsed_play_duration = self.player.elapsed_play_duration
minutes, seconds = get_time_in_minute_seconds (self.elapsed_play_duration)
current_time_string = '{0:02d}:{1:02d}"'.format (minutes, seconds)
self.canvas.itemconfig(self.clock, text=current_time_string)

You may recall that we had previously defined a slide_to_position method in

the Seekbar class. The update_seek_bar method simply calculates the

proportionate position of the seek bar and then calls the s1ide_to_position method to
slide the knob of the seekbar, as follows (see code 5.07—view.py):

def update_seek_bar (self):
seek_bar_position = SEEKBAR_WIDTH *
self.player.elapsed_play_duration /self.track_length
self.seek_bar.slide_to_position (seek_bar_position)

[187]

Building an Audio Player Chapter 5

Now, if you run 5. 07-view.py, add an audio file, and play it, the elapsed duration should
be updated continuously in the top display. The seek bar should also move forward as the
play progresses.

That's great, but there is still one small detail missing. We want that when a user clicks
somewhere on the seek bar, the playing audio seeks the new position. The code for seeking
a new position is simple (see code 5.07—view.py):
def seek_new_position(self, event=None):
time = self.player.track_length * event.x /SEEKBAR_WIDTH

self.player.seek (time)

However, the preceding method needs to be called whenever the seek bar position is
changed. Let's do this by adding a binding to the virtual event from
within 5.07—view.py, as follows:

self.root.bind("<<SeekbarPositionChanged>>", self.seek_new_position)

Now, when you run 5.07—view.py, play an audio file and click on the seek bar; the
audio should start playing from the new position.

This concludes the iteration. We will look at how to loop over tracks in the next iteration.

Looping over tracks

Let's add the feature that allows users to loop over tracks. We have already defined radio
buttons to allow three choices, as shown in the following screenshot:

" Mo Loop Loop Current @& Loop All | D

In essence, the player should provide a choice from the following three options:

¢ No Loop: Play a track and end there
¢ Loop Current: Play a single track repeatedly
e Loop All: Looping through the entire playlist, one after another

The decision to follow one of these three options needs to be taken immediately after a
particular track ends playing. The best place to judge whether a track has come to its end is
from within the periodic updates loop that we created earlier.

[188]

Building an Audio Player Chapter 5

Therefore, modify the manage_periodic_updates_during_play () method to add the
following two lines of highlighted code (see code 5.08—view.py):

def manage_periodic_updates_during_play(self):
self.update_clock ()
self.update_seek_bar ()
if not self.player.is_playing():
if self.not_to_loop(): return
self.root.after (1000, self.manage_periodic_updates_during_play)

This in effect means that the looping decision is checked only when the currently playing
track ends. Then, define the not_to_loop () method, as follows (see
code 5.09—view.py):

def not_to_loop(self):

selected_loop_choice = self.loop_value.get ()
if selected_loop_choice == 1: # no loop

return True
elif selected_loop_choice == 2: # loop current

self.start_play ()
return False

elif selected_loop_choice == 3: #loop all
self.play_next_track()

return True

The code first checks the value of the selected radio button and, based on the
selected choice, makes the looping choice:

e If the selected loop value is 1 (No Loop), it does nothing and returns
True, breaking out of the continuous update loop.

o If the selected loop value is 2 (loop over the current song), it again calls
the start_play method and returns False. Thus, we do not break out of
the update loop.

e If the loop value is 3 (Loop All), it calls the play_next_track method and
returns True. Thus, we break out of the previous update loop.

The audio player can now loop over the playlist based on the looping preference set by the
user.

Let's conclude this iteration by overriding the close button so that the audio player properly
deletes the player object when the user decides to close the player while it is playing.

[189]

Building an Audio Player Chapter 5

To override the destroy method, first add a protocol override command to the View
__init__ method, as follows (see code 5.08—view.py):

self.root.protocol ('"WM_DELETE_WINDOW', self.close_player)
Finally, define the close_player method, as follows:
def close_player (self):

self.player.stop()
self.root.destroy ()

This concludes the iteration. We coded the logic required to loop over tracks and then
overrode the close button to ensure that a playing track is stopped before we exit the player.

Adding a tooltip

In this final iteration, we will add a tooltip named the Balloon widget to all the buttons in
our player.

A tooltip is a small popup that shows up when you hover your mouse over the Bound
widget (buttons, in our case). A typical tooltip for the application will look as follows:

| Mute/Unmute

Although core Tkinter has many useful widgets, it is far from complete. For us, the tooltip
or Balloon widget is not provided as a core Tkinter widget. Therefore, we look for these
widgets in what are called Tkinter extensions.

These extensions are nothing but a collection of extended Tkinter widgets, just like the
custom seek bar that we created.

There are literally hundreds of Tkinter extensions. In fact, we just wrote our own Tkinter
extension in this chapter.

However, the following are some of the popular Tkinter extensions:

o Pmw: (http: //pmw.sourceforge. net)
o Tix: (http ://wiki.Python. org/moin/Tix)

[190]

http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://pmw.sourceforge.net
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix
http://wiki.Python.org/moin/Tix

Building an Audio Player

e TkZinc: (http ://wiki.Python. org/moin/TkZinc)

. Widget Construction Kit (WCK): (http ://effbot.org/zone/wck. htm)

Pmw list of extensions

Talking about Pmw, here is a quick list of widget extensions and dialogs from the package.

Widgets

The following table shows a list of widget extensions:

ButtonBox ComboBox Counter EntryField

Group HistoryText LabeledWidget | MainMenuBar
MenuBar MessageBar NoteBook OptionMenu
PanedWidget |RadioSelect ScrolledCanvas | ScrolledField
ScrolledFrame | ScrolledListBox | Scrolled Text TimeCounter

Dialogs

The following table shows a list of widget dialogs:

AboutDialog |ComboBoxDialog| CounterDialog | Dialog
MessageDialog | PromptDialog SelectionDialog | TextDialog
Miscellaneous

The following is a list of miscellaneous widgets offered by Pmw:

® Balloon
e Blt (used for graph generation)
e The Color Module functions

[191]

http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://wiki.Python.org/moin/TkZinc
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm
http://effbot.org/zone/wck.htm

Building an Audio Player Chapter 5

Pmw offers a large list of extended widgets. For a demonstration of all
these widgets, browse the Pmw package that you installed earlier and look
for a directory named demo. Within demo, look for a file named 211 . py,
which demonstrates all of these Pmw extensions with a sample working
code.

Pmw provides the Balloon widget implementation, which will be used in the current
example. Begin by importing Pmw into the namespace, as follows (see
code 5.09—view.py):

import Pmw
Next, instantiate the Balloon widget within the create_gui method, as follows:

self.balloon = Pmw.Balloon(self.root)

Finally, bind the Balloon widget to each button widget in the audio player. We will not
reproduce the code for each button. However, the format is as follows:

balloon.bind (name of widget, 'Description for the balloon')

Thus, the Add File button will have a balloon binding, as follows:

self.balloon.bind(add_file_button, 'Add New File')
Add similar code for each button in 5. 09—view.py.

This completes the iteration. We added Balloon tooltips to the audio player's buttons using
the Pmw Tkinter extension. Most importantly, we got to know about the Tkinter extensions
and when to use them.

When you need a widget implementation that is not available as a core
widget, try looking for its implementations in Pmw or TIX. If you don't
find one that suits your needs, search the internet for some other Tkinter
extension. If you still don't find your desired implementation, it's time to
build one.

This brings us to the end of this chapter. The audio player is ready!

[192]

Building an Audio Player Chapter 5

Summary

Let's recap the things that we touched upon in this chapter.

In addition to reinforcing a lot of GUI programming techniques that we discussed in the
previous chapters, you learned how to work with more widgets such as Listbox, ttk Scale,
and Radiobutton. We looked deeper into the features of the Canvas widget.

Most importantly, we learned how to create our custom widgets, thereby
extending Tkinter's core widgets. This is a really powerful technique that can be applied
to build all sorts of features into programs.

We saw how to generate and handle virtual events.

We saw the most common technique for applying animation in Tkinter programs. This
technique can also be used to build all sorts of interesting games.

Finally, we got to know about some common Tkinter extensions, such as Pmw, WCK, TIX,
and so on.

Now, let's lose ourselves in some music!

QA section

Before you proceed to the next chapter, make sure you can answer these questions to your
satisfaction:

e How can we create our own custom widgets in Tkinter?
e How do you create animations with Tkinter?
What are virtual events? When and how do we use them?

What are Tkinter extensions? What are the most popular ones?

Further reading

Look at the documentation for popular Tkinter extensions such as Pmw, Tix, WCK, and
others. Take a note of the commonly available widgets in these extensions.

[193]

Paint Application

We used the Canvas widget to define a custom widget in chapter 5, Building an

Audio Player. The Canvas widget is truly one of Tkinter's highlights. It is an

incredibly powerful and flexible widget. Let's, therefore, devote most of this chapter to
looking at the Canvas widget in detail.

We will now develop a paint application. The application will let the user draw freehand
lines, straight lines, circles, rectangles, arcs, and other polygons. It will also let the user
define new complex shapes.

In addition to exploring the Canvas widget, we will also develop a tiny GUI framework on
top of the Tkinter interface. As you will see, frameworks are a great way to maximize code
reuse. This makes them a powerful tool for Rapid Application Development (RAD).

Some of the key learning objectives for this chapter are as follows:

¢ Master the Canvas widget API

e Learn to build and use custom GUI frameworks for maximum code reuse and
rapid application development

e Learn to use the colorchooser module of Tkinter

¢ Learn to use the ttk ComboBox widget

¢ Get to know available widget methods

¢ Reinforce things that we have learned in previous projects

Paint Application Chapter 6

Overview of the application

In its final form, our paint application would look as follows:

File Edit View About
Draw super shape: ¥ Select shape:|shape B |Fill:|fg | Outline: | Width:|2.0

=o | »

=)=y M x X

L]] « X

Fdi.]

Al '

S| .

e &

sl .

—
¢

There are no external library requirements for this chapter, so let's dive
0 into the code.

[195]

Paint Application Chapter 6

Creating a tiny framework

So why do we need another framework on top of Tkinter? If we need to build just a single
program, we need not build a framework. However, if we find ourselves writing the same
boilerplate code over and over again, a framework is what we need. That is, a framework is
a tool that lets us easily generate generic and often-used patterns with ease.

Consider, for example, menus used in programs. A menu is such a common element
in most programs, yet we need to handcraft each menu item every time we sit down to
write a program. What if we could further abstract to simplify menu generation?

This is where frameworks come in handy.

Say you have a program that has 10 different top-level menus. Say each of the top-level
menus has five menu items. We will have to then write 50 lines of code simply to display
these 50 menu items. You have to link each of them manually to other commands besides
having to set tons of options for each of them.

If we keep doing this for all our widgets, our GUI programming becomes an exercise in
typing. Every extra line of code that you write adds to the program complexity, making it
more difficult for someone else to read, maintain, modify, and/or debug the code.

This is where using a custom framework comes to our aid. Let's develop a tiny framework
that makes menu generation easy for us.

We create a file, framework.py, and create a new class, Framework, to the file. Every class
that uses this framework must inherit from this class and should pass the root window as
an argument to this class by calling the super method as follows:

super () .__init__ (root)
This will make all methods defined in the Framework class available to the inheriting class.

We will now define a method, build_menu, which takes a tuple in an expected format as
input and automatically creates the menu for us. Let's define an arbitrary rule that each
group of menu items must be represented by a single entry in a tuple.

Furthermore, we come up with a rule that each item in the tuple must be presented in
the following format:

'Top Level Menu Name — Menu Item Name / Accelrator
/Commandcallback/Underlinenumber'

MenuSeparator is denoted by a string 'sep'.

[196]

Paint Application Chapter 6

An alternative representation of menu definition could be specifying it as a tuple instead of
a string definition, which is like asking the user to already split the definition rather than us
having to extract the menu definition from a string.

For instance, passing this tuple as an argument to the build_menu method should generate
three menus as shown in the following code:

menu_items = (

'File - &New/Ctrl+N/self.new_file, &Open/Ctrl+0/self.open_file',
'Edit - Undo/Ctrl+Z/self.undo’,

'sep',

'Options/Ctrl+T/self.options’',

'About - About//self.about'

)

Take a look at the following screenshot:

File | Edit About File Edit | About File Edit Abuut|
New Ctrl+N Undo Ctri+Z About |
Open Ctrl+0 ————

Options Ctrl+T

The first item of the string (before dash (-)) represents the top-level menu button. Each
subsequent part of the string separated by a forward slash (/) represents one menu item, its
accelerator key, and the attached command callback.

The position of the ampersand symbol (&) represents the position of the shortcut key to be
underlined. If we encounter the string sep, we add a menu separator.

Now that we have defined the rules, the code for build_menu is as follows: (see
the framework.py code):

def build_menu(self, menu_definition):

menu_bar = tk.Menu(self.root)

for definition in menu_definition:
menu = tk.Menu (menu_bar, tearoff=0)
top_level_menu, pull_down_menus = definition.split('-")
menu_items = map(str.strip, pull_down_menus.split (', "))
for item in menu_items:

self._add_menu_command (menu, item)

menu_bar.add_cascade (label=top_level_menu, menu=menu)

[197]

Paint Application Chapter 6

self.root.config(menu=menu_bar)

def _add_menu_command (self, menu, item):

if item == 'sep':
menu.add_separator ()
else:
menu_label, accelrator_key, command_callback =item.split('/")
try:
underline = menu_label.index ('&"')
menu_label = menu_label.replace('&', "', 1)

except ValueError:
underline = None
menu.add_command (label=menu_label, underline=underline,
accelerator=accelrator_key,
command=eval (command_callback))

The description of the code is as follows:

e The method, build_menu, operates on a tuple by the name
menu_definition, which must specify all desired menus and menu items in the
exact format, as previously discussed.

e It iterates through each item in the tuple, splitting the item based on the dash (-)
delimiter, building the top-menu button for each item left to the dash (-)
delimiter.

e It then splits the second part of the string based on the comma (,) delimiter.

e [t then iterates through this second part, creating menu items for each of the
parts, adding the accelerator key, command callback, and underline key using
another method, _add_menu_command.

e The _add_menu_command method iterates through the string and adds
a separator if it finds the string sep. If not, it next searches for an ampersand (&)
in the string. If it finds one, it calculates its index position and assigns it to the
underline variable. It then replaces the ampersand value with an empty string,
because we do not want to display the ampersand in our menu item.

e If an ampersand is not found in a string, the code assigns None to the underline
variable.

e Finally, the code adds a command callback, accelerator key, and underline value
to the menu item. Note that our framework adds only the accelerator key label. It
is the developer's responsibility to bind events to the bound keys.

[198]

Paint Application Chapter 6

Our demonstration of making GUI frameworks ends here. We can now use this method to
define literally hundreds of menus simply by adding one new line for each group of menus.

However, this is a rather rudimentary framework. The rules for defining items

are completely arbitrary. The choice of delimiters means that we can no longer use the dash
(-), slash (/), and ampersand (&) characters that we have used as delimiters in any menus
that we define using this framework.

Our framework does not lay down rules for any other widgets. In fact, this definition is not
even sufficient to generate other types of menu such as cascading menus, check button
menus, or radio button menus. We will, however, not extend the framework further, as it is
sufficient to have developed the concept behind framework design and usage and that is all
we need to use in our paint application.

We have also included a small test in the framework.py file. If you execute the file as a
standalone program, it should pop up a window and define some menus for testing.

Fully-fledged frameworks use more structured markup languages

to represent rules. XML is one of the most popular choices for writing GUI
frameworks. You can find an example of a full-blown XML-based Tkinter
RAD (tkRAD) framework here: https://github.com/muxuezi/tkRAD. A
simple menu implementation using the preceding framework can be seen
here: https://github.com/muxuezi/tkRAD/blob/master/xml/rad_xml_me

nu.py.

Using a framework for smaller programs may be overkill, but they are invaluable assets for
large programs. Hopefully, you should now be able to appreciate the benefits of using
frameworks for larger programs.

Now that we have the code for build_menu, we can extend it to add as many menu items
as required without having to write repetitive and similar code for each of them.

This ends our first iteration. We will use this tiny framework to define the menu for our
drawing program in the next step.

Setting up a broad GUI structure

Let's now set up the broad GUI elements of our program. We will create
aPaintApplication classin 6.01.py. Since we want to draw the menu using
our framework, we import the framework into our file and inherit from the
Framework class as follows:

[199]

https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD
https://github.com/muxuezi/tkRAD/blob/master/xml/rad_xml_menu.py
https://github.com/muxuezi/tkRAD/blob/master/xml/rad_xml_menu.py

Paint Application Chapter 6

import framework

class PaintApplication (framework.Framework) :
def _ _init__ (self, root):
super () .__init__ (root)
self.create_gui ()

The __init__ method calls another method, create_gui, which is responsible
for creating the basic GUI structure for our program.

The create_gui method simply delegates the task to five separate methods, each being
responsible for creating one section of the GUI as follows (see code 6.01.py):

def create_gui (self):
self.create_menu ()
self.create_top_bar ()
self.create_tool_bar ()
self.create_drawing_canvas ()
self.bind_menu_accelrator_keys ()

These five methods together build a structure as shown in the following screenshot
(see code 6.01.py):

File Edit View About

\

Top Bar

=

e To0| Bar

We have written similar code in all previous chapters, hence we will not reproduce the code
for these five methods here. Note, however, a few things about the code in 6.01.py:

e Since we want to use the framework, we inherit from the Framework class and
callits__init__ method using super ()

[200]

Paint Application Chapter 6

e The create_menu method specifies the tuple for our menu definition and calls
the build_menu method defined earlier in our framework

We define a lot of empty methods that will be implemented later. Each empty method is
added as a command callback to individual menu items. The empty methods defined here
are:

on_new_file_menu_clicked()
on_save_menu_clicked()
on_save_as_menu_clicked()
on_close_menu_clicked()
on_canvas_zoom_out_menu_clicked()
on_canvas_zoom_in_menu_clicked ()
on_undo_menu_clicked ()
on_about_menu_clicked()

This gives us a broad GUI structure for our program. Next, we will look at interacting with
the drawing canvas.

Dealing with mouse events

When we draw in a paint program, we use a mouse as the primary input device.

There are primarily two kinds of mouse event that cause changes on the drawing canvas
and are therefore of interest:

e Click and release
e Click, drag, and release

There is also a third event in which we have limited interest—the mouse movements
with no buttons clicked. Our interest is limited there since an unclicked motion
normally does not cause any changes on the canvas.

We ignore right-click and wheel-scroll as we will not be using them in our program.

In both the preceding cases, we need to know where the mouse was first clicked and where
it was released. For click and release, this could be the same location. For click, drag, and
release this will normally be different locations.

[201]

Paint Application Chapter 6

Accordingly, we define four attributes to keep track of the coordinates for these
two locations (see code 6.02.py):

start_x, start_y = 0, O
end_x, end_y = 0, 0

Our immediate goal then is to bind our mouse events in such a way that any click or drag
gives us the value of these four start and end coordinates.

The coordinates of the Canvas widget begin at the top-left corner ((0, 0) is the top-corner).
The Canvas widget uses two coordinate systems:

¢ The window coordinate system, which is always 0, 0 for the leftmost corner, no
matter where you scroll down or up the canvas

¢ The canvas coordinate system, which specifies where the items are actually
drawn on the canvas

We will mostly be interested in the canvas coordinate system, but mouse events emit data
on the window coordinate system. To convert from the window coordinate system to the
canvas coordinate system we can use the following methods:

canvas_x = canvas.canvasx (event.x)
canvas_y = canvas.canvasy (event.y)

Let's now modify our __init__ method to also call a method, bind_mouse. We define the
bind_mouse method as follows (see code 6.02.py):

def bind_mouse (self) :
self.canvas.bind ("<Button-1>", self.on_mouse_button_pressed)
self.canvas.bind("<Buttonl-Motion>",
self.on_mouse_button_pressed_motion)
self.canvas.bind("<Buttonl-ButtonRelease>",
self.on_mouse_button_released)
self.canvas.bind ("<Motion>", self.on_mouse_unpressed_motion)

We then define the first three methods that were bound just now. We ignore the
unpressed motion for now by making an empty method. Remember that we are
interested in getting the start and end coordinates, which are acquired as follows (see
code 6.02.py):

def on_mouse_button_pressed(self, event):

self.start_x = self.end_x = self.canvas.canvasx (event.x)
self.start_y = self.end_y = self.canvas.canvasy (event.y)
print ("start_x, start_y = ", self.start_x, self.start_y)

[202]

Paint Application Chapter 6

def on_mouse_button_pressed_motion(self, event):

self.end_x = self.canvas.canvasx (event.x)
self.end_y = self.canvas.canvasy (event.y)

def on_mouse_button_released(self, event):
self.end_x = self.canvas.canvasx (event.x)
self.end_y = self.canvas.canvasy (event.y)
print ("end_x, end_y = ", self.end_x, self.end_y)

We have temporarily added two print statements to show these four values on the console
(see code 6.02.py).

Now that we have the location of the start and end mouse events, we can act upon those
events to do all kinds of activities on the canvas.

Adding toolbar buttons

Next, we need to add 16 buttons to the left toolbar. Furthermore, depending on
which button is clicked, different options would show up in the top bar as shown here:

Draw super shape: ¥¥ Select shape:|shape 7 |Fill:|#d9dS »| Outline: #d9d9 | Width:|10. |

=0 unique options for each
O] of the 16 buttons

We do not want our code structure to be too bloated by conditional logic to switch among
these 16 functions. Therefore, we will call these methods dynamically.

We first begin by defining a tuple of all 16 function names (see code 6.01.py):

tool_bar_functions = (
"draw_line", "draw_oval", "draw_rectangle", "draw_arc",
"draw_triangle", "draw_star", "draw_irregular_line",

[203]

Paint Application Chapter 6

"draw_super_shape", "draw_text", "delete_item",
"fill_item", "duplicate_item", "move_to_top",
"drag_item", "enlarge_item_size", "reduce_item_size"

)

Doing so ensures that we do not have to call each method explicitly from our code. We can
instead use the index of the tuple to retrieve the method name and call it dynamically using
the following:

getattr(self, self.toolbar_functions[index])

This makes sense here because we would eventually add more features to our drawing
program by simply extending the toolbar_functions tuple.

We further define an attribute, selected_tool_bar_function, which will keep track of
which button was last clicked. We initialize it to the first button (draw_1line) as follows:

selected_tool_bar_function = tool_bar_functions[0]

Next, we create a folder named icons and add icons for all these 16 toolbar buttons. The
icons have been named the same as the corresponding function name.

Maintaining this consistency allows us to use the same tuple to loop over and build our
toolbar buttons. This style of programming is what you could call programming using
conventions over configuration.

We next create the method that makes the actual buttons (see code 6.03.py):

def create_tool_bar_buttons (self):
for index, name in enumerate (self.tool_bar_functions):
icon = tk.PhotoImage (file='icons/' + name + '.gif')
self.button = tk.Button(self.tool_bar, image=icon, command=lambda
index=index: self.on_tool_bar_button_clicked (index))
self.button.grid(row=index // 2, column=1 + index % 2, sticky='nsew')
self.button.image = icon

The preceding code creates all the buttons and adds command callbacks to the buttons as
highlighted. We accordingly define the command callback as follows (see code 6.03.py):

def on_tool_bar_button_clicked(self, button_index) :
self.selected_tool_bar_function = self.tool_bar_functions[button_index]
self.remove_options_from_top_bar ()
self.display_options_in_the_top_bar ()

[204]

Paint Application Chapter 6

The preceding method sets the value of selected_tool_bar_function. Next, it calls two
methods that are defined as follows (see code 6.03.py):

def remove_options_from_ top_bar (self):
for child in self.top_bar.winfo_children(() :
child.destroy ()

We need to remove any existing options currently displaying in the top bar before we can
display options for the newly selected button. The winfo_children method used just now
returns a list of all widgets that are children of this widget.

Now that we have removed all items from the top bar, we define the selected tool icon on
the top bar:

def display_options_in_the_top_bar (self):
self.show_selected_tool_icon_in_top_bar (self.selected_tool_bar_function)

Currently, this method only calls one other method to display the selected tool icon in the

top bar. We will, however, use this method as the central place for adding options to the top
bar later in the chapter.

We do not discuss the show_selected_tool_icon_in_top_bar method here as it simply
adds a label with an icon to the top bar (see code 6.03.py):

tk [x

File Edit View About

Draw triangle: 9
‘“ﬂ-..____

L
() |
|

Now, if you go and run the code 6.03.py, it should display all 16 buttons in the left
toolbar. Furthermore, clicking on any one of the buttons should display the selected button
in the top bar, as shown in the preceding screenshot.

[205]

Paint Application Chapter 6

The winfo_children () method used earlier is an example of

widget methods that are available to be called on all widgets. Several
useful widget methods are defined in Tkinter.

In addition to the widget methods that are available on all widgets,
some methods are only available on the top-level window. You can get a
list of all such available methods and their descriptions by typing the
following in your Python 3 console:

e >>> import tkinter
e >>> help (tkinter.Misc)
e >>> help (tkinter.Wm)

These are available online at http://effbot.org/tkinterbook/widget .
htmand at http://effbot.org/tkinterbook/wm.htm.
You are encouraged to take a look at all these available methods.

Next, we will extend our program to actually draw items on the canvas.

Drawing items on the canvas

Objects added to the canvas are called items. New items are added to the canvas using
different create methods such as create_line, create_argc,
create_oval, create_rectangle, create_polygon, create_text, create_bitmap,

and create_image.

Items added to the canvas are placed in a stack. New items are added on top of items
already on the canvas. Every time you add an item using one of the various create methods,
it returns a unique item handle or an item ID that is a unique integer. This item handle can
be used to refer to and manipulate the added item.

In addition to an item handle, items can have the following item specifiers:

e tags are specifiers that we can add to one or more items
e ALL (or the string all) matches all items on the canvas
e CURRENT (or current) matches the item under the mouse pointer if any

We can use any of the preceding item specifiers for methods that act on canvas items.

[206]

http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm
http://effbot.org/tkinterbook/wm.htm

Paint Application Chapter 6

To add a tag to an item, you specify the tag (which is a string) as its configurable option,
either at the time of creating the object or later using the itemconfig method or the
addtag_withtag method, as follows:
canvas.create_rectangle (10, 10, 50, 50, tags="foo")
canvas.itemconfig(item_specifier, tags="spam")

canvas.addtag_withtag ("spam", "baz")

You can add multiple tags to an item at once by passing in the tags as a tuple of strings, as
follows:

canvas.itemconfig (item_specifier, tags=("tag_A", "tag_B"))

To get all tags associated with an item handle, use gettags as follows:
canvas.gettags (item_handle)

This returns a tuple of all tags associated with that item handle.

To get the item handles for all items that have a given tag, use find_withtag:

canvas.find_withtag ("spam")
This returns a tuple of item handles for all items with a tag of spam.

Given this information, let's code the functionality for the first six buttons, as shown in the

following screenshot:
£

==

[207]

Paint Application Chapter 6

More specifically, we will code the functionality for the following function names that we
have already defined earlier in the tuple tool_bar_functions: "draw_line",

"draw_oval","draw_rectangle","draw_arc",and."draw_triangle", "draw_star"

Here's the code for draw_ 1line (see code 6.04.py):

def draw_line(self):
self.current_item = self.canvas.create_line(self.start_x,
self.start_y, self.end_x,
self.end_y, fill=self.fill, width=self.width, arrow=self.arrow,
dash=self.dash)

This uses the create_line method and draws a line from the start x, y coordinates to the
end x, y coordinates. We have defined four new attributes for handling four different
properties of the line:

e £i11: Line color. Default is black, initialized as red in our program.
e width: Defaultis 1, initialized as 2 in our program.
e arrow: Default is None. The available choices are: None, First, Last, Both.

e dash: A dash pattern, which is a list of segment lengths. Only the odd segments
are drawn.

We will later provide options for changing these four values from the top bar and hence
these have been added as class attributes.

Also note that since create_line (and all create methods) return the item handle for the
created item, we store it in an attribute named current_item. This gives us access to the
last created item, which we will soon put to good use.

Next, here's the code for draw_ oval (see code 6.04.py):

def draw_oval (self):
self.current_item = self.canvas.create_oval (self.start_x,
self.start_y, self.end_x,
self.end_y, outline=self.outline, fill=self.fill,width=self.width)

[208]

Paint Application Chapter 6

This is identical to the code for draw_1ine, except that we added a new attribute named
outline that takes care of the outline color.

We will not discuss the code for create_rectangle and create_arc, which are almost
identical to the code of draw_oval discussed here (see code 6.04 .py).

Let's now discuss the create_polygon method. This method can be used to create all sorts
of interesting shapes. Let's begin with the simple case of drawing an equilateral triangle (see
code 6.04.py):

def draw_triangle(self):

dx = self.end_x - self.start_x

dy = self.end_y - self.start_y

z = complex (dx, dy)

radius, angle0 = cmath.polar(z)

edges = 3

points = list ()

for edge in range (edges) :
angle = angle0 + edge * (2 * math.pi) / edges
points.append(self.start_x + radius * math.cos(angle))
points.append(self.start_y + radius * math.sin(angle))

self.current_item = self.canvas.create_polygon (points,
outline=self.outline,

fill=self.fill, width=self.width)

The preceding code first converts the changes in the x, y coordinates from the Cartesian
coordinate system to the polar coordinates represented by an angle and a radius. It then
calculates the x, y coordinates for all three edges of the triangle using the following formula:

X = r*coso and y = r*sino

Once we have the x, y coordinates for all three vertices of the triangle, we call the
create_polygon method to draw the triangle.

Let's now use the create_polygon method to make stars. A star (and many other
polygons) can be thought of as a collection of points or spokes on two concentric circles, as
shown in the following figure:

[209]

Paint Application Chapter 6

Odter Radius

Inner Radius

The star shown in the preceding figure has five spokes. We will later allow the user to
change the number of spokes. Therefore, let's start by defining a class attribute as follows:

number_of_spokes = 5

The shape of the star is also determined by the ratio of the radius of the inner circle to the
radius of the outer circle, as in the preceding figure. This is called the spoke ratio. This ratio
is 2 for a standard star. Changing this ratio can also produce all sorts of interesting star
shapes. However, we will keep it at 2 for our example. Given these rules, the code for
draw_star is defined as follows (see code 6.04.py):

def draw_star(self):
dx = self.end_x - self.start_x
dy = self.end_y - self.start_y
z = complex (dx, dy)

radius_out, angle0 = cmath.polar(z)
radius_in = radius_out / 2 # this is the spoke ratio
points = list ()

for edge in range(self.number_of_ spokes):
outer circle angle
angle = angle0 + edge * (2 * math.pi) / self.number_of_spokes
x coordinate (outer circle)
points.append(self.start_x + radius_out * math.cos(angle))
y coordinate (outer circle)
points.append(self.start_y + radius_out * math.sin(angle))
inner circle angle
angle += math.pi / self.number_of_spokes
x coordinate (inner circle)

[210]

Paint Application Chapter 6

points.append(self.start_x + radius_in * math.cos (angle))
y coordinate (inner circle)
points.append(self.start_y + radius_in * math.sin(angle))
self.current_item = self.canvas.create_polygon (points,
outline=self.outline, fill=self.fill, width=self.width)

The preceding code is heavily commented for you to understand. This is very similar to the
code we used to draw triangles.

Now, instead of having points on one circle (as for triangles), we have points on two circles.
We again use the same technique to first convert the x, y coordinates from mouse events to
polar coordinates. Once we have the polar coordinates, it is easy to move the points in the
circle.

We then move the points by a given angle and change back to Cartesian coordinates. We
keep appending all the points to an empty list called points. Once we have all the points,
the last line calls the create_polygon method of the canvas object to draw the star.
Now we have all the methods to create these six shapes. But they need to be called from
somewhere for the drawing to happen. And we have already decided that they would be
called dynamically.

Accordingly, we define a method, execute_selected_method, which takes the string for
the selected toolbar function, converts the string into a callable function, and executes it
dynamically.

The code is as follows (see code 6.04.py):

def execute_selected_method(self):
self.current_item = None
func = getattr(self, self.selected_tool_bar_function,
self.function_not_defined)
func ()

This method, getattr, provides a reference to a method from the given string at runtime.
A second argument provides a fallback mechanism whereby if the method object from the
first argument is not found, a reference to the second method is provided.

This helps us gracefully handle situations where a dynamically created method does not
exist. We simply define the fallback method as an empty method to handle those cases (see
code 6.04.py):

def function_not_defined(self):
pass

[211]

Paint Application Chapter 6

So now we have a method to execute the selected method dynamically. Where do we plug
in this method?

Since the drawing must begin when the mouse is clicked, we call
the execute_selected_method method once from the on_mouse_button_pressed
method.

The drawing must continue while the mouse is dragged in a clicked position. So we call this
method again from the on_mouse_button_pressed_motion method.

However, although we want to keep the last drawn object during the mouse motion, we
want to remove all other items except for the last drawn item. We therefore modify
on_mouse_button_pressed_motion as follows (see code 6.04.py):

def on_mouse_button_pressed_motion(self, event):
self.end_x = self.canvas.canvasx (event.x)
self.end_y = self.canvas.canvasy (event.y)
self.canvas.delete (self.current_item)
self.execute_selected_method()

Now, if you run 6. 04 . py, the top six buttons on the toolbar should function as shown in
the following screenshot:

File Edit View About

Draw star: 3y

S(o]
x«

|

(€ [& > % o [0
(]2 | |@ | [0

¥

[212]

Paint Application

Chapter 6

Adding a color palette

We can now draw basic shapes in our paint program. However, we still cannot change the
colors of these shapes. Before we allow users to change colors, we must provide a way for

them to select colors.

We will, therefore, provide a color chooser, letting the user select two different colors: the

foreground color and the background color.

[
e
- Selection:
ed: 217 IIIII =
/J s i |#dodoz8
| green: 217 NN
A

EMeJ4U |

E

&

While we are at it, let's also add a label showing the x, y coordinate of the mouse over the

canvas, as highlighted in the preceding screenshot.

Let's begin with the color palette. The two color palettes are nothing but two small rectangle

items placed on a canvas. To show these two rectangles, we define a method,
create_color_palette and call it from the existing create_gui method.

The code for create_color_palette is as follows (see code 6.05.py):

def create_color_palette(self):
self.color_palette = Canvas(self.tool_bar, height=55, width=55)

self.color_palette.grid(row=10, column=1, columnspan=2, pady=5, padx=3)

self.background_palette = self.color_palette.create_rectangle(15,
15, 48, 48,
outline=self.background, fill=self.background)
self.foreground_palette = self.color_palette.create_rectangle (
1, 1, 33, 33, outline=self.foreground, fill=self.foreground)
self.bind_color_palette()

[213]

Paint Application Chapter 6

The method ends by calling a method named bind_color_palette, which is defined as
follows (see code 6.05.py):

def bind_color_palette(self):
self.color_palette.tag_bind(self.background_palette,
"<Button-1>", self.set_background_color)
self.color_palette.tag_bind(self.foreground_palette,
"<Button-1>", self.set_foreground_color)

The preceding code simply binds the mouse click to two not yet defined
methods, set_background_color, and set_foreground_color, using the tag_bind
method of the Canvas widget.

Here's the signature of the tag_bind method:
tag_bind(item, event=None, callback, add=None)

The method adds an event binding to all matching items. Note that the bindings apply to
the items, not the tag. For example, if you add the existing tag to new items after a call to
tag_bind, the new items will not automatically bind to the event.

Next, let's define the method that actually opens a color picker and sets the foreground and
background colors based on user-selected colors.

Tkinter comes with a built-in colorchooser module that we import into our namespace as
follows (see code 6.06.py):

from tkinter import colorchooser

To open a color chooser, we need to call its askcolor method, as shown here:

def get_color_from_chooser(self, initial_color, color_type="a"):

color = colorchooser.askcolor (color=initial_color, title="select {}
color".format (color_type)) [-1]
if color:
return color
else: # dialog has been cancelled

return initial_color

Upon clicking OK, the color chooser returns a tuple of the form:

((217.84765625, 12.046875, 217.84765625), '#d90cd9')

Where the first item of the tuple is another tuple comprising the RGB values of the chosen
color and the last item of the tuple represents the hexadecimal color code of the chosen
color, if the Cancel button is clicked, it returns None.

[214]

Paint Application Chapter 6

We then use the preceding method to set the foreground and background colors as follows:

def set_foreground_color (self, event=None):

self.foreground = self.get_color_from_chooser (self.foreground,
"foreground")

self.color_palette.itemconfig(self.foreground_palette, width=0,
fill=self.foreground)

def set_background_color (self, event=None):

self.background = self.get_color_from_chooser(self.background,
"background")

self.color_palette.itemconfig(self.background_palette, width=0,
fill=self.background)

This concludes coding the color chooser for our paint program. However, note that the
colors you choose will simply change the value of the foreground and background
attributes. It will not change the color of items drawn on the canvas. We will do thatin a
separate iteration.

Finally, let's define the methods that show the current mouse position in a label.
We create two new methods (see code 6.05.py):
def create_current_coordinate_label (self) :
self.current_coordinate_label = Label (self.tool_bar, text='x:0\ny: 0 ')
self.current_coordinate_label.grid(row=13, column=1, columnspan=2,

pady=5, padx=1, sticky='w')

def show_current_coordinates (self, event=None) :

x_coordinate = event.x
y_coordinate = event.y
coordinate_string = "x:{0}\ny:{1}".format (x_coordinate, y_coordinate)

self.current_coordinate_label.config(text=coordinate_string)

And we call the show_current_coordinates from our existing
on_mouse_unpressed_motion method as follows (see code 6.05.py):

def on_mouse_unpressed_motion(self, event):
self.show_current_coordinates (event)

[215]

Paint Application Chapter 6

Adding top bar options for draw methods

Each of the 16 toolbar buttons can have its own option. Just like we called the functions
related to the toolbar buttons dynamically, we will again call methods to display options for
the top bar dynamically.

So we decide that the method for handling the top bar options would be named by
appending the string _options to the existing method.

Suppose we want to display the options for the draw_1ine method, it would be defined in
the method called draw_1line_options. Similarly, we have to define methods such
as draw_arc_options, draw_star_options, and others.

We achieve this dynamic call in the display_options_in_the_top_bar method
as follows (see code 6.06.py):

def display_options_in_the_top_bar (self):
self.show_selected_tool_icon_in_top_bar (self.selected_tool_bar_function)
options_function_name =
"{}_options".format (self.selected_tool_bar_function)
func = getattr(self, options_function_name, self.function_not_defined)
func ()

Now, with that code in place, every time a toolbar button is clicked the program will look
for a method named by appending the _options string to the current method related to the
button. If it finds one, it will be executed. If not found, the fallback function
function_not_defined will be called, which is an empty method to silently ignore the
absence of a method.

The Canvas widget lets you specify the fill color, outline color, and border width for most
shapes as their configurable options.

In addition to these, the Canvas widget also has several other configurable options for
many of these basic shapes. For instance, for a line, you can specify whether it will have an
arrowhead shape at the end or it will be dashed.

[216]

Paint Application

Chapter 6

We need to display the following top options for the first six buttons:

Draw line: —= Fill:jred o/ Width:2 |Arrow:|none |Dash:|none .

Draw oval: () Fill:ired o|Outline:red .| Width:(2 |
Draw rectangle: | | Filbjred .|Outline:[red .|width:2 |
Draw arc: [Fillbjred 4|Outline:[red 4| Width:[2 |

Draw triangle: /, Fil:red |Outline:lred ./width:2 |

Draw star: ' Number of Edges:|5 »|Fill:red .|Outline:red .| Width:2.0 4|

As can be seen, we need to create Combobox widgets for fill, outline, width, arrow, and
dash. We first import the t tk module into our namespace and then create the Combobox

widget as shown in the following code (see code 6.06.py):

def create_fill_options_combobox (self) :

Label (self.top_bar, text='Fill:') .pack(side="1left")
self.fill_combobox = ttk.Combobox(self.top_bar, state='readonly',
width=5)

self.fill_combobox.pack (side="1left")

self.fill_combobox(['values'] = ('none', 'fg', 'bg', 'black', 'white')

self.fill_combobox.bind ('<<ComboboxSelected>>"', self.set_fill)
self.fill_combobox.set (self.fill)

The ttk Combobox widget binds to another method called set_£i11, which is defined as

follows (6.06.py):

def set_fill(self, event=None):
fill _color = self.fill_combobox.get ()

if fill_color == 'none':
self.fill = '' # transparent
elif fill _color == 'fg':
self.fill = self.foreground
elif fill_color == 'bg':
self.fill = self.background
else:

self.fill = fill_color

[217]

Paint Application Chapter 6

We define a similar combobox for the width, outline, arrow, and dash properties.
We also define a combobox to allow the user to change the number of spokes in the star.

Since the code for all these methods is pretty similar to the code we have just discussed, we
do not explore it here (6.06.py).
Finally, we add the required comboboxes to each of the six options methods as follows:

def draw_line_options (self):
self.create_fill_options_combobox ()
self.create_width_options_combobox ()
self.create_arrow_options_combobox ()
self.create_dash_options_combobox ()

There's similar code for all the other five toolbar buttons (see code 6.06.py).
Now, if you run code 6. 06 .py, it should display options for the first six buttons.

When you change the options, the change is reflected in all subsequent drawings on the
canvas.

However, there is a small bug in our code. What if someone has chosen the fill color as the
foreground color? And then they change the foreground color from the color palette.
Although this changes the value of the foreground attribute, it does not change the value of
the fill attribute. Our program will keep using the old foreground value for fill.

In order to fix this bug, we modify the code for set_background_color and
set_foreground_color to call two new methods:

def try_to_set_fill_after_palette_change(self):
try:
self.set_fill()
except:
pass

def try_to_set_outline_after_palette_change (self):
try:
self.set_outline()
except:
pass

The two methods are keptin a try...except block because not every toolbar button will
have a fill and outline options combobox. Even if a toolbar button has the fill or outline
combobox, it may not be selected to use the foreground or background color.

[218]

Paint Application Chapter 6

Lastly, since we want the draw_1ine options to populate the top bar immediately when the
program starts, we add the following two lines to the create_gui method (see
the 6.06.py code):

self.show_selected_tool_icon_in_top_bar ("draw_line")
self.draw_line_options()

This concludes this iteration. We will add functionality to a few other toolbar buttons in the
next iteration.

Drawing irregular lines and super shapes

Let's now add the capability to draw irregular or continuous free-flowing lines. We will also
add the ability to draw a variety of interesting shapes on the drawing canvas, as shown
here:

File Edit View About
Draw super shape: ¥ Select shape: shape 12 |Fill:|#ff000 | Outline: | #ff000 4| Width: 3.0 |

slol4 ., :

As a reminder, all our buttons are linked to dynamically call functions defined in our
tool_bar_functions tuple. Furthermore, we can specify unique options for a
given function by adding the _options string to the function name.

[219]

Paint Application Chapter 6

Drawing irregular lines

To add the capability to draw irregular lines, we just need to define the method named
draw_irregular_line. To specify options that appear in the top bar, we need to define
the method named draw_irregular_line_options.

We define the draw_irregular_line method as follows (see code 6.07.py):

def draw_irregular_line(self):
self.current_item = self.canvas.create_line
self.start_x, self.start_y, self.end_x, self.end_y, fill=self.fill,
width=self.width)
self.canvas.bind ("<Bl1-Motion>", self.draw_irregular_line_update_x_y)

def draw_irregular_line_update_x_y (self, event=None) :
self.start_x, self.start_y = self.end_x, self.end_y
self.end_x, self.end_y = event.x, event.y
self.draw_irregular_line ()

The preceding code is similar to the code for draw_1ine, except that it adds an extra line
that binds mouse-clicked movements to a new method that replaces the start x, y
coordinates with the end x, y coordinates and again calls back the draw_irregular_line
method, thereby drawing in a continuous manner.

The options that show in the top bar are defined using the following method (see code
6.07.py):

def draw_irregular_line_options (self):
self.create_fill_options_combobox ()
self.create_width_options_combobox ()

Now we can draw irregular lines on the canvas. However, since we have modified the
mouse binding, all other methods will also start to draw in a continuous manner.

We, therefore, need to rebind the buttons back to their original bindings. We do that by
modifying on_tool_bar_button_clicked to call bind_mouse, which then restores the

mouse binding to its original behavior.

Adding an event binding to more than one method wipes away the
previous binding, whereby the new binding replaces any existing binding.
Alternatively, you can use add="+" as an additional argument to keep
more than one binding to the same event, as follows:
mywidget.bind("<SomeEvent>", methodl, add="+")
mywidget.bind ("<SameEvent>", method2, add="+")

[220]

Paint Application Chapter 6

This will bind the same event to methodl and method?2.

Drawing super shapes

We call these shapes super shapes because we can build many interesting shapes using a
single mathematical formula called Super Formula. See https://en.wikipedia.org/wiki/
Superformula for more details on the formula.

The super formula takes six input arguments: a, b, m, n1, n2, and n3. Varying these five
arguments produces varied shapes found in nature such as the shapes of shells, starfish,
flowers, and more.

We do not get into why or how this formula works. All we do is write a method that, given
these five arguments, returns the coordinates for unique shapes. We then pass these
coordinates to our create_polygon method to create these shapes on the canvas. The
method that returns these points is defined as follows (see code 6.07.py):

def get_super_shape_points(self, a, b, m, nl, n2, n3):
https://en.wikipedia.org/wiki/Superformula

points = []
for i in self.float_range(0, 2 * math.pi, 0.01):
raux = (abs(l1 / a * abs(math.cos(m * i / 4))) ** n2 + \
abs(l1 / b * abs(math.sin(m * i / 4))) ** n3)
r = abs(raux) ** (-1 / nl)
x = self.end_x + r * math.cos (1)

y = self.end_y + r * math.sin (1)
points.extend ((x, vy))
return points

The method uses a custom-defined float_range method, since Python's built-in range
method does not allow for float step sizes. The f1oat_range generator method is defined
as follows:

def float_range(self, x, y, step):
while x < y:
yield x
X += step

Next, we define the draw_super_shape method, which creates a polygon with
the calculated points (see code 6.07.py):

def draw_super_shape (self):
points = self.get_super_shape_points
(*super_shapes|[self.selected_super_shape])

[221]

https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula

Paint Application Chapter 6

self.current_item = self.canvas.create_polygon (points,
outline=self.outline,
fill=self.fill, width=self.width)

Now we want to provide a different set of five parameters to the super formula. We define
anew file named supershapes.py with a dictionary named super_shapes with different
shapes represented by a shape name and five parameters as follows:

super_shapes = {
"shape A": (1.5, 1.5, 5, 2, 7, 1),
"shape B": (1.5, 1.5, 3, 5, 18, 18),
"shape C": (1.4, 1.4, 4, 2, 4, 13),
"shape D": (1.6, 1.6, 7, 3, 4, 17),
"shape E": (1.9, 1.9, 7, 3, 6, 6),
"shape F": (4, 4, 19, 9, 14, 11),
"shape G": (12, 12, 1, 15, 20, 3),
"shape H": (1.5, 1.5, 8, 1, 1, 8),
"shape I": (1.2, 1.2, 8, 1, 5, 8),
"shape J": (8, 8, 3, 6, 6, 6),
"shape K": (8, 8, 2, 1, 1, 1),
"shape L": (1.1, 1.1, 16, 0.5, 0.5, 16)

}
We also define an attribute (see code 6.07 .py):

selected_super_shape = "shape A"

Next, we define a combobox to let the user select from among the shapes
defined previously (6.07.py):

def create_super_shapes_options_combobox (self) :

Label (self.top_bar, text='Select shape:').pack (side="left")

self.super_shape_combobox = ttk.Combobox (self.top_bar,
state="'readonly', width=8)

self.super_shape_combobox.pack (side="1left")

self.super_shape_combobox['values'] = sorted(tuple(shape for shape in
super_shapes.keys()))

self.super_shape_combobox.bind ('<<ComboboxSelected>>",
self.set_selected_super_shape)

self.super_shape_combobox.set (self.selected_super_shape)

And we define a method that sets the selected shape for the value of
selected_super_shape (see code 6.07.py):

def set_selected_super_shape(self, event=None):
self.selected_super_shape = self.super_shape_combobox.get ()

[222]

Paint Application Chapter 6

Finally, we define the draw_super_shapes_options that shows all of the options
we want to show in the top option bar (see code 6.07.py):

def draw_super_shape_options (self):
self.create_super_shapes_options_combobox ()
self.create_fill_options_combobox ()
self.create_outline_options_combobox ()
self.create_width_options_combobox ()

This concludes the iteration. You can now run 6. 07. py and draw irregular lines as well as
all of the super shapes that we have defined in the supershapes. py file. In fact, you can
extend the super_shapes dictionary to add many more shapes simply by changing the
values for the five parameters. You can look at https://en.wikipedia.org/wiki/
superformula for values of parameters that create interesting shapes.

Adding functionality to the
remaining buttons

We will now code the features related to the remaining toolbar buttons:

Specifically, we will code the following functions: draw_text, delete_item, fill_item,
duplicate_item move_to_top,drag_item, enlarge_item_size, and
reduce_item_size.

[223]

https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula
https://en.wikipedia.org/wiki/Superformula

Paint Application Chapter 6

Let's start with the code for draw_text. When a user clicks on the draw_text button, we
want to show the following options in the top bar:

Draw text: /. Text: || |Funt size: 14 Z{Fil:red +| Go

The user can enter text in the textbox and specify its font size and fill color. Once the user
presses the Go button, the text appears on the center of the canvas.

Let us, therefore, define the draw_text_options method as follows (see code 6.08.py):

def draw_text_options(self):

Label (self.top_bar, text='Text:') .pack(side="left")

self.text_entry_widget = Entry(self.top_bar, width=20)

self.text_entry_widget.pack (side="1left")

Label (self.top_bar, text='Font size:').pack(side="left")

self.font_size_spinbox = Spinbox(self.top_bar, from_ =14, to=100, width=3)

self.font_size_spinbox.pack (side="1left")

self.create_fill_options_combobox ()

self.create_text_button = Button(self.top_bar,
text="Go", command=self.on_create_text_button_clicked)

self.create_text_button.pack (side="1left", padx=5)

The preceding code is self-explanatory. The Go button is attached to a command callback
named on_create_text_button_clicked, which is defined as follows (see
code 6.08.py):

def on_create_text_button_clicked(self):
entered_text = self.text_entry_widget.get ()

center_x = self.canvas.winfo_width() /2

center_y = self.canvas.winfo_height () /2

font_size = self.font_size_spinbox.get ()

self.canvas.create_text (center_x, center_y, font=("", font_size),

text=entered_text, fill=self.fill)
Our draw_text method is now functional. Next, let's code the delete_item method.

The operations that we want to do now are slightly different from their
predecessors. Earlier, we were creating items on the canvas. Now we have to target items
already present on the canvas.

[224]

Paint Application Chapter 6

The item that needs to be targeted is the one on which the user clicks with their mouse.
Fortunately, getting the item handle for the item under the mouse is very easy using the
current tag.

Accordingly, the code for delete_itemis as follows (see code 6.08.py):

def delete_item(self):
self.current_item = None
self.canvas.delete ("current")

Now, if you select the Delete button from the toolbar and click on any item on the canvas,
that item is deleted.

Next, let's code the fill_itemand fill_item_options methods (see code 6.08.py):

def fill item(self):
try:
self.canvas.itemconfig("current", fill=self.fill, outline=self.outline)
except TclError:
self.canvas.itemconfig("current", fill=self.fill)

We had to use a try...except block because some canvas items such as lines and text do
not have an outline option:

def fill_item_options(self):
self.create_fill_options_combobox ()
self.create_outline_options_combobox ()

Next, we code the duplicate_item method. In order to duplicate an item we need
to know three things:

e Type of item—if the item is a 1ine, oval, arc, rectangle, or polygon
e The coordinates for the item
¢ The configurations of the item

We can get the type of item as a string using the type method as follows:
canvas.type (item_specifier)

This returns a string such as 1ine, oval, arc, rectangle, or polygon. In order to recreate
an item of the same type, we need to append the string create_ to the returned type and
call the method.

[225]

Paint Application Chapter 6

The coordinates of a given item can be obtained by calling the coordinates method as
follows:

coordinates = canvas.coords ("item_specifier")
The configurations for an item can be obtained as a dictionary using the following
command:

canvas.itemconfig(item_specifier)

This returns all the configurations for an item, whether specified or not specified.

For example, here's a sample of a dictionary returned by calling the preceding method on a
canvas item:

{'outline': ('outline', '', '', 'black', 'red'), 'outlinestipple':
('outlinestipple', '', '', '', ''"), 'activestipple':
('activestipple', '', '', '', ''), 'state': ('state', '', ''",
v, '), 'offset': ('offset', '', '', '0,0', '0,0"),
'activefill': ('activefill', '', '', '', '"'"), 'disabledwidth':
('disabledwidth', '', '', '0.0', '0'"), 'disabledoutlinestipple':
('disabledoutlinestipple', '', '', '', '"), 'outlineoffset':
('outlineoffset', '', '', '0,0', '0,0"), 'width': ('width', '',
tv, '1.0', '2.0"), 'disabledfill': ('disabledfilil1l‘*, '', '', ''",
'"), 'disabledoutline': ('disabledoutline', '', '', '', '"),
'dash': ('dash', '', ‘'', '', ''), 'disableddash':
('disableddash', '', '', '', ''), 'disabledstipple':
('disabledstipple', '', '', '', ''"), 'tags': ('tags', '', '',
'', 'current'), 'stipple': ('stipple', '', "', "', '"),
'activewidth': ('activewidth', '', '', '0.0', '0.0"),
'activedash': ('activedash', '', '', '', ''), 'dashoffset':
('dashoffset', '', '', '0', '0'), 'activeoutlinestipple':
('activeoutlinestipple', '', '', '', ''), 'activeoutline':
('activeoutline', "', "', ‘'*, "'y, ‘'fill1':. ('fi1l1x‘*, v, ttv, '',
'red') }

Clearly, we do not require those configuration values that are empty or zero. We, therefore,
write a method that filters out all unnecessary configurations:

def get_all_ configurations_for_item(self):

configuration_dict = {}
for key, value in self.canvas.itemconfig("current") .items () :
if value[-1] and value[-1] not in ["O", "0.0", "0,0", "current"]:
configuration_dict[key] = value[-1]

return configuration_dict

[226]

Paint Application Chapter 6

Now that we know how to fetch all required elements to duplicate a canvas item, here's the
code for duplicate_item (see code 6.08.py):

def duplicate_item(self):
try:
function_name = "create_" + self.canvas.type("current")
except TypeError:
return
coordinates = tuple (map(lambda i: i+10, self.canvas.coords ("current")))
configurations = self.get_all_configurations_for_item()
self.canvas_function_wrapper (function_name, coordinates, configurations)

Finally, the last line calls a wrapper function that actually runs the function that duplicates
the canvas item (see code 6.08.py):

def canvas_function_wrapper (self, function_name, *arg, **kwargs):
func = getattr(self.canvas, function_name)
func (*arg, **kwargs)

Now, if you create an item, select the duplicate item button, and click on the item, a
duplicate item is created. However, since we do not want the duplicate item to be created
exactly on top of the existing item, we offset its coordinates by 10 pixels from the
coordinates of the item being duplicated. This offsetting is done in the line:

coordinates = tuple (map(lambda i: i+10, self.canvas.coords ("current")))

Now, if you create an item on the canvas, select the duplicate item button, and click on the
item, its duplicate is created at an offset of 10 pixels from the original item.

Next, we code the move_to_top method. We have already discussed that items added to
the canvas are added on top of each other. What if we want to move an item previously
added to the canvas? The following figure shows what it means to move an item on top of

another:

[227]

Paint Application Chapter 6

We use the tag_raise and tag_lower methods to move items higher and lower in the
stack. We use tag_raise to define the move_to_top method as follows (see code

6.08.py):

def move_to_top(self):
self.current_item = None
self.canvas.tag_raise ("current")

The preceding code raises the clicked item highest up in the item's stack.

When you draw multiple items on the canvas, the items are placed in

a stack. By default, new items get added on top of items previously
drawn on the canvas. You can, however, change the stacking order using:
canvas.tag_raise(item).

If multiple items match, they are all moved, with their relative

order preserved. However, this method will not change the stacking order
for any new window item that you draw within the canvas.

Then there are the find_above and find_below methods that you

can use to find items above or below an item in the canvas stacking order.

Next, we will define the drag_item method. This method uses the move method to change
the coordinates of a given item (see code 6.08.py):

def drag_item(self):

self.canvas.move ("current", self.end_x - self.start_x, self.end_y -
self.start_y)
self.canvas.bind ("<Bl-Motion>", self.drag_item_update_x_y)

def drag_item_update_x_y(self, event):
self.start_x, self.start_y = self.end_x, self.end_y
self.end_x, self.end_y = event.x, event.y
self.drag_item{()

Since we want the drag to occur continuously and not as a jump from one place to another,
we temporarily bind the mouse binding to update the start and end coordinates like we did
when we defined the draw_irregular_1line method.

Finally, we define two methods to enlarge and reduce item size. We will use
the canvas.scale method to increase and reduce item size by 20%:

def enlarge_item_size(self):
self.current_item = None
if self.canvas.find_withtag("current"):
self.canvas.scale("current", self.end_x, self.end_y, 1.2, 1.2)
self.canvas.config(scrollregion=self.canvas.bbox (tk.ALL))

[228]

Paint Application Chapter 6

def reduce_item_size(self):
self.current_item = None
if self.canvas.find_withtag("current"):
self.canvas.scale ("current", self.end_x, self.end_y, .8, .8)
self.canvas.config(scrollregion=self.canvas.bbox (tk.ALL))

Note that, immediately upon item resize, we reconfigure the scroll region option to update
the scroll bar.

The bbox method returns the bounding box for an item. The syntax is:

.canvas.bbox (item_specifier). This returns the bounding box as a
tuple of length 4. If the item-specifier is omitted, the bounding box for all
items is returned.

Note that bounding box values are approximate and may differ from the real value by a few
pixels.

This concludes the iteration. All the buttons in the left toolbar are now functional (see code
6.08.py).

Adding functionality to menu items

Recall that, at the time of creating our menu using the Framework class, we created empty
methods that were linked to our menu items. We will now modify those empty methods to
make them functional (see code 6.09.py)

File | New Menu:

The canvas delete method can be used to delete an item, given an item-specifier. Here we
use ALL to delete all items from the canvas:

def on_new_file_menu_clicked(self, event=None) :
self.start_new_project ()

def start_new_project (self):
self.canvas.delete (ALL)
self.canvas.config(bg="#ffffff")
self.root.title ('untitled"')

[229]

Paint Application Chapter 6

File | Save, File | Save As:

Tkinter lets you save canvas objects as a postscript file using the command postscript ().
Note, however, that the resulting postscript file cannot save images or any widgets
embedded on the canvas. Furthermore, note that the pickling of Tkinter widgets or saving
to . jpg or .png formats is not possible. This is one of the major limitations of Tkinter.

Here's the code for the save and save as features (see code 6.09.py):

def actual_save(self):
self.canvas.postscript (file=self.file_name, colormode='color')
self.root.title(self.file_name)

We do not discuss the Close and About menu as we have coded similar menus in all our
previous projects (see code 6.09.py).

Edit | Undo:

Recall that all items added to the canvas are stored in a stack. We can access the stack using
the canvas command:

canvas.find("all")

Using this, we implement a very basic undo operation, which lets us delete the last drawn
item on the canvas.

Accordingly, the code for adding the undo feature is as follows (see code 6.09.py):

def on_undo_menu_clicked(self, event=None) :
self.undo ()

def undo (self) :
items_stack = list(self.canvas.find("all"))
try:
last_item_id = items_stack.pop()
except IndexError:
return
self.canvas.delete(last_item_id)

Note that this will not undo any styling changes such as changes in color, width,
outline, and so on. In fact, it will only be able to delete the last item from the stack.

We can implement a fully-fledged undo stack by saving all actions in a suitable data
structure, but that would be an exercise worth its own chapter.

[230]

Paint Application Chapter 6

In addition to the find method we used here, the Canvas widget has a method named:

find_closest (x, y, halo=None, start=None)

It returns the item handle for the item closest to the given position on the canvas. This
means that if there is only one item on the canvas, it will be selected regardless of how near
or how far you click from it.

If, on the other hand, you want objects only within a certain area, you can use:

find_overlapping(xl, vy1, x2, y2)
This returns all items that overlap the given rectangle, or that are completely enclosed by it.

Now that we have a hold on the item to be manipulated, we can proceed to do whatever we
want with the item.

For a complete list of canvas methods, please see http://infohost.nmt.edu/tcc/help/
pubs/tkinter/web/canvas-methods.html.

View | Zoom in, View | Zoom out:

Finally, we define these two methods using the canvas.scale method. We have already
used the scale methods earlier to enlarge and reduce individual items. Here, we simply use
the method on the ALL item-specifier, as in the following code (see code 6.09.py):

def canvas_zoom_in(self):

self.canvas.scale("all", 0, 0, 1.2, 1.2)
self.canvas.config(scrollregion=self.canvas.bbox (ALL))

That concludes the iteration and the chapter.

Summary

To summarize, in this chapter, we began by creating a custom GUI framework on top of
Tkinter.

We saw how GUI frameworks can be used to generate boilerplate code for our programs,
thereby ensuring maximum code reuse and rapid application development.

Next, we explored the Canvas widget in detail. We saw how to create various canvas items.
Then, we saw how we could manipulate the attributes of these canvas items using tag or ID.

[231]

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/canvas-methods.html

Paint Application Chapter 6

We saw the colorchooser module of Tkinter in action. We worked with the ttk Combobox
widget. We also looked at common methods that are available on all Tkinter widgets.

We also saw the benefits of writing programs that use convention over configuration to ease
the logical flow of the program.

QA section

Before you proceed to the next chapter, make sure you can answer these questions to your
satisfaction:

e What are software frameworks? Why are they used?

e When is it beneficial to use software frameworks instead of writing code from
scratch?

What is a structured markup language? Can you a list a few of them?

What is the convention over configuration software design paradigm?

What are tags used for in the context of Tkinter's Canvas widget?

Further reading

Read the complete documentation for the Tkinter Canvas widget. You can find the
documentation by typing the following command in a Python command shell:

>>> import tkinter
>>> help(tkinter.Canvas)

[232]

Piano Tutor

In the last chapter, we explored most of the common options available for the Canvas
widget. Let's now see the Photolmage widget in action.

Let's build a program called Piano Tutor. This program will help new piano players identify
musical scales, chords, and chord progressions. It will also help piano learners learn and
identify music written on music sheets. People with some musical knowledge will feel right
at home, but do not worry if you know nothing about piano or musical terms such as scales,
chords, and chord progressions. We will cover the bare minimum of musical know-how as
we progress.

In its final form, the program looks as follows:

Scales| -
}
.
N P]
LASY [BEI B
ik
Select scale in the key of
Minor blues|

e]

Piano Tutor Chapter 7

The Piano Tutor will have three broad sections that can be selected from the topmost drop-
down menu. They are as follows:

e Scale Finder
e Chord Finder
¢ Chord Progression Builder

Some of the key objectives of this chapter are:

¢ Getting to understand some important methods defined on the root window

Using the Photolmage widget class

Practical applications of the Place geometry manager

Understanding grid weights

Learning how to work with seemingly complex ideas such as representing
musical knowledge in a fashion that computers can understand

Using JSON to store data

Technical requirements

Besides Tkinter, we will use a few standard Python libraries. The next import should
execute without any error as they are built-in in most Python distributions:

import json, collections, functools, math
In addition, we use simpleaudio, which is a module that lets us play notes on the piano.
You can install simpleaudio using the following command:

pip3 install simpleaudio

A brief primer on piano terms

Since this is a piano-related program, a brief understanding of some of the common terms
used in this context is required.

[234]

Piano Tutor Chapter 7

In this section, we will use this figure as a reference:

whole tone

semitone
part

apart

C# D# F# G# A#

Cl D1 E1 F1 G1 Al Bl C2 D2 E2 F2 G2 A2 B2

The keyboard of a piano comprises a set of 12 keys (seven white and five black keys), which
forms what is called a chromatic scale. This pattern of 12 keys repeats over and over again
totaling up to 88 keys on a standard piano. The pattern repeats twice in the preceding image
(C1 to B1 and then C2 to B2).

The distance between any two adjacent keys is called a semitone. Please take note of this
term as we will define all piano-related rules using semitones—a measure of distance
between keys. An interval of two semitones is called a whole tone. We will not bother with
whole tones as far as our program is concerned.

The white keys of the piano are labeled by note names A to G. However, as per convention
the counting of notes begins at C. C is the first white key just before the set of two black
keys. The names of white keys are marked on the keys and the names of black keys are
marked above them.

Since there are multiple sets of 12 keys they are differentiated among themselves by
appending a number after them. For example, C1 is the first white key, while C2 is the key
at the same position, but an octave higher. The black key just next to C is called C sharp
(C#). Since it is also just before the key D it has another name—D flat (Db). We will,
however, stick with calling all black keys by using the sharp symbol (#). Since the notes E
and B do not have any sharp keys they are not immediately followed by any black key.

[235]

Piano Tutor Chapter 7

Learning about scales

A scale is an organized sequence of notes chosen from the 12 notes in a particular pattern,
which gives it a characteristic feel, perhaps a happy, sad, exotic, oriental, enigmatic, or
rebellious feel. A scale can start on any note of the 12 notes and follows a definite pattern.
The first note of a scale is called its root note and the pattern it follows gives it a scale type.

One particular scale of relevance to us is called the Major scale. Starting at any key, the
Major scale follows the following pattern:

WWSWWWS

where W stands for whole tone (jump of two keys) and S stands for semitones (jump of one
key).

For example, if you play the notes C1, D1, E1, F1, G1, A1, B1, C2, and back, one-by-one, you
have played a C Major scale. A Major scale sounds uplifting while another scale named
minor can sound a bit sad. Don't worry about names—there are hundreds of scales and we
just need to know that scales are a sequence of notes played together following a certain set
of rules.

Learning about chords

In contrast, a chord is when you play two or more notes simultaneously. For example, if I
play three notes C, F, and G altogether; it's a chord. Chords generally provide the bass
section to a music.

If you keep playing the same chord over and over again it will sound monotonous—so you
jump from one chord—again following a rule. This is called chord progression. More
simply, an ordered series of chords is called a chord progression.

The musical notes can be written on a music sheet or score sheet that comprises of five
lines. The notes are represented by black dots, which can lie on the line or in spaces between
them. The names of notes for two octaves are shown on the following score sheet. The icon
marked as treble clef means that these notes are to be played with the right hand:

Treble Clef
nzree “!

o
y AW
[am

o3

e

CDE FGABCDEF GA B C

[236]

Piano Tutor Chapter 7

Do not worry, we are not required to memorize the music notation for completing our
program. We will, however, use it as a reference when drawing the score sheet.

We are now equipped with all the musical knowledge required to write this program. Let's
start coding.

Building the broad GUI structure

We start as usual by building the root window (7.01/view.py):

root = Tk()

SCREEN_WIDTH = root.winfo_screenwidth ()

SCREEN_HEIGHT = root.winfo_screenheight ()

SCREEN_X_CENTER = (SCREEN_WIDTH - WINDOW_WIDTH) / 2
SCREEN_Y_CENTER = (SCREEN_HEIGHT - WINDOW_HEIGHT) / 2
root.geometry ('%dx%d+%$d+%d' % (WINDOW_WIDTH, WINDOW_HEIGHT,
SCREEN_X_CENTER, SCREEN_Y_CENTER))

root.resizable (False, False)

PianoTutor (root)

root.mainloop ()

We also create a new file named constants.py(7.01), which currently holds the height
parameters for the window.

We use two root window methods, root.winfo_screenwidth () and
root_winfo_screenheight (), to obtain the screen width and height, respectively. We
define two constants, WINDOW_WIDTH and WINDOW_HEIGHT, and then place the window on
the x, y center of the computer screen.

Notice the line root .resizable (False, False). This root window method takes two
Boolean arguments to decide if the window is resizable in the x and y directions. Setting
both arguments to False makes our window fixed in size.

The root window is then passed as an argument to a new class, PianoTutor, which takes
care of building the internals of the program. This class is defined next.

[237]

Piano Tutor Chapter 7

The GUI for this program is divided into four broad rows:

Piano Tutor

|Scales e The mode_selector_frame

placeholder for scales frame

placeholder for keyboard

The keyboard_frame

The topmost row is built in a Frame named mode_selector_frame and has a combobox
that lets the user select from one of three options—scales, chords, and chord progressions.

The second row is a placeholder for placing the music score sheet and is accordingly called
the score_sheet frame.

The third row requires a bit of attention. Depending on what is selected in the topmost
combobox, the contents of this row change. In our code so far, (7.01/view.py), it displays
three different colored frames for the three different choices one can make using the
topmost combobox. Since we will place controls on this frame, we decided to call it a
controls_frame for want of a better name.

The fourth row shows the piano keyboard and the frame is named keyboard_frame, the
implementation of which will be discussed in the section entitled Making the Piano Keyboard.

[238]

Piano Tutor Chapter 7

Putting up the skeleton structure

To start, we build a class PianoTutor (7.01/view.py), the __init__ method of which is
defined as follows:

class PianoTutor:
def _ _init__ (self, root):

self.root = root
self.root.title('Piano Tutor')
self.build_mode_selector_frame ()
self.build_score_sheet_frame ()
self.build_controls_frame ()
self.build_keyboard_frame ()
self.build_chords_frame ()
self.build_progressions_frame ()
self.build_scales_frame ()

In the preceding code, we are simply defining method calls to build multiple Frame widgets
of predefined heights. We won't elaborate much upon the preceding code as we wrote
similar code in all of the previous chapters.

Let's look at one example of frame creation. All other frames follow a similar pattern
(7.01 /view.py)and will not be discussed here:

def build_score_sheet_frame (self):
self.score_sheet_frame = Frame(self.root, width=WINDOW_WIDTH, height=
SCORE_DISPLAY_HEIGHT, background='SteelBluel')
self.score_sheet_frame.grid_propagate (False)
Label (self.score_sheet_frame, text='placeholder for score sheet',
background='SteelBluel') .grid(row=1, column=1)
self.score_sheet_frame.grid(row=1, column=0)

This is simple Frame creation using the grid geometry manager. However, take a note of
thehneself.score_sheet_frame.grid_propagate(False%

In Tkinter, the container window (Frame in the previous example) is designed to shrink to
fit around its contents.

Even though we have explicitly added a width or height to the frame, if we comment the
grid_propagate (false) line, you will notice that the width and height parameters given
by us are simply ignored and the frame will shrink to exactly fit its children—the Label
widgets height in our case. We do not want to allow this shrinking of Frames and
grid_propagate (False) lets us achieve that.

[239]

Piano Tutor Chapter 7

If we were using pack manager, we would have used
frame.pack_propagate (False) instead to achieve the same result.

Next, our topmost mode selector combobox is bound to the following
callback (7.01/view.py):

self.mode_selector.bind("<<ComboboxSelected>>", self.on_mode_changed)

Here's how we define the on_mode_changed method (7.01/view.py):

def on_mode_changed(self, event):

selected_mode = self.mode_selector.get ()

if selected_mode == 'Scales':
self.show_scales_frame ()

elif selected_mode == 'Chords':
self.show_chords_frame ()

elif selected_mode == 'Chord Progressions':
self.show_progressions_frame ()

def show_scales_frame (self) :
self.chords_frame.grid_remove ()
self.progressions_frame.grid_remove ()
self.scales_frame.grid()

def show_chords_frame (self) :
self.chords_frame.grid()
self.progressions_frame.grid_remove ()
self.scales_frame.grid_remove ()

def show_progressions_frame (self):
self.chords_frame.grid_remove ()
self.progressions_frame.grid()
self.scales_frame.grid_remove ()

Take a note of the grid_remove () method mentioned previously. This method removes
the widget from the grid manager, thereby making it invisible. You can make it visible
again by using grid () on it. So effectively, whenever a user selects one of the three options
(Scales, Chords, and Chord Progression) from the topmost combobox, the other two
frames are hidden using grid_remove and the frame for the selected option is made visible
using grid.

[240]

Piano Tutor Chapter 7

This completes the first iteration where we defined the broad GUI structure with the
capability to switch between scales, chords, and chord progression frames based on choices
made in the topmost combobox.

Making the piano keyboard

Let's now build the piano keyboard. All keys on the keyboard will be made using the Label
widget. We will superimpose the label widget with an image of black and white keys using
Tkinter's Phot oImage class.

The PhotoImage class is used to display images in label, text, button, and canvas widgets.
We used it in Chapter 2, Making a Text Editor to add icons to buttons. Since this class can
only handle .gif or .bpm format images, we add four . gif images to a folder named
pictures. These four images are black_key.gif, white_key.gif,
black_key_pressed.gif, and white_key_pressed.gif.

Since we will refer to these images over and over again, we add their reference to 7.02
constants.py:

WHITE_KEY_IMAGE = '../pictures/white_key.gif'
WHITE_KEY_PRESSED_IMAGE = '../pictures/white_key_pressed.gif'
BLACK_KEY_IMAGE = '../pictures/black_key.gif'
BLACK_KEY_PRESSED_IMAGE = '../pictures/black_key_pressed.gif'

The symbol . ./ used previously is a way to specify a file path relative to
the current working directory. A single . . / means—go back one
directory, a set of two . ./. ./ means go back two directories, and so on.
This system is generally honored by most modern operating systems.
However, some very old operating systems might not support it. So a
better but a more verbose way is to use the os module of Python to
traverse directories.

Next, we will define a method named create_key that creates a piano key for us at a given
% location:

def create_key(self, img, key_name, x_coordinate):
key_image = PhotoImage (file=img)
label = Label (self.keyboard_frame, image=key_image, border=0)
label.image = key_image
label.place (x=x_coordinate, y=0)
label.name = key_name
label.bind ('<Button-1>', self.on_key_pressed)

[241]

Piano Tutor Chapter 7

label.bind ('<ButtonRelease-1>', self.on_key_released)
self.keys.append(label)
return label

Here's a brief code description:

» Note that since we want to place keys at a specific x coordinate we use the place
geometry manager. We briefly touched upon the place geometry manager in
Chapter 1, Meet Tkinter. Now is a good place to see this rarely used geometry in
action.

¢ This method also takes an image location as its input and creates a PhotoImage
class, which is then attached to the label widget using the image=key_image
option in the previous example.

¢ A third parameter, key_name, is attached to the created label widget by using the
command widget.name = key_name. This is needed to later identify which
particular key was pressed. For example, to create the first key C1, we attach the
name CI to the label widget and then later this string value can be accessed by
calling widget .name

e We bind the label to two events, '<Button-1>"' and '<ButtonRelease-1>", to
handle mouse press events.

e Finally, we add a reference to the newly created widget into an attribute newly
defined here as self.keys. We keep this reference as we will need to change the
image of these widgets to highlight the keys.

Now that we have attached events to two callbacks, let's define them next:

def on_key_pressed(self, event):
print (event.widget.name + ' pressed')
self.change_image_to_pressed(event)

def on_key_released(self, event):
print (event.widget.name + ' released')
self.change_image_to_unpressed (event)

For now, the previous methods print the name of the key pressed and then call another two
methods that change the image of the pressed label to a different colored image on button
press and release:

def change_image_to_pressed(self, event):
if len(event.widget.name) ==
img = WHITE_KEY_PRESSED_IMAGE
elif len(event.widget.name) ==
img = BLACK_KEY_PRESSED_IMAGE

[242]

Piano Tutor Chapter 7

key_img = PhotoImage (file=img)
event .widget.configure (image=key_img)
event..widget.image = key_img

def change_image_to_unpressed(self, event):

if len(event.widget.name) ==

img = WHITE_KEY_IMAGE
elif len(event.widget.name) == 3:

img = BLACK_KEY_IMAGE
key_img = PhotoImage (file=img)
event.widget.configure (image=key_img)
event.widget.image = key_img

The white key widget will have a name of length 2 (for example, C1, D2, G1), while a black
key will have an image length of 3 (for example, C#1, D#1). We utilize this fact to decide if
to use a black key image or a white key image. The rest of the preceding code should be
self-explanatory.

Putting the keyboard together

Now it's finally time to combine all the preceding methods to build our complete keyboard
of two octaves.

We begin by defining the exact x_coordinates for all the keys from CI to B2 in the file
constants.py as follows:

WHITE_KEY_X_ COORDINATES
440, 480,520]
BLACK_KEY_X_COORDINATES

[0,40, 80,120, 160, 200, 240,280, 320, 360, 400,

[30,70,150,190, 230, 310, 350, 430,470, 510]

The preceding x coordinate numbers have been obtained simply by trial and error as to
emulate their location on a keyboard.

Then we modify the previously defined build_keyboard_frame method as follows:

def build_keyboard_frame (self):
self.keyboard_frame = Frame (self.root, width=WINDOW_WIDTH,
height=KEYBOARD_HEIGHT, background='LavenderBlush2")
self.keyboard_frame.grid_propagate (False)
self.keyboard_frame.grid(row=4, column=0, sticky="nsew")
for index, key in enumerate (WHITE_KEY_NAMES) :
X = WHITE_KEY_ X COORDINATES[index]
self.create_key (WHITE_KEY_ IMAGE, key, x)
for index, key in enumerate (BLACK_KEY_NAMES) :
x = BLACK_KEY_ X COORDINATES[index]

[243]

Piano Tutor Chapter 7

self.create_key (BLACK_KEY_IMAGE, key, x)

The first three lines of the previous method remain as defined in the previous iteration. We
then go through all white and black keys creating labels for them at given x coordinates.

That concludes the iteration. If you now run 7.02 view.py, you should see a two-octave
keyboard. When you press any key, the key's image should change to blue and it should
print the name of the key pressed or released in the Terminal:

Piano Tutor)

B

[Scales

il placeholder for score sheet

placeholder for scales frame

Playing audio
To begin with, we have added 24 sound samples in .wav format in a folder named sounds

in this chapter's code folder. These audio files correspond to the 24 notes on our keyboard.
The audio files are named according to the note name it represents.

[244]

Piano Tutor Chapter 7

In order to keep the audio processing separate from the GUI code, we create a new file
called audio.py (7.03). The code is defined as follows:

import simpleaudio as sa
from _thread import start_new_thread
import time

def play_note (note_name) :
wave_obj = sa.WaveObject.from _wave_file('sounds/' + note_name + '.wav')
wave_obj.play ()

def play_scale(scale):
for note in scale:
play_note (note)
time.sleep (0.5)

def play_scale_in_new_thread(scale):
start_new_thread(play_scale, (scale,))

def play_chord(scale):
for note in scale:
play_note (note)

def play_chord_in_new_thread (chord) :
start_new_thread(play_chord, (chord,))

The code description is as follows:

e The play_note method follows the API provided by simpleaudio to play an
audio file

e The play_scale method takes in a list of notes and plays them sequentially,
giving a time gap between each played note
e The play_chord method takes a list of notes and plays them all together

e The last two methods call these methods in new threads as we don't want to
block the main GUI thread when playing these notes

Next, let's import this file (7.03 view.py):
from audio import play_note

Next, modify the on_key_pressed method to play the given note:
def on_key_pressed(self, event):

play_note (event.widget.name)
self.change_image_to_pressed (event)

[245]

Piano Tutor Chapter 7

This concludes the iteration. If you now run the code and press any key on the keyboard, it
should play the note for that key.

Next, we start with building the actual tutor. The next three sections will develop the scales,
chords, and chord progression sections. We will start by building the scales tutor.

Building the scales tutor

All the rules for defining which notes to play for a given scale are added in a JSON file
named scales. json within a folder named json. Let's take a look at the first few lines in
the scales. json file:

{

"Major": [O, 2, 4, 5, 7, 9, 11 1,

"Minor": [O, 2, 3, 5, 7, 8, 10 1],
"Harmonic minor": [O, 2, 3, 5, 7, 8, 11 1,
"Melodic minor": [O, 2, 3, 5, 7, 9, 11 1,
"Major blues": [0, 2, 3, 4, 7, 9 1,

"Minor blues": [0, 3, 5, 6, 7, 10],

}

Recall that a scale is a set of notes played sequentially. The first note of the scale is called its
root or key. So if you play a scale starting at say the note B, you are playing the scale in the
key of B.

Let's take the fourth item in the key-value pairs. The key is named "Melodic minor" and
its associated valueis [0, 2, 3, 5, 7, 9, 11].Thismeans that, to play a melodic
minor scale in the key of B, you will take B as the first item—that is represented by 0 in the
values list. The next key is two semitones above B, the third key is three semitones above B,
and the next is 5, followed by 7, 9, and 11 semitones above B.

So to summarize—in order to play Melodic minor in the key of B you will play the
following keys:

B, B+2, B+3, B+5, B+7, B+9 and B+11 keys
Where the preceding numbers represent semitones.

So our task is—given a scale and the key for the scale, our program should highlight the
keys and play it out:

[246]

Piano Tutor Chapter 7

Select scale in the key of

|Meledic minor

The first thing is to build two combobox for the scale and keys as shown previously. This
should be easy for you as we have built combobox several times in the previous chapters.

The second step involves reading the JSON file into our program.
Quoting from json.org (http://json.org/):

JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for
humans to read and write. It is easy for machines to parse and generate. These are
universal data structures. Virtually all modern programming languages support them in
one form or another. It makes sense that a data format that is interchangeable with
programming languages is also be based on these structures. Read more about [SON

at https://www.json.org.

Python implements a standard module for reading and writing JSON data too. The module
is rightfully called json.

We first import the built-in json module in our namespace:
import json

We next add a new method, self.load_json_files (), and call it from the class
__init__ method:

def load_json_files(self):
with open (SCALES_JSON_FILE, 'r') as f:
self.scales = json.load(f, object_pairs_hook=0OrderedDict)

The SCALES_JSON_FILE path is defined in the file constants.py. This loads up the scales
data as a dictionary in the self.scales attribute:

[247]

http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
http://json.org/
https://www.json.org
https://www.json.org
https://www.json.org
https://www.json.org
https://www.json.org
https://www.json.org
https://www.json.org
https://www.json.org
https://www.json.org

Piano Tutor Chapter 7

You can read JSON files by using the json.load command. You can write
to a JSON file by using the json.dump command. However, json.load
methods do not preserve key order from a parsed JSON document. That is
to say, json.load jumbles up the order of the keys. We do not want to
jumble up the order of the keys and want them to appear in the order they
are mentioned in the file. We therefore use the OrderedDict class from
the collections module to preserve the key order. This is achieved by
passing the second argument

as object_pairs_hook=OrderedDict. An OrderedDict is a Python
dictionary object that remembers the order that keys were first inserted.

Now that we have the scales data available as the se1f.scales dictionary, our next task is
to figure out the keys to highlight. We start by creating a new attribute in the class
__init__ method:

self.keys_to_highlight = []

Next, we define methods to highlight a key and another method to highlight a list of keys:

def highlight_key(self, key_name):
if len(key_name) == 2:
img = WHITE_KEY_PRESSED_IMAGE
elif len(key_name) == 3:
img = BLACK_KEY_PRESSED_IMAGE
key_img = PhotoImage (file=imgqg)
for widget in self.keys:
if widget.name == key_name:
widget.configure (image=key_img)
widget.image = key_img

def highlight_1list_of_keys(self, key_names):
for key in key_names:
self.highlight_key (key)

The preceding code is similar to the previous code we wrote to highlight a key when it is
pressed. Next, we also need methods to remove existing highlights:

def remove_key_highlight (self, key_name):
if len(key_name) == 2:
img = WHITE_KEY_IMAGE
elif len(key_name) ==
img = BLACK_KEY_IMAGE
key_img = PhotoImage (file=img)
for widget in self.keys:
if widget.name == key_name:

[248]

Piano Tutor Chapter 7

widget.configure (image=key_img)
widget.image = key_img

def remove_all_key_highlights (self):
for key in self.keys_to_highlight:
self.remove_key_highlight (key)
self.keys_to_highlight = []

The logic here is exactly similar to the one we applied for highlighting keys.

Now that we have methods to highlight and remove highlights from keys, let's define the
callbacks attached to the two combobox for scale and key selection:

def on_scale_changed(self, event):
self.remove_all_key_highlights ()
self.find_scale (event)

def on_scale_key_changed(self, event):
self.remove_all_key_highlights ()
self.find_scale (event)

Lastly, here is the logic to select which keys to highlight. Furthermore, once we have the list
of keys to be highlighted, we pass it to the previously defined
play_scale_in_new_thread method that plays the actual sound for the scale:

def find_scale(self, event=None) :
self.selected_scale = self.scale_selector.get ()
self.scale_selected_key = self.scale_key_selector.get ()
index_of_selected_key = KEYS.index (self.scale_selected_key)
self.keys_to_highlight = [ALL_KEYS[i+index_of_selected key] \
for i in self.scales[self.selected_scale]]
self.highlight_list_of_keys(self.keys_to_highlight)
play_scale_in_new_thread(self.keys_to_highlight)

Do notice the highlighted part of the code.

So given the index of the selected key, we simply add all items in the list of selected scale to
obtain the list of keys to be highlighted.

We also want to call this method as soon as the program runs. So we add a call
to self.find_scale() rightinour __init__ method. That ensures that we are greeted
by playing of C Major scale (the default selection in combobox) as soon as the program runs.

This concludes the iteration. Now if you go and run 7.04 view.py and select the
appropriate scale and key name, the keyboard will highlight the keys and also play it out
for you.

[249]

Piano Tutor Chapter 7

Building the chord finder section

Now that we have had a glimpse of working with JSON files, this should be easy. Let's take
a look at the first few lines of the chords. json file from the json directory:

{

"Major" : [0, 4, 71,
"Minor" : [0, 3, 71,
"Sus4" : [0, 5, 71,
"5" : [0, 4, 6],
"Diminished" : [0, 3, 6],

}

This is very similar to the scales structure. Let's say we want to figure out what the C# major
chord would look like. So we start with the C# key, which is 0. Then we look at the list of
major chords, which read: [0, 4, 7].So starting at C# the next key to highlight is 4
semitones above and the next is 7 semitones above C#. So the final chord structure for the

C# major chord would be:

C#, (C# + 4 semitones) , (C# + 7 semitones)

The GUTI is also very similar to the scales section:

Select Chord in the key of

Major

4 = <

We begin by adding a constant for the path to the chords. json filein 7.05
constants.py:

CHORDS_JSON_FILE = '../json/chords.json'

[250]

Piano Tutor Chapter 7

Next, we read the contents of this file in a new class attribute, self.chords:

with open (CHORDS_JSON_FILE, 'r') as f:
self.chords = json.load(f, object_pairs_hook=OrderedDict)

We then modify the chords frame GUI to add two combobox (see the complete GUIin 7.05
view.py build_chords_frame):

self.chords_selector = ttk.Combobox (self.chords_frame, wvalues=[k for k
in self.chords.keys()])

self.chords_selector.current (0)

self.chords_selector.bind("<<ComboboxSelected>>", self.on_chord_changed)

self.chords_selector.grid(row=1, column=1, sticky='e', padx=10,
pady=10)

self.chords_key_selector = ttk.Combobox (self.chords_frame, values=[k
for k in KEYS])

self.chords_key_selector.current (0)

self.chords_key_selector.bind ("<<ComboboxSelected>>",

self.on_chords_key_changed)

Next, we added the two event callbacks defined previously:

def on_chord_changed(self, event):
self.remove_all_key_highlights ()
self.find_chord (event)

def on_chords_key_changed(self, event):
self.remove_all_key_highlights ()
self.find_chord (event)

The find_chord method queries the self.chords dict for the keys to be highlighted,
adds the key offsets from the root note, and calls it to be highlighted and played:

def find_chord(self, event=None) :
self.selected_chord = self.chords_selector.get ()
self.chords_selected_key = self.chords_key_selector.get ()
index_of_selected_key = KEYS.index(self.chords_selected_key)
self.keys_to_highlight = [ALL_KEYS[i+index_of_selected_key] for \

i in self.chords[self.selected_chord]]

self.highlight_list_of_keys(self.keys_to_highlight)
play_chord_in_new_thread(self.keys_to_highlight)

The final code in this iteration modifies the on_mode_changed method to highlight the
chord as soon as the chord mode is selected:

def on_mode_changed(self, event):
self.remove_all_key_highlights /()

[251]

Piano Tutor Chapter 7

selected_mode = self.mode_selector.get ()

if selected_mode == 'Scales':
self.show_scales_frame ()
self.find_scale ()

elif selected_mode == 'Chords':
self.show_chords_frame ()
self.find_chord()

elif selected_mode == 'Chord Progressions':
self.show_progressions_frame ()

That concludes the iteration. If you now run 7.05 view.py, you will find a functional
chords section that lets us find chords of different varieties in different scales.

Building the chord progression tutor

The GUI component of the chord progression section is slightly more evolved than the
previous two sections. Here's how a typical chord progression GUI looks like:

Select Scale Select Progression in the Key of

Major P -yl = |c [

i | K=l 7

Notice that this section has the combobox as opposed to two for the earlier sections.
Depending on what progression is chosen in the middle combobox, we need to draw a

number of buttons, each button representing one chord in the complete chord progression.

In the preceding screenshot, note that the progression combobox has a value of I-V-vi-IV.

This is a total of four roman numbers separated by a dash. This means that this chord

progression is made up of four chords. Also notice that a few of the roman numbers (I, V,
IV, and so on) are written in capital letters and others (vi) are written in small letters. All
capital letters in the series denote major chords, while each small letter represents a minor

chord.
Next, let us take a look at the progressions. json file from the json folder:

{

[252]

Piano Tutor Chapter 7

"Major": {

"I-1v-v": ["O", "5", "7"],

"ii-v-I": ["2", "7", "O"],

"I-v-vi-1v":. ["Q", "7", "9o",6 "5" 7],
. more here},

"Minor": {

"i-vi-vIii". ["o", "o9", "11"j,

"i-iv-vIii". ["o", "s", "11i"j,

"i-iv-v": ["O", "5", "7"],

..more here

}
}

As a first observation, the chord progressions are broadly of two types—major and minor.
Each type has a list of chord progressions, which is identified by a set of roman numerals.

Let's see an example of how this would work.

Say we want to display the major chord progression ii-v-I in the key of C, as shown in
the following screenshot:

Select Scale Select Progression in the Key of

Major - iV = [C |

i | v | | |

The JSON file lists the progression under the Major section as:
"{i-V-I": ["2", n7n, non]

Let's first lay down the 12 notes in a table starting at the key of the chord progression (C in
our example). We need to pick up the 2, 7%, and 0" keys for this progression:

0 1 2 3 4 5 6 7 8 9 10 11
C C# D D# E F F# G G# A At B
The keys are D(2™), G(7"), and C(0"). With the keys in hand—we next need to identify if

each of the keys plays a major or minor chord. This is simple. Those roman numbers written
in lower case play a minor chord, while those written in capitals play a major chord.

Given this rule, our final chords in the chord progression in the key of C are:

D Minor - G Major - C Major

[253]

Piano Tutor Chapter 7

Having identified these, our program should dynamically create three buttons. Clicking on
these buttons should then play the preceding three chords, respectively.

Let's code this feature. We begin by defining the location of the chords progression file in
7.06 constants.py:

PROGRESSIONS_JSON_FILE = '../json/progressions.json'

We then load it from the method 1oad_json_files () into an attribute named
self.progressions:

with open (PROGRESSIONS_JSON_FILE, 'r') as f:
self.progressions = json.load(f, object_pairs_hook=0OrderedDict)

Next, we modify the progression frame to add three combobox elements. See
the build_progressions_frame code 7.06 view.py.

The three combobox are attached to the following three callbacks:

def on_progression_scale_changed(self, event):
selected_progression_scale = self.progression_scale_selector.get ()
progressions = [k for k in
self.progressions[selected_progression_scale] .keys ()]
self.progression_selector|['values'] = progressions
self.progression_selector.current (0)
self.show_progression_buttons ()

def on_progression_key_changed(self,event):
self.show_progression_buttons ()

def on_progression_changed(self,event) :
self.show_progression_buttons ()

The most complex of the three combobox is the progression scale combobox. It lets you
choose between Major and Minor progression scales. Depending on the choice you make
there, it populates the second combobox with the progression values from the JSON file.
This is what the first four lines of the on_progression_scale_changed method do.

Other than that, all three preceding callback methods defined make a call to the
show_progression_buttons method, which is defined as follows:

def show_progression_buttons (self) :
self.destroy_current_progression_buttons ()
selected_progression_scale = self.progression_scale_selector.get ()
selected_progression = self.progression_selector.get().split('-")
self.progression_buttons = []

[254]

Piano Tutor Chapter 7

for i in range(len(selected_progression)):
self.progression_buttons.append(Button (self.progressions_frame,
text=selected_progression[i],
command=partial (self.on_progression_button_clicked, 1i)))

sticky = 'W' if i == 0 else 'E'

col =1 if 1 > 1 else 1

self.progression_buttons[i].grid(column=col, row=2, sticky=sticky,
padx=10)

The preceding code dynamically creates buttons—one for each chord in the chord
progression and stores all the buttons in a list named self.progression_buttons. We
will keep this reference because we will have to destroy the buttons and create fresh ones
every time a new chord progression is selected.

Note the use of the partial method from the functools module to
define the button command callbacks. Since the buttons are being created
dynamically, we need to keep track of the button number. We use this
handy method partials that lets us call a method with only a partial
number of arguments. Quoting from Python's documentation -

The partial () function is used for partial function application, which
freezes some portion of a function's arguments and/or keywords resulting
in a new object with a simplified signature. You can read more about
parﬁak;athttps://docs.python.org/3/library/functools.
html#functools.partial

The preceding code calls a dest roy_button method whose task is to clear the frame for
drawing the next set of buttons, in case a new progression is selected. The code is as
follows:

def destroy_current_progression_buttons (self) :
for buttons in self.progression_buttons:
buttons.destroy ()

Finally, we want to display an individual chord from the chord progression when a button
is clicked. This is defined as follows:

def on_progression_button_clicked(self, 1i):
self.remove_all_key_highlights ()
selected_progression = self.progression_selector.get () .split('-") [1]
if any(x.isupper() for x in selected_progression) :
selected_chord = 'Major'
else:
selected_chord = 'Minor'
key_offset = ROMAN_TO_NUMBER|[selected_progression]
selected_key = self.progression_key_selector.get ()

[255]

https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial
https://docs.python.org/3/library/functools.html#functools.partial

Piano Tutor Chapter 7

index_of_selected_key = (KEYS.index (selected_key)+ key_offset)%s 12
self.keys_to_highlight = [ALL_KEYS[j+index_of_selected_key] for j in
self.chords[selected_chord]]
self.highlight_list_of_keys(self.keys_to_highlight)
play_chord_in_new_thread(self.keys_to_highlight)

Here's a brief description of the preceding code:

e We first split the text, say ii-V-I, using the dash (-) delimiter. We then loop
through the list and check if it is in uppercase or lowercase. If it is uppercase, the
selected_chord variable is set to Major, if not it is set to Minor.

¢ The index of the keys is calculated by adding the key to the numbers mentioned
in the JSON file. We apply modulo operator (%) to the added value to ensure that
the value does not exceed the limits of 12 notes.

e Since the numbers are stored as roman numerals (this is the convention used by
musicians), we need to convert it to integers. We do that by defining a simple
key-value mapping in 7.05/constants.py:

ROMAN_TO_NUMBER = { 'I':0, 'II': 2, 'III':4, 'IV':5, 'v': 7,
'vi':9, 'vir'. 11, 'i':0, 'ii': 2, 'iii':4, 'iv':5, 'v': 7,
'vi':9, 'vii': 11}

* Note that we have mapped all numbers starting at 0 and the mapping follows the
Major scale pattern (W W H W W S), where W stands for whole tone (two keys
jump) and S stands for semitone (one key jump).

¢ Now that we know that if the chord is a major or a minor, the rest of the code is

exactly the same as we earlier used to identify the individual chords. We then
highlight and play the individual chord.

To end, we modify the on_mode_changed to add a call to
show_progression_buttons () so that every time we switch to the chord progression
section, the first chord progression buttons are laid down for us.

This completes the iteration. Our chord progression section is ready. Run code
7.06/view.py. Inside the chord progression tutor, you can select the chord progression
type (major or minor), the progression, and its key from the comboboxes and it will create
one button for each of the chords in the chord progression. Press the individual buttons and
it will play you the chords in that progression.

[256]

Piano Tutor Chapter 7

Building the score maker

Let us now build the score maker. This will display whatever is played on the piano in
music notation. For the sake of program modularity, we will build the program in a
separate file named score_maker.py.

We start by defining a class ScoreMaker. Since we will be showing just two octaves of
notes, we will define a constant NOTES listing all the notes (7.06/score_maker.py):

class ScoreMaker:

NOTES = ['C1','D1l', 'E1', 'F1', 'G1',6'aA1', 'B1', 'c2','D2', 'E2', 'F2',
'G2','A2', "B2 ']

The __init__ method of this class takes the container as an argument. This is the container
on which this class will draw the score (7.06/score_maker.py):

def _ _init_ (self, container):
self.canvas = Canvas (container, width=500, height = 110)
self.canvas.grid(row=0, column = 1)
container.update_idletasks ()
self.canvas_width = self.canvas.winfo_width ()
self.treble_clef_image = PhotoImage (file="'../pictures/treble-clef.gif"')
self.sharp_image = PhotolImage (file='../pictures/sharp.gif')

Note the use of update_idletasks () onthe container frame. Calling this method here
is necessary because we created a canvas in the previous line of code, which requires a
redrawing of widgets. However, the redraw will only take place after the next run of the
event loop. But we want to know the canvas width immediately after it was created. An
explicit call to update_idletasks immediately carries out all pending events including
geometry management. This ensures that we get the correct width of the canvas in the very
next step. If you comment out the update_idletasks line and try to print the width of the
canvas, it will print 1 even though we have explicitly set it to 500.

We also initialize two . gif images that we will use to draw the score. The treble_clef
image will be used to draw the treble clef to the left of the score, while the sharp_image
will draw a sharp (#) symbol prior to any sharp note (notes on the black keys).

[257]

Piano Tutor Chapter 7

Tkinter uses the concept of event loop to handle all events. Here's an
excellent article that explains the concept in depth http://wiki.tcl.tk/
1527. update_idletask is an example of the method available on all
widgets. Visit http://effbot.org/tkinterbook/widget.htm to see a list
of methods that are available to be called on all widgets.

Our first task is to draw five equally spaced lines on the canvas. We accordingly define a
new method to do that:

def _draw_five_lines (self):
w = self.canvas_width
self.canvas.create_1line(0,40,w,40, fill="#555")
self.canvas.create_1line(0,50,w,50, fill="#555")
self.canvas.create_1line(0,60,w, 60, fill="#555")
self.canvas.create_1line(0,70,w, 70, fill="#555")
self.canvas.create_1line(0,80,w, 80, fill="#555")

This creates five parallel lines each 10 pixels apart. The underscore in the method name is
an indication that this is to be treated as a private method of the class. While Python does
not enforce method privacy, this tells the users not to use this method directly in their
program.

Let's then build a method that actually calls the previous method and adds a treble clef to
the left, thereby creating an empty staff on which we can draw notes:

def _create_treble_staff (self):
self. draw_five_lines ()
self.canvas.create_image (10, 20, image=self.treble_clef_image, anchor=NW)

At the outset, we need to differentiate between drawing a chord and drawing notes of the
scale. Since all the notes of a chord are played together, the notes of a chord are drawn at a
single x location. In contrast, the notes in a scale are drawn at regular x offsets, as shown
here:

- =

P

e
=
-

&

Subsequent notes of a scale move along x axis all notes of a chord are
drawn at same X position

@4

[258]

http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://wiki.tcl.tk/1527
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm
http://effbot.org/tkinterbook/widget.htm

Piano Tutor Chapter 7

Since we need to offset the x value for scales at regular intervals, we use the count method
from the itertools module to provide an ever-increasing value of x:

import itertools
self.x_counter = itertools.count (start=50, step=30)

Now every subsequent call to x = next (self.x_counter) increments x by 30.

Now here's the code that draws the actual note on the canvas:

def _draw_single_note(self, note, is_in_chord=False):
is_sharp = "#" in note
note = note.replace("#","")
radius = 9
if is_in_chord:
x = 75
else:
x = next (self.x_counter)
i = self.NOTES.index (note)
y = 85-(5*1)
self.canvas.create_oval (x,y,x+radius, y+ radius, f£ill="#555")
if is_sharp:
self.canvas.create_image (x-10,y, image=self.sharp_image, anchor=NW)
if note=="C1":
self.canvas.create_line(x-5,90,x+15, 90, fill="#555")
elif note=="G2":
self.canvas.create_line(x-5,35,x+15, 35, fill="#555")
elif note=="A2":
self.canvas.create_line(x-5,35,x+15, 35, fill="#555")
elif note=="B2":
self.canvas.create_line(x-5,35,x+15, 35, fill="#555")
self.canvas.create_line(x-5,25,x+15, 25, fill="#555")

The description of the preceding code is as follows:

¢ The method accepts a note name, for example, C1 or D2#, and draws an oval at an
appropriate place.

e We need to get the x, y values for drawing an oval.

e We first calculate the x value. If the note is part of a chord, we fix the x value at 75

px, whereas if the note is part of a scale, the x value is incremented by 30 pixels
from the previous x value by calling next on the itertool counter method.

Next, we calculate the y value. The code to do this is as follows:

i self .NOTES.index (note)

85— (5*1)

[259]

Piano Tutor Chapter 7

Basically, the y offset is calculated based on the index of the note in the list and each
subsequent note is offset by 5 pixels. The number 85 is found by trial and error.

Now that we have the x and y value, we simply draw the oval of given radius:

self.canvas.create_oval (x,y,x+tradius, y+ radius, f£i1l1l="#555")

If the note is a sharp note, that is, if it contains the character #, it draws the # image 10
pixels left of the oval for the note.

The notes C1, G2, A2, and B2 are drawn outside the five lines. So in addition to oval we
need to draw a small line crossing horizontally through them. This is what the last 11 lines
of i f...else statements achieve.

Finally, we have the draw_notes method and draw_chord method that given a list of
notes draw out the notes and chords, respectively. These are the only two methods that do
not have an underscore before their names. This means we expose the interface of our
program only using these two methods:

def draw_notes (self, notes):
self._clean_score_sheet ()
self._create_treble_staff ()
for note in notes:
self._draw_single_note (note)

def draw_chord(self, chord):
self._clean_score_sheet ()
self._create_treble_staff ()
for note in chord:
self._draw_single_note(note, is_in_chord=True)
Now that we have our ScoreMaker ready, we simply import it into 7.07/view.py:
from score_maker import ScoreMaker
We modify build_score_sheet_frame to instantiate the ScoreMaker:
self.score_maker = ScoreMaker (self.score_sheet_frame)

We then modify find_scale to add this line (7.07/view.py):

self.score_maker.draw_notes (self.keys_to_highlight)

[260]

Piano Tutor Chapter 7

We similarly modify £ind_chord and on_progression_button_clicked to add this
line (7.07/view.py):

self.score_maker.draw_chord(self.keys_to_highlight)

That brings us to the end of this project. If you now run 7.07/view.py, you should see a
functional score maker and a functional Piano Tutor.

However, let's end this chapter with a brief discussion on window responsiveness.

A note on window responsiveness

We used .grid_propagate (False) in this program to ensure that our frames did not
shrink to fit their contents, but rather stayed at a fixed height and width that we had
specified while making the frames.

This served us well for this example, but this made our window and its content fixed in
size. This is what you would typically call a non-responsive window.

Let us take a look at the program nonresponsive.py as an example of a non-responsive
window. This program simply draws 10 buttons in a row:

from tkinter import Tk, Button
root = Tk()

for x in range (10) :
btn = Button(root, text=x)
btn.grid(column=x, row=1, sticky='nsew')

root.mainloop ()

Run this program and resize the window. These buttons are drawn on the root window and
are not responsive. The buttons remain fixed in size. They do not adapt in size to change in
the window size. If the window size is made smaller, some of the buttons even disappear
from view.

In contrast, let us take a look at the program responsive.py:
from tkinter import Tk, Button, Grid
root = Tk()

for x in range (10) :
Grid.rowconfigure (root, x, weight=1)

[261]

Piano Tutor Chapter 7

Grid.columnconfigure (root, x, weight=1)
btn = Button(root, text=x)
btn.grid(column=x, row=1l, sticky='nsew')

root.mainloop ()

If you run this program and resize the window, you will see that the buttons respond by
resizing themselves to fit the container root window. So what's the difference between the
two previous pieces of code? We simply added these two lines to the second program:

Grid.rowconfigure (root, x, weight=1)
Grid.columnconfigure (root, x, weight=1)

These two lines add non-zero weights (weight=1) to the x" button widget in the container
(root in the preceding example).

The key here is to understand the importance of weights. If we have two widgets, widget1
and widget2, and we assign them weights of 3 and 1, respectively. Now when you resize
its parent, widget 1 will take up 3/4" of the space, while widget 2 will take up 1/4" of the
space.

Here's the documentation of rowconfigure and columnconfigure:
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.
html.

Experimenting with the code

The best way to experience this piece of code is to make the following tweaks one by one,
run the program, and resize the window to see the effect of each option.

As a first tweak, change the weights to 0:

Grid.rowconfigure (root, x, weight=0)
Grid.columnconfigure (root, x, weight=0)

This will make the window non-responsive again.

Next, reassign the weights back to 1 and then comment out one of the two lines and see the
difference. If you comment out the rowconfigure line the buttons will be responsive in the
y direction, but non-responsive in the x direction and vice versa for columnconfigure.

[262]

http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html
http://infohost.nmt.edu/tcc/help/pubs/tkinter/web/grid-config.html

Piano Tutor Chapter 7

Restore the program to its original state and then assign a different weight in each loop by
changing the weight to x:

Grid.rowconfigure (root, x, weight=x)
Grid.columnconfigure (root, x, weight=x)

So the first button will have a weight of 0, the second button will have a weight of 1, and so
on. Now if you run the program and resize the window, the last button with weight=9 will
be the most responsive (will take up the largest proportion of the available space), while the
first button with a weight of 0 will be completely non-responsive (fixed size), as shown in
the following screenshot:

As the last tweak, restore the program to its original state and change the value of the
second argument to a fixed number, say 2:

Grid.rowconfigure (root, 2, weight=1)
Grid.columnconfigure (root, 2, weight=1)

This will assign the weight only to the third button (counting starts with 0), so the third
button becomes responsive, while the others stay non-responsive, as shown in the following
screenshot:

] [I A I

As a matter of fact, in this last case since we are assigning weight only to a single widget,
we could have as well assigned it outside the loop.

[263]

Piano Tutor Chapter 7

Handling widget resize with <Configure>

There might be occasions when you <indexentry content="window responsiveness:widget
resize, handling with ">want to do some specific action when a user resizes a window or a
widget. Tkinter provides an event named <Configure>, which can be bound to a callback
to react to changes in widget size.

Here is a simple example (see handle_widget_resize.py):

from tkinter import Tk, Label, Pack

root= Tk ()
label = Label(root, text = 'I am a Frame', bg='red')
label.pack (fill="both', expand=True)

def on_label_resized(event) :
print ('New Width', label.winfo_width())
print ('New Height', label.winfo_height())

label.bind("<Configure>", on_label_resized)
root.mainloop ()

The description of the code is as follows:

e We have a Label widget in a root window. We set the pack options for the label
to (fill="both', expand=True) as we want it to resize every time the root
window resizes.

e We attach a callback to the <Configure> event to listen for any changes in the
size of the label widget. As soon as the label widget changes, it triggers a call to
the method on_label_resized.

Now if you resize the window, the label resizes and that triggers on_label_resized,
which prints the new height and width of the label widget to the console. This can be used
for adjusting the placement of items on the screen.

That concludes our brief discussion on window responsiveness.

Summary

We worked with several useful standard modules such as functools, itertools, and
json.

[264]

Piano Tutor Chapter 7

We saw how to work with JSON files. JSON helps us present complex rules about our
domain and are an easier and more portable alternative to storing the same information in
say a database.

We looked at the practical usage of widget.grid_propagate (False) along with some of
its limitations in terms of non-responsiveness.

We saw the usage of OrderedDict from the collections module and partials from the
functools module.

We looked at various root window methods such as root . geometry,
root.winfo_screenwidth, and root .resizable.

We looked at widget .update_idletasks, which lets us clear all pending updates without
having to wait for the next run of mainloop.

Finally, we looked at the steps involved in making a window responsive in Tkinter.

QA section

Before you proceed to the next chapter, make sure you can answer these questions to your
satisfaction:

e Whatis partial from the functools module used for?

¢ When and why do we need to use widget .update_idletasks in a Tkinter
program?

e If needed, how can we handle resizing of the main window or any other widget
in Tkinter?

e What are the data structures available in JSON? (read about it here: https: //www.
json.org/)

¢ How do you make widgets responsive in Tkinter?

Further reading

Read more about JSON data structures. They are popular and are used everywhere. An
alternative structure is XML. Read about XML and JSON and when and why one should be
preferred over the other.

[265]

https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/
https://www.json.org/

Piano Tutor Chapter 7

The collections module of Python provides some very versatile and useful data structures
such as namedtuple, deque, Counter, dict, OrderedDict, defaultdict, chainMap,
UserDict, UserList, and userstring. These can be suitably used in a wide variety of use
cases. More information can be found

at: https://docs.python.org/3/library/collections.html.

We used external audio files and external images in our program. This means that they
need to be bundled with the program if it has to be packaged and distributed. An
alternative packaging of audio files and images can be done using what is called base-64
encoding. The audio files and the images can be base-64 encoded in a text file and then
read back and decoded by the program to be used as audio files or image files. Read about
base-64 encoding and if you feel motivated enough, try to convert all audio files and images
used in this program into base-64 encoding. More information on base-64 encoding can be
found here: https://en.wikipedia.org/wiki/Base64.

The Python implementation of base-64 encoding can be found here: https://docs.python.
org/3/library/base64.html.

[266]

https://docs.python.org/3/library/collections.html
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://en.wikipedia.org/wiki/Base64
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html
https://docs.python.org/3/library/base64.html

Fun with Canvas

Canvas is undoubtedly one of the most versatile widgets of Tkinter. Given that it provides
direct control over the drawing of each individual pixel, combine it with some maths and it
can be used to create all sorts of neat visualizations. While the possibilities are endless, we
will explore how to implement some of the important mathematical ideas in this chapter.

The key objectives for this chapter are:

¢ Learning to animate with the Tkinter canvas

¢ Understanding the usage of polar and Cartesian coordinates on the canvas
¢ Implementing ordinary differential equations

¢ Modeling simulations given a list of formulas

¢ Modeling 3D graphics and studying some common transformation matrices used
in 3D animation

Note that many of the code samples in this chapter requires heavy computations. However,
code optimization for speed is not our first preference. The primary goal here is
comprehension of the underlying concepts.

Fun with Canvas Chapter 8

Building a screen saver

We will start by building a screen saver. The program will consist of several random-
colored and random-sized balls bouncing all over the screen at random velocity, as shown
in the following screenshot:

' Y

Let's create a class to generate balls with random attributes. Accordingly, we define a new
class named RandomBall. Refer the code file 8.01_screensaver:

® o
°%

class RandomBall:

def _ _init_ (self, canvas):

self.canvas = canvas

self.screen_width = canvas.winfo_screenwidth ()
self.screen_height = canvas.winfo_screenheight ()

self.create_ball ()

def create_ball (self):
self.generate_random_attributes ()
self.create_oval ()

def generate_random_attributes (self):
self.radius = r = randint (40, 70)
self.x_coordinate = randint(r, self.screen_width - r)
self.y_coordinate = randint (r, self.screen_height - r)
self.x_velocity = randint (6, 12)
self.y_velocity = randint (6, 12)
self.color = self.generate_random_color ()

def generate_random_color (self):
r = lambda: randint (0, Oxffff)
return "#{:04x}{:04x}{:04x}'.format(r (), r(), r())

def create_oval (self):

[268]

Fun with Canvas Chapter 8

x1 self.x_coordinate - self.radius
et self.y_coordinate - self.radius
X2 self.x_coordinate + self.radius
y2 = self.y_coordinate + self.radius
self.ball = self.canvas.create_oval(x1, yl, x2, y2, fill=self.color,

outline=self.color)

def move_ball (self):
self.check_screen_bounds ()
self.x_coordinate += self.x_velocity
self.y_coordinate += self.y_velocity
self.canvas.move (self.ball, self.x_velocity, self.y_velocity)

def check_screen_bounds (self) :

r =

self.radius

if not r < self.y_coordinate < self.screen_height - r:
self.y_velocity = -self.y_velocity

if not r < self.x_coordinate < self.screen_width - r:
self.x_velocity = -self.x_velocity

Here's the description for the preceding code:

e Two key methods here are create_ball and move_ball. All other methods are

helpers to these two methods. The __init__ method takes a canvas as a
parameter and then calls the create_ball method to draw the ball on the given
canvas. To move the ball around, we will explicitly need to call the move_ball
method.

The create_ball method uses the canvas.create_oval () method

and move_ball uses the canvas.move (item, dx, dy) method, where dx and
dy are x and y offsets for the canvas item.

Also, note how we create a random color for the ball. Because the hexadecimal
color coding system uses up to four hexadecimal digits for each of red, green, and
blue, there are up to 0xf£ £ £ possibilities for each color. We, therefore, create a
lambda function that generates a random number from 0-0xf£f £, and use this
function to generate three random numbers. We convert this decimal number to
its two-digit equivalent hexadecimal notation using the format specifier
#{:04x}{:04x}{:04x} to getarandom color code for the ball.

That is all there is to the RandomBall class. We can use this class to create as many ball
objects as we want to display in our screensaver.

[269]

Fun with Canvas Chapter 8

Next, let's create the ScreenSaver class that will show the actual screensaver:

class ScreenSaver:

balls = []

def _ _init_ (self, number_of_balls):
self.root = Tk()
self.number_of_balls = number_of _balls
self.root.attributes ('-fullscreen', True)

self.root.attributes('-alpha', 0.1)
self.root.wm_attributes ('-alpha',0.1)
self.quit_on_interaction()
self.create_screensaver ()
self.root.mainloop ()

def create_screensaver (self) :
self.create_canvas|()
self.add_balls_to_canvas|()
self.animate_balls ()

def create_canvas (self) :
self.canvas = Canvas (self.root)
self.canvas.pack (expand=1, fill=BOTH)

def add_balls_to_canvas(self):
for i in range (self.number_of_balls):
self.balls.append (RandomBall (self.canvas))

def quit_on_interaction(self):
for seq in ('<Any-KeyPress>', '<Any-Button>', '<Motion>'"):
self.root.bind(seq, self.quit_screensaver)

def animate_balls (self):
for ball in self.balls:
ball.move_ball ()
self.root.after (30, self.animate_balls)

def quit_screensaver (self, event):
self.root.destroy ()

The description of the code is as follows:

e The init__ method of the ScreenSaver class takes the number of
balls (number_of_balls) as its argument

e Weuse root.attributes (—-fullscreen, True) toremove the
enclosing frame from the parent window and make it a full-screen window.

[270]

Fun with Canvas Chapter 8

e The quit_on_interaction method binds the root to call
our quit_screensaver method in case of any interactions from the user's end.

¢ We then create a canvas to cover the entire screen with
Canvas (self.root) with pack (expand=1, £ill=BOTH) options to fill the
entire screen.

e We create several random ball objects using the RandomBall class, passing
along the Canvas widget instance as its arguments.

e We finally make a call to the animate_balls method, which uses the standard
widget.after () method to keep running the animation in a loop at a regular
interval of 30 milliseconds.

¢ To run the screen saver, we instantiate an object from our ScreensSaver class,
passing the number of balls as its argument as
follows: ScreenSaver (number_of_balls=18)

Our screensaver is now ready! In fact, if you are working on the Windows platform, and
when you learn to create an executable program from Python programs (discussed in
Chapter 10, Miscellaneous Tips), you can create an executable file with a . exe extension for
this screensaver. You can then change its extension from .exe to .scr, right-click, and
select Install to add it to your list of screensavers.

Graphing with Tkinter

Tkinter is not a graphing tool. However, should you need to draw graphs with Tkinter, you
can use the Canvas widget to draw graphs.

In this iteration, we will draw the following graphs:

e Pie chart (8.02_pie_chart.py)
e Bar graph (8.03_bar_graph.py)
e Scatter plot (8.04_scatter_plot.py)

[271]

Fun with Canvas Chapter 8

The three graphs show up as follows:

Pie Chart

Let's look at the pie chart first. You can easily create a pie chart in Tkinter using the Canvas
widget's create_arc method.

The create_arc method has the following signature:
item_id = canvas.create_arc(xl, vyl, x2, y2, option, ...)

Point (x1, y1) is the top-left corner and point (x2, y2) is the bottom-right corner of the
rectangle into which the arc fits. If the bounding rectangle is a square, it makes a circle. The
method also takes two arguments, named start and extent, which we will use to create
the pie chart.

The start option specifies the start angle for the arc, measured in degrees from the +x
direction. When omitted, you get the complete ellipse. The extent option specifies the
width of the arc in degrees.

The arc begins at the angle given by the start option and draws counterclockwise up to
the degrees specified by the extent option.

To create the pie chart, let's define a method that, given a number #, divides the circle into,
say, 1,000 equal parts and then, given a number less than 1,000, returns the equivalent angle
in the arc. Since there are 360 degrees in a circle, the method is defined as follows:

total_value_to_represent_by_pie_chart = 1000
def angle(n):
return 360.0 * n / total_value_to_represent_by_pie_chart

[272]

Fun with Canvas Chapter 8

Next, we plot the various sections of the pie chart using code like this:

canvas.create_arc((2,2,152,152), fill="#FAF402", outline="#FAF402",
start=angle (0), extent = angle(200))

You can check out an example of a pie chartin 8.02_pie_chart.py.

Next, the bar graph. This is very simple. We use create_rectangle to draw a bar graph:

plot_data= [random.randint (75,200) for r in range(12)]
for x, y in enumerate (plot_data):

xl = x + X * bar_width

yl = canvas_height - vy

X2 = x + x * bar_width + bar_width

y2 = canvas_height

canv.create_rectangle (x1, vy1, x2, y2, fill="blue")

canv.create_text (x1+3, yl1, font=("", 6),

text=str(y),anchor="sw')

One important thing to note here. Since the Canvas widget represents the y coordinate
starting from the top-left corner, we need to subtract the y position from the canvas height
to get the y coordinate for the graphs.

You can check out the complete code of the bar graph in 8.03_bar_graph.py.

Similarly, we use the create_oval method to draw the scatter plot. Check out the code for
the scatter plotin 8.04_scatter_plot.py.

Next, let us see how to embed matplotlib graphs in Tkinter.

Using the Tkinter canvas to draw graphs may work fine for trivial cases. However, Tkinter
is not the best choice when it comes to drawing more sophisticated and interactive graphs.

Several Python modules have been developed for making graphs. However, matplotlib
stands out as a clear winner for producing professional-quality interactive graphs with
Python.

Although a detailed discussion on matplotlib is beyond the scope of this book, we will
take a brief look at embedding matplotlib-generated graphs on a Tkinter canvas.

You can install matplot1ib and NumPy (a dependency for matplot1ib) using the
following commands:

pPip3 install matplotlib
pip3 install numpy

[273]

Fun with Canvas Chapter 8

The matplotlib targets many types of use cases and output formats. Some of the
different use cases for matplotlib are to:

¢ Make interactive graphs from the Python shell

e Embed matplotlib in GUI modules such as Tkinter, wxPython, or PyGTK
¢ Generate postscript images from simulations

¢ Serve on web pages from backend web servers

In order to target all these use cases, matplotlib uses the concept of a backend. In order to
display a matplotlib graph on Tkinter, we use a backend called TkAgg.

We import the backend into matplotlib as follows:

import tkinter as tk

from numpy import arange, sin, pi

from matplotlib.backends.backend_tkagg import
FigureCanvasTkAgg,NavigationToolbar2TkAgg
from matplotlib.figure import Figure

We then create the matplot1lib graph as we would normally do in the matplotlib API:

f = Figure(figsize=(5,4), dpi=100)
a = f.add_subplot (111)

t = arange(-1.0, 1.0, 0.001)

s = t*sin(1/t)

a.plot (t, s)

Finally, we embed the generated graph in the tkinter main loop using the TkAgg backend
as follows:

canvas = FigureCanvasTkAgg (f, master=root)
canvas.get_tk_widget () .pack (side=tk.TOP, fill=tk.BOTH, expand=1)

We can also embed the navigation toolbar of matplotlib using the command:

toolbar = NavigationToolbar2TkAgg (canvas, root)
toolbar.update ()

The preceding code (8.05_matplotlib_embedding_graphs.py) generates a graph as
shown in the following diagram:

[274]

Fun with Canvas Chapter 8

0.8

0.6 1

0.4 1

0.2 -

0.0

_0.2 -

T T T T T T T T T
—-1.00 =0.75-0.50-0.25 0.00 0.25 0.50 075 1.00

A€ +Q=

Polar plots with Tkinter

A point in space can be represented using the Cartesian coordinate using two numbers x
and y. The same point can also be represented in the polar coordinate by using the distance
from the origin (r) and the angle from the x axis (theta), as shown in the following diagram:

%Y

I
r

§e

X = r cos(8)

(g)uls 4

[275]

Fun with Canvas Chapter 8

To convert between polar and Cartesian coordinates, we use the following equalities:
x=71 c0s(0) and y = rsin(0)

It is easier to plot equations expressed in terms of r and 0 on a special kind of graph called
the polar plot, which is divided into small concentric circles and radial lines emanating
from the center. The radial lines are normally spaced at intervals of 15°, while the radius of
concentric circles depends on the scale on which the distance is to be measured from the
center. Here's an example of a polar plot that we will draw:

Polar Plot Demo X

aggm M e

[276]

Fun with Canvas Chapter 8

The Tkinter canvas understands Cartesian coordinates. It is, however, easy to convert from
polar to Cartesian coordinates. We accordingly define a method named
polar_to_cartesian;see 8.06_polar_plot.py:

def polar_to_cartesian(r, theta, scaling_factor, x_center, y_center):
x = r * math.cos(theta) * scaling_factor + x_center

y = r * math.sin(theta) * scaling_factor + y_center

return(x, y)

Here's a brief description of the preceding code:

¢ The method converts an input of (r, theta) value to (x, y) coordinates using the
equalities x=7 cos(0) and y = rsin(6).

e The scaling_factor in the preceding equation decides how many pixels will
equal to one unit in our polar plot and is set to a constant value. Changing it
changes the size of the plot.

e We add the x_center and y_center values to the final results. x_center is
defined as half the window_width while y_center is half the window size. We
add these as offsets because Canvas considers (0,0) as the top left of the canvas,
while we want to consider the center of the canvas as (0,0).

We begin by creating a canvas in a Tkinter root window, and add radial lines and
concentric circles to the canvas using the following code:

draw radial lines at interval of 15 degrees
for theta in range(0,360,15):
r = 180
X, y = X_center + math.cos (math.radians (theta))*r, \
y_center - math.sin(math.radians (theta)) *r
c.create_line (x_center, y_center, x, y, fill='green', dash=(2, 4),\
activedash=(6, 5, 2, 4))
c.create_text (x, y, anchor=W, font="Purisa 8", text=str(theta) + '°'")

draw concentric_circles
for radius in range(1,4):

Xx_max = X_center + radius * scaling_factor
x_min = x_center - radius * scaling_factor
y_max = y_center + radius * scaling_factor
y_min = y_center - radius * scaling_factor

c.create_oval (x_max, y_max, x_min, y_min, width=1, outline='grey', \
dash=(2, 4), activedash=(6, 5, 2, 4))

[277]

Fun with Canvas Chapter 8

Now that our graph paper is ready, it's time to plot the actual polar plot. The following code
plots 3000 points of the polar equation r = 2*math.sin (2*theta) on the graph:

for theta in range (0, 3000):
r = 2*math.sin (2*theta)
x, y = polar_to_cartesian(r, theta, scaling_factor, x_center, y_center)
c.create_oval (x, vy, X, y, width=1, outline='navy')

This creates the curve of the form. r = a sin n0, where n is even. Itis a 2n-leaved rose.
If n is odd, it will form an n-leaved rose. There are many other good looking plots that you
can plot by changing the r equation in the previous method. A few other equations that you
can try are as follows:

= 0.0006 * theta # an archimedean spiral

= 1 + 2*math.cos(theta) # cardoid pattern

= 3 * math.cos (theta) # circle

2*math.sin(5*theta) # 5 leaved rose

= 3 * math.cos(3*theta) # 3 leaved rose

= 2 * math.sin(theta)**2 # a lemniscate

(4 * math.cos(2*theta))**1/2 # another lemniscate

[T T o S o T S O S T
Il

You can also play with the parameters of the individual equation to see the difference they
make to the plot.

This concludes the iteration.

Gravity simulation

Let's now simulate gravity. We will simulate the movement of four planets (Mercury,
Venus, Earth, and Mars), and our very own Moon, using Newton's law of universal
gravitation.

Our simulation assumes the Sun at the center, but it does not draw an oval for the Sun as
that would make our planets invisible at that scale. Our simulation programs shows the
four planets and moon revolving in circular orbits (8.07_gravity_simulation.py):

[278]

Fun with Canvas Chapter 8

While the system could be extended to include other planets from the
solar system - putting them all on the rectangular window of our screen
would not be possible as the differences in planet sizes and distances are
so disproportionate that making one planet, such as Jupiter, show up
would make sizes and distances of planets such as Earth smaller than a
pixel, making them invisible. So our visualization sticks to just the four
relatively nearby planets and our Moon. A very insightful interactive
visualization of the entire solar system, titled If the moon were only 1 pixel,
can be found here: http://joshworth.com/dev/pixelspace/pixelspace_

solarsystem.html.

Newton's law of gravitation established the fact that gravitation is universal and that
all objects attract each other with a force of gravity that is related to the mass of the two
bodies and the distance between them, using this formula:
mi.Mme
F=G——
d?

Where:

F = Force of attraction between two objects

m1 = Mass of object 1

m2 = Mass of object 2

d = Distance between the two objects
G=6.673x10" N m’/kg

[279]

http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html
http://joshworth.com/dev/pixelspace/pixelspace_solarsystem.html

Fun with Canvas Chapter 8

Once the preceding equation yields us the gravitational force, we can then find the angular
velocity of the object using this formula:

F

AngularVelocity(a) = —y | ——
m*d

The preceding formula holds true for motion in circular paths, which is somewhat an

approximation of the actual motion of planets in an elliptical orbit. With angular velocity in

hand, we can get the angular position (0):

0=w.t

With the distance from the Sun (center) and 6 in hand, we can convert it from a polar
coordinate to a Cartesian coordinate as we have done in previous examples. Next, it's just a
matter of drawing spheres on the Tkinter canvas at various locations.

With the formulas in hand, we define a Planet class (8.07_gravity_simulation.py):
class Planet:

sun_mass = 1.989 * math.pow (10, 30)
G = 6.67 * math.pow (10, -11)

def _ _init_ (self, name, mass, distance, radius, color, canvas):
self.name = name
self.mass = mass
self.distance = distance
self.radius = radius
self.canvas = canvas
self.color = color
self.angular_velocity = -math.sqgrt (self.gravitational_force() /
(self.mass * self.distance))
self.oval_id = self.draw_initial_planet ()
self.scaled_radius = self.radius_scaler (self.radius)
self.scaled_distance = self.distance_scaler (self.distance)

While most of the preceding code is a simple instantiation of variables, note that it takes in a
canvas as an input on which it will draw the planet.

We also need to scale down the planet distances and radii to fit into our window screen, so
we have defined two methods in the class to scale distance and radius
(8.07_gravity_simulation.py):

def distance_scaler(self, value):
#[(57.91, 4497.1] scaled to [0, self.canvas.winfo_width() /2]

[280]

Fun with Canvas Chapter 8

return (self.canvas.winfo_width() / 2 - 1) * (value - 1lel0) /
(2.27ell1 - 1el0) + 1

def radius_scaler(self, value):
#[2439, 6051.8] scaled to [0, self.canvas.winfo_width () /2]
return (16 * (value - 2439) / (6052 - 2439)) + 2

For scaling the distance, we take the maximum distance and scale it to fit in half of the
canvas width. For scaling radius, we take the maximum and minimum radii from the first
four planets and multiply them with the arbitrary number 16, so that the planets' scales look
acceptable on the screen. Most of the preceding code was obtained by experimenting with
what looks best on the screen, and the numbers were chosen purely arbitrarily.

The constructor then calls a method, draw_initial_planet, which creates an oval of a
scaled radius and at a scaled distance on the canvas. It also returns the unique ID of the
created oval so that the oval's position can be updated using the id as a handle.

We then define two helper methods using the formulas we discussed earlier:

def gravitational_force(self):

force = self.G * (self.mass * self.sun_mass) / math.pow(self.distance, 2)
return force

def angular_position(self, t):
theta = self.angular_velocity * t
return theta

Now we calculate the angular position (theta), convert it from polar to Cartesian
coordinates, and update the x, y position for the oval pertaining to the planet. We also leave
a 1-pixel trail for the planet's position using create_rectangle:

def update_location(self, t):

theta = self.angular_position(t)

%, y = self.coordinates (theta)

scaled_radius = self.scaled_radius

self.canvas.create_rectangle(x, vy, X, y, outline="grey")
self.canvas.coords (self.oval_id, x - scaled_radius, y - scaled_radius,

x + scaled_radius, y + scaled_radius)

The code to convert from polar to Cartesian coordinates is as follows:

def coordinates (self, theta):

screen_dim = self.canvas.winfo_width ()

y = self.scaled_distance * math.sin(theta) + screen_dim
x = self.scaled_distance * math.cos (theta) + screen_dim
return (x, y)

~ O
NN

[281]

Fun with Canvas Chapter 8

Next, we define a Moon class, which is similar in all aspects to the P1anet class, so it inherits
from the Planet class. However, the most important difference is that instead of taking
distance from the Sun and the mass of the Sun as a reference, it takes distance from Earth
and the mass of Earth as a reference. As scaling on actual values would have made the
Moon's size smaller than 1 pixel, we have also hardcoded the scaled distance and scaled
radius values for Moon to make it visible on the screen. Since Moon needs to go round
Earth, we also need to pass Earth as an extra argument to the __init__ method of the Moon
class (8.07_gravity_simulation.py).

Finally, we create the four planets and the Moon, passing in their actual values taken from
Wikipedia:

#name, mass, distance, radius, color, canvas

mercury = Planet ("Mercury", 3.302e23, 5.7el10, 2439.7, 'red2', canvas)
venus = Planet ("Venus", 4.8685e24, 1.08ell, 6051.8, 'CadetBluel', canvas)
earth = Planet ("Earth", 5.973e24, 1.49el11, 6378, 'RoyalBluel', canvas)
mars = Planet ("Mars", 6.4185e23, 2.27el1l, 3396, 'tomato2', canvas)
planets = [mercury, venus, earth, mars]

moon = Moon ("Moon", 7.347e22, 3.844e5, 173, 'white', canvas, earth)

Then we create a Tkinter canvas and define an update_bodies_positions method that
runs every 100 ms, as follows:

time = 0
time_step = 100000

def update_bodies_position():
global time, time_step
for planet in planets:
planet.update_location (time)
moon.update_location (time)
time = time + time_step
root.after (100, update_bodies_position)

That concludes the gravity simulation project. If you now go and
run 8.07_gravity_simulation.py, you can see the planets and our Moon responding to
gravitational force.

[282]

Fun with Canvas Chapter 8

Drawing fractals

A fractal is a never-ending pattern that repeats itself at all scales. Fractals are found
everywhere in nature. We find them in our blood vessels, branches of trees, and in the
structure of our galaxies, and the beauty of them lies in the fact that they are made out of
simple formulas.

We will demonstrate the simplicity of these seemingly complex-looking phenomena by
drawing a fractal named a Mandelbrot set. We assume a basic knowledge of set theory and
complex numbers in this section. Our code produces a Mandelbrot set that looks like the

following diagram:

The Mandelbrot set is defined as a set of complex numbers, c:

M = {c € C| lim Z, # oo}
n—oo

So that the complex number c obeys the following recurrence relation:
— 2
Zntl = 2p tC

Think of recurrence relations as functions where the last output is fed as input into the same
function in the next iteration.

[283]

Fun with Canvas Chapter 8

So the Mandelbrot set is a set that only includes those complex numbers for which the
previous equation does not, after any number of iterations, blow up the value of z, to
infinity.

For a clearer understanding, if we take the number 1 as c and apply it to the preceding
equation (note that 1 is also a complex number with no imaginary component—so real
numbers are a subset of complex numbers and hence they too lie on the complex plane):

Value of z after n iterations(z,) Valueofz,,,_z" ,+cforc=1
Zo 0’+1=1

z 1P+1=2

z, 2°+1=5

z, 5 +1=26

It is clear that the previous series will blow up to infinity as the number of iterations tends
to infinity. Since this complex number 1 blows up the equation, it is not a part of the
Mandelbrot set.

Contrast this with another number, c=-1 the values for which are plotted in the next table:

Value of z after n iterations(z,) Value of z,,,=2",+cforc=-1
Zo 0*+-1=-1

z, 1P+-1 =0

Z, 0*+-1=-1

Z, 1P+-1=0

Note that you may continue the preceding series up to infinity but the value will keep
alternating between -1 and 0, thus never exploding. This makes the complex number -1
eligible for inclusion in the Mandelbrot set.

Now, let us try to model the preceding equation.

One immediate problem to overcome is that we cannot model infinity in the previous
equation. Fortunately, it can be seen from the equation that if the absolute value of
z ever exceeds 2, the equation will eventually blow up.

[284]

Fun with Canvas Chapter 8

So a definitive way to check whether the equation blows up is to check whether the
magnitude of Z > 2. The magnitude of a complex number a + ib is defined as follows:

Va? + b

So in order to check whether a complex number a+ib blows up the preceding equation, we

need to check the following:
val+b > 2

a?+b >4

The next question to consider is how many times should we iterate Zn to see if its
magnitude exceeds 2 or not?

The answer to this depends on the kind of image resolution you seek to obtain in the final
image. In general, the higher the maximum number of iterations, the greater the image
resolution, subject to the limitation of individual pixel size, beyond which you can never go
in terms of details. In practice, an iteration of a few hundred times is sufficient. We use a
maximum iteration of 200 as that is enough to determine whether or not the equation blows
up for a small-scale image that we will draw. Accordingly, we define a variable in
8.08_Mandelbrot .py as follows:

max_number_of_ iterations = 200

Next, we define a method that takes in the real and imaginary components of a complex
number, and tells whether the equation blows up for the complex number input.

For example, the method should return 2 for an input of 1, as the path to blow up is sensed
right in the second iteration for the input value 1. However, if we give it an input of -1, the
equation never blows up so it runs for the maximum number of iterations and returns the
maximum_iteration_count, which we have defined as 200 and is akin to saying that the
said number belongs to the Mandelbrot set (8.08_Mandelbrot.py):

print (mandelbrot_set_check (1, 0)) # returns 2
print (mandelbrot_set_check (-1, 0)) # returns 200

[285]

Fun with Canvas Chapter 8

Accordingly, we define the mandelbrot_set_check method as follows
(8.08_Mandelbrot.py):

def mandelbrot_set_check (real, imaginary):

iteration_count = 0
z_real = 0.0
z_imaginary = 0.0

while iteration_count < max_number_of_iterations and \
z_real * z_real + z_imaginary * z_imaginary < 4.0:

temp = z_real * z_real - z_imaginary * z_imaginary + real
z_imaginary = 2.0 * z_real * z_imaginary + imaginary
z_real = temp

iteration_count += 1
return iteration_count

The code simply implements the recurrence relation for the Mandelbrot set.

While it's sufficient to know whether a complex number lies in the Mandelbrot set, we also
keep a track of the iteration count, also called the escape time, which is the number of
iterations it took a complex number to blow up, if it does blow up. If the iteration count
returns as maximum_number_of_iterations, it means the complex number does not blow
up the equation and the escape time is infinite, that is, the number is a part of the
Mandelbrot set. We keep track of the iteration count as we will use this data to paint areas
with different escape times in different colors.

Now that we have a way to tell whether or not a complex number belongs to the
Mandelbrot set, we need a set of complex numbers to run through this method. In order to
do that, we first define a maximum and a minimum complex number, between which we
will check for inclusion in the Mandelbrot set. Note that in the following example, we have
set the range of complex numbers between -1.5-1i and 0.7+1i.

You can try different ranges of these complex numbers, as long as the area falls inside a
circle of radius 2, and it will print different regions of the Mandelbrot set:

min_real, max_real, min_imaginary, max_imaginary = -1.5, 0.7, -1.0, 1.0
Let's next proceed by defining the image_width and image_height variables as follows:

image_width = 512
image_height = 512

To draw the Mandelbrot set in an image, we need to map each pixel coordinate of the image
to our complex numbers. Having defined the maximum and minimum range for the real
and imaginary parts of our complex numbers, it's simply a matter of interpolating the
complex numbers to map them to the pixel coordinates.

[286]

Fun with Canvas Chapter 8

The following two methods do that for us (8.08_Mandelbrot.py):

def map_pixels_to_real (x):
real_range = max_real - min_real
return x * (real_range / image_width) + min_real

def map_pixels_to_imaginary(y):
imaginary_range = max_imaginary - min_imaginary
return y * (imaginary_range / image_height) + min_imaginary

Now we are ready to draw the actual image. We create a Tkinter root window, draw a
canvas atop it, and then run the following loops:

for y in range (image_height) :
for x in range (image_width) :
real = map_pixels_to_real (x)
imaginary = map_pixels_to_imaginary (y)
num_iterations = mandelbrot_set_check (real, imaginary)
rgb = get_color (num_iterations)
canvas.create_rectangle([x, vy, x, yl, fill=rgb, width=0)

The preceding code takes each pixel in the image, maps its %, y coordinates to a real and
imaginary number respectively, and then send this number out to

the mandelbrot_set_check method, which in turn returns the number of iterations it took
for the number to blow up. If the number did not blow up, it returns the value of
maximum_number_of_ iterations. With this number in hand, we call another method
that gives an RGB color code, which is just based on some arbitrary numbers. It just adds
the cosmetic value, and you can play with different arbitrarily designed color mapping
schemes to generate Mandelbrot images of different colors. Finally, we use this color to fill
the (x, y)" pixel on the canvas.

This concludes the iteration. Our code can now generate the Mandelbrot set. However, note
that this code takes some time to generate the Mandelbrot set.

Voronoi diagrams

We will now draw a Voronoi diagram. Voronoi diagrams are a simple yet very powerful
tool used in modeling lots of physical systems. Wikipedia (https://en.wikipedia.org/
wiki/Voronoi_diagram#Applications) lists more than 20 disciplines of science and
technology where Voronoi diagrams are used to model and solve real-world problems.

[287]

https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications
https://en.wikipedia.org/wiki/Voronoi_diagram#Applications

Fun with Canvas Chapter 8

There are many little variations to the rules for drawing Voronoi diagrams, but the most
common type of Voronoi diagram is made by choosing a finite number of points on a 2D
plane. We call these points the seeds or the attractors. The tiny blue dots shown in the
following image are attractor points. We then map or attach all the points on the plane to
their nearest attractor point. All points closer to a particular attractor point is drawn in one
color, which partitions the plane into what are called Voronoi cells, as shown in the
following diagram:

Voronoi diagrams can be drawn in spaces of arbitrary dimensions, but we stick to studying
them in a two-dimensional plane.

There are many efficient but complicated algorithms for drawing Voronoi diagrams.
However, we will use the simplest algorithm to understand. However, being simple comes
at a cost. The algorithm requires more time to compute when compared to other faster but
more complex algorithms.

We will begin by creating a fixed number of random attractor points on a canvas of given
width and height. Accordingly, we define three variables in the program
(8.09_vornoi_diagram.py):

width = 800
height = 500
number_of_attractor_points = 125

Next, we create a canvas on a Tkinter root window with the preceding width and height
and pass the canvas to a method named generate_vornoi_diagram, which does all the
processing and drawing for us. Its code is as follows:

def create_voronoi_diagram(canvas, w, h, number_of_attractor_points):
attractor_points = []

[288]

Fun with Canvas Chapter 8

colors = []
for i in range (number_of_attractor_points):
attractor_points.append((random.randrange (w), random.randrange (h)))
colors.append ('#%02x%02x%02x"'" % (random.randrange (256),
random.randrange (256) ,
random.randrange (256)))
for y in range (h):
for x in range (w) :
minimum_distance = math.hypot(w , h)
index_of_nearest_attractor = -1
for i in range (number_of_attractor_points):
distance = math.hypot (attractor_points[i] [0] - x,
attractor_points[i][1] - V)
if distance < minimum_distance:
minimum_distance = distance
index_of_nearest_attractor = 1
canvas.create_rectangle ([x, v, X, VI,
fill=colors[index_of_neasrest_attractor], width=0)
for point in attractor_points:
X, y = point
dot = [x -1, v -1, x + 1, v + 1]
canvas.create_rectangle (dot, fill='blue', width=1)

Here's a brief description of the preceding code:

e We begin by creating two lists. The first for loop is used to populate the
attractor_points list with tuples (x, y) for each of the attractor points. We also
create another list, colors, which holds the random color hexadecimal string for
the cell of each attractor point.

¢ The second triple nested for loops goes through each pixel on the canvas and
finds the index of the nearest attractor. Once that has been established, it colors
the individual pixel using the color assigned to that attractor point.

e The last for loop then draws an overlapping blue colored square for each of the
attractor points. This loop is deliberately run last to ensure that the attractor point
draws over the colored cell region.

Since the preceding code has to go through three nested loops for checking each x,y location
on the plane against each attractor point, it has a computational complexity of O(n’) as per
Big-O notation. This means that the algorithm is not at all scalable to drawing images of
larger sizes and explains why this code takes some time to generate the Voronoi diagram,
even for this modest-sized image. More efficient algorithms are available and if you do not
want to reinvent the wheel, you can even use the Voronoi class from the scipy.spatial
module to implement this much faster. That is left as an exercise for you to explore.

[289]

Fun with Canvas Chapter 8

This concludes the section. If you now run the 8.09_vornoi_diagram.py program, it
should generate a Voronoi diagram.

Spring pendulum simulation

A lot of real-world phenomena can be called dynamical systems. The state of such

systems varies with time. Modeling such systems requires the use of differential equations.
We will take here an example of modeling a pendulum attached to a spring, as shown in the
following image. The pendulum swings to and fro. Furthermore, since the bob is attached to
a spring, the bob also oscillates up and down:

Mass m

We study the evolution of two variables over time:

e Length I of the spring
¢ Angle (0) between the spring and the center line, as shown in the preceding
diagram.

Since there are two variables changing over time, the state of our system at any time can
be represented by using four state variables:

e Spring length (1)
¢ Change in spring length (dl/dt), which is velocity

[290]

Fun with Canvas Chapter 8

e Angle (0)
e Change in angle (d6/dt), which is the angular velocity

They are modeled by the following four differential equations:

,_ 4z
e dt
d2L d k
L = (Ly+L)—6— —L 0
o dt? (Lo +)dt m + g cos(0)
dé
Q=—
R dt
2 1 L
d’0 = gsin(0) —|—2d—%

d2 =~ L+ L dt dt

The first equation measures linear velocity, which is the rate of change of L over time. The
second equation is a second derivative and gives us the acceleration. The third equation
measures change in theta over time and hence represents the angular velocity. The last
equation is the second derivative of theta over time and hence it represents the angular
acceleration.

Let us begin by defining the following constants:

UNSTRETCHED_SPRING_LENGTH = 30
SPRING_CONSTANT = 0.1

MASS = 0.3

GRAVITY = 9.8
NUMBER_OF_STEPS_IN_SIMULATION = 500

Accordingly, let us begin by defining the initial value for all these four state variables:

state_vector = [1, 1, 0.3, 1]
4 values represent 'l', 'dl/dt', '0', 'dO/dt' respectively

Then, we define the differentials_functions method which returns an array of the
four differential functions defined previously:

def differential_functions(state_vector, time):
funcl = state_vector[1]
func?2 = (UNSTRETCHED_SPRING_LENGHT + state_vector[0]) *
state_vector[3]**2 -

[291]

Fun with Canvas Chapter 8

(SPRING_CONSTANT / MASS * state_vector[0]) + GRAVITY *
np.cos (state_vector([2])
func3 = state_vector[3]
func4 = - (GRAVITY * np.sin(state_vector([2]) + 2.0 * state_vector[l] *
state_vector[3]) / (UNSTRETCHED_SPRING_LENGHT + state_vector[0])
return np.array ([funcl, func2, func3, func4])

Next, we will use scipy.integrate.odeint to solve the differential equations. This
method can be used to solve a system of ordinary differential equations of the following
form:

d

T R——.

Here's the signature of scipy.integrate.odeint:

scipy.integrate.odeint (func, y0, t, optional arguments)

Where:

e func: Callable(y, t0, ...), which computes the derivative of y at t0
e y0: Array of initial condition (can be a vector)
e t: Array of time points for which to solve for y

The initial value point should be the first element of this sequence.

This method takes as input the derivative function (func), an array of initial state values
(v0), and an array of times (t). It returns an array of state values corresponding to
those times.

Since we are differentiating against time, we need a variable to track time
(8.10_spring_pendulum.py):

time = np.linspace (0, 37, NUMBER_OF_STEPS_IN_SIMULATION)

The number 37 here is the step size for sampling time. Changing this value will change the
speed of simulation.

Now we finally solve the sets of differential equations using scipy.integrate.odeint as
follows (8.10_spring_pendulum.py):

ode_solution = odeint (differential_functions, state_vector, time)

[292]

Fun with Canvas Chapter 8

Since we have set the number of simulation steps to 500 and there are four state variables,
the odeint method returns a numpy array of the shape (500, 4), where each row represents
the value of the four state variables at a given point of time.

Now recall that our state vector is a list of four values, ['1', 'dl/dt', '0',

'd0/dt ' 1. So the 0™ column returns the value '1' and the 2™ column represents the value
'0'. This is the polar format representation. Our canvas understands the Cartesian
coordinate system. So we obtain the Cartesian coordinates (x, i) for the values of each value
of (I, 0) as follows (8.10_spring_pendulum.py):

x_coordinates = (UNSTRETCHED_SPRING_LENGHT + ode_solution[:, 0])
* np.sin(ode_solution([:, 2])

y_coordinates = (UNSTRETCHED_SPRING_LENGHT + ode_solution[:, 0])
* np.cos (ode_solution([:, 2])

With that data in hand, it's now just a matter of plotting it on the canvas. So we create a
Canvas widget in amainloop and call an update_graph method that runs every 15
milliseconds, deleting everything on the canvas and redrawing the line and an oval
(pendulum bob). We also add an increment variable, plot_step, which is reset to zero
every time the simulation ends. This keeps the pendulum swinging

forever (8.10_spring_pendulum.py):

plot_step = 0

def update_graph() :
global plot_step

if plot_step == NUMBER_OF_STEPS_IN_SIMULATION: # simulation ended
plot_step = 0 # repeat the simulation
%, y = int (x_coordinates[plot_step]) + w / 2,

int (y_coordinates|[plot_step] + h / 2)
canvas.delete('all')
canvas.create_line(w / 2, 0, x, y, dash=(2, 1), width=1, fill="gold4")
canvas.create_oval (x - 10, y - 10, x + 10, y + 10, outline="gold4",
fill="lavender")
plot_step = plot_step + 1
root.after (15, update_graph)

[293]

Fun with Canvas Chapter 8

This will create a spring pendulum, as shown in the following screenshot:

tk L]

That concludes the iteration. You can explore this simulation by changing the values of the
constants (mass, spring constant, and gravity). Also, change the initial state vector elements,
such as the angle and velocity, and the program should respond as it would in a real-world
situation.

We saw how to obtain ODE, which is a derivative with respect to only one variable. An
extension of this concept is partial differential equations (PDEs), which are derivatives
with respect to several variables. More complex phenomena, such as electromagnetism,
fluid mechanics, heat transfer, electromagnetic theory and various biological models, are all
modeled by partial differential equations.

The FEniCS computing platform (https://fenicsproject.org/)isa
popular open-source software tool for solving PDEs with a Python
binding.

[294]

https://fenicsproject.org/
https://fenicsproject.org/
https://fenicsproject.org/
https://fenicsproject.org/
https://fenicsproject.org/
https://fenicsproject.org/
https://fenicsproject.org/
https://fenicsproject.org/

Fun with Canvas

Chaos game - building triangles out of

randomness

The Chaos game refers to the emergence of fractal patterns with random numbers when the
selection of random numbers are subject to some constraints. Let's look at the rules of one of
the simplest chaos games:

1. We start by creating three points on a plane to form a triang]le.
2. To begin the game, we draw a random point inside the triangle.

3. We then roll a dice. Given the outcome, we move halfway between the last point
and any one of the vertices of the triangle. For example, if the outcome is 1 or 2,
we move halfway between the last point and vertex A. If the outcome is 3 or 4,
we move halfway from the current point towards vertex B, or if the outcome is 5
or 6, we draw the next point halfway between the current point and vertex C, as

shown in the following image. This is repeated over and over again:

B

(3.4)

A
L

(1.2}

D(initial point)

half way between la
any one vertex chosen ba
the outcome of roll of a dice,

[295]

Fun with Canvas Chapter 8

Here is the surprise part of it. While all the points except for the three vertexes were selected
at random, the end result is not a haphazard set of points but rather a fractal—a set of
repeating patterns of triangles called the Sierpinski triangle, shown in the following
screenshot. This, according to some mathematicians, is a glimpse into the orderliness of the
universe hidden inside what appears to be otherwise chaotic:

Note that repeating this same rule inside a set of four points does not
create a fractal. However, placing some specific kinds of restrictions on the
choice of vertices produces a variety of interesting fractal shapes. You can
read more about different varieties of fractals generated out of chaos
games at https://en.wikipedia.org/wiki/Chaos_game.

Let us now code this program. We first define the three vertices of the triangle, as shown in
the preceding screenshot:

vl = (float (WIDTH/2), 0.0)
v2 = (0.00, float (HEIGHT))
v3 = (float (WIDTH), float (HEIGHT))

Here, WIDTH and HEIGHT are the window dimensions.

Our next task is to choose a random point inside our triangle as the starting point. This can
be done using what are called barycentric coordinates.

Let V1, V2, V3 be the three vertices of a triangle. A point P inside the triangle can be
expressed as P =aV, + bV, + cV,, where a+b+c=1 and a,b,c are each > 0. If we know and b, we
can calculate c as 1-a-b.

So we generate two random numbers, a and b, each in the range [0,1] so that their sum < 1.
If the sum of two random points exceeds 1, we replace a with 1-a and b with 1-b, so that
their sum falls back below 1. Then, aV, + bV, + ¢V, is uniformly distributed inside the
triangle.

[296]

https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game
https://en.wikipedia.org/wiki/Chaos_game

Fun with Canvas Chapter 8

Now that we have the barycentric coordinates a, b, and ¢, we can compute point P inside
the triangle as aV1+bV2 + cV3. Here is the idea expressed in code
(8.11_chaos_game.py):

def random_point_inside_triangle(vl, v2, v3):
a = random.random ()

b = random.random()
if a + b > 1:
a = 1l-a
b =1-b
c=1-a-b
x = (a*v1[0])+ (b*v2[0])+ (c*v3[0]);
y = (a*v1[1])+(b*v2[1])+(c*v3[1]);
)

return (x,y

We next define a method to calculate the halfway distance between two points:

def midway_point (pl, p2):
x = pl[0] + (p2[0] - pl[0]) //2
y = plll] + (p2[1] - pl[1]) //2
return (x,V)

This is a simple linear interpolation between two points based on the Pythagorean
theorem. Note that in Python, the / operator does floating point division while // does
integer division (dropping the remainder).

Next, we put the laws of the game in a method called get_next_point:

def get_next_point () :
global last_point

roll = random.choice(range(6))+1
mid_point = None
if roll == 1 or roll ==

mid_point = midway_point (last_point, wv1)
elif roll == 3 or roll == 4:

mid_point = midway_point (last_point, v2)
elif roll == 5 or roll == 6:

(

mid_point = midway_point (last_point, v3)
last_point = mid_point
return mid_point

[297]

Fun with Canvas Chapter 8

Finally, we create a Tkinter canvas and define a method, update, to draw the individual
pixels every 1 millisecond as follows:

def update():

X,y = get_next_point ()

canvas.create_rectangle(x, vy, X, y, outline="#FFFF33")
root.after (1, update)

Calling this update method creates the fractal pattern in our chaos game.

Phyllotaxy

Phyllotaxy is derived from the Greek words phyllon (meaning leaf) and tixis (meaning
arrangement). Accordingly, phyllotaxy is the study of the spiral arrangements found in
leaves and flowers.

In this section, we will code the following floral pattern:

The mathematical details for this program have been taken from Chapter 4 of the
book Algorithmic Botany of Plants—a PDF of which can be obtained from here: http://
algorithmicbotany.org/papers/abop/abop-ch4.pdf.

Here are the two formulas from the chapter that we will be using:

r=cxyn 4 ¢=nx137.5°

[298]

http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf
http://algorithmicbotany.org/papers/abop/abop-ch4.pdf

Fun with Canvas Chapter 8

(7'7 ¢) represents the polar coordinate of each point on the canvas. As you shall see, our
phyllotaxy will be made up of dots arranged in a spiral pattern. So the variable # in the
preceding example represents the count or the index of the n" dot starting at zero at the
center of the spiral. The variable c is used as a scale factor that in turn decides how near or
far the dots will appear in the final image. The angle 137. 5 is related to the golden ratio
and the Fibonacci angle and looks the most natural. You can read more about it in the
linked PDF.

To begin with, we define all the values that we discussed so far:

width, height = 500, 500
number_of_dots = 2000

angle = 137.5

scaling_factor = 4

dot_size = 4

n = np.arange (number_of_dots)
r = np.zeros (number_of_dots)
phi = np.zeros (number_of_dots)
x= np.zeros (number_of_dots)
y= np.zeros (number_of_dots)
dots = []

colors = []

Next, we create a Tkinter canvas and add colors to the colors list. We also create the dots
using create_oval and save the reference to all ovals in the dot s list:

for i in n:
r = (scaling_factor * np.sqrt(i) * 6) %256
color = "#%02x%02x%02x' % (int(r) , 0, 0)
colors.append (color)
dots.append(canvas.create_oval (x[i]-dot_size, y[i]-dot_size,
x[i]+dot_size, y[i]+dot_size, fill=color))

The color defined in the preceding code is based on the value of r and is purely arbitrary.
We could have used any other variable or rule for defining the color.

Lastly, we define the update function, which calculates the value of the r and @ values
every 15 milliseconds and updates the coordinates of all the ovals on the canvas:

def update():

global angle

angle +=0.000001

phi = angle * n

r = scaling_factor * np.sqrt (n)
X = r * np.cos(phi) + width/2

[299]

Fun with Canvas Chapter 8

y = r * np.sin(phi) + height/2

for i in n:

canvas.coords (dots[i],x[i]-dot_size, y[i]-dot_size,x[i]+dot_size,
y[i]+dot_size)

root.after (15, update)

You should now see the phyllotaxy pattern. Try changing all the parameters to see how the
image changes.

3D graphics with Tkinter

Tkinter's Canvas widget provides for drawing with exact coordinate

specifications. Therefore, it can be used to create all sorts of 3D graphics. Furthermore, we
have already seen the animation abilities of Tkinter. We can apply these abilities to also
animate in 3D.

Let's create a simple application where we create a cube in the center. We add

event listeners to rotate the cube on mouse events. We also make a small animation in
which the cube keeps rotating by itself when no mouse intervention occurs.

In its final form, the application would look as follows (8.13_3D_graphics.py):

Transposing or unzipping can be done in Python by using the special * operator, any point
in a 3D space can be represented by x, y, and z coordinates. This is usually represented by a
vector of the form:

[300]

Fun with Canvas Chapter 8

Point = [z,y, 2]
This is an example of a row vector as all three points are written in a single row.
This is convenient for humans to read. However, as per convention and for

some mathematical advantage that we will see later, positions are taken as a column vector.
So it is written in a column as follows:

x
Point = | y

z

Since a shape is a collection of points, it is, therefore, a collection of column vectors.
A collection of column vectors is a matrix, where each individual column of the
matrix represents a single point in 3D space:

1T X2 X3 .. &Iy

Shape/Object = | y1 2 y3 .. Us

21 22 I3 .. Zp
Let's take the example of a cube. A cube has eight defining vertices. A representative cube
could have the following eight points with its center located at [0,0,0]:

Vertex 1 [-100,-100,-1007],
Vertex 2 [-100, 100,-100],
Vertex 3: [-100,-100,100],
Vertex 4: [-100,100,100],
Vertex 5: [100,-100,-100],
Vertex 6: [100,100,-100],
Vertex 7: [100,-100,100],
Vertex 8: [100,100,100]

However, here the vertices are represented as row vectors. To represent the vectors as
column vectors, we need to transpose the preceding matrix. Since transposition will be a
common operation, let's start by building a class called MatrixHelpers and defining a
method named transpose_matrix(8.13_3D_graphics.py):

class MatrixHelpers() :

def transpose_matrix(self,matrix):
return list (zip (*matrix))

[301]

Fun with Canvas Chapter 8

Transposing or unzipping can be done in Python by using the special * operator,
which makes zip its own inverse.

Another issue with the preceding coordinates is that it centers at (0,0,0). This means that if
we try to plot the preceding points on a canvas, it will show up only partly, centered at the
top-left corner of the canvas, something like this:

We need to move all the points to the center of the screen. We can achieve this by adding x
and y offset values to the original matrix.

We accordingly define a new method named translate_matrix as follows:

def translate_vector(self, x,y,dx,dy):
return x+dx, y+dy

Now let's draw the actual cube. We define a new class named Cube that inherits from the
MatrixHelper class because we want to use the t ranspose_matrix and
translate_vector methods defined in the MatrixHelper class (see

code 8.13_3D_graphics.py):

class Cube (MatrixHelpers):
def _ _init_ (self, root):
self.root = root
self.init_data/()
self.create_canvas|()
self.draw_cube ()

The __init__ method simply calls four new methods. The init_data method sets the
coordinate values for all the eight vertices of the cube (8.13_3D_graphics.py):

def init_data(self):
self.cube = self.transpose_matrix ([
[-100,-100,-1007,

[302]

Fun with Canvas Chapter 8

[-100, 100,-1007],
[-100,-100,100],
[-100,100,1007,
[100,-100,-100],
[100,100,-1007,
[100,-100,1007,
[100,100,100]

1)

The create_canvas method creates a 400 x 400 sized canvas on top of the root window
and assigns a background and fill color to the canvas:

def create_canvas (self):
self.canvas = Canvas(self.root, width=400, height=400,
background=self.bg_color)
self.canvas.pack (£fi11=BOTH, expand=YES)

Lastly, we define the draw_cube method, which uses canvas.create_line to draw lines
between selected points. We do not want lines between all the points, but rather lines
between some selected vertices to create a cube. We accordingly define the method as
follows (8.13_3D_graphics.py):

def draw_cube (self):

cube_points_to_draw_line = [[0, 1, 2, 4],
(3, 1, 2, 71,
(s, 1, 4, 71,
(6, 2, 4, 711

w = self.canvas.winfo_width () /2

h = self.canvas.winfo_height () /2

self.canvas.delete (ALL)
for i in cube_points_to_draw_line:
for j in 1i:
self.canvas.create_line(self.translate_vector (self.cube[0] [i[0]],
self.cube[1][i[0]], w, h),
self.translate_vector(self.cube[0][]j], self.cubell][j], w, h), fill
= self.fg_color)

This code draws a cube on the canvas. However, since the cube draws upfront, all we see is
a square from the front. In order to see the cube, we need to rotate the cube to a different
angle. That brings us to the topic of 3D transformations.

A wide variety of 3D transformations, such as scaling, rotation, shearing, reflection,
and orthogonal projections, can be accomplished by multiplying the shape matrix
with another matrix known as a transformation matrix.

[303]

Fun with Canvas Chapter 8

For example, the transformation matrix for scaling a shape is:

S: 0 0 0
o S, 0 0
Scale Trans formation Matrix S = Y
0o 0 S5, 0
0 0 0 1]

Where S,, S, and S, are scaling factors in x, y, and z directions. Multiply any shape matrix
with this matrix and you get the matrices for the scaled shape.

Let's, therefore, add a new method named matrix_multiply to our MatrixHelper class
(8.13_3D_graphics.py):

def matrix_multiply(self, matrix_a, matrix_Db):
zip_b = list(zip(*matrix_b))
return [[sum(ele_a*ele_b for ele_a, ele_b in zip(row_a, col_Db))
for col_b in zip_b] for row_a in matrix_a]

Next, let's add the ability to rotate the cube. We will be using the rotation transformation
matrix. Furthermore, since rotation can happen along any of the x, y, or z axes, there are
actually three different transformation matrices. The three rotation matrices are as follows:

1 0 0 cos(a) 0 sin(a) cos(a) —sin(a) 0
R, = |0 cos(a) —sin(a)| R, = 0 1 0 R, = | sin(a) cos(a) 0
0 sin(a) cos(a) —sin(a) 0 cos(a) 0 0 1

Multiply the shape coordinates by the first matrix for a given value of 2 and you get the
shape rotated by an angle a about the x axis in a counterclockwise direction. Similarly, the
other two matrices rotate along the y axis and z axis respectively.

To rotate in a clockwise direction, we simply need to flip the sign of all sin values in the
preceding matrix.

Note, however, that the order of rotation matters. So if you first rotate along the x axis and
then rotate along the y axis, it is not the same as first rotating along y and then along the

x axis.

More details on rotation matrices can be found at https://en.wikipedia.

org/wiki/Rotation_matrix.

[304]

https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix
https://en.wikipedia.org/wiki/Rotation_matrix

Fun with Canvas Chapter 8

So now that we know the three rotation matrices, let's define the following three methods in
our MatrixHelper class (8.13_3D_graphics.py):

def rotate_along_x(self, x, shape):

return self.matrix_multiply([[1, 0, O],
[0, cos(x), -sin(x)],
[0, sin(x), cos(x)]], shape)
def rotate_along_y(self, y, shape):
return self.matrix_multiply([[cos(y), O, sin(y)],
(0, 1, 01,
[-sin(y), 0, cos(y)]], shape)
def rotate_along_z(self, z, shape):
return self.matrix_multiply([[cos(z sin(z), 01,

),
[-sin(z), cos(z), 0],
[0, 0, 111, shape)

Next, we define a method named continually_rotate and call this method from the
__init__ method of our Cube class:

def continually_rotate(self):

self.cube = self.rotate_along_x(0.01, self.cube)
self.cube = self.rotate_along_y(0.01, self.cube)
self.cube = self.rotate_along_z(0.01, self.cube)

self.draw_cube ()

self.root.after (15, self.continually_rotate)

The method uses root . after to call itself back every 15 milliseconds. At each loop, the
coordinates of the cube are rotated by 0.01 degrees along all three axes. This is followed by
a call to draw the cube with a fresh set of coordinates. Now, if you run this code, the cube
rotates continuously.

Next, let's bind the rotation of the cube to a mouse button click and mouse motion. This will
let the user rotate the cube by clicking and dragging the mouse over the cube.

Accordingly, we define the following method and call it from the __init__ method of the
Cube class:
def bind_mouse_buttons (self) :
self.canvas.bind ("<Button-1>", self.on_mouse_clicked)

self.canvas.bind ("<Bl1-Motion>", self.on_mouse_motion)

The methods linked from the preceding event binding are defined as follows:

def on_mouse_clicked(self, event):

[305]

Fun with Canvas Chapter 8

self.last_x = event.x
self.last_y = event.y

def on_mouse_motion(self, event):
dx = self.last_y - event.y
self.cube = self.rotate_along_x(self.epsilon(-dx), self.cube)
dy = self.last_x - event.x
self.cube = self.rotate_along_y(self.epsilon(dy), self.cube)
self.draw_cube ()
self.on_mouse_clicked (event)

Note that the preceding method maps mouse displacements along the y axis to rotations
along the x axis and vice versa.

Also, note that the last line of the code calls on_mouse_clicked () to update the value of
last_xand last_y. If you skip that line, the rotation becomes exceedingly fast as you
increase the displacement from the last clicked position.

The method also refers to another method, named epsilon, which translates the distance
into an equivalent angle for rotation. The epsilon method is defined as follows:

self.epsilon = lambda d: d * 0.01

The epsilon here is obtained by multiplying the displacement, d, with an arbitrary value of
0.01. You can increase or decrease the sensitivity of rotation to mouse displacement by
changing this value.

Now the cube becomes responsive to mouse click and drag over the canvas. This concludes
the last project of this chapter.

Here, we have just scratched the surface of 3D graphics. A much more detailed discussion
on 3D programming with Tkinter can be found at https://sites.google.com/site/
3dprogramminginpython/.

There have also been attempts to further abstract and build 3D programming frameworks
for Tkinter. You can find an example of a 3D framework for Tkinter at https://github.
com/calroc/Tkinter3D.

That concludes the chapter, and also our experiments with the Canvas widget. In the next
chapter, we will look at some of the most commonly recurring themes of writing GUI
applications, such as using a queue data structure, database programming, network
programming, interprocess communication, use of the asyncio module, and a few other
important concepts in programming.

[306]

https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://sites.google.com/site/3dprogramminginpython/
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D
https://github.com/calroc/Tkinter3D

Fun with Canvas Chapter 8

Summary

Let's summarize the concepts we discussed in this chapter.

We built a screen saver and in the process saw how to implement animations on the Tkinter
canvas. Next, we saw how to create Cartesian and polar plots on the canvas. We also saw
how to embed matplotlib plots on a Tkinter window.

We then implemented a basic gravity simulation that showed how we could take a physical
model and implement it using a Tkinter canvas. We got a glimpse into the implementation
of Voronoi diagrams, which are being used to model and solve so many practical real-world
problems.

We also build some nice visualizations such as the Mandelbrot set and Phyllotaxies.

Finally, we learned how to use a Tkinter canvas to draw and animate 3D graphics using
transformation matrices.

QA section

Here are a few questions to reflect upon:

e How do you convert between polar and Cartesian coordinates? When should we
prefer one coordinate system over the other?

e How do you animate on a Tkinter canvas? What determines the speed of the
animation?

e How do we model real-world phenomena on a Tkinter canvas using differential
equations?

e What are some real-world applications of fractals?

e Fractals are still under active research. Can you find out more about some
cutting-edge technology that relies on the use of fractals?

e What are some of the real-world applications of Voronoi diagrams?

e How can we extend our 3D cube program to show meshes of other objects—say
the model of a car, or a human body, or a real-world object?

[307]

Fun with Canvas Chapter 8

Further reading

A close cousin of the Mandelbrot set is the Julia set. Read about the Julia set and then
modify 8.07_Mandelbrot .py to produce a Julia set. Fractals are a very interesting topic to
study and a lot of the maths behind them is still unexplored. Besides the fact that they are
beautiful to look at, they are also used in a lot of practical applications. See https://en.
wikipedia.org/wiki/Fractal#Applications_in_technology.

If fractals pique your interest, you can also take a look at other variants of the Mandelbrot
set such as the Magnet 1 fractal and Buddhabrot.

If you are interested in learning more about chaotic behavior, try to plot Hénon’s Function
on a Tkinter canvas.

We modeled a spring pendulum and it worked in a deterministic manner. However, adding
two pendulums together to form a double pendulum creates a dynamic system that is
chaotic. Even though such systems follow the ordinary differential equation, the net
outcome may vary immensely, even for a very small change in the initial condition. It may
be worth trying to model a double pendulum by modifying our spring pendulum.

We used the built-in odeint method from scipy. However, we could have written our own
variation using either the Euler's method or Runge-Kutta method. You can read more about
these numerical methods for approximating ordinary differential equations over here:
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_
equations.

If neat or intriguing visualizations looks like a fun thing to do, here are a few more
interesting canvas projects that you can undertake: Barnsley fern, the cellular automata, the
Lorenz attractor, and simulating tearable cloth with verlet integration.

Ray tracing is another powerful but very simple to implement 3D rendering technique that
can be easily implemented in about 100 lines of code.

[308]

https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Fractal#Applications_in_technology
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations
https://en.wikipedia.org/wiki/Numerical_methods_for_ordinary_differential_equations

Multiple Fun Projects

By now, we have explored most of the important features of Tkinter. Let's use this chapter
to explore aspects of programming that, though not core to Tkinter, are often encountered
while writing GUI applications.

In this chapter, we will develop several small applications from different domains. The
applications we will build here include:

A snake game application

A weather reporter application

A port scanner application

A chat application

A phone book application

An ultrasound distance scanner application

Some of the key objectives of the chapter are:

To learn to use Queue module to avoid race conditions and other synchronization
issues involved in writing multithreaded programs

To understand the basics of data mining over the network

To understand socket programming and to learn the basics of server-client
architecture

To learn database programming
To learn to use asyncio with Tkinter

To learn how to interface and interact with external hardware components using
serial communication

Multiple Fun Projects Chapter 9

Technical requirements

Most of the projects in this chapter rely on the standard libraries and do not require
anything extra. The exception is the ultrasonic range finder project, which requires an
Arduino board and an ultrasonic range finder sensor. The hardware is relatively cheap
(under 10 dollars). You may also decide not to buy the hardware and still read the project to
understand how serial communication takes place between two pieces of equipment.

In addition, you will also need to download and install the Arduino integrated
development environment (IDE), the details of which will be discussed in the project
itself.

Building a Snake game

Let's now build a simple Snake game. As usual, we will be making use of the

Canvas widget to provide the platform for our Snake program. We will use
canvas.create_line to draw our snake and canvas.create_rectangle to draw the
snake food.

The primary objective of this project is to learn how to use Queue module as
a synchronization technique in a multithreaded application.

Writing a multithreaded application poses the challenge of synchronization
between different threads. When multiple threads try to access shared data
simultaneously, the data is likely to get corrupted or modified in ways that were not
intended in the program. This is called a race condition.

Understanding a race condition

The 9.01_race_condition.py code demonstrates a race condition. The program is as
follows:

import threading

class RaceConditionDemo:
def _ _init_ (self):
self.shared_var = 0
self.total_count = 100000
self.demo_of_race_condition ()

def increment (self):

[310]

Multiple Fun Projects Chapter 9

for i in range(self.total_count):
self.shared_var += 1

def decrement (self):
for i in range(self.total_count):
self.shared_var —-= 1

def demo_of_race_condition(self):

tl = threading.Thread (target=self.increment)

t2 = threading.Thread (target=self.decrement)

tl.start ()

t2.start ()

tl.join ()

t2.join ()

print ("value of shared_var after all increments & decrements :",
self.shared_var)

if __name_ == "__main__ ":
for i in range(100):
RaceConditionDemo ()

The preceding code consists of two methods named increment and decrement that both
operate on a single shared variable named shared_var. These two methods are called from
separate threads.

One would expect that an equal number of increments and decrements on a shared variable
would produce no change in its value at the end. However, when you run this program, say
100 times as before, it produces a different value for the shared variable in each consecutive
run. This is a classic example for how a race condition can make the output of a program
nondeterministic.

Race conditions occur because we cannot predict the thread execution order at all. The
operating system does it very randomly and so the execution order of threads varies each
time the program is run.

Using synchronization primitives
To handle this complexity, the threading module provides some

synchronization primitives, such as locks, joins, semaphores, events, and condition
variables.

[311]

Multiple Fun Projects Chapter 9

9.02_lock_demo.py slightly modifies the preceding code by introducing a 1ock using this
line:

self.lock = threading.Lock ()

Next, every time shared_variable is to be modified, it is done after acquiring a 1ock. The
lock is released when the variable has been modified, as shown in the following code:

self.lock.acquire ()
self.shared_var += 1
self.lock.release()

This enables us to avoid a race condition. Since this code operates with a 1ock, it produces
no change in the shared variable after an equal number of increments and decrements.

It seemed easy to use the 1ock mechanism to avoid a race condition. However, as the
complexity of a program grows, there are many places where a variable may be modified.
Tracking large code bases for places where a variable may be changed is often a difficult
task.

Using queues

In most cases, it is safer and simpler to use queues. Simply put, a queue is a compound
memory structure that is thread-safe. Queues effectively channel access to a resource to
multiple threads in a sequential order, and are a recommended design pattern that uses
threads for most of the scenarios that require concurrency.

The Queue module provides a way to implement different kinds of queuing, such as FIFO
(default implementation), LIFO queues, and priority queues, and this module comes with a
built-in implementation of all the locking semantics required for running multithreaded
programs.

Here's a quick roundup of the basic usage of the Queue module:

my_queue = Queue () f#create empty queue

my_dqueue.put (data) # put items into queue

task = my_queue.get () #get the next item in the queue
my_queue.task_done () # called when a queued task has completed
my_queue.join() # awaits for all tasks in queue to get completed

[312]

Multiple Fun Projects Chapter 9

Let's see a simple demonstration of using a queue to implement a multithreaded application
(see 9.03_threading_with_gueue.py):

import queue
import threading

class Consumer (threading.Thread) :

def __init__ (self, queue):
threading.Thread.__init__ (self)
self.queue = gqueue

def run(self):
while True:
task = self.queue.get ()
self.do_task (task)

def do_task(self, task):
print ('doing task{}'.format (task))
self.queue.task_done ()

def producer (tasks):
my_gueque = gueue.Queue ()
populate queue with tasks
for task in tasks:
my_gueque.put (task)
create 6 threads and pass the queue as its argument
for i in range(6):
my_thread = Consumer (my_gueque)
my_thread.daemon = True
my_thread.start ()
wait for the queue to finish
my_queque.join ()
print ('all tasks completed')
if _ name_ == "_ main__ ":
tasks = 'A B C D E F'.split()
producer (tasks)

The description of the code is as follows:

o We first create a Consumer class, which inherits from the threading module of
Python. The __init__ method takes in a queue as its argument.

[313]

Multiple Fun Projects Chapter 9

e We then override the run method of the threading module to get each item
from the queue using queue.get (), which is then passed on to
the task_handler method, which actually executes the task specified in
the current queue item. In our example, it does nothing useful except print
the name of the task.

o After the work is done on a particular thread by our task_handler method, it
sends a signal to the queue telling it that the task has been completed using the
queue.task_done () method.

¢ Outside our Consumer class, we create an empty queue in our
producer () module function. This queue is populated with a list of tasks
using queue.put (task).

e We then create six different threads and pass this populated queue as its
argument. Now that the tasks are handled by the queue, all threads automatically
ensure that the tasks are completed in the sequence in which they are
encountered by the threads, without causing any deadlocks or two different
threads trying to work on the same queued task.

¢ At the time of creating each thread, we also create a pool of daemon
threads using my_thread.daemon = True. Doing this passes control to our
main program once all threads have completed execution. If you comment out
the line, the program would still run, but would fail to exit after all threads
have completed executing the tasks in the queue. Without the daemon
threads, you'd have to keep track of all the threads and tell them to exit before
your program could completely quit.

e Finally, the queue. join () method ensures that the program flow waits
there until all queued tasks are actually done and the queue is empty.

Building the Snake game

With that background information about using a queue to handle
multithreaded applications, let's build our Snake game.

[314]

Multiple Fun Projects Chapter 9

Upon completion, the game will look as follows:

Score: 15

The View class

Let's start coding our game by first creating a basic View class. This class will be responsible
for creating the GUI, checking for game over logic, and most importantly acting as the
consumer, taking items from the queue and processing them to update the view (see
9.04_game_of_snake.py):

class View (Tk) :

def __init__ (self, queue):
Tk.__init__ (self)
self.queue = queue

self.create_gui ()

def create_gui (self):

self.canvas = Canvas(self, width=495, height=305, bg='#FF75A0")

self.canvas.pack ()

self.snake = self.canvas.create_line((0, 0), (0,0),fill="#FFCC4C"',
width=10)

self.food = self.canvas.create_rectangle(0, 0, 0, O,
fill="#FFCC4C', outline='"#FFCC4C")

self.points_earned = self.canvas.create_text (455, 15, fill='white',
text='Score:0")

The preceding code should be mostly familiar to you by now as we have written similar
code in the past. Note, however, that rather than passing the root instance as an argument
toits __init__ method, our View class now inherits from the Tk class. The line
Tk.__init__ (self) ensures that the root window is available to all methods of this class.
This way we can avoid writing a root attribute on every line by referencing root simply as
self.

[315]

Multiple Fun Projects Chapter 9

This class will also have code to process items put in the queue. We will code the rest of this
class after we have coded the classes that put items in the queue.

The Food class

Next, we will create the Food class (see 9.04_game_of_snake.py):

class Food:
def __init__ (self, queue):
self.queue = gqueue

self.generate_food()

def generate_food(self):

x = random.randrange (5, 480, 10)

y = random.randrange (5, 295, 10)

self.position = (x, vy)

rectangle_position = (x -— 5, v - 5, x + 5, y + 5)

self.queue.put ({'food': rectangle_position})
The description of the code is as follows:

e Because we want to process all data centrally from within a queue, we pass the
queue as an argument to the __init__ method of the Food class.

e The ___init__ method calls another method called generate_food, which
is responsible for generating the snake food at random positions on the canvas.

e The generate_food method generates a random (x, y) position on the canvas.
However, because the place where the coordinates coincide is just a small point
on the canvas, it would be barely visible. We, therefore, generate an expanded
coordinate (rectangle_position) ranging from five values less than the (x, y)
coordinate up to five values higher than the same coordinate. Using this range,
we can create a small rectangle on the canvas that would be easily visible and
would represent our food.

* However, we do not create the rectangle here. Instead, we pass the coordinates
for the food (rectangle) into our queue using queue. put.

[316]

Multiple Fun Projects

Chapter 9

The Snake class

Let's now create the Snake class. We have already passed a task to generate our food to the
central queue. However, no additional thread was involved in the task. We could also
generate our Snake class without using threads. However, because we are talking about
ways to implement multithreaded applications, let's implement our Snake class to work

from a separate thread (see 9.04_game_of_snake.py):

class Snake (threading.Thread) :

is_game_over = False

def __init__ (self, queue):
threading.Thread.__init__ (self)
self.queue = queue
self.daemon = True
self.points_earned = 0
self.snake_points = [(495, 55), (485, 55), (475, 55),

(455, 55)]

self.food = Food (queue)
self.direction = 'Left'
self.start ()

def run(self):
while not self.is_game_over:
self.queue.put ({'move': self.snake_points})
time.sleep(0.1)
self.move ()

def on_keypress(self, e):
self.direction = e.keysym

def move (self):
new_snake_point = self.calculate_new_coordinates|()
if self.food.position == new_snake_point:
self.points_earned += 1
self.queue.put ({'points_earned': self.points_earned})
self.food.generate_food()
else:
self.snake_points.pop(0)
self.check_game_over (new_snake_point)
self.snake_points.append (new_snake_point)

def calculate_new_coordinates (self) :

last_x, last_y = self.snake_points[-1]
if self.direction == 'Up':

new_snake_point = (last_x, last_y - 10)
elif self.direction == 'Down':

(465,

55),

[317]

Multiple Fun Projects Chapter 9

new_snake_point = (last_x, last_y + 10)
elif self.direction == 'Left':

new_snake_point = (last_x - 10, last_y)
elif self.direction == 'Right':

new_snake_point = (last_x + 10, last_y)

return new_snake_point

def check_game_over (self, snake_point):
X, y = snake_point
if not -5 < x < 505 or not -5 < y < 315 or snake_point in
self.snake_points:
self.is_game_over = True
self.queue.put ({'game_over': True})

The description of the code is as follows:

e We create a class named Snake to run from a separate thread. This class takes the
queue as its input arguments.

¢ We initialize the points earned by the player from zero and set the initial location
of the snake using the attribute self.snake_points. Note that initially, the
snake is 40 pixels long.

e Finally, we start the thread and create an infinite loop to call the move () method
at small intervals. During every run of the loop, the method populates the queue
with a dictionary having the key as move and the value equal to the updated
position of the snake, through the self.snake_points attribute.

e First, the move method obtains the latest coordinates for the snake depending on
the keyboard event. It uses a separate method
called calculate_new_coordinates to get the latest coordinates.

o It then checks whether the location of the new coordinates coincides with the
location of the food. If they match, it increases the score of the player by one
and calls the Food class' generate_food method to generate a new food at
a new location.

e If the current point does not coincide with the food coordinates, it deletes the first
item from the snake coordinates using self.snake_points.pop (0).

o Then, it calls another method named check_game_over to check whether the
snake collides with the wall or itself. If the snake does collide, it appends a new
dictionary item in the queue with the value 'game_over':True.

[318]

Multiple Fun Projects Chapter 9

e Finally, if the game is not over, it appends the new position of the snake to the list
self.snake_points. This is automatically added to the queue, because we have
defined self.queue.put ({'move': self.snake_points }) inthe Snake
class's run () method to update every 0. 1 seconds as long as the game is not
over.

Queue handler

Now that the queue is getting populated with various actionables, let's create
the queue_handler method to process the items in the queue and update the
View accordingly.

We define the queue_handler () method in our View class as follows:

def queue_handler (self):
try:
while True:
task = self.queue.get_nowait ()
if 'game_over' in task:
self.game_over ()
elif 'move' in task:
points = [x for point in task['move'] for x in point]
self.canvas.coords (self.snake, *points)
elif '"food' in task:
self.canvas.coords (self.food, *task['food'])
elif 'points_earned' in task:
self.canvas.itemconfigure (self.points_earned, text='Score:
{}'.format (task['points_earned']))
self.queue.task_done ()
except queue.Empty:
self.after (100, self.queue_handler)

The description for the code is as follows:

¢ The queue_handler method gets into an infinite loop looking for tasks in the
queue using task = self.queue.get_nowait ().If the queue becomes empty,
the loop is restarted using canvas.after.

e When we use queue_get_nowait (), the call does not block the calling thread
until an item is available. It removes and returns an item from the queue, if
available. If the queue is empty, it raises Queue . Empty.

¢ Once a task is fetched from the queue, the method checks its key.

[319]

Multiple Fun Projects Chapter 9

e If the key is game_over, it calls another method named game_over () which we
define next.

o If the key of the task is move, it uses canvas.coords to move the line to its new
position.

e If the key is points_earned, it updates the score on the canvas.

When the execution of a task completes, it signals the thread with the
task_done () method. Finally, we create the main loop as follows:

def main() :
g = queue.Queue ()
gul = View(q)

snake = Snake (q)
for key in ("Left", "Right", "Up", "Down"):
guil.bind ("<Key-{}>".format (key), snake.on_keypress)

gui.mainloop ()

if name == '_ _main__ ':

main ()

Our game is now functional. Go and try controlling the snake while keeping its stomach
filled.

Creating a Weather Reporter application

Let's now build a simple Weather Reporter application. The weather data for any given
location will be fetched from the network, suitably formatted, and presented to the user.

We will use a higher level module named url1lib to fetch weather data from the web. The
urllib module is part of Python's standard library and it provides an easy to use API for
working with URLs. It has four submodules:

e urllib.request: For opening and reading URLs

e urllib.error: For handling exceptions raised by urllib.request
e urllib.parse: For parsing URLs

e urllib.robotparser: For parsing robots. txt files

With urllib.request, fetching the contents of a web page turns into three lines of code
(see 9.05_urllib_demo.py):

import urllib.request

[320]

Multiple Fun Projects Chapter 9

with urllib.request.urlopen('http://www.packtpub.com/') as f:
print (f.read())

This prints the entire HTML source code or whatever is the response from the web page
http://www.packtpub.com. This is, in essence, the core of mining the web for information.

Now that we know how to get data from a URL, let's apply it to building our
Weather Reporter application. This application should take the location as an input from
the user and fetch relevant weather-related data, as shown in the following screenshot:

Enter Location Mumbai

We create a class, WeatherReporter, and call it from outside the class within
the mainloop (see the code of 9.06_weather_reporter.py):

def main() :
root=Tk ()
WeatherReporter (root)
root.mainloop ()

if _ name_ == '_ main__ ':
main ()

[321]

http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com

Multiple Fun Projects Chapter 9

We do not discuss the code for creating this GUI here, as we have done similar coding
many times in all the the previous chapters. The weather data is displayed on a canvas (see
9.06_weather_reporter.py):

When you specify a location and click on the Go button, it calls a command callback named
on_show_weather_button_clicked

We then fetch the weather data from a website.

There are two ways to fetch data from a website. The first method involves getting an
HTML response from a website, and then parsing the received HTML response for data that
is relevant to us. This type of data extraction is called site scraping.

Scrapy and Beautiful Soup are two popular site-scraping frameworks for extracting data
from websites. You can find the official documentation of the two libraries at http://
scrapy.org/ and http://www.crummy.com/software/BeautifulSoup/.

Site scraping is a rather crude method that is employed only when a given website does not
provide a structured way to retrieve data. On the other hand, some websites are willing to
share data through a set of APIs, provided you query it for data using the specified URL
structure. This is clearly more elegant than site scraping, because data is interchanged in a
reliable and mutually agreed format.

For our Weather Reporter application, we want to query some weather channels for a given
location, and in turn retrieve and display the data on our canvas.

Fortunately, there are several weather APIs that we can use. In our example, we will use the

weather data provided by the following website:
http://openweathermap.org/

In order to use the API, you need to sign up for a free API key here:

http://home.openweathermap.org/users/sign_up

The OpenwWeatherMap service provides free weather data and forecast APIs. This
site collates weather data from more than 40,000 weather stations across the globe, and the
data can be assessed by city name and geographic coordinates, or their internal city ID.

The website provides weather data in two data formats:

* JSON (JavaScript Object Notation)
¢ XML (Extensible Markup Language)

[322]

http://scrapy.org/
http://scrapy.org/
http://scrapy.org/
http://scrapy.org/
http://scrapy.org/
http://scrapy.org/
http://scrapy.org/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://www.crummy.com/software/BeautifulSoup/
http://openweathermap.org/
http://openweathermap.org/
http://openweathermap.org/
http://openweathermap.org/
http://openweathermap.org/
http://openweathermap.org/
http://openweathermap.org/
http://openweathermap.org/
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up
http://home.openweathermap.org/users/sign_up

Multiple Fun Projects Chapter 9

XML and JSON are two popular interchangeable data serialization formats widely used
for interchanging data between different applications, which may be running on different
platforms and using different programming languages, thus providing the benefit of
interoperability.

JSON is simpler than XML, because its grammar is simpler and it maps more directly onto
the data structures used in modern programming languages. JSON is better suited
for exchanging data, but XML is good for exchanging documents.

The API documentation tells us of a query such as:

api.openweathermap.org/data/2.5/weather?g=London, uk&APPID={APIKEY}

The preceding code returns weather data for London in JSON format as follows:

{"coord":{"lon":-0.12574,"1at":51.50853}, "sys":{"country":"GB", "sunrise":13
77147503, "sunset":1377198481}, "weather": [{"id" :500, "main":"Rain",
"description": "light rain","icon":"10d"}], "base":"gdps

stations", "main":{"temp":294.2, "pressure":1020, "humidity":88,
"temp_min":292.04, "temp_max":296.48}, "wind": {"speed":1, "deg":0}, "rain":{"1h
":0.25},"clouds": {"
all":40},"dt":1377178327,"id":2643743, "name" : "London", "cod" :200}

The syntax of JSON is simple. Any piece of JSON data is a name/value pair and each piece
of data is separated from the others by commas. JSON uses curly braces { } to hold objects
and square brackets [] to hold arrays. Accordingly, we define a method to get the weather
data in JSON format in our application (see 9.06_weather_reporter.py):

def get_data_from_url (self):
try:
params = urllib.parse.urlencode({'g': self.location.get (), 'APPID':
self.APIKEY},
encoding="utf-8")
api_url =
('http://api.openweathermap.org/data/2.5/weather?{}'.format (params))
with urllib.request.urlopen(api_url) as f:
json_data = f.read()
return json_data
except IOError as e:
messagebox.showerror ('Unable to connect', 'Unable to connect %s' % e)
sys.exit (1)

[323]

Multiple Fun Projects Chapter 9

The description for the code is as follows:

¢ This method uses ur11ib to retrieve responses from the website. It returns the
response in JSON format.

¢ Now, we'll start processing the JSON data. The weather data returned using the
APl is encoded in JSON format. We need to convert this data into the Python data
type. Python provides a built-in json module that simplifies the process of
encoding/decoding JSON data. We therefore import the json module into our
current namespace.

Then, we'll use this module to convert the retrieved JSON data into the Python dictionary
format (see 9.06_weather_reporter.py):

def json_to_dict (self, json_data):
decoder = json.JSONDecoder ()
decoded_json_data = decoder.decode (json_data.decode ("utf-8"))
flattened_dict = {}
for key, value in decoded_json_data.items () :
if key == 'weather':
for ke, va in value[0].items () :
flattened_dict[str(ke)] = str(va) .upper /()
continue
try:
for k, v in value.items () :
flattened_dict[str(k)] = str(v).upper /()
except:
flattened_dict[str(key)] = str(value) .upper ()
return flattened_dict

Now that we have a dictionary of all weather-related information provided by the API, we
simply display the retrieved weather data using canvas.create_text

and canvas.create_image. The code for displaying the weather data is self-explanatory
(see 9.06_weather_reporter.py).

Our Weather Reporter application is now functional.

[324]

Multiple Fun Projects Chapter 9

When you access a server from your Python program, it is very
important to send requests after small time gaps.

A typical Python program is capable of running several

million instructions per second. However, the server that sends you the
data at the other end is not equipped to work at that speed. If you
knowingly or unknowingly send a large number of requests to a server
within a short time span, you may prevent it from servicing its routine
requests from normal web users. This constitutes what is called a denial of
service (DOS) attack on the server. You may be banned or, in a worst
case scenario, be sued for disrupting a server, if your program does not
make a limited number of well-behaved requests.

To summarize the code for the Weather Reporter, we use the ur11ib module to query the
weather API provided by our data provider. The data is fetched in JSON format. The JSON
data is then decoded into a Python-readable format (dictionary).

The converted data is then displayed on the canvas using the create_text
and create_image methods.

A simple socket demo

The goal of this project is to introduce you to the basics of network programming and how
to use it in your GUI application.

Python has great support for network programming. At the lowest level, Python provides a
socket module that lets you connect and interact with the network using a simple-to-use,
object-oriented interface.

For those new to socket programming, sockets are the fundamental concept behind any
kind of network communication done by your computer. For instance, when you type
www . packtpub. comin your browser, the operating system on your computer opens a
socket and connects to the remote server to fetch the web page for you. The same happens
with any application that needs to connect to the network.

More specifically, sockets refer to a communications endpoint that is characterized by a
five-element tuple that contains the following information:

(protocol, local address, local port, remote address, remote port)

This tuple must be unique for communication on a channel between a local machine and a
remote machine.

[325]

Multiple Fun Projects Chapter 9

Sockets may be connection-oriented or connectionless. Connection-oriented sockets allow
for the flow of data to and fro as required. Connectionless sockets (or datagram sockets)
allow only one message at a time to be transmitted, without an open connection.

Sockets can be classified into different types or families. The two most common socket
families are AF_INET (for internet connections) and AF_UNIX for

interprocess communications on a Unix machine. We will use AF_INET in our chat
program.

This is the lowest level at which a programmer can access the network. Underneath the
socket layer lie raw UDP and TCP connections, which are handled by your computer's
operating system with no direct access points for programmers.

Let's take a brief look at some of the APIs available in the socket module:

API Description

Creates a socket. The addressfamily represents the
socket .socket format for providing the address, normally the IP
(addressfamily=AF_INET, address; type is usually SOCK_STREAM for TCP
type=SOCK_STREAM, proto=0, |or SOCK_DGRAM for the UDP connection protocol. The
fileno=None) protocol number is usually zero and may be omitted.

Returns a socket object.

Associates a local address with a socket. The socket must
socket .bind (address) not already be bound. (The format of the address depends
on the address family defined when creating the socket.)

Announces a willingness to accept connections. The
backlog argument specifies the maximum number of
queued connections and should be at least zero; the
maximum value is system-dependent.

socket.listen (backloqg)

Passively establishes an incoming connection. Before
accepting, the socket must be bound to an address and
listening for connections. Returns a (conn, address)
socket .accept () pair, where conn is a new socket object usable to send
and receive data on the connection, and address is
the address bound to the socket on the other end of the
connection.

Actively attempts to establish a connection to a remote

socket .connect
0 socket at the address.

[326]

Multiple Fun Projects Chapter 9

Sends some data over the connection. Unlike send (),
socket.send (bytes) /socket.|sendall (), this continues to send data from bytes until
sendall (bytes) either all data has been sent or an error occurs. Returns
None on success.

Receives some data over the connection. Returns a bytes
object representing the data received. The maximum
amount of data to be received at once is specified by
bufsize.

socket.recv (bufsize)

Releases the connection. The underlying system resource

socket.close() (for example, a file descriptor) is also closed.

If you look at the 9.07_socket_demo.py Python file in the code bundle of this project,
you'll find that it sends a very obscure-looking GET request to fetch the contents from the
URL in the following line of code:

message = "GET / HTTP/1.1 \r\nHost:" + host + "\r\n\r\nAccept:
text/html\r\n\r\n"

The data received from the server is also sent in packets, and it is our task to collect all the
data and assemble it at our end.

Building a port scanner

Now that we know the basics of socket programming, let's build a port scanner.

Ports are to computers what entrances are to houses. A computer has 65,535 ports through
which it can communicate with the outside world. Most of the ports are closed by default.
However, typically computers need to keep certain ports open for other computers on the
network to connect and communicate.

A port scanner then is software that scans all the ports of a computer to find out which
ports of the computer are open and listening for incoming communications. Port scanning
is used by network administrators to strengthen their security regimes, but it is also used by
hackers to look for entry points to break into a computer.

[327]

Multiple Fun Projects Chapter 9

Before you get into scanning random website servers with this tool, it

is important to know that port scanning without proper authorization

is illegal in a few jurisdictions. Many ISPs ban port scanning. Furthermore,
many websites have explicit policies banning any attempts at port
scanning. There have been cases of convictions for unauthorized scans.
You may even want to consult a lawyer if you are scanning third-

party websites with this tool. Even if a website is silent about port
scanning, it's always better to get authorization from a website before you
scan its ports. Repeated scan

attempts on a single target may also cause your IP address to be

blocked by the administrators.

We recommend that you use this tool to analyze security

vulnerabilities only on computers that you are authorized to scan, or on
websites that have a liberal policy allowing for limited and non-disruptive
scans.

With that disclaimer out of the way, let's get into building the port scanner. On completion,
our port scanner will look as follows:

Host : google.com
Start Port : 70
End Port : 85

Stop Scan

Scan Result :

[328]

Multiple Fun Projects Chapter 9

We do not discuss the code that creates the preceding GUI, as this should be easy for you.
See 9.08_port_scanner.py for the complete code. We instead discuss the code related to
port scanning.

There are several techniques used for port scanning. TCP SYN scanning is the most
commonly used technique. It exploits the three-way handshake protocol employed by TCP,
which involves sending and receiving SYN, SYN-ACK, and ACK messages. Here, SYN
stands for synchronize and ACK stands for acknowledge. Visit https://en.wikipedia.
org/wiki/Transmission_Control_Protocol for more details on this three-way handshake
protocol.

A TCP SYN scan involves sending a SYN packet as if you will make a real connection and
then waiting for the response. A SYN/ACK response from the target means that the port is
open. A RST (reset) response suggests that the port is closed. If no response is received, the
port is considered to be filtered.

Another common technique, and the one we will use for port scanning, is called the TCP
connect scanner. This involves requesting a connection to the target operating system using
the connect system call. This is exactly how web browsers and other high-level clients make
a connection.

The connect command establishes an actual connection to the target, as opposed to the half-
open scan that TCP SYN scan does. Since a complete connection is established, a connect
scan is slower and requires more transmission than an SYN scan to find out whether a port
is open. Furthermore, the target machine is more likely to log the connection and it is
therefore not as stealthy as an SYN scan.

Accordingly, the code that checks whether a port is open is defined as follows (see
9.08_port_scanner.py):

def is_port_open(self,url, port):

try:
s = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
s.settimeout (1)
s.connect ((socket.gethostbyname (url), port))
s.close ()
return True

except:

return False

Note that the preceding code simply uses socket . connect to make a connection to probe
the port

[329]

https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transmission_Control_Protocol

Multiple Fun Projects Chapter 9

We call the preceding method from another method, start_scan, which simply loops over
each of the ports in the range provided by the user:

def start_scan(self, url, start_port, end_port):
for port in range (start_port, end_port+1):
if not self.stop:
self.output_to_console ("Scanning port{}".format (port))
if self.is_port_open(url, port):

self.output_to_console(" -- Port {} open \n".format (port))
else:
self.output_to_console("-- Port {} closed \n".format (port))

Finally, we do not want a call to this method to block our Tkinter main loop. Therefore, we
call the preceding method in a new thread as follows:

def scan_in_a_new_thread(self) :
url = self.host_entry.get ()
start_port = int (self.start_port_entry.get())
end_port = int (self.end_port_entry.get())
thread = Thread(target=self.start_scan, args=(url, start_port,
end_port))
thread.start ()

The preceding method gets the values entered by the user and passes them as arguments to
the start_scan method in a new thread.

The rest of the code simply creates and updates the GUI with the result and should be self-
explanatory. This concludes the port scanner project.

Building a chat application

Next, let's build a multi-client chat room. The goal of this program is to explore
socket programming in further detail. This section also implements and discusses the client-
server architecture that is so common in all network programs.

Our chat program will consist of a chat server, which listens for and receives all incoming
messages on a given port.

It also maintains a list of chat clients that connect to the server. It then broadcasts any
incoming messages to all connected clients:

[330]

Multiple Fun Projects Chapter 9

Enter your name: |Hobbes Enter your name: Calvin
Chat Transcript: Chat Transcript:

rall-
Calvin:is that you Hobbes? —I|Calvin:is that you Hobbes? il
Hobbes : Hmm _ _ Hobbes : Hmm
Calvin:Don't worry, it takes some time to learn to text. Pra Calvin:Don't worry, it takes some time to learn to text. Pra
ctice makes perfect ctice makes perfect
Hobbes :Now where do they sell that ? Hobbes :Now where do they sell that ?
Enter chat messages: | Enter chat messages: A
|

Let's start with the code for the chat server.

A server runs on a remote host and has a socket bound to a specific port number. The server
just waits, listening to the socket for a client to make a connection request.

Here's the code for a chat server (see 9.09_chat_server.py):

class ChatServer:
clients_1list = []
last_received_message = ""

def _ _init_ (self):
self.create_listening_server ()

def create_listening_server (self):
self.server_socket = socket.socket (socket.AF_INET, socket.SOCK_STREAM)
local_ip = '127.0.0.1"
local_port = 10319
self.server_socket.setsockopt (socket.SOL_SOCKET,
socket .SO_REUSEADDR, 1)
self.server_socket.bind((local_ip, local_port))
print ("Listening for incoming messages..")
self.server_socket.listen (5)
self.receive_messages_in_a_new_thread()

def receive_messages_in_a_new_thread(self):
while 1:
client = so, (ip, port) = self.server_socket.accept ()
self.add_to_clients_list (client)
print ('Connected to ', ip , ':' , str(port))
t = threading.Thread(target=self.receive_messages, args=(so,))

[331]

Multiple Fun Projects Chapter 9

t.start ()

def receive_messages (self, so):
while True:
incoming_buffer = so.recv(256)
if not incoming_buffer: break
self.last_received_message = incoming_buffer.decode ('utf-8")
self.broadcast_to_all clients (so)
so.close ()

def broadcast_to_all_clients(self, senders_socket):
for client in self.clients_list:
socket, (ip, port) = client
if socket 1is not senders_socket:
socket.sendall (self.last_received_message.encode ('utf-8"))

def add_to_clients_list(self, client):
if client not in self.clients_list:
self.clients_list.append(client)

if __name_ == "__main__ ":
ChatServer ()

The description of the preceding code is as follows:

e We create a TCP socket with an address family of IPv4 using the
line self.server_socket = socket (AF_INET, SOCK_STREAM).The IPv4
socket uses a 32-bit number to represent the address size. It is the most
popular addressing scheme and accounts for most current internet traffic. IPv6 is
a newer numbering system with a 128-bit address size, thereby providing a much
larger pool of addresses. IPv6 has seen some adoption but it has not yet become
the mainstream standard.

e The SOCK_STREAM parameter means that we will be using a TCP connection for
the communication. Another less popular option is to use SOCK_DGRAM, which
refers to the UDP mode of transmission.

e TCP is a more reliable protocol for communication than UDP as it offers
a guarantee against packet loss. It also takes care of the proper ordering of bytes
at the receiving end. If we use a UDP protocol, we will have to take care of

handling packet loss, duplication, and the ordering of packets at the receiving
end.

[332]

Multiple Fun Projects Chapter 9

e Weused socket.bind(('127.0.01', 10319)) in the preceding code to bind
the socket. We could have alternatively used socket .bind
((socket.gethostname(), 10319) so that the socket would have been
visible to the outside world. Alternatively, we could have specified an empty
string such as socket.bind ((' ', 10319)) to make the socket reachable by
any address the machine could have.

o The socket .setsockopt (SOL_SOCKET, SO_REUSEADDR, 1) line of code
allows other sockets to bind () to this local port, unless there is an active socket
already bound to the port. This lets us get around the Address already in
use error message when a server is restarted after a crash.

e The line self.server_socket.accept () returns a value of the form (socket,
(ip, port)) assoon as a remote client connects to the server. Each client is then
uniquely identified by the following data: (socket, (ip, port)).

e The line Thread (target=self.receive_messages, args=(so,))
receives each new message on a new thread.

e Finally, the line
socket.sendall (self.last_received_message.encode('utf-8")) sends
the message to individual clients.

e The receive_messages method receives messages using the
socket .recv method. The socket . recv method receives messages in buffers.
It is your responsibility to call the method again and again until the entire
message has been dealt with. When the socket . recv method returns 0 bytes, it
means that the sender has closed the connection. We then break out of the
infinite loop and get the complete message from the buffer.

Also note that message transmission over the network occurs in bytes.

Any message that we send must be converted to byte form
using outgoing_message.encode ('ut£-8"'). Similarly, any message that we
receive from the network must be converted from bytes to a string or any other format.

To convert bytes to a string, we use incoming_bytes.decode ('utf-8").
Our chat server is now ready. Next, let's build the chat client.

Our chat client should connect to the remote server and send a message to the server. It
should also be listening for any incoming messages from the central chat server. We do not
reproduce the entire code for our chat client. Specifically, we omit the code that produces
the GUI for our chat client as we have coded similar widgets in the past.

[333]

Multiple Fun Projects Chapter 9

The partial code in our chat client that sends and receives messages to and from the chat
server is as follows (see 9.10_chat_client.py):

class ChatClient:
client_socket = None
last_received_message = None

def _ _init__ (self, root):
self.root = root
self.initialize_socket ()
self.initialize_gui ()
self.listen_for_incoming_messages_in_a_thread()

def initialize_socket (self):
self.client_socket = socket (AF_INET, SOCK_STREAM)
remote_ip = '127.0.0.1"
remote_port = 10319
self.client_socket.connect ((remote_ip, remote_port))

def listen_for_incoming_messages_in_a_thread(self):
t = Thread(target=self.recieve_message_from_server,
args=(self.client_socket,))
t.start ()

def recieve_message_from_server (self, so):
while True:
buf = so.recv (256)

if not buf:
break
self.chat_transcript_area.insert ('end', buf.decode ('utf-8') + '\n'")
self.chat_transcript_area.yview (END)
so.close ()

def send_chat (self) :
senders_name = self.name_widget.get () .strip() + ":"
data = self.enter_text_widget.get (1.0, 'end').strip()
message = (senders_name + data).encode('utf-8")
self.chat_transcript_area.insert ('end', message.decode ('utf-8') + '\n')
self.chat_transcript_area.yview (END)
self.client_socket.send(message)
self.enter_text_widget.delete (1.0, 'end')
return 'break'

[334]

Multiple Fun Projects Chapter 9

This code is very similar to the code of our chat server. Here's a short description of the
code:

We first create a socket using socket (AF_INET, SOCK_STREAM)

We then connect the socket to the remote IP and the remote port of our
chat server using socket . connect ()

We receive messages from the server using socket . recv ()

We send messages to the server using socket .send ()

Note that when a client attempts to connect to the server using the
socket.connect method, the operating system will assign a unique but random port to
identify the client when a message is returned by the server.

The port numbers from 0 to 1023 are referred to as the well-known

ports, reserved ports, or system ports. They are used by the operating
system to provide widely used network services. For example, port 21 is
reserved for FTP services, port 80 is reserved for HTTP services, port 22 is
reserved for SSH and SFTP, and port 443 is reserved for a secure HTTP
service (HTTPS) over TLS/SSL.

The random port that the operating system assigns to our client is selected
from a pool of ports that are above the system-reserved ports. The list of
all reserved ports can be found at
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers.

The full code of the chat client can be found in 9.10_chat_client.py. The chat is now
functional, but note that we have not coded the logic for removing users from

the clients_list in ChatServer. This means that even if you close a chat window, the
chat server will still try to send a chat message to the closed client as we have not removed
the client from the server. We will not implement it here, but should you wish to implement
this, you can easily override the window's close method and send a message to
ChatServer to delete the client from the client list.

That concludes the chat application project.

[335]

https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers
https://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers

Multiple Fun Projects Chapter 9

Creating a phone book application

Let's now build a simple phone book application that allows the user to store names and
phone numbers.

The main learning objective for this project relates to being able to use a relational database
with Tkinter to store and manipulate records. We have already seen some basic examples of
object persistence with serialization. Relational databases extend this persistence using rules
of relational algebra to store data in tables.

Python provides database interfaces for a wide range of database engines. Some of the
commonly used database engines include MySQL, SQLite, PostgreSQL, Oracle, Ingres, SAP
DB, Informix, Sybase, Firebird, IBM DB2, Microsoft SQL Server, and Microsoft Access.

We will use SQLite to store data for our phone book application.

SQLite is a serverless, zero-configuration, self-contained SQL database engine suitable for
developing embedded applications. The source code for SQLite is in the public domain,
which makes it freely available for use in all sorts of commercial and non-commercial
projects.

Unlike many other SQL databases, SQLite does not require running a separate

server process. Instead, SQLite stores all the data directly onto flat files that get stored on
a computer disk. These files are easily portable across different platforms, making it a very
popular choice for smaller and simpler database implementation requirements.

Python comes with a built-in standard library for SQLite3 support. However, we need to
download the SQLite3 command-line tool that lets us create, modify, and access the
database using a command line. The command-line shell for Windows, Linux, and macOS
can be downloaded from http://sqlite.org/download.html.

Following the instructions on the website, install the SQLite command shell into
any location of your choice.

Let's now implement our phone book application. The application will look as follows:

[3361]

http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html
http://sqlite.org/download.html

Multiple Fun Projects Chapter 9

tk X

Create New Record

I.]]IU[J.I.‘ NamE:

Book Contact Number:

Add Record

Phone record of Rose Drake added

Name |Phone Number |
Bhaskar Chaudhary 451-352-6578
Mabel Haynes 776-779-3353
Melanie Richardson 457-896-7890
Orville Greer 379-637-9638
Rose Drake 456232121

Delete Selected | Modify Selected

The application will demonstrate some of the common operations involved in database
programming. The user should be able to create new records, read existing records, update
existing records, and delete records from the database using this application. Together,
these activities constitute what are known as CRUD (Create, Read, Update, and Delete)
operations on a database.

In order to create the database, we open the command-line tool of our operating system.
Within the command line, we first navigate to the directory where we need to create the
new database file. In order to create the database, we simply use this command:

sglite3 phonebook.db

This creates a database file named phonebook . db in the folder from which we execute the
command. It also displays a message similar to the following:

SQLite version 3.7.17 2018-01-31 00:56:22
Enter ".help" for instructions

Enter SQL statements terminated with a ";"
sglite>

[337]

Multiple Fun Projects Chapter 9

We have now created a database named phonebook . db. However, the database file is
currently empty. It does not contain any tables or any data. So, we get no results if we run
this command:

sglite> .tables

For now, let's exit the command-line tool by typing this:

sglite> .exit

We want to store contacts in our database, and that is why we will create the

contacts table. Our database table should store a person's name and phone number.

In addition, it is good practice to keep a unique identification number for each person or
each entry in the table. This is because multiple people might have the same name or same
contact number.

To create a table within our phonebook . db database, we again open the command-line tool
and navigate to the directory where we had created the database. We again get into the
SQLite3 terminal by typing this:

sglite3 phonebook.db

This time, a new database is not created. Rather, the command now opens the existing
phonebook . db database because it is already present on the disk.

Next, we create a table named contacts, and add three columns to the table from the
command line:

sglite> CREATE TABLE contacts

(

contactid INTEGER PRIMARY KEY AUTOINCREMENT,
name STRING NOT NULL,

contactnumber INTEGER NOT NULL

)i
You can verify the contacts table was created by typing the following command:

sglite>.table

This prints the name of all the tables present in the currently open database. You will get
the following output:

sglite>.table
contacts

[338]

Multiple Fun Projects Chapter 9

Let's first create a basic GUI that will let us add, view, delete, and modify the records. We
create a class named phoneBook and create all GUI widgets within it.

We do not discuss the entire code that creates the GUI as we have coded similar structures
in the past. However, we use a new ttk widget named Treeview. The code for creating
Treevieuw is as follows (9. 11_phonebook.py):

def create_tree_view(self):
self.tree = ttk.Treeview (height=5, columns=2)
self.tree.grid(row=4, column=0, columnspan=2)
self.tree.heading ('#0', text='Name', anchor=W)
self.tree.heading (2, text='Phone Number', anchor=W)

To add items to Treeview, we use the following code:

self.tree.insert ('', 0, text=row[l], values=row[2])

To get all items in Treeview, we use the code:

items = self.tree.get_children()

To delete items from Treeview, we use the code:

self.tree.delete(item)

Next, let's prepare the code to query our database:

db_filename = 'phonebook.db'

def execute_db_query(self, query, parameters=()):
with sglite3.connect (self.db_filename) as conn:
cursor = conn.cursor ()
query_result = cursor.execute (query, parameters)
conn.commit ()
return query_result

The code description is as follows:

e The method establishes a connection to the phonebook . db database we created
earlier.
e The next line, cursor = conn.cursor (), creates a cursor object. The cursor is a

control structure that is required as per SQL standards, and it enables us to
traverse the records in a database.

[339]

Multiple Fun Projects Chapter 9

e The next line, cursor.execute (query), executes the query against the
database.

¢ The line conn.commit () actually commits/saves these changes to the database.

We can now use the preceding method to execute CRUD queries on the database.

Creating a new record

A new record needs to be created every time a user enters a new name and a phone number
in the entry widgets provided, and then clicks on the Add Record button.

The database query for adding a new record is as follows:

query = 'INSERT INTO contacts VALUES (NULL,?, ?)'
parameters = (self.namefield.get (), self.numfield.get ())
self.execute_db_query (query, parameters)

Reading from the database

The database query for reading all records from the database is as follows:

query = 'SELECT * FROM contacts ORDER BY name desc'
phone_book_entries = self.execute_db_query (query)

The preceding variable, phone_book_entries, contains a list of all the records from the
database.

Updating records

To update the phone number of an existing contact, we use the following code:

query = 'UPDATE contacts SET contactnumber=? WHERE contactnumber=? AND
name=7?"'
parameters = (newphone, old_phone_number, name)

self.execute_db_query (query, parameters)

[340]

Multiple Fun Projects Chapter 9

Deleting records

To delete the phone number of an existing contact, we use the following code:

query = 'DELETE FROM contacts WHERE name = ?'
self.execute_db_query (query, (name,))

The rest of the code is the supporting GUIL See 9.11_phonebook. py for the complete code.
We have now completed coding a basic phone book application.

We have seen how to create a database, add tables to the database, and query the database
to add, modify, delete, and view items in the database. Our phone book application has
demonstrated how to execute basic CRUD operations on a database.

Furthermore, due to the similarity of basic database operations, you can now consider
working with other database systems, such as MySQL, PostgreSQL, Oracle, Ingres, SAP DB,
Informix, Sybase, Firebird, IBM DB2, Microsoft SQL Server, and Microsoft Access.

Using asyncio with Tkinter

Starting with Python 3.4, a new module named asyncio was introduced as a Python
standard module.

The term Asyncio is made by adding two words: async + 1/O. Async is about concurrency,
which means doing more than one thing at a time. I/O, on the other hand, refers to handling
I/O bound tasks. A bound task means the thing that keeps your program busy. If, for
instance, you are doing computation-intensive math processing, the processor is taking
most of the time—and it is, therefore, a CPU bound task. On the contrary, if you are
waiting for a result from the network, result from the database, or an input from the user,
the task is I/O bound.

So in a nutshell, the asyncio module provides concurrency, particularly for I/O bound
tasks. Concurrency ensures that you do not have to wait for I/O bound results.

Let's say you have to fetch content from multiple URLs, then process the fetched content
to extract the title and display it in a Tkinter window. Now you obviously cannot fetch the
content in the same thread that runs the Tkinter main loop, as that would make the root
window unresponsive while the content is fetched.

[341]

Multiple Fun Projects Chapter 9

So one of the options is to spawn a new thread for each URL. While this can be an option, it
is not a very scalable one as spawning thousands or more threads at a time can lead to a lot
of code complexity. We already saw a demo of a race condition in the beginning of the
current chapter (9.01_race_condition.py), where running multiple threads can make it
difficult to control the shared state. Furthermore, as context switching is an expensive and
time-consuming affair, the program can become laggy after spawning just a few threads.

Here's where asyncio comes to our rescue. In contrast to multithreading, which relies on
threading, asyncio uses a concept of event loops.

To demonstrate, here is a Tkinter program that on the click of a button simulates fetching 10
URLs:

from tkinter import Tk, Button
import asyncio

import threading

import random

def asyncio_thread(event_loop):
print ('The tasks of fetching multiple URLs begins')
event_loop.run_until_complete (simulate_fetch_all_urls())

def execute_tasks_in_a_new_thread (event_loop) :
""" Button-Event-Handler starting the asyncio part.
threading.Thread(target=asyncio_thread, args=(event_loop,)).start ()

nun

async def simulate_fetch_one_url (url):
""" We simulate fetching of URL by sleeping for a random time """
seconds = random.randint (1, 8)
await asyncio.sleep (seconds)
return 'url: {}\t fetched in {} seconds'.format (url, seconds)

async def simulate_fetch_all urls():
""" Creating and starting 10 i/o bound tasks. """

all_tasks = [simulate_fetch_one_url (url) for url in range (10)]
completed, pending = await asyncio.wait (all_tasks)
results = [task.result() for task in completed]

print ('"\n'.join (results))

def check_if button_freezed() :
print ('This button is responsive even when a list of i/o tasks are in
progress')

def main (event_loop) :
root = Tk ()
Button (master=root, text='Fetch All URLs',

[342]

Multiple Fun Projects Chapter 9

command=lambda: execute_tasks_in_a_new_thread (event_loop)) .pack ()

Button (master=root, text='This will not Freeze',

command=check_1if_button_freezed) .pack ()

root.mainloop ()

if _ _name_ == '__main__ ':
event_loop = asyncio.get_event_loop ()
main (event_loop)

Here's a brief description of the code (9.12_async_demo.py):

The first step in using the asyncio module is to construct an event loop using the
code event_loop = asyncio.get_event_loop (). Internally, this
event_loop will schedule all tasks assigned to it using coroutines and futures to
do the I/O bound tasks in an asynchronous manner.

We pass this event_loop as an argument to the Tkinter root window, so that it
can use this event loop for scheduling async tasks.

The method that is in charge of doing the I/O bound task is then defined by
appending the keyword async in front of the method definition. Essentially, any
method that is to be executed from the event loop must be appended with the
keyword async.

The method simulates a time-taking I/O blocking task using await
asyncio.sleep (sec).In areal case, you will perhaps use this to fetch the
contents of a URL or perform a similar I/O blocking task.

We start executing the async tasks in a new thread. This single thread executes
the list of tasks using the

event_loop.run_until_complete (simulate_fetch_all_urls()) comman
d. Note that this is different from creating one thread each for each of the tasks. In
this case, we are only creating a single thread to isolate it from the Tkinter main
loop.

Theline all tasks = [simulate_fetch_one_url (url) for url in
range (10)] combines all the async tasks into a list. This list of all I/O bound
tasks is then passed on to completed, pending = await

asyncio.wait (all_tasks), which waits for all tasks to be completed in a non-
blocking manner. Once all the tasks are completed, the results are populated in
the completed variable.

We get the results of individual tasks using results = [task.result() for
task in completed].

We finally print out all the results to the console.

[343]

Multiple Fun Projects Chapter 9

The benefit of using asyncio is that we do not have to spawn one thread for each task and
as a result, the code does not have to context switch for each individual task. Thus, using
asyncio we can scale up to fetch thousands of URLs without slowing down our program
and without worrying about managing results from each thread individually.

This concludes our brief discussion on using the asyncio module with Tkinter.

Interfacing with hardware/serial
communication

The internet of things (IoT) is now becoming a reality. We are seeing a glimpse of IoT

in smart medical devices, driverless cars, smart factories, and smart homes. A large number
of such IoT applications are built around the idea of capturing data with sensors and
actuators.

The rise of IoT can largely be attributed to the rise in popularity of microcontrollers, which
make it very easy to test and build product prototypes for such embedded systems. A
microcontroller is a self-contained device with a built-in processor and a programmable
memory. Most typical microcontrollers provide general purpose input/output pins which
can be used either to receive data from sensors or to send data based on some program that
is uploaded to the microcontoller.

In this project, we will use one of the most popular microcontrollers—the Arduino Uno—to
demonstrate how to build an application that can read data from an external device. We
will build an Ultrasonic Range Finder. If you find this project interesting, you can buy the
hardware and build it as well—the total cost of this project is less than five dollars.
However, if you do not intend to implement it, you can merely read through this section.
Our primary objective here is to show how to get data from external hardware into Tkinter
using what is known as serial communication.

Hardware

To begin with, we need an Arduino Uno board (or any other Arduino board). We also need
an ultrasonic range finder sensor. A quick web search shows hundreds of rangefinder
sensors for less than a quarter of a dollar. We use a sensor named HC-SR04-Ultrasonic
Range Finder, but just about any other sensor would do. The sensor we have chosen
provides a range-finding capability for distances in a 2 cm - 300 cm range, with an accuracy
of up to 3 mm.

[344]

Multiple Fun Projects Chapter 9

These sensors use sonar to determine the distance to an object, just as dolphins and bats
do. Here's how the sensor calculates the distance. The module has two units. The
transmitter transmits ultrasound, while a receiver reads any ultrasound that reflects back.
Since the speed of ultrasound is fixed and known, by calculating the time between
transmission and reflection, we can calculate the distance of the object that reflected the
ultrasound.

Here's how the hardware is set up:

L .

Ty . D
rxEE Ardulno

[345]

Multiple Fun Projects Chapter 9

To the left is the Arduino Uno board. The ultrasound sensor is towards the right. As you
can see the sensor has four pins marked VCC, Trig, Echo, and GND. The specifications of
the sensor states that it needs 5 volts to run. Accordingly, we connect the VCC pin to a pin
that reads 5V on the Arduino pin. Similarly, the ground pin (GND) from the sensor is
connected to a GND pin on the Arduino board. Now the sensor is powered up. We connect
the Trig pin to pin number 8 and the Echo pin to pin number 7 on the Arduino board. Every
time we provide a high pulse on Pin 8, the sensor will trigger an ultrasound and then the
Echo pin will return the time it took for the ultrasound to reflect back, which we will read
into the Arduino on Pin 7.

Writing the Arduino sketch

In the Arduino world, programs that you upload to the microcontroller are called sketches.
You can write these sketches in a free integrated development environment (IDE) which

can be downloaded from here:
https://www.arduino.cc/en/Main/Software

Once you finalize a program, you upload it to your Arduino board using the upload button
on the IDE and voila: your board starts doing what you asked it to do.

Every Arduino sketch will have two methods where you get to define the logic of your
program:

e setup (): For one-time initialization

e loop (): For things that the board keeps doing forever until it runs out of power

Here's the code that we upload to the Arduino (see 9.13.arduino_sketch.ino):

const int triggerPin = 8;
const int echoBackPin = 7;

void setup () {
Serial.begin(9600);
pinMode (triggerPin, OUTPUT) ;
pinMode (echoBackPin, INPUT);
}

void loop () {
long duration, distanceIncm;
// trigger ultrasound ping
digitalWrite (triggerPin, LOW) ;
delayMicroseconds (2) ;
digitalWrite (triggerPin, HIGH);

[346]

https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software
https://www.arduino.cc/en/Main/Software

Multiple Fun Projects Chapter 9

delayMicroseconds (5);

digitalWrite (triggerPin, LOW) ;

// receive input from the sensor
duration = pulselIn(echoBackPin, HIGH);

//calculate distance
distanceIncm = duration / 29 / 2;

// send data over serial port
Serial.print (distancelIncm);
Serial.println();

delay (100);

}

The code description is as follows:

The first two lines indicates that we will use pin numbers 7 and 8 on the Arduino
board and we assign them the variable names triggerPin and echoBackPin.

The setup function initializes the serial port and fixes its baud rate at 9600. Baud
rate is defined as the number of signal changes that occur in a second. We will
use the same rate when reading data in Tkinter with Python.

The code pinMode (triggerPin, OUTPUT) means that we will now use Pin 8 to
send an output pulse to the sensor.

Similarly, the code pinMode (echoBackPin, INPUT); declares that we will use
Pin 7 to receive input from the sensor.

Within the loop, we start by setting pin triggerPin to low pulse. We then
trigger the sensor to emit ultrasound by triggering a high voltage pulse of 2
microseconds. This triggers the sensor to emit an ultrasound for 5 microseconds.
We then mark the pin Low to stop triggering the ultrasound pulse.

We then time the signal received on echoBackPin using duration =
pulselIn (ioPin, HIGH). This gives us the time (in microseconds) it took for the
ultrasound to reflect back.

Given that the speed of sound is 340 m/s or 29 microseconds per centimeter, we
find the distance using the formula distance = speed * time. But since this
is the time it took for a reflected sound to travel out and back, the actual distance
is half this value. Perhaps the math should be done by Python instead? Doing
division here using a 1ong method will result in a whole number and so will not
be precise. Note that we could have also offloaded this calculation from Arduino
to our Python code, as most Arduino processors do not directly support floats in
hardware, and doing so in software on such a limited processor could bog it
down.

[347]

Multiple Fun Projects Chapter 9

e The line delay (100) ensures that the previous code runs every 100
milliseconds, sending pulses of ultrasound and measuring the distance to
whatever the sensor is pointed at.

The moment this code is uploaded to the Arduino board, it starts sending 5-microsecond
pulses of ultrasound after a delay of 100 milliseconds. It also sends a message to the serial
port of your computer in every one of these loops.

Now it's time to read this using Python and then display it in a Tkinter widget.

Reading serial data

We will use the pyserial module to read data from the serial port. However, this is not a
standard Python module and needs to be installed. We can install it using the following pip
command:

pip install pyserial

Once we are able to get data from the Arduino board, we can further process it or plot it in
the way we want. However, the goal here is to simply display whatever data is sent by the
Arduino board over the serial port, as shown in the following Tkinter window
(9.14_read_from_serial_port.py):

Distance :
82 cm

In order to read the serial port, we first need to identify the port on which this message is
being sent. There are two ways you can do this.

Firstly, you can find the name of the port from your Arduino IDE under the Tools menu, as
shown here:

[348]

Multiple Fun Projects

Chapter 9

sketch_feb01a | Arduino 1.8.4
File Edit Sketch Tools Help

Auto Format Ctri+T

sketch_feb (i

1E8void set
2 PP Scria| Monitor Ctri+Shift+M

4} Serial Plotter Crrl+5hift+L
(=

G8vold Tlooj
7 £ oput

o} Board: "Arduino/Genuino Uno" ‘

Port: "f 0"

WiFi101 Firmware Updater

Serial ports

Get Board Info Fdew SEO

Programmer: "U5Basp”

Burn Bootloader

Alternatively, you can run the following command from the command line:

python -m serial.tools.list_ports

This will print a list of all active serial ports. Once you have the port name at hand,
data reading is done using the following code:

from tkinter import Tk, Label
import serial

ser = serial.Serial ()

ser.port = "/dev/ttyUSBO"

ser.baudrate = 9600

try:

ser.open ()
except serial.SerialException:

print ("Could not open serial port: " + ser.port)

root = Tk()
root.geometry ('{}x{}"'.format (200, 100))

[349]

Multiple Fun Projects Chapter 9

label = Label (root, font=("Helvetica", 26))
label.pack (fill="both"')

def read_serial_datal():
if ser.isOpen():

try:
response = ser.readline()
label.config(text='Distance : \n' + response.decode ("utf-8").rstrip/()
+ ' cm')

except serial.SerialException:
print ("no message received")

root.after (100, read_serial_data)
read_serial_data ()
root.mainloop ()

The description of the code is as follows:

e We first get an instance of the serial class by calling ser = serial.Serial().
We then specify the port name and the baud rate. This is the same baud rate that
we used earlier in our Arduino code.

¢ We then open the serial port by calling ser.open () and read the data using
ser.readline ().

e The rest of the code is Tkinter-specific and creates the GUI and displays the
results in a Label widget.

This concludes the section and the chapter.

In the next chapter, we will conclude the book with discussions on miscellaneous issues that
you may encounter when writing GUI programs.

Summary

Let's summarize the concepts we discussed in this chapter.
We learned about the perils of spawning threads and the resulting race condition.

We learned how to use the queue data structure to program a multithreaded application,
without having to worry about synchronization between multiple threads trying to access
the same memory, and without using complicated synchronization primitives.

[350]

Multiple Fun Projects Chapter 9

The Weather Reporter application introduced us to the basics of network programming and
how to tap into the internet to get data. We discussed two popular structures used for data
exchange, namely XML and JSON.

The port scanner and the chat program discussed the basics of socket programming for
interprocess and remote communication. We used the TCP/IP protocol to send and receive
messages in our chat program. We also saw a basic example of client-server architecture.

We saw how all forms of communication over a network occur in bytes and how we can
convert data to bytes and back from bytes to data in the required format.

The phone book application showed us how to work with databases. We saw how to
perform basic CRUD operations on a database.

Next, we saw how to use the asyncio module to fetch I/O bound tasks in a non-blocking
and scalable manner, without having to worry about managing the states of a large number
of threads at once.

Finally, we saw how to interface with external hardware to collect data from sensors using
serial communication.

QA section

Here are a few questions to reflect upon:

e What is a race condition? How can you avoid a race condition?

e What are the benefits of using the queue data structure?

e What are the most popular open source databases available in the market?
e What are the most common modes of interprocess communication?

e When would you use the asyncio module?

e What are some of the advantages and disadvantages of using serial
communication? What are some of its alternatives?

e What are the JSON and XML file formats used for? What are their advantages
and disadvantages when compared to using a database?

[351]

Multiple Fun Projects Chapter 9

Further reading

We used Python code to perform basic CRUD operations on our database. It would be
worthwhile to note that as applications get larger and more complex, the programmer
should consider making use of an ORM (object-relational mapping) library instead of

direct CRUD operations. Read more about ORM and its benefits at http: //blogs.
learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/.

We used a thread lock as a synchronization primitive in 9.02_lock_demo.py. There are
several other synchronization primitives that could have been used instead. Learn about

other synchronization primitives at https://www.usenix.org/legacy/publications/
library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html.

Python Enhancement Proposals (PEPs) are official design documents or technical
specifications in the Python community that describe a new feature that has been
introduced in Python. For instance, PEP 3156 is the specification dealing with and
explaining the rationale behind the introduction of the asyncio module. You can read this

PEP document here:
https://www.python.org/dev/peps/pep—-3156/

The event loop in asyncio internally uses coroutines and futures to implement
asynchronous behavior. Learning how to use coroutines and futures can be a valuable tool
for writing more efficient and scalable programs.

Sockets are commonly used for interprocess communication. However, there are many
other methods for interprocess communication. A brief read of http://nptel.ac.in/
courses/lO6108lOl/pdf/Lecture_Notes/Mod%ZO7_LN.pdfiSWVEH‘NorﬂltheefﬁHt

[352]

http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
http://blogs.learnnowonline.com/2012/08/28/4-benefits-of-object-relational-mapping-orm/
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.usenix.org/legacy/publications/library/proceedings/bsdcon02/full_papers/baldwin/baldwin_html/node5.html
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
https://www.python.org/dev/peps/pep-3156/
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf
http://nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%207_LN.pdf

10

Miscellaneous Tips

We have reached the final chapter of this book. Let's end our discussion on Tkinter
by looking at some concepts that, though very common in many graphical user interface
(GUI) programs, did not appear in the previous chapters.

We will cover the following in this chapter:

Tracing Tkinter variables and attaching callbacks that are triggered when the
value of a variable changes

Understanding the default keyboard widget traversal rules to provide
a consistent user experience

Validating user inputs using built-in Tkinter mechanisms
Formatting a widget's content as the user interacts with the widget

Understanding how Tkinter handles fonts and the best practices involved
in using custom fonts in Tkinter

Redirecting the command-line output to Tkinter
Taking a look at the source code of Tkinter to understand class hierarchy

Highlighting some current best practices involved in program design and
implementation

Getting an insight into code cleanup and program optimization

Distributing Tkinter applications as standalone programs to end users
Understanding the limitations of Tkinter

Exploring alternatives to Tkinter and understanding when it is better to use them
instead of Tkinter and the tradeoffs involved

Backporting Tkinter programs are written in Python 3.x versions to older

Python 2.x versions

Let's begin!

Miscellaneous Tips Chapter 10

Tracing Tkinter variables

When you specify a Tkinter variable, such as textvariable, for a widget (textvariable
= myvar), the widget automatically gets updated whenever the value of the variable
changes. However, there might be times when, in addition to updating the widget, you
need to do some extra processing at the time of reading or writing (or modifying) the
variable.

Tkinter provides a method to attach a callback method that will be triggered every time the
value of a variable is accessed. Thus, the callback acts as a variable observer.

The callback creation method is named trace_variable (self, mode, callback) or
simply trace(self, mode, callback).

The mode argument can take a value of r, w, or u, which stand for read, write, or undefined.
Depending upon the mode specifications, the callback method is triggered when the
variable is read or written.

By default, the callback method gets three arguments. The arguments, in order of their
position, are as follows:

o The name of the Tkinter variable

¢ The index of the variable in case the Tkinter variable is an array, otherwise, it's an
empty string

e The access modes (r, w, or u)

Note that the triggered callback function may also modify the value of the
variable. However, this modification does not trigger additional callbacks.

Let's look at an example of variable tracing in Tkinter. Take a look at how a change in a
traced Tkinter variable triggers a callback (see code 10.01_trace_variable.py):
from tkinter import Tk, Label, Entry, StringVar
root = Tk()

my_variable = StringVar ()

def trace_when_my_variable_written(var, indx, mode):
print ("Traced variable {}".format (my_variable.get()))

my_variable.trace_variable ("w", trace_when_my_variable_written)

Label (root, textvariable = my_variable) .pack (padx=5, pady=5)
Entry(root, textvariable = my_variable) .pack (padx=5, pady=5)

[354]

Miscellaneous Tips Chapter 10

root.mainloop ()

The following line of code attaches a callback to trace the variable:

my_variable.trace_variable ("w", trace_when_my_variable_written)

Now, every time you write in the entry widget, it modifies the value of

my_variable. Because we have seta trace onmy_variable, it triggers the callback
method that, in our example, simply prints the new value into the console, as shown in
the following screenshot:

Terminal
Edit View Search Terminal Help

variable ; you
variable : you t
variable a you tr
variable : you tra
variable ; you trac
variable are you traci
variable ; you tracin
variable are you tracing
variable ; you tracing
variable : you tracing
variable are you tracing
variable : you tracing

are you tracing me ?

|amymﬁmdngmeﬂ

variable ; you tracing

The trace on a variable is active until it is explicitly deleted. You can delete a trace using
the following command:

trace_vdelete(self, mode, callback_to_be_deleted)

The t race method returns the ID and name of the callback method. This can be used to
get the name of the callback method that needs to be deleted.

[355]

Miscellaneous Tips Chapter 10

Widget traversal

If a GUI has more than one widget, a given widget can come under focus when

you explicitly click on the widget. Alternatively, the focus can be shifted to other widgets in
the order that the widgets were created in the program by pressing the Tab key on the
keyboard.

Therefore, it is vital to create widgets in the order that we want the user to traverse through
them. Otherwise, the user will have a tough time navigating between the widgets using the
keyboard.

Different widgets are designed to behave differently to different keyboard strokes.
Therefore, let's spend some time trying to understand the rules of traversing
through widgets using the keyboard.

Have alook at the 10.02_widget_traversal.py file to understand the keyboard
traversal behavior for different widgets. The code displays a window like the one shown in
the following screenshot:

Tabs jumps to next widget

S N

0 w1 T 2 = 3

Tabs does not jump to the next widget from inside the Text widget.
Use Ctrl + Tab to traverse

use left/right key
0

I

The code will not be given here as it is very simple (see
the 10.02_widget_traversal.py code). It simply adds an entry widget, a few buttons, a
few radio buttons, a text widget, a label widget, and a scale widget.

[356]

Miscellaneous Tips Chapter 10

The code demonstrates the default keyboard traversal behaviors for these widgets in

Tkinter.

The following are a few important points that you should note:

The Tab key can be used to traverse forward, and Shift + Tab can be used

to traverse backward.

A user can traverse through the widgets in the order that they were created. A
parent widget is visited first (unless it is excluded using takefocus =

0), followed by all of its children widgets.

You can use widget . focus_force () to force the input focus on a widget.

You cannot traverse a text widget by using the Tab key because the text widget
can contain tab characters as its content. Instead, the text widget can be traversed
by using Ctrl + Tab.

Buttons on the widget can be pressed using the spacebar. Similarly, check buttons
and radio buttons can also be traversed using the spacebar.

You can go up and down the items in a Listbox widget by using the up and down
arrows.

The Scale widget responds to the left and right arrow keys and the up and down
arrow keys. Similarly, the Scrollbar widget responds to the left/right or up/down
arrow keys, depending on their orientation.

By default, most of the widgets (except Frame, Label, and Menus) get an outline
when they have the focus set on them. This outline is normally displayed as a
thin black border around the widget. You can even set the Frame and Label
widgets to show this outline by setting the highlightthickness option to a
nonzero integer value for these widgets.

We can change the color of the outline by using highlightcolor= 'red' in the
code.

Frame, Label, and Menu are not included in the tab's navigation path. However,
they can be included in the navigation path by using the takefocus = 1 option.
You can explicitly exclude a widget from the tab's navigation path by using the
takefocus = 0 option.

[357]

Miscellaneous Tips Chapter 10

Validating user input

Let's discuss input data validation in Tkinter.

Most of the applications that we have developed in our book are point-and-click-based (the
drum machine, the chess game, and the drawing application), where a validation of user
input is not required. However, data validation is a must in programs such as the phone
book application, where a user enters some data and we store it in a database.

Ignoring user input validation can be dangerous in such applications because input data
can be misused for SQL injection. In general, an application in which a user can enter
textual data is a good candidate for the validation of user input. In fact, not trusting user
inputs is almost considered a maxim.

Wrong user inputs may be intentional or accidental. In either case, if you fail to validate or
sanitize data, unexpected errors may occur in your program. In a worst-case scenario, user
input can be used to inject harmful code that may be capable of crashing a program or
wiping out an entire database.

Widgets, such as Listbox, Combobox, and Radiobuttons, allow limited input options and
hence, they normally cannot be misused to input wrong data. On the other hand, widgets
such as the Entry widget, the Spinbox widget, and the Text widget allow a large possibility
of user inputs, and hence, they need to be validated for correctness.

To enable validation on a widget, you need to specify an additional option of the validate
= 'validationmode' form to the widget.

For example, if you want to enable validation on an Entry widget, you begin by specifying
the validate option, as follows:

Entry(root, validate="all", validatecommand=vcmd)

Validation can occur in one of the following validation modes:

Validation Mode | Explanation

This is the default mode. No validation occurs if validate is set to
none.

none

When validate is set to focus, the validate command is
focus called twice—once when the widget receives focus, and once when
the focus is lost.

focusin The validate command is called when the widget receives focus.

[358]

Miscellaneous Tips Chapter 10

focusout The validate command is called when the widget loses focus.
key The validate command is called when the entry is edited.
all The validate command is called in all the aforementioned cases.

The 10.03_validation_mode_demo.py code file demonstrates all of these

validation modes by attaching them to a single validation method. In the code, note the
different ways in which different Entry widgets respond to different events. Some Entry
widgets call the validation method on the focus events, others call the validation
method at the time of entering keystrokes into a widget, and still others use a combination
of the focus and key events.

Although we did set the validation mode to trigger the validate method, we need some
data to validate against the rules. This is passed to the validate method using percent
substitution. For instance, we passed the mode as an argument to the

validate method by performing a percent substitution on the validate command, as
demonstrated in the following command:

vemd = (self.root.register(self.validate_data), '%V')

This was followed by passing the value of v as an argument to the validate method:

def validate_data(self, v)

In addition to %V, Tkinter recognizes the following percent substitutions:

Percent substitutions | Explanation
oy The type of action that is performed on a widget (1 for insert, 0
° for delete, and -1 for a focus, forced, or textvariable validation).
aq The index of the char string that is inserted or deleted, if
’ any. Otherwise, it will be -1.
The value of the entry in case the edit is allowed. If you are
%P configuring the Entry widget to have a new textvariable, this
will be the value of that textvariable.
$s The current value of the entry prior to editing.
%S The text string being inserted or deleted if any. Otherwise, { }.
sv The type of validation that has been currently set.

[3591]

Miscellaneous Tips Chapter 10

oy The type of validation that triggers the callback method (key,
° focusin, focusout, and forced).
W The name of the Entry widget.

These substitution values provide us with the necessary data to validate the input.

Let's pass all of these values and just print them through a dummy validate method just
to see what kind of data that we can expect to get on carrying out the validations (see
the 10.04_percent_substitutions_demo.py code):

class PercentSubstitutionsDemo () :
def _ _init_ (self):

self.root = tk.Tk()

tk.Label (text="Type Something Below') .pack ()

vemd = (self.root.register(self.validate), '%d', '%i', '&P', 'S%s',
'$S', 'sv', 'sV', 'SW')

tk.Entry(self.root, validate="all", validatecommand=vcmd) .pack ()

self.root.mainloop ()

def validate(self, d4, i, P, s, S, v, V, W):
print ("Following Data is received for running our validation checks:")

print ("d:{}".format (d))
print ("i:{}".format (1))
print ("P:{}".format (P))
print ("s:{}".format (s))
print ("S:{}".format (S))
print ("v:{}".format (v))
print ("V:{}".format (V))

print ("W:{}".format (W))

returning true for now

in actual validation you return true if data is valid
else return false

return True

Note the line where we register a validate method by passing all the possible percent
substitutions to the callback.

Take particular note of the data returned by %P and %s because they pertain to the actual
data entered by the user in the Entry widget. In most cases, you will be checking either of
these two data sources against the validation rules.

Now that we have a background of rules for data validation, let's have a look at
two practical examples that demonstrate input validation.

[360]

Miscellaneous Tips Chapter 10

Key validation mode demo

Let's assume that we have a form that asks for a username. We want users to input only
alphabetical or space characters in the name. Thus, a number of special characters should
not be allowed, as shown in the following screenshot of the widget:

Enter your name / only alpabets & space allowed

|Bha5kar| |

Invalid character @
name can only have alphabets and spaces

This is clearly a case for the key validation mode because we want to check whether an
entry is valid after every keypress. The percent substitution that we need to check is %S
because it yields the text string being inserted or deleted in

the Entry widget. Therefore, the code that validates the Entry widget is as follows (see
the 10.05_key_validation.py code):

import tkinter as tk

class KeyValidationDemo () :
def _ _init__ (self):
root = tk.Tk()
tk.Label (root, text='Enter your name / only alpabets & space
allowed') .pack ()
vemd = (root.register(self.validate_data), '%S'")
invemd = (root.register(self.invalid_name), '%S'")
tk.Entry(root, validate="key",validatecommand=vcmd,
invalidcommand=invcmd) .pack (pady=5, padx=5)
self.error_message = tk.Label (root, text='"', fg='red')
self.error_message.pack ()
root.mainloop ()

def validate_data(self, S):
self.error_message.config(text="'")
return (S.isalpha() or S == "' ")

def invalid_name (self, S):
self.error_message.config(text="'Invalid character %s \n
name can only have alphabets and spaces' % S)
app = KeyValidationDemo ()

[361]

Miscellaneous Tips Chapter 10

The description of the preceding code is as follows:

» We first register two options, namely validatecommand (vemd)
and invalidcommand (invemd).

¢ In the example, validatecommand is registered to call the
validate_data method, and the invalidcommand option is registered to call
another method named invalid_name.

¢ The validatecommand option specifies a method that needs to be evaluated,
which will validate the input. The validation method must return a Boolean
value, where True signifies that the data entered is valid, and a False return
value signifies that the data is invalid.

¢ In case the validate method returns False (invalid data), no data is added to the
Entry widget and the script registered for invalidcommand is evaluated. In our
case, a False validation will call the invalid_name method. The
invalidcommand method is generally responsible for displaying error messages
or setting back the focus to the Entry widget.

Focus-out validation mode demo

The previous example demonstrated validation in the key mode. This means that the
validation method was called after every keypress to check whether an entry was valid.

However, there are situations where you might want to check the entire string entered into
the widget rather than checking individual keystroke entries.

For example, when an Entry widget accepts a valid email address, we would ideally like to
check the validity after the user has entered the entire email address and not after every
keystroke entry. This will qualify for a validation in the focusout mode.

Check out 10.06_focus_out_validation.py for a demonstration of email validation in
the focusout mode, which gives us the following GUI:

Invalid Email Address
Enter Email Address
bhaskar@nosuchmail

Login |

[362]

Miscellaneous Tips

Chapter 10

The code for the aforementioned demo is as follows:

import tkinter as tk
import re

class FocusOutValidationDemo () :
def _ _init_ (self):
self.master = tk.Tk ()
self.error_message = tk.Label (text='"', fg='red')
self.error_message.pack ()
tk.Label (text="'Enter Email Address') .pack()
vemd = (self.master.register(self.validate_email), 'SP')
invemd = (self.master.register(self.invalid_email), '&P')
self.email_entry = tk.Entry(self.master, validate="focusout",
validatecommand=vcemd, invalidcommand=invcmd)
self.email_entry.pack()
tk.Button(self.master, text="Login") .pack()
tk.mainloop ()

def validate_email (self, P):
self.error_message.config(text="'")
X = re.match(r"["Q]1+@["Q]+\.["@]+", P)
return (x != None)

def invalid_email (self, P):
self.error_message.config(text='Invalid Email Address')

self.email_entry.focus_set ()

app = FocusOutValidationDemo ()

This code has a lot of similarities to the previous validation example. However, note the

following differences:

¢ The validate mode is set to focusout in contrast to the key mode in the previous
example. This means that the validation will be done only when the Entry widget
loses focus. The validation occurs when you hit the Tab key. Thus, the input box
does not lose its focus in case the input is invalid.

¢ This program uses data provided by the $P percentage substitution, while the
previous example used %s. This is understandable because $P provides the value
entered in the Entry widget, but ¢S provides the value of the last keystroke.

¢ This program uses regular expressions to check whether the entered
value corresponds to a valid email format. Validation usually relies on
regular expressions. A whole lot of explanation is required to cover this topic, but
that is beyond the scope of this book. For more information on regular
expression modules, visit http://docs.python.org/3.6/1library/re.html.

[363 1]

http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html
http://docs.python.org/3.6/library/re.html

Miscellaneous Tips Chapter 10

This concludes our discussion on input validation in Tkinter. Hopefully, you should now be
able to implement input validation to suit your custom needs.

Formatting widget data

Input data such as date, time, phone number, credit card number, website URL, and IP
number, have an associated display format. For instance, the date can be better represented
inaMM/DD/YYYY format.

Fortunately, it is easy to format data in the required format as the user enters it in
the widget, as shown in the following screenshot:

Date(MM/DD/YYYY)

|08/02/2014 |

The 10.07_formatting_entry_widget_to_display_date.py code
automatically formats user input to insert forward slashes at the required places to display
the date entered by a user in the MM/DD/YYYY format:

from tkinter import Tk, Entry, Label, StringVar, INSERT

class FormatEntryWidgetDemo:

def _ _init_ (self, root):
Label (root, text='Date (MM/DD/YYYY) ') .pack ()
self.entered_date = StringVar()

self.date_entry = Entry(textvariable=self.entered_date)
self.date_entry.pack (padx=5, pady=5)
self.date_entry.focus_set ()

self.slash_positions = [2, 5]

root.bind('<Key>', self.format_date_entry_widget)

def format_date_entry_widget (self, event):
entry_list = [c for ¢ in self.entered_date.get() if c !='/"]
for pos in self.slash_positions:
if len(entry_list) > pos:

entry_list.insert (pos, '/'")
self.entered_date.set (''.Jjoin(entry_1list))
Controlling cursor
cursor_position = self.date_entry.index (INSERT) # current cursor
position

[364]

Miscellaneous Tips Chapter 10

for pos in self.slash_positions:

if cursor_position == (pos + 1): # if cursor position is on slash
cursor_position += 1
if event.keysym not in ['BackSpace', 'Right', 'Left',6 'Up', 'Down']:

self.date_entry.icursor (cursor_position)

root = Tk ()
FormatEntryWidgetDemo (root)
root.mainloop ()

The description of the preceding code is as follows:

e The Entry widget is bound to the keypress event, where every new keypress calls
the related format_date_entry_widget callback method.

e First, the format_date_entry_widget method breaks down the entered
text into an equivalent list named entry_1list and ignores the slash/symbol that
may have been entered by a user.

e It then iterates through the self.slash_positions list and inserts the
slash symbol at all the required positions in entry_1ist. The net result of this
is a list that has slashes inserted at all the right places.

e The next line converts this list into an equivalent string using join () and then
sets the value of the Entry widget to this string. This ensures that the Entry
widget text is formatted into the aforementioned date format.

¢ The remaining pieces of code simply control the cursor to ensure that the cursor
advances by one position whenever it encounters the slash symbol. It also
ensures that keypresses, such as Backspace, right, left, up, and down are handled
properly.

Note that this method does not validate the date value, and users may add an invalid date.
The method defined here will simply format it by adding a forward slash at the third and
sixth positions. Adding date validation to this example is left as an exercise for you to
complete.

This concludes our brief discussion on formatting data within widgets. Hopefully, you
should now be able to create formatted widgets for a wide variety of input data that can be
better displayed in a given format.

[365]

Miscellaneous Tips Chapter 10

More on fonts

Many Tkinter widgets let you specify custom font specifications either at the time of widget
creation or later by using the configure () option. For most cases, default fonts provide a
standard look and feel. However, if you want to change font specifications, Tkinter lets you
do so. There is one caveat, though.

When you specify your own font, you need to make sure that it looks good on all

the platforms where your program is intended to be deployed because a font might
look good on a particular platform, but it may look awful on another platform. Unless
you know what you are doing, it is always advisable to stick to Tkinter's default fonts.

Most platforms have their own set of standard fonts that are used by the platform's native
widgets. So, rather than trying to reinvent the wheel on what looks good on a given
platform or what would be available for a given platform, Tkinter assigns these standard
platform-specific fonts to its widget, thus providing a native look and feel on every
platform.

Tkinter assigns nine fonts to nine different names; you can use these fonts in
your programs. The font names are as follows:

e TkDefaultFont

e TkTextFont

e TkFixedFont

e TkMenuFont

e TkHeadingFont

e TkCaptionFont

e TkSmallCaptionFont
e TkIconFont

e TkTooltipFont

Accordingly, you can use them in your programs in the following way:

Label (text="Sale Up to 50% Off !", font="TkHeadingFont 20")
Label (text="**Conditions Apply", font="TkSmallCaptionFont 8")

Using these kinds of fonts markups, you can rest assured that your font will look native
across all platforms.

[366]

Miscellaneous Tips Chapter 10

Finer control over font

In addition to the aforementioned method of handling fonts, Tkinter provides a separate
Font class implementation. The source code for this class is located in the same folder as the
source code for Tkinter.

On my Linux machine, the source code is located in
/usr/local/lib/python3.6/tkinter/font.py. On Windows (with a default Python

3.6 install) the location is C: \Program Files
(x86) \Python36-32\Lib\tkinter\font.py.

To use this module, you need to import fonts into your namespace, as follows (see
the 10.08_font_demo.py code):

from tkinter import Tk, Label, Pack
from tkinter import font

root = Tk ()

label = Label (root, text="Humpty Dumpty was pushed")

label.pack ()

current_font = font.Font (font=label['font'])

print ('Actual :', str(current_font.actual()))

print ('Family : ', current_font.cget ("family"))

print ('Weight : ', current_font.cget ("weight"))

print ('Text width of Dumpty : {}'.format (current_font.measure ("Dumpty")))
print ('Metrics:', str(current_font.metrics()))

current_font.config(size=14)
label.config(font=current_font)
print ('New Actual :', str(current_font.actual()))

root.mainloop ()

The console output of this program on my terminal is as follows:

Actual: {'slant': 'roman', 'underline': 0, 'family': 'DejaVu Sans',
'weight': 'normal', 'size': -12, 'overstrike': 0}

Family: DejaVu Sans

Weight: normal

Text width of Dumpty: 49

Metrics: {'fixed': 0, 'descent': 3, 'ascent': 12, 'linespace':15}

New actual: {'slant': 'roman', 'underline': 0, 'family': 'DejaVu Sans',
'weight': 'normal', 'size': 14, 'overstrike': 0}

As you can see, the font module provides much better fine-grained control over various
aspects of fonts that are otherwise inaccessible.

[367]

Miscellaneous Tips Chapter 10

Building a font selector

Now that we have seen the basic features that are available in Tkinter's font module, let's
implement a font selector like the one shown in the following screenshot:

Font Family Font Size
Times New Roman = (12 -
[bold [italic v underline [overstrike

The quick brown fox jumps over the lazy dog
THE QUICK BROWN FOX JUMPS OVER THE LAZY DOG

The key to building the font selector shown in the preceding screenshot is to fetch a list of
all the fonts installed on a system. A call to the families () method from the font module
fetches a tuple of all the fonts available on a system. Accordingly, when you run the
following code, a tuple of all the fonts available on the system gets printed (see

the 10.09_all_fonts_on_a_system.py code):

from tkinter import Tk, font

root = Tk()

all_fonts = font.families ()

print (all_fonts) # this prints the tuple containing all fonts on a system.

Note that since font is a submodule of Tkinter, it needs an instance of Tk (), which loads
the Tcl interpreter, before it can fetch the tuple.

Now that we have a tuple of all the fonts available on a system, we just need to create the
GUI shown in the preceding screenshot and attach relevant callbacks to all the widgets.

We will not discuss the code that creates the GUI shown in the preceding screenshot. Check
out 10.10_font_selector.py for the complete code. However, note that the code

attaches the following callback to all the widgets:

def on_value_change (self, event=None):
self.current_font.config(family=self.family.get (), size=self.size.get(),
weight=self.weight.get (), slant=self.slant.get (),
underline=self.underline.get (),
overstrike=self.overstrike.get ())
self.text.tag_config('fontspecs', font=self.current_font)

[368]

Miscellaneous Tips Chapter 10

Here, fontspecs is a custom tag that we attached to the sample text in the text widget, as
follows:

self.text.insert (INSERT, '{}\n{}'.format (self.sample_text,
self.sample_text.upper()), 'fontspecs')

This concludes our brief discussion on playing with fonts in Tkinter.

Redirecting the command-line output to
Tkinter

You may occasionally need to redirect the output of a command line to a GUI such as
Tkinter. The ability to pass outputs from the command line to Tkinter opens a large pool of
possibilities for using the inherent powers of the shell on Unix and Linux operating systems
and the Windows shell on a Windows machine.

We will demonstrate this by using the subprocess Python module, which lets us spawn
new processes, connect to the input, output, and error pipes of this new process, and obtain
the return codes from the programs.

A detailed discussion on the subprocess module can be found at https://docs.python.
org/3/library/subprocess.html.

We will use the Popen class from the subprocess module to create a new process.

The Popen class provides a cross-platform way to create new processes, and it has the
following long signature to handle most of the common and esoteric use cases:

subprocess.Popen (args, bufsize=-1, executable=None, stdin=None,
stdout=None, stderr=None, preexec_fn=None, close_fds=True, shell=False,
cwd=None, env=None, universal_newlines=False, startupinfo=None,
creationflags=0, restore_signals=True, start_new_session=False,
pass_~fds=())

Here's a simple program that shows how we can redirect the output of the 1s Bash shell
command to Tkinter's text widget. As a reminder, the 1s command in the Bash scripting
language returns a list of all files and directories (see

the 10.11_reading_from_command_line.py code):

from tkinter import Tk, Text, END
from subprocess import Popen, PIPE
root = Tk()

[369 1]

https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html
https://docs.python.org/3/library/subprocess.html

Miscellaneous Tips Chapter 10

text = Text (root)
text.pack ()

#replace "1ls" with "dir" in the next line on windows platform
with Popen(["1ls"], stdout=PIPE, bufsize=1, universal_newlines=True) as p:
for line in p.stdout:
text.insert (END, line)

root.mainloop ()

Windows users should note that you will have to replace 1s with dir in the highlighted
part of the preceding code to get an equivalent result.

Furthermore, note that you can pass extra arguments to Popen by using the following
format:

Popen (['your command', arg0, argl, ...])

Even better, you can pass the name of the script file that needs to be executed in the new
process. The code used to run a script file is as follows:

Popen ('path/toexecutable/script', stdout=sub.PIPE, stderr=sub.PIPE)

However, the script file that needs to be executed must include a proper

shebang declaration to let the program choose a proper executing environment for
your script. For instance, if you intend to run a Python script, your script must begin
with the shebang of the #! /usr/bin/env python3 form. Similarly, you need to
include #!/bin/sh to run a Bourne-compatible shell script. A shebang isn't necessary
on Windows. It is also not required for binary executables.

Running the preceding program produces a window, and a listing of all the files from the
current directory are added to the text widget, as shown in the following screenshot:

tk [x]

10.081 trace variable.py

10.082 widget traversal.py

168.83 validation_mode demo.py

10.04 percent substitutions _demo.py
10.85 key validation.py

10.06 focus out walidation.py

10.87 formatting_entry widget to display date.py
16.88 font_demo.py

16.089_all fonts_on_a_system.py

10.10 font selector.py

10.11 reading from command line.py
18.12 tkinter_class_hierarchy.py

[370]

Miscellaneous Tips Chapter 10

While the preceding program is simple, this technique can have a lot of practical uses. For
instance, you may recall that we built a chat server in the previous chapter. Every time a
new client connected to the server, it printed the client details to the terminal. We could
have easily redirected that output into a new Tkinter app. This would enable us to create a
dashboard for the server; from there, we could have monitored all the incoming
connections to the server.

This opens the door for us to reuse any command-line script written in any other
programming language, such as Perl or Bash, and directly integrate it with a Tkinter
program.

This concludes the brief section on the redirection of command-line outputs into Tkinter
programs.

The class hierarchy of Tkinter

As programmers, we hardly need to understand the class hierarchy of Tkinter. After all, we
have been able to code all the applications so far without bothering with the overall class
hierarchy. However, knowing the class hierarchy enables us to t race the origin of a
method within the source code or source documentation of a method.

In order to understand the class hierarchy of Tkinter, let's take a look at the source code of
Tkinter. On the Windows installation, the source code of Tkinter is located
atpath\of\Python\Installation\Lib\tkinter\.On my Linux machine, the

source code is located at /usr/1lib/python3.6/tkinter/ .

[371]

Miscellaneous Tips

Chapter 10

If you open the

definitions in Tkinter, you will see the following structure:

CodeBrowser

L. WRITABLE [51]

= Lﬁ Class Deﬁnltlnns

. {ﬁ Booleanvar [304]
[+ Button [2023]
&-d CallWrapper [1397]
&-d Canvas [2102]
& Checkbutton [2347]
&-& DoubleVar [235]
i - Entry [2372]

----- - Event [34]

& Frame [2437]
-d Grid [1879]

&-d Image [3177]
&-d Intvar [250]
-2 Label [2455]
-2 LabelFrame [3457]
-2 Listbox [2477]
&-d Menu [2571]
{ﬁ Menubutton [2653]

l lﬁ Pack [1784]

- {ﬂ PanedWindow [3489]
-4 Photolmage [3237]
-4 Place [1329]

-4 Radiobutton [2702]
-4 Scale [2729]

-4 Scrolbar [2752]
-4 Spinbox [3309]
-4 Stringvar [238]

l lﬁ Studbutton [3686]

& -4 Yview [1438]

So, what can you see here? We have class definitions for each core Tkinter widget.

__init__ .py file from this folder in a code editor and look at its list of class

In addition to this, we have class definitions for different geometry managers and variable
types defined within Tkinter. These class definitions are what you would normally expect

to be there.

However, in addition to these, you will see some more class names, such as BaseWidget,
Misc, Tk, Toplevel, Widget, and Wm. All of these classes are circled in the preceding
screenshot. So, what services do these classes provide, and where do they fit in the larger

scheme of things?

[372]

Miscellaneous Tips Chapter 10

Let's use the inspect module to look at the class hierarchy of Tkinter. We will first inspect
the class hierarchy of the Frame widget as a representation of class hierarchies for all the
other widgets. We will also look at the class hierarchy of

the Tk and Toplevel classes to estimate their role in the overall class hierarchy of Tkinter
(10.12_tkinter_class_hierarchy.py):

import tkinter
import inspect

print ('Class Hierarchy for Frame Widget')

for i, classname in enumerate (inspect.getmro (tkinter.Frame)) :
print ("\t{}: {}'.format (i, classname))

print ('Class Hierarchy for Toplevel')
for i, classname in enumerate (inspect.getmro (tkinter.Toplevel)):
print ('"\t{}:{}'.format (i, classname))

print ('Class Hierarchy for Tk')
for i, classname in enumerate (inspect.getmro (tkinter.Tk)):
print ('"\t{}: {}'.format (i, classname))

The output of the preceding program is as follows:

Class Hierarchy for Frame Widget
0: <class 'tkinter.Frame'>
<class 'tkinter.Widget'>
<class 'tkinter.BaseWidget'>
<class 'tkinter.Misc'>
<class 'tkinter.Pack'>
<class 'tkinter.Place'>
<class 'tkinter.Grid'>
7: <class 'object'>
Class Hierarchy for Toplevel
O:<class 'tkinter.Toplevel'>
l:<class 'tkinter.BaseWidget'>
2:<class 'tkinter.Misc'>
3:<class 'tkinter.Wm'>
4:<class 'object'>
Class Hierarchy for Tk
0: <class 'tkinter.Tk'>
1: <class 'tkinter.Misc'>
2: <class 'tkinter.Wm'>
3: <class 'object'>

ol WDN K

[373]

Miscellaneous Tips Chapter 10

The description of the preceding code is as follows:

e The getmro(classname) function from the inspect module returns a
tuple consisting of all the ancestors of c1assname in the order specified by
the method resolution order (MRO). MRO refers to the order in which base
classes are searched when looking for a given method.

¢ By inspecting the MRO and the source code, you will come to know that the
Frame class inherits from the Widget class, which in turn inherits from the
BaseWidget class.

e The widget class is an empty class with the following class definition: class
Widget (BaseWidget, Pack, Place, Grid).

¢ As you can see, this is how methods defined in the geometry manager (the pack,
place, and grid mix-ins) are made available to all the widgets.

¢ The BaseWidget class has the following class definition: class
BaseWidget (Misc). This class exposes the destroy method that can be used by
programmers.

e All the utility methods defined in the Misc class are made available to the
widgets at this hierarchy level.

e The Misc class is a generic mix-in that provides a lot of functionality that we have
used in our applications. Some of the methods that we have used in
our programs, as defined within the Misc class, are after (), bbox (),
bind_all(),bind_tag(), focus_set (), mainloop (), update (),
update_idletask (), and winfo_children (). For a complete list of
functionalities provided by the Misc class, run the following commands in the
Python interactive shell:

>>> import tkinter
>>> help (tkinter.Misc)

Now, let's take a look at the Tk and Toplevel classes:

¢ The Tk class returns a new Toplevel widget on the screen. The
__init__ method of the Tk class is responsible for the creation of a new Tcl
interpreter by calling a method named loadtk (). The class defines a
method named report_callback_exception (), which is responsible for
the reporting of errors and exceptions on sys.stderr.

[374]

Miscellaneous Tips Chapter 10

e The __init__ method of the Toplevel class of Tkinter is responsible for the
creation of the main window of an application. The constructor of the class takes
various optional arguments such as bg, background, bd, borderwidth, class,
height, highlightbackground, highlightcolor, highlightthickness,
menu, and relief.

¢ To obtain a list of all the methods provided by the Toplevel and Tk classes, run
the following command in the Python interactive shell:
help (tkinter.Toplevel); help(tkinter.Tk).

e In addition to inheriting from the Misc mixin class, the Toplevel and Tk classes
also inherit methods from the wm mixin class.

¢ The wm (short for the Window manager) mixin class provides many methods to
let us communicate with the window manager. Some commonly used methods
from this class include wm_iconify, wm_deiconify, wm_overrideredirect,
title, wm_withdraw, wm_transient, and wm_resizable. For a complete list of
functions provided by the Wm class, run the following command in the Python
interactive shell: help (tkinter.Wm).

After translating the class hierarchy, as obtained from the previous program and
by inspecting the source code, we get a hierarchy structure of Tkinter, as shown in
the following diagram:

BaseWidget

v » P
'y

Widget Toplevel Tk

I 1
1 1
. v o Wmo
—— Inheritance i |

o Frame
Mixins (similarly all other widgets)

[375]

Miscellaneous Tips Chapter 10

In addition to the normal inheritance relation, which is shown in the preceding diagram
with the help of unbroken lines, Tkinter provides a list of mixins (or helper classes).

A nixinis a class that is designed not to be used directly, but to be combined with other
classes using multiple inheritances.

Tkinter mixins can be broadly classified into the following two categories:

e Geometry mixins: These include the Grid, Pack, and Place classes
¢ Implementation mixins: These include the following classes:
e The Misc class, which is used by the root window and widget
classes, provides several Tk and window-related services
e The wm class, which is used by the root window and the
Toplevel widget, provides several window manager services

This concludes our brief under-the-hood tour of Tkinter. Hopefully, this should give you
some insight into the inner workings of Tkinter. If you ever have a doubt about the
documentation of any given method, you can take a peek directly into the

actual implementation of the method.

Tips for program design

Let's take a look at a few generic tips for program design.

The model-first policy versus the code-first policy

A well-designed model is half the work done. That said, the model is sometimes not

very evident when you start writing the program. In such cases, you can break the rules and
try out the code-first philosophy. The idea is to build your program incrementally from the
ground up, refactor your code, and model, as your vision for the program becomes clearer.

Separating the model from the view

The need to separate the model or data structure from the view is the key to
building scalable applications. While it is possible to intermix the two components, you
will soon find your program getting messy and difficult to maintain.

[376]

Miscellaneous Tips Chapter 10

Selecting the right data structure

Selecting the right data structure can have a profound impact on the performance of a
program. If your program requires you to spend considerable time on lookups, use a
dictionary, if feasible. When all that you need is to traverse over a collection, prefer lists
over dictionaries because dictionaries take up more space. When your data is immutable,
prefer tuples over lists because tuples can be traversed faster than lists.

Naming variables and methods

Use meaningful and self-documenting names for your variables and methods. The name
should leave no scope for confusion about the intent of the variable or the method. Use
plural names for collections and singular names otherwise. Methods that return Boolean
values should be appended with words such as is or has. Stick to the style guidelines, but
you should also know when to break them.

The Single Responsibility Principle
The Single Responsibility Principle suggests that a function/class/method should do only

one thing and that it should do it all and do it well. This means that we should not try to
handle multiple things from within a function.

Loose coupling

Whenever possible, reduce coupling or dependence in your program. The following is a
famous quote on this subject:

All problems in computer science can be solved by another level of indirection.
— David Wheeler

Let's suppose that your program has a play button. An immediate impulse may be to link it
to the play method of your program. However, you can further break it up into two
methods. You could probably link the play button to a method

named on_play_button_clicked, which in turn calls the actual play method. The
advantage of this is that you may want to handle additional things when the play button

is clicked, such as displaying the current track information somewhere in your program.

[377]

Miscellaneous Tips Chapter 10

Thus, you can now use the on_play_button_clicked method to decouple the click event
from the actual play method and then handle calls to multiple methods.

However, you must resist the temptation of adding too many levels of indirection, as your
program may quickly start getting messy and it may get out of control.

Handling errors and exceptions

Python follows the EAFP (short for easier to ask for forgiveness than permission) style of
coding as opposed to the LBYL (look before you leap) style that is followed by most
programming languages.

Therefore, handling exceptions in a way that is similar to the following one is normally
cleaner in Python than checking conditions using the if-then block.

So when coding in Python, rather than using the following style in coding:

if some_thing_wrong:
do_something_else()

else:
do_something_normal ()

Consider using this instead:

try:
do_some_thing_normal ()

except some_thing_wrong:
do_some_thing_else()

Handling cross-platform differences

Even though Tkinter is a cross-platform module, you might come across occasions when
code written for one operating system might not work as expected on other operating
systems. We already saw one such example in the case of getting command-line results in
the previous Redirecting the command-line output to Tkinter. In such cases, you can
overcome these cross-platform discrepancies by first identifying the operating system on
which the program is being run and then using a conditional statement to run different
lines of code for different operating systems.

[378]

Miscellaneous Tips Chapter 10

Here's a brief snippet that demonstrates this concept:

from platform import uname

operating_system = uname () [0]

if (operating_system == "Linux"):
canvas.bind ('<Button-4>', wheelUp) # X11
canvas.bind('<Button-5>', wheelDown)

elif (operating_system == "Darwin"):
canvas.bind('<MouseWheel>"', wheel) # MacOS
else:

canvas.bind_all ('<MouseWheel>"', wheel) # windows

The particular problem here is that the mouse wheel event is denoted by

the <MouseWheel> event name on Windows and macOS, but as <Button-4> and
<Button-5> on Linux distributions. The preceding code uses the platform module of
Python to identify the operating system and follows a different line of code for different
operating systems.

Tips for program optimization

Next, let's take a look at some generic tips to optimize your programs.

Using filter and map

Python provides two built-in functions, named filter and map, to manipulate collections
directly rather than having to iterate over each item in the collection. The filter, map, and
reduce functions are faster than loops because a lot of the work is done by the underlying
code written in C.

The filter (function, 1list) function returns a list (iterators in Python 3.x) that
contains all the items for which the function returns a true value. The following command is
an example:

print filter (lambda num: num>6, range(l,10))# prints [7, 8,9]

This is faster than running a conditional if-then check against the list.

[379]

Miscellaneous Tips Chapter 10

The map (function_name, list) function applies function_name to each item in the list
and returns the values in a new list (returns iterators instead of lists in Python 3.x). The
following command is an example:

print map (lambda num: num+5, range(l1,5)) #prints [6, 7, 8,9]

This is faster than running the list through a loop and adding 5 to each element.

Optimizing variables

The way you select variables in your program can considerably affect the speed of the
execution of your program. For instance, if you do not need to change the content or
attributes of a widget after its instantiation, do not create a class-wide instance of the
widget.

For example, if a Label widget needs to remain static, use Label (root,
text='Name') .pack (side=LEFT) instead of using the following snippet:

self.mylabel = Label (root, text='Name')
self.mylabel.pack (side=LEFT)

Similarly, do not create local variables if you are not going to use them more than once. For
example, use mylabel.config (text= event.keysym) instead of first creating a local
variable named key and then using it only once:

key = event.keysym
mylabel.config (text=key)

If the local variable needs to be used more than once, it may make sense to create a local
variable.

Profiling your program

Profiling involves generating detailed statistics to show how often and for how long various
routines of a program execute. This helps you isolate the offending parts of a program, and
those parts probably need redesigning.

Python provides a built-in module named cProfile, which enables the generation

of detailed statistics pertaining to a program. The module gives details such as the
total program running time, the time taken to run each function, and the number of
times each function is called. These statistics make it easy to determine the parts of the
code that need optimization.

[380]

Miscellaneous Tips Chapter 10

In particular, cProfile provides the following data for a function or script:

e ncalls: This indicates the number of times a function is called

e tottime: This indicates the time spent on a function, which excludes the
time spent on calling other functions

e percall: Thisis tottime divided by ncalls

e cumtime: This indicates the time spent on a function, including calls to other
functions

e percall: Thisis cumtime divided by tottime

To profile a function named spam (), use the following code:

import cProfile
cProfile.run('spam() "', 'spam.profile')

You can then view the results of profiling by using another module called pstats, as
follows:

import pstats
stats = pstats.Stats('spam.profile')
stats.strip_dirs () .sort_stats('time') .print_stats()

More importantly, you can profile an entire script. Let's assume that you want to profile a
script named myscript.py. You can simply navigate to the directory of the script using a
command-line tool and then type and run the following command:

python —-m cProfile myscript.py

Here's a partial output from running the preceding command on the
8.08_vornoi_diagram code from chapter 8, Fun With Canvas:

57607465 function calls (57607420 primitive calls) in 110.040 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno (function)

1 50.100 50.100 95.452 95.452
8.09_vornoi_diagram.py:15(create_voronoi_diagram)

1 0.000 0.000 110.040 110.040 8.09_vornoi_diagram.py:5 (<module>)

400125 2.423 0.000 14.616 0.000 __init_ .py:2313(_create)

400125 0.661 0.000 15.277 0.000 __init_ .py:2342 (create_rectangle)

400128 1.849 0.000 2.743 0.000 __init__ .py:95(_cnfmerge)

625 0.001 0.000 0.003 0.000 random.py:170 (randrange)

625 0.002 0.000 0.002 0.000 random.py:220(_randbelow)

50400000 30.072 0.000 30.072 0.000 {built-in method math.hypot}

1 14.202 14.202 14.358 14.358 {method 'mainloop' of '_tkinter.tkapp'
objects}

[381]

Miscellaneous Tips Chapter 10

I specifically chose to profile this program because it takes a long time to execute. In this
case, it took ~110 seconds to run and most of the time was spent running the
create_vornoi_diagram function (~95 seconds). So now this function is a perfect
candidate for optimization.

In addition to the cProfile module, there are other modules, such as PyCallGraph and
objgraph, and they provide visual graphs for the profile data.

Other optimization tips

Optimization is a vast topic, and there is a lot that you can do. If you are interested in
knowing more about code optimization, you can start with the official Python optimization
tips that are available at http://wiki.python.org/moin/PythonSpeed/PerformanceTips.

Distributing a Tkinter application

So, you have your new application ready and want to share it with the rest of the world.
How do you do that?

You, of course, need Python installed for your programs to run. Windows does not have
Python preinstalled. Most modern Linux distributions and macOS have Python
preinstalled, but you don't need just any version of Python. You need a version of Python
that is compatible with the version on which the program was originally written.

Furthermore, if your program uses third-party modules, you need the appropriate module
installed for the required Python version. This surely is too much diversity to handle.

Fortunately, we have tools, such as Freeze tools, that allow us to distribute Python
programs as standalone applications.

Given the diversity of platforms that need to be handled, there are a large number of Freeze
tool options from which you can choose. Therefore, a detailed discussion on any one of
these tools is beyond the scope of this book.

We will list some of the most evolved freezing tools in the following sections. If you find a
tool that fits into your distribution requirements, you can look at its documentation for
more information.

[382]

http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips
http://wiki.python.org/moin/PythonSpeed/PerformanceTips

Miscellaneous Tips Chapter 10

py2exe

If you only need to distribute your Python application on Windows, py2exe is perhaps the
most hardened tool. It converts Python programs into executable Windows programs that
can run without requiring a Python installation.

More information, a download link, and tutorials on this are available at http://www.
py2exe.org/.

py2app

The py2app performs the same tasks in macOS that py2exe does for Windows. If you just
need to distribute your Python application on macOS, py2app is a time-tested tool. More
information is available at https://pythonhosted.org/py2app/.

Pylinstaller

PyInstaller has gained popularity as a freezing tool in the last few years because it supports
a wide variety of platforms, such as Windows, Linux, macOS X, Solaris, and AIX.

In addition, executables created using Pylnstaller claim to take up less space than other
freezing tools because it uses transparent compression. Another important feature of
PyInstaller is its out-of-the-box compatibility with a large number of third-party
packages. The full list of features, downloads, and documentation can be viewed by
visiting http://www.pyinstaller.org/.

Other freezing tools

The following are a few other freezing tools:

e Freeze: This tool is shipped with the standard Python distribution. Freeze can
only be used to compile executables on Unix systems. However, the program is
overly simplistic, as it fails to handle even the common third-party libraries. More
information on this is available at http://wiki.python.org/moin/Freeze.

e cx_Freeze: This tool is similar to py2exe and py2app, but it claims to be portable
across all platforms on which Python works. More information on this is
available at nttp://cx-freeze.sourceforge.net/index.html.

[383]

http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
http://www.py2exe.org/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
https://pythonhosted.org/py2app/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://www.pyinstaller.org/
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://wiki.python.org/moin/Freeze
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html
http://cx-freeze.sourceforge.net/index.html

Miscellaneous Tips Chapter 10

If you're distributing a small program, a freezing tool might be just what you need.

However, if you have a large program, say, with lots of external third-party library
dependencies, or dependencies that are not supported by any existing freezing tool, your
application might be the right candidate for bundling the

Python interpreter with your application.

The limitations of Tkinter

We have already explored the power of Tkinter. Perhaps the greatest power of Tkinter lies
in its ease of use and lightweight footprint. Tkinter exposes a very powerful API, especially
with the Text widget and the Canvas widget.

However, its ease of use and the fact that it is lightweight also result in some limitations.

A limited number of core widgets

Tkinter provides only a small number of basic widgets and lacks a collection of modern
widgets. It needs Ttk, Pmw, TIX, and other extensions to provide some really useful
widgets. Even with these extensions, Tkinter fails to match the range of widgets provided
by other GUI tools, such as the advanced wxPython widget set and PyQt.

For instance, wxPython's HtmlWindow widget lets users display HTML content with ease.
There have been attempts to provide similar extensions in Tkinter, but they are far from
satisfactory. Similarly, there are other widgets from the Advanced User Interface Library
and mixins in wxPython, such as floating/docking frames and perspective loading and
saving; Tkinter users can only hope that these widgets will be included in future releases.

Non-Python objects

Tkinter widgets are not first-class Python objects. Thus, we have to use workarounds such
as Intvar, StringVar, and BooleanVar to handle variables in Tkinter. This adds a small
layer of complexity, as error messages returned by the Tcl interpreter are not very Python-
friendly, which makes it harder to debug.

[384]

Miscellaneous Tips Chapter 10

No support for printing

Tkinter is rightly criticized for not providing any support for printing features.

The Canvas widget allows for limited printing support in the PostScript format. The
PostScript format is too limited in what it can be used for. Compare this to wxPython,
which provides a complete printing solution in the form of a printing framework.

No support for newer image formats

Tkinter does not natively support image formats such as JPEG and PNG. The PhotoImage
class of Tkinter can read images only in the GIF and PGM/PPM formats. Although there are
workarounds, such as using the ImageTk and Image submodules from the PIL module, it
would have been better if Tkinter natively supported popular image formats.

Inactive development community

Tkinter is often criticized for having a relatively inactive development community. This is
true to a large extent. The documentation for Tkinter has remained a work in progress for
many years now.

A large number of Tkinter extensions have appeared over the years, but most of them have
not been under active development for a long time.

Tkinter supporters refute this with the argument that Tkinter is a stable and mature
technology that does not need frequent revisions, unlike some other GUI modules that are
still being developed.

Alternatives to Tkinter

If a program can be written in Tkinter, this is probably the best way to go in terms
of simplicity and maintainability. However, in case the aforementioned limitations get in
your way, you can explore some other alternatives to Tkinter.

[385]

Miscellaneous Tips Chapter 10

In addition to Tkinter, there are several other popular Python GUI toolkits. The most
popular ones include wxPython, PyQt, PySide, and PyGTK. Here's a brief discussion of
these toolkits.

wxPython

wxPython is a Python interface for wxwidgets, a popular open source GUI library. The
code written in wxPython is portable across most major platforms, such as Windows,
Linux, and macOS.

The wxPython interface is generally considered to be better than Tkinter at
building complex GUISs, primarily because it has a large base of natively supported
widgets. However, Tkinter supporters do contest this claim.

The wxWidgets interface was originally written in the C++ programming language. Hence,
wxPython inherits a large portion of the complexity that is typical of C++ programs.
wxPython provides a very large base of classes, and it often takes more code to produce the
same interface than it would take in Tkinter. However, in exchange for this complexity,
wxPython provides a larger base of built-in widgets than Tkinter offers.

Owing to its inherent complexity, wxPython has seen the emergence of several GUI builder
toolkits, such as wxGlade, wxFormBuilder, and wxDesigner. The wxPython installation
comes with demo programs that can help you quickly get started with the toolkit. To
download the toolkit, or for more information on wxPython, visit http://wxpython.org/.

PyQt

PyQt is a Python interface for a cross-platform GUI toolkit named Qt, a project currently
developed and maintained by a British firm named Riverbank Computing.

PyQt, with several hundred classes and thousands of functions, is perhaps the most fully
featured GUI library currently available for GUI programming in Python. However, this
feature load brings in a lot of complexity and a steep learning curve.

Qt, and hence pyQt, has a very rich set of supported widgets. In addition to this, it includes
built-in support for network programming, SQL databases, threads, multimedia
frameworks, regular expressions, XML, SVG, and much more. The designer feature of
Qtletsus generates GUI code from a WYSIWYG (what you see is what you get) interface.

[386]

http://wxpython.org/
http://wxpython.org/
http://wxpython.org/
http://wxpython.org/
http://wxpython.org/
http://wxpython.org/
http://wxpython.org/
http://wxpython.org/

Miscellaneous Tips Chapter 10

PyQt is available under a variety of licenses, including GNU, General Public
License (GPL), and a commercial license. However, its greatest disadvantage is that unlike
Qt, it is unavailable under the Lesser General Public License (LGPL).

PySide

If you are looking for an LGPL Version of Qt bindings for Python, you may want to explore
PySide. PySide was originally released under the LGPL in August 2009 by Nokia, the
former owners of the Qt Toolkit. It is now owned by Digia. More information on PySide can
be obtained by visiting http://qt-project.org/wiki/PySide.

PyGTK

PyGTK is a collection of Python bindings for the GTK + GUI library. PyGTK applications
are cross-platform and can run on Windows, Linux, macOS, and others. PyGTK is free and
is licensed under the LGPL. Therefore, you can use, modify, and distribute it with very few
restrictions.

More information about PyGTK can be obtained by visiting http://www.pygtk.org/.

Other options

Besides these popular toolkits, there are a range of toolkits available for GUI programming
in Python.

Java programmers who are comfortable with Java GUI libraries, such as Swing and AWT,
can seamlessly access these libraries by using Jython. Similarly, C# programmers can use
IronPython to access GUI construction features from the .NET framework.

For a comprehensive list of other GUI tools that are available to a Python developer, visit
http://wiki.python.org/moin/GuiProgramming.

Tkinter in Python 2.x

In 2008, Guido van Rossum, the author of Python, forked the language into
two branches—2.x and 3.x. This was done to clean up the language and make it
more consistent.

[387]

http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://qt-project.org/wiki/PySide
http://www.pygtk.org/
http://www.pygtk.org/
http://www.pygtk.org/
http://www.pygtk.org/
http://www.pygtk.org/
http://www.pygtk.org/
http://www.pygtk.org/
http://www.pygtk.org/
http://www.pygtk.org/
http://www.pygtk.org/
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming
http://wiki.python.org/moin/GuiProgramming

Miscellaneous Tips Chapter 10

Python 3.x broke backward compatibility with Python 2.x. For example, the print statement
in Python 2.x was replaced by the print () function that would now take arguments as
parameters.

We coded all the Tkinter programs in Python Version 3.x. However, in case you need to
maintain or write new Tkinter programs in Python 2.x, the transition should not be very
difficult.

The core functionality of Tkinter remains the same between 2.x and 3.x. The only significant
change to Tkinter when moving from Python 2.x to Python 3.x involves changing the way
the Tkinter modules are imported.

Tkinter has been renamed as tkinter in Python 3.x (capitalization has been removed).

Note that in 3.x, the 1ib-tk directory was renamed to tkinter. Inside this directory, the
Tkinter.py file was renamed to __init__.py, thus making tkinter an importable
module.

Accordingly, the biggest difference lies in the way you import the tkinter module into
your current namespace:

import Tkinter # for Python 2
import tkinter # for Python 3

Furthermore, note the following changes.

Note how the Python 3 version is cleaner, more elegant, and more systematic in its naming
conventions regarding the use of lowercase names for its modules:

Python 3 Python 2

import tkinter.ttk OR

i] import ttk
from tkinter import ttk

import tkinter.messagebox import tkMessageBox

import tkinter.colorchooser|import tkColorChooser

import tkinter.filedialog import tkFileDialog

import tkinter.simpledialog|import tkSimpleDialog

import tkinter.commondialog|import tkCommonDialog

import tkinter.font import tkFont

[388]

Miscellaneous Tips Chapter 10

import tkinter.scrolledtext|import ScrolledText

import tkinter.tix import Tix

The following version will work for both cases:

try:
import tkinter as tk
except ImportError:
import Tkinter as tk

try:

import tkinter.messagebox
except:

import tkMessageBox

Summary

To conclude the book, let's summarize some of the key steps involved in designing

an application. Depending on what you want to design, choose a suitable data structure to
represent your needs logically. If required, combine primitive data structures to form
complex structures such as, say, a list or a tuple of dictionaries. Create classes for objects
that constitute your application. Add attributes that need to be manipulated and methods to
manipulate these attributes. Manipulate attributes by using a different API provided by a
rich set of Python-standard and external libraries.

We tried to build several applications in this book. Then, we had a look at an explanation
for the code. However, when you try to explain a software development process in a
sequential text, you sometimes mislead your readers by implying that

the development of software programs is a linear process. This is hardly true.

Actual programming doesn't usually work this way. In fact, small- to medium-sized
programs are normally written in an incremental trial-and-error process, where
assumptions get changed and structures are modified throughout the course of application
development.

[389]

Miscellaneous Tips Chapter 10

Here is how you would develop a small- to a medium-sized application:

1. Start with a simple script.

2. Set a small achievable goal, implement it, and then think of adding the
next feature to your program in an incremental fashion.

3. You may or may not introduce a class structure initially. If you are clear about the
problem domain, you may introduce the class structure from the very beginning.

4. If you are not initially sure about the class structure, start with simple procedural
code. As your program starts to grow, you will probably start getting a lot of
global variables. It is here that you will start getting an idea of the structural
dimensions of your program. It is now time to refactor and restructure your
program to introduce a class structure.

5. Harden your program against unanticipated runtime failures and edge cases to
make it ready for production use.

That concludes the book. If you have any suggestions or feedback, please leave us a
comment. If you found this book helpful, please rate it online and help us spread the word.

QA section

Here are a few questions to reflect upon:

¢ How can we handle cross-platform differences in Tkinter?

What are the advantages and limitations of using Tkinter?

What are some of the common alternatives to Tkinter?
What the various modes of validation in Tkinter?

What is program profiling? How do we profile a program in Python?

[390]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Nicholas Sherriff

Learn Qt 5

Learn QT 5
Nicholas Sherriff

ISBN: 978-1-78847-885-4

Install and configure the Qt Framework and Qt Creator IDE

Create a new multi-project solution from scratch and control every aspect of it
with QMake

Implement a rich user interface with QML

Learn the fundamentals of QtTest and how to integrate unit testing

Build self-aware data entities that can serialize themselves to and from JSON
Manage data persistence with SQLite and CRUD operations

Reach out to the internet and consume an RSS feed

Produce application packages for distribution to other users

https://www.packtpub.com/web-development/learn-qt-5

Other Books You May Enjoy

Qt 5 Projects

Qt 5 Projects
Marco Piccolino

ISBN: 978-1-78829-388-4

Learn the basics of modern Qt application development
Develop solid and maintainable applications with BDD, TDD, and Qt Test

Master the latest UI technologies and know when to use them: Qt Quick, Controls
2, Qt 3D and Charts

Build a desktop UI with Widgets and the Designer

Translate your user interfaces with QTranslator and Linguist

Get familiar with multimedia components to handle visual input and output
Explore data manipulation and transfer: the model/view framework, JSON,
Bluetooth, and network I/O

Take advantage of existing web technologies and UI components with
WebEngine

[392]

https://www.packtpub.com/application-development/qt-5-projects

Other Books You May Enjoy

Leave a review - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[393]

.NET framework 387

3

3D graphics
creating 300, 302, 305, 306

A

asyncio
using 341, 344
AU file 161
audio controls
adding 176
audio playback
one-time updates 184, 185
audio player 161
audio
playing 176, 244
AVbin module 163

B

Balloon widget 190
beat patterns
saving 112,116
support 111
beats per minute (BPM) 87
beats per unit (BPU) 87
Beautiful Soup
URL 322
binary packages, for pyglet
reference link 163
bound task 341
broad GUI structure
building 237, 238
settingup 199

Index

skeleton structure, putting 239
broader visual elements

creating 92, 97
broadview skeleton 164, 165, 166
built-in functionality

adding 56

C

C sharp (C#) 235
canvas methods,
reference link 231
Canvas widget
canvas coordinate system 202
window coordinate system 202
Canvas-based implementation
reference link 78
canvas
items, drawing 206, 208, 209, 211
Chaos game 295, 297, 298
chat application
building 330, 335
chess game
destination position, obtaining 151
functionally, creating 150
list of moves, collecting 152
move, recording in data structure 155
moves, highlighting 152
pre-move validation 153, 154
source position, obtaining 151
chord 236
chord finder section
building 250, 251
chord progression 236
tutor, building 252, 253, 254, 255, 256
chromatic scale 235
Closure (computer programming)

reference link 95
color chooser module 157
color palette
adding 213,214, 215
command-line output
redirecting, to Tkinter 369, 371
context menu
about 83
creating 83
continuous updates
about 184
managing 186, 187
CPU bound task 341
cross-platform differences
handling 378
CRUD (Create, Read, Update, and Delete) 337
cursor information bar
adding 80
cx_Freeze
reference link 383

D

D flat 235
data structure
deciding 168
finalizing 90
modeling 133
naming chess pieces, convention 133
naming locations, convention on chessboard
134, 135,136
denial of service (DOS) 324
deserialization 112
dialogs
working 66, 72
differential equations 290
drum machine
building 87
complete patterns, playing 104
implementing 103
pygame, initializing 103
technical requirements 88
tempo of rhythm, defining 105
drum samples
loading 100
dynamical systems 290

[395]

E

easier to ask for forgiveness than permission

(EAFP) style 378
editor skeleton
setting up 48
external library
PMW Tkinter extension 163
pyglet module 163
requisites 162

F

fast forward/rewind function 179
FENICS computing platform
URL 294
Find Text feature
implementing 61
focusout 363
font selector
building 368
fonts
about 366
finer control 367
forms
working 66, 72
fractals
drawing 283, 284, 285,287
Freeze
reference link 383
freezing tools
cx_Freeze 383
Freeze 383

full-blown XML-based Tkinter RAD (tkRAD)

framework
reference link 199
function closures 95
functionality
adding, to menu items 229, 231

adding, to remaining buttons 223, 225, 226,

227,228

G

game statistics
recording 155
getter method

defining 97
gravity simulation 278, 281, 282
GUI tools
reference link 387
GUI
Setting up, in object-oriented programming
(OOP) 89

H

hardware/serial communication
Arduino sketch, writing 346
hardware, setting up 344
interfacing with 344
serial data, reading 348, 350
higher-order functions 95

I/O bound 341
icons toolbar 75
index 58
indexing 58
integrated development environment (IDE) 346
Internet of things (loT) 344
IronPython 387
irregular lines
drawing 219, 220
items
about 206
adding, from playlist 173
removing, from playlist 173
itertools module
reference link 177

J

Jython 387

K

key mode 363

L

line number

displaying 76, 78, 79
look before you leap (LBYL) style 378
loop over tracks

[396]

features 188, 189

Major scale 236
mark 58
menu items
about 50
adding 50, 52
menu widget
about 50
adding 50
message boxes
working 72
Method Resolution Order (MRO) 374
modal window 65
Model-View-Controller (MVC)
about 126, 128
structuring 127, 130, 131, 133
mouse events
dealing 201
MP2 file 161
MP3 file 161
multithreading 107
mute/unmute function
adding 179

N

next track/previous track function
adding 180

non-zero weights 262

number of beats per unit
features 99

number of units per unit
features 99

(0

object persistence 112
object-oriented programming (OOP)
about 89
data abstraction 89
encapsulation 89
GUI, settingup 89
inheritance 89
modular structure 89

polymorphism 89
OGG/Vorbis file 161
one-time updates 184
overrideredirect flag 66

P

paint application
overview 195
partial differential equations (PDEs) 294
partials
reference link 255
pause/unpause function
adding 178
phone book application
creating 336, 337, 340
database, reading 340
record, creating 340
records, deleting 341
records, updating 340
phyllotaxy pattern 298, 300
piano keyboard
creating 241, 242, 243
putting 243
piano terms
about 234
chord 236
scale, learning 236
pickle
reference link 112
Pickling 112
Piece class
chess pieces, displaying on chessboard 139,
140, 142
chess pieces, movement validation 148, 149
creating 136
moves, tracking 148
rules, defining for chess pieces 142, 144, 145,
146
play/stop function
adding 177,178
Player class
creating 169, 171
playlist
emptying 176
files, adding from directory 175

[397]

items, adding 173
items, removing 173
selected files, removing 175
single audio file, adding 174
PMW Tkinter extension 163
points 211
polar plots
using 275
pop-up menu
about 83
creating 83
popup 190
port scanner
building 327, 329, 330
program design
coupling, reducing 377
error handling 378
exceptions 378
methods 377
model, separating from view 376
model-first policy, versus code-first policy 376
naming variables 377
right data structure, selecting 377
Single Responsibility Principle 377
tips 376
program optimization
filter, used 379
map, used 379
other tips 382
profiling 380
tips 379
variables, optimizing 380
program structure 164, 165, 166
projects
technical requisites 310
py2app
reference link 383
py2exe 383
pygame
reference link 88
pyglet module
about 163
URL, for downloading 163
PyGTK
URL 387

PylInstaller
reference link 383
PySide
reference link 387
Python 2.x
Tkinter 388
Python libraries
technical requisites 234
Python megawidget (PMW), extensions
about 191
dialogs 191
miscellaneous 191
widgets 191
Python megawidget (PMW)
about 162
reference link 163
Python optimization
reference link 382
Python package index
URL 172
Python standard library
reference link 172
Python styling code
reference link 49
Python
module requisites 127

Q

queues
using 312

R

race condition 310

Rapid Application Development (RAD) 194

regular expression modules
reference link 363

right button matrix 94

root note 236

S

scale 236
scales tutor

building 246, 247,248, 249
score maker

[398]

building 257, 258, 259, 260
score sheet 236
scrapy
URL 322
screen saver
building 268, 271
section 157
seek bar
creating 181, 182, 183
SEL tag 60
Select All feature
implementing 61
semitone 235
serialization 112
setter method
defining 97
single audio file
adding 174
site scraping 322
Snake game
building 310, 314
Food class 316
queue handler 319
queues, using 312
race condition 310
Snake class 317
synchronization primitives, using 311
View class 315
socket demo 325
software requirement specifications (SRS) 128
spoke ratio 210
spring pendulum simulation 290, 294
subprocess module
reference link 369
super formula
about 221
reference link 221
super shapes
drawing 219, 221
synchronization technique 310

T

tagging 58
tags 58, 60
tear-off menus 51

text editor
project overview 48
themes
adding 81
thread 107
thread safety 109
threading
reference link 110
tiny framework
creating 196, 199
Tix
reference link 190
Tkinter application
distributing 382
freezing tools 383
py2app 383
py2exe 383
Pylnstaller 383
Tkinter extensions 190
Tkinter safety 109
Tkinter variable
tracing 354, 355
Tkinter
about 107
alternatives 385
class hierarchy 371, 372, 374, 375, 376
command-line output, redirecting 369, 371
game, building 126
graphing 271,274
in Python 2.x 388
limitations 384, 385
other options 387
polar plots, using 275
PyGTK 387
PyQt 386
PySide 387
wxPython 386
TkZinc
reference link 190
toolbar buttons
adding 203, 204, 205
tooltip
adding 190
top bar options
adding, for draw methods 216,217, 218

[399]

Toplevel window
child Toplevel window 65
main Toplevel window 65
transient Toplevel window 65
types 65
undecorated Toplevel window 66
treble clef 236
ttk styles
reference link 119
ttk theming 120
ttk-themed widgets
about 123
Combobox 117
Notebook 117
Progressbar 117
Separator 117
Sizegrip 117
Treeview 117
working with 116, 123

U

Unified Modeling Language (UML) 128
unpickling 112
user input
focus-out validation mode demo 362, 363
key validation mode demo 361
validating 358, 359, 360
user preferences
managing 156, 158, 159

\'

view menu functions 75

view menu
Cascade menu items 55
Checkbutton menu items 55
implementing 55
Radiobutton menu items 55

virtual events 183

volume change function
adding 180

Voronoi diagrams
about 287, 289
URL 287

w

WAV file 161

weather data
references 322

Weather Reporter application
creating 320, 322, 325

whole tone 235

Widget Construction Kit(WCK)
reference link 190

widget data

formatting 364, 365
widget traversal 356, 357
window responsiveness

about 261

code, experimenting 262
WMA file 161
wxDesigner 386
wxFormBuilder 386
wxGlade 386
wxPython

URL 386

	Cover
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Meet Tkinter
	Technical requirements
	Project overview
	Getting started
	GUI programming – the big picture
	The root window – your drawing board
	Widgets – the building blocks of GUI programs
	Some important widget features
	Ways to create widgets
	Getting to know the core Tkinter widgets
	Adding widgets to a parent window

	The Tkinter geometry manager
	The pack geometry manager
	The grid geometry manager
	The place geometry manager

	Events and callbacks – adding life to programs
	Command binding
	Passing arguments to callbacks
	Limitations of the command option

	Event binding
	Event patterns
	Binding levels

	Handling widget-specific variables
	Event unbinding and virtual events
	Doing it in style
	Specifying styles

	Some common root window options
	Getting interactive help
	Summary
	QA section
	Further reading

	Chapter 2: Making a Text Editor
	Project overview
	Getting started – setting up the editor skeleton
	Adding a menu and menu items
	Adding menu items

	Implementing the View menu
	Adding a built-in functionality
	Indexing and tagging
	Index
	Tags

	Implementing the Select All feature
	Implementing the Find Text feature
	Types of Toplevel window
	Working with forms and dialogs
	Working with message boxes
	The icons toolbar and View menu functions
	Displaying line numbers
	Adding the cursor information bar
	Adding themes
	Creating a context/pop-up menu
	Summary
	QA section
	Further reading

	Chapter 3: Programmable Drum Machine
	Getting started
	Technical requirements
	Setting up the GUI in OOP
	Finalizing the data structure
	Creating broader visual elements
	Defining getter and setter methods
	The number of units and beats per unit features
	Loading drum samples
	Playing the drum machine
	Initializing pygame
	Playing complete patterns
	Determining the tempo of a rhythm

	Tkinter and threading
	Tkinter and thread safety

	Support for multiple beat patterns
	Saving beat patterns
	Working with ttk-themed widgets
	Summary
	QA section
	Further reading

	Chapter 4: Game of Chess
	An overview of the chapter
	Module requirements for this chapter
	Structuring our program
	Modeling the data structure
	Convention on naming chess pieces
	Convention for naming locations on the chessboard

	Creating a Piece class
	Displaying chess pieces on the chessboard
	Defining rules for the chess pieces
	Rules for the king, queen, rooks, and bishops
	Rules for the Knight
	Rules for a pawn
	Movement validation of chess pieces
	Tracking all available moves
	Finding out the current position of the king
	Checking whether the king is in check

	Making the game functional
	Getting the source and destination position
	Collecting a list of the moves that need to be highlighted
	Highlighting allowed moves
	Pre-move validation
	Check whether a move will cause check on the King

	Recording a move in the data structure
	Keep game statistics

	Managing user preferences
	Summary
	QA section
	Further reading

	Chapter 5: Building an Audio Player
	An overview of the chapter
	External library requirements
	The pyglet module
	Pmw Tkinter extension

	Program structure and broadview skeleton
	Deciding the data structure
	Creating the Player class
	Adding and removing items from a playlist
	Adding a single audio file
	Removing the selected files from a playlist
	Adding all files from a directory
	Emptying the playlist

	Playing audio and adding audio controls
	Adding the play/stop function
	Adding the pause/unpause function
	Adding the mute/unmute function
	Fast forward/rewind function
	Adding the next track/previous track function
	Adding the volume change function

	Creating a seek bar
	One-time updates during audio playback
	Managing continuous updates
	Looping over tracks
	Adding a tooltip
	Pmw list of extensions
	Widgets
	Dialogs
	Miscellaneous

	Summary
	QA section
	Further reading

	Chapter 6: Paint Application
	Overview of the application
	Creating a tiny framework
	Setting up a broad GUI structure
	Dealing with mouse events
	Adding toolbar buttons
	Drawing items on the canvas
	Adding a color palette
	Adding top bar options for draw methods
	Drawing irregular lines and super shapes
	Drawing irregular lines
	Drawing super shapes

	Adding functionality to the remaining buttons
	Adding functionality to menu items
	Summary
	QA section
	Further reading

	Chapter 7: Piano Tutor
	Technical requirements
	A brief primer on piano terms
	Learning about scales
	Learning about chords

	Building the broad GUI structure
	Putting up the skeleton structure

	Making the piano keyboard
	Putting the keyboard together

	Playing audio
	Building the scales tutor
	Building the chord finder section
	Building the chord progression tutor
	Building the score maker
	A note on window responsiveness
	Experimenting with the code
	Handling widget resize with <Configure>

	Summary
	QA section
	Further reading

	Chapter 8: Fun with Canvas
	Building a screen saver
	Graphing with Tkinter
	Polar plots with Tkinter

	Gravity simulation
	Drawing fractals
	Voronoi diagrams
	Spring pendulum simulation
	Chaos game – building triangles out of randomness
	Phyllotaxy
	3D graphics with Tkinter
	Summary
	QA section
	Further reading

	Chapter 9: Multiple Fun Projects
	Technical requirements
	Building a Snake game
	Understanding a race condition
	Using synchronization primitives
	Using queues
	Building the Snake game
	The View class
	The Food class
	The Snake class
	Queue handler

	Creating a Weather Reporter application
	A simple socket demo
	Building a port scanner
	Building a chat application
	Creating a phone book application
	Creating a new record
	Reading from the database
	Updating records
	Deleting records

	Using asyncio with Tkinter
	Interfacing with hardware/serial communication
	Hardware
	Writing the Arduino sketch
	Reading serial data

	Summary
	QA section
	Further reading

	Chapter 10: Miscellaneous Tips
	Tracing Tkinter variables
	Widget traversal
	Validating user input
	Key validation mode demo
	Focus-out validation mode demo

	Formatting widget data
	More on fonts
	Finer control over font
	Building a font selector

	Redirecting the command-line output to Tkinter
	The class hierarchy of Tkinter
	Tips for program design
	The model-first policy versus the code-first policy
	Separating the model from the view
	Selecting the right data structure
	Naming variables and methods
	The Single Responsibility Principle
	Loose coupling
	Handling errors and exceptions

	Handling cross-platform differences
	Tips for program optimization
	Using filter and map
	Optimizing variables
	Profiling your program
	Other optimization tips

	Distributing a Tkinter application
	py2exe
	py2app
	PyInstaller
	Other freezing tools

	The limitations of Tkinter
	A limited number of core widgets
	Non-Python objects
	No support for printing
	No support for newer image formats
	Inactive development community

	Alternatives to Tkinter
	wxPython
	PyQt
	PySide
	PyGTK
	Other options

	Tkinter in Python 2.x
	Summary
	QA section

	Other Books You May Enjoy
	Index

