

  i

  i

Building Modern
GUIs with tkinter and

Python
Building user-friendly GUI applications with ease

Saurabh Chandrakar
Dr. Nilesh Bhaskarrao Bahadure

www.bpbonline.com

ii 

Copyright © 2023 BPB Online

All rights reserved. No part of this book may be reproduced, stored in a retrieval system,
or transmitted in any form or by any means, without the prior written permission of
the publisher, except in the case of brief quotations embedded in critical articles or
reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the author, nor BPB Online or its
dealers and distributors, will be held liable for any damages caused or alleged to have
been caused directly or indirectly by this book.

BPB Online has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, BPB Online cannot guarantee the accuracy of this information.

First published: 2023

Published by BPB Online
WeWork
119 Marylebone Road
London NW1 5PU

UK | UAE | INDIA | SINGAPORE

ISBN 978-93-55518-569

www.bpbonline.com

  iii

Dedicated to

My Parents

Dr Surendra Kumar Chandrakar

and

Smt. Bhuneshwari Chandrakar

Brother Shri Pranav Chandrakar

to my wife Priyanka Chandrakar

and to my lovely son Yathartha Chandrakar

					 - Saurabh Chandrakar

My Parents

Smt. Kamal B. Bahadure

and

Late Bhaskarrao M. Bahadure

to my in-laws

Smt. Saroj R. Lokhande and Shri. Ravikant A. Lokhande

and to my wife Shilpa N. Bahadure

and to beautiful daughters Nishita and Mrunmayee

And to all my beloved students.

 					 - Dr. Nilesh Bhaskarrao Bahadure

iv 

About the Authors

l	 Saurabh Chandrakar is a Research & Development Engineer (Dy. Manager)
at Bharat Heavy Electricals Limited (BHEL) Hyderabad. He is the winner
of the best executive award on Operations Division by BHEL Hyderabad.
Recently, he has been awarded the prestigious BHEL Excellence Award
under Anusandhan category for Redundant Composite Monitoring System
of Power Transformers project. He has 20 copyrights and 1 patent granted.
Additionally, he has 6 patents filed. Moreover, he has published 3 books in
reputed publications such as BPB New Delhi (Programming Techniques
using Python), Scitech Publications Chennai (Programming Techniques using
matlab) and IK International publishers (Microcontrollers and Embedded
System Design). He has also launched 1 video course on BPB titled “First Time
Play with Basic, Advanced Python concepts and complete guide for different
python certification exams all in one umbrella.”

l	 Nilesh Bhaskarrao Bahadure received his Bachelor of Engineering degree in
Electronics Engineering in 2000, his Master of Engineering degree in Digital
Electronics in 2005, and the Ph.D. degree in Electronics in 2017 from KIIT
Deemed to be University, Bhubaneswar, India. He is currently an Associate
Professor in the Department of Computer Science and Engineering at
Symbiosis Institute of Technology (SIT), Nagpur, Symbiosis International
(Deemed University) (SIU), Pune, Maharashtra, India. He has more than 20
years of experience. Dr. Bahadure is a life member of IE(I), IETE, ISTE, ISCA,
SESI, ISRS, and IAENG professional organizations. He has published more
than 40 articles in reputed international journals and conferences, and has 5
books to his credit. He is the reviewer of many indexed journals such as IEEE
Access, IET, Springer, Elsevier, Wiley and so on. His research interests are in
the areas of Sensor Technology, the Internet of Things, and Biomedical Image
Processing.

  v

About the Reviewer

Dr. Prasenjeet Damodar Patil received B.E in E&TC Engineering from Sant
Gadgebaba Amravati University and M. Tech. from Walchand College of
Engineering Sangli, India. He did his Ph.D. degree in E&TC Engineering from
Sant Gadgebaba Amravati University. He has 14+ years of teaching experience.
Currently, he is working as Associate Professor at School of Computing, M.I.T
A.D.T University, Pune. He has published more than 15 papers in reputed Journals.
His research interest includes Computational Electromagnetics applications in
Integrated Optics, IoT & Digital Image Processing.

vi 

Acknowledgements

m	First and foremost, I would like to thank you all for selecting this book. It has
been written with the beginner reader in mind. First of all, I take this opportunity
to greet and thank my mentor Prof. Nilesh Bahadure Sir for motivating me and
always communicating his expertise fully on topics related to Python. I am
very thankful for being his protégé. I appreciate his belief in me, for always
standing behind me and pushing me to achieve more. The phrase "Journey of
Thousand Miles Begins with a Single Step" is something he always reminds me
of.

	 Thank you to my parents, Dr. Surendra Kumar Chandrakar and Smt.
Bhuneshwari Chandrakar, my brother, Shri Pranav Chandrakar, my beloved
wife, Mrs. Priyanka Chandrakar, my adorable son Yathartha Chandrakar, and
all of my friends have inspired me and given me confidence over the years.
Last but not least, I would like to express my sincere gratitude to the staff at
BPB Publications for their contributions and insights that made parts of this
book possible.

- Saurabh Chandrakar

m	It was my privilege to thank Dr. S. B. Mujumdar, Chancellor of the Symbiosis
International University, Pune, and Shri. Vijay Kumar Gupta, Chairman of
Beekay Industries Bhilai and BIT Trust, for his encouragement and support. I
would like to thank my mentors Dr. Arun Kumar Ray, Dean, School of Electronics
Engineering, KIIT Deemed to be University, Bhubaneswar, and Dr. Anupam
Shukla, Director, SVNIT Surat. I would like to thank Dr. Vidya Yeravdekar,
Principal Director of Symbiosis Society, and the Pro-Chancellor of Symbiosis
International University, Pune, Dr. Rajani R. Gupte, Vice Chancellor of the
Symbiosis International University, Pune, Dr. Ketan Kotecha, Dean, Faculty
of Engineering, Symbiosis International University, Pune, and Dr. Mukesh
M. Raghuwanshi, Director, SIT Nagpur, for their advice, and encouragement
throughout the preparation of the book.

	 I would also like to thank Dr. Sanjeev Khandal, HOD, Department of
Aeronautical Engineering, SGU Kolhapur, my well-wisher Dr. Prasenjeet D.
Patil, Associate Professor, MIT ADT University, Pune, and my colleagues in

  vii

Symbiosis Institute of Technology Nagpur for providing valuable suggestions
and lots of encouragement throughout the project.

	 I am thankful to Prof. Dr. N. Raju, Sr. Assistant Professor, SASTRA University,
Thanjavur, Tamil Nadu, for his support, assistance during writing, and for his
valuable suggestions.

	 I would also like to thank Dr. Ravi M. Potdar, Sr. Associate Professor, BIT Durg,
and Dr. Md. Khwaja Mohiddin, Associate Professor, BIT Raipur for providing
valuable suggestions and lots of encouragement throughout the project.
Writing a beautiful, well-balanced, and acquainted book is not a work of one
or two days or a month; it takes a lot of time and patience, as well as hours of
hard work. Many thanks to my family members, parents, wife, children, and
well-wishers for their kind support. Without them and their faith and support,
writing this classic book would have remained just a dream. I also like to thank
my students, who have always been with me, for relating problems and finding
solutions too. Perfection in any work does not come in a day. It needs a lot of
effort, time and hard work, and sometimes, proper guidance.

	 It is my privilege to thank Prof. (Dr.) Ram Dhekekar, Professor, Department
of Electronics & Telecommunication Engineering, SSGMCE Shegaon, and Dr.
C. G. Dethe, Director UGC Staff College Nagpur. Last, but not least, I would
like to offer an extra special thanks to the staff at “BPB Publications" for their
insight and contribution to polishing this book.

	 Most significantly, I want to thank Lord Ganesha for all of the work I was able
to put into the book's preparation. I would not be as zealous as I am now if it
weren't for God's amazing creation of the universe.

"For since the creation of the world God’s invisible qualities - his eternal power
and divine nature - have been clearly seen, being understood from what has
been made, so that men are without excuse."

-Dr. Nilesh Bhaskarrao Bahadure

viii 

Preface

The purpose of this book is to introduce readers with little to no programming
experience, to Python Graphical User Interface (GUI). A GUI application can be
created in any programming language, say VB.Net, C#.Net etc. In this book, we
shall see how to create a GUI application using Python tkinter library. We will
provide the readers with the foundational knowledge and skills which is required
to start writing code for creating any desktop GUI app in Python language. By
mastering Python tkinter library, readers will be able to apply this technology to
solve real-world problems and create various useful applications according to
their needs.

The first part of the book covers basic GUI tkinter concepts followed by a touch of
inbuilt variable classes for creating different tkinter GUI widgets. Then we shall
see some insights of different widgets viz button, input, display, container, item
and user-interactive widgets. Finally, in the later part of the book, we shall explore
handling file selection and getting widget along with trace information in tkinter.

This book covers a wide range of topics, from basic definition of different widgets
along with various solved examples and well explanatory code. Overall, the book
provides a solid foundation for beginners to start their journey for getting trained
in python GUI using tkinter library.

This book is divided into 11 chapters. Each chapter description is listed as follows.

Chapter 1: tkinter Introduction – will cover the basic GUI example of creating a
parent window along with its size maximizing by adjusting the width or height.
It will also introduce about each standard attribute of python tkinter GUI, which
is, dimensions, colors, fonts, cursors and so on. The concept of tkinter geometry
manager with examples will be covered. Finally, we will learn how to access and
set pre-defined variables sub classed from the tkinter variable class viz StringVar,
IntVar, DoubleVar and BooleanVar.

Chapter 2: Inbuilt Variable Classes for Python tkinter GUI Widgets – will cover
the concept of creating of a simple GUI windows app using classes and objects
concepts.

  ix

Chapter 3: Getting Insights of Button Widgets in tkinter – is dedicated to the
concept of dealing with one of the most commonly used GUI widgets viz tkinter
Button widget. We will view the binding of events to the above widget with
multiple examples and different methods, including lambda expressions. Next, we
shall see the Checkbutton widget which will give the provision to the user to select
more than one option. The user will also view different options to get the image in
the above widget. Next, we will see how to use tkinter Radiobutton widget. The
user will see different examples where exactly one of the predefined set of options
will be chosen. Last but not the least, we will explore tkinter OptionMenu widget
where the user views how a pop menu and button widget will be created for an
individual option selection from a list of options.

Chapter 4: Getting Insights of Input Widgets in tkinter – is dedicated to cover the
concept of creating a simple GUI app using tkinter Entry widget with very neat way
of various options explanations, followed by different solved examples. Moreover,
the validation concept in Entry widget is very neatly explained. Next, we shall see
about scrollbar widget where user will look into the scrolling capability in vertical
or horizontal direction with different widgets such as List Box, Entry and Text.
Another one is tkinter Spinbox widget, where the range of input values will be fed
to the user, out of which, the user can select the one. Next, we will be looking into
how to implement a graphical slider to any Python application program by using
tkinter Scale widget. Next is the concept of tkinter Text widget where the user
can insert multiple text fields. Finally, we will be dealing with tkinter Combobox
widget and its applications.

Chapter 5: Getting Insights of Display Widgets in tkinter – is dedicated to the
concept of creating a simple GUI app using tkinter Label widget, which depicts the
ways of displaying a text or image on a window form. We shall also learn about the
display of prompt unedited text messages to the user with tkinter Message widget.
Moreover, we will look into multiple message boxes like information, warning,
error and so on, in a Python application by using tkinter MessageBox widget.

Chapter 6: Getting Insights of Container Widgets in tkinter – is dedicated to the
concept of tkinter Frame widget, where the user can arrange different widgets
position, can provide padding, can be used as geometry manager for other
widgets and so on. We shall look into the variant of Frame widget, which is tkinter
LabelFrame and is a container for complex window layouts. The user will be able
to see frame features along with label display. Moreover, we shall view creating
tabbed widget with the help of using tkinter Notebook widget. Here, user can

x 

select different pages of contents by clicking on tabs. The importance of tkinter
PanedWindow widget will be explored where multiple examples will be seen
containing horizontal or vertical stack of child widgets. Finally, we will look into
tkinter Toplevel widget where the concepts are being explained for the creation
and display of top level windows.

Chapter 7: Getting Insights of Item Widgets in tkinter – is dedicated to tkinter
Listbox widget where user can display different types of list of items and a number
of items can be selected from the list. Different selectmode examples will be seen
along with scrollbar attached to the above widget.

Chapter 8: Getting Insights of tkinter User Interactive Widgets – focuses on the
user to create different menus such as pop-up, top level and pull -down menu
with the help of tkinter Menu widget. The user can create different applications
such as Notepad, Wordpad, any management software and so on. Moreover, we
will explore drop-down menu widget which is associated with a Menu widget
called tkinter Menubutton widget, which can display the choices when user clicks
on the above Menubutton. User can add checkbutton or radiobutton with the help
of above Menubutton. Finally, we will study the concepts of drawing different
graphics like line, rectangle and so on, with the help of tkinter Canvas widget.

Chapter 9: Handling File Selection in tkinter – will handle file selection with
different dialogs for opening a file, saving a file and so on, with the help of multiple
examples using various Python examples.

Chapter 10: Getting Widget Information and Trace in tkinter – is dedicated to
getting widget information and different trace methods viz trace_add, trace_
remove, trace_info and so on, using various Python examples.

Chapter 11: UserLogin Project in tkinter GUI Library with sqlite3 Database –
will cover an application created using tkinter library along with interacting with
sqlite3 database.

  xi

Code Bundle and Coloured Images
Please follow the link to download the

Code Bundle and the Coloured Images of the book:

https://rebrand.ly/dq4ctt8

The code bundle for the book is also hosted on GitHub at
https://github.com/bpbpublications/Building-Modern-GUIs-with-tkinter-and-
Python. In case there's an update to the code, it will be updated on the existing
GitHub repository.
We have code bundles from our rich catalogue of books and videos available at
https://github.com/bpbpublications. Check them out!

Errata
We take immense pride in our work at BPB Publications and follow best practices
to ensure the accuracy of our content to provide with an indulging reading
experience to our subscribers. Our readers are our mirrors, and we use their inputs
to reflect and improve upon human errors, if any, that may have occurred during
the publishing processes involved. To let us maintain the quality and help us reach
out to any readers who might be having difficulties due to any unforeseen errors,
please write to us at :
errata@bpbonline.com

Your support, suggestions and feedbacks are highly appreciated by the BPB
Publications’ Family.

Did you know that BPB offers eBook versions of every book published,
with PDF and ePub files available? You can upgrade to the eBook version
at www.bpbonline.com and as a print book customer, you are entitled to a
discount on the eBook copy. Get in touch with us at :
business@bpbonline.com for more details.

At www.bpbonline.com, you can also read a collection of free technical
articles, sign up for a range of free newsletters, and receive exclusive
discounts and offers on BPB books and eBooks.

xii 

Piracy
If you come across any illegal copies of our works in any form on the internet,
we would be grateful if you would provide us with the location address or
website name. Please contact us at business@bpbonline.com with a link
to the material.

If you are interested in becoming an author
If there is a topic that you have expertise in, and you are interested in either
writing or contributing to a book, please visit www.bpbonline.com. We
have worked with thousands of developers and tech professionals, just like
you, to help them share their insights with the global tech community. You
can make a general application, apply for a specific hot topic that we are
recruiting an author for, or submit your own idea.

Reviews
Please leave a review. Once you have read and used this book, why not
leave a review on the site that you purchased it from? Potential readers can
then see and use your unbiased opinion to make purchase decisions. We at
BPB can understand what you think about our products, and our authors
can see your feedback on their book. Thank you!

For more information about BPB, please visit www.bpbonline.com.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

  xiii

Table of Contents

	1.	 tkinter Introduction... 1
	 Introduction... 1
	 Structure... 1
	 Objectives... 2
	 Introduction to tkinter.. 2
	 Basic Python GUI program... 4
	 Some standard attributes of Python tkinter GUI... 8
	 Dimensions... 8
	 borderwidth.. 8

	 highlightthickness... 8

	 padX, padY... 9

	 wraplength.. 10

	 height.. 10

	 underline.. 10

	 width... 11

	 Colors... 11
	 activebackground.. 11

	 background... 11

	 activeforeground... 12

	 foreground.. 12

	 disabledforeground... 13

	 highlightbackground... 14

	 selectbackground.. 15

	 selectforeground.. 15

	 Fonts... 16
	 By creating a font object... 16
	 By using tuple... 19
	 Anchors.. 19
	 Placing widget position when anchor = N... 20

xiv 

	 Placing widget position when anchor = S.. 21
	 Placing widget position when anchor = E.. 21
	 Placing widget position when anchor = W... 22
	 Placing widget position when anchor = NE... 22
	 Placing widget position when anchor = NW... 22
	 Placing widget position when anchor = SE.. 23
	 Placing widget position when anchor = SW.. 23
	 Placing widget position when anchor = CENTER... 23
	 Relief styles.. 24
	 Bitmaps... 25
	 Cursors... 26
	 Python tkinter geometry management.. 28
	 pack()... 28
	 grid()... 29
	 place().. 32
	 Geometry method in tkinter.. 35
	 Conclusion... 36
	 Points to remember.. 37
	 Questions... 37

	 2.	 Inbuilt Variable Classes for Python tkinter GUI Widgets................................. 39
	 Introduction... 39
	 Structure... 39
	 Objectives... 40
	 Inbuilt variable classes... 40
	 StringVar().. 40
	 BooleanVar().. 42
	 IntVar()... 44
	 DoubleVar()... 45
	 GUI creation using classes and objects.. 47
	 Conclusion... 51
	 Points to remember.. 51
	 Questions... 51

  xv

	 3.	 Getting Insights of Button Widgets in tkinter.. 53
	 Introduction... 53
	 Structure... 53
	 Objectives... 54
	 tkinter Button Widget.. 54
	 Events and bindings... 60
	 event type... 60

	 tkinter Checkbutton widget.. 81
	 tkinter Radiobutton widget... 91
	 tkinter OptionMenu widget.. 100
	 Conclusion... 103
	 Points of remember.. 103
	 Questions... 103

	 4.	 Getting Insights of Input Widgets in tkinter.. 105
	 Introduction... 105
	 Structure... 105
	 Objectives... 106
	 tkinter Entry widget... 106
	 Validation in the Entry widget... 121
	 tkinter Scrollbar widget... 126
	 Scrollbar attached to Listbox... 127
	 Scrollbar attached to Text... 128
	 Scrollbar attached to Canvas.. 130
	 Scrollbar attached to Entry... 131
	 tkinter Spinbox widget.. 132
	 tkinter Scale widget.. 138
	 tkinter Text widget.. 145
	 tkinter Combobox Widget... 164
	 Conclusion... 173
	 Points to remember.. 173
	 Questions... 174

xvi 

	 5.	 Getting Insights of Display Widgets in tkinter.. 175
	 Introduction... 175
	 Structure... 175
	 Objectives... 176
	 tkinter Label Widget... 176
	 tkinter Message Widget... 191
	 tkinter MessageBox Widget... 193
	 showinfo()... 194
	 showwarning().. 195
	 showerror().. 196
	 askquestion()... 197
	 askokcancel()... 198
	 askyesno().. 199
	 askretrycancel()... 200
	 Conclusion... 201
	 Points of remember.. 201
	 Questions... 202

	 6.	 Getting Insights of Container Widgets in tkinter.. 203
	 Introduction... 203
	 Structure... 204
	 Objectives... 204
	 tkinter Frame Widget... 204
	 tkinter LabelFrame Widget... 209
	 tkinter Tabbed/Notebook Widget.. 212
	 tkinter PanedWindow widget... 214
	 tkinter Toplevel widget.. 221
	 Conclusion... 232
	 Points of remember.. 232
	 Questions... 232

	 7.	 Getting Insights of Item Widgets in tkinter.. 235
	 Introduction... 235

  xvii

	 Structure... 235
	 Objectives... 235
	 tkinter Listbox widget.. 236
	 Conclusion... 245
	 Points of remember.. 246
	 Questions... 246

	 8.	 Getting Insights of tkinter User Interactive Widgets..247
Introduction..247
Structure..247
Objectives..248
tkinter Menu widget...248
tkinter Menubutton widget..263
tkinter Canvas widget...267
Conclusion..281
Points to remember...281
Questions..282

	 9.	 Handling File Selection in tkinter...283
Introduction..283
Structure..284
Objectives..284
Handling file selection in tkinter...284
Conclusion..299
Points of remember...300
Questions..300

10.	 Getting Widget Information and Trace in tkinter..301
Introduction..301
Structure..301
Objectives..302
Getting widget information...302
Trace in tkinter...308

xviii 

trace_add()..309
trace_remove()...309
trace_info()..309

Conclusion.. 311
Points to remember...312
Questions..312

11.	 UserLogin Project in tkinter GUI Library with sqlite3 Database...................313
Introduction..313
Structure..313
Objectives..313
GUI interaction with sqlite3 database..314
Displaying a GUI application..314
Conclusion..339
Points to remember...339
Questions..340

		 Index...341-345

tkinter Introduction  1

Chapter 1
tkinter

Introduction

Introduction
We have learned in our previous book Python for Everyone, about the concepts in
Python which are procedure oriented or object oriented. However, these concepts
will be used as indispensable salt for our next learning, which is related to Graphical
User Interface (GUI). We are surrounded by GUI apps in day-to-day life. Whenever
we are using our mobile phone/Desktop applications and accessing any app or
software, the first thing which we look forward to is how to access these apps or
software. Any app on mobile phone or a computer system consists of hardware and
is controlled by an operating system. The high-level languages will be sitting on top
of the operating system and Python is no exception. So, in this chapter, we will learn
about tkinter library in Python.

Structure
In this chapter, we will discuss the following topics:

•	 Introduction to tkinter

•	 Basic Python GUI Program

•	 Some standard attributes of Python tkinter GUI

2  Building Modern GUIs with tkinter and Python

•	 Colors

•	 Fonts

•	 Anchors

•	 Relief Styles

•	 Bitmaps

•	 Cursors

•	 Python tkinter Geometry Manager

Objectives
By the end of this chapter, the reader will learn about creating basic GUI Python
program using the tkinter library. In addition to that, we will also explore some
standard attributes of Python tkinter GUI such as dimensions, colors or fonts with
various options with examples. It is important to know how to position the text with
a list of constants, relative to the reference point using anchor attribute. Moreover,
we shall see how with the usage of relief attribute 3-D, simulated effects around the
outside of the widget can be provided. We will also learn about bitmap and cursor
attribute with examples. Finally, at the end of this chapter, we will learn accessing
tkinter widgets using inbuilt layout geometry managers viz pack, grid and place.

Introduction to tkinter
Whenever we write any program in Python to control the hardware, Python will
show the output with the help of operating system. However, if we desire to make
an executable with the help of GUI, then just having the need of hardware and
operating system is insufficient. Python requires some services which come from
a number of resources and one such resource which is of interest to many Python
programmers is Tcl/Tk. Tcl stands for Tool Command Language and it is a scripting
language with its own interpreter. On the other hand, Tk is a toolkit for building
GUIs. An important point to note is that Tcl/Tk is not Python and we cannot control
and access the services of Tcl/Tk using Python. So, another package is introduced
and is referred to as tkinter, and it is an intermediator between Python and Tcl/Tk.
tkinter will allow us to use the services of Tcl/Tk using the syntax of Python. As
Python code developers, we will not be directly concerned with the Tcl/Tk. Binding
of Python to the Tk GUI toolkit will be done by tkinter. tkinter will make everything
appear as an object. We can create GUI, knowing that we can regard the window as
an object, a label place on window as an object and so on. Applications can be built
from a view point of an object-oriented programming paradigm. All we need to
make sure is that we write our code in such a way that it allows us access tkinter, as
shown in the following Figure 1.1:

tkinter Introduction  3

Figure 1.1: tkinter access hierarchy

So, GUI applications can be easily and quickly created when Python is combined
with tkinter. Although Python offers multiple options for developing GUI such as
PyQT, Kivy, Jython, WxPython, and pyGUI; tkinter is the most commonly used.
In this book, we will focus only on the tkinter usage of GUI creation. Just like we
import any other module, tkinter can be imported in the same way in Python code:
import tkinter

This will import the tkinter module.

The module name in Python 3.x is tkinter, whereas in Python 2.x, it is Tkinter.

More often, we can use:
from tkinter import *

Here, the ‘*’ symbol means everything, as Python now can build Graphical User
Interfaces by treating all of the widgets like Buttons, Labels, Menus and so on, as if
they were objects. It is like importing tkinter submodule.

However, there are some important methods which the user needs to know while
creating Python GUI application, and they are as follows:

•	 Tk(screenName=None, baseName=None, className=’Tk’, useTk=1)

tkinter offers this method in order to create a main window. For any
application, a main window code can be created by using:
import tkinter

myroot = tkinter.Tk()

Here, Tk class is instantiated without any arguments. myroot is the main
window object name. This method will allow blank parent window creation
with close, maximize and minimize buttons on the top.

4  Building Modern GUIs with tkinter and Python

•	 mainloop()

tkinter offers this method when our application is ready to run. This method
is an infinite loop used to run the application. It will wait for an event to
occur and as long as the window is not closed, the event is processed.

Basic Python GUI program
Let us see a basic Python program which will create a window:

from tkinter import *

myroot = Tk() # creating an object of Tk class

we should first know how to create a window if want to per-
form graphics coding.

but output window will not be displayed right now

myroot.mainloop()

Output:

The output can be seen in Figure 1.2:

Figure 1.2: Output of Chap1_Example1.py

Note: The preceding code is covered in Program Name: Chap1_Example1.py

In the preceding code, we have imported tkinter submodule and created a parent
widget which usually will be the main window of an application. A blank parent
window is created with close, maximize and minimize buttons on the top. An infinite
loop will be called to run the application, as long as the window is not closed.

tkinter Introduction  5

The moment the window is closed, the statements after myroot.mainloop() will be
executed, as shown in the following Figure 1.3:

Figure 1.3: Output on running the code

The moment the window is closed by clicking on the ‘X’ mark, we will get the output
as shown in Figure 1.4:

Figure 1.4: Execution of print statement after clicking ‘X’ mark

In the preceding example, we can maximize the window in both horizontal and
vertical directions by using both height and width attributes. However, we can
restrict the expansion of window in any direction.

Suppose we want to maximize the width only. Then, the code is as follows:

from tkinter import *

myroot = Tk()

myroot.resizable(width = True, height = False) # width can be maxi-
mized

myroot.mainloop()

6  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in Figure 1.5:

Figure 1.5: Output of Chap1_Example2.py

Note: The preceding code is covered in Program Name: Chap1_Example2.py

Suppose, we want to maximize the height only. Then the code is as follows:

from tkinter import *

myroot = Tk()

myroot.
resizable(width = False, height = True) # height can be maximized

myroot.mainloop()

Output:

The output can be seen in Figure 1.6:

Figure 1.6: Output of Chap1_Example3.py

tkinter Introduction  7

Note: The preceding code is covered in Program Name: Chap1_Example3.py

Now, there is a need to maximize neither height nor width. Then the following code
will be used:

from tkinter import *

myroot = Tk()

myroot.resizable(width = False, height = False) # nei-
ther width nor height can be maximized

myroot.mainloop()

Output:

The output can be seen in Figure 1.7:

Figure 1.7: Output of Chap1_Example4.py

Note: The preceding code is covered in Program Name: Chap1_Example4.py

An important point to observe is that when we are maximizing the window in either
of the directions, then the maximize button was enabled. Whereas in this case, the
maximize button is disabled.

8  Building Modern GUIs with tkinter and Python

Some standard attributes of Python tkinter
GUI
Now, we shall see how some of the standard attributes such as sizes, colors or fonts
are specified. Just observe the standard attributes as mentioned. We shall see their
usage when we will be dealing with widgets.

Dimensions
Whenever we set a dimension to an integer, it is assumed to be in pixels. A length is
expressed as an integer number of pixels by tkinter. The list of common options are
discussed as follows.

borderwidth
This option will give a 3-D look to the widget. It can also be represented as bd:

from tkinter import *

myroot = Tk()

myl1 = Label(myroot, text = 'Label1',bd = 8,relief = 'groove')

myl1.pack()

myroot.mainloop()

Output:

The output can be seen in Figure 1.8:

Figure 1.8: Output of Chap1_Example5.py

Note: The preceding code is covered in Program Name: Chap1_Example5.py

highlightthickness
This option represents the width of the highlighted rectangle when the widget has
focus. Refer to the following code:

tkinter Introduction  9

from tkinter import *

myroot = Tk()

myb1 = Button(myroot, text = 'Without highlight thickness')

myb1.grid(row = 0, column = 1)

myb2 = Button(myroot, text = 'With highlight thickness',

 highlightthickness=10,

)

myb2.grid(row = 1, column = 1, padx = 10, pady = 10)

myroot.mainloop()

Output:

The output can be seen in Figure 1.9:

Figure 1.9: Output of Chap1_Example6.py

Note: The preceding code is covered in Program Name: Chap1_Example6.py

padX, padY
This option will provide extra space that the widget requests from its layout manager,
beyond the minimum, for the display of widget contents in x and y directions. We
can see in the previous example, that we have used padding in x and y direction for
better look and display.

10  Building Modern GUIs with tkinter and Python

wraplength
This option will provide maximum length of line for widgets which will be
performing word wrapping. Refer to the following code:

from tkinter import *
myroot = Tk()
myl1 = Label(myroot, text = 'Python',wraplength = 2)
myl1.pack()
myl2 = Label(myroot, text = 'awesome',wraplength = 0)
myl2.pack()
myroot.mainloop()

Output:

The output can be seen in Figure 1.10:

Figure 1.10: Output of Chap1_Example7.py

Note: The preceding code is covered in Program Name: Chap1_Example7.py

height
This option will set the desired height of the widget as per need. It must be greater
than 1.

underline
This option represents character index to underline in the widget’s text. The 1st
character will be 0, the 2nd character will be, 1 and so on.

tkinter Introduction  11

width
This option will set the desired width of the widget as per need, as shown:

from tkinter import *
myroot = Tk()
myl1 = Label(myroot, text = 'Python',width = 20, height = 2, under-
line = 2, font = ('Calibri',15))
myl1.pack()
myroot.mainloop()

Output:

The output can be seen in Figure 1.11:

Figure 1.11: Output of Chap1_Example8.py

Note: The preceding code is covered in Program Name: Chap1_Example8.py

In the above code, we have set width as 20, height as 2 and underline the 3rd character
which is ‘t’.

Colors
Colors can be represented in tkinter using hexadecimal digits or by standard name.
For example, #ff0000 is for Red color or it can be represented by using color = ‘Red’.
The different options available for color is are discussed as follows.

activebackground
This option will set the widget background color when it is active.

background
This option will set the widget background color and can also be represented as bg,
as follows:

12  Building Modern GUIs with tkinter and Python

from tkinter import *

myroot = Tk()

myb1 = Button(myroot, activeback-
ground = "#ff0000", bg = '#00ff00', text = 'python')

myb1.pack()

myroot.mainloop()

Output Initially:

The output can be seen in Figure 1.12:

Figure 1.12: Initial Output

Output when button is clicked:

The output can be seen in Figure 1.13:

Figure 1.13: Output of Chap1_Example9.py

Note: The preceding code is covered in Program Name: Chap1_Example9.py

On running the preceding code, initially the background color of button is Green
and when it is clicked, that is, when the button is active, the background color is
changed to Red.

activeforeground
This option will set the widget foreground color when it is active.

foreground
This option will set the widget foreground color and can also be represented as fg.

tkinter Introduction  13

from tkinter import *
myroot = Tk()
myb1 = Button(myroot, activefore-
ground = "#ff0000", fg = '#0000ff', text = 'python')
myb1.pack()
myroot.mainloop()

Output initially:

The output can be seen in Figure 1.14:

Figure 1.14: Initial output

Output when button is clicked:

The output can be seen in Figure 1.15:

Figure 1.15: Output of Chap1_Example10.py

Note: The preceding code is covered in Program Name: Chap1_Example10.py

On running the preceding code, initially the foreground color of button is Blue and
when it is clicked, that is, when the button is active, the foreground color is changed
to Red.

disabledforeground
This option will set the widget foreground color when it is disabled, as shown:

from tkinter import *
myroot = Tk()
myb1 = Button(myroot, state = 'disabled', text = 'python', dis-
abledforeground = 'Magenta')
myb1.pack()
myroot.mainloop()

14  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in Figure 1.16:

Figure 1.16: Output of Chap1_Example11.py

Note: The preceding code is covered in Program Name: Chap1_Example11.py

In the preceding code, the button is disabled and the button's foreground color when
it is disabled is Magenta.

highlightbackground
When the widget does not have any focus, this option will focus on the highlight
color.

highlightcolor

When the widget has focus, this option will set the foreground color of the highlighted
region, as shown:

from tkinter import *
myroot = Tk()
mye1 = Entry(myroot, bg='LightGreen', highlightthickness=10, high-
lightbackground="red", highlightcolor = 'Yellow')
mye1.pack(padx=5, pady=5)
mye2 = Entry(myroot)
mye2.pack()
mye2.focus()
myroot.mainloop()

Output when there is no focus on Entry:
The output can be seen in Figure 1.17:

Figure 1.17: Initial output

tkinter Introduction  15

Output when there is focus on Entry:

The output can be seen in Figure 1.18:

Figure 1.18: Output of Chap1_Example12.py

Note: The preceding code is covered in Program Name: Chap1_Example12.py

In the preceding example, when there is no focus in Entry, the focus highlight’s color
is Red and when there is a focus on Entry, then the color in the focus highlight is
Yellow.

selectbackground
This option will set the background color for the selected items of the widget.

selectforeground
This option will set the foreground color for the selected items of the widget, as
shown:

from tkinter import *

myroot = Tk()
str1 = StringVar()
mye1 = Entry(myroot,selectbackground= 'Green',selectfore-
ground= 'Red', textvariable = str1)
mye1.pack()
str1.set('python')

myroot.mainloop()

Output:
The output can be seen in Figure 1.19:

Figure 1.19: Output of Chap1_Example13.py

16  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap1_Example13.py

From the preceding code, we can observe that when the text ‘python’ is selected, it
is highlighted in Green color in the background and Red color in the foreground.

Fonts
We can access the font in tkinter by creating a font object or by using a tuple.

By creating a font object
Suppose we have a text. We can underline the text, change the size, give some font
family, overstrike it, and so on.

To create a font object, first, we need to import a tkinter.font module and use the
Font class constructor:

from tkinter.font import Font
myobj_font = Font(options,…)

The options are:
•	 family: This option represents the name of the font family as a string.
•	 size: This option represents an integer in points for font height.
•	 weight: This option represents ‘bold’ and ‘normal’.
•	 slant: This option represents ‘italic’ and ‘unslanted’.
•	 underline: This option represents whether the text is to be underlined or not.

1 represents for underline text and 0 for normal.
•	 overstrike: This option represents whether the text is overstruck or not. 1

represents overstruck text and 0 for normal.

Refer to the following code:

from tkinter import * # importing module
from tkinter.font import Font
myroot = Tk() # window creation and initialize the interpreter

myfont1 = Font(family = 'Cal-
ibri',size=12, weight = 'bold', slant='italic', underline = 1, over-
strike = 1) # 1 means we require underline
myl1 = Label(myroot, text = 'Python', font = myfont1)
myl1.pack() # for displaying the label

myroot.mainloop() # display window until we press the close button

tkinter Introduction  17

Output:

The output can be seen in Figure 1.20:

Figure 1.20: Output of Chap1_Example14.py

Note: The preceding code is covered in Program Name: Chap1_Example14.py

We can also view the font family which we can access based on our requirement, as
follows:

from tkinter import * # importing module
from tkinter import font
myroot = Tk() # window creation and initialize the interpreter

myfont_list = list(font.families())
for loop in myfont_list:
 print(loop,end = ',')

myroot.mainloop() # display window until we press the close button

Output:

The output is as follows:

System,8514oem,Fixedsys,Terminal,Modern,Roman,Script,Courier,MS
Serif,MS Sans Serif,Small Fonts,TeamViewer15,Marlett,Arial,Arabic
Transparent,Arial Baltic,Arial CE,Arial CYR,Arial
Greek,Arial TUR,Arial Black,Bahnschrift Light,Bahnschrift
SemiLight,Bahnschrift,Bahnschrift SemiBold,Bahnschrift Light
SemiCondensed,Bahnschrift SemiLight SemiConde,Bahnschrift
SemiCondensed,Bahnschrift SemiBold SemiConden,Bahnschrift
Light Condensed, Bahnschrift SemiLight Condensed,Bahnschrift
Condensed,Bahnschrift SemiBold Condensed,Calibri,Calibri
Light,Cambria,Cambria Math,Candara,Candara Light, Comic Sans
MS,Consolas,Constantia,Corbel,Corbel Light,Courier New,Courier New
Baltic,Courier New CE,Courier New CYR,Courier New Greek,Courier
New TUR, Ebrima,Franklin Gothic Medium, Gabriola, Gadugi,
Georgia,Impact,Ink Free, Javanese Text,Leelawadee UI,Leelawadee UI
Semilight,Lucida Console,Lucida Sans Unicode,Malgun Gothic,@Malgun

18  Building Modern GUIs with tkinter and Python

Gothic,Malgun Gothic Semilight,@Malgun Gothic Semilight,Microsoft
Himalaya,Microsoft JhengHei,@Microsoft JhengHei,Microsoft
JhengHei UI,@Microsoft JhengHei UI,Microsoft JhengHei Light,@
Microsoft JhengHei Light,Microsoft JhengHei UI Light,@
Microsoft JhengHei UI Light,Microsoft New Tai Lue,Microsoft
PhagsPa,Microsoft Sans Serif,Microsoft Tai Le,Microsoft YaHei,@
Microsoft YaHei,Microsoft YaHei UI,@Microsoft YaHei UI,Microsoft
YaHei Light,@Microsoft YaHei Light,Microsoft YaHei UI Light,@
Microsoft YaHei UI Light,Microsoft Yi Baiti,MingLiU-ExtB,@MingLiU-
ExtB,PMingLiU-ExtB,@PMingLiU-ExtB,MingLiU_HKSCS-ExtB,@MingLiU_
HKSCS-ExtB,Mongolian Baiti,MS Gothic,@MS Gothic,MS UI Gothic,@
MS UI Gothic,MS PGothic,@MS PGothic,MV Boli,Myanmar Text,Nirmala
UI,Nirmala UI Semilight,Palatino Linotype,Segoe MDL2 Assets,Segoe
Print,Segoe Script,Segoe UI,Segoe UI Black,Segoe UI Emoji,Segoe UI
Historic,Segoe UI Light,Segoe UI Semibold,Segoe UI Semilight,Segoe
UI Symbol,SimSun,@SimSun,NSimSun,@NSimSun,SimSun-ExtB,@SimSun-
ExtB,Sitka Small,Sitka Text,Sitka Subheading,Sitka Heading,Sitka
Display,Sitka Banner,Sylfaen,Symbol,Tahoma,Times New Roman,Times New
Roman Baltic,Times New Roman CE,Times New Roman CYR,Times New Roman
Greek,Times New Roman TUR,Trebuchet MS,Verdana,Webdings,Wingdings,Yu
Gothic,@Yu Gothic,Yu Gothic UI,@Yu Gothic UI,Yu Gothic UI Semibold,@
Yu Gothic UI Semibold,Yu Gothic Light,@Yu Gothic Light,Yu Gothic
UI Light,@Yu Gothic UI Light,Yu Gothic Medium,@Yu Gothic Medium,Yu
Gothic UI Semilight,@Yu Gothic UI Semilight,HoloLens MDL2 Assets,HP
Simplified,HP Simplified Light,MT Extra,Century,Wingdings 2,Wingdings
3,Arial Unicode MS,@Arial Unicode MS,Nina,Segoe Condensed,Buxton
Sketch,Segoe Marker,SketchFlow Print,DengXian,@DengXian,Microsoft
MHei,@Microsoft MHei,Microsoft NeoGothic,@Microsoft NeoGothic,Segoe
WP Black,Segoe WP,Segoe WP Semibold,Segoe WP Light,Segoe
WP SemiLight, DigifaceWide, AcadEref, AIGDT, AmdtSymbols,
GENISO,AMGDT,BankGothic Lt
BT,BankGothic Md BT,CityBlueprint,CommercialPi BT,CommercialScript
BT,CountryBlueprint,Dutch801 Rm BT,Dutch801 XBd BT,EuroRoman,ISOC-
PEUR,ISOCTEUR,Monospac821 BT,PanRoman,Romantic,RomanS,SansSerif,Sty-
lus BT,SuperFrench,Swis721 BT,Swis721 BdOul BT,Swis721 Cn BT,Swis721
BdCnOul BT,Swis721 BlkCn BT,Swis721 LtCn BT,Swis721 Ex BT,Swis721
BlkEx BT,Swis721 LtEx BT,Swis721 Blk BT,Swis721 BlkOul BT,Swis721 Lt
BT,TechnicBold,TechnicLite,Technic,UniversalMath1 BT,Vineta BT,Com-
plex,GDT,GothicE,GothicG,GothicI,GreekC,GreekS,ISOCP2,ISOCP3,ISO-
CP,ISOCT2,ISOCT3,ISOCT,ItalicC,ItalicT,Italic,Monotxt,Proxy 1,Proxy
2,Proxy 3,Proxy 4,Proxy 5,Proxy 6,Proxy 7,Proxy 8,Proxy 9,RomanC,Ro-
manD,RomanT,ScriptC,ScriptS,Simplex,Syastro,Symap,Symath,Symeteo,Sy-
music,Txt,

Note: The preceding code is covered in Program Name: Chap1_Example15.py

tkinter Introduction  19

By using tuple
The first element in the tuple is a font family, and the 2nd element is a size in points
which is optionally followed by a string having one or more of the style modifiers
such as bold, italic, overstrike, and underline. Refer to the following code:

from tkinter import * # importing module
from tkinter.font import Font
myroot = Tk() # window creation and initialize the interpreter

myl1 = Label(myroot, text = 'Python', font = ("Calibri", "18", "nor-
mal italic overstrike underline"))
myl1.pack() # for displaying the label

myroot.mainloop()

Output:

The output can be seen in Figure 1.21:

Figure 1.21: Output of Chap1_Example16.py

Note: The preceding code is covered in Program Name: Chap1_Example16.py

Anchors
If there is a requirement to position the text relative to the reference point, then we
should go for anchors.

The possible list of constants used for anchor attributes are:

N, S, E, W, NE, NW, SE, SW, CENTER

Here, N stands for North, S for South, E for East and W for West.

20  Building Modern GUIs with tkinter and Python

Refer to Figure 1.22:

Figure 1.22: Anchor Constants

Whenever we are creating a small widget inside a large frame and use anchor = SW
option, then the widget will be placed in the bottom left corner of the frame. If we
use anchor = S, then the widget would be centered along the bottom edge.

Placing widget position when anchor = N
Refer to the following code:

from tkinter import *

myroot = Tk()
myroot.geometry('200x200')
myl1 = Label(myroot, text = 'Python',anchor = N, font = ("Cal-
ibri", "18", "bold italic underline"),
 bd = 1, relief = 'sunken', width = 10,height = 5)
myl1.pack()
myroot.mainloop()

Output:

The output can be seen in Figure 1.23:

tkinter Introduction  21

Figure 1.23: Output of Chap1_Example17.py when anchor position is N

Note: The preceding code is covered in Program Name: Chap1_Example17.py

Note: From Figure 1.24 to Figure 1.31, the code will be the same except the option
at anchor position will be changed.

Placing widget position when anchor = S
Refer to Figure 1.24:

Figure 1.24: Output when anchor position is S

Placing widget position when anchor = E
Refer to Figure 1.25:

Figure 1.25: Output when anchor position is E

22  Building Modern GUIs with tkinter and Python

Placing widget position when anchor = W
Refer to Figure 1.26:

Figure 1.26: Output when anchor position is W

Placing widget position when anchor = NE
Refer to Figure 1.27:

Figure 1.27: Output when anchor position is NE

Placing widget position when anchor = NW
Refer to Figure 1.28:

Figure 1.28: Output when anchor position is NW

tkinter Introduction  23

Placing widget position when anchor = SE
Refer to Figure 1.29:

Figure 1.29: Output when anchor position is SE

Placing widget position when anchor = SW
Refer to Figure 1.30:

Figure 1.30: Output when anchor position is SW

Placing widget position when anchor =
CENTER
Refer to Figure 1.31:

Figure 1.31: Output when anchor position is CENTER

24  Building Modern GUIs with tkinter and Python

Relief styles
Whenever we desire to have 3-D simulated effects around the outside of the widget,
then we will go for the relief style of a widget. Relief attributes can have a possible
list of constants such as flat, raised, groove, sunken, and ridge. Refer to the following
code:

from tkinter import *

myroot = Tk()
myroot.geometry('200x200')
myb1 = Button(myroot, text = 'PYTHON', font = ('Calibri',12), re-
lief = FLAT, bd = 4)
myb1.pack()
myb2 = Button(myroot, text = 'PYTHON', font = ('Calibri',12), re-
lief = RAISED, bd = 4)
myb2.pack()
myb3 = Button(myroot, text = 'PYTHON', font = ('Calibri',12), re-
lief = 'groove', bd = 4)
myb3.pack()
myb4 = Button(myroot, text = 'PYTHON', font = ('Calibri',12), re-
lief = 'sunken', bd = 4)
myb4.pack()
myb5 = Button(myroot, text = 'PYTHON', font = ('Calibri',12), re-
lief = RIDGE, bd = 4)
myb5.pack()
myroot.mainloop()

Output:

Refer to Figure 1.32:

Figure 1.32: Output of Chap1_Example18.py

tkinter Introduction  25

Note: The preceding code is covered in Program Name: Chap1_Example18.py

Bitmaps
This attribute is used to display a bitmap and the available bitmaps are ‘error’,
‘gray12’, ‘gray25’, ‘gray50’, ‘gray75’, ‘info’, ’hourglass’, ‘warning’, ‘question’, and
’questhead’. Refer to the following code:

from tkinter import *

myroot = Tk()
myroot.geometry('200x300')
myb1 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'error',bd = 2)
myb1.pack()
myb2 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'gray12',bd = 2)
myb2.pack()
myb3 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'gray25',bd = 2)
myb3.pack()
myb4 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'gray50',bd = 2)
myb4.pack()
myb5 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'gray75',bd = 2)
myb5.pack()
myb6 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'info',bd = 2)
myb6.pack()
myb7 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'hourglass',bd = 2)
myb7.pack()
myb8 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'warning',bd = 2)
myb8.pack()
myb9 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'question',bd = 2)
myb9.pack()

26  Building Modern GUIs with tkinter and Python

myb10 = Button(myroot, text = 'PYTHON', relief = 'sunken', bit-
map = 'questhead',bd = 2)
myb10.pack()
myroot.mainloop()

Output:

Refer to Figure 1.33:

Figure 1.33: Output of Chap1_Example19.py

Note: The preceding code is covered in Program Name: Chap1_Example19.py

Cursors
Whenever there is a requirement to show different mouse cursors based on the need
whose exact graphic may vary depending on the operating system, then there is an
option of cursor attribute, out of which, some useful ones are ‘arrow’, ‘clock, ‘cross,
‘circle’, ‘heart’, ‘mouse’, ‘plus’, ‘star’, ‘spider’, ‘sizing’, ‘shuttle’, ‘target’, ‘tcross’,
‘trek’, ‘watch’ and so on. Refer to the following code:

from tkinter import *

myroot = Tk()
myroot.geometry('200x300')
myb4 = Button(myroot, text = 'PYTHON', relief = 'raised', cur-
sor = 'circle',bd = 2)
myb4.pack()
myb5 = Button(myroot, text = 'PYTHON', relief = 'raised', cur-
sor = 'clock',bd = 2)

tkinter Introduction  27

myb5.pack()
myb6 = Button(myroot, text = 'PYTHON', relief = 'raised', cur-
sor = 'cross',bd = 2)
myb6.pack()
myb7 = Button(myroot, text = 'PYTHON', relief = 'raised', cur-
sor = 'plus',bd = 2)
myb7.pack()
myb8 = Button(myroot, text = 'PYTHON', relief = 'raised', cur-
sor = 'tcross',bd = 2)
myb8.pack()
myb9 = Button(myroot, text = 'PYTHON', relief = 'raised', cur-
sor = 'star',bd = 2)
myb9.pack()
myb10 = Button(myroot, text = 'PYTHON', relief = 'raised', cur-
sor = 'spider',bd = 2)
myb10.pack()
myb11 = Button(myroot, text = 'PYTHON', relief = 'raised', cur-
sor = 'watch',bd = 2)
myb11.pack()
myroot.mainloop()

Output:

Refer to Figure 1.34:

Figure 1.34: Output of Chap1_Example20.py

28  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap1_Example20.py

Python tkinter geometry management
All widgets in the tkinter can access geometry management methods. To organize
the widgets in the parent windows, the geometry configuration of the widgets is
to be accessed, which is offered by tkinter. It will help in managing the display of
widgets on the screen. The geometry manager classes are discussed as follows.

pack()
It is one of the easiest to use, compared to the other 2 geometry managers. Before
placing the widgets in the parent widget, the geometry manager will organize the
widgets in blocks. Whenever there is a simple application requirement, such as
arranging the number of widgets on top of each other or placing them side by side,
then we can go for the preceding geometry manager. As compared to the other two
geometry managers, it comes with limited options.

The syntax is

widget.pack(options,…)

The options are:

•	 fill: This option will determine whether the widgets can increase or grow in
size or not. By default, it is NONE. If we want to fill vertically, then it is Y.
If horizontally, then it is X. If required both horizontally or vertically, then
BOTH.

•	 expand: This option will expand the widget to fill any space when set to true
or 1. When the window is resized, the widget will expand.

•	 side: This option will decide the widget alignment, that is, against which side
of the parent widget packs. By default, it is TOP. The others are BOTTOM,
LEFT, or RIGHT.

The other options are anchor, internal (ipadx, ipady) or external padding (padx,
pady) which all have defaulted to 0. Refer to the following code:

from tkinter import *
myroot = Tk()
myroot.geometry('300x300')
myb1 = Button(myroot, text = 'P', fg = 'Red', bg = 'LightGreen')
myb1.pack(fill = NONE)
myb2 = Button(myroot, text = 'Y', fg = 'Red', bg = 'LightGreen')

tkinter Introduction  29

myb2.pack(fill = X, padx = 10, pady = 10)
myb3 = Button(myroot, text = 'T', fg = 'Red', bg = 'LightGreen')
myb3.pack(side = LEFT, fill = Y, padx = 10, pady = 10)
myb3 = Button(myroot, text = 'H', fg = 'Red', bg = 'LightGreen')
myb3.pack(side = TOP,fill = X, padx = 10, pady = 10)
myb4 = Button(myroot, text = 'O', fg = 'Red', bg = 'LightGreen')
myb4.pack(side = BOTTOM,fill = X, padx = 10, pady = 10)
myb5 = Button(myroot, text = 'N', fg = 'Red', bg = 'LightGreen')
myb5.pack(side = RIGHT,fill = BOTH, expand = 1, padx = 10, pady = 10)

myroot.mainloop()

Output:

The output can be seen in Figure 1.35:

Figure 1.35: Output of Chap1_Example21.py

Note: The preceding code is covered in Program Name: Chap1_Example21.py

grid()
This geometry manager will organize the widgets into a 2-Dimensional table, into
a number of rows and columns in the parent widget. An intersection of imaginary
rows and columns is a cell where each cell in the table can hold a widget.

30  Building Modern GUIs with tkinter and Python

The syntax is

widget.grid(options,…)

The options are as follows:

•	 column: This option will use a cell which will be identified with a given
column, whose default value is the leftmost column with a numeric value
of 0.

•	 columnspan: This option will indicate the number of columns the widget
occupies; whose default value is 1.

•	 padx: This option will add padding to the widget horizontally outside the
border of the widget.

•	 pady: This option will add padding to the widget vertically outside the
border of the widget.

•	 ipadx: This option will add padding to the widget horizontally inside the
border of the widget.

•	 ipady: This option will add padding to the widget vertically inside the
border of the widget.

•	 row: This option will use a cell that will be identified with a given row whose
default value is the first row with numeric value of 0.

•	 rowspan: This option will indicate the number of rows the widget occupies
whose default value is 1.

•	 sticky: Whenever the cell is larger than the widget, an indication is required
for the sides and cell corners to which the widget sticks. It may be a string
concatenation of 0 or more of compass directions: M, E, S, W, NE, NW, SE,
SW, and 0. The widget is centered in the cell with sticky = " and will take up
the full cell area when NESW.

tkinter Introduction  31

Kindly observe the given code:

from tkinter import *
myroot = Tk()

mybtn_col = Button(myroot, text="It is Column No. 4")
mybtn_col.grid(row = 0, column=4)

mybtn_colspan = Button(myroot, text="The columnspan is of 4")
mybtn_colspan.grid(row = 1,columnspan=4)

mybtn_paddingx = Button(myroot, text="padx of 5 from outside wid-
get border")
mybtn_paddingx.grid(row = 2,padx=5)

mybtn_paddingy = Button(myroot, text="pady of 5 from outside wid-
get border")
mybtn_paddingy.grid(row = 3,pady=5)

mybtn_ipaddingx = Button(myroot, text="ipadx of 5 from inside wid-
get border")
mybtn_ipaddingx.grid(row = 4,ipadx=5)

mybtn_ipaddingy = Button(myroot, text="ipady of 15 from inside wid-
get border")
mybtn_ipaddingy.grid(row = 5,ipady=15)

mybtn_row = Button(myroot, text="It is Row No. 7")
mybtn_row.grid(row=7)

mybtn_rowspan = Button(myroot, text="It is Rowspan of 3")
mybtn_rowspan.grid(row = 8,rowspan=3)

mybtn_sticky = Button(myroot, text="Hey ! I am at North-West")
mybtn_sticky.grid(sticky=NW)

myroot.mainloop()

32  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in Figure 1.36:

Figure 1.36: Output of Chap1_Example22.py

Note: The preceding code is covered in Program Name: Chap1_Example22.py

Note: It is not recommended to mix grid() and pack() in the same master window.

place()
It simpler than the other 2 geometry managers. This geometry manager will organize
the widgets in a specific position in the parent widget. It is placed at some specific
position in the parent widget. It can be used with pack() as well as grid() method.

The syntax is
widget.place(options,…)

The options are:
•	 anchor: This option will indicate where the widget is anchored to and has

compass directions as: N, S, E, W, NE, NW, SE, or SW, which are related to
the sides and corners of the parent widget. The default compass direction is
NW.

•	 bordermode: This option will indicate whether the widget border portion
is included in the coordinate system or not. The default is INSIDE and the
other is OUTSIDE.

tkinter Introduction  33

•	 relheight: This option will specify the height as a float between 0.0 and 1.0,
which is a fraction of the parent widget height, that is, the widget’s height
relates to the parent’s widget height by ratio.

•	 relwidth: This option will specify the width as a float between 0.0 and 1.0,
which is a fraction of the parent widget width, that is, the widget’s width
relates to the parent’s widget width by ratio.

•	 height: This option will specify the widget height in pixels.

•	 width: This option will specify the widget width in pixels.

•	 relx: This option will specify the horizontal offset as a float between 0.0 and
1.0 which is a fraction of the parent widget width, that is, widget will be
placed by x ratio relative to its parent.

•	 rely: This option will specify the vertical offset as a float between 0.0 and 1.0,
which is a fraction of the parent widget height, that is, widget will be placed
by y ratio relative to its parent.

•	 x: This option will specify the horizontal offset in pixels.

•	 y: This option will specify the vertical offset in pixels.

Note: In the above geometry manager, at least 2 options are required when
invoked.

Just observe the following example:

from tkinter import *
myroot = Tk()
myroot.geometry("600x600")

mybtn_height = Button(myroot, text="60px high")
mybtn_height.place(height=60, x=300, y=300)

mybtn_width = Button(myroot, text="70px wide")
mybtn_width.place(width=70, x=400, y=400)

mybtn_relheight = Button(myroot, text="relheight of 0.7")
mybtn_relheight.place(relheight=0.7)

mybtn_relwidth= Button(myroot, text="relwidth of 0.4")
mybtn_relwidth.place(relwidth=0.4)

34  Building Modern GUIs with tkinter and Python

mybtn_relx=Button(myroot, text="relx of 0.5")
mybtn_relx.place(relx=0.5)

mybtn_rely=Button(myroot, text="rely of 0.8")
mybtn_rely.place(rely=0.8)

mybtn_x=Button(myroot, text="X = 500px")
mybtn_x.place(x=500)

mybtn_y=Button(myroot, text="Y = 520")
mybtn_y.place(y=520)

myroot.mainloop()

Output:

The output can be seen in Figure 1.37:

Figure 1.37: Output of Chap1_Example23.py

tkinter Introduction  35

Note: The preceding code is covered in Program Name: Chap1_Example23.py

Geometry method in tkinter
Whenever there is a requirement to set tkinter window dimensions as well as set the
main window position, then tkinter provides a geometry method, as follows:

from tkinter import *

creating blank tkinter window
myroot = Tk()

myroot.geometry(‘300x150’)

mybtn = Button(myroot, text = ‘Python’)
mybtn.pack(side = TOP, padx = 5, pady = 5)

myroot.mainloop()

Output:

The output can be seen in Figure 1.38:

Figure 1.38: Output of Chap1_Example24.py

Note: The preceding code is covered in Program Name: Chap1_Example24.py

When we will run the preceding code, a fixed geometry of the tkinter window is
created with dimensions ‘300x150’. Moreover, the tkinter window size will be
changed but the screen position will be the same.

What if we are in need to change the position? We can do it by preforming a little
tweaking in the code as shown:

36  Building Modern GUIs with tkinter and Python

from tkinter import *

creating blank tkinter window
myroot = Tk()

myroot.geometry('300x150+400+400')

mybtn = Button(myroot, text = 'Python')
mybtn.pack(side = TOP, padx = 5, pady = 5)

myroot.mainloop()

Output:

The output can be seen in Figure 1.39:

Figure 1.39: Output of Chap1_Example25.py

Note: The preceding code is covered in Program Name: Chap1_Example25.py

Now, when we will run the preceding code, then both the position and size are
changed. We can see that the tkinter window is appearing in a different position (400
shifted on each X and Y axis).

An important point to note is that the variable argument must be in the form of
(variable1)x(variable2), otherwise an error will be raised.

Conclusion
In this chapter, we learned initially about basic GUI python program creation using
tkinter library. Then we saw standard attributes of Python tkinter GUI such as
dimensions, colors or fonts, along with various options with examples. We learned

tkinter Introduction  37

how to position the text with list of constants relative to the reference point using
anchor attribute. We also saw an example of relief attribute, which brings 3-D
simulated effects around the outside of the widget. The bitmap and cursor attribute
were also explored with a crystal-clear example. Finally, towards the end of this
chapter, we learned how to access tkinter widgets using inbuilt layout geometry
managers viz pack, grid and place with syntax and its various options.

Points to remember
•	 Import tkinter library first for creation GUI applications using this library.

•	 Dimension set to an integer is assumed to be in pixels.

•	 Representation of colors in tkinter can be done in hexadecimal digits or by
standard name.

•	 Font in tkinter can be accessed using a font object or by using a tuple.

•	 The text position relative to the reference point can be done using anchor
attribute.

•	 3-D simulated effects around the outside of the widget can be done using
relief style.

•	 Widgets position using absolute positioning can be done using place
geometry manager.

•	 Widgets in horizontal and vertical position is organized using pack geometry
manager.

•	 Widgets in a 2-D grid can be positioned using grid geometry manager.

Questions
1.	 Write short note on GUI designing using the tkinter package.

2.	 Draw and explain the application level of Python.

3.	 Write a basic Python GUI program and explain its structure.

4.	 Explain any five standard attributes of Python tkinter GUI.

5.	 Explain in detail how the color is represented in tkinter, and explain any 5
options available for color representation.

6.	 Explain how fonts access is done in tkinter library of Python.

7.	 Draw and explain anchor constant in Python.

38  Building Modern GUIs with tkinter and Python

8.	 To have 3-D simulated effects around the outside of the widget, what style of
a widget should be used? Explain in detail.

9.	 Write short notes on the following:

a.	 Bitmaps

b.	 Cursors

10.	 Explain Python tkinter Geometry Manager and its classes.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Inbuilt Variable Classes for Python tkinter GUI Widgets  39

Chapter 2
Inbuilt Variable

Classes for Python
tkinter GUI Widgets

Introduction
This chapter will deal with inbuilt variable classes for Python tkinter GUI widgets
and will also demonstrate the creation of a simple GUI Windows app using classes
and object concepts.

We will also be learning how to access and set pre-defined variables sub-classed
from the tkinter variable class viz StringVar, IntVar, DoubleVar, and BooleanVar.

Structure
In this chapter, we will discuss the following topics:

•	 Inbuilt variable classes

•	 StringVar()

•	 BooleanVar()

•	 IntVar()

•	 DoubleVar()

•	 GUI creation using classes and objects

40  Building Modern GUIs with tkinter and Python

Objectives
By the end of this chapter, the reader will learn how to store data associated with
widgets in tkinter, by using variable classes such as StringVar(), BooleanVar(),
IntVar() and DoubleVar() for storing string, Boolean, integer and floating point
values respectively. Finally, we shall see the importance of Tkinter's classes and
objects which can be used to create GUIs, thus improving the code's organization,
maintainability, and reusability, which also offers flexibility and aids in lowering the
complexity of the code.

Inbuilt variable classes
A variable is needed with a wide variety of widgets. Whenever a user enters some
text in the Entry widget or Text widget, a string variable is needed to track the
written text. If there is a Checkbox widget, a Boolean variable is needed to track
whether the user has checked or not. If the user requires some value in the Spinbox
or Slider widget, then an integer variable is required to track the value. There is a
Variable class in the tkinter which responds to changes in widget-specific variables.
The commonly used pre-defined variables which are subclassed from the tkinter
variable class are StringVar, BooleanVar, IntVar, and DoubleVar. We can
associate one variable with more than one widget so that the same information can
be displayed by more than one widget. Moreover, when the values are changed, the
functions can be binded which are to be called. Methods such as get() and set()
will be used to retrieve and set the values of these variables.

StringVar()
This variable will hold a string and the default value is an empty string, as follows:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window
we should first know how to create a window if want to per-
form graphics coding.
but output window will not be displayed right now

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

Inbuilt Variable Classes for Python tkinter GUI Widgets  41

mystr = StringVar() # S1
print(type(mystr)) # S2
my_entry = Entry(myroot, font = ('Calibri',12),textvariable = mystr)
my_entry.pack()

def myshow():
 mydata = mystr.get() # S3
 print(mydata)
 mystr.set('') # S4

my_btn = Button(myroot, font = ('Cal-
ibri',12), text = 'Get Data!',command = myshow)
my_btn.pack()

myroot.mainloop()

Output initially and when text is written:
The output can be seen in Figure 2.1:

Figure 2.1: Initial Output

Output when Get Data! button is clicked:
The output can be seen in Figure 2.2:

Figure 2.2: Output of Chap2_Example1.py

42  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap2_Example1.py

Output when a program is stopped or when ‘x’ is clicked:

The output is as follows:

<class 'tkinter.StringVar'>
python

In the preceding code, we have created two widgets: Entry and Button, in the parent
widget and we are demonstrating the usage of the tkinter StringVar() type.

In S1, an instance of StringVar() type is created and is assigned to the Python
mystr variable.

In S2, the type is <class 'tkinter.StringVar'>.

Then we are writing some text in the Entry widget and click the button Get Data!

In S3, we are using the variable mystr to get the value, saving it to a new variable
named mydata and then displaying its value.

In S4, we are using the variable mystr to call the set() method on StringVar()
and setting it to an empty string "".

An important point to observe is that we have used textvariable option, as it will
associate a tkinter variable to the entry field contents. We will learn about other
options associated when we will be dealing with the widgets in detail.

BooleanVar()
This variable will hold a Boolean and will return 1 for True and 0 for False, as shown:

from tkinter import *

myroot = Tk()
myroot.geometry('200x100')

num1 = BooleanVar()
mystr = StringVar()
def mydatainsertion():
 if num1.get() == True:
 mystr.set('It is set to True')
 else:

Inbuilt Variable Classes for Python tkinter GUI Widgets  43

 mystr.set('It is set to False')

myc1 = Checkbutton(myroot, variable = num1, font = ('Cal-
ibri',12), text = 'Python', command = mydatainsertion)
myc1.pack()

mye1 = Entry(myroot, width = 20, textvariable = mystr)
mye1.pack()

myroot.mainloop()

Output when checkbutton is checked:

The output can be seen in Figure 2.3:

Figure 2.3: Output

Output when checkbutton is Unchecked:

Refer to Figure 2.4:

Figure 2.4: Output of Chap2_Example2.py

Note: The preceding code is covered in Program Name: Chap2_Example2.py

In the preceding code, when the user checks, the output will return True. Otherwise,
on unchecking, it will return False.

44  Building Modern GUIs with tkinter and Python

IntVar()
This variable will hold an integer and the default value is 0, as shown below. If
values are entered in fraction, the value will be truncated to an integer.

from tkinter import *
myroot = Tk()
myroot.geometry('200x200')
myroot.resizable(0,0)

myint = IntVar()
myint1 = IntVar()
myint2 = IntVar()

my_entry = Entry(myroot, font = ('Calibri',12),textvariable = myint)
my_entry.pack()

my_entry1 = Entry(myroot, font = ('Calibri',12),textvari-
able = myint1)
my_entry1.pack()

def mydisplay():
 mydata1 = myint.get()
 mydata2 = myint1.get()
 mydata3 = mydata1 * mydata2
 myint2.set(mydata3)

my_btn = Button(myroot, font = ('Calibri',12), text = 'Multi-
ply',command = mydisplay)
my_btn.pack()
my_entry2 = Entry(myroot, font = ('Calibri',12),textvari-
able = myint2)
my_entry2.pack()
my_entry2.configure(state = 'readonly')

myroot.mainloop()

Inbuilt Variable Classes for Python tkinter GUI Widgets  45

Output when no data is entered:

Refer to Figure 2.5:

Figure 2.5: Output

Output when data is entered:

Refer to Figure 2.6:

Figure 2.6: Output of Chap2_Example3.py

Note: The preceding code is covered in Program Name: Chap2_Example3.py

DoubleVar()
This variable will hold a float and the default value is 0.0, as shown:

from tkinter import *

myroot = Tk()

46  Building Modern GUIs with tkinter and Python

myroot.geometry('200x200')
myroot.resizable(0,0)

myint = DoubleVar()
myint1 = DoubleVar()
myint2 = DoubleVar()

my_entry = Entry(myroot, font = ('Calibri',12),textvariable = myint)
my_entry.pack()

my_entry1 = Entry(myroot, font = ('Calibri',12),textvari-
able = myint1)
my_entry1.pack()

def mydisplay():
 mydata1 = myint.get()
 mydata2 = myint1.get()
 mydata3 = mydata1 - mydata2
 myint2.set(mydata3)

my_btn = Button(myroot, font = ('Calibri',12), text = 'Differ-
ence',command = mydisplay)
my_btn.pack()
my_entry2 = Entry(myroot, font = ('Calibri',12),textvari-
able = myint2)
my_entry2.pack()
my_entry2.configure(state = 'readonly')

myroot.mainloop()

Output when no data is entered:

Refer to Figure 2.7:

Inbuilt Variable Classes for Python tkinter GUI Widgets  47

Figure 2.7: Output

Output when data is entered:

Refer to Figure 2.8:

Figure 2.8: Output of Chap2_Example4.py

Note: The preceding code is covered in Program Name: Chap2_Example4.py

However, in the preceding code and the previous code of IntVar() variable class,
we are entering numbers only. However, the user may enter anything in the Entry
widget. So, we need to provide some checks such that the user may validate the
Entry widget with numeric values only. We will learn when we will be dealing with
widgets. For some time now, just observe the concept of variables.

GUI creation using classes and objects
As we have seen till now, it is very easy to create a basic GUI with a code of few
lines only using tkinter. However, when the programs become complex, it is quite
difficult to separate logic from each part. We need to make our code clean with an
organized structure. Consider the following code:

48  Building Modern GUIs with tkinter and Python

from tkinter import *
from tkinter import messagebox
myroot = Tk()

def mydisplay():
 messagebox.showinfo('Message',"Python")

mybtn = Button(myroot, text="Display",command=mydisplay)
mybtn.pack(padx=20, pady=30)
myroot.mainloop()

Output:

Refer to Figure 2.9:

Figure 2.9: Output

Output on clicking Display button:

Refer to Figure 2.10:

Figure 2.10: Output of Chap2_Example5.py

Note: The preceding code is covered in Program Name: Chap2_Example5.py

Inbuilt Variable Classes for Python tkinter GUI Widgets  49

In the preceding code, a main window is created having a Button widget. A message
is being displayed as ‘Python’ when the Display button is clicked. The button widget
is placed with a padding of 20px on the horizontal axis and 30px on the vertical
axis. On executing the preceding code, we can verify that it is working as expected.
We can see that all the variables are defined in the global namespace. However, it
becomes and more difficult to reason about the parts usage when more widgets are
added. Such type of issues can be addressed with basic OOP techniques.

Now, we will define a class that will wrap up our global variables:

from tkinter import *
from tkinter import messagebox

class MyBtn(Tk):
 def __init__(self): # constructor
 super().__init__() # for calling the constructor of
superclass
 self.mybtn = Button(self, text="Display", command=self.
mydisplay)
 self.mybtn.pack(padx=20, pady=30)

 def mydisplay(self):
 messagebox.showinfo('Message',"Python")

if __name__ == "__main__":
 myroot = MyBtn() # making an object of MyBtn class
 myroot.mainloop()

Output:

Refer to Figure 2.11:

Figure 2.11: Output

50  Building Modern GUIs with tkinter and Python

Output on clicking Display button, output will be:

Refer to Figure 2.12:

Figure 2.12: Output of Chap2_Example6.py

Note: The preceding code is covered in Program Name: Chap2_Example6.py

In the preceding code, we defined MyBtn class as a Tk subclass. To initialize the base
class properly, the __init__() method of the Tk class is called with the built-in
super() function. We have a reference to the MyBtn instance with the self-variable,
and so the Button widget is added as an attribute of our class. The instantiation of
the Button is separated from the callback, which gets executed when it is clicked.
It is a common practice in executable Python scripts to use if __name__ == "__
main__" which is an entry point of any program. To show the main window itself,
we are calling the mainloop method inside if __name__ == "__main__" block. So,
we can make any large Python code by taking note of the usage of classes and objects
to create GUI applications.

The advantages of GUI creation using classes and objects in tkinter are as follows:

•	 Encapsulation: By using classes, we may encapsulate a GUI's functionality
in a single class, simplifying the organization and maintenance of the code.
Additionally, it lessens the complexity of the code and prevents naming
disputes.

•	 Reusability: We can construct reusable code that can be utilised in other
apps or sections of an application by defining classes and objects.

•	 Modularity: Classes and objects facilitate code modularization by making
it simpler to divide different elements of a GUI, such as the design and the
functionality.

•	 Inheritance: Subclasses that are created through inheritance will take on the
parent class's attributes and functions. When building similar GUI elements
with somewhat differing functionality, this can save time and effort.

Inbuilt Variable Classes for Python tkinter GUI Widgets  51

•	 Flexibility: Classes and objects give us the ability to tweak and update GUIs
since they let us make code changes without having an impact on other areas
of the program.

•	 Code organization: It helps us in organizing the code more clearly and makes
it understandable by using classes and objects. When problems develop, it
could also make it simpler to troubleshoot the code.

Conclusion
In this chapter, we learned different approaches of data storage associated with
widgets in tkinter by using variable classes such as StringVar(), BooleanVar(),
IntVar() and DoubleVar() for storing string, Boolean, integer and floating point
values respectively with python code.

We have seen two approaches of displaying an application with and without
usage of Tkinter's classes and objects for creating GUIs. Finally, we can say that the
approach of using classes and objects for GUI creation helps us in improving the
code's organization, maintainability, reusability and aids in lowering the complexity
of the code.

Points to remember
•	 For storing and manipulating string values and for representing the text or

widgets value like Entry and label, we may use StringVar() variable.

•	 For storing Boolean values and for representing the state of Checkbuttons or
radiobuttons, we may use BooleanVar() variable.

•	 For storing integer values and for representing the widget’s value like
Spinbox or Scale, we may use IntVar() variable.

•	 For storing floating point values and for representing the widget’s value like
Spinbox or Scale, we may use DoubleVar() variable.

•	 GUI application creating in tkinter using classes and objects offers several
advantages such as encapsulation, reusability, modularity, inheritance,
flexibility and code organization.

Questions
1.	 Explain in detail about inbuilt variable classes for Python tkinter GUI

widgets.

2.	 Explain the use of inbuilt variable classes for designing GUI in Python.

52  Building Modern GUIs with tkinter and Python

3.	 Explain the use of StringVar() in Python with a suitable example.

4.	 Which variable is used to return 1 for True and 0 for False values in Python
for GUI? Explain in detail.

5.	 Explain IntVar() in detail with a suitable example.

6.	 Explain DoubleVar() in detail with a suitable example.

7.	 Write a short code for GUI Creation using Classes and Objects. What are its
advantages?

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Getting Insights of Button Widgets in tkinter  53

Chapter 3
Getting Insights of
Button Widgets in

tkinter
Introduction
A standard Graphical User Interface (GUI) element, which are basic building blocks
of any GUI program are termed as widgets. We have observed till now that a top-
level root window object contains different small window objects which are part of
our developed GUI application. We put all the widgets in top-level window. We can
have more than one top-level window, but can have only one root window. We shall
see different widgets one by one now with starting from different widgets related to
button in tkinter.

Structure
In this chapter, we will discuss the following topics:

•	 tkinter Button Widget

•	 tkinter Checkbutton Widget

•	 tkinter Radiobutton Widget

•	 tkinter OptionMenu Widget

54  Building Modern GUIs with tkinter and Python

Objectives
By the end of this chapter, the reader will learn about one of the most commonly
used GUI widgets viz tkinter Button widget. We will be viewing the binding of
events to the above widget with multiple examples and different methods including
lambda expressions. Next, we shall look into the Checkbutton widget, which will
give the provision to the user to select more than one option. Users will also view
different options to get the image in this widget. Next, we will see how to use the
tkinter Radiobutton widget. Users will view various examples where exactly one of
the predefined sets of options will be chosen. Last but not the least, we will explore
the tkinter Option-Menu widget where the user views how a pop-menu and button
widget will be created for an individual option selection from a list of options.

tkinter Button Widget
One of the most commonly used GUI widgets in tkinter Python is the Button widget.
A method or a function can be associated with this widget when clicked. Different
options can be set or reset as per need. This widget is generally used for interaction
with the user.

The syntax is:

mybtn1= Button(myroot , options…)

where,

myroot is the parent window.

Some of the lists of options that can be used as key-value pairs and are separated
by commas are activebackground, activeforeground, bg, bd, command, fg, font,
height, highlightcolor, justify, image, padx, pady, state, relief, width, wraplength,
and underline. We have seen most of the options but some undiscussed options are
as follows:

•	 command: This option will call the function or method whenever the button
is clicked. So, by using the command option, we are adding functionality to
the button.

•	 justify: This option will define the alignment of multiple lines of text with
respect to each other. The default is CENTER and the other is LEFT or RIGHT.

Refer to the following code:

from tkinter import *
from tkinter import messagebox

Getting Insights of Button Widgets in tkinter  55

class MyJustify(Tk):
 def __init__(self):
 super().__init__()
 self.title('Jusify in Button')

 def mycenterjustify():
 messagebox.showinfo('Justify','Justify CENTER')

 def myleftjustify():
 messagebox.showinfo('Justify','Justify LEFT')

 def myrightjustify():
 messagebox.showinfo('Justify','Justify RIGHT')

 # default justify is CENTER
 mybtn1= Button(self, text = 'JUSTIFY\nCENTER\nCENTER CEN-
TER',bd = 3, relief = 'groove',
 font = ('Helveti-
ca',10), width = 20, height = 3, command = mycenterjustify)
 mybtn1.pack(pady= 10, side = BOTTOM)

 mybtn2= Button(self, text = 'JUSTIFY\nLEFT\
nLEFT LEFT',bd = 3, relief = 'groove',
 font = ('Helvetica',10), justi-
fy = LEFT, width = 20, height = 3, command = myleftjustify)
 mybtn2.pack(pady= 10, side = RIGHT)

 mybtn3= Button(self, text = 'JUSTIFY\nRIGHT\
nRIGHT RIGHT',bd = 2,font = ('Helvetica',10),
 justify = RIGHT, width = 20, height = 3, com-
mand = myrightjustify)
 mybtn3.pack(side = TOP)

if __name__ == "__main__":
 myroot = MyJustify()
 myroot.geometry('350x350')
 myroot.mainloop()

56  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in Figure 3.1:

Figure 3.1: Output

Output when JUSTIFY LEFT button is clicked:

Refer to Figure 3.2:

Figure 3.2: Output

Output when JUSTIFY RIGHT button is clicked:

Refer to Figure 3.3:

Figure 3.3: Output

Getting Insights of Button Widgets in tkinter  57

Output when JUSTIFY CENTER button is clicked:

Refer to Figure 3.4:

Figure 3.4: Output

Note: The preceding code is covered in Program Name: Chap3_Example1.py

Let us go over the various options now:

image: This option will set the image to be displayed on the button instead of text.

state: This option, by default, is NORMAL. When this option is set to DISABLED,
the button becomes unresponsive and will gray out the button.

Note: User may use 'Add-icon.png' or any other icon file as per need in their
active directory. Here, we have added ‘Add-icon.png’ file as a reference.

Refer to the following code:

from tkinter import *

class MyBtnImage(Frame):
 def __init__(self, root = None):
 Frame.__init__(self, root)
 self.root = root
 self.myphoto = PhotoImage(file = 'Add-icon.png')
 def myclick():
 self.mybtn1['state'] = DISABLED
 self.mybtn1 = Button(self.root,image = self.
myphoto, command = myclick)
 self.mybtn1.pack(padx = 10, pady = 10)

if __name__ == "__main__":

58  Building Modern GUIs with tkinter and Python

 myroot = Tk()
 myobj = MyBtnImage(myroot)
 myroot.title('Image using Button')
 myroot.geometry('400x100')
 myroot.mainloop()

Output:

Refer to Figure 3.5:

Figure 3.5: Output

Output when button is clicked:

Refer to Figure 3.6:

Figure 3.6: Output

Note: The preceding code is covered in Program Name: Chap3_Example2.py

In the above code, we have added an image with a ‘+’ symbol to a button and when
it is clicked, the button becomes disabled.

An important point to note is that only the image will appear on the screen when
both text and image are given on the Button, as the text will be dominated by the
image. But what if we want to display both text and image on the button? In such
cases, we will be using the compound option in the button widget. Suppose we want
the image to appear at bottom of the button. In this case, compound = BOTTOM.

Similarly, when compound = LEFT, the image will appear on the left side of the
button widget; when compound = RIGHT, the image will appear on the right side
of the button widget, and when compound = TOP, the image will appear on the top
side of the button widget.

Getting Insights of Button Widgets in tkinter  59

Let us see the code for a better understanding:

from tkinter import *

class MyBtnTextWithImage(Frame):
 def __init__(self, root = None):
 Frame.__init__(self, root)
 self.root = root
 self.myphoto = PhotoImage(file = 'Add-icon.png')
 self.mybtn1 = Button(self.root,image = self.
myphoto, text = 'Hello', compound = LEFT)
 self.mybtn1.pack(padx = 10, pady = 10)
 self.mybtn2 = Button(self.root,image = self.
myphoto, text = 'Hello', compound = RIGHT)
 self.mybtn2.pack(padx = 10, pady = 10)
 self.mybtn3 = Button(self.root,image = self.
myphoto, text = 'Hello', compound = TOP)
 self.mybtn3.pack(padx = 10, pady = 10)
 self.mybtn4 = Button(self.root,image = self.
myphoto, text = 'Hello', compound = BOTTOM)
 self.mybtn4.pack(padx = 10, pady = 10)

if __name__ == "__main__":
 myroot = Tk()
 myobj = MyBtnTextWithImage(myroot)
 myroot.title('Image using Button')
 myroot.geometry('400x200')
 myroot.mainloop()

Output:

Refer to Figure 3.7:

Figure 3.7: Output of Chap3_Example3.py

60  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap3_Example3.py

Now, we will discuss events and bindings before moving on to the next widgets.

Events and bindings
We have seen in all the examples till now that until and unless we press the ‘X’ mark
of a parent widget, a tkinter code is spending most of the time inside an event loop
(the mainloop method). We can see events such as mouse click, focusin, focusout,
keypress events, and so on. In order to bind an event with a function, a bind()
function is used, which is included in all the widgets whose syntax is given as:

widget.bind(event,handler, add = '')

Here, an event can be attached binding to a widget using the bind method.

The first argument event is a representative string that must be in the following
format:

•	 <modifier-type-detail>: Here, the modifier and detail sections are optional
and the only mandatory part is the type section which represents the event
type to listen for. We will discuss each section one by one.

•	 event modifiers: They can change the circumstances in which an event’s
handler is activated and is an optional component for creating an event
binding. We should note that most of the event handlers are platform specific
and will not work on all platforms.

•	 Shift: While the event is occurring, the shift button needs to be pressed.

•	 Control: While the event is occurring, the Control button needs to be pressed.

•	 Alt: While the event is occurring, the Alt button needs to be pressed.

•	 Lock: When the event occurs, the caps lock button needs to be activated.

•	 Double: The event will be happening twice in quick succession, say double-
click.

•	 Triple: The event will be happening thrice in quick succession.

•	 Quadruple: The event will be happening four times in quick sucession.

event type
The different event types in tkinter are as follows:

•	 ButtonPress or Button: An event will be generated or activated when a mouse
button has been clicked. Event <Button-1> defines the left mouse button,
Event <Button-2> defines the middle button, Event <Button-3> defines the

Getting Insights of Button Widgets in tkinter  61

right mouse button, Event <Button-4> defines scroll-up on mice with wheel
support, Event <Button-5> defines scroll-down on mice with wheel support.

•	 ButtonRelease: An event will be generated or activated when a mouse
button has been released. Events <ButtonRelease-1>, <ButtonRelease-2> and
<ButtonRelease-3> will specify the left, middle, or right mouse button.

•	 Keypress or Key: An event will be generated or activated when a keyboard
button has been pressed.

•	 KeyRelease: An event will be generated or activated when a keyboard
button is released.

•	 Motion: An event will be generated or activated when the mouse cursor
is moved across the widget. Events <B1-Motion>, <B2-Motion> and <B3-
Motion> will specify the left, middle, or right mouse button. The mouse
pointer's current position will be provided in the x and y members of the
event object passed to the callback, that is, event.x, event.y.

•	 Enter: An event will be generated or activated when the mouse cursor enters
the widget.

•	 Leave: An event will be generated or activated when the mouse cursor leaves
the widget.

•	 FocusIn: An event will be generated or activated when the widget gains the
input focus.

•	 FocusOut: An event will be generated or activated when the widget loses
the input focus.

•	 Configure: An event will be generated or activated when the widget
configurations are changed such as width, height, or border width being
adjusted by the user, and so on.

•	 Mousewheel: An event will be generated or activated when the mouse
wheel is scrolled.

•	 Event details: It is an optional section and will serve as either a mouse button
or a certain key on the keyboard being pressed.

•	 For keyboard events: The keyboard event detail is captured such that each
key pressed on the keyboard will be represented by a key symbol or key
letter itself. The ASCII value of the specific key is given for triggering the
event when using Key, KeyPress, or KeyRelease.

•	 For mouse events: The mouse event detail is captured such that numeric
detail from 1 to 5 will represent the specific mouse button we wish to have
to handle the trigger.

62  Building Modern GUIs with tkinter and Python

The second argument is a handler which represents the function name to call
(callback function) when the event occurs. It takes an event parameter.

The attributes for the mouse events are as follows:

•	 x and y: It will return the x and y coordinate mouse position in pixels where
events such as Buttons occur.

•	 x_root and y_root: It is similar to x and y but is relative to the upper-left
screen corner.

•	 num: It returns the mouse button number.

The attributes for the keyboard events are:

•	 char: It is for keyboard events only and pressed character as a string.

•	 keysym: It is for keyboard events only and pressed key symbol.

•	 keycode: It is for keyboard events only and pressed key code.

As the event handler, the function included will be passed as an event object which
will describe the events and include details about the event which was triggered. So,
a parameter is to be included which will be assigned to this object in the function.

The third parameter, which can be None, is added to replace the callback if there was
a previous binding or ‘+’ to preserve the old ones and add the callback.

Now, if we want to bind an event to a widget instance, then it is called instance-level
binding.

There are times when it is needed to bind events to an entire application, which
is called application-level binding where the same binding is used across all the
windows and application widgets as long as any one application window is in focus.
The syntax of application-level binding is:

widget.bind_all(event,callback)

For example:

myroot.bind_all('<F1>', show_help)

Here, if we press the F1 key and then the show_help callback will always trigger,
irrespective of any widget the focus as long as the application is under active focus.

Another is class-level binding where the events can be bound at a particular class
level. The syntax of class-level binding is:

widget.bind_class(classname, event,callback)

For example,
mye1.bind_class('<Entry>', '<Control-C>', copy)

Getting Insights of Button Widgets in tkinter  63

Here, all the Entry widgets will be bound to the <Control-C> event which would
call a method called 'copy (event)'.

We shall see some examples related to buttons, events, and bindings for a better
understanding of the concepts.

from tkinter import * # importing module
class MyLeftRightMouseClick(Tk):
 def __init__(self):
 super().__init__()
 self.title('Button Left and Right click')

 def mycall(event):
 print('Left Clicked')

 def mycallme(event):
 print('Right Clicked')

 self.
myb1 = Button(self, text = 'LeftClick', font = ('Calibri',15))
 self.myb1.bind('<Button-1>', mycall) # Left click
 self.myb1.pack(pady = 10) # for displaying the button

 self.
myb2 = Button(self, text = 'RightClick', font = ('Calibri',15))
 self.myb2.bind('<Button-3>', mycallme) # Right click
 self.myb2.pack(pady = 10) # for displaying the button

if __name__ == "__main__":
 myroot = MyLeftRightMouseClick()
 myroot.geometry('350x150')
 myroot.
mainloop() # display window until we press the close button

64  Building Modern GUIs with tkinter and Python

Initial output:

Refer to Figure 3.8:

Figure 3.8: Output

Output when LeftClick button is clicked using the left side of the mouse:

Refer to Figure 3.9:

Figure 3.9: Output

Output when RightClick button is clicked using the mouse right side after
clicking the mouse left side:

Refer to Figure 3.10:

Figure 3.10: Output

Note: The preceding code is covered in Program Name: Chap3_Example4.py

In this code, we bind the button widget to the event <'Button-1'> which corresponds
to the mouse left click. Whenever this event will occur, the method mycall will
be called, which will be passing an object instance as its argument. The method
mycall(event) will take an event object generated by the event as its argument.
So, when the left button of the mouse is clicked on LeftClick button, then the Left
Clicked message will be displayed.

We bind the button widget to the event <'Button-3> which corresponds to the
mouse's Right click. Whenever this event will occur, the method mycallme will
be called, which will be passing an object instance as its argument. The method
mycallme(event) will take an event object generated by the event as its argument. So,
when the right button of the mouse is clicked on RightClick button, then the Right

Getting Insights of Button Widgets in tkinter  65

Clicked message will be displayed.

We can display some messages in the command prompt via event handling:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('370x100') # but can be resized to any pixel un-
til we are using myroot.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.
myroot.title('event handling through Cmd prompt')

def mydisplay():
 print("Clicked !!!")

mytk_button1 = Button(myroot, text = 'Login',font = ('Cal-
ibri',15),fg = 'Blue',command = mydisplay)
mytk_button1.pack()

myroot.mainloop()

Output initial:
Refer to Figure 3.11:

Figure 3.11: Output

Output when the Button is clicked and the message is displayed on the command
prompt
Refer to Figure 3.12:

Figure 3.12: Output

66  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap3_Example5.py

We can change the background color using config() method. So, we will be looking
at event handling through config method.

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('300x300') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

def myshow1():
 myroot.configure(background = 'LightBlue')

mytk_button1 = Button(myroot, text = 'Change Background col-
or',font = ('Calibri',15),fg = 'Blue')
mytk_button1.config(command = myshow1)
mytk_button1.pack()

myroot.mainloop()

Output initially:

Refer to Figure 3.13:

Figure 3.13: Output

Getting Insights of Button Widgets in tkinter  67

Output when the Button is clicked and the message is displayed on the command
prompt:

Refer to Figure 3.14:

Figure 3.14: Output

Note: The preceding code is covered in Program Name: Chap3_Example6.py

Now, we will be viewing event handling using the bind method:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using myroot.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

def myshow1(e):
 myroot.configure(background = 'LightBlue')

def myshow2(e):
 myroot.configure(background = 'LightGreen')

def myshow3(e):
 myroot.configure(background = 'LightPink')

mytk_btn1 = Button(myroot, text = 'Background color',font = ('Cal-
ibri',15),fg = 'Blue')

68  Building Modern GUIs with tkinter and Python

mytk_btn1.bind('<Button-1>',myshow1) # Left Key of mouse
mytk_btn1.bind('<Button-2>',myshow2) # Wheel Key of mouse
mytk_btn1.bind('<Button-3>',myshow3) # Right Key of mouse
mytk_btn1.pack()

myroot.mainloop()

Output initially:

Refer to Figure 3.15:

 (A) (B) (C)

Figure 3.15: Output

Here,

A) Output when the left key of the mouse is clicked.

B) Output when the wheel key of the mouse is clicked.

C) Output when the right key of the mouse is clicked.

Note: The preceding code is covered in Program Name: Chap3_Example7.py

Getting Insights of Button Widgets in tkinter  69

Now, we shall see event handling using a lambda expression. A lambda expression
in Python is a tool for writing anonymous functions. Without the requirement for a
formal function definition, it enables you to build short, inline functions. A lambda
expression can have a single expression but any number of parameters.

The advantages of lambda expressions over conventional methods are as follows:

•	 Conciseness: By allowing the user to write functions on a single line using
lambda expressions, the code is made shorter and simpler to read.

•	 Readability: By grouping together relevant functionality, lambda expressions
can be utilized to build tiny, straightforward functions inline, improving the
readability of user’s code.

•	 Avoiding function definition: Using lambda expressions eliminates the
need to declare a function individually, which is advantageous when user
only require a function once and do not want to clutter the code with many
definitions.

•	 Function as argument: When working with collections, lambda expressions
can be supplied as arguments to higher-order functions like map(), filter(),
and reduce(). This enables more concise and expressive code.

We will be viewing the output of the previous example using lambda expressions:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

#using lambda expression
myshow1 = lambda e: myroot.configure(background = 'LightBlue')
myshow2 = lambda e: myroot.configure(background = 'LightGreen')
myshow3 = lambda e: myroot.configure(background = 'LightPink')

mytk_btn1 = Button(myroot, text = 'Background color',font = ('Cal-
ibri',15),fg = 'Blue')
mytk_btn1.bind('<Button-1>',myshow1) # Left Key of mouse
mytk_btn1.bind('<Button-2>',myshow2) # Wheel Key of mouse

70  Building Modern GUIs with tkinter and Python

mytk_btn1.bind('<Button-3>',myshow3) # Right Key of mouse
mytk_btn1.pack()

myroot.mainloop()

Note: The preceding code is covered in Program Name: Chap3_Example8.py

The output will be the same as the previous one. We have used lambda expressions
instead of functions.

We can even use lambda expressions with bind() method:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

mytk_btn1 = Button(myroot, text = 'Background color',font = ('Cal-
ibri',15),fg = 'Blue')
mytk_btn1.bind('<Button-1>',lambda e: myroot.configure(back-
ground = 'LightBlue')) # Left Key of mouse
mytk_btn1.bind('<Button-2>',lambda e: myroot.configure(back-
ground = 'LightGreen')) # Wheel Key of mouse
mytk_btn1.bind('<Button-3>',lambda e: myroot.configure(back-
ground = 'LightPink')) # Right Key of mouse
mytk_btn1.pack()

myroot.mainloop()

Note: The preceding code is covered in Program Name: Chap3_Example9.py

The output is still the same.

Now, suppose we want the same output but on mouse double click. In that case,
we need to do a small modification, such that instead of <Button-1>, we will use
<Double-1> and so on which is displayed as follows:

Getting Insights of Button Widgets in tkinter  71

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

mytk_btn1 = Button(myroot, text = 'Background color',font = ('Cal-
ibri',15),fg = 'Blue')
mytk_btn1.bind('<Double-1>',lambda e: myroot.configure(back-
ground = 'LightBlue')) # Left Key of mouse on double click
mytk_btn1.bind('<Double-2>',lambda e: myroot.configure(back-
ground = 'LightGreen')) # Wheel Key of mouse on double click
mytk_btn1.bind('<Double-3>',lambda e: myroot.configure(back-
ground = 'LightPink')) # Right Key of mouse on double click
mytk_btn1.pack()

myroot.mainloop()

Note: The preceding code is covered in Program Name: Chap3_Example10.py

Here, we will get the same desired result, but on double clicking of the mouse. When
the left key of the mouse is double-clicked, we will get LightBlue color. When the
wheel key of the mouse is double-clicked, we will get LightGreen color and when
the right key of the mouse is double-clicked, we will get LightPink color.

We can even change the background color by using Enter and Leave events on the
Button widget, as follows:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

72  Building Modern GUIs with tkinter and Python

mytk_btn1 = Button(myroot, text = 'Background color',font = ('Cal-
ibri',15),fg = 'Blue')
mytk_btn1.bind('<Enter>',lambda e: myroot.configure(back-
ground = 'LightBlue'))
mytk_btn1.bind('<Leave>',lambda e: myroot.configure(back-
ground = 'LightGreen'))
mytk_btn1.pack()

myroot.mainloop()

Output when mouse pointer is entering into Button widget:

Refer to Figure 3.16:

Figure 3.16: Output

Output when mouse pointer is leaving from Button widget:

Refer to Figure 3.17:

Figure 3.17: Output

Note: The preceding code is covered in Program Name: Chap3_Example11.py

Getting Insights of Button Widgets in tkinter  73

In the preceding code, when the mouse pointer is entering into the button widget, the
background color of the window will be LightBlue and when the mouse pointer is
leaving the button widget, the background color of the window will be LightGreen.

Now, we shall see event handling on pressing alphabet keys:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

myroot.bind('<Key-a>',lambda e: myroot.configure(background = 'Light-
Blue')) # on pressing key 'a'
myroot.bind('<Key-b>',lambda e: myroot.configure(background = 'Light-
Green')) # on pressing key 'b'
myroot.bind('<Key-c>',lambda e: myroot.configure(background = 'Light-
Pink')) # on pressing key 'c'

myroot.mainloop()

Output:

Refer to Figure 3.18:

 (A) (B) (C)

Figure 3.18: Output

74  Building Modern GUIs with tkinter and Python

Here,

A) On pressing Key-a, the window color changes to LightBlue.

B) On pressing Key-b, the window color changes to LightGreen.

C) On pressing Key-c, the window color changes to LightPink.

Note: The preceding code is covered in Program Name: Chap3_Example12.py

We can also perform event handling by pressing special keys such as F1, F2, F3,
Delete and so on:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

myroot.bind('<F1>',lambda e: myroot.configure(background = 'Light-
Blue')) # on key pressing Fn+F1 in laptop
myroot.bind('<F2>',lambda e: myroot.configure(background = 'Light-
Green')) # on key pressing Fn+F2 in laptop
myroot.bind('<F3>',lambda e: myroot.configure(background = 'Light-
Pink')) # on key pressing Fn+F3 in laptop
myroot.bind('<Delete>',lambda e: myroot.configure(back-
ground = 'LightYellow')) # on key pressing Delete

myroot.mainloop()

Getting Insights of Button Widgets in tkinter  75

Output:

Refer to Figure 3.19:

Figure 3.19: Output

Here,

A) On pressing Key-F1, the window color changes to LightBlue.

B) On pressing Key-F2, the window color changes to LightGreen.

C) On pressing Key-F3, the window color changes to LightPink.

D) On pressing Delete, the window color changes to LightYellow.

Note: The preceding code is covered in Program Name: Chap3_Example13.py

76  Building Modern GUIs with tkinter and Python

Event handling can also be performed by using number keys as follows:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

myroot.bind('1',lambda e: myroot.configure(background = 'Light-
Blue')) # on key pressing 1 in laptop
myroot.bind('2',lambda e: myroot.configure(background = 'Light-
Green')) # on key pressing 2 in laptop
myroot.bind('3',lambda e: myroot.configure(background = 'Light-
Pink')) # on key pressing 3 in laptop

myroot.mainloop()

Output:

Refer to Figure 3.20:

		 (A) (B) (C)

Figure 3.20: Output

Here,

A) On pressing 1, the window color changes to LightBlue.

B) On pressing 2, the window color changes to LightGreen.

C) On pressing 3, the window color changes to LightPink.

Getting Insights of Button Widgets in tkinter  77

Note: The preceding code is covered in Program Name: Chap3_Example14.py

We can also perform event handling by pressing Shift, Alt, and Ctrl:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

myroot.bind('<Shift-Up>',lambda e: myroot.configure(back-
ground = 'LightBlue')) # on key pressing Shift-Up
myroot.bind('<Shift-Down>',lambda e: myroot.configure(back-
ground = 'LightGreen')) # on key pressing Shift-Down
myroot.bind('<Shift-Left>',lambda e: myroot.configure(back-
ground = 'LightPink')) # on key pressing Shift-Left
myroot.bind('<Shift-Right>',lambda e: myroot.configure(back-
ground = 'LightYellow')) # on key pressing Shift-Right

myroot.bind('<Alt-Up>',lambda e: myroot.configure(back-
ground = 'LightBlue')) # on key pressing Alt-Up
myroot.bind('<Alt-Down>',lambda e: myroot.configure(back-
ground = 'LightGreen')) # on key pressing Alt-Down
myroot.bind('<Alt-Left>',lambda e: myroot.configure(back-
ground = 'LightPink')) # on key pressing Alt-Left
myroot.bind('<Alt-Right>',lambda e: myroot.configure(back-
ground = 'LightYellow')) # on key pressing Alt-Right

myroot.bind('<Control-Up>',lambda e: myroot.configure(back-
ground = 'LightBlue')) # on key pressing Control-Up
myroot.bind('<Control-Down>',lambda e: myroot.configure(back-
ground = 'LightGreen')) # on key pressing Control-Down
myroot.bind('<Control-Left>',lambda e: myroot.configure(back-
ground = 'LightPink')) # on key pressing Control-Left
myroot.bind('<Control-Right>',lambda e: myroot.configure(back-
ground = 'LightYellow')) # on key pressing Control-Right

myroot.mainloop()

78  Building Modern GUIs with tkinter and Python

Output:

Refer to Figure 3.21:

Figure 3.21: Output

Here,

A) 	On pressing either Shift, Alt, or Ctrl and Up keys, the window color changes
to LightBlue.

B) 	 On pressing either Shift, Alt, or Ctrl and Down key, the window color changes
to LightGreen.

C) 	 On pressing either Shift, Alt, or Ctrl and Left key, the window color changes
to LightPink.

D) 	On pressing either Shift, Alt, or Ctrl and Right key, the window color changes
to LightYellow.

Note: The preceding code is covered in Program Name: Chap3_Example15.py

Getting Insights of Button Widgets in tkinter  79

We can also perform event handling by pressing and releasing a button:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

mybutton1 = Button(myroot, text = 'Click Me!!!', font = ('Ari-
al',12))
mybutton1.bind('<Button>',lambda e: myroot.configure(back-
ground = 'LightBlue')) # on Mouse pressing Button
mybutton1.bind('<ButtonRelease>',lambda e: myroot.configure(back-
ground = 'Red')) # on Mouse releasing Button
mybutton1.pack()

myroot.mainloop()

Output:

Refer to Figure 3.22:

Figure 3.22: Output

Here,

A) Output when the button is pressed and hold.

B) Output when a button press is released.

80  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap3_Example16.py

In the above code, if the button is pressed, then the window color will be LightBlue
and when released it will be Red.

We can also generate the same output with a single function:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.geometry('200x200') # but can be resized to any pixel un-
til we are using root.resizeable
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.

num = 1
def mydisplay(e):
 global num
 num = num + 1
 if num%2 == 0:
 myroot.configure(background = 'LightBlue')
 else:
 myroot.configure(background = 'Red')

mybutton1 = Button(myroot, text = 'Click Me!!!', font = ('Ari-
al',12))
mybutton1.bind('<Button>',mydisplay) # on Mouse pressing Button
mybutton1.bind('<ButtonRelease>',mydisplay) # on Mouse releas-
ing Button
mybutton1.pack()

myroot.mainloop()

Note: The preceding code is covered in Program Name: Chap3_Example17.py

In the above code, we have used a single function and global variable concept to
change the window background color.

Getting Insights of Button Widgets in tkinter  81

tkinter Checkbutton widget
This widget will allow the user to select more than one option by clicking the button
corresponding to each option. So, multiple options can be selected by the user at a
time. A Yes/No choice is made by checking/unchecking the menu.

The syntax is:
mychk1= Checkbutton(myroot , options…)

Here,

myroot is the parent window.

Some of the lists of options that can be used as key-value pairs and are separated by
commas are activeforeground, activebackground, background, bd, bitmap, cursor,
command, disableforeground, fg, font, height, image, highlightcolor, justify, onvalue,
offvalue, padx, pady, selectcolor, selectimage, text, state, underline, variable, width,
and wraplength.

We have seen most of the options but some undiscussed options are as follows:

•	 command: This option will associate with a function whenever the
checkbutton state is changed by the user.

•	 onvalue: This option will associate checkbutton’s control variable default
value to 1 when it is on or set. By setting onvalue to that value, an alternate
value can be supplied for the on state.

•	 offvalue: This option will associate checkbutton’s control variable default
value to 0 when it is off or cleared. By setting offvalue to that value, an
alternate value can be supplied for the off state.

•	 text: This option will display the text next to the checkbutton. Multiple lines
of text can be displayed using ‘\n’.

•	 variable: This option will track the checkbox current state. It is an IntVar
variable where 0 means off and 1 means set and will toggle between offvalue
and onvalue when the button widget is pressed.

Refer to the following code:

from tkinter import *
from tkinter.ttk import *

myroot = Tk()
myroot.geometry('300x150')
myroot.title('CheckButton widget')

82  Building Modern GUIs with tkinter and Python

def myget():
 if i2.get() == 'check':
 s1.set('Checked')
 else:
 s1.set('UnChecked')

i2 = StringVar()
myc2 = Checkbutton(myroot, text = 'Check/Uncheck', vari-
able = i2, offvalue = 'uncheck', onvalue = 'check', command = myget)
myc2.pack()

s1 = StringVar()
mye1 = Entry(myroot, font = ('Calibri',12), textvariable= s1)
mye1.pack(pady = 10)

myroot.mainloop()

Output:

Refer to Figure 3.23:

Figure 3.23: Output

Note: The preceding code is covered in Program Name: Chap3_Example18.py

In the next code, when the user clicks the CheckButton, the text checked will be
written in the Entry widget as its value for on state is checked. When the user
unchecks the CheckButton, the text UnChecked will be written in the Entry widget
as its value for the off state is unchecked.

Getting Insights of Button Widgets in tkinter  83

selectcolor: This option will set the checkbutton color when the widget is selected.
The default is ‘Red’ color. If the indicator is True, the color is applied to the indicator.
In Windows irrespective of the select state, it is used as the background for the
indicator. When the indicator is set to False, the color is used as the background color
for the entire widget whenever it is selected.

Refer to the following code:

from tkinter import *
myroot = Tk()
def selectcolor_indicatoronTrue():
 mychk1['selectcolor'] = 'Green'

def selectcolor_indicatoronFalse():
 mychk2['selectcolor'] = 'Blue'

mychk1 = Checkbutton(myroot, text = 'CheckButton', com-
mand = selectcolor_indicatoronTrue, indicatoron = True)
mychk1.place(x = 50, y = 50)
mychk2 = Checkbutton(myroot, text = 'CheckButton', com-
mand = selectcolor_indicatoronFalse, indicatoron = False)
mychk2.place(x = 50, y = 100)
myroot.mainloop()

Output:

Refer to Figure 3.24:

			 (A) 		 B)

Figure 3.24: Output

84  Building Modern GUIs with tkinter and Python

Here,

A)	 When both the Checkbutttons are clicked.

B)	 When both the Checkbutttons are deselected.

Note: The preceding code is covered in Program Name: Chap3_Example19.py

image: This option will allow you to get the image displayed in the widget.

selectimage: This option will allow setting the image to the checkbutton.

Refer to the following code:

from tkinter import *
myroot = Tk()

myon_image = PhotoImage(width=50, height=25)
myoff_image = PhotoImage(width=50, height=25)
myon_image.put(("Light-
Green",), to=(0, 0, 24,24)) # It will put row formatted col-
ors to image starting from position TO
myoff_image.put(("Red",), to=(25, 0, 49, 24))

myval1 = IntVar(value=0)
myval2 = IntVar(value=1)
cb1 = Checkbutton(myroot, image=myoff_image, selectimage=myon_im-
age, indicatoron=False,
 onvalue=1, offvalue=0, variable=myval1)
cb2 = Checkbutton(myroot, image=myoff_image, selectimage=myon_im-
age, indicatoron=False,
 onvalue=1, offvalue=0, variable=myval2)

cb1.pack(padx=10, pady=10)
cb2.pack(padx=10, pady=10)

myroot.mainloop()

Getting Insights of Button Widgets in tkinter  85

Output:

Refer to Figure 3.25:

Figure 3.25: Default output of Chap3_Example20.py

In this code, we are setting the image option for the unselected state and the
selectimage option for the selected state. There is another option called indicator on
which we have set to False for not displaying the default indicator by the tkinter.

We can change the status of each check button as shown in Figure 3.26:

Figure 3.26: Output of Chap3_Example20.py on status change

Note: The preceding code is covered in Program Name: Chap3_Example20.py

state: This option when set to DISABLED, will make the widget unresponsive. The
default state is NORMAL.

86  Building Modern GUIs with tkinter and Python

Refer to the following code:

from tkinter import *
myroot = Tk()
myroot.geometry('300x300')
def myselected():
 mychk1.config(state=NORMAL)

def mydisabled():
 mychk1.config(state=DISABLED)

mybtn1 = Button(myroot, text = 'Normal', command = myselected)
mybtn1.place(x = 50, y = 50)
mybtn2 = Button(myroot, text = 'Disabled', command = mydisabled)
mybtn2.place(x = 50, y = 100)

mychk1 = Checkbutton(myroot, text = 'CheckButton')
mychk1.place(x = 100, y = 150)

myroot.mainloop()

Refer to Figure 3.27:

		 (A) 			 (B)

Figure 3.27: Output

Getting Insights of Button Widgets in tkinter  87

Here,

A) Output when the Disabled button is clicked

B) Output when the Normal button is clicked

Note: The preceding code is covered in Program Name: Chap3_Example21.py

In the given code, we can see that when the state of the checkbutton is DISABLED,
the checkbutton becomes unresponsive. It is brought back to state = NORMAL,
when the Normal button is clicked.

We shall see an example of a CheckButton where we are using its maximum options:

from tkinter import *

myroot = Tk()
myroot.geometry('300x150')
myroot.title('CheckButton widget')

mynum1 = IntVar()
mynum2 = IntVar()
mys1 = StringVar()

def mydatainsertion():

 if mynum1.get() == 1 and mynum2.get() == 0:# reading status of
checkbutton
 mys1.set("Python")# setting the value to the Entry widget

 if mynum1.get() == 0 and mynum2.get() == 1:
 mys1.set("C#.Net")

 if mynum1.get() == 1 and mynum2.get() == 1:
 mys1.set("I love to study both")

 if mynum1.get() == 0 and mynum2.get() == 0:
 mys1.set("I hate to study both")

myc1 = Checkbutton(myroot, variable = mynum1, font = ('Cal-
ibri',12), text = 'Python', command = mydatainsertion)

88  Building Modern GUIs with tkinter and Python

myc1.pack()

myc2 = Checkbutton(myroot,variable = mynum2, font = ('Cal-
ibri',12), text = 'C#.Net', command = mydatainsertion)
myc2.pack()

mye1 = Entry(myroot, font = ('Calibri',15), textvariable = mys1)
mye1.pack()

myroot.mainloop()

Output:

Refer to Figure 3.28:

Figure 3.28: Output

Note: The preceding code is covered in Program Name: Chap3_Example22.py

In the given code, we have linked the variables mynum1 and mynum2 to the
checkbutton, as these values will be used for reading and writing the status of the
checkbuttons. We are reading the status of the checkbuttons (by the value associated
with the variables) and set the value of the checkbuttons.

Some of the commonly used methods associated with this widget are:

•	 select: This method will set the value to onvalue as it will set the checkbutton.

Getting Insights of Button Widgets in tkinter  89

•	 deselect: This method will set the value to offvalue as it will deselect the
checkbutton.

•	 flash: This method will allow checkbutton to flash between normal and
active colors.

•	 invoke: This method will call the command if the checkbutton is clicked by
the user for changing the state.

•	 toggle: This method will toggle between different checkbuttons.

Let us see an example for a better understanding of these methods:

from tkinter import *
myroot = Tk()
myroot.geometry('300x250')
def myselected():
 mychk1.select()

def mydeselect():
 mychk1.deselect()

def mytoggle():
 mychk1.toggle()

def myinvoke():
 myl1 = Label(myroot, text = 'CheckStat')
 myl1.place(x = 20, y = 150)

mybtn1 = Button(myroot, text = 'Select', command = myselected)
mybtn1.place(x = 50, y = 50)
mybtn2 = Button(myroot, text = 'Deselect', command = mydeselect)
mybtn2.place(x = 50, y = 100)
mybtn3 = Button(myroot, text = 'Toggle', command = mytoggle)
mybtn3.place(x = 150, y = 50)
mybtn4 = Button(myroot, text = 'Invoke', com-
mand = myinvoke) # will call the command associated with the but-
ton initially on run
mybtn4.place(x = 150, y = 100)
mybtn4.invoke()

90  Building Modern GUIs with tkinter and Python

mychk1 = Checkbutton(myroot, text = 'CheckButton')
mychk1.place(x = 100, y = 150)

myroot.mainloop()

Output:

Refer to Figure 3.29:

Figure 3.29: Output

Here,
A)	 When the Select Button is clicked
B)	 When Deselect Button is clicked.
C)	 When the value is getting toggled by clicking the Toggle button.

Note: The preceding code is covered in Program Name: Chap3_Example23.py

Getting Insights of Button Widgets in tkinter  91

We can see that on clicking the Select/Deselect button, the state of the checkbutton
is modified by using the select/deselect method and is toggled by using the toggle
method.

tkinter Radiobutton widget
This widget will give the user multiple options where the user can select any one of
the options. Multiple line text or images can be displayed on the radiobuttons.

The syntax is:
myr1= Radiobutton(myroot, options…)

where,

myroot is the parent window. Some of the lists of options that can be used as key-value
pairs and are separated by commas are anchor, activebackground, activeforeground,
bg, bitmap, command, bd, font, cursor, height, fg, highlightbackground, image,
selectimage, highlightcolor, justify, padx, pady, selectcolor, state, text, textvariable,
value, relief, underline, variable, width, and wrapline.

We have seen most of the options but some undiscussed options are as follows:

•	 command: This option will be associated with a function whenever the
radiobutton state is changed by the user.

•	 value: Each radiobutton value will be assigned to the control variable
when it is turned on by the user. Each radiobutton in the group will give a
different integer value option, when the control variable is an IntVar. Each
radiobutton in the group will give a different string value option, when the
control variable is an StringVar.

•	 image: This option will allow getting the image displayed in the widget
instead of the text.

•	 selectimage: This option will display the image on the radiobutton when it
is selected.

•	 selectcolor: This option will set the radiobutton color when selected. The
default color is Red.

•	 state: This option when set to DISABLED, will make the widget unresponsive.
The default state is NORMAL.

•	 text: This option will display the text next to the radiobutton. Multiple lines
of text can be displayed using ‘\n’.

•	 textvariable: This option allows us to update the message text, whenever we
want and it is of String type.

92  Building Modern GUIs with tkinter and Python

•	 variable: This option displays the control variable which keeps track of the
user choices and monitors radiobutton state.

•	 indicatoron: This option can allow the radiobuttons with complete text in a
box when setting the indicator on the option to 0.

Let us see the usage of these options with some examples:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('200x200')

COLOR1 = 'LightGreen'
COLOR2 = 'LightBlue'

def mydisplay():
 if myi1.get() == 1:
 myroot.configure(bg = COLOR1)
 elif myi1.get() == 2:
 myroot.configure(bg = COLOR2)

myi1 = IntVar()
myr1 = Radiobutton(myroot, text = COLOR1, value = 1, vari-
able = myi1)
myr1.pack()

myr2 = Radiobutton(myroot, text = COLOR2, value = 2, vari-
able = myi1)
myr2.pack()

mybtn = Button(myroot, text = 'Background_Click', com-
mand = mydisplay)
mybtn.pack()

myroot.mainloop() # display window until we press the close button

Getting Insights of Button Widgets in tkinter  93

Output:

Refer to Figure 3.30:

		 (A)			 (B)

Figure 3.30: Output

Here,

A) When RadiouButton1 LightGreen is selected and the Button is clicked.

B) When RadiouButton2 LightBlue is selected and the Button is clicked.

Note: The preceding code is covered in Program Name: Chap3_Example24.py

In this code, we are assigning the color names to the global variables (COLOR1,
COLOR2). A callback function mydisplay will change the background color of
the main form, based on the user selection. We have created an IntVar variable.
Only a single variable is created to be used by all 2 radiobuttons. If we select any
radiobutton, then the other radiobutton will be unselected. We have created 2
radiobuttons and assigned them to the main form. The variable is then passed to
be used in the callback function which will create the changing of background color
of the window. So, when LightGreen radiobutton is selected, then the background
color of the main form will be LightGreen. When LightBlue radiobutton is selected,
then the background color of the main form will be LightBlue.

We can display the same output by using the command option when we are creating
radiobutton and removing the button widget, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('200x200')

94  Building Modern GUIs with tkinter and Python

COLOR1 = 'LightGreen'
COLOR2 = 'LightBlue'

def mydisplay():
 if myi1.get() == 1:
 myroot.configure(bg = COLOR1)
 elif myi1.get() == 2:
 myroot.configure(bg = COLOR2)

myi1 = IntVar()
myr1 = Radiobutton(myroot, text = COLOR1, value = 1, vari-
able = myi1, command = mydisplay)
myr1.pack()

myr2 = Radiobutton(myroot, text = COLOR2, value = 2, vari-
able = myi1, command = mydisplay)
myr2.pack()

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 3.31:

A) B)

Figure 3.31: Output

Getting Insights of Button Widgets in tkinter  95

Here,

A) When RadiouButton1 LightGreen is selected.

B) When RadiouButton2 LightBlue is selected.

Note: The preceding code is covered in Program Name: Chap3_Example25.py

We can display the image to a radiobutton as shown:

from tkinter import *
myroot = Tk()

myon_image = PhotoImage(width=50, height=25)
myoff_image = PhotoImage(width=50, height=25)
myon_image.put(("Light-
Green",), to=(0, 0, 24,24)) # It will put row formatted col-
ors to image starting from position TO
myoff_image.put(("Red",), to=(0, 0, 24, 24))

myrbvar = IntVar(value=1)
myrb1 = Radiobutton(myroot, variable=myrbvar, value=0, bd=0,
 text="RadioButton1", compound="left", indicato-
ron=False,
 image=myoff_image, selectimage=myon_image)
myrb2 = Radiobutton(myroot, variable=myrbvar, value=1, bd=0,
 text="RadioButton2", compound="left", indicato-
ron=False,
 image=myoff_image, selectimage=myon_image)

myrb1.pack(padx=10, pady=10)
myrb2.pack(padx=10, pady=10)

myroot.mainloop()

96  Building Modern GUIs with tkinter and Python

Output:

Refer to Figure 3.32:

Figure 3.32: Output

Note: The preceding code is covered in Program Name: Chap3_Example26.py

In the given code, we can see that the image is getting displayed in the radiobutton.
Our images have been used for the selectors with the radiobutton attributes, image
and selectimage, which is used in conjunction with compound, borderwidth and
indicatoron.

We can display radiobutton with complete text in the box when indicatoron is set to
0. Refer to the following code:

from tkinter import *
myroot = Tk()

myrb1 = Radiobutton(myroot, value=0, text="RadioBut-
ton1", bg = 'lightGreen', indicatoron=False,)
myrb2 = Radiobutton(myroot, value=1,text="RadioButton2",bg = 'light-
Green', indicatoron=False)

myrb1.pack(padx=10, pady=10)
myrb2.pack(padx=10, pady=10)

myroot.mainloop()

Getting Insights of Button Widgets in tkinter  97

Output:

Refer to Figure 3.33:

Figure 3.33: Output of Chap3_Example27.py

Note: The preceding code is covered in Program Name: Chap3_Example27.py

We can see that we have set the background of these radiobutton boxes as LightGreen,
and the selected ones are sunken and are having a white background.

We can also set the color of the radiobutton when selected, as shown:

from tkinter import *
myroot = Tk()
def selectcolor_indicatoronTrue():
 mychk1['selectcolor'] = 'LightGreen'

def selectcolor_indicatoronFalse():
 mychk2['selectcolor'] = 'Blue'

mychk1 = Radiobutton(myroot, text = 'RadioButton1', com-
mand = selectcolor_indicatoronTrue, indicatoron = True, value = 1)
mychk1.place(x = 50, y = 50)
mychk2 = Radiobutton(myroot, text = 'RadioButton2', com-
mand = selectcolor_indicatoronFalse, indicatoron = False, value = 2)
mychk2.place(x = 50, y = 100)
myroot.mainloop()

98  Building Modern GUIs with tkinter and Python

Output:

Refer to Figure 3.34:

Figure 3.34: Output

Note: The preceding code is covered in Program Name: Chap3_Example28.py

In this code, we can see that when Radiobutton1 is selected, then its color is changed
to LightGreen and when RadioButton2 is selected, then its color is changed to Blue.

Some of the commonly used methods associated with this widget are:

•	 select: This method will set/select the radiobutton.

•	 deselect: This method will deselect/turn off the radiobutton.

•	 flash: This method will allow radiobutton to flash between normal and active
colors several times.

•	 invoke: This method will call mandatory action when radiobutton state is
changed.

We shall see some examples related to these methods:

from tkinter import *
myroot = Tk()

def myselect():
 mychk2.select()
 mychk2['selectcolor'] = 'LightGreen'

def mydeselect():

Getting Insights of Button Widgets in tkinter  99

 mychk2.deselect()
 mychk2['bg'] = 'Red'

mychk1 = Radiobutton(myroot, text = 'RadioButton1', indicato-
ron = True, value = 2)
mychk1.place(x = 50)
mychk1.invoke()

mychk2 = Radiobutton(myroot, text = 'RadioButton2', indicato-
ron = False, value = 1)
mychk2.place(x = 50, y = 50)

mybtn1 = Button(myroot, text = 'Select', command = myselect)
mybtn1.place(x = 50, y = 100)

mybtn2 = Button(myroot, text = 'Deselect', command = mydeselect)
mybtn2.place(x = 50, y = 150)

myroot.mainloop()

Initial Output RadioButton1 is invoked:

Refer to Figure 3.35:

Figure 3.35: Output

100  Building Modern GUIs with tkinter and Python

Refer to Figure 3.36:

Output when Select button is clicked	 	 Output when Deselect button is 		
						 clicked.

Figure 3.36: Output

Note: The preceding code is covered in Program Name: Chap3_Example29.py

In the above code, Radiobutton1 is activated by default when the GUI code is run.
When the select button is clicked, then RadioButton2 is selected and RadioButton1
is deselected. When Deselect button is clicked, then RadioButton2 is deselected and
RadioButton1 is selected as shown below.

tkinter OptionMenu widget
This widget creates a pop-menu and button where the user can select one option at
a time from a list of options.

We have to pass in the tkinter variable to get the currently selected value from an
options menu:

from tkinter import *

myroot = Tk()

myroot.title("Fruit Selection")
myroot.geometry('300x200')

Tkinter variable is created
myvar = StringVar()
myvar.set("Litchi")

Getting Insights of Button Widgets in tkinter  101

Create an option menu by passing the variable and option list
myselection = OptionMenu(myroot, myvar, "Mango", "Apple", "Li-
tchi", "Banana") # variable bound to option menu
myselection.pack()

Create button with command
def mydisplay():
 print("The chosen value :", myvar.get())

mybtn_show = Button(myroot, text="Myshow", command=mydisplay)
mybtn_show.pack(pady = 30, side = LEFT, anchor = N)

myroot.mainloop()

Output:

Refer to Figure 3.37:

Figure 3.37: Output of Chap3_Example30.py

Note: The preceding code is covered in Program Name: Chap3_Example30.py

102  Building Modern GUIs with tkinter and Python

In this code, a tkinter variable is created, which is bound to the OptionMenu which
will read the currently selected option from OptionMenu and will set the current
value for the menu. Here, ‘Litchi’ is set as the current value (A). An OptionMenu
widget is created with the first parameter as the parent widget and the remaining
parameters as options. Users can select any value by clicking the button such that a
pop menu will be shown (B). We have selected Apple and the text display is shown
on the button (C). A button ‘Myshow’ is created with a command such that whenever
the user clicks on it, the selected value is taken from the OptionMenu and displayed
on the console.

We can generate the same output by creating OptionMenu from the option list as
shown here:

from tkinter import *

myroot = Tk()

myroot.title("Fruit Selection")
myroot.geometry('300x150')

List is created
myoptions = ['Litchi', "Mango", "Apple", "Banana"]

Tkinter variable is created
myvar = StringVar(myroot)
myvar.set(myoptions[0])

Create an option menu by passing the variable and option list
myselection = OptionMenu(myroot, myvar, *myoptions) # vari-
able bound to option menu
myselection.pack()

Create button with command
def mydisplay():
 print("The chosen value :", myvar.get())

mybtn_show = Button(myroot, text="Myshow", command=mydisplay)
mybtn_show.pack(pady = 30, side = LEFT, anchor = N)

myroot.mainloop()

Getting Insights of Button Widgets in tkinter  103

Note: The preceding code is covered in Program Name: Chap3_Example31.py

Conclusion
In this chapter, we learned about the four important tkinter widgets where we saw
their most commonly used options with multiple examples. We saw multiple user
interactive examples highlighting their applications. We saw how an event was
binded with a function with their important arguments. The binding of events to
these widgets with multiple examples and different methods including lambda
expressions was explained with examples. The instance level, application level and
class level binding were well explored. Moreover, the background color of the main
window was changed based on mouse enter, mouse leave, function press, keypress
events and so on. Most importantly we need to know when to use these four widgets
as per our need.

Points of remember
•	 Button widget in tkinter is the most commonly used widget for creating GUI

applications in tkinter.

•	 Checkbutton widget gives the provision to the user to select more than one
option.

•	 Radiobutton widget gives the provision to the user to select exactly one of
the predefined sets of options will be chosen.

•	 Option-Menu widget allows the user to display how a pop-menu and button
widget will be created for an individual option selection from a list of options.

•	 Binding an event to a widget instance is called instance binding. Binding
an event to entire application is called application-level binding. Binding an
event to a particular class level is called class-level binding.

Questions
1.	 Explain the usage of the tkinter Button widget.

2.	 Which widget is used for interaction with the user, explain in detail.

3.	 Write short notes on Events and Bindings.

4.	 Explain different event types in Tkinter.

5.	 Explain the usage of the tkinter Check button widget.

6.	 How to select multiple options, and explain the widget used for this purpose.

104  Building Modern GUIs with tkinter and Python

7.	 Explain the usage of the tkinter Radiobutton widget.

8.	 Explain the usage of the tkinter OptionMenu widget.

9.	 Which widget is used to create a pop-menu and button where the user can
select one option at a time from a list of options? Explain in detail with an
example.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Getting Insights of Input Widgets in tkinter  105

Chapter 4
Getting Insights of

Input Widgets in
tkinter

Introduction
In tkinter, users can enter data into a programme using input widgets, which are
GUI components. There are several different types of input widgets, including text
fields, check boxes, radio buttons, and drop-down menus. Using the suitable classes
and methods offered by the library, these widgets can be added to a GUI window
in tkinter. After being introduced, input widgets can be customized to meet the
needs of the application by establishing default values, applying validation criteria,
or imposing input volume restrictions. They can also be connected to programme
logic, so that when a user interacts with them, a variable is updated or an event is
started. Overall, input widgets offer a straightforward and understandable way to
interact with software and enter data, and they are a crucial part of the majority of
GUI programmes.

Structure
In this chapter, we will discuss the following topics:

•	 tkinter Entry widget

•	 tkinter Scrollbar widget

•	 tkinter Spinbox widget

106  Building Modern GUIs with tkinter and Python

•	 tkinter Scale widget

•	 tkinter Text widget

•	 tkinter Combobox widget

Objectives
In this chapter, the reader will firstly learn about the creation of a simple GUI
app using the tkinter Entry widget in a very neat way with various options and
explanations, followed by different examples. Then, the validation concept in the
Entry widget is also explained. Next, we shall see about the scrollbar widget where
the user will look into the scrolling capability in the vertical or horizontal direction
with different widgets such as List Box, Entry, and Text. Another one is the tkinter
Spinbox widget where the range of input values will be fed to the user, out of which
the user can select one. Next, we will explore how to implement a graphical slider
to any Python application program by using the tkinter Scale widget followed by
the concept of the tkinter Text widget, where the user can insert multiple text fields.
Finally, we will be dealing with the tkinter Combobox widget and its applications.

tkinter Entry widget
A widget that accepts single-line text strings from the user. A single line of text can
be entered or displayed in this widget. It generally comes with a label because it is
unclear what the user should type if we are not mentioning labels. The addition of
more than one input field is allowed.

The syntax is:

myl1= Entry(myroot , options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are bg, command, bd, cursor, exportselection, font,
highlightcolor, justify, fg, relief, selectborderwidth, selectbackground,
selectforeground, state, show, textvariable, xscrollcommand, and width.

We have seen the maximum options and will discuss those options which we have
not discussed:

•	 command: Every time, the operation needs to happen when the state of the
Entry widget is changed.

Getting Insights of Input Widgets in tkinter  107

•	 exportselection: Whenever the text is selected within an Entry widget and if
exportselection is set to 0, the automatic export to the clipboard is restricted.

•	 selectborderwidth: This option will use border width around selected text
and the default is 1 pixel.

•	 state: This option, when set to DISABLED, will make the Entry widget
unresponsive and will go out the control. The default state is NORMAL.

•	 show: When there is a requirement to display some sort of special character
in the Entry widget, this special character takes place in the actual text
position. We all know that a password always takes a special character
asterisk’*’, whenever we try to log in to any account.

•	 textvariable: This option is set to StringVar class instance when there is a
need to retrieve the current text from the Entry widget.

•	 xscrollcommand: This option will allow us to link the horizontal scrollbar
to an Entry widget when we are entering more text than the actual widget
width.

This example depicts the usage of state and textvariable options in the Entry
widget, as shown:

from tkinter import *

class MySTATE:
 def __init__(self, myroot):
 self.myvar = StringVar()
 self.myvar.set('python')

 self.myl1 = Label(myroot, text = 'Normal state')
 self.myl1.grid(row = 0, column = 0)

 self.myl2 = Label(myroot, text = 'Disabled state')
 self.myl2.grid(row = 1, column = 0, pady = 10)

 self.myl3 = Label(myroot, text = 'Readonly state')
 self.myl3.grid(row = 2, column = 0, pady = 10)

 self.mye1 = Entry(myroot, textvariable=self.
myvar, width=15, state = 'normal')
 self.mye1.grid(row = 0, column = 1, padx = 10)

108  Building Modern GUIs with tkinter and Python

 self.mye2 = Entry(myroot, textvariable=self.
myvar, width=15, state = 'disabled')
 self.mye2.grid(row = 1, column = 1, padx = 10)
 self.mye3 = Entry(myroot, textvariable=self.
myvar, width=15, state = 'readonly')
 self.mye3.grid(row = 2, column = 1, padx = 10)

if __name__ == "__main__":
 myroot = Tk()
 myobj = MySTATE(myroot)
 myroot.mainloop()

Output:

The output can be seen in Figure 4.1:

Figure 4.1: Output

Note: The preceding code is covered in Program Name: Chap4_Example1.py

In the above code, we are creating 3 Entry widgets in the parent widget having each
state as normal, disabled, and read only. We can see that when the Entry widget is in
the normal state, it can accept input from the user which can be changed if required.
When the Entry widget is in a disabled or read only state, it means that it cannot be
changed by the user.

Now, we shall see the usage of the show and selectborderwidth option using the
entry widget, as shown:

from tkinter import *

class MyLogin:
 def __init__(self, myroot):

Getting Insights of Input Widgets in tkinter  109

 self.myl1 = Label(myroot, text = 'Username')
 self.myl1.grid(row = 0, column = 0)

 self.myl2 = Label(myroot, text = 'Password')
 self.myl2.grid(row = 1, column = 0, pady = 10)

 self.mye1 = Entry(myroot, width=15, selectborderwidth = 3)
 self.mye1.grid(row = 0, column = 1, padx = 10)
 self.mye2 = Entry(myroot, width=15,show= '*')
 self.mye2.grid(row = 1, column = 1, padx = 10)

 def mydisplay():
 print("The username is: " + self.mye1.get())
 print("The password is: " +self.mye2.get())

 self.mybtn = Button(myroot, text = 'Login', com-
mand = mydisplay, font = ('Calibri',12))
 self.mybtn.grid(row = 2, columnspan = 3)

if __name__ == "__main__":
 myroot = Tk()
 myobj = MyLogin(myroot)
 myroot.title('Login Page')
 myroot.geometry('200x120')
 myroot.mainloop()

Output:

The output can be seen in Figure 4.2:

Figure 4.2: Output

110  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap4_Example2.py

Output when the Login button is clicked:

The username is: alliumsepa

The password is: hello123

In the above code, we have written the password using an asterisk sign by setting
it as ‘*’. This option is used when we are entering very confidential data. Moreover,
when the text written inside the Entry widget is selected, the selectborderwidth
is set to 3. If we remove the selectborderwidth option, which is by default 1, then
observe the output shown in Figure 4.3:

Figure 4.3: Output when selectborderwidth option is removed

Now, we shall see the most commonly used methods with this widget, which are as
follows:

•	 delete(first, last=None): This method will delete the specified characters
inside the entry widget, starting with the one at the index up to, but not
including, the character at the last position.

from tkinter import *

class MydeleteExample(Tk):
 def __init__(self):
 super().__init__()
 self.title('MyDelete Example')
 self.mye1= Entry(self,font = ('Ari-
al',12),width = 30, bd = 5)
 self.mye1.pack(side = LEFT)

 self.button1 = Button(self, text="Delete the text", com-
mand=lambda: mydelete(self,self.mye1))
 self.button1.pack(pady = 32)

Getting Insights of Input Widgets in tkinter  111

 def mydelete(self, myentry):
 myentry.delete(first=0,last=15)

if __name__ == "__main__":
 myroot = MydeleteExample()
 myroot.geometry('400x100')
 myroot.mainloop()

Output:

The output can be seen in Figure 4.4:

Figure 4.4: Output

The output when Delete the text button is clicked, can be seen in Figure 4.5:

Figure 4.5: Output when Delete the text button is clicked

Note: The preceding code is covered in Program Name: Chap4_Example3.py

From the above code, we can see that the characters starting from index 0
to index 14 will be deleted from the Entry widget on pressing the Delete the
text button.

•	 get(): This method will return the current text as a string written inside the
Entry widget.

•	 icursor(index): This method will change the insertion cursor position.
The index of the character is to be specified before which the cursor is to be
placed.

112  Building Modern GUIs with tkinter and Python

•	 insert(index,mystr): This method will insert the specified string mystr
before the character is placed at the specified index.

from tkinter import *

class MyCursorPosition(Tk):
 def __init__(self):
 super().__init__()
 self.title('MyCursorPosition Example')
 self.mye1= Entry(self,font = ('Ari-
al',12),width = 20, bd = 5)
 self.mye1.pack(side = LEFT)
 self.mye1.focus()
 self.mye1.insert(0,'Demonstration')
 self.mye1.icursor(0)

 self.button1 = Button(self, text="Position the cur-
sor", command=lambda: myposition(self,self.mye1))
 self.button1.pack(pady = 32)

 def myposition(self, myentry):
 myentry.icursor(3)

if __name__ == "__main__":
 myroot = MyCursorPosition()
 myroot.geometry('400x100')
 myroot.mainloop()

Output:

The output can be seen in Figure 4.6:

Figure 4.6: Output

Getting Insights of Input Widgets in tkinter  113

The output when the button Position the cursor is clicked, can be seen in
Figure 4.7:

Figure 4.7: Output when the button Position the cursor is clicked

Note: The preceding code is covered in Program Name: Chap4_Example4.py

In the above code, the specified string ‘Demonstration’ is inserted before the
character at the given index 0. By default, the cursor is positioned at index 0
and when the button Position the cursor is clicked, the cursor will be placed
before the character index position 3.

•	 index(index): This method will place the cursor written at the specified
index to the left of the character.

•	 select_adjust(index): This method will include the character selection
present at the specified index.

from tkinter import *

class MyIndex_Select_adjust(Tk):
 def __init__(self):
 super().__init__()
 self.title('MyIndex and Select_adjust Example')
 self.mye1= Entry(self,font = ('Ari-
al',12),width = 20, bd = 5)
 self.mye1.pack(side = LEFT)
 self.mye1.focus()
 self.mye1.insert(0,'Demonstration')
 self.mye1.icursor(0)

 self.button1 = Button(self, text="Index", command=lamb-
da: myindex(self,self.mye1))
 self.button1.pack(pady = 12)

 self.mybtn2 = Button(self, text="select_adjust", com-

114  Building Modern GUIs with tkinter and Python

mand=lambda: myselect_adjust(self,self.mye1))
 self.mybtn2.pack(pady = 10)

 def myindex(self, myentry):
 myentry.icursor(self.mye1.index(6))

 def myselect_adjust(self, myentry):
 myentry.select_adjust(5)

if __name__ == "__main__":
 myroot = MyIndex_Select_adjust()
 myroot.geometry('400x100')
 myroot.mainloop()

Default output when run:

The output can be seen in Figure 4.8:

Figure 4.8: Output

The output when Index button is clicked, can be seen in Figure 4.9:

Figure 4.9: Output when Index button is clicked

The output when select_adjust button is clicked, can be seen in Figure 4.10:

Figure 4.10: Output when select_adjust button is clicked

Getting Insights of Input Widgets in tkinter  115

Note: The preceding code is covered in Program Name: Chap4_Example5.py

In the above example, we can see that when the Index button is clicked, the
cursor is placed to the left of the character written at the specified index 6.
When the select_adjust button is clicked, it will allow the selection of the
characters highlighted in blue color at a specified index.

•	 select_from(index): This method will set the index position to anchor the
character index selection.

•	 select_clear(): This method will clear the selection if some selection has
been done else it has no effect.

•	 select_range(start, end): This method will select the text in the Entry
widget between the specified range, that is, the text will be selected at the
start index up to, but not including the character at the end index position.

•	 select_to(index): This method will select all the characters from the
anchor position, that is, from the beginning, to the specified index, but not
including the character at the given index position.

•	 select_present(): This method will return True if there is some text
selected in the Entry widget else returns False.

from tkinter import *

class MySelectMethods(Tk):
 def __init__(self):
 super().__init__()
 self.title('MyIndex and Select_adjust Example')
 self.
mye1= Entry(self,font = ('Arial',12),width = 20, bd = 5)
 self.mye1.pack(side = LEFT)
 self.mye1.focus()
 self.mye1.insert(0,'Demonstration')
 self.mye1.icursor(0)
 self.mye1.select_clear()

 self.button1 = Button(self, text="select_
to", command=lambda: myselect_to(self,self.mye1))
 self.button1.pack(pady = 5)

 self.mybtn2 = Button(self, text="select_

116  Building Modern GUIs with tkinter and Python

from", command=lambda: myselect_from(self,self.mye1))
 self.mybtn2.pack(pady = 5)

 self.mybtn3 = Button(self, text="select_
range", command=lambda: myselect_range(self,self.mye1))
 self.mybtn3.pack(pady = 5)

 self.mybtn4 = Button(self, text="select_
clear", command=lambda: myselect_clear(self,self.mye1))
 self.mybtn4.pack(pady = 5)

 self.mybtn5 = Button(self, text="select_
present", command=lambda: myselect_present(self,self.mye1))
 self.mybtn5.pack(pady = 5)

 def myselect_to(self, myentry):
 myentry.select_to(4)

 def myselect_from(self, myentry):
 myentry.select_from(1)

 def myselect_range(self, myentry):
 myentry.select_range(6,9)

 def myselect_clear(self, myentry):
 myentry.select_clear()

 def myselect_present(self, myentry):
 print(myentry.select_present())

if __name__ == "__main__":
 myroot = MySelectMethods()
 myroot.geometry('400x200')
 myroot.mainloop()

Getting Insights of Input Widgets in tkinter  117

Default output when run:

The output can be seen in Figure 4.11:

Figure 4.11: Output

The output when the select_to button is clicked, can be seen in Figure 4.12:

Figure 4.12: Output when select_to button is clicked

We can see from the above code that when the select_to button is clicked, all
the characters from the anchor position, that is, from the beginning 0 to the
specified index 4 but not including the character at the given index position,
that is, till index 3, will be selected.

118  Building Modern GUIs with tkinter and Python

Output when the select_range button is clicked:

Refer to Figure 4.13:

Figure 4.13: Output when select_range button is clicked

We can see that when the select_range button is clicked, characters from
index position 6 to index position 8 are selected. That is why we can view
that characters ‘tra’ are highlighted in blue color.

The output when select_from button is first clicked followed by clicking of
select_to button, can be seen in the following Figure 4.14:

Figure 4.14: Output when select_from button is clicked

When the select_from button is first clicked, the anchor index position is set
to the character selected by index 1. Now, when we again click the select_to
button, the index position, and the text from the anchor position, that is, 1 up
to index position 3 will be selected as shown in the following figures.

Getting Insights of Input Widgets in tkinter  119

Output when the select_present button is clicked:

Refer to Figure 4.15:

Figure 4.15: Output when select_present button is clicked

When the select_present button is clicked, True is returned since there is a
selection in the Entry widget as shown.

The output when the select_clear button is clicked can be shown in Figure
4.16:

Figure 4.16: Output when select_clear button is clicked

Note: The preceding code is covered in Program Name: Chap4_Example6.py

When the select_clear button is clicked, the selection is cleared without
deleting the content as shown.

Now, if we will click the select_present button, we will return False.

120  Building Modern GUIs with tkinter and Python

•	 xview_scroll(number, what): This method will scroll the Entry widget
horizontally. The first argument number must be either in UNITS or PAGES
where scrolling can be done by character widths or by chunks to the size of
the Entry widget. The scrolling is done from left to right when positive or
from right to left when negative.

•	 xview(index): This method will link a horizontal scrollbar in the Entry
widget, as shown:

from tkinter import *

class MyScrollbarEntry(Tk):
 def __init__(self):
 super().__init__()
 mysobj_scroll = Scrollbar(self,orient = 'horizontal')
 mye1 = Entry(self,xscrollcommand = mysobj_scroll.
set, font = ('Calibri',12))
 mye1.focus()
 mye1.pack(side= 'bottom', fill = X)
 mysobj_scroll.pack(fill = X)
 mysobj_scroll.config(command = mye1.xview)

 mye1.insert(0, 'We should follow social distanc-
ing when we are going outside from our home. It is mandato-
ry to follow.')

if __name__ == "__main__":
 myroot = MyScrollbarEntry()
 myroot.geometry('400x200')
 myroot.mainloop()

Output:

The output can be seen in Figure 4.17:

Figure 4.17: Output

Getting Insights of Input Widgets in tkinter  121

Note: The preceding code is covered in Program Name: Chap4_Example7.py

In this code, we are linking a horizontal scrollbar to an Entry widget. We can see a
scrollbar at the top of the Entry widget.

Validation in the Entry widget
There will be some cases where the text written inside an Entry widget is to be
checked to make sure that it is valid according to some rule. Such validation on an
Entry widget can be done as follows:

•	 A callback function is defined, which will check the text in the Entry and
will return True if valid, and otherwise, it will return False. The text will be
unchanged if the callback returns False.

•	 Next is to register the callback function. A character string is returned which
will be used to call the function.

•	 Then, validate the input in the Entry widget by calling the callback function.
The options used are described as follows.

validate: This option will be used to specify when to call the callback function to
validate the input. The values of the validate command are:

•	 none: If the validation is set to None, then no validation occurs. It is the
default mode.

•	 focus: If the validate is set to focus, the validatecommand is called twice
when the Entry widget receives focus and when the focus is lost.

•	 focusin: The validatecommand is called when the widget has focus.

•	 focusout: The validatecommand is called when the widget has lost focus.

•	 key: The validatecommand is called whenever any input from the keyboard
changes the widget’s contents.

•	 all: The validatecommand will be called in all the above cases.

validatecommand: This option is used to specify the callback function, that is, what
arguments our callback function would like to receive. The callback function is
needed to know what text appears in the Entry widget, but this callback function
will not be called directly but rather by a variable that is passed and registered in the
previous steps. A number of items of information are also provided to the callback
via substitution codes which are as follows:

•	 %d: This substitution code is an action type that occurred on the widget, 0
for attempted deletion, 1 for attempted insertion, and -1 for focus, forced, or
textvariable validation.

122  Building Modern GUIs with tkinter and Python

•	 %i: Whenever any text is inserted or deleted, this substitution code will be
an index of the beginning of deletion or insertion. If the callback is due to
focusin, focusout, or change in the textvariable, it will be -1.

•	 %P: This substitution code will be the value the widget will have if the change
is allowed.

•	 %s: This substitution code denotes the current text in the Entry widget prior
to editing.

•	 %S: This substitution code denotes the text being inserted or deleted.

•	 %v: This substitution code denotes the validation type currently set.

•	 %V: This substitution code denotes the validation type for which the callback
is triggered like focusin, focusout, key, forced, or textvariable.

•	 %w: This substitution code denotes the widget’s name.

Let us see an example.

It should be kept in mind that in the above example, we are using classes. So, we
will be using methods instead of functions. The same code can be replicated without
using classes. So, we will be using the term functions. Refer to the following code:

from tkinter import *
class MyValidate(Tk):
 def __init__(self):
 super().__init__()
 self.myl0 = Label(self, text= 'Enter the number:', fg='Ma-
genta', font = ('Arial',12))
 self.myl0.place(x = 10, y = 30)

 self.mye1 = Entry(self, font = ('Helvetica',12))
 self.mye1.place(x = 150, y = 30)

 self.myl1 = Label(self, text= '', fg='Red')
 self.myl1.place(x = 70, y = 50)

 self.myreg = self.register(self.mycallback) # V1
 self.invalidcmd = self.register(self.myinvalid_name) # V2
 self.mye1.config(validate ="key", validatecommand =(self.
myreg, '%P'), invalidcommand = (self.invalidcmd, '%S')) # V3

Getting Insights of Input Widgets in tkinter  123

 def mycallback(self, myinp):
 if myinp.isdigit():# C1
 print(myinp)
 self.myl1.config(text='')
 return True

 elif myinp is "": # C2
 print(myinp)
 self.myl1.config(text='')
 return True

 else: # C3
 print(myinp)
 return False

 def myinvalid_name(self, myCh):
 self.myl1.config(text=(f'Invalid charac-
ter {myCh} \n name can only have numbers'), font = ('Verdana',10))

if __name__ == "__main__":
 myroot = MyValidate()
 myroot.geometry('300x100')
 myroot.mainloop()

Output:

Refer to Figure 4.18:

Figure 4.18: Output

Note: The preceding code is covered in Program Name: Chap4_Example8.py

124  Building Modern GUIs with tkinter and Python

Output at the console:

1

12

123

123f

123g

12

1

In the preceding code, we have created 2 labels and 1 Entry widget and positioned
them in the parent widget. In V1, a string is returned which will be assigned to a
variable myreg and the position will call the mycallback method.

In V2, a string is returned which will be assigned to a variable invalidcmd and will
call the myinvalid_name method.

In V3, we are using the options validate, validatecommand, and invalidcommand.
The key option in validate will specify that validation occurs whenever any input
from the keyboard changes the Entry widget options. The validate command will
specify the mycallback method and is called by passing a variable myreg. The
invalidcommand is optional and will specify the myinvalid_name method and
is called by passing a variable invalidcmd. The myinvalid_name method will be
called when the validatecommand returns False when we are entering alphabets.

In C1, the mycallback method returns True when we enter any digits from our
keyboard as its value is allowed in the entry widget.

In C2, the digits can be erased by using the backspace key.

In C3, the mycallback method returns False, when the user enters the alphabet from
the keyboard and its value is not allowed in the Entry widget.

The input is getting displayed on the console whether any insertion and deletion of
digits or alphabets are entered from the keyboard. The digits are added and can be
erased.

The same code can be written without using any class. So, here we can use the term
function instead of method.

from tkinter import *

myroot = Tk()
myroot.geometry('300x100')

Getting Insights of Input Widgets in tkinter  125

myl0 = Label(myroot, text= 'Enter the number:', fg=
'Magenta', font = ('Arial',12))
myl0.place(x = 10, y = 30)
mye1 = Entry(myroot, font = ('Helvetica',12))
mye1.place(x = 150, y = 30)
myl1 = Label(myroot, text= '', fg='Red')
myl1.place(x = 70, y = 50)

def mycallback(myinp):
 if myinp.isdigit():
 print(myinp)
 myl1.config(text='')
 return True

 elif myinp is "":
 print(myinp)
 myl1.config(text='')
 return True

 else:
 print(myinp)
 return False

def myinvalid_name(myCh):
 myl1.config(text=(f'Invalid charac-
ter {myCh} \n name can only have numbers'), font = ('Verdana',10))

myreg = myroot.register(mycallback)
invalidcmd = myroot.register(myinvalid_name)
mye1.config(validate ="key", validatecommand =(myreg, '%P'), in-
validcommand = (invalidcmd, '%S'))

myroot.mainloop()

Note: The preceding code is covered in Program Name: Chap4_Example8_2.py

126  Building Modern GUIs with tkinter and Python

We will get the same output.

tkinter Scrollbar widget
This widget will add the scrolling capability to the various widgets such as ListBox,
Canvas, Entry, and Text. The vertical scrollbar can be implemented in ListBox,
Canvas, and Text widgets whereas the horizontal scrollbar can be implemented in
the Entry widget. The content is rolled through vertically or horizontally.

The syntax is:

mysc1= Scrollbar(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and
are separated by commas are bg, bd, activebackground, cursor,
command, elementborderwidth, highlightcolor, highlightbackground,
highlightthickness, orient, jump, repeatdelay, repeatinterval, width,
takefocus, and troghcolor.

We have seen most of the options but some undiscussed options are as follows:

•	 command: This option will associate with a function whenever the scrollbar
is moved by the user.

•	 elementborderwidth: This option will specify the border width
around the arrow heads/cursor points and slider. The default value of
elementborderwidth is -1 and can be set as per need.

•	 orient: This option will allow the orientation scrollbar and can be set to
either HORIZONTAL or VERTICAL.

•	 jump: This option will control the scroll jump behavior. The default value is 0
where every small slider drag will cause the command callback to be called.
The callback is not called when set to 1, until the user releases the mouse
button.

•	 repeatdelay: This option whose default duration is 300msec will allow
controlling the duration of the button1 to be held down in the trough before
the slider will start moving in that direction repeatedly.

•	 repeatinterval: This option is for repeating the slider interval whose
default value is 100msec.

•	 takefocus: This option will allow tabbing the focus through the scrollbar
widget. We can set this option to 0 when not needed.

Getting Insights of Input Widgets in tkinter  127

•	 troughcolor: This option will allow setting the trough color.

The methods used in this widget are as follows:

•	 get: This method will represent the current scrollbar position and will
return the numbers a and b, where a represents the slider top or left edge for
horizontal or vertical scrollbars and b represents the slider bottom or right
edge.

•	 set(first, last): This method will allow connecting the scrollbar to the
other widget. The widget xscrollcommand or yscrollcommand will be set
to the scrollbar’s set method.

•	 pack: This method will set the slider alignment.

Now, we shall see some examples of scrollbar with other widgets.

Scrollbar attached to Listbox
Refer to the following code:

from tkinter import *

class Scrollbar_ListBox(Tk):
 def __init__(self):
 super().__init__()

 self.mysclbar = Scrollbar(self)# scrollbar creation and at-
taching to the main window
 self.mysclbar.pack(side=RIGHT, fill="y") # scrollbar add-
ed to the window right side

 self.mylstbox = Listbox(self)# listbox creation and attach-
ing to the main window
 self.mylstbox.config(yscrollcommand=self.myscl-
bar.set) # scrollbar attached to the listbox . for verti-
cal scroll used yscrollcommand

 for loop in range(50): # insertele-
ments from 0 to 49 in the listbox
 self.mylstbox.insert(END, str(loop))

 self.mylstbox.pack(side="left", fill=BOTH) # listbox add-

128  Building Modern GUIs with tkinter and Python

ed to the window left side
 self.mysclbar.config(command=self.mylstbox.
yview) # for need of vertical view settings scrollbar command op-
tion to listbox.yview method

if __name__ == '__main__':
 myroot = Scrollbar_ListBox() # creating an instance of Scroll-
bar_Listbox
 myroot.mainloop() # infinite loop to run the application

Output:

The output can be seen in the following Figure 4.19:

Figure 4.19: Output

Note: The preceding code is covered in Program Name: Chap4_Example9.py

Scrollbar attached to Text
Refer to the following code:

from tkinter import *

class Scrollbar_Text(Tk):
 def __init__(self):
 super().__init__()

 self.mysclbar = Scrollbar(self)# scrollbar creation and at-
taching to the main window
 self.mysclbar.pack(side=RIGHT, fill=Y) # scrollbar add-

Getting Insights of Input Widgets in tkinter  129

ed to the window right side

 self.sclhbar = Scrollbar(self,orient = HORIZONTAL)
 self.sclhbar.pack(side = BOTTOM,fill = X)

 self.mytxt = Text(self,
 width = 600,
 height = 600,
 yscrollcommand=self.mysclbar.set,
 xscrollcommand=self.sclhbar.set,
 wrap = NONE) # creation of text-
box and both horizontal and vertical scrollbars are at-
tached to the textbox

 self.mytxt.pack(expand = 0, fill=BOTH)

 # horizontal elements
 for loop in range(26): # insertele-
ments from 0 to 49 in the text
 self.mytxt.insert(END, str(loop) + '\t')
 # vertical elements
 for loop in range(50): # insertele-
ments from 0 to 49 in the text
 self.mytxt.insert(END, str(loop) + '\n')

 self.sclhbar.config(command=self.mytxt.
xview)# for need of horizontal view settings scrollbar command op-
tion to textbox.xview method
 self.mysclbar.config(command=self.mytxt.
yview) # for need of vertical view settings scrollbar command op-
tion to textbox.yview method

if __name__ == '__main__':
 myroot = Scrollbar_Text() # creating an instance of Scrollbar_
Text
 myroot.geometry('300x300')
 myroot.mainloop() # infinite loop to run the application

130  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in the following Figure 4.20:

Figure 4.20: Output

Note: The preceding code is covered in Program Name: Chap4_Example10.py

Scrollbar attached to Canvas
The output can be seen in the following Figure 4.21:

from tkinter import *

class Scrollbar_Canvas(Tk):
 def __init__(self):
 super().__init__()

 mycanvas = Canvas(self, width=150, height=50)
 mycanvas.create_oval(20, 20, 80, 80, fill="red")
 mycanvas.create_oval(200, 200, 280, 280, fill="blue")
 mycanvas.grid(row=0, column=0)

 myscroll_x = Scrollbar(self, orient="horizontal", command=-
mycanvas.xview)
 myscroll_x.grid(row=1, column=0, sticky=EW)

Getting Insights of Input Widgets in tkinter  131

 myscroll_y = Scrollbar(self, command=mycanvas.yview)
 myscroll_y.grid(row=0, column=1, sticky=NS)

 mycanvas.configure(scrollregion=mycanvas.bbox-
("all")) # will return the rectangular coordinates fit-
ting the whole canvas content. Here the position of 2 corners of a
rectangle is described which is a scroll region. It is a 4 valued
tuple.

if __name__ == '__main__':
 myroot = Scrollbar_Canvas() # creating an instance of Scroll-
bar_Entry
 myroot.geometry('200x150')
 myroot.mainloop() # infinite loop to run the application

Output:

The output can be seen in the following Figure 4.21:

Figure 4.21: Output

Note: The preceding code is covered in Program Name: Chap4_Example11.py

Scrollbar attached to Entry
Refer to the following code:

from tkinter import *

class Scrollbar_Entry(Tk):
 def __init__(self):
 super().__init__()

132  Building Modern GUIs with tkinter and Python

 self.sclhbar = Scrollbar(self,orient = HORIZONTAL)
 self.sclhbar.pack(side = BOTTOM,fill = X)

 self.mye1 = Entry(self,xscrollcommand=self.sclhbar.
set) # creation of entry and horizontal scrollbars is attached
 self.mye1.pack(expand = 0, fill=BOTH)

 # horizontal elements
 for loop in range(26): # insertele-
ments from 0 to 25 in the listbox
 self.mye1.insert(END, str(loop) + '\t')
 self.sclhbar.config(command=self.mye1.
xview)# for need of horizontal view settings scrollbar command op-
tion to entry.xview method

if __name__ == '__main__':
 myroot = Scrollbar_Entry() # creating an instance of Scrollbar_
Entry
 myroot.geometry('300x100')
 myroot.mainloop() # infinite loop to run the application

Output:

The output can be seen in the following Figure 4.22:

Figure 4.22: Output

Note: The preceding code is covered in Program Name: Chap4_Example12.py

tkinter Spinbox widget
This widget will allow the user to choose from some fixed range of values. It is an
alternative to the Entry widget which provides values range to the user, from where

Getting Insights of Input Widgets in tkinter  133

the user can select the one. It specifies the values to be allowed which can be either
a range or a tuple.

The syntax is as follows:

mysp1= Spinbox(myroot, options…)

where

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are bg, bd, activebackground, cursor, command,
disabledbackground, disabledforeground, font, fg, format, from_, relief,
justify, repeatdelay, state, repeatinterval, textvariable, to, values, validate,
validatecommand, wrap, width, and xscrollcommand.

We have seen most of the options but some undiscussed options are as follows:
•	 command: This option will call the function or method whenever there is the

movement of the scrollbar. So, by using the command option we are adding
functionality to the above widget.

•	 format: This option will be used for formatting the string and there is no
default value.

•	 from_: This option displays the minimum limit value which will show the
widget starting range.

•	 repeatdelay: This option will control the button autorepeat and is given in
milliseconds.

•	 repeatinterval: This option is similar to repeatinterval and is given in
milliseconds.

•	 textvariable: This option will have no default value and is a control
variable that will control the widget behavior text.

•	 to: This option displays the maximum limit value of the widget.

•	 validate: This option will represent the validation mode and its default
value is None.

•	 validatecommand: This option will represent the validation callback and
there is no default value.

•	 wrap: This option will be wrapping the up and down button of the above
widget.

•	 xscrollcommand: This option will be set to the above widget set() method
for scrolling the widget horizontally.

134  Building Modern GUIs with tkinter and Python

Some of the commonly used methods in the above widget are as follows:

•	 delete(startindex [,endindex]): This method will delete the characters
within the specified range.

•	 get(startindex [,endindex]): This method will get the characters within
the specified range.

•	 identify(x,y): This method will identify the widget’s element within the
specified range.

•	 index(index): This method will get the absolute value of the given index.

•	 insert(index [,string]...): This method will insert the string at the
specified index.

•	 selection_clear(): This method will clear the selection.

•	 selection_get(): This method will return the selected text and will raise
an exception if there is no selection.

We shall see some examples for better understanding.

Let us create a spinbox:

from tkinter import *

myroot = Tk()
myroot.geometry('250x100')
myroot.title('SpinBox')

creation of spinbox
mys1 = Spinbox(font = ('Calibri',15), from_ = 10, to = 20)
mys1.pack()

myroot.mainloop()

Output:

The output can be seen in the following Figure 4.23:

Figure 4.23: Output

Getting Insights of Input Widgets in tkinter  135

Note: The preceding code is covered in Program Name: Chap4_Example13.py

In the above code, we have created a spinbox with a minimum value of 10 and a
maximum value up to 20.

Instead of using a range, we can also specify a set of values, as shown:

from tkinter import *

myroot = Tk()
myroot.geometry('250x100')
myroot.title('SpinBox')

creation of spinbox
mys1 = Spinbox(font = ('Calibri',15), val-
ues = (10,35,49,40), bd = 10,
relief = RAISED)
mys1.pack(pady = 10)

myroot.mainloop()

Output:

The output can be seen in the following Figure 4.24:

Figure 4.24: Output

Note: The preceding code is covered in Program Name: Chap4_Example14.py

136  Building Modern GUIs with tkinter and Python

We can also display string values to a spinbox and perform a callback function on
the movement of the spinbox, as shown:

from tkinter import *

myroot = Tk()
myroot.geometry('300x300')

stringvar variable
a1 = StringVar()

mydisplay function
def mydisplay():
 myroot.configure(bg = a1.get())

creation of spinbox
mys1 = Spinbox(font = ('Calibri',15), command = mydisplay, val-
ues = ['Red','Green','Blue','Violet','Indigo','Magenta','Yel-
low'], textvariable = a1)
mys1.pack()

myroot.mainloop()

Output:

Refer to Figure 4.25:

Getting Insights of Input Widgets in tkinter  137

Figure 4.25: Output

Note: The preceding code is covered in Program Name: Chap4_Example15.py

In the above code, we have displayed string values to the spinbox, and on scrollbar
movement, we are changing the background color of the parent window.

138  Building Modern GUIs with tkinter and Python

We can also disable clicking in, as shown:

from tkinter import *

myroot = Tk()
myroot.geometry('250x100')
myroot.title('SpinBox')

creation of spinbox
mys1 = Spinbox(font = ('Calibri',15), val-
ues = (10,35,49,40,50,60),state = 'readonly')
mys1.pack(pady = 10)

myroot.mainloop()

Output:

Refer to Figure 4.26:

Figure 4.26: Output

Note: The preceding code is covered in Program Name: Chap4_Example16.py

tkinter Scale widget
This widget will allow you to select from a range of numbers by providing a
graphical slider object and moving through a slider. Here, we can set the minimum
and maximum values.

The syntax is as follows:

myscl1= Scale(myroot, options…)

where,

•	 myroot is the parent window.

Getting Insights of Input Widgets in tkinter  139

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are bg, bd, activebackground, command, digits, cursor,
font, fg, highlightbackground, highlightcolor, from_, length, label, orient,
repeatdelay, resolution, relief, showvalue, sliderlength, state, tickinterval,
takefocus, to, variable, troughcolor, and width.

We have seen most of the options but some undiscussed options are as follows:

•	 digits: This option will read the current value via the control variable and
is used to specify the digits to be displayed on the scale range.

•	 from_: This option will specify the starting point of the scale range.

•	 to: This option will specify the ending point of the scale range.

•	 label: This option will display a text label of the scale which is shown on
the top left and right corners vertically and extreme left and right corners
horizontally.

•	 orient: This option's default orientation is horizontal and can be set to
horizontal or vertical depending on the scale type.

•	 repeatdelay: This option will define the duration up to which button1
will be held in the trough before the slider starts moving in that direction
repeatedly and its default is 300msec.

•	 resolution: This option will allow specifying the slightest change possibly
made to the scale value. If set to resolution = 1 and from_ = -2 and to = 2 and
the scale will have 5 possible values: -2, -1, 0, +1, and +2.

•	 showvalue: This option will show the current value as text by the slider. It
can be suppressed by setting it to 0.

•	 sliderlength: This option will specify the scale length and the default is
30 pixels.

•	 state: This option will represent the DISABLED or ACTIVE scale state.

•	 tickinterval: This option will display the scale values at the set intervals.

•	 takefocus: This option will allow a focusing cycle through scale widgets.

•	 variable: This option displays the control variable to monitor the scale state.

•	 troughcolor: This option displays the color of the trough.

Some of the methods in the above widget are as follows:

•	 get(): This method will return the current scale value.

140  Building Modern GUIs with tkinter and Python

•	 set(value): This method will set the scale value.

•	 cords(value = None): This method will return a screen coordinate
corresponding to the given scale value.

We shall see some examples to see how the above widget works:

from tkinter import *

myroot = Tk()

creating a float variable value holder
myv1 = DoubleVar()

#creation of horizontal slider
mys1 = Scale(myroot, from_=0, to=100, ori-
ent = HORIZONTAL, length = 200, width = 10,
 sliderlength = 50, label = 'myscale',
 variable = myv1) # default length = 100, width = 15, slid-
erlength = 30
setting the scale value to 45
mys1.set(45)
mys1.pack()

def mydisplay():
 # will get the value
 print(myv1.get())
 # will return the coordinates corresponding to the giv-
en scale value
 print(mys1.coords(value = myv1.get()))

creating a button widget
mybtn1 = Button(myroot, text = "GetValue", com-
mand = mydisplay, bg = 'LightBlue')
mybtn1.pack(pady = 10)

myroot.title('MyScalewidget')
myroot.geometry("300x200+120+120")
myroot.mainloop()

Getting Insights of Input Widgets in tkinter  141

Output:

Refer to Figure 4.27:

Figure 4.27: Output

The output when GetValue button is clicked, can be seen in the following Figure 4.28:

Figure 4.28: Output

Note: The preceding code is covered in Program Name: Chap4_Example17.py

In the above code, we have created a horizontally oriented scale widget with a
default value of 45. We can move the slider and when the GetValue button is clicked,
the scale value output will be displayed along with the coordinates corresponding
to the given scale value.

142  Building Modern GUIs with tkinter and Python

We can also display the scale orientation vertically, as shown:

from tkinter import *

myroot = Tk()

creating a float variable value holder
myv1 = DoubleVar()

#creation of horizontal slider
mys1 = Scale(myroot, from_=0, to=100, ori-
ent = VERTICAL, length = 200, width = 10,
 sliderlength = 50, label = 'MyScale Widget',
 variable = myv1) # default length = 100, width = 15, slid-
erlength = 30
setting the scale value to 35
mys1.set(35)
mys1.pack()

def mydisplay():
 # will display the value
 myl1.config(text = 'The scale value is: ' + str(myv1.
get()), font = ('Verdana',12))

creating a button widget
mybtn1 = Button(myroot, text = "GetValue", com-
mand = mydisplay, bg = 'LightBlue')
mybtn1.pack(pady = 10)

#creating a label widget
myl1 = Label(myroot)
myl1.pack(pady=10)

myroot.title('MyScalewidget')
myroot.geometry("300x300+120+120")
myroot.mainloop()

Getting Insights of Input Widgets in tkinter  143

Default output:

The default option can be seen in Figure 4.29:

Figure 4.29: Default option

The output when the GetValue button is clicked, can be seen in Figure 4.30:

Figure 4.30: Output

Note: The preceding code is covered in Program Name: Chap4_Example18.py

We can change the trough color to any color (here Red) by adding the troughcolor
option, as shown:

mys1 = Scale(myroot, from_=0, to=100, ori-
ent = VERTICAL, length = 200, width = 10,
 sliderlength = 50, label = 'MyScale Widget',
 variable = myv1,troughcolor = 'Red')

144  Building Modern GUIs with tkinter and Python

Refer to Figure 4.31:

Figure 4.31: Output

We can change the resolution, that is, the slightest change is possible on moving the
slider and can provide the scale value at the set intervals, as shown:

from tkinter import *

myroot = Tk()

creating a float variable value holder
myv1 = DoubleVar()

#creation of horizontal slider
mys1 = Scale(myroot, from_=0, to=100, orient = 'horizon-
tal', length = 200, width = 10,sliderlength = 50, label = 'My-
Scale Widget',troughcolor = 'Red', resolution = 10,tickinter-
val = 10)

setting the scale value to 45
mys1.set(50)
mys1.pack()

myroot.title('MyScalewidget')
myroot.geometry("300x100+120+120")
myroot.mainloop()

Getting Insights of Input Widgets in tkinter  145

Output:

Refer to Figure 4.32:

Figure 4.32: Output

Note: The preceding code is covered in Program Name: Chap4_Example19.py

If we set repeatedly = 1000, then button1 will be held down in the trough for 1 sec
before the slider starts moving in that direction repeatedly.

tkinter Text widget
This widget will allow options to use text on multiple lines. For a single line, we will
be using an Entry widget and for multiple lines, we will be using Text where we can
use elegant structures like marks and tabs for locating different text areas.

The syntax is

mytxt1= Text(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are bd, bg, cursor, exportselection, fg, font, height,
highlightbackground, highlightcolor, highlighthickness, insertborderwidth,
insertbackground, insertontime, insertofftime, insertwidth, padx, pady,
relief, selectborderwidth, selectbackground, spacing1, spacing2, spacing3,
tabs, state, xscrollcommand, yscrollcommand, and wrap.

We have seen most of the options but some undiscussed options are as follows:

•	 exportselection: This option will export the text selected within a text
widget in the window manager. If set to 0, it will be suppressed.

•	 insertborderwidth: This option will specify the 3-D border size around
the insertion cursor. The default value is 0.

146  Building Modern GUIs with tkinter and Python

•	 insertbackground: This option will specify the insertion cursor color whose
default value is black.

•	 insertontime: This option will specify the time in which the insertion
cursor is on during its blink cycle, whose default value are 600 milliseconds.

•	 insertofftime: This option will specify the time in which the insertion
cursor is off during its blink cycle, whose default value is 300 milliseconds.

•	 insertwidth: This option will specify the insertion cursor width whose
default value is 2 pixels.

•	 selectborderwidth: This option will set the border width which determines
the border thickness around selected Text on clicking the mouse and dragging
the mouse.

•	 spacing1: This option will specify the amount of vertical space put above
each text line. Its default value is 0.

•	 spacing2: This option will specify the amount of extra vertical space added
between displayed text lines when a logical line wraps. Its default value is 0.

•	 spacing3: This option will specify how much extra vertical space is added
between each text line.

•	 tabs: This option will control the usage of tab characters for positioning the
text.

•	 state: This option will represent the DISABLED or NORMAL state of the
widget.

•	 wrap: This option will wrap the wider lines into multiple lines. When set to
CHAR, will break the line which gets too wider for any character. When set
to WORD, will break the line after the last word will fit into the available
space.

•	 xscrollcommand: This option when set to the set() method of the horizontal
scrollbar, the Text widget becomes horizontally scrollable.

•	 yscrollcommand: This option when set to the set() method of the vertical
scrollbar, the Text widget becomes vertically scrollable.

Some of the commonly used methods in the above widget are as follows:

•	 delete(startindex[,endindex]): This method will delete the characters
within the given specified range.

•	 get(startindex[,endindex]): This method will fetch the characters
within the given specified range.

Getting Insights of Input Widgets in tkinter  147

•	 index(index): This method will return the absolute index of the given
specified index.

•	 insert(index, string): This method will insert a string in the given
specified index.

•	 see(index): This method will return True if the text specified at the given
index is displayed; else will return False.

•	 index(mark): This method will get the index of the specified mark.

•	 mark_gravity(mark, gravity): This method will get the gravity of the
mark.

•	 mark_names(): This method will fetch the gravity of the given mark.

•	 mark_set(mark, index): This method will specify a new position of the
given mark.

•	 mark_unset(mark): This method will remove the provided mark from the
above widget.

•	 tag_add(tagname, startindex, endindex): This method will tag the
string within the specified range.

•	 tag_config(): This method will configure the tag properties.

•	 tag_delete(tagname): This method will delete a given tag.

•	 tag_remove(tagname, startindex, endindex): This method will remove
the tag within the specified range.

We shall see some examples of the Text widgets. Let us first create a basic example
of the Text widget, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('400x250')
myroot.title('Textwidget')

creation of text widget
mytext = Text(myroot, width = 18, height = 10, font = ('Cal-
ibri',12), wrap = WORD, padx = 10, pady = 10, bd = 4, selectback-
ground = 'Green', selectforeground = 'Red')
mytext.pack()

myroot.mainloop() # display window until we press the close button

148  Building Modern GUIs with tkinter and Python

Output:

Refer to the following Figure 4.33:

Figure 4.33: Output

Note: The preceding code is covered in Program Name: Chap4_Example20.py

In the above code, we have created a Text widget by giving some width and height.
We have entered some text and provided the background and foreground color on
selection.

There are different Text widget indexes that point to some text positions in the Text
widget which are line.column, line.end, insert, current, end, selection,
user-defined tags, windows coordinate (‘x’, ‘y’).

We can read the entire contents of the Text widget from beginning to end, as shown:

from tkinter import * # importing module
from tkinter import messagebox

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('400x250')
myroot.title('Textwidget')

creation of text widget
mytext = Text(myroot, width = 18, height = 10, font = ('Cal-
ibri',12), wrap = WORD, padx = 10, pady = 10, bd = 4, selectback-
ground = 'Green', selectforeground = 'Red')
mytext.pack()

Getting Insights of Input Widgets in tkinter  149

#inserting text in the text widget
mytext.insert('1.0', 'Hey Beginners! Welcome for the learning of py-
thon text widget. \n This is another line')

callback function
def myget():
 messagebox.showinfo('Text widget contents are: ',mytext.
get('1.0', 'end')) # we are reading the entire contents of the text
widget and displaying
creation of button widget
mybtn1 = Button(myroot, text = 'Read', command = myget)
mybtn1.pack()

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 4.34:

Figure 4.34: Output

150  Building Modern GUIs with tkinter and Python

The output when the Read button is clicked, can be seen in the following Figure 4.35:

Figure 4.35: Output

Note: The preceding code is covered in Program Name: Chap4_Example21.py

In the same example, we can get the contents of the first line by modifying the code
inside the callback function, as shown:

callback function
def myget():
 messagebox.
showinfo('First line contents in the text widget are: ',mytext.
get('1.0', '1.end')) # we are reading the contents of first line only

The output when the Read button is clicked, can be seen in Figure 4.36:

Figure 4.36: Output when Read Button is clicked

We can also insert text in the third line into the text widget by adding the following
lines in the code:

inserting text in the third line
mytext.insert('1.0 + 2 lines', '\nThis is 3rd line')

Getting Insights of Input Widgets in tkinter  151

Output:

Refer to Figure 4.37:

Figure 4.37: Output when text is inserted in the third line

We can delete a single character and an entire line in the text widget as follows:

from tkinter import * # importing module
from tkinter import messagebox

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('400x350')
myroot.title('Textwidget')

creation of text widget
mytext = Text(myroot, width = 18, height = 10, font = ('Cal-
ibri',12), wrap = WORD, padx = 10, pady = 10, bd = 4, selectback-
ground = 'Green', selectforeground = 'Red')
mytext.pack()

#inserting text in the text widget
mytext.insert('1.0', 'Hey Beginners! Welcome for the learning of py-
thon text widget. \n This is another line')

inserting text in the third line
mytext.insert('1.0 + 2 lines', '\nThis is 3rd line')

callback function
def myget():
 messagebox.showinfo('First line contents in the text wid-
get are: ',mytext.get('1.0', '1.end')) # we are reading the con-
tents of first line only

152  Building Modern GUIs with tkinter and Python

creation of button widget
mybtn1 = Button(myroot, text = 'Read', command = myget)
mybtn1.pack()

def mydelete():
 mytext.delete('1.0')

creation of Delete button for single characterwidget
mybtn2 = Button(myroot, text = 'DeleteSingleCharacter', com-
mand = mydelete)
mybtn2.pack(pady = 10)

def mydelete_entireline():
 mytext.delete('1.0','1.0 lineend')

creation of Delete button for entire line widget
mybtn2 = Button(myroot, text = 'DeleteEntireLine', com-
mand = mydelete_entireline)
mybtn2.pack(pady = 10)

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 4.38:

Figure 4.38: Output

Getting Insights of Input Widgets in tkinter  153

The output when the DeleteSingleCharacter button is clicked, can be seen in
Figure 4.39:

Figure 4.39: Output when DeleteSingleCharacter button is clicked

The output when the DeleteEntireLine button is clicked, can be seen in Figure 4.40:

Figure 4.40: Output when DeleteEntireLine button is clicked (This will delete the first line)

Note: The preceding code is covered in Program Name: Chap4_Example22.py

We can replace the text in the Text widget with some new text. Here, we are replacing
the entire first line with a new text by adding the following line, as shown:

mytext.replace('1.0','1.0 lineend', 'This is first line')

154  Building Modern GUIs with tkinter and Python

Output:

The output before replacement can be seen in the following Figure 4.41:

Figure 4.41: Output before replacement of first line

The output after replacement can be seen in the following Figure 4.42:

Figure 4.42: Output after replacement of first line

We can disable the state of the Text widget by using the state option:

mytext.config(state = 'disabled')

Getting Insights of Input Widgets in tkinter  155

Refer to Figure 4.43:

Figure 4.43: Output for disabling the Text widget state

Even if we will try to press any delete buttons, the text in the Text widget will not
be deleted. Hence, to perform any operation, we will revert back the state to normal.

mytext.config(state = 'normal')

Now, we shall see how we can identify and name sections of the text with tags and
marks. Tags shall describe a range of collections of characters and marks specify a
specific location between 2 characters within the text widget. We will use the tags
and marks to change properties such as the font and color for sections of text and
control where to insert and delete text.

Now, to add a tag to the Text widget, we can use the tag_add method, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('300x300')
myroot.title('Textwidget')

creation of text widget
mytext = Text(myroot, width = 18, height = 10, font = ('Cal-
ibri',12), wrap = WORD, padx = 10, pady = 10, bd = 4, selectback-
ground = 'Green', selectforeground = 'Red')
mytext.pack()

156  Building Modern GUIs with tkinter and Python

mytext.insert('1.0', 'This is 1st line')
mytext.insert('1.0 + 1 line', '\nThis is 2nd line')
mytext.insert('1.0 + 2 lines', '\nThis is 3rd line')

1st par: Name of the tag which will be created as a string
2nd par: start
3rd par: end
mytext.tag_add('mytag1','1.0','1.0 wordend')

Now, we can configure properties about the tag using tag_configure
mytext.tag_configure('mytag1', background = 'Pink')

myroot.mainloop()

Output:

Refer to Figure 4.44:

Figure 4.44: Output

Note: The preceding code is covered in Program Name: Chap4_Example23.py

So, we can see from the above code that the word This is highlighted, which is the
first word in the first line.

We can find out the characters included in a tag by adding the following line after
the tag_configure() method in the code:

print(mytext.tag_ranges('mytag1'))

Getting Insights of Input Widgets in tkinter  157

Output:

Refer to the following Figure 4.45:

Figure 4.45: Output for characters search included in a tag

Here, tag_ranges() will return the start and end locations of the sections covered
by the tag.

We can remove a tag from the specified range. Just add the following lines of code
after the tag_ranges() method.

mytext.tag_remove('mytag1', '1.2','1.4')
print(mytext.tag_ranges('mytag1'))

Output:

Refer to Figure 4.46:

Figure 4.46: Output for tag removing from the specified range

We can use the tag as an index by using replace() method. Just add the following
lines of code:

mytext.replace('mytag1.first','mytag1.last', 'Hereit ')
mytext.tag_add('mytag1','1.0','1.0 lineend')
mytext.tag_configure('mytag1', background = 'Blue')

158  Building Modern GUIs with tkinter and Python

Refer to the following Figure 4.47:

Figure 4.47: Output with usage of replace method

We can delete a tag by using the following line.

mytext.tag_delete('mytag1')

Till now, we have discussed tags and now we will discuss about marks. To get the
list of marks present in the above widget, we will use the following lines of code:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('300x300')
myroot.title('Textwidget')

creation of text widget
mytext = Text(myroot, width = 18, height = 10, font = ('Cal-
ibri',12), wrap = WORD, padx = 10, pady = 10, bd = 4, selectback-
ground = 'Green', selectforeground = 'Red')
mytext.pack()

mytext.insert('1.0', 'This is 1st line')
mytext.insert('1.0 + 1 line', '\nThis is 2nd line')
mytext.insert('1.0 + 2 lines', '\nThis is 3rd line')

print(mytext.mark_names()) # by default there are 2 marks that tk au-
tomatically keeps track of.

myroot.mainloop()

Getting Insights of Input Widgets in tkinter  159

Output:

Refer to Figure 4.48:

Figure 4.48: Output

Note: The preceding code is covered in Program Name: Chap4_Example24.py

We can see that there are 2 automatically tracked text marks that are inserted and
current. The first mark insert is the insertion cursor current index and another
current mark is the automatically tracked mark and will specify the index which is
currently under the mouse.

Now, we shall see the usage of an automatically tracked insert mark as the index for
an insert method, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('300x330')
myroot.title('Textwidget')

creation of text widget
mytext = Text(myroot, width = 15, height = 10, font = ('Cal-
ibri',12), wrap = WORD, padx = 10, pady = 10, bd = 4, selectback-
ground = 'Green', selectforeground = 'Red')
mytext.pack()

mytext.insert('1.0', 'This is 1st line')
mytext.insert('1.0 + 1 line', '\nThis is 2nd line')

def myinsert_mark():
 mytext.insert('insert','@') # will insert '@' at the posi-
tion of the insert marker

mybtn2 = Button(myroot, text = 'InsertMark', command = myinsert_
mark)
mybtn2.pack(pady = 10)

myroot.mainloop()

160  Building Modern GUIs with tkinter and Python

Output:

Refer to Figure 4.49:

Figure 4.49: Output

We can see that the cursor is placed before the line.

The output, when insert mark button, is clicked, can be seen in the following Figure
4.50:

Figure 4.50: Output

Note: The preceding code is covered in Program Name: Chap4_Example25.py

When the InsertMark button is clicked, ‘@’ symbol is inserted where the cursor
position was placed.

Getting Insights of Input Widgets in tkinter  161

We can also create and modify the location of the mark using the mark_set()
method. We can mark text in the tkinter text widget, as shown:

from tkinter import *

myroot=Tk()

def myclick():
 mytext.insert('insert',"<>")
 mytext.mark_names() # all the mark names are returned
 mytext.mark_
set('insert',END) # a new position is informed of the given mark
 mytext.mark_
gravity('insert',RIGHT) # changing the gravity of mark to right
mybtn1=Button(myroot,text="Myclick",command=myclick)
mybtn1.pack()

mytext=Text(myroot , width = 55, height = 10)
mytext.pack()

myroot.mainloop()

Output:

The output can be seen in the following Figure 4.51:

Figure 4.51: Output

Note: The preceding code is covered in Program Name: Chap4_Example26.py

We have clicked Myclick initially 4 times and entered the text hellothere. Then, we
again click the button 3 times and place the cursor in the position after the text

162  Building Modern GUIs with tkinter and Python

hellothere. Now when Myclick button is clicked again, then ‘<>’ will be inserted in
the text widget and the cursor will be placed after this, as shown in Figure 4.52:

Figure 4.52: Output display on pressing Myclick button 4th time after text hellothere

However, if we comment on the three lines as shown:

def myclick():
 mytext.insert('insert',"<>")
 # mytext.mark_names() # all the mark names are returned
 # mytext.mark_
set('insert',END) # a new position is informed of the given mark
 # mytext.mark_
gravity('insert',RIGHT) # changing the gravity of mark to right

If we run the same program now and get into the same output position, we have the
following Figure 4.53:

Figure 4.53: Output display

Getting Insights of Input Widgets in tkinter  163

Now, if we click the Myclick button again, see the position of the cursor as in Figure
4.54:

Figure 4.54: Output display after commenting the 3 lines and pressing Myclick button

We can also insert an image in the text widget, as shown:

from tkinter import *

myroot=Tk()

def myclick():
 mytext.insert('insert',"<>")

mybtn1=Button(myroot,text="Myclick",command=myclick)
mybtn1.pack()

mytext=Text(myroot, width = 55, height = 25)
mytext.pack()

def insertimage():
 mytext.image_create('insert',image = myimage1)

myimage1 = PhotoImage(file = 'butterfly1.gif')
mybtn2=Button(myroot,text="CreateImage",command = insertimage)
mybtn2.pack(pady = 10)

myroot.mainloop()

164  Building Modern GUIs with tkinter and Python

Output:

Refer to Figure 4.55:

Figure 4.55: Output

Note: The preceding code is covered in Program Name: Chap4_Example27.py

We have already seen using the scrollbar with the Text widget earlier in this chapter.
So, we will not discuss that here.

tkinter Combobox Widget
This widget is a combination of a drop-down menu and an Entry widget. Here, the
user can view the usual text entry area with a downward pointing arrow. A drop-
down menu appears when the user clicks on the arrow displaying all the choices
and will replace the current entry contents if clicked on one.

The syntax is as follows:

mycmb1= Combobox(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are cursor, exportselection, height, justify, style,
postcommand, takefocus, validate, validatecommand, textvariable, width,
values, and xscrollcommand.

Getting Insights of Input Widgets in tkinter  165

We have seen most of the options but some undiscussed options are as follows:

•	 exportselection: Whenever the text is selected within an entry widget
and if exportselection is set to 0, the automatic export to the clipboard is
restricted.

•	 postcommand: When the user clicks on the down arrow, this option can be set
to any of the functions.

•	 values: This option specifies the choices as a sequence of strings which will
appear in the drop-down menu.

Some of the methods used in the above widget are as follows:

•	 current([index]): This method when passing the index of the element
as an argument will select one of the elements of the values option. If an
argument is not supplied, the value returned will be the index of the current
Entry text in the values list.

•	 set(value): This method can set the current text in the widget to value.

Let us see an example for better understanding:

from tkinter import * # importing module

from tkinter.ttk import Combobox

myroot = Tk() # window creation and initialize the interpreter

myroot.geometry('300x200')

myroot.title('Comboboxcreation')

creating a list of values

myl2 = list(range(1,25))

#combobox object creation

mycombo = Combobox(myroot, val-
ues = myl2 , width = 15) # , height = 2 : only 2 items

mycombo.pack(padx = 50, pady = 10)

myroot.mainloop() # display window until we press the close button

166  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in the following Figure 4.56:

Figure 4.56: Output

Note: The preceding code is covered in Program Name: Chap4_Example28.py

In this code, we are passing an integer list in the values option of the combobox
object. The user can choose any of the values from the available drop-down menu.
The user clicking on any of the options will be available in the Entry widget, as
shown in Figure 4.57:

Figure 4.57: Output display on selecting any particular value from the combobox widget

We can also add a string list in the values option of the combobox object, as shown:

from tkinter import * # importing module
from tkinter.ttk import Combobox

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('300x200')

Getting Insights of Input Widgets in tkinter  167

myroot.title('Comboboxcreation')

creating a list of values
myl1 = ['Hindi','English','Telugu','Bengali']

#combobox object creation
mycombo = Combobox(myroot, val-
ues = myl1 , height = 2) # , height = 2 : only 2 items and de-
fault width is 20
mycombo.pack()

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 4.58:

Figure 4.58: Output

Note: The preceding code is covered in Program Name: Chap4_Example29.py

We can also display the text in the combobox widget on the selection of the drop-
down menu, as shown:

from tkinter import * # importing module
from tkinter.ttk import Combobox

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('300x200')
myroot.title('Comboboxcreation')

168  Building Modern GUIs with tkinter and Python

myval = StringVar()

def mydisplay():
 myval = mycombo.get()
 print(myval)

creating a list of values
myl1 = ['Hindi','English','Telugu','Bengali']
myval.set('English')
#combobox object creation
mycombo = Combobox(myroot, val-
ues = myl1 , height = 2, textvariable = myval ,postcom-
mand = mydisplay) # , height = 2 : only 2 items and default width-
 is 20
mycombo.pack()

myroot.mainloop() # display window until we press the close button

Output when the drop-down menu is selected:

Refer to Figure 4.59:

Figure 4.59: Output

Note: The preceding code is covered in Program Name: Chap4_Example30.py

In the above code, by default, we have set it to English in the above widget. The user
can select any of the options from the above widget. Whenever the user clicks on the

Getting Insights of Input Widgets in tkinter  169

down arrow, a callback function will be invoked which will display the text present
in the console.

Moreover, we could have used the current method and passed the index of the
element to be displayed instead of myval.set('English'), as shown:

mycombo.current(1)

So, the get() method will return the element itself whereas current() will get the
index of the currently selected element.

However, what if we want to display the output to the console after the
element is selected from the combobox list? In such a case, the virtual event
<<ComboboxSelected>> is bonded with the callback function, as shown:

from tkinter import * # importing module
from tkinter.ttk import Combobox

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('300x200')
myroot.title('Comboboxcreation')

myl2 = Label(myroot, text = 'Choose your mother tongue')
myl2.pack(pady = 10)

def mydisplay(myevent):
 print(mycombo.get())

creating a list of values
myl1 = ['Hindi','English','Telugu','Bengali']

#combobox object creation
mycombo = Combobox(myroot, val-
ues = myl1 , height = 2) # , height = 2 : only 2 items and de-
fault width is 20
mycombo.pack(pady = 10)
mycombo.current(1)
mycombo.bind("<<ComboboxSelected>>", mydisplay)

myroot.mainloop() # display window until we press the close button

170  Building Modern GUIs with tkinter and Python

Output after the element is selected from the drop-down menu:

Refer to Figure 4.60:

Figure 4.60: Output

Note: The preceding code is covered in Program Name: Chap4_Example31.py

We can set fonts for both combobox and its listbox. If unspecified, then the text in the
combobox list will still use the system default font but not the font specified to the
combobox, as shown:

from tkinter import * # importing module
from tkinter.ttk import Combobox

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('300x200')
myroot.title('Comboboxcreation')

creating a list of values
mylist1 = ['Apple','Litchi','Mango','Pomengranate']

assigning font tuple
myfont = ("Times New Roman", 14, "italic")

#assigning label

Getting Insights of Input Widgets in tkinter  171

myl1 = Label(myroot, text = 'Choose from your favorate fruit')
myl1.pack(pady = 10)

#combobox object creation
mycombo = Combobox(myroot, val-
ues = mylist1 , height = 2, font = myfont) # , height = 2 :
only 2 items and default width is 20
mycombo.pack(pady = 10)
mycombo.current(1)

specifying font of the list box of Combobox
myroot.option_add('*TCombobox*Listbox.font', myfont)

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 4.61:

Figure 4.61: Output

Note: The preceding code is covered in Program Name: Chap4_Example32.py

We can dynamically change the value of the comobox list values, as shown:

from tkinter import * # importing module
from tkinter.ttk import Combobox

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('300x200')

172  Building Modern GUIs with tkinter and Python

myroot.title('Comboboxcreation')

myl2 = Label(myroot, text = 'Choose your mother tongue')
myl2.pack(pady = 10)

def mydisplay():
 mycombo['values'] = ['Punjabi', 'Tamil', 'Spanish','Kannada']
 mycombo.set('')

creating a list of values
myl1 = ['Hindi','English','Telugu','Bengali']

#combobox object creation
mycombo = Combobox(myroot, values = myl1 , height = 2, post-
command = mydisplay) # , height = 2 : only 2 items and de-
fault width is 20
mycombo.pack(pady = 10)
mycombo.current(1)

myroot.mainloop() # display window until we press the close button

Output:

The output can be seen in Figure 4.62:

Figure 4.62: Output

Note: The preceding code is covered in Program Name: Chap4_Example33.py

Getting Insights of Input Widgets in tkinter  173

Conclusion
This chapter has discussed a variety of tkinter widgets, including the Entry, Scrollbar,
Spinbox, Scale, Text, and Combobox. The chapter offers thorough explanations,
examples, and alternatives for utilizing these widgets to build straightforward GUI
applications. The concept of validation in the Entry widget, the ability to scroll in
the Scrollbar widget, the ability to select values from a range in the Spinbox widget,
the implementation of a graphical slider in the Scale widget, the ability to insert
multiple text fields in the Text widget, and the use of the Combobox widget and its
applications are all neatly and clearly covered.

Points to remember
•	 Entry widget can be used for gathering user input, can be customized using

various controls viz width, font, and validation, and can be utilized for
creating a simple data entry application; the get() method can be retrieved
to get the input.

•	 Scrollbar widgets are used to provide widgets that are longer than their
visible size, a scrolling feature. It is compatible with a variety of widgets,
including Listbox, Text, Canvas and so on. We can position the scrollbar
either vertically or horizontally. The scrollbar should be attached to the
widget that needs to be scrolled using the command option.

•	 Using Text widget, we can display and edit the text in multiple lines. We can
customize using various options such as color, font, wrap and so on. It can
be used to build applications such as text editors or document viewers. The
get() method can be used to get the text from the widget.

•	 The SpinBox widget is used to select a value from a fixed range of values. We
can customize using various options such as color, font, range and so on. It
can be used to create a simple data selection application. The selected value
can be retrieved using get() method.

•	 The Scale widget is used to select from a range of numbers by providing a
graphical slider object and moving through a slider. We can customize using
various options such as color, font and so on. It can be used to create an
application which requires value to be selected within a certain range. The
selected value can be retrieved using get() method.

•	 Combination of a drop-down menu and an Entry widget is a Combobox
widget. We can customize using various options such as color, font, values
and so on. It can be used to create an application which requires user to select
one option from a list of options. The selected option can be retrieved using
get() method.

174  Building Modern GUIs with tkinter and Python

Questions
1.	 Explain the tkinter Entry widget in detail.

2.	 Which widget accepts single-line text strings from the user? Explain in detail
with a suitable example.

3.	 How is the validation on an entry widget done? Explain the process in detail.

4.	 Explain the tkinter Scrollbar widget and its syntax.

5.	 Explain tkinter Spinbox Widget and its usage in GUI designing.

6.	 How does the user choose some fixed range of values? Explain the widget
used for this purpose in detail.

7.	 Which widget is alternatively used in place of the entry widget? Explain
with suitable justification.

8.	 Explain tkinter Scale Widget and its syntax.

9.	 Which widget allows one to select from a range of numbers by providing
a graphical slider object and moving through a slider? Explain this widget
with suitable justification and example.

10.	 Explain the tkinter Text Widget in detail.

11.	 Explain tkinter Combobox Widget in detail with a sample program.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Getting Insights of Display Widgets in tkinter  175

Chapter 5
Getting Insights of
Display Widgets in

tkinter
Introduction
The Label, Message, and MessageBox widgets in Tkinter must be learned in order
to create Python Graphical User Interfaces (GUI), which are efficient and easy to
use. We will be able to display text, images, and dialog boxes to the user, thanks to
these widgets which are necessary for creating an effective and user-friendly GUI.
We can provide data to the user in a clear and organized manner, using the Label
and Message widgets. We could use a Label widget to show a user's name or a
Message widget to show a list of items, for instance. We must use the MessageBox
widget to handle errors in our application. We are able to ask the user for input,
such as whether to continue or cancel an operation, and display error warnings to
them. These widgets offer a variety of customization options, including the ability
to change the text, picture, and dialog box size, colour, and font. For an application's
user interface to be unique and different from others, customization is essential.

Structure
In this chapter, we will discuss the following topics:

•	 tkinter Label Widget
•	 tkinter Message Widget
•	 tkinter MessageBox Widget

176  Building Modern GUIs with tkinter and Python

Objectives
By the end of this chapter, the reader will learn about the creation of a simple GUI
app using the tkinter Label widget which depicts the ways of displaying a text or
image on a window form. We shall also view a display of prompt unedited text
messages to the user, with the tkinter Message widget. Moreover, we will look into
multiple message boxes such as information, warning, error, and so on, in a Python
application by using the tkinter MessageBox widget.

tkinter Label Widget
It is a standard tkinter widget where a text or an image can be displayed on the
screen. The text can be underlined, can be displayed in a single font and the text may
be spanned across multiple lines. It uses double buffering so that the contents may
be updated at any time without display of any flickering. In this widget, one or more
lines of text can be displayed which cannot be modified by the user.

The syntax is as follows:

myl1= Label(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the list of options that can be used as key-value pairs and are
separated by commas, are anchor (space between are and anchor), bg, bitmap,
bd, cursor, font, height, fg, justify, image, padx, pady, text, textvariable, relief,
width, wraplength, underline.

We have seen most of the options but some undiscussed options are as follows:

•	 text: This option will display the text on the label. The ‘\n’ will force a line
break. So, one or more lines of text in the label can be displayed. This option
is ignored when the image or bitmap options are used.

•	 textvariable: This option will associate a tkinter variable (generally the
StringVar) with the label. The label text is updated if the variable is changed.

•	 image: This option will display the image in the label and the value should
be a BitmapImage or a PhotoImage. This option takes precedence over the
bitmap and text options.

•	 justify: This option will define the alignment of multiple lines of text with
respect to each other. The default is CENTER and the other is LEFT or RIGHT.

Getting Insights of Display Widgets in tkinter  177

Let us make a basic label widget in the parent window:

from tkinter import *

myroot = Tk() # creating an object of Tk class -- object of window

myroot.maxsize(300,300) # maximum size of window- It can be small-
er like anything byt maximum up to 300 only
myroot.resizable(0,0) # window size is fixed. cannot be larg-
er or smaller.
mytk_label = Label(myroot,text = 'Python\nis\nawesome', font = ('Ca-
libri',15),bg = 'Yellow',fg = 'Black',
 width = '15', height = '3')
mytk_label.pack()

myroot.mainloop()

Output:

The output can be seen in Figure 5.1:

Figure 5.1: Output

Note: The preceding code is covered in Program Name: Chap5_Example1.py

In the above code, we passed the window object into the Label constructor and set
the text property, which becomes the text Label when displayed. Other options such
as font, bg, fg, width, and height for the font color, size, desired width, and height
are defined and used to pack geometry manager for organizing the label widget in
the block. Here, we have displayed multiple lines of text in a label.

We can set the look of the border of a label by using the borderwidth and relief
options as shown:

from tkinter import *

myroot = Tk()

178  Building Modern GUIs with tkinter and Python

myl1_label = Label(myroot,text = 'Hey! I', bd = 2, relief = 'sol-
id',font = ('Calibri',15))
myl1_label.pack()

myl2_label = Label(myroot,text = 'love', bd = 5, relief = 'sunk-
en',font = ('Calibri',15), padx = 10,pady = 10)
myl2_label.pack(padx = 10, pady = 10)

myl3_label = Label(myroot,text = 'python', bd = 5, re-
lief = 'raised',font = ('Calibri',15), padx = 10,pady = 10)
myl3_label.pack(padx = 10, pady = 10)

myl4_label = Label(myroot,text = 'to', bd = 5, re-
lief = 'groove',font = ('Calibri',15), padx = 10,pady = 10)
myl4_label.pack(padx = 10, pady = 10)

myl5_label = Label(myroot,text = 'read', bd = 5, re-
lief = 'groove',font = ('Calibri',15), padx = 10,pady = 10)
myl5_label.pack(padx = 10, pady = 10)

myroot.mainloop()

Output:

The output can be seen in Figure 5.2:

Figure 5.2: Output

Getting Insights of Display Widgets in tkinter  179

Note: The preceding code is covered in Program Name: Chap5_Example2.py

We can position text within a label widget as shown:

from tkinter import *

class MyLabelPosition(Tk):
 def __init__(self):
 super().__init__()
 self.title('Position Text within a label')
 self.myl2= Label(self, text = 'Hello\
nThere',bd = 4, relief = 'groove', font = 'Times 32', width = 10,
 height = 4, anchor = SW)
 self.myl2.pack()

if __name__ == "__main__":
 myroot = MyLabelPosition()
 myroot.mainloop()

Output:

The output can be seen in Figure 5.3:

Figure 5.3: Output

Note: The preceding code is covered in Program Name: Chap5_Example3.py

In the above case, we are positioning the text within the label widget in South West
direction.

180  Building Modern GUIs with tkinter and Python

Now, we will see how to pad space around the text of a label:

from tkinter import *

class MyPadSpace(Tk):
 def __init__(self):
 super().__init__()
 self.title('Pad space around the text')
 myl1 = Label(self, text = 'Python')
 myl1.pack()
 myl2= Label(self, text = 'Stay\Safe',bd = 4, re-
lief = 'groove',font = ('Verdana',12))
 myl2.pack()
 myl3 = Label(self, text = 'Python')
 myl3.pack()
 myl4= Label(self,text = 'Stay\Safe',bd = 4, re-
lief = 'groove',font = ('Verdana',12),padx = 20)
 myl4.pack()
 myl5 = Label(self, text = 'Python')
 myl5.pack()
 myl6= Label(self,text = 'Stay\Safe',bd = 4, re-
lief = 'groove',font = ('Verdana',12),pady = 10)
 myl6.pack()
 myl7 = Label(self, text = 'Python')
 myl7.pack()
 myl8= Label(self,text = 'Stay\Safe',bd = 4, re-
lief = 'groove',font = ('Verdana',12),padx = 10, pady = 10)
 myl8.pack()

if __name__ == "__main__":
 myroot = MyPadSpace()
 myroot.geometry('350x300')
 myroot.mainloop()

Output:

The output can be seen in Figure 5.4:

Getting Insights of Display Widgets in tkinter  181

Figure 5.4: Output

Note: The preceding code is covered in Program Name: Chap5_Example4.py

Now, we will see how to justify text in a label:

from tkinter import *

class MyJustify(Tk):
 def __init__(self):
 super().__init__()
 self.title('Jusify in label')
 myl1 = Label(self, text = 'Python')
 myl1.pack()
 myl2= Label(self, text = 'Hello\nThere There\
nThere There There',bd = 2, relief = 'solid',font = ('Helveti-
ca',10))
 # default justify is CENTER
 myl2.pack()
 myl3 = Label(self, text = 'Python')
 myl3.pack()
 myl4= Label(self,text = 'Hello\nThere There\
nThere There There',bd = 2, relief = 'solid',font = ('Helveti-
ca',10),
 justify = LEFT)
 myl4.pack()
 myl5= Label(self,text = 'Hello\nThere There\
nThere There There',bd = 2, relief = 'solid',font = ('Helveti-

182  Building Modern GUIs with tkinter and Python

ca',10),
 justify = RIGHT)
 myl5.pack()

if __name__ == "__main__":
 myroot = MyJustify()
 myroot.geometry('350x300')
 myroot.mainloop()

Output:

The output can be seen in Figure 5.5:

Figure 5.5: Output

Note: The preceding code is covered in Program Name: Chap5_Example5.py

Moreover, we can anchor and justify text simultaneously in a label, as shown:

from tkinter import *

class MyAnchorJustify(Tk):
 def __init__(self):
 super().__init__()
 self.title('Anchor and Jusify in label')
 myl1 = Label(self, text = 'Anchor and Justify in Right')
 myl1.pack()

Getting Insights of Display Widgets in tkinter  183

 myl2= Label(self,
 text = 'Stay\nSafe Safe\
nSafe Safe Safe',bd = 2, relief = 'solid',font = ('Times New Ro-
man',12),
 width = 20,height = 4,anchor = NE, justi-
fy = RIGHT)
 myl2.pack()
 myl3 = Label(self, text = 'Anchor and Justify in Left')
 myl3.pack()
 myl4= Label(self,text = 'Stay\nSafe Safe\
nSafe Safe Safe', bd = 2, relief = 'solid',
 font = ('Times New Ro-
man',12),width = 20,height = 4,anchor = NE,justify = LEFT)
 myl4.pack()

if __name__ == "__main__":
 myroot = MyAnchorJustify()
 myroot.geometry('350x300')
 myroot.mainloop()

Output:

The output can be seen in Figure 5.6:

Figure 5.6: Output

Note: The preceding code is covered in Program Name: Chap5_Example6.py

184  Building Modern GUIs with tkinter and Python

Moreover, we can access the options of a tkinter label:

from tkinter import *

class MyAcessOption(Tk):
 def __init__(self):
 super().__init__()
 self.title('Access options of a tkinter label')
 myl2= Label(self,text = 'Stay\nSafe From\nFrom Corona Vi-
rus', bd = 2, bg = 'LightGreen', relief = 'sol-
id',
 font = ('Arial',14),width = 20,height = 4,an-
chor = NW,justify = LEFT)
 myl2.pack()
 print(myl2["text"])
 print("--------")
 print(myl2["bd"])
 print(myl2["bg"])
 print(myl2["font"])
 print(myl2["width"])
 print(myl2["height"])
 print(myl2["anchor"])
 print(myl2["justify"])

if __name__ == "__main__":
 myroot = MyAcessOption()
 myroot.geometry('350x150')
 myroot.mainloop()

Output:

The output can be seen in Figure 5.7:

Figure 5.7: Output of

Getting Insights of Display Widgets in tkinter  185

Here is the output at the console:

Stay
Safe From
From Corona Virus

2
LightGreen
Arial 14
20
4
nw
left

Note: The preceding code is covered in Program Name: Chap5_Example7.py

So, we can access the options associated with a label by using key-value pair.

Now, just like we can access the options of a label, there is a provision for dynamically
changing label options, as shown:

from tkinter import *

class MyAcessChangeOption(Tk):
 def __init__(self):
 super().__init__()
 self.title('Access and Change options of a tkinter label')
 myl2= Label(self,text = 'Stay\nSafe From\nFrom Co-
rona Virus', bd = 2, bg = 'LightGreen', fg = 'Yel-
low', relief = 'solid',
 font = ('Arial',14),width = 20,height = 4,an-
chor = NW,justify = LEFT)
 myl2.pack()
 myl2["bg"] = 'LightBlue' # we are changing bg to LightBlue
 myl2["fg"] = 'Red'# we are changing fg to Red

if __name__ == "__main__":
 myroot = MyAcessChangeOption()
 myroot.geometry('450x130')
 myroot.mainloop()

186  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in Figure 5.8:

Figure 5.8: Output

Note: The preceding code is covered in Program Name: Chap5_Example8.py

We can also display the default values (key values) of a label whether it is mentioned
or not, as shown:

from tkinter import *

class MyAcessChangeOption(Tk):
 def __init__(self):
 super().__init__()
 self.title('Displaying key values of a tkinter label')
 myl2= Label(self,text = 'Python', bd = 2, bg = 'Light-
Blue',relief = 'solid',font = ('Verdana',12),
 width = 12,height = 4,an-
chor = SE,justify = RIGHT)
 myl2.pack()

 for loop in myl2.keys():
 print(loop,':',myl2[loop]) # will display default val-
ues if not mentioned.

if __name__ == "__main__":
 myroot = MyAcessChangeOption()
 myroot.geometry('450x130')
 myroot.mainloop()

Output:

The output can be seen in Figure 5.9:

Getting Insights of Display Widgets in tkinter  187

Figure 5.9: Output of Chap5_Example9.py in GUI

Here is the output at the console:

activebackground : SystemButtonFace

activeforeground : SystemButtonText

anchor : se

background : LightBlue

bd : 2

bg : LightBlue

bitmap :

borderwidth : 2

compound : none

cursor :

disabledforeground : SystemDisabledText

fg : SystemButtonText

font : Verdana 12

foreground : SystemButtonText

height : 4

highlightbackground : SystemButtonFace

highlightcolor : SystemWindowFrame

highlightthickness : 0

image :

justify : right

padx : 1

pady : 1

relief : solid

state : normal

takefocus : 0

188  Building Modern GUIs with tkinter and Python

text : Python

textvariable :

underline : -1

width : 12

wraplength : 0

Note: The preceding code is covered in Program Name: Chap5_Example9.py

So, we can see that all the key method values will be displayed in the console. If not
mentioned, then default values will be shown.

We can use textvariable option as it will associate a tkinter variable to the label
widget, that is, we can use StringVar() and textvariable for a tkinter label
widget, as shown:

from tkinter import *

class MyStringVartext(Tk):
 def __init__(self):
 super().__init__()
 self.myval1 = StringVar()
 self.title('StringVar() and textvariable a tkinter label')
 self.myl2= Label(self,font = 'Helvetica',textvariable= self.
myval1,relief = 'groove')
 self.myl2.pack()
 self.myval1.set('python is awesome')

if __name__ == "__main__":
 myroot = MyStringVartext()
 myroot.geometry('400x130')
 myroot.mainloop()

Output:

The output can be seen in Figure 5.10:

Figure 5.10: Output

Getting Insights of Display Widgets in tkinter  189

Note: The preceding code is covered in Program Name: Chap5_Example10.py

We have already discussed how to use StringVar() and textvariable. This
example is just a recap of how to use it.

We can set the text of a label using either the key-value pair approach or by using the
set() method, as shown:

from tkinter import *

class MyStringVar_key_text(Tk):
 def __init__(self):
 super().__init__()
 self.myval1 = StringVar()
 self.title('StringVar() and textvariable a tkinter label')
 self.myl2= Label(self,font = 'Helvetica',textvariable= self.
myval1,relief = 'groove')
 self.myl2.pack()
 self.myl3= Label(self,font = ('Arial',12),text= 'Hello',re-
lief = 'groove')
 self.myl3.pack(padx = 10, pady = 10)
 self.myl3['text'] = 'Key/value pair approach of set-
ting text'
 self.myval1.set('using textvariable set')

if __name__ == "__main__":
 myroot = MyStringVar_key_text()
 myroot.geometry('400x100')
 myroot.mainloop()

Output:

The output can be seen in Figure 5.11:

Figure 5.11: Output

190  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap5_Example11.py

In the above example, we can see how the text of a label is changed using StringVar()
and the key-value pair approach.

We can display images using the label, as shown:

from tkinter import *

class MyImage(Frame):
 def __init__(self, root = None):
 Frame.__init__(self, root)
 self.root = root
 self.myphoto = PhotoImage(file = 'butterfly1.gif')
 self.myl1 = Label(self.root,image = self.myphoto)
 self.myl1.pack(padx = 10, pady = 10)

if __name__ == "__main__":
 myroot = Tk()
 myobj = MyImage(myroot)
 myroot.title('Image using label')
 myroot.geometry('300x300')
 myroot.mainloop()

Output:

The output can be seen in Figure 5.12:

Figure 5.12: Output

Getting Insights of Display Widgets in tkinter  191

Note: The preceding code is covered in Program Name: Chap5_Example12.py

tkinter Message Widget
This widget will display the text messages to the user which cannot be edited. It
contains more than one line and can only be shown in a single font.

The syntax is as follows:

mymsg1= Message(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas, are bg, bd, bitmap, cursor, anchor, fg, font, width,
height, image, justify, padx, pady, relief, text, textvariable, underline,
wraplength, and width.

We have seen and learned all the options till now. Let us see the example directly:

from tkinter import *

myroot = Tk()
mystr = StringVar()

creation of message widget object
mymsg1 = Message(myroot, textvariable=mystr, re-
lief=RAISED, font = ('Calibri',12), fg = 'Red', bg = 'LightGreen')

mystr.set("This is a string message")
mymsg1.pack()
myroot.mainloop()

Output:

The output can be seen in Figure 5.13:

Figure 5.13: Output

192  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap5_Example13.py

We can also use the text option to display the message, as shown:

from tkinter import *

myroot = Tk()

mytxt = 'Stay Safe from Corona Virus. Follow social distanc-
ing Please.:)'

creation of message widget object
mymsg1 = Message(myroot, text=mytxt, relief=RAISED, font = ('Cal-
ibri',12), fg = 'Red', bg = 'LightGreen')

mymsg1.pack()
myroot.mainloop()

Output:

The output can be seen in Figure 5.14:

Figure 5.14: Output

Note: The preceding code is covered in Program Name: Chap5_Example14.py

We shall now see how to use Statusbar in Python tkinter GUI applications using
label widget.

The label widget will display a narrow bar at the GUI bottom for indicating some
extra information like file word counts or some relevant information which will add
some extra value when interfacing with the user. There is no dedicated status bar
widget in tkinter but a label widget with an appropriate configuration, that can be
worked like a status bar in the GUI applications. Refer to the following:

Getting Insights of Display Widgets in tkinter  193

from tkinter import *

myroot = Tk()
myroot.geometry('350x200')
myroot.title("StatusBarExample")

mystatusbar = Label(myroot, text="It is a statusbar exam-
ple...", bd=1, relief=SUNKEN, anchor=W) # where bd: bordersize , re-
lief: label appearance, anchor: text alignment within the label

mystatusbar.pack(side=BOTTOM, fill=X) # positioned at the GUI bot-
tom and covers the whole window width if window is resized
myroot.mainloop()

Output:

The output can be seen in Figure 5.15:

Figure 5.15: Output

Note: The preceding code is covered in Program Name: Chap5_Example15.py

tkinter MessageBox Widget
This widget will display the message boxes in the Python applications. The relevant
messages are displayed with various functions depending on the application
requirements.

The syntax is as follows:
messagebox.function_name(title, message [, options])

194  Building Modern GUIs with tkinter and Python

where,
•	 function_name: It is the appropriate message box function name.
•	 title: This parameter can be used to display custom string in the title box.
•	 message: This parameter can be used to display custom string as message

on the message box.
•	 options: The options used are default and parent. The default option will

mention the default button types like ABORT, RETRY or IGNORE in the
messagebox. The parent option will specify the window on top of which
displays the messagebox.

Now, we shall see different functions for displaying the appropriate message boxes.

showinfo()
This messagebox, when used, will display the relevant information to the user, as
shown:

from tkinter import *
from tkinter import messagebox

myroot = Tk()
myroot.geometry("300x150")
myroot.title('Showinfo example')

def mydisplay():
 messagebox.
showinfo("Showinfoexample","This is a basic showinfo example")
mybtn1 = Button(myroot, text = 'ClickShowInfo', command = mydisplay)
mybtn1.pack()
myroot.mainloop()

Output:

The output can be seen in Figure 5.16:

Figure 5.16: Output

Getting Insights of Display Widgets in tkinter  195

Note: The preceding code is covered in Program Name: Chap5_Example16.py

In this code, Showinfoexample is a title in the box and “This is a basic showinfo example”
is the displayed information when the ClickShowInfo button is clicked. So, using the
above function depicts plain information.

showwarning()
This function will display a warning message to the user, as shown:

from tkinter import *
from tkinter import messagebox

myroot = Tk()
myroot.geometry("300x150")
myroot.title('Warningmessage')

def mydisplay():
 messagebox.showwarning("ShowWarningexample","This is a ba-
sic warning message example")

mybtn1 = Button(myroot, text = 'ClickWarningMsg', com-
mand = mydisplay)
mybtn1.pack()
myroot.mainloop()

Output:

The output can be seen in Figure 5.17:

Figure 5.17: Output

Note: The preceding code is covered in Program Name: Chap5_Example17.py

196  Building Modern GUIs with tkinter and Python

In this code, we have displayed a message box using a showwarning() function.
The ShowWarningexample is a title and “This is a basic warning message example” is the
warning information when the ClickWarningMsg button is clicked.

showerror()
This function, when used, will display the error message to the user, as shown:

from tkinter import *
from tkinter import messagebox

myroot = Tk()
myroot.geometry("300x150")
myroot.title('Errormessage')

def mydisplay():
 messagebox.showerror("Showerrorexample","Th
is is a basic error message example")

mybtn1 = Button(myroot, text = 'ClickErrorMsg', command = mydisplay)
mybtn1.pack()
myroot.mainloop()

Output:

The output can be seen in Figure 5.18:

Figure 5.18: Output

Note: The preceding code is covered in Program Name: Chap5_Example18.py

In this code, we have displayed a message box using a showerror() function. The
Showerrorexample is a title and “This is a basic error message example” is the error
information when the ClickErrorMsg button is clicked.

Getting Insights of Display Widgets in tkinter  197

askquestion()
This function can be used to display custom confirmatory questions framed by user.
The questions can be used for validation or getting user confirmation. The accepted
answer will be either yes or no.

from tkinter import *
from tkinter import messagebox

myroot = Tk()
myroot.geometry("300x150")
myroot.title('AskQuestion')

def mydisplay():
 ans = messagebox.
askquestion("AskQuestion example","Do you want to continue")
 if ans == 'yes':
 messagebox.showinfo('Message','You have chosen Yes')
 else:
 messagebox.showinfo('Message','You have chosen No')

mybtn1 = Button(myroot, text = 'ClickAskMsg', command = mydisplay)
mybtn1.pack()
myroot.mainloop()

Output when the ClickAskMsg button is clicked:

The output can be seen in Figure 5.19:

Figure 5.19: Output when ClickAskMsg button is clicked

198  Building Modern GUIs with tkinter and Python

Output when the Yes button is clicked:

The output can be seen in Figure 5.20:

Figure 5.20: Output when Yes button is clicked

Output when the No button is clicked:

The output can be seen in Figure 5.21:

Figure 5.21: Output when No button is clicked

Note: The preceding code is covered in Program Name: Chap5_Example19.py

askokcancel()
This function, when used, will confirm the user’s responses regarding the application
activity. Here, the answers are OK and Cancel. Refer to the following:

from tkinter import *
from tkinter import messagebox

myroot = Tk()
myroot.geometry("300x150")
myroot.title('AskOkCancel')

Getting Insights of Display Widgets in tkinter  199

def mydisplay():
 messagebox.askokcancel("AskOkCancel example","Redirect-
ing to www.abc.com")

mybtn1 = Button(myroot, text = 'ClickOkCancelMsg', com-
mand = mydisplay)
mybtn1.pack()
myroot.mainloop()

Output when the ClickOkCancelMsg button is clicked:

The output can be seen in Figure 5.22:

Figure 5.22: Output of Chap5_Example20.py

Note: The preceding code is covered in Program Name: Chap5_Example20.py

askyesno()
This function, when used, will ask the user some questions which can be answered
by using yes or no. Here, the answers are Yes and No. Refer to the following:

from tkinter import *
from tkinter import messagebox

myroot = Tk()
myroot.geometry("300x150")
myroot.title('AskYesNo')

def mydisplay():
 messagebox.askyesno("AskYesNo example","Will you do it")

mybtn1 = Button(myroot, text = 'ClickYesNoMsg', command = mydisplay)

200  Building Modern GUIs with tkinter and Python

mybtn1.pack()
myroot.mainloop()

Output when the ClickYesNoMsg button is clicked:

The output can be seen in Figure 5.23:

Figure 5.23: Output

Note: The preceding code is covered in Program Name: Chap5_Example21.py

askretrycancel()
This function, when used, will ask the user to perform a particular task again or not.
Here, the answers are Retry and Cancel. Refer to the following:

from tkinter import *
from tkinter import messagebox

myroot = Tk()
myroot.geometry("300x150")
myroot.title('AskRetryCancel')

def mydisplay():
 messagebox.askretrycancel("AskRetryCancel exam-
ple","Will you do it")

mybtn1 = Button(myroot, text = 'ClickRetryCancelMsg', com-
mand = mydisplay)
mybtn1.pack()
myroot.mainloop()

Getting Insights of Display Widgets in tkinter  201

Output when the ClickRetryCancelMsg button is clicked:
The output can be seen in Figure 5.24:

Figure 5.24: Output

Note: The preceding code is covered in Program Name: Chap5_Example22.py

Conclusion
In this chapter, we learned about the creation of a simple GUI app using the tkinter
Label widget, which depicts the ways of displaying a text or image on a window
form. Using tkinter Label widget, we saw how to position its text, how to pad space
around the text, how to justify the text, how to both anchor and justify the text
simultaneously, how to access the widget options using a key-value pair, how to
dynamically change label options, how to display the default values, and how to
display image in the widget using examples.

Moreover, we explored how to use this label widget as a statusbar with code. We
have used text option to display the message for demonstrating tkinter Message
widget. Furthermore, we viewed a display of prompt unedited text messages to
the user with this tkinter Message widget. Finally, we looked into multiple message
boxes such as information, warning, error, question, okcancel, yesno and so on, in a
Python application by using the tkinter MessageBox widget.

Points of remember
•	 Using a label widget, we can show text or an image in a window. The Label

widget's text, font, foreground, and border are some of its crucial properties.

•	 Text can be automatically wrapped when displayed in a window using a
message widget. The Message widget's text, font, foreground, background,
and border are some of its crucial properties.

•	 A message box with optional buttons and a message can be displayed
with the MessageBox Widget. The messagebox is most frequently used to
provide an alert or confirmation message to the user. The message box's type
argument can be used to specify the buttons that are available.

202  Building Modern GUIs with tkinter and Python

•	 Other widgets, such as photos, buttons, and other labels, can be contained
inside the Label widget.

•	 The MessageBox widget offers a number of message box types, each with
a unique function and return result, including showinfo, showwarning,
showerror, askquestion, askokcancel, and askyesno.

•	 The button that the user pressed is indicated by the value the MessageBox
widget delivers. To determine the user's choice, the value can be compared
to predefined constants as yes, no, ok, cancel, yesno, and so on.

Questions
1.	 Explain the tkinter Label widget in detail.

2.	 Explain the tkinter widget that is used for displaying text or an image on the
screen.

3.	 Write a program to display “Python is Awesome” on the screen.

4.	 Explain the usage of the Message widget in detail.

5.	 Which widget is used to display the text messages to the user, which cannot
be edited? Explain with an example.

6.	 Write a program to display “This is a text” using the Message widget.

7.	 Explain tkinter MessageBox Widget and its syntax.

8.	 Explain any three functions and their use of the tkinter MessageBox Widget.

9.	 Write short notes on the following:
a.	 showerror()
b.	 askquestion()
c.	 askokcancel()
d.	 askyesno()

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Getting Insights of Container Widgets in tkinter  203

Chapter 6
Getting Insights of

Container Widgets in
tkinter

Introduction
The need for container widgets in Python tkinter arises from their ability to manage
and organise the layout of other widgets in a Graphical User Interface (GUI)
application. We can group relevant widgets together and arrange them in a way
that makes sense to the user by utilising container widgets. The following are some
advantages of using container widgets in tkinter:

•	 We can manage the positioning and layout of child widgets using container
widgets like tkinter Frame and tkinter PanedWindow, which makes it
simpler to design a logical and visually appealing GUI.

•	 The container widgets are used to organize your code, which will make it
simpler to read and maintain. The code can be made simpler by grouping
related widgets and defining them as a single entity.

•	 The container widgets help us in logically grouping widgets depending on
their intended use. For instance, we could use a tkinter LabelFrame to group
a set of radio buttons related to one particular option.

•	 The GUI can be scaled and resized with the use of container widgets. The
tkinter PanedWindow widget can be used to divide the GUI into resizable
panes. The tkinter Notebook widget is used to provide a tabbed interface.

204  Building Modern GUIs with tkinter and Python

Let us view different container widgets in tkinter.

Structure
In this chapter, we will discuss the following topics:

•	 tkinter Frame Widget

•	 tkinter LabelFrame Widget

•	 tkinter Tabbed/Notebook Widget

•	 tkinter PanedWindow Widget

•	 tkinter Toplevel Widget

Objectives
After going through this chapter, the user will learn about tkinter Frame widget
where different widget positions can be arranged, padding can be provided, can
be used as a geometry manager for other widgets and so on. We shall look into
the variant of the Frame widget, which is tkinter LabelFrame and is a container
for complex window layouts. Users will be able to see frame features along with
label display. Moreover, we shall view creating a tabbed widget with the help of the
Notebook widget. Here, the user can select different pages of content by clicking on
tabs. The importance of the tkinter PanedWindow widget will be explored where
multiple examples will be seen containing horizontal or vertical stacks of child
widgets. Finally, we will look into the tkinter Toplevel widget where the concepts
are being explained for the creation and display of top-level windows.

tkinter Frame Widget
This widget is a container widget responsible for arranging widgets positions. It
is used as a geometry master for other widgets, but only one per frame and is a
rectangular region of the screen. The other widgets are grouped into complex layouts
using the Frame widget. If we need to provide padding between the widgets, then
it can be done by using this widget. Whenever we will be implementing compound
widgets, then a Frame class can act as a base class. We can have multiple frames per
window.

The syntax is as follows:

myfr1= Frame(myroot, options…)

where,

Getting Insights of Container Widgets in tkinter  205

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas, are bg, bd, height, cursor, highlighthickness,
highlightcolor, highlightbackground, width, and relief.

We have discussed all the options as we are aware. Let us now directly see the
examples:

from tkinter import*

myroot=Tk()
myroot.geometry("300x300")

myframe1=Frame(myroot, width=150, height=150, bg="Red")
myframe1.grid(row=0, column=0)

myframe2=Frame(myroot, width=150, height=150, bg="Green")
myframe2.grid(row=1, column=0)

myframe3=Frame(myroot, width=150, height=150, bg="Blue")
myframe3.grid(row=0, column=1)

myframe4=Frame(myroot, width=150, height=150, bg="Cyan")
myframe4.grid(row=1, column=1)

myroot.mainloop()

Output:

The output can be seen in Figure 6.1:

Figure 6.1: Output

206  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap6_Example1.py

In this code, we have created multiple frames in a window which are 4 here. The
grid() method will align the tkinter frames in rows and columns. Different Frame
objects are created viz myframe1, myframe2, myframe3 and myframe4. The width
and height of each frame are being set and background color option will provide the
necessary background color to the frame.

Now, we shall view to arrange label, Entry, and button widgets in a single frame
on a parent widget:

from tkinter import*

myroot=Tk()
myroot.geometry("220x100")

myframe1=Frame(myroot)
myl1 = Label(myframe1, text = 'Name')
myl1.grid(row = 0, column = 0)
myl2 = Label(myframe1, text = 'Age')
myl2.grid(row = 1, column = 0)
myl3 = Label(myframe1, text = 'PhoneNumber')
myl3.grid(row = 2, column = 0)

mye1 = Entry(myframe1)
mye1.grid(row = 0, column = 1)
mye2 = Entry(myframe1)
mye2.grid(row = 1, column = 1)
mye3 = Entry(myframe1)
mye3.grid(row = 2, column = 1)

mybtn = Button(myframe1, text = 'View')
mybtn.grid(row = 3, columnspan = 2)
myframe1.grid(row=0, column=0)

myroot.mainloop()

Getting Insights of Container Widgets in tkinter  207

Output:

The output can be seen in Figure 6.2:

Figure 6.2: Output

Note: The preceding code is covered in Program Name: Chap6_Example2.py

In this code, there is only one frame and different widgets, namely label, Entry, and
button. The locations of these widgets in a frame have been positioned.

We can also create another frame and can place it on a parent widget as shown:

from tkinter import*

myroot=Tk()
myroot.geometry("430x100")

myframe1 with row = 0, column = 0
myframe1=Frame(myroot)
myframe1.grid(row=0, column=0)

myl1 = Label(myframe1, text = 'Name')
myl1.grid(row = 0, column = 0)
myl2 = Label(myframe1, text = 'Age')
myl2.grid(row = 1, column = 0)
myl3 = Label(myframe1, text = 'PhoneNumber')
myl3.grid(row = 2, column = 0)

mye1 = Entry(myframe1)
mye1.grid(row = 0, column = 1)
mye2 = Entry(myframe1)
mye2.grid(row = 1, column = 1)
mye3 = Entry(myframe1)
mye3.grid(row = 2, column = 1)

208  Building Modern GUIs with tkinter and Python

mybtn = Button(myframe1, text = 'View')
mybtn.grid(row = 3, columnspan = 2)

mysideframe1 with row = 0, column = 1
mysideframe1=Frame(myroot)
mysideframe1.grid(row=0, column=1, padx = 20)

myl1 = Label(mysideframe1, text = 'Sex')
myl1.grid(row = 0, column = 0)
myl2 = Label(mysideframe1, text = 'City')
myl2.grid(row = 1, column = 0)
myl3 = Label(mysideframe1, text = 'Address')
myl3.grid(row = 2, column = 0)

mye1 = Entry(mysideframe1)
mye1.grid(row = 0, column = 1)
mye2 = Entry(mysideframe1)
mye2.grid(row = 1, column = 1)
mye3 = Entry(mysideframe1)
mye3.grid(row = 2, column = 1)

mybtn = Button(mysideframe1, text = 'Display')
mybtn.grid(row = 3, columnspan = 2)

myroot.mainloop()

Output:
The output can be seen in Figure 6.3:

Figure 6.3: Output

Note: The preceding code is covered in Program Name: Chap6_Example3.py

Getting Insights of Container Widgets in tkinter  209

In this code, we have created 2 frames, one in row=0, column = 0, and another in row
= 0, column = 1. All the different widgets are placed inside these frames as per need.

tkinter LabelFrame Widget
This widget will act like a container for grouping the number of interrelated widgets
and will draw a border around its child widgets. The title can be displayed for the
above widgets. It is a variant of the Frame widget having all the frame features.

The syntax is as follows:

mylf1= LabelFrame(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are bg, bd, font, cursor, height, highlightbackground,
highlightcolor, highlightthickness, labelAnchor, padx, pady, relief, text,
width, container, labelwidget, and colormap.

We have seen most of the options but some undiscussed options are as follows:

•	 labelanchor: This option will represent the exact text position within the
widget. The default is NW.

•	 container: This option will make the LabelFrame become a container widget
when set to True. The default value is False.

•	 labelwidget: This option allows the user to choose the widget used for the
label. The text is used for the label by the frame when no value is specified.

•	 colormap: This option will specify colormap (which means 256 colors will be
used to form the graphics) to be used for the above widget.

We shall see some examples for better understanding:

from tkinter import *

class MyLabelFrame(Tk):
 def __init__(self):
 super().__init__()

 # labelframe is defined and the text is assigned to be dis-
played by the frame.
 self.mylf1 = LabelFrame(self, text="Welcome to La-

210  Building Modern GUIs with tkinter and Python

bel and ButtonFrame ", font = ('Calibri',12), bg = 'LightBlue')
 self.mylf1.pack(fill="both", expand="yes")

 #Label is defined and created
 self.myl1 = Label(self.
mylf1, text="I am Label", bg = 'Magenta')
 self.myl1.pack(side = TOP)

 #Button is defined and created
 self.mybtn1 = Button(self.
mylf1, text="I am Button", bg = 'Violet')
 self.mybtn1.pack(side = LEFT)

 # labelframe is defined and the text is assigned to be dis-
played by the frame.
 self.mylf2 = LabelFrame(self, text="Welcome to CheckBut-
ton and Radiobutton Frame", font = ('Calibri',12), bg = 'Light-
Green')
 self.mylf2.pack(fill="both", expand="yes")

 #Checkbutton is defined and created
 self.mychk1 = Checkbutton(self.
mylf2, text="I am CheckButton", bg = 'Pink')
 self.mychk1.pack(side = RIGHT)

 #RadioButton is defined and created
 self.myr1 = Radiobutton(self.
mylf2, text="I am RadioButton", bg = 'Brown')
 self.myr1.pack(side = BOTTOM)

if __name__ == '__main__':
 myroot = MyLabelFrame() # creating an instance of MyLabelFrame
 myroot.geometry('400x150')
 myroot.mainloop() # infinite loop to run the application

Getting Insights of Container Widgets in tkinter  211

Output:

The output can be seen in Figure 6.4:

Figure 6.4: Output

Note: The preceding code is covered in Program Name: Chap6_Example4.py

We can put the text used for the label in any anchor position as shown:

from tkinter import *

class MyLabelFrame(Tk):
 def __init__(self):
 super().__init__()

 # labelframe is defined and the text is assigned to be dis-
played by the frame.
 self.mylf1 = LabelFrame(self, text="I am Label-
Frame", font = ('Calibri',12),
 bg = 'LightBlue', labelanchor = E)
 self.mylf1.pack(fill="both", expand="yes")

 #Label is defined and created
 self.myl1 = Label(self.mylf1, text="I am Label", bg = 'Ma-
genta')
 self.myl1.pack(side = LEFT)

if __name__ == '__main__':
 myroot = MyLabelFrame() # creating an instance of Scrollbar_En-
try
 myroot.geometry('400x150')
 myroot.mainloop() # infinite loop to run the application

212  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in Figure 6.5:

Figure 6.5: Output

Note: The preceding code is covered in Program Name: Chap6_Example5.py

In the preceding code, the text on the label is anchored to the East.

So, we can say that LabelFrame is a combination of Label and Frames with more
Label attributes in it.

tkinter Tabbed/Notebook Widget
The tabbed widget is created by using the Notebook widget of the ttk module.
Modern-looking Graphical User Interfaces (GUIs) can be made using the improved
range of widgets and styles offered by the ttk module in Tkinter. The term "Themed
Tkinter" refers to a style of tkinter widgets that is more unified and aesthetically
pleasing than the standard Tkinter widgets. As the underlying tkinter framework
is built on top of the ttk module, user can still utilize popular tkinter methods
and properties with ttk widgets. By doing this, the user may take advantage of
the extra functionality and aesthetic choices offered by ttk while still keeping the
compatibility of the previous tkinter code.

Compared to the regular tkinter widgets, the ttk widgets offer a variety of
advantages, including:

•	 Rendering of anti-aliased fonts in X11.

•	 Transparency of windows (X11 only; requires composite window manager).

•	 Separation between the code responsible for a widget's look and that
responsible for its behavior.

This ttk notebook widget will manage the windows collection, and display one at a
time. The child window will be associated with a tab. A single tab can be selected by
the user at a time to view the window content.

Getting Insights of Container Widgets in tkinter  213

The syntax is as follows:

mytabcontrol= Notebook(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are padding, compound, sticky, underline, and text.

We have seen most of the options but some undiscussed options are as follows:

•	 compound: This option will supply both image and text to be displayed on
the tab. It can take one of the three values: none, left (image displayed to the
left of the text) or right (image displayed to the right of the text).

•	 padding: This option will add extra space around all 4 sides of the panel’s
content.

We shall see some examples:

from tkinter import *
from tkinter import ttk

myroot = Tk()
myroot.title("Demo Tab Widget")
mytabcontrol = ttk.Notebook(myroot) # L1

mytab1 = ttk.Frame(mytabcontrol) # L2
mytab2 = ttk.Frame(mytabcontrol)

mytabcontrol.add(mytab1, text ='MyTab1') # L3
mytabcontrol.add(mytab2, text ='MyTab2')

mytabcontrol.pack(expand = 1, fill ="both") # L4

ttk.Label(mytab1, text ="Welcome to Tab1", font = ('Helvetica',12)).
grid(column = 0,row = 0, padx = 50, pady = 50) # L5
ttk.Label(mytab2, text ="I hope u now understood the tab con-
cept now", font = ('Times New Roman',12)).grid(col-
umn = 0, row = 0, padx = 50, pady = 50)

myroot.mainloop()

214  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in Figure 6.6:

Figure 6.6: Output

Note: The preceding code is covered in Program Name: Chap6_Example6.py

In this code, we have initially imported the tkinter ttk module, containing the
Notebook widget, followed by the creation of a parent window. We have given title
to the parent window.

In L1, we have created a tab control.

In L2, we have created the tabs by using Frames which act like a container and will
be grouping the tab widgets.

In L3, we have added the tabs where mytab1 and mytab2 are the child widgets of
tabcontrol and the above method is present in tk.ttk.Notebook class. So, it will
add new tabs to the Notebook widget.

In L4, the widgets will be organized in blocks before placing them in the parent
widget and different options such as fill and expand are used.

In L5, we have created label widgets that will display text on the screen, and its
position is specified on the parent window.

tkinter PanedWindow widget
This widget is a container widget that can have any number of child widgets (panes)
and can be arranged either vertically or horizontally. Each child pane can be resized

Getting Insights of Container Widgets in tkinter  215

by moving the separator lines called sashes by using the mouse. Whenever there is
a requirement to implement different layouts in the Python applications, we can go
for this widget.

The syntax is as follows:
mypw1= PanedWindow(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are bg, bd, borderwidth, cursor, handlepad, height,
handlesize, relief, orient, sashcursor, sashrelief, width, sashwidth, and
showhandle.

We have seen most of the options but some undiscussed options are as follows:

•	 handlepad: This option will represent the distance between the handle and
sash end having the default size of 8 pixels. If the orientation is horizontal, it
is the distance between the handle and sash top.

•	 handlesize: This option will represent the handle size having the default size
of 8 pixels.

•	 orient: This option will allow placing the child Windows at different positions
in a frame. If set to horizontal, the child windows will be placed side by side.
If set to vertical, then child windows will be placed from top to bottom.

•	 sashpad: This option will allow padding to be done around each sash.

•	 sashrelief: This option will represent the border type around each sash. Its
default value is FLAT.

•	 sashwidth: This option will specify the sash width whose default value is 2
pixels.

•	 showhandle: This option will display handles when set to True. Its default
value is False.

Some of the commonly used methods in this widget are as follows:

•	 add(child, options): This method will add a child window to the paned
window.

•	 get(startindex [,endindex]): This method will get the text within the
specified range.

216  Building Modern GUIs with tkinter and Python

•	 config(options): This method will allow the widget to configure within the
specified options. A dictionary is returned containing all option values if no
options were given.

We shall see some examples:

from tkinter import *

#main window creation
myroot = Tk()

#window size
myroot.geometry('300x300')

1st paned window object
mypw1 = PanedWindow(myroot)

#expand option for widgets to expand and fill for letting widgets ad-
just itself
mypw1.pack(fill = BOTH, expand = 1)

entry widget creation
mye1 = Entry(mypw1, bd = 5, relief = 'groove', font = ('Cal-
ibri',12), bg = 'LightBlue')

will add entry widget to the panedwindow
mypw1.add(mye1)

2nd paned window object
mypw2 = PanedWindow(mypw1, orient = VERTICAL)

#adding 2nd paned window to the 1st paned window
mypw1.add(mypw2)

spinbox object creation
mye2 = Spinbox(mypw2, from_ = 10, to = 20, font = ('Cal-
ibri',12), bg = 'LightPink')

another entry widget creation
mye3 = Entry(mypw2, bg = 'LightGreen',font = ('Calibri',12))

#setting the value to 3
mye3.insert(0,3)

Getting Insights of Container Widgets in tkinter  217

to show sash
mypw1.configure(sashrelief = RAISED)

subtract function
def subtract():
 num1 = int(mye2.get()) # getting value of spinbox
 num2 = int(mye3.get()) # getting value of entry
 mydata = str(num1-num2)
 mye1.insert(1,mydata)

adding spinbox to the 2nd paned window
mypw2.add(mye2)

adding entry to the 2nd paned window
mypw2.add(mye3)

creation of button widget
mybtn = Button(mypw2, text = "Subtract", command = subtract)

adding button to the 2nd paned window
mypw2.add(mybtn)

infinte loop
myroot.mainloop()

Output:

The output can be seen in Figure 6.7:

Figure 6.7: Output

218  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap6_Example7.py

In this code, we have created 2 panedwindows, one with default orientation
HORIZONTAL and the other with orientation VERTICAL. The 2nd pane window
is added to the 1st pane. The 1st pane contains an Entry widget and the 2nd pane
contains 1 Spinbox widget and 1 Entry widget, followed by one button widget which
will calculate the subtraction of 2 numbers and will insert the result into the Entry
widget of the 1st pane. So, here we have created a 3-pane widget.

We can also increase the separator line width sash as shown:

from tkinter import *

#main window creation
myroot = Tk()

#window size
myroot.geometry('300x300')

#paned window object
mypw1 = PanedWindow(myroot,orient ='vertical')

#expand option for widgets to expand and fill for letting widgets ad-
just itself
mypw1.pack(fill = BOTH, expand = 1)

Checkbutton object
mychk = Checkbutton(mypw1, text ="I am checkbutton")
mychk.pack(side = TOP)

Adding Checkbutton to panedwindow
mypw1.add(mychk)

Radiobutton object
myr1 = Radiobutton(mypw1, text ="I am radiobutton")
myr1.pack(side = TOP)

Adding Radiobutton to panedwindow
mypw1.add(myr1)

Getting Insights of Container Widgets in tkinter  219

button object
mybtn1 = Button(mypw1, text ="I am button")
mybtn1.pack(side = TOP)

Adding button to panedwindow
mypw1.add(mybtn1)

Tkinter string variable
mystr = StringVar()

entry widget
mye1 = Entry(mypw1, textvariable = mystr, font =('ari-
al', 15, 'bold'))
mye1.pack()

will focus on entry widget particularly
mye1.focus_force()

mystr.set(' PanedWindow')

Will show sash
mypw1.configure(sashrelief = RAISED, sashwidth = 5)

adding entry widget to the paned window
mypw1.add(mye1)

#infinite loop
myroot.mainloop()

220  Building Modern GUIs with tkinter and Python

Output:

The output can be seen in Figure 6.8:

Figure 6.8: Output

Note: The preceding code is covered in Program Name: Chap6_Example8.py

We can also increase the padding around each sash by using the sashpad option, as
shown:

Will show sash
mypw1.configure(sashrelief = RAISED, sashwidth = 5, sashpad = 5)

Just observe the difference, as shown in Figure 6.9:

Figure 6.9: Output after increasing the padding

Getting Insights of Container Widgets in tkinter  221

tkinter Toplevel widget
This widget is like Frame which is always contained in a new window, that will
first create and then display the toplevel windows. These windows will be managed
directly by the Windows manager. This widget may or may not have the parent
window on top of them. This widget will be required whenever we want to see some
group of widgets on the new window or we want to display some extra information
and so on.

The syntax is as follows:
mytoplevel1= Toplevel(options…)

Some of the lists of options that can be used as key-value pairs and are separated by
commas are bg, bd, cursor, font, class_, fg, height, relief, and width.

We have seen most of the options but some undiscussed options are as follows:

•	 class_: In this option, when we select the text within a text widget, and the
text selected in the text manager will be exported. If set to 0, this option’s
behavior is avoided.

Some of the methods associated with this widget are as follows:

•	 deiconify(): This method is used to display the window.

•	 iconify(): This method will convert the top-level window into an icon
without destroying it.

•	 frame(): This method will show a system-dependent window identifier.

•	 group(window): This method will add a window to a specified window
group.

•	 state(): This method will get the current window state, which could be
normal, iconic, zoomed, and withdrawn.

•	 protocol(name, function): This method will mention a function that will
be called for the specific protocol.

•	 transient([window]): This method will convert the window to a temporary
window for the given master, when there is no argument.

•	 withdraw(): This method will remove the window from the screen but it
will not be destroyed.

•	 maxsize(width, height): This method will define the maximum size for
the window.

222  Building Modern GUIs with tkinter and Python

•	 minsize(width, height): This method will define the minimum size for
the window.

•	 resizable(width, height): This method will help to control the window
resizing and check whether it can be resizable or not.

•	 positionfrom(who): This method will define the position controller.

•	 sizefrom(who): This method will define the size controller.

•	 title(string): This method will define the window title.

Let us see a basic example of this widget:

from tkinter import *

myroot = Tk()
myroot.geometry("250x250")

def mynavigate():
 # top level object for creation of a new window
 mytopobj = Toplevel(myroot)
 mytopobj.geometry('250x250')
 #getting the title for the window
 mytopobj.title('NewWindow')
 # infinitely running mainloop
 mytopobj.mainloop()

button object for opening of new window on button click
mybtn1 = Button(myroot, text = "Mynavigate", command = mynavigate)
positioning the button
mybtn1.place(x=100,y=100)

infinitely running mainloop
myroot.mainloop()

Getting Insights of Container Widgets in tkinter  223

Output:

The output can be seen in Figure 6.10:

Figure 6.10: Output

Note: The preceding code is covered in Program Name: Chap6_Example9.py

In this code, on clicking the Mynavigate button, a new top-level window is opened,
having all the properties that a main window should have.

An important point to note is that when the empty window is created, it is 200x200
pixels.

We can create multiple toplevels over one another, as shown:

from tkinter import *

myroot = Tk()
myroot.geometry("250x250")

def mynavigate():
 # top level object for creation of a new window
 mytopobj1 = Toplevel(myroot)
 mytopobj1.geometry('250x250')
 #getting the title for the window
 mytopobj1.title('MyToplevel1')

 myl1 = Label(mytopobj1, text = 'This is a toplevel1 window')
 myl1.pack(pady = 10)

224  Building Modern GUIs with tkinter and Python

 mybtn1 = Button(mytopobj1, text = 'MyToplevel2 window', com-
mand = func_mytoplevel2)
 mybtn1.pack(pady = 10)

 mybtn2 = Button(mytopobj1, text = 'Exit', command = mytopobj1.
destroy)
 mybtn2.pack(pady = 10)

 # infinitely running mainloop
 mytopobj1.mainloop()

def func_mytoplevel2():
 # top level object for creation of a new window
 mytopobj2 = Toplevel(myroot)
 mytopobj2.geometry('250x250')
 #getting the title for the window
 mytopobj2.title('MyToplevel2')

 myl1 = Label(mytopobj2, text = 'This is a toplevel2 window')
 myl1.pack(pady = 10)

 mybtn2 = Button(mytopobj2, text = 'Exit2', command = mytopobj2.
destroy)
 mybtn2.pack(pady = 10)

 # infinitely running mainloop
 mytopobj2.mainloop()

button object for opening of new window on button click
mybtn1 = Button(myroot, text = "MyToplevel1", command = mynavigate)
positioning the button
mybtn1.place(x=100,y=100)

infinitely running mainloop
myroot.mainloop()

Getting Insights of Container Widgets in tkinter  225

Output:

The output can be seen in Figure 6.11:

 A) B) C)
Figure 6.11: Output

Note: The preceding code is covered in Program Name: Chap6_Example10.py

In this code, we are trying to create multiple top levels over one another. When the
MyToplevel1 button is clicked on the main window (A), a new toplevel1 window
titled MyToplevel1 window is created (B). It contains a button MyToplevel2 window
and an Exit button.

On clicking the MyToplevel2 window button, the user will navigate to the
next MyToplevel2 window. However, when the Exit button is clicked, then the
MyToplevel1 window will be closed. Similarly, on clicking the Exit2 button, the
MyToplevel2 window will be closed. Please note that we have positioned the GUI
forms for you for better understanding. When you will run the program, you just
need to observe how the output will come.

We can control how the windows are stacked on each other by using the lift()
method to change the order:

from tkinter import *

myroot = Tk()
myroot.geometry("300x300")
myroot.title('Main window')
mytopobj = Toplevel(myroot)

226  Building Modern GUIs with tkinter and Python

mytopobj.title('New window')

mytopobj.geometry("300x300")
myroot.lift(mytopobj)

infinitely running mainloop
myroot.mainloop()

Output:

The output can be seen in Figure 6.12:

Figure 6.12: Output

Note: The preceding code is covered in Program Name: Chap6_Example11.py

We can see that the focus is on the Main window first, which is in front of the New
window, that is, the position is lifted. Just run the code yourself and observe the
output. The GUI position shown next is for your better understanding.

We can control whether the window is visible or not by changing the state using the
state method. The default state is normal. We can make the window maximized by
setting its state to zoom.

from tkinter import *

myroot = Tk()

Getting Insights of Container Widgets in tkinter  227

myroot.geometry("300x300")
myroot.title('Main window')
mytopobj = Toplevel(myroot)

mytopobj.title('New window')

mytopobj.geometry("300x300")
mytopobj.lift(myroot)
mytopobj.state('zoomed')

infinitely running mainloop
myroot.mainloop()

Output:

The output can be seen in Figure 6.13:

Figure 6.13: Output

Note: The preceding code is covered in Program Name: Chap6_Example12.py

The New window is expanded with the geometry size to fit the entire screen. The
Main window screen will be hidden behind the above form.

We can hide the window by setting its state to be withdrawn, as shown:

mytopobj.state('withdrawn')

228  Building Modern GUIs with tkinter and Python

Refer to Figure 6.14:

Figure 6.14: View after hiding the window

We can only see the Main window as the new window is hidden from the taskbar.

If we want to minimize the window so that we can access it from the taskbar, we can
use the iconic state, as shown:

mytopobj.state('iconic')

Refer to Figure 6.15:

Figure 6.15: View after minimizing the window

There are some shortcut methods that can be switched between iconic and normal
states. We can get the same output shown in the taskbar by using iconify() method.
The code is as follows:

Getting Insights of Container Widgets in tkinter  229

from tkinter import *

myroot = Tk()
myroot.geometry("300x300")
myroot.title('Main window')
mytopobj = Toplevel(myroot)

mytopobj.title('New window')

mytopobj.geometry("300x300")
mytopobj.lift(myroot)
mytopobj.iconify()

infinitely running mainloop
myroot.mainloop()

Note: The preceding code is covered in Program Name: Chap6_Example12_2.py

It will return to its normal state by using deiconify() method, as shown:

from tkinter import *

myroot = Tk()
myroot.geometry("300x300")
myroot.title('Main window')
mytopobj = Toplevel(myroot)

mytopobj.title('New window')

mytopobj.geometry("400x300+50+100")
mytopobj.lift(myroot)
mytopobj.deiconify()

infinitely running mainloop
myroot.mainloop()

230  Building Modern GUIs with tkinter and Python

We will get the normal output, as shown in the following Figure 6.16:

Figure 6.16: Output

Note: The preceding code is covered in Program Name: Chap6_Example13.py

Here, we have not positioned the output and we have got the desired result because
we have shifted the window 50 pixels from the top-left corner to the right, and 100
pixels down from the top-left screen corner.

We can restrict the window size by using the maxsize and minsize methods, as
shown:

from tkinter import *

myroot = Tk()
myroot.geometry("300x300")
myroot.title('Main window')
mytopobj = Toplevel(myroot)

mytopobj.title('New window')

mytopobj.geometry("400x400+50+100")
mytopobj.lift(myroot)
mytopobj.maxsize(400,400)
mytopobj.minsize(200,200)

infinitely running mainloop
myroot.mainloop()

Getting Insights of Container Widgets in tkinter  231

Output when resized to the minimum window:

Refer to Figure 6.17:

Figure 6.17: Output

Output when resized to the maximum window:

Refer to Figure 6.18:

Figure 6.18: Output

Note: The preceding code is covered in Program Name: Chap6_Example14.py

232  Building Modern GUIs with tkinter and Python

Note: Here, we have adjusted the size and position of the window form, for your
better understanding.

If we will be using the destroy method, then all the child windows will also be
deleted. So, on using destroy method on the myroot window, the New window will
be deleted. However, when we will be using destroy method on the New window,
then only the above window will be deleted. However, the Main window will
remain intact.

Conclusion
In this chapter, we have learned how to set positions of different widgets in a Frame
widget, along with the provision of padding. Then we looked into the variant of
the Frame widget which is tkinter LabelFrame where users were able to see frame
features along with label display. Then we saw creation of a tabbed widget with the
help of tkinter Notebook widget where the reader can create multiple tabs, which
can be attached with clickable buttons. The importance of tkinter PanedWindow
widget was well explored which was containing horizontal or vertical stacks of child
widgets. Finally, we looked into tkinter Toplevel widget with crystal clear concepts
explanation for the creation and display of top-level windows.

Points of remember
•	 Use frames to assemble related widgets. The code may become better

organized and simpler to read as a result.

•	 Label frames with the help of labels. The code may become more readable
and understandable as an outcome.

•	 Create tabbed user interfaces with notebooks. This might be a great approach
for arranging a lot of information in a constrained area.

•	 Resizable panes can be created via paned windows. This can be a great
approach for developing layouts that can be adjusted for different sizes of
screens.

•	 To make new windows, use tkinter Toplevel widgets. Create dialog boxes,
message boxes, and other types of windows using this approach.

Questions
1.	 Explain the tkinter Frame widget in detail.

2.	 Which widget is used to arrange the widget's position? Explain in detail with
a suitable example.

Getting Insights of Container Widgets in tkinter  233

3.	 Write a program to create an entry panel for age, name, and gender using the
tkinter Frame widget.

4.	 Which widget is used for grouping the number of interrelated widgets
as well as for drawing a border around its child widgets? Explain with a
suitable program.

5.	 Explain the tkinter LabelFrame Widget and its syntax.

6.	 Explain the tkinter Tabbed/Notebook Widget with its syntax.

7.	 Explain the tkinter PanedWindow Widget in detail.

8.	 Which widget is a container widget that contains any number of child widgets
(panes) and can be arranged either vertically or horizontally? Explain with
a suitable program.

9.	 Explain the tkinter Toplevel Widget with its syntax and usage in GUI
application building.

10.	 Which widget is similar to the Frame widget and always contained in a new
window and will first create and then display the toplevel windows.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

234  Building Modern GUIs with tkinter and Python

Getting Insights of Item Widgets in tkinter  235

Chapter 7
Getting

Insights of Item
Widgets in tkinter

Introduction
Sometimes, there is a requirement to allow users to select one or more than one item
from a list. We may require an application for menu creation, which either allows
users to select different options or requirement for displaying a list of items, or to
filter and sort a list of items based on name, date, hobby and so on. We do require
tkinter Listbox widget as it is easy to use, is powerful and can be customizable as
per our needs.

Structure
In this chapter, we will discuss the following topic:

•	 tkinter Listbox widget

Objectives
After going through this chapter, the reader will learn about the tkinter Listbox
widget where the user can display different types of lists of items and a number of
items can be selected from the list. Different select mode examples will be viewed
along with the scrollbar attached to this widget.

236  Building Modern GUIs with tkinter and Python

tkinter Listbox widget
This widget will display the item list to the user. Only text items can be placed in the
Listbox and the same font and color will be present in the text items. A user has the
option to choose one or more items from the list depending on the configuration.

The syntax is as follows:
mylb1= Listbox(myroot, options…)

where,

•	 myroot is the parent window.

•	 Some of the lists of options that can be used as key-value pairs and are
separated by commas are bd, bg, cursor, font, height, fg, highlightcolor,
highlightthickness, selectbackground, relief, selectmode, xscrollcommand,
yscrollcommand, and width.

We have seen most of the options but some undiscussed options are as follows:

•	 highlighthickness: This option will represent the focus highlight thickness.

•	 selectmode: This option will specify the number of items that can be chosen
from the list and can be set to different modes such as:

o	 SINGLE: In this mode, we can select only one line and the mouse
cannot be dragged. The line is selected whenever we click the button1.

o	 BROWSE: It is the default mode where the user can select only one
line out of a listbox. If an item is clicked and the mouse is dragged to
a different line, then the item selected will follow the mouse.

o	 EXTENDED: In this mode, the adjacent group of lines can be selected
at once by clicking on the first line and dragging it to the last line.

o	 MULTIPLE: In this mode, any number of lines can be selected at once.
If any line is clicked, it will be toggled whether or not it is selected.

•	 xscrollcommand: This option will link the listbox widget to the horizontal
scrollbar so that the user can scroll the listbox horizontally.

•	 yscrollcommand: This option will link the listbox widget to the vertical
scrollbar so that the user can scroll the listbox vertically.

Some of the useful methods are as follows:

•	 activate(index): This method will select the lines specified by the given
index.

Getting Insights of Item Widgets in tkinter  237

•	 curselection(): This method will return an empty tuple if nothing is
selected. However, it will return a tuple having the line numbers of the
selected elements whose counting is from 0.

•	 delete(first, Last = None): This method will delete the lines whose
indices are in the range [first, last].

•	 get(first, Last = None): This method will return a tuple containing the
text of the line whose indices are in the range [first, last].

•	 index(i): This method will place the line at the specified index at the
widget’s top.

•	 insert(index, *elements): This method will allow inserting one or more
lines in the above widget before the line specified by the index. If we want to
add new lines to the end of this widget, then use END as the first argument.

•	 nearest(y): This method will return the nearest line index to the y coordinate
of the above widget.

•	 size(): This method will return the number of lines that are present in the
above widget.

•	 see(index): This method will adjust the above widget’s position so that the
line referred to by the index, is visible.

•	 xview(): This method will make the widget horizontally scrollable.

•	 xview_moveto(fraction): This method will make the widget horizontally
scrollable by the fraction of the width of the longest line which is present in
the widget.

•	 xview_scroll(number, what): This method will make the widget
horizontally scrollable by the number of characters specified. The argument
can use either UNITS or PAGES to scroll by characters or by pages (widget
width).

•	 yview(): This method will make the widget vertically scrollable.

•	 yview_moveto(fraction): This method will make the widget vertically
scrollable by the fraction of the width of the longest line which is present in
the widget.

•	 yview_scroll(number, what): This method will make the widget vertically
scrollable by the number of characters specified.

We shall see some examples for more clarification of the above widget usage. Let us
see how to create a simple listbox, using the following code:

238  Building Modern GUIs with tkinter and Python

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('350x350')
myroot.title('My ListBox')

def myget():
 mylinenumber = mylb1.curselection() # getting the line number
 for loop in mylinenumber:
 print(loop, ':', mylb1.get(loop)) # get-
ting the item of that line number

creation of listbox with specifed width and height
mylb1 = Listbox(myroot, width = 30, height = 15, bg = 'Light-
Green', font = ('Verdana',12)) # default width = 20 no. of charac-
ters in one line and height = 10 (no. of lines)
insertion of one or more lines into the listbox specified by index
mylb1.insert(1,'Hindi')
mylb1.insert(2,'English')
mylb1.insert(3,'Telugu')	

mybtn = Button(myroot, text = 'Line number display', com-
mand = myget)
mybtn.pack()

myroot.mainloop() # display window until we press the close button

Output:				 Output when button is clicked:

Figure 7.1: Output

Getting Insights of Item Widgets in tkinter  239

Note: The preceding code is covered in Program Name: Chap7_Example1.py

Similarly, when English and Telugu are selected, and the line number display is
clicked, we will get the following output:

Figure 7.2: Output

In the above code, the selected mode is BROWSE by default. There are 3 items in a
listbox and when selected, the output shown in Figure 7.2 will be displayed.

Now, we shall see the selectmode in the listbox:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('350x350')
myroot.title('My ListBox BROWSE MODE')

creation of listbox with specifed width and height
mylb1 = Listbox(myroot, width = 30, height = 15, font = ('Ver-
dana',12), selectmode = BROWSE) # default width = 20 no. of charac-
ters in one line and height = 10 (no. of lines)
insertion of one or more lines into the listbox specified by index
mylb1.insert(1,'Hindi')
mylb1.insert(2,'English')
mylb1.insert(3,'Telugu')
mylb1.insert(4,'Tamil')
mylb1.pack()

myroot.mainloop() # display window until we press the close button

240  Building Modern GUIs with tkinter and Python

Output:

The output is shown in Figure 7.3:

Figure 7.3: Output

Note: The preceding code is covered in Program Name: Chap7_Example2.py

Just press the left click or button 1, and drag the mouse to where we can see that the
selection will follow the mouse.

In the same example, if we change the selection mode to SINGLE, then we can select
only a line and we cannot drag the mouse. Refer to Figure 7.4:

Figure 7.4: Output when selectmode is SINGLE

Getting Insights of Item Widgets in tkinter  241

If we change the selectmode to MULTIPLE, then we can select any number of lines
at once. If any line is clicked, it will be toggled whether or not it is selected. Refer to
the following Figure 7.5:

Figure 7.5: Output when selectmode is MULTIPLE

If we change the selectmode to EXTENDED, then adjacent lines are selected at once
by clicking on the first line and dragging to the last line, as shown in Figure 7.6:

Figure 7.6: Output when selectmode is EXTENDED

242  Building Modern GUIs with tkinter and Python

We can delete the active item from the list as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter
myroot.geometry('350x350')
myroot.title('My ListBox delete')

creation of listbox with specifed width and height
mylb1 = Listbox(myroot, width = 30, height = 15, font = ('Ver-
dana',12)) # default width = 20 no. of charac-
ters in one line and height = 10 (no. of lines)
insertion of one or more lines into the listbox specified by index
mylb1.insert(1,'Hindi')
mylb1.insert(2,'English')
mylb1.insert(3,'Telugu')
mylb1.insert(4,'Tamil')
mylb1.pack()

the item selected will be deleted from the listbox
mybtn1 = Button(myroot, text = 'Mydelete', command = lambda mylb1=m-
ylb1: mylb1.delete(ANCHOR))
mybtn1.pack()

def mysize():
 print(mylb1.size())

the item selected will be deleted from the listbox
mybtn2 = Button(myroot, text = 'Mysize', command = mysize)
mybtn2.pack()

myroot.mainloop() # display window until we press the close button

Output before deletion:

When the Mysize button is clicked, the number of lines in the listbox is 4, as shown
in Figure 7.7:

Getting Insights of Item Widgets in tkinter  243

Figure 7.7: Output

Note: The preceding code is covered in Program Name: Chap7_Example3.py

In Figure 7.7, we have selected the Tamil item from the listbox, and it is deleted. The
number of lines in the listbox is 3 now, as shown in the following Figure 7.8:

Figure 7.8: Output after deletion

We can also display vertical and horizontal scrollbar in the listbox, as shown:

from tkinter import *

class Scrollbar_Listbox(Tk):
 def __init__(self):

244  Building Modern GUIs with tkinter and Python

 super().__init__()
 self.title('V AND H SCROLLBARS')

 self.mysclbar = Scrollbar(self)# scrollbar creation and at-
taching to the main window
 self.mysclbar.pack(side=RIGHT, fill=Y) # scrollbar add-
ed to the window right side

 self.sclhbar = Scrollbar(self,orient = HORIZONTAL)
 self.sclhbar.pack(side = BOTTOM,fill = X)

 self.mylistbox = Listbox(self,
 height = 600,
 yscrollcommand=self.mysclbar.set,
 xscrollcommand=self.sclhbar.set) # cre-
ation of listbox and both horizontal and vertical scrollbars are at-
tached to the listbox

 self.mylistbox.pack(expand = 0, fill=BOTH)

 # horizontal elements
 for loop in range(26): # insertele-
ments from 0 to 49 in the listbox
 self.mylistbox.insert(END, 'The element is star-
ing from line number ' + str(loop) + ' and when multi-
plied by 10 is: ' + str(loop*10))
 # vertical elements
 for loop in range(50): # insertele-
ments from 0 to 49 in the listbox
 self.mylistbox.insert(END, str(loop) + '\n')

 self.sclhbar.config(command=self.mylistbox.
xview)# for need of horizontal view settings scrollbar command op-
tion to listbox.xview method
 self.mysclbar.config(command=self.mylistbox.
yview) # for need of vertical view settings scrollbar command op-
tion to listbox.yview method

Getting Insights of Item Widgets in tkinter  245

if __name__ == '__main__':
 myroot = Scrollbar_Listbox() # creating an instance of Scroll-
bar_Listbox
 myroot.geometry('300x500')
 myroot.mainloop() # infinite loop to run the application

Output:

Refer to the following Figure 7.9:

Figure 7.9: Output

Note: The preceding code is covered in Program Name: Chap7_Example4.py

Conclusion
In this chapter, we learned about the tkinter Listbox widget where we displayed
different types of lists of items, and see how a number of items can be selected
from the list. Different select mode examples on changing to SINGLE, MULTIPLE,
EXTENDED from BROWSE were also demonstrated with examples. Finally, we saw
an example of attaching both vertical and horizontal scrollbars to the above widget.

246  Building Modern GUIs with tkinter and Python

Points of remember
•	 We can create Listbox widget using tk.ListBox() constructor.

•	 The appearance and behavior of tkinter Listbox widget can be customized
based on the number of options present.

•	 List of items can be displayed and one or more items can be selected by
the user by using this tkinter Listbox widget, based on the application
requirement.

•	 We can filter or sort the items in the list using this tkinter Listbox widget.

•	 User may choose different selectmodes such as SINGLE, EXTENDED or
MULTIPLE based on application requirement.

•	 Different events can be triggered like <Button-1>, <Double-Button-1>,
<Double-Button-1>, <Double-Button-1> and <Double-Button-1> based on
application requirement.

Questions
1.	 Explain the tkinter Listbox Widget in detail.

2.	 Which widget will display the item list to the user? Explain in detail.

3.	 Write a program to create a list entry for the following cities:
a.	 Nagpur
b.	 Pune
c.	 Hyderabad
d.	 Mumbai

4.	 Which widget is used to provide a user with an option to choose one or more
items from the list depending upon the configuration? Explain in detail.

5.	 Write short notes on Item Widgets in tkinter.

Join our book's Discord space
Join the book's Discord Workspace for Latest updates, Offers, Tech happenings around the
world, New Release and Sessions with the Authors:

https://discord.bpbonline.com

Introduction
In this chapter, we will give users the ability to design intuitive Graphical User
Interfaces (GUI) that look visually appealing. We can construct user-friendly GUIs
that give users a method to meaningfully interact with the application by using
widgets such as tkinter Menu, Menubutton and Canvas Widgets. In a GUI, menus are
made using the Menu widget. The usage of menus can give users access to multiple
commands or options. When a button with the Menubutton widget is clicked, a
menu appears. Users can frequently access additional commands or settings by
using menubuttons. Users can draw or interact with things on a canvas created by
the Canvas widget. Interactive visuals and video games are frequently made using
canvas widget.

Structure
In this chapter, we will discuss the following topics:

•	 tkinter Menu widget
•	 tkinter Menubutton widget
•	 tkinter Canvas widget

Chapter 8
Getting Insights

of tkinter User
Interactive Widgets

248  Building Modern GUIs with tkinter and Python

Objectives
After reading this chapter, the reader will learn how to create different menus
such as pop-up, top-level, and pull-down menus with the help of the tkinter Menu
widget. The user can also create different applications such as Notepad, WordPad,
any management software, and so on. Moreover, we will deal with the drop-down
menu widget which is associated with a Menu widget called the tkinter Menubutton
widget, which can display the choices when the user clicks on Menubutton. Finally,
we will view the concepts of drawing different graphics like lines, rectangles, and so
on, with the help of the tkinter Canvas widget.

tkinter Menu widget
This widget is a top-level menu displayed under the parent window’s title bar. It
provides options such as File, Edit, quit, and so on, in the application.

The syntax is as follows:

mymenu1= Menu(myroot, options…)

where,
•	 myroot is the parent window.
•	 Some of the lists of options that can be used as key-value pairs and are

separated by commas are bg, bd, activeborderwidth, activebackground,
activeforeground, disabledforeground, cursor, font, fg, relief, postcommand,
image, selectcolor, tearoff, and title.

We have seen most of the options but some undiscussed options are as follows:
•	 activeborderwidth: This option will specify the border width of the widget

when it is under the mouse.
•	 disabledforeground: This option will specify the foreground color when the

state is disabled.
•	 postcommand: When the mouse is over the widget, this option can be set to

any of the function.
•	 tearoff: This option will detach the menus from the main window creating

floating menus and is a position from where the menu starts. When set to 1,
a menu is created with dotted lines at the top and when clicked, the menu
becomes floating as it will tear off the parent window. When set to 0, the
menu is restricted in the main window.

Getting Insights of tkinter User Interactive Widgets  249

•	 selectcolor: This option will show the radiobutton or checkbutton color
when selected.

•	 title: This option will change the window title of the GUI application if it is
set to that string.

Some of the methods used in this widget are:
•	 add_command(options): This method will add menu items to the main menu.
•	 add_checkbutton(options): This method will add a checkbutton to the

menu.
•	 add_radiobutton(options): This method will add a radiobutton to the

menu.
•	 add_separator(options): This method will add a separator line to the menu.
•	 add_cascade(options): This method will create a sub-level menu to the

parent menu on association of a given menu to the parent menu, where the
menu items will be aligned one under the other.

•	 add(type, options): This method will add a specific type (must be cascade,
checkbutton, command, radiobutton, or separator) of the menu item to the
menu.

•	 delete (startindex, endindex): This method will delete menu items from
the start index to the end index.

•	 entryconfig (index, options): This method will modify a menu item based
on the index and will change its options.

•	 index(item): This method will return the index of the specified menu item.
•	 insert_separator(index): This method will insert a separator at the

specified index.
•	 invoke(index): This method will request the menu item which we want at a

specified index.
•	 type(index): This method will return the choice type which we want at a

specified index, which could be either radiobutton, checkbutton, tearoff,
command, cascade, or separator.

Now, we shall see some examples for better understanding:

from tkinter import *

myroot = Tk()

250  Building Modern GUIs with tkinter and Python

will be called when Welcome! menu item will be clicked

def mygreet():

 print(“Welcome!”)

A toplevel menu is created

mymenu = Menu(myroot)

#menu items will be added to the main menu

mymenu.add_command(label=”Welcome!”, command=mygreet)

mymenu.add_command(label=”Quit!”, command=myroot.quit) # will close the
GUI application

display of menu

myroot.config(menu=mymenu)

myroot.mainloop()

Output:

Figure 8.1 shows the default output:

Figure 8.1: Default Output

Getting Insights of tkinter User Interactive Widgets  251

Figure 8.2 features the output when the welcome button is clicked:

Figure 8.2: Output when the welcome button is clicked

Note: The preceding code is covered in Program Name: Chap8_Example1.py

In this code, we have created a menubar and created the items Welcome! and Quit!
The menu is attached to the window using config() method. The Welcome! message
will be displayed on clicking the Welcome! menuitem. The GUI application will be
closed on clicking the Quit! menuitem.

Now, we shall see an example where we will be adding menus such as File, and Edit
Menu to the menu bar and also assign some items to these menus:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter

#creating main menu

mymainmenu = Menu(myroot)

myroot.config(menu = mymainmenu) # need to attach the above menu with the
root

#creating file menu -- sub level menu corresponding to the main menu

myfilemenu = Menu(mymainmenu, tearoff = 0) # removing the dotted lines by
setting tearoff = 0

mymainmenu.add_cascade(label = ‘MyFile’, menu = myfilemenu)

function is created to display MyNew Project Menu

def myfunc1():

 print(‘MyNew Project Menu’)

function is created to display MySave menu

252  Building Modern GUIs with tkinter and Python

def myfunc3():

 print(‘MySave Menu’)

function is created to exit the GUI application

def myfunc4():

 print(‘Exit’)

 myroot.quit()

 exit()

#adding in the file menu

myfilemenu.add_command(label=’MyNew Project’, command = myfunc1) # bind
the function myfunc1 we created to the above menuitem

myfilemenu.add_command(label=’MySave’, command = myfunc3) # bind the
function myfunc3 we created to the above menuitem

myfilemenu.add_separator() # adding the seperator between MySave and MyExit

myfilemenu.add_command(label=’MyExit’, command = myfunc4) # bind the
function myfunc4 we created to the above menuitem

#creating edit menu-- sub level menu corresponding to the main menu

myeditmenu = Menu(mymainmenu)

mymainmenu.add_cascade(label = ‘MyEdit’, menu = myeditmenu)

function is created to display MyUndo menu

def myfunc2():

 print(‘MyUndo Menu’)

function is created to display MyCut menu

def myfunc5():

 print(‘MyCut Menu’)

Getting Insights of tkinter User Interactive Widgets  253

function is created to display MyCopy menu

def myfunc6():

 print(‘MyCopy Menu’)

function is created to display MyRedo menu

def myfunc7():

 print(‘MyRedo Menu’)

#adding in the file menu

myeditmenu.add_command(label=’MyCut’, command = myfunc5) # bind the
function myfunc5 we created to the above menuitem

myeditmenu.add_command(label=’MyCopy’, command = myfunc6) # bind the
function myfunc6 we created to the above menuitem

myeditmenu.add_command(label=’MyUndo’, command = myfunc2) # bind the
function myfunc2 we created to the above menuitem

myeditmenu.add_command(label=’MyRedo’, command = myfunc7) # bind the
function myfunc7 we created to the above menuitem

myroot.mainloop() # display window until we press the close button

Output:

Figure 8.3 shows the output with File Menu display:

Figure 8.3: Output with File Menu display

254  Building Modern GUIs with tkinter and Python

Figure 8.4 shows the output with Edit Menu display:

Figure 8.4: Output with Edit Menu display

Figure 8.5 shows the output when each item of File and Edit menu is clicked:

Figure 8.5: Output when each item of File and Edit menu is clicked

Note: The preceding code is covered in Program Name: Chap8_Example2.py

We can add radiobutton and checkbutton to the menu and give the color when
selected, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter

#creating variables

mytxt_color = StringVar(myroot)

Getting Insights of tkinter User Interactive Widgets  255

mytxt_color.set(“black”)

myshow = IntVar(myroot)

creating main menu

mymenuBar = Menu(myroot)

mymenu1 = Menu(myroot) # L1

creating submenu

mysubmenu = Menu(myroot)

mysubmenu.add_radiobutton(label=”Radio 1”, variable=mytxt_color,
value=”black”, selectcolor = ‘Red’)

mysubmenu.add_radiobutton(label=”Radio 2”, variable=mytxt_color,
value=”green”, selectcolor = ‘Red’)

mysubmenu1 = Menu(myroot)

mysubmenu1.add_checkbutton(label=”Check 1”, variable=myshow, selectcolor
= ‘Green’)

mymenuBar.add_cascade(label=”MyMenu”, menu=mymenu1)

mymenu1.add_cascade(label=”Submenu with Radio buttons”, menu=mysubmenu)

mymenu1.add_separator()

mymenu1.add_cascade(label=”Submenu with Check buttons”, menu=mysubmenu1)

myroot.config(menu=mymenuBar) # display the menu to the window

myroot.mainloop()

256  Building Modern GUIs with tkinter and Python

Output:

Figure 8.6 shows the default output:

Figure 8.6: Default output

Figure 8.7 shows the output when submenus with Radio buttons is expanded. Radio
1 is checked:

Figure 8.7: Output when submenus with Radio buttons is expanded. Radio 1 is checked

Getting Insights of tkinter User Interactive Widgets  257

Figure 8.8 shows the output when Radio 2 is checked:

Figure 8.8: Output when Radio 2 is checked

Figure 8.9 shows the output when submenus with Check buttons is expanded:

Figure 8.9: Output when submenus with Check buttons is expanded

258  Building Modern GUIs with tkinter and Python

Figure 8.10 shows the output when Check 1 is checked:

Figure 8.10: Output when Check 1 is checked

Note: The preceding code is covered in Program Name: Chap8_Example3.py

In this code, we can see that we have created a menubar Mymenu having 2 submenus
(Figure 8.6). The 1st submenu will contain Radiobutton menu items Radio1, and
Radio2, and the 2nd submenu will contain checkbutton Check1 menu item (Figure
8.9).

We can see that when one radiobutton is selected (Figure 8.7), the other radiobutton
is unselected, and vice-versa (Figure 8.8). The select color of the checkbutton is Red
in color. A variable is set to store which of the options are toggled and a value is set
for each button. By default, we have set it to ‘black’.

Moreover, when Check1 is clicked, then it will be selected (Figure 8.10). The select
color of the checkbutton is Green in color. A variable is specified to hold the current
checked state.

Now, suppose we click the given portion in the menu as shown in the red color
rectangular region, in Figure 8.11:

Figure 8.11: Output on detaching the dotted lines

Getting Insights of tkinter User Interactive Widgets  259

It will detach the menus from the main window, thus creating floating menus. When
set to 1, a menu is created with dotted lines at the top and when clicked, the menu
becomes floating as it will tear off the parent window. Refer to Figure 8.12:

Figure 8.12: Output after detachment of dotted lines

So, in L1 in the code, we will set it to 0 so that the menu is restricted in the main
window:

mymenu1 = Menu(myroot, tearoff = 0) # L1

Now, we will not see the dotted separated line, and will be restricted in the main
window, as shown in Figure 8.13:

Figure 8.13: Output when tearoff is set to 0. No dotted line

260  Building Modern GUIs with tkinter and Python

We can also change the label of an item in the menu using entryconfig() method as
shown:

from tkinter import *

myroot = Tk()

mymenu_bar = Menu(myroot)

def myselected(menu):

 menu.entryconfig(1, label=”Selected!”)

myedit_menu = Menu(mymenu_bar, tearoff=0)

myedit_menu.add_command(label=”Demo1”, command=lambda: myselected(myedit_
menu))

mymenu_bar.add_cascade(label=”Edit”, menu=myedit_menu)

myroot.config(menu=mymenu_bar)

myroot.mainloop()

Output:

Figure 8.14 shows the output before clicking Demo1 button:

Figure 8.14: Output of before clicking Demo1 button

Getting Insights of tkinter User Interactive Widgets  261

Figure 8.15 shows the output after clicking Demo1 button:

Figure 8.15: Output before clicking Demo1 Button

Note: The preceding code is covered in Program Name: Chap8_Example4.py

We can add a specific type of menu item by adding it as a string to the menu. It can
be a keyword argument by using the key itemType or be a positional argument.

from tkinter import *

myroot = Tk()

mymenu_bar = Menu(myroot)

myedit_menu = Menu(mymenu_bar, tearoff=0) # L2

myedit_menu.add_command(label=”Cut”)

myedit_menu.add(“command”, label=”Copy”, command=lambda: print(“Copy”))

myedit_menu.add(“command”, label=”Paste”, command=lambda: print(“Paste”))
using

myedit_menu.add(itemType = “command”, label=”Exit”, command=lambda:
myroot.quit()) # using itemType

mymenu_bar.add_cascade(label=”Edit”, menu=myedit_menu)

myroot.config(menu=mymenu_bar)

myroot.mainloop()

262  Building Modern GUIs with tkinter and Python

Output:

Figure 8.16 shows the output when Paste menu item is clicked. As we can see, Paste
is displayed to the console:

Figure 8.16: Output when Paste menu item is clicked; Paste is displayed on the console

Figure 8.17 shows the output when Copy menu item is clicked. As we can see, Copy is
displayed to the console:

Figure 8.17: Output when Copy menu item is clicked; Copy is displayed on the console

Getting Insights of tkinter User Interactive Widgets  263

Note: The preceding code is covered in Program Name: Chap8_Example5.py

When the Exit menu item will be clicked, the GUI application will exit.

In the same example at position L2, we can specify the activeborderwidth of the
widget to some value when it is under the mouse, as shown:

myedit_menu = Menu(mymenu_bar, tearoff=0, activeborderwidth = 5) # L2

So, just observe the difference highlighted in blue color when the mouse is over the
widget. Refer to Figure 8.18:

Figure 8.18: Output when activeborderwidth is set to value 5

tkinter Menubutton widget
This widget is a drop-down menu part that is shown to the user all the time. An
option is provided to the user to select from different choices. It is associated with
the menu which can display its choices when clicked by the user.

The syntax is as follows:

mymb1= Menubutton(myroot, options…)

where,
•	 myroot is the parent window.
•	 Some of the lists of options that can be used as key-value pairs and are

separated by commas are bg, bd, bitmap, activebackground, activeforeground,
anchor, direction, cursor, disabledforeground, height, fg, highlightcolor,
justify, image, menu, padx, pady, relief, text, state, textvariable, underline ,
wraplength, and width.

264  Building Modern GUIs with tkinter and Python

We have seen most of the options but some undiscussed options are as follows:
•	 direction: This option will specify the menu to be displayed in the specified

direction to the button. It could be ABOVE, LEFT, or RIGHT where the menu
will be displayed above, left, or right of the button.

•	 highlightcolor: This option will display the color when tkinter Menubutton
widget is clicked.

•	 image: This option will set the image displayed on the tkinter Menubutton
widget.

•	 menu: This option will display the menu associated with the menubutton.
•	 text: This option will display the text on the menubutton.
•	 textvariable: This option will allow controlling the above widget text at

runtime by setting the control variable of string type at runtime to the text
variable.

Refer to the following code:

from tkinter import *

myroot = Tk()

myroot.geometry(‘200x200’)

Create a menu button with optiones specified

gamelist = Menubutton(myroot, text=’Games’, justify=CENTER, relief =
‘groove’)

creating drop down menu which will become visible when the user will
click the menu button

mygames = Menu(gamelist)

gamelist.config(menu=mygames)

will add commands to the drop down menu

mygames.add_command(label=’Cricket’)

mygames.add_command(label=’Football’)

mygames.add_command(label=’Badminton’)

Getting Insights of tkinter User Interactive Widgets  265

gamelist.pack()

myroot.mainloop()

Output when the Games button is clicked:

The output can be seen in Figure 8.19:

Figure 8.19: Output

Note: The preceding code is covered in Program Name: Chap8_Example6.py

We can add a checkbutton to the menubutton, as shown:

from tkinter import *

myroot = Tk()

myroot.geometry(“300x150”)

creating menubutton

menubutton = Menubutton(myroot, text = “My Hobby”, relief = FLAT)

menubutton.grid()

creating pull down menu

menubutton.menu = Menu(menubutton, tearoff = 0)

menubutton[“menu”]=menubutton.menu

266  Building Modern GUIs with tkinter and Python

creating checkbutton

menubutton.menu.add_checkbutton(label = “Reading Books”, variable=IntVar())

menubutton.menu.add_checkbutton(label = “Playing Outdoor games”, variable
= IntVar())

menubutton.pack()

myroot.mainloop()

Output when both hobbies are selected:

The output can be seen in Figure 8.20:

Figure 8.20: Output

Note: The preceding code is covered in Program Name: Chap8_Example7.py

Here, we can select both hobbies. However, we can force the user to select any one
hobby by using radiobuttons, as shown:

from tkinter import *

myroot = Tk()

myroot.geometry(“300x150”)

creating menubutton

menubutton = Menubutton(myroot, text = “My Hobby”, relief = FLAT)

menubutton.grid()

creating pull down menu

Getting Insights of tkinter User Interactive Widgets  267

menubutton.menu = Menu(menubutton, tearoff = 0)

menubutton[“menu”]=menubutton.menu

creating radiobutton when clicked the color will be changed to green

myval1 = IntVar()

menubutton.menu.add_radiobutton(label = “Reading Books”, value = 1,
variable=myval1, selectcolor = ‘green’)

menubutton.menu.add_radiobutton(label = “Playing Outdoor games”, value =
2, variable = myval1, selectcolor = ‘green’)

menubutton.pack()

myroot.mainloop()

Output:

The output can be seen in Figure 8.21:

Figure 8.21: Output

Note: The preceding code is covered in Program Name: Chap8_Example8.py

tkinter Canvas widget
This widget will allow drawing structured graphics such as line, rectangle, circle,
polygon, and so on, to the Python application. It can render graphs or plots and is a
powerful widget for building GUI applications.

The syntax is as follows:

mycv1= Canvas(myroot, options…)

268  Building Modern GUIs with tkinter and Python

where,
•	 myroot is the parent window.
•	 Some of the lists of options that can be used as key-value pairs and are

separated by commas are bg, bd, confine, cursor, height, relief, highlightcolor,
scrollregion, width, xscrollincrement, yscrollincrement, xscrollcommand,
and yscrollcommand.

We have seen most of the options but some undiscussed options are as follows:
•	 confine: This method when set to true, will make the canvas unscrollable

outside the scroll region.
•	 scrollregion: This method specified as tuple (N, S, E or W) represents the

coordinates containing the canvas area. Here, N means top, S means bottom,
E means right and W means left side.

•	 xscrollincrement: This option is used to set the scrolling dimension in
horizontal direction. Setting some positive value, the scrolling limit will
increase in multiple of the set value. If the value of this option is less than or
equal to zero, then horizontal scrolling is unconstrained.

•	 yscrollincrement: This method is similar to xscrollincrement but the
vertical movement is governed.

•	 xscrollcommand: This method should be the .set() method of the horizontal
scrollbar if the canvas is scrollable.

•	 yscrollcommand: This method should be the .set() method of the vertical
scrollbar if the canvas is scrollable.

The items supported by the above widget are line, rectangle, image, oval, and
polygon. We shall see the usage of the tkinter Canvas widget to draw these items,
as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter

myroot.geometry(‘400x400’)

myroot.title(‘Linecreation’)

creation of canvas widget . draing a rectabgular area

myc1 = Canvas(myroot, width = 350, height = 350, bg = ‘LightBlue’) # L1

Getting Insights of tkinter User Interactive Widgets  269

myc1.pack()

drawing 2 lines

myline = myc1.create_line(0,0,300,150) # L2 (x1,y1,x2,y2)

mygreen_line = myc1.create_line(300,150,0,300, fill = ‘Green’) #
L3(x1,y1,x2,y2)

myroot.mainloop() # display window until we press the close button

Output:

The output can be seen in Figure 8.22:

Figure 8.22: Output

Note: The preceding code is covered in Program Name: Chap8_Example9.py

In L1, we have created a canvas widget that contains the first parameter as the parent
window, the 2nd, and 3rd parameters as width and height, and the last parameter as
the background color. The widget can be customized by providing other widgets. 2
straight lines L2 and L3 are drawn using the create_line() method. The pixels are
in the form of (x,y) pair and are referred from the top-left corner of the canvas and
got the desired output as expected.

270  Building Modern GUIs with tkinter and Python

We can change the color of the line using the itemconfigure() method, as shown:

myc1.itemconfigure(myline, fill = ‘Red’) # changing the color of myline
object

Refer to Figure 8.23:

Figure 8.23: Output after changing the color of the line from topleft as Red

We can get the coordinates associated with the line object by using coords() method,
as shown:

print(myc1.coords(myline))

Refer to Figure 8.24:

Figure 8.24: Output displaying the coordinates associated with the line object

We can also change the coordinates of the line using the coords() method. Just add
the following line and comment on the previous command, as shown:

print(myc1.coords(myline))

myc1.coords(myline, 0,0,175,175,350,0)

Getting Insights of tkinter User Interactive Widgets  271

Refer to Figure 8.25:

Figure 8.25: Output displaying the change of coordinates using cords method

Here, we have created 3 pairs of coordinates.

We can also smoothen the line. Just add the following line of code, as shown:

myc1.itemconfigure(myline, smooth = True)

Refer to Figure 8.26:

Figure 8.26: Output displaying line smoothen

272  Building Modern GUIs with tkinter and Python

Here, the canvas will draw multiple line segments, in order to create a smooth
appearance of the line.

We can control how many line segments it uses to try and represent this line by
configuring the splinesteps option. So, add the following line in the code:

myc1.itemconfigure(myline, splinesteps = 6)

Refer to Figure 8.27:

Figure 8.27: Output with configuration of splinesteps options

So, this will draw the line by using 6 steps to try and smooth it up.

We can delete the line object by adding the following line of code:

myc1.delete(myline)

Getting Insights of tkinter User Interactive Widgets  273

Refer to Figure 8.28:

Figure 8.28: Output after deleting the line object

Now, we shall see how to create an arc using a canvas widget:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter

myroot.geometry(‘300x300’)

myroot.title(‘arccreation’)

canvas widget creation

myc1 = Canvas(myroot, width = 300, height = 300, bg = ‘LightBlue’)

myc1.pack()

arc creations

myc1.create_arc(50,50,150,150)

myc1.create_arc(120,120,200,200, extent = 120)

274  Building Modern GUIs with tkinter and Python

#fill: arc interior filled with Red color

myc1.create_arc(180,180,250,250, extent = 120, style = CHORD, fill = ‘Red’)

start angle par: start location in degrees whose default is 0 deg

extent angle par: from the start location the no. of degrees to extend
the arc whose default is 90 deg

style par: arc style to draw could be pieslice(default), chord and arc

myc1.create_arc(180,250,270,270, start = 50, extent = 120, style = ARC)

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 8.29:

Figure 8.29: Output

Note: The preceding code is covered in Program Name: Chap8_Example10.py

We can create an image item using Canvas, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter

Getting Insights of tkinter User Interactive Widgets  275

myroot.geometry(‘360x360’)

myroot.title(‘ImageCanvas’)

myc1 = Canvas(myroot, width = 360, height = 360, bg = ‘LightBlue’)

myc1.pack()

myphoto = PhotoImage(file = ‘butterfly1.gif’)

myc1.create_image(0,0,image = myphoto, anchor = NW)

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 8.30:

Figure 8.30: Output of Chap8_Example11.py

Note: The preceding code is covered in Program Name: Chap8_Example11.py

In the above code, we have created a canvas with the first parameter as the parent
window and other options such as height, width, and backgroundcolor. The
photoimage available in the tkinter package will help us to keep our image as an
item over it. The image name location is referred to in Photoimage and is placed over
the canvas.

276  Building Modern GUIs with tkinter and Python

We can create a rectangle using Canvas, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter

myroot.geometry(‘300x300’)

myroot.title(‘rectanglecreation’)

#canvas creation

myc1 = Canvas(myroot, width = 300, height = 300, bg = ‘LightBlue’)

myc1.pack()

rectangle creation

myrect = myc1.create_rectangle(100,100,300,300, fill = ‘Red’, outline =
‘Blue’)

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 8.31:

Figure 8.31: Output of Chap8_Example12.py

Getting Insights of tkinter User Interactive Widgets  277

Note: The preceding code is covered in Program Name: Chap8_Example12.py

In the above code, initially, we have created a canvas with the first parameter as the
parent window and other options as height, width, and backgroundcolor. Then we
created a rectangle with 2 pairs of coordinates, mentioned along with other options
such as fill and outline.

We can also create an ellipse or circle at the given coordinates. The 2 pairs of
coordinates are taken with the top left and bottom right corners of the bounding
rectangle for the oval, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter

myroot.geometry(‘350x350’)

myroot.title(‘circlecreation’)

canvas object creation

myc1 = Canvas(myroot, width = 350, height = 350, bg = ‘LightBlue’)

myc1.pack()

rectangle object creation

myrect = myc1.create_rectangle(100,100,350,350, fill = ‘Red’, outline =
‘Red’)

#oval object creation

myc1.create_oval(100,100,350,350, fill = ‘Yellow’, outline = ‘Yellow’)

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 8.32:

278  Building Modern GUIs with tkinter and Python

Figure 8.32: Output

Note: The preceding code is covered in Program Name: Chap8_Example13.py

We can create a polygon but it should have at least 3 vertices, as shown:

from tkinter import *

class CreatePolygon(Frame):

 def __init__(self, myroot=None):

 # myroot object is initialised

 super().__init__(myroot) # Calling Frame.__init__(myroot)

 �self.myroot = myroot # Update the myroot object after Frame()
makes necessary changes to it

 def mycreateCanvas(self, mycanvas_width, mycanvas_height):

 # Creating canvas object

Getting Insights of tkinter User Interactive Widgets  279

 �mycanvas = Canvas(self.myroot, bg=”LightBlue”, width=mycanvas_
width, height=mycanvas_height)

 return mycanvas

 def mycreate_polygon(self, mycanvas):

 mypoints = [100,200,200,100,250,350,100,200]

 �mycanvas.create_polygon(mypoints,fill = ‘Yellow’, outline =
‘Red’, width = 2) # polygon creation

 return mycanvas

Create our myroot object to the Application

myroot = Tk()

myroot.title(‘polygoncreation’)

Creating create_polygon object

myobj = CreatePolygon(myroot=myroot)

mycanvas = myobj.mycreateCanvas(400, 400)

mycanvas = myobj.mycreate_polygon(mycanvas)

The items are packed into the canvas

mycanvas.pack()

Start the mainloop

myobj.mainloop()

Output:

Refer to Figure 8.33:

280  Building Modern GUIs with tkinter and Python

Figure 8.33: Output

Note: The preceding code is covered in Program Name: Chap8_Example14.py

We can also write text in Canvas, as shown:

from tkinter import * # importing module

myroot = Tk() # window creation and initialize the interpreter

myroot.geometry(‘300x200’)

myroot.title(‘Textwriting’)

canvas object creation

myc1 = Canvas(myroot, width = 300, height = 200, bg = ‘LightBlue’)

create text

myc1.create_text(10, 100, anchor=W, font=”Helvetica”,

 text=”Hey! I am writing text in Canvas”)

myc1.pack()

Getting Insights of tkinter User Interactive Widgets  281

myroot.mainloop() # display window until we press the close button

Output:

Refer to Figure 8.34:

Figure 8.34: Output

Note: The preceding code is covered in Program Name: Chap8_Example15.py

Conclusion
In this chapter, we learned about creation of pop-up, top-level, and pull-down
menus with the help of the tkinter Menu widget. We also saw example of adding
radiobutton and checkbutton to the menu. The tearoff option, entryconfig() method,
adding a specific type of item using the key itemType or a positional argument was
well explored. We also viewed a widget which was associated with the menu and
was provided to the user to select, from different choices, viz. tkinter Meubutton
widget. We also saw example of adding radio and checkbuttons to this menubutton
widget. Finally, we explored the concepts of drawing different graphics such as
lines, rectangles, arc, polygon, text and create of image item1 with the help of the
tkinter Canvas widget.

Points to remember
•	 Menus can be created using tkinter menu widget. A hierarchical menu

structure is created by nesting of menus. Users are provided with a way to
access additional commands or options using menus.

•	 Button that displays a drop-down menu is created by using tkinter
menubutton widget. It is associated with the menu which can display its
choices when clicked by the user. Users are provided with a way to access
additional commands or options using menubutton widget.

282  Building Modern GUIs with tkinter and Python

•	 tkinter canvas widget will allow drawing structured graphics such as line,
rectangle, circle, polygon, and so on, to the Python application. We need to
use the Canvas method on the parent widget to create a canvas, and then
add elements to it with the create_ methods such as create_line, create_
rectangle, create_text and create_image.

•	 Meaningful titles can be given to menus and menubuttons. Users will find it
simpler to understand what each menu item or menu button accomplishes
as a result.

•	 In menus, it is important to group relevant commands together which will
make the job of user simpler for locating the commands.

•	 For menus and menubuttons, use icons.
•	 Maintain a consistent look for your menus and menubuttons. The GUI will

look sleeker and user-friendly as a result.
•	 Thoroughly test your menus and menubuttons. Verify that they perform as

planned and do not introduce any issues.

Questions
	 1.	 Explain the tkinter Menu Widget in detail.
	 2.	 Which widget is a top-level menu and provides options such as File, Edit, quit,

in the application?
	 3.	 Explain the tkinter Menu Widget in detail and its syntax with a suitable

program to justify your answer.
	 4.	 Write a program to create a menubar and then create the items Welcome! and

Quit!
	 5.	 Explain the tkinter Menubutton Widget in detail.
	 6.	 Which widget is a drop-down menu part that is shown to the user all the time?

Explain in detail.
	 7.	 Which widget has an option that allows the user to select from different

choices?
	 8.	 Explain the tkinter Canvas Widget with its syntax and a short program to

justify your answer.
	 9.	 Which widget allows to plot structured graphics like line, rectangle, circle, and

polygons? Explain the widget in detail.
	 10.	 How to render graphs or plots for building GUI applications? Explain in detail.

Introduction
In GUI applications, handling file selection in tkinter is frequently required since we
must let the user choose a file for processing or display. For instance, we can allow
the user to choose an image file to display in an image viewer application, or choose
a text file to load and edit in a text editor application.

To assist with managing file selection dialogs, tkinter offers the filedialog module.
This can make it much simpler to implement this feature in our application. The
selected file or directory’s path is returned by the filedialog module’s methods for
selecting, saving, and selecting files and directories. We may make sure that our
application is cross-platform compatible and that the user can select files using a
typical file selection dialogue by utilizing the filedialog module. This can improve
the usability and appearance of application.

Chapter 9
Handling File

Selection in tkinter

284  Building Modern GUIs with tkinter and Python

Structure
In this chapter, we will discuss the following topics:

•	 Handling file selection in tkinter
	 o	 askdirectory

	 o	 askopenfile

	 o	 askopenfilename

	 o	 askopenfilenames

	 o	 asksaveasfile

	 o	 asksaveasfilename

Objectives
After reading this chapter, the reader will learn about handling file selection with
different dialogs for opening a file, saving a file, and so on, with help of multiple
examples created with various Python applications.

Handling file selection in tkinter
We come across the requirements of opening a file, saving a file, and opening a
directory sort of operations. In such cases, the tkinter provides a dialog containing a
small file browser called a file dialog, which is a part of the filedialog module. There
are a different set of functions which creates file dialogs. The common arguments
taken by each function are:

•	 title: This parameter will specify the title of the dialog window.
•	 parent: This parameter will specify the optional parent widget.
•	 initialdir: This parameter will specify the directory in which the file

browser should start.
•	 filetypes: This parameter will specify the list of tuples each with a label and

matching pattern for filtering the visible files supported by the application.

Some functions take additional options such as:
•	 initialfile: It is a default file path to select.
•	 defaultextension: It is a file extension string that is appended automatically

to the filename if the user does not do it.

Handling File Selection in tkinter  285

Some functions return a file object taking mode argument, specifying the file open
mode.

Now, we shall discuss each function one by one.

askdirectory: This function will return the directory path as a string and it displays
only directories.

from tkinter import *

from tkinter.filedialog import askdirectory

myroot = Tk()

myroot.title(‘Askdirectory’)

myroot.geometry(‘300x100’)

def mydisplay():

 myroot.directory = askdirectory()

mybtn1 = Button(myroot, text = ‘MyDirectoryOpen’, command = mydisplay)

mybtn1.pack(pady = 10)

myroot.mainloop()

Output:

Figure 9.1 shows the default output:

Figure 9.1: Default output

286  Building Modern GUIs with tkinter and Python

Figure 9.2 shows the output when the MyDirectoryOpen button is clicked:

Figure 9.2: Output when the MyDirectoryOpen button is clicked

Note: The preceding code is covered in Program Name: Chap9_Example1.py

askopenfile: This function will return a file handle object and it allows only the
selection of existing files.

from tkinter import *

from tkinter.filedialog import askopenfile

myroot = Tk()

myroot.title(‘AskOpenFile’)

myroot.geometry(‘300x100’)

def myopen_file():

 myfile = askopenfile(mode =’r’, filetypes =[(‘All Python Files’, ‘*.py’)])

 if myfile is not None:

 content = myfile.read() # read all the file contents

 print(myfile.name) # display the file name

Handling File Selection in tkinter  287

mybtn1 = Button(myroot, text = ‘MyAskOpenFile’, command = myopen_file)

mybtn1.pack(pady = 10)

myroot.mainloop()

Output:

Figure 9.3 shows the default output:

Figure 9.3: Default output

Figure 9.4 shows the output when the MyAskOpenFile button is clicked:

Figure 9.4: Output when the MyAskOpenFile button is clicked

Note: The preceding code is covered in Program Name: Chap9_Example2.py

288  Building Modern GUIs with tkinter and Python

Output when any .py file is chosen and displays that file name:

E:/GUI_Python/prog5_functionbindtobutton.py

askopenfilename: This function will return the file path as a string and it allows only
the selection of existing files.

from tkinter import *

from tkinter.filedialog import askopenfilename

myroot = Tk()

myroot.title(‘AskOpenFileName’)

myroot.geometry(‘300x100’)

def myopen_file():

 myfile = askopenfilename()

 print(myfile) # display the file name

mybtn1 = Button(myroot, text = ‘MyAskOpenFileName’, command = myopen_file)

mybtn1.pack(pady = 10)

myroot.mainloop()

Output:

Figure 9.5 shows the default output:

Figure 9.5: Default output

Handling File Selection in tkinter  289

Figure 9.6 shows the output when the MyAskOpenFileName button is clicked:

Figure 9.6: Output when the MyAskOpenFileName button is clicked

Note: The preceding code is covered in Program Name: Chap9_Example3.py

Output when any .py file is chosen and displays that file name:

E:/GUI_Python/prg3_fittingwidgets.py

In the above code, we are creating an open file dialog that asks for a filename and
returns the selected dialog name.

askopenfilenames: This function will return file paths as the list of strings and it
allows multiple selections.

from tkinter import *

from tkinter.filedialog import askopenfilenames

myroot = Tk()

myroot.title(‘AskOpenFileNames’)

myroot.geometry(‘300x100’)

def myopen_files():

 myfile_list=[]

290  Building Modern GUIs with tkinter and Python

 �myfiles = askopenfilenames(initialdir=”E:\\GUI_Python”, title=”Select
Python files”)

 for file in myfiles:

 myfile_list.append(file)

 print(myfile_list)

mybtn1 = Button(myroot, text = ‘MyAskOpenFileNames’, command = myopen_
files)

mybtn1.pack(pady = 10)

myroot.mainloop()

Output:

Figure 9.7 shows the default output:

Figure 9.7: Default output of Chap9_Example4.py

Figure 9.8 shows the output when the MyAskOpenFileName button is clicked:

Figure 9.8: Output when the MyAskOpenFileNames button is clicked

Handling File Selection in tkinter  291

Note: The preceding code is covered in Program Name: Chap9_Example4.py

Output when any .py file is chosen and displays that file name.

[‘E:/GUI_Python/mypythonguiprog.py’, ‘E:/GUI_Python/p2Framedemo.py’, ‘E:/
GUI_Python/prg3_fittingwidgets.py’, ‘E:/GUI_Python/prg3_fittingwidgets.
spec’, ‘E:/GUI_Python/prog4_gridlayout.py’]

In the above code, we are creating an open file dialog that asks for filenames and
returns the selected dialog names.

asksaveasfile: This function will return a file handle object and it allows new file
creations and confirmation on existing files to be prompted.

from tkinter import *

from tkinter.filedialog import asksaveasfile

myroot = Tk()

myroot.title(‘AskSaveasFile’)

myroot.geometry(‘350x150’)

def saveas():

 mytxt = mye1.get()

 myfiles = [(‘All Files’, ‘*.*’),

 (‘Python Files’, ‘*.py’),

 (‘Text Document’, ‘*.txt’)]

 myfile1 = asksaveasfile(filetypes = myfiles, defaultextension = myfiles)

 myfile1.write(mytxt)

mye1 = Entry(myroot, font=(‘Verdana’,12))

mye1.place(x=10,y=10,width=200,height=100)

mybtn1 = Button(myroot,text=’SaveasFile’,font=(‘Courier’,10),
width=10,bd=10, command =saveas)

mybtn1.place(x=220,y=110)

myroot.mainloop()

292  Building Modern GUIs with tkinter and Python

Output:

Figure 9.9 shows the default output:

Figure 9.9: Default output

Figure 9.10 shows the output when the SaveasFile button is clicked:

Figure 9.10: Output when the SaveasFile button is clicked

We can see that there are no .txt files present in the above folder. When the Save
button is clicked, the file is saved as demo1.txt in the above folder, as shown in
Figure 9.11:

Handling File Selection in tkinter  293

Figure 9.11: Output after saving as demo1.txt file

The contents inside the folder is shown in Figure 9.12:

Figure 9.12: Output displaying the contents inside demo1.txt file

Note: The preceding code is covered in Program Name: Chap9_Example5.py

asksaveasfilename: This function will return the file path as a string and it allows
new file creations and confirmation on existing files to be prompted.

from tkinter import *

from tkinter import messagebox

from tkinter.filedialog import asksaveasfilename

myroot = Tk()

myroot.title(‘AskSaveasFileName’)

294  Building Modern GUIs with tkinter and Python

myroot.geometry(‘350x150’)

def saveas():

 mytxt = mye1.get()

 myfiles = [(‘All Files’, ‘*.*’),

 (‘Python Files’, ‘*.py’),

 (‘Text Document’, ‘*.txt’)]

 �myfile1 = asksaveasfilename(filetypes = myfiles, defaultextension =
myfiles, confirmoverwrite = False)

 fname = myfile1

 if fname != ‘’:

 try:

 myfile1 = open(fname, “a+”)

 myfile1.write(‘\n’ +str(mytxt))

 myfile1.close()

 �messagebox.showinfo(‘Data Writing!’, ‘Data has been
appended’)

 except:

 print(‘There is no such file’)

mye1 = Entry(myroot, font=(‘Verdana’,12))

mye1.place(x=10,y=10,width=200,height=100)

mybtn1 = Button(myroot,text=’SaveasFileName’,font=(‘Courier’,10),
width=14,bd=10, command =saveas)

mybtn1.place(x=210,y=110)

myroot.mainloop()

Handling File Selection in tkinter  295

Output:

Figure 9.13 shows the default output:

Figure 9.13: Default output

Figure 9.14 shows the output when the SaveasFileName button is clicked:

Figure 9.14: Output when the SaveasFileName button is clicked

On clicking the Save button, the following message shown in Figure 9.15 will pop up:

Figure 9.15: Output display after clicking the Save button

296  Building Modern GUIs with tkinter and Python

Here, we are appending the already created text file. So, the data inside the file
demo1.txt file is shown in Figure 9.16:

Figure 9.16: Contents display inside demo1.txt file appending the newly added text

If the file is not created, the new text file, say ‘demo2.txt, will be created, as shown
in Figure 9.17:

Figure 9.17: Output display on creation of a new file demo2.txt

Handling File Selection in tkinter  297

The data inside the above file is as shown in Figure 9.18:

Figure 9.18: Output depicting the content inside demo2.txt file

Note: The preceding code is covered in Program Name: Chap9_Example6.py

We can also provide a dialog box for color selection, as shown:

from tkinter import *

from tkinter.colorchooser import *

def myclickme():

 �(my_rgb, mycolor) = askcolor(title = ‘Please choose your color’) #
tuple will be returned

 print(my_rgb)

 print(mycolor)

 myroot.configure(background=mycolor)

myroot = Tk()

myroot.title(‘ColorPicker’)

mybtn1 = Button(myroot, text=”Choose Color”,command=myclickme)

mybtn1.pack()

298  Building Modern GUIs with tkinter and Python

myroot.geometry(“300x300”)

myroot.mainloop()

Output:

Figure 9.19 shows the default output:

Figure 9.19: Default output

Figure 9.20 shows the output when the Choose Color button is clicked:

Figure 9.20: Output When Choose Color button is clicked

Handling File Selection in tkinter  299

Figure 9.21 shows the output display of change of background color on pressing OK
button:

Figure 9.21: Output display of change of background color on pressing Ok button

Output at the console:

Refer to Figure 9.22:

Figure 9.22: Output at the console

Note: The preceding code is covered in Program Name: Chap9_Example7.py

So, we can say that on clicking the OK button, a tuple is returned, which consists of a
color value in RGB format and hexadecimal format as displayed. Moreover, we have
changed the background color of the frame with the returned color value.

Conclusion
In this chapter, we learned that tkinter’s handling of file selection is a rather
straightforward process. To open, save, and browse files, we can utilize a number of
the functions offered by the tkinter filedialog module. The askopenfilename() and
asksaveasfilename() functions are the two that are most frequently utilized. With
the use of these functions, a user can choose a file from their computer and select the
path of that file.

300  Building Modern GUIs with tkinter and Python

Other functions that can be used to filter files, get information about files, and create
custom file dialogs, are also provided by the filedialog module. In the end, we
explored about prompt display of color selection dialog box by the user.

Points of remember
•	 The filedialog module is used to open, save and filter files. Moreover, with

this module, we can get information about files and can create custom file
dialogs.

•	 The askopenfilename() function allows selecting a file to open by the user.
•	 The asksaveasfilename() function allows selecting a file to save by the user.
•	 The askdirectory() function will return the directory path as a string and

displays only directories.
•	 The askopenfile() function will return a file handle object and allows only

the selection of existing files.
•	 The askopenfilenames() function will return file paths as list of strings and

allows multiple selections.
•	 The asksaveasfile will return a file handle object and allows new file

creations and confirmation on existing files to be prompted.

Questions
	 1.	 How is the process of opening and saving the file executed in Tkinter? Explain.
	 2.	 How is the file dialog window accessed in Tkinter? Explain in detail.
	 3.	 Write short notes on the following:
	 a.	Askdirectory

	 b.	Askopenfile

	 c.	Askopenfilename

	 d.	Askopenfilenames

	 e.	Asksaveasfile

	 f.	asksaveasfilename

	 4.	 Which widget is used to provide access for opening, closing, and saving the
file? Explain the widget in detail.

Introduction
Many a times, it is necessary to get to know the widget information and traces in
a Python application. The widget’s size, position, and condition are among the
first details about which we can know. The widget may be displayed differently or
controlled using this information. Additionally, it enables us to trace the changes
made to the widget, such as when its text or state is altered. Other widgets or other
actions may be updated using this information. Moreover, the behavior of the
widget can be customized based on its current value or state by using trace. So, in
this chapter, we shall learn about how to get widget information and explore various
trace methods using tkinter library.

Structure
In this chapter, we will discuss the following topics:

•	 Getting widget information
•	 Trace in tkinter

Chapter 10
Getting Widget

Information and
Trace in tkinter

302  Building Modern GUIs with tkinter and Python

Objectives
After going through this chapter, the reader will learn about how to get widget
information with the help of multiple examples. We will also deal with different
trace methods viz trace add, trace remove, trace info, and so on.

Getting widget information
There are a set of winfo_methods that gives access to the widget information. A few
useful methods are as follows:

•	 winfo_width(): This method will return the widget width.
•	 winfo_height(): This method will return the widget height.

Refer to the following code:

from tkinter import *

myroot = Tk()

mycanvas = Canvas(myroot, width= 300 , height = 350)

print(“Before packing width is: “ + str(mycanvas.winfo_width()))

print(“Before packing height is: “ + str(mycanvas.winfo_height()))

mycanvas.pack()

mycanvas.update()

print(“After packing and updating width is: “ + str(mycanvas.winfo_
width()))

print(“After packing and updating height is: “ + str(mycanvas.winfo_
height()))

Output:

Before packing width is: 1

Before packing height is: 1

After packing width is: 304

After packing height is: 354

Getting Widget Information and Trace in tkinter  303

Note: The preceding code is covered in Program Name: Chap10_Example1.py
•	 winfo_children(): This method will return a child widget’s list.

from tkinter import *

myroot = Tk()

myroot.geometry(‘300x160’)

mye1 = Entry(myroot)

mye1.pack(pady = 10)

mybtn1 = Button(myroot, text = ‘Button’)

mybtn1.pack(pady = 10)

myl1 = Label(myroot, text = ‘Label’)

myl1.pack(pady = 10)

we are iterating on each child widget of the parent window and disabling
them

for loop in myroot.winfo_children():

 loop.config(state=’disable’)

myroot.mainloop()

Output:

The output can be seen in Figure 10.1:

Figure 10.1: Output

304  Building Modern GUIs with tkinter and Python

Note: The preceding code is covered in Program Name: Chap10_Example2.py
•	 winfo_geometry(): This method will return widget size and location.

from tkinter import *

myroot = Tk()

myroot.geometry(‘300x160+150+300’)

myroot.update()

print(myroot.winfo_geometry())

myroot.mainloop()

Output at the console:

300x160+150+300

Output position of the window at the monitor screen

Where 300 is the width, 160 is the height, and (150 shifted on x axis, 300 shifted on y axis)

Refer to Figure 10.2:

Figure 10.2: Output

Getting Widget Information and Trace in tkinter  305

Note: The preceding code is covered in Program Name: Chap10_Example3.py
•	 winfo_ismapped(): This method will determine whether the widget is

mapped or not, meaning that it has been added to the layout using a pack()
and grid().

from tkinter import *

myroot = Tk()

def myforget(widget):

 widget.forget()

 print(f”Is {widget[‘text’]} mapped after calling forget method ? = “,

 bool(widget.winfo_ismapped()))

def myretrieve(widget):

 widget.pack()

 # will check if the widget exists or not

 print(f”Is {widget[‘text’]} mapped after widget retrieval ? = “,

 bool(widget.winfo_exists()))

mybtn1 = Button(myroot, text = “IamButton1”, bg = ‘LightBlue’)

mybtn1.pack(pady = 10)

Making widget invisible

mybtn2 = Button(myroot, text = “Button2”, command = lambda : myforget(mybtn1),
bg = ‘LightGreen’)

mybtn2.pack(pady = 10)

Retrieving the widget

mybtn3 = Button(myroot, text = “Button3”, command = lambda :
myretrieve(mybtn1), bg = ‘LightPink’)

306  Building Modern GUIs with tkinter and Python

mybtn3.pack(pady = 10)

myroot.geometry(‘300x200’)

myroot.mainloop()

Output:

Refer to Figure 10.3:

Figure 10.3: Default output of Chap10_Example4.py

Refer to Figure 10.4:

Figure 10.4: Output when Button2 is clicked

Getting Widget Information and Trace in tkinter  307

Refer to Figure 10.5:

Figure 10.5: Output at the console when Button2 is clicked

Refer to Figure 10.6:

Figure 10.6: Output when Button3 is clicked

Refer to Figure 10.7:

Figure 10.7: Output at the console when Button3 is clicked

Note: The preceding code is covered in Program Name: Chap10_Example4.py
•	 winfo_x(): This method will get the x coordinate of the widget’s top left

corner.
•	 winfo_y(): This method will get the y coordinate of the widget’s top left

corner.

Refer to the following code:

from tkinter import *

myroot = Tk()

308  Building Modern GUIs with tkinter and Python

def myx_y_func():

 print(mybtn2.winfo_x())

 print(mybtn2.winfo_y())

mybtn2 = Button(myroot, text = “Button”, command = myx_y_func, bg =
‘LightGreen’)

mybtn2.pack(pady = 10)

myroot.geometry(‘300x100’)

myroot.mainloop()

Output when the Button is clicked:

Refer to Figure 10.8:

Figure 10.8: Output

Note: The preceding code is covered in Program Name: Chap10_Example5.py

Trace in tkinter
To track variables in Python, variable wrappers are created by tkinter by attaching an
‘observer’ callback to the variable. Variable classes such as BooleanVar, StringVar,
DoubleVar, IntVar for Boolean, string, double, and integer values respectively can
be registered to an observer, which gets triggered whenever the variable value is
accessed. Until an observer is explicitly deleted, it remains active. The callback
function associated with an observer takes 3 arguments, which are as follows:

•	 Mode of access
•	 The tkinter variable index in case it is an array else an empty string.
•	 The tkinter variable name.

Let us now study the various trace methods.

Getting Widget Information and Trace in tkinter  309

trace_add()
This method will replace trace_variable() method. It will add an observer to a
name and return the callback function name whenever the value is accessed.

The syntax is as follows:

trace_add(self, mode, callback_name)

where,
•	 The mode parameter can be one of ‘array’, ‘read’, ‘write’, ‘unset’, or a list or

tuple of such strings.
•	 callback_name parameter is a callback function name that is to be registered

on the tkinter variable.

trace_remove()
This method will replace the trace_vdelete() method. It will unregister an observer
and initially while registering the observer through the trace_add() method, it will
return the callback name.

The syntax is as follows:

trace_remove(self, mode, callback_name)

where,
•	 The mode parameter can be one of ‘array’, ‘read’, ‘write’, ‘unset’, or a list or

tuple of such strings.
•	 callback_name parameter is a callback function name that is to be registered

on the tkinter variable.

trace_info()
This method will replace trace_vinfo() and the trace method, which returns a
callback name and is used to find the callback name which is to be deleted. The
argument here is the tkinter variable itself.

The syntax is as follows:

trace_info(self)

Refer to the following code:

from tkinter import *

310  Building Modern GUIs with tkinter and Python

myroot = Tk()

myroot.title(‘Trace_add’)

myroot.geometry(‘300x200’)

my_value = StringVar()

mybtn1 = Button(myroot, textvariable = my_value, bg = ‘LightBlue’)

mybtn1.pack(padx = 10, pady = 10)

mye1 = Entry(myroot, textvariable = my_value, bg = ‘LightGreen’)

mye1.pack(padx = 10, pady = 10)

defining the callback function (observer)

def my_associatedcallback(var, indx, mode):

 print(“Traced variable {}: “.format(my_value.get()))

registering the observer

my_value.trace_add(‘write’, my_associatedcallback)

myroot.mainloop()

Output initially:

Refer to Figure 10.9:

Figure 10.9: Default output of Chap10_Example6.py

Getting Widget Information and Trace in tkinter  311

Refer to Figure 10.10:

Figure 10.10: Output when the data is entered in the Entry widget

Refer to Figure 10.11:

Figure 10.11: Output at the console when user entering the text

Note: The preceding code is covered in Program Name: Chap10_Example6.py

In the above code, the callback function will be triggered whenever the widget text
changes and will return a string “Traced Variable”, that is, the moment the text in the
entry widget is written, the text in the Button widget will be written simultaneously.

Conclusion
In this chapter, we learned that understanding tkinter’s widget information and trace
information is crucial for producing good Graphical User Interfaces. We can access
widget information to learn more about a widget, including its size, location, and
state. The widget may be displayed differently or controlled using this information.
We may track changes to the widget, such as when its text is changed or its status is

312  Building Modern GUIs with tkinter and Python

altered, using the trace information. Other widgets or other actions may be updated
using this information. Finally, we explored about different trace methods viz trace_
add(), trace_remove() and trace_info().

Points to remember
•	 We can access widget information to get information about a widget,

including its size, location, and state.
•	 The winfo_width() and winfo_height() methods can be used to obtain a

widget’s width and height, which can subsequently be used to adjust the
widget’s size.

•	 We may track changes to the widget, such as when its text is changed or its
status is modified, using the trace information.

•	 Widget information can be used to change how the widget is displayed or
controlled.

•	 We can update other widgets or carry out additional tasks using trace
information.

•	 To obtain widget information, make use of winfo_ methods.
•	 The trace() method can be used to track changes made to a widget.
•	 A trace callback can be added to a widget using the trace_add() method,

and information about the trace callbacks connected to a widget can be
obtained using the trace_info() method.

•	 To remove a trace callback, use the trace_remove() method.

Questions
	 1.	 How can we get widget information in tkinter? Explain in detail.
	 2.	 What is the meaning of trace in tkinter? Explain in detail.
	 3.	 Explain the trace methods used in the tkinter GUI application.
	 4.	 Explain the following:
	 a.	 trace_add()
	 b.	 trace_remove()
	 c.	 trace_info()
	 5.	 How does tkinter GUI interact with Sqlite3 database? Explain the entire process

in detail.

Introduction
In this chapter, we shall see a Graphical User Interface (GUI) application by creating
a UserLogin project with sq-lite3 database. The code shall be explained along with
the desired output. We will also learn how a GUI can be used to interact with a
sqlite3 database.

Structure
In this chapter, we will discuss the following topics:

•	 GUI interaction with sqlite3 database
•	 Displaying a GUI application

Objectives
By the end of this chapter, the reader will know about GUI interaction with sqlite3
database. We will be learning how to connect any GUI program with sqlite3 database,
and here we are creating a small GUI application using tkinter library. We shall
see different steps of interacting with sqlite3 database, starting with importing the

Chapter 11
UserLogin Project in
tkinter GUI Library

with sqlite3 Database

314  Building Modern GUIs with tkinter and Python

module, connecting to the database, creating a cursor object, then executing queries,
committing the changes and finally closing the connection.

GUI interaction with sqlite3 database
To use GUI interaction with sqlite3 database, we will follow the given steps:

1.	 We will be using an import statement to our Python program:
	 import sqlite3

2.	 The next step is to connect to the database. We will be using sqlite3.
connect() function by passing the file name to open or create it.

	 mydb = sqlite3.connect(‘demo.db’)

3.	 Once the connection is done, we can create a cursor object and then call the
execute() method to perform SQL commands:

	 mycr = mydb.cursor()

4.	 Then create a table, using:
	 mycr.execute(‘create table login(UNAME text, UPASS text)’)

5.	 Commit the changes, that is, save the changes:
	 mydb.commit()

6.	 Close the connection:
	 mydb.close()

If we close the database connection without calling commit, the changes will be lost.

Displaying a GUI application
Let us now see a Python code to display a GUI application of UserLogin Project with
tkinter library, along with connectivity to sqlite3 database. You will get a glimpse
of GUI code with connectivity to sqlite3 database. Practice the following code and
follow the steps as instructed:

from tkinter import *

import sqlite3

from tkinter import messagebox

from tkinter import ttk

myroot = Tk()

UserLogin Project in tkinter GUI Library with sqlite3 Database  315

myroot.geometry(‘600x400’)

myroot.resizable(0,0)

myroot.title(‘Home Page’)

myframe55 = None

def myscreen():

 myntb = ttk.Notebook()

 def mydemo(a1):

 print(myntb.index(‘current’)) # getting tab positions

 if myntb.index(‘current’) == 5:

 myhome()

 myntb.bind(‘<<NotebookTabChanged>>’, mydemo)

 myntb.place(x=0,y=0,width = 600, height = 400)

 bginsertion(myntb)

 myshowall(myntb)

 mysearch(myntb)

 myupdate(myntb)

 mydelete(myntb)

 mylogout(myntb)

def bginsertion(ntb):

 myf4 = Frame(bg = ‘LightBlue’)

 ntb.add(myf4,text=’MyInsert’)

 m = StringVar()

 n = StringVar()

 o = StringVar()

316  Building Modern GUIs with tkinter and Python

 p = StringVar()

 q = StringVar()

 �myl1 = Label(myf4, font = (‘Calibri’,15),text = ‘Enter Roll No.’, bg
= ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=150,y=50)

 mye1 = Entry(myf4, font = (‘Calibri’,15), textvariable = m)

 mye1.place(x = 300, y = 50, width = 100)

 �myl2 = Label(myf4, font = (‘Calibri’,15),text = ‘Enter Name’, bg =
‘LightBlue’, fg = ‘Red’)

 myl2.place(x=150,y=100)

 mye2 = Entry(myf4, font = (‘Calibri’,15), textvariable = n)

 mye2.place(x = 300, y = 100, width = 100)

 �myl3 = Label(myf4, font = (‘Calibri’,15),text = ‘Enter Phy.’, bg =
‘LightBlue’, fg = ‘Red’)

 myl3.place(x=150,y=150)

 mye3 = Entry(myf4, font = (‘Calibri’,15), textvariable = o)

 mye3.place(x = 300, y = 150, width = 100)

 �myl4 = Label(myf4, font = (‘Calibri’,15),text = ‘Enter Chem.’, bg =
‘LightBlue’, fg = ‘Red’)

 myl4.place(x=150,y=200)

 mye4 = Entry(myf4, font = (‘Calibri’,15), textvariable = p)

 mye4.place(x = 300, y = 200, width = 100)

 �myl5 = Label(myf4, font = (‘Calibri’,15),text = ‘Enter Maths.’, bg =
‘LightBlue’, fg = ‘Red’)

 myl5.place(x=150,y=250)

UserLogin Project in tkinter GUI Library with sqlite3 Database  317

 mye5 = Entry(myf4, font = (‘Calibri’,15), textvariable = q)

 mye5.place(x = 300, y = 250, width = 100)

 def mydatainsertion():

 mydb = sqlite3.connect(‘mydemo.db’)

 my_cursor = mydb.cursor()

 �my_cursor.execute(“insert into ins values(‘”+m.get()+”’,’”+n.
get()+”’,’”+o.get()+”’,’”+p.get()+”’,’”+q.get()+”’)”)

 mydb.commit()

 mydb.close()

 messagebox.showinfo(‘Title’,’Data Inserted’)

 m.set(‘’)

 n.set(‘’)

 o.set(‘’)

 p.set(‘’)

 q.set(‘’)

 myshowalldata(myframe55)

 �mybtn = Button(myf4, font = (‘Calibri’,15),text = ‘Insert Data’, bg
= ‘LightBlue’, fg = ‘Red’, command = mydatainsertion)

 mybtn.place(x = 250, y = 300, width = 100, height = 30)

def myshowall(ntb):

 myf5 = Frame(bg = ‘LightBlue’)

 ntb.add(myf5,text=’MyShowAll’)

 global myframe55

 myframe55 = myf5

 myshowalldata(myf5)

318  Building Modern GUIs with tkinter and Python

def myshowalldata(myf5):

 # for deletion addition

 �for loop in myf5.winfo_children(): # a list of all widgets are
returned

 loop.destroy()

 �myu1 = Label(myf5, font = (‘Arial’,12), text = ‘Roll No.’,bg =
‘LightBlue’, fg = ‘Red’)

 myu1.place(x=0,y=0, width = 120)

 �myu2 = Label(myf5, font = (‘Arial’,12), text = ‘Name’,bg =
‘LightBlue’, fg = ‘Red’)

 myu2.place(x=120,y=0, width = 120)

 �myu3 = Label(myf5, font = (‘Arial’,12), text = ‘Phy.’,bg =
‘LightBlue’, fg = ‘Red’)

 myu3.place(x=240,y=0, width = 120)

 �myu4 = Label(myf5, font = (‘Arial’,12), text = ‘Chem.’,bg =
‘LightBlue’, fg = ‘Red’)

 myu4.place(x=360,y=0, width = 120)

 �myu5 = Label(myf5, font = (‘Arial’,12), text = ‘Maths’,bg =
‘LightBlue’, fg = ‘Red’)

 myu5.place(x=480,y=0, width = 120)

 db = sqlite3.connect(‘mydemo.db’)

 cr = db.cursor()

 r = cr.execute(“select * from ins “)

 x = 50

 y = 60

UserLogin Project in tkinter GUI Library with sqlite3 Database  319

 for loop in r:

 �Label(myf5,text = loop[0], font = (‘Arial’,12),bg = ‘LightBlue’,
fg = ‘Red’).place(x=x,y=y)

 x += 120

 �Label(myf5,text = loop[1], font = (‘Arial’,12),bg = ‘LightBlue’,
fg = ‘Red’).place(x=x,y=y)

 x += 120

 �Label(myf5,text = loop[2], font = (‘Arial’,12),bg = ‘LightBlue’,
fg = ‘Red’).place(x=x,y=y)

 x += 120

 �Label(myf5,text = loop[3], font = (‘Arial’,12),bg = ‘LightBlue’,
fg = ‘Red’).place(x=x,y=y)

 x += 120

 �Label(myf5,text = loop[4], font = (‘Arial’,12),bg = ‘LightBlue’,
fg = ‘Red’).place(x=x,y=y)

 y += 60

 x = 50

def mysearch(ntb):

 myf6 = Frame(bg = ‘LightBlue’)

 ntb.add(myf6,text=’MySearch’)

 s1 = StringVar()

 �myu1 = Label(myf6, font = (‘Arial’,12), text = ‘Roll No.’,bg =
‘LightBlue’, fg = ‘Red’)

 myu1.place(x=100,y=50, width = 120)

 mye1 = Entry(myf6, font = (‘Calibri’,15), textvariable = s1)

 mye1.place(x = 200, y = 50, width = 100)

320  Building Modern GUIs with tkinter and Python

 def searched():

 db = sqlite3.connect(‘mydemo.db’)

 cr = db.cursor()

 r = cr.execute(“select * from ins where URNO =’”+s1.get()+”’ “)

 for loop in r:

 �myl1 = Label(myf6, text = “Name is: “, font =
(‘Calibri’,15), bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=100)

 �myl2 = Label(myf6, text = loop[1], font = (‘Calibri’,15), bg
= ‘LightBlue’, fg = ‘Red’)

 myl2.place(x=350,y=100)

 �myl1 = Label(myf6, text = “Phy : “, font = (‘Calibri’,15),
bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=150)

 �myl2 = Label(myf6, text = loop[2], font = (‘Calibri’,15), bg
= ‘LightBlue’, fg = ‘Red’)

 myl2.place(x=350,y=150)

 �myl1 = Label(myf6, text = “Chem : “, font = (‘Calibri’,15),
bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=200)

 �myl2 = Label(myf6, text = loop[3], font = (‘Calibri’,15), bg
= ‘LightBlue’, fg = ‘Red’)

 myl2.place(x=350,y=200)

UserLogin Project in tkinter GUI Library with sqlite3 Database  321

 �myl1 = Label(myf6, text = “Maths : “, font = (‘Calibri’,15),
bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=250)

 �myl2 = Label(myf6, text = loop[4], font = (‘Calibri’,15), bg
= ‘LightBlue’, fg = ‘Red’)

 myl2.place(x=350,y=250)

 break

 else:

 messagebox.showinfo(‘Title’,’Roll No. absent’)

 �myl11 = Label(myf6, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl11.place(x=200,y=100,width=300)

 �myl12 = Label(myf6, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl12.place(x=350,y=100,width=300)

 �myl13 = Label(myf6, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl13.place(x=200,y=150,width=300)

 �myl14 = Label(myf6, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl14.place(x=350,y=150,width=300)

 �myl15 = Label(myf6, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl15.place(x=200,y=200,width=300)

322  Building Modern GUIs with tkinter and Python

 �myl16 = Label(myf6, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl16.place(x=350,y=200,width=300)

 �myl17 = Label(myf6, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl17.place(x=200,y=250,width=300)

 �myl18 = Label(myf6, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl18.place(x=350,y=250)

 db.commit()

 db.close()

 �mybtn = Button(myf6, text = ‘Search’, font = (‘Calibri’,15), command
= searched)

 mybtn.place(x=320,y=50, width = 100,height = 30)

def myupdate(ntb):

 myf7 = Frame(bg = ‘LightBlue’)

 ntb.add(myf7,text=’MyUpdate’)

 s2 = StringVar()

 �myu1 = Label(myf7, font = (‘Arial’,12), text = ‘Roll No.’,bg =
‘LightBlue’, fg = ‘Red’)

 myu1.place(x=100,y=50, width = 120)

 mye1 = Entry(myf7, font = (‘Calibri’,15), textvariable = s2)

 mye1.place(x = 200, y = 50, width = 100)

UserLogin Project in tkinter GUI Library with sqlite3 Database  323

 def updated():

 db = sqlite3.connect(‘mydemo.db’)

 cr = db.cursor()

 r = cr.execute(“select * from ins where URNO =’”+s2.get()+”’ “)

 for loop in r:

 s3 = StringVar()

 s4 = StringVar()

 s5 = StringVar()

 s6 = StringVar()

 �myl1 = Label(myf7, text = “Name is: “, font =
(‘Calibri’,15), bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=100)

 �myl2 = Entry(myf7, font = (‘Calibri’,15), bg = ‘LightBlue’,
fg = ‘Red’, textvariable = s3)

 myl2.insert(0,loop[1])

 myl2.place(x=350,y=100)

 �myl1 = Label(myf7, text = “Phy : “, font = (‘Calibri’,15),
bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=150)

 �myl2 = Entry(myf7, font = (‘Calibri’,15), bg = ‘LightBlue’,
fg = ‘Red’, textvariable = s4)

 myl2.insert(0,loop[2])

 myl2.place(x=350,y=150)

324  Building Modern GUIs with tkinter and Python

 �myl1 = Label(myf7, text = “Chem : “, font = (‘Calibri’,15),
bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=200)

 �myl2 = Entry(myf7, font = (‘Calibri’,15), bg = ‘LightBlue’,
fg = ‘Red’, textvariable = s5)

 myl2.insert(0,loop[3])

 myl2.place(x=350,y=200)

 �myl1 = Label(myf7, text = “Maths : “, font = (‘Calibri’,15),
bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=250)

 �myl2 = Entry(myf7, font = (‘Calibri’,15), bg = ‘LightBlue’,
fg = ‘Red’, textvariable = s6)

 myl2.insert(0,loop[4])

 myl2.place(x=350,y=250)

 def updatedata2():

 mydb = sqlite3.connect(‘mydemo.db’)

 my_cursor = mydb.cursor()

 �my_cursor.execute(“update ins set UNAME = ‘”+s3.
get()+”’,UPHY =’”+s4.get()+”’,UCHE =’”+s5.
get()+”’,UMATHS =’”+s6.get()+”’ WHERE URNO =’”+s2.
get()+”’ “)

 mydb.commit()

 mydb.close()

 messagebox.showinfo(‘Title’,’Data Updated’)

 s3.set(‘’)

 s4.set(‘’)

UserLogin Project in tkinter GUI Library with sqlite3 Database  325

 s5.set(‘’)

 s6.set(‘’)

 myshowalldata(myframe55)

 �mybtn = Button(myf7, text = ‘Update’, font = (‘Calibri’,15),
command = updatedata2)

 mybtn.place(x=250,y=325, width = 100,height = 30)

 break

 else:

 messagebox.showinfo(‘Title’,’Roll No. absent’)

 �myl11 = Label(myf7, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl11.place(x=200,y=100,width=300)

 �myl12 = Label(myf7, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl12.place(x=350,y=100,width=300)

 �myl13 = Label(myf7, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl13.place(x=200,y=150,width=300)

 �myl14 = Label(myf7, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl14.place(x=350,y=150,width=300)

 �myl15 = Label(myf7, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl15.place(x=200,y=200,width=300)

326  Building Modern GUIs with tkinter and Python

 �myl16 = Label(myf7, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl16.place(x=350,y=200,width=300)

 �myl17 = Label(myf7, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl17.place(x=200,y=250,width=300)

 �myl18 = Label(myf7, text = “”, font = (‘Calibri’,15), bg =
‘LightBlue’, fg = ‘Red’)

 myl18.place(x=350,y=250)

 db.commit()

 db.close()

 �mybtn = Button(myf7, text = ‘Retrieve’, font = (‘Calibri’,15),
command = updated)

 mybtn.place(x=320,y=50, width = 100,height = 30)

def mydelete(ntb):

 myf8 = Frame(bg = ‘LightBlue’)

 ntb.add(myf8,text=’MyDelete’)

 s1 = StringVar()

 �myu1 = Label(myf8, font = (‘Arial’,12), text = ‘Roll No.’,bg =
‘LightBlue’, fg = ‘Red’)

 myu1.place(x=100,y=50, width = 120)

 mye1 = Entry(myf8, font = (‘Calibri’,15), textvariable = s1)

 mye1.place(x = 200, y = 50, width = 100)

UserLogin Project in tkinter GUI Library with sqlite3 Database  327

 def mydeletion():

 db = sqlite3.connect(‘mydemo.db’)

 cr = db.cursor()

 r = cr.execute(“delete from ins where URNO =’”+s1.get()+”’ “)

 messagebox.showinfo(‘Title’,’Data deleted’)

 db.commit()

 db.close()

 myshowalldata(myframe55)

 s1.set(‘’)

 �mybtn = Button(myf8, text = ‘Delete’, font = (‘Calibri’,15), command
= mydeletion)

 mybtn.place(x=320,y=50, width = 100,height = 30)

def mylogout(ntb):

 myf9 = Frame(bg = ‘LightBlue’)

 ntb.add(myf9,text=’MyLogOut’)

def mylogin():

 myf2 = Frame(bg = ‘LightBlue’)

 myf2.place(x=0,y=0, width = 600, height = 400)

 d = StringVar()

 e = StringVar()

 �myl1 = Label(myf2, text = ‘Enter Name: ‘, bg = ‘LightBlue’, fg =
‘Red’)

 myl1.place(x=200,y=100)

328  Building Modern GUIs with tkinter and Python

 mye1 = Entry(myf2, font = (‘Calibri’,15), textvariable = d)

 mye1.place(x = 300, y =100, width = 100, height = 20)

 �myl2 = Label(myf2, text = ‘Enter Password: ‘, bg = ‘LightBlue’, fg =
‘Red’)

 myl2.place(x=200,y=150)

 mye2 = Entry(myf2, font = (‘Calibri’,15), textvariable = e)

 mye2.place(x = 300, y =150, width = 100, height = 20)

 def login1():

 db = sqlite3.connect(‘mydemo.db’)

 cr = db.cursor()

 �r = cr.execute(“select * from regis where UNAME =’”+d.get()+”’
AND UPASS =’”+e.get()+”’ “)

 for loop in r:

 myscreen()

 break

 else:

 messagebox.showinfo(‘Title’,’Invalid user name and password’)

 db.commit()

 db.close()

 �mybtn = Button(myf2, text = ‘Login’, font = (‘Calibri’,15), command
= login1)

 mybtn.place(x=250,y=200, width = 100,height = 30)

 �mybtn1 = Button(myf2, text = ‘Home’, font = (‘Calibri’,15), command
= myhome)

 mybtn1.place(x=20,y=350, width = 100,height = 30)

UserLogin Project in tkinter GUI Library with sqlite3 Database  329

 �mybtn2 = Button(myf2, text = ‘Registration’, font = (‘Calibri’,15),
command = myregis)

 mybtn2.place(x=480,y=350, width = 120,height = 30)

def myregis():

 myf2 = Frame(bg = ‘LightBlue’)

 myf2.place(x=0,y=0, width = 600, height = 400)

 a = StringVar()

 b = StringVar()

 c = StringVar()

 myl1 = Label(myf2, text = ‘Enter Name: ‘, bg = ‘LightBlue’, fg = ‘Red’)

 myl1.place(x=200,y=100)

 mye1 = Entry(myf2, font = (‘Calibri’,15), textvariable = a)

 mye1.place(x = 300, y =100, width = 100, height = 20)

 �myl2 = Label(myf2, text = ‘Enter Password: ‘, bg = ‘LightBlue’, fg =
‘Red’)

 myl2.place(x=200,y=150)

 mye2 = Entry(myf2, font = (‘Calibri’,15), textvariable = b)

 mye2.place(x = 300, y =150, width = 100, height = 20)

 myl3 = Label(myf2, text = ‘Enter CN: ‘, bg = ‘LightBlue’, fg = ‘Red’)

 myl3.place(x=200,y=200)

 mye3 = Entry(myf2, font = (‘Calibri’,15), textvariable = c)

 mye3.place(x = 300, y =200, width = 100, height = 20)

 def registring():

330  Building Modern GUIs with tkinter and Python

 mydb = sqlite3.connect(‘mydemo.db’)

 my_cursor = mydb.cursor()

 �my_cursor.execute(“insert into regis values(‘”+a.get()+”’,’”+b.
get()+”’,’”+c.get()+”’)”)

 mydb.commit()

 mydb.close()

 messagebox.showinfo(‘Title’,’User Registered’)

 a.set(‘’)

 b.set(‘’)

 c.set(‘’)

 �mybtn = Button(myf2, text = ‘Register’, font = (‘Calibri’,15),
command = registring)

 mybtn.place(x=250,y=250, width = 120,height = 30)

 �mybtn1 = Button(myf2, text = ‘Home’, font = (‘Calibri’,15), command
= myhome)

 mybtn1.place(x=20,y=350, width = 100,height = 30)

 �mybtn2 = Button(myf2, text = ‘Login’, font = (‘Calibri’,15), command
= mylogin)

 mybtn2.place(x=480,y=350, width = 120,height = 30)

def myhome():

 myf1 = Frame(bg = ‘LightBlue’)

 myf1.place(x=0,y=0, width = 600, height = 400)

UserLogin Project in tkinter GUI Library with sqlite3 Database  331

 myb1 = Button(myf1, text = ‘Login’, command = mylogin)

 myb1.place(x=220,y=100,width = 100, height = 30)

 myb2 = Button(myf1, text = ‘Register’, command = myregis)

 myb2.place(x=330,y=100,width = 100, height = 30)

myhome()

myroot.mainloop()

Note: The preceding code is covered in (Program Name: Chap11_Example1.py)

Then follow the given steps:
1.	 Sqlite3 Database Structure: The sqlite3 database structure can be seen in the

following Figure 11.1:

Figure 11.1: sqlite3 database structure

2.	 Sqlite3 Browse Data: The sqlite3 browse data can be seen in the following
Figure 11.2:

332  Building Modern GUIs with tkinter and Python

Figure 11.2: sqlite3 browse data

3.	 Output when the program has started to run: The output can be seen in
Figure 11.3:

Figure 11.3: Output when the program starts running

UserLogin Project in tkinter GUI Library with sqlite3 Database  333

4.	 Output when Login button is clicked: The output when login button is
clicked, can be seen in Figure 11.4:

Figure 11.4: Output when Login button is clicked

5.	 On clicking the Home button, the user will navigate to the Home Page consisting
of Login and Register button.

6.	 The user is requested to enter username and password and click on the Login
button, as shown in Figure 11.5:

Figure 11.5: Insert data in Login page

334  Building Modern GUIs with tkinter and Python

7.	 In the MyInsert tab form, the user can insert the data, as shown in Figure 11.6:

Figure 11.6: Inserting the data

8.	 In Figure 11.7, we can see that the database is updated:

Figure 11.7: Database is updated

UserLogin Project in tkinter GUI Library with sqlite3 Database  335

9.	 On clicking the MyShowAll tab, the following form shown in Figure 11.8 is
displayed:

Figure 11.8: Form displayed on focusing MyShowAll tab

10.	 On clicking the MySearch tab, we are entering the Roll No. to see the data, as
shown in Figure 11.9:

Figure 11.9: Entering Roll No. to see the data on focusing MySearch tab

336  Building Modern GUIs with tkinter and Python

11.	 On clicking the MyUpdate tab, the following form shown in Figure 11.10 is
displayed:

Figure 11.10: Form displayed on focusing MyUpdate tab

12.	 On clicking the Update button, the database data is updated as shown in
Figure 11.11:

Figure 11.11: Updated database

UserLogin Project in tkinter GUI Library with sqlite3 Database  337

13.	 On clicking the MyDelete tab, the following form shown in Figure 11.12 is
displayed:

Figure 11.12: Form displayed on focusing MyDelete tab

14.	 User can delete the data by clicking on the Delete button, as shown in Figure
11.13:

Figure 11.13: Delete button

15.	 The database now looks as shown in Figure 11.14:

Figure 11.14: Updated database

338  Building Modern GUIs with tkinter and Python

16.	 On clicking the MyLogOut tab, the user will navigate to the home page
consisting of Login and Register button.

17.	 On clicking the Register button, the user will navigate to the following form
shown in Figure 11.15, where user can register for login:

Figure 11.15: Form to register for login

18.	 On clicking the Register button, a new user is registered into the database
where the user can login, as shown in Figure 11.16:

Figure 11.16: User registered

UserLogin Project in tkinter GUI Library with sqlite3 Database  339

19.	 The updated database looks as shown in Figure 11.17:

Figure 11.17: Updated database after registration

20.	 On clicking the Login page, a new user can login.

Conclusion
In this chapter, we learned how to connect any GUI program with sqlite3 database by
creating a small GUI application using tkinter library. Different steps of interacting
with sqlite3 database were explored from initially importing the module, then
connecting to the database, creating a cursor object followed by execute queries and
committing the changes and finally closing the connection. We saw step by step
approach of interacting our GUI application with sqlite3 database by creating Login
form, Registration form, Home Page, various tabs as per need and so on.

Points to remember
•	 Import the required libraries: To connect to the SQLite3 database, we need

to import the sqlite3 library in addition to the tkinter library.
•	 Establishing a database connection: To connect to the sqlite3 database, use

the sqlite3.connect() function. The parameter for this function is the name
of the database file.

•	 Creating a cursor: After establishing a connection, use the connection
object’s cursor() method to generate a cursor. Executing SQL commands
and obtaining data from the database are done using this cursor.

•	 Make GUI components: Create a GUI that communicates with the database
using tkinter widgets like Label, Entry, Button, and so on.

340  Building Modern GUIs with tkinter and Python

•	 Use cursor object to execute queries. To commit changes to the database, use
the commit() method.

•	 Close the database connection: To close the database connection, use the
connection object’s close() method.

•	 Test your programme: Make sure to thoroughly test your application to
make sure it functions as expected and gracefully handles errors.

Questions
	 1.	 Explain the steps to connect a GUI application to the sqlite3 database.
	 2.	 Create a Python code such that a GUI application created using tkinter library

can interact with a sqlite3 database. Then try connecting your GUI applications
with any other database such as mysql.

Index  341

A
anchors 19, 20

constants 20-23
application-level binding 62
askdirectory function 285
askokcancel() 198, 199
askopenfile function 286, 287
askopenfilename function 288
askopenfilenames function 289, 290
askquestion() 197, 198
askretrycancel() 200, 201
asksaveasfile function 291, 292
asksaveasfilename function 293
askyesno() 199, 200

B
basic Python GUI program 4-7
bitmaps 25, 26

Index

BooleanVar() 42, 43

C
classes

for GUI creation 47-50
colors

activebackground 11
activeforeground 12
background 11, 12
disabledforeground 13, 14
foreground 12, 13
highlightbackground 14, 15
selectbackground 15
selectforeground 15, 16

cursors 26, 27

D
dimensions 8

borderwidth 8

342  Building Modern GUIs with tkinter and Python

height 10
highlightthickness 8, 9
padX 9
padY 9
underline 10
width 11
wraplength 10

DoubleVar() 45-47

E
event types, tkinter

ButtonPress or Button 60
ButtonRelease 61
Configure 61
Enter 61
Event details 61
FocusIn 61
FocusOut 61
keyboard event 61
Keypress or Key 61
KeyRelease 61
Leave 61
Motion 61
mouse event 61
Mousewheel 61

F
file selection

handling, in tkinter 284-299
fonts 16

font object, creating 16, 17
tuple, using 19

G
Graphical User Interface (GUI) 1

element 53

GUI application
displaying 314-339

GUI creation
advantages 50
classes and objects, using 47-50

GUI interaction
using, with sqlite3 database 314

I
inbuilt variable classes 39, 40

BooleanVar() 42, 43
DoubleVar() 45-47
IntVar() 44, 45
StringVar() 40-42

instance-level binding 62
IntVar() 44, 45

K
keyboard events 62

L
lambda expressions

advantages 69

M
mouse events 62
mycall(event) method 64
mycallme(event) method 64

O
objects

for GUI creation 47-50

P
Python tkinter geometry management

28
geometry method 35, 36
grid() 29-32

Index  343

pack() 28, 29
place() 32-34

Python tkinter GUI
standard attributes 8

R
relief styles 24

S
showerror() 196
showinfo() 194, 195
showwarning() 195
sqlite3 browse data 331
sqlite3 database

GUI interaction, with 314
sqlite3 database structure 331
standard attributes, Python tkinter GUI

anchors 19
colors 11
dimensions 8
fonts 16

StringVar() 40-42

T
Tcl/Tk 2
tkinter 2, 3

file selection, handling 284-299
tkinter Button Widget 54-59

command option 54
event bindings 60
events 60, 61
examples 63-80
justify option 54
keyboard events 62
mouse events 62

tkinter Canvas widget 267

examples 268-281
options 268

tkinter Checkbutton widget 81-88
command option 81
deselect method 89
example 89, 90
flash method 89
invoke method 89
offvalue option 81
onvalue option 81
options 81
select method 88
text option 81
toggle method 89
variable option 81

tkinter Combobox widget 164
example 165-172
methods 165
options 165

tkinter Entry widget 106-120
command option 106
delete () method 110
exportselection option 107
get() method 111
icursor(index) method 111
index(index) method 113
insert(index,mystr) method 112
option 106
select_adjust(index) method 113
selectborderwidth option 107
select_clear() method 115
select_from(index) method 115
select_present() method 115
select_range(start, end) method 115
select_to(index) method 115

344  Building Modern GUIs with tkinter and Python

show option 107
state option 107
textvariable option 107
validatecommand option 121
validate option 121
validation 121-124
xscrollcommand option 107
xview(index) method 120
xview_scroll(number, what) method

120
tkinter Frame Widget 204-208
tkinter LabelFrame widget 209

examples 209-212
options 209

tkinter Label widget 176
creating 177-190
options 176

tkinter Listbox widget 236
examples 237-245
methods 236, 237
options 236

tkinter Menubutton widget 263
examples 264-267
options 264

tkinter Menu widget 248
examples 249-263
methods 249
options 248

tkinter MessageBox widget 193, 194
askokcancel() 198, 199
askquestion() 197, 198
askretrycancel() 200, 201
askyesno() 199, 200
showerror() 196
showinfo() 194, 195

showwarning() 195
tkinter Message widget 191

options 191-193
tkinter OptionMenu widget 100-102
tkinter PanedWindow widget 214, 215

examples 216-220
methods 215, 216
options 215

tkinter Radiobutton widget 91
command option 91
deselect method 98
examples 92-100
flash method 98
image option 91
indicatoron option 92
invoke method 98
options 91, 92
selectcolor option 91
selectimage option 91
select method 98
state option 91
text option 91
textvariable option 91
value option 91
variable option 92

tkinter Scale widget 138
examples 140-145
methods 139
options 139

tkinter Scrollbar widget 126
command option 126
elementborderwidth option 126
get method 127
jump option 126
methods, using 127

Index  345

orient option 126
pack method 127
repeatdelay option 126
repeatinterval option 126
scrollbar, attached to Canvas 130, 131
scrollbar, attached to Entry 131, 132
scrollbar, attached to Listbox 127, 128
scrollbar, attached to Text 128, 130
set(first, last) method 127
takefocus option 126
troughcolor option 127

tkinter Spinbox widget 132
command option 133
delete(startindex [,endindex]) method

134
examples 134-138
format option 133
from_option 133
get(startindex [,endindex]) method 134
identify(x,y) method 134
index(index) method 134
insert(index [,string]...) method 134
option 133
repeatdelay option 133
repeatinterval option 133
selection_clear() method 134
selection_get() method 134

textvariable option 133
to option 133
validatecommand option 133
validate option 133
wrap option 133
xscrollcommand option 133

tkinter Tabbed/Notebook widget 212
examples 213, 214
options 213

tkinter Text widget 145
examples 147-164
methods 146, 147
options 145, 146

tkinter Toplevel widget 221
example 222-232
methods 221, 222
options 221

Tool Command Language (Tcl) 2
trace, in tkinter 308

trace_add() 309
trace_info() 309-311
trace_remove() 309

W
widget information

obtaining 302-308

	Book title

	Inner title

	Copyright
	Dedicated
	About the Authors
	About the Reviewer
	Acknowledgements
	Preface
	Code Bundle and Coloured Images
	Piracy
	Table of Contents
	Chapter 1: tkinter Introduction
	Introduction
	Structure
	Objectives
	Introduction to tkinter
	Basic Python GUI program
	Some standard attributes of Python tkinter GUI
	Dimensions
	highlightthickness
	padX, padY
	wraplength
	height
	underline
	width

	Colors
	activebackground
	background
	activeforeground
	foreground
	disabledforeground
	highlightbackground
	selectbackground
	selectforeground

	Fonts
	By creating a font object
	By using tuple

	Anchors
	Placing widget position when anchor = N
	Placing widget position when anchor = S
	Placing widget position when anchor = E
	Placing widget position when anchor = W
	Placing widget position when anchor = NE
	Placing widget position when anchor = NW
	Placing widget position when anchor = SE
	Placing widget position when anchor = SW
	Placing widget position when anchor = CENTER

	Relief styles
	Bitmaps
	Cursors
	Python tkinter geometry management
	pack()
	grid()
	place()
	Geometry method in tkinter

	Conclusion
	Points to remember
	Questions

	Chapter 2: Inbuilt Variable Classes for Python tkinter GUI Widgets

	Introduction
	Structure
	Objectives
	Inbuilt variable classes
	StringVar()
	BooleanVar()
	IntVar()
	DoubleVar()
	GUI creation using classes and objects
	Conclusion
	Points to remember
	Questions

	Chapter 3: Getting Insights of Button Widgets in tkinter
	Introduction
	Structure
	Objectives
	tkinter Button Widget
	Events and bindings
	event type

	tkinter Checkbutton widget
	tkinter Radiobutton widget
	tkinter OptionMenu widget
	Conclusion
	Points of remember
	Questions

	Chapter 4: Getting Insights of Input Widgets in tkinter
	Introduction
	Structure
	Objectives
	tkinter Entry widget
	Validation in the Entry widget

	tkinter Scrollbar widget
	Scrollbar attached to Listbox
	Scrollbar attached to Text
	Scrollbar attached to Canvas
	Scrollbar attached to Entry

	tkinter Spinbox widget
	tkinter Scale widget
	tkinter Text widget
	tkinter Combobox Widget
	Conclusion
	Points to remember
	Questions

	Chapter 5: Getting Insights of Display Widgets in tkinter
	Introduction
	Structure
	Objectives
	tkinter Label Widget
	tkinter Message Widget
	tkinter MessageBox Widget
	showinfo()
	showwarning()
	showerror()
	askquestion()
	askokcancel()
	askyesno()
	askretrycancel()

	Conclusion
	Points of remember
	Questions

	Chapter 6: Getting Insights of
Container Widgets in tkinter
	Introduction
	Structure
	Objectives
	tkinter Frame Widget
	tkinter LabelFrame Widget
	tkinter Tabbed/Notebook Widget
	tkinter PanedWindow widget
	tkinter Toplevel widget
	Conclusion
	Points of remember
	Questions

	Chapter 7: Getting Insights of Item Widgets in tkinter
	Introduction
	Structure
	Objectives
	tkinter Listbox widget
	Conclusion
	Points of remember
	Questions

	Chapter 8: Getting Insights of tkinter User Interactive Widgets
	Introduction
	Structure
	Objectives
	tkinter Menu widget
	tkinter Menubutton widget
	tkinter Canvas widget
	Conclusion
	Points to remember
	Questions

	Chapter 9: Handling File Selection in tkinter
	Introduction
	Structure
	Objectives
	Handling file selection in tkinter
	Conclusion
	Points of remember
	Questions

	Chapter 10: Getting Widget Information and Trace in tkinter
	Introduction
	Structure
	Getting widget information
	Trace in tkinter
	trace_add()
	trace_remove()
	trace_info()

	Points to remember
	Questions

	Chapter 11: UserLogin Project in tkinter GUI Library with sqlite3 Database
	Introduction
	Structure
	Objectives
	GUI interaction with sqlite3 database
	Displaying a GUI application
	Conclusion
	Points to remember
	Questions

	Index
	Back title

