
Allen B. Downey

Think Python
Third

Edition

How to Think Like a Computer Scientist

PY THON PROGR AMMING

 “An outstanding guide
for interested adults
to learn programming
from scratch through
exercises (the only way).
Even better, this third
edition makes readers
comfortable with modern
tools of the trade—
Jupyter Notebooks and
AI coding assistants.”

—Luciano Ramalho
Author of Fluent Python

 “An excellent introduction
to Python programming
without a single
superfluous word or line
of code. The third edition
is especially exciting
because it teaches you
how you can use large
language models to
deepen your knowledge
of programming even
as a beginner.”

—Sam Lau
Coauthor of Learning Data Science

Think Python

linkedin.com/company/oreilly-media
youtube.com/oreillymedia

Python is an excellent way to get started in programming,
and this clear, concise guide walks you through the language
a step at a time—beginning with basic programming concepts,
then moving on to functions, data structures, and object-oriented
programming. This revised third edition reflects the growing
role of large language models (LLMs) in programming
and includes exercises on effective LLM prompts, testing
code, and debugging.

Through exercises in each chapter, you’ll try out programming
skills as you learn them. Author Allen Downey focuses on
fundamental programming concepts that will remain relevant
even as the tools evolve. With this popular hands-on guide,
you’ll learn:

•	 The syntax and semantics of the Python language

•	 A clear definition of each programming concept,
with emphasis on important vocabulary

•	 How to work with variables, statements,
functions, and data structures

•	 Techniques for reading and writing files and databases

•	 Fundamentals of objects, methods,
and object-oriented programming

•	 Debugging strategies for syntax, runtime,
and semantic errors

•	 How to use LLMs to accelerate your learning—including
effective prompts, testing code, and debugging

Allen B. Downey is a professor emeritus at Olin College
of Engineering and the author of several other books
on programming and data science.

9 7 8 1 0 9 8 1 5 5 4 3 8

5 4 8 9 9

US $48.99	 CAN $61.99
ISBN: 978-1-098-15543-8

Allen B. Downey

Think Python
How to Think Like a Computer Scientist

THIRD EDITION

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-15543-8

[LSI]

Think Python
by Allen B. Downey

Copyright © 2024 Allen B. Downey. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (https://oreilly.com). For more information, contact our corporate/institu‐
tional sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Brian Guerin
Development Editor: Jeff Bleiel
Production Editor: Christopher Faucher
Copyeditor: Sonia Saruba
Proofreader: Kim Cofer

Indexer: Ellen Troutman-Zaig
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

August 2012: First Edition
December 2015: Second Edition
June 2024: Third Edition

Revision History for the Third Edition
2024-05-24: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098155438 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Think Python, the cover image, and
related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent the publisher’s views. While
the publisher and the author have used good faith efforts to ensure that the information and instructions
contained in this work are accurate, the publisher and the author disclaim all responsibility for errors or
omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any
code samples or other technology this work contains or describes is subject to open source licenses or the
intellectual property rights of others, it is your responsibility to ensure that your use thereof complies
with such licenses and/or rights.

https://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098155438

Table of Contents

Preface. xi

1. Programming as a Way of Thinking. 1
Arithmetic Operators 1
Expressions 3
Arithmetic Functions 4
Strings 5
Values and Types 6
Formal and Natural Languages 9
Debugging 9
Glossary 10
Exercises 11

2. Variables and Statements. 15
Variables 15
State Diagrams 16
Variable Names 16
The import Statement 18
Expressions and Statements 18
The print Function 19
Arguments 20
Comments 21
Debugging 22
Glossary 23
Exercises 24

iii

3. Functions. 27
Defining New Functions 27
Parameters 28
Calling Functions 29
Repetition 31
Variables and Parameters Are Local 32
Stack Diagrams 33
Tracebacks 33
Why Functions? 34
Debugging 35
Glossary 35
Exercises 36

4. Functions and Interfaces. 39
The jupyturtle Module 39
Making a Square 41
Encapsulation and Generalization 42
Approximating a Circle 44
Refactoring 45
Stack Diagram 47
A Development Plan 47
Docstrings 48
Debugging 49
Glossary 49
Exercises 50

5. Conditionals and Recursion. 55
Integer Division and Modulus 55
Boolean Expressions 56
Logical Operators 58
if Statements 59
The else Clause 59
Chained Conditionals 60
Nested Conditionals 60
Recursion 61
Stack Diagrams for Recursive Functions 63
Infinite Recursion 63
Keyboard Input 64
Debugging 65
Glossary 66
Exercises 67

iv | Table of Contents

6. Return Values. 73
Some Functions Have Return Values 73
And Some Have None 75
Return Values and Conditionals 76
Incremental Development 77
Boolean Functions 80
Recursion with Return Values 81
Leap of Faith 83
Fibonacci 84
Checking Types 84
Debugging 85
Glossary 87
Exercises 87

7. Iteration and Search. 91
Loops and Strings 91
Reading the Word List 93
Updating Variables 94
Looping and Counting 95
The in Operator 96
Search 98
Doctest 99
Glossary 100
Exercises 101

8. Strings and Regular Expressions. 105
A String Is a Sequence 105
String Slices 107
Strings Are Immutable 108
String Comparison 109
String Methods 109
Writing Files 110
Find and Replace 112
Regular Expressions 113
String Substitution 116
Debugging 117
Glossary 118
Exercises 119

9. Lists. 121
A List Is a Sequence 121

Table of Contents | v

Lists Are Mutable 122
List Slices 123
List Operations 124
List Methods 125
Lists and Strings 126
Looping Through a List 127
Sorting Lists 128
Objects and Values 129
Aliasing 130
List Arguments 131
Making a Word List 131
Debugging 133
Glossary 133
Exercises 134

10. Dictionaries. 137
A Dictionary Is a Mapping 137
Creating Dictionaries 139
The in Operator 140
A Collection of Counters 142
Looping and Dictionaries 143
Lists and Dictionaries 144
Accumulating a List 144
Memos 146
Debugging 147
Glossary 148
Exercises 149

11. Tuples. 153
Tuples Are Like Lists 153
But Tuples Are Immutable 155
Tuple Assignment 156
Tuples as Return Values 158
Argument Packing 159
Zip 161
Comparing and Sorting 163
Inverting a Dictionary 165
Debugging 166
Glossary 167
Exercises 167

vi | Table of Contents

12. Text Analysis and Generation. 171
Unique Words 171
Punctuation 172
Word Frequencies 175
Optional Parameters 176
Dictionary Subtraction 177
Random Numbers 178
Bigrams 181
Markov Analysis 183
Generating Text 185
Debugging 186
Glossary 188
Exercises 188

Exercise 190

13. Files and Databases. 191
Filenames and Paths 191
f-strings 193
YAML 195
Shelve 196
Storing Data Structures 199
Checking for Equivalent Files 201
Walking Directories 203
Debugging 204
Glossary 205
Exercises 206

14. Classes and Functions. 209
Programmer-Defined Types 209
Attributes 210
Objects as Return Values 212
Objects Are Mutable 212
Copying 213
Pure Functions 214
Prototype and Patch 215
Design-First Development 217
Debugging 219
Glossary 220
Exercises 221

Table of Contents | vii

15. Classes and Methods. 223
Defining Methods 223
Another Method 225
Static Methods 225
Comparing Time Objects 227
The __str__ Method 227
The __init__ Method 228
Operator Overloading 229
Debugging 230
Glossary 231
Exercises 232

16. Classes and Objects. 233
Creating a Point 233
Creating a Line 235
Equivalence and Identity 237
Creating a Rectangle 238
Changing Rectangles 240
Deep Copy 242
Polymorphism 244
Debugging 245
Glossary 246
Exercises 246

17. Inheritance. 249
Representing Cards 249
Card Attributes 251
Printing Cards 252
Comparing Cards 252
Decks 256
Printing the Deck 256
Add, Remove, Shuffle, and Sort 257
Parents and Children 259
Specialization 261
Debugging 262
Glossary 263
Exercises 264

18. Python Extras. 269
Sets 269
Counters 272

viii | Table of Contents

defaultdict 274
Conditional Expressions 275
List Comprehensions 277
any and all 279
Named Tuples 279
Packing Keyword Arguments 281
Debugging 283
Glossary 285
Exercises 286

19. Final Thoughts. 289

Index. 293

Table of Contents | ix

Preface

Who Is This Book For?
If you want to learn to program, you have come to the right place. Python is one of
the best programming languages for beginners—and it is also one of the most in-
demand skills.

You have also come at the right time, because learning to program now is probably
easier than ever. With virtual assistants like ChatGPT, you don’t have to learn alone.
Throughout this book, I’ll suggest ways you can use these tools to accelerate your
learning.

This book is primarily for people who have never programmed before and people
who have some experience in another programming language. If you have substantial
experience in Python, you might find the first few chapters too slow.

One of the challenges of learning to program is that you have to learn two languages:
one is the programming language itself; the other is the vocabulary we use to talk
about programs. If you learn only the programming language, you are likely to have
problems when you need to interpret an error message, read documentation, talk to
another person, or use virtual assistants. If you have done some programming, but
you have not also learned this second language, I hope you find this book helpful.

Goals of the Book
Writing this book, I tried to be careful with the vocabulary. I define each term when it
first appears. And there is a glossary at the end of each chapter that reviews the terms
that were introduced.

I also tried to be concise. The less mental effort it takes to read the book, the more
capacity you will have for programming.

xi

But you can’t learn to program just by reading a book—you have to practice. For that
reason, this book includes exercises at the end of every chapter where you can prac‐
tice what you have learned.

If you read carefully and work on exercises consistently, you will make progress. But
I’ll warn you now—learning to program is not easy, and even for experienced pro‐
grammers it can be frustrating. As we go, I will suggest strategies to help you write
correct programs and fix incorrect ones.

Navigating the Book
Each chapter in this book builds on the previous ones, so you should read them in
order and take time to work on the exercises before you move on.

The first six chapters introduce basic elements like arithmetic, conditionals, and
loops. They also introduce the most important concept in programming, functions,
and a powerful way to use them, recursion.

Chapters 7 and 8 introduce strings—which can represent letters, words, and senten‐
ces—and algorithms for working with them.

Chapters 9 through 12 introduce Python’s core data structures—lists, dictionaries,
and tuples—which are powerful tools for writing efficient programs. Chapter 12
presents algorithms for analyzing text and randomly generating new text. Algorithms
like these are at the core of large language models (LLMs), so this chapter will give
you an idea of how tools like ChatGPT work.

Chapter 13 is about ways to store data in long-term storage—files and databases. As
an exercise, you can write a program that searches a filesystem and finds duplicate
files.

Chapters 14 through 17 introduce object-oriented programming (OOP), which is a
way to organize programs and the data they work with. Many Python libraries are
written in object-oriented style, so these chapters will help you understand their
design—and define your own objects.

The goal of this book is not to cover the entire Python language. Rather, I focus on a
subset of the language that provides the greatest capability with the fewest concepts.
Nevertheless, Python has a lot of features you can use to solve common problems
efficiently. Chapter 18 presents some of these features.

Finally, Chapter 19 presents my parting thoughts and suggestions for continuing your
programming journey.

xii | Preface

What’s New in the Third Edition?
The biggest changes in this edition were driven by two new technologies—Jupyter
notebooks and virtual assistants.

Each chapter of this book is a Jupyter notebook, which is a document that contains
both ordinary text and code. For me, that makes it easier to write the code, test it, and
keep it consistent with the text. For you, it means you can run the code, modify it,
and work on the exercises, all in one place. Instructions for working with the note‐
books are in the first chapter.

The other big change is that I’ve added advice for working with virtual assistants like
ChatGPT and using them to accelerate your learning. When the previous edition of
this book was published in 2015, the predecessors of these tools were far less useful
and most people were unaware of them. Now they are a standard tool for software
engineering, and I think they will be a transformational tool for learning to program
—and learning a lot of other things, too.

The other changes in the book were motivated by my regrets about the second edi‐
tion. The first is that I did not emphasize software testing. That was already a regret‐
table omission in 2015, but with the advent of virtual assistants, automated testing
has become even more important. So this edition presents Python’s most widely used
testing tools, doctest and unittest, and includes several exercises where you can
practice working with them.

My other regret is that the exercises in the second edition were uneven—some were
more interesting than others and some were too hard. Moving to Jupyter notebooks
helped me develop and test a more engaging and effective sequence of exercises.

In this revision, the sequence of topics is almost the same, but I rearranged a few of
the chapters and compressed two short chapters into one. Also, I expanded the cover‐
age of strings to include regular expressions.

A few chapters use turtle graphics. In previous editions, I used Python’s turtle mod‐
ule, but unfortunately it doesn’t work in Jupyter notebooks. So I replaced it with a
new turtle module that should be easier to use.

Finally, I rewrote a substantial fraction of the text, clarifying places that needed it and
cutting back in places where I was not as concise as I could be.

I am very proud of this new edition—I hope you like it!

Preface | xiii

Getting Started
For most programming languages, including Python, there are many tools you can
use to write and run programs. These tools are called integrated development envi‐
ronments (IDEs). In general, there are two kinds of IDEs:

• Some work with files that contain code, so they provide tools for editing and run‐
ning these files.

• Others work primarily with notebooks, which are documents that contain text
and code.

For beginners, I recommend starting with a notebook development environment like
Jupyter. The notebooks for this book are available from an online repository at
https://allendowney.github.io/ThinkPython. There are two ways to use them:

• You can download the notebooks and run them on your own computer. In that
case, you have to install Python and Jupyter, which is not hard, but if you want to
learn Python, it can be frustrating to spend a lot of time installing software.

• An alternative is to run the notebooks on Colab, which is a Jupyter environment
that runs in a web browser, so you don’t have to install anything. Colab is oper‐
ated by Google, and it is free to use.

If you are just getting started, I strongly recommend you start with Colab.

Resources for Teachers
If you are teaching with this book, here are some resources you might find useful.

• You can find notebooks with solutions to the exercises, along with links to the
additional resources listed here, at https://allendowney.github.io/ThinkPython.

• Quizzes for each chapter, and a summative quiz for the whole book, are available
in the O’Reilly Learning Platform version of this book.

• Teaching and Learning with Jupyter is an online book with suggestions for using
Jupyter effectively in the classroom. You can read the book at https://
jupyter4edu.github.io/jupyter-edu-book.

• One of the best ways to use notebooks is live coding, where an instructor writes
code and students follow along in their own notebooks. To learn about live cod‐
ing—and get other great advice about teaching programming—I recommend the
instructor training provided by The Carpentries, at https://carpentries.github.io/
instructor-training.

xiv | Preface

https://allendowney.github.io/ThinkPython
https://allendowney.github.io/ThinkPython
https://oreil.ly/think-python-3e
https://jupyter4edu.github.io/jupyter-edu-book
https://jupyter4edu.github.io/jupyter-edu-book
https://carpentries.github.io/instructor-training
https://carpentries.github.io/instructor-training

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Bold
Indicates the first introduction of new technical term, which also has a corre‐
sponding glossary entry.

Constant width

Used for program listings, as well as within paragraphs to refer to program ele‐
ments such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Using Code Examples
Supplemental material (code examples, exercises, etc.) is available for download at
https://allendowney.github.io/ThinkPython.

If you have a technical question or a problem using the code examples, please send
email to support@oreilly.com.

This book is here to help you get your job done. In general, if example code is offered
with this book, you may use it in your programs and documentation. You do not
need to contact us for permission unless you’re reproducing a significant portion of
the code. For example, writing a program that uses several chunks of code from this
book does not require permission. Selling or distributing examples from O’Reilly
books does require permission. Answering a question by citing this book and quoting
example code does not require permission. Incorporating a significant amount of
example code from this book into your product’s documentation does require
permission.

We appreciate, but generally do not require, attribution. An attribution usually
includes the title, author, publisher, and ISBN. For example: “Think Python by Allen
B. Downey (O’Reilly). Copyright 2024 Allen B. Downey, 978-1-098-15543-8.”

If you feel your use of code examples falls outside fair use or the permission given
above, feel free to contact us at permissions@oreilly.com.

Preface | xv

https://allendowney.github.io/ThinkPython
mailto:support@oreilly.com
mailto:permissions@oreilly.com

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-827-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/think-python-3e.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Watch us on YouTube: https://youtube.com/oreillymedia

Acknowledgments
Many thanks to Jeff Elkner, who translated my Java book into Python, which got this
project started and introduced me to what has turned out to be my favorite language.
Thanks also to Chris Meyers, who contributed several sections to How to Think Like a
Computer Scientist (Green Tea Press).

Thanks to the Free Software Foundation for developing the GNU Free Documenta‐
tion License, which helped make my collaboration with Jeff and Chris possible, and
thanks to the Creative Commons for the license I am using now.

xvi | Preface

https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/think-python-3e
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://youtube.com/oreillymedia

Thanks to the developers and maintainers of the Python language and the libraries I
used, including the turtle graphics module; the tools I used to develop the book,
including Jupyter and JupyterBook; and the services I used, including ChatGPT,
Copilot, Colab, and GitHub.

Thanks to the editors at Lulu who worked on How to Think Like a Computer Scientist
and the editors at O’Reilly Media who worked on Think Python.

Special thanks to the technical reviewers for the second edition, Melissa Lewis and
Luciano Ramalho, and for the third edition, Sam Lau and Luciano Ramalho (again!).
I am also grateful to Luciano for developing the turtle graphics module I use in sev‐
eral chapters, called jupyturtle.

Thanks to all the students who worked with earlier versions of this book and all the
contributors who sent in corrections and suggestions. More than one hundred sharp-
eyed and thoughtful readers have sent in suggestions and corrections over the past
few years. Their contributions, and enthusiasm for this project, have been a huge
help.

If you have a suggestion or correction, please email feedback@thinkpython.com. If you
include at least part of the sentence the error appears in, that makes it easy for me to
search. Page and section numbers are fine, too, but not quite as easy to work with.
Thanks!

Preface | xvii

CHAPTER 1

Programming as a Way of Thinking

The first goal of this book is to teach you how to program in Python. But learning to
program means learning a new way to think, so the second goal of this book is to help
you think like a computer scientist. This way of thinking combines some of the best
features of mathematics, engineering, and natural science. Like mathematicians, com‐
puter scientists use formal languages to denote ideas—specifically computations. Like
engineers, they design things, assembling components into systems and evaluating
trade-offs among alternatives. Like scientists, they observe the behavior of complex
systems, form hypotheses, and test predictions.

We will start with the most basic elements of programming and work our way up. In
this chapter, we’ll see how Python represents numbers, letters, and words. And you’ll
learn to perform arithmetic operations.

You will also start to learn the vocabulary of programming, including terms like oper‐
ator, expression, value, and type. This vocabulary is important—you will need it to
understand the rest of the book, to communicate with other programmers, and to use
and understand virtual assistants.

Arithmetic Operators
An arithmetic operator is a symbol that represents an arithmetic computation. For
example, the plus sign, +, performs addition:

30 + 12

42

1

The minus sign, –, is the operator that performs subtraction:

43 - 1

42

The asterisk, *, performs multiplication:

6 * 7

42

And the forward slash, /, performs division:

84 / 2

42.0

Notice that the result of the division is 42.0 rather than 42. That’s because there are
two types of numbers in Python:

• integers, which represent whole numbers, and
• floating-point numbers, which represent numbers with a decimal point.

If you add, subtract, or multiply two integers, the result is an integer. But if you divide
two integers, the result is a floating-point number. Python provides another opera‐
tor, //, that performs integer division. The result of integer division is always an
integer:

84 // 2

42

Integer division is also called “floor division” because it always rounds down (toward
the “floor”):

85 // 2

42

2 | Chapter 1: Programming as a Way of Thinking

Finally, the operator ** performs exponentiation; that is, it raises a number to a
power:

7 ** 2

49

In some other languages, the caret, ^, is used for exponentiation, but in Python it is a
bitwise operator called XOR. If you are not familiar with bitwise operators, the result
might be unexpected:

7 ^ 2

5

I won’t cover bitwise operators in this book, but you can read about them at http://
wiki.python.org/moin/BitwiseOperators.

Expressions
A collection of operators and numbers is called an expression. An expression can
contain any number of operators and numbers. For example, here’s an expression that
contains two operators:

6 + 6 ** 2

42

Notice that exponentiation happens before addition. Python follows the order of
operations you might have learned in a math class: exponentiation happens before
multiplication and division, which happen before addition and subtraction.

In the following example, multiplication happens before addition:

12 + 5 * 6

42

If you want the addition to happen first, you can use parentheses:

(12 + 5) * 6

102

Every expression has a value. For example, the expression 6 * 7 has the value 42.

Expressions | 3

http://wiki.python.org/moin/BitwiseOperators
http://wiki.python.org/moin/BitwiseOperators

Arithmetic Functions
In addition to the arithmetic operators, Python provides a few functions that work
with numbers. For example, the round function takes a floating-point number and
rounds it off to the nearest whole number:

round(42.4)

42

round(42.6)

43

The abs function computes the absolute value of a number. For a positive number,
the absolute value is the number itself:

abs(42)

42

For a negative number, the absolute value is positive:

abs(-42)

42

When we use a function like this, we say we’re calling the function. An expression
that calls a function is a function call.

When you call a function, the parentheses are required. If you leave them out, you get
an error message:

abs 42

 Cell In[18], line 1
 abs 42
 ^
SyntaxError: invalid syntax

You can ignore the first line of this message; it doesn’t contain any information we
need to understand right now. The second line is the code that contains the error,
with a caret (^) beneath it to indicate where the error was discovered.

4 | Chapter 1: Programming as a Way of Thinking

The last line indicates that this is a syntax error, which means that there is something
wrong with the structure of the expression. In this example, the problem is that a
function call requires parentheses.

Let’s see what happens if you leave out the parentheses and the value:

abs

<function abs(x, /)>

A function name all by itself is a legal expression that has a value. When it’s displayed,
the value indicates that abs is a function, and it includes some additional information
I’ll explain later.

Strings
In addition to numbers, Python can also represent sequences of letters, which are
called strings because the letters are strung together like beads on a necklace. To write
a string, we can put a sequence of letters inside straight quotation marks:

'Hello'

'Hello'

It is also legal to use double quotation marks:

"world"

'world'

Double quotes make it easy to write a string that contains an apostrophe, which is the
same symbol as a straight quote:

"it's a small "

"it's a small "

Strings can also contain spaces, punctuation, and digits:

'Well, '

'Well, '

Strings | 5

The + operator works with strings; it joins two strings into a single string, which is
called concatenation:

'Well, ' + "it's a small " + 'world.'

"Well, it's a small world."

The * operator also works with strings; it makes multiple copies of a string and con‐
catenates them:

'Spam, ' * 4

'Spam, Spam, Spam, Spam, '

The other arithmetic operators don’t work with strings.

Python provides a function called len that computes the length of a string:

len('Spam')

4

Notice that len counts the letters between the quotes, but not the quotes.

When you create a string, be sure to use straight quotes. The backquote, also known
as a backtick, causes a syntax error:

 `Hello`

 Cell In[49], line 1
 `Hello`
 ^
SyntaxError: invalid syntax

Smart quotes, also known as curly quotes, are also illegal.

Values and Types
So far we’ve seen three kinds of values:

• 2 is an integer,
• 42.0 is a floating-point number, and
• 'Hello' is a string.

6 | Chapter 1: Programming as a Way of Thinking

A kind of value is called a type. Every value has a type—or we sometimes say it
“belongs to” a type.

Python provides a function called type that tells you the type of any value. The type
of an integer is int:

type(2)

int

The type of a floating-point number is float:

type(42.0)

float

And the type of a string is str:

type('Hello, World!')

str

The types int, float, and str can be used as functions. For example, int can take a
floating-point number and convert it to an integer (always rounding down):

int(42.9)

42

And float can convert an integer to a floating-point value:

float(42)

42.0

Now, here’s something that can be confusing. What do you get if you put a sequence
of digits in quotes?

'126'

'126'

Values and Types | 7

It looks like a number, but it is actually a string:

type('126')

str

If you try to use it like a number, you might get an error:

'126' / 3

TypeError: unsupported operand type(s) for /: 'str' and 'int'

This example generates a TypeError, which means that the values in the expression,
which are called operands, have the wrong type. The error message indicates that
the / operator does not support the types of these values, which are str and int.

If you have a string that contains digits, you can use int to convert it to an integer:

int('126') / 3

42.0

If you have a string that contains digits and a decimal point, you can use float to
convert it to a floating-point number:

float('12.6')

12.6

When you write a large integer, you might be tempted to use commas between groups
of digits, as in 1,000,000. This is a legal expression in Python, but the result is not an
integer:

1,000,000

(1, 0, 0)

Python interprets 1,000,000 as a comma-separated sequence of integers. We’ll learn
more about this kind of sequence later.

You can use underscores to make large numbers easier to read:

1_000_000

1000000

8 | Chapter 1: Programming as a Way of Thinking

Formal and Natural Languages
Natural languages are the languages people speak, like English, Spanish, and French.
They were not designed by people; they evolved naturally.

Formal languages are languages that are designed by people for specific applications.
For example, the notation that mathematicians use is a formal language that is partic‐
ularly good at denoting relationships among numbers and symbols. Similarly, pro‐
gramming languages are formal languages that have been designed to express
computations.

Although formal and natural languages have some features in common there are
important differences:

Ambiguity
Natural languages are full of ambiguity, which people deal with by using contex‐
tual clues and other information. Formal languages are designed to be nearly or
completely unambiguous, which means that any program has exactly one mean‐
ing, regardless of context.

Redundancy
In order to make up for ambiguity and reduce misunderstandings, natural lan‐
guages use redundancy. As a result, they are often verbose. Formal languages are
less redundant and more concise.

Literalness
Natural languages are full of idiom and metaphor. Formal languages mean
exactly what they say.

Because we all grow up speaking natural languages, it is sometimes hard to adjust to
formal languages. Formal languages are more dense than natural languages, so it
takes longer to read them. Also, the structure is important, so it is not always best to
read from top to bottom, left to right. Finally, the details matter. Small errors in spell‐
ing and punctuation, which you can get away with in natural languages, can make a
big difference in a formal language.

Debugging
Programmers make mistakes. For whimsical reasons, programming errors are called
bugs and the process of tracking them down is called debugging.

Programming, and especially debugging, sometimes brings out strong emotions. If
you are struggling with a difficult bug, you might feel angry, sad, or embarrassed.

Preparing for these reactions might help you deal with them. One approach is to
think of the computer as an employee with certain strengths, like speed and

Debugging | 9

precision, and particular weaknesses, like lack of empathy and an inability to grasp
the big picture.

Your job is to be a good manager: find ways to take advantage of the strengths and
mitigate the weaknesses. And find ways to use your emotions to engage with the
problem, without letting your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many
activities beyond programming. At the end of each chapter there is a section, like this
one, with my suggestions for debugging. I hope they help!

Glossary
arithmetic operator: A symbol, like + and *, that denotes an arithmetic operation
like addition or multiplication.

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional parts.

integer division: An operator, //, that divides two numbers and rounds down to an
integer.

expression: A combination of variables, values, and operators.

value: An integer, floating-point number, or string—or one of other kinds of values
we will see later.

function: A named sequence of statements that performs some useful operation.
Functions may or may not take arguments and may or may not produce a result.

function call: An expression—or part of an expression—that runs a function. It con‐
sists of the function name followed by an argument list in parentheses.

syntax error: An error in a program that makes it impossible to parse—and therefore
impossible to run.

string: A type that represents sequences of characters.

concatenation: Joining two strings end to end.

type: A category of values. The types we have seen so far are integers (type int),
floating-point numbers (type float), and strings (type str).

operand: One of the values on which an operator operates.

natural language: Any of the languages that people speak that evolved naturally.

10 | Chapter 1: Programming as a Way of Thinking

formal language: Any of the languages that people have designed for specific pur‐
poses, such as representing mathematical ideas or computer programs. All program‐
ming languages are formal languages.

bug: An error in a program.

debugging: The process of finding and correcting errors.

Exercises
Ask a Virtual Assistant
As you work through this book, there are several ways you can use a virtual assistant
or chatbot to help you learn:

• If you want to learn more about a topic in the chapter, or anything is unclear, you
can ask for an explanation.

• If you are having a hard time with any of the exercises, you can ask for help.

In each chapter, I’ll suggest exercises you can do with a virtual assistant, but I encour‐
age you to try things on your own and see what works for you.

Here are some topics you could ask a virtual assistant about:

• Earlier I mentioned bitwise operators but I didn’t explain why the value of 7 ^ 2
is 5. Try asking “What are the bitwise operators in Python?” or “What is the value
of 7 XOR 2?”

• I also mentioned the order of operations. For more details, ask “What is the order
of operations in Python?”

• The round function, which we used to round a floating-point number to the
nearest whole number, can take a second argument. Try asking “What are the
arguments of the round function?” or “How do I round pi off to three decimal
places?”

• There’s one more arithmetic operator I didn’t mention; try asking “What is the
modulus operator in Python?”

Most virtual assistants know about Python, so they answer questions like this pretty
reliably. But remember that these tools make mistakes. If you get code from a chatbot,
test it!

Exercises | 11

Exercise
You might wonder what round does if a number ends in 0.5. The answer is that it
sometimes rounds up and sometimes rounds down. Try these examples and see if you
can figure out what rule it follows:

round(42.5)

42

round(43.5)

44

If you are curious, ask a virtual assistant, “If a number ends in 0.5, does Python round
up or down?”

Exercise
When you learn about a new feature, you should try it out and make mistakes on
purpose. That way, you learn the error messages, and when you see them again, you
will know what they mean. It is better to make mistakes now and deliberately than
later and accidentally.

1. You can use a minus sign to make a negative number like -2. What happens if
you put a plus sign before a number? What about 2++2?

2. What happens if you have two values with no operator between them, like 4 2?
3. If you call a function like round(42.5), what happens if you leave out one or

both parentheses?

Exercise
Recall that every expression has a value, every value has a type, and we can use the
type function to find the type of any value.

What is the type of the value of the following expressions? Make your best guess for
each one, and then use type to find out.

• 765

• 2.718

• '2 pi'

• abs(-7)

• abs(-7.0)

• abs

• int

• type

12 | Chapter 1: Programming as a Way of Thinking

Exercise
The following questions give you a chance to practice writing arithmetic expressions:

1. How many seconds are there in 42 minutes 42 seconds?
2. How many miles are there in 10 kilometers? Hint: there are 1.61 kilometers in a

mile.
3. If you run a 10 kilometer race in 42 minutes 42 seconds, what is your average

pace in seconds per mile?
4. What is your average pace in minutes and seconds per mile?
5. What is your average speed in miles per hour?

If you already know about variables, you can use them for this exercise. If you don’t,
you can do the exercise without them—and then we’ll see them in the next chapter.

Exercises | 13

CHAPTER 2

Variables and Statements

In the previous chapter, we used operators to write expressions that perform arith‐
metic computations.

In this chapter, you’ll learn about variables and statements, the import statement, and
the print function. And I’ll introduce more of the vocabulary we use to talk about
programs, including “argument” and “module.”

Variables
A variable is a name that refers to a value. To create a variable, we can write an
assignment statement like this:

n = 17

An assignment statement has three parts: the name of the variable on the left, the
equals operator, =, and an expression on the right. In this example, the expression is
an integer. In the following example, the expression is a floating-point number:

pi = 3.141592653589793

And in the following example, the expression is a string:

message = 'And now for something completely different'

When you run an assignment statement, there is no output. Python creates the vari‐
able and gives it a value, but the assignment statement has no visible effect. However,
after creating a variable, you can use it as an expression. So we can display the value
of message like this:

15

message

'And now for something completely different'

You can also use a variable as part of an expression with arithmetic operators:

n + 25

42

2 * pi

6.283185307179586

And you can use a variable when you call a function:

round(pi)

3

len(message)

42

State Diagrams
A common way to represent variables on paper is to write the name with an arrow
pointing to its value:

This kind of figure is called a state diagram because it shows what state each of the
variables is in (think of it as the variable’s state of mind). We’ll use state diagrams
throughout the book to represent a model of how Python stores variables and their
values.

Variable Names
Variable names can be as long as you like. They can contain both letters and numbers,
but they can’t begin with a number. It is legal to use uppercase letters, but it is conven‐
tional to use only lowercase for variable names.

16 | Chapter 2: Variables and Statements

The only punctuation that can appear in a variable name is the underscore character,
_. It is often used in names with multiple words, such as your_name or air
speed_of_unladen_swallow.

If you give a variable an illegal name, you get a syntax error. The name million! is
illegal because it contains punctuation:

million! = 1000000

 Cell In[15], line 1
 million! = 1000000
 ^
SyntaxError: invalid syntax

76trombones is illegal because it starts with a number:

76trombones = 'big parade'

 Cell In[16], line 1
 76trombones = 'big parade'
 ^
SyntaxError: invalid decimal literal

class is also illegal, but it might not be obvious why:

 class = 'Self-Defence Against Fresh Fruit'

 Cell In[17], line 1
 class = 'Self-Defence Against Fresh Fruit'
 ^
SyntaxError: invalid syntax

It turns out that class is a keyword, which is a special word used to specify the struc‐
ture of a program. Keywords can’t be used as variable names.

Here’s a complete list of Python’s keywords:

False await else import pass
None break except in raise
True class finally is return
and continue for lambda try
as def from nonlocal while
assert del global not with
async elif if or yield

You don’t have to memorize this list. In most development environments, keywords
are displayed in a different color; if you try to use one as a variable name, you’ll know.

Variable Names | 17

The import Statement
In order to use some Python features, you have to import them. For example, the fol‐
lowing statement imports the math module:

import math

A module is a collection of variables and functions. The math module provides a
variable called pi that contains the value of the mathematical constant denoted π. We
can display its value like this:

math.pi

3.141592653589793

To use a variable in a module, you have to use the dot operator (.) between the name
of the module and the name of the variable.

The math module also contains functions. For example, sqrt computes square roots:

math.sqrt(25)

5.0

And pow raises one number to the power of a second number:

math.pow(5, 2)

25.0

At this point we’ve seen two ways to raise a number to a power: we can use the
math.pow function or the exponentiation operator, **. Either one is fine, but the
operator is used more often than the function.

Expressions and Statements
So far, we’ve seen a few kinds of expressions. An expression can be a single value, like
an integer, floating-point number, or string. It can also be a collection of values and
operators. And it can include variable names and function calls. Here’s an expression
that includes several of these elements:

19 + n + round(math.pi) * 2

42

18 | Chapter 2: Variables and Statements

We have also seen a few kinds of statements. A statement is a unit of code that has an
effect, but no value. For example, an assignment statement creates a variable and
gives it a value, but the statement itself has no value:

n = 17

Similarly, an import statement has an effect—it imports a module so we can use the
values and functions it contains—but it has no visible effect:

import math

Computing the value of an expression is called evaluation. Running a statement is
called execution.

The print Function
When you evaluate an expression, the result is displayed:

n + 1

18

But if you evaluate more than one expression, only the value of the last one is dis‐
played:

n + 2
n + 3

20

To display more than one value, you can use the print function:

print(n+2)
print(n+3)

19
20

It also works with floating-point numbers and strings:

print('The value of pi is approximately')
print(math.pi)

The value of pi is approximately
3.141592653589793

The print Function | 19

You can also use a sequence of expressions separated by commas:

print('The value of pi is approximately', math.pi)

The value of pi is approximately 3.141592653589793

Notice that the print function puts a space between the values.

Arguments
When you call a function, the expression in parentheses is called an argument. Nor‐
mally I would explain why, but in this case the technical meaning of a term has
almost nothing to do with the common meaning of the word, so I won’t even try.

Some of the functions we’ve seen so far take only one argument, like int:

int('101')

101

Some take two, like math.pow:

math.pow(5, 2)

25.0

Some can take additional arguments that are optional. For example, int can take a
second argument that specifies the base of the number:

int('101', 2)

5

The sequence of digits 101 in base 2 represents the number 5 in base 10.

round also takes an optional second argument, which is the number of decimal places
to round off to:

round(math.pi, 3)

3.142

20 | Chapter 2: Variables and Statements

Some functions can take any number of arguments, like print:

print('Any', 'number', 'of', 'arguments')

Any number of arguments

If you call a function and provide too many arguments, that’s a TypeError:

float('123.0', 2)

TypeError: float expected at most 1 argument, got 2

If you provide too few arguments, that’s also a TypeError:

math.pow(2)

TypeError: pow expected 2 arguments, got 1

And if you provide an argument with a type the function can’t handle, that’s a Type
Error, too:

math.sqrt('123')

TypeError: must be real number, not str

This kind of checking can be annoying when you are getting started, but it helps you
detect and correct errors.

Comments
As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out
what it is doing and why.

For this reason, it is a good idea to add notes to your programs to explain in natural
language what the program is doing. These notes are called comments, and they start
with the # symbol:

number of seconds in 42:42
seconds = 42 * 60 + 42

Comments | 21

In this case, the comment appears on a line by itself. You can also put comments at
the end of a line:

miles = 10 / 1.61 # 10 kilometers in miles

Everything from the # to the end of the line is ignored—it has no effect on the execu‐
tion of the program. Comments are most useful when they document non-obvious
features of the code. It is reasonable to assume that the reader can figure out what the
code does; it is more useful to explain why.

This comment is redundant with the code and useless:

v = 8 # assign 8 to v

This comment contains useful information that is not in the code:

v = 8 # velocity in miles per hour

Good variable names can reduce the need for comments, but long names can make
complex expressions hard to read, so there is a trade-off.

Debugging
Three kinds of errors can occur in a program: syntax errors, runtime errors, and
semantic errors. It is useful to distinguish among them in order to track them down
more quickly:

Syntax error
“Syntax” refers to the structure of a program and the rules about that structure. If
there is a syntax error anywhere in your program, Python does not run the pro‐
gram. It displays an error message immediately.

Runtime error
If there are no syntax errors in your program, it can start running. But if some‐
thing goes wrong, Python displays an error message and stops. This type of error
is called a runtime error. It is also called an exception because it indicates that
something exceptional has happened.

Semantic error
The third type of error is “semantic,” which means related to meaning. If there is
a semantic error in your program, it runs without generating error messages, but
it does not do what you intended. Identifying semantic errors can be tricky
because it requires you to work backward by looking at the output of the pro‐
gram and trying to figure out what it is doing.

22 | Chapter 2: Variables and Statements

As we’ve seen, an illegal variable name is a syntax error:

million! = 1000000

 Cell In[43], line 1
 million! = 1000000
 ^
SyntaxError: invalid syntax

If you use an operator with a type it doesn’t support, that’s a runtime error:

'126' / 3

TypeError: unsupported operand type(s) for /: 'str' and 'int'

Finally, here’s an example of a semantic error. Suppose we want to compute the aver‐
age of 1 and 3, but we forget about the order of operations and write this:

1 + 3 / 2

2.5

When this expression is evaluated, it does not produce an error message, so there is
no syntax error or runtime error. But the result is not the average of 1 and 3, so the
program is not correct. This is a semantic error because the program runs but it
doesn’t do what’s intended.

Glossary
variable: A name that refers to a value.

assignment statement: A statement that assigns a value to a variable.

state diagram: A graphical representation of a set of variables and the values they
refer to.

keyword: A special word used to specify the structure of a program.

import statement: A statement that reads a module file and creates a module object.

module: A file that contains Python code, including function definitions and some‐
times other statements.

dot operator: The operator, ., used to access a function in another module by speci‐
fying the module name followed by a dot and the function name.

statement: One or more lines of code that represent a command or action.

evaluate: Perform the operations in an expression in order to compute a value.

Glossary | 23

execute: Run a statement and do what it says.

argument: A value provided to a function when the function is called. Each argu‐
ment is assigned to the corresponding parameter in the function.

comment: Text included in a program that provides information about the program
but has no effect on its execution.

runtime error: An error that causes a program to display an error message and exit.

exception: An error that is detected while the program is running.

semantic error: An error that causes a program to do the wrong thing, but not to
display an error message.

Exercises
Ask a Virtual Assistant
Again, I encourage you to use a virtual assistant to learn more about any of the topics
in this chapter.

If you are curious about any of keywords I listed, you could ask “Why is class a key‐
word?” or “Why can’t variable names be keywords?”

You might have noticed that int, float, and str are not Python keywords. They are
variables that represent types, and they can be used as functions. So it is legal to have
a variable or function with one of those names, but it is strongly discouraged. Ask an
assistant “Why is it bad to use int, float, and string as variable names?”

Also ask, “What are the built-in functions in Python?” If you are curious about any of
them, ask for more information.

In this chapter we imported the math module and used some of the variables and
functions it provides. Ask an assistant, “What variables and functions are in the math
module?” and “Other than math, what modules are considered core Python?”

Exercise
Repeating my advice from the previous chapter, whenever you learn a new feature,
you should make errors on purpose to see what goes wrong.

1. We’ve seen that n = 17 is legal. What about 17 = n?
2. How about x = y = 1?
3. In some languages every statement ends with a semicolon (;). What happens if

you put a semicolon at the end of a Python statement?

24 | Chapter 2: Variables and Statements

4. What if you put a period at the end of a statement?
5. What happens if you spell the name of a module wrong and try to import maath?

Exercise
Practice using the Python interpreter as a calculator:

Part 1. The volume of a sphere with radius r is 4
3 πr3. What is the volume of a sphere

with radius 5? Start with a variable named radius and then assign the result to a vari‐
able named volume. Display the result. Add comments to indicate that radius is in
centimeters and volume is in cubic centimeters.

Part 2. A rule of trigonometry says that for any value of x, cos x 2 + sin x 2 = 1.
Let’s see if it’s true for a specific value of x like 42.

Create a variable named x with this value. Then use math.cos and math.sin to com‐
pute the sine and cosine of x, and the sum of their squares.

The result should be close to 1. It might not be exactly 1 because floating-point arith‐
metic is not exact—it is only approximately correct.

Part 3. In addition to pi, the other variable defined in the math module is e, which
represents the base of the natural logarithm, written in math notation as e. If you are
not familiar with this value, ask a virtual assistant “What is math.e?” Now let’s com‐
pute e2 three ways:

1. Use math.e and the exponentiation operator (**).
2. Use math.pow to raise math.e to the power 2.

3. Use math.exp, which takes as an argument a value, x, and computes ex.

You might notice that the last result is slightly different from the other two. See if you
can find out which is correct.

Exercises | 25

CHAPTER 3

Functions

In the previous chapter we used several functions provided by Python, like int and
float, and a few provided by the math module, like sqrt and pow. In this chapter, you
will learn how to create your own functions and run them. And we’ll see how one
function can call another. As examples, we’ll display lyrics from Monty Python songs.
These silly examples demonstrate an important feature—the ability to write your own
functions is the foundation of programming.

This chapter also introduces a new statement, the for loop, which is used to repeat a
computation.

Defining New Functions
A function definition specifies the name of a new function and the sequence of state‐
ments that run when the function is called. Here’s an example:

def print_lyrics():
 print("I'm a lumberjack, and I'm okay.")
 print("I sleep all night and I work all day.")

def is a keyword that indicates that this is a function definition. The name of the
function is print_lyrics. Anything that’s a legal variable name is also a legal func‐
tion name.

The empty parentheses after the name indicate that this function doesn’t take any
arguments.

The first line of the function definition is called the header—the rest is called the
body. The header has to end with a colon and the body has to be indented. By con‐
vention, indentation is always four spaces. The body of this function is two print

27

statements; in general, the body of a function can contain any number of statements
of any kind.

Defining a function creates a function object, which we can display like this:

print_lyrics

<function __main__.print_lyrics()>

The output indicates that print_lyrics is a function that takes no arguments.
__main__ is the name of the module that contains print_lyrics.

Now that we’ve defined a function, we can call it the same way we call built-in
functions:

print_lyrics()

I'm a lumberjack, and I'm okay.
I sleep all night and I work all day.

When the function runs, it executes the statements in the body, which display the first
two lines of “The Lumberjack Song.”

Parameters
Some of the functions we have seen require arguments; for example, when you call
abs you pass a number as an argument. Some functions take more than one argu‐
ment; for example, math.pow takes two, the base and the exponent.

Here is a definition for a function that takes an argument:

def print_twice(string):
 print(string)
 print(string)

The variable name in parentheses is a parameter. When the function is called, the
value of the argument is assigned to the parameter. For example, we can call
print_twice like this:

print_twice('Dennis Moore, ')

Dennis Moore,
Dennis Moore,

28 | Chapter 3: Functions

Running this function has the same effect as assigning the argument to the parameter
and then executing the body of the function, like this:

string = 'Dennis Moore, '
print(string)
print(string)

Dennis Moore,
Dennis Moore,

You can also use a variable as an argument:

line = 'Dennis Moore, '
print_twice(line)

Dennis Moore,
Dennis Moore,

In this example, the value of line gets assigned to the parameter string.

Calling Functions
Once you have defined a function, you can use it inside another function. To demon‐
strate, we’ll write functions that print the lyrics of “The Spam Song”:

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

We’ll start with the following function, which takes two parameters:

def repeat(word, n):
 print(word * n)

We can use this function to print the first line of the song, like this:

spam = 'Spam, '
repeat(spam, 4)

Spam, Spam, Spam, Spam,

Calling Functions | 29

https://www.songfacts.com/lyrics/monty-python/the-spam-song

To display the first two lines, we can define a new function that uses repeat:

def first_two_lines():
 repeat(spam, 4)
 repeat(spam, 4)

And then call it like this:

first_two_lines()

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,

To display the last three lines, we can define another function, which also uses
repeat:

def last_three_lines():
 repeat(spam, 2)
 print('(Lovely Spam, Wonderful Spam!)')
 repeat(spam, 2)

last_three_lines()

Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Finally, we can bring it all together with one function that prints the whole verse:

def print_verse():
 first_two_lines()
 last_three_lines()

print_verse()

Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

When we run print_verse, it calls first_two_lines, which calls repeat, which calls
print. That’s a lot of functions.

Of course, we could have done the same thing with fewer functions, but the point of
this example is to show how functions can work together.

30 | Chapter 3: Functions

Repetition
If we want to display more than one verse, we can use a for statement. Here’s a simple
example:

for i in range(2):
 print(i)

0
1

The first line is a header that ends with a colon. The second line is the body, which
has to be indented.

The first line starts with the keyword for, a new variable named i, and another key‐
word, in. It uses the range function to create a sequence of two values, which are 0
and 1. In Python, when we start counting, we usually start from 0.

When the for statement runs, it assigns the first value from range to i and then runs
the print function in the body, which displays 0.

When it gets to the end of the body, it loops back around to the header, which is why
this statement is called a loop. The second time through the loop, it assigns the next
value from range to i, and displays it. Then, because that’s the last value from range,
the loop ends.

Here’s how we can use a for loop to print two verses of the song:

for i in range(2):
 print("Verse", i)
 print_verse()
 print()

Verse 0
Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Verse 1
Spam, Spam, Spam, Spam,
Spam, Spam, Spam, Spam,
Spam, Spam,
(Lovely Spam, Wonderful Spam!)
Spam, Spam,

Repetition | 31

You can put a for loop inside a function. For example, print_n_verses takes a
parameter named n, which has to be an integer, and displays the given number of
verses:

def print_n_verses(n):
 for i in range(n):
 print_verse()
 print()

In this example, we don’t use i in the body of the loop, but there has to be a variable
name in the header anyway.

Variables and Parameters Are Local
When you create a variable inside a function, it is local, which means that it only
exists inside the function. For example, the following function takes two arguments,
concatenates them, and prints the result twice:

def cat_twice(part1, part2):
 cat = part1 + part2
 print_twice(cat)

Here’s an example that uses it:

line1 = 'Always look on the '
line2 = 'bright side of life.'
cat_twice(line1, line2)

Always look on the bright side of life.
Always look on the bright side of life.

When cat_twice runs, it creates a local variable named cat, which is destroyed when
the function ends. If we try to display it, we get a NameError:

print(cat)

NameError: name 'cat' is not defined

Outside of the function, cat is not defined.

Parameters are also local. For example, outside cat_twice, there is no such thing as
part1 or part2.

32 | Chapter 3: Functions

Stack Diagrams
To keep track of which variables can be used where, it is sometimes useful to draw a
stack diagram. Like state diagrams, stack diagrams show the value of each variable,
but they also show the function each variable belongs to.

Each function is represented by a frame. A frame is a box with the name of a function
on the outside and the parameters and local variables of the function on the inside.

Here’s the stack diagram for the previous example:

The frames are arranged in a stack that indicates which function called which, and so
on. Reading from the bottom, print was called by print_twice, which was called by
cat_twice, which was called by __main__—which is a special name for the topmost
frame. When you create a variable outside of any function, it belongs to __main__.

In the frame for print, the question mark indicates that we don’t know the name of
the parameter. If you are curious, ask a virtual assistant, “What are the parameters of
the Python print function?”

Tracebacks
When a runtime error occurs in a function, Python displays the name of the function
that was running, the name of the function that called it, and so on, up the stack.

Tracebacks | 33

To see an example, I’ll define a version of print_twice that contains an error—it tries
to print cat, which is a local variable in another function:

def print_twice(string):
 print(cat) # NameError
 print(cat)

Now here’s what happens when we run cat_twice:

cat_twice(line1, line2)

Traceback (most recent call last):

 File <string>:2

 Cell In[21], line 3 in cat_twice
 print_twice(cat)

 Cell In[26], line 2 in print_twice
 print(cat) # NameError

NameError: name 'cat' is not defined

The error message includes a traceback, which shows the function that was running
when the error occurred, the function that called it, and so on. In this example, it
shows that cat_twice called print_twice, and the error occurred in a print_twice.

The order of the functions in the traceback is the same as the order of the frames in
the stack diagram. The function that was running is at the bottom.

Why Functions?
It may not be clear yet why it is worth the trouble to divide a program into functions.
There are several reasons:

• Creating a new function gives you an opportunity to name a group of statements,
which makes your program easier to read and debug.

• Functions can make a program smaller by eliminating repetitive code. Later, if
you make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at a
time and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write and
debug one, you can reuse it.

34 | Chapter 3: Functions

Debugging
Debugging can be frustrating, but it is also challenging, interesting, and sometimes
even fun. And it is one of the most important skills you can learn.

In some ways debugging is like detective work. You are given clues and you have to
infer the events that led to the results you see.

Debugging is also like experimental science. Once you have an idea about what is
going wrong, you modify your program and try again. If your hypothesis was correct,
you can predict the result of the modification, and you take a step closer to a working
program. If your hypothesis was wrong, you have to come up with a new one.

For some people, programming and debugging are the same thing; that is, program‐
ming is the process of gradually debugging a program until it does what you want.
The idea is that you should start with a working program and make small modifica‐
tions, debugging them as you go.

If you find yourself spending a lot of time debugging, that is often a sign that you are
writing too much code before you start tests. If you take smaller steps, you might find
that you can move faster.

Glossary
function definition: A statement that creates a function.

header: The first line of a function definition.

body: The sequence of statements inside a function definition.

function object: A value created by a function definition. The name of the function is
a variable that refers to a function object.

parameter: A name used inside a function to refer to the value passed as an
argument.

loop: A statement that runs one or more statements, often repeatedly.

local variable: A variable defined inside a function, which can only be accessed inside
the function.

stack diagram: A graphical representation of a stack of functions, their variables, and
the values they refer to.

frame: A box in a stack diagram that represents a function call. It contains the local
variables and parameters of the function.

traceback: A list of the functions that are executing, printed when an exception
occurs.

Glossary | 35

Exercises
Ask a Virtual Assistant
By convention, the statements in a function or a for loop are indented by four spaces.
But not everyone agrees with that convention. If you are curious about the history of
this great debate, ask a virtual assistant to “tell me about spaces and tabs in Python.”

Virtual assistants are pretty good at writing small functions:

1. Ask your favorite VA to “write a function called repeat that takes a string and an
integer and prints the string the given number of times.”

2. If the result uses a for loop, you could ask, “Can you do it without a for loop?”
3. Pick any other function in this chapter and ask a virtual assistant to write it. The

challenge is to describe the function precisely enough to get what you want. Use
the vocabulary you have learned so far in this book.

Virtual assistants are also pretty good at debugging functions:

1. Ask a virtual assistant what’s wrong with this version of print_twice:
def print_twice(string):
 print(cat)
 print(cat)

And if you get stuck on any of the following exercises, consider asking a virtual assis‐
tant for help.

Exercise
Write a function named print_right that takes a string named text as a parameter
and prints the string with enough leading spaces that the last letter of the string is in
the 40th column of the display.

Hint: use the len function, the string concatenation operator (+), and the string repe‐
tition operator (*).

Here’s an example that shows how it should work:

print_right("Monty")
print_right("Python's")
print_right("Flying Circus")

 Monty
 Python's
 Flying Circus

36 | Chapter 3: Functions

Exercise
Write a function called triangle that takes a string and an integer and draws a trian‐
gle with the given height, made up of copies of the string. Here’s an example of a tri‐
angle with five levels using the string 'L':

triangle('L', 5)

L
LL
LLL
LLLL
LLLLL

Exercise
Write a function called rectangle that takes a string and two integers and draws a
rectangle with the given width and height, made up of copies of the string. Here’s an
example of a rectangle with width 5 and height 4, using the string 'H':

rectangle('H', 5, 4)

HHHHH
HHHHH
HHHHH
HHHHH

Exercise
The song “99 Bottles of Beer” starts with this verse:

99 bottles of beer on the wall,
99 bottles of beer.
Take one down, pass it around,
98 bottles of beer on the wall.

Then the second verse is the same, except that it starts with 98 bottles and ends with
97. The song continues—for a very long time—until there are 0 bottles of beer.

Write a function called bottle_verse that takes a number as a parameter and dis‐
plays the verse that starts with the given number of bottles.

Hint: consider starting with a function that can print the first, second, or last line of
the verse, and then use it to write bottle_verse.

Exercises | 37

Use this function call to display the first verse:

bottle_verse(99)

99 bottles of beer on the wall
99 bottles of beer
Take one down, pass it around
98 bottles of beer on the wall

If you want to print the whole song, you can use this for loop, which counts down
from 99 to 1. You don’t have to completely understand this example—we’ll learn more
about for loops and the range function later.

for n in range(99, 0, -1):
 bottle_verse(n)
 print()

38 | Chapter 3: Functions

CHAPTER 4

Functions and Interfaces

This chapter introduces a module called jupyturtle, which allows you to create sim‐
ple drawings by giving instructions to an imaginary turtle. We will use this module to
write functions that draw squares, polygons, and circles—and to demonstrate inter‐
face design, which is a way of designing functions that work together.

The jupyturtle Module
To use the jupyturtle module, we can import it like this:

import jupyturtle

Now we can use the functions defined in the module, like make_turtle and forward:

jupyturtle.make_turtle()
jupyturtle.forward(100)

39

make_turtle creates a canvas, which is a space on the screen where we can draw, and
a turtle, which is represented by a circular shell and a triangular head. The circle
shows the location of the turtle and the triangle indicates the direction it is facing.

forward moves the turtle a given distance in the direction it’s facing, drawing a line
segment along the way. The distance is in arbitrary units—the actual size depends on
your computer’s screen.

We will use functions defined in the jupyturtle module many times, so it would be
nice if we did not have to write the name of the module every time. That’s possible if
we import the module like this:

from jupyturtle import make_turtle, forward

This version of the import statement imports make_turtle and forward from the
jupyturtle module so we can call them like this:

make_turtle()
forward(100)

jupyturtle provides two other functions we’ll use, called left and right. We’ll
import them like this:

from jupyturtle import left, right

left causes the turtle to turn left. It takes one argument, which is the angle of the
turn in degrees. For example, we can make a 90 degree left turn like this:

make_turtle()
forward(50)
left(90)
forward(50)

40 | Chapter 4: Functions and Interfaces

This program moves the turtle east and then north, leaving two line segments behind.
Before you go on, see if you can modify the program to make a square.

Making a Square
Here’s one way to make a square:

make_turtle()

forward(50)
left(90)

forward(50)
left(90)

forward(50)
left(90)

forward(50)
left(90)

Because this program repeats the same pair of lines four times, we can do the same
thing more concisely with a for loop:

make_turtle()
for i in range(4):
 forward(50)
 left(90)

Making a Square | 41

Encapsulation and Generalization
Let’s take the square-drawing code from the previous section and put it in a function
called square:

def square():
 for i in range(4):
 forward(50)
 left(90)

Now we can call the function like this:

make_turtle()
square()

Wrapping a piece of code up in a function is called encapsulation. One of the bene‐
fits of encapsulation is that it attaches a name to the code, which serves as a kind of
documentation. Another advantage is that if you re-use the code, it is more concise to
call a function twice than to copy and paste the body!

42 | Chapter 4: Functions and Interfaces

In the current version, the size of the square is always 50. If we want to draw squares
with different sizes, we can take the length of the sides as a parameter:

def square(length):
 for i in range(4):
 forward(length)
 left(90)

Now we can draw squares with different sizes:

make_turtle()
square(30)
square(60)

Adding a parameter to a function is called generalization because it makes the func‐
tion more general: with the previous version, the square is always the same size; with
this version it can be any size.

If we add another parameter, we can make it even more general. The following func‐
tion draws regular polygons with a given number of sides:

def polygon(n, length):
 angle = 360 / n
 for i in range(n):
 forward(length)
 left(angle)

In a regular polygon with n sides, the angle between adjacent sides is 360 / n
degrees.

The following example draws a 7-sided polygon with side length of 30:

make_turtle()
polygon(7, 30)

Encapsulation and Generalization | 43

When a function has more than a few numeric arguments, it is easy to forget what
they are, or what order they should be in. It can be a good idea to include the names
of the parameters in the argument list:

make_turtle()
polygon(n=7, length=30)

These are sometimes called “named arguments” because they include the parameter
names. But in Python they are more often called keyword arguments (not to be con‐
fused with Python keywords like for and def).

This use of the assignment operator, =, is a reminder about how arguments and
parameters work—when you call a function, the arguments are assigned to the
parameters.

Approximating a Circle
Now suppose we want to draw a circle. We can do that, approximately, by drawing a
polygon with a large number of sides, so each side is small enough that it’s hard to
see. Here is a function that uses polygon to draw a 30-sided polygon that approxi‐
mates a circle:

import math

def circle(radius):
 circumference = 2 * math.pi * radius
 n = 30
 length = circumference / n
 polygon(n, length)

circle takes the radius of the circle as a parameter. It computes circumference,
which is the circumference of a circle with the given radius. n is the number of sides,
so circumference / n is the length of each side.

This function might take a long time to run. We can speed it up by calling make_
turtle with a keyword argument called delay that sets the time, in seconds, the tur‐

44 | Chapter 4: Functions and Interfaces

tle waits after each step. The default value is 0.2 seconds—if we set it to 0.02 it runs
about 10 times faster.

make_turtle(delay=0.02)
circle(30)

A limitation of this solution is that n is a constant, which means that for very big cir‐
cles, the sides are too long, and for small circles, we waste time drawing very short
sides. One option is to generalize the function by taking n as a parameter. But let’s
keep it simple for now.

Refactoring
Now let’s write a more general version of circle, called arc, that takes a second
parameter, angle, and draws an arc of a circle that spans the given angle. For exam‐
ple, if angle is 360 degrees, it draws a complete circle. If angle is 180 degrees, it draws
a half circle.

To write circle, we were able to reuse polygon, because a many-sided polygon is a
good approximation of a circle. But we can’t use polygon to write arc.

Instead, we’ll create the more general version of polygon, called polyline:

def polyline(n, length, angle):
 for i in range(n):
 forward(length)
 left(angle)

polyline takes as parameters the number of line segments to draw, n; the length of
the segments, length; and the angle between them, angle.

Now we can rewrite polygon to use polyline:

def polygon(n, length):
 angle = 360.0 / n
 polyline(n, length, angle)

Refactoring | 45

And we can use polyline to write arc:

def arc(radius, angle):
 arc_length = 2 * math.pi * radius * angle / 360
 n = 30
 length = arc_length / n
 step_angle = angle / n
 polyline(n, length, step_angle)

arc is similar to circle, except that it computes arc_length, which is a fraction of
the circumference of a circle.

Finally, we can rewrite circle to use arc:

def circle(radius):
 arc(radius, 360)

To check that these functions work as expected, we’ll use them to draw something like
a snail. With delay=0, the turtle runs as fast as possible.

make_turtle(delay=0)
polygon(n=20, length=9)
arc(radius=70, angle=70)
circle(radius=10)

In this example, we started with working code and reorganized it with different func‐
tions. Changes like this, which improve the code without changing its behavior, are
called refactoring.

If we had planned ahead, we might have written polyline first and avoided refactor‐
ing, but often you don’t know enough at the beginning of a project to design all the
functions. Once you start coding, you understand the problem better. Sometimes
refactoring is a sign that you have learned something.

46 | Chapter 4: Functions and Interfaces

Stack Diagram
When we call circle, it calls arc, which calls polyline. We can use a stack diagram
to show this sequence of function calls and the parameters for each one:

Notice that the value of angle in polyline is different from the value of angle in arc.
Parameters are local, which means you can use the same parameter name in different
functions; it’s a different variable in each function, and it can refer to a different value.

A Development Plan
A development plan is a process for writing programs. The process we used in this
chapter is “encapsulation and generalization.” The steps of this process are:

1. Start by writing a small program with no function definitions.
2. Once you get the program working, identify a coherent piece of it, encapsulate

the piece in a function, and give it a name. Copy and paste working code to avoid
retyping (and re-debugging).

3. Generalize the function by adding appropriate parameters.
4. Repeat steps 1 through 3 until you have a set of working functions.
5. Look for opportunities to improve the program by refactoring. For example, if

you have similar code in several places, consider factoring it into an appropriately
general function.

This process has some drawbacks—we will see alternatives later—but it can be useful
if you don’t know ahead of time how to divide the program into functions. This
approach lets you design as you go along.

The design of a function has two parts:

interface
How the function is used, including its name, the parameters it takes, and what
the function is supposed to do

implementation
How the function does what it’s supposed to do

A Development Plan | 47

For example, here’s the first version of circle we wrote, which uses polygon:

def circle(radius):
 circumference = 2 * math.pi * radius
 n = 30
 length = circumference / n
 polygon(n, length)

And here’s the refactored version that uses arc:

def circle(radius):
 arc(radius, 360)

These two functions have the same interface—they take the same parameters and do
the same thing—but they have different implementations.

Docstrings
A docstring is a string at the beginning of a function that explains the interface (“doc”
is short for “documentation”). Here is an example:

def polyline(n, length, angle):
 """Draws line segments with the given length and angle between them.

 n: integer number of line segments
 length: length of the line segments
 angle: angle between segments (in degrees)
 """
 for i in range(n):
 forward(length)
 left(angle)

By convention, docstrings are triple-quoted strings, also known as multiline strings
because the triple quotes allow the string to span more than one line.

A docstring should:

• Explain concisely what the function does, without getting into the details of how
it works,

• Explain what effect each parameter has on the behavior of the function, and
• Indicate what type each parameter should be, if it is not obvious.

Writing this kind of documentation is an important part of interface design. A well-
designed interface should be simple to explain; if you have a hard time explaining one
of your functions, maybe the interface could be improved.

48 | Chapter 4: Functions and Interfaces

Debugging
An interface is like a contract between a function and a caller. The caller agrees to
provide certain arguments and the function agrees to do certain work.

For example, polyline requires three arguments: n has to be an integer, length
should be a positive number, and angle has to be a number, which is understood to
be in degrees.

These requirements are called preconditions because they are supposed to be true
before the function starts executing. Conversely, conditions at the end of the function
are postconditions. Postconditions include the intended effect of the function (like
drawing line segments) and any side effects (like moving the turtle or making other
changes).

Preconditions are the responsibility of the caller. If the caller violates a precondition
and the function doesn’t work correctly, the bug is in the caller, not the function.

If the preconditions are satisfied and the postconditions are not, the bug is in the
function. If your pre- and postconditions are clear, they can help with debugging.

Glossary
interface design: A process for designing the interface of a function, which includes
the parameters it should take.

canvas: A window used to display graphical elements including lines, circles, rectan‐
gles, and other shapes.

encapsulation: The process of transforming a sequence of statements into a function
definition.

generalization: The process of replacing something unnecessarily specific (like a
number) with something appropriately general (like a variable or parameter).

keyword argument: An argument that includes the name of the parameter.

refactoring: The process of modifying a working program to improve function inter‐
faces and other qualities of the code.

development plan: A process for writing programs.

docstring: A string that appears at the top of a function definition to document the
function’s interface.

multiline string: A string enclosed in triple quotes that can span more than one line
of a program.

Glossary | 49

precondition: A requirement that should be satisfied by the caller before a function
starts.

postcondition: A requirement that should be satisfied by the function before it ends.

Exercises
For these exercises, there are a few more turtle functions you might want to use:

penup

Lift the turtle’s imaginary pen so it doesn’t leave a trail when it moves.

pendown

Put the pen back down.

The following function uses penup and pendown to move the turtle without leaving a
trail:

from jupyturtle import penup, pendown

def jump(length):
 """Move forward length units without leaving a trail.

 Postcondition: Leaves the pen down.
 """
 penup()
 forward(length)
 pendown()

Exercise
Write a function called rectangle that draws a rectangle with given side lengths. For
example, here’s a rectangle that’s 80 units wide and 40 units tall:

50 | Chapter 4: Functions and Interfaces

Exercise
Write a function called rhombus that draws a rhombus with a given side length and a
given interior angle. For example, here’s a rhombus with side length of 50 and an inte‐
rior angle of 60 degrees:

Exercise
Now write a more general function called parallelogram that draws a quadrilateral
with parallel sides. Then rewrite rectangle and rhombus to use parallelogram.

Exercises | 51

Exercise
Write an appropriately general set of functions that can draw shapes like this.

Hint: write a function called triangle that draws one triangular segment, and then a
function called draw_pie that uses triangle.

Exercise
Write an appropriately general set of functions that can draw flowers like this.

Hint: use arc to write a function called petal that draws one flower petal.

52 | Chapter 4: Functions and Interfaces

Ask a Virtual Assistant
Several modules like jupyturtle in Python, and the one we used in this chapter have
been customized for this book. So if you ask a virtual assistant for help, it won’t know
which module to use. But if you give it a few examples to work with, it can probably
figure it out. For example, try this prompt and see if it can write a function that draws
a spiral:

The following program uses a turtle graphics module to draw a circle:

from jupyturtle import make_turtle, forward, left
import math

def polygon(n, length):
 angle = 360 / n
 for i in range(n):
 forward(length)
 left(angle)

def circle(radius):
 circumference = 2 * math.pi * radius
 n = 30
 length = circumference / n
 polygon(n, length)

make_turtle(delay=0)
circle(30)

Write a function that draws a spiral.

Keep in mind that the result might use features we have not seen yet, and it might
have errors. Copy the code from the virtual assistant and see if you can get it working.
If you didn’t get what you wanted, try modifying the prompt.

Exercises | 53

CHAPTER 5

Conditionals and Recursion

The main topic of this chapter is the if statement, which executes different code
depending on the state of the program. With the if statement we’ll be able to explore
one of the most powerful ideas in computing, recursion.

But we’ll start with three new features: the modulus operator, boolean expressions,
and logical operators.

Integer Division and Modulus
Recall that the integer division operator, //, divides two numbers and rounds down
to an integer. For example, suppose the runtime of a movie is 105 minutes. You might
want to know how long that is in hours. Conventional division returns a floating-
point number:

minutes = 105
minutes / 60

1.75

But we don’t normally write hours with decimal points. Floor division returns the
integer number of hours, rounding down:

minutes = 105
hours = minutes // 60
hours

1

55

To get the remainder, you could subtract off one hour, in minutes:

remainder = minutes - hours * 60
remainder

45

Or you could use the modulus operator, %, which divides two numbers and returns
the remainder:

remainder = minutes % 60
remainder

45

The modulus operator is more useful than it might seem. For example, it can check
whether one number is divisible by another: if x % y is zero, then x is divisible by y.

Also, it can extract the rightmost digit or digits from a number. For example, x % 10
yields the rightmost digit of x (in base 10). Similarly, x % 100 yields the last two
digits.

Finally, the modulus operator can do “clock arithmetic.” For example, if an event
starts at 11 A.M. and lasts three hours, we can use the modulus operator to figure out
what time it ends:

start = 11
duration = 3
end = (start + duration) % 12
end

2

The event would end at 2 P.M.:

a = 25 // 10
b = 25 % 10
a, b

(2, 5)

Boolean Expressions
A boolean expression is an expression that is either true or false. For example, the
following expressions use the equals operator, ==, which compares two values and
produces True if they are equal and False otherwise:

56 | Chapter 5: Conditionals and Recursion

5 == 5

True

5 == 7

False

A common error is to use a single equals sign (=) instead of a double equals sign (==).
Remember that = assigns a value to a variable and == compares two values:

x = 5
y = 7

x == y

False

True and False are special values that belong to the type bool; they are not strings:

type(True)

bool

type(False)

bool

The == operator is one of the relational operators; the others are:

x != y # x is not equal to y

True

x > y # x is greater than y

False

x < y # x is less than to y

True

Boolean Expressions | 57

x >= y # x is greater than or equal to y

False

x <= y # x is less than or equal to y

True

Logical Operators
To combine boolean values into expressions, we can use logical operators. The most
common are and, or, and not. The meaning of these operators is similar to their
meaning in English. For example, the value of the following expression is True only if
x is greater than 0 and less than 10:

x > 0 and x < 10

True

The following expression is True if either or both of the conditions is true, that is, if
the number is divisible by 2 or 3:

x % 2 == 0 or x % 3 == 0

False

Finally, the not operator negates a boolean expression, so the following expression is
True if x > y is False:

not x > y

True

Strictly speaking, the operands of a logical operator should be boolean expressions,
but Python is not very strict. Any nonzero number is interpreted as True:

42 and True

True

This flexibility can be useful, but there are some subtleties to it that can be confusing.
You might want to avoid it.

58 | Chapter 5: Conditionals and Recursion

if Statements
In order to write useful programs, we almost always need the ability to check condi‐
tions and change the behavior of the program accordingly. Conditional statements
give us this ability. The simplest form is the if statement:

if x > 0:
 print('x is positive')

x is positive

if is a Python keyword. if statements have the same structure as function defini‐
tions: a header followed by an indented statement or sequence of statements called a
block.

The boolean expression after if is called the condition. If it is true, the statements in
the indented block run. If not, they don’t.

There is no limit to the number of statements that can appear in the block, but there
has to be at least one. Occasionally, it is useful to have a block that does nothing—
usually as a place keeper for code you haven’t written yet. In that case, you can use the
pass statement, which does nothing:

if x < 0:
 pass # TODO: need to handle negative values!

The word TODO in a comment is a conventional reminder that there’s something you
need to do later.

The else Clause
An if statement can have a second part, called an else clause. The syntax looks like
this:

if x % 2 == 0:
 print('x is even')
else:
 print('x is odd')

x is odd

If the condition is true, the first indented statement runs; otherwise, the second
indented statement runs.

The else Clause | 59

In this example, if x is even, the remainder when x is divided by 2 is 0, so the condi‐
tion is true and the program displays x is even. If x is odd, the remainder is 1, so the
condition is false, and the program displays x is odd.

Since the condition must be true or false, exactly one of the alternatives will run. The
alternatives are called branches.

Chained Conditionals
Sometimes there are more than two possibilities and we need more than two
branches. One way to express a computation like that is a chained conditional, which
includes an elif clause:

if x < y:
 print('x is less than y')
elif x > y:
 print('x is greater than y')
else:
 print('x and y are equal')

x is less than y

elif is an abbreviation of “else if.” There is no limit on the number of elif clauses. If
there is an else clause, it has to be at the end, but there doesn’t have to be one.

Each condition is checked in order. If the first is false, the next is checked, and so on.
If one of them is true, the corresponding branch runs and the if statement ends.
Even if more than one condition is true, only the first true branch runs.

Nested Conditionals
One conditional can also be nested within another. We could have written the exam‐
ple in the previous section like this:

if x == y:
 print('x and y are equal')
else:
 if x < y:
 print('x is less than y')
 else:
 print('x is greater than y')

x is less than y

60 | Chapter 5: Conditionals and Recursion

The outer if statement contains two branches. The first branch contains a simple
statement. The second branch contains another if statement, which has two
branches of its own. Those two branches are both simple statements, although they
could have been conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested
conditionals can be difficult to read. I suggest you avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements.
Here’s an example with a nested conditional:

if 0 < x:
 if x < 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

The print statement runs only if we make it past both conditionals, so we get the
same effect with the and operator:

if 0 < x and x < 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

For this kind of condition, Python provides a more concise option:

if 0 < x < 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

Recursion
It is legal for a function to call itself. It may not be obvious why that is a good thing,
but it turns out to be one of the most magical things a program can do. Here’s an
example:

def countdown(n):
 if n <= 0:
 print('Blastoff!')
 else:
 print(n)
 countdown(n-1)

If n is 0 or negative, countdown outputs the word, “Blastoff!”. Otherwise, it outputs n
and then calls itself, passing n-1 as an argument.

Recursion | 61

Here’s what happens when we call this function with the argument 3:

countdown(3)

3
2
1
Blastoff!

The execution of countdown begins with n=3, and since n is greater than 0, it displays 3,
and then calls itself…

The execution of countdown begins with n=2, and since n is greater than 0, it
displays 2, and then calls itself…

The execution of countdown begins with n=1, and since n is greater
than 0, it displays 1, and then calls itself…

The execution of countdown begins with n=0, and since n
is not greater than 0, it displays “Blastoff!” and returns.

The countdown that got n=1 returns.

The countdown that got n=2 returns.

The countdown that got n=3 returns.

A function that calls itself is recursive. As another example, we can write a function
that prints a string n times:

def print_n_times(string, n):
 if n > 0:
 print(string)
 print_n_times(string, n-1)

If n is positive, print_n_times displays the value of string and then calls itself, pass‐
ing along string and n-1 as arguments.

If n is 0 or negative, the condition is false and print_n_times does nothing.

Here’s how it works:

print_n_times('Spam ', 4)

Spam
Spam
Spam
Spam

62 | Chapter 5: Conditionals and Recursion

For simple examples like this, it is probably easier to use a for loop. But we will see
examples later that are hard to write with a for loop and easy to write with recursion,
so it is good to start early.

Stack Diagrams for Recursive Functions
Here’s a stack diagram that shows the frames created when we called countdown with
n = 3:

The four countdown frames have different values for the parameter n. The bottom of
the stack, where n=0, is called the base case. It does not make a recursive call, so there
are no more frames.

Infinite Recursion
If a recursion never reaches a base case, it goes on making recursive calls forever, and
the program never terminates. This is known as infinite recursion, and it is generally
not a good idea. Here’s a minimal function with an infinite recursion:

def recurse():
 recurse()

Every time recurse is called, it calls itself, which creates another frame. In Python,
there is a limit to the number of frames that can be on the stack at the same time.

Infinite Recursion | 63

If a program exceeds the limit, it causes a runtime error:

recurse()

RecursionError Traceback (most recent call last)
Cell In[41], line 1
----> 1 recurse()

Cell In[39], line 2, in recurse()
 1 def recurse():
----> 2 recurse()

Cell In[39], line 2, in recurse()
 1 def recurse():
----> 2 recurse()

 [... skipping similar frames: recurse at line 2 (2958 times)]

Cell In[39], line 2, in recurse()
 1 def recurse():
----> 2 recurse()

RecursionError: maximum recursion depth exceeded

The traceback indicates that there were almost three thousand frames on the stack
when the error occurred.

If you encounter an infinite recursion by accident, review your function to confirm
that there is a base case that does not make a recursive call. And if there is a base case,
check whether you are guaranteed to reach it.

Keyboard Input
The programs we have written so far accept no input from the user. They just do the
same thing every time.

Python provides a built-in function called input that stops the program and waits for
the user to type something. When the user presses Return or Enter the program
resumes, and input returns what the user typed as a string:

text = input()

64 | Chapter 5: Conditionals and Recursion

Before getting input from the user, you might want to display a prompt telling the
user what to type. input can take a prompt as an argument:

name = input('What...is your name?\n')
name

What...is your name?
It is Arthur, King of the Britons

'It is Arthur, King of the Britons'

The sequence \n at the end of the prompt represents a newline, which is a special
character that causes a line break—that way the user’s input appears below the
prompt.

If you expect the user to type an integer, you can use the int function to convert the
return value to int:

prompt = 'What...is the airspeed velocity of an unladen swallow?\n'
speed = input(prompt)
speed

What...is the airspeed velocity of an unladen swallow?
What do you mean: an African or European swallow?

'What do you mean: an African or European swallow?'

But if they type something that’s not an integer, you’ll get a runtime error.

int(speed)

ValueError: invalid literal for int() with base 10: 'What do you mean:
 an African or European swallow?'

We will see how to handle this kind of error later.

Debugging
When a syntax or runtime error occurs, the error message contains a lot of informa‐
tion, but it can be overwhelming. The most useful parts are usually:

• What kind of error it was, and
• Where it occurred.

Debugging | 65

Syntax errors are usually easy to find, but there are a few gotchas. Errors related to
spaces and tabs can be tricky because they are invisible and we are used to ignoring
them:

x = 5
y = 6

Cell In[50], line 2
 y = 6
 ^
IndentationError: unexpected indent

In this example, the problem is that the second line is indented by one space. But the
error message points to y, which is misleading. Error messages indicate where the
problem was discovered, but the actual error might be earlier in the code.

The same is true of runtime errors. For example, suppose you are trying to convert a
ratio to decibels, like this:

import math
numerator = 9
denominator = 10
ratio = numerator // denominator
decibels = 10 * math.log10(ratio)

ValueError Traceback (most recent call last)
Cell In[52], line 5
 3 denominator = 10
 4 ratio = numerator // denominator
----> 5 decibels = 10 * math.log10(ratio)

ValueError: math domain error

The error message indicates line 5, but there is nothing wrong with that line. The
problem is in line 4, which uses floor division instead of floating-point division—as a
result, the value of ratio is 0. When we call math.log10, we get a ValueError with
the message math domain error, because 0 is not in the “domain” of valid arguments
for math.log10, because the logarithm of 0 is undefined.

In general, you should take the time to read error messages carefully, but don’t
assume that everything they say is correct.

Glossary
recursion: The process of calling the function that is currently executing.

modulus operator: An operator, %, that works on integers and returns the remainder
when one number is divided by another.

66 | Chapter 5: Conditionals and Recursion

boolean expression: An expression whose value is either True or False.

relational operator: One of the operators that compares its operands: ==, !=, >, <, >=,
and <=.

logical operator: One of the operators that combines boolean expressions, including
and, or, and not.

conditional statement: A statement that controls the flow of execution, depending
on some condition.

block: One or more statements indented to indicate they are part of another
statement.

condition: The boolean expression in a conditional statement that determines which
branch runs.

branch: One of the alternative sequences of statements in a conditional statement.

chained conditional: A conditional statement with a series of alternative branches.

nested conditional: A conditional statement that appears in one of the branches of
another conditional statement.

recursive: A function that calls itself.

base case: A conditional branch in a recursive function that does not make a recur‐
sive call.

infinite recursion: A recursion that doesn’t have a base case, or never reaches it.
Eventually, an infinite recursion causes a runtime error.

newline: A character that creates a line break between two parts of a string.

Exercises
Ask a Virtual Assistant

• Ask a virtual assistant, “What are some uses of the modulus operator?”
• Python provides operators to compute the logical operations and, or, and not,

but it doesn’t have an operator that computes the exclusive or operation, usually
written xor. Ask an assistant “What is the logical xor operation and how do I
compute it in Python?”

In this chapter, we saw two ways to write an if statement with three branches, using a
chained conditional or a nested conditional. You can use a virtual assistant to convert
from one to the other. For example, ask a virtual assistant, “Convert this statement to
a chained conditional”:

Exercises | 67

if x == y:
 print('x and y are equal')
else:
 if x < y:
 print('x is less than y')
 else:
 print('x is greater than y')

x is less than y

Ask a virtual assistant, “Rewrite this statement with a single conditional”:

if 0 < x:
 if x < 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

See if a virtual assistant can simplify this unnecessary complexity:

if not x <= 0 and not x >= 10:
 print('x is a positive single-digit number.')

x is a positive single-digit number.

Here’s an attempt at a recursive function that counts down by two:

def countdown_by_two(n):
 if n == 0:
 print('Blastoff!')
 else:
 print(n)
 countdown_by_two(n-2)

It seems to work:

countdown_by_two(6)

6
4
2
Blastoff!

But it has an error. Ask a virtual assistant what’s wrong and how to fix it. Paste the
solution it provides here and test it.

68 | Chapter 5: Conditionals and Recursion

Exercise
The time module provides a function, also called time, that returns the number of
seconds since the “Unix epoch,” which is January 1, 1970, 00:00:00 UTC (Coordinated
Universal Time):

from time import time

now = time()
now

1709908595.7334914

Use floor division and the modulus operator to compute the number of days since
January 1, 1970, and the current time of day in hours, minutes, and seconds.

Exercise
If you are given three sticks, you may or may not be able to arrange them in a trian‐
gle. For example, if one of the sticks is 12 inches long and the other two are 1 inch
long, you will not be able to get the short sticks to meet in the middle. For any three
lengths, there is a test to see if it is possible to form a triangle:

If any of the three lengths is greater than the sum of the other two, then you cannot
form a triangle. Otherwise, you can. (If the sum of two lengths equals the third, they
form what is called a “degenerate” triangle.)

Write a function named is_triangle that takes three integers as arguments, and that
prints either “Yes” or “No,” depending on whether you can or cannot form a triangle
from sticks with the given lengths. Hint: use a chained conditional.

Exercise
What is the output of the following program? Draw a stack diagram that shows the
state of the program when it prints the result.

def recurse(n, s):
 if n == 0:
 print(s)
 else:
 recurse(n-1, n+s)

recurse(3, 0)

6

Exercises | 69

Exercise
The following exercises use the jupyturtle module, described in Chapter 4.

Read the following function and see if you can figure out what it does. Then run it
and see if you got it right. Adjust the values of length, angle, and factor and see
what effect they have on the result. If you are not sure you understand how it works,
try asking a virtual assistant.

from jupyturtle import forward, left, right, back

def draw(length):
 angle = 50
 factor = 0.6

 if length > 5:
 forward(length)
 left(angle)
 draw(factor * length)
 right(2 * angle)
 draw(factor * length)
 left(angle)
 back(length)

Exercise
Ask a virtual assistant, “What is the Koch curve?”

To draw a Koch curve with length x, all you have to do is:

1. Draw a Koch curve with length x/3.
2. Turn left 60 degrees.
3. Draw a Koch curve with length x/3.
4. Turn right 120 degrees.
5. Draw a Koch curve with length x/3.
6. Turn left 60 degrees.
7. Draw a Koch curve with length x/3.

The exception is if x is less than 5—in that case, you can just draw a straight line with
length x.

Write a function called koch that takes x as a parameter and draws a Koch curve with
the given length. The result should look like this:

make_turtle(delay=0)
koch(120)

70 | Chapter 5: Conditionals and Recursion

Exercise
Virtual assistants know about the functions in the jupyturtle module, but because
there are many versions of these functions, with different names, it might not know
which one you are talking about.

To solve this problem, you can provide additional information before you ask a ques‐
tion. For example, you could start a prompt with “Here’s a program that uses the jupy
turtle module,” and then paste in one of the examples from this chapter. After that,
the virtual assistant should be able to generate code that uses this module.

As an example, ask a virtual assistant for a program that draws a Sierpiński triangle.
The code you get should be a good starting place, but you might have to do some
debugging. If the first attempt doesn’t work, you can tell the virtual assistant what
happened and ask for help—or you can debug it yourself.

Here’s what the result might look like, although the version you get might be
different:

make_turtle(delay=0, height=200)

draw_sierpinski(100, 3)

Exercises | 71

CHAPTER 6

Return Values

In previous chapters, we’ve used built-in functions—like abs and round—and func‐
tions in the math module—like sqrt and pow. When you call one of these functions, it
returns a value you can assign to a variable or use as part of an expression.

The functions we have written so far are different. Some use the print function to
display values, and some use Turtle functions to draw figures. But they don’t return
values we assign to variables or use in expressions.

In this chapter, we’ll see how to write functions that return values.

Some Functions Have Return Values
When you call a function like math.sqrt, the result is called a return value. If the
function call appears at the end of a cell, Jupyter displays the return value
immediately:

import math

math.sqrt(42 / math.pi)

3.656366395715726

If you assign the return value to a variable, it doesn’t get displayed:

radius = math.sqrt(42 / math.pi)

73

But you can display it later:

radius

3.656366395715726

Or you can use the return value as part of an expression:

radius + math.sqrt(42 / math.pi)

7.312732791431452

Here’s an example of a function that returns a value:

def circle_area(radius):
 area = math.pi * radius**2
 return area

circle_area takes radius as a parameter and computes the area of a circle with that
radius.

The last line is a return statement that returns the value of area.

If we call the function like this, Jupyter displays the return value:

circle_area(radius)

42.00000000000001

We can assign the return value to a variable:

a = circle_area(radius)

Or use it as part of an expression:

circle_area(radius) + 2 * circle_area(radius / 2)

63.000000000000014

Later, we can display the value of the variable we assigned the result to:

a

42.00000000000001

74 | Chapter 6: Return Values

But we can’t access area:

area

NameError: name 'area' is not defined

area is a local variable in a function, so we can’t access it from outside the function.

And Some Have None
If a function doesn’t have a return statement, it returns None, which is a special value
like True and False. For example, here’s the repeat function from Chapter 3:

def repeat(word, n):
 print(word * n)

If we call it like this, it displays the first line of the Monty Python song “Finland”:

repeat('Finland, ', 3)

Finland, Finland, Finland,

This function uses the print function to display a string, but it does not use a return
statement to return a value. If we assign the result to a variable, it displays the string
anyway:

result = repeat('Finland, ', 3)

Finland, Finland, Finland,

And if we display the value of the variable, we get nothing:

result

result actually has a value, but Jupyter doesn’t show it. However, we can display it
like this:

print(result)

None

The return value from repeat is None.

And Some Have None | 75

Now here’s a function similar to repeat except that it has a return value:

def repeat_string(word, n):
 return word * n

Notice that we can use an expression in a return statement, not just a variable.

With this version, we can assign the result to a variable. When the function runs, it
doesn’t display anything:

line = repeat_string('Spam, ', 4)

But later we can display the value assigned to line:

line

'Spam, Spam, Spam, Spam, '

A function like this is called a pure function because it doesn’t display anything or
have any other effect—other than returning a value.

Return Values and Conditionals
If Python did not provide abs, we could write it like this:

def absolute_value(x):
 if x < 0:
 return -x
 else:
 return x

If x is negative, the first return statement returns -x and the function ends immedi‐
ately. Otherwise, the second return statement returns x and the function ends. So
this function is correct.

However, if you put return statements in a conditional, you have to make sure that
every possible path through the program hits a return statement. For example, here’s
an incorrect version of absolute_value:

def absolute_value_wrong(x):
 if x < 0:
 return -x
 if x > 0:
 return x

76 | Chapter 6: Return Values

Here’s what happens if we call this function with 0 as an argument:

absolute_value_wrong(0)

We get nothing! Here’s the problem: when x is 0, neither condition is true, and the
function ends without hitting a return statement, which means that the return value
is None, so Jupyter displays nothing.

As another example, here’s a version of absolute_value with an extra return state‐
ment at the end:

def absolute_value_extra_return(x):
 if x < 0:
 return -x
 else:
 return x

 return 'This is dead code'

If x is negative, the first return statement runs and the function ends. Otherwise the
second return statement runs and the function ends. Either way, we never get to the
third return statement—so it can never run.

Code that can never run is called dead code. In general, dead code doesn’t do any
harm, but it often indicates a misunderstanding, and it might be confusing to some‐
one trying to understand the program.

Incremental Development
As you write larger functions, you might find yourself spending more time debug‐
ging. To deal with increasingly complex programs, you might want to try incremen‐
tal development, which is a way of adding and testing only a small amount of code at
a time.

As an example, suppose you want to find the distance between two points repre‐
sented by the coordinates x1, y1 and x2, y2 . By the Pythagorean theorem, the dis‐
tance is:

distance = x2 − x1
2 + y2 − y1

2

The first step is to consider what a distance function should look like in Python—
that is, what are the inputs (parameters) and what is the output (return value)?

Incremental Development | 77

For this function, the inputs are the coordinates of the points. The return value is the
distance. Immediately you can write an outline of the function:

def distance(x1, y1, x2, y2):
 return 0.0

This version doesn’t compute distances yet—it always returns zero. But it is a com‐
plete function with a return value, which means that you can test it before you make
it more complicated.

To test the new function, we’ll call it with sample arguments:

distance(1, 2, 4, 6)

0.0

I chose these values so that the horizontal distance is 3 and the vertical distance is 4.
That way, the result is 5, the hypotenuse of a 3-4-5 right triangle. When testing a
function, it is useful to know the right answer.

At this point we have confirmed that the function runs and returns a value, and we
can start adding code to the body. A good next step is to find the differences x2 - x1
and y2 - y1. Here’s a version that stores those values in temporary variables and dis‐
plays them:

def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 print('dx is', dx)
 print('dy is', dy)
 return 0.0

If the function is working, it should display dx is 3 and dy is 4. If so, we know that
the function is getting the right arguments and performing the first computation cor‐
rectly. If not, there are only a few lines to check:

distance(1, 2, 4, 6)

dx is 3
dy is 4

0.0

78 | Chapter 6: Return Values

Good so far. Next we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 dsquared = dx**2 + dy**2
 print('dsquared is: ', dsquared)
 return 0.0

Again, we can run the function and check the output, which should be 25:

distance(1, 2, 4, 6)

dsquared is: 25

0.0

Finally, we can use math.sqrt to compute the distance:

def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 dsquared = dx**2 + dy**2
 result = math.sqrt(dsquared)
 print("result is", result)

And test it:

distance(1, 2, 4, 6)

result is 5.0

The result is correct, but this version of the function displays the result rather than
returning it, so the return value is None. We can fix that by replacing the print func‐
tion with a return statement:

def distance(x1, y1, x2, y2):
 dx = x2 - x1
 dy = y2 - y1
 dsquared = dx**2 + dy**2
 result = math.sqrt(dsquared)
 return result

This version of distance is a pure function. If we call it like this, only the result is
displayed:

Incremental Development | 79

distance(1, 2, 4, 6)

5.0

And if we assign the result to a variable, nothing is displayed:

d = distance(1, 2, 4, 6)

The print statements we wrote are useful for debugging, but once the function is
working, we can remove them. Code like that is called scaffolding because it is help‐
ful for building the program but is not part of the final product. This example dem‐
onstrates incremental development. The key aspects of this process are:

1. Start with a working program, make small changes, and test after every change.
2. Use variables to hold intermediate values so you can display and check them.
3. Once the program is working, remove the scaffolding.

At any point, if there is an error, you should have a good idea where it is. Incremental
development can save you a lot of debugging time.

Boolean Functions
Functions can return the boolean values True and False, which is often convenient
for encapsulating a complex test in a function. For example, is_divisible checks
whether x is divisible by y with no remainder:

def is_divisible(x, y):
 if x % y == 0:
 return True
 else:
 return False

Here’s how we use it:

is_divisible(6, 4)

False

is_divisible(6, 3)

True

80 | Chapter 6: Return Values

Inside the function, the result of the == operator is a boolean, so we can write the
function more concisely by returning it directly:

def is_divisible(x, y):
 return x % y == 0

Boolean functions are often used in conditional statements:

if is_divisible(6, 2):
 print('divisible')

divisible

It might be tempting to write something like this:

if is_divisible(6, 2) == True:
 print('divisible')

divisible

But the comparison is unnecessary.

Recursion with Return Values
Now that we can write functions with return values, we can write recursive functions
with return values, and with that capability, we have passed an important threshold—
the subset of Python we have is now Turing complete, which means that we can per‐
form any computation that can be described by an algorithm.

To demonstrate recursion with return values, we’ll evaluate a few recursively defined
mathematical functions. A recursive definition is similar to a circular definition, in
the sense that the definition refers to the thing being defined. A truly circular defini‐
tion is not very useful:

vorpal: An adjective used to describe something that is vorpal.

If you saw that definition in the dictionary, you might be annoyed. On the other
hand, if you looked up the definition of the factorial function, denoted with the sym‐
bol !, you might get something like this:

0! = 1
n! = n n − 1 !

This definition says that the factorial of 0 is 1, and the factorial of any other value, n,
is n multiplied by the factorial of n − 1.

Recursion with Return Values | 81

If you can write a recursive definition of something, you can write a Python program
to evaluate it. Following an incremental development process, we’ll start with a func‐
tion that takes n as a parameter and always returns 0:

def factorial(n):
 return 0

Now let’s add the first part of the definition—if the argument happens to be 0, all we
have to do is return 1:

def factorial(n):
 if n == 0:
 return 1
 else:
 return 0

Now let’s fill in the second part—if n is not 0, we have to make a recursive call to find
the factorial of n − 1 and then multiply the result by n:

def factorial(n):
 if n == 0:
 return 1
 else:
 recurse = factorial(n-1)
 return n * recurse

The flow of execution for this program is similar to the flow of countdown in Chap‐
ter 5. If we call factorial with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of n-1…

Since 2 is not 0, we take the second branch and calculate the factorial of
n-1…

Since 1 is not 0, we take the second branch and calculate the facto‐
rial of n-1…

Since 0 equals 0, we take the first branch and return 1
without making any more recursive calls.

The return value, 1, is multiplied by n, which is 1, and the result is
returned.

The return value, 1, is multiplied by n, which is 2, and the result is returned.

The return value 2 is multiplied by n, which is 3, and the result, 6, becomes the return
value of the function call that started the whole process.

82 | Chapter 6: Return Values

The following figure shows the stack diagram for this sequence of function calls:

The return values are shown being passed back up the stack. In each frame, the
return value is the product of n and recurse.

In the last frame, the local variable recurse does not exist because the branch that
creates it does not run.

Leap of Faith
Following the flow of execution is one way to read programs, but it can quickly
become overwhelming. An alternative is what I call the “leap of faith.” When you
come to a function call, instead of following the flow of execution, you assume that
the function works correctly and returns the right result.

In fact, you are already practicing this leap of faith when you use built-in functions.
When you call abs or math.sqrt, you don’t examine the bodies of those functions—
you just assume that they work.

The same is true when you call one of your own functions. For example, earlier we
wrote a function called is_divisible that determines whether one number is divisi‐
ble by another. Once we convince ourselves that this function is correct, we can use it
without looking at the body again.

The same is true of recursive programs. When you get to the recursive call, instead of
following the flow of execution, you should assume that the recursive call works and
then ask yourself, “Assuming that I can compute the factorial of n − 1, can I compute
the factorial of n?” The recursive definition of factorial implies that you can, by multi‐
plying by n.

Of course, it’s a bit strange to assume that the function works correctly when you
haven’t finished writing it, but that’s why it’s called a leap of faith!

Leap of Faith | 83

Fibonacci
After factorial, the most common example of a recursive function is fibonacci,
which has the following definition:

fibonacci 0 = 0
fibonacci 1 = 1
fibonacci n = fibonacci n − 1 + fibonacci n − 2

Translated into Python, it looks like this:

def fibonacci(n):
 if n == 0:
 return 0
 elif n == 1:
 return 1
 else:
 return fibonacci(n-1) + fibonacci(n-2)

If you try to follow the flow of execution here, even for small values of n, your head
explodes. But according to the leap of faith, if you assume that the two recursive calls
work correctly, you can be confident that the last return statement is correct.

As an aside, this way of computing Fibonacci numbers is very inefficient. In “Memos”
on page 146 I’ll explain why and suggest a way to improve it.

Checking Types
What happens if we call factorial and give it 1.5 as an argument?

factorial(1.5)

RecursionError: maximum recursion depth exceeded in comparison

It looks like an infinite recursion. How can that be? The function has a base case—
when n == 0. But if n is not an integer, we can miss the base case and recurse forever.

In this example, the initial value of n is 1.5. In the first recursive call, the value of n is
0.5. In the next, it is -0.5. From there, it gets smaller (more negative), but it will
never be 0.

To avoid infinite recursion we can use the built-in function isinstance to check the
type of the argument. Here’s how we check whether a value is an integer:

84 | Chapter 6: Return Values

isinstance(3, int)

True

isinstance(1.5, int)

False

Now here’s a version of factorial with error checking:

def factorial(n):
 if not isinstance(n, int):
 print('factorial is only defined for integers.')
 return None
 elif n < 0:
 print('factorial is not defined for negative numbers.')
 return None
 elif n == 0:
 return 1
 else:
 return n * factorial(n-1)

First, it checks whether n is an integer. If not, it displays an error message and returns
None:

factorial('crunchy frog')

factorial is only defined for integers.

Then it checks whether n is negative. If so, it displays an error message and returns
None:

factorial(-2)

factorial is not defined for negative numbers.

If we get past both checks, we know that n is a nonnegative integer, so we can be con‐
fident the recursion will terminate. Checking the parameters of a function to make
sure they have the correct types and values is called input validation.

Debugging
Breaking a large program into smaller functions creates natural checkpoints for
debugging. If a function is not working, there are three possibilities to consider:

Debugging | 85

• There is something wrong with the arguments the function is getting—that is, a
precondition is violated.

• There is something wrong with the function—that is, a postcondition is violated.
• The caller is doing something wrong with the return value.

To rule out the first possibility, you can add a print statement at the beginning of the
function that displays the values of the parameters (and maybe their types). Or you
can write code that checks the preconditions explicitly.

If the parameters look good, you can add a print statement before each return state‐
ment and display the return value. If possible, call the function with arguments that
make it easy check the result.

If the function seems to be working, look at the function call to make sure the return
value is being used correctly—or used at all!

Adding print statements at the beginning and end of a function can help make the
flow of execution more visible. For example, here is a version of factorial with
print statements:

def factorial(n):
 space = ' ' * (4 * n)
 print(space, 'factorial', n)
 if n == 0:
 print(space, 'returning 1')
 return 1
 else:
 recurse = factorial(n-1)
 result = n * recurse
 print(space, 'returning', result)
 return result

space is a string of space characters that controls the indentation of the output. Here
is the result of factorial(4):

factorial(3)

 factorial 3
 factorial 2
 factorial 1
factorial 0
returning 1
 returning 1
 returning 2
 returning 6

6

86 | Chapter 6: Return Values

If you are confused about the flow of execution, this kind of output can be helpful. It
takes some time to develop effective scaffolding, but a little bit of scaffolding can save
a lot of debugging.

Glossary
return value: The result of a function. If a function call is used as an expression, the
return value is the value of the expression.

pure function: A function that does not display anything or have any other effect,
other than returning a return value.

dead code: Part of a program that can never run, often because it appears after a
return statement.

incremental development: A program development plan intended to avoid debug‐
ging by adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of the
final version.

Turing complete: A language, or subset of a language, is Turing complete if it can
perform any computation that can be described by an algorithm.

input validation: Checking the parameters of a function to make sure they have the
correct types and values.

Exercises
Ask a Virtual Assistant
In this chapter, we saw an incorrect function that can end without returning a value:

def absolute_value_wrong(x):
 if x < 0:
 return -x
 if x > 0:
 return x

And a version of the same function that has dead code at the end:

def absolute_value_extra_return(x):
 if x < 0:
 return -x
 else:
 return x

 return 'This is dead code.'

Exercises | 87

And we saw the following example, which is correct but not idiomatic:

def is_divisible(x, y):
 if x % y == 0:
 return True
 else:
 return False

Ask a virtual assistant what’s wrong with each of these functions and see if it can spot
the errors or improve the style.

Then ask “Write a function that takes coordinates of two points and computes the
distance between them.” See if the result resembles the version of distance we wrote
in this chapter.

Exercise
Use incremental development to write a function called hypot that returns the length
of the hypotenuse of a right triangle given the lengths of the other two legs as
arguments.

Note that there’s a function in the math module called hypot that does the same thing,
but you should not use it for this exercise!

Even if you can write the function correctly on the first try, start with a function that
always returns 0 and practice making small changes, testing as you go. When you are
done, the function should only return a value—it should not display anything.

Exercise
Write a boolean function, is_between(x, y, z), that returns True if x < y < z or if
z < y < x, and False otherwise.

Exercise
The Ackermann function, A m, n , is defined as:

A m, n =
n + 1 if m = 0
A m − 1, 1 if m > 0 and n = 0
A m − 1, A m, n − 1 if m > 0 and n > 0 .

Write a function named ackermann that evaluates the Ackermann function. What
happens if you call ackermann(5, 5)?

88 | Chapter 6: Return Values

Exercise
The greatest common divisor (GCD) of a and b is the largest number that divides
both of them with no remainder.

One way to find the GCD of two numbers is based on the observation that if r is the
remainder when a is divided by b, then gcd a, b = gcd b, r . As a base case, we can
use gcd a, 0 = a.

Write a function called gcd that takes parameters a and b and returns their greatest
common divisor.

Exercises | 89

CHAPTER 7

Iteration and Search

In 1939, Ernest Vincent Wright published a 50,000-word novel called Gadsby that
does not contain the letter “e.” Since “e” is the most common letter in English, writing
even a few words without using it is difficult. To get a sense of how difficult, in this
chapter we’ll compute the fraction of English words have at least one “e.”

For that, we’ll use for statements to loop through the letters in a string and the words
in a file, and we’ll update variables in a loop to count the number of words that con‐
tain an “e.” We’ll use the in operator to check whether a letter appears in a word, and
you’ll learn a programming pattern called a “linear search.”

As an exercise, you’ll use these tools to solve a word puzzle called “Spelling Bee.”

Loops and Strings
In Chapter 3 we saw a for loop that uses the range function to display a sequence of
numbers:

for i in range(3):
 print(i, end=' ')

0 1 2

This version uses the keyword argument end, so the print function puts a space after
each number rather than a newline.

91

We can also use a for loop to display the letters in a string:

for letter in 'Gadsby':
 print(letter, end=' ')

G a d s b y

Notice that I changed the name of the variable from i to letter, which provides
more information about the value it refers to. The variable defined in a for loop is
called the loop variable.

Now that we can loop through the letters in a word, we can check whether it contains
the letter “e”:

for letter in "Gadsby":
 if letter == 'E' or letter == 'e':
 print('This word has an "e"')

Before we go on, let’s encapsulate that loop in a function:

def has_e():
 for letter in "Gadsby":
 if letter == 'E' or letter == 'e':
 print('This word has an "e"')

And let’s make it a pure function that returns True if the word contains an “e” and
False otherwise:

def has_e():
 for letter in "Gadsby":
 if letter == 'E' or letter == 'e':
 return True
 return False

We can generalize it to take the word as a parameter:

def has_e(word):
 for letter in word:
 if letter == 'E' or letter == 'e':
 return True
 return False

92 | Chapter 7: Iteration and Search

Now we can test it like this:

has_e('Gadsby')

False

has_e('Emma')

True

Reading the Word List
To see how many words contain an “e,” we’ll need a word list. The one we’ll use is a
list of about 114,000 official crosswords; that is, words that are considered valid in
crossword puzzles and other word games.

The word list is in a file called words.txt, which is downloaded in the notebook for
this chapter. To read it, we’ll use the built-in function open, which takes the name of
the file as a parameter and returns a file object we can use to read the file:

file_object = open('words.txt')

The file object provides a function called readline, which reads characters from the
file until it gets to a newline and returns the result as a string:

file_object.readline()

'aa\n'

Notice that the syntax for calling readline is different from functions we’ve seen so
far. That’s because it is a method, which is a function associated with an object. In this
case readline is associated with the file object, so we call it using the name of the
object, the dot operator, and the name of the method.

The first word in the list is “aa,” which is a type of lava. The sequence \n represents
the newline character that separates this word from the next.

The file object keeps track of where it is in the file, so if you call readline again, you
get the next word:

line = file_object.readline()
line

'aah\n'

Reading the Word List | 93

To remove the newline from the end of the word, we can use strip, which is a
method associated with strings, so we can call it like this:

word = line.strip()
word

'aah'

strip removes whitespace characters—including spaces, tabs, and newlines—from
the beginning and end of the string.

You can also use a file object as part of a for loop. This program reads words.txt and
prints each word, one per line:

for line in open('words.txt'):
 word = line.strip()
 print(word)

Now that we can read the word list, the next step is to count the words. For that, we
will need the ability to update variables.

Updating Variables
As you may have discovered, it is legal to make more than one assignment to the
same variable. A new assignment makes an existing variable refer to a new value (and
stop referring to the old value).

For example, here is an initial assignment that creates a variable:

x = 5
x

5

And here is an assignment that changes the value of a variable:

x = 7
x

7

The following figure shows what these assignments look like in a state diagram:

94 | Chapter 7: Iteration and Search

The dotted arrow indicates that x no longer refers to 5. The solid arrow indicates that
it now refers to 7.

A common kind of assignment is an update, where the new value of the variable
depends on the old:

x = x + 1
x

8

This statement means “get the current value of x, add one, and assign the result back
to x.”

If you try to update a variable that doesn’t exist, you get an error, because Python
evaluates the expression on the right before it assigns a value to the variable on the
left:

y = y + 1

Before you can update a variable, you have to initialize it, usually with a simple
assignment:

y = 0
y = y + 1
y

1

Increasing the value of a variable is called an increment; decreasing the value is called
a decrement.

Looping and Counting
The following program counts the number of words in the word list:

total = 0

for line in open('words.txt'):
 word = line.strip()
 total = total + 1

Looping and Counting | 95

It starts by initializing total to 0. Each time through the loop, it increments total by
1. So when the loop exits, total refers to the total number of words:

total

113783

A variable like this, used to count the number of times something happens, is called a
counter.

We can add a second counter to the program to keep track of the number of words
that contain an “e”:

total = 0
count = 0

for line in open('words.txt'):
 word = line.strip()
 total = total + 1
 if has_e(word):
 count = count + 1

Let’s see how many words contain an “e”:

count

76162

As a percentage of total, about two-thirds of the words use the letter “e”:

count / total * 100

66.93618554617122

So you can understand why it’s difficult to craft a book without using any such words.

The in Operator
The version of has_e we wrote in this chapter is more complicated than it needs to
be. Python provides an operator, in, that checks whether a character appears in a
string:

word = 'Gadsby'
'e' in word

False

96 | Chapter 7: Iteration and Search

So we can rewrite has_e like this:

def has_e(word):
 if 'E' in word or 'e' in word:
 return True
 else:
 return False

And because the conditional of the if statement has a boolean value, we can elimi‐
nate the if statement and return the boolean directly:

def has_e(word):
 return 'E' in word or 'e' in word

We can simplify this function even more using the method lower, which converts the
letters in a string to lowercase. Here’s an example:

word.lower()

'gadsby'

lower makes a new string—it does not modify the existing string—so the value of
word is unchanged:

word

'Gadsby'

Here’s how we can use lower in has_e:

def has_e(word):
 return 'e' in word.lower()

has_e('Gadsby')

False

has_e('Emma')

True

The in Operator | 97

Search
Based on this simpler version of has_e, let’s write a more general function called
uses_any that takes a second parameter that is a string of letters. It returns True if the
word uses any of the letters, and False otherwise:

def uses_any(word, letters):
 for letter in word.lower():
 if letter in letters.lower():
 return True
 return False

Here’s an example where the result is True:

uses_any('banana', 'aeiou')

True

And another where it is False:

uses_any('apple', 'xyz')

False

uses_only converts word and letters to lowercase, so it works with any combination
of cases:

uses_any('Banana', 'AEIOU')

True

The structure of uses_any is similar to has_e. It loops through the letters in word and
checks them one at a time. If it finds one that appears in letters, it returns True
immediately. If it gets all the way through the loop without finding any, it returns
False.

This pattern is called a linear search. In the exercises at the end of this chapter, you’ll
write more functions that use this pattern.

98 | Chapter 7: Iteration and Search

Doctest
In “Docstrings” on page 48 we used a docstring to document a function—that is, to
explain what it does. It is also possible to use a docstring to test a function. Here’s a
version of uses_any with a docstring that includes tests:

def uses_any(word, letters):
 """Checks if a word uses any of a list of letters.

 >>> uses_any('banana', 'aeiou')
 True
 >>> uses_any('apple', 'xyz')
 False
 """
 for letter in word.lower():
 if letter in letters.lower():
 return True
 return False

Each test begins with >>>, which is used as a prompt in some Python environments to
indicate where the user can type code. In a doctest, the prompt is followed by an
expression, usually a function call. The following line indicates the value the expres‐
sion should have if the function works correctly.

In the first example, 'banana' uses 'a', so the result should be True. In the second
example, 'apple' does not use any of 'xyz', so the result should be False.

To run these tests, we have to import the doctest module and run a function called
run_docstring_examples. To make this function easier to use, I wrote the following
function, which takes a function object as an argument:

from doctest import run_docstring_examples

def run_doctests(func):
 run_docstring_examples(func, globals(), name=func.__name__)

We haven’t learned about globals and __name__ yet—you can ignore them. Now we
can test uses_any like this:

run_doctests(uses_any)

run_doctests finds the expressions in the docstring and evaluates them. If the result
is the expected value, the test passes. Otherwise it fails.

If all tests pass, run_doctests displays no output—in that case, no news is good news.
To see what happens when a test fails, here’s an incorrect version of uses_any:

Doctest | 99

def uses_any_incorrect(word, letters):
 """Checks if a word uses any of a list of letters.

 >>> uses_any_incorrect('banana', 'aeiou')
 True
 >>> uses_any_incorrect('apple', 'xyz')
 False
 """
 for letter in word.lower():
 if letter in letters.lower():
 return True
 else:
 return False # INCORRECT!

And here’s what happens when we test it:

run_doctests(uses_any_incorrect)

**
File "__main__", line 4, in uses_any_incorrect
Failed example:
 uses_any_incorrect('banana', 'aeiou')
Expected:
 True
Got:
 False

The output includes the example that failed, the value the function was expected to
produce, and the value the function actually produced. If you are not sure why this
test failed, you’ll have a chance to debug it as an exercise.

Glossary
loop variable: A variable defined in the header of a for loop.

file object: An object that represents an open file and keeps track of which parts of
the file have been read or written.

method: A function associated with an object and called using the dot operator.

update: An assignment statement that gives a new value to a variable that already
exists, rather than creating a new variable.

initialize: Create a new variable and give it a value.

increment: Increase the value of a variable.

decrement: Decrease the value of a variable.

counter: A variable used to count something, usually initialized to zero and then
incremented.

100 | Chapter 7: Iteration and Search

linear search: A computational pattern that searches through a sequence of elements
and stops when it finds what it is looking for.

pass: If a test runs and the result is as expected, the test passes.

fail: If a test runs and the result is not as expected, the test fails.

Exercises
Ask a Virtual Assistant
In uses_any, you might have noticed that the first return statement is inside the loop
and the second is outside:

def uses_any(word, letters):
 for letter in word.lower():
 if letter in letters.lower():
 return True
 return False

When people first write functions like this, it is a common error to put both return
statements inside the loop, like this:

def uses_any_incorrect(word, letters):
 for letter in word.lower():
 if letter in letters.lower():
 return True
 else:
 return False # INCORRECT!

Ask a virtual assistant what’s wrong with this version.

Exercise
Write a function named uses_none that takes a word and a string of forbidden letters,
and returns True if the word does not use any of the forbidden letters.

Here’s an outline of the function that includes two doctests. Fill in the function so it
passes these tests, and add at least one more doctest:

def uses_none(word, forbidden):
 """Checks whether a word avoid forbidden letters.

 >>> uses_none('banana', 'xyz')
 True
 >>> uses_none('apple', 'efg')
 False
 """
 return None

Exercises | 101

Exercise
Write a function called uses_only that takes a word and a string of letters, and that
returns True if the word contains only letters in the string.

Here’s an outline of the function that includes two doctests. Fill in the function so it
passes these tests, and add at least one more doctest:

def uses_only(word, available):
 """Checks whether a word uses only the available letters.

 >>> uses_only('banana', 'ban')
 True
 >>> uses_only('apple', 'apl')
 False
 """
 return None

Exercise
Write a function called uses_all that takes a word and a string of letters, and that
returns True if the word contains all of the letters in the string at least once.

Here’s an outline of the function that includes two doctests. Fill in the function so it
passes these tests, and add at least one more doctest.

def uses_all(word, required):
 """Checks whether a word uses all required letters.

 >>> uses_all('banana', 'ban')
 True
 >>> uses_all('apple', 'api')
 False
 """
 return None

Exercise
The New York Times publishes a daily puzzle called “Spelling Bee” that challenges
readers to spell as many words as possible using only seven letters, where one of the
letters is required. The words must have at least four letters.

For example, on the day I wrote this, the letters were ACDLORT, with R as the
required letter. So “color” is an acceptable word, but “told” is not, because it does not
use R, and “rat” is not because it has only three letters. Letters can be repeated, so
“ratatat” is acceptable.

Write a function called check_word that checks whether a given word is acceptable. It
should take as parameters the word to check, a string of seven available letters, and a

102 | Chapter 7: Iteration and Search

string containing the single required letter. You can use the functions you wrote in
previous exercises.

Here’s an outline of the function that includes doctests. Fill in the function and then
check that all tests pass:

def check_word(word, available, required):
 """Check whether a word is acceptable.

 >>> check_word('color', 'ACDLORT', 'R')
 True
 >>> check_word('ratatat', 'ACDLORT', 'R')
 True
 >>> check_word('rat', 'ACDLORT', 'R')
 False
 >>> check_word('told', 'ACDLORT', 'R')
 False
 >>> check_word('bee', 'ACDLORT', 'R')
 False
 """
 return False

According to the “Spelling Bee” rules:

• Four-letter words are worth one point each.
• Longer words earn one point per letter.
• Each puzzle includes at least one “pangram” which uses every letter. These are

worth seven extra points!

Write a function called score_word that takes a word and a string of available lessons
and returns its score. You can assume that the word is acceptable.

Again, here’s an outline of the function with doctests:

def word_score(word, available):
 """Compute the score for an acceptable word.

 >>> word_score('card', 'ACDLORT')
 1
 >>> word_score('color', 'ACDLORT')
 5
 >>> word_score('cartload', 'ACDLORT')
 15
 """
 return 0

Exercise
You might have noticed that the functions you wrote in the previous exercises had a
lot in common. In fact, they are so similar you can often use one function to write
another.

Exercises | 103

For example, if a word uses none of a set forbidden letters, that means it doesn’t use
any. So we can write a version of uses_none like this:

def uses_none(word, forbidden):
 """Checks whether a word avoids forbidden letters.

 >>> uses_none('banana', 'xyz')
 True
 >>> uses_none('apple', 'efg')
 False
 >>> uses_none('', 'abc')
 True
 """
 return not uses_any(word, forbidden)

There is also a similarity between uses_only and uses_all that you can take advan‐
tage of. If you have a working version of uses_only, see if you can write a version of
uses_all that calls uses_only.

Exercise
If you got stuck on the previous question, try asking a virtual assistant, “Given a func‐
tion, uses_only, which takes two strings and checks that the first uses only the letters
in the second, use it to write uses_all, which takes two strings and checks whether
the first uses all the letters in the second, allowing repeats.”

Use run_doctests to check the answer.

Exercise
Now let’s see if we can write uses_all based on uses_any.

Ask a virtual assistant, “Given a function, uses_any, which takes two strings and
checks whether the first uses any of the letters in the second, use it to write uses_all,
which takes two strings and checks whether the first uses all the letters in the second,
allowing repeats.”

If it says it can, be sure to test the result!

104 | Chapter 7: Iteration and Search

CHAPTER 8

Strings and Regular Expressions

Strings are not like integers, floats, and booleans. A string is a sequence, which means
it contains multiple values in a particular order. In this chapter we’ll see how to access
the values that make up a string, and we’ll use functions that process strings.

We’ll also use regular expressions, which are a powerful tool for finding patterns in a
string and performing operations like search and replace.

As an exercise, you’ll have a chance to apply these tools to a word game called
Wordle.

A String Is a Sequence
A string is a sequence of characters. A character can be a letter (in almost any alpha‐
bet), a digit, a punctuation mark, or whitespace.

You can select a character from a string with the bracket operator. This example state‐
ment selects character number 1 from fruit and assigns it to letter:

fruit = 'banana'
letter = fruit[1]

The expression in brackets is an index, so called because it indicates which character
in the sequence to select. But the result might not be what you expect:

letter

'a'

105

The letter with index 1 is actually the second letter of the string. An index is an offset
from the beginning of the string, so the offset of the first letter is 0:

fruit[0]

'b'

You can think of 'b' as the 0th letter of 'banana'—pronounced “zero-eth.”

The index in brackets can be a variable:

i = 1
fruit[i]

'a'

Or an expression that contains variables and operators:

fruit[i+1]

'n'

But the value of the index has to be an integer—otherwise you get a TypeError:

fruit[1.5]

TypeError: string indices must be integers

As we saw in Chapter 1, we can use the built-in function len to get the length of a
string:

n = len(fruit)
n

6

To get the last letter of a string, you might be tempted to write this:

fruit[n]

IndexError: string index out of range

But that causes an IndexError because there is no letter in 'banana' with the index 6.
Because we started counting at 0, the six letters are numbered 0 to 5. To get the last
character, you have to subtract 1 from n:

106 | Chapter 8: Strings and Regular Expressions

fruit[n-1]

'a'

But there’s an easier way. To get the last letter in a string, you can use a negative index,
which counts backward from the end:

fruit[-1]

'a'

The index -1 selects the last letter, -2 selects the second to last, and so on.

String Slices
A segment of a string is called a slice. Selecting a slice is similar to selecting a
character:

fruit = 'banana'
fruit[0:3]

'ban'

The operator [n:m] returns the part of the string from the nth character to the mth
character, including the first but excluding the second. This behavior is counterintui‐
tive, but it might help to imagine the indices pointing between the characters, as in
this figure:

For example, the slice [3:6] selects the letters ana, which means that 6 is legal as part
of a slice, but not legal as an index.

If you omit the first index, the slice starts at the beginning of the string:

fruit[:3]

'ban'

If you omit the second index, the slice goes to the end of the string:

fruit[3:]

'ana'

String Slices | 107

If the first index is greater than or equal to the second, the result is an empty string,
represented by two quotation marks:

fruit[3:3]

''

An empty string contains no characters and has a length of 0.

Continuing this example, what do you think fruit[:] means? Try it and see.

Strings Are Immutable
It is tempting to use the [] operator on the left side of an assignment, with the inten‐
tion of changing a character in a string, like this:

greeting = 'Hello, world!'
greeting[0] = 'J'

TypeError: 'str' object does not support item assignment

The result is a TypeError. In the error message, the object is the string and the item
is the character we tried to assign. For now, an object is the same thing as a value, but
we will refine that definition later.

The reason for this error is that strings are immutable, which means you can’t change
an existing string. The best you can do is create a new string that is a variation of the
original:

new_greeting = 'J' + greeting[1:]
new_greeting

'Jello, world!'

This example concatenates a new first letter onto a slice of greeting. It has no effect
on the original string:

greeting

'Hello, world!'

108 | Chapter 8: Strings and Regular Expressions

String Comparison
The relational operators work on strings. To see if two strings are equal, we can use
the == operator:

word = 'banana'

if word == 'banana':
 print('All right, banana.')

All right, banana.

Other relational operations are useful for putting words in alphabetical order:

def compare_word(word):
 if word < 'banana':
 print(word, 'comes before banana.')
 elif word > 'banana':
 print(word, 'comes after banana.')
 else:
 print('All right, banana.')

compare_word('apple')

apple comes before banana.

Python does not handle uppercase and lowercase letters the same way people do. All
the uppercase letters come before all the lowercase letters, so:

compare_word('Pineapple')

Pineapple comes before banana.

To solve this problem, we can convert strings to a standard format, such as all lower‐
case, before performing the comparison. Keep that in mind if you have to defend
yourself against a man armed with a pineapple.

String Methods
Strings provide methods that perform a variety of useful operations. A method is
similar to a function—it takes arguments and returns a value—but the syntax is dif‐
ferent. For example, the method upper takes a string and returns a new string with all
uppercase letters.

String Methods | 109

Instead of the function syntax upper(word), it uses the method syntax word.upper():

word = 'banana'
new_word = word.upper()
new_word

'BANANA'

This use of the dot operator specifies the name of the method, upper, and the name of
the string to apply the method to, word. The empty parentheses indicate that this
method takes no arguments.

A method call is called an invocation; in this case, we would say that we are invoking
upper on word.

Writing Files
String operators and methods are useful for reading and writing text files. As an
example, we’ll work with the text of Dracula, a novel by Bram Stoker that is available
from Project Gutenberg. I’ve downloaded the book in a plain-text file called
pg345.txt, which we can open for reading like this:

reader = open('pg345.txt')

In addition to the text of the book, this file contains a section at the beginning with
information about the book and a section at the end with information about the
license. Before we process the text, we can remove this extra material by finding the
special lines at the beginning and end that begin with '***'.

The following function takes a line and checks whether it is one of the special lines. It
uses the startswith method, which checks whether a string starts with a given
sequence of characters:

def is_special_line(line):
 return line.startswith('*** ')

We can use this function to loop through the lines in the file and print only the spe‐
cial lines:

for line in reader:
 if is_special_line(line):
 print(line.strip())

*** START OF THE PROJECT GUTENBERG EBOOK DRACULA ***
*** END OF THE PROJECT GUTENBERG EBOOK DRACULA ***

110 | Chapter 8: Strings and Regular Expressions

https://www.gutenberg.org/ebooks/345

Now let’s create a new file, called pg345_cleaned.txt, that contains only the text of the
book. To loop through the book again, we have to open it again for reading. And, to
write a new file, we can open it for writing:

reader = open('pg345.txt')
writer = open('pg345_cleaned.txt', 'w')

open takes an optional parameter that specifies the “mode”—in this example, 'w'
indicates that we’re opening the file for writing. If the file doesn’t exist, it will be cre‐
ated; if it already exists, the contents will be replaced.

As a first step, we’ll loop through the file until we find the first special line:

for line in reader:
 if is_special_line(line):
 break

The break statement “breaks” out of the loop—that is, it causes the loop to end
immediately, before we get to the end of the file.

When the loop exits, line contains the special line that made the conditional true:

line

'*** START OF THE PROJECT GUTENBERG EBOOK DRACULA ***\n'

Because reader keeps track of where it is in the file, we can use a second loop to pick
up where we left off.

The following loop reads the rest of the file, one line at a time. When it finds the spe‐
cial line that indicates the end of the text, it breaks out of the loop. Otherwise, it
writes the line to the output file:

for line in reader:
 if is_special_line(line):
 break
 writer.write(line)

When this loop exits, line contains the second special line:

line

'*** END OF THE PROJECT GUTENBERG EBOOK DRACULA ***\n'

At this point reader and writer are still open, which means we could keep reading
lines from reader or writing lines to writer. To indicate that we’re done, we can close
both files by invoking the close method:

Writing Files | 111

reader.close()
writer.close()

To check whether this process was successful, we can read the first few lines from the
new file we just created:

for line in open('pg345_cleaned.txt'):
 line = line.strip()
 if len(line) > 0:
 print(line)
 if line.endswith('Stoker'):
 break

DRACULA
by
Bram Stoker

The endswith method checks whether a string ends with a given sequence of
characters.

Find and Replace
In the Icelandic translation of Dracula from 1901, the name of one of the characters
was changed from “Jonathan” to “Thomas.” To make this change in the English ver‐
sion, we can loop through the book, use the replace method to replace one name
with another, and write the result to a new file.

We’ll start by counting the lines in the cleaned version of the file:

total = 0
for line in open('pg345_cleaned.txt'):
 total += 1

total

15499

To see whether a line contains “Jonathan,” we can use the in operator, which checks
whether this sequence of characters appears anywhere in the line:

total = 0
for line in open('pg345_cleaned.txt'):
 if 'Jonathan' in line:
 total += 1

total

199

112 | Chapter 8: Strings and Regular Expressions

There are 199 lines that contain the name, but that’s not quite the total number of
times it appears, because it can appear more than once in a line. To get the total, we
can use the count method, which returns the number of times a sequence appears in
a string:

total = 0
 for line in open('pg345_cleaned.txt'):
 total += line.count('Jonathan')

total

200

Now we can replace 'Jonathan' with 'Thomas' like this:

writer = open('pg345_replaced.txt', 'w')

for line in open('pg345_cleaned.txt'):
 line = line.replace('Jonathan', 'Thomas')
 writer.write(line)

The result is a new file called pg345_replaced.txt that contains a version of Dracula
where Jonathan Harker is called Thomas.

Regular Expressions
If we know exactly what sequence of characters we’re looking for, we can use the in
operator to find it and the replace method to replace it. But there is another tool,
called a regular expression, that can also perform these operations—and a lot more.

To demonstrate, I’ll start with a simple example and we’ll work our way up. Suppose,
again, that we want to find all lines that contain a particular word. For a change, let’s
look for references to the titular character of the book, Count Dracula. Here’s a line
that mentions him:

text = "I am Dracula; and I bid you welcome, Mr. Harker, to my house."

And here’s the pattern we’ll use to search:

pattern = 'Dracula'

Regular Expressions | 113

A module called re provides functions related to regular expressions. We can import
it like this and use the search function to check whether the pattern appears in the
text:

import re

result = re.search(pattern, text)
result

<re.Match object; span=(5, 12), match='Dracula'>

If the pattern appears in the text, search returns a Match object that contains the
results of the search. Among other information, it has a variable named string that
contains the text that was searched:

result.string

'I am Dracula; and I bid you welcome, Mr. Harker, to my house.'

It also provides a function called group that returns the part of the text that matched
the pattern:

result.group()

'Dracula'

And it provides a function called span that returns the index in the text where the
pattern starts and ends:

result.span()

(5, 12)

If the pattern doesn’t appear in the text, the return value from search is None:

result = re.search('Count', text)
print(result)

None

So we can check whether the search was successful by checking whether the result is
None:

114 | Chapter 8: Strings and Regular Expressions

result == None

True

Putting all that together, here’s a function that loops through the lines in the book
until it finds one that matches the given pattern, and returns the Match object:

def find_first(pattern):
 for line in open('pg345_cleaned.txt'):
 result = re.search(pattern, line)
 if result != None:
 return result

We can use it to find the first mention of a character:

result = find_first('Harker')
result.string

'CHAPTER I. Jonathan Harker’s Journal\n'

For this example, we didn’t have to use regular expressions—we could have done the
same thing more easily with the in operator. But regular expressions can do things
the in operator cannot.

For example, if the pattern includes the vertical bar character, '|', it can match either
the sequence on the left or the sequence on the right. Suppose we want to find the
first mention of Mina Murray in the book, but we are not sure whether she is referred
to by first name or last. We can use the following pattern, which matches either name:

pattern = r'Mina|Murray'
result = find_first(pattern)
result.string

'CHAPTER V. Letters—Lucy and Mina\n'

We can use a pattern like this to see how many times a character is mentioned by
either name. Here’s a function that loops through the book and counts the number of
lines that match the given pattern:

def count_matches(pattern):
 count = 0
 for line in open('pg345_cleaned.txt'):
 result = re.search(pattern, line)
 if result != None:
 count += 1
 return count

Regular Expressions | 115

Now let’s see how many times Mina is mentioned:

count_matches('Mina|Murray')

229

The special character '^' matches the beginning of a string, so we can find a line that
starts with a given pattern:

result = find_first('^Dracula')
result.string

'Dracula, jumping to his feet, said:--\n'

And the special character '$' matches the end of a string, so we can find a line that
ends with a given pattern (ignoring the newline at the end):

result = find_first('Harker$')
result.string

"by five o'clock, we must start off; for it won't do to leave Mrs. Harker\n"

String Substitution
Bram Stoker was born in Ireland, and when Dracula was published in 1897, he was
living in England. So we would expect him to use the British spelling of words like
“centre” and “colour.” To check, we can use the following pattern, which matches
either “centre” or the American spelling “center.”

pattern = 'cent(er|re)'

In this pattern, the parentheses enclose the part of the pattern the vertical bar applies
to. So this pattern matches a sequence that starts with 'cent' and ends with either
'er' or 're':

result = find_first(pattern)
result.string

'horseshoe of the Carpathians, as if it were the centre of some sort of\n'

As expected, he used the British spelling.

We can also check whether he used the British spelling of “colour.” The following pat‐
tern uses the special character '?', which means that the previous character is
optional:

116 | Chapter 8: Strings and Regular Expressions

pattern = 'colou?r'

This pattern matches either “colour” with the 'u' or “color” without it:

result = find_first(pattern)
line = result.string
line

'undergarment with long double apron, front, and back, of coloured stuff\n'

Again, as expected, he used the British spelling.

Now suppose we want to produce an edition of the book with American spellings. We
can use the sub function in the re module, which does string substitution:

re.sub(pattern, 'color', line)

'undergarment with long double apron, front, and back, of colored stuff\n'

The first argument is the pattern we want to find and replace, the second is what we
want to replace it with, and the third is the string we want to search. In the result, you
can see that “colour” has been replaced with “color.”

Debugging
When you are reading and writing files, debugging can be tricky. If you are working
in a Jupyter notebook, you can use shell commands to help. For example, to display
the first few lines of a file, you can use the command !head, like this:

!head pg345_cleaned.txt

The initial exclamation point, !, indicates that this is a shell command, which is not
part of Python. To display the last few lines, you can use !tail:

!tail pg345_cleaned.txt

When you are working with large files, debugging can be difficult because there
might be too much output to check by hand. A good debugging strategy is to start
with just part of the file, get the program working, and then run it with the whole file.

To make a small file that contains part of a larger file, we can use !head again with the
redirect operator, >, which indicates that the results should be written to a file rather
than displayed:

Debugging | 117

!head pg345_cleaned.txt > pg345_cleaned_10_lines.txt

By default, !head reads the first 10 lines, but it takes an optional argument that indi‐
cates the number of lines to read:

!head -100 pg345_cleaned.txt > pg345_cleaned_100_lines.txt

This shell command reads the first 100 lines from pg345_cleaned.txt and writes them
to a file called pg345_cleaned_100_lines.txt.

Note that the shell commands !head and !tail are not available on all operating sys‐
tems. If they don’t work for you, we can write similar functions in Python. See the
first exercise at the end of this chapter for suggestions.

Glossary
sequence: An ordered collection of values where each value is identified by an integer
index.

character: An element of a string, including letters, numbers, and symbols.

index: An integer value used to select an item in a sequence, such as a character in a
string. In Python, indices start from 0.

slice: A part of a string specified by a range of indices.

empty string: A string that contains no characters and has length 0.

object: Something a variable can refer to. An object has a type and a value.

immutable: If the elements of an object cannot be changed, the object is immutable.

invocation: An expression—or part of an expression—that calls a method.

regular expression: A sequence of characters that defines a search pattern.

pattern: A rule that specifies the requirements a string has to meet to constitute a
match.

string substitution: Replacement of a string, or part of a string, with another string.

shell command: A statement in a shell language, which is a language used to interact
with an operating system.

raw string: A Python string that is preceded by the letter r, which indicates that back‐
slashes that appear in the string should not be considered part of a special sequence.

118 | Chapter 8: Strings and Regular Expressions

Exercises
Ask a Virtual Assistant
In this chapter, we only scratched the surface of what regular expressions can do. To
get an idea of what’s possible, ask a virtual assistant, “What are the most common
special characters used in Python regular expressions?”

You can also ask for a pattern that matches particular kinds of strings. For example,
try asking:

• “Write a Python regular expression that matches a 10-digit phone number with
hyphens.”

• “Write a Python regular expression that matches a street address with a number
and a street name, followed by ST or AVE.”

• “Write a Python regular expression that matches a full name with any common
title like Mr or Mrs, followed by any number of names beginning with capital let‐
ters, possibly with hyphens between some names.”

And if you want to see something more complicated, try asking for a regular expres‐
sion that matches any legal URL.

A regular expression often has the letter r before the quotation mark, which indicates
that it is a raw string. For more information, ask a virtual assistant, “What is a raw
string in Python?”

Exercise
See if you can write a function that does the same thing as the shell command !head.
It should take as arguments the name of a file to read, the number of lines to read,
and the name of the file to write the lines into. If the third parameter is None, it
should display the lines rather than write them to a file.

Consider asking a virtual assistant for help, but if you do, tell it not to use a with
statement or a try statement.

Exercises | 119

Exercise
“Wordle” is an online word game where the objective is to guess a five-letter word in
six or fewer attempts. Each attempt has to be recognized as a word, not including
proper nouns. After each attempt, you get information about which of the letters you
guessed appear in the target word, and which ones are in the correct position.

For example, suppose the target word is MOWER and you guess TRIED. You would learn
that E is in the word and in the correct position, R is in the word but not in the correct
position, and T, I, and D are not in the word.

As a different example, suppose you have guessed the words SPADE and CLERK, and
you’ve learned that E is in the word, but not in either of those positions, and none of
the other letters appear in the word.

Of the words in the word list, how many could be the target word? Write a function
called check_word that takes a five-letter word and checks whether it could be the tar‐
get word.

You can use any of the functions from the previous chapter, like uses_any.

Exercise
Continuing the previous exercise, suppose you guess the word TOTEM and learn that
the E is still not in the right place, but the M is. How many words are left?

Exercise
The Count of Monte Cristo is a novel by Alexandre Dumas that is considered a classic.
Nevertheless, in the introduction of an English translation of the book, the writer
Umberto Eco confesses that he found the book to be “one of the most badly written
novels of all time.”

In particular, he says it is “shameless in its repetition of the same adjective,” and men‐
tions in particular the number of times “its characters either shudder or turn pale.”

To see whether his objection is valid, let’s count the number of times the word pale
appears in any form, including pale, pales, paled, and paleness, as well as the
related word pallor. Use a single regular expression that matches all of these words
and no others.

120 | Chapter 8: Strings and Regular Expressions

CHAPTER 9

Lists

This chapter presents one of Python’s most useful built-in types, lists. You will also
learn more about objects and what can happen when multiple variables refer to the
same object.

In the exercises at the end of the chapter, we’ll make a word list and use it to search
for special words like palindromes and anagrams.

A List Is a Sequence
Like a string, a list is a sequence of values. In a string, the values are characters; in a
list, they can be any type. The values in a list are called elements.

There are several ways to create a new list; the simplest is to enclose the elements in
square brackets ([and]). For example, here is a list of two integers:

numbers = [42, 123]

And here’s a list of three strings:

cheeses = ['Cheddar', 'Edam', 'Gouda']

The elements of a list don’t have to be the same type. The following list contains a
string, a float, an integer, and even another list:

t = ['spam', 2.0, 5, [10, 20]]

A list within another list is nested.

121

A list that contains no elements is called an empty list; you can create one with empty
brackets, []:

empty = []

The len function returns the length of a list:

len(cheeses)

3

The length of an empty list is 0.

The following figure shows the state diagram for cheeses, numbers, and empty:

Lists are represented by boxes with the word “list” outside and the numbered ele‐
ments of the list inside.

Lists Are Mutable
To read an element of a list, we can use the bracket operator. The index of the first
element is 0:

cheeses[0]

'Cheddar'

Unlike strings, lists are mutable. When the bracket operator appears on the left side of
an assignment, it identifies the element of the list that will be assigned:

numbers[1] = 17
numbers

[42, 17]

The second element of numbers, which used to be 123, is now 17.

122 | Chapter 9: Lists

List indices work the same way as string indices:

• Any integer expression can be used as an index.
• If you try to read or write an element that does not exist, you get an IndexError.
• If an index has a negative value, it counts backward from the end of the list.

The in operator works on lists—it checks whether a given element appears anywhere
in the list:

'Edam' in cheeses

True

'Wensleydale' in cheeses

False

Although a list can contain another list, the nested list still counts as a single element
—so in the following list, there are only four elements:

t = ['spam', 2.0, 5, [10, 20]]
len(t)

4

And 10 is not considered to be an element of t because it is an element of a nested
list, not t:

10 in t

False

List Slices
The slice operator works on lists the same way it works on strings. The following
example selects the second and third elements from a list of four letters:

letters = ['a', 'b', 'c', 'd']
letters[1:3]

['b', 'c']

List Slices | 123

If you omit the first index, the slice starts at the beginning:

letters[:2]

['a', 'b']

If you omit the second, the slice goes to the end:

letters[2:]

['c', 'd']

So if you omit both, the slice is a copy of the whole list:

letters[:]

['a', 'b', 'c', 'd']

Another way to copy a list is to use the list function:

list(letters)

['a', 'b', 'c', 'd']

Because list is the name of a built-in function, you should avoid using it as a vari‐
able name.

List Operations
The + operator concatenates lists:

t1 = [1, 2]
t2 = [3, 4]
t1 + t2

[1, 2, 3, 4]

The * operator repeats a list a given number of times:

['spam'] * 4

['spam', 'spam', 'spam', 'spam']

124 | Chapter 9: Lists

No other mathematical operators work with lists, but the built-in function sum adds
up the elements:

sum(t1)

3

And min and max find the smallest and largest elements:

min(t1)

1

max(t2)

4

List Methods
Python provides methods that operate on lists. For example, append adds a new ele‐
ment to the end of a list:

letters.append('e')
letters

['a', 'b', 'c', 'd', 'e']

extend takes a list as an argument and appends all of the elements:

letters.extend(['f', 'g'])
letters

['a', 'b', 'c', 'd', 'e', 'f', 'g']

There are two methods that remove elements from a list. If you know the index of the
element you want, you can use pop:

t = ['a', 'b', 'c']
t.pop(1)

'b'

List Methods | 125

The return value is the element that was removed. And we can confirm that the list
has been modified:

t

['a', 'c']

If you know the element you want to remove (but not the index), you can use remove:

t = ['a', 'b', 'c']
t.remove('b')

The return value from remove is None. But we can confirm that the list has been
modified:

t

['a', 'c']

If the element you ask for is not in the list, that’s a ValueError:

t.remove('d')

ValueError: list.remove(x): x not in list

Lists and Strings
A string is a sequence of characters and a list is a sequence of values, but a list of char‐
acters is not the same as a string. To convert from a string to a list of characters, you
can use the list function:

s = 'spam'
t = list(s)
t

['s', 'p', 'a', 'm']

The list function breaks a string into individual letters. If you want to break a string
into words, you can use the split method:

s = 'pining for the fjords'
t = s.split()
t

['pining', 'for', 'the', 'fjords']

126 | Chapter 9: Lists

An optional argument called a delimiter specifies which characters to use as word
boundaries. The following example uses a hyphen as a delimiter:

s = 'ex-parrot'
t = s.split('-')
t

['ex', 'parrot']

If you have a list of strings, you can concatenate them into a single string using join.
join is a string method, so you have to invoke it on the delimiter and pass the list as
an argument:

delimiter = ' '
t = ['pining', 'for', 'the', 'fjords']
s = delimiter.join(t)
s

'pining for the fjords'

In this case the delimiter is a space character, so join puts a space between words. To
join strings without spaces, you can use the empty string, '', as a delimiter.

Looping Through a List
You can use a for statement to loop through the elements of a list:

for cheese in cheeses:
print(cheese)

Cheddar
Edam
Gouda

For example, after using split to make a list of words, we can use for to loop
through them:

s = 'pining for the fjords'

for word in s.split():
 print(word)

pining
for
the
fjords

Looping Through a List | 127

A for loop over an empty list never runs the indented statements:

for x in []:
 print('This never happens.')

Sorting Lists
Python provides a built-in function called sorted that sorts the elements of a list:

scramble = ['c', 'a', 'b']
sorted(scramble)

['a', 'b', 'c']

The original list is unchanged:

scramble

['c', 'a', 'b']

sorted works with any kind of sequence, not just lists. So we can sort the letters in a
string like this:

sorted('letters')

['e', 'e', 'l', 'r', 's', 't', 't']

The result is a list. To convert the list to a string, we can use join:

''.join(sorted('letters'))

'eelrstt'

With an empty string as the delimiter, the elements of the list are joined with nothing
between them.

128 | Chapter 9: Lists

Objects and Values
If we run these assignment statements, we know that a and b both refer to a string,
but we don’t know whether they refer to the same string:

a = 'banana'
b = 'banana'

There are two possible states, shown in the following figure:

In the diagram on the left, a and b refer to two different objects that have the same
value. In the diagram on the right, they refer to the same object. To check whether
two variables refer to the same object, you can use the is operator:

a = 'banana'
b = 'banana'
a is b

True

In this example, Python only created one string object, and both a and b refer to it.
But when you create two lists, you get two objects:

a = [1, 2, 3]
b = [1, 2, 3]
a is b

False

So the state diagram looks like this:

In this case we would say that the two lists are equivalent because they have the same
elements, but are not identical because they are not the same object. If two objects
are identical, they are also equivalent, but if they are equivalent, they are not necessar‐
ily identical.

Objects and Values | 129

Aliasing
If a refers to an object and you assign b = a, then both variables refer to the same
object:

a = [1, 2, 3]
b = a
b is a

True

So the state diagram looks like this:

The association of a variable with an object is called a reference. In this example,
there are two references to the same object.

An object with more than one reference has more than one name, so we say the
object is aliased. If the aliased object is mutable, changes made with one name affect
the other. In this example, if we change the object b refers to, we are also changing the
object a refers to:

b[0] = 5
a

[5, 2, 3]

So we would say that a “sees” this change. Although this behavior can be useful, it is
error prone. In general, it is safer to avoid aliasing when you are working with muta‐
ble objects.

For immutable objects like strings, aliasing is not as much of a problem. In this exam‐
ple it almost never makes a difference whether a and b refer to the same string or not:

a = 'banana'
b = 'banana'

130 | Chapter 9: Lists

List Arguments
When you pass a list to a function, the function gets a reference to the list. If the func‐
tion modifies the list, the caller sees the change. For example, pop_first uses the list
method pop to remove the first element from a list:

def pop_first(lst):
 return lst.pop(0)

We can use it like this:

letters = ['a', 'b', 'c']
 pop_first(letters)

'a'

The return value is the first element, which has been removed from the list—as we
can see by displaying the modified list:

letters

['b', 'c']

In this example, the parameter lst and the variable letters are aliases for the same
object, so the stack diagram looks like this:

Passing a reference to an object as an argument to a function creates a form of alias‐
ing. If the function modifies the object, those changes persist after the function is
done.

Making a Word List
In the previous chapter, we read the file words.txt and searched for words with certain
properties, like using the letter e. But we read the entire file many times, which is not
efficient. It is better to read the file once and put the words in a list. The following
loop shows how:

Making a Word List | 131

word_list = []

for line in open('words.txt'):
 word = line.strip()
 word_list.append(word)

len(word_list)

113783

Before the loop, word_list is initialized with an empty list. Each time through the
loop, the append method adds a word to the end. When the loop is done, there are
more than 113,000 words in the list.

Another way to do the same thing is to use read to read the entire file into a string:

string = open('words.txt').read()
len(string)

1016511

The result is a single string with more than a million characters. We can use the split
method to split it into a list of words:

word_list = string.split()
len(word_list)

113783

Now, to check whether a string appears in the list, we can use the in operator. For
example, 'demotic' is in the list:

'demotic' in word_list

True

But 'contrafibularities' is not:

'contrafibularities' in word_list

False

And I have to say, I’m anaspeptic about it.

132 | Chapter 9: Lists

Debugging
Note that most list methods modify the argument and return None. This is the oppo‐
site of the string methods, which return a new string and leave the original alone.

If you are used to writing string code like this:

word = 'plumage!'
word = word.strip('!')
word

'plumage'

It is tempting to write list code like this:

t = [1, 2, 3]
t = t.remove(3) # WRONG!

remove modifies the list and returns None, so the next operation you perform with t is
likely to fail:

t.remove(2)

AttributeError: 'NoneType' object has no attribute 'remove'

This error message takes some explaining. An attribute of an object is a variable or
method associated with it. In this case, the value of t is None, which is a NoneType
object, which does not have an attribute named remove, so the result is an
AttributeError.

If you see an error message like this, you should look backward through the program
and see if you might have called a list method incorrectly.

Glossary
list: An object that contains a sequence of values.

element: One of the values in a list or other sequence.

nested list: A list that is an element of another list.

delimiter: A character or string used to indicate where a string should be split.

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

Glossary | 133

aliased: If there is more than one variable that refers to an object, the object is aliased.

attribute: One of the named values associated with an object.

Exercises
Ask a Virtual Assistant
In this chapter, I used the words “contrafibularities” and “anaspeptic,” but they are not
actually English words. They are used in the British television show Black Adder, Sea‐
son 2, Episode 2, “Ink and Incapability.”

However, when I asked ChatGPT 3.5 (August 3, 2023 version) where those words
come from, it initially claimed they are from Monty Python, and later claimed they
are from the Tom Stoppard play Rosencrantz and Guildenstern Are Dead.

If you ask now, you might get different results. But this example is a reminder that
virtual assistants are not always accurate, so you should check whether the results are
correct. As you gain experience, you will get a sense of which questions virtual assis‐
tants can answer reliably. In this example, a conventional web search can quickly
identify the source of these words.

If you get stuck on any of the exercises in this chapter, consider asking a virtual assis‐
tant for help. If you get a result that uses features we haven’t learned yet, you can
assign the VA a “role.”

For example, before you ask a question try typing “Role: Basic Python Programming
Instructor.” Then the responses you get should use only basic features. If you still see
features you haven’t learned, you can follow up with “Can you write that using only
basic Python features?”

Exercise
Two words are anagrams if you can rearrange the letters from one to spell the other.
For example, tops is an anagram of stop. One way to check whether two words are
anagrams is to sort the letters in both words. If the lists of sorted letters are the same,
the words are anagrams.

Write a function called is_anagram that takes two strings and returns True if they are
anagrams. Using your function and the word list, find all the anagrams of takes.

134 | Chapter 9: Lists

Exercise
Python provides a built-in function called reversed that takes as an argument a
sequence of elements—like a list or string—and returns a reversed object that con‐
tains the elements in reverse order:

reversed('parrot')

<reversed at 0x7fe3de636b60>

If you want the reversed elements in a list, you can use the list function:

list(reversed('parrot'))

['t', 'o', 'r', 'r', 'a', 'p']

Or if you want them in a string, you can use the join method:

''.join(reversed('parrot'))

'torrap'

So we can write a function that reverses a word like this:

def reverse_word(word):
 return ''.join(reversed(word))

A palindrome is a word that is spelled the same backward and forward, like “noon”
and “rotator.” Write a function called is_palindrome that takes a string argument and
returns True if it is a palindrome and False otherwise.

You can use the following loop to find all of the palindromes in the word list with at
least seven letters:

for word in word_list:
 if len(word) >= 7 and is_palindrome(word):
 print(word)

Exercises | 135

Exercise
Write a function called reverse_sentence that takes as an argument a string that
contains any number of words separated by spaces. It should return a new string that
contains the same words in reverse order. For example, if the argument is “Reverse
this sentence,” the result should be “Sentence this reverse.”

Hint: you can use the capitalize methods to capitalize the first word and convert
the other words to lowercase.

Exercise
Write a function called total_length that takes a list of strings and returns the total
length of the strings. The total length of the words in word_list should be 902,728.

136 | Chapter 9: Lists

CHAPTER 10

Dictionaries

This chapter presents a built-in type called a dictionary. It is one of Python’s best fea‐
tures—and the building block of many efficient and elegant algorithms.

We’ll use dictionaries to compute the number of unique words in a book and the
number of times each one appears. And in the exercises, we’ll use dictionaries to solve
word puzzles.

A Dictionary Is a Mapping
A dictionary is like a list, but more general. In a list, the indices have to be integers;
in a dictionary they can be (almost) any type. For example, suppose we make a list of
number words, like this:

lst = ['zero', 'one', 'two']

We can use an integer as an index to get the corresponding word:

lst[1]

'one'

But suppose we want to go in the other direction, and look up a word to get the cor‐
responding integer. We can’t do that with a list, but we can with a dictionary. We’ll
start by creating an empty dictionary and assigning it to numbers:

numbers = {}
numbers

{}

137

The curly braces, {}, represent an empty dictionary. To add items to the dictionary,
we’ll use square brackets:

numbers['zero'] = 0

This assignment adds to the dictionary an item, which represents the association of a
key and a value. In this example, the key is the string 'zero' and the value is the inte‐
ger 0. If we display the dictionary, we see that it contains one item, which contains a
key and a value separated by a colon:

numbers

{'zero': 0}

We can add more items like this:

numbers['one'] = 1
numbers['two'] = 2
numbers

{'zero': 0, 'one': 1, 'two': 2}

Now the dictionary contains three items.

To look up a key and get the corresponding value, we use the bracket operator:

numbers['two']

2

If the key isn’t in the dictionary, we get a KeyError:

numbers['three']

KeyError: 'three'

The len function works on dictionaries; it returns the number of items:

len(numbers)

3

In mathematical language, a dictionary represents a mapping from keys to values, so
you can also say that each key “maps to” a value. In this example, each number word
maps to the corresponding integer.

138 | Chapter 10: Dictionaries

The following figure shows the state diagram for numbers:

A dictionary is represented by a box with the word dict outside and the items inside.
Each item is represented by a key and an arrow pointing to a value. The quotation
marks indicate that the keys here are strings, not variable names.

Creating Dictionaries
In the previous section we created an empty dictionary and added items one at a time
using the bracket operator. Instead, we could have created the dictionary all at once
like this:

numbers = {'zero': 0, 'one': 1, 'two': 2}

Each item consists of a key and a value separated by a colon. The items are separated
by commas and enclosed in curly braces.

Another way to create a dictionary is to use the dict function. We can make an
empty dictionary like this:

empty = dict()
empty

{}

And we can make a copy of a dictionary like this:

numbers_copy = dict(numbers)
numbers_copy

{'zero': 0, 'one': 1, 'two': 2}

It is often useful to make a copy before performing operations that modify
dictionaries.

Creating Dictionaries | 139

The in Operator
The in operator works on dictionaries, too; it tells you whether something appears as
a key in the dictionary:

'one' in numbers

True

The in operator does not check whether something appears as a value:

1 in numbers

False

To see whether something appears as a value in a dictionary, you can use the method
values, which returns a sequence of values, and then use the in operator:

1 in numbers.values()

True

The items in a Python dictionary are stored in a hash table, which is a way of organ‐
izing data that has a remarkable property: the in operator takes about the same
amount of time no matter how many items are in the dictionary. That makes it possi‐
ble to write some remarkably efficient algorithms.

To demonstrate, we’ll compare two algorithms for finding pairs of words where one is
the reverse of another—like stressed and desserts. We’ll start by reading the word
list:

word_list = open('words.txt').read().split()
len(word_list)

113783

And here’s reverse_word from the previous chapter:

def reverse_word(word):
 return ''.join(reversed(word))

140 | Chapter 10: Dictionaries

The following function loops through the words in the list. For each one, it reverses
the letters and then checks whether the reversed word is in the word list:

def too_slow():
 count = 0
 for word in word_list:
 if reverse_word(word) in word_list:
 count += 1
 return count

This function takes more than a minute to run. The problem is that the in operator
checks the words in the list one at a time, starting at the beginning. If it doesn’t find
what it’s looking for—which happens most of the time—it has to search all the way to
the end.

The in operator is inside the loop, so it runs once for each word. Since there are more
than 100,000 words in the list, and for each one we check more than 100,000 words,
the total number of comparisons is the number of words squared—roughly—which is
almost 13 billion:

len(word_list)**2

12946571089

We can make this function much faster with a dictionary. The following loop creates
a dictionary that contains the words as keys:

word_dict = {}
 for word in word_list:
 word_dict[word] = 1

The values in word_dict are all 1, but they could be anything, because we won’t ever
look them up—we will only use this dictionary to check whether a key exists.

Now here’s a version of the previous function that replaces word_list with
word_dict:

def much_faster():
 count = 0
 for word in word_dict:
 if reverse_word(word) in word_dict:
 count += 1
 return count

This function takes less than one hundredth of a second, so it’s about 10,000 times
faster than the previous version.

The in Operator | 141

In general, the time it takes to find an element in a list is proportional to the length of
the list. The time it takes to find a key in a dictionary is almost constant—regardless
of the number of items:

d = {'a': 1, 'b': 2}
d['a'] = 3
d

{'a': 3, 'b': 2}

A Collection of Counters
Suppose you are given a string and you want to count how many times each letter
appears. A dictionary is a good tool for this job. We’ll start with an empty dictionary:

counter = {}

As we loop through the letters in the string, suppose we see the letter 'a' for the first
time. We can add it to the dictionary like this:

counter['a'] = 1

The value 1 indicates that we have seen the letter once. Later, if we see the same letter
again, we can increment the counter like this:

counter['a'] += 1

Now the value associated with 'a' is 2, because we’ve seen the letter twice:

counter

{'a': 2}

The following function uses these features to count the number of times each letter
appears in a string:

def value_counts(string):
 counter = {}
 for letter in string:
 if letter not in counter:
 counter[letter] = 1
 else:
 counter[letter] += 1
 return counter

142 | Chapter 10: Dictionaries

Each time through the loop, if letter is not in the dictionary, we create a new item
with key letter and value 1. If letter is already in the dictionary we increment the
value associated with letter. Here’s an example:

counter = value_counts('brontosaurus')
counter

{'b': 1, 'r': 2, 'o': 2, 'n': 1, 't': 1, 's': 2, 'a': 1, 'u': 2}

The items in counter show that the letter 'b' appears once, 'r' appears twice, and so
on.

Looping and Dictionaries
If you use a dictionary in a for statement, it traverses the keys of the dictionary. To
demonstrate, let’s make a dictionary that counts the letters in 'banana':

counter = value_counts('banana')
counter

{'b': 1, 'a': 3, 'n': 2}

The following loop prints the keys, which are the letters:

for key in counter:
 print(key)

b
a
n

To print the values, we can use the values method:

for value in counter.values():
 print(value)

1
3
2

To print the keys and values, we can loop through the keys and look up the corre‐
sponding values:

Looping and Dictionaries | 143

for key in counter:
 value = counter[key]
 print(key, value)

b 1
a 3
n 2

In Chapter 11, we’ll see a more concise way to do the same thing.

Lists and Dictionaries
You can put a list in a dictionary as a value. For example, here’s a dictionary that maps
from the number 4 to a list of four letters:

d = {4: ['r', 'o', 'u', 's']}
d

{4: ['r', 'o', 'u', 's']}

But you can’t put a list in a dictionary as a key. Here’s what happens if we try:

letters = list('abcd')
d[letters] = 4

TypeError: unhashable type: 'list'

I mentioned earlier that dictionaries use hash tables, and that means that the keys
have to be hashable.

A hash is a function that takes a value (of any kind) and returns an integer. Dictionar‐
ies use these integers, called hash values, to store and look up keys.

This system only works if a key is immutable, so its hash value is always the same. But
if a key is mutable, its hash value could change, and the dictionary would not work.
That’s why keys have to be hashable, and why mutable types like lists aren’t.

Since dictionaries are mutable, they can’t be used as keys either. But they can be used
as values.

Accumulating a List
For many programming tasks, it is useful to loop through one list or dictionary while
building another. As an example, we’ll loop through the words in word_dict and
make a list of palindromes—that is, words that are spelled the same backward and
forward, like “noon” and “rotator.”

144 | Chapter 10: Dictionaries

In the previous chapter, one of the exercises asked you to write a function that checks
whether a word is a palindrome. Here’s a solution that uses reverse_word:

def is_palindrome(word):
 """Check if a word is a palindrome."""
 return reverse_word(word) == word

If we loop through the words in word_dict, we can count the number of palindromes
like this:

count = 0

for word in word_dict:
 if is_palindrome(word):
 count +=1

count

91

By now, this pattern is familiar.

• Before the loop, count is initialized to 0.
• Inside the loop, if word is a palindrome, we increment count.
• When the loop ends, count contains the total number of palindromes.

We can use a similar pattern to make a list of palindromes:

palindromes = []

for word in word_dict:
 if is_palindrome(word):
 palindromes.append(word)

palindromes[:10]

['aa', 'aba', 'aga', 'aha', 'ala', 'alula', 'ama', 'ana', 'anna', 'ava']

Here’s how it works:

• Before the loop, palindromes is initialized with an empty list.
• Inside the loop, if word is a palindrome, we append it to the end of palindromes.
• When the loop ends, palindromes is a list of palindromes.

In this loop, palindromes is used as an accumulator, which is a variable that collects
or accumulates data during a computation.

Accumulating a List | 145

Now suppose we want to select only palindromes with seven or more letters. We can
loop through palindromes and make a new list that contains only long palindromes:

long_palindromes = []

for word in palindromes:
 if len(word) >= 7:
 long_palindromes.append(word)

long_palindromes

['deified', 'halalah', 'reifier', 'repaper', 'reviver', 'rotator', 'sememes']

Looping through a list like this, selecting some elements and omitting others, is called
filtering.

Memos
If you ran the fibonacci function from “Fibonacci” on page 84, maybe you noticed
that the bigger the argument you provide, the longer the function takes to run:

def fibonacci(n):
 if n == 0:
 return 0

 if n == 1:
 return 1

 return fibonacci(n-1) + fibonacci(n-2)

Furthermore, the run time increases quickly. To understand why, consider the follow‐
ing figure, which shows the call graph for fibonacci with n=3:

146 | Chapter 10: Dictionaries

A call graph shows a set of function frames, with lines connecting each frame to the
frames of the functions it calls. At the top of the graph, fibonacci with n=4 calls
fibonacci with n=3 and n=2. In turn, fibonacci with n=3 calls fibonacci with n=2
and n=1. And so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This is an ineffi‐
cient solution to the problem, and it gets worse as the argument gets bigger.

One solution is to keep track of values that have already been computed by storing
them in a dictionary. A previously computed value that is stored for later use is called
a memo. Here is a “memoized” version of fibonacci:

known = {0:0, 1:1}

def fibonacci_memo(n):
 if n in known:
 return known[n]

 res = fibonacci_memo(n-1) + fibonacci_memo(n-2)
 known[n] = res
 return res

known is a dictionary that keeps track of the Fibonacci numbers we already know. It
starts with two items: 0 maps to 0, and 1 maps to 1.

Whenever fibonacci_memo is called, it checks known. If the result is already there, it
can return immediately. Otherwise it has to compute the new value, add it to the dic‐
tionary, and return it.

Comparing the two functions, fibonacci(40) takes about 30 seconds to run.
fibonacci_memo(40) takes about 30 microseconds, so it’s a million times faster. In
the notebook for this chapter, you’ll see where these measurements come from.

Debugging
As you work with bigger datasets it can become unwieldy to debug by printing and
checking the output by hand. Here are some suggestions for debugging large datasets:

Scale down the input
If possible, reduce the size of the dataset. For example, if the program reads a text
file, start with just the first 10 lines, or with the smallest example you can find.
You can either edit the files, or (better) modify the program so it reads only the
first n lines.

If there is an error, you can reduce n to the smallest value where the error occurs.
As you find and correct errors, you can increase n gradually.

Debugging | 147

Check summaries and types
Instead of printing and checking the entire dataset, consider printing summaries
of the data—for example, the number of items in a dictionary or the total of a list
of numbers.

A common cause of runtime errors is a value that is not the right type. For
debugging this kind of error, it is often enough to print the type of a value.

Write self-checks
Sometimes you can write code to check for errors automatically. For example, if
you are computing the average of a list of numbers, you could check that the
result is not greater than the largest element in the list or less than the smallest.
This is called a “sanity check” because it detects results that are “insane.”

Another kind of check compares the results of two different computations to see
if they are consistent. This is called a “consistency check.”

Format the output
Formatting debugging output can make it easier to spot an error. We saw an
example in “Debugging” on page 85. Another tool you might find useful is the
pprint module, which provides a pprint function that displays built-in types in
a more human-readable format (pprint stands for “pretty print”).

Again, time you spend building scaffolding can reduce the time you spend
debugging.

Glossary
dictionary: An object that contains key-value pairs, also called items.

item: In a dictionary, another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a key-value pair.

value: An object that appears in a dictionary as the second part of a key-value pair.
This is more specific than our previous use of the word “value.”

mapping: A relationship in which each element of one set corresponds to an element
of another set.

hash table: A collection of key-value pairs organized so that we can look up a key and
find its value efficiently.

hashable: Immutable types like integers, floats, and strings are hashable. Mutable
types like lists and dictionaries are not.

hash function: A function that takes an object and computes an integer that is used
to locate a key in a hash table.

148 | Chapter 10: Dictionaries

accumulator: A variable used in a loop to add up or accumulate a result.

filtering: Looping through a sequence and selecting or omitting elements.

call graph: A diagram that shows every frame created during the execution of a pro‐
gram, with an arrow from each caller to each callee.

memo: A computed value stored to avoid unnecessary future computation.

Exercises
Ask a Virtual Assistant
In this chapter, I said the keys in a dictionary have to be hashable and I gave a short
explanation. If you would like more details, ask a virtual assistant, “Why do keys in
Python dictionaries have to be hashable?”

In “The in Operator” on page 140, we stored a list of words as keys in a dictionary so
that we could use an efficient version of the in operator. We could have done the
same thing using a set, which is another built-in data type. Ask a virtual assistant,
“How do I make a Python set from a list of strings and check whether a string is an
element of the set?”

Exercise
Dictionaries have a method called get that takes a key and a default value. If the key
appears in the dictionary, get returns the corresponding value; otherwise it returns
the default value. For example, here’s a dictionary that maps from the letters in a
string to the number of times they appear:

counter = value_counts('brontosaurus')

If we look up a letter that appears in the word, get returns the number of times it
appears:

counter.get('b', 0)

1

If we look up a letter that doesn’t appear, we get the default value, 0:

counter.get('c', 0)

0

Exercises | 149

Use get to write a more concise version of value_counts. You should be able to elim‐
inate the if statement.

Exercise
What is the longest word you can think of where each letter appears only once? Let’s
see if we can find one longer than unpredictably.

Write a function named has_duplicates that takes a sequence—like a list or string—
as a parameter and returns True if there is any element that appears in the sequence
more than once.

Exercise
Write a function called find_repeats that takes a dictionary that maps from each key
to a counter, like the result from value_counts. It should loop through the dictionary
and return a list of keys that have counts greater than 1. You can use the following
outline to get started:

def find_repeats(counter):
 """Makes a list of keys with values greater than 1.

 counter: dictionary that maps from keys to counts

 returns: list of keys
 """
 return []

Exercise
Suppose you run value_counts with two different words and save the results in two
dictionaries:

counter1 = value_counts('brontosaurus')
counter2 = value_counts('apatosaurus')

Each dictionary maps from a set of letters to the number of times they appear. Write a
function called add_counters that takes two dictionaries like this and returns a new
dictionary that contains all of the letters and the total number of times they appear in
either word.

There are many ways to solve this problem. Once you have a working solution, con‐
sider asking a virtual assistant for different solutions.

150 | Chapter 10: Dictionaries

Exercise
A word is “interlocking” if we can split it into two words by taking alternating letters.
For example, “schooled” is an interlocking word because it can be split into “shoe”
and “cold.”

To select alternating letters from a string, you can use a slice operator with three com‐
ponents that indicate where to start, where to stop, and the “step size” between the
letters.

In the following slice, the first component is 0, so we start with the first letter. The
second component is None, which means we should go all the way to the end of the
string. And the third component is 2, so there are two steps between the letters we
select:

word = 'schooled'
first = word[0:None:2]
first

'shoe'

Instead of providing None as the second component, we can get the same effect by
leaving it out altogether. For example, the following slice selects alternating letters,
starting with the second letter:

second = word[1::2]
second

'cold'

Write a function called is_interlocking that takes a word as an argument and
returns True if it can be split into two interlocking words.

Exercises | 151

CHAPTER 11

Tuples

This chapter introduces one more built-in type, the tuple, and then shows how lists,
dictionaries, and tuples work together. It also presents tuple assignment and a useful
feature for functions with variable-length argument lists: the packing and unpacking
operators.

In the exercises, we’ll use tuples, along with lists and dictionaries, to solve more word
puzzles and implement efficient algorithms.

One note: there are two ways to pronounce “tuple.” Some people say “tuh-ple,” which
rhymes with “supple.” But in the context of programming, most people say “too-ple,”
which rhymes with “quadruple.”

Tuples Are Like Lists
A tuple is a sequence of values. The values can be any type, and they are indexed by
integers, so tuples are a lot like lists. The important difference is that tuples are
immutable.

To create a tuple, you can write a comma-separated list of values:

t = 'l', 'u', 'p', 'i', 'n'
type(t)

tuple

153

Although it is not necessary, it is common to enclose tuples in parentheses:

t = ('l', 'u', 'p', 'i', 'n')
type(t)

tuple

To create a tuple with a single element, you have to include a final comma:

t1 = 'p',
type(t1)

tuple

A single value in parentheses is not a tuple:

t2 = ('p')
type(t2)

str

Another way to create a tuple is the built-in function tuple. With no argument, it
creates an empty tuple:

t = tuple()
t

()

If the argument is a sequence (string, list, or tuple), the result is a tuple with the ele‐
ments of the sequence:

t = tuple('lupin')
t

('l', 'u', 'p', 'i', 'n')

Because tuple is the name of a built-in function, you should avoid using it as a vari‐
able name.

Most list operators also work with tuples. For example, the bracket operator indexes
an element:

t[0]

'l'

154 | Chapter 11: Tuples

And the slice operator selects a range of elements:

t[1:3]

('u', 'p')

The + operator concatenates tuples:

tuple('lup') + ('i', 'n')

('l', 'u', 'p', 'i', 'n')

And the * operator duplicates a tuple a given number of times:

tuple('spam') * 2

('s', 'p', 'a', 'm', 's', 'p', 'a', 'm')

The sorted function works with tuples—but the result is a list, not a tuple:

sorted(t)

['i', 'l', 'n', 'p', 'u']

The reversed function also works with tuples:

reversed(t)

<reversed at 0x7f56c0072110>

The result is a reversed object, which we can convert to a list or tuple:

tuple(reversed(t))

('n', 'i', 'p', 'u', 'l')

Based on the examples so far, it might seem like tuples are the same as lists.

But Tuples Are Immutable
If you try to modify a tuple with the bracket operator, you get a TypeError:

t[0] = 'L'

TypeError: 'tuple' object does not support item assignment

But Tuples Are Immutable | 155

And tuples don’t have any of the methods that modify lists, like append and remove:

t.remove('l')

AttributeError: 'tuple' object has no attribute 'remove'

Recall that an “attribute” is a variable or method associated with an object—this error
message means that tuples don’t have a method named remove.

Because tuples are immutable, they are hashable, which means they can be used as
keys in a dictionary. For example, the following dictionary contains two tuples as keys
that map to integers:

d = {}
d[1, 2] = 3
d[3, 4] = 7

We can look up a tuple in a dictionary like this:

d[1, 2]

3

Or if we have a variable that refers to a tuple, we can use it as a key:

t = (3, 4)
d[t]

7

Tuples can also appear as values in a dictionary:

t = tuple('abc')
s = [1, 2, 3]
d = {t: s}
d

{('a', 'b', 'c'): [1, 2, 3]}

Tuple Assignment
You can put a tuple of variables on the left side of an assignment, and a tuple of values
on the right:

a, b = 1, 2

156 | Chapter 11: Tuples

The values are assigned to the variables from left to right—in this example, a gets the
value 1, and b gets the value 2. We can display the results like this:

a, b

(1, 2)

More generally, if the left side of an assignment is a tuple, the right side can be any
kind of sequence—string, list, or tuple. For example, to split an email address into a
username and a domain, you could write:

email = 'monty@python.org'
username, domain = email.split('@')

The return value from split is a list with two elements—the first element is assigned
to username, the second to domain:

username, domain

('monty', 'python.org')

The number of variables on the left and the number of values on the right have to be
the same—otherwise you get a ValueError:

a, b = 1, 2, 3

ValueError: too many values to unpack (expected 2)

Tuple assignment is useful if you want to swap the values of two variables. With con‐
ventional assignments, you have to use a temporary variable, like this:

temp = a
a = b
b = temp

That works, but with tuple assignment we can do the same thing without a temporary
variable:

a, b = b, a

This works because all of the expressions on the right side are evaluated before any of
the assignments.

Tuple Assignment | 157

We can also use tuple assignment in a for statement. For example, to loop through
the items in a dictionary, we can use the items method:

d = {'one': 1, 'two': 2}

for item in d.items():
 key, value = item
 print(key, '->', value)

one -> 1
two -> 2

Each time through the loop, item is assigned a tuple that contains a key and the cor‐
responding value.

We can write this loop more concisely, like this:

for key, value in d.items():
 print(key, '->', value)

one -> 1
two -> 2

Each time through the loop, a key and the corresponding value are assigned directly
to key and value.

Tuples as Return Values
Strictly speaking, a function can only return one value, but if the value is a tuple, the
effect is the same as returning multiple values. For example, if you want to divide two
integers and compute the quotient and remainder, it is inefficient to compute x//y
and then x%y. It is better to compute them both at the same time.

The built-in function divmod takes two arguments and returns a tuple of two values,
the quotient and remainder:

divmod(7, 3)

(2, 1)

We can use tuple assignment to store the elements of the tuple in two variables:

quotient, remainder = divmod(7, 3)
quotient

2

158 | Chapter 11: Tuples

remainder

1

Here is an example of a function that returns a tuple:

def min_max(t):
 return min(t), max(t)

max and min are built-in functions that find the largest and smallest elements of a
sequence. min_max computes both and returns a tuple of two values:

min_max([2, 4, 1, 3])

(1, 4)

We can assign the results to variables like this:

low, high = min_max([2, 4, 1, 3])
low, high

(1, 4)

Argument Packing
Functions can take a variable number of arguments. A parameter name that begins
with the * operator packs arguments into a tuple. For example, the following function
takes any number of arguments and computes their arithmetic mean—that is, their
sum divided by the number of arguments:

def mean(*args):
 return sum(args) / len(args)

The parameter can have any name you like, but args is conventional. We can call the
function like this:

mean(1, 2, 3)

2.0

If you have a sequence of values and you want to pass them to a function as multiple
arguments, you can use the * operator to unpack the tuple. For example, divmod
takes exactly two arguments—if you pass a tuple as a parameter, you get an error:

Argument Packing | 159

t = (7, 3)
divmod(t)

TypeError: divmod expected 2 arguments, got 1

Even though the tuple contains two elements, it counts as a single argument. But if
you unpack the tuple, it is treated as two arguments:

divmod(*t)

(2, 1)

Packing and unpacking can be useful if you want to adapt the behavior of an existing
function. For example, this function takes any number of arguments, removes the
lowest and highest, and computes the mean of the rest:

def trimmed_mean(*args):
 low, high = min_max(args)
 trimmed = list(args)
 trimmed.remove(low)
 trimmed.remove(high)
 return mean(*trimmed)

First, it uses min_max to find the lowest and highest elements. Then it converts args
to a list so it can use the remove method. Finally, it unpacks the list so the elements
are passed to mean as separate arguments, rather than as a single list.

Here’s an example that shows the effect:

mean(1, 2, 3, 10)

4.0

trimmed_mean(1, 2, 3, 10)

2.5

This kind of “trimmed” mean is used in some sports with subjective judging—like
diving and gymnastics—to reduce the effect of a judge whose score deviates from the
others.

160 | Chapter 11: Tuples

Zip
Tuples are useful for looping through the elements of two sequences and performing
operations on corresponding elements. For example, suppose two teams play a series
of seven games, and we record their scores in two lists, one for each team:

scores1 = [1, 2, 4, 5, 1, 5, 2]
scores2 = [5, 5, 2, 2, 5, 2, 3]

Let’s see how many games each team won. We’ll use zip, which is a built-in function
that takes two or more sequences and returns a zip object, so-called because it pairs
up the elements of the sequences like the teeth of a zipper:

zip(scores1, scores2)

<zip at 0x7f3e9c74f0c0>

We can use the zip object to loop through the values in the sequences pairwise:

for pair in zip(scores1, scores2):
 print(pair)

(1, 5)
(2, 5)
(4, 2)
(5, 2)
(1, 5)
(5, 2)
(2, 3)

Each time through the loop, pair gets assigned a tuple of scores. So we can assign the
scores to variables, and count the victories for the first team, like this:

wins = 0
for team1, team2 in zip(scores1, scores2):
 if team1 > team2:
 wins += 1

wins

3

Sadly, the first team won only three games and lost the series.

Zip | 161

If you have two lists and you want a list of pairs, you can use zip and list:

t = list(zip(scores1, scores2))
t

[(1, 5), (2, 5), (4, 2), (5, 2), (1, 5), (5, 2), (2, 3)]

The result is a list of tuples, so we can get the result of the last game like this:

t[-1]

(2, 3)

If you have a list of keys and a list of values, you can use zip and dict to make a
dictionary. For example, here’s how we can make a dictionary that maps from each
letter to its position in the alphabet:

letters = 'abcdefghijklmnopqrstuvwxyz'
numbers = range(len(letters))
letter_map = dict(zip(letters, numbers))

Now we can look up a letter and get its index in the alphabet:

letter_map['a'], letter_map['z']

(0, 25)

In this mapping, the index of 'a' is 0, and the index of 'z' is 25.

If you need to loop through the elements of a sequence and their indices, you can use
the built-in function enumerate:

enumerate('abc')

<enumerate at 0x7f3e9c620cc0>

The result is an enumerate object that loops through a sequence of pairs, where each
pair contains an index (starting from 0) and an element from the given sequence:

for index, element in enumerate('abc'):
 print(index, element)

0 a
1 b
2 c

162 | Chapter 11: Tuples

Comparing and Sorting
The relational operators work with tuples and other sequences. For example, if you
use the < operator with tuples, it starts by comparing the first element from each
sequence. If they are equal, it goes on to the next pair of elements, and so on, until it
finds a pair that differ:

(0, 1, 2) < (0, 3, 4)

True

Subsequent elements are not considered—even if they are really big:

(0, 1, 2000000) < (0, 3, 4)

True

This way of comparing tuples is useful for sorting a list of tuples, or finding the mini‐
mum or maximum. As an example, let’s find the most common letter in a word. In
Chapter 10, we wrote value_counts, which takes a string and returns a dictionary
that maps from each letter to the number of times it appears:

def value_counts(string):
 counter = {}
 for letter in string:
 if letter not in counter:
 counter[letter] = 1
 else:
 counter[letter] += 1
 return counter

Here is the result for the string 'banana':

counter = value_counts('banana')
counter

{'b': 1, 'a': 3, 'n': 2}

With only three items, we can easily see that the most frequent letter is 'a', which
appears three times. But if there were more items, it would be useful to sort them
automatically. We can get the items from counter like this:

items = counter.items()
items

dict_items([('b', 1), ('a', 3), ('n', 2)])

Comparing and Sorting | 163

The result is a dict_items object that behaves like a list of tuples, so we can sort it,
like this:

sorted(items)

[('a', 3), ('b', 1), ('n', 2)]

The default behavior is to use the first element from each tuple to sort the list, and use
the second element to break ties.

However, to find the items with the highest counts, we want to use the second ele‐
ment to sort the list. We can do that by writing a function that takes a tuple and
returns the second element:

def second_element(t):
 return t[1]

Then we can pass that function to sorted as an optional argument called key, which
indicates that this function should be used to compute the sort key for each item:

sorted_items = sorted(items, key=second_element)
sorted_items

[('b', 1), ('n', 2), ('a', 3)]

The sort key determines the order of the items in the list. The letter with the lowest
count appears first, and the letter with the highest count appears last. So we can find
the most common letter like this:

sorted_items[-1]

('a', 3)

If we only want the maximum, we don’t have to sort the list. We can use max, which
also takes key as an optional argument:

max(items, key=second_element)

('a', 3)

To find the letter with the lowest count, we could use min the same way.

164 | Chapter 11: Tuples

Inverting a Dictionary
Suppose you want to invert a dictionary so you can look up a value and get the corre‐
sponding key. For example, if you have a word counter that maps from each word to
the number of times it appears, you could make a dictionary that maps from integers
to the words that appear that number of times.

But there’s a problem—the keys in a dictionary have to be unique, but the values
don’t. For example, in a word counter, there could be many words with the same
count.

So one way to invert a dictionary is to create a new dictionary where the values are
lists of keys from the original. As an example, let’s count the letters in parrot:

d = value_counts('parrot')
d

{'p': 1, 'a': 1, 'r': 2, 'o': 1, 't': 1}

If we invert this dictionary, the result should be {1: ['p', 'a', 'o', 't'], 2:
['r']}, which indicates that the letters that appear once are 'p', 'a', 'o', and 't',
and the letter that appears twice is 'r'.

The following function takes a dictionary and returns its inverse as a new dictionary:

def invert_dict(d):
 new = {}
 for key, value in d.items():
 if value not in new:
 new[value] = [key]
 else:
 new[value].append(key)
 return new

The for statement loops through the keys and values in d. If the value is not already
in the new dictionary, it is added and associated with a list that contains a single ele‐
ment. Otherwise it is appended to the existing list.

We can test it like this:

invert_dict(d)

{1: ['p', 'a', 'o', 't'], 2: ['r']}

And we get the result we expected.

This is the first example we’ve seen where the values in the dictionary are lists. We
will see more!

Inverting a Dictionary | 165

Debugging
Lists, dictionaries, and tuples are data structures. In this chapter we are starting to
see compound data structures, like lists of tuples, or dictionaries that contain tuples
as keys and lists as values. Compound data structures are useful, but they are prone to
errors caused when a data structure has the wrong type, size, or structure. For exam‐
ple, if a function expects a list of integers and you give it a plain old integer (not in a
list), it probably won’t work.

To help debug these kinds of errors, I wrote a module called structshape that pro‐
vides a function, also called structshape, that takes any kind of data structure as an
argument and returns a string that summarizes its structure. You can download it
from https://raw.githubusercontent.com/AllenDowney/ThinkPython/v3/structshape.py.

We can import it like this:

from structshape import structshape

Here’s an example with a simple list:

t = [1, 2, 3]
structshape(t)

'list of 3 int'

Here’s a list of lists:

t2 = [[1,2], [3,4], [5,6]]
structshape(t2)

'list of 3 list of 2 int'

If the elements of the list are not the same type, structshape groups them by type:

t3 = [1, 2, 3, 4.0, '5', '6', [7], [8], 9]
structshape(t3)

'list of (3 int, float, 2 str, 2 list of int, int)'

166 | Chapter 11: Tuples

https://raw.githubusercontent.com/AllenDowney/ThinkPython/v3/structshape.py

Here’s a list of tuples:

s = 'abc'
lt = list(zip(t, s))
structshape(lt)

'list of 3 tuple of (int, str)'

And here’s a dictionary with three items that map integers to strings:

d = dict(lt)
structshape(d)

'dict of 3 int->str'

If you are having trouble keeping track of your data structures, structshape can help.

Glossary
tuple: An immutable object that contains a sequence of values.

pack: Collect multiple arguments into a tuple.

unpack: Treat a tuple (or other sequence) as multiple arguments.

zip object: The result of calling the built-in function zip, can be used to loop through
a sequence of tuples.

enumerate object: The result of calling the built-in function enumerate, can be used
to loop through a sequence of tuples.

sort key: A value, or function that computes a value, used to sort the elements of a
collection.

data structure: A collection of values, organized to perform certain operations
efficiently.

Exercises
Ask a Virtual Assistant
The exercises in this chapter might be more difficult than exercises in previous chap‐
ters, so I encourage you to get help from a virtual assistant. When you pose more dif‐
ficult questions, you might find that the answers are not correct on the first attempt,
so this is a chance to practice crafting good prompts and following up with good
refinements.

Exercises | 167

One strategy you might consider is to break a big problem into pieces that can be
solved with simple functions. Ask the virtual assistant to write the functions and test
them. Then, once they are working, ask for a solution to the original problem.

For some of the following exercises, I make suggestions about which data structures
and algorithms to use. You might find these suggestions useful when you work on the
problems, but they are also good prompts to pass along to a virtual assistant.

Exercise
In this chapter I said that tuples can be used as keys in dictionaries because they are
hashable, and they are hashable because they are immutable. But that is not always
true.

If a tuple contains a mutable value, like a list or a dictionary, the tuple is no longer
hashable because it contains elements that are not hashable. As an example, here’s a
tuple that contains two lists of integers:

list0 = [1, 2, 3]
list1 = [4, 5]

t = (list0, list1)
t

([1, 2, 3], [4, 5])

Write a line of code that appends the value 6 to the end of the second list in t. If you
display t, the result should be ([1, 2, 3], [4, 5, 6]):

t[1].append(6)
t

([1, 2, 3], [4, 5, 6])

Try to create a dictionary that maps from t to a string, and confirm that you get a
TypeError.

For more on this topic, ask a virtual assistant, “Are Python tuples always hashable?”

Exercise
In this chapter we made a dictionary that maps from each letter to its index in the
alphabet:

letters = 'abcdefghijklmnopqrstuvwxyz'
numbers = range(len(letters))
letter_map = dict(zip(letters, numbers))

168 | Chapter 11: Tuples

For example, the index of 'a' is 0:

letter_map['a']

0

To go in the other direction, we can use list indexing. For example, the letter at index
1 is 'b':

letters[1]

'b'

We can use letter_map and letters to encode and decode words using a Caesar
cipher.

A Caesar cipher is a weak form of encryption that involves shifting each letter by a
fixed number of places in the alphabet, wrapping around to the beginning if neces‐
sary. For example, 'a' shifted by 2 is 'c', and 'z' shifted by 1 is 'a'.

Write a function called shift_word that takes as parameters a string and an integer,
and returns a new string that contains the letters from the string shifted by the given
number of places.

To test your function, confirm that “cheer” shifted by 7 is “jolly,” and “melon” shifted
by 16 is “cubed.”

Hint: use the modulus operator to wrap around from 'z' back to 'a'. Loop through
the letters of the word, shift each one, and append the result to a list of letters. Then
use join to concatenate the letters into a string.

Exercise
Write a function called most_frequent_letters that takes a string and prints the let‐
ters in decreasing order of frequency.

To get the items in decreasing order, you can use reversed along with sorted or you
can pass reverse=True as a keyword parameter to sorted.

Exercise
In a previous exercise, we tested whether two strings are anagrams by sorting the let‐
ters in both words and checking whether the sorted letters are the same. Now let’s
make the problem a little more challenging.

We’ll write a program that takes a list of words and prints all the sets of words that are
anagrams. Here is an example of what the output might look like:

Exercises | 169

['deltas', 'desalt', 'lasted', 'salted', 'slated', 'staled']
['retainers', 'ternaries']
['generating', 'greatening']
['resmelts', 'smelters', 'termless']

Hint: for each word in the word list, sort the letters and join them back into a string.
Make a dictionary that maps from this sorted string to a list of words that are ana‐
grams of it.

Exercise
Write a function called word_distance that takes two words with the same length and
returns the number of places where the two words differ.

Hint: use zip to loop through the corresponding letters of the words.

Exercise
“Metathesis” is the transposition of letters in a word. Two words form a “metathesis
pair” if you can transform one into the other by swapping two letters, like converse
and conserve. Write a program that finds all of the metathesis pairs in the word list.

Hint: the words in a metathesis pair must be anagrams of each other.

Credit: this exercise is inspired by an example at http://puzzlers.org.

170 | Chapter 11: Tuples

http://puzzlers.org

CHAPTER 12

Text Analysis and Generation

At this point we have covered Python’s core data structures—lists, dictionaries, and
tuples—and some algorithms that use them. In this chapter, we’ll use them to explore
text analysis and Markov generation:

• Text analysis is a way to describe the statistical relationships between the words
in a document, like the probability that one word is followed by another.

• Markov generation is a way to generate new text with words and phrases similar
to the original text.

These algorithms are similar to parts of a large language model (LLM), which is the
key component of a chatbot.

We’ll start by counting the number of times each word appears in a book. Then we’ll
look at pairs of words and make a list of the words that can follow each word. We’ll
make a simple version of a Markov generator, and as an exercise, you’ll have a chance
to make a more general version.

Unique Words
As a first step toward text analysis, let’s read a book—The Strange Case of Dr. Jekyll
and Mr. Hyde by Robert Louis Stevenson—and count the number of unique words.
Instructions for downloading the book are in the notebook for this chapter:

filename = 'dr_jekyll.txt'

We’ll use a for loop to read lines from the file and split to divide the lines into
words. Then, to keep track of unique words, we’ll store each word as a key in a
dictionary:

171

unique_words = {}
 for line in open(filename):
 seq = line.split()
 for word in seq:
 unique_words[word] = 1

len(unique_words)

6040

The length of the dictionary is the number of unique words—about 6000 by this way
of counting. But if we inspect them, we’ll see that some are not valid words.

For example, let’s look at the longest words in unique_words. We can use sorted to
sort the words, passing the len function as a keyword argument so the words are sor‐
ted by length:

sorted(unique_words, key=len)[-5:]

['chocolate-coloured',
 'superiors—behold!”',
 'coolness—frightened',
 'gentleman—something',
 'pocket-handkerchief.']

The slice index, [-5:], selects the last 5 elements of the sorted list, which are the
longest words.

The list includes some legitimately long words, like “circumscription,” and some
hyphenated words, like “chocolate-coloured.” But some of the longest “words” are
actually two words separated by a dash. And other words include punctuation like
periods, exclamation points, and quotation marks.

So, before we move on, let’s deal with dashes and other punctuation.

Punctuation
To identify the words in the text, we need to deal with two issues:

• When a dash appears in a line, we should replace it with a space—then when we
use split, the words will be separated.

• After splitting the words, we can use strip to remove punctuation.

To handle the first issue, we can use the following function, which takes a string,
replaces dashes with spaces, splits the string, and returns the resulting list:

172 | Chapter 12: Text Analysis and Generation

def split_line(line):
 return line.replace('—', ' ').split()

Notice that split_line only replaces dashes, not hyphens.

Here’s an example:

split_line('coolness—frightened')

['coolness', 'frightened']

Now, to remove punctuation from the beginning and end of each word, we can use
strip, but we need a list of characters that are considered punctuation.

Characters in Python strings are in Unicode, which is an international standard used
to represent letters in nearly every alphabet, numbers, symbols, punctuation marks,
and more. The unicodedata module provides a category function we can use to tell
which characters are punctuation. Given a letter, it returns a string with information
about what category the letter is in:

import unicodedata

unicodedata.category('A')

'Lu'

The category string of 'A' is 'Lu'—the 'L' means it is a letter and the 'u' means it is
uppercase.

The category string of '.' is 'Po'—the 'P' means it is punctuation, the 'o' means its
subcategory is “other”:

unicodedata.category('.')

'Po'

We can find the punctuation marks in the book by checking for characters with cate‐
gories that begin with 'P'. The following loop stores the unique punctuation marks
in a dictionary:

punc_marks = {}
for line in open(filename):
 for char in line:
 category = unicodedata.category(char)
 if category.startswith('P'):
 punc_marks[char] = 1

Punctuation | 173

To make a list of punctuation marks, we can join the keys of the dictionary into a
string:

punctuation = ''.join(punc_marks)
print(punctuation)

.’;,-“”:?—‘!()_

Now that we know which characters in the book are punctuation, we can write a
function that takes a word, strips punctuation from the beginning and end, and con‐
verts it to lowercase:

def clean_word(word):
 return word.strip(punctuation).lower()

Here’s an example:

clean_word('“Behold!”')

'behold'

Because strip removes characters from the beginning and end, it leaves hyphenated
words alone:

clean_word('pocket-handkerchief')

'pocket-handkerchief'

Now here’s a loop that uses split_line and clean_word to identify the unique words
in the book:

unique_words2 = {}
for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 unique_words2[word] = 1

len(unique_words2)

4005

174 | Chapter 12: Text Analysis and Generation

With this stricter definition of what a word is, there are about four thousand unique
words. And we can confirm that the list of longest words has been cleaned up:

sorted(unique_words2, key=len)[-5:]

['circumscription',
 'unimpressionable',
 'fellow-creatures',
 'chocolate-coloured',
 'pocket-handkerchief']

Now let’s see how many times each word is used.

Word Frequencies
The following loop computes the frequency of each unique word:

word_counter = {}
for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 if word not in word_counter:
 word_counter[word] = 1
 else:
 word_counter[word] += 1

The first time we see a word, we initialize its frequency to 1. If we see the same word
again later, we increment its frequency.

To see which words appear most often, we can use items to get the key-value pairs
from word_counter, and sort them by the second element of the pair, which is the
frequency. First we’ll define a function that selects the second element:

def second_element(t):
 return t[1]

Now we can use sorted with two keyword arguments:

key=second_element

The items will be sorted according to the frequencies of the words.

reverse=True

The items will be sorted in reverse order, with the most frequent words first.

items = sorted(word_counter.items(), key=second_element, reverse=True)

Word Frequencies | 175

Here are the five most frequent words:

for word, freq in items[:5]:
 print(freq, word, sep='\t')

1614 the
972 and
941 of
640 to
640 i

In the next section, we’ll encapsulate this loop in a function. And we’ll use it to
demonstrate a new feature—optional parameters.

Optional Parameters
We’ve used built-in functions that take optional parameters. For example, round takes
an optional parameter called ndigits that indicates how many decimal places to
keep:

round(3.141592653589793, ndigits=3)

3.142

But it’s not just built-in functions—we can write functions with optional parameters,
too. For example, the following function takes two parameters, word_counter and
num:

def print_most_common(word_counter, num=5):
 items = sorted(word_counter.items(), key=second_element, reverse=True)

 for word, freq in items[:num]:
 print(freq, word, sep='\t')

The second parameter looks like an assignment statement, but it’s not—it’s an
optional parameter.

If you call this function with one argument, num gets the default value, which is 5:

print_most_common(word_counter)

1614 the
972 and
941 of
640 to
640 i

176 | Chapter 12: Text Analysis and Generation

If you call this function with two arguments, the second argument gets assigned to
num instead of the default value:

print_most_common(word_counter, 3)

1614 the
972 and
941 of

In that case, we would say the optional argument overrides the default value.

If a function has both required and optional parameters, all of the required parame‐
ters have to come first, followed by the optional ones.

Dictionary Subtraction
Suppose we want to spellcheck a book—that is, find a list of words that might be mis‐
spelled. One way to do that is to find words in the book that don’t appear in a list of
valid words. In previous chapters, we’ve used a list of words that are considered valid
in word games like Scrabble. Now we’ll use this list to spellcheck Robert Louis Steven‐
son’s work.

We can think of this problem as set subtraction—that is, we want to find all the words
from one set (the words in the book) that are not in the other (the words in the list).

As we’ve done before, we can read the contents of words.txt and split it into a list of
strings:

word_list = open('words.txt').read().split()

Then we’ll store the words as keys in a dictionary so we can use the in operator to
check quickly whether a word is valid:

valid_words = {}
for word in word_list:
 valid_words[word] = 1

Now, to identify words that appear in the book but not in the word list, we’ll use sub
tract, which takes two dictionaries as parameters and returns a new dictionary that
contains all the keys from one that are not in the other:

def subtract(d1, d2):
 res = {}
 for key in d1:
 if key not in d2:
 res[key] = d1[key]
 return res

Dictionary Subtraction | 177

Here’s how we use it:

diff = subtract(word_counter, valid_words)

To get a sample of words that might be misspelled, we can print the most common
words in diff:

print_most_common(diff)

640 i
628 a
128 utterson
124 mr
98 hyde

The most common “misspelled” words are mostly names and a few single-letter
words (Mr. Utterson is Dr. Jekyll’s friend and lawyer).

If we select words that only appear once, they are more likely to be actual misspell‐
ings. We can do that by looping through the items and making a list of words with a
frequency of 1:

singletons = []
for word, freq in diff.items():
 if freq == 1:
 singletons.append(word)

Here are the last few elements of the list:

singletons[-5:]

['gesticulated', 'abjection', 'circumscription', 'reindue', 'fearstruck']

Most of them are valid words that are not in the word list. But 'reindue' appears to
be a misspelling of 'reinduce', so at least we found one legitimate error.

Random Numbers
As a step toward Markov text generation, next we’ll choose a random sequence of
words from word_counter. But first let’s talk about randomness.

Given the same inputs, most computer programs are deterministic, which means
they generate the same outputs every time. Determinism is usually a good thing,
since we expect the same calculation to yield the same result. For some applications
though, we want the computer to be unpredictable. Games are one example, but there
are more.

178 | Chapter 12: Text Analysis and Generation

Making a program truly nondeterministic turns out to be difficult, but there are ways
to fake it. One is to use algorithms that generate pseudorandom numbers. Pseudo‐
random numbers are not truly random because they are generated by a deterministic
computation, but just by looking at the numbers it is all but impossible to distinguish
them from random.

The random module provides functions that generate pseudorandom numbers—
which I will simply call “random” from here on. We can import it like this:

import random

The random module provides a function called choice that chooses an element from a
list at random, with every element having the same probability of being chosen:

t = [1, 2, 3]
random.choice(t)

1

If you call the function again, you might get the same element again, or a different
one:

random.choice(t)

2

In the long run, we expect to get every element about the same number of times.

If you use choice with a dictionary, you get a KeyError:

random.choice(word_counter)

KeyError: 422

To choose a random key, you have to put the keys in a list and then call choice:

words = list(word_counter)
random.choice(words)

'posture'

Random Numbers | 179

If we generate a random sequence of words, it doesn’t make much sense:

for i in range(6):
 word = random.choice(words)
 print(word, end=' ')

ill-contained written apocryphal nor busy spoke

Part of the problem is that we are not taking into account that some words are more
common than others. The results will be better if we choose words with different
“weights,” so that some are chosen more often than others.

If we use the values from word_counter as weights, each word is chosen with a proba‐
bility that depends on its frequency:

weights = word_counter.values()

The random module provides another function called choices that takes weights as
an optional argument:

random.choices(words, weights=weights)

['than']

And it takes another optional argument, k, that specifies the number of words to
select:

random_words = random.choices(words, weights=weights, k=6)
random_words

['reach', 'streets', 'edward', 'a', 'said', 'to']

The result is a list of strings that we can join into something that looks more like a
sentence:

' '.join(random_words)

'reach streets edward a said to'

If you choose words from the book at random, you get a sense of the vocabulary, but
a series of random words seldom makes sense because there is no relationship
between successive words. For example, in a real sentence you expect an article like
“the” to be followed by an adjective or a noun, and probably not a verb or adverb. So
the next step is to look at these relationships between words.

180 | Chapter 12: Text Analysis and Generation

Bigrams
Instead of looking at one word at a time, now we’ll look at sequences of two words,
which are called bigrams. A sequence of three words is called a trigram, and a
sequence with some unspecified number of words is called an n-gram.

Let’s write a program that finds all of the bigrams in the book and the number of
times each one appears. To store the results, we’ll use a dictionary where:

• The keys are tuples of strings that represent bigrams, and
• The values are integers that represent frequencies.

Let’s call it bigram_counter:

bigram_counter = {}

The following function takes a list of two strings as a parameter. First it makes a tuple
of the two strings, which can be used as a key in a dictionary. Then it adds the key to
bigram_counter, if it doesn’t exist, or increments the frequency if it does:

def count_bigram(bigram):
 key = tuple(bigram)
 if key not in bigram_counter:
 bigram_counter[key] = 1
 else:
 bigram_counter[key] += 1

As we go through the book, we have to keep track of each pair of consecutive words.
So if we see the sequence “man is not truly one,” we would add the bigrams “man is,”
“is not,” “not truly,” and so on.

To keep track of these bigrams, we’ll use a list called window, because it is like a win‐
dow that slides over the pages of the book, showing only two words at a time. Ini‐
tially, window is empty:

window = []

We’ll use the following function to process the words one at a time:

def process_word(word):
 window.append(word)

 if len(window) == 2:
 count_bigram(window)
 window.pop(0)

Bigrams | 181

The first time this function is called, it appends the given word to window. Since there
is only one word in the window, we don’t have a bigram yet, so the function ends.

The second time it’s called—and every time thereafter—it appends a second word to
window. Since there are two words in the window, it calls count_bigram to keep track
of how many times each bigram appears. Then it uses pop to remove the first word
from the window.

The following program loops through the words in the book and processes them one
at a time:

for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 process_word(word)

The result is a dictionary that maps from each bigram to the number of times it
appears. We can use print_most_common to see the most common bigrams:

print_most_common(bigram_counter)

178 ('of', 'the')
139 ('in', 'the')
94 ('it', 'was')
80 ('and', 'the')
73 ('to', 'the')

Looking at these results, we can get a sense of which pairs of words are most likely to
appear together. We can also use the results to generate random text, like this:

bigrams = list(bigram_counter)
weights = bigram_counter.values()
random_bigrams = random.choices(bigrams, weights=weights, k=6)

bigrams is a list of the bigrams that appear in the book. weights is a list of their fre‐
quencies, so random_bigrams is a sample where the probability a bigram is selected is
proportional to its frequency.

Here are the results:

for pair in random_bigrams:
 print(' '.join(pair), end=' ')

to suggest this preface to detain fact is above all the laboratory

This way of generating text is better than choosing random words, but still doesn’t
make a lot of sense.

182 | Chapter 12: Text Analysis and Generation

Markov Analysis
We can do better with Markov chain text analysis, which computes, for each word in
a text, the list of words that come next. As an example, we’ll analyze these lyrics from
the Monty Python song “Eric, the Half a Bee”:

song = """
Half a bee, philosophically,
Must, ipso facto, half not be.
But half the bee has got to be
Vis a vis, its entity. D'you see?
"""

To store the results, we’ll use a dictionary that maps from each word to the list of
words that follow it:

successor_map = {}

As an example, let’s start with the first two words of the song:

first = 'half'
second = 'a'

If the first word is not in successor_map, we have to add a new item that maps from
the first word to a list containing the second word:

successor_map[first] = [second]
successor_map

{'half': ['a']}

If the first word is already in the dictionary, we can look it up to get the list of succes‐
sors we’ve seen so far, and append the new one:

first = 'half'
second = 'not'

successor_map[first].append(second)
successor_map

{'half': ['a', 'not']}

The following function encapsulates these steps:

def add_bigram(bigram):
 first, second = bigram

 if first not in successor_map:
 successor_map[first] = [second]

Markov Analysis | 183

 else:
 successor_map[first].append(second)

If the same bigram appears more that once, the second word is added to the list more
than once. In this way, successor_map keeps track of how many times each successor
appears.

As we did in the previous section, we’ll use a list called window to store pairs of con‐
secutive words. And we’ll use the following function to process the words one at a
time:

def process_word_bigram(word):
 window.append(word)

 if len(window) == 2:
 add_bigram(window)
 window.pop(0)

Here’s how we use it to process the words in the song:

successor_map = {}
window = []

for word in song.split():
 word = clean_word(word)
 process_word_bigram(word)

And here are the results:

successor_map

{'half': ['a', 'not', 'the'],
 'a': ['bee', 'vis'],
 'bee': ['philosophically', 'has'],
 'philosophically': ['must'],
 'must': ['ipso'],
 'ipso': ['facto'],
 'facto': ['half'],
 'not': ['be'],
 'be': ['but', 'vis'],
 'but': ['half'],
 'the': ['bee'],
 'has': ['got'],
 'got': ['to'],
 'to': ['be'],
 'vis': ['a', 'its'],
 'its': ['entity'],
 'entity': ["d'you"],
 "d'you": ['see']}

184 | Chapter 12: Text Analysis and Generation

The word 'half' can be followed by 'a', 'not', or 'the'. The word 'a' can be fol‐
lowed by 'bee' or 'vis'. Most of the other words appear only once, so they are fol‐
lowed by only a single word.

Now let’s analyze the book:

successor_map = {}
window = []

for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 process_word_bigram(word)

We can look up any word and find the words that can follow it:

successor_map['going']

['east', 'in', 'to', 'to', 'up', 'to', 'of']

In this list of successors, notice that the word 'to' appears three times—the other
successors only appear once.

Generating Text
We can use the results from the previous section to generate new text with the same
relationships between consecutive words as in the original. Here’s how it works:

• Starting with any word that appears in the text, we look up its possible successors
and choose one at random.

• Then, using the chosen word, we look up its possible successors and choose one
at random.

We can repeat this process to generate as many words as we want. As an example, let’s
start with the word 'although'. Here are the words that can follow it:

word = 'although'
successors = successor_map[word]
successors

['i', 'a', 'it', 'the', 'we', 'they', 'i']

Generating Text | 185

We can use choice to choose from the list with equal probability:

word = random.choice(successors)
word

'i'

If the same word appears more than once in the list, it is more likely to be selected.

Repeating these steps, we can use the following loop to generate a longer series:

for i in range(10):
 successors = successor_map[word]
 word = random.choice(successors)
 print(word, end=' ')

continue to hesitate and swallowed the smile withered from that

The result sounds more like a real sentence, but it still doesn’t make much sense.

We can do better using more than one word as a key in successor_map. For example,
we can make a dictionary that maps from each bigram—or trigram—to the list of
words that come next. As an exercise, you’ll have a chance to implement this analysis
and see what the results look like.

Debugging
At this point we are writing more substantial programs, and you might find that you
are spending more time debugging. If you are stuck on a difficult bug, here are a few
things to try:

Reading
Examine your code, read it back to yourself, and check that it says what you
meant to say.

Running
Experiment by making changes and running different versions. Often, if you dis‐
play the right thing at the right place in the program, the problem becomes obvi‐
ous, but sometimes you have to build scaffolding.

Ruminating
Take some time to think! What kind of error is it: syntax, runtime, or semantic?
What information can you get from the error messages or from the output of the
program? What kind of error could cause the problem you’re seeing? What did
you change last, before the problem appeared?

186 | Chapter 12: Text Analysis and Generation

Rubberducking
If you explain the problem to someone else, you sometimes find the answer
before you finish asking the question. Often you don’t need the other person; you
could just talk to a rubber duck. And that’s the origin of the well-known strategy
called rubber duck debugging. I am not making this up.

Retreating
At some point, the best thing to do is back up—undoing recent changes—until
you get to a program that works. Then you can start rebuilding.

Resting
If you give your brain a break, sometimes it will find the problem for you.

Beginning programmers sometimes get stuck on one of these activities and forget the
others. Each activity comes with its own failure mode.

For example, reading your code works if the problem is a typographical error, but not
if the problem is a conceptual misunderstanding. If you don’t understand what your
program does, you can read it a hundred times and never see the error, because the
error is in your head.

Running experiments can work, especially if you run small, simple tests. But if you
run experiments without thinking or reading your code, it can take a long time to fig‐
ure out what’s happening.

You have to take time to think. Debugging is like an experimental science. You should
have at least one hypothesis about what the problem is. If there are two or more pos‐
sibilities, try to think of a test that would eliminate one of them.

But even the best debugging techniques will fail if there are too many errors, or if the
code you are trying to fix is too big and complicated. Sometimes the best option is to
retreat, simplifying the program until you get back to something that works.

Beginning programmers are often reluctant to retreat because they can’t stand to
delete a line of code (even if it’s wrong). If it makes you feel better, copy your program
into another file before you start stripping it down. Then you can copy the pieces
back one at a time.

Finding a hard bug requires reading, running, ruminating, retreating, and sometimes
resting. If you get stuck on one of these activities, try the others.

Debugging | 187

https://en.wikipedia.org/wiki/Rubber_duck_debugging

Glossary
default value: The value assigned to a parameter if no argument is provided.

override: To replace a default value with an argument.

deterministic: A deterministic program does the same thing each time it runs, given
the same inputs.

pseudorandom: A pseudorandom sequence of numbers appears to be random, but is
generated by a deterministic program.

bigram: A sequence of two elements, often words.

trigram: A sequence of three elements.

n-gram: A sequence of an unspecified number of elements.

rubber duck debugging: A way of debugging by explaining a problem aloud to an
inanimate object.

Exercises
Ask a Virtual Assistant
In add_bigram, the if statement creates a new list or appends an element to an exist‐
ing list, depending on whether the key is already in the dictionary:

def add_bigram(bigram):
 first, second = bigram

 if first not in successor_map:
 successor_map[first] = [second]
 else:
 successor_map[first].append(second)

Dictionaries provide a method called setdefault that we can use to do the same
thing more concisely. Ask a virtual assistant how it works, or copy add_word into a
virtual assistant and ask “Can you rewrite this using setdefault?”

In this chapter we implemented Markov chain text analysis and generation. If you are
curious, you can ask a virtual assistant for more information on the topic. One of the
things you might learn is that virtual assistants use algorithms that are similar in
many ways—but also different in important ways. Ask a virtual assistant, “What are
the differences between large language models like ChatGPT and Markov chain text
analysis?”

188 | Chapter 12: Text Analysis and Generation

Exercise
Write a function that counts the number of times each trigram (sequence of three
words) appears. If you test your function with the text of Dr. Jekyll and Mr. Hyde, you
should find that the most common trigram is “said the lawyer.”

Hint: write a function called count_trigram that is similar to count_bigram. Then
write a function called process_word_trigram that is similar to process_word
_bigram.

Exercise
Now let’s implement Markov chain text analysis with a mapping from each bigram to
a list of possible successors. Starting with add_bigram, write a function called add_
trigram that takes a list of three words and either adds or updates an item in succes
sor_map, using the first two words as the key and the third word as a possible
successor.

Here’s a version of process_word_trigram that calls add_trigram:

def process_word_trigram(word):
 window.append(word)

 if len(window) == 3:
 add_trigram(window)
 window.pop(0)

You can use the following loop to test your function with the words from the book:

successor_map = {}
window = []

for line in open(filename):
 for word in split_line(line):
 word = clean_word(word)
 process_word_trigram(word)

In the next exercise, you’ll use the results to generate new random text.

Exercises | 189

Exercise
For this exercise, we’ll assume that successor_map is a dictionary that maps from
each bigram to the list of words that follow it. To generate random text, we’ll start by
choosing a random key from successor_map:

successors = list(successor_map)
bigram = random.choice(successors)
bigram

('doubted', 'if')

Now write a loop that generates 50 more words by following these steps:

1. In successor_map, look up the list of words that can follow bigram.
2. Choose one of them at random and print it.
3. For the next iteration, make a new bigram that contains the second word from

bigram and the chosen successor.

For example, if we start with the bigram ('doubted', 'if') and choose 'from' as its
successor, the next bigram is ('if', 'from').

If everything is working, you should find that the generated text is recognizably simi‐
lar in style to the original, and some phrases make sense, but the text might wander
from one topic to another.

As a bonus exercise, modify your solution to the last two exercises to use trigrams as
keys in successor_map, and see what effect it has on the results.

190 | Chapter 12: Text Analysis and Generation

CHAPTER 13

Files and Databases

Most of the programs we have seen so far are ephemeral in the sense that they run
for a short time and produce output, but when they end, their data disappears. Each
time you run an ephemeral program, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time); they keep at
least some of their data in long-term storage; and if they shut down and restart, they
pick up where they left off.

A simple way for programs to maintain their data is by reading and writing text files.
A more versatile alternative is to store data in a database. Databases are specialized
files that can be read and written more efficiently than text files, and they provide
additional capabilities.

In this chapter, we’ll write programs that read and write text files and databases, and
as an exercise you’ll write a program that searches a collection of photos for dupli‐
cates. But before you can work with a file, you have to find it, so we’ll start with file‐
names, paths, and directories.

Filenames and Paths
Files are organized into directories, also called “folders.” Every running program has
a current working directory, which is the default directory for most operations. For
example, when you open a file, Python looks for it in the current working directory.

The os module provides functions for working with files and directories (“os” stands
for “operating system”). It provides a function called getcwd that gets the name of the
current working directory:

191

import os

os.getcwd()

'/home/dinsdale'

The result in this example is the home directory of a user named dinsdale. A string
like '/home/dinsdale' that identifies a file or directory is called a path.

A simple filename like 'memo.txt' is also considered a path, but it is a relative path
because it specifies a filename relative to the current directory. In this example, the
current directory is /home/dinsdale, so 'memo.txt' is equivalent to the complete path
'/home/dinsdale/memo.txt'.

A path that begins with / does not depend on the current directory—it is called an
absolute path. To find the absolute path to a file, you can use abspath:

os.path.abspath('memo.txt')

'/home/dinsdale/memo.txt'

The os module provides other functions for working with filenames and paths. list
dir returns a list of the contents of the given directory, including files and other
directories. Here’s an example that lists the contents of a directory named photos:

os.listdir('photos')

['notes.txt', 'mar-2023', 'jan-2023', 'feb-2023']

This directory contains a text file named notes.txt and three directories. The directo‐
ries contain image files in the JPEG format:

os.listdir('photos/jan-2023')

['photo3.jpg', 'photo2.jpg', 'photo1.jpg']

To check whether a file or directory exists, we can use os.path.exists:

os.path.exists('photos')

True

os.path.exists('photos/apr-2023')

False

192 | Chapter 13: Files and Databases

To check whether a path refers to a file or directory, we can use isdir, which returns
True if a path refers to a directory:

os.path.isdir('photos')

True

And isfile, which returns True if a path refers to a file:

os.path.isfile('photos/notes.txt')

True

One challenge of working with paths is that they look different on different operating
systems. On macOS and Unix systems like Linux, the directory and filenames in a
path are separated by a forward slash, /. Windows uses a backward slash, \. So, if you
you run these examples on Windows, you will see backward slashes in the paths, and
you’ll have to replace the forward slashes in the examples.

Or, to write code that works on both systems, you can use os.path.join, which joins
directory and filenames into a path using a forward or backward slash, depending on
which operating system you are using:

os.path.join('photos', 'jan-2023', 'photo1.jpg')

'photos/jan-2023/photo1.jpg'

Later in this chapter we’ll use these functions to search a set of directories and find all
of the image files.

f-strings
One way for programs to store data is to write it to a text file. For example, suppose
you are a camel spotter, and you want to record the number of camels you have seen
during a period of observation. And suppose that in one and a half years, you have
spotted 23 camels. The data in your camel-spotting book might look like this:

num_years = 1.5
num_camels = 23

To write this data to a file, you can use the write method, which we saw in “Writing
Files” on page 110. The argument of write has to be a string, so if we want to put
other values in a file, we have to convert them to strings. The easiest way to do that is
with the built-in function str.

f-strings | 193

Here’s what that looks like:

writer = open('camel-spotting-book.txt', 'w')
writer.write(str(num_years))
writer.write(str(num_camels))
writer.close()

That works, but write doesn’t add a space or newline unless you include it explicitly.
If we read back the file, we see that the two numbers are run together:

open('camel-spotting-book.txt').read()

'1.523'

At the very least, we should add whitespace between the numbers. And while we’re at
it, let’s add some explanatory text.

To write a combination of strings and other values, we can use an f-string, which is a
string that has the letter f before the opening quotation mark, and contains one or
more Python expressions in curly braces. The following f-string contains one expres‐
sion, which is a variable name:

f'I have spotted {num_camels} camels'

'I have spotted 23 camels'

The result is a string where the expression has been evaluated and replaced with the
result. There can be more than one expression:

f'In {num_years} years I have spotted {num_camels} camels'

'In 1.5 years I have spotted 23 camels'

And the expressions can contain operators and function calls:

line = f'In {round(num_years * 12)} months I have spotted {num_camels} camels'
line

'In 18 months I have spotted 23 camels'

So we could write the data to a text file like this:

writer = open('camel-spotting-book.txt', 'w')
writer.write(f'Years of observation: {num_years}\n')
writer.write(f'Camels spotted: {num_camels}\n')
writer.close()

194 | Chapter 13: Files and Databases

Both f-strings end with the sequence \n, which adds a newline character.

We can read the file back like this:

data = open('camel-spotting-book.txt').read()
print(data)

Years of observation: 1.5
Camels spotted: 23

In an f-string, an expression in curly braces is converted to a string, so you can
include lists, dictionaries, and other types:

t = [1, 2, 3]
d = {'one': 1}
f'Here is a list {t} and a dictionary {d}'

"Here is a list [1, 2, 3] and a dictionary {'one': 1}"

YAML
One of the reasons programs read and write files is to store configuration data,
which is information that specifies what the program should do, and how.

For example, in a program that searches for duplicate photos, we might have a dictio‐
nary called config that contains the name of the directory to search, the name of
another directory where it should store the results, and a list of file extensions it
should use to identify image files.

Here’s what it might look like:

config = {
 'photo_dir': 'photos',
 'data_dir': 'photo_info',
 'extensions': ['jpg', 'jpeg'],
}

To write this data in a text file, we could use f-strings, as in the previous section. But it
is easier to use a module called yaml that is designed for just this sort of thing.

The yaml module provides functions to work with YAML files, which are text files
formatted to be easy for humans and programs to read and write.

YAML | 195

Here’s an example that uses the dump function to write the config dictionary to a
YAML file:

import yaml

config_filename = 'config.yaml'
writer = open(config_filename, 'w')
yaml.dump(config, writer)
writer.close()

If we read back the contents of the file, we can see what the YAML format looks like:

readback = open(config_filename).read()
print(readback)

data_dir: photo_info
extensions:
- jpg
- jpeg
photo_dir: photos

Now, we can use safe_load to read back the YAML file:

reader = open(config_filename)
config_readback = yaml.safe_load(reader)
config_readback

{'data_dir': 'photo_info',
 'extensions': ['jpg', 'jpeg'],
 'photo_dir': 'photos'}

The result is new dictionary that contains the same information as the original, but it
is not the same dictionary:

config is config_readback

False

Converting an object like a dictionary to a string is called serialization. Converting
the string back to an object is called deserialization. If you serialize and then deseri‐
alize an object, the result should be equivalent to the original.

Shelve
So far we’ve been reading and writing text files—now let’s consider databases. A data‐
base is a file that is organized for storing data. Some databases are organized like a
table with rows and columns of information. Others are organized like a dictionary
that maps from keys to values; they are sometimes called key-value stores.

196 | Chapter 13: Files and Databases

The shelve module provides functions for creating and updating a key-value store
called a “shelf.” As an example, we’ll create a shelf to contain captions for the figures
in the photos directory. We’ll use the config dictionary to get the name of the direc‐
tory where we should put the shelf:

config['data_dir']

'photo_info'

We can use os.makedirs to create this directory, if it doesn’t already exist:

os.makedirs(config['data_dir'], exist_ok=True)

And use os.path.join to make a path that includes the name of the directory and
the name of the shelf file, captions:

db_file = os.path.join(config['data_dir'], 'captions')
db_file

'photo_info/captions'

Now we can use shelve.open to open the shelf file. The argument c indicates that the
file should be created, if necessary:

import shelve

db = shelve.open(db_file, 'c')
db

<shelve.DbfilenameShelf at 0x7f5a2021c310>

The return value is officially a DbfilenameShelf object, more casually called a shelf
object.

The shelf object behaves in many ways like a dictionary. For example, we can use the
bracket operator to add an item, which is a mapping from a key to a value:

key = 'jan-2023/photo1.jpg'
db[key] = 'Cat nose'

In this example, the key is the path to an image file and the value is a string that
describes the image.

Shelve | 197

We also use the bracket operator to look up a key and get the corresponding value:

value = db[key]
value

'Cat nose'

If you make another assignment to an existing key, dbm replaces the old value:

db[key] = 'Close up view of a cat nose'
db[key]

'Close up view of a cat nose'

Some dictionary methods, like keys, values, and items, also work with database
objects:

list(db.keys())

['jan-2023/photo1.jpg']

list(db.values())

['Close up view of a cat nose']

We can use the in operator to check whether a key appears in the shelf:

key in db

True

And we can use a for statement to loop through the keys:

for key in db:
 print(key, ':', db[key])

jan-2023/photo1.jpg : Close up view of a cat nose

As with other files, you should close the database when you are done:

db.close()

198 | Chapter 13: Files and Databases

Now if we list the contents of the data directory, we see two files:

os.listdir(config['data_dir'])

['captions.dir', 'captions.dat']

captions.dat contains the data we just stored. captions.dir contains information about
the organization of the database that makes it more efficient to access. The suffix dir
stands for “directory,” but it has nothing to do with the directories we’ve been work‐
ing with that contain files.

Storing Data Structures
In the previous example, the keys and values in the shelf are strings. But we can also
use a shelf to contain data structures like lists and dictionaries.

As an example, let’s revisit the anagram example from the “Exercise” on page 169.
Recall that we made a dictionary that maps from a sorted string of letters to the list of
words that can be spelled with those letters. For example, the key 'opst' maps to the
list ['opts', 'post', 'pots', 'spot', 'stop', 'tops'].

We’ll use the following function to sort the letters in a word:

def sort_word(word):
 return ''.join(sorted(word))

And here’s an example:

word = 'pots'
key = sort_word(word)
key

'opst'

Now let’s open a shelf called anagram_map. The argument 'n' means we should
always create a new, empty shelf, even if one already exists:

db = shelve.open('anagram_map', 'n')

Now we can add an item to the shelf like this:

db[key] = [word]
db[key]

['pots']

Storing Data Structures | 199

In this item, the key is a string and the value is a list of strings.

Now suppose we find another word that contains the same letters, like tops:

word = 'tops'
key = sort_word(word)
key

'opst'

The key is the same as in the previous example, so we want to append a second word
to the same list of strings. Here’s how we would do it if db were a dictionary:

db[key].append(word) # INCORRECT

But if we run that and then look up the key in the shelf, it looks like it has not been
updated:

db[key]

['pots']

Here’s the problem: when we look up the key, we get a list of strings, but if we modify
the list of strings, it does not affect the shelf. If we want to update the shelf, we have to
read the old value, update it, and then write the new value back to the shelf:

anagram_list = db[key]
anagram_list.append(word)
db[key] = anagram_list

Now the value in the shelf is updated:

db[key]

['pots', 'tops']

As an exercise, you can finish this example by reading the word list and storing all of
the anagrams in a shelf.

200 | Chapter 13: Files and Databases

Checking for Equivalent Files
Now let’s get back to the goal of this chapter: searching for different files that contain
the same data. One way to check is to read the contents of both files and compare.

If the files contain images, we have to open them with mode 'rb', where 'r' means
we want to read the contents and 'b' indicates binary mode. In binary mode, the
contents are not interpreted as text—they are treated as a sequence of bytes.

Here’s an example that opens and reads an image file:

path1 = 'photos/jan-2023/photo1.jpg'
data1 = open(path1, 'rb').read()
type(data1)

bytes

The result from read is a bytes object—as the name suggests, it contains a sequence
of bytes.

In general, the contents of an image file are not human readable. But if we read the
contents from a second file, we can use the == operator to compare:

path2 = 'photos/jan-2023/photo2.jpg'
data2 = open(path2, 'rb').read()
data1 == data2

False

These two files are not equivalent.

Let’s encapsulate what we have so far in a function:

def same_contents(path1, path2):
 data1 = open(path1, 'rb').read()
 data2 = open(path2, 'rb').read()
 return data1 == data2

If we have only two files, this function is a good option. But suppose we have a large
number of files and we want to know whether any two of them contain the same data.
It would be inefficient to compare every pair of files.

An alternative is to use a hash function, which takes the contents of a file and com‐
putes a digest, which is usually a large integer. If two files contain the same data, they
will have the same digest. If two files differ, they will almost always have different
digests.

Checking for Equivalent Files | 201

The hashlib module provides several hash functions—the one we’ll use is called md5.
We’ll start by using hashlib.md5 to create a HASH object:

import hashlib

md5_hash = hashlib.md5()
type(md5_hash)

_hashlib.HASH

The HASH object provides an update function that takes the contents of the file as an
argument:

md5_hash.update(data1)

Now we can use hexdigest to get the digest as a string of hexadecimal digits that rep‐
resent an integer in base 16:

digest = md5_hash.hexdigest()
digest

'aa1d2fc25b7ae247b2931f5a0882fa37'

The following function encapsulates these steps:

def md5_digest(filename):
 data = open(filename, 'rb').read()
 md5_hash = hashlib.md5()
 md5_hash.update(data)
 digest = md5_hash.hexdigest()
 return digest

If we hash the contents of a different file, we can confirm that we get a different
digest:

filename2 = 'photos/feb-2023/photo2.jpg'
md5_digest(filename2)

'6a501b11b01f89af9c3f6591d7f02c49'

Now we have almost everything we need to find equivalent files. The last step is to
search a directory and find all of the image files.

202 | Chapter 13: Files and Databases

Walking Directories
The following function takes as an argument the directory we want to search. It uses
listdir to loop through the contents of the directory. When it finds a file, it prints its
complete path. When it finds a directory, it calls itself recursively to search the
subdirectory:

def walk(dirname):
 for name in os.listdir(dirname):
 path = os.path.join(dirname, name)

 if os.path.isfile(path):
 print(path)
 elif os.path.isdir(path):
 walk(path)

We can use it like this:

walk('photos')

photos/notes.txt
photos/mar-2023/photo2.jpg
photos/mar-2023/photo1.jpg
photos/jan-2023/photo3.jpg
photos/jan-2023/photo2.jpg
photos/jan-2023/photo1.jpg
photos/feb-2023/photo2.jpg
photos/feb-2023/photo1.jpg

The order of the results depends on details of the operating system.

Here is a more general version of walk that takes as a second parameter a function
object. Instead of printing the path of the files it discovers, it calls this function and
passes the path as a parameter:

def walk(dirname, visit_func):
 for name in os.listdir(dirname):
 path = os.path.join(dirname, name)

 if os.path.isfile(path):
 visit_func(path)
 else:
 walk(path, visit_func)

Walking Directories | 203

Here’s an example where we pass print as an argument, so when walk calls
visit_func, it prints the paths of the files it discovers:

walk('photos', print)

photos/notes.txt
photos/mar-2023/photo2.jpg
photos/mar-2023/photo1.jpg
photos/jan-2023/photo3.jpg
photos/jan-2023/photo2.jpg
photos/jan-2023/photo1.jpg
photos/feb-2023/photo2.jpg
photos/feb-2023/photo1.jpg

The parameter is called visit_func because it suggests that as we “walk” around the
directory, we “visit” each file.

Debugging
When you are reading and writing files, you might run into problems with white‐
space. These errors can be hard to debug because spaces, tabs, and newlines are nor‐
mally invisible:

s = '1 2\t 3\n 4'
print(s)

1 2 3
 4

The built-in function repr can help. It takes any object as an argument and returns a
string representation of the object. For strings, it represents whitespace characters
with backslash sequences:

print(repr(s))

'1 2\t 3\n 4'

This can be helpful for debugging.

One other problem you might run into is that different systems use different charac‐
ters to indicate the end of a line. Some systems use a newline, represented as \n. Oth‐
ers use a return character, represented as \r. Some use both. If you move files
between different systems, these inconsistencies can cause problems.

Filename capitalization is another issue you might encounter if you work with differ‐
ent operating systems. In macOS and Unix, filenames can contain lowercase and
uppercase letters, digits, and most symbols. But many Windows applications ignore

204 | Chapter 13: Files and Databases

the difference between lowercase and uppercase letters, and several symbols that are
allowed in macOS and Unix are not allowed in Windows.

Glossary
ephemeral: An ephemeral program typically runs for a short time and, when it ends,
its data is lost.

persistent: A persistent program runs indefinitely and keeps at least some of its data
in permanent storage.

directory: A collection of files and other directories.

current working directory: The default directory used by a program unless another
directory is specified.

path: A string that specifies a sequence of directories, often leading to a file.

relative path: A path that starts from the current working directory, or some other
specified directory.

absolute path: A path that does not depend on the current directory.

f-string: A string that has the letter f before the opening quotation mark, and con‐
tains one or more expressions in curly braces.

configuration data: Data, often stored in a file, that specifies what a program should
do and how.

serialization: Converting an object to a string.

deserialization: Converting a string to an object.

database: A file whose contents are organized to perform certain operations
efficiently.

key-value stores: A database whose contents are organized like a dictionary with keys
that correspond to values.

binary mode: A way of writing a file so the contents are interpreted as sequence of
bytes rather than a sequence of characters.

hash function: A function that takes an object and computes an integer, which is
sometimes called a digest.

digest: The result of a hash function, especially when it is used to check whether two
objects are the same.

Glossary | 205

Exercises
Ask a Virtual Assistant
There are several topics that came up in this chapter that I did not explain in detail.
Here are some questions you can ask a virtual assistant to get more information:

• “What are the differences between ephemeral and persistent programs?”
• “What are some examples of persistent programs?”
• “What’s the difference between a relative path and an absolute path?”
• “Why does the yaml module have functions called load and safe_load?”
• “When I write a Python shelf, what are the files with suffixes dat and dir?”
• “Other than key-values stores, what other kinds of databases are there?”
• “When I read a file, what’s the difference between binary mode and text mode?”
• “What are the differences between a bytes object and a string?”
• “What is a hash function?”
• “What is an MD5 digest?”

As always, if you get stuck on any of the following exercises, consider asking a virtual
assistant for help. Along with your question, you might want to paste in the relevant
functions from this chapter.

Exercise
Write a function called replace_all that takes as arguments a pattern string, a
replacement string, and two filenames. It should read the first file and write the con‐
tents into the second file (creating it, if necessary). If the pattern string appears any‐
where in the contents, it should be replaced with the replacement string.

To test your function, read the file photos/notes.txt, replace 'photos' with 'images',
and write the result to the file photos/new_notes.txt.

Exercise
In “Storing Data Structures” on page 199, we used the shelve module to make a key-
value store that maps from a sorted string of letters to a list of anagrams. To finish the
example, write a function called add_word that takes as arguments a string and a shelf
object.

206 | Chapter 13: Files and Databases

It should sort the letters of the word to make a key, then check whether the key is
already in the shelf. If not, it should make a list that contains the new word and add it
to the shelf. If the key is already in the shelf, it should append the new word to the
existing value.

Exercise
In a large collection of files, there may be more than one copy of the same file, stored
in different directories or with different filenames. The goal of this exercise is to
search for duplicates. As an example, we’ll work with image files in the photos direc‐
tory.

Here’s how it will work:

• We’ll use the walk function from “Walking Directories” on page 203 to search
this directory for files that end with one of the extensions in config

['extensions'].
• For each file, we’ll use md5_digest from “Checking for Equivalent Files” on page

201 to compute a digest of the contents.
• Using a shelf, we’ll make a mapping from each digest to a list of paths with that

digest.
• Finally, we’ll search the shelf for any digests that map to multiple files.
• If we find any, we’ll use same_contents to confirm that the files contain the same

data.

I’ll suggest some functions to write first, then we’ll bring it all together:

1. To identify image files, write a function called is_image that takes a path and a
list of file extensions, and returns True if the path ends with one of the extensions
in the list. Hint: use os.path.splitext—or ask a virtual assistant to write this
function for you.

2. Write a function called add_path that takes as arguments a path and a shelf. It
should use md5_digest to compute a digest of the file contents. Then it should
update the shelf, either creating a new item that maps from the digest to a list
containing the path, or appending the path to the list if it exists.

3. Write a function called process_path that takes a path, uses is_image to check
whether it’s an image file, and uses add_path to add it to the shelf.

Exercises | 207

When everything is working, you can use the following program to create the shelf,
search the photos directory and add paths to the shelf, and then check whether there
are multiple files with the same digest:

db = shelve.open('photos/digests', 'n')
walk('photos', process_path)

for digest, paths in db.items():
 if len(paths) > 1:
 print(paths)

You should find one pair of files that have the same digest. Use same_contents to
check whether they contain the same data.

208 | Chapter 13: Files and Databases

CHAPTER 14

Classes and Functions

At this point you know how to use functions to organize code and how to use built-in
types to organize data. The next step is object-oriented programming (OOP), which
uses programmer-defined types to organize both code and data.

Object-oriented programming is a big topic, so we will proceed gradually. In this
chapter, we’ll start with code that is not idiomatic—that is, it is not the kind of code
experienced programmers write—but it is a good place to start. In the next two chap‐
ters, we will use additional features to write more idiomatic code.

Programmer-Defined Types
We have used many of Python’s built-in types—now we will define a new type. As a
first example, we’ll create a type called Time that represents a time of day. A
programmer-defined type is also called a class. A class definition looks like this:

class Time:
 """Represents a time of day."""

The header indicates that the new class is called Time. The body is a docstring that
explains what the class is for. Defining a class creates a class object.

The class object is like a factory for creating objects. To create a Time object, you call
Time as if it were a function:

lunch = Time()

209

The result is a new object whose type is __main__.Time, where __main__ is the name
of the module where Time is defined:

type(lunch)

__main__.Time

When you print an object, Python tells you what type it is and where it is stored in
memory (the prefix 0x means that the following number is in hexadecimal):

print(lunch)

<__main__.Time object at 0x7fbf2c427280>

Creating a new object is called instantiation, and the object is an instance of the
class.

Attributes
An object can contain variables, which are called attributes and pronounced with the
emphasis on the first syllable, as “AT-trib-ute,” rather than the second syllable, as “a-
TRIB-ute.” We can create attributes using dot notation:

lunch.hour = 11
lunch.minute = 59
lunch.second = 1

This example creates attributes called hour, minute, and second, which contain the
hours, minutes, and seconds of the time 11:59:01, which is lunchtime as far as I am
concerned.

The following diagram shows the state of lunch and its attributes after these
assignments:

The variable lunch refers to a Time object, which contains three attributes. Each
attribute refers to an integer. A state diagram like this—which shows an object and its
attributes—is called an object diagram.

210 | Chapter 14: Classes and Functions

You can read the value of an attribute using the dot operator:

lunch.hour

11

You can use an attribute as part of any expression:

total_minutes = lunch.hour * 60 + lunch.minute
total_minutes

719

And you can use the dot operator in an expression in an f-string:

f'{lunch.hour}:{lunch.minute}:{lunch.second}'

'11:59:1'

But notice that the previous example is not in the standard format. To fix it, we have
to print the minute and second attributes with a leading zero. We can do that by
extending the expressions in curly braces with a format specifier. In the following
example, the format specifiers indicate that minute and second should be displayed
with at least two digits and a leading zero, if needed:

f'{lunch.hour}:{lunch.minute:02d}:{lunch.second:02d}'

'11:59:01'

We’ll use this f-string to write a function that displays the value of time objects. You
can pass an object as an argument in the usual way. For example, the following func‐
tion takes a Time object as an argument:

def print_time(time):
 s = f'{time.hour:02d}:{time.minute:02d}:{time.second:02d}'
 print(s)

When we call it, we can pass lunch as an argument:

print_time(lunch)

11:59:01

Attributes | 211

Objects as Return Values
Functions can return objects. For example, make_time takes parameters called hour,
minute, and second, stores them as attributes in a Time object, and returns the new
object:

def make_time(hour, minute, second):
 time = Time()
 time.hour = hour
 time.minute = minute
 time.second = second
 return time

It might be surprising that the parameters have the same names as the attributes, but
that’s a common way to write a function like this. Here’s how we use make_time to
create a Time object:

time = make_time(11, 59, 1)
print_time(time)

11:59:01

Objects Are Mutable
Suppose you are going to a screening of a movie, like Monty Python and the Holy
Grail, which starts at 9:20 P.M. and runs for 92 minutes, which is 1 hour and 32
minutes. What time will the movie end?

First, we’ll create a Time object that represents the start time:

start = make_time(9, 20, 0)
print_time(start)

09:20:00

To find the end time, we can modify the attributes of the Time object, adding the
duration of the movie:

start.hour += 1
start.minute += 32
print_time(start)

10:52:00

The movie will be over at 10:52 P.M.

212 | Chapter 14: Classes and Functions

Let’s encapsulate this computation in a function and generalize it to take the duration
of the movie in three parameters: hours, minutes, and seconds:

def increment_time(time, hours, minutes, seconds):
 time.hour += hours
 time.minute += minutes
 time.second += seconds

Here is an example that demonstrates the effect:

start = make_time(9, 20, 0)
increment_time(start, 1, 32, 0)
print_time(start)

10:52:00

The following stack diagram shows the state of the program just before
increment_time modifies the object:

Inside the function, time is an alias for start, so when time is modified, start
changes.

This function works, but after it runs, we’re left with a variable named start that
refers to an object that represents the end time, and we no longer have an object that
represents the start time. It would be better to leave start unchanged and make a
new object to represent the end time. We can do that by copying start and modify‐
ing the copy.

Copying
The copy module provides a function called copy that can duplicate any object. We
can import it like this:

from copy import copy

Copying | 213

To see how it works, let’s start with a new Time object that represents the start time of
the movie:

start = make_time(9, 20, 0)

And make a copy:

end = copy(start)

Now start and end contain the same data:

print_time(start)
print_time(end)

09:20:00
09:20:00

But the is operator confirms that they are not the same object:

start is end

False

Let’s see what the == operator does:

start == end

False

You might expect == to yield True because the objects contain the same data. But for
programmer-defined classes, the default behavior of the == operator is the same as the
is operator—it checks identity, not equivalence.

Pure Functions
We can use copy to write pure functions that don’t modify their parameters. For
example, here’s a function that takes a Time object and a duration in hours, minutes,
and seconds. It makes a copy of the original object, uses increment_time to modify
the copy, and returns it:

def add_time(time, hours, minutes, seconds):
 total = copy(time)
 increment_time(total, hours, minutes, seconds)
 return total

214 | Chapter 14: Classes and Functions

Here’s how we use it:

end = add_time(start, 1, 32, 0)
print_time(end)

10:52:00

The return value is a new object representing the end time of the movie. And we can
confirm that start is unchanged:

print_time(start)

09:20:00

add_time is a pure function because it does not modify any of the objects passed to it
as arguments and its only effect is to return a value.

Anything that can be done with modifiers can also be done with pure functions. In
fact, some programming languages only allow pure functions. Programs that use pure
functions might be less error prone than programs that use modifiers. But modifiers
are sometimes convenient and can be more efficient.

In general, I suggest you write pure functions whenever it is reasonable and resort to
modifiers only if there is a compelling advantage. This approach might be called a
functional programming style.

Prototype and Patch
In the previous example, increment_time and add_time seem to work, but if we try
another example, we’ll see that they are not quite correct.

Suppose you arrive at the theater and discover that the movie starts at 9:40, not 9:20.
Here’s what happens when we compute the updated end time:

start = make_time(9, 40, 0)
end = add_time(start, 1, 32, 0)
print_time(end)

10:72:00

The result is not a valid time. The problem is that increment_time does not deal with
cases where the number of seconds or minutes adds up to more than 60.

Here’s an improved version that checks whether second exceeds 60—if so, it incre‐
ments minute—then checks whether minute exceeds 60—if so, it increments hour:

Prototype and Patch | 215

def increment_time(time, hours, minutes, seconds):
 time.hour += hours
 time.minute += minutes
 time.second += seconds

 if time.second >= 60:
 time.second -= 60
 time.minute += 1

 if time.minute >= 60:
 time.minute -= 60
 time.hour += 1

Fixing increment_time also fixes add_time, which uses it. So now the previous exam‐
ple works correctly:

end = add_time(start, 1, 32, 0)
print_time(end)

11:12:00

But this function is still not correct, because the arguments might be bigger than 60.
For example, suppose we are given the run time as 92 minutes, rather than 1 hour
and 32 minutes. We might call add_time like this:

end = add_time(start, 0, 92, 0)
print_time(end)

10:72:00

The result is not a valid time. So let’s try a different approach, using the divmod func‐
tion. We’ll make a copy of start and modify it by incrementing the minute field:

end = copy(start)
end.minute = start.minute + 92
end.minute

132

Now minute is 132, which is 2 hours and 12 minutes. We can use divmod to divide by
60 and return the number of whole hours and the number of minutes left over:

carry, end.minute = divmod(end.minute, 60)
carry, end.minute

(2, 12)

Now minute is correct, and we can add the hours to hour:

216 | Chapter 14: Classes and Functions

end.hour += carry
print_time(end)

11:12:00

The result is a valid time. We can do the same thing with hour and second, and
encapsulate the whole process in a function:

def increment_time(time, hours, minutes, seconds):
 time.hour += hours
 time.minute += minutes
 time.second += seconds

 carry, time.second = divmod(time.second, 60)
 carry, time.minute = divmod(time.minute + carry, 60)
 carry, time.hour = divmod(time.hour + carry, 60)

With this version of increment_time, add_time works correctly, even if the argu‐
ments exceed 60:

end = add_time(start, 0, 90, 120)
print_time(end)

11:12:00

This section demonstrates a program development plan I call prototype and patch.
We started with a simple prototype that worked correctly for the first example. Then
we tested it with more difficult examples—when we found an error, we modified the
program to fix it, like putting a patch on a tire with a puncture.

This approach can be effective, especially if you don’t yet have a deep understanding
of the problem. But incremental corrections can generate code that is unnecessarily
complicated—since it deals with many special cases—and unreliable, since it is hard
to know if you have found all the errors.

Design-First Development
An alternative plan is design-first development, which involves more planning
before prototyping. In a design-first process, sometimes a high-level insight into the
problem makes the programming much easier.

In this case, the insight is that we can think of a Time object as a 3-digit number in
base 60—also known as sexagesimal. The second attribute is the “ones column,” the
minute attribute is the “sixties column,” and the hour attribute is the “thirty-six hun‐
dreds column.” When we wrote increment_time, we were effectively doing addition
in base 60, which is why we had to carry from one column to the next.

Design-First Development | 217

This observation suggests another approach to the whole problem—we can convert
Time objects to integers and take advantage of the fact that Python knows how to do
integer arithmetic.

Here is a function that converts from a Time to an integer:

def time_to_int(time):
 minutes = time.hour * 60 + time.minute
 seconds = minutes * 60 + time.second
 return seconds

The result is the number of seconds since the beginning of the day. For example,
01:01:01 is 1 hour, 1 minute, and 1 second from the beginning of the day, which is
the sum of 3600 seconds, 60 seconds, and 1 second:

time = make_time(1, 1, 1)
print_time(time)
time_to_int(time)

01:01:01

3661

And here’s a function that goes in the other direction—converting an integer to a
Time object—using the divmod function:

def int_to_time(seconds):
 minute, second = divmod(seconds, 60)
 hour, minute = divmod(minute, 60)
 return make_time(hour, minute, second)

We can test it by converting the previous example back to a Time:

time = int_to_time(3661)
print_time(time)

01:01:01

Using these functions, we can write a more concise version of add_time:

def add_time(time, hours, minutes, seconds):
 duration = make_time(hours, minutes, seconds)
 seconds = time_to_int(time) + time_to_int(duration)
 return int_to_time(seconds)

The first line converts the arguments to a Time object called duration. The second
line converts time and duration to seconds and adds them. The third line converts
the sum to a Time object and returns it.

218 | Chapter 14: Classes and Functions

Here’s how it works:

start = make_time(9, 40, 0)
end = add_time(start, 1, 32, 0)
print_time(end)

11:12:00

In some ways, converting from base 60 to base 10 and back is harder than just dealing
with times. Base conversion is more abstract; our intuition for dealing with time val‐
ues is better.

But if we have the insight to treat times as base 60 numbers—and invest the effort to
write the conversion functions time_to_int and int_to_time—we get a program
that is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two Time
objects to find the duration between them. The naive approach is to implement sub‐
traction with borrowing. Using the conversion functions is easier and more likely to
be correct.

Ironically, sometimes making a problem harder—or more general—makes it easier,
because there are fewer special cases and fewer opportunities for error.

Debugging
Python provides several built-in functions that are useful for testing and debugging
programs that work with objects. For example, if you are not sure what type an object
is, you can ask:

type(start)

__main__.Time

You can also use isinstance to check whether an object is an instance of a particular
class:

isinstance(end, Time)

True

Debugging | 219

If you are not sure whether an object has a particular attribute, you can use the built-
in function hasattr:

hasattr(start, 'hour')

True

To get all of the attributes, and their values, in a dictionary, you can use vars:

vars(start)

{'hour': 9, 'minute': 40, 'second': 0}

The structshape module, which we saw in “Debugging” on page 166, also works
with programmer-defined types:

from structshape import structshape

t = start, end
structshape(t)

'tuple of 2 Time'

Glossary
object-oriented programming (OOP): A style of programming that uses objects to
organize code and data.

class: A programmer-defined type. A class definition creates a new class object.

class object: An object that represents a class—it is the result of a class definition.

instantiation: The process of creating an object that belongs to a class.

instance: An object that belongs to a class.

attribute: A variable associated with an object, also called an instance variable.

object diagram: A graphical representation of an object, its attributes, and their
values.

format specifier: In an f-string, a format specifier determines how a value is con‐
verted to a string.

pure function: A function that does not modify its parameters or have any effect
other than returning a value.

functional programming style: A way of programming that uses pure functions
whenever possible.

220 | Chapter 14: Classes and Functions

prototype and patch: A way of developing programs by starting with a rough draft
and gradually adding features and fixing bugs.

design-first development: A way of developing programs with more careful planning
than prototype and patch.

Exercises
Ask a Virtual Assistant
There is a lot of new vocabulary in this chapter. A conversation with a virtual assis‐
tant can help solidify your understanding. Consider asking:

• “What is the difference between a class and a type?”
• “What is the difference between an object and an instance?”
• “What is the difference between a variable and an attribute?”
• “What are the pros and cons of pure functions compared to modifiers?”

Because we are just getting started with object-oriented programming, the code in
this chapter is not idiomatic—it is not the kind of code experienced programmers
write. If you ask a virtual assistant for help with the exercises, you will probably see
features we have not covered yet. In particular, you are likely to see a method called
__init__ used to initialize the attributes of an instance.

If these features make sense to you, go ahead and use them. But if not, be patient—we
will get there soon. In the meantime, see if you can solve the following exercises using
only the features we have covered so far.

Also, in this chapter we saw one example of a format specifier. For more information
ask “What format specifiers can be used in a Python f-string?”

Exercise
Write a function called subtract_time that takes two Time objects and returns the
interval between them in seconds—assuming that they are two times during the same
day.

Exercises | 221

Exercise
Write a function called is_after that takes two Time objects and returns True if the
second time is later in the day than the first, and False otherwise:

def is_after(t1, t2):
 """Checks whether `t1` is after `t2`.

 >>> is_after(make_time(3, 2, 1), make_time(3, 2, 0))
 True
 >>> is_after(make_time(3, 2, 1), make_time(3, 2, 1))
 False
 >>> is_after(make_time(11, 12, 0), make_time(9, 40, 0))
 True
 """
 return None

Exercise
Here’s a definition for a Date class that represents a date—that is, a year, month, and
day of the month:

class Date:
 """Represents a year, month, and day"""

1. Write a function called make_date that takes year, month, and day as parameters,
makes a Date object, assigns the parameters to attributes, and returns the result
as the new object. Create an object that represents June 22, 1933.

2. Write a function called print_date that takes a Date object, uses an f-string to
format the attributes, and prints the result. If you test it with the Date you cre‐
ated, the result should be 1933-06-22.

3. Write a function called is_after that takes two Date objects as parameters and
returns True if the first comes after the second. Create a second object that repre‐
sents September 17, 1933, and check whether it comes after the first object.

Hint: you might find it useful to write a function called date_to_tuple that takes a
Date object and returns a tuple that contains its attributes in year, month, day order.

222 | Chapter 14: Classes and Functions

CHAPTER 15

Classes and Methods

Python is an object-oriented language—that is, it provides features that support
object-oriented programming, which has these defining characteristics:

• Most of the computation is expressed in terms of operations on objects.
• Objects often represent things in the real world, and methods often correspond

to the ways things in the real world interact.
• Programs include class and method definitions.

For example, in the previous chapter we defined a Time class that corresponds to the
way people record the time of day, and we defined functions that correspond to the
kinds of things people do with times. But there was no explicit connection between
the definition of the Time class and the function definitions that follow. We can make
the connection explicit by rewriting a function as a method, which is defined inside a
class definition.

Defining Methods
In the previous chapter, we defined a class named Time and wrote a function named
print_time that displays a time of day:

class Time:
 """Represents the time of day."""

def print_time(time):
 s = f'{time.hour:02d}:{time.minute:02d}:{time.second:02d}'
 print(s)

To make print_time a method, all we have to do is move the function definition
inside the class definition. Notice the change in indentation.

223

At the same time, we’ll change the name of the parameter from time to self. This
change is not necessary, but it is conventional for the first parameter of a method to
be named self:

class Time:
 """Represents the time of day."""

 def print_time(self):
 s = f'{self.hour:02d}:{self.minute:02d}:{self.second:02d}'
 print(s)

To call this function, you have to pass a Time object as an argument. Here’s the func‐
tion we’ll use to make a Time object:

def make_time(hour, minute, second):
 time = Time()
 time.hour = hour
 time.minute = minute
 time.second = second
 return time

And here’s a Time instance:

start = make_time(9, 40, 0)

There are two ways to call print_time. The first (and less common) way is to use
function syntax:

Time.print_time(start)

09:40:00

In this version, Time is the name of the class, print_time is the name of the method,
and start is passed as a parameter. The second (and more idiomatic) way is to use
the method syntax:

start.print_time()

09:40:00

In this version, start is the object the method is invoked on, which is called the
receiver, based on the analogy that invoking a method is like sending a message to an
object.

Regardless of the syntax, the behavior of the method is the same. The receiver is
assigned to the first parameter, so inside the method, self refers to the same object as
start.

224 | Chapter 15: Classes and Methods

Another Method
Here’s the time_to_int function from Chapter 14:

def time_to_int(time):
 minutes = time.hour * 60 + time.minute
 seconds = minutes * 60 + time.second
 return seconds

And here’s a version rewritten as a method:

%%add_method_to Time

 def time_to_int(self):
 minutes = self.hour * 60 + self.minute
 seconds = minutes * 60 + self.second
 return seconds

The first line uses the special command add_method_to, which adds a method to a
previously defined class. This command works in a Jupyter notebook, but it is not
part of Python, so it won’t work in other environments. Normally, all methods of a
class are inside the class definition, so they get defined at the same time as the class.
But for this book, it is helpful to define one method at a time.

As in the previous example, the method definition is indented and the name of the
parameter is self. Other than that, the method is identical to the function. Here’s
how we invoke it:

start.time_to_int()

34800

It is common to say that we “call” a function and “invoke” a method, but they mean
the same thing.

Static Methods
As another example, let’s consider the int_to_time function. Here’s the version from
Chapter 14:

def int_to_time(seconds):
 minute, second = divmod(seconds, 60)
 hour, minute = divmod(minute, 60)
 return make_time(hour, minute, second)

Static Methods | 225

This function takes seconds as a parameter and returns a new Time object. If we
transform it into a method of the Time class, we have to invoke it on a Time object.
But if we’re trying to create a new Time object, what are we supposed to invoke it on?

We can solve this chicken-and-egg problem using a static method, which is a method
that does not require an instance of the class to be invoked. Here’s how we rewrite this
function as a static method:

%%add_method_to Time

 def int_to_time(seconds):
 minute, second = divmod(seconds, 60)
 hour, minute = divmod(minute, 60)
 return make_time(hour, minute, second)

Because it is a static method, it does not have self as a parameter. To invoke it, we
use Time, which is the class object:

start = Time.int_to_time(34800)

The result is a new object that represents 9:40:

start.print_time()

09:40:00

Now that we have Time.from_seconds, we can use it to write add_time as a method.
Here’s the function from the previous chapter:

def add_time(time, hours, minutes, seconds):
 duration = make_time(hours, minutes, seconds)
 seconds = time_to_int(time) + time_to_int(duration)
 return int_to_time(seconds)

And here’s a version rewritten as a method:

%%add_method_to Time

 def add_time(self, hours, minutes, seconds):
 duration = make_time(hours, minutes, seconds)
 seconds = time_to_int(self) + time_to_int(duration)
 return Time.int_to_time(seconds)

add_time has self as a parameter because it is not a static method. It is an ordinary
method—also called an instance method. To invoke it, we need a Time instance:

226 | Chapter 15: Classes and Methods

end = start.add_time(1, 32, 0)
print_time(end)

11:12:00

Comparing Time Objects
As one more example, let’s write is_after as a method. Here’s the is_after function,
which is a solution to an exercise in Chapter 14:

def is_after(t1, t2):
 return time_to_int(t1) > time_to_int(t2)

And here it is as a method:

%%add_method_to Time

 def is_after(self, other):
 return self.time_to_int() > other.time_to_int()

Because we’re comparing two objects, and the first parameter is self, we’ll call the
second parameter other. To use this method, we have to invoke it on one object and
pass the other as an argument:

end.is_after(start)

True

One nice thing about this syntax is that it almost reads like a question, “end is after
start?”

The __str__ Method
When you write a method, you can choose almost any name you want. However,
some names have special meanings. For example, if an object has a method named
__str__, Python uses that method to convert the object to a string. For example, here
is a __str__ method for a Time object:

%%add_method_to Time

 def __str__(self):
 s = f'{self.hour:02d}:{self.minute:02d}:{self.second:02d}'
 return s

The __str__ Method | 227

This method is similar to print_time from Chapter 14, except that it returns the
string rather than printing it.

You can invoke this method in the usual way:

end.__str__()

'11:12:00'

But Python can also invoke it for you. If you use the built-in function str to convert a
Time object to a string, Python uses the __str__ method in the Time class:

str(end)

'11:12:00'

And it does the same if you print a Time object:

print(end)

11:12:00

Methods like __str__ are called special methods. You can identify them because
their names begin and end with two underscores.

The __init__ Method
The most special of the special methods is __init__, so-called because it initializes
the attributes of a new object. An __init__ method for the Time class might look like
this:

%%add_method_to Time

 def __init__(self, hour=0, minute=0, second=0):
 self.hour = hour
 self.minute = minute
 self.second = second

Now when we instantiate a Time object, Python invokes __init__, and passes along
the arguments. So we can create an object and initialize the attributes at the same
time:

time = Time(9, 40, 0)
print(time)

09:40:00

228 | Chapter 15: Classes and Methods

In this example, the parameters are optional, so if you call Time with no arguments,
you get the default values:

time = Time()
print(time)

00:00:00

If you provide one argument, it overrides hour:

time = Time(9)
print(time)

09:00:00

If you provide two arguments, they override hour and minute:

time = Time(9, 45)
print(time)

09:45:00

And if you provide three arguments, they override all three default values.

When I write a new class, I almost always start by writing __init__, which makes it
easier to create objects, and __str__, which is useful for debugging.

Operator Overloading
By defining other special methods, you can specify the behavior of operators on
programmer-defined types. For example, if you define a method named __add__ for
the Time class, you can use the + operator on Time objects.

Here is an __add__ method:

%%add_method_to Time

 def __add__(self, other):
 seconds = self.time_to_int() + other.time_to_int()
 return Time.int_to_time(seconds)

Operator Overloading | 229

We can use it like this:

duration = Time(1, 32)
end = start + duration
print(end)

11:12:00

There is a lot happening when we run these three lines of code:

• When we instantiate a Time object, the __init__ method is invoked.
• When we use the + operator with a Time object, its __add__ method is invoked.
• And when we print a Time object, its __str__ method is invoked.

Changing the behavior of an operator so that it works with programmer-defined
types is called operator overloading. For every operator, like +, there is a correspond‐
ing special method, like __add__.

Debugging
A Time object is valid if the values of minute and second are between 0 and 60—
including 0 but not 60—and if hour is positive. Also, hour and minute should be inte‐
ger values, but we might allow second to have a fraction part. Requirements like these
are called invariants because they should always be true. To put it a different way, if
they are not true, something has gone wrong.

Writing code to check invariants can help detect errors and find their causes. For
example, you might have a method like is_valid that takes a Time object and returns
False if it violates an invariant:

%%add_method_to Time

 def is_valid(self):
 if self.hour < 0 or self.minute < 0 or self.second < 0:
 return False
 if self.minute >= 60 or self.second >= 60:
 return False
 if not isinstance(self.hour, int):
 return False
 if not isinstance(self.minute, int):
 return False
 return True

230 | Chapter 15: Classes and Methods

Then, at the beginning of each method you can check the arguments to make sure
they are valid:

%%add_method_to Time

 def is_after(self, other):
 assert self.is_valid(), 'self is not a valid Time'
 assert other.is_valid(), 'self is not a valid Time'
 return self.time_to_int() > other.time_to_int()

The assert statement evaluates the expression that follows. If the result is True, it
does nothing; if the result is False, it causes an AssertionError. Here’s an example:

duration = Time(minute=132)
print(duration)

00:132:00

start.is_after(duration)

AssertionError: self is not a valid Time

assert statements are useful because they distinguish code that deals with normal
conditions from code that checks for errors.

Glossary
object-oriented language: A language that provides features to support object-
oriented programming, notably user-defined types and inheritance.

method: A function that is defined inside a class definition and is invoked on instan‐
ces of that class.

receiver: The object a method is invoked on.

static method: A method that can be invoked without an object as receiver.

instance method: A method that must be invoked with an object as receiver.

special method: A method that changes the way operators and some functions work
with an object.

operator overloading: The process of using special methods to change the way oper‐
ators work with user-defined types.

invariant: A condition that should always be true during the execution of a program.

Glossary | 231

Exercises
Ask a Virtual Assistant
For more information about static methods, ask a virtual assistant:

• “What’s the difference between an instance method and a static method?”
• “Why are static methods called static?”

If you ask a virtual assistant to generate a static method, the result will probably begin
with @staticmethod, which is a “decorator” that indicates that it is a static method.
Decorators are not covered in this book, but if you are curious, you can ask a virtual
assistant for more information.

In this chapter we rewrote several functions as methods. Virtual assistants are gener‐
ally good at this kind of code transformation. As an example, paste the following
function into a virtual assistant and ask it, “Rewrite this function as a method of the
Time class.”

def subtract_time(t1, t2):
 return time_to_int(t1) - time_to_int(t2)

Exercise
In Chapter 14, a series of exercises asked you to write a Date class and several func‐
tions that work with Date objects. Now let’s practice rewriting those functions as
methods:

1. Write a definition for a Date class that represents a date—that is, a year, month,
and day of the month.

2. Write an __init__ method that takes year, month, and day as parameters and
assigns the parameters to attributes. Create an object that represents June 22,
1933.

3. Write a __str__ method that uses a format string to format the attributes and
returns the result. If you test it with the Date you created, the result should be
1933-06-22.

4. Write a method called is_after that takes two Date objects and returns True if
the first comes after the second. Create a second object that represents September
17, 1933, and check whether it comes after the first object.

Hint: you might find it useful to write a method called to_tuple that returns a tuple
that contains the attributes of a Date object in year-month-day order.

232 | Chapter 15: Classes and Methods

CHAPTER 16

Classes and Objects

At this point we have defined classes and created objects that represent the time of
day and the day of the year. And we’ve defined methods that create, modify, and per‐
form computations with these objects.

In this chapter we’ll continue our tour of object-oriented programming (OOP) by
defining classes that represent geometric objects, including points, lines, rectangles,
and circles. We’ll write methods that create and modify these objects, and we’ll use
the jupyturtle module to draw them.

I’ll use these classes to demonstrate OOP topics including object identity and equiva‐
lence, shallow and deep copying, and polymorphism.

Creating a Point
In computer graphics, a location on the screen is often represented using a pair of
coordinates in an x-y plane. By convention, the point (0, 0) usually represents the
upper-left corner of the screen, and (x, y) represents the point x units to the right
and y units down from the origin. Compared to the Cartesian coordinate system you
might have seen in a math class, the y-axis is upside down.

There are several ways we might represent a point in Python:

• We can store the coordinates separately in two variables, x and y.
• We can store the coordinates as elements in a list or tuple.
• We can create a new type to represent points as objects.

233

In object-oriented programming, it would be most idiomatic to create a new type. To
do that, we’ll start with a class definition for Point:

class Point:
 """Represents a point in 2-D space."""

 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __str__(self):
 return f'Point({self.x}, {self.y})'

The __init__ method takes the coordinates as parameters and assigns them to
attributes x and y. The __str__ method returns a string representation of the Point.

Now we can instantiate and display a Point object like this:

start = Point(0, 0)
print(start)

Point(0, 0)

The following diagram shows the state of the new object:

As usual, a programmer-defined type is represented by a box with the name of the
type outside and the attributes inside.

In general, programmer-defined types are mutable, so we can write a method like
translate that takes two numbers, dx and dy, and adds them to the attributes x and
y:

%%add_method_to Point

 def translate(self, dx, dy):
 self.x += dx
 self.y += dy

This function translates the Point from one location in the plane to another.

234 | Chapter 16: Classes and Objects

If we don’t want to modify an existing Point, we can use copy to copy the original
object and then modify the copy:

from copy import copy

end1 = copy(start)
end1.translate(300, 0)
print(end1)

Point(300, 0)

We can encapsulate those steps in another method called translated:

%%add_method_to Point

 def translated(self, dx=0, dy=0):
 point = copy(self)
 point.translate(dx, dy)
 return point

In the same way that the built-in function sort modifies a list, and the sorted func‐
tion creates a new list, now we have a translate method that modifies a Point, and a
translated method that creates a new one.

Here’s an example:

end2 = start.translated(0, 150)
print(end2)

Point(0, 150)

In the next section, we’ll use these points to define and draw a line.

Creating a Line
Now let’s define a class that represents the line segment between two points. As usual,
we’ll start with an __init__ method and a __str__ method:

class Line:
 def __init__(self, p1, p2):
 self.p1 = p1
 self.p2 = p2

 def __str__(self):
 return f'Line({self.p1}, {self.p2})'

Creating a Line | 235

With those two methods, we can instantiate and display a Line object we’ll use to rep‐
resent the x-axis:

line1 = Line(start, end1)
print(line1)

Line(Point(0, 0), Point(300, 0))

When we call print and pass line as a parameter, print invokes __str__ on line.
The __str__ method uses an f-string to create a string representation of the line.

The f-string contains two expressions in curly braces, self.p1 and self.p2. When
those expressions are evaluated, the results are Point objects. Then, when they are
converted to strings, the __str__ method from the Point class gets invoked.

That’s why, when we display a Line, the result contains the string representations of
the Point objects.

The following object diagram shows the state of this Line object:

String representations and object diagrams are useful for debugging, but the point of
this example is to generate graphics, not text! So we’ll use the jupyturtle module to
draw lines on the screen.

As we did in “The jupyturtle Module” on page 39, we’ll use make_turtle to create a
Turtle object and a small canvas where it can draw. To draw lines, we’ll use two new
functions from the jupyturtle module:

jumpto

Takes two coordinates and moves the Turtle to the given location without draw‐
ing a line

moveto

Moves the Turtle from its current location to the given location, and draws a
line segment between them

236 | Chapter 16: Classes and Objects

Here’s how we import them:

from jupyturtle import make_turtle, jumpto, moveto

And here’s a method that draws a Line:

%%add_method_to Line

 def draw(self):
 jumpto(self.p1.x, self.p1.y)
 moveto(self.p2.x, self.p2.y)

To show how it’s used, I’ll create a second line that represents the y-axis:

line2 = Line(start, end2)
print(line2)

Line(Point(0, 0), Point(0, 150))

And then draw the axes:

make_turtle()
line1.draw()
line2.draw()

As we define and draw more objects, we’ll use these lines again. But first let’s talk
about object equivalence and identity.

Equivalence and Identity
Suppose we create two points with the same coordinates:

p1 = Point(200, 100)
p2 = Point(200, 100)

Equivalence and Identity | 237

If we use the == operator to compare them, we get the default behavior for
programmer-defined types—the result is True only if they are the same object, which
they are not:

p1 == p2

False

If we want to change that behavior, we can provide a special method called __eq__
that defines what it means for two Point objects to be equal:

%%add_method_to Point

def __eq__(self, other):
 return (self.x == other.x) and (self.y == other.y)

This definition considers two Points to be equal if their attributes are equal. Now
when we use the == operator, it invokes the __eq__ method, which indicates that p1
and p2 are considered equal:

p1 == p2

True

But the is operator still indicates that they are different objects:

p1 is p2

False

It’s not possible to override the is operator—it always checks whether the objects are
identical. But for programmer-defined types, you can override the == operator so it
checks whether the objects are equivalent. And you can define what equivalent
means.

Creating a Rectangle
Now let’s define a class that represents and draws rectangles. To keep things simple,
we’ll assume that the rectangles are either vertical or horizontal, not at an angle. What
attributes do you think we should use to specify the location and size of a rectangle?

There are at least two possibilities:

• You could specify the width and height of the rectangle and the location of one
corner.

238 | Chapter 16: Classes and Objects

• You could specify two opposing corners.

At this point it’s hard to say whether one is better than the other, so let’s implement
the first one. Here is the class definition:

class Rectangle:
 """Represents a rectangle.

 attributes: width, height, corner.
 """
 def __init__(self, width, height, corner):
 self.width = width
 self.height = height
 self.corner = corner

 def __str__(self):
 return f'Rectangle({self.width}, {self.height}, {self.corner})'

As usual, the __init__ method assigns the parameters to attributes and the __str__
returns a string representation of the object. Now we can instantiate a Rectangle
object, using a Point as the location of the upper-left corner:

corner = Point(30, 20)
box1 = Rectangle(100, 50, corner)
print(box1)

Rectangle(100, 50, Point(30, 20))

The following diagram shows the state of this object:

To draw a rectangle, we’ll use the following method to make four Point objects to
represent the corners:

%%add_method_to Rectangle

 def make_points(self):
 p1 = self.corner
 p2 = p1.translated(self.width, 0)
 p3 = p2.translated(0, self.height)
 p4 = p3.translated(-self.width, 0)
 return p1, p2, p3, p4

Creating a Rectangle | 239

Then we’ll make four Line objects to represent the sides:

%%add_method_to Rectangle

 def make_lines(self):
 p1, p2, p3, p4 = self.make_points()
 return Line(p1, p2), Line(p2, p3), Line(p3, p4), Line(p4, p1)

Then we’ll draw the sides:

%%add_method_to Rectangle

 def draw(self):
 lines = self.make_lines()
 for line in lines:
 line.draw()

Here’s an example:

make_turtle()
line1.draw()
line2.draw()
box1.draw()

The figure includes two lines to represent the axes.

Changing Rectangles
Now let’s consider two methods that modify rectangles, grow and translate. We’ll
see that grow works as expected, but translate has a subtle bug. See if you can figure
it out before I explain.

240 | Chapter 16: Classes and Objects

grow takes two numbers, dwidth and dheight, and adds them to the width and
height attributes of the rectangle:

%%add_method_to Rectangle

 def grow(self, dwidth, dheight):
 self.width += dwidth
 self.height += dheight

Here’s an example that demonstrates the effect by making a copy of box1 and invok‐
ing grow on the copy:

box2 = copy(box1)
box2.grow(60, 40)
print(box2)

Rectangle(160, 90, Point(30, 20))

If we draw box1 and box2, we can confirm that grow works as expected:

make_turtle()
line1.draw()
line2.draw()
box1.draw()
box2.draw()

Now let’s see about translate. It takes two numbers, dx and dy, and moves the rec‐
tangle the given distances in the x and y directions:

%%add_method_to Rectangle

 def translate(self, dx, dy):
 self.corner.translate(dx, dy)

Changing Rectangles | 241

To demonstrate the effect, we’ll translate box2 to the right and down:

box2.translate(30, 20)
print(box2)

Rectangle(160, 90, Point(60, 40))

Now let’s see what happens if we draw box1 and box2 again:

make_turtle()
line1.draw()
line2.draw()
box1.draw()
box2.draw()

It looks like both rectangles moved, which is not what we intended! The next section
explains what went wrong.

Deep Copy
When we use copy to duplicate box1, it copies the Rectangle object but not the Point
object it contains. So box1 and box2 are different objects, as intended:

box1 is box2

False

But their corner attributes refer to the same object:

box1.corner is box2.corner

True

242 | Chapter 16: Classes and Objects

The following diagram shows the state of these objects:

What copy does is create a shallow copy because it copies the object but not the
objects it contains. As a result, changing the width or height of one Rectangle does
not affect the other, but changing the attributes of the shared Point affects both! This
behavior is confusing and error prone.

Fortunately, the copy module provides another function, called deepcopy, that copies
not only the object but also the objects it refers to, and the objects they refer to, and so
on. This operation is called a deep copy.

To demonstrate, let’s start with a new Rectangle that contains a new Point:

corner = Point(20, 20)
box3 = Rectangle(100, 50, corner)
print(box3)

Rectangle(100, 50, Point(20, 20))

And we’ll make a deep copy:

from copy import deepcopy

box4 = deepcopy(box3)

We can confirm that the two Rectangle objects refer to different Point objects:

box3.corner is box4.corner

False

Deep Copy | 243

Because box3 and box4 are completely separate objects, we can modify one without
affecting the other. To demonstrate, we’ll move box3 and grow box4:

box3.translate(50, 30)
box4.grow(100, 60)

And we can confirm that the effect is as expected:

make_turtle()
line1.draw()
line2.draw()
box3.draw()
box4.draw()

Polymorphism
In the previous example, we invoked the draw method on two Line objects and two
Rectangle objects. We can do the same thing more concisely by making a list of
objects:

shapes = [line1, line2, box3, box4]

The elements of this list are different types, but they all provide a draw method, so we
can loop through the list and invoke draw on each one:

make_turtle()

for shape in shapes:
 shape.draw()

244 | Chapter 16: Classes and Objects

The first and second time through the loop, shape refers to a Line object, so when
draw is invoked, the method that runs is the one defined in the Line class.

The third and fourth time through the loop, shape refers to a Rectangle object, so
when draw is invoked, the method that runs is the one defined in the Rectangle class.

In a sense, each object knows how to draw itself. This feature is called polymor‐
phism. The word comes from Greek roots that mean “many shaped.” In object-
oriented programming, polymorphism is the ability of different types to provide the
same methods, which makes it possible to perform many computations—like draw‐
ing shapes—by invoking the same method on different types of objects.

As an exercise at the end of this chapter, you’ll define a new class that represents a
circle and provides a draw method. Then you can use polymorphism to draw lines,
rectangles, and circles.

Debugging
In this chapter, we ran into a subtle bug that happened because we created a Point
that was shared by two Rectangle objects, and then we modified the Point. In gen‐
eral, there are two ways to avoid problems like this: you can avoid sharing objects or
you can avoid modifying them.

To avoid sharing objects, you can use deep copy, as we did in this chapter.

To avoid modifying objects, consider replacing modifiers like translate with pure
functions like translated. For example, here’s a version of translated that creates a
new Point and never modifies its attributes:

def translated(self, dx=0, dy=0):
 x = self.x + dx
 y = self.y + dy
 return Point(x, y)

Debugging | 245

Python provides features that make it easier to avoid modifying objects. They are
beyond the scope of this book, but if you are curious, ask a virtual assistant, “How do
I make a Python object immutable?”

Creating a new object takes more time than modifying an existing one, but the differ‐
ence seldom matters in practice. Programs that avoid shared objects and modifiers
are often easier to develop, test, and debug—and the best kind of debugging is the
kind you don’t have to do.

Glossary
identical: Being the same object (which implies equivalence).

equivalent: Having the same value.

shallow copy: A copy operation that does not copy nested objects.

deep copy: A copy operation that also copies nested objects.

polymorphism: The ability of a method or operator to work with multiple types of
objects.

Exercises
Ask a Virtual Assistant
For all of the following exercises, consider asking a virtual assistant for help. If you
do, you’ll want include as part of the prompt the class definitions for Point, Line, and
Rectangle—otherwise the virtual assistant will make a guess about their attributes
and functions, and the code it generates won’t work.

Exercise
Write an __eq__ method for the Line class that returns True if the Line objects refer
to Point objects that are equivalent, in either order.

Exercise
Write a Line method called midpoint that computes the midpoint of a line segment
and returns the result as a Point object.

Exercise
Write a Rectangle method called midpoint that finds the point in the center of a rec‐
tangle and returns the result as a Point object.

246 | Chapter 16: Classes and Objects

Exercise
Write a Rectangle method called make_cross that does the following:

1. Uses make_lines to get a list of Line objects that represent the four sides of the
rectangle.

2. Computes the midpoints of the four lines.
3. Makes and returns a list of two Line objects that represent lines connecting

opposite midpoints, forming a cross through the middle of the rectangle.

Exercise
Write a definition for a class named Circle with attributes center and radius, where
center is a Point object and radius is a number. Include special methods __init__
and a __str__, and a method called draw that uses jupyturtle functions to draw the
circle.

Exercises | 247

CHAPTER 17

Inheritance

The language feature most often associated with object-oriented programming is
inheritance. Inheritance is the ability to define a new class that is a modified version
of an existing class. In this chapter I demonstrate inheritance using classes that repre‐
sent playing cards, decks of cards, and poker hands. If you don’t play poker, don’t
worry—I’ll tell you what you need to know.

Representing Cards
There are 52 playing cards in a standard deck—each of them belongs to one of four
suits and one of thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs.
The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on
which game you are playing, an Ace can be higher than King or lower than 2.

If we want to define a new object to represent a playing card, it is obvious what the
attributes should be: rank and suit. It is less obvious what type the attributes should
be. One possibility is to use strings like 'Spade' for suits and 'Queen' for ranks. A
problem with this implementation is that it would not be easy to compare cards to see
which has a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. In this context,
“encode” means that we are going to define a mapping between numbers and suits, or
between numbers and ranks. This kind of encoding is not meant to be a secret (that
would be “encryption”).

249

For example, this table shows the suits and the corresponding integer codes:

Suit Code

Spades 3

Hearts 2

Diamonds 1

Clubs 0

With this encoding, we can compare suits by comparing their codes.

To encode the ranks, we’ll use the integer 2 to represent the rank 2, 3 to represent 3,
and so on up to 10. The following table shows the codes for the face cards:

Rank Code

Jack 11

Queen 12

King 13

And we can use either 1 or 14 to represent an Ace, depending on whether we want it
to be considered lower or higher than the other ranks.

To represent these encodings, we will use two lists of strings, one with the names of
the suits and the other with the names of the ranks.

Here’s a definition for a class that represents a playing card, with these lists of strings
as class variables, which are variables defined inside a class definition, but not inside
a method:

class Card:
 """Represents a standard playing card."""

 suit_names = ['Clubs', 'Diamonds', 'Hearts', 'Spades']
 rank_names = [None, 'Ace', '2', '3', '4', '5', '6', '7',
 '8', '9', '10', 'Jack', 'Queen', 'King', 'Ace']

The first element of rank_names is None because there is no card with rank zero. By
including None as a place keeper, we get a list with the nice property that the index 2
maps to the string '2', and so on.

Class variables are associated with the class, rather than an instance of the class, so we
can access them like this:

Card.suit_names

['Clubs', 'Diamonds', 'Hearts', 'Spades']

250 | Chapter 17: Inheritance

We can use suit_names to look up a suit and get the corresponding string:

Card.suit_names[0]

'Clubs'

And use rank_names to look up a rank:

Card.rank_names[11]

'Jack'

Card Attributes
Here’s an __init__ method for the Card class—it takes suit and rank as parameters
and assigns them to attributes with the same names:

%%add_method_to Card

 def __init__(self, suit, rank):
 self.suit = suit
 self.rank = rank

Now we can create a Card object like this:

queen = Card(1, 12)

We can use the new instance to access the attributes:

queen.suit, queen.rank

(1, 12)

It is also legal to use the instance to access the class variables:

queen.suit_names

['Clubs', 'Diamonds', 'Hearts', 'Spades']

But if you use the class, it is clearer that they are class variables, not attributes.

Card Attributes | 251

Printing Cards
Here’s a __str__ method for Card objects:

%%add_method_to Card

 def __str__(self):
 rank_name = Card.rank_names[self.rank]
 suit_name = Card.suit_names[self.suit]
 return f'{rank_name} of {suit_name}'

When we print a Card, Python calls the __str__ method to get a human-readable
representation of the card:

print(queen)

Queen of Diamonds

The following is a diagram of the Card class object and the Card instance. Card is a
class object, so its type is type. queen is an instance of Card, so its type is Card. To
save space, I didn’t draw the contents of suit_names and rank_names:

Every Card instance has its own suit and rank attributes, but there is only one Card
class object, and only one copy of the class variables suit_names and rank_names.

Comparing Cards
Suppose we create a second Card object with the same suit and rank:

queen2 = Card(1, 12)
print(queen2)

Queen of Diamonds

252 | Chapter 17: Inheritance

If we use the == operator to compare them, it checks whether queen and queen2 refer
to the same object:

queen == queen2

False

They don’t, so it returns False. We can change this behavior by defining a special
method called __eq__:

%%add_method_to Card

 def __eq__(self, other):
 return self.suit == other.suit and self.rank == other.rank

"Class 'Card' not found."

__eq__ takes two Card objects as parameters and returns True if they have the same
suit and rank, even if they are not the same object. In other words, it checks whether
they are equivalent, even if they are not identical.

When we use the == operator with Card objects, Python calls the __eq__ method:

queen == queen2

True

As a second test, let’s create a card with the same suit and a different rank:

six = Card(1, 6)
print(six)

6 of Diamonds

We can confirm that queen and six are not equivalent:

queen == six

False

If we use the != operator, Python invokes a special method called __ne__, if it exists.
Otherwise, it invokes__eq__ and inverts the result—so if __eq__ returns True, the
result of the != operator is False:

Comparing Cards | 253

queen != queen2

False

queen != six

True

Now suppose we want to compare two cards to see which is bigger. If we use one of
the relational operators, we get a TypeError:

queen < queen2

TypeError: '<' not supported between instances of 'Card' and 'Card'

To change the behavior of the < operator, we can define a special method called
__lt__, which is short for “less than.” For the sake of this example, let’s assume that
suit is more important than rank—so all Spades outrank all Hearts, which outrank all
Diamonds, and so on. If two cards have the same suit, the one with the higher rank
wins.

To implement this logic, we’ll use the following method, which returns a tuple con‐
taining a card’s suit and rank, in that order:

%%add_method_to Card

 def to_tuple(self):
 return (self.suit, self.rank)

We can use this method to write __lt__:

%%add_method_to Card

 def __lt__(self, other):
 return self.to_tuple() < other.to_tuple()

Tuple comparison compares the first elements from each tuple, which represent the
suits. If they are the same, it compares the second elements, which represent the
ranks.

Now if we use the < operator, it invokes the __lt__ operator:

six < queen

True

254 | Chapter 17: Inheritance

If we use the > operator, it invokes a special method called __gt__, if it exists. Other‐
wise it invokes __lt__ with the arguments in the opposite order:

queen < queen2

False

queen > queen2

False

Finally, if we use the <= operator, it invokes a special method called __le__:

%%add_method_to Card

 def __le__(self, other):
 return self.to_tuple() <= other.to_tuple()

So we can check whether one card is less than or equal to another:

queen <= queen2

True

queen <= six

False

If we use the >= operator, it uses __ge__ if it exists. Otherwise, it invokes __le__ with
the arguments in the opposite order:

queen >= six

True

As we have defined them, these methods are complete in the sense that we can com‐
pare any two Card objects, and consistent in the sense that results from different
operators don’t contradict each other. With these two properties, we can say that Card
objects are totally ordered. And that means, as we’ll see soon, that they can be sorted.

Comparing Cards | 255

Decks
Now that we have objects that represent cards, let’s define objects that represent
decks. The following is a class definition for Deck with an __init__ method that takes
a list of Card objects as a parameter and assigns it to an attribute called cards:

class Deck:

 def __init__(self, cards):
 self.cards = cards

To create a list that contains the 52 cards in a standard deck, we’ll use the following
static method:

%%add_method_to Deck

 def make_cards():
 cards = []
 for suit in range(4):
 for rank in range(2, 15):
 card = Card(suit, rank)
 cards.append(card)
 return cards

In make_cards, the outer loop enumerates the suits from 0 to 3. The inner loop enu‐
merates the ranks from 2 to 14—where 14 represents an Ace that outranks a King.
Each iteration creates a new Card with the current suit and rank, and appends it to
cards. Here’s how we make a list of cards and a Deck object that contains it:

cards = Deck.make_cards()
deck = Deck(cards)
len(deck.cards)

52

It contains 52 cards, as intended.

Printing the Deck
Here is a __str__ method for Deck:

%%add_method_to Deck

 def __str__(self):
 res = []
 for card in self.cards:
 res.append(str(card))
 return '\n'.join(res)

256 | Chapter 17: Inheritance

This method demonstrates an efficient way to accumulate a large string—building a
list of strings and then using the string method join.

We’ll test this method with a deck that only contains two cards:

small_deck = Deck([queen, six])

If we call str, it invokes __str__:

str(small_deck)

'Queen of Diamonds\n6 of Diamonds'

When Jupyter displays a string, it shows the “representational” form of the string,
which represents a newline with the sequence \n.

However, if we print the result, Jupyter shows the “printable” form of the string,
which prints the newline as whitespace:

print(small_deck)

Queen of Diamonds
6 of Diamonds

So the cards appear on separate lines.

Add, Remove, Shuffle, and Sort
To deal cards, we would like a method that removes a card from the deck and returns
it. The list method pop provides a convenient way to do that:

%%add_method_to Deck

 def take_card(self):
 return self.cards.pop()

Here’s how we use it:

card = deck.take_card()
print(card)

Ace of Spades

Add, Remove, Shuffle, and Sort | 257

We can confirm that there are 51 cards left in the deck:

len(deck.cards)

51

To add a card, we can use the list method append:

%%add_method_to Deck

 def put_card(self, card):
 self.cards.append(card)

As an example, we can put back the card we just popped:

deck.put_card(card)
len(deck.cards)

52

To shuffle the deck, we can use the shuffle function from the random module:

import random

%%add_method_to Deck

 def shuffle(self):
 random.shuffle(self.cards)

If we shuffle the deck and print the first few cards, we can see that they are in no
apparent order:

deck.shuffle()
for card in deck.cards[:4]:
 print(card)

2 of Diamonds
4 of Hearts
5 of Clubs
8 of Diamonds

To sort the cards, we can use the list method sort, which sorts the elements “in place”
—that is, it modifies the list rather than creating a new list:

%%add_method_to Deck

 def sort(self):
 self.cards.sort()

258 | Chapter 17: Inheritance

When we invoke sort, it uses the __lt__ method to compare cards:

deck.sort()

If we print the first few cards, we can confirm that they are in increasing order:

for card in deck.cards[:4]:
 print(card)

2 of Clubs
3 of Clubs
4 of Clubs
5 of Clubs

In this example, Deck.sort doesn’t do anything other than invoke list.sort. Passing
along responsibility like this is called delegation.

Parents and Children
Inheritance is the ability to define a new class that is a modified version of an existing
class. As an example, let’s say we want a class to represent a “hand,” that is, the cards
held by one player:

• A hand is similar to a deck—both are made up of a collection of cards, and both
require operations like adding and removing cards.

• A hand is also different from a deck—there are operations we want for hands that
don’t make sense for a deck. For example, in poker we might compare two hands
to see which one wins. In bridge, we might compute a score for a hand in order
to make a bid.

This relationship between classes—where one is a specialized version of another—
lends itself to inheritance.

To define a new class that is based on an existing class, we put the name of the exist‐
ing class in parentheses:

class Hand(Deck):
 """Represents a hand of playing cards."""

This definition indicates that Hand inherits from Deck, which means that Hand objects
can access methods defined in Deck, like take_card and put_card.

Parents and Children | 259

Hand also inherits __init__ from Deck, but if we define __init__ in the Hand class, it
overrides the one in the Deck class:

%%add_method_to Hand

 def __init__(self, label=''):
 self.label = label
 self.cards = []

This version of __init__ takes an optional string as a parameter, and always starts
with an empty list of cards. When we create a Hand, Python invokes this method, not
the one in Deck—which we can confirm by checking that the result has a label
attribute:

hand = Hand('player 1')
hand.label

'player 1'

To deal a card, we can use take_card to remove a card from a Deck, and put_card to
add the card to a Hand:

deck = Deck(cards)
card = deck.take_card()
hand.put_card(card)
print(hand)

Ace of Spades

Let’s encapsulate this code in a Deck method called move_cards:

%%add_method_to Deck

 def move_cards(self, other, num):
 for i in range(num):
 card = self.take_card()
 other.put_card(card)

This method is polymorphic—that is, it works with more than one type: self and
other can be either a Hand or a Deck. So we can use this method to deal a card from
Deck to a Hand, from one Hand to another, or from a Hand back to a Deck.

When a new class inherits from an existing one, the existing one is called the parent
and the new class is called the child. In general:

• Instances of the child class should have all of the attributes of the parent class, but
they can have additional attributes.

260 | Chapter 17: Inheritance

• The child class should have all of the methods of the parent class, but it can have
additional methods.

• If a child class overrides a method from the parent class, the new method should
take the same parameters and return a compatible result.

This set of rules is called the “Liskov substitution principle” after computer scientist
Barbara Liskov.

If you follow these rules, any function or method designed to work with an instance
of a parent class, like a Deck, will also work with instances of a child class, like Hand. If
you violate these rules, your code will collapse like a house of cards (sorry).

Specialization
Let’s make a class called BridgeHand that represents a hand in bridge—a widely
played card game. We’ll inherit from Hand and add a new method called
high_card_point_count that evaluates a hand using a “high card point” method,
which adds up points for the high cards in the hand.

Here’s a class definition that contains as a class variable a dictionary that maps from
card names to their point values:

class BridgeHand(Hand):
 """Represents a bridge hand."""

 hcp_dict = {
 'Ace': 4,
 'King': 3,
 'Queen': 2,
 'Jack': 1,
 }

Given the rank of a card, like 12, we can use Card.rank_names to get the string repre‐
sentation of the rank, and then use hcp_dict to get its score:

rank = 12
rank_name = Card.rank_names[rank]
score = BridgeHand.hcp_dict.get(rank_name, 0)
rank_name, score

('Queen', 2)

The following method loops through the cards in a BridgeHand and adds up their
scores:

%%add_method_to BridgeHand

 def high_card_point_count(self):

Specialization | 261

 count = 0
 for card in self.cards:
 rank_name = Card.rank_names[card.rank]
 count += BridgeHand.hcp_dict.get(rank_name, 0)
 return count

To test it, we’ll deal a hand with five cards—a bridge hand usually has thirteen, but it’s
easier to test code with small examples:

hand = BridgeHand('player 2')

deck.shuffle()
deck.move_cards(hand, 5)
print(hand)

4 of Diamonds
King of Hearts
10 of Hearts
10 of Clubs
Queen of Diamonds

And here is the total score for the King and Queen:

hand.high_card_point_count()

5

BridgeHand inherits the variables and methods of Hand and adds a class variable and
a method that are specific to bridge. This way of using inheritance is called speciali‐
zation because it defines a new class that is specialized for a particular use, like play‐
ing bridge.

Debugging
Inheritance is a useful feature. Some programs that would be repetitive without
inheritance can be written more concisely with it. Also, inheritance can facilitate code
reuse, since you can customize the behavior of a parent class without having to mod‐
ify it. In some cases, the inheritance structure reflects the natural structure of the
problem, which makes the design easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method
is invoked, it is sometimes not clear where to find its definition—the relevant code
may be spread across several modules.

Any time you are unsure about the flow of execution through your program, the sim‐
plest solution is to add print statements at the beginning of the relevant methods. If
Deck.shuffle prints a message that says something like Running Deck.shuffle, then
as the program runs it traces the flow of execution.

262 | Chapter 17: Inheritance

As an alternative, you could use the following function, which takes an object and a
method name (as a string) and returns the class that provides the definition of the
method:

def find_defining_class(obj, method_name):
 """
 """
 for typ in type(obj).mro():
 if method_name in vars(typ):
 return typ
 return f'Method {method_name} not found.'

find_defining_class uses the mro method to get the list of class objects (types) that
will be searched for methods. “MRO” stands for “method resolution order,” which is
the sequence of classes Python searches to “resolve” a method name—that is, to find
the function object the name refers to.

As an example, let’s instantiate a BridgeHand and then find the defining class of
shuffle:

hand = BridgeHand('player 3')
find_defining_class(hand, 'shuffle')

__main__.Deck

The shuffle method for the BridgeHand object is the one in Deck.

Glossary
inheritance: The ability to define a new class that is a modified version of a previ‐
ously defined class.

encode: To represent one set of values using another set of values by constructing a
mapping between them.

class variable: A variable defined inside a class definition, but not inside any method.

totally ordered: A set of objects is totally ordered if we can compare any two ele‐
ments and the results are consistent.

delegation: When one method passes responsibility to another method to do most or
all of the work.

parent class: A class that is inherited from.

child class: A class that inherits from another class.

specialization: A way of using inheritance to create a new class that is a specialized
version of an existing class.

Glossary | 263

Exercises
Ask a Virtual Assistant
When it goes well, object-oriented programming can make programs more readable,
testable, and reusable. But it can also make programs complicated and hard to main‐
tain. As a result, OOP is a topic of controversy—some people love it, and some peo‐
ple don’t.

To learn more about the topic, ask a virtual assistant:

• “What are some pros and cons of object-oriented programming?”
• “What does it mean when people say ‘favor composition over inheritance’?”
• “What is the Liskov substitution principle?”
• “Is Python an object-oriented language?”
• “What are the requirements for a set to be totally ordered?”

And as always, consider using a virtual assistant to help with the following exercises.

Exercise
In contract bridge, a “trick” is a round of play in which each of four players plays one
card. To represent those cards, we’ll define a class that inherits from Deck:

class Trick(Deck):
 """Represents a trick in contract bridge."""

As an example, consider this trick, where the first player leads with the 3 of Dia‐
monds, which means that Diamonds are the “led suit.” The second and third players
“follow suit,” which means they play a card with the led suit. The fourth player plays a
card of a different suit, which means they cannot win the trick. So the winner of this
trick is the third player, because they played the highest card in the led suit:

cards = [Card(1, 3),
 Card(1, 10),
 Card(1, 12),
 Card(2, 13)]
trick = Trick(cards)
print(trick)

3 of Diamonds
10 of Diamonds
Queen of Diamonds
King of Hearts

264 | Chapter 17: Inheritance

Write a Trick method called find_winner that loops through the cards in the Trick
and returns the index of the card that wins. In the previous example, the index of the
winning card is 2.

Exercise
The next few exercises ask to you write functions that classify poker hands. If you are
not familiar with poker, I’ll explain what you need to know. We’ll use the following
class to represent poker hands:

class PokerHand(Hand):
 """Represents a poker hand."""

 def get_suit_counts(self):
 counter = {}
 for card in self.cards:
 key = card.suit
 counter[key] = counter.get(key, 0) + 1
 return counter

 def get_rank_counts(self):
 counter = {}
 for card in self.cards:
 key = card.rank
 counter[key] = counter.get(key, 0) + 1
 return counter

PokerHand provides two methods that will help with the exercises:

get_suit_counts

Loops through the cards in the PokerHand, counts the number of cards in each
suit, and returns a dictionary that maps from each suit code to the number of
times it appears.

get_rank_counts

Does the same thing with the ranks of the cards, returning a dictionary that maps
from each rank code to the number of times it appears.

All of the exercises that follow can be done using only the Python features we have
learned so far, but some of them are more difficult than most of the previous exerci‐
ses. I encourage you to ask a virtual assistant for help.

For problems like this, it often works well to ask for general advice about strategies
and algorithms. Then you can either write the code yourself or ask for code. If you
ask for code, you might want to provide the relevant class definitions as part of the
prompt.

As a first exercise, we’ll write a method called has_flush that checks whether a hand
has a “flush”—that is, whether it contains at least five cards of the same suit.

Exercises | 265

In most varieties of poker, a hand contains either five or seven cards, but there are
some exotic variations where a hand contains other numbers of cards. But regardless
of how many cards there are in a hand, the only ones that count are the five that make
the best hand.

Exercise
Write a method called has_straight that checks whether a hand contains a straight,
which is a set of five cards with consecutive ranks. For example, if a hand contains
ranks 5, 6, 7, 8, and 9, it contains a straight.

An Ace can come before a 2 or after a King, so Ace, 2, 3, 4, 5 is a straight and so is 10,
Jack, Queen, King, Ace. But a straight cannot “wrap around,” so King, Ace, 2, 3, 4 is
not a straight.

Exercise
A hand has a straight flush if it contains a set of five cards that are both a straight and
a flush—that is, five cards of the same suit with consecutive ranks. Write a PokerHand
method that checks whether a hand has a straight flush.

Exercise
A poker hand has a pair if it contains two or more cards with the same rank. Write a
PokerHand method that checks whether a hand contains a pair.

You can use the following outline to get started.

To test your method, here’s a hand that has a pair:

pair = deepcopy(bad_hand)
pair.put_card(Card(1, 2))
print(pair)

2 of Clubs
3 of Clubs
4 of Hearts
5 of Spades
7 of Clubs
2 of Diamonds

pair.has_pair() # should return True

True

266 | Chapter 17: Inheritance

bad_hand.has_pair() # should return False

False

good_hand.has_pair() # should return False

False

Exercise
A hand has a full house if it contains three cards of one rank and two cards of another
rank. Write a PokerHand method that checks whether a hand has a full house.

Exercise
This exercise is a cautionary tale about a common error that can be difficult to debug.
Consider the following class definition:

class Kangaroo:
 """A Kangaroo is a marsupial."""

 def __init__(self, name, contents=[]):
 """Initialize the pouch contents.

 name: string
 contents: initial pouch contents.
 """
 self.name = name
 self.contents = contents

 def __str__(self):
 """Return a string representation of this Kangaroo.
 """
 t = [self.name + ' has pouch contents:']
 for obj in self.contents:
 s = ' ' + object.__str__(obj)
 t.append(s)
 return '\n'.join(t)

 def put_in_pouch(self, item):
 """Adds a new item to the pouch contents.

 item: object to be added
 """
 self.contents.append(item)

__init__ takes two parameters: name is required, but contents is optional—if it’s not
provided, the default value is an empty list. __str__ returns a string representation of
the object that includes the name and the contents of the pouch. put_in_pouch takes
any object and appends it to contents.

Exercises | 267

Now let’s see how this class works. We’ll create two Kangaroo objects with the names
Kanga and Roo:

kanga = Kangaroo('Kanga')
roo = Kangaroo('Roo')

To Kanga’s pouch we’ll add two strings and Roo:

kanga.put_in_pouch('wallet')
kanga.put_in_pouch('car keys')
kanga.put_in_pouch(roo)

If we print kanga, it seems like everything worked:

print(kanga)

Kanga has pouch contents:
 'wallet'
 'car keys'
 <__main__.Kangaroo object at 0x7f1f4f1a1330>

But what happens if we print roo?

print(roo)

Roo has pouch contents:
 'wallet'
 'car keys'
 <__main__.Kangaroo object at 0x7f1f4f1a1330>

Roo’s pouch contains the same contents as Kanga’s, including a reference to roo!

See if you can figure out what went wrong. Then ask a virtual assistant, “What’s
wrong with the following program?” and paste in the definition of Kangaroo.

268 | Chapter 17: Inheritance

CHAPTER 18

Python Extras

One of my goals for this book has been to teach you as little Python as possible.
When there were two ways to do something, I picked one and avoided mentioning
the other. Or sometimes I put the second one into an exercise.

Now I want to go back for some of the good bits that got left behind. Python provides
a number of features that are not really necessary—you can write good code without
them—but with them you can write code that’s more concise, readable, or efficient,
and sometimes all three.

Sets
Python provides a class called set that represents a collection of unique elements. To
create an empty set, we can use the class object like a function:

s1 = set()
s1

set()

We can use the add method to add elements:

s1.add('a')
s1.add('b')
s1

{'a', 'b'}

269

Or we can pass any kind of sequence to set:

s2 = set('acd')
s2

{'a', 'c', 'd'}

An element can only appear once in a set. If you add an element that’s already there,
it has no effect:

s1.add('a')
s1

{'a', 'b'}

Or if you create a set with a sequence that contains duplicates, the result contains only
unique elements:

set('banana')

{'a', 'b', 'n'}

Some of the exercises in this book can be done concisely and efficiently with sets. For
example, here is a solution to an exercise in Chapter 11 that uses a dictionary to check
whether there are any duplicate elements in a sequence:

def has_duplicates(t):
 d = {}
 for x in t:
 d[x] = True
 return len(d) < len(t)

This version adds the element of t as keys in a dictionary, and then checks whether
there are fewer keys than elements. Using sets, we can write the same function like
this:

def has_duplicates(t):
 s = set(t)
 return len(s) < len(t)

An element can only appear in a set once, so if an element in t appears more than
once, the set will be smaller than t. If there are no duplicates, the set will be the same
size as t.

270 | Chapter 18: Python Extras

set objects provide methods that perform set operations. For example, union com‐
putes the union of two sets, which is a new set that contains all elements that appear
in either set:

s1.union(s2)

{'a', 'b', 'c', 'd'}

Some arithmetic operators work with sets. For example, the - operator performs set
subtraction—the result is a new set that contains all elements from the first set that
are not in the second set:

s1 - s2

{'b'}

In “Dictionary Subtraction” on page 177 we used dictionaries to find the words that
appear in a document but not in a word list. We used the following function, which
takes two dictionaries and returns a new dictionary that contains only the keys from
the first that don’t appear in the second:

def subtract(d1, d2):
 res = {}
 for key in d1:
 if key not in d2:
 res[key] = d1[key]
 return res

With sets, we don’t have to write this function ourselves. If word_counter is a dictio‐
nary that contains the unique words in the document and word_list is a list of valid
words, we can compute the set difference like this:

set(word_counter) - set(word_list)

The result is a set that contains the words in the document that don’t appear in the
word list.

The comparison operators work with sets. For example, <= checks whether one set is
a subset of another, including the possibility that they are equal:

set('ab') <= set('abc')

True

Sets | 271

With these operators, we can use sets to do some of the exercises in Chapter 7. For
example, here’s a version of uses_only that uses a loop:

def uses_only(word, available):
 for letter in word:
 if letter not in available:
 return False
 return True

uses_only checks whether all letters in word are in available. With sets, we can
rewrite it like this:

def uses_only(word, available):
 return set(word) <= set(available)

If the letters in word are a subset of the letters in available, that means that word uses
only the letters in available.

Counters
A Counter is like a set, except that if an element appears more than once, the Counter
keeps track of how many times it appears. If you are familiar with the mathematical
idea of a “multiset,” a Counter is a natural way to represent a multiset.

The Counter class is defined in a standard module called collections, so you have to
import it. Then you can use the class object as a function and pass as an argument a
string, list, or any other kind of sequence:

from collections import Counter

counter = Counter('banana')
counter

Counter({'a': 3, 'n': 2, 'b': 1})

from collections import Counter

t = (1, 1, 1, 2, 2, 3)
counter = Counter(t)
counter

Counter({1: 3, 2: 2, 3: 1})

A Counter object is like a dictionary that maps from each key to the number of times
it appears. As in dictionaries, the keys have to be hashable.

272 | Chapter 18: Python Extras

Unlike dictionaries, Counter objects don’t raise an exception if you access an element
that doesn’t appear. Instead, they return 0:

counter['d']

0

We can use Counter objects to solve one of the exercises from Chapter 10, which asks
for a function that takes two words and checks whether they are anagrams—that is,
whether the letters from one can be rearranged to spell the other.

Here’s a solution using Counter objects:

def is_anagram(word1, word2):
 return Counter(word1) == Counter(word2)

If two words are anagrams, they contain the same letters with the same counts, so
their Counter objects are equivalent.

Counter provides a method called most_common that returns a list of value-frequency
pairs, sorted from most common to least:

counter.most_common()

[('a', 3), ('n', 2), ('b', 1)]

They also provide methods and operators to perform set-like operations, including
addition, subtraction, union, and intersection. For example, the + operator combines
two Counter objects and creates a new Counter that contains the keys from both and
the sums of the counts.

We can test it by making a Counter with the letters from 'bans' and adding it to the
letters from 'banana':

counter2 = Counter('bans')
counter + counter2

Counter({'a': 4, 'n': 3, 'b': 2, 's': 1})

You’ll have a chance to explore other Counter operations in the exercises at the end of
this chapter.

Counters | 273

defaultdict
The collections module also provides defaultdict, which is like a dictionary
except that if you access a key that doesn’t exist, it generates a new value
automatically.

When you create a defaultdict, you provide a function that’s used to create new val‐
ues. A function that creates objects is sometimes called a factory. The built-in func‐
tions that create lists, sets, and other types can be used as factories.

For example, here’s a defaultdict that creates a new list when needed:

from collections import defaultdict

d = defaultdict(list)
d

defaultdict(list, {})

Notice that the argument is list, which is a class object, not list(), which is a func‐
tion call that creates a new list. The factory function doesn’t get called unless we
access a key that doesn’t exist:

t = d['new key']
t

[]

The new list, which we’re calling t, is also added to the dictionary. So if we modify t,
the change appears in d:

t.append('new value')
d['new key']

['new value']

If you are making a dictionary of lists, you can often write simpler code using
defaultdict.

In one of the exercises in Chapter 11, I made a dictionary that maps from a sorted
string of letters to the list of words that can be spelled with those letters. For example,
the string 'opst' maps to the list ['opts', 'post', 'pots', 'spot', 'stop',
'tops'].

274 | Chapter 18: Python Extras

Here’s the original code:

def all_anagrams(filename):
 d = {}
 for line in open(filename):
 word = line.strip().lower()
 t = signature(word)
 if t not in d:
 d[t] = [word]
 else:
 d[t].append(word)
 return d

And here’s a simpler version using a defaultdict:

def all_anagrams(filename):
 d = defaultdict(list)
 for line in open(filename):
 word = line.strip().lower()
 t = signature(word)
 d[t].append(word)
 return d

In the exercises at the end of the chapter, you’ll have a chance to practice using
defaultdict objects:

from collections import defaultdict

d = defaultdict(list)
key = ('into', 'the')
d[key].append('woods')
d[key]

['woods']

Conditional Expressions
Conditional statements are often used to choose one of two values, like this:

if x > 0:
 y = math.log(x)
else:
 y = float('nan')

This statement checks whether x is positive. If so, it computes its logarithm. If not,
math.log would raise a ValueError. To avoid stopping the program, we generate a
NaN, which is a special floating-point value that represents “Not a Number.”

Conditional Expressions | 275

We can write this statement more concisely using a conditional expression:

y = math.log(x) if x > 0 else float('nan')

You can almost read this line like English: “y gets log-x if x is greater than 0; other‐
wise, it gets NaN.”

Recursive functions can sometimes be written concisely using conditional expres‐
sions. For example, here is a version of factorial with a conditional statement:

def factorial(n):
 if n == 0:
 return 1
 else:
 return n * factorial(n-1)

And here’s a version with a conditional expression:

def factorial(n):
 return 1 if n == 0 else n * factorial(n-1)

Another use of conditional expressions is handling optional arguments. For example,
here is class definition with an __init__ method that uses a conditional statement to
check a parameter with a default value:

class Kangaroo:
 def __init__(self, name, contents=None):
 self.name = name
 if contents is None:
 contents = []
 self.contents = contents

Here’s a version that uses a conditional expression:

def __init__(self, name, contents=None):
 self.name = name
 self.contents = [] if contents is None else contents

In general, you can replace a conditional statement with a conditional expression if
both branches contain a single expression and no statements.

276 | Chapter 18: Python Extras

List Comprehensions
In previous chapters, we’ve seen a few examples where we start with an empty list and
add elements, one at a time, using the append method. For example, suppose we have
a string that contains the title of a movie, and we want to capitalize all of the words:

title = 'monty python and the holy grail'

We can split it into a list of strings, loop through the strings, capitalize them, and
append them to a list:

t = []
for word in title.split():
 t.append(word.capitalize())

' '.join(t)

'Monty Python And The Holy Grail'

We can do the same thing more concisely using a list comprehension:

t = [word.capitalize() for word in title.split()]

' '.join(t)

'Monty Python And The Holy Grail'

The bracket operators indicate that we are constructing a new list. The expression
inside the brackets specifies the elements of the list, and the for clause indicates what
sequence we are looping through.

The syntax of a list comprehension might seem strange, because the loop variable—
word in this example—appears in the expression before we get to its definition. But
you get used to it.

As another example, in “Making a Word List” on page 131 we used this loop to read
words from a file and append them to a list:

word_list = []

for line in open('words.txt'):
 word = line.strip()
 word_list.append(word)

Here’s how we can write that as a list comprehension:

word_list = [line.strip() for line in open('words.txt')]

List Comprehensions | 277

A list comprehension can also have an if clause that determines which elements are
included in the list. For example, here’s a for loop we used in “Accumulating a List”
on page 144 to make a list of only the words in word_list that are palindromes:

palindromes = []

for word in word_list:
 if is_palindrome(word):
 palindromes.append(word)

Here’s how we can do the same thing with a list comprehension:

palindromes = [word for word in word_list if is_palindrome(word)]

When a list comprehension is used as an argument to a function, we can often omit
the brackets. For example, suppose we want to add up 1/2n for values of n from 0 to
9. We can use a list comprehension like this:

sum([1/2**n for n in range(10)])

1.998046875

Or we can leave out the brackets like this:

sum(1/2**n for n in range(10))

1.998046875

In this example, the argument is technically a generator expression, not a list com‐
prehension, and it never actually makes a list. But other than that, the behavior is the
same.

List comprehensions and generator expressions are concise and easy to read, at least
for simple expressions. And they are usually faster than the equivalent for loops,
sometimes much faster. So if you are mad at me for not mentioning them earlier, I
understand.

But, in my defense, list comprehensions are harder to debug because you can’t put a
print statement inside the loop. I suggest you use them only if the computation is
simple enough that you are likely to get it right the first time. Or consider writing and
debugging a for loop and then converting it to a list comprehension.

278 | Chapter 18: Python Extras

any and all
Python provides a built-in function, any, that takes a sequence of boolean values and
returns True if any of the values are True:

any([False, False, True])

True

any is often used with generator expressions:

any(letter == 't' for letter in 'monty')

True

That example isn’t very useful because it does the same thing as the in operator. But
we could use any to write concise solutions to some of the exercises in Chapter 7. For
example, we can write uses_none like this:

def uses_none(word, forbidden):
 """Checks whether a word avoids forbidden letters."""
 return not any(letter in forbidden for letter in word)

This function loops through the letters in word and checks whether any of them are
in forbidden. Using any with a generator expression is efficient because it stops
immediately if it finds a True value, so it doesn’t have to loop through the whole
sequence.

Python provides another built-in function, all, that returns True if every element of
the sequence is True. We can use it to write a concise version of uses_all:

def uses_all(word, required):
 """Check whether a word uses all required letters."""
 return all(letter in word for letter in required)

Expressions using any and all can be concise, efficient, and easy to read.

Named Tuples
The collections module provides a function called namedtuple that can be used to
create simple classes. For example, the Point object in “Creating a Point” on page 233
has only two attributes, x and y.

Named Tuples | 279

Here’s how we defined it:

class Point:
 """Represents a point in 2-D space."""

 def __init__(self, x, y):
 self.x = x
 self.y = y

 def __str__(self):
 return f'({self.x}, {self.y})'

That’s a lot of code to convey a small amount of information. namedtuple provides a
more concise way to define classes like this:

from collections import namedtuple

Point = namedtuple('Point', ['x', 'y'])

The first argument is the name of the class you want to create. The second is a list of
the attributes Point objects should have. The result is a class object, which is why it is
assigned to a capitalized variable name.

A class created with namedtuple provides an __init__ method that assigns values to
the attributes and a __str__ that displays the object in a readable form. So we can
create and display a Point object like this:

p = Point(1, 2)
p

Point(x=1, y=2)

Point also provides an __eq__ method that checks whether two Point objects are
equivalent—that is, whether their attributes are the same:

p == Point(1, 2)

True

You can access the elements of a named tuple by name or by index:

p.x, p.y

(1, 2)

280 | Chapter 18: Python Extras

p[0], p[1]

(1, 2)

You can also treat a named tuple as a tuple, as in this assignment:

x, y = p
x, y

(1, 2)

But namedtuple objects are immutable. After the attributes are initialized, they can’t
be changed:

p[0] = 3

TypeError: 'Point' object does not support item assignment

p.x = 3

AttributeError: can't set attribute

namedtuple provides a quick way to define simple classes. The drawback is that sim‐
ple classes don’t always stay simple. You might decide later that you want to add
methods to a named tuple. In that case, you can define a new class that inherits from
the named tuple:

class Pointier(Point):
 """This class inherits from Point"""

Or at that point you could switch to a conventional class definition.

Packing Keyword Arguments
In “Argument Packing” on page 159, we wrote a function that packs its arguments
into a tuple:

def mean(*args):
 return sum(args) / len(args)

Packing Keyword Arguments | 281

You can call this function with any number of positional arguments:

mean(1, 2, 3)

2.0

But the * operator doesn’t pack keyword arguments. So calling this function with a
keyword argument causes an error:

mean(1, 2, start=3)

TypeError: mean() got an unexpected keyword argument 'start'

To pack keyword arguments, we can use the ** operator:

def mean(*args, **kwargs):
 print(kwargs)
 return sum(args) / len(args)

The keyword-packing parameter can have any name, but kwargs is a common choice.
The result is a dictionary that maps from keywords to values:

mean(1, 2, start=3)

{'start': 3}

1.5

In this example, the value of kwargs is printed, but otherwise is has no effect.

But the ** operator can also be used in an argument list to unpack a dictionary. For
example, here’s a version of mean that packs any keyword arguments it gets and then
unpacks them as keyword arguments for sum:

def mean(*args, **kwargs):
 return sum(args, **kwargs) / len(args)

Now if we call mean with start as a keyword argument, it gets passed along to sum,
which uses it as the starting point of the summation. In the next example, start=3
adds 3 to the sum before computing the mean, so the sum is 6 and the result is 3:

mean(1, 2, start=3)

3.0

282 | Chapter 18: Python Extras

As another example, if we have a dictionary with keys x and y, we can use it with the
unpack operator to create a Point object:

d = dict(x=1, y=2)
Point(**d)

Point(x=1, y=2)

Without the unpack operator, d is treated as a single positional argument, so it gets
assigned to x, and we get a TypeError because there’s no second argument to assign
to y:

d = dict(x=1, y=2)
Point(d)

TypeError: Point.__new__() missing 1 required positional argument: 'y'

When you are working with functions that have a large number of keyword argu‐
ments, it is often useful to create and pass around dictionaries that specify frequently
used options:

def pack_and_print(**kwargs):
 print(kwargs)

pack_and_print(a=1, b=2)

{'a': 1, 'b': 2}

Debugging
In previous chapters, we used doctest to test functions. For example, here’s a func‐
tion called add that takes two numbers and returns their sum. In includes a doctest
that checks whether 2 + 2 is 4:

def add(a, b):
 '''Add two numbers.

 >>> add(2, 2)
 4
 '''
 return a + b

Debugging | 283

This function takes a function object and runs its doctests:

from doctest import run_docstring_examples

def run_doctests(func):
 run_docstring_examples(func, globals(), name=func.__name__)

So we can test add like this:

run_doctests(add)

There’s no output, which means all tests passed.

Python provides another tool for running automated tests, called unittest. It is a lit‐
tle more complicated to use, but here’s an example:

from unittest import TestCase

class TestExample(TestCase):

 def test_add(self):
 result = add(2, 2)
 self.assertEqual(result, 4)

First, we import TestCase, which is a class in the unittest module. To use it, we have
to define a new class that inherits from TestCase and provides at least one test
method. The name of the test method must begin with test and should indicate
which function it tests.

In this example, test_add tests the add function by calling it, saving the result, and
invoking assertEqual, which is inherited from TestCase. assertEqual takes two
arguments and checks whether they are equal.

In order to run this test method, we have to run a function in unittest called main
and provide several keyword arguments. The following function shows the details—if
you are curious, ask a virtual assistant to explain how it works:

import unittest

def run_unittest():
 unittest.main(argv=[''], verbosity=0, exit=False)

run_unittest does not take TestExample as an argument—instead, it searches for
classes that inherit from TestCase. Then it searches for methods that begin with test
and runs them. This process is called test discovery.

284 | Chapter 18: Python Extras

Here’s what happens when we call run_unittest:

run_unittest()

--
Ran 1 test in 0.000s

OK

unittest.main reports the number of tests it ran and the results. In this case OK indi‐
cates that the tests passed. To see what happens when a test fails, we’ll add an incor‐
rect test method to TestExample:

%%add_method_to TestExample

 def test_add_broken(self):
 result = add(2, 2)
 self.assertEqual(result, 100)

Here’s what happens when we run the tests:

run_unittest()

==
FAIL: test_add_broken (__main__.TestExample)
--
Traceback (most recent call last):
 File "/tmp/ipykernel_29273/3833266738.py", line 3, in test_add_broken
 self.assertEqual(result, 100)
AssertionError: 4 != 100

--
Ran 2 tests in 0.000s

FAILED (failures=1)

The report includes the test method that failed and an error message showing where.
The summary indicates that two tests ran and one failed.

In the following exercises, I’ll suggest some prompts you can use to ask a virtual assis‐
tant for more information about unittest.

Glossary
factory: A function used to create objects, often passed as a parameter to a function.

conditional expression: An expression that uses a conditional to select one of two
values.

list comprehension: A concise way to loop through a sequence and create a list.

Glossary | 285

generator expression: Similar to a list comprehension except that it does not create a
list.

test discovery: A process used to find and run tests.

Exercises
Ask a Virtual Assistant
There are a few topics in this chapter you might want to learn about. Here are some
questions to ask a virtual assistant:

• “What are the methods and operators of Python’s set class?”
• “What are the methods and operators of Python’s counter class?”
• “What is the difference between a Python list comprehension and a generator

expression?”
• “When should I use Python’s namedtuple rather than define a new class?”
• “What are some uses of packing and unpacking keyword arguments?”
• “How does unittest do test discovery?”
• “Along with assertequal, what are the most commonly used methods in unit
test.TestCase?”

• “What are the pros and cons of doctest and unittest?”

For the following exercises, consider asking a virtual assistant for help, but as always,
remember to test the results.

Exercise
One of the exercises in Chapter 7 asks for a function called uses_none that takes a
word and a string of forbidden letters, and returns True if the word does not use any
of the letters. Here’s a solution:

def uses_none(word, forbidden):
 for letter in word.lower():
 if letter in forbidden.lower():
 return False
 return True

Write a version of this function that uses set operations instead of a for loop. Hint:
ask a virtual assistant “How do I compute the intersection of Python sets?”

286 | Chapter 18: Python Extras

Exercise
Scrabble is a board game where the objective is to use letter tiles to spell words. For
example, if we have tiles with the letters T, A, B, L, E, we can spell BELT and LATE using
a subset of the tiles—but we can’t spell BEET because we don’t have two Es.

Write a function that takes a string of letters and a word, and checks whether the let‐
ters can spell the word, taking into account how many times each letter appears.

Exercise
In one of the exercises from Chapter 17, my solution to has_straightflush uses the
following method, which partitions a PokerHand into a list of four hands, where each
hand contains cards of the same suit:

def partition(self):
 """Make a list of four hands, each containing only one suit."""
 hands = []
 for i in range(4):
 hands.append(PokerHand())

 for card in self.cards:
 hands[card.suit].add_card(card)

 return hands

Write a simplified version of this function using a defaultdict.

Exercise
Here’s the function from Chapter 11 that computes Fibonacci numbers:

def fibonacci(n):
 if n == 0:
 return 0

 if n == 1:
 return 1

 return fibonacci(n-1) + fibonacci(n-2)

Write a version of this function with a single return statement that uses two condi‐
tional expressions, one nested inside the other.

Exercises | 287

Exercise
The following is a function that recursively computes the binomial coefficient:

def binomial_coeff(n, k):
 """Compute the binomial coefficient "n choose k".

 n: number of trials
 k: number of successes

 returns: int
 """
 if k == 0:
 return 1

 if n == 0:
 return 0

 return binomial_coeff(n-1, k) + binomial_coeff(n-1, k-1)

Rewrite the body of the function using nested conditional expressions.

This function is not very efficient because it ends up computing the same values over
and over. Make it more efficient by memoizing it, as described in “Memos” on page
146:

binomial_coeff(10, 4) # should be 210

210

Exercise
Here’s the __str__ method from the Deck class in “Printing the Deck” on page 256:

%%add_method_to Deck

 def __str__(self):
 res = []
 for card in self.cards:
 res.append(str(card))
 return '\n'.join(res)

Write a more concise version of this method with a list comprehension or generator
expression.

288 | Chapter 18: Python Extras

CHAPTER 19

Final Thoughts

Learning to program is not easy, but if you made it this far, you are off to a good start.
Now I have some suggestions for ways you can keep learning and apply what you
have learned.

This book is meant to be a general introduction to programming, so we have not
focused on specific applications. Depending on your interests, there are any number
of areas where you can apply your new skills.

If you are interested in data science, there are three books of mine you might like:

• Think Stats: Exploratory Data Analysis (O’Reilly, 2014)
• Think Bayes: Bayesian Statistics in Python (O’Reilly, 2021)
• Think DSP: Digital Signal Processing in Python (O’Reilly, 2016)

If you are interested in physical modeling and complex systems, you might like:

• Modeling and Simulation in Python: An Introduction for Scientists and Engineers
(No Starch Press, 2023)

• Think Complexity: Complexity Science and Computational Modeling (O’Reilly,
2018)

These use NumPy, SciPy, pandas, and other Python libraries for data science and sci‐
entific computing.

This book tries to find a balance between general principles of programming and
details of Python. As a result, it does not include every feature of the Python lan‐
guage. For more about Python, and good advice about how to use it, I recommend
Fluent Python: Clear, Concise, and Effective Programming, second edition by Luciano
Ramalho (O’Reilly, 2022).

289

After an introduction to programming, a common next step is to learn about data
structures and algorithms. I have a work in progress on this topic, called Data Struc‐
tures and Information Retrieval in Python. A free electronic version is available from
Green Tea Press.

As you work on more complex programs, you will encounter new challenges. You
might find it helpful to review the sections in this book about debugging. In particu‐
lar, remember the six Rs of debugging from “Debugging” on page 186: reading, run‐
ning, ruminating, rubberducking, retreating, and resting.

This book suggests tools to help with debugging, including the print and repr func‐
tions, the structshape function in “Debugging” on page 166, and the built-in func‐
tions isinstance, hasattr, and vars in “Debugging” on page 219.

It also suggests tools for testing programs, including the assert statement, the doc
test module, and the unittest module. Including tests in your programs is one of
the best ways to prevent and detect errors, and save time debugging.

But the best kind of debugging is the kind you don’t have to do. If you use an incre‐
mental development process, as described in “Incremental Development” on page 77,
and test as you go, you will make fewer errors and find them more quickly when you
do. Also, remember encapsulation and generalization from “Encapsulation and Gen‐
eralization” on page 42, which is particularly useful when you are developing code in
Jupyter notebooks.

Throughout this book, I’ve suggested ways to use virtual assistants to help you learn,
program, and debug. I hope you are finding these tools useful.

In addition to virtual assistants like ChatGPT, you might also want to use a tool like
Copilot that autocompletes code as you type. I did not recommend using these tools,
initially, because they can be overwhelming for beginners. But you might want to
explore them now.

Using AI tools effectively requires some experimentation and reflection to find a flow
that works for you. If you think it’s a nuisance to copy code from ChatGPT to Jupyter,
you might prefer something like Copilot. But the cognitive work you do to compose a
prompt and interpret the response can be as valuable as the code the tool generates,
in the same vein as rubber duck debugging.

As you gain programming experience, you might want to explore other development
environments. I think Jupyter notebooks are a good place to start, but they are rela‐
tively new and not as widely used as conventional integrated development environ‐
ments (IDEs). For Python, the most popular IDEs include PyCharm and Spyder—
and Thonny, which is often recommended for beginners. Other IDEs, like Visual Stu‐
dio Code and Eclipse, work with other programming languages as well. Or, as a sim‐
pler alternative, you can write Python programs using any text editor you like.

290 | Chapter 19: Final Thoughts

https://greenteapress.com

As you continue your programming journey, you don’t have to go alone! If you live in
or near a city, there’s a good chance there is a Python user group you can join. These
groups are usually friendly to beginners, so don’t be afraid. If there is no group near
you, you might be able to join events remotely. Also, keep an eye out for regional
Python conferences.

One of the best ways to improve your programming skills is to learn another lan‐
guage. If you are interested in statistics and data science, you might want to learn R.
But I particularly recommend learning a functional language like Racket or Elixir.
Functional programming requires a different kind of thinking, which changes the
way you think about programs.

Good luck!

Final Thoughts | 291

Index

A
abs function, 4
absolute paths, 192
accumulators, 145
Ackermann function, writing function that

evaluates, 88
add method, 269
__add__ method, 229
addition operator (+), 1

overloading, 229
addition, Counter objects, 273
add_method_to command, 225
aliasing, 130

created by passing reference to object as
function argument, 131

all function, 279
anagrams, 199

anagram_map shelf, 199
checking for, using Counter object, 273
defining all derived from group of letters

using defaultdict, 274
writing function to find, 134

anaspeptic, 132
and operator, 58, 61
any function, 279
apostrophe (') inside strings, 5
append method, 125, 132, 258
arc function, 45
argument packing, 159-160

packing keyword arguments, 281
arguments, 20

assignment to parameter in function call, 28
checking types for, 84
extend method taking list as, 125

keyword, 44
list, 131
list comprehension used as function argu‐

ment, 278
passing object as argument, 211
providing too many or too few in function

call, 21
of wrong type, 21

arithmetic expressions
practice writing, 13
variable as part of, 16

arithmetic functions, 4-5
arithmetic operators, 1-3, 10

use with sets, 271
assert statements, 231
assertEqual method, 284
AssertionError, 231
assignment operator (=), 44
assignment statements, 15

variable created by running, 15
assignments

initializing variables with, 95
list elements, 122
of tuples, 156-158
updating variables with, 94

asterisk (*) operator, 2
(see also multiplication operator)
packing and unpacking arguments into a

tuple, 159
repeating a list, 124
using ** to pack keyword arguments, 282

AttributeError, 156
attributes, 133, 210-212

Card class, 251

293

getting all attributes and values in a dictio‐
nary, 220

hasattr function, 220
inheritance of, 260
modifying on an object, 212

B
backward slash (\) in file paths on Windows,

193
base 60, 217

converting to base 10 and back, 219
bigrams, 181-182

in Markov analysis, 183
binary mode, 201
bitwise XOR operator (^), 3
blocks, 59
body (function), 27

running in for statement, 31
boolean expressions, 56-58

in if statements, 59
as operands of logical operators, 58

boolean functions, 80
writing is_between function (exercise), 88

boolean values, 97
bracket operator ([]), 105, 108

constructing new list, 277
creating empty list, 122
creating lists with, 121
indexing tuple elements, 154
looking up dictionary item key and getting

corresponding value, 138
omitting brackets for list comprehension

used as function argument, 278
reading list element with, 122
using with shelf object, 197

branches (conditional statements), 60
nested conditionals in if statement

branches, 61
break statements, 111
bugs, 9, 11

C
call graph for fibonacci function, 146
canvas, 40, 236
captions.dat file, 199
captions.dir file, 199
cards, representing, 249-251, 256

(see also decks of cards)
accessing Card class variables, 250

Card attributes, 251
Card class definition, 250
comparing Card objects, 252-255
printing cards, 252
rank and suit attributes, 249

caret (^)
beginning of string matching in regular

expressions, 116
bitwise XOR operator, 3
indicating error found, 4

Cartesian coordinates, 233
category function, 173
chained conditionals, 60
characters, 105

deciding whether they are punctuation, 173
chatbots, asking questions about Python, 11
child class, 260
choice function, 179, 186

using with a dictionary, 179
choices function, weights and k optional argu‐

ments, 180
circle, drawing, 44
class variables, 250, 252

BridgeHand class example, 261
classes, 209

Card, 252
creating simple classes with namedtuple,

279
defining class that represents and draws rec‐

tangles, 238
defining methods for, 223-224
defining Point class, 234
inheritance, 259

parent and child class, 260
specialization, 262

methods of
static methods, 225-227
time_to_int function rewritten as

method, 225
Rectangle class definition, 239

close method, 111
collections module, 272
colon (:), slice operator (see slice operator; sli‐

ces)
comma-separated list of values in tuples, 153
commas between groups of digits, 8
comments, 21

TODO in, 59
comparing and sorting tuples, 163-164

294 | Index

comparison operators, 57
(see also relational operators)
use with sets, 271

compound data structures, 166
computer scientists, 1
concatenation, 10
concatenation operator (+), 6, 36

concatenating lists, 124
concatenating tuples, 155

conditional expressions, 275
handling optional arguments, 276

conditional statements, 59, 275
boolean functions in, 81
chained conditionals, 60
nested conditionals, 60
return values and, 76

config dictionary, 195
writing to YAML file, 196

configuration data, 195
coordinates, 233
copy function, 213, 214, 235

creating shallow copy, 243
making copy of rectangle and invoking

grow on it, 241
copy module, 213

deepcopy function, 243
copying a dictionary, 139
count method, 113
counters, 96, 163, 272

using dictionaries, 142
counts

updating variables for, 94
using loops to increment, 95

curly braces ({})
enclosing dictionary items in creation of

dictionary, 139
representing empty dictionary, 138

current working directory, 191

D
data directory, listing contents, 199
data structures, 166

storing, using a shelf, 199
databases, 191

shelve module, 196-199
datasets, large, debugging, 147
db.close function, 198
DbfilenameShelf object, 197
dead code, 77, 87

debugging, 9, 11, 22, 35
avoiding modifying objects, 245
avoiding sharing objects, 245
checking invariants, 230
of data structures, 166
functions for testing and debugging pro‐

grams containing objects, 219
of functions that aren't working, 85
functions, pre- and postconditions, 49
of inheritance in programs, 262
of large datasets, 147
list comprehensions more difficult than

loops, 278
of list method calls, 133
of more substantial programs, 186
reading and writing files, problems with

whitespace, 204
of reading and writing files, 117
of syntax or runtime errors, 65
testing function using doctest, 283
using assert statement, 231
using unittest, 284

decks of cards, 256
adding, removing, shuffling, and sorting

cards, 257-259
hand versus, 259
printing the deck, 256

decrements, 95
deep copy, 242-244
deepcopy function, 243
def keyword, 27
default value, 176
defaultdict, 274-275

creating dictionary of lists, 274
definition (function), 27
delay argument (make_turtle), 45
delegation, 259
delimiters

using empty strings as, 127, 128
for word boundaries, 127

deserialization, 196
design-first development, 217-219
deterministic computer programs, 178
development plan, 47
dict function, 139, 162
dictionaries, 137, 158

attributes and their values in, 220
creating, 139

Index | 295

creating dictionary of lists using defaultdict,
274

creating using zip and dict, 162
debugging, 147
debugging, using structshape, 167
defaultdict and, 274
dictionary in BridgeHand class variable, 261
dictionary mapping from keywords to val‐

ues, 282
dictionary with x and y keys, using unpack

operator to create Point object, 283
in expressions in f-strings, 195
inverting to look up value and get corre‐

sponding key, 165
of keyword arguments, 283
lists and, 144
mapping from each bigram to number of

times it appears, 182
mapping from each word to list of words

following, 183
as mappings, 137-139
memos in, 146
similarities and differences of Counter

objects to, 272
similarity of shelf objects to, 197
storing unique punctuation marks in a dic‐

tionary, 173
subtraction, 271
tuples used as keys in, 156
unique words stored as key in, 171
using choice function with, 179
using for loop with, 143
using in operator on, 140-142
using to build a list, 144-146
using to check for duplicates in a sequence,

270
using with counters, 142
words stored as keys, subtracting invalid

words, 177
digests, 201
directories

checking if path refers to directory, 193
current working directory, 191
listing contents of, 192
walking, 203

distance function, defining, 77-80
division operator (/), 2
divmod function, 158, 159, 216, 218
docstrings, 48

doctests, 99, 283
dollar sign ($)

end of string matching in regular expres‐
sions, 116

dot operator (.), 18, 211
attribute creation with, 210
in method names, 110
reading attribute value using, 211

double asterisk (**) operator, 282
double underscores (__) beginning and ending

special method names, 228
draw method, 237, 240

making list of objects for, 244
dump function, 196
duplicates, 150, 195

dictionary checking for duplicates in a
sequence, 270

searching for duplicate photos, 207

E
elements (list), 121

nested list as single element, 123
elements (set), uniqueness of, 270
elif clause, 60
else clause (in if statements), 59
empty lists, 122

for loop over, 128
empty strings

indicated by '', 108
using as delimiter, 127, 128

encapsulation, 42, 47
encoding, 249
end (keyword argument), 91
endswith method, 112
enumerate function, 162
enumerate object, 162
ephemeral programs, 191
__eq__ method, 238, 253

provided by Point class, 280
equality operator (==), 57, 81, 238

comparing cards, 253
overriding with __eq__ method, 238
use with sets, 273
using in string comparison, 109
using with objects, 214

equivalence, 238, 253
Counter objects, 273

equivalent versus identical lists, 129
error messages, 65

296 | Index

including traceback, 34
learning about by making deliberate errors,

12
errors

recursion, 63
TypeError, 8
types of, 22

evaluation of expressions, 19
exclamation point (!) preceding shell com‐

mands, 117
execution of statements, 19
exponentiation operator (**), 3, 18
expressions, 3, 10, 18

attributes in, 211
conditional, 275
in f-strings, 194
index in brackets, 106
printing evaluation results, 19
in statements, 15
using in return statement, 76
using return value as part of, 74
writing arithmetic expressions, 13

extend method, 125
extra features in Python, 269

F
f-strings, 193-195

dot operator in an expression in f-string,
211

using to create string representation of a
line, 236

using to write function displaying value of
time objects, 211

factorial function, 81
with error checking, 85
with print statements, 86
version with conditional expression, 276
version with conditional statement, 276

factory functions, 274
fibonacci function, 84, 146

memoized version, 147
file object, 93

using in for loop, 94
files

checking for equivalent files, 201-202
filenames and paths, 191-193
programs reading and writing text to, 191
reading and writing text files, 110-112
reading and writing, debugging of, 117, 204

reading file into a string, 132
writing to text files using f-strings, 193-195
YAML files storing configuration data, 195

file_object.readline method, 93
filtering, 146
find and replace, 112
find_defining_class function, 263
float function, 7

converting string with digits and decimal
point to floating-point number, 8

float type, 7
variable or function named float, 24

floating-point numbers, 10
converting integers to, 7
printing value of, 19
rounding off, 4

floor division, 2, 55
flow of execution, 82, 262
for keyword, 31
for loops

exercise with, 38
identifying unique words in a book, 174
looping through keys in shelf object, 198
looping through lists, 127
storing unique punctuation marks in a dic‐

tionary, 173
tuple assignment in, 158
using file object in, 94
using in making square, 41
using instead of recursive functions, 63
using to display letters in a string, 92
using to make a word list, 131
using to read lines from file, 171
using with dictionaries, 143

for statement, 31
formal languages, 9, 11

versus natural languages, 9
format specifiers, 211
forward function, 40
forward slash (/) separating directory and file‐

names in path on macOS and Unix systems,
193

frames, 33
function calls, 4, 10

in expressions in f-strings, 194
variables in, 16

function name as expression, 5
function object, 28, 203
functional programming style, 215

Index | 297

functions, 10, 27
adding parameters or generalization, 43
advantages of, 34
arguments, 20
asking virtual assistant to write and debug,

36
assuming they work correctly and return

right results, 83
boolean, 80
calling, 29
calling other functions, 30
debugging, pre- and postconditions, 49
defining new functions, 27
design of, interface and implementation, 47
docstring explaining the interface, 48
drawing a circle, 44
encapsulating code in, 42
encapsulating loop in a function, 92
encapsulation and generalization, 47, 50
for loop inside of, 32
having no return values, 75-76
having return values, 73-75, 76

(see also return values)
with infinite recursion, 63
local variables and parameters in, 32
in math module, 18
optional parameters, 176
parameters, 28
pure, 214
recursive, 61
refactoring circle function, 45
repetition using for statement, 31
stack diagrams of, 33

circle, arc, and polyline functions, 47
testing with doctest, 283
tracebacks of runtime errors, 33

G
__ge__ method, 255
generalization (functions), 43, 45, 47
generator expressions, 278

use of any function with, 279
getcwd function, 191
greater than operator (>), 57, 255
greater than or equal to operator (>=), 57, 255
greatest common divisor (GCD), writing func‐

tion for, 89
group function, 114
grow method, 240

__gt__ method, 255

H
hand of cards, 259

BridgeHand inheriting from Hand class,
261

Hand class inheriting from Deck, 259
hasattr function, 220
hash functions, 201
HASH object, 202
hash tables, 140
hashes, 144
hashlib module, 202
has_duplicates function, 270
!head command, 117
header (function), 27

looping back to in for statement, 31
hexadecimal numbers, 210
hexdigest function, 202
hyphen (-), word boundary delimiter, 127
hypotenuse of right triangle, writing function

for length of (exercise), 88

I
identical versus equivalent lists, 129
identity, 238
if keyword, 59
if statements, 55, 59, 97

elif clause, 60
else clause, 59
if clause in list comprehensions, 278
nested conditionals in, 60

immutability
of namedtuple objects, 281
of strings, 108
of tuples, 155

implementation (function), 47
import statements, 18, 19

importing functions from jupyturtle mod‐
ule, 237

importing jupyturtle module, 40
in keyword, 31
in operator, 96

checking if key appears in shelf object, 198
checking if string appears in a list, 132
checking validity of words, 177
finding a sequence in a string, 112
regular expressions and, 115
using on dictionaries, 140-142

298 | Index

using with lists, 123
incremental development, 77-80

defining factorial function, 82
key aspects of, 80

increments, 95
IndentationError, 66
IndexError, 106, 123
indexes, 105

in brackets as variables, 106
list, 122

negative value in, 123
negative index, using to get last letter in a

string, 107
infinite recursion, 63, 84
inheritance, 249

advantages and disadvantages of, 262
Card attributes, 251
comparing Card objects, 252-255
debugging programs that use, 262
deck of cards, adding, removing, shuffling,

and sorting cards, 257-259
defining objects representing decks of cards,

256
demonstrating using classes representing

playing cards, 249-251
parents and children, 259-261
printing Card objects, 252
printing the deck, 256
specialization, Bridgehand inheriting from

Hand class, 261
__init__ method, 228, 230, 235, 239, 251

classes created with namedtuple, 280
Deck class, 256
defining for Hand class, 260
using conditional expression to check

parameter with default value, 276
using conditional statement to check

parameter with default value, 276
initializing variables, 95
input function, 64
input validation, 85
instance methods, 226
instances, 210, 252
instantiation, 210
int function, 7, 65

argument, 20
converting string of digits to an integer, 8

int type, 7
variable or function named int, 24

integer division, 2, 55
integer division (//) operator, 2, 10
integers, 10

comma-separated sequence of, 8
converting Time objects to, 218
converting to floating-point values, 7
converting to Time objects, 218
value of index in brackets, 106

interface design, 47, 49
interpreter, using as calculator, 25
intersection, 273
invariants, 230
invocation (method), 110
is operator, 129, 214

showing Point objects not identical, 238
isdir function, 193
isfile function, 193
isinstance function, 84, 219
items (dictionary), 138
items method, 158, 175, 198

J
join method, 127, 135

converting list to a string, 128
jumpto function, 236
Jupyter

displaying return value, 73
representational and printable versions of

strings, 257
Jupyter notebooks, 225
jupyturtle module, 39-41

exercise with, 70
exercise with drawing Sierpiński triangle, 71
making a square, 41
more turtle functions, 50
using to draw lines on screen, 236

K
key-value pairs in dictionary items, 138, 139

choosing a random key, 179
finding using in operator and values

method, 140
inverting, 165
looking up key and getting corresponding

value, 138
printing keys and values, 143
requirement for keys to be hashable, 144

key-value pairs in shelf objects, 197, 200
key-value stores, 196

Index | 299

keyboard input, 64
KeyError, 138
keys method, 198
keyword arguments, 44

packing into a tuple, 281
keywords, 17, 24
Koch curve, 70
kwargs parameter, 282

L
Large Language Model (LLM), 171
__le__ method, 255
leap of faith, 83

with fibonacci function, 84
left function, 40
len function, 6, 36, 106

getting length of lists, 122
returning number of dictionary items, 138
using with sorted in text analysis, 172

less than operator (<), 57, 163, 254
less than or equal to operator (<=), 57, 255

checking if one set is subset of another, 271
Line class, 235
Line objects

instantiating and displaying to represent x-
axis, 236

making to represent rectangle sides, 240
state of, 236

linear search, 98
lines, 111

creating line segment between two points,
235-237

Liskov substitution principle, 261
Liskov, Barbara, 261
list comprehensions, 277-278

if clause determining elements to include in
list, 278

reading words from file and appending
them to list, 277

used as argument to a function, 278
using to capitalize words in strings, 277

list function, 124, 126, 135
listdir function, 192, 203
lists, 121

aliasing, 130
building, using a dictionary, 144-146
converting to strings, 128
creating dictionary of lists using defaultdict,

274

debugging list method calls, 133
debugging, using structshape, 166
defaultdict creating new list, 274
in dictionaries, 144
in expressions in f-strings, 195
list of pairs using zip and list, 162
looping through, 127
making a word list, 131
methods of, 125
mutability of, 122
objects and values, 129
operators used with, 124
as sequences, 121
similarity of tuples to, 153-155
slices of, 123
sorting, 128
strings and, 126
of strings, concatenating into single string,

127
use as function arguments, 131
window list of bigrams, 181

LLM (Large Language Model), 171
local variables, 32, 75
logical operators, 58

using to simplify nested conditional state‐
ments, 61

loop variable, 92, 277
loops, 31

encapsulating loop in a function, 92
list comprehensions and generator expres‐

sions, advantages over, 278
looping and counting, 95
looping and dictionaries, 143
looping through lists, 127
and strings, 91-93

lower method, 97
lowercase and uppercase letters, handling by

Python, 109
__lt__ method, 254, 259

M
main function, running for unittest, 284
makedirs function, 197
make_cards static method, 256
make_turtle function, 39, 240
mapping, 138
Markov chain text analysis, 183-185

using results to generate text, 185
Markov text generation, 171, 178

300 | Index

Match objects, 114
math module, 18
math.pow function, 18

arguments, 20
math.sqrt function, 79

return value, 73
max function, 164

using to find largest list element, 125
md5 function, 202
md5_digest function, 202
mean function, 160, 282
memos, 147
method resolution order (mro) method, 263
methods, 93

child class method overriding parent
method, 261

defining, 223-224
defining translate method and adding to

Point, 234
inheritance of, 260, 261

problems finding their definitions, 262
invocation, 110
list, 125
special

__add__ method, 229
__init__ method, 228
__str__ method, 227

static, 225-227
string, 109
time_to_int function rewritten as method,

225
translated method, defining and adding to

Point, 235
min function, 164

using to find smallest list element, 125
min_max function, 159, 160
modules, 18

importing doctest module and running
function, 99

modulus operator (%), 56
most_common method, 273
moveto function, 236
move_cards method, 260
mro (method resolution order) method, 263
multiline strings, 48
multiplication operator (*), 2

duplicating tuples with, 155
repeating a list, 124

using to make multiple copies of string and
concatenating them, 6

mutability
of lists, 122
of objects, 212
of programmer-defined types, 234

N
n-grams, 181
named arguments (see keyword arguments)
named tuples, 279-281

accessing elements of, 280
creating simple classes with, 279
defining class that inherits from, 281
immutability of, 281
treating as a tuple, 281

natural languages, 9, 10
versus formal languages, 9

__ne__ method, 253
negative numbers, absolute value of, 4
nested conditionals, 60
nested lists, 122

counting as single element, 123
newline character (\n), 65, 93

ending f-strings, 195
newlines, 67, 194, 204

differences in operating systems, 204
nondeterministic computer programs, 179
None value, 75, 114

return value from remove, 126
returned by list methods, 133

NoneType object, 133
not equal operator (!=), 57, 253
not operator, 58
number sequence, enclosing in quotes, 7

O
object diagrams, 210
object-oriented languages, 223
object-oriented programming (OOP), 209, 233

inheritance, 249
(see also inheritance)

objects, 209
aliased, 130
avoiding sharing and modification of, 245
comparing Time objects, 227
converting to strings, 227
copying, 213
debugging programs that work with, 219

Index | 301

equivalence and identity, 237
as function arguments, 211
initializing attributes of new object using

__init__, 228
methods, 93
mutability of, 212
passed to pure functions as arguments, 215
Point object, instantiating and displaying,

234
polymorphism, 244
receiver of method invocations, 224
references to, 130
as return values, 212
serializing and deserializing, 196
string, 108
values and, 129

open function, 93
mode, 111

operands, 8, 10
operating systems

differences in file paths on, 193
filename differences in, 204

operators
contained by index in brackets, 106
in expressions in f-strings, 194
list, 124
overloading, 229

optional arguments, handling using conditional
expressions, 276

optional parameters, 176
or operator, 58
order of operations, 3

semantic error with, 23
os module, 191
os.getcwd function, 191
os.listdir function, 192, 203
os.makedirs function, 197
os.path.exists function, 192
os.path.isdir function, 193
os.path.isfile function, 193
os.path.join function, 197

P
packing arguments into a tuple, 159

packing keyword arguments, 281
pairs of values in sequences, looping through

using zip object, 161
palindromes, 135

finding, 135

looping through words in dictionary and
making list of, 144-146

making list of, using list comprehension,
278

parameters, 28
adding to function, 43
checking for right types and values, 85
local, in a function, 32
optional, 176

parent class, 260
parentheses ()

enclosing tuples in, 154
in function calls, 4
grouping in regular expressions, 116
using to change order of operations, 3

pass statements, 59
patching code, 215-217
paths, 192

checking whether path refers to directory or
file, 193

differences on different operating systems,
193

making path that includes directory name
and shelf file name, 197

walking directories and printing paths of
files, 204

pattern matching, 115
(see also regular expressions)

patterns, 113
pendown function, 50
penup function, 50
persistent programs, 191
Point objects

defining equality for, 238
making four Point objects to represent rec‐

tangle corners, 239
representing corners of rectangle, 239
string representation of, 236

points
creating line segment between two points,

235-237
creating Point object using dictionary with x

and y keys and unpack operator, 283
defining Point class, 234
defining Point class using namedtuple, 280
defining translated method for Point, 235
instantiating Point object, 234
representing in Python, 233
translate method for Point object, 234

302 | Index

polygon function, 44
polyline function, 45
polymorphism, 244, 260
pop method, 125, 257
positive numbers, absolute value of, 4
postconditions, 49
pound symbol (#), comments beginning with,

21
pow function, 18
pprint function, 148
preconditions, 49
print function, 19, 262

arguments, 21
printing a line, 236
question mark for unknown parameter, 33

print statements
using to debug functions, 86

programmer-defined types
using structshape with, 220

programming, 1
programming languages, 9
prompt (>>>), 99
prototype and patch, 215-217
pseudorandom numbers, 179
punctuation, identifying and removing from

text, 172-175
pure functions, 76, 79, 214
Pythagorean theorem, 77

Q
question mark (?)

matching optional character in regular
expressions, 116

quotation marks, double ("")
""" enclosing triple-quoted docstrings, 48
enclosing strings, 5

quotation marks, single ('')
enclosing number sequence in, 7
enclosing strings, 5

quotient, 158

R
random module, 179, 258
random sequence of words, generating, 180
range function, 91
raw strings, 118
re (regular expressions) module, 114
read method, 132
readers, 111

readline function, 93
receiver, 224
rectangles

changing, 240-242
creating, 238-240
making deep copies of, 242-244

recursion, 61
infinite, 63, 84

RecursionError, 63
recursive functions, 62

assuming they work correctly, 83
fibonacci, 84
with return values, 81-83
stack diagrams for, 63

redirect operator (>), 117
refactoring code, 46
references, 130

passing reference to object as function argu‐
ment, 131

regular expressions, 113-116
using for string substitution, 116

relational operators, 57
comparing Card objects, 253-255
use in string comparisons, 109
use with tuples, 163

relative paths, 192
remainder, 56, 158
remove method, 126, 133, 160
repetition operator (*), 36
repetition, using for statement, 31
replace method, 112
repr function, 204
return character (\r), 204
return statements, 74

adding print statement before each, 86
using with conditionals, 76

return values
and conditionals, 76
example, circle_area returning a value, 74
functions having, 73-75
functions not having, 75-76
incorrect functions ending without, 87
objects as, 212
recursion with, 81-83
tuples as, 158

reverse order, sorting in, 175
reversed function, 135

using with tuples, 155
right function, 40

Index | 303

round function, 4
arguments, 20
exercise with, 12
ndigits, optional parameter, 176

rubber duck debugging, 187
runtime errors, 22

debugging, 66
tracebacks of, 33

run_doctests function, 99
run_unittest function, 284

S
scaffolding, 80
searches

looking for letters in a string, 98
using search function and pattern matching,

114
self parameter, 224, 225, 226
semantic errors, 22
sequences, 105

lists as, 121
passing to sets, 270
sorted function working with all, 128
strings as, 105-107
in tuple assignments, 157

serialization, 196
set subtraction, 177
sets, 269-272
sexagesimal numbers, 217
shallow copy, 243
shapes, 244
shelf object, 197

using to store data structures, 199
shell commands, !tail and !head, 117
shelve module, 196-199
shelve.open function, 197
shuffle function, 258
Sierpiński triangle, 71
slice operator (:), 123

using with tuples, 155
slices

list, 123
slice index of sorted list, 172
string, 107

sort key, 164
sort method, 258
sorted function, 128, 164, 172

sorting key-value pairs by frequency, 175
sorting letters in a string, 128

using with tuples, 155
space characters controlling indentation of out‐

put, 86
spaces, 204
span function, 114
special methods, 228
specialization, 262
spellcheck, 177
split method, 126, 127

dividing lines of text into words, 171
splitting string into list of words, 132

sqrt function, 79
return value, 73

square brackets ([]), 121
(see also bracket operator)
using to add items to dictionary, 138

square, creating using make_turtle, 41
stack diagrams, 33

circle, arc, and polyline functions, 47
drawing, exercise with recurse function, 69
of recursive factorial program, 83
of recursive functions, 63

startswith method, 110
state diagrams, 16

for dictionary example, 139
statements, 15, 19
static methods, 225-227
str function, 8, 193
str type, 7

variable or function named str, 24
__str__ method, 227, 230, 235, 239, 252

classes created with namedtuple, 280
Deck class, 256
using f-string to create string representation

of a line, 236
string substitution, 117
strings, 5, 10

checking if character appears in, 96
comparisons of, 109
converting letters in to lowercase, 97
converting lists to, 128
f-string expressions converted to, 195
finding and replacing character sequences

in, 112
finding character sequences in using regular

expressions, 113-116
for loop displaying letters in, 92
getting last letter of, 106
immutability of, 108

304 | Index

lists and, 126
lists of, 121
lists of, concatenating into single string, 127
methods of, 109
multiline, enclosed in triple quotes, 48
objects and values, 129
operators and methods, reading and writing

files with, 110-112
printing value of, 19
reading a file into a string, 132
returned by readline function, 93
searching for letters in, 98
selecting a character from, 105
slices of, 107
sorting letters in, using sorted function, 128
string methods versus list methods, 133
stripping newline and whitespace from

words, 94
writing combination of strings and other

values using f-string, 194
strip method , 94

removing punctuation from beginning and
end of words, 173

structshape function, 166
structshape module, 220
sub function, 117
subtract function, 177
subtraction operator (-), 2

set subtraction, 271
subtraction, Counter objects, 273
sum function, 125
syntax errors, 5, 10, 22, 66

T
tabs, 204
!tail command, 117
test discovery, 284
test failing in unittest, 285
TestCase class, 284
testing

in incremental development, 77-80
testing function using doctest, 99

text analysis
counting number of unique words, 171
dealing with punctuation in identifying

words, 172-175
frequency of each unique word, 175
identifying bigrams and their frequency,

181

Markov analysis, 183-185
optional parameters for functions, 176
spellchecking a book, 177

text generation
random sequence of words, 178
using bigrams, 182
using results of Markov analysis, 185

thinking, programming as way of, 1
time function, 69
TODO (in comments), 59
total, initializing and incrementing, 96
totally ordered, 255
tracebacks, 33

for infinitely recursive function, 64
(see also infinitely)

translate method, 240
defining and adding to Rectangle, 241

trigrams, 181
trimmed mean, 160
True and False values (bool type), 57
tuple function, 154
tuples, 153

argument packing, 159-160
assignment, 156-158
comparing and sorting, 163-164
comparisons of, 254
debugging, using structshape, 167
immutability of, 155
namedtuple, 279-281
packing arguments into, 281
as return values, 158
similarity to lists, 153-155
using zip with, 161-163

Turing complete, 81
Turtle object, 236
type function, 7

exercise with, 12
TypeError, 21
types, 7-9, 10

argument of type function can't handle, 21
checking for function arguments, 84
list elements, 121
programmer-defined, 209
using operator with unsupported type, 23

U
underscores (_)

using in large numbers, 8
in variable names, 17

Index | 305

__ double underscores beginning and end‐
ing special method names, 228

unicodedata module, 173
union method, 271, 273
unittest module, 284
unpack operator (**), 283
unpacking arguments in tuples, 159
update function (HASH), 202
updates, updating variables with assignments,

95
upper method, 109
uppercase and lowercase letters, handling by

Python, 109
UTC (Coordinated Universal Time), 69

V
value-frequency pairs, 273
ValueError, 65, 66

returned when element is not in list, 126
values, 10

objects and, 129
in tuple assignments, 156
and types, 6-9
value of an expression, 3

values method, 140, 143, 198
variables, 15

association with an object (reference), 130
class, 250
contained by index in brackets, 106
created by running statements, 15
index in brackets, 106
initializing, 95
local variables in a function, 32
names of, comments and, 22
naming, 16
representing with state diagrams, 16
returned values assigned to, 73

in tuple assignments, 156
updating, 94
use as function arguments, 29

vars function, 220
vertical bar (|) in regular expressions, 115, 116
virtual assistants

asking questions about incorrect functions,
87

asking questions about Python, 11
assigning a role, 134
writing and debugging functions, 36

W
walk function, 203
weights

list of bigram frequencies, 182
of words, 180

whitespace, 194
problems with in reading and writing files,

204
word list, reading, 93
word.upper method, 110
words

frequency of each unique word in a book,
175

making a word list, 131
unique, counting number in a book, 171

write function, 193
writers, 111

Y
y-axis, line representing, 237
YAML, 195

Z
zip function and zip object, 161-163

306 | Index

About the Author
Allen Downey is a staff producer at Brilliant and professor emeritus at Olin College
of Engineering. He has taught computer science at Wellesley College, Colby College,
and UC Berkeley. He has a Ph.D. in computer science from UC Berkeley and a mas‐
ter’s degree from MIT.

Colophon
The animal on the cover of Think Python is a plum-headed parakeet (Psittacula cya‐
nocephala), a vibrant bird native to the Indian subcontinent.

This medium-sized parrot is known for the male’s dazzling plum-colored head, while
females have a grayish-blue head, with both sexes with different shades of green on
their chest, belly, wings, and back. Their long tails are a cool bluish-green tipped with
white, adding a touch of elegance. As seen in the cover image, males have a black chin
stripe and a narrow black band around their neck, bordered by a vibrant turquoise,
with a distinctive red shoulder patch. Females lack these markings and often have a
yellow collar instead.

These social birds flit through well-wooded areas in large flocks, their flight patterns a
flurry of twists and turns accompanied by high-pitched calls. They are also acrobatic
climbers, adept at navigating branches and using their strong beaks to explore nooks
and crannies for food; their diet consists mainly of fruits, seeds, and blossoms.

The plum-headed parakeet’s population is considered Least Concern by the IUCN
but with a decreasing trend, highlighting the need for conservation efforts. Many of
the animals on O’Reilly covers are endangered; all of them are important to the
world.

The color illustration is by Karen Montgomery, based on an antique line engraving
from a loose plate, source unknown. The series design is by Edie Freedman, Ellie
Volckhausen, and Karen Montgomery. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

Learn from experts.
Become one yourself.
Books | Live online courses
Instant answers | Virtual events
Videos | Interactive learning

Get started at oreilly.com.

©
20

23
 O

’R
ei

lly
 M

ed
ia

, I
nc

. O
’R

ei
lly

 is
 a

 re
gi

st
er

ed
 tr

ad
em

ar
k

of
 O

’R
ei

lly
 M

ed
ia

, I
nc

. 1
75

 7
x9

.19
75

https://oreilly.com

	Cover
	Copyright
	Table of Contents
	Preface
	Who Is This Book For?
	Goals of the Book
	Navigating the Book
	What’s New in the Third Edition?
	Getting Started
	Resources for Teachers
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Programming as a Way of Thinking
	Arithmetic Operators
	Expressions
	Arithmetic Functions
	Strings
	Values and Types
	Formal and Natural Languages
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 2. Variables and Statements
	Variables
	State Diagrams
	Variable Names
	The import Statement
	Expressions and Statements
	The print Function
	Arguments
	Comments
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise

	Chapter 3. Functions
	Defining New Functions
	Parameters
	Calling Functions
	Repetition
	Variables and Parameters Are Local
	Stack Diagrams
	Tracebacks
	Why Functions?
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 4. Functions and Interfaces
	The jupyturtle Module
	Making a Square
	Encapsulation and Generalization
	Approximating a Circle
	Refactoring
	Stack Diagram
	A Development Plan
	Docstrings
	Debugging
	Glossary
	Exercises
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Ask a Virtual Assistant

	Chapter 5. Conditionals and Recursion
	Integer Division and Modulus
	Boolean Expressions
	Logical Operators
	if Statements
	The else Clause
	Chained Conditionals
	Nested Conditionals
	Recursion
	Stack Diagrams for Recursive Functions
	Infinite Recursion
	Keyboard Input
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 6. Return Values
	Some Functions Have Return Values
	And Some Have None
	Return Values and Conditionals
	Incremental Development
	Boolean Functions
	Recursion with Return Values
	Leap of Faith
	Fibonacci
	Checking Types
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 7. Iteration and Search
	Loops and Strings
	Reading the Word List
	Updating Variables
	Looping and Counting
	The in Operator
	Search
	Doctest
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 8. Strings and Regular Expressions
	A String Is a Sequence
	String Slices
	Strings Are Immutable
	String Comparison
	String Methods
	Writing Files
	Find and Replace
	Regular Expressions
	String Substitution
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 9. Lists
	A List Is a Sequence
	Lists Are Mutable
	List Slices
	List Operations
	List Methods
	Lists and Strings
	Looping Through a List
	Sorting Lists
	Objects and Values
	Aliasing
	List Arguments
	Making a Word List
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 10. Dictionaries
	A Dictionary Is a Mapping
	Creating Dictionaries
	The in Operator
	A Collection of Counters
	Looping and Dictionaries
	Lists and Dictionaries
	Accumulating a List
	Memos
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 11. Tuples
	Tuples Are Like Lists
	But Tuples Are Immutable
	Tuple Assignment
	Tuples as Return Values
	Argument Packing
	Zip
	Comparing and Sorting
	Inverting a Dictionary
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 12. Text Analysis and Generation
	Unique Words
	Punctuation
	Word Frequencies
	Optional Parameters
	Dictionary Subtraction
	Random Numbers
	Bigrams
	Markov Analysis
	Generating Text
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise

	Chapter 13. Files and Databases
	Filenames and Paths
	f-strings
	YAML
	Shelve
	Storing Data Structures
	Checking for Equivalent Files
	Walking Directories
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise

	Chapter 14. Classes and Functions
	Programmer-Defined Types
	Attributes
	Objects as Return Values
	Objects Are Mutable
	Copying
	Pure Functions
	Prototype and Patch
	Design-First Development
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise

	Chapter 15. Classes and Methods
	Defining Methods
	Another Method
	Static Methods
	Comparing Time Objects
	The __str__ Method
	The __init__ Method
	Operator Overloading
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise

	Chapter 16. Classes and Objects
	Creating a Point
	Creating a Line
	Equivalence and Identity
	Creating a Rectangle
	Changing Rectangles
	Deep Copy
	Polymorphism
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 17. Inheritance
	Representing Cards
	Card Attributes
	Printing Cards
	Comparing Cards
	Decks
	Printing the Deck
	Add, Remove, Shuffle, and Sort
	Parents and Children
	Specialization
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 18. Python Extras
	Sets
	Counters
	defaultdict
	Conditional Expressions
	List Comprehensions
	any and all
	Named Tuples
	Packing Keyword Arguments
	Debugging
	Glossary
	Exercises
	Ask a Virtual Assistant
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise
	Exercise

	Chapter 19. Final Thoughts
	Index
	About the Author
	Colophon

