
M A N N I N G

Doug Farrell
Foreword by Michael Kennedy

How the pros use Python and Flask

2 EPILOGUE

In this book, you’ll see how object-oriented programming (OOP) concepts can be used in Python
code to create an application that animates a rectangle, square, and circle that inherit from the
parent shape. By using inheritance, polymorphism, and composition, you’ll be able to build object
hierarchies that extend and re-use common data and behavior of objects.

The square, circle, and
rectangle shapes drawn,
and being animated,
onscreen

The Well-Grounded Python Developer

The Well-Grounded
Python Developer

HOW THE PROS USE PYTHON AND FLASK

DOUG FARRELL
Foreword by MICHAEL KENNEDY

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2023 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior
written permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

The author and publisher have made every effort to ensure that the information in this book
was correct at press time. The author and publisher do not assume and hereby disclaim any
liability to any party for any loss, damage, or disruption caused by errors or omissions, whether
such errors or omissions result from negligence, accident, or any other cause, or from any
usage of the information herein.

Manning Publications Co. Development editor: Christina Taylor
20 Baldwin Road Technical development editor: René van den Berg
PO Box 761 Review editor: Aleksandar Dragosavljević
Shelter Island, NY 11964 Production editor: Kathleen Rossland

Copy editor: Kristen Bettcher
Proofreader: Michael Beady

Technical proofreader: Mathijs Affourtit
Typesetter and cover designer: Marija Tudor

ISBN 9781617297441
Printed in the United States of America

This book is dedicated to my partner and wife, Susan,
whose encouragement, patience, and

love makes all things possible.

vi

brief contents
1 ■ Becoming a Pythonista 1

PART 1 GROUNDWORK .. 11
2 ■ That’s a good name 13
3 ■ The API: Let’s talk 32
4 ■ The object of conversation 48
5 ■ Exceptional events 73

PART 2 FIELDWORK ... 87
6 ■ Sharing with the internet 89
7 ■ Doing it with style 113
8 ■ Do I know you? Authentication 148
9 ■ What can you do? Authorization 172

10 ■ Persistence is good: Databases 191
11 ■ I’ve got something to say 214
12 ■ Are we there yet? 242

contents
foreword xiii
preface xv
acknowledgments xvii
about this book xix
about the author xxiii
about the cover illustration xxiv

1 Becoming a Pythonista 1
1.1 Commitment to learning 2
1.2 Reaching goals 3

Thinking like a developer 3 ■ Building applications 3

1.3 Using Python 4
Programming paradigms 4 ■ Creating maintainable code 5
Performance 6 ■ The language community 7 ■ Developer
tooling 8

1.4 Selecting which Python version to use 9
1.5 Closing thoughts 9

PART 1 GROUNDWORK .. 11

2 That’s a good name 13
2.1 Names 14

Naming things 15 ■ Naming experiment 17
vii

CONTENTSviii
2.2 Namespaces 20
2.3 Python namespaces 21

Built-ins level 21 ■ Module level 22 ■ Function level 25
Namespace scope 26 ■ Namespace experiment 28

3 The API: Let’s talk 32
3.1 Starting a conversation 33

A contract between pieces of code 34 ■ What’s passed as input 35
What’s expected as output 37

3.2 Function API 39
Naming 39 ■ Parameters 40 ■ Return value 42
Single responsibility 43 ■ Function length 44
Idempotence 44 ■ Side effects 44

3.3 Documentation 45
3.4 Closing thoughts 46

4 The object of conversation 48
4.1 Object-oriented programming (OOP) 49

Class definition 49 ■ Drawing with class 51 ■ Inheritance 60
Polymorphism 67 ■ Composition 68

4.2 Closing thoughts 72

5 Exceptional events 73
5.1 Exceptions 75
5.2 Handling exceptions 77

Handling an exception if the code can do something about it 77
Allowing exceptions to flow upward in your programs 78
Informing the user 78 ■ Never silence an exception 78

5.3 Raising an exception 81
5.4 Creating your own exceptions 82
5.5 Closing thoughts 84

PART 2 FIELDWORK ... 87

6 Sharing with the internet 89
6.1 Sharing your work 90

Web application advantages 90 ■ Web application
challenges 90

CONTENTS ix
6.2 Servers 91
Request-response model 92

6.3 Web servers 93
6.4 Flask 95

Why Flask? 95 ■ Your first web server 96 ■ Serving
content 98 ■ More Jinja2 features 101

6.5 Running the web server 110
Gunicorn 111 ■ Commercial hosting 111

6.6 Closing thoughts 112

7 Doing it with style 113
7.1 Application styling 114

Creating appealing styles 114 ■ Styling consistency 114
Normalizing styles 114 ■ Responsive design 115

7.2 Integrating Bootstrap 115
The previous example, now with Bootstrap 116

7.3 Helping MyBlog grow 123
The Flask app instance 123

7.4 Namespaces 127
Flask Blueprints 128 ■ Add Blueprints to MyBlog 128
Create the about page 131 ■ Refactored app instance 133

7.5 Navigation 133
Creating navigation information 133 ■ Displaying navigation
information 134 ■ MyBlog’s current look 135

7.6 Application configuration 136
Configuration files 137 ■ Private information 137

7.7 Flask Debug Toolbar 137
FlaskDynaConf 138

7.8 Logging information 141
Configuration 142

7.9 Adding a favicon 144
7.10 Closing thoughts 146

8 Do I know you? Authentication 148
8.1 The HTTP protocol is stateless 149

Sessions 149

CONTENTSx
8.2 Remembering someone 150
Authentication 150 ■ Logging in 158

8.3 News flash 163
Improving the login form 164

8.4 Making new friends 166
Auth Blueprint 167 ■ New user form 168 ■ Oh yeah: logging
out 170

8.5 What’s next 171

9 What can you do? Authorization 172
9.1 Login/logout navigation 172
9.2 Confirming new friends 174

Sending email 174

9.3 Resetting passwords 179
9.4 User profiles 182
9.5 Security 183

Protecting routes 184

9.6 User authorization roles 184
Creating the roles 185 ■ Authorizing routes 187

9.7 Protecting forms 189
9.8 Closing thoughts 189

10 Persistence is good: Databases 191
10.1 The other half 192

Maintaining information over time 192

10.2 Accessing data 192
10.3 Database systems 198

Tables 198 ■ Relationships 199 ■ Transaction database 201
Structured query language: SQL 202

10.4 SQLite as the database 204
10.5 SQLAlchemy 205

Benefits 205

10.6 Modeling the database 206
Defining the classes 206

10.7 Creating and using the database 209

CONTENTS xi
Adding data 209 ■ Using the data 211

10.8 Closing thoughts 213

11 I’ve got something to say 214
11.1 MyBlog posts 215

Modeling the database 215

11.2 Change of direction 217
11.3 Content Blueprint 218
11.4 Displaying and creating posts 218

Display handler 218 ■ Display template 219

11.5 Creating posts 220
Creation handler 220 ■ Creation form 221 ■ Creation
template 221

11.6 Displaying and editing a post 222
Display handler 223 ■ Display template 223 ■ Update
handler 226 ■ Update form 226 ■ Update template 227

11.7 Content to comment hierarchy 228
Modifying the post class 230 ■ Display handler 231
Display template 233

11.8 Creating comments 234
Creation template 234 ■ Creation form 236 ■ Creation
handler 236

11.9 Notifying users 237
11.10 Handling site errors 238
11.11 Closing thoughts 241

12 Are we there yet? 242
12.1 Testing 243

Unit testing 243 ■ Functional testing 244 ■ End-to-end
testing 244 ■ Integration testing 244 ■ Load testing 244
Performance testing 244 ■ Regression testing 244 ■ Accessibility
testing 245 ■ Acceptance testing 245

12.2 Debugging 245
Reproducing bugs 245 ■ Breakpoints 246 ■ Logging 246
Bad results 246 ■ Process of elimination 247 ■ Rubber-ducking
the problem 247

12.3 Tools 247

CONTENTSxii
Source control 247 ■ Optimization 248 ■ Containers 248
Databases 249 ■ Languages 249

12.4 OS environments 250
12.5 Cloud computing 250
12.6 Networking 251
12.7 Collaboration 251
12.8 Closing thoughts 251

appendix A Your development environment 253

index 263

foreword
We marvel at the modern creations of very experienced software developers. Insta-
gram is a polished and beautiful experience, whereas YouTube dwarfs even the largest
television audiences, and it still feels like you’re the only user on the system. Both You-
Tube and Instagram have Python at their core.

 When you first get started in programming, it’s easy to look at the challenge ahead
and see a towering mountain. Fortunately, you don’t have to climb a mountain in a
single bound, just as you don’t have to become a confident Python developer all at
once. Software development does not require you to be a genius. You don’t need to be
a mathematical wiz. Becoming a good software developer requires a strong sense of
curiosity and a lot of persistence.

 You don’t have to take my word for it. Guido van Rossum, the inventor of Python,
was interviewed for the Sing for Science podcast:

Host: And you don’t have to have a mathematical inclination?

Guido: That’s correct. Some sort of an inclination towards logical thinking
and an attention to details is much more important than math.

So if programming is not centered on math, then what do you need to be successful?
You need thousands of small and understandable building blocks. Like climbing a
mountain with many small steps and lots of persistence, you build YouTube by solving
thousands of small and easily understandable computer problems with a few lines of
understandable code.

 How do you discover these building blocks? You can bounce around the internet
and programming tutorials, piecing them together yourself, or, like mountain climb-
ing, you could hire a guide. Doug Farrell and this book of his are your guides.
xiii

FOREWORDxiv
 Here, you will learn many building blocks. You will learn the importance of nam-
ing things clearly. The function get_blog_post_by_id doesn’t need additional details
to communicate its role, does it? You’ll see how to group your code into reusable
blocks with functions. You will build forms to display a UI on the web with Python and
Flask. You’ll use Python’s SQLAlchemy database package to read and write data from
a database without the need to understand SQL (the language of relational data-
bases).

 In the end, you’ll have a practical and real-world application built out of these
many building blocks. It’ll be a fun journey, and the code will be a great resource to
pull examples and ideas from as you grow in your software development career. With
Doug and this book as your guides, you’ll keep climbing and, before you know it,
you’ll be on the summit.

Michael Kennedy is a Python enthusiast and entrepreneur. He’s the host of the Talk Python To
Me and Python Bytes podcasts. Michael founded Talk Python Training and is a Python Soft-
ware Foundation Fellow based in Portland, Oregon.

preface
I’ve worked at many interesting and varied jobs in my life and have been fortunate
enough to be a software developer for almost 40 years. In that time, I’ve learned and
worked with quite a few programming languages—Pascal, Fortran, C, C++, Visual
Basic, PHP, Python, and JavaScript—and applied these languages to work in quite a
few industries. Using all these languages and having these experiences taught me a
great deal.

 C taught me how to use—and certainly abuse—pointers and gave me a thirst to
optimize my applications for speed. C++ taught me about object-oriented program-
ming (OOP), a way of thinking in which I’m still firmly rooted. PHP was my first expo-
sure to a scripting language, and it taught me that maybe it was okay not to manage
everything, like memory, myself. PHP also brought with it my first dive into web devel-
opment and the nascent ideas of browsers as an application platform.

 It’s been almost two decades since I discovered Python, and it has been my sweet
spot for application development ever since. The language helped to crystalize the
vague thoughts I had about development, the idea that there should be one obvious
way to do things. Being able to use multiple concepts about development—like OOP,
procedural, and functional programming—all in the same language is very valuable.
A language can be relatively easy to learn and expressive, and yet seemingly have no
ceiling on the kinds of problems it can be used to solve.

 Because I was excited about Python, I wanted to promote it and encourage others
to jump on board. This led me to give presentations and teach classes within the orga-
nizations where I worked. I also had the chance to teach Python at a STEM facility near
my hometown to kids aged 8 to 16. It’s a tossup which way the lessons were actually
going, as I learned a lot from the kids in the class. Each class taught me more about how
to present material in a more accessible way. It was apparent when something I was
xv

PREFACExvi
teaching was working or not by how hard I had to work to keep the kids from switching
over to Minecraft on their laptops.

 For the presentations and class work, I was writing my own Python material. I
wanted to do more of this, which led to writing articles for RealPython.com. I wrote
several well-received articles for the site, which was gratifying. Those articles were how
I connected with Manning. An acquisitions editor reached out to me, and we talked
about writing a Python book for them and what that would look like.

 The result of those conversations is this book, which will help you along your jour-
ney to becoming a developer. Python is a wonderful, expressive, and enjoyable tool to
bring with you. I’ve enjoyed the journey for a long time and am still doing so. That is
my goal for the book, and I hope this book helps you reach your goals.

acknowledgments
I’ve worked hard to make this book an informative, as well as enjoyable, read. But if it
is any of these things, it’s because of the people who have contributed to its creation.

 Many people at Manning Publishing helped bring this book into existence. The
acquisitions editor who approached me to write a book, the production people who
helped shape it, the reviewers who helped refine it, and my development editors who
helped me every step of the way. They helped me navigate the many facets of writing
and publishing a book, and I enjoyed many conversations with them that kept me on
track through the process.

 To all the reviewers: Alejandro Guerra Manzanares, Amanda Debler, Angelo Costa,
Bernard Fuentes, Bhagvan Kommadi, Brandon Friar, Chad Miars, Christopher Kar-
dell, Dan Sheikh, Danilo Abrignani, Deshuang Tang, Dhinakaran Venkat, Dirk
Gomez, Eder Andres Avila Niño, Eli Mayost, Eric Chiang, Ernest Addae, Evyatar Kaf-
kafi, Ezra Schroeder, Félix Moreno, Francisco Rivas, Frankie Thomas-Hockey, Ganesh
Swaminathan, Garry Alan Offord, Gustavo Gomes, Hiroyuki Musha, James J. Byleckie,
James Matlock, Janit Kumar Anjaria, Joaquin Beltran, John Guthrie, John Harbin,
Johnny Hopkins, Jose Apablaza, Joseph Pachod, Joshua A. McAdams, Julien Pohie,
Kamesh Ganesan, Katia Patkin, Keith Anthony, Kelum Prabath Senanayake, Kimberly
Winston-Jackson, Koushik Vikram, Kup Sivam, Lee Harding, Leonardo Taccari, Lev
Veyde, Lúcás Meier, Marc-Anthony Taylor, Marco Carnini, Marcus Geselle, Maria Ana,
Michael Patin, Mike Baran, Mohana Krishna, Muhammad Sohaib Arif, NaveenKumar
Namachivayam, Ninoslav Cerkez, Patrick Regan, Philip Best, Philip Patterson, Rahul
Singh, Raul Murciano, Raymond Cheung, Richard Meinsen, Robert Kulagowski, Rod-
ney Weis, Roman Zhuzha, Romell Ian De La Cruz, Samvid Mistry, Sandeep Dhameja,
Sanjeev Kilarapu, Satej Kumar Sahu, Sergiu Raducu, Shankar Swamy, Stanley Anozie,
xvii

ACKNOWLEDGMENTSxviii
Stefan Turalski, Teddy Hagos, Vidhya Vinay, and Vitosh Doynov, your suggestions
helped make this a better book.

 I also want to thank Samantha Stone, a young editor I only know virtually. Paul
Chayka, the executive director of Robotics & Beyond, a local STEM education center,
introduced me to her. Samantha was a high school member of R&B who volunteered
to review the book while it was in progress. She proved to have outstanding editorial
skills, honest and forthright feedback, and a great source of clarity for what worked
and didn’t in my writing.

 I’d also like to thank Carmine Mauriello. He and I have been friends for decades
and colleagues a few times working for the same organizations. Almost from the get-
go, he told me, “You should write a book.” It’s still unclear if this was just his kind way
of trying to get me to stop talking, but Carm, I appreciate the encouragement all the
same. Here, at long last, is that book.

 I’d like to thank my mom and dad, both of whom were great writers in their own
right. Mom encouraged (read that as arm-twisted) me to take a typing class in the age
of the IBM Selectric Typewriter. That has proven to be one of the best skills I’ve ever
learned. My dad was a great storyteller who taught me the value of writing simple
declarative sentences. He was also the fastest typist I’d ever seen on an ancient Under-
wood mechanical typewriter.

 Lastly, I would like to thank my wife, Susan, whose steady encouragement, unfail-
ing patience, and most of all, love, has made all of this possible.

about this book
The Well-Grounded Python Developer exists to help beginning programmers bridge the
gap to becoming developers. It does this in two ways—by presenting approaches to
thinking about the development process in relation to larger projects, and by portray-
ing how to do it using Python.

Who should read this book
This book does not teach Python; many other resources do that quite well. In fact, the
reader should have some experience with Python and have a desire to go further with
the language. If this feels like you, then I think this book has a lot to offer.

 One of the goals of this book is to help you become a Pythonista. With that in
mind, who is the intended reader of this book? I think there are broad categories of
readers who will benefit from the material presented here.

 The first type of reader is someone who knows the basics of Python program-
ming—how to write loops and conditional statements and use variables to get things
done. This reader has written utility programs that exist in a single file and knows how
to run them from the command line. They might want to build more complex appli-
cations but don’t understand how to do so. They could be thinking about writing a
web server using Python and what technologies they’d have to know to do that. Essen-
tially, this reader has a basic toolset, has hammered things together, and wants to build
something more significant.

 The second type is a developer in another language who is interested in broaden-
ing their skill set to include Python. This could be because Python is growing in popu-
larity in both usage and interest, or it could be out of necessity for a project at their
current job. They know how to get things done in the language they currently use and
want to learn how to do similar work with Python in a Pythonic way.
xix

ABOUT THIS BOOKxx
 The third type could be someone involved with data science and big data analytics.
Python is becoming one of the key players in this space, with many well-developed
libraries serving the needs of this kind of work. This book won’t get into the use of
those libraries—that would be another book onto itself—but it will help readers
involved in that space. Many who work in data science aren’t necessarily software
developers. Coding is a means to an end, a tool to help reach a goal. Learning to use
that tool better and with greater expressiveness by becoming a Python developer will
take coding out of the problem domain, giving them more room to focus on the task
at hand.

How this book is organized: A road map
The book is divided into two sections, Groundwork and Fieldwork. Groundwork
builds foundational information about the development process and manner of
thinking using Python. Fieldwork builds on that foundation to build a web application
with sophistication. Each of the two sections encompasses multiple chapters:

 Groundwork
– Chapter 1—“Becoming a Pythonista” introduces concepts around thinking

like a developer and reaching goals as such. It also introduces Python as not
only a viable path to reach those goals but a powerful one.

– Chapter 2—“That’s a good name” introduces the importance of how develop-
ers name things and how powerful the concept of namespaces is.

– Chapter 3—“The API: Let’s talk” presents how developers and computers
“speak” to each other: the contract between the two, what’s passed as input,
and what’s expected as output. The chapter goes into detail about the design
and implementation of good Python functions.

– Chapter 4—“The object of conversation” presents object-oriented program-
ming (OOP) with Python. This includes how to define classes and the uses of
inheritance, polymorphism, and composition when implementing a class
hierarchy.

– Chapter 5—“Exceptional events” covers Python exceptions and how to handle
them: when and where to catch exceptions and approaches to addressing
them when the developer does catch them. It also talks about intentionally
raising exceptions and creating custom exceptions.

 Fieldwork
– Chapter 6—“Sharing with the internet” is the start of creating the demonstra-

tion web application that pulls together the groundwork of the previous
chapters.

– Chapter 7—“Doing it with style” sets the baseline for the style of the demon-
stration web application by introducing Bootstrap. It also introduces the
steps necessary to implement and maintain a larger application by using
Flask Blueprints and how the application is navigated and configured.

ABOUT THIS BOOK xxi
– Chapter 8—“Do I know you? Authentication” presents techniques to authenti-
cate users of the application.

– Chapter 9—“What can you do? Authorization” presents authorization of users
and what different kinds of authorization provide users with different capa-
bilities. It also adds the ability to send emails from the application and how
authentication adds security that can be used to protect parts of the applica-
tion.

– Chapter 10—“Persistence is good: Databases” is something of a tangential
chapter, as it discusses relational databases and how to design, implement,
and query them. It also introduces SQLAlchemy as a tool to access database
information using Python objects.

– Chapter 11—“I’ve got something to say” completes the demonstration web
application to create a fully functioning blogging platform where users can
view and create content, as well as comment on that content.

– Chapter 12—“Are we there yet?” is the final chapter of the book that wraps up
what the users have learned and the world that awaits them for further
learning.

 Appendix
– Appendix—“Your development environment” covers installing Python on var-

ious platforms, how to set up virtual environments, and why it’s a good idea
to do so. It also covers installing Visual Studio Code as an integrated develop-
ment environment (IDE) to aid in the creation of Python code.

Depending on where you are in your Python journey will contribute to where you start
in the book and what you find most valuable. If you are on the beginning part of the
path, you’ll benefit by reading the entire book. If you’re further along, you can start
with the Fieldwork section and continue from there.

About the code
This book includes examples of the source code from the GitHub repository that
accompanies the book, both in complete, standalone listings and in the body of the
text. The code is formatted in a fixed-width font like this to separate it from the
formatting of the rest of the book. Some code is presented in bold to draw attention
to it. This is usually accompanied by code annotations to explain the bolded code.

 The code listings in the book have been reformatted to better fit the constraints of
the book design. In addition, in many cases, the code comments that are part of the
repository have been removed to save vertical space on the page and reduce visual
clutter.

 You can find executable snippets of code from the liveBook (online) version of this
book at https://livebook.manning.com/book/the-well-grounded-python-developer.
Complete source code for all examples in the book is available at the author’s GitHub
site at https://github.com/writeson/the-well-grounded-python-developer and from

https://livebook.manning.com/book/the-well-grounded-python-developer

ABOUT THIS BOOKxxii
the Manning website at https://www.manning.com/books/the-well-grounded-python
-developer.

liveBook discussion forum
Purchase of The Well-Grounded Python Developer includes free access to liveBook, Man-
ning’s online reading platform. Using liveBook’s exclusive discussion features, you
can attach comments to the book globally or to specific sections or paragraphs. It’s a
snap to make notes for yourself, ask and answer technical questions, and receive help
from the author and other users. To access the forum, go to https://livebook.manning
.com/book/the-well-grounded-python-developer/discussion. You can also learn more
about Manning’s forums and the rules of conduct at https://livebook.manning.com/
discussion.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It is not a commitment to any specific amount of participation on the part of
the author, whose contribution to the forum remains voluntary (and unpaid). We sug-
gest you try asking the author some challenging questions lest his interest stray! The
forum and the archives of previous discussions will be accessible from the publisher’s
website as long as the book is in print.

https://www.manning.com/books/the-well-grounded-python-developer
https://www.manning.com/books/the-well-grounded-python-developer
https://www.manning.com/books/the-well-grounded-python-developer
https://livebook.manning.com/book/the-well-grounded-python-developer/discussion
https://livebook.manning.com/book/the-well-grounded-python-developer/discussion
https://livebook.manning.com/book/the-well-grounded-python-developer/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion
https://livebook.manning.com/discussion

about the author
DOUG FARRELL has been developing software since 1983, though
his BS is in physics, and he has an AAS in commercial art—two obvi-
ously related fields. Doug is a self-taught programmer and has used
quite a few languages over the years in a lot of industries: Pascal,
Fortran, C/C++, PHP, Python, and JavaScript. He has been working
with Python since 2000, and it’s been his primary language since
2006.

Doug has written articles for RealPython.com. He has also taught at a STEM facility
where a lot of his course material is used.
xxiii

about the cover illustration
The figure on the cover of The Well-Grounded Python Developer is “Femme de l’Isle de
Pathmos,” or “Woman of Patmos Dodecanese Islands,” taken from a collection by
Jacques Grasset de Saint-Sauveur, published in 1788. Each illustration is finely drawn
and colored by hand.

 In those days, it was easy to identify where people lived and what their trade or sta-
tion in life was just by their dress. Manning celebrates the inventiveness and initiative
of the computer business with book covers based on the rich diversity of regional cul-
ture centuries ago, brought back to life by pictures from collections such as this one.

xxiv

Becoming a Pythonista
Being a developer is an unusual pursuit. Developers spend time creating something
out of nothing, and even then, it’s hard to describe the things we’ve just created.

 Ever tried explaining at a party what writing code is like? Even if you’re a good
enough storyteller to keep people from wandering off immediately, it’s still chal-
lenging to reach the “aha” moment when someone might know what you’re talking
about. And it’s not a failing on the listener’s part. It’s just objectively hard to
describe being a developer.

This chapter covers
 The difference between a programmer and

a developer

 Introducing the Python community

 Selecting which Python version to use with
this book
1

2 CHAPTER 1 Becoming a Pythonista
Computers are exceptionally static devices. Developing applications is a way for
humans to express what we want a computer to do in a language we can read and
write and the computer can understand. The trick is being exact enough to get the
computer to do what’s intended, rather than something else.

 People can function in the world and achieve great things because we thrive in the
inexactness of human communication. We obtain meaning from context, intention,
inflection, and subtlety—all of the things that provide great richness to our communi-
cation. None of that is possible for a computer. Computers require an almost madden-
ing exactness to function. The attention to minutiae to express that exactness, the
patience to do so, and the ability to learn and stay open to new ideas are part and par-
cel of being a developer.

 This book aims to build a foundation of skills and tools generally useful to develop-
ers. We’ll use those tools to build standalone applications that demonstrate them.

 Once your toolbelt has been expanded, you’ll create a straightforward web appli-
cation to get comfortable with the challenges it presents and then modify that applica-
tion to incorporate new features. Each step will build on this knowledge to introduce
one or more new abilities, techniques, modules, and solutions.

 Python can transport you to wonderful places. You only need to take those first
steps. With that in mind, let’s get started.

1.1 Commitment to learning
Learning how to get better at technology and developing with Python is a valuable skill.
Working to improve yourself as a Python developer has two benefits. The first is being
able to take on larger projects with the confidence that you can complete them and

Differences between programmers and developers
You may be wondering how a developer is different from a programmer:

 Programmers create working Python scripts. Developers build modules to
construct larger applications.

 Programmers know Python well enough to create small applications. Develop-
ers know Python well enough to use it as one tool among many to build larger
applications.

 Programmers solve problems using Python, whereas developers think about
the big picture and where Python fits into that vision.

 Programmers know how to use the Python standard library, and developers
know how to use third-party packages.

 Programmers write functioning code. Developers write consistently maintain-
able code.

 Programmers might not know coding conventions, whereas developers rely on
conventions and idioms to speed up their development work.

 Programmers know that learning is a necessity. Developers embrace learning
as a lifelong pursuit.

31.2 Reaching goals
create a working system. The second is the practice of learning. Being a lifetime learner
isn’t just a catchy educational phrase; it’s the reality of being a software developer.

 For example, during my career as a developer, I’ve worked in several languages—
Fortran, Pascal, C/C++, PHP, and now Python and JavaScript. I learned some of these
languages because they were being used where I was working. In other cases, the lan-
guage was well suited to the task at hand. I once considered myself a strong C/C++
programmer and enjoyed working on the applications I wrote with it.

 However, I don’t have an interest in dusting off my C/C++ skills and doing that
kind of coding again. Right now, for me, Python is the sweet spot as a language I want
to use. It appeals to my desire to work in an object-oriented programming style but
doesn’t limit me to only that style. Python’s syntax and grammar are clear and expres-
sive enough that I can think about solutions in pseudocode that closely resembles
Python code.

 If software development is your vocation, or you want it to be, keep in mind that
careers are long and changes happen continuously. Committing to learning new tech-
nologies and languages is the answer to both of those concerns. In this rapidly chang-
ing world, there is very little job security; the only real security is the skills you can
bring to the table.

1.2 Reaching goals
This book has some goals, one of which—helping you become a stronger developer—
is implied in the title, The Well-Grounded Python Developer. If you’re reading this book,
then I gather that’s a goal you have as well.

1.2.1 Thinking like a developer

Learning a programming language means learning the syntax and grammar of that
language: how to create variables, build loops, make decisions, and execute program
statements. These are your basic tools, but thinking like a developer also means know-
ing how to combine those tools to create a useful program. The analogy goes much
further toward building bigger and more powerful tools.

 This process of seeing how to use smaller tools to build bigger ones is key to think-
ing like a developer. The steps of creating one thing by using other things eventually
help you see the big picture. As you learn how to construct more powerful blocks of
code, seeing the big picture as a developer means understanding the problem you’re
trying to solve and mentally traveling back and forth along the steps to implement a
solution. From the smallest block of code to more extensive functionality, you’ll be
able to follow the path to success.

1.2.2 Building applications

In developer terms, an application is a complete program providing useful functional-
ity and a user interface. An obvious one you know already is Microsoft Word, a big
desktop application. Google’s Gmail is a big web application. These are examples of
large applications that provide many features with a great deal of functionality.

4 CHAPTER 1 Becoming a Pythonista
 There are many smaller applications; for example, if you’re familiar with the com-
mand line available on most computer systems, you may have used the ping com-
mand. This application is often employed to determine whether another computer
on a network is responding to a ping request. Using ping is a simple troubleshooting
test to see if the remote computer is running before digging further into any existing
problems.

 The ping application is pretty much on the other end of the spectrum from appli-
cations like Word or Gmail, but it is a complete application in its own right. It provides
a useful function and has a user interface from the command line in a terminal window.

 There are other blocks of code on which developers work, and these are code
libraries. They provide useful functionality and have interfaces but, for the most part,
are used by larger applications that want access to the library’s functionality. The stan-
dard modules that come with Python, a feature commonly referred to as “batteries
included,” is an excellent example of library code. You’ll be creating library modules
to use in the applications we’ll develop as we move forward through this book.

1.3 Using Python
For the most part, everything you’ve read up until now about thinking like a devel-
oper could apply to just about any programming language. What makes Python an
excellent choice to pursue thinking like a developer? As I mentioned in the previous
section, I believe Python provides a sweet spot for application development. Let’s talk
about why I think that, and hopefully you will come to feel the same way.

1.3.1 Programming paradigms

Most, if not all, of the languages in everyday use draw their abilities from other lan-
guages and programming paradigms. Python is a member of this club in good stand-
ing. If you’ve done any programming in Python, you know it’s a flexible language that
covers a lot of ground. Part of the flexibility of the language is the many ways in which
you can work with it:

 The ability to code with control flow provided by loops, nested loops, condi-
tional evaluation, and procedure calls makes Python a structured programming
language.

 Python is a procedural language in that you can create functions (procedures),
allowing you to generate blocks of code that can be reused in other parts of
your program.

 You can code using class-based, object-oriented programming (OOP), which
captures state information along with code that operates on that state.

 Python, though not strictly a functional language, provides features that allow
you to program in that manner. Functions in Python are first-class objects and
can be passed around like any other object. This feature is required by func-
tional programming, and Python’s provision of this feature is useful when work-
ing in that style.

51.3 Using Python
 Event-driven programs, like a windowing GUI application—where events deter-
mine the program control flow—are entirely possible with Python.

Python can be brought to bear on any and all of these paradigms to solve program-
ming problems and create applications.

1.3.2 Creating maintainable code

When you create an application, you expect it will be used, which means it will have a
lifetime. During that lifetime, bugs that testing doesn’t always reveal will manifest
themselves in your code. Even if you’re the only user of the application, a change in
how you use it, or the environment in which you do so, could reveal problems you can
resolve and improve. The PyTest module (https://docs.pytest.org/en/7.2.x/) is a
powerful framework to help test the applications you develop.

 If other people use your application, its requirements will change. Changing
requirements mean changes will need to be made to the existing code to add new
features.

 Nothing in the software development world is more constant or happening faster
than change. Program code is read more than it is written and what you write today
will change over time. If you come back to your own code after a surprisingly short
amount of time has passed, you will be amazed at how much you have to read your
own work to return to the context in which it was created. If you work in a team and
someone else in the team will be modifying your work, that person will bless or curse
you based on how maintainable and readable your code is.

 Writing maintainable code is a developer strength worth pursuing. Adopting a
coding style and consistently using it goes a long way toward this goal. Using intelli-
gent and meaningful variable names, function names, and class names is important.
I’m a firm believer that no programming language, even Python, is completely self-
documenting. Comments that clarify the intention of a section of code go a long way
toward understanding the code’s purpose and intent.

 Another important aspect of writing maintainable code is making it flexible. It’s
difficult to anticipate how the functions and classes you create might be used later on
in the development of an application.

 A simplistic example would be a function performing some complex calculation,
formatting the results, and then printing those formatted results to standard output.
The future use of that function is severely limited to how it’s currently implemented,
including printing output. Very likely, it can’t be reused for anything else because of
this. If explaining what a function does has an “and” in the explanation, it should be
implemented as two functions. Refactoring the example creates two functions—one
that performs the complex calculation and returns the raw results and another that
formats the results.

 The second function that formats data can be used later in the application to for-
mat and output the results to a destination device. By leaving the formatting and out-
put until it’s needed, the output can be directed to any device—a display screen, a web

https://docs.pytest.org/en/7.2.x/

6 CHAPTER 1 Becoming a Pythonista
page, a printer, or perhaps a response to an API call. The complex calculation func-
tion remains unchanged.

1.3.3 Performance

The run-time performance of any programming language is an often debated, highly
charged, and complex topic. Python is often compared to other languages, like C and
Java, regarding execution performance. Beyond blanket statements about this or that
being faster, those comparisons often become more complicated.

 What is being compared—CPU speed or memory speed? How is it being mea-
sured? Is the benchmark software optimized for one language but not the other? Does
the benchmark make the most of efficient coding practices in both languages being
compared?

 At the risk of sounding flippant, I don’t care very much about any of this. It’s not
that I don’t care about performance (we’ll get to that), but the argument about this
language being faster than that language is not one worth engaging in.

 Computers are well past the point in time when CPU cycles and memory access
times are worth considering in any performance calculation. To steal a business
idiom, optimize your most expensive resource.

 You are the most expensive resource. And if you work for a company as a software
developer, you are the most expensive resource connected to their computer
resources. Optimizing your performance as a developer is paramount, and if you can
transpose the big picture in your mind quickly into code that runs, you have become
invaluable. If you can express an idea into code and get it up and running faster and
improve time to market, that is a huge win. This is where Python shines.

 All of this is not to say I don’t care about performance. When I first got into pro-
gramming, I was obsessed with speed and would go to great lengths to shave CPU cycles
from my code. Along the way, I learned a lot about what’s important and what’s not.

 The first thing you should do before beginning any optimization effort is to deter-
mine whether it’s necessary at all. Is there a speed requirement your application needs
to meet? If so, does a metric exist to measure your application, defining when it’s fast
enough? If the answers to these questions determine that your application is already
fast enough, then you have struck upon the ultimate in terms of time spent
optimizing—zero.

 On the other hand, if it’s determined that your application does need to be faster,
then you need to take the second step. This second step is to profile the application to
measure where it’s spending time.

 With this measurement in hand, you can apply the 90/10 rule of code optimiza-
tion. The rule states that 90% of an application’s execution time is spent in 10% of the
code. This rule is a generalization to be sure, but it does provide a roadmap of where
you should pursue optimization. Focusing on anything other than the 10% of code
where the application spends most of its time is time poorly spent that won’t improve
the overall speed of your application.

71.3 Using Python
 Any optimization work needs to be done iteratively and in tandem with profiling.
This tells you whether your optimization efforts are making improvements or not. It
will also help you decide whether the improvements you’ve made are incremental or
orders of magnitude better. Small gains in performance need to be balanced against
the complexity of the code.

 Lastly, know when to quit. With a target of what performance metric your applica-
tion has to meet, you’ll know when to stop optimizing and ship. Shipping is a feature
that can’t be overstated.

1.3.4 The language community

The most popular programming languages currently in use have large and active com-
munities of people who are willing to share their experiences, problems, and exper-
tise with others. Python has a particularly welcoming community with a minimum of
flame wars or bullying. The community is a valuable resource for the newcomer to
programming, as well as old hands who are working out new problems.

TIP Being a developer makes you part of a community, and the Python com-
munity is a particularly good one. Participate, contribute, listen, and add to
that community. Everyone will be better for it, including yourself.

Very often, when working out Python puzzles, you will find that others have worked on
similar puzzles before and published solutions. The Python Package Index (https://
pypi.org/) is an invaluable resource when building applications and looking for
libraries and modules to help that process along.

 Beyond searching Google for Python help, here’s a short list of useful Python
resources:

 https://realpython.com—Real Python is an excellent source of tutorials about
Python.

 https://realpython.com/podcasts/rpp/—A Python podcast hosted by Real
Python.

 https://pythonbytes.fm—A Python podcast delivering interesting headlines and
banter.

 https://talkpython.fm—The Talk Python To Me podcast has interviews with
people and personalities in the community.

 https://pythonpodcast.com—Another good interview podcast.
 https://testandcode.com—Test and Code, a podcast about software testing and

Python.
 https://www.pythonweekly.com—The sign-up page for a weekly Python newslet-

ter containing links to useful articles and information.
 https://pycoders.com—The sign-up page for another great Python newsletter.

https://pypi.org/
https://pypi.org/
https://realpython.com/podcasts/rpp/
https://pythonbytes.fm/
https://talkpython.fm/
https://testandcode.com/
https://pycoders.com/
https://realpython.com
https://pythonpodcast.com
https://www.pythonweekly.com

8 CHAPTER 1 Becoming a Pythonista
1.3.5 Developer tooling

As a developer, one of your goals is to get your thoughts and ideas from your mind
and into a Python code file with as few impediments as possible. A good keyboard that
works for you, proper lighting, a decent screen—all of these things contribute to the
flow of the work you’re trying to do. There are many good editors out there that rec-
ognize Python code and syntax highlight as you write, making it easier to find errors
and keywords.

 A good editor is an important tool, but beyond that, a good IDE—or integrated
development environment—is even more so. An IDE is a big step up from an editor
when productively writing code. Not only will it have a good editor with syntax high-
lighting, but it will have knowledge of the language itself. This gives you additional
assistance when writing code, commonly called IntelliSense. IntelliSense provides a
code completion aid interactively, refactoring existing code, symbolic name informa-
tion and usage, and much more.

 One last thing a good IDE should provide is a debugger. A debugger allows you to
run a program interactively and set breakpoints. A breakpoint is a marker you can set
on a program line where the code will stop running when it attempts to execute that
line. While the program is paused, you can examine the variables that are within the
current scope and see what the program is doing at that point. You can even modify
the value of a variable, which will affect the execution from that point forward. You
can single-step through the code from the breakpoint following the behavior of the
program on a line-by-line basis. You’ll be able to step into a function call and follow
the behavior within it.

 Being able to debug a program is a valuable tool and skill to have at your disposal.
It goes far beyond inserting print() statements in your code to try to glean what’s
happening inside. Python has standalone debugging tools as well as mature and pow-
erful IDEs available:

 Visual Studio Code by Microsoft is an advanced source code editor that has
extensions making it a complete IDE for Python. It’s available across Windows,
Mac, and Linux platforms, which is a win if you work on multiple computers.
It’s also free to download and use and is the tool I used to develop the example
code in this book.

 PyCharm is one of the suites of development tools provided by JetBrains and is
a commercial Python IDE. It also has syntax highlighting, IntelliSense, and a
powerful debugger, as well as tools to integrate with databases and source code
control systems. It’s a powerful tool for the development of Python code and
applications and runs on Windows, Mac, and Linux.

 WingIDE is yet another powerful, commercial Python IDE with syntax high-
lighting and IntelliSense and an advanced debugger with features useful in data
science work. This platform is also available for Windows, Mac, and Linux.

91.5 Closing thoughts
 The Python standard library comes with an interactive debugger called pdb. It
provides features provided by the IDE debuggers listed previously but from a
terminal window.

1.4 Selecting which Python version to use
The code in this book is based on Python version 3.10.3. If you are relatively new to
Python, you might know there are two major versions of Python in existence—2.* and
3.*. The 3.* version has been around for a long time, since December 2008. It took a
while for this version to gain traction with users because libraries and frameworks on
which those users depended weren’t compatible with this version, so they stayed with
the 2.* version. The time when that was true is well behind us, and there is no legiti-
mate reason to start new Python projects in anything other than the 3.* version.

 From this point in time forward, the Python 3.* version will have newer features,
the latest syntax, and more developer support. It also means important libraries and
frameworks are dropping support for the 2.* version. This implies developing pro-
grams with Python 2.* will have to pin the use of those libraries and frameworks to
older versions that will no longer get new features or bug fixes. This last item is partic-
ularly important to security concerns.

 In addition, the Python 2.* version reached EOL (end of life) on January 1, 2020.
This means that the core Python development team has stopped supporting that
branch completely. This clean break by the core developers frees them from some
compromises made to continue supporting 2.*.

 Lastly, and I think this is very important, the Python community at large has moved
to the 3.* version. This means that documentation, articles, books, and questions and
answers on forums will leave the old version behind and focus more on the new
version(s).

 As a developer, this is an important problem: first, everything you need to know as
a developer is too big to have in mind all at once. This makes finding relevant infor-
mation of paramount importance. And second, the pace of change is ongoing and
rapid, which makes trying to know everything an exercise in futility. It’s much more
useful as a developer to understand what you need and want to do and then be able to
find how to do it. Hands down, this beats being a catalog of facts that become out-
dated almost as fast as you learn them.

1.5 Closing thoughts
I realize you might be feeling overwhelmed by the scope of becoming a developer. In
some ways, you’re looking up at the night sky and trying to take it all in. Trust me,
I’ve been there.

 My wish is that beginning to read this book gives you a small telescope to view that
endless sky, narrow your field of view, and show you more details about where we’re
going. I hope this whets your appetite to take the next step in your development
journey.

10 CHAPTER 1 Becoming a Pythonista
Summary
 Becoming a developer means broadening your view of the problem at hand

and learning how the tools you use will interact to solve those larger problems.
 Python is an excellent choice of programming language to learn and work with

as a developer. Making it a comfortable addition to your toolbelt is a skill
multiplier.

 The Python language community is welcoming and helpful. Becoming a mem-
ber of that community is a good step toward taking on your developer’s journey.

 The adage “The poor workman blames his tools” is half the story; the rest is that
a wise craftsman chooses their tools well. The Python developer space has a
wealth of powerful tools from which to pick.

Part 1

Groundwork

You’re prepared to become a Python developer, and you’re about to take
your first steps on that journey. The beginning of this book is about honing your
Python skills and adding new ideas and behaviors to how you go about using
Python.

 In chapter 2, you’ll gain a broader view of the importance of how to name
things. You’ll also see what namespaces are and why they’re amazing and well-
supported in Python.

 Chapter 3 will introduce you to the application programmers interface, or
API, which is where developers and computers connect. Object-oriented pro-
gramming (OOP) is the subject of chapter 4. You’ll learn how to use it in Python
and how it can benefit your design and implementation process.

 In chapter 5, you’ll see how to handle exceptional events in your code, includ-
ing generating exceptions of your own. Avoiding unwanted exceptions is import-
ant, but handling them properly when they happen is even more important. After
this, you’ll be ready to take your Python skills out for some fieldwork, where you’ll
pull together what you’ve learned to create a blogging web application.

12 CHAPTER

That’s a good name
The names that we give to items and concepts help us navigate the world and com-
municate with everyone else who shares it with us. The idea that names matter is
even more important in the world of software development. Programming lan-
guages have keywords, grammar, and syntax that are generally a subset of a com-
mon, in-use language. In the case of Python, that language is English.

 For programming languages, this means we use a prescribed set of keywords,
grammar, and syntax to create programs that will ultimately run. Naming elements
in those programs, however, is entirely within your control, as you can draw from the
rich set of English words and phrases to name the items you create in a program. You
can even use strings of nonsense characters if that suits you. But should you?

“There are only two hard things in Computer Science: cache invalidation and
naming things.”

This chapter covers
 Names

 Naming conventions

 Namespaces
13

14 CHAPTER 2 That’s a good name
The quote is attributed to Phil Karlton, a programmer with Netscape, the developer of
the first widely used web browser. Putting aside cache invalidation, you might be
thinking, “What’s so hard about naming things?” Let’s find out.

2.1 Names
Back when I first started writing code, one of the systems I worked on was based on
Pascal. It was the first language I knew that allowed almost unlimited choice when it
came to naming variables in the programs. One of the other young guys on the team
created two global variables to test for True and False. He named them cool and
uncool. At the time, we both thought this was pretty funny and made for some laughs
when writing conditional statements and testing function return values.

 Over time, those variable names were all over the code, losing their humorous
quality and becoming more challenging to consider and maintain. What was the
meaning of cool and uncool? If you didn’t know the actual value behind the symbol,
were the meanings distinct or could they be more aligned with the English use of the
words, which in many ways implied a range of meanings?

 Naming something is a way for you and Python to share the identity of something.
Usually, this means you want to identify a thing uniquely, so it’s distinct from all the
other named things in a program. For example, Social Security numbers in the
United States are given to people so they can uniquely identify themselves within the
usage context of the country. This unique string of numbers helps people obtain
employment, do their taxes, buy insurance, and do all kinds of other activities that
require a nationally unique identifier.

 Does this mean a Social Security number is a good name for a unique thing? Not
really. Unless you have access to the systems that use the number, it’s entirely opaque.
It conveys no information about the thing it’s identifying.

 Let’s take this idea of unique names to another level. There are standardized iden-
tifiers called universally unique identifiers (UUIDs). A UUID is a sequence of charac-
ters that for all practical purposes is unique across the entire world. A sample UUID
looks like this:

f566d4a9-6c93-4ee6-b3b3-3a1ffa95d2ae

You can use Python’s built-in UUID module to create valid variable names based on
UUID values:

import uuid
f"v_{uuid.uuid4().hex}"

This would generate a valid Python variable name like this:

v_676d673808d34cc2a2dc85e74d44d6a1

You can create variable names this way to uniquely identify everything in your applica-
tions. These variable names would be unique within your entire application and
across the known world.

152.1 Names
 Naming variables this way would also be a completely unusable naming conven-
tion. The variable name conveys absolutely no information about the thing it identi-
fies. A variable name like this is also very long to type, impossible to remember, and
unwieldy to use.

2.1.1 Naming things

Naming things is not only about uniqueness but also about attaching information to
named things. Trying to provide meaning to the name you assign, or as an indication
of how the thing is used, adds meta information that’s very useful when developing
Python programs. For example, if you name a variable t versus total, you’d have to
examine the context of the surrounding code to know what t is, whereas total has a
meaning that provides an understanding of how the variable is used.

TIP Creating useful variable names takes effort, but it’s effort well spent as a
developer. You’ll find over time that variable names are difficult to change.
This is because dependency on existing variables increases as an application is
developed and used. Choosing good variable names avoids having to change
a name down the road.

Based on the previous UUID example, the length of the name you give to something
is also relevant to the effort of writing code. Programming does involve a lot of typing,
which means the balance between meaning and brevity matters.

 You’re suddenly in a position where an entire language is your hunting ground for
words and phrases to name things. Your goal is to find words that attach meta informa-
tion and yet are short enough to not get in the way of writing, or reading, a line of pro-
gram code. This constrains what you could or should do when naming things. Like a
painter working from a limited palette of colors, you can choose to be frustrated or get
imaginative within that constraint and build something with artfulness and creativity.

 Many of the programs you’ll write will include looping over a collection of things,
counting things, and adding things together. Here’s an example of code iterating
through a two-dimensional table:

t = [[12, 11, 4], [3, 22, 105], [0, 47, 31]]
for i, r in enumerate(t):
 for j, it in enumerate(r):
 process_item(i, j, it)

This code is perfectly functional. The t variable consists of a Python list of lists, which
represents a two-dimensional table. The process_item() function needs to know
the row and column position of the item—the it variable—within the table to cor-
rectly process it. The variables t, i, j, r, and it are perfectly serviceable but give the
reader no information about their intent.

 You might be inclined to think it’s not a big deal for this example code but imag-
ine if there were many more lines of code between each invocation of the for loop. In
that case, the declaration of the t, i, j, r, and it variables are visually separated from
their use. The reader would probably have to go back and find the declaration to

16 CHAPTER 2 That’s a good name
understand the intent of the variable. Keep in mind that the reader could be you six
months after writing this code when the meaning and intent are not so fresh in your
mind. Here’s a better implementation of the code:

table = [[12, 11, 4], [3, 22, 105], [0, 47, 31]]
for row_index, row in enumerate(table):
 for column_index, item in enumerate(row):
 process_item(row_index, column_index, item)

The code has changed, so t is now table, i is row_index, j is column_index, r is
row, and it is item. The variable names indicate what they contain and the meaning
of their intended use. If the variable declarations are separated from their use by
many lines of code, the reader can still quickly deduce what the variables mean and
how to use them.

 Another common operation in development is counting things and creating totals.
Here are some simple examples:

total_employees = len(employees)
total_parttime_employees = len([
 employee for employee in employees if employee.part_time
])
total_managers = sum([
 employee for employee in employees if employee.manager
])

You can see a couple of pretty good naming conventions in the previous example. The
name employees gives the variable meaning. The use of the plural employees indi-
cates it’s an iterable collection. It also shows that the collection has one or more things
inside it that would represent an employee. The variable employee inside the list
comprehension indicates it is a single item from within the employees collection.

 The variables total_employees, total_parttime_employees, and total_
managers indicate what they refer to by the use of total as part of their names. Each
of them is a total count of something. The second part of each variable name indi-
cates the thing being counted.

 Besides numerical calculations, you’ll often deal with things that have names
already, like people within a company, community, or group. When you’re gathering
user input or searching for someone by name, having a useful variable name makes it
much easier to think about the thing you’re representing in code:

full_name = "John George Smith"

Depending on the purpose of the code you’re writing, this might be a perfectly
acceptable variable name to represent a person by name. Often, when working with
people’s names, you’ll need more granularity and will want to represent a person’s
name in parts:

first_name = "John"
middle_name = "George"
last_name = "Smith"

172.1 Names
These variable names also work well and, like full_name, give the variable names
meaning about what they represent. Here’s another variation:

fname = "John"
mname = "George"
lname = "Smith"

This version adopts a convention for how the variables are named. A convention like
this means you’re choosing a pattern to create the variable names of people. Using a
convention means the reader has to know and understand the convention in use. The
tradeoff in the previous example is less typing but still a clear meaning of the variable
name. It also might be more visually appealing, as the variable names line up vertically
in a monospaced editing font.

 Adopting conventions is one technique for being more productive within the con-
straints of variable naming. If the shorthand naming convention is more visually
appealing to you, this lends itself to recognizing patterns and identifying typos when
visually parsing code.

TIP Establishing conventions and habits based on those conventions helps
reduce the cognitive load on you as a developer. You can think more about
the problem you’re trying to solve and less about what to name things.

2.1.2 Naming experiment

You may not remember, but in the early days of personal computers, they had tiny
hard drives. Early operating systems also had no concept of directories or subdirecto-
ries; all the files on the hard drive existed in one global directory. Additionally, file-
names were limited to eight characters, the period character (.), and a three-character
extension, which was generally used to indicate what the file contained.

 Because of this, bizarre and complex file-naming conventions were invented to
maintain uniqueness and prevent filename collisions. These naming conventions
came at the cost of logically meaningful filenames. An example of a possible resume
file created in October 1995 would be something like this:

res1095.doc

The solution to this problem was adding support to the operating system for named
subdirectories and removing the filename character-length limit. Everyone is familiar
with this now, as you’re able to create almost infinitely deep structures of directories
and subdirectories.

EXPERIMENT

Here’s a specification you’ve been asked to meet: the accounting department where
you work requires all expense reports to have the same filename: expenses.xlsx.
You need to create a directory structure where all your expenses.xlsx files can exist
and not collide or overwrite each other to save and track these expense files.

 The constraint is the requirement that all expense report files have a fixed file-
name. The implied constraint is that whatever directory structure you devise needs to

18 CHAPTER 2 That’s a good name
work for as many expense reports as your work generates. The ability to create subdi-
rectories is the tool you have to help solve this problem and keep the expense report
files separated.

POSSIBLE SOLUTIONS

Any solution depends on how many expense reports you create to do your job. If
you’re working as a junior software developer, you might only travel a few times a year.
In this case, you would only have to provide coarse granularity to keep your
expenses.xlsx files separated. This simple structure gathers all the expense reports
under a single root directory named expenses (figure 2.1). Each expense report
exists in a directory named with the fully qualified date when the expense report was
created. Using a date format of YYYY-MM-DD causes the directories to sort in a useful
chronological order on many operating systems when displayed.

Figure 2.1 Simple directory structure to manage expense reports

However, if you’re a sales engineer, you’re most likely traveling all the time and possibly
meeting multiple clients per day. This changes how you handle the constraint and
requires your directory structure to support much more granularity to keep all the
expenses.xlsx files separate. A possible solution for a sales engineer would be to use
the year, month, day, and client name values as subdirectories. Doing this allows you to
keep the expenses.xlsx files distinct even when visiting multiple clients per day. This
creates a convention where each part of the path to a particular expenses.xlsx file
has meaning as well as a value. Figure 2.2 illustrates this structure.

expenses

2023-07-01

2023-08-23

2023-11-14

expense.xls

expense.xls

expense.xls

The expense reports
root folder

Subfolders
separated by date

Expense reports, all
with same name but
avoiding conflict

192.1 Names
It might not be evident based on the previous experiment, but what you’ve created
are variable names that have meaning and convention. Look at the directory path to a
particular expense report. You’ve created namespaces, each one narrowing the scope
of what it contains. Reading the path from left to right, you see that each segment of
the path separated by the / character creates a new, narrower namespace within the
context of the previous one (figure 2.3).

Figure 2.3 The directory path creates a hierarchy of namespaces.

Suppose you are the accountant who has mandated the file-naming convention for
expense reports. As the accountant, you’ll have to save all the expense reports that
employees submit. You’d be under the same constraint as the employees who are
generating the expense reports, but with the added complexity of keeping all the
employee expense reports distinct and separated from each other.

Expense report
filename

Client
name

Day

Month

Year

Expense report
root folder

expenses/2020/01/01/client_1/expenses.xlsx

Figure 2.2 A more involved directory
structure that provides more granular
file separation

2000

01

04

client_2

client_1

expense.xls

The expense reports root folder

First subfolder separated by year

Second subfolder separated by month

Third subfolder separated by day

Expense reports, all
with same name but
avoiding conflict

expenses

expense.xls

20 CHAPTER 2 That’s a good name
 Creating a directory structure to handle the added complexity could include
higher-level abstractions of department and employee. Creating a directory structure
providing this level of granularity to track and save all the employee expense reports is
possible. Thinking about how to create the structure makes it clear that it’s time for
the accounting department to rethink the file-naming requirements and constraints
and design a better system.

2.2 Namespaces
A namespace creates an abstraction containing other named things, including other
namespaces. The name of the city or town where you live is an example. The city
name provides a namespace containing all the people who live in that city. The city
name may not be unique on its own, but within the context of the hierarchy it’s in—
county, state, and so on—it would be.

 Going further, the streets and roads where people live all have names. The street
and road names become a namespace within the city namespace. For example, there
are many streets named “Main Street” throughout the United States. However, there is
usually only one Main Street in each city.

 This hierarchy of namespaces creates the convention of the United States mailing
address. The full address for Janet Smith, working at the Empire State Building, might
be something like this:

 Janet Smith
 Empire State Building, Suite 87A
 20 W 34th Street
 New York, New York 10001

By convention, the mailing address namespace scope gets narrower reading from bot-
tom to top. A software developer might remove redundant information and represent
this address like the previous directory experiments in a left-to-right form:

10001|20 W 34th Street|Empire State Building|Suite 87A|Janet Smith

Here the city and state have been removed because the zip code contains that infor-
mation. The namespace fields have been delimited with the | character because that
character doesn’t appear in the address’s text. Continuing from left to right, you
come to the final leaf node, the person to which the address applies.

TIP The world is full of namespaces because it’s a useful convention to help
us organize information. That usefulness applies to information we want to
organize in our Python applications.

Like the directory structure experiment, reading from left to right, the scope of infor-
mation contained within each distinct namespace gets narrower. Also, like the direc-
tory structure hierarchy, the position of each namespace follows a convention that
gives each meaning.

212.3 Python namespaces
2.3 Python namespaces
The Python programming language provides the ability to create namespaces. Name-
spaces give you a great deal of power and control when handling the constraints of
naming variables, giving them meaning, keeping them relatively short, and avoiding
collisions. You do this by placing variable names in namespaces. Before you get to
the point of creating namespaces of your own, let’s look at the one provided by the
language.

2.3.1 Built-ins level

When Python starts running an application, it creates a builtins namespace where
builtins is the outermost namespace in Python and contains all of the functions you
can access at any time. For example, the print() and open() functions exist in the
builtins namespace.

 You can see what’s in the builtins namespace by entering this command at a
Python interactive prompt:

>>> dir(__builtins__)

This command runs the dir (directory) command on the __builtins__ object.
You’ll see all the exceptions and functions listed that are available everywhere in
Python.

 You might not have thought about functions like print(), open(), and others as
existing in a namespace, and you don’t have to to use them. The idea that they are in
a namespace is useful as you learn more about creating your own namespaces and the
scope of the objects within them.

 There is something to keep in mind when working with the builtins namespace:
it’s entirely possible to overwrite an object in a namespace with something of your
own. For example, you could define a function like this:

def open(…):
 # run some code here

Creating a function like this would be perfectly fine; however, the side effect of doing
this is shadowing the open() function that’s already defined in the builtins name-
space. It might make perfect sense for the program you’re writing to name your func-
tion open(), but shadowing Python’s open() function, and making it inaccessible, is
probably not what you intended.

 You can handle this by creating your function as follows:

def my_own_open(…):
 # run some code here

The code works, but you’ve sacrificed brevity and simple meaning for uniqueness to
avoid your function’s name colliding with Python’s open() function. Using a name-
space provides a better solution.

22 CHAPTER 2 That’s a good name
2.3.2 Module level

The Python program file you create that starts your program running is considered the
entry point for your program as a whole. When it starts, the objects in the builtins
namespace are created and available anywhere in your Python programs. In Python,
everything is an object—variables, functions, lists, dictionaries, classes—everything.

 Anything you create and name is also an object in the main program file and has
the potential to collide with and overwrite the objects in builtins and other things
you create and name. You can, and should, avoid this.

 Breaking up your program code into multiple files containing logically grouped
functionality is a useful convention to adopt. Doing so has the following benefits:

 Keeps similar functionality together where it’s easier to contemplate
 Prevents program files from becoming too long to edit and manage reasonably
 Creates namespaces

Each Python code file creates a namespace for your use. Let’s say you create two func-
tions named add() that have different behaviors, and you create a main.py file that
looks like this:

def add(a, b):
 return a + b

def add(a, b):
 return f "{a} {b}"

print(add(12, 12))
print(add(12, 12))

When you run this program, it won’t function the way you might think. There’s no
way to indicate in the code which add() function is being called in the print
(add(12, 12)) statement. When Python executes this code, it defines the first add()
function and then immediately redefines it with the second, shadowing it and losing
access to the first definition.

 The behavior of the two functions is different; the first performs a mathematical
addition on the two parameters, and the second performs a specialized string addi-
tion (concatenation) on the two parameters. However, as far as Python is concerned,
the name of the function is the distinguishing feature. And because they are both
defined in the same namespace, the second shadows the first and takes precedence.

 To get both add() functions to exist, you need to create a namespace into which
you can put one of the add() functions. To do this, create a utility.py file that
looks like this:

def add(a, b):
 return f"{a} {b}"

Then change your main.py file to this:

import utility

232.3 Python namespaces
def add(a, b):
 return a + b

print(add(12, 12))
print(utility.add(12, 12))

When you run the main.py file, you get the intended output of

24
12 12

Creating the utility.py file separates the two add() function definitions so they
can both exist. In the main.py file, the import utility statement tells Python to pull all
the objects in the utility.py file to a new namespace called utility.

 Be aware that the namespace created by importing a file adds a namespace based
on the base name of the file, which is the default behavior. You can override this
default behavior in this way:

import utility as utils

This statement tells Python to pull all the objects in the utility.py file into a name-
space called utils. Being able to alias the namespace specifically can be a useful fea-
ture if you want to import two modules with the same name but maintain a unique
namespace for each.

 It’s also possible to mask a namespace when importing functionality. Using your
current main.py example, it is done like this:

from utility import *

def add(a, b):
 return a + b

print(add(12, 12))
print(utility.add(12, 12))

The code tells Python to pull all the objects in the utility.py file into the current
namespace. This program now has an error in it because the utility namespace no lon-
ger exists, so the print(utility.add(12, 12)) statement doesn’t work. Removing
utility from the print statement makes the program work, but you’re back to a vari-
ation of the original problem. The add() function defined in the utility.py file is
shadowed by the add() function defined in the main.py file. For this reason, it’s usu-
ally not a good idea to use the from <filename> import * form when importing files.

 Being able to create namespaces based on files is useful, but Python’s support goes
further. By capitalizing on the filesystem directory structure, you can create name-
space hierarchies. Just like the previous directory structure naming experiment, this
gives you more tools to create meaning and scope for the hierarchies you create.

 If you take your example a little further, you might decide to be more specific with
the functionality you’re creating. The utility.add() function is specific to string
handling, so why not make that clearer?

24 CHAPTER 2 That’s a good name
 Create a new directory called utilities in the same folder as your main.py file.
Move the utility.py file to the utilities directory and rename it strings.py.
You now have a directory hierarchy that looks like this:

utilities/strings.py

This adds meaning just like the directory structure experiment does; utilities indi-
cates that everything under the directory is considered a utility.

 One thing to keep in mind when creating directory hierarchies to contain func-
tionality is the need to create an __init__.py file. This file has to exist in each direc-
tory to let Python know the directory contains functionality or the path to it. When
the __init__.py file exists in a directory, that directory is a Python package.

 Often the __init__.py file is empty, but it doesn’t have to be. Any code inside
the file is executed whenever the path containing it is part of an import statement.

 Based on this, create an empty __init__.py file in your utilities directory.
Once that’s done, modify your main.py file like this:

from utilities import strings

def add(a, b):
 return a + b

print(add(12, 12))
print(strings.add(12, 12))

The from utilities import strings statement tells Python to navigate to the
utilities package and pull all the objects from the strings.py file into the strings
namespace. The print(strings.add(12, 12)) line has been changed to use the
strings namespace to access the add() functionality. Now the namespace plus func-
tion name combine to increase the clarity and intention of the add function.

 When you create a Python file that you intend to import into other parts of your
program, it’s common to think of the file as a module. The module contains function-
ality that’s useful to your program. This idea is very much like the “batteries included”
statement that’s often associated with Python. Python comes with a large selection of
standard modules you can import and use in your programs.

 If you’ve used any of Python’s standard modules, like sys, you might notice those
standard modules don’t exist in the working directory of your program like the
strings.py module you created previously. Python searches for modules you want
to import through a list of paths, the working directory being first.

 If you start a Python interpreter and at the prompt enter

>>> import sys
>>> sys.path

you’ll see output that looks something like this:

['', '/Users/dfarrell/.pyenv/versions/3.8.0/lib/python37.zip', '/Users/
dfarrell/.pyenv/versions/3.8.0/lib/python3.8', '/Users/dfarrell/.pyenv/
versions/3.8.0/lib/python3.8/lib-dynload', '/Users/dfarrell/tmp/
sys_path_test/.venv/lib/python3.8/site-packages']

252.3 Python namespaces
The output is the list of paths Python will search through when it runs across an
import or from statement in your code. The list shown here is specific to my Mac; the
listing you see will most likely be different depending on whether you’re using a Win-
dows or Mac computer and whether you’re running Python in a virtual environment.

 The first element in the list is an empty string. Python will look in the current
working directory for modules. This is how it found the utilities package and the
strings module in that package.

 It also means that if you create a module and name it identically to a Python system
module, Python will find your package first and use it, ignoring the system package.
When naming your packages and modules, keep this in mind.

 In our short example, the import sys statement causes Python to search the
earlier-mentioned list of paths. Because a sys module doesn’t exist in your working
directory, it looks in the other paths, where it does find the standard modules.

 The list of paths is used when you install a package or module with the pip com-
mand. The pip command will install the package in one of the paths from the list. As
mentioned previously, using Python virtual environments is recommended to prevent
pip from installing into your computer system’s version of Python.

2.3.3 Function level

There are other levels of namespace control available to you. When you create a
Python function, you’re creating a namespace for variable name creation. Another
word used for this is scope. The functions you create exist in a module, either the main
Python file of your program or separate module files.

 The module file creates a namespace, and any functions you create in the module
exist within that namespace. What does this mean? Take your strings.py module
and make the following changes to it:

prefix = "added"

def add(a, b):
 return f"{prefix}: {a} {b}"

These changes create a variable named prefix at the module-level namespace and
initialize it with the string "added."

 If you run your main program, you’ll see the output of the strings.add(12,
12) now outputs added: 12 12. When the add() function is executed, Python looks
for the prefix variable inside the function namespace and, not finding one, looks at
the module-level namespace. It finds the prefix variable in the module and uses it in
the string formatting returned by the function.

 Change the strings.py code again and make it look like this:

prefix = "added"

def add(a, b):
 prefix = "inside add function"
 return f"{prefix}: {a} {b}"

26 CHAPTER 2 That’s a good name
Inside the add() function, you’ve created a variable named prefix and initialized it
to a different string. If you rerun your code, you’ll see the output of the strings
.add(12, 12) function outputs inside added: 12 12.

 What’s happening here is that Python now finds the prefix variable in the add()
function’s local namespace and uses it. Not only is the prefix variable defined inside
the add() function’s namespace, but it’s also created in the function’s scope. We’ll
talk about scope more in the next section.

2.3.4 Namespace scope

Names and namespaces are essential in your Python toolbox and are related to
another tool as implied in the previous section. The scope of a variable is an import-
ant consideration when creating and using variables.

 The scope of a variable relates to its accessibility and lifetime in a module—a
Python file. In Python, a variable is created when a value is assigned to it:

prefix = "prefix"

This statement creates the variable prefix and assigns it the string value "prefix".
The variable prefix also has a type of string, which Python determines at the time of
assignment from the object being assigned—in this case, "prefix".

 If the prefix variable was created in a function

def print_prefix():
 prefix = "prefix"
 print(prefix)

the prefix variable would be within the scope of the print_prefix() function and
would exist only when that function is running. Any code outside of the function that
tried to access the prefix variable would generate an exception.

 Let’s say you create a new module file named message.py that looks like this:

prefix = "prefix"

def my_message(text):
 new_message = f"{prefix}: {text}"
 return new_message

You created things that have different scopes and lifetimes. The prefix variable is in
the global module scope. It is accessible anywhere within the message.py module. It
also has the same lifetime as the module.

 In this context, lifetime means from the point in the application where the module
is imported to when the application is exited. It is possible to remove a module and
reimport it, but in practice, this is rarely necessary.

 If you use import message in your code, the prefix variable and my_message
function are around for as long as the message module is. It is still within the message
namespace and would be accessible to programs that import it like this:

272.3 Python namespaces
import message
print(message.prefix)
print(message.my_message("Hello World"))

The variables defined inside the my_message(text) function have function-level
scope. This means they are only accessible within the function, and their lifetime is
from the point of their creation to the end of the function statements.

 Because the my_message(text) function is contained within the module-level
scope, the code within the function can access the prefix module variable. At the
module scope, what’s declared at that level is accessible—the prefix and my_
message functions. The my_message function is part of the module-level (global)
scope, but all the variables declared inside the function are not.

 Inside the my_message function, the two variables text and new_message are
accessible as they are in the local function scope but aren’t accessible outside the func-
tion. The module variable prefix is in the global scope and is also accessible inside
the function.

 The previous program shows that the scope is nested. Inner scopes have access to
outer scopes that enclose them, as demonstrated by the my_message function having
access to the prefix variable. Outer scopes do not have access to the inner scopes
they enclose. Figure 2.4 shows this scope nesting.

Figure 2.4 How the scopes nest inside one another and where in a scope a variable
is visible

Built-ins namespace

Modules namespace

Function namespace

The things available to
your code everywhere

The things made available
in your module:
prefix
my_message

The things available in
your function:
new_message

28 CHAPTER 2 That’s a good name
2.3.5 Namespace experiment

Using what you’ve learned about names and namespaces, try this experiment using
the information provided to solve a problem. This problem is about using meaningful
names and namespaces to solve an otherwise awkward development problem.

EXPERIMENT

You’re the developer in charge of maintaining the software for an online community
of users interested in similar things. The community wants the software to email them
about upcoming events and to include noncommunity members who register to
receive event emails. This latter group consists of potential new members who are
interested but not yet committed to joining.

 The software can send personalized emails to the mailing list of registered users,
both members and nonmembers. When creating the personalized email, the current
software calls a function get_name(person) to obtain the name to render into the
email based on the person object passed to it.

 The community wants to change how personalized email is rendered by creating a
concept of “formal,” “informal,” and “casual” for the name. The email sent to non-
members would always use the formal version. The email sent to members would base
the name on the user’s account settings and could use any of the three levels of
formality. This becomes your requirement: make the logically named get_name
(person) function return three different values for three different use cases.

POSSIBLE SOLUTION

One possible solution is to create three new versions of the get_name(person) func-
tion like this:

def get_name_formal(person):

def get_name_informal(person):

def get_name_casual(person):

This code is understandable and direct but is awkward to use in the rest of the applica-
tion currently calling get_name(…). Using this approach requires you to modify
every instance of a call to get_name(…) to be an if/elif/else conditional to call

Social namespaces
Programming namespaces and scopes can be compared to the people we know who
are from various parts of our lives. Let’s say you have a friend named Mary, and you
also work with someone named Mary. If you’re with friends and someone mentions
“Mary,” you would most likely think about your friend; she is in your local scope.

However, if someone says, “How’s that person you work with doing; Mary I think her
name is?” In that case, you would think of the Mary you work with because the con-
text was changed by the question to the work module scope.

292.3 Python namespaces
the correct function. You’d also have to make the conditional information that selects
the right function available for those if/elif/else condition tests.

 Another approach would be to change the get_name(person) function to take
an additional parameter that indicates how to format the response. Something like
this would work:

def get_name(person, tone: str):

In this example, the variable tone is a string theoretically set to formal, informal, or
casual. The value of tone would be used to format the name in an expected manner.

 This example would also work but is only a marginal improvement over the indi-
vidually named functions. Choosing this method requires you to find and edit every
instance where the get_name(…) function is called in the entire program and update
it to include the new tone parameter. If the function is used in many places, this
could become a maintenance headache.

 The use of namespaces creates a workable solution that doesn’t disrupt the other
parts of the software. Rather than change the name signature of the get_name(per-
son) function, or change its parameter list, you could use namespaces.

 As a contrived example, here is a main.py program that simulates sending out an
email to the community, before accounting for the required changes:

from utilities.names import get_name

generate a community list of three of the same people
community = [{
 "title": "Mr.",
 "fname": "John",
 "lname": "Smith"
 } for x in range(3)
]
iterate through the community sending emails
for person in community:
 # other code that calls get_name many times
 print(get_name(person))

The get_name(person) function from the names.py module might look like this:

def get_name(person):
 title = person.get("title", "")
 fname = person.get("fname", "")
 lname = person.get("lname", "")
 if title:
 name = f"{title} {fname} {lname}"
 else:
 name = f"{fname} {lname}"
 return name

This function looks at the person information and, depending on whether the per-
son has a title value or not, formats the name accordingly and returns it. The
get_name(person) function is the formal version and can be used as is.

30 CHAPTER 2 That’s a good name
 The change requirements are to create a formal, informal, and casual greeting for
the emails based on the tone determined by the account. You already have a formal
version of the get_name(person) function and just need to create the informal and
casual versions. Create a module file called informal.py in the utilities package
directory that looks like this:

def get_name(person):
 fname = person.get("fname", "")
 lname = person.get("lname", "")
 name = f"{fname} {lname}"
 return name

This function concatenates the first and last name and leaves out the title. Create
another module called casual.py in the utilities package directory that looks like
this:

def get_name(person):
 fname = person.get("fname", "")
 name = f"{fname}"
 return name

This function returns the person’s first name and nothing more.
 Based on the change requirements, you also need to create a way to define the

tone to use in the email based on the community members’ account information. The
information to examine is whether or not they are a member and, if they are a mem-
ber, what the greeting setting is in the account.

 For this experiment, you can create an account.py module in the utilities
package directory. The account.py module contains the following code:

from random import choice

def get_tone(person):
 return choice(["formal", "informal", "casual"])

This code returns a randomly selected value from the list of tone strings—"formal",
"informal", and "casual." In a real application, the tone would probably be
retrieved from a database table containing information about the users.

 Now you have everything you need to meet the requirements and change how the
mailing list is processed. Here’s an updated listing of the main.py program, showing
how the namespaces you’ve created are used:

from utilities import names
from utilities import informal
from utilities import casual
from utilities import account

community = [{
 "title": "Mr.",
 "fname": "John",
 "lname": "Smith"

31Summary
 } for x in range(3)
]

for person in community:
 tone = account.get_tone(person)
 if tone == "formal":
 get_name = names.get_name
 elif tone == "informal":
 get_name = informal.get_name
 elif tone == "casual":
 get_name = casual.get_name
 else:
 get_name = names.get_name

 # other code that calls get_name many times
 print(get_name(person))

This version of the main.py program imports the three new modules, informal,
casual, and account. At the top of the community iteration, the tone is retrieved
according to the person passed to the account.get_tone(person) function call.
The tone variable is used in an if/elif/else set of statements to set the get_name
variable.

 Notice the get_name variable is set to the get_name function from a specific mod-
ule depending on the value of the tone. The code sets the get_name variable to refer
to a function; it does not call the function. Now that get_name is a function object, it
can be used as a function in the print(get_name(person)) statement. The get
_name(person) function call will get the right result because it refers to the desired
module’s get_name(person) function at each iteration when the tone variable is set.

 All of this work up front to create the modules and the code within them was done
to avoid losing a good logical name like the get_name function and allow it to be
used unchanged anywhere else in the program. The work also prevents name conflicts
through the use of namespaces.

Summary
 How we name things has an important and lasting effect on the way we think

about the applications we’re developing. It’s well worth spending time thinking
about the names we choose.

 Namespaces are a way to provide context for other things we name. Because a
namespace is another thing we name to contain and give our applications struc-
ture, the same consideration applies to naming them.

 Namespaces create hierarchal structures, creating parent, child, and sibling
relationships that help architect Python applications.

 Python has multiple means to create namespaces that help complex applica-
tions coexist and become simpler using convenient names without conflict.

The API: Let’s talk
Communicating with people through the spoken and written word, gestures,
expressions, and inflection is one of the cornerstones of our advancement as a spe-
cies. Even across different languages and cultures, we can communicate with each
other, perhaps with a bit more effort, but we can learn to convey meaning, intent,
information, goals, and more.

 The evolution of computers has also created many and varied ways for us to
communicate with a computer, and it with us. Keyboards, mice, touchpads, voice,
screens, printers, networks, motion sensors, and more are all devices that have dif-
ferent uses for providing communication between people and computers.

 All these devices are examples of interfaces designed to convey information to
and from a computer system. Keyboards provide a mechanical way for us to enter
the written word into a system. A computer mouse provides one way to indicate ges-
tures and events to a computer system. A display screen provides a way for the

This chapter covers
 Understanding APIs

 Identifying a well-designed API

 Creating good APIs
32

333.1 Starting a conversation
computer to represent digital information so we can receive it. Speakers give a com-
puter an interface to produce audio information.

 All the complexities of capturing a keystroke, positioning the mouse pointer on
the computer display, or generating a sound from a computer are simplified, hidden,
and provided by the interface.

 Interfaces exist to receive information, act on it, and send back results. The inter-
faces we’ve talked about so far are essential to computer users. As developers, we also
use interfaces that exist at a deeper, and more abstract, level of computer systems.

 The operating system of a computer provides hundreds, perhaps thousands, of
interfaces that give access to all the services and functionality of which the computer is
capable. Access to the filesystem, and ultimately the storage system, of a computer is
provided to applications through an interface. If a computer is connected to a net-
work, applications use interfaces to access those networks. If an application renders
visual information, interfaces present that information onto the connected displays.
These kinds of interfaces fall under the larger general category called application pro-
gramming interfaces, or APIs.

3.1 Starting a conversation
A computer screen provides a level of abstraction between how the user sees things
and how the computer represents things. A mouse provides a level of abstraction
between our hand movements and button clicks to the computer that is translated as
selections and events.

 An API provides the same kinds of abstraction. However, it does so not between a
person and a computer but between sections of programming code. All programs are
composed of custom code, modules, and libraries of existing code. Even the most
straightforward Python program performing a print("Hello World") is using stan-
dard library code provided with the Python language.

 Having library code is a huge advantage that allows you to focus on what you’re try-
ing to accomplish rather than coding everything yourself. Imagine having to write a
print function every time you start a new project or having to create something quite
complex like network access.

 Python is well-known for having “batteries included,” meaning it comes with an
extensive and powerful standard library of modules providing all kinds of functional-
ity you can use and not have to create yourself. There’s also a large selection of mod-
ules you can install from the Python Package Index (https://pypi.org/) that cover
diverse and well-supported areas of interest.

TIP Using existing library code and modules is a cornerstone of being a well-
grounded developer. Existing code is often well-tested and used successfully
in many applications. There is no sense in reinventing the wheel when a per-
fectly good wheel, or wheels, are readily available.

https://pypi.org/

34 CHAPTER 3 The API: Let’s talk
Because of these numerous modules, Python is sometimes called a “glue language” as
it creates interesting ways to connect powerful libraries of code together. Thinking of
Python as a glue language doesn’t diminish its power but instead shows its versatility.

 Python as a glue language is possible because of the API that the modules support,
like calling print("Hello World"). This calls the print function, passing the lit-
eral string argument "Hello World", abstracting the complexities of outputting text
to a display. The API that a module supports makes it possible to use complex, sophis-
ticated code in your programs.

3.1.1 A contract between pieces of code

Aside from the rather abstract discussion about what an API is, let’s review what it is in
practice. One way to think about it is to consider an API as a contract between your
code and another piece of code whose functionality you want to use. Like a contract
between people, it specifies if one party does this, then the other party does that.

 In programming terms, this often means that when calling a function or method
in a particular way, it performs some work and returns some information or both. In
Python, when you create a function to be used elsewhere in your code, you’ve created
an API. The name you give the function expresses some meaning about what the API
does. The function’s input arguments pass information to the API to specify the work
to perform and the data to perform it on. If the function returns information, this is
the output of the API.

 This idea of passing information into a piece of code and getting information or
an action out of it has existed in computer science for a long time and is known as the
“black-box” model. The input a black box expects and the output it creates is under-
stood well enough that knowing what goes on inside isn’t necessary. Only the behavior
needs to be known, not the implementation. The term black box comes from the idea
that the internals of the invoked functionality are opaque and blocked from view, as
illustrated by figure 3.1.

Figure 3.1 Representation of the black-box concept of functionality hiding

"Hello World" print() Hello World

Input
Literal string argument
to print function

Processing
The black-box print
functionality

Output
Printed to the screen

353.1 Starting a conversation
As a developer, you don’t have to know about the internal implementation of the
print() function. You only need to know that passing the function a string invokes
its default behavior—printing that string to the screen.

 A local API is a function or class you create or a module your code imports. The
API is within the context of your program code and is accessed directly by calling the
functions and class instance methods provided.

 It’s also possible to call an API that’s hosted remotely—for example, connecting to
a database server and accessing data. Here, the API is accessed over a network connec-
tion providing the transport mechanisms for your code to make calls to the remote
API and for the API to respond. We’ll get more into this in chapter 10, specifically
about databases.

3.1.2 What’s passed as input

When your code calls a function or method of an API, it’s engaging in one part of the
contract between your program and the functionality provided by the API. The input
arguments are the information passed from the context of your program code to the
context of the API through the parameters. In developer terms, arguments are the val-
ues passed to a function, and parameters are the names given to those arguments
when the function is defined.

 Python functions and methods support positional and keyword parameters. The
order of the positional parameters and names of the keyword parameters are consid-
erations when using and building an API. For example, Python’s print function is
most often used like this:

>>> msg = "Hello World"
>>> print(msg)
Hello World

When this function executes, it prints the string variable msg to the screen. The API
provided by the print function is simple enough to understand; it takes the input
argument and performs the work necessary to output it to the screen.

 The complete API of the print function shows that it is a more versatile function.
Here is the print function signature:

print(*objects, sep=' ', end='\n', file=sys.stdout, flush=False)

This signature indicates that the first parameter is a tuple of non-keyword parameters
followed by additional keyword parameters with default values. The *objects param-
eter allows the caller to pass multiple, comma-separated values to the print function.
This means

>>> print("Hello World")
Hello World

outputs the same thing to the display as

>>> print("Hello", "World")
Hello World

36 CHAPTER 3 The API: Let’s talk
Calling the print function this way works because the function iterates through the
objects tuple parameter, converting each to a string if necessary, and outputs each
object to sys.stdout (the screen). Each output item is separated by the default sep-
arator string, a space character.

 The sep=' ' parameter provides the default space separator string and lets you
change it to something else to separate the objects when they are output to the screen.
The end='\n' parameter provides a carriage return as the default to end the output
and lets you change how the output ends.

 The file=sys.stdout parameter defines the default destination, called stan-
dard output, which is usually the screen. Changing this parameter lets you change
that destination. The object you set the file parameter equal to must have a
write(string) method for it to work as a file destination. If the object doesn’t have
a write(string) method, an AttributeError exception is raised when the print
function is called. The flush=False parameter provides a way to forcibly push what’s
sent to the stream to the output destination rather than buffering it if set to True.

 All of this tells us the print function API is well-designed and surprisingly power-
ful. The use of the initial non-keyword *objects tuple, followed by the keyword
parameters with default values, lets you use the print function’s most common use
case. The rest of the functionality is there if needed but can be ignored otherwise.

 Imagine if the print function was handled differently. A naïve API implementa-
tion might remove all the keyword parameters with default values and look something
like this:

print(object)

A print function like this would satisfy the common use case but would start to fall
apart beyond that. Suppose not long after this version is in use, you need to print
more than one object at a time. One way to extend the simple implementation is to
create additional print function variations:

print_two(object, object)
print_three(object, object, object)

What if additional requirements were placed on this naïve expansion of the API to
have a different separator character, perhaps the pipe character (|)? Following the
established simple variation pattern would lead to something like this:

print(object)
print_pipe_sep(object)
print_two(object, object)
print_two_pipe_sep(object, object)
print_three(object, object, object)
print_three_pipe_sep(object, object, object)

This solution doesn’t scale well, and the code that uses this would have to change to use
a different permutation of the API. The goal of this example is not to show the progres-
sion down an ill-conceived path of API development but to draw closer attention to the

373.1 Starting a conversation
details of what makes Python’s default print function a good API. There is work going
on inside the print function to support the function signature and the use cases where
it’s applied.

 This is one of the earmarks of a good API. It provides useful functionality that can
be expanded upon without exposing the work involved in doing so. As a developer,
you don’t have to worry too much about how the print function works. You get to use
it, knowing its functionality is well defined and contained.

TIP Designing a good API takes work, especially if other developers will be
using it. Everything you want an API to do should be part of the interface. If a
developer has to use some internal part of the API to achieve a goal, then that
API has become a problem. Any change to the API’s internal functioning has
the potential to break code that depends on the internal part that’s being used.

When developing an API, how you define the input can dramatically influence its util-
ity and future use.

3.1.3 What’s expected as output

The other part of the contract provided by an API is its output. The output of a func-
tion consists of three parts:

 Return value
 Actions on the system, sometimes thought of as side effects
 Exceptions

RETURN VALUE

The most commonly considered output of a function is the return value—for exam-
ple, this code:

>>> abs(-10)
10

The code looks like a mathematical expression, and that’s very close to what it’s mod-
eled after. The input to the abs function is a number, and the output is the absolute
value of that number.

 A great deal of programming is creating and using functions that accept parame-
ters, processing those parameters, and returning the results. Building an application
is a process of orchestrating function calls and feeding the returned values into other
functions until you arrive at the desired outcome.

 Because everything in Python is an object, a function return value is also an object.
This means you can build a function as part of your API that returns more than just a
single scalar value, like the abs function.

 One example commonly seen in Python is to return a tuple. Returning a tuple
allows you to pass back more than one value to the calling function, which can then
unpack the tuple into variables. Here’s some code from examples/CH_03/
example_01.py:

38 CHAPTER 3 The API: Let’s talk
from typing import Tuple

def split_fullname(full_name: str) -> Tuple[str, str, str]:
 fname = mname = lname = ""
 parts = full_name.split()
 if len(parts) >= 1:
 fname = parts[0]
 if len(parts) >= 2:
 mname = parts[1]
 if len(parts) == 3:
 lname = parts[2]
 if not lname:
 mname, lname = (lname, mname)
 return (fname, mname, lname)

use case
fname, mname, lname = split_fullname("John James Smith")

The split_fullname() function takes in a full name and returns the name parts,
fname, mname, and lname. Even if the full_name parameter contains only one or
two parts of a name, the function behaves correctly. If there are only two parameters,
it assumes the second is the last name and sets mname to an empty string.

 The use case shows how the tuple returned by the function can be unpacked into
three variables. You can also assign the return value from split_fullname() to a
single tuple variable, but it’s often useful to unpack the returned tuple directly into
waiting named variables.

ACTIONS ON THE SYSTEM

Many API functions perform work to transform data passed to them, create new data,
or perform calculations based on the data passed. This new, or transformed, data is
returned to the caller of the API for further processing.

 API functions can also perform actions on the system it’s running on. For example,
if you are using an API that is part of a robot and call a function to rotate a motor
attached to that robot, you’d expect the motor to start rotating.

 The actions taken by API functions are what make applications useful. The ability to
open, create, read, and write files; interact with networks; print documents; and control
real-world devices are all actions an application can execute using API functionality.

 An API function performing an action doesn’t necessarily have to return any data
to the caller if its primary purpose is to perform that action. That doesn’t mean it
can’t return output data. The API function for the robot motor example could return
a True or False value to indicate whether the motor is rotating.

EXCEPTIONS

Exceptions and how to handle them are a fact of life as a developer. Disk drives fail,
networks can be unreliable, and any number of other unexpected behaviors can
occur.

 The API functionality you create can generate exceptions from operations, such as
dividing by zero or raising exceptions, because the functionality created an unexpected

393.2 Function API
or exceptional state. When creating an API function, one of your goals is to prevent
exceptions when you can and handle them gracefully when you can’t. For example, if
your functionality is performing network IO and the network becomes unreliable, what
can you do?

 One possibility is to retry the operation several times with a gradually longer time-
out between retries. If the network stabilizes within the retry attempt intervals, the
function can continue and succeed. However, if the retries fail, a network exception is
raised and passed upward to the caller. On the other hand, if a divide-by-zero excep-
tion is raised because of an input parameter, there’s nothing you can do but let the
exception bubble upward to a higher-level functionality that can handle it.

 Handling an exception involves knowing whether you can do something about it.
Never silence an exception without having a specific reason for doing so; this throws
away information and makes an API untrustworthy.

 Users of your API need to be aware of and prepared to handle the exceptions your
API generates, as they do with any other exceptional condition when developing. Doc-
umenting your API is an excellent way to inform its users what exceptions they might
expect. Exceptions are covered in more detail in chapter 5.

3.2 Function API
Functions provide the mechanism to interface with an API. In object-oriented pro-
gramming (OOP), where you think about methods on an object, they are functions
tied to that object instance. Let’s spend some time talking about ideas you can put in
place to create useful functions and, by extension, good APIs.

3.2.1 Naming

As we talked about in the previous chapter, names matter in development. How you
name the functions you create goes a long way toward making sense of your API.

 Function names should use meaningful words and use the snake_case format.
There is no reason to shorten the name with abbreviations. Every modern code editor
has autocompletion abilities, making typing the full name a one-time-only occurrence
at the time of function definition.

 Using domain-specific acronyms is also discouraged, as users who aren’t familiar
with the API domain would find the naming conventions confusing. For example,
most people would recognize a variable name of url to mean a string containing the
URL of a website. A variable name of agtc, an acronym used in genome research,
would be less meaningful to many people.

 The name indicates, or hints at, the use case of the function, what it returns, and
what it accepts. Additionally, the documentation string (docstring) can elaborate fur-
ther on the intended use. In Python, a function docstring is a triple, quoted string
containing information about a function, and it immediately follows the function defi-
nition. When function name collisions are possible because the logical name choice is
similar, or the same, use namespaces and separate the functionality into modules.

40 CHAPTER 3 The API: Let’s talk
3.2.2 Parameters

When creating a function to provide an API for some functionality you want to encap-
sulate, you can think about the Python print function presented earlier. That seem-
ingly simple function offers a surprising amount of functionality because of the
interface definition and the way the encapsulated code is built. There are four ways to
pass arguments to the functions you create.

POSITIONAL PARAMETERS

These are the most common forms of parameters used with functions, and they help
define usability. Here is an example function definition with positional parameters:

def full_name(fname, mname, lname):
 return f"{fname} {mname} {lname}"

The name of the function indicates what it returns, and the positional parameters
fname, mname, and lname clarify what to expect as input and what order to expect
from those parameters to be in. Calling the function with string literals looks like this:

print(full_name("John", "James", "Smith"))

The code assigns the string literal arguments to the positional parameters in the same
order created when the function was defined. It is possible to call the function using
parameter names in this manner:

print(full_name(fname="John", mname="James", lname="Smith"))

It’s also possible to change the order of the parameters by calling the function and
using keyword parameters:

print(full_name(mname="James", lname="Smith", fname="John"))

Positional parameters are mandatory and must have a value assigned to them when
calling the function. Otherwise, Python raises a TypeError exception.

KEYWORD PARAMETERS

Keyword parameters aren’t mandatory when the function is called, as they have default
values. Often these are used for optional parameters, allowing the function to operate
with known default parameter values when the caller doesn’t supply one. The full
_name function defined previously can be altered to use keyword parameters like this:

full_name(fname, mname=None, lname=None)

Now the function has one positional required parameter, fname, and two keyword
parameters, mname and lname—each with a default value of None. The function
makes fname the only mandatory parameter, implying the function operates correctly
if mname and lname aren’t provided by the caller. It’s also possible to use the keyword
parameters in a different order than defined by the function—for instance, calling
the function in this manner:

full_name("John", lname="Smith")

413.2 Function API
This code indicates that the function handles the case where fname and lname are
supplied but mname is assigned the default value of None. When defining a function,
once you create a parameter with a default value (keyword parameter), any parameter
following it must also be a keyword parameter and have default values.

PARAMETER LIST

In the Python print function, the first parameter is of the form *objects. The
*objects parameter is an example of passing a variable number of positional
parameters to a function. The “*” character indicates that the parameter is expecting
a variable number of arguments. The objects part is the name of the parameter.

 Inside the print function, the objects parameter is a tuple containing all the
remaining positional parameters in the function. A variable number of positional
parameters is commonly named *args, but that’s just a convention, not a requirement.

 Modifying the full_name() function to use an argument list looks like this:

def full_name(fname, *names):
 return " ".join([fname, *names])

In this form, the full_name() function creates a temporary list of the fname param-
eter and the elements in the names to join them together, separated by a space char-
acter. This form is useful to pass multiple, similar arguments but can be confusing to
the users of the function. The function will join any number of elements in the
*names parameter tuple, which might not be your intention.

 Defining the function in the original form where all the parameters have names
is a better way to go in this case. From the Zen of Python, explicit is better than
implicit.

TIP You can view the Zen of Python by opening the Python REPL and
entering:

import this

Doing so prints out useful advice and idioms about Python programming.

KEYWORD PARAMETER DICTIONARY

The keyword parameter dictionary is akin to the parameter list; it’s a way of wrapping
up all keyword parameters into a single parameter for a function. You’ll often see it
defined as **kwargs, but again, this is only a convention. Changing the
full_name() function to use this form looks like this:

def full_name(**kwargs):
 [CA]return f"{kwargs.get('fname', '')} {kwargs.get('mname', '')}
{kwargs('lname', '')}"

Internally, the full_name() function examines the kwargs dictionary looking for
the keywords fname, mname, and lname. Without documentation, the user of this
function would not know what to include as key-value pairs in the kwargs dictionary
parameter.

42 CHAPTER 3 The API: Let’s talk
 The caller can also add other key-value pairs to the kwargs dictionary that possibly
have no meaning to the full_name() function. Any extra key-value pairs are ignored
by the full_name() function but could have meaning to functions it calls by passing
the kwargs parameter along. Take care when using this form and do so intentionally.

PARAMETERS IN GENERAL

The ability to create proper function signatures includes being aware of patterns and
consistency. Many APIs consist of multiple functions working together to accomplish
something. This often means passing the same data into more than one function, so
each function is aware of the state of the working data.

 If you’re processing data contained in a dictionary that’s passed to multiple func-
tions, it’s a good idea to make the parameter position and the name representing the
common data the same for all (or as many as possible) functions that work with it.

 For example, make the dictionary the first parameter of the function, and all the
additional parameters pass information about how to process the dictionary. The first
parameter dictionary is the common, state data structure being passed between func-
tions that act on that state data:

email_user(user_data, content, from)
populate_user_address(user_data, address, city, state, zipcode)

The email_user function gets the email address from the user_data structure and
then generates an email with the content and from parameters and sends the email.
The popuplate_user_address function adds address information to the existing
user_data structure.

 The same would apply to system resources passed to functions, file handles, data-
base connections, and database cursors. If multiple functions need these resource
objects, it helps make the API more readily understandable when the functions have a
consistent signature.

 A function that has many parameters starts to stretch our cognitive abilities and
often indicates the function does too much and should be refactored into smaller
functions, each with a single purpose. It’s tempting to make a long list of function
parameters into one using the keyword parameter ability of Python. Unless the dictio-
nary passed as the **kwargs is documented, it just obscures what the function is
expecting. It also sidesteps the original issue that perhaps the function needs to be
refactored.

3.2.3 Return value

As you’ve seen, one-half of the API contract is what’s returned by a function. In
Python, even if you don’t have a return statement in your function code, a value of
None is returned automatically. If the function you create performs system actions
(file IO, network activity, system-level changes), you can return a True or False to
indicate the success or failure of the function.

433.2 Function API
3.2.4 Single responsibility

Strive to create functions that do only one thing; this is the single responsibility princi-
ple. Writing a useful function is already considerable work, especially if your goal is to
make the function flexible through thoughtful input parameters and processing code.
Trying to make it do two things can more than double the difficulty.

 Here’s a contrived example function from examples/CH_03/example_02.py
that illustrates this concept:

def full_name_and_print(fname:str , mname: str, lname: str) -> None:
 """Concatenates the names together and prints them

 Arguments:
 fname {str} -- first name
 mname {str} -- middle name
 lname {str} -- last name
 """
 full_name = " ".join(name for name in [fname, mname, lname] if name)
 print(full_name)

This function concatenates the parameters to create the full_name variable and
prints it to sys.stdout. The list comprehension inside " ".join is to ensure there
is only a single space between the names should mname be left out when the function
is called. This function is not as useful as it could be because it’s trying to do too much.

 It’s not useful to other functions needing the full name because the full name isn’t
returned. Even if the full name was returned, any function calling this must expect the
full name to be printed.

 Also, the function is difficult to test because it doesn’t return anything. To test this,
you’d have to redirect sys.stdout in some way so a test could see the output, which
could get messy quickly.

 Here is a better version from examples/CH_03/example_02.py:

def full_name(fnameNone, mname=None, lname=None) -> str:
 """Concatenates the names together and returns the full name

 Arguments:
 fname {str} -- first name
 mname {str} -- middle name
 lname {str} -- last name

 Returns:
 str -- the full name with only a single space between names
 """
 full_name = " ".join(name for name in [fname, mname, lname] if name)
 return full_name

This version does only one thing: it creates the full name and returns it to the caller.
Now the return value of the function can be used with the print function, included
in a web page, added to a data structure, converted to a JSON document, and more.
This function has also become easy to test because you can test the return value, and
the same input arguments always produce the same output.

44 CHAPTER 3 The API: Let’s talk
3.2.5 Function length

Related to the single responsibility principle is the length of the functions you write. It’s
difficult to keep too much context and detail in our heads at once. The longer a func-
tion gets, the more difficult it becomes to reason about and understand its behavior.

 No hard-and-fast rule exists regarding the length of a function. A good rule of
thumb is around 25 lines, but this is entirely dependent on your comfort level.

 If you create a function that’s too long to comprehend easily, it probably means
the function is trying to do too much. The solution is to refactor it and break some of
the functionality out into other functions.

 When refactoring a function leads to multiple functions that work together on the
same data, you can also create a class with the functions as the methods of that class. If
you follow good naming practices and make the new functions handle only one task
well, you’ll create more readable code.

3.2.6 Idempotence

Though an ominous-sounding word, idempotent in developer terms indicates a func-
tion that always returns the same result when given the same input argument values.
No matter how many times it’s called, the same input yields the same output.

 The output of the function isn’t dependent on outside variables, events, or IO
activity. For example, creating a function that uses the parameters along with the
clock time to create the return value wouldn’t be idempotent. The return value is
dependent on when the function is called. Idempotent functions are easier to test
because the behavior is predictable and can be accounted for in test code.

3.2.7 Side effects

Functions can create side effects that change things outside the scope of the function
itself. They can modify global variables, print data to the screen, send information
across a network, and do a whole host of other activities.

 In your functions, the side effects should be intended—referred to previously
as actions on the system. Unintended side effects need to be avoided. Modifying a
global variable is something a function can do but should be thought about
carefully as other, possibly surprising, functionality could be affected by those global
modifications.

 When opening a file, it’s good practice to close it when done to avoid the possibil-
ity of corrupting the file. Database connections should be closed when unused so
other parts of the system can access them. In general, it’s good programming practice
to clean up and release system resources as soon as your function or application is fin-
ished with them.

 There is another side effect to be aware of when working with Python. Because
arguments to functions are passed by reference, the function has the potential of
altering variables outside of the function’s scope. The example program examples/
CH_03/example_03.py demonstrates this:

453.3 Documentation
from copy import copy

def total(values: list, new_value: int) -> int:
 values.append(new_value)
 return sum(values)

def better_total(values: list, new_value: int) -> int:
 temp_list = copy(values)
 temp_list.append(new_value)
 return sum(temp_list)

values_1 = [1, 2, 3]
total_1 = total(values_1, 4)
print(f"values_1 has been modified: {values_1}")
print(f"total_1 is as expected: {total_1}")
print()
values_2 = [1, 2, 3]
total_2 = better_total(values_2, 4)
print(f"values_2 unchanged: {values_2}")
print(f"total_2 is as expected: {total_2}")

When this program runs, the following output is produced:

values_1 has been modified: [1, 2, 3, 4]
total_1 is as expected: 10

values_2 unchanged: [1, 2, 3]
total_2 is as expected: 10

Both the total() and better_total() functions return the same value, 10, but
only better_total() is idempotent. The code in the total() function is changing
the values_1 list passed to it as an argument and exists outside of its scope.

 This happens because of the way the sum is calculated. The total() function
appends new_value directly to the values list parameter passed to it. Because
parameters are passed by reference, the list variable values_1 outside the function
and the parameter variable values inside the function both reference the same list.
When new_value is appended to the list, it’s modifying the same list that values_1
referenced.

 The better_total() function makes a copy of the values parameter, creating a
new list variable temp_list independent of the one referenced by the values_2 list.
Then it appends new_value to temp_list and returns the sum of temp_list. This
leaves the values_2 list variable untouched, which is the intended behavior. The
better_total() function is idempotent because it returns the same results for a
given set of inputs and has no side effects.

3.3 Documentation
Documentation is a necessary process when building and defining an API. Functions,
and the modules of which they are a part, should have documentation that briefly
describes the functionality of the module and the functions it contains. Modules

46 CHAPTER 3 The API: Let’s talk
should have docstrings at the top of the file describing the functionality that the mod-
ule provides and possibly the exceptions that might be raised.

 Functions and class methods should have docstrings that briefly describe what the
function does, what the parameters are for, and what the expected return value is.
The functions in the example programs shown previously include docstrings. Here’s
an example of a function with no documentation:

def get_uuid():
 return uuid4().hex

And here’s the same function with a docstring:

def get_uuid():
 """Generate a shortened UUID4 value to use
 as the primary key for database records

 Returns:
 string: A shortened (no '-' characters) UUID4 value
 """
 return uuid4().hex

The functionality of the version with no docstring might be clear, but there’s no indi-
cation of why the function exists or why the code would call it. The version with a doc-
string answers these questions.

 You might hear people say documenting Python code is unnecessary because the
code is so readable and therefore self-documenting. The readability part is genuine,
but any reasonably complex piece of code can only benefit from documentation,
helping the reader understand the intent.

 Documenting code does take effort; however, modern code editors like VS Code
make it easier to insert docstring templates. The template for the docstrings in the
example programs was generated by hitting return at the end of the function defini-
tion, typing three double quotes ("""), and clicking return again.

TIP Most of the example code in this book doesn’t include docstrings. My
intent is not to ignore my own suggestions but to reduce the amount of code
presented on these pages and save book real estate. The code in the accompa-
nying repository does have docstrings.

Many tools extract and process Python docstrings as part of external documentation
systems. Besides being a benefit to readers of the code, including the original author,
there is another win. If you’re at the Python prompt and type help(<function
name>), the built-in help system presents the docstring of the function for reference.
This includes not only the built-in functions but those you create. The existence of a
docstring makes this possible.

3.4 Closing thoughts
Creating a good API is important because ease of use is important. Users of your APIs,
which include yourself, want to make use of the functionality provided, not struggle
with how to get that functionality to work.

47Summary
 Creating useful APIs is challenging; there are a lot of moving parts and consider-
ations. Well-named modules, functions, and classes with consistent, logical parameters
and documentation help give an API good affordance or discoverability. Like many
things, the work invested in creating something today pays rewards later when you’re
using that trusted tool.

Summary
 An API is a collection of structured interface touchpoints that an application

can use to affect the code to which the API provides access. There are APIs
around operating system code, around server code running locally or remotely,
and around the modules you build to create functionality in your applications.

 An API is a contract that application software defines so other application soft-
ware can interface with it consistently and predictably.

 Part of creating a good API is abstracting the implementation so the caller of
the API can depend on the interface contract and not have to use the internal
implementation to achieve their goals.

 Python has good support and tools to create APIs that are useful to your own
applications and can be published for use by others.

The object of conversation
When having a conversation, particularly one with any complexity, it’s helpful if
everyone in the conversation has the same context. It would be difficult to have
conversations if every time someone began a new sentence they had to present the
full context of the conversation.

 From the standpoint of software functions, the context is the current state of
the information the functions are working with. In the previous chapter, we talked
about creating function signatures where the data state is passed around to the
function calls in consistent ways.

 Utilizing function signatures is a useful and powerful way to conduct conversa-
tions between functions that work on stateful data. It becomes a little more

This chapter covers
 Object-oriented APIs

 Objects with classes

 Inheritance

 Polymorphism

 Composition
48

494.1 Object-oriented programming (OOP)
complicated if the same functions are being passed multiple, distinct stateful data con-
texts. The data and the functions that work on that data are separate from each other,
and it’s up to the developer to keep them organized and connected. Python provides
another layer of abstraction to reduce complexity by using the object-oriented pro-
gramming model.

4.1 Object-oriented programming (OOP)
The ability to place functions into modules provides many opportunities for structur-
ing an API. The type and order of the parameters passed to the functions that make
up an API offer possibilities to make your API more discoverable and useful.

 Using the concepts of single responsibility and keeping functions to manageable
lengths makes it more likely your API will consist of multiple functions. Users of the
API’s functionality—which may itself call other API functions, further modifying the
data or state—produce the result returned to the user.

 Often, the data structures passed between functions are collection objects, lists,
sets, and dictionaries. These objects are powerful, and taking advantage of what they
offer is important in Python development. By themselves, data structures don’t do
anything, but the functions they are passed to know what to do with the data struc-
tures they receive as input.

 Because everything in Python is an object, you can create interesting objects using
OOP. One of the goals of creating objects is to encapsulate data and the methods that
act on that data into one entity. Conceptually, you’re making something with the func-
tionality you designed and implemented. You can think about what you create as an
object, or thing, that has behavior. Creating classes is how you design these objects,
connecting data and functionality to them.

4.1.1 Class definition

Python provides OOP by defining classes that can be instantiated into actual objects
when needed. Instantiation is the act of taking something from a definition (the class)
to reality. You could say the blueprint for a house is the class definition, and building
the house instantiates it.

 Here’s a simple class definition for a Person class from the examples/CH_04/
example_01 application code:

class Person:
 def __init__(self, fname: str, mname: str = None, lname: str = None):
 self.fname = fname
 self.mname = mname
 self.lname = lname

 def full_name(self) -> str:
 full_name = self.fname
 if self.mname is not None:

50 CHAPTER 4 The object of conversation
 full_name = f"{full_name} {self.mname}"
 if self.lname is not None:
 full_name = f"{full_name} {self.lname}"
 return full_name

This class definition creates a Person template containing a person’s first, middle,
and last names. It also provides the full_name() method to obtain the person’s full
name based on the information passed to the object by its initialing __init__()
method. A function associated with a class is often referred to as a method. This is a
convention to make a distinction between a module function and one that’s part of a
class. Creating and using an object instantiated from the Person class looks like this:

>>> p1 = Person("George", "James", "Smith")
print(p1.full_name())

The self parameter that is passed as the first parameter of every method of the Per-
son class is the reference to the Person instance just created. In this way, your code
can create as many Person instances as needed, and each will be distinct because the
self value of each will reference a particular instance and the state attributes (data)
it contains.

 This class can be represented visually in UML (Unified Modeling Language) as
well, as shown by figure 4.1. UML is a way to present the design of systems visually. It’s

not necessary to use UML diagrams
when designing and building a system,
but it can be useful to introduce abstract
concepts that are difficult to present
concisely with text documentation
alone.
 The UML diagram for the Person
class shows the name of the class, the
attributes it contains, and the methods
it provides. The plus-sign character (+)
in front of the attribute and method
names indicates they are public. In
Python, attributes and methods of a
class are always public and have no
notion of protected or private access.

Python’s class design relies on the idea “We’re all adults here,” and the developers
who use your classes will behave accordingly. Using plain attributes should be the
default when designing your classes. You’ll see later how class properties can gain con-
trol of how attributes are accessed and used. A simple use case for the Person class is
presented in the examples/CH_04/example_01 application:

def main():
 people = [
 Person("John", "George", "Smith"),

Person

+ fname:string

+ mname:string

+ lname:string

+ item:attribute

+ fullname():string

Class name

Attributes

Methods

Figure 4.1 UML diagram of the Person class

514.1 Object-oriented programming (OOP)
 Person("Bill", lname="Thompson"),
 Person("Sam", mname="Watson"),
 Person("Tom"),
]

 # Print out the full names of the people
 for person in people:
 print(person.full_name())

This code creates four instances of the Person class, each representing a different per-
son and exercising all the variations of the constructor. The for loop iterates through
the list of Person object instances and calls the full_name() method of each. Notice
the full_name() method is not passed any state data; it uses the data attributes asso-
ciated with the class instance. The self parameter of the full_name() method defi-
nition is what gives the method access to the individual attributes.

4.1.2 Drawing with class

The remaining examples you’re going to build are object-oriented applications that
animate some shapes on the screen.

TIP Readers who have experience with OOP will probably recognize the
analogy—a generic shape from which specific shapes, like rectangles and
squares, are inherited. This analogy has been used to present object-
oriented techniques for a long time and has become somewhat contrived. I
acknowledge that, but I am using it anyway because it has advantages.

The concept of shapes is familiar enough outside of programming that readers can
relate to them and to the idea that new shapes can be derived from them. Addition-
ally, a program that moves shapes around on a computer screen is also familiar to
most readers. The idea of moving shapes having speed and direction and staying
within the boundaries of an onscreen window are well-known behaviors for computer-
rendered graphics.

 Because of this familiarity with shapes, the cognitive demand of learning about the
object-oriented program can be focused on just that, not on any abstract quality of the
object itself. For this reason, I’m asking you to bear with the contrived nature of the
examples to see the larger picture. Each of the examples that follow expands upon
the previous one to present the following concepts:

 Inheritance—Parent/child relationships between classes
 Polymorphism—Using an object as if it had multiple forms
 Composition—Giving attributes and behavior to a class through means other

than inheritance

To create the drawing application, you’ll be using the arcade module available in the
Python Package Index (https://pypi.org/project/arcade/). This module provides the
framework to build a drawing surface on the computer screen and draw and animate
objects on that drawing surface.

https://pypi.org/project/arcade/

52 CHAPTER 4 The object of conversation
 The first thing to do is to define a class for a rectangle to draw on the screen. The
UML diagram in figure 4.2 shows the attributes encapsulated in the class necessary to
render a rectangle onscreen; x, y, width, and height define the position of the rect-
angle on the screen and the dimensions to use when drawing it.

All of these attributes are initialized during the instantiation of a Rectangle object:

 pen_color, fill_color—Defines the colors used to outline the rectangle
and fill it

 dir_x, dir_y—Defines the direction of movement relative to the screen’s x
and y axes; these are either 1 or –1

 speed_x, speed_y—Defines the speed at which the rectangle is moving in
pixels per update

Figure 4.2 also includes the definition of three methods that the class supports:

 set_pen_color()—Provides a mechanism to set the pen color used to draw
the Rectangle instance object

 set_fill_color()—Provides a mechanism to set the fill color used to fill a
Rectangle instance object

 draw()—Draws a Rectangle object instance on the screen

Rectangle

+ x: int

+ y: int

+ width: int

+ height: int

+ pen_color: tuple

+ fill_color: tuple

+ dir_x: int

+ dir_y: int

+ speed_x: int

+ speed_y: int

+ __init__(): None

+ set_pen_color(): Rectangle

+ set_fill_color(): Rectangle

+ draw(): None

Class name

Attributes

Methods

Figure 4.2 UML diagram
for the Rectangle class

534.1 Object-oriented programming (OOP)
This UML diagram is converted to a Python class definition in code. Here’s the
Rectangle class based on the previous diagram from the examples/CH_04/
example_02 application:

class Rectangle:
 def __init__(
 self,
 x: int,
 y: int,
 width: int,
 height: int,
 pen_color: tuple = COLOR_PALETTE[0],
 fill_color: tuple = COLOR_PALETTE[1],
 dir_x: int = 1,
 dir_y: int = 1,
 speed_x: int = 1,
 speed_y: int = 1
):
 self.x = x
 self.y = y
 self.width = width
 self.height = height
 self.pen_color = pen_color
 self.fill_color = fill_color
 self.dir_x = 1 if dir_x > 0 else -1
 self.dir_y = 1 if dir_y > 0 else -1
 self.speed_x = speed_x
 self.speed_y = speed_y

 def set_pen_color(self, color: tuple) -> Rectangle:
 self.pen_color = color
 return self

 def set_fill_color(self, color: tuple) -> Rectangle:
 self.fill_color = color
 return self

 def draw(self):
 arcade.draw_xywh_rectangle_filled(
 self.x, self.y, self.width, self.height, self.fill_color
)
 arcade.draw_xywh_rectangle_outline(
 self.x, self.y, self.width, self.height, self.pen_color, 3
)

This class defines a simple Rectangle object. The object is initialized with the x and y
coordinates, width and height, pen and fill colors, direction, and speed of motion of
the rectangle. In the arcade module, the screen origin is in the lower-left corner,
which is how most of us think about the x and y axes on paper, but it’s different from
many other screen-rendering tools.

54 CHAPTER 4 The object of conversation
TIP The 0, 0 origin location in the upper-left-hand corner of a drawing
screen is there for historical reasons that involve how computer graphics were
generated back in the day.

Modifying the values of the x and y attributes moves the Rectangle around the
screen, as maintained by the arcade module and the instance of the Window class in
the application. The Window class has two methods used to animate the objects on the
screen: on_update() and on_draw(). The first updates the position of all the
objects to render on the screen, and the second draws those updated objects on the
screen. The on_update() method is called for every refresh iteration and is where
the application modifies the position of the rectangles in the self.rectangles col-
lection. The on_update() method looks like this:

def on_update(self, delta_time):
 for rectangle in self.rectangles:
 rectangle.x += rectangle.speed_x
 rectangle.y += rectangle.speed_y

This code iterates through the collection of rectangles and updates the position of
each one by its x and y speed values, changing its position on the screen.

 The updated rectangles are drawn on the screen by the Window instance method
on_draw(), which looks like this:

def on_draw(self):
 # Clear the screen and start drawing
 arcade.start_render()

 # Draw the rectangles
 for rectangle in self.rectangles:
 rectangle.draw()

Every time the on_draw() method is called, the screen clears and the self
.rectangles collection is iterated through, and each rectangle has its draw()
method called.

 The Rectangle class has behavior defined by the methods set_pen_color(),
set_fill_color(), and draw(). These methods use and alter the state data encap-
sulated by the class definition. They provide the API you interact with when using the
class. Using the methods abstracts away having to modify the state data directly.

 Look at the set_pen_color() and set_fill_color() methods and you’ll see
they return self. Returning self can be useful for chaining methods of the class
together into a series of operations. Here’s an example from examples/CH_04/
example_02.py using the Rectangle class. This code changes the pen and fill col-
ors when the arcade schedule functionality code is called every second:

def change_colors(self, interval):
 for rectangle in self.rectangles:
 rectangle.set_pen_color(choice(COLOR_PALETTE)).set_fill_color(
 choice(COLOR_PALETTE)
)

554.1 Object-oriented programming (OOP)
The change_colors() method of the Window instance is called by an arcade sched-
ule function every second. It iterates through the collection of rectangles and calls the
set_pen_color() and set_fill_color() in a chained manner to set random col-
ors picked from the globally defined COLOR_PALETTE list.

 When the examples/CH_04/example_02 application runs, it creates a window
on the screen as shown in figure 4.3. The application animates a vertically aligned
rectangle up and right at a 45-degree angle. It also changes the pen and fill colors of
the rectangle every second the application runs.

PROPERTIES

As mentioned earlier, direct access to the attributes of a class should often be the
default. The Rectangle example follows this practice. However, there are situations
where you’ll want more control over how the attributes of a class are used or changed.

 The definition of the Rectangle class includes attributes for the x and y origin of
the rectangle, which helps draw it in the window. That window has dimensions, and if
you run the examples/CH_04/example_02 application long enough, you’ll see the
rectangle move off the screen.

 Currently, the origin of a Rectangle instance is set to any integer value. No
known screen has a resolution as large as the range of integer values, and none at all
deal with negative numbers directly. The window declared in the application has a
width range from 0 to 600 pixels and a height range from 0 to 800 pixels.

Window with
the drawing surface

Animated rectangle in
the drawing window

Figure 4.3 Screenshot of
the rectangle on the
Window drawing surface

56 CHAPTER 4 The object of conversation
 The boundaries of where Rectangle objects can be drawn should be constrained
to within those window dimensions. Constraining the values of x and y means having
code in place to limit the values that can be assigned to them. Your goal is to make the
rectangle bounce around within the screen window.

 If you’re accustomed to other languages supporting OOP, you might be familiar
with getters and setters. These are methods provided by the developer to control
access to attributes of a class instance. These methods also give the developer a place
to insert behavior when the attributes are retrieved or modified. The behavior you
want to insert when setting or getting the x and y values is to limit the range of values
to which those attributes can be set.

 Adding getter and setter methods to the rectangle’s x and y attributes could be
done by defining methods like this:

def get_x(self):
def set_x(self, value):
def get_y(self):
def set_y(self, value):

Using these getter and setter functions also means changing the example code from

rectangle.x += 1
rectangle.y += 1

to this:

rectangle.set_x(rectangle.get_x() + 1)
rectangle.set_y(rectangle.get_y() + 1)

In my opinion, using getters and setters works but sacrifices readability when com-
pared to the direct attribute access version/syntax. By using Python property decora-
tors, you can control how class attributes are accessed and modified while still using
the direct attribute access syntax. The Rectangle class can be modified to use prop-
erty decorators offering this behavior. The updated portion of the Rectangle class
from example program examples/CH_04/example_03 is shown here:

class Rectangle:
 def __init__(
 self,
 x: int,
 y: int,
 width: int,
 height: int,
 pen_color: str = "BLACK",
 fill_color: str = "BLUE",
):
 self._x = x
 self._y = y
 self.width = width
 self.height = height

574.1 Object-oriented programming (OOP)
 self.pen_color = pen_color
 self.fill_color = fill_color

 @property
 def x(self):
 return self._x

 @x.setter
 def x(self, value: int):
 if self._x + value < 0:
 self._x = 0
 elif self._x + self._width + value > Screen.max_x:
 self._x = Screen.max_x - self._width
 else:
 self._x = value

 @property
 def y(self):
 return self._y

 @y.setter
 def y(self, value):
 if self._y + value < 0:
 self._y = 0
 elif self._y + self._height + value > Screen.max_y:
 self._y = Screen.max_y - self._height
 else:
 self._y = value

The first element to notice is that the attributes x and y are prefixed with a single
underscore (_) character. Using the underscore this way is a convention to indicate
the attribute should be considered private and not accessed directly. It doesn’t
enforce any notion of a private attribute, however.

 The second element to notice is the new decorated methods in the class. For
example, the two new methods for accessing the self._x attribute are as follows:

 @property
 def x(self):
 return self._x

 @x.setter
 def x(self, value):
 if not (0 < value < SCREEN_WIDTH - self.width):
 self.dir_x = -self.dir_x
 self._x += abs(self._x - value) * self.dir_x

The @property decorator over the first def x(self) function defines the getter
functionality—in this case, just returning the value of self._x.

 The @x.setter decorator over the second def x(self, value) function
defines the setter functionality. Inside the function, self._x is constrained to within
the screen x-axis minimum and maximum dimensions. If setting the value of

58 CHAPTER 4 The object of conversation
self._x would place any part of the rectangle outside the screen area, the direction
of travel is negated to start it moving in the opposite direction. Having these deco-
rated methods in the Rectangle class means code like this works again:

rectangle.x += 1

The program statement appears to be setting the Rectangle instance x attribute
directly, but the decorated methods are called instead. The += operation calls the
getter method to retrieve the current value of self._x, adds 1 to that value, and uses
the setter method to set self._x to that new value. If the resulting change places the
rectangle outside of the screen dimensions, the direction of travel along the x-axis is
reversed.

 The beautiful part of this is you can define your classes using direct attribute access
initially. If it becomes necessary to constrain or control access to an attribute, you can
define getter and setter property methods. Existing code using your class doesn’t have
to change at all. From the point of view of the caller, the API of the class is the same.

 Take note of another feature of using setter and getter decorated methods: you
don’t need to create both setter and getter decorated functions on attributes. You can
create only a getter, which produces a read-only attribute. Likewise, you can create
only a setter, which produces a write-only attribute. There is also an @deleter decora-
tor to delete an attribute, but this feature is rarely used.

DECORATORS

Before moving on, let’s talk about decorators. In Python, a decorator is a way to
extend or modify the behavior of a function without changing the function itself. Dec-
orating a function sounds confusing, but an example will help make the intent clear.
As has been stated before, functions are objects in Python. This means functions can
be passed to and returned from other functions as parameters like any other object.

 The function defined here demonstrates the use of decorators:

from time import sleep

def complex_task(delay):
 sleep(delay)
 return "task done"

When the function is called, it uses the delay parameter to emulate some complex task
that takes time to perform. It then returns the string task done when the function ends.

 Suppose logging information about execution time is required, before and after this
function is called, that includes the amount of time it takes to execute. This could be
done by adding the logging information to the function itself, but that creates code
maintenance issues, as every function to be timed would have to be updated if the tim-
ing code changes. You can instead create a decorator function to wrap complex_task
with the desired new functionality. The decorator function looks like this:

def timing_decorator(func):
 def wrapper(delay):

594.1 Object-oriented programming (OOP)
 start_time = time()
 print("starting timing")
 result = func(delay)
 print(f"task elapsed time: {time() - start_time}")
 return result
 return wrapper

This code looks odd because the timing_decorator function defines another func-
tion inside itself called wrapper. The timing_decorator outer function also
returns the wrapper inner function. This is perfectly fine Python syntax because func-
tions are objects; the wrapper function is created and returned when the outer
timing_decorator function is executed.

 The func parameter of the timing_decorator is the function object being dec-
orated. The delay parameter of the wrapper function is the parameter passed to the
decorated function.

 The code inside the wrapper function will execute, including calling the deco-
rated func object. The following example will help clarify what’s happening:

new_complex_task = timing_decorator(complex_task)
print(complex_task(1.5))

Here the complex_task function object is passed to the timing_decorator func-
tion. Notice there are no parentheses on complex_task; the function object itself is
being passed, not the results of calling the function. The new variable new_complex_
task is assigned the return value of timing_decorator, and because it returns the
wrapper function, new_complex_task is a function object.

 The print statement calls new_complex_task, passing it a delay value and print-
ing the following information:

starting timing
task elapsed time: 1.6303961277008057
task done

This output shows the functionality added by timing_decorator and the original
functionality of complex_task that is executed.

 The example is interesting but not that useful, as every invocation of complex_
task would have to be passed as a parameter to timing_decorator to obtain the
additional timing functionality. Python supports a syntactic shortcut that makes this
easier by adding @timing_decorator right before the definition of the complex_
task function. This addition has the effect of “decorating” complex_task and creat-
ing a callable instance of the now-wrapped function. The code is shown here:

@timing_decorator
def complex_task(delay):
 sleep(delay)
 return "task done"

print(complex_task(1.5))

60 CHAPTER 4 The object of conversation
The examples/CH_04/example_04 program demonstrates wrapping the task
directly and using the decorator syntax, and when run, it produces this output:

starting timing
task elapsed time: 1.5009040832519531
task done

starting timing
task elapsed time: 1.5003101825714111
task done

The output shows complex_task running, but it also indicates that @timing_
decorated has wrapped complex_task with additional functionality that is also run-
ning and generating log messages about the elapsed time. The complex_task code
hasn’t changed to provide this; the wrapper function inside timing_decorator
does this work. The win here is that any function or method with the same signature
as complex_task can be decorated with the @timing_decorator to generate tim-
ing information.

4.1.3 Inheritance

Being able to merge data and the behavior relevant to that data into classes gives you
very expressive ways to structure your programs. When building classes, situations
arise where functionality is common to more than one class. As a developer, it
becomes part of our nature to follow the DRY (don’t repeat yourself) principle. You
can follow this principle when creating objects in Python by using inheritance.

TIP As a developer, it pays not to repeat yourself, as repetition opens the
door to introducing mistakes or differences in the code. If the code you use
repeatedly is right, then it’s right everywhere. If you repeat code, rewrite it; it
can be right in some places and wrong elsewhere. This makes it hard to find
and fix.

Like actual parents and their children, attributes and behaviors are inherited from
the parent but aren’t exact duplicates. When talking about OOP class design, the
terms parent and child are used because the metaphor works well. The terms base class
and derived class are also used to indicate the parent–child relationship.

 You’ll also see words like superclass used to refer to the parent and subclass to refer
to the child. These are terms applied to the relationship between objects when talking
about inheritance.

 One of the reasons to use inheritance is to add attributes and behavior unique to
the child, possibly modifying those inherited from the parent. It’s also useful to derive
multiple children from a parent class, each with its own set of unique attributes and
behaviors but still imbued with characteristics from the parent. Creating an inheri-
tance relationship between two classes in Python is performed like this:

614.1 Object-oriented programming (OOP)
class ParentClass:
 pass

class ChildClass(ParentClass):
 pass

The ParentClass definition creates a root-level class definition. The definition of
the ChildClass includes the class inherited from inside the parentheses. In the
example, it inherits from ParentClass. The pass statement in both class definitions
is a nop (no operation) in Python and is necessary to make the class definitions syntac-
tically correct but without functionality.

 In the examples/CH_04/example_02 code, a Rectangle class was created with
a position on the screen, a pen color to draw with, and a color to fill the rectangle.
What if you wanted to create other shapes, like squares and circles? Each shape would
have a position and dimension on the screen and a pen and fill color.

 The direct approach would be to create complete, standalone Square and
Circle class definitions and draw instances of each on the screen. Each class would
have all of the attributes and methods of the Rectangle class but with a different
draw() method to draw that unique shape. Creating separate classes for Square and
Circle would work for the relatively small number of shapes involved but wouldn’t
scale well if many more shapes were required.

 This presents an opportunity to use inheritance to gather the attributes and their
associated behavior into a parent class you could call Shape. This Shape parent class
would be used to collect the common attributes and methods in one place. Any shape
drawn onscreen would be a child of the Shape parent.

 You’ll start by reproducing the functionality of the examples/CH_04/example_03
application by making use of inheritance. The examples that follow are from the
examples/CH_04/example_04 application.

 Figure 4.4 shows that the attributes and methods of the Rectangle class defini-
tion have moved to the Shape class, and the Rectangle now inherits from it. The
Shape name in italics indicates it’s abstract and shouldn’t be instantiated directly. The
draw() method is also in italic because it exists in the Shape definition but has no
functionality of its own. The functionality must be provided by the child class—in this
case, Rectangle.

 Because the Shape class is essentially what the Rectangle was, the code isn’t
shown; instead, the updated Rectangle class is shown here:

class Rectangle(Shape):

 def draw(self):
 arcade.draw_xywh_rectangle_filled(
 self.x, self.y, self.width, self.height, self.fill_color
)
 arcade.draw_xywh_rectangle_outline(
 self.x, self.y, self.width, self.height, self.pen_color, 3
)

62 CHAPTER 4 The object of conversation
Figure 4.4 The UML diagram showing the relationship between the Shape and
Rectangle classes

The first line of the Rectangle class has been modified to include Shape within
parentheses. This is how the Rectangle class inherits from the Shape class.

Shape

+ _x: int

+ _y: int

+ width: int

+ height: int

+ pen_color: tuple = COLOR_PALETTE[0]

+ fill_color: tuple = COLOR_PALETTE[1]

+dir_x: int = 1

+ dir_y: int = 1

+ speed_x: int = 1

+ speed_y: int = 1

+ __init__(): None

+ x(): None

+ y(): None

+ set_pen_color(): Rectangle

+ set_fill_color(): Rectangle

+ draw(): None

Rectangle

+ draw(): None

Class name

Class name

Attributes

Methods

Attributes (none)

Methods

Rectangle extends the
shape class

Abstract
method

Extends

634.1 Object-oriented programming (OOP)
 The rectangle has been refactored to have only a unique draw() method to draw
itself on the screen. The draw() method overrides the empty abstract method pro-
vided by the Shape class. Everything else is managed and maintained by the Shape
class. Even the __init__() initializer has been removed because the initializer from
the Shape class is sufficient.

 It’s reasonable to question the advantage of splitting the original Rectangle into
two new classes, Shape and Rectangle. You’ll see this in the next examples when
Square and Circle shapes are added to the application. Figure 4.5 shows that run-
ning the application presents a screen exactly as seen previously—a single rectangle
bouncing around the screen and changing colors.

MULTIPLE SHAPES

Now that you have an inheritance structure defined, you can use it to create multiple
kinds of shapes with different attributes and behaviors. Adding a Square and a
Circle class to the inheritance structure is straightforward. Each additional class
inherits from a parent class providing common attributes and methods that are useful
to the new child class.

 Figure 4.6 shows a few interesting elements of the inheritance structure. Notice
the Square class inherits from Rectangle instead of Shape. This is because a square
is a special case of a rectangle with the height and width equal to each other.

Window with
the drawing surface

Animated rectangle in
the drawing window

Figure 4.5 Screenshot of the rectangle
on the window drawing surface

64 CHAPTER 4 The object of conversation
Figure 4.6 The relationships between the shapes drawn on the screen

Shape

+ _x: int

+ _y: int

+ width: int

+ height: int

+ pen_color: tuple = COLOR_PAL

+ fill_color: tuple = COLOR_PALE

+ dir_x: int = 1

+ dir_y: int = 1

+ speed_x: int = 1

+ speed_y: int = 1

+ __init__(): None

+ x(): None

+ y(): None

+ set_pen_color(): Rectangle

+ set_fill_color(): Rectangle

+ draw(): None

Rectangle

+ draw(): None

Extends

Circle

+ __init__(): None

+ draw(): None

Square

__init__(): None

Extends

Extends

Shape parent
class

Derived
children
classes

654.1 Object-oriented programming (OOP)
This brings up a concept about inheritance and the relationships between objects. As
just mentioned, a Square IS-A Rectangle, and a Rectangle IS-A Shape, which
means a Square IS-A Shape as well. Here is the class definition code for the Square
class:

class Square(Rectangle):

 def __init__(
 self,
 x: int,
 y: int,
 size: int,
 pen_color: tuple = COLOR_PALETTE[0],
 fill_color: tuple = COLOR_PALETTE[1],
 dir_x: int = 1,
 dir_y: int = 1,
 speed_x: int = 1,
 speed_y: int = 1,
):
 super().__init__(
 x, y,
 size,
 size,
 pen_color,
 fill_color,
 dir_x,
 dir_y,
 speed_x,
 speed_y
)

The Square class has an __init__() method even though its parent class, the
Rectangle class, doesn’t. The Square provides this unique __init__() method
because it only needs to get a single-dimension value—size—and not height and
width. It then uses the parameters in the __init__() method when it makes a call to
super().__init__(). Because the Rectangle class doesn’t have an __init__()
method, the super().__init__() calls the Shape class constructor, passing the
size parameter for both height and width to set the attribute dimensions.

 The super() method is how to explicitly call the __init__() method of the
child’s parent class. The Square class doesn’t need to provide a draw() method, as
the one inherited from the parent Rectangle class works fine but with the height
and width attributes having the same value.

 The Circle IS-A Shape because it inherits directly from the Shape class. The
code that creates the Circle class is shown here:

class Circle(Shape):

 def __init__(
 self,
 x: int,

66 CHAPTER 4 The object of conversation
 y: int,
 radius: int,
 pen_color: tuple = COLOR_PALETTE[0],
 fill_color: tuple = COLOR_PALETTE[1],
 dir_x: int = 1,
 dir_y: int = 1,
 speed_x: int = 1,
 speed_y: int = 1,
):
 super().__init__(
 x,
 y,
 radius * 2,
 radius * 2,
 pen_color,
 fill_color,
 dir_x,
 dir_y,
 speed_x,
 speed_y,
)

 def draw(self):
 radius = self.width / 2
 center_x = self.x + radius
 center_y = self.y + radius
 arcade.draw_circle_filled(
 center_x,
 center_y,
 radius,
 self.fill_color
)
 arcade.draw_circle_outline(
 center_x,
 center_y,
 radius,
 self.pen_color,
 3
)

Like the Square class, the Circle supplies its own __init__() method so the caller
can provide a radius for the circle. The radius parameter is used in the
super().__init__() call to set the height and width dimensions of the area that
the circle will be drawn within. Unlike the Square class, the Circle class does pro-
vide a unique draw() method because it calls different drawing functions in the
arcade module to draw itself onscreen. When the CH_04/example_05 application
runs, it creates a window with three different shapes bouncing around within the win-
dow and changing colors. Initially, it looks similar to figure 4.7.

674.1 Object-oriented programming (OOP)
4.1.4 Polymorphism

Another feature of inheritance, called polymorphism, can be useful when creating class
hierarchies. The word polymorphism means “many forms,” and in relation to program-
ming, it means calling a method of multiple objects by the same method name but get-
ting different behavior depending on which instance of an object is used.

 The examples/CH_04/example_05 application has already taken advantage of
polymorphism when rendering the different shapes in the window. Each of the shapes
in the program supports a draw() method. The Rectangle class provides a draw()
method to render itself on the application screen. The Square class uses the inherited
Rectangle draw() method but with a constraint on the height and width to create a
Square. The Circle class provides its own draw() method to render itself. The Shape
root parent class also provides an abstract draw() method that has no functionality.

 Because the Rectangle, Square, and Circle classes all have an IS-A relation-
ship with the Shape class, they all can be considered instances of Shape and use the
methods provided by the class. This is what happens in the Display class when the

Object-oriented genealogies
Inheritance in OOP is a feature that allows you to create useful and powerful class hier-
archies. Keep in mind that just like human genealogies, the descendants become less
and less like the root parent class as you descend the tree.

Large hierarchies of classes can become complex to use and understand, and the
root class functionality can become wholly obscured in distant child classes. In my
work, I’ve never gone beyond three levels in any parent–child relationships in the
class hierarchies I’ve built.

The square, circle, and
rectangle shapes drawn,
and being animated,
onscreen

Figure 4.7 All three shapes drawn onscreen

68 CHAPTER 4 The object of conversation
on_update(), on_draw(), and change_colors() methods are called. The
Display class has a collection of shapes in the self.shapes = [] list created in the
__init__() method. For example, here is the code in the on_draw() method:

def on_draw(self):

 # Clear the screen and start drawing
 arcade.start_render()

 # Draw the rectangles
 for shape in self.shapes:
 shape.draw()

This code is called every time the system wants to draw the objects on the screen, which
is approximately 60 times a second when using the arcade module. The code takes
advantage of polymorphism to iterate through the list of shapes and call the draw()
method of each one. It doesn’t matter that each shape is different; they all support a
draw() method, and all the shapes are rendered onscreen. Any number of different
shapes could be derived from the Shape class, and so long as they support a draw()
method that renders the shape on the screen, the mentioned loop would work.

4.1.5 Composition

In the inheritance section, you saw the relationships between the Rectangle,
Square, Circle, and Shape classes. These relationships allowed the child classes to
inherit attributes and behavior from their parent class. This creates the idea that a
Rectangle IS-A Shape, and a Square IS-A Rectangle, which also means a Square
IS-A Shape as well.

 These relationships also imply a certain similarity between attributes and behaviors
of the parent classes and the child classes that inherit from them. But this isn’t the
only way to incorporate attributes and behavior into classes.

Real-world objects shouldn’t constrain object design
It is common to use analogies to real-world objects or concepts when writing about
inheritance. The examples presented do exactly this, using the idea of shapes, rect-
angles, squares, and circles. Using concepts already familiar to you is a useful met-
aphor because they are things you know already. There are plenty of other new
concepts presented when talking about inheritance; using familiar ideas reduces the
cognitive load while learning.

However, this metaphor can get in the way of creating useful hierarchies of classes
in your applications. Because we’ve been talking about things that have behavior like
actual objects in the real world, it can color how you think about your class design.
The objects you create from the classes you design don’t have to model real-world
objects. Many of the objects that are useful to model with classes have no analog in
the real world, and adhering to the analogy too strictly can hinder the work you’re try-
ing to accomplish.

694.1 Object-oriented programming (OOP)
 Look at the Shape class; it has two attributes for pen and fill color. These two attri-
butes provide color to the shape and are distinguished from each other by their
names. But they offer the same thing—a color, most likely from a palette of colors the
system can create. This means the color is a common attribute within the Shape itself
and is expressed twice.

 It’s possible with inheritance to handle this and add to the hierarchy in the exam-
ples by creating a Color class with pen and fill color attributes and then having the
Shape class inherit from it. This would work, but the inheritance feels awkward. You
can make a Shape have an IS-A relationship to a Color class in code, but logically it
doesn’t make sense. A shape is not a color, and it doesn’t fit the mental IS-A model of
an inheritance structure.

 Instead of trying to force inheritance to provide the desired behavior, you can use
composition. You’ve already been using composition when giving classes attributes
that are integers and strings. You can take this further and create custom classes to be
used as attributes, composing behavior into your own classes.

 Creating a new class Color provides a consistent abstraction for color in the appli-
cation. It has a class-level definition for the colors supported and has a mechanism to
allow only defined colors to be set. The Color class is connected to the Shape class as
a composite, indicated in figure 4.8 by the connecting line with the filled black-dia-
mond symbol.

 Here is what the Color class looks like from the examples/CH_04/example_06
application program:

@dataclass
class Color:

 PALETTE = [
 arcade.color.BLACK,
 arcade.color.LIGHT_GRAY,
 arcade.color.LIGHT_CRIMSON,
 arcade.color.LIGHT_BLUE,
 arcade.color.LIGHT_CORAL,
 arcade.color.LIGHT_CYAN,
 arcade.color.LIGHT_GREEN,
 arcade.color.LIGHT_YELLOW,
 arcade.color.LIGHT_PASTEL_PURPLE,
 arcade.color.LIGHT_SALMON,
 arcade.color.LIGHT_TAUPE,
 arcade.color.LIGHT_SLATE_GRAY,
]
 color: tuple = PALETTE[0]
 _color: tuple = field(init=False)

 @property
 def color(self) -> tuple:
 return self._color

 @color.setter
 def color(self, value: tuple) -> None:
 if value in Color.PALETTE:
 self._color = value

70 CHAPTER 4 The object of conversation

Figure 4.8 The UML diagrams for the classes, including the composited Color class

Shape

+ _x: int

+ _y: int

+ width: int

+ height: int

+ pen_color: tuple = Color(Color.PALETTE[0])

+ fill_color: tuple = Color(Color.PALETTE[1])

+ dir_x: int = 1

+ dir_y: int = 1

+ speed_x: int = 1

+ speed_y: int = 1

+ __init__(): None

+ x(): None

+ y(): None

+ set_pen_color(): Rectangle

+ set_fill_color(): Rectangle

+ draw(): None

Rectangle

+ draw(): None

Extends

Circle

+ __init__(): None

+ draw(): None

Square

__init__(): None

Extends

Extends

Shape parent
class

Derived
children
classes

Color

+ _color: tuple

+ color(): None

Color class included
in Shape class as a
composite

714.1 Object-oriented programming (OOP)
The Color class moves the allowable color list within the scope of the class and out of
the global module namespace. It’s also a Python data class, which can make defining
simple classes that are mostly data easier to implement. The class provides getter
and setter property decorators to make using the color within the class more
straightforward.

 The Shape class is modified to use the Color class for the pen and fill color attri-
butes. The updated __init__() method for the class is shown here:

class Shape:

 def __init__(
 self,
 x: int,
 y: int,
 width: int,
 height: int,
 pen: Color = Color(),
 fill: Color = Color(),
 dir_x: int = 1,
 dir_y: int = 1,
 speed_x: int = 1,
 speed_y: int = 1,
):
 self._x = x
 self._y = y
 self.width = width
 self.height = height
 self.pen = Color(Color.PALETTE[0])
 self.fill = Color(Color.PALETTE[1])
 self.dir_x = 1 if dir_x > 0 else -1
 self.dir_y = 1 if dir_y > 0 else -1
 self.speed_x = speed_x
 self.speed_y = speed_y

The attribute names for pen and fill color have been simplified to just pen and fill
because they are both Color class instances. The initial default values have been set to
black for the pen and light gray for the fill colors. Adding the Color class to the
Shape class this way creates a HAS-A relationship; a Shape class has Color attributes
but isn’t a color itself.

 The set_pen_color() and set_fll_color() methods have also been modi-
fied to use the new pen and fill attributes. Setting a color for the pen now looks like
this:

def set_pen_color(self, color: tuple) -> Rectangle:
 self.pen.color = color
 return self

Running the examples/CH_04/example_06 application produces a screen exactly
like you’ve seen before—three shapes bouncing around the window and changing
colors every second. The use of composition gives you a way to add attributes and
behavior to a class without having to create contrived inheritance hierarchies.

72 CHAPTER 4 The object of conversation
4.2 Closing thoughts
Creating classes and class hierarchies gives you a way to create code that’s clean and
well-controlled in its usage. Classes are another avenue to give your users an API into
application functionality.

 A class definition also can be used to create namespaces and control scope. A mod-
ule provides a namespace, and classes defined within that module create more name-
spaces within it. The attributes and methods of a class are within the scope of instance
objects created from the class.

 You’ve moved closer to particular elements of the developer domain and are now
using binoculars to gain more detailed views of those domains. We’ll continue to scan
useful and powerful domains for insights on our journey.

Summary
 OOP gives you the ability to encapsulate data together with the functionality

that acts on that data. This gives objects “behaviors” that make thinking about
how those objects react and interact with other objects a little easier.

 Python creates the structure of objects using class definitions. A class gives the
object a look and feel; an instance of a class is the realization of a class in your
code. Like a cookie cutter defines what a cookie is, the cookie is the instance of
what the cookie cutter defines.

 Like namespaces, classes can create hierarchal structures by using inheritance
from a parent class to a child class. A child class inherits attributes and features
from its parent and can add new, unique features of its own.

 Using composition, attributes and functionality can be added to a class design
without creating awkward or illogical inheritance structures.

 You’ve learned about classes, inheritance, and creating class hierarchies. Using
classes is a powerful way to take advantage of code reuse and adhere to the DRY
principle.

 By using composition, you can add additional attributes and features to defini-
tions that don’t come from inheritance and thus avoid awkward and illogical
inheritance hierarchies.

Exceptional events
Developing software can lead you to think in a binary way—things are either on or
off; they work or don’t work; something is either true or false. However, the real
world is far from binary; it is a sea of variety. The software you create for yourself,
and others, lives in that world.

 The real world is not black or white; it is an infinitely variable field stretching
between those two extremes. Computer systems that run software lose power and
fail. The networks connecting systems are slow, intermittent, or unreliable. The
storage systems on which software depends to save information become full, unreli-
able, or fail. The users of your software make incorrect assumptions and enter
wrong or misleading data.

This chapter covers
 What exceptions are

 Why they occur in programs

 How to handle exceptions

 How to raise an exception

 Creating custom exceptions
73

74 CHAPTER 5 Exceptional events
 In addition to the problematic world in which software runs, you will create bugs
in the code you write. Software bugs are errors or failures, causing an application to
produce unexpected results. Most software applications providing something useful
are complex enough that bugs will creep in. These come from wrong assumptions on
the part of the developer, oversights, and simple everyday mistakes.

 This shouldn’t discourage you as a developer but should broaden the way you
think about creating software applications. The problems outlined previously can be
managed and handled and are part of the challenge of becoming a developer. How
you handle these challenges is dependent on the requirements of the application and
its users.

 If you’re knocking together a quick program to solve a problem for yourself, creat-
ing something that might crash if given incorrect input is probably acceptable. On the
other hand, if you’re creating something hundreds, or thousands, of users will access,
application crashes are far less acceptable. It will take longer to develop and build
code to handle conditions that might arise. Figure 5.1 shows the relationship between
three things related to the development of software applications.

Figure 5.1 The Venn diagram of three aspects of the reality of developing software

Good in this context indicates that the software application quality is good and meets
the requirements and user expectations, with a low occurrence of bugs. Fast and
Cheap are a little harder to define because they relate to time and money, as the
adage goes.

 The intersection of Good and Cheap represents the time it takes to develop a soft-
ware application and indicates that it can take more time to create. This can happen if
an inexperienced developer, or a small team of developers, works for a relatively long
time to create a good application.

Good

Fast Ch
ea

p

Unicorns

Good, but
expensive

Good, but
slow

Low quality

Good software,
but slow to
develop

Too many
shortcuts to have
any quality

The mythical
land of the
unicorns, attractive,
but unattainable

Good software,
expensive to
develop

755.1 Exceptions
 The intersection of Good and Fast also represents time and indicates creating the
application quickly, with good quality. This almost always entails more experienced
developers who can create an application in a relatively short amount of time.

 The intersection of Fast and Cheap involves making tradeoffs in quality to create
the application quickly. An application created this way might be acceptable for a one-
off utility application but generally should be avoided.

 Only the intersection of two of the circles can ever be achieved, even though the
diagram shows the intersection of all three circles. The intersection of all three circles
is where magical unicorns live. Trying to find a path to the land of the unicorns will
keep you from actually creating something useful.

 A software application with good quality meets the needs of its users in a couple of
ways. It provides the functionality intended and what the user expects, and it doesn’t
behave in unexpected ways if things go wrong.

 As mentioned in the introduction to this chapter, in the real world, unexpected
events happen all the time. Storage devices become full, networks disconnect, and
users enter incorrect data, unintentionally or otherwise. Unexpected events can occur
at any time and are handled in Python by an exception being raised.

5.1 Exceptions
Python handles unexpected events in running applications by raising exceptions. You
can think of these as exceptional conditions occurring while an application runs, and
they’re not all necessarily errors.

 If you’ve written any Python programs, you’ve seen exceptions raised. A simple
math error in a program statement will raise an exception, as shown here:

>>> print(10/0)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ZeroDivisionError: division by zero

The exception ZeroDivisionError is raised by Python because the results of divid-
ing a value of 10 by 0 are undefined. The exception ZeroDivisionError is a child,
or subclass, of the base Exception class. The Exception class is the parent of most
other exceptions that Python can raise.

 In this way, the Exception class is precisely like how the Shape class is the parent
of the Rectangle class in the previous chapter. A ZeroDivisionError exception is
a more specific version of the more general base Exception class.

 When an exception occurs in a program, Python will stop executing your program
code and start working its way back up the call stack looking for an exception handler.
The call stack is the series of function calls leading to the code that raised the exception.
Python is looking for a handler to intercept the exception and do something with it. If
no exception handler is found, Python exits the application and prints a stack trace.

 The stack trace is a chronological listing descending from the root of the applica-
tion down the call stack of functions that were called to reach the point in the code
where the exception was raised. Each function listed in the stack trace also shows the

76 CHAPTER 5 Exceptional events
line number in the module where the function in the stack trace is called. The stack
trace continues until the last function is called, where the line number that raised the
exception is displayed. The example program examples/CH_05/example_01.py
demonstrates this:

def func_a():
 dividend = float(input("Enter a dividend value: "))
 divisor = float(input("Enter a divisor value: "))
 result = func_b(dividend, divisor)
 print(f"dividing {dividend} by {divisor} = {result}")

def func_b(dividend: float, divisor: float) -> float:
 return func_c(dividend, divisor)

def func_c(dividend: float, divisor: float) -> float:
 return dividend / divisor

func_a()

This program shows func_a() getting input from the user for the dividend and
divisor and converting those input strings to floating-point values. It then calls
func_b(), which calls func_c(), which performs the division operation on the two
passed parameters. Running this program produces the following output for the val-
ues entered at the prompts:

Enter a dividend value: 12.2
Enter a divisor value: 0
Traceback (most recent call last):
 File "<path to code>/code/project/CH_05/example_01.py",
 ➥ line 20, in <module>
 func_a()
 File "<path to code>/code/project/CH_05/example_01.py",
 ➥ line 8, in func_a
 result = func_b(dividend, divisor)
 File "<path to code>/code/project/CH_05/example_01.py",
 ➥ line 13, in func_b
 return func_c(dividend, divisor)
 File "<path to code>/code/project/CH_05/example_01.py",
 ➥ line 17, in func_c
 return dividend / divisor
ZeroDivisionError: float division by zero

The code shows Python encountering an exception in func_c() when it tries to
divide 12.2 by 0, then going back up the call stack to func_b() and up to func_a(),
looking for a handler to intercept the exception. Because there isn’t a handler,
Python exits the program and prints the exception and stack trace that caused the
application to crash.

TIP I inserted <path to code> in the program output and stack trace above
because the path to the code shown was relevant to my Mac and wouldn’t be
the same as what you would see running the code on your computer.

775.2 Handling exceptions
Another possible exception that the program can raise happens if the user enters a
string at either of the two prompts that can’t be converted to a floating-point value.
Here is an example of running the program raising that exception:

Enter a dividend value: Python
Traceback (most recent call last):
 File "<path to code>/project/CH_05/example_01.py", line 20, in <module>
 func_a()
 File "<path to code>/code/project/CH_05/example_01.py", line 6, in func_a
 dividend = float(input("Enter a dividend value: "))
ValueError: could not convert string to float: 'Python'

In this example, the stack trace only shows func_a() because the ValueError
exception was raised within that function when the program tried to convert the
string Python to a floating-point value.

5.2 Handling exceptions
Handling exceptions in Python is done by using a try / except block in your pro-
gram code:

try:
 # code that might raise an exception
except Exception as e:
 # code that executes if an exception occurs
else:
 # code that executes if no exception occurs (optional)
finally:
 # code that executes whether an exception occurs or not (optional)

The try statement begins a block of code that might raise an exception your program
can handle. The except Exception as e: statement ends the block of code and is
where an exception is intercepted and assigned to the e variable. The use of e is not
required syntax, and the variable name e is just my convention.

 Because of the except Exception as e: in the handler part of the block, the pre-
vious example will catch any exception raised by the code within the try / except
block. The else and finally clauses of the try / except block are optional and
used less often in practice.

5.2.1 Handling an exception if the code can do something about it

When thinking about exceptions, it’s easy to get into a frame of mind to handle them
everywhere they might occur. Depending on where in the program the exception
occurs, this might be a logical choice.

 Often, exceptions happen within the context of a function where the code is act-
ing on the arguments passed to it. At this point, the scope of work the code is per-
forming is narrow, and the broader context of what the program is trying to
accomplish is at a higher level.

TIP If you’re using the concept of “single responsibility,” then it is likely that the
function has little context of the bigger picture that the application is creating.

78 CHAPTER 5 Exceptional events
When an exception occurs in a function, the exception handler can make reasonable
choices within the context of the function. The handler might be able to retry the
operation for a fixed number of attempts before letting the exception flow upward in
the call stack to a higher context. It could make assumptions based on the exception
and correct or change the state of data to make the code continue without raising an
exception.

5.2.2 Allowing exceptions to flow upward in your programs

Unless the code where the exception occurs can do something useful about the
exception, it’s better to let the exception flow upward through the call stack to a
higher level of context. At higher levels of context, decisions can be made about how
to handle the exception. The higher-level context might be the point where choices
about retrying operations are made. At the higher levels of context, more information
might be available about what the program is trying to accomplish and what alterna-
tive paths can be taken. At this point, you can decide what information to present to
the user so they can make choices about how to proceed.

 The program should also log the exception and the stack trace associated with it,
so the application developers have information about the path taken that generated
the exception. This is incredibly useful information to have when debugging an appli-
cation and trying to resolve problems.

 Where in the code to log exceptions depends partly on whether the exception was
handled or not. If the exception was handled, it may not be necessary to log informa-
tion about it. However, it might be useful to output a log message, not as an error but
at the information level to make it visible.

 It’s also possible that an exception is fatal to the program and nothing can be done
other than logging the exception stack trace and exiting the program. Exiting an
application is an entirely reasonable course of action for some applications, such as
utility programs and command-line tools.

5.2.3 Informing the user

Keeping the application user informed about the status of an application and the
events occurring in it is also useful. An exception handler in the right context of the
application flow can inform the user to take steps toward corrective action, allowing
the application to retry an action and succeed. The type of exception, and the mes-
sage attached to it, can help generate an informative message to present to the user.

5.2.4 Never silence an exception

It’s possible to handle an exception and silence it. Silencing an exception is shown in
these two examples:

try:
 # some code that might raise an exception
except:
 pass

795.2 Handling exceptions
try:
 # some code that might raise an exception
except Exception:
 pass

The first example catches all exceptions, including system and keyboard events like
CTRL-C to exit a program, which generates the exception KeyboardInterrupt.
This is a system exception and not necessarily an error, just an exceptional event. The
second example catches a narrower scope of exceptions, many of which can be con-
sidered error conditions, but it’s still far too wide a net.

 Worse than catching too broad a class of exceptions, the previous code lets the excep-
tion pass silently. It doesn’t inform the user or log the exception stack trace. The user
is deprived of information about why the application is malfunctioning, and the devel-
oper isn’t given any information about what the exception is or where it’s occurring.

 The presence of either of these blocks of code is an indication of a low-quality
application. Trying to find the source of the problem where this pattern of code exists
in an application is frustrating and time-consuming.

EXAMPLE 1 IMPROVED

The following example code acts on the previous discussion to show when to allow
exceptions to flow upward in the call stack and when an exception handler can be
used to try and correct the situation that caused the exception. The program exam-
ples/CH_05/example_01.py can be improved to handle exceptions and provide a
better user experience. The program examples/CH_05/example_02.py demon-
strates this improvement:

def func_a():
 dividend = float(input("Enter a dividend value: "))
 divisor = float(input("Enter a divisor value: "))
 result = func_b(dividend, divisor)
 print(f"dividing {dividend} by {divisor} = {result}")

def func_b(dividend: float, divisor: float) -> float:
 return func_c(dividend, divisor)

def func_c(dividend: float, divisor: float) -> float:
 return dividend / divisor

successful = False
while not successful:
 try:
 func_a()
 except ZeroDivisionError as e:
 print(f"The divisor can't be a zero value, error:", e)
 except ValueError as e:
 print(
 f"The dividend and divisor must be a string that represents a
 ➥ number, error:",
 e,
)
 else:
 successful = True

80 CHAPTER 5 Exceptional events
 finally:
 if successful:
 print("Thanks for running the program")
 else:
 print("Try entering a dividend and divisor again")

In this example, the functions func_a(), func_b(), and func_c() are unchanged
and don’t catch exceptions. They follow the pattern of letting exceptions flow upward
through the stack to a higher-level context.

 That higher-level context is func_a(). Now there is a while loop around the func-
tion that will keep trying func_a() until it can complete successfully.

 Within the while loop, there is an exception handler catching two exceptions,
ZeroDivisionError and ValueError. Both of these handlers prompt the user with
information about what went wrong and provide advice about how to proceed.

 The else clause of the handler only executes if func_a() runs successfully with-
out raising an exception. When this happens, it sets the successful variable to
True, signaling the enclosing while loop to exit.

 The finally clause takes advantage of the state of the successful variable to
either indicate the program is done or encourage the user to try again. Running this
program with possible input from the user looks like this:

Enter a dividend value: Python
The dividend and divisor must be a string that represents a number, error:

could not convert string to float: 'Python'
Try entering a dividend and divisor again
Enter a dividend value: 12.2
Enter a divisor value: 0
The divisor can't be a zero value, error: float division by zero
Try entering a dividend and divisor again
Enter a dividend value: 12.2
Enter a divisor value: 3.4
dividing 12.2 by 3.4 = 3.5882352941176467
Thanks for running the program

This program follows most of the recommendations to handle exceptions:

 Allows the exceptions that can’t be handled locally to flow upward to a higher
context

 Handles an exception if the code can do something useful about it
 Informs the user about the problem and suggests a solution
 Doesn’t silence an exception

The program doesn’t log the exception and the stack trace, as this would be distract-
ing information for the user given the simplicity of this program. This program han-
dled the exception as part of its expected program flow, which makes logging the
exception information unnecessary.

 That’s not to say the information couldn’t be added to the handlers for Zero-
DivisionError and ValueError if it were deemed useful. Logging an exception
can be handled by using Python’s logging module in the following manner:

815.3 Raising an exception
import logging
logger = logging.getLogger(__name__)
logger.setLevel(logging.DEBUG)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
formatter = logging.Formatter(
 '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
ch.setFormatter(formatter)
logger.addHandler(ch)

try:
 x = 10 / 0
except Exception as e:
 logger.error("something bad happened")

This code imports the logging module and creates a simple logger instance named
after the module in which the instance is created. It then sets the terminal as the out-
put of log messages, creates a formatter for what messages should look like, and adds
the handler to the logger instance. Configuring a logger more fully will be part of
later chapter examples when we start building the MyBlog web application.

 Calling logger.error() inside the exception handler will print the message.
That message will be formatted and look like this:

2022-07-23 18:50:29,803 - __main__ - ERROR - something bad happened

The output includes a timestamp when the exception occurred, the module name,
the error level, and the message. In the previous example, the __main__ name exists
because the example was run as a standalone application.

 If the code was imported into a larger application as a module, __main__ would
be replaced with the name of the module. In a larger application, this information is
useful to narrow down the area where the exception occurred.

 In this simple example, the output of the logger is directed to stdout, which is the
console, or screen for most users. Most use cases of loggers are directed to log files, or
log aggregator systems, to keep logging information from interfering with any output
the program is producing for the user.

 The introduction to this section states an exception should never be silenced,
which is predominantly the right way to handle exceptions. There are situations
where the developer’s knowledge about the code would make silencing an exception
acceptable if taken with forethought. The recommendations listed previously still
hold, however.

5.3 Raising an exception
In Python, you can raise exceptions programmatically in your code. Raising an excep-
tion might seem like an odd thing to do since most of the time an exception equates to
errors. However, raising an exception is a useful way to handle conditions within your
programs that you decide are exceptional and not necessarily programmatic errors.

82 CHAPTER 5 Exceptional events
 As an example, suppose you’re writing a quiz application that provides calculations
based on user input. One of the calculation functions only works if a user-entered
parameter is greater than 0 and less than or equal to 100. The code should define a
range of values acceptable to the function.

 Because integers in Python have a large range, your program code will need to
limit the user input to within the range 0 < value ≤ 100. Restricting the range is easy
enough to do at the point of use in the function, but what should the function do if
the range is violated?

 Most likely the function should do nothing, as it doesn’t have the context to do
anything useful if the range restriction is violated. Keeping in mind the idea of letting
exceptions flow upward to where they can be handled, raising an exception can be
useful. Here is one way to handle the range restriction in the function:

def range_check_user_input(value):
 if not 0 < value <= 100:
 raise ValueError("value range exceeded", value)
 # additional functionality

At the very top of the function, a conditional statement checks if the value parameter
is not within the acceptable range, and if not, a ValueError exception is raised. If
the parameter is within range, the function continues normally.

 The code delegated the responsibility for handling the out-of-range ValueError
exception up the call stack to the calling function. The calling function most likely
does have the context necessary to handle the exception, perhaps by prompting the
user to enter the value parameter again.

 Handling the ValueError exception in the calling function might look like this:

def get_data_from_user():
 # initialization and gather user input
 try:
 range_check_user_input(value)
 except ValueError as e:
 print(e)
 # restart code to get user input

The get_data_from_user() function calls the range_check_user_input()
function inside a try / except block that handles a ValueError exception, prints
the error out for the user, and restarts the process to get data from the user.

5.4 Creating your own exceptions
Python allows you to create custom exception classes your code can raise. Creating a
custom exception might seem unnecessary since Python has a rich set of exception
classes already defined. There are a couple of good reasons to create custom
exceptions:

 Exception namespace creation
 Exception filtering

835.4 Creating your own exceptions
 In the previous section, the ValueError was raised by the range_check_
user_input() function, so an exception handler at a higher level in the
get_data_from_user() function can intercept and address it. But suppose the
range_check_user_input() function raised an unrelated ValueError later in the
function. The exception would flow upward through the stack to the calling function
and be caught by the exception handler in get_data_from_user().

 At that point, what should the get_data_from_user() function do? The code
can’t assume the correct behavior is to show the error to the user and restart the pro-
cess of gathering data, because the range check isn’t the only possible source of the
exception.

 One option is to examine the exception arguments by looking at the e.args attri-
bute tuple. Then the code can make choices within the exception handler to deter-
mine the source of the exception. This solution is brittle since it depends on the
arguments passed at the point where ValueError was raised, and those might
change sometime later.

 A better design is to create an exception specific to the needs of the program, nar-
rowing the scope of the exceptions to handle. You can create a custom exception han-
dler in the module that defines the range_check_user_input() function like this:

class OutsideRangeException(Exception):
 pass

def range_check_user_input(value):
 if not 0 < value <= 100:
 raise OutsideRangeException(“value range exceeded”, value)
 # additional functionality

This code creates a new exception class named OutsideRangeException that inher-
its from the parent Exception class. This new exception class is used in the range_
check_user_input() function and raised if the value parameter is outside the
defined range of acceptable values. Now the abbreviated program code looks like this:

class OutsideRangeException(Exception):
 pass

def get_data_from_user ():
 # initialization and gather user input
 try:
 calculated_result = calculate(value)
 except OutsideRangeException as e:
 print(e)
 # restart code to gather user input

def range_check_user_input (value):
 if not 0 < value <= 100:
 raise OutsideRangeException("value range exceeded", value)
 # additional functionality

If the parameter value is outside the acceptable range, the get_data_from_
user() function can catch that specific custom exception and handle it. If any other

84 CHAPTER 5 Exceptional events
exception is raised by the range_check_user_input() function, that exception
will flow upward to a handler catching that specific exception (or just the base class
Exception). A complete example program using the logging module that demon-
strates this is shown here with comments removed for brevity:

import math
import logging

logger = logging.getLogger(__file__)

class OutsideRangeException(Exception):
 pass

def range_check_user_input(value: int) -> float:
 if not 0 < value <= 100:
 raise OutsideRangeException("range exceeded", value)
 return value

def get_data_from_user():
 successful = False
 while not successful:
 value = input(
 "Please enter an integer greater than 0 and less than "
 "or equal to 100: "
)

 try:
 value = int(value)
 except ValueError as e:
 logger.exception("Something happened", e)
 print(e)
 continue
 try:
 result = range_check_user_input(value)
 except OutsideRangeException as e:
 logger.exception("value outside of range", e)
 print(
 "Entered value outside of acceptable range,"
 " please re-enter a valid number"
)
 continue
 print(f"value within range = {result}")
 successful = True

def main():
 get_data_from_user()

if __name__ == "__main__":
 main()

5.5 Closing thoughts
Understanding how to handle and use exceptions is essential to a developer. They are
the events our programs receive from the real world about the things happening to
our programs and the result of the actions our programs take.

85Summary
 A goal of development is to create something useful in the world. Exceptions and
how we handle them are tools allowing you to develop successful programs that will be
used and well-received in that world.

 Exceptions and exception handling are another slice of the developer’s world.
Looking at them closely and gaining an understanding of their details allows you to
use exceptions well as we examine other aspects of developing applications.

Summary
 The world is full of events—some expected, some unexpected. Applications are

also subject to expected and unexpected events, which manifest themselves as
exceptions. Exceptions, and how they’re handled in an application, are part of
the developer’s life.

 Exceptions in Python are handled by introducing try/except blocks of code in
our applications. These try/except blocks give us a way to catch exceptions and
address them, if necessary.

 Where to catch an exception in an application is often decided by where in the
code the context exists to do something useful about the exceptional event.

 Generating exceptions is not always about errors. An exception is neither good
nor bad; it’s just an event. They can be useful for signaling an event to other
parts of an application that might be relevant to the design of your applications.

86 CHAPTER 5 Exceptional events

Part 2

Fieldwork

With the groundwork skills under your belt, you’ll be ready to embark on
a path that will rely on those skills. In this part, you'll be taking a step-by-step
approach to build a functional and nice-looking blogging application.

 The first step is chapter 6, where you’ll create a web application using the
Flask framework. You’ll see how using Jinja2 templates can greatly simplify your
work.

 Chapter 7 is all about applying style to your first application and refactoring
it to make expanding it a manageable task.

 Chapter 8 presents an introduction to authentication. This allows you to
grant access to users who want to use your web application, a big part of which is
creating pages in your web application to register new users.

 In chapter 9, we take authentication further by connecting it with authoriza-
tion. Authorization is all about defining what a registered user can do with a web
application, which protects them, other users, and the application itself.

 Chapter 10 explores what can be done with databases and how useful they
are to persist data over time. You’ll also learn about what an ORM (object-
relational mapper) is and how it dovetails nicely with Python, as well as how you
access databases.

 Finally, chapter 11 pulls all the fieldwork steps together to build the main
functionality of the web application, creating blog content and allowing users to
comment on it. By the time you finish chapter 11, you’ll be well-stocked with
powerful Python tools and ready to take on any number of new projects!

88 CHAPTER

Sharing with the internet
We’ve covered a lot of material in the previous chapters about being a developer.
Now we’re going to put that knowledge to work. Choosing an application to create
is tricky because the possibilities are nearly endless. The project you’ll be creating is
a small but well-featured blogging platform we’ll be referring to as MyBlog. The
MyBlog application will be available as a web-based Python application.

 The MyBlog web application will provide tools with which users can join the
blogging community and create blog posts. Registered users can post content using
markdown for styling what they write. All users will be able to view the posted con-
tent, and registered users will be able to comment on it. Administrative users will be
able to mark any content or comments active/inactive as they see fit. Registered
users will be able to mark any content they’ve created as active/inactive.

This chapter covers
 The project application

 What a web server does

 The Flask microframework

 Running the server
89

90 CHAPTER 6 Sharing with the internet
6.1 Sharing your work
The MyBlog web application is a way to not only share your thoughts, and the
thoughts of the application’s users, but to share your work. The application serves a
particular purpose with a host of features. The work involved to pull together the
technologies to create the MyBlog features is a skill worth showing off.

6.1.1 Web application advantages

The project choice to create a web application is based on a few considerations. First
and foremost, creating a useful web application builds on the topics covered in previ-
ous chapters quite well. Pulling together the topics of development tools, naming and
namespaces, API use and creation, and class design will play into the big picture of the
application.

 Other types of applications also offer some of these opportunities to express what
you’ve learned but can be challenging to share with others. For example, creating a
desktop GUI application offers interesting challenges for a developer. However, dis-
tributing a GUI application for widespread use can be difficult. It’s certainly possible
to do so with Python, but the steps necessary are outside of the scope of this book.

 A web server has some advantages in terms of distributing an application. The web
server itself and the features and services are centrally located and are not running on
the many varied computer environments that users have. Having the server central-
ized like this means that changes and updates to the application happen in one place.
Restarting the server, or pushing changes out interactively, makes the changes and
updates available immediately to all users.

 Another advantage of a web server–based application is making a user interface
available. A web application takes advantage of something installed on just about
every computer in existence, a web browser. Modern web browsers provide a powerful
platform on which to build user interfaces. Data can be formatted and presented in
almost infinite ways. Images and multimedia are also well supported. Users can inter-
act with applications hosted on browsers using interface elements like buttons, lists,
drop-down lists, and forms.

6.1.2 Web application challenges

This isn’t to say using a web browser as an application platform isn’t without chal-
lenges. Creating a web application means you’ll be working in multiple technical
domains. Along with Python, you’ll be creating HTML, CSS, and JavaScript code files.
Additionally, desktop-based applications offer more direct access to the computer
hardware and the tremendous computing power personal computers bring to bear.

 However, with continuing advancements in browsers, new and expanding web
technologies, and ever-increasing internet speed that’s widely available, the perfor-
mance gap between desktop and web-based applications is narrowing. In addition,
web-based systems have grown to have widespread acceptance as a method of deliver-
ing applications. This acceptance makes creating them a valid path for both personal
and professional development.

916.2 Servers
TIP It can’t be overstated how important and valuable web development skills are.
As more and more users migrate from desktop devices to mobile ones that take
advantage of the ubiquity of the internet, this will only become more valuable.

There are existing blogging platforms available to use or download that you can run
on your own. The MyBlog application won’t be in competition with them, as its pur-
pose is a useful teaching framework that gives the example code direction and goals.

 What the application offers isn’t groundbreaking features or technology; blogging
software is well understood. This is one of MyBlog’s advantages, already knowing what
a blog application is intended to supply. The goal isn’t to create a cutting-edge blog
but to see the big picture of the application’s intent and think like a developer to pull
the necessary parts together and paint that picture into existence.

6.2 Servers
The MyBlog web application is a subset of what a server application in general pro-
vides. One definition of a server is an application running on a computer, or comput-
ers, providing functionality to other applications across a network. This arrangement
of multiple applications accessing the functionality of a central server is known as the
client-server model.

 As you build out the MyBlog application, you’ll be running it on your local com-
puter, essentially turning it into a server. The software running on a computer is what
makes it a server, not the computer hardware configuration. Commercial server hard-
ware items are built to optimize the access that the server software needs to run well
but are otherwise just computers.

 We all use social networks and work with the programs that run on our desktop or
mobile devices. Those tools are client applications using the functionality of many
servers. If you play any multiplayer games, the game applications use a server’s func-
tionality to coordinate all the players’ actions in the game. Figure 6.1 shows many
kinds of devices connecting to a server across a network.

Network

Personal computer

Mobile device

Laptop computer

Server

Servers provide functionality and
information to multiple connected
devices.

Multiple devices can access a server
simultaneously across a network.

Figure 6.1 Multiple
devices connecting to
the functionality
provided by a server

92 CHAPTER 6 Sharing with the internet
6.2.1 Request-response model

One common server implementation is the request-response model. The client appli-
cation makes a request to the server, which processes the request and returns a response.
In this kind of application, the server takes no action unless requested to do so.

 In a web application, the client browser makes an HTTP request to the server for a
response. The response is very often a stream of text representing an HTML page.
When the client browser receives the response, it will render the HTML to the
browser window. Depending on the HTML code that creates the page, it might also
make additional requests to the server for information like CSS (Cascading Style
Sheet) and JavaScript files.

 Figure 6.2 represents a simplified view of the request-response communication
occurring between a client and server over time. Initially, the client makes a request to
the server, which might need to retrieve data from a database to compose the
response. When the response is created, it is transmitted back to the client.

 In this example, the response is an HTML page the client application will render
in the browser window. Figure 6.2 shows the back-and-forth communication to render
the HTML page. Part of the HTML code includes links to CSS and JavaScript files that

Database

Client Server

Time

Persistent
storage

Request

Response

Request for CSS files

Response for CSS files

Request for Javascript files

Response for Javascript files

Client-request events Server-response events

Figure 6.2 Client and web server interaction event flow to construct a web page

936.3 Web servers
generate additional requests to the server. The server retrieves the requested files
from the server’s hard disk and sends them as a response to the client. The request-
response model is the primary means that the MyBlog web application will use to get
data from the server and build and present the application information to the users.

6.3 Web servers
A web server is an application responding to HTTP requests from a client application.
A web browser is a client application that makes requests to the web server and inter-
prets the responses and displays them on the screen. Often what’s sent to the client’s
web browser are HTML documents the browser interprets and renders as web pages.
HTML documents are the content the client requested.

 There are many other interactions between a client’s browser and a web server.
The browser can request that the server send pictures and audio and video content,
even downloading other applications to the client’s computer.

 HTML documents can contain links to CSS and JavaScript files. When the HTML
received is rendered by the web browser, the embedded links to those files generate
additional HTTP requests to the web server. The web server responds by sending the
requested content.

TIP Modern web applications make many requests to one or more servers to
provide the content and render the experience that the user expects from the
web application.

CSS files contain styling information applied to the content in the HTML document
displayed on the screen. The CSS code modifies a web page’s look and feel and is the
presentation layer of the HTML’s content.

 JavaScript files contain code that runs in the client’s browser. Once downloaded,
the web browser will start to execute the JavaScript code. This code can be connected
to onscreen button clicks and updates to the display, and just about any action the
user can make on a web page can be handled by JavaScript code.

 JavaScript code can also make HTTP requests to web servers for text and data.
These requests can be initiated by user actions or programmatically and can change
and update web pages dynamically.

HTTP REQUESTS

The HTTP protocol definition is not the intent of this book and is beyond its scope,
but some basic information is useful. Here is an example HTTP request to a web
server:

1 GET /path_part/index.html HTTP/1.1
2 Host: fictional_website.com:80
3 Accept: text/html, */*
4 <CR-LF>

The line numbers in this example are not part of the request but were added to refer-
ence the lines in the explanation of the protocol:

94 CHAPTER 6 Sharing with the internet
1 GET /path_part/index.html HTTP/1.1—This is the start of the request to
the web server. The word GET indicates the HTTP method to use—in this case,
to retrieve the document located at /path_part/index.html using HTTP
protocol version 1.1.

2 Host: fictional_website.com:80—Indicates the domain, suffix, and port
number where the request is sent. The port number (80) is optional and, if
absent, defaults to 80.
– The domain suffix is the text name of the server hosting the website. This

name is translated by a DNS (domain name server) to an IP address so the
network protocol can direct the request to the right server on the internet.

– The suffix comes from a list of suffixes that help manage and differentiate
domains on the internet. You’re probably already familiar with suffixes like
“.com” and “.net,” but there are many others. This makes “myserver.com”
and “myserver.net” two distinct names.

– Ethernet network cards can support 65,353 logical ports, with those from 0
to 1023 reserved for well-known ports used by common applications. For
example, web servers commonly use port 80, which is why it’s the default if
not specified in the URL. However, a server, including web servers, can run
on any port in the range that’s not already in use.

3 Accept: text/html, */*—This header information is optional. In this exam-
ple, it indicates to the server the kinds of responses the client can accept. There
can be many headers, each containing additional information from the client
that can be useful to the web server.

4 <CR-LF>—Indicates carriage return/line feed characters or a blank line, which
is a required part of the HTTP protocol that ends the list of headers and tells
the server to start processing the request.

When I was first getting into web development, it surprised me that the small amount
of text shown here, and broken out in figure 6.3, was literally what was sent across the
network to the server. The first two lines of the request create a URL, or uniform
resource locator, which uniquely identifies what the client is requesting.

Figure 6.3 The fully formed URL uniquely identifies the resource to retrieve.

http://fictional_website.com:80/path_part/index.html

Desired content

Path part, can
be multiples

Port number (optional,
defaults to 80 for http)

Domain suffix

Hostname or IP
address of server

Protocol (can
also be https)

http://www.fictional_website.com:80

956.4 Flask
The server receives this request and takes one of the following steps:

 Maps the request to a file in the server’s control and returns it to the client
 Maps the request to a handler (program code) and returns the output of the

handler to the client
 Determines that the request can’t be answered and returns an error message

The use of the slash character (/) is very much like the slash used as the path separa-
tor for directories and files on a file system. This pattern is a useful way to present a
logical path hierarchy of the resources and content originating at the root domain
fictional_website.com.

 By allowing for multipart paths, a logical hierarchy is created. The hierarchy can
be navigated by a browser application to access different parts of the web server. The
endpoint of a URL can be an actual file resource the web server provides, but it
doesn’t have to be. The logical path created can have no relation to the actual file
path to a resource on the server’s file system.

6.4 Flask
You’re going to build the MyBlog application using Flask, a lightweight web applica-
tion framework for Python. Flask provides the mechanisms and plumbing necessary
for Python to be used as a web application server to create useful applications that per-
form and scale well. Flask includes the ability to answer HTTP requests for URL
resources and connect those requests to Python code that dynamically builds the
response.

 Flask (https://flask.palletsprojects.com/en/2.1.x/) is not part of the standard
library modules that come with Python but is available as a third-party module hosted
by the Python Package Index (https://pypi.org/). Like other modules available to
Python, this makes it installable using the pip utility.

6.4.1 Why Flask?

Python is in the fortunate position of being popular as a language to build web appli-
cations. Because of this, many tools and frameworks exist that Python can use to cre-
ate web applications, Flask being one of them. There’s also Django, Bottle, Pyramid,
Turbogears, CherryPy, and more. All the frameworks are useful; some have a more
particular use case than others, some are faster than others, and some are more spe-
cialized for creating certain kinds of web applications and services.

 Flask lives in the middle ground and is popular because it’s small and has a mini-
mal initial learning curve and is suitable as your skills and needs develop. Many mod-
ules are available that integrate with Flask that you’ll use as the MyBlog application
grows. These modules will give the MyBlog application access to databases, authentica-
tion, authorization, and form creation. Part of the beauty of Flask is not having to
learn or use these expanded capabilities until they’re needed and you’re ready to cre-
ate new features with them.

https://flask.palletsprojects.com/en/2.1.x/
https://pypi.org/

96 CHAPTER 6 Sharing with the internet
TIP As a developer myself, I’ve worked with some of the other web applica-
tion frameworks available to Python. Flask is the one I’ve used the most and
with which I am most familiar. I chose to use Flask because I can write about it
knowing that I can present Flask to your best advantage and not miss details I
might otherwise miss if I were to choose a framework less familiar to me.

6.4.2 Your first web server

Now that you know where you’re headed, let’s get started. The first server comes right
from the Flask website quick-start example and is as good as anywhere to begin learn-
ing Flask. This is the classic "Hello World" example program expressed as a web
application. The code for the server is available in the repository as examples/
CH_06/examples/01/app.py:

from flask import Flask

app = Flask(__name__)

@app.route("/")
def home():
 return "Hello World!"

After running the install steps for the chapter examples and starting your Python vir-
tual environment, the application is run by opening a terminal window and navigating
to the examples/CH_06/examples/01 directory. Enter the following command for
Mac and Linux:

export FLASK_ENV=development
export FLASK_APP=app.py

For Windows users, enter the command:

set FLASK_ENV=development
set FLASK_APP=app.py

Once done, enter the command flask run, and the application will output the fol-
lowing text to the terminal window:

 * Serving Flask app "app.py" (lazy loading)
 * Environment: development
 * Debug mode: on
 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)
 * Restarting with stat
 * Debugger is active!
 * Debugger PIN: 325-409-845

These messages might look ominous, but they are just informing you that the
web server is running in development mode, which isn’t suitable for production. Pro-
duction in this context means running the web server so it’s publicly available. The

Imports the Flask system
into the application

Creates a Flask instance object,
passing it the name of the current file

This decorator connects the home
function to the "/ " application route.The home function will

run when the user
navigates to the "/ " route.

976.4 Flask
Flask built-in development server isn’t optimized or secure enough to be used out in
the wild.

 You’ll also notice the line that informs you that to stop the application you’ll need
to press the CTRL-C keys. Also notice that the terminal cursor doesn’t return, because
the flask run command is running the app instance in an infinite loop, waiting to
receive and process requests.

 A server is intended to run long term and, in fact, would never stop unless
instructed to do so. The server you’ve just started is in an idle state waiting to receive
and process HTTP requests. The Flask development server defaults to running at IP
address 127.0.0.1 on port 5000.

 The IP address 127.0.0.1 is known as localhost and is the loopback interface of
your computer’s network interface. This means you can create servers on this address
and access them even if you don’t have a network card installed on your computer.
The port value of 5000 is just an unused port number out of the 65,535 available on
network interfaces. Both values can be configured, but the defaults are fine for now.

 To interact with the server, you need to open a web browser on your computer and
navigate to http:/./127.0.0.1:5000 as the URL and click enter. The browser will
respond by printing "Hello World!" in the content window. You’ll also see a log
message in the terminal window where the server is running indicating the request
was received and processed correctly, as specified by the 200 at the end of the log mes-
sage. The 200 value is the HTTP status code for “OK,” which means the request was
handled successfully.

CONNECTING ROUTES

One of the important things to notice about the application is how Python code is
connected to a valid URL route to which the server will respond. The @app.route
("/") line of code is a decorator provided by the Flask app instance and applied to
the home() Python function. The decorator is how the home() function is registered
with Flask and connected to the URL "/" route and will be called when a user browses
to http:127.0.0.1:5000. Because the route is defined, the server will respond to
the results of running the home() function, returning the "Hello World" string.

SERVING FOREVER

Once the server is running, it will continue responding to requests until it’s stopped,
essentially running forever while waiting for HTTP requests. There is no explicit loop
in the application code, so how is the server running forever? The loop is part of the
functionality in the Flask app instance. When the flask run command is invoked at
the terminal command line, it looks for an object named app and, if found, starts the
server event loop.

 The event loop is where the server waits for events to process. The events are the
data showing up on the network socket at port 5000. For a web server, the events are
HTTP requests arriving on the network port that the server is monitoring. Unlike
what you might think of as an infinite loop in application code, the server is idle while
waiting for events and uses very little CPU time.

98 CHAPTER 6 Sharing with the internet
UNDEFINED ROUTES

If you go back to the browser and modify the URL to http:/./127.0.0.1:5000/
something and click the enter key, the browser will respond with a Not Found error.
Looking at the log messages in the terminal window, you’ll see a message that the
request was received, but the server responded with a 404 status code. The HTTP pro-
tocol status code 404 essentially equates to Page Not Found.

 This makes sense if you look at your web server application code. At the moment,
the only URL supported is the home route "/"; there is nothing defined to handle
the /something route. The server didn’t crash because it didn’t have the route
defined; instead, the server handled it as an error and informed the user about the
error through the browser.

 The ability to handle errors and continue to function is an important part of the
server’s design and implementation. As you develop the MyBlog application, you’ll
use the errors handled and returned by the Flask server to help determine where
problems exist in the application and where to resolve them.

6.4.3 Serving content

Getting your first web server coded and running is a big step. There’s a remarkable
amount of functionality implemented and executed by the very small amount of code
in app.py. The home() function shows how you can map a URL to Python code that
the web server will support. You can add new functions and map them to additional
routes, and the web server will provide additional URLs to which the browser can
navigate.

 To create a proper web page, you can replace the "Hello World!" string
returned by the home() function with a string containing HTML code. By doing this,
the browser will receive the HTML and render it in the browser window.

 However, useful and well-designed web pages are created with HTML code that
can be hundreds, even thousands, of lines of code. Embedding strings of HTML
code directly into your web server will make it difficult to maintain and does not take
advantage of features available to you through Flask. It’s better to keep HTML content
and Python code separated and build HTML pages as distinct files, which is what we’ll
do next.

DYNAMIC CONTENT

The content served to the browser by the home() function is the string "Hello
World!", which is returned to the browser every time the page is accessed or
refreshed. Because home() is a Python function, it could have returned anything,
including information and data that is generated dynamically. The function could
have returned the result of the random() function, and the browser would have ren-
dered a random value every time the page was accessed. The home() function could
have returned the results of a calculation, the data retrieved from a database, or the
return value of some other HTTP web-based service.

996.4 Flask
 Creating and returning dynamic information is one of the cornerstones of creat-
ing useful web applications, the MyBlog project being one of them. How do you
merge dynamic information with HTML content that can be meaningfully rendered
by browsers?

 Flask includes access to a template language called Jinja2. A template can be
thought of as a document that has placeholders for additional information. This tem-
plate will be combined with data to produce a completed end-result document. Here’s
an example using Python f-string formatting to illustrate the idea:

name = "Joe"
result = f"My name is {name}"
print(result)
My name is Joe

Here the variable name is set to the string "Joe", and the Python format string f"My
name is {name}" acts as the template. The result variable is created and then
printed, and My name is Joe is the output. Python’s f-string formatting is like a small
templating language; it takes in data in the form of the name variable and creates the
resulting string output. Jinja2 works much like this as well.

TIP Keep in mind that once the server delivers content to the browser, there
is no connection between them. For the MyBlog application, any dynamic
content generated by the server has to be injected into the HTML content
before it’s delivered to the browser.

By using a templating language, you can place your HTML code in a separate tem-
plate file and then have Jinja2 substitute your dynamic information and data into the
right places in that template.

USING A TEMPLATE LANGUAGE

Let’s modify the previous web server code to use Jinja2 templates and pass dynamic
data to the template to render in the browser window. The following modified code is
found in examples/CH_06/examples/02/app.py:

from flask import Flask, render_template
from datetime import datetime

app = Flask(__name__)

@app.route("/")
def home():
 return render_template("index.html", now=datetime.now())

The first parameter to the render_template function is the string index.html,
which is the filename of a template file containing Jinja2 template instructions. Every-
thing else passed to render_template is a named parameter. In the example, the
named parameter is now, and it will be assigned the value returned by the code
datetime.now(), the current timestamp.

Imports the Flask function
render_template to use Jinja2Imports the datetime

functionality to
generate dynamic data Uses the render_template

function to connect the
index.html template file

with the now data element

100 CHAPTER 6 Sharing with the internet

 By default, Flask initially searches for template files in a directory called
templates. The template directory should exist in the same directory as the app.py
file, so create that now.

 Inside the templates directory, you’ll need to create a file named index.html.
In the example application, the index.html file looks like this:

<!DOCTYPE html>
<html>

<head>
 <!-- Required meta tags -->
 <meta charset="utf-8">
 <meta
 ➥name="viewport"
 ➥content="width=device-width, initial-scale=1, shrink-to-fit=no"
 ➥
 <title>Your First Web Server</title>
</head>

<body>
 <h1>Current time: {{now}}</h1>
</body>

</html>

The HTML 5 code here presents a complete web page that the browser can render in
its window. The interesting thing in the file is the <h1> headline tag inside the body of
the document:

<h1>Current time: {{now}}</h1>

The {{now}} part of the line is Jinja2 template syntax and will be replaced by the
value of the render_template parameter now, which has a value of the current
timestamp.

 The render_template function uses the Jinja2 templating engine to parse the
template file and substitute elements that follow the Jinja2 syntax rules with data.
Jinja2 is also capable of doing much more processing than just substitution, and we’ll
get to that shortly. Once you’ve created the index.html file, the directory structure
should look something like this:

├── app.py
└── templates
 └── index.html

If you run the app.py file and navigate to the URL, the browser will render the out-
put of the handler shown in figure 6.4. Every time the page is refreshed, the time-
stamp will update. This demonstrates that the home() function is running and the
index.html template is being rendered with a new datetime.now() value every
time the page is refreshed.

HTML 5
boilerplate
code

 Inserts the current datetime in the
{{now}} Jinja output expression

1016.4 Flask

6.4.4 More Jinja2 features

The previous example is a functioning web application, but it only shows off a small por-
tion of what Jinja2 can do. Let’s expand on the example web application to demon-
strate more capabilities of Flask and Jinja2 that you can use in the MyBlog project.

 The updated web application will have a banner and a sticky footer. A sticky footer
is information on a web page that “sticks” to the bottom of the page even if there is
whitespace between it and the rest of the page content above it.

 Figure 6.5 is a screenshot showing the current time as it does now and a page-visits
counter that will increment every time the page is refreshed. There will also be a list of

Dynamically generated
timestamp from Python
handler code

Figure 6.4 Your first dynamically
built web pages served from your
Flask application

Banner that changes background
color on button click

Current time when page rendered

Number of times
page has been
visited (rendered)

List of colors banner
can be changed to,
changes every refresh Button to select random color from

list and change banner background
color

Sticky footer always at bottom of
page unless pushed off by content

Figure 6.5 The web page with more style and color and some interactivity

102 CHAPTER 6 Sharing with the internet
different colors for the banner and a button that will change the banner background
color randomly. The application supplies extra functionality to provide the random
list of colors and the page-visits counter. The server also provides styling information
to the browser in the form of CSS files and client-side (browser) interactivity as a
JavaScript file.

 The ability of the page-visits counter is provided by a Python class using a class-level
variable. By using a class variable, the state of the page count is accessible by any
instance of the class. Any change to the variable is visible to any instance that uses it.
The PageVisit class has a simple purpose and interface:

class PageVisit:
 COUNT = 0

 def counts(self):
 PageVisit.COUNT += 1
 return PageVisit.COUNT

The PageVisit class maintains the availability of the class variable COUNT for all
instances of the class. It also provides the counts() method to increment the value of
COUNT and return it to the caller. Every invocation of the counts() method will
increment the COUNT value by one. The PageVisit class exists because the web
server can handle many users at once who might be making requests for the page, and
a consistent value of COUNT has to be maintained across all of them.

TIP The PageVisit class works for this use case because there is only a sin-
gle instance of the web server running. All requests the server handles would
each have an instance of PageVisit, but they would all reference the same
COUNT class-level variable. This wouldn’t work if multiple web servers were
running, as the COUNT class-level variable would no longer be shared across
those multiple web server instances.

The list of banner background colors is used by both the template file that renders the
HTML of the page and the JavaScript functionality that changes the banner back-
ground colors on button clicks. Therefore, the colors list has to be made available to
the template and the JavaScript engine running on the browser.

 To manage the list of colors, the class BannerColors is created. This class encap-
sulates the primary list of colors as a class-level variable and provides a method gener-
ating a random subset of those colors as a list to use. Like PageVisit, the class
BannerColors has a simple purpose and interface:

class BannerColors:
 COLORS = [
 "lightcoral", "salmon", "red", "firebrick", "pink",
 "gold", "yellow", "khaki", "darkkhaki", "violet",
 "blue", "purple", "indigo", "greenyellow", "lime",
 "green", "olive", "darkcyan", "aqua", "skyblue",
 "tan", "sienna", "gray", "silver"
]

1036.4 Flask
 def get_colors(self):
 return sample(BannerColors.COLORS, 5)

The BannerColors class maintains the class variable COLORS as a list of valid CSS
color name strings. This creates the palette of banner colors that can be displayed on
the page. The get_colors() method returns a random subset of five of those colors
as a list using the Random module and its sample function from the Python standard
library. Every time get_colors() is invoked, it returns a random subset of colors as a
list from the COLORS class-variable list. The PageVisit and BannerColors classes
are added to the app.py file in the examples/CH_06/examples/03 directory and
integrated into the home() function that renders the web page:

@app.route("/")
def home():
 banner_colors = BannerColors().get_colors()
 return render_template("index.html", data={
 "now": datetime.now(),
 "page_visit": PageVisit(),
 "banner_colors": {
 "display": banner_colors,
 "js": json.dumps(banner_colors)
 }
 })

The BannerColors class is instantiated right away, and the get_colors() method is
called, storing the results in the variable banner_colors. This variable is used later
to create the data that is passed to the template for rendering.

 The render_template function is called with the name of the template to ren-
der, index.html, and the data variable. The data variable is a dictionary containing
key/value pairs to pass information used in the template:

 now—The value returned by datetime.now()
 page_visit—An instance of the PageVisit class
 banner_colors—Another dictionary
 display—The previous create banner_colors list variable
 js—The result of JSON stringifying the banner_colors list

The banner_colors dictionary inside the data dictionary contains two variations of
the banner_colors list variable. You’ll see how this is used when we review the
updated index.html template.

 All the work to this point adds functionality to the home operation that’s run when
a user browses to the home page of the application. This functionality passes new data
to the index.html template and is rendered as a complete HTML page by Jinja2.

TEMPLATE INHERITANCE

Before we review the updated index.html template, take a look at the screenshot of
the web application presented earlier in figure 6.5. The page has a banner and a footer

Gets a random list of five
colors and assigns it to the
variable banner_colors

Creates a dictionary of
information to pass to
the template as the
data-named variable

104 CHAPTER 6 Sharing with the internet

Crea
temp

n
w

referre
templa
CSS fil
section. Very often these kinds of visual and informative features are common to every
page of a web application. HTML boilerplate code is also common to every page.

 Based on the “don’t repeat yourself” principle (DRY), it would be useful to pull the
common elements of an HTML page together rather than copying those pieces to
every page. Even worse would be maintaining all those copies of the common ele-
ments as the web application changes and evolves. The Jinja2 templating engine pro-
vides for this using template inheritance, which is conceptually similar to class
inheritance in Python.

 Before using template inheritance, you’ll need to expand the directory structure
of the web application. Because you’re going to be serving static CSS and JavaScript
files to the application, those files need to live somewhere that the web server can
access them. By default, Flask looks for static files in a directory named static, a sib-
ling of the templates directory.

 Create the static directory at the same level as the templates directory. To help
keep the static directory organized, create CSS and JS subdirectories to place the
CSS and JavaScript files into. These files will give the web application its presentation
and interactivity. Your directory structure should look like this:

├── app.py
├── static
│ ├── css
│ └── js
└── templates
 └── index.html

PARENT TEMPLATE

Copy the index.html file to create a new file named base.html in the templates
directory. This is now the parent template containing all the common features pre-
sented on the web pages of the application. Modify the new base.html template file
to look like this:

<!DOCTYPE html>
<html>
<head>
 {% block head %}
 <!-- Required meta tags -->
 <meta charset="utf-8">
 <meta name="viewport" content="width=device-width,
 ➥initial-scale=1, shrink-to-fit=no">
 <title>Your Second Web Server</title>
 {% block styles %}
 <link
 ➥ rel="stylesheet"
 ➥ type="text/css"
 ➥ href="{{ url_for('static', filename='css/myblog.css') }}"
 ➥ >
 {% endblock %}
 {% endblock %}
</head>

Creates a
template
section
named
head, which
will be
referred to
by child
templates

tes an inner
late section

amed styles,
hich will be

d to by child
tes to insert
e references

1056.4 Flask
<body>
 <div id="header">
 <h1>MyBlog Home Page</h1>
 </div>
 <div id="content">
 {% block content %}{% endblock %}
 </div>
 <div id="footer">
 {% block footer %}
 <h4>© Copyright 2020 by MyBlog</h4>
 {% endblock %}
 </div>
</body>

{% block scripts %}{% endblock %}

</html>

This template includes HTML code you’ve seen before mixed with Jinja2 template
code. The template code that begins with {% block head %} and ends with
{% endblock %} creates a template section named head that can be referenced in a
child template by referring to the block name. Blocks like this can even be referenced
from other files.

 The block named styles contains a stylesheet link. Inside the href portion of
the link is another Jinja2 template construct, {{url_for('static', filename
='css/blog.css')}}. This expression substitution is executing the Python url_
for function.

 It’s generally a bad idea to hardcode URL paths within a web application, and the
url_for function helps avoid this. By passing a known URL endpoint as the first
parameter and the relative file path as the second, the function can create a URL to the
desired file that’s valid for the Flask application. When the template is rendered, a valid
URL to the blog.css file will exist in the stylesheet link rendered by the browser.

 The empty block sections named content and scripts, respectively, create refer-
ences that will be used by the index.html file, inheriting from the base.html tem-
plate. The index.html file will use the references to inject content into the page and
include a page-specific JavaScript file named index.js containing client-side interac-
tivity code.

CHILD TEMPLATE

Now that you have a base template, it’s time to inherit from it by modifying the
index.html template:

{% extends "base.html" %}

{% block content %}
<h2>Current time: {{ data["now"] }}</h2>
<p>Page visits: {{ data["page_visit"].counts() }}</p>
<p>List of available banner colors:</p>

Creates an empty template section
named content, which contains the
content of the page and is
provided by the child templates

Creates a template section
named footer, which can be
referred to by child templates

Creates an empty template section
named scripts, which child templates can
use to insert JavaScript file references

Makes this child template inherit from
the base.html parent template

Creates the content to render
to the page, which will
replace the empty content
block in the parent template

106 CHAPTER 6 Sharing with the internet
 {%

➥ for banner_color in

➥ data["banner_colors"]["display"]

➥ %}
 {{ banner_color }}
 {% endfor %}

<div id="color-change">
 <button class="change-banner-color">
 Change Banner Color
 </button>
</div>
{% endblock %}

{% block styles %}
{{ super() }}
<link
 rel="stylesheet"

➥ type="text/css"

➥ href="{{ url_for(

➥ 'static', filename='css/index.css'

➥) }}">
{% endblock %}

{% block scripts %}
{{ super() }}
<script>
 const banner_colors =

➥ {{ data["banner_colors"]["js"]| safe }};
</script>
<script

➥ src="{{ url_for(

➥ 'static', filename='js/index.js') }}"

➥></script>
{% endblock %}

Like Python classes, the child template references the parent template to inherit from
by referring to it in the template code on the first line. The {% extends base.html%}
template code informs Jinja2 that index.html is inheriting from base.html. The
template engine knows how to find the base.html template file in the same way that
it found the index.html template, by looking in the templates directory.

 The content provided by the index.html file begins with the {% block content%}
start marker and ends with the {% endblock %} marker. When the complete page is
rendered by Jinja2, the content will be placed on the HTML page at the position of
the content block reference in the base.html parent template file.

 The data that is passed to the template by the render_template function is used
inside the content section. The {{data["now"]}} Jinja2 expression gets the current
timestamp. The {{data["page_visit"].counts()}} expression gets the Page-
Visit instance and calls its counts() method to obtain the current page-visit counts.

 The Jinja2 language provides a mechanism to create repeating data in the ren-
dered template by using a for loop. Mimicking Python, the loop construct is a

Creates the content to render
to the page, which will
replace the empty content
block in the parent template

Adds specific CSS style
information for this child
template to the styles block. The
{{ super() }} expression calls the
parent styles block first and then
adds the content of this block.

Adds specific JavaScript file
references for this child template
to the scripts block. The
{{ super() }} expression calls the
parent styles block first and then
adds the content of this block.

1076.4 Flask
For-In loop iterating over the contents of the iterable data["banner_

colors"]["display"] list. Each item in the list is used to create an HTML list ele-
ment with the code {{banner_color}}. The for loop ends with the
{% endfor %} marker.

 The block named styles refers to the same block in the base.html template.
Recall that the stylesheet block in the parent template wasn’t empty; it had a stylesheet
link to pull presentation information common to all web pages. The {{super()}}
expression renders the parent stylesheet block before including the information
defined in the child index.html template.

 The block named scripts handles a couple of functions. It uses the
{{super()}} expression to render anything defined by the parent template, which is
nothing currently. It then builds some JavaScript code directly to define a variable
called banner_colors, which is initialized with the JSON formatted string of banner
colors supplied by {{data["banner_colors"]["js"] | safe}}. The | safe part
of the syntax prevents Jinja2 from translating symbols that could be dangerous. It’s
not necessary here because the data is coming from the application itself but is good
to keep in mind.

 If the data had been supplied in a form by a user, the data could contain informa-
tion that might be an XSS attack. An XSS attack can be JavaScript inserted into the
data that was entered by a user, which could cause your site to take unintentional
actions. Lastly, a script tag referencing an external JavaScript file using the same
url_for() mechanism to create a valid relative URL for the web application is
included.

PRESENTATION

The presentation of the web page is controlled by the index.css file, which contains
CSS code that applies style information to the HTML elements created by the Flask
render_template function as presented by the browser. There are two CSS files con-
nected to the application—myblog.css and index.css. The myblog.css file
applies to the parent template file base.html:

html, body {
 height: 100%;
}

body {
 display: flex;
 flex-direction: column;
 margin: 0px;
 font-family: Arial, Helvetica, sans-serif;
}

#header h1 {
 margin: 0px;
 background-color: darkcyan;
 height: 75px;
 text-align: center;
 line-height: 75px;
}

108 CHAPTER 6 Sharing with the internet
#content {
 flex: 1 0 auto;
 margin: 20px;
}

#content h2 {
 border: 3px solid lightgray;
 border-radius: 5px;
 padding: 20px;
 text-align: center;
 background-color: bisque;
}

#footer {
 flex-shrink: 0;
}

#footer h4 {
 margin: 0px;
 background-color: lightgrey;
 height: 50px;
 text-align: center;
 line-height: 50px;
}

Though this book isn’t about CSS, it’s worth reviewing some of the previous code to
get a feel for how CSS code affects the presentation of a web page. Keep in mind that
the spacing and indentation of the CSS code is a convention for readability and is not
part of the required syntax.

 CSS code is about using and creating selectors to attach specific style information
to HTML elements so the browser can render the HTML elements with the intended
look and feel. For example, the code #content h2 {…} attaches style rules to the
HTML header <h2> element contained in the <div id="content"> element. This
selector narrows where the style will be applied on the page; in this case, only the
<h2> tag within the <div id="content"> tag will have a rounded border with an
internal padding of 20 pixels. The header text will be centered and have a back-
ground color of bisque. The rest of the selectors apply style rules to other parts of
the base.html page.

 These styles will be applied to every page that inherits from the base.html parent
template. The index.css file applies rules to the index.html child template page:

#color-change button {
 background-color: lightgrey;
 border-radius: 5px;
 border: 1px solid grey;
 display: inline-block;
 cursor: pointer;
 color: black;
 font-family: Arial;
 font-size: 16px;
 font-weight: bold;
 padding: 13px 69px;

1096.4 Flask
 text-decoration: none;
 text-shadow: 0px 0px 0px lightskyblue;
}

#color-change button:hover {
 background-color: darkgrey;
}

#color-change button:active {
 position: relative;
 top: 1px;
}

The selectors in this code apply styles to HTML elements that are created by the
index.html page, essentially giving some style and CSS interactivity to the color-
change button.

INTERACTIVITY

This book isn’t about JavaScript, and its use will be kept to a minimum, but most of
the interesting web applications will include some JavaScript code. Once the HTML
page is built by the server, it is sent to the browser as a response. The browser will then
render the HTML visually in the browser window. It will also parse and compile the
JavaScript sent in the response and pulled from the external file:

window.addEventListener('load', function (event) {
 let banner = document.querySelector(

➥ "#header h1"

➥);
 window.addEventListener(

➥ 'click', function (event) {
 // is this the click event

➥ we're looking for?
 if (event.target.matches(

➥ '.change-banner-color'

➥)) {
 let color = banner_colors[

➥ Math.floor(

➥ Math.random() *

➥ banner_colors.length)

➥];
 banner.style.backgroundColor = color;
 }
 })
});

This is vanilla JavaScript code (no frameworks like jQuery involved) that adds an
action if the displayed button is clicked. The code creates an anonymous function to
run when the page is finished loading. The anonymous function creates a reference
to the banner element and then adds another anonymous function to listen for the
click event.

 Inside the click event handler, a conditional statement checks if the event was
generated by the button to change banner color. If so, a random color is selected

Waits for the page to be
loaded before executing
the nested codeGets a reference to

the banner element

Adds a click event handler for the
banner color-changing button

Checks to see if the click event
originated from the button

Selects a random color from
the banner_colors list

Changes the banner
background color

110 CHAPTER 6 Sharing with the internet
from the banner_colors list and is used to change the background color of the
banner.

6.5 Running the web server
The updated app exists in examples/CH_06/examples/03:

├── app.py
├── static
│ ├── css
│ │ ├── index.css
│ │ └── myblog.css
│ └── js
│ └── index.js
└── templates
 ├── base.html
 └── index.html

In the terminal, move to the directory and set the environment variable FLASK_APP
to point to your application by entering the following in your command line for Mac
and Linux:

export FLASK_ENV=development
export FLASK_APP=app.py

And this for Windows users:

set FLASK_ENV=development
set FLASK_APP=app.py

Run the web server by entering flask run at the terminal command line. You should
see the server start up, and then you can navigate to http:127.0.0.1:5000 to see
the application.

 When you run the web application with the flask run command, the server
starts and runs with the Flask built-in web server. The built-in web server is suitable for
development and experimentation, but it is not suitable for production.

 For production, you’ll need to use a production-ready WSGI server, which stands
for Web Server Gateway Interface. A WSGI server is an application that provides a sim-
ple calling convention to forward requests from a web server to a Python web applica-
tion. The web server built into Flask is a WSGI server that provides this calling
convention for development purposes.

 The WSGI standard exists to abstract away the complexities of interfacing your
Python web application with a web server and the world. As long as you’re building
your application to the WSGI interface standard—which Flask and just about all other
Python web frameworks do—your application can provide request-response handling
accessible through the internet.

 Two of the most common production-grade WSGI servers are uWSGI and Guni-
corn. The uWSGI application is a popular, high-performance application written in
C/C++. Gunicorn, short for Green Unicorn, is also a high-performance WSGI-
compliant web server application. Both are production-ready.

1116.5 Running the web server
6.5.1 Gunicorn

To run your application using Gunicorn, you need to install it using the following
command from your Python virtual environment:

pip install gunicorn

In one of the example application directories, enter this command while in the terminal:

gunicorn -w 4 app:app

This tells Gunicorn to start four worker instances of your application, which it finds
with the app:app part of the command. The first part is the name of the Python file,
app.py, and the second part, :app, refers to the Flask application instance created
within the application by the app = Flask(__name__) part of the code.

 Running multiple instances of the application with Gunicorn workers allows your
application to scale up to handle hundreds, even thousands, of requests per second.
The number of requests per second that the application can handle depends upon
the workload each request makes on the application and how much time it takes
before a response is generated.

 According to the Gunicorn documentation, the recommended number of workers
for an application running on a single production server is (2 × number_of_CPU
cores) + 1. The formula is loosely based on the idea that for any given CPU core, one
worker will be performing IO (input/output) operations, and the other worker will
be performing CPU operations.

6.5.2 Commercial hosting

When you want to make your web application available for public use, you need to do
so using a hosting service. There are many services available to host your application.
They will offer options like Apache or Nginx for web serving and uWSGI and Guni-
corn for WSGI interfacing with your Python-based web application. It’s also possible
to deploy your application using Docker containers.

TIP Inside a Docker container, you would run a WSGI-compliant web server
to interface with your contained Python application. You would connect to
this WSGI-compliant web server (uWSGI, Gunicorn, and so on) by the host of
the Docker container.

I’m sure there are more options and configurations than I’ve listed here. The choice
depends on you, your goals for the application, and the cost of those choices.

 Because of the wide array of options available and combinations afforded by those
options, I’m not going to spend time defining how to deploy a Flask-based Python
application to specific examples. My reasons are twofold:

 It’s unlikely I would hit upon a combination of choices that would suit your
deployment use case perfectly.

 Deploying an application is a topic worthy of its own book and doesn’t directly
contribute to becoming a well-grounded Python developer.

112 CHAPTER 6 Sharing with the internet
6.6 Closing thoughts
The next chapter will begin to build the groundwork for the MyBlog application,
which will grow throughout the book to become fully featured. Along the way, you’ll
learn how to handle the development of a larger application and how to integrate it
with a persistent database. What you’ve learned so far can make the project manage-
able to build and enjoyable to achieve.

 You’ve brought ideas from your field of view into focus and can now see the direc-
tion to take and some of what we’ll learn along the way. We’ll continue along this path
to consider development items in detail as we look at them more closely.

Summary
 Much of the internet world is available because of servers and, in particular,

web servers. Knowing how to create server-based applications is a cornerstone
skill of a well-grounded developer.

 The Flask web application development framework is one of many such frame-
works available to Python developers. It’s well-suited as the teaching framework
to create the MyBlog web application that we’ll create as we move through the
rest of the chapters in this book.

 The Jinja2 template system included with Flask is a powerful way to create web
pages that have common elements mixed with dynamically created ones. The
content of dynamic elements in a template can come from any source—includ-
ing databases, computations, and other servers. Almost anything you can access
with your Python programs can be injected into a template through a dynamic
element.

 Jinja2 templates allow for inheritance, which means that a template containing
common elements used throughout a website can be inherited from page-
specific templates. Using this inheritance significantly lowers the workload for
building a dynamic web application.

Doing it with style
113

Creating a web application pulls together many concepts and technologies. To cre-
ate an engaging application, it’s necessary to think about the look and feel, or style.
For a web application, this is largely provided by using CSS styling applied to the
HTML content.

 Integrating good styling practices raises the bar of complexity an application
encapsulates. To help maintain growing complexity, it’s necessary to think about
project structure and the use of namespaces. Project structure and namespaces
help the project grow and scale in a way that keeps the complexity manageable.
This chapter lays the foundation for the MyBlog application so that it can grow and

This chapter covers
 Application styling

 Integrating Bootstrap styling

 Creating a scalable MyBlog

 Using Blueprint namespaces

 Application configuration

 Integrating the Flask Debug Toolbar

 Configuring logging information

114 CHAPTER 7 Doing it with style
evolve in a way that will help you maintain clarity about the goals of the application
and stay ahead of the complexity curve.

7.1 Application styling
Creating an application with interesting and useful features is necessary to keep users
actively engaged in any application. The feature set is essential, but it’s not the only
thing needed to capture and keep users’ attention. The way your application looks is a
critical factor in what your users will expect in a modern computer system.

 Look at any popular cell phone app and you’ll know this is true. The best apps
have both useful feature sets and an engaging visual experience for their users. Even
apps with compelling features will be hard pressed to find users willing to accept and
use them if the app looks clunky and unpolished.

 The browser’s CSS styling code controls a web application’s visual look to deter-
mine how to render the HTML code to the screen. The first web application from
chapter 6 used simple, hand-crafted CSS code to apply a distinct look and feel. Con-
tinuing to hand-code CSS styles for the MyBlog application is possible but has the fol-
lowing drawbacks:

 It takes effort to create appealing CSS styles.
 As an application grows, it becomes challenging to maintain style consistency

across an entire application.
 Normalizing styles for consistent rendering across multiple browsers is tricky.
 Phones and tablets are becoming the primary interface between an application

and your users; making a web application responsive to those devices is vital.

7.1.1 Creating appealing styles

The first web application from chapter 6 had a single page with relatively simple styles
applied to it that consisted of two files—myblog.css and index.css—each of which
was about a page of text long. Continuing to create custom styles leads to many CSS
files containing hundreds of lines of code. It becomes apparent very quickly that this
is additional hard work.

7.1.2 Styling consistency

A web application with even moderate complexity will have multiple pages associated
with it that users will navigate around. Making sure the buttons, lists, panels, and
other visual elements look the same across all pages is important to the cohesive pic-
ture you’re trying to paint across the entire application.

 Giving those visual elements the same style, even in different use cases within the
application, is challenging. Maintaining that consistent style as your application scales
upward with more features and pages compounds that challenge.

7.1.3 Normalizing styles

Like myself, you probably use a single web browser most of the time. Even if you use
one at home and another at work, you might be unaware of the importance of styling

1157.2 Integrating Bootstrap
consistency and the need to normalize styles across browsers. When you’re building
an application and generating HTML code without any styles applied to it, the
browser will render the HTML using its default styles.

 Each browser applies its default style to headers, paragraphs, fonts, and spacing
between elements. If you could suppress the CSS style when navigating to web applica-
tions that you’re familiar with, you’d see how the pages are rendered with the
browser’s default style. If you were to do the same thing using multiple browsers like
Chrome, Firefox, Safari, Edge, and others across multiple operating systems, you’d see
the pages rendered differently between those browsers—sometimes subtly, sometimes
dramatically. Giving any web application you create a consistent look across the differ-
ent browsers and operating systems means creating CSS code to override those brows-
ers’ default styling.

7.1.4 Responsive design

We’ve already talked about the advantages of providing application features using web
browsers as the platform to deliver the experience. One of the implications is that web
browsers are everywhere—on mobile phones, tablets, laptops, and desktops. They are
even integrated into cars and household appliances. These devices can and do have
varied presentation capabilities, including screen size, screen resolution, speed, and
accessibility.

 Because the internet is widely available, your web application can run on any of
these devices that can access its URL. Attempting to style your application for all of
these devices is impossible; there are just too many of them. Also, new ones with new
capabilities are continually being introduced.

 Because it is impossible to code for so many devices, it’s necessary to use responsive
design principles. Responsive design means using fluid, proportion-based grids;
media queries; and flexible images. Using these tools creates a design layout that auto-
matically adjusts to the screen size of the device. The Bootstrap framework provides
much of what’s needed to create a web application that uses responsive design ideas
and implementations.

7.2 Integrating Bootstrap
I wouldn’t present the styling speedbumps involved in developing the MyBlog web
application without proposing a solution. The solution I’ve chosen is the Bootstrap CSS
framework created by Twitter (https://getbootstrap.com/). The Bootstrap framework
addresses the problems raised previously, frees you from solving many styling concerns,
and lets you focus on the application design and implementation.

 Adopting Bootstrap relieves you from having to create the CSS style code that cre-
ates the MyBlog presentation. Using Bootstrap gives the MyBlog application an attrac-
tive, consistent user interface; normalizes that interface across browsers and operating
systems; and resolves many responsive design problems. The use of Bootstrap means
you’ll still need to add CSS class names to the MyBlog web application’s HTML ele-
ments, but the reduction in the amount of custom CSS code required is well worth it.

https://getbootstrap.com/

116 CHAPTER 7 Doing it with style
 Using Bootstrap to style your web-based applications also means your applications
will have a Bootstrap “look” to them. This “look” can be advantageous because the
visual presentation is attractive, well known, and understood. The choice to use Boot-
strap is a good one because this book focuses on becoming an accomplished Python
developer, with some web page design skills. Using Bootstrap doesn’t exclude you from
completely customizing your design, and it provides an excellent jumping-off point if
you want to pursue the possibilities offered by customizing your application design.

7.2.1 The previous example, now with Bootstrap

The last example web application in chapter 6 used hand-coded CSS for styling. Fig-
ure 7.1 presents a refresher on that page before getting started on making changes.

Figure 7.1 A look at the web page from chapter 6, figure 6.5, before we start making changes

Bootstrap version
The MyBlog application uses Bootstrap version 5. Version 5 focuses more on modern
browsers, making the CSS code more future friendly, more straightforward to imple-
ment, and possibly faster to render.

This version also drops any dependency on the jQuery JavaScript library and instead
uses straight JavaScript. There is absolutely nothing wrong with jQuery; it’s a powerful
library to access and manipulate HTML elements. However, since its creation,
browser support for JavaScript has become much more consistent and powerful,
making dependence on jQuery a choice rather than a necessity.

Banner that changes background
color on button click

Current time when page rendered

Number of times
page has been
visited (rendered)

List of colors banner
can be changed to,
changes every refresh Button to select random color from

list and change banner background
color

Sticky footer, always at bottom of
page unless pushed off by content

1177.2 Integrating Bootstrap
Your initial goal is to replace all of the hand-coded CSS style information with that
supplied by Bootstrap. It will be the same application with the same content and func-
tionality but styled entirely with Bootstrap CSS-style classes. Figure 7.2 presents the
destination that the upcoming changes will create.

Figure 7.2 The page goal to achieve by replacing the custom CSS with Bootstrap styling

The first step on your way to replacing the hand-coded CSS styles with Bootstrap is
making the Bootstrap framework available to the MyBlog web application. Rather
than download the Bootstrap framework and copy the necessary files into your
static/css and static/js directories, you’re going to access the files directly
from a CDN (content delivery network). Using a CDN to access Bootstrap relieves you
from having to copy files for this chapter and the chapters to come. It also relieves
Flask from having to serve the files, as the CDN will handle that. The MyBlog applica-
tion will use the https://www.jsdelivr.com/ CDN and is the delivery mechanism rec-
ommended on the Bootstrap home page.

Bootstrap banner card with background
image that changes color on button click

Bootstrap card containing
the current time when the
page was rendered

Paragraph tag containing the number
of times the page has been visited

Bootstrap card
with header listing
colors the banner
can be changed to,
changes every refresh

Bootstrap button to select random color
from list and change banner background color

Bootstrap footer, always at
the bottom of a page
unless pushed off by content

https://www.jsdelivr.com/

118 CHAPTER 7 Doing it with style
BASE.HTML

You’re changing the style of the application only, so the app.py file doesn’t need to
change. Because Bootstrap will be used for all of the MyBlog pages, you’ll add it to the
base.html template, making it available to any template that inherits from it. You’ll
also need to update the hand-coded style information in the template file with Boot-
strap style classes as follows:

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>MyBlog</title>
 {% block styles %}
 <style>
 :root {
 --background-url: url({{url_for("static",

➥filename= "images/myblog_banner_50.png")}});
 }
 </style>
 <link

➥ rel="stylesheet"

➥href="https://cdn.jsdelivr.net/npm/bootstrap@5.0.2/

➥dist/css/bootstrap.min.css" integrity="sha384-

➥EVSTQN3/azprG1Anm3QDgpJLIm9Nao0Yz1ztcQTwFspd

➥3yD65VohhpuuCOmLASjC" crossorigin="anonymous">
 <link

➥ rel="stylesheet"

➥ href="https://cdn.jsdelivr.net/npm/

➥ bootstrap-icons@1.8.1/font/

➥ bootstrap-icons.css"

➥ >
 <link

➥ rel="stylesheet"

➥ type="text/css"

➥ href="{{ url_for(

➥ 'static',

➥ filename='css/base.css'

➥) }}"/

➥ >
 {% endblock styles %}
</head>
<body class="d-flex flex-column h-100">
 <div class="banner card">
 <div class="card-body">
 <div class="col-md-4 offset-md-1">
 <h2 class="card-title fw-bold">

➥ MyBlog Home Page

➥ </h2>
 <p class="card-text">

➥ Just a blog to call my own

➥ </p>
 </div>
 </div>
 </div>

Creates the CSS variable
background-URL referencing the
banner image, applied here
because it uses url_for() in a
template processed by Jinja2

Includes the
Bootstrap-minimized
CSS files from the CDN

Creates the banner
section content
and its styles

mailto:bootstrap-icons@1.8.1/font/

1197.2 Integrating Bootstrap
 <main class="flex-shrink-0">
 {% block content %}{% endblock %}
 </main>
 <footer

➥ class="footer fixed-bottom py-1 bg-light"

➥ >
 <div class="container text-center">

➥ © Copyright 2021 / MyBlog

➥
 </div>
 </footer>
 {% block scripts %}
 <script

➥ src="{{ url_for(

➥ 'static',

➥ filename='js/bootstrap.bundle.min.js'

➥) }}">

➥ </script>
 {% endblock %}
</body>
</html>

The template code creates the content and style basis of the MyBlog application.
Every template that inherits from the base.html template will have these content
and style elements. The base.html template gives a foundation for the look and feel
of the entire application as well as eases the work of doing so.

BASE.CSS

The base.html template has its own base.css file that overrides some of the Boot-
strap styling for the banner. It also has a CSS media query as follows that makes the
application responsive in a specific way for smaller devices:

.banner.card {
 border: 0;
 border-radius: 0;
 background-clip: none;
 }

.banner {
 display: none;
}

@media (min-width: 768px) {
 .banner {
 display: block;
 background: var(--background-url)

➥ no-repeat center center / cover;
 }
}

The interesting part of the base.css file is the .banner and @media sections. The
first sets the .banner display value to none, preventing it from being rendered to

Creates the content section
enclosing style, which is
provided by child templates

Creates the Bootstrap footer that
sticks to the bottom of the page

Includes the Bootstrap-bundled,
minimized JavaScript code

Modifies the Bootstrap card style to
remove the border, make the radius 0, and
remove the background image clipping

Sets the default visibility of the
banner to none, or invisible

Uses a CSS media query to override
the .banner setting to be visible if the
screen size is greater than 768 pixels

120 CHAPTER 7 Doing it with style
the display. The @media section takes advantage of the cascading nature of CSS to
affect how the banner is displayed. In CSS, the last defined style overrides any previ-
ously defined style. The @media section acts as a conditional statement in the CSS. If
the screen size is greater than 768 pixels, then set the display value to block, meaning
it will be rendered to the display. The background portion defines how to display the
background image and gets that image from the CSS variable background-url
defined in the base.html template.

 If the screen size is less than 768 pixels, the initial .banner definition of none
stands, and the banner image isn’t rendered to the display. The @media query gives
MyBlog control over displaying the banner image, giving small-screen devices more
display real estate to show MyBlog content. You’ll see an example of how the media
query affects the display after going over the changes to the index.html file.

INDEX.HTML

As before, the index.html file holds the content of the home page. The content is
the same, but like the base.html file, the styling information is updated to use Boot-
strap. Here’s the updated index.html file:

{% extends "base.html" %}

{% block content %}
 <div class="container-fluid">
 <div

➥ class="card bg-warning mb-3

➥ font-weight-bold"

➥ style="margin-top: 10px;"

➥ >
 <div class="card-body">
 Current time: {{ data["now"] }}
 </div>
 </div>
 <p>

➥ Page visits: {{

➥ data["page_visit"].counts()

➥ }}

➥ </p>
 <div class="card" style="width: 18rem;">
 <div class="card-header">
 List of available banner colors
 </div>
 <ul

➥ class="list-group list-group-flush"

➥ >
 {% for banner_color in

➥ data["banner_colors"]

➥ %}
 <li

➥ class="list-group-item">

➥ {{ banner_color }}

➥
 {% endfor %}

Creates the home page
content, styled using a
Bootstrap responsive
container and card

1217.2 Integrating Bootstrap

 </div>

 <button

➥ id="change-banner-color"

➥ type="button"

➥ class="btn btn-primary"

➥ >
 Change Banner Color
 </button>
 </div>
{% endblock %}

{% block scripts %}
 {{ super() }}
 <script>
 const banner_colors = {{ data["banner_colors"] | tojson | safe }};
 </script>
 <script src="{{ url_for('static', filename='js/index.js') }}"></script>
{% endblock %}

The home-page content changes are all about styling the content presentation and
not about the content itself. When the changes are complete, the directory structure
should look like examples/CH_07/examples/01:

.
├── app.py
├── static
│ ├── css
│ │ └── base.css
│ ├── images
│ │ ├── myblog_banner.png
│ │ └── myblog_banner_50.png
│ └── js
│ └── index.js
└── templates
 ├── base.html
 └── index.html

From that directory, execute the following commands from a Mac or Linux terminal:

export FLASK_ENV=development
export FLASK_APP=app.py
flask run

Or as follows for a Windows system terminal:

set FLASK_ENV=development
set FLASK_APP=app.py
flask run

The MyBlog web server will run, and you can navigate with your browser to
127.0.0.1:5000 and see the application.

Creates the home page
content, styled using a
Bootstrap responsive
container and card

Converts the template parameter
data["banner_colors"] to JSON so it

can be used by the page’s JavaScript

122 CHAPTER 7 Doing it with style
 The application shows the modified banner containing the image at the top of the
display. It also shows the Bootstrap sticky footer at the bottom of the page. These ele-
ments come from the base.html template and will be present on every page that
inherits from it.

 The current timestamp is displayed in a Bootstrap card, and the list of available
colors is contained in another card. Additionally, the button that changes the color of
the banner background is styled as a Bootstrap button.

 The display banner is rendered if the browser screen size is greater than 768 pixels,
which is most likely correct for a desktop or laptop computer. This is what’s presented
in figure 7.3. If you resize the browser window to be narrower, eventually you’ll cross
the 768-pixel boundary and the web application display will change. Figure 7.4 shows
the updated page. The absence of the banner text and image demonstrates the condi-
tional implied by the @media query in the base.css file. The conditional becomes
false, and the initial definition of the .banner CSS class becomes active, setting the
display value to none. Using the media query gives the web application more vertical
screen real estate for smaller devices like tablets and mobile phones.

Bootstrap banner card with background
image that changes color on button click

Bootstrap card containing
the current time when the
page was rendered

Paragraph tag containing the number
of times the page has been visited

Bootstrap card
with header listing
colors the banner
can be changed to,
changes every refresh

Bootstrap button to select random color
from list and change banner background color

Bootstrap footer, always at
the bottom of a page
unless pushed off by content

Figure 7.3 The page displayed after incorporating Bootstrap styling

1237.3 Helping MyBlog grow
Figure 7.4 Changing the browser size activates the media query to remove the banner.

7.3 Helping MyBlog grow
At this point in the development, the MyBlog app has expanded on the basic Flask
example application often found in Flask documentation. Everything we’ve added
extends what this basic example can do with the addition of functionality and styling
and the use of Jinja2 templates. Continuing to extend the capabilities of the code
we’ve written so far is possible, but doing so would hinder developing a fully featured
and extensible application.

 All new functionality would have to be included in the app.py file as a long list of
functions decorated with @app.route(...) to connect that functionality to the
Flask application. Doing so breaks the concept of single responsibility and makes
naming the web application URL endpoint function handlers awkward.

 The mental demand of working in many technical domains in a single large file
would be even harder. The app.py file would contain all of the parts necessary for a
full-featured blogging application—authentication, authorization, database access,
user management, and creating and presenting the blogging content.

 You’ve seen how to break up functionality along logical or complex boundaries by
using modules to create namespaces and create namespace containers for functional-
ity. The same approach will be used in the MyBlog application. However, one thing
that needs attention to make that possible as you move forward is the Flask app
instance.

7.3.1 The Flask app instance

In the current version of the app.py program file, the Flask module is imported and
the Flask application instance variable app is created directly. Creating the Flask app

The media query removes
the banner when the browser
crosses the size threshold
to make more room available for
content on smaller screens.

124 CHAPTER 7 Doing it with style
instance in the root application file works fine for a sample application whose purpose
is to build a working example web server quickly.

 Why is this structure a problem when you want to use modules to namespace func-
tionality in the web application? Because any feature or functionality you’d want to
add to the web application with a URL endpoint function like hello_world() will
need access to the app instance variable.

 With the current MyBlog application setup, creating modules to contain features
and functionality becomes difficult because those modules will need access to the app
instance. The current structure is illustrated in figure 7.5. That presents a problem.
The app.py code could import modules to access additional functionality, but those
same modules would need access to the app instance. If those modules import the
app instance from app.py to gain access, a circular reference problem is created that
Python won’t allow. Adding features and functionality to the current implementation
of MyBlog leads to a structure that’s difficult to scale upward.

Figure 7.5 The application code structure where features are contained in
the app.py file

RESOLVING THE APP INSTANCE PROBLEM

To resolve the problem of modules accessing the Flask app instance, you’ll need to
change the application’s structure. The Flask app instance is the central hub around
which the features of a Flask-based application revolve. Besides the @app.route(…)
functionality seen so far, more functionality and features will need access to the app
instance, as presented in later chapters.

app.py

Flask
app

instance

Feature 1

Feature 2

Feature 3

Web application code file
app.py

Flask app instance:
app = Flask(__name__)

Feature code contained
in the app.py file, not
as separate modules

1257.3 Helping MyBlog grow
 Given the central role of the app instance, how do you gain access to it when
needed? You’ll be following a two-step process to resolve the problem: putting the
bulk of the application code into a Python package and creating a factory function to
instantiate the Flask app instance.

 The use and creation of packages were presented in earlier chapters and used to
create module namespaces. As a refresher, creating a package means creating a direc-
tory and adding an __init__.py file to the directory. The existence of this file lets
Python import modules from the package. Adding packages can continue to any rea-
sonable depth by creating packages within packages to create meaningful namespace
hierarchies.

 In earlier chapters, the __init__.py file needs only exist to make a directory a
Python package. Part of the activity of importing a module from a package also
includes executing any Python code in the __init__.py file. The __init__.py file
in many packages doesn’t contain code, but Python code can be added to it.

 Any module in the package automatically has access to the code and variables in
the package __init__.py file, and the __init__.py file has access to the package’s
sibling modules. Packages will be useful when creating the application factory func-
tion to create the Flask app instance.

MYBLOG RESTRUCTURING

You’re at an excellent point to restructure the file layout of the MyBlog application to
create a meaningful hierarchy. Having an intentional file structure helps use the files
contained in the directory structure that are related and useful to your projects.

 The first thing to do is rename the app.py file to myblog.py. Then create a direc-
tory named app, which is the root package directory for the MyBlog application.
Move the static and templates directories into the app directory.

 Inside the app directory, create an __init__.py file, which turns the app direc-
tory into a Python package. The directory structure should now look like this:

├── app
│ ├── __init__.py
│ ├── static
│ │ ├── css
│ │ │ └── base.css
│ │ ├── images
│ │ │ ├── myblog_banner.png
│ │ │ └── myblog_banner_50.png
│ │ └── js
│ │ └── index.js
│ └── templates
│ ├── base.html
│ └── index.html
└── myblog.py

APPLICATION FACTORY

The renamed myblog.py file creates the Flask app instance directly and then uses it to
connect URL endpoints to functionality. Our goal is to get more control over creating
the app instance and make using it with external modules easier. To do this, you’re

126 CHAPTER 7 Doing it with style
going to implement an application factory function called create_app() inside the
app package __init__.py file. Edit the app/__init__.py file and add this code:

from flask import Flask, render_template
from datetime import datetime
from random import sample

class PageVisit:
 COUNT = 0
 def counts(self):
 PageVisit.COUNT += 1
 return PageVisit.COUNT

class BannerColors:
 COLORS = [
 "lightcoral", "salmon", "red", "firebrick", "pink",
 "gold", "yellow", "khaki", "darkkhaki", "violet",
 "blue", "purple", "indigo", "greenyellow", "lime",
 "green", "olive", "darkcyan", "aqua", "skyblue",
 "tan", "sienna", "gray", "silver"
]
 def get_colors(self):
 return sample(BannerColors.COLORS, 5)

def create_app():
 app = Flask(__name__)

 with app.app_context():

 @app.route("/")
 def home():
 return render_template("index.html", data={
 "now": datetime.now(),
 "page_visit": PageVisit(),
 "banner_colors": BannerColors().get_colors()
 })

 return app

This code is basically everything in the myblog.py file placed inside the app package
__init__.py file. Because this replicates almost all of the code in myblog.py, this
file needs to be updated to this:

from app import create_app

app = create_app()

All that myblog.py does now is import the application factory create_app and then
call it to create the Flask app instance. Change your working directory to examples/
CH_07/examples/02 and execute the commands to run the application from a Mac
or Linux terminal:

export FLASK_ENV=development
export FLASK_APP=app.py
flask run

The support classes used
by the home() function

Creates the Flask app instance inside the
application factory create_app() function

Begins a context manager to
initialize the rest of the app

Returns the app
instance to the caller

1277.4 Namespaces
Or for a Windows system terminal:

set FLASK_ENV=development
set FLASK_APP=app.py
flask run

Navigating to 127.0.0.1:5000 in your browser will show the same application view
as before but using the new MyBlog application structure. Figure 7.6 shows the appli-
cation page and its functionality.

 The next step is to move the home() function to an external module where other
features can be added. To do this, you’ll make use of the Flask Blueprints capability.

Figure 7.6 The restructured application renders the previous page identically.

7.4 Namespaces
Any interesting application will have many features that necessitate interaction
between those features, which adds complexity. The MyBlog web application is no dif-
ferent and will acquire functionality focused on particular application parts. Rather

Bootstrap banner card with background
image that changes color on button click

Bootstrap card containing
the current time when the
page was rendered

Paragraph tag containing the number
of times the page has been visited

Bootstrap card
with header listing
colors the banner
can be changed to,
changes every refresh

Bootstrap button to select random color
from list and change banner background color

Bootstrap footer, always at
the bottom of a page
unless pushed off by content

128 CHAPTER 7 Doing it with style
than roll all the other functional areas of code into one big Python file, it’s better to
break the work into modules so you can work in one functional domain at a time.

 Just like you’ve seen in previous chapters where Python packages and modules
contain high-level namespaces, the same idea will be applied here. In a web applica-
tion, this separation of concerns includes creating modules for the URL endpoints
that provide functionality and are to be placed into namespaces. The Flask framework
implements namespaces through Blueprints.

7.4.1 Flask Blueprints

In the MyBlog application, when the @app.route("/") decorator is applied to a
function, the function is registered with the server so it will be called when the URL
endpoint path "/" is accessed by a browser. As the decorator’s name implies, the "/"
URL path parameter passed in is an application route being defined.

 The @app.route decorator lets you connect a URL route to the Flask application
so it can process a request for the route with the decorated function. All of the URL
routes could be handled this way, but in a larger application, this becomes unwieldy.
The Flask web framework provides a feature called Blueprints to implement separate
modules that service URL endpoints or routes.

 Flask Blueprints lets you separate specific functionality into modules. A Blueprint
is useful when creating logically distinct features like authentication, authorization,
and other parts of a web application. In chapter 8, you’ll be adding user authentica-
tion to the MyBlog application. Authentication secures access to almost all other
pages and features the MyBlog application provided to users.

 Getting authentication working and contained in one place is valuable, but this
functionality could be used in an entirely different web application with little trouble
once complete. You could make almost any functionality you’ve created available to
other projects by placing the Blueprint in a shared library for all your application proj-
ects to use. You could also put it in a repository like GitHub, where a team of develop-
ers could access it.

7.4.2 Add Blueprints to MyBlog

The MyBlog application creates the app instance inside the application factory
create_app() function in the app package. The home page is also contained in the
create_app() function. A little later in this chapter, you’re going to add an about
page to the application. Let’s create a namespace for the home page and the future
about page where they both can live. We’ll call that namespace intro, as the home
and about page will be introductory to the MyBlog application.

 To do this, you’ll create an intro package within the app package. As a first step,
create an intro subdirectory within the app directory. In that subdirectory, create an
empty __init__.py file, which makes the intro directory a Python package.

THE CONTENT

There’s a bit of a chicken-and-egg problem with how a Blueprint is created and used,
but let’s start with the intro namespace’s functionality. In the intro subdirectory,
create an intro.py file with this content:

1297.4 Namespaces

from flask import render_template
from datetime import datetime
from random import sample
from . import intro_bp

class PageVisit:
 COUNT = 0

 def counts(self):
 PageVisit.COUNT += 1
 return PageVisit.COUNT

class BannerColors:
 COLORS = [
 "lightcoral", "salmon", "red", "firebrick", "pink",
 "gold", "yellow", "khaki", "darkkhaki", "violet",
 "blue", "purple", "indigo", "greenyellow", "lime",
 "green", "olive", "darkcyan", "aqua", "skyblue",
 "tan", "sienna", "gray", "silver"
]

 def get_colors(self):
 return sample(BannerColors.COLORS, 5)

@intro_bp.route("/")
def home():
 return render_template("index.html", data={
 "now": datetime.now(),
 "page_visit": PageVisit(),
 "banner_colors": BannerColors().get_colors()
 })

THE INTRO PACKAGE

The intro.py file contains Blueprint functionality and uses the as-yet-undefined
intro_bp Blueprint instance. The intro_bp instance naming is a convention; add-
ing _bp to the end of the instance name indicates a Flask Blueprint. The next step is
to edit the empty app/intro/__init__.py file and create the intro_bp instance:

from flask import Blueprint

intro_bp = Blueprint('intro_bp', __name__,
 static_folder="static",
 static_url_path="/intro/static",
 template_folder="templates"
)

from app.intro import intro

Because the __init__.py file is inside a package, this code will be run every time
anything within the package is imported, including the just-created intro.py mod-
ule. The first thing the code does is import the Blueprint class from the flask module.
It then creates the intro_bp instance by instantiating the Blueprint class with some
parameters.

Imports the as-yet-undefined
intro Blueprint instance intro_bp

Notices how the home function is decorated
with the intro_bp Blueprint instance route
function rather than @app.route

Imports the Blueprint class
from the flask module

Creates a Blueprint instance,
initializing its name, filename, and
paths to the static and template files

Imports the intro
module functionality

130 CHAPTER 7 Doing it with style
 The parameters give the Blueprint a name, pass it the Python filename, and set the
static_folder and template_folder parameters with path strings relative to the
Blueprint location. This means the intro_bp Blueprint instance expects to find the
templates it will render and the static assets those templates might require on a path
relative to where the file containing the definition intro_bp Blueprint exists in the
application file structure.

 The static_url_path parameter is set to ensure that the Blueprint relative path
doesn’t conflict with the root static folder. The value assigned to the parameter is
the relative path from the root directory to the Blueprint static directory.

 This means that the index.html template that provides the home page’s content
needs to move somewhere the intro_bp Blueprint can find. It also means the static
assets (CSS files, JavaScript, and images) need to move as well.

UPDATED MYBLOG DIRECTORY

The result of restructuring the directory to put all the files related to the intro Blueprint
exists in the examples/CH_07/examples/03 directory from the code repository:

 ├── app
 │ ├── __init__.py
 │ ├── intro
 │ │ ├── __init__.py
 │ │ ├── intro.py
 │ │ ├── static
 │ │ │ ├── css
 │ │ │ │ └── index.css
 │ │ │ ├── images
 │ │ │ │ ├── myblog_banner.png
 │ │ │ │ └── myblog_banner_50.png
 │ │ │ └── js
 │ │ │ └── index.js
 │ │ └── templates
 │ │ └── index.html
 │ ├── static
 │ │ ├── css
 │ │ │ └── base.css
 │ │ ├── images
 │ │ │ ├── myblog_banner.png
 │ │ │ └── myblog_banner_50.png
 │ │ └── js
 │ └── templates
 │ └── base.html
 └── myblog.py

In this directory structure, two pairs of templates and static directories exist, the
first being the original at the project root from the previous example and the second
being the set under the intro package. The second set is what the intro_bp Blueprint
instance will use when looking for templates and static files because of the values
passed to the static_folder and template_folder parameters when the instance
was created.

 If those two parameters had not been set, the intro_bp instance would have
looked for templates and static assets in the app root static and templates

1317.4 Namespaces
directories under the app directory. Having the templates and static folders
under the Blueprint packages you create makes the Blueprint more self-contained
and portable to other projects.

 One additional change needs to be made to the index.html file so it can access
the static assets referenced by the HTML code. The <script>…</script> tags that
reference the JavaScript that reacts to the button clicks on the home page need to be
updated in this way:

<script src="{{ url_for('.static', filename='js/index.js') }}"></script>

The only change is the addition of the single character (.) in front of static in the
url_for(…) statement. The url_for(…) statement will resolve this path to the
static directory relative to the intro_bp Blueprint, and the index.js file will be
pulled correctly.

APP PACKAGE CHANGES

Before you move on to create the new about page, take a look at the app/
__init__.py file. All of the code related to the home page has just been moved to
the intro module, so the file needs to be updated as follows:

from flask import Flask

def create_app():
 app = Flask(__name__)
 with app.app_context():
 from . import intro
 app.register_blueprint(intro.intro_bp)
 return app

This code shows the application factory create_app() function simplified to remove
the home page’s code, which is now part of the intro Blueprint. This is all that’s
needed in the MyBlog application to get things rolling when the flask run com-
mand is called. By default, the flask run command looks in the application (which
was in the FLASK_ENV environment variable) for a Flask instance named app. Finding
the app instance will start to run the application, serving any URL endpoints that have
been configured and registered with the app.

7.4.3 Create the about page

To demonstrate how the intro_bp Blueprint instance can contain features and func-
tionality, you’ll add an about page to the MyBlog application. To do so, add a new han-
dler function to the intro.py file and register it with the instance by decorating it
with a route as follows:

@intro_bp.route("/about")
def about():
 return render_template("about.html")

Imports the intro module
containing the intro Blueprint

Registers the intro
Blueprint with the app

Decorates the about() function and registers
it as the handler for the new route "/about"
using the intro_bp Blueprint instance

 Retrieves and renders the about.html template
file from the intro_bp relative templates directory

132 CHAPTER 7 Doing it with style
This code creates a URL endpoint route to "/about" and registers the about()
function as the handler when that route is navigated to by a browser. To render an
about HTML page, an about.html template is created in the app/intro/tem-
plates directory that’s relative to the intro_bp Blueprint:

{% extends "base.html" %}

{% block content %}
 <div class="container-fluid mt-3">
 <div class="card">
 <div class="card-header">
 About
 </div>
 <div class="card-body">
 <h5 class="card-title">Information about this website</h5>
 <p class="card-text">
 This is an implementation of the MyBlog blogging
 web application. This web application is developed over
 the course of multiple chapters from the book,
 "The Well-Grounded Python Developer".
 </p>
 <p class=”card-text”>
 The intent of the MyBlog application is not to create
 a complete and fully feature blogging system, there are
 many of those in existence already. The goal is to
 progressively see and learn how to implement the big
 picture that's necessary to implement a complex system
 like this.
 </p>
 </div>
 </div>
 </div>
{% endblock %}

If you run the MyBlog application and navigate to 127.0.0.1:5000/about in a
browser, the server will respond by rendering the about.html file to the display win-
dow. Figure 7.7 is a screenshot of the about page. The about page uses Bootstrap styles
in the same manner as the home page.

Like index.html, the about page inherits from
base.html and gets the same features it provides.

The about page replaces the content block
with Bootstrap-styled text information
about the MyBlog application.

The about content
comes from the
index.html file.

Figure 7.7 The new about
page rendered using
Bootstrap styling

1337.5 Navigation

ent

7.4.4 Refactored app instance

At this point, the MyBlog application—and Flask app instance in particular—has
been refactored to better support a growing web application. Figure 7.8 shows how
the create_app() function connects to the functionality contained in the external
intro module, which has access to the app instance inside that function’s scope. The
app instance is returned by the create_app function imported inside the scope of
the myblog.py code. The reference to the app instance is held by myblog.py for the
life of the application.

7.5 Navigation
The MyBlog application now has two pages—the home and about pages. You can nav-
igate to them directly by entering the URL into the browser, but that’s not very conve-
nient. Websites provide clickable links to navigate around the application; you’ll add
that navigation using Bootstrap.

 The MyBlog site navigation is provided by a Bootstrap navbar added to the
base.html template so it’s rendered on any page inheriting from it, essentially site-
wide. The Bootstrap navbar is visually attractive and responsive to device size. It con-
tracts to be a drop-down menu for small devices.

 You can also add some interactive touches by making the currently active page’s
menu item visibly highlighted. This means that if the about page is being viewed, the
about menu item is highlighted. You’ll add this by making use of features in Jinja2.

7.5.1 Creating navigation information

There are two parts to adding the navbar and making it interactive. The first thing to
do is edit the base.html template file in the root templates folder and add this code
at the top of the file:

{# configure the navigation items to build in the navbar #}
{% set
 nav_items = [
 {"name": "Home", "link": "intro_bp.home"},

app.py file

create_app()
function

Intro
Blueprint

Flask app
instance

myblog.py file

Web application
code file app.py

Figure 7.8
The visual structure of
the refactored MyBlog
application

This is a Jinja2 comm
in the template.

Creates a variable named nav_items con-
taining a list of dictionaries with navigation
information in each dictionary item

134 CHAPTER 7 Doing it with style

 {"name": "About","link": "intro_bp.about"}
]
%}

The {% set … %} block allows you to create a variable just as you would in Python
code used by other parts of the template. The nav_items list variable holds the navi-
gation information necessary to build the Bootstrap navbar links.

 Look at the link information in the nav_items structure. The home-page link is
'intro_bp.home', not just home. This would appear in an HTML link in a template
like this:

Home

The url_for function knows how to find the page relative to the intro Blueprint
and uses the intro Blueprint instance intro_bp. It then finds the URL endpoint
home relative to that. You’ll see how this is used when rendering the navbar next.

7.5.2 Displaying navigation information

The second part of creating the navbar is further down in the base.html template
file. Just above the {% block content %}{% endblock %}, insert this code:

<nav class="navbar navbar-expand-lg

➥navbar-dark bg-primary">
 <a

➥ class="navbar-brand ml-2"

➥ href="{{url_for('intro_bp.home')}}"

➥ >
 MyBlog

 <button class="navbar-toggler"
 type="button"
 data-bs-toggle="collapse"
 data-bs-target="#navbarSupportedContent"
 aria-controls="navbarSupportedContent"
 aria-expanded="false"
 aria-label="Toggle navigation">

 </button>
 <div class="collapse navbar-collapse"
 id="navbarSupportedContent">
 <div class="navbar-nav">
 {% for nav_item in nav_items %}
 {% if request.endpoint ==

➥ nav_item["link"] %}
 <a class="nav-link ml-2 active"
 aria-current="page"
 href="{{url_for(

➥ nav_item['link']

➥)}}"

➥ >
 {{nav_item["name"]}}

Creates a variable named nav_items con-
taining a list of dictionaries with navigation
information in each dictionary item

This begins the Bootstrap navbar
styling section and sets the color
and style of the navbar.

Creates the MyBlog brand icon as
a clickable link to the home page

Iterates over the
nav_items variable

Compares the current page
to the current nav_item link

Outputs a highlighted link
if the comparison was true

1357.5 Navigation
 {% else %}
 <a class="nav-link ml-2"
 href="{{url_for(

➥ nav_item['link']
)}}"

➥ >
 {{nav_item["name"]}}

 {% endif %}
 {% endfor %}
 </div>
 </div>
</nav>

There’s quite a bit going on here. Much of the code is about getting Bootstrap-style
classes in the right places with the correct context and information. This is a lot of styl-
ing information to work with and learn when using Bootstrap. However, it’s minuscule
when compared to providing the same styling functionality with handwritten CSS
code.

 An interesting part of the template code is the for loop and the if statement
within it. The for loop iterates over the previously created nav_items list, pulling
out one nav_item at a time. The if statement uses the built-in object and attribute
request.endpoint to determine if the page currently being built is the same as the
nav_item["link"] value.

 If the current page is equal to the nav_item link, the navbar menu item is an
HTML link containing the class active and the HTML attribute aria-current=
"page". The Bootstrap active class adds visual highlighting to the menu item. The
HTML attribute aria-current="page" helps users navigating to the page that are
using a screen reader for accessibility. If the current page is not equal to the
nav_item link, the navbar menu item is rendered in its default state with no highlight
applied.

7.5.3 MyBlog’s current look

If you change your working directory to examples/CH_07/examples/04, there’s a
fully functional example program that implements what we’ve gone through. Use the
following commands to run the application for Mac and Linux users:

export FLASK_ENV=development
export FLASK_APP=myblog.py
flask run

And these commands for Windows users:

set FLASK_ENV=development
set FLASK_APP=myblog.py
flask run

When the application is running, use your browser to navigate to 127.0.0.1:5000,
and you’ll see the application.

Outputs a normal link if
the comparison was false

136 CHAPTER 7 Doing it with style
Figure 7.9 shows the current
MyBlog application with the
newly added Bootstrap navbar
directly below the banner. This is
the expanded view, with the
home-page menu item high-
lighted by the base.html tem-
plate code shown previously.
 If you start to minimize the
browser window horizontally,
you’ll see that the navbar naviga-
tion will be reduced to a drop-
down button on the right side of
the navbar (figure 7.10). If you
click that button, the navigation
menu items will appear, allow-

ing access to the Home and About links. This shows the advantages of using Boot-
strap’s responsive design features.

7.6 Application configuration
The MyBlog application has come a long way since its first incarnation, and there’s work
to do to improve it further. The development you’re embarking on targets making the
configuration, sustainability, and maintainability of the application better and easier.

Newly added Bootstrap navigation bar

Figure 7.9 The MyBlog application displaying a Bootstrap
navbar

Making the browser window smaller adjusts the navigation bar
for smaller devices. The menu is replaced by a button on the right.
If clicked, the menu items are presented on the left in a list.

Figure 7.10 Bootstrap has
its own media queries to
manage smaller screens,
adjusting the menu bar.

1377.7 Flask Debug Toolbar
7.6.1 Configuration files

The MyBlog application will eventually rely on functionality that needs configuration
data—sending an email to an email service, accessing a database to store users and
blog posts, and providing security data for the Flask application itself. In addition to
the configuration data needed by the MyBlog feature set, you’ll want to set up distinct
data for development and production environments.

 The configuration data creates an environment in which the MyBlog application
will run. A development environment often provides additional debugging services
and access to the inner workings of the application. If you develop an application in a
team, different configuration data is needed to create a staging environment. A stag-
ing environment is where the team can test the various parts of the application before
being pushed into production. A production environment removes the debug infor-
mation and restricts access to only the feature set intended to be publicly available.

7.6.2 Private information

Any application whose feature set includes accessing systems or services requiring
usernames, passwords, or API keys needs to keep that information private. For exam-
ple, the MyBlog application will automatically send emails to users and administrators.

 The MyBlog application won’t handle sending an email directly but will instead
use an external SMTP email server. The app will need to authenticate the email server
with a username and password and possibly an API key. Although the MyBlog applica-
tion will need access to this information, you don’t want this information to become
available in the public domain.

 It would be easy to embed this information directly in the code, but that pretty
much assures that it would become public. Unintentionally making private data pub-
lic could happen as easily as embedding private information in the code and then
checking that code into a publicly accessible repository like GitHub. Services like
GitHub provide a valuable resource to developers, but they don’t automatically pro-
tect you from publishing things you didn’t intend to.

 As a developer, you’ll want to protect yourself and your employer so the services
your application uses aren’t abused. Besides being good practice, if the services cost
money, failing to protect them could cost more than you expected.

 One way to separate private information from an application but still have access
to it is to store the information in separate files that the application can access at run-
time. These files aren’t checked into a repository, so they are at less risk of becoming
public. Additionally, multiple versions can be maintained for the different environ-
ments in which the application can run, like development, staging, and production.

7.7 Flask Debug Toolbar
To make introducing configuration files more interesting, you’ll be using them to add
the Flask Debug Toolbar (https://github.com/pallets-eco/flask-debugtoolbar) to the
MyBlog application when it’s running in development mode. The toolbar is useful
when developing a Flask application. It shows internal information right in the

https://github.com/pallets-eco/flask-debugtoolbar

138 CHAPTER 7 Doing it with style
browser window that would otherwise only be available by debugging the application
itself or by examining log information.

 The configuration files you’ll add will control information the Debug Toolbar
requires to run and dynamically installs the toolbar only in development environ-
ments. The Debug Toolbar module needs to exist in the currently active Python vir-
tual environment as follows:

pip install flask-debugtoolbar==0.11.0

7.7.1 FlaskDynaConf

The configuration information is stored in TOML files, which are human readable
and support data types for the information contained within them. To gain access to
the configuration TOML files, you’ll need to install the dynaconf module into the
current Python virtual environment as follows:

pip install dynaconf==3.1.2

The module contains a class specific to Flask that will automatically add configuration
information to the Flask configuration system. The Flask Debug Toolbar requires the
Flask app to have a SECRET_KEY value. The SECRET_KEY value is also used for secu-
rity aspects of a Flask application used in later chapters. In the configuration file, it
looks like this:

secret_key=" <random string of characters>"

TIP Following my own advice, the actual secret key used during the example
code development isn’t revealed. The secret key’s value should be a cryp-
tographically strong string of characters that isn’t publicly known.

You can generate a SECRET_KEY value with the following code:

python
>>> import secrets
>>> print(secrets.token_hex(24))
b3a40bcc3bcc5894c390681396ec04687ad869c6546cdff9

The secrets module provides cryptographically strong random values better suited
to manage private information. The printed results are copied between the quotes as
the secret_key value in a file named .secrets.toml:

[default]
secret_key="<random string of characters>"

The file structure contains sections, indicated by the [default] line, and a set of
key/value pairs of data. Because the secret_key is defined within the [default]
section, that value is available in any other section unless it is overridden explicitly by
another secret_key key/value pair. Completing the configuration to add the Flask
Debug Toolbar requires the creation of another TOML file, settings.toml:

Sample
output

1397.7 Flask Debug Toolbar

En
the

d

[default]

[development]
flask_debug = true
extensions = ["flask_debugtoolbar:DebugToolbarExtension"]
debug_tb_enabled = true

[production]
flask_debug = false

The configuration is separated into three sections—[default] (currently empty),
[development], and [production]—and could be divided into as many as
needed. Notice the listed values have data types, and the extension key’s value is a
list of strings. The flask_debug key/value pair has a value of true, which is a Bool-
ean. Each section (aside from [default]) is keyed to the Flask environment variable
initialized before running the application:

export FLASK_ENV=development

Only the information under the [default] and the indicated environment will be
read from the settings.toml file at run time. The settings.toml files can be
included in the repository, as it’s useful to anyone wanting to work on the application
and doesn’t contain secret information. The secrets.toml file should be excluded
from the project repository because it contains information that shouldn’t be publicly
available.

CONFIGURING MYBLOG

To use the configuration information, you need to make changes to the MyBlog appli-
cation. Because the configuration is central to the application, make the following
changes to the app/__init__.py file:

import os
import sys
from flask import Flask
from dynaconf import FlaskDynaconf

def create_app():
 app = Flask(__name__)
 dynaconf = FlaskDynaconf(extensions_list=True)

 with app.app_context():
 os.environ[

➥ "ROOT_PATH_FOR_DYNACONF"

➥] = app.root_path
 dynaconf.init_app(app)
 app.config["SECRET_KEY"] =

➥ bytearray(app.config["SECRET_KEY"], "UTF-8")
 from . import intro
 app.register_blueprint(intro.intro_bp)
 return app

No default information
is currently defined.

Begins the definition of
configuration information for
development environments

ables
 Flask
ebug

mode

Begins the definition
of the configuration
for production
environments

Disables the Flask
debug mode

Imports the Flask-specific
dynaconf class

Creates an instance of the
FlaskDynaconf class, activating
the module loader feature

Informs dynaconf where to look
for configuration *.toml files

Configures the Flask app based on the
dynaconf-read configuration files

Translates the SECRET_KEY string
into a bytearray as recommended

by the Flask documentation

140 CHAPTER 7 Doing it with style
The FlaskDynaconf class searches for configuration files based on file-naming pat-
terns and directory structures and finds both the .secrets.toml and settings
.toml files. It parses them and configures the Flask app.config object accordingly.
Running the MyBlog application in examples/CH_07/examples/05 in the develop-
ment environment renders the home page in the browser and presents the Flask
Debug Toolbar on the right side of the screen (figure 7.11).

The initial view doesn’t show much difference except for the small tab in the upper
right corner of the window labeled FDT for Flask Debug Toolbar. Clicking on this tab
opens the toolbar and presents some information about the page as well as the tools it
makes available. Figure 7.12 displays the expanded toolbar.

Figure 7.12 The Flask Debug Toolbar expanded view showing the tools available

The Flask Debug Toolbar
appears as a tab on
the right side of the
browser window.

Figure 7.11 The rendered
page now includes the Flask
Debug Toolbar.

The Flask Debug Toolbar
expanded into the
browser display window
and shows the information
available to inspect

1417.8 Logging information
Clicking on the Templates menu item loads the working area of the display with infor-
mation about the home page template (figure 7.13). This includes the context vari-
ables used by the template, the URL that was requested, and the information about
the session.

Figure 7.13 The information about the current template is displayed after selecting the Templates tool.

Not all the menu options provide useful information. The Logging selection doesn’t
show anything currently but will after adding a logging configuration in the next sec-
tion.

7.8 Logging information
Flask uses the Python logging module to log information to standard output
(STDOUT), as you’ve seen when running the MyBlog application from the terminal
command line. Almost any coding from a developer leads to inserting print state-
ments into the code to get information out of a running application. A better
approach to output this kind of information is to use the Python logging system.

Selecting the Templates
tool displays information
about the currently
rendered template.

142 CHAPTER 7 Doing it with style
 Logging is a simple way to get a snapshot of what’s happening at that point of exe-
cution in the application. The same facility is available when developing a web appli-
cation through the logging system. Logging information to STDOUT is beneficial in a
long-running server application.

 The logging system has advantages over print statements; it supports severity levels
for the logged information. The severity levels allow you to raise and lower the level of
logs the application will produce. For example, you can output useful development
information at the DEBUG level. The configuration of the application running in a pro-
duction environment can be raised above the DEBUG level and none of the developer
debug logs will be produced. The debug log statements can be left in place in the code.

 It can also provide a standardized format that’s chronologically arranged and use-
ful when looking for events or the order of operations for a sequence of events. The
Python logging system supports multiple paths, or handlers, for logged messages with
different endpoints. These endpoints can be as simple as logging to STDOUT or more
sophisticated, like sending an email or text message to a service in response to a
logged message. For the MyBlog application, the logging configuration is relatively
simple: sending logs to STDOUT with a particular message format.

7.8.1 Configuration

The Python logging module supports configuration from a dictionary, and that’s what
MyBlog will use. Configuring the logging system is another responsibility you’ll add to
the app package’s create_app() function.

 As mentioned, the logging system uses logging levels, ranging from NOTSET to
CRITICAL, where NOTSET equals 0 and CRITICAL equals 50. In my experience,
NOTSET is never used and is there to “round out the set.” Besides providing some con-
text about the logged message, the logging system’s level acts as a simple filter. If the
logging system’s level is set to INFO for a particular logger, only messages with a level
equal to INFO or higher will be logged.

 The DEBUG (value 10) and INFO (value 20) levels are of interest for the develop-
ment and production environments in which the MyBlog application runs. In devel-
opment, the level can be set to DEBUG, and all logged messages with a level of DEBUG
or higher will be logged. In a production environment, the level can be set to INFO,
all log messages with a level of INFO or higher will be logged, and DEBUG-level mes-
sages will be ignored.

 By differentiating the two environment’s logging levels, you can add DEBUG-level
messages into an application during development and leave them in place. In a pro-
duction environment, those messages won’t be logged. The Python dictionary to con-
figure logging is created by reading a logging configuration YAML file with a support
function in app/__init__.py:

def _configure_logging(app, dynaconf):
 logging_config_path = Path(app.root_path).parent / "logging_config.yaml"
 with open(logging_config_path, "r") as fh:
 logging_config = yaml.safe_load(fh.read())

1437.8 Logging information
 env_logging_level = dynaconf.settings.get(

➥ "logging_level", "INFO"

➥).upper()
 logging_level = logging.INFO

➥ if env_logging_level == "INFO"

➥ else logging.DEBUG
 logging_config["handlers"]["console"]["level"] = logging_level
 logging_config["loggers"][""]["level"] = logging_level
 logging.config.dictConfig(logging_config)

The _configure_logging() function has a leading underbar character, a conven-
tion indicating it’s intended to be private to the module. The leading underbar is only
a convention and does not add any privacy protections to the function.

 The function creates an env_logging_level variable based on the environment
string passed to the function. The variable is used to create the configuration dictio-
nary to control the logging level console STDOUT handler. The logging configuration
information is in a file named logging_config.yaml at the project directory level:

version: 1
disable_existing_loggers: true
formatters:
 default:
 format: '[%(asctime)s.%(msecs)03d]

➥ %(levelname)s in %(module)s: %(message)s'
 datefmt: '%Y-%m-%d %H:%M:%S'
handlers:
 console:
 level: DEBUG
 class: logging.StreamHandler
 formatter: default
 stream: ext://sys.stdout
loggers:
 '':
 level: DEBUG
 handlers: [console]
 propagate: false

The structure creates the formatters used by the handlers, which the loggers use. The
formatters change the logging message default format used by the MyBlog applica-
tion. Add a logging_level configuration key/value to the settings.toml file to
both the development and production sections as follows:

[development]
…
logging_level = "DEBUG"

[production]
…
logging_level = "INFO"

Two changes need to be made to the create_app() function in app/__init__.py
to use the dictionary returned by the _configure_logging() function. Add these
two lines at the bottom of the import section

Disables any existing
loggers created by Flask

Configures only one handler
to send errors to STDOUT

144 CHAPTER 7 Doing it with style
import logging
import logging.config

and add this line to the create_app() function immediately below the code that
converts the app.config[SECRET_KEY] to a bytearray:

_configure_logging(app, dynaconf)

You can now add DEBUG-level log messages where needed to help develop the MyBlog
application. The home and about pages can be modified as follows to demonstrate
this:

logger = getLogger(__file__)

@intro_bp.route("/")
def home():
 logger.debug("rendering home page")
 return render_template("index.html", data={
 "now": datetime.now(),
 "page_visit": PageVisit(),
 "banner_colors": BannerColors().get_colors()
 })

@intro_bp.route("/about")
def about():
 logger.debug("rendering about page")
 return render_template("about.html")

When starting and running the MyBlog application, a DEBUG log message will be pres-
ent in the logging output whenever the application home or about pages are
accessed. If you run the code in examples/CH_07/examples/06 and navigate to the
about and home pages, the log output will look similar to this:

[2021-01-08 15:29:39,030] WARNING in _internal: * Debugger is active!
[2021-01-08 15:29:39,055] INFO in _internal: * Debugger PIN: 107-111-649
[2021-01-08 15:29:39,104] INFO in myblog: MyBlog is running
[2021-02-03 13:56:57.535] DEBUG in intro: rendering about page
[2021-01-08 15:29:55,707] DEBUG in intro: rendering home page

If you set the environment variable FLASK_ENV=production and run the MyBlog
application, any DEBUG messages generated by the app won’t be present in the logging
output. Suppressing DEBUG messages is useful in production environments to keep
from cluttering the logging output with development information.

7.9 Adding a favicon
A favicon is a graphic image used as a shortcut to represent a website. Supporting
a favicon gives the MyBlog application some additional professionalism, so we’ll
add one.

Calling the function configures
logging for the MyBlog application

Sends a DEBUG-level message
to the logging system that the
home page has been rendered

Sends a DEBUG-level message
to the logging system that the
home page has been rendered

1457.9 Adding a favicon
 The code in examples/CH_07/examples/07 includes two versions of the
MyBlog brand graphic; one in the .ico format (icon) and one in the .svg format (Scal-
able Vector Graphics). The first will give a browser window tab holding the MyBlog
application the small brand icon. The second appears alongside the MyBlog text in
the navigation bar. In this context, the brand icon is a visual shorthand associated with
the MyBlog application.

 The favicon.ico file has to be served from the MyBlog application when
requested by the browser. The browser expects to find it in the root folder, which
won’t be part of any Flask Blueprint in MyBlog. The favicon.ico is made available
by adding a route to it directly in the app/__init__.py file, inside the app.app_
context() context manager:

@app.route('/favicon.ico')
def favicon():
 return send_from_directory(
 os.path.join(app.root_path, 'static'),
 'favicon.ico',
 mimetype="image/vnd.microsoft.icon"
)

The code registers the URL route where the browser is looking for the favicon()
function. Flask uses the send_from_directory() function to get the file’s path, the
filename, and the mime type and return it to the browser. The send_from_
directory() function must be imported to make it available. The code in the repos-
itory does this.

 You’ll also add the MyBlog brand SVG image in the navigation bar built in the
base.html template. The image is added immediately before the MyBlog text in the
navbar brand section of the template:

<img src="{{url_for('static', filename='images/myblog_brand_icon.svg')}}"
 alt=""
 width="30"
 height="24">

This HTML code adds an image link that finds the myblog_brand_icon.svg file in
the application root static folder and scales it appropriately for display in the naviga-
tion bar. Running the MyBlog application in examples/CH_07/examples/07 pres-
ents a browser display that includes the favicon.ico and myblog_brand_icon
.svg image files.

 The favicon.ico file is displayed in the browser tab containing the MyBlog
application. The myblog_brand_icon.svg file is displayed immediately to the left
of the MyBlog text in the navigation bar. Both are shown in the figure 7.14 screenshot
of the application. The brand graphic and name are clickable links returning the user
to the application’s home page.

146 CHAPTER 7 Doing it with style
Figure 7.14 The browser display, including the favicon and MyBlog brand SVG images

7.10 Closing thoughts
Having Bootstrap integrated into the application goes a long way toward making
MyBlog look polished and professional while at the same time reducing the develop-
ment workload of creating that look and feel. The refactoring work done to MyBlog
gives you a good foundation from which to grow the application further. Adding new
features will be simpler because backtracking to address initial assumptions will be
avoided.

 By adding external configuration files to MyBlog, you’ve enabled the creation of
multiple run-time environments and moved sensitive information to a more protected
space. The use of configuration files also lets you add the Flask Debug Toolbar and
logging levels to the MyBlog application.

 You’ve taken some web development concepts and tools in hand where we can
examine them with a magnifying glass to see their details and how they fit together.
Being able to look closely at how modules work and connect will be key to adding new
features. The next chapter will build on this excellent foundation by adding user
authentication and creation, allowing the MyBlog application to secure pages to
logged-in users only.

The favicon and MyBlog brand SVG images are displayed. The favicon is used in
the browser tab. The brand SVG file is shown in the application navigation bar.

147Summary
Summary
 By using the Bootstrap styling framework, we get good-looking and powerful

styles and user interactions but keep the focus of our Python work. This helps to
reduce technical domain switching between Python and CSS/JavaScript UI
work.

 Moving from custom CSS to a framework like Bootstrap not only reduces styling
workload but makes a website’s look and feel more consistent across different
browsers and operating systems.

 Restructuring the simple web application from the previous chapter allows us to
keep complexity manageable and extensibility possible.

 Flask’s Blueprint feature gives us a convenient way to structure the related web
application URL endpoints into namespaces.

 Configuration files for an application should have public and private compo-
nents. Public configuration information can be stored in repositories so others
can work on the app and access the public configuration. Private or secret con-
figuration information should never be present in a repository, as that risks
exposure of the information.

 Logging information from a web application is useful to monitor the applica-
tion’s health and use. It also provides useful information about how to see and
find problems that aid with debugging an application.

Do I know you?
Authentication
The MyBlog web application supports many users so they can post engaging con-
tent that the community will read. In addition, that community can read and com-
ment on the content posted by other users. However, it’s unlikely users want the
content that they created edited or deleted by a user other than themselves.

 To control who can access and use the MyBlog site, we’ll need to identify users.
Identifying users on a web application is called authenticating a user. This allows
the application to ensure a user is who they claim to be.

 Providing authentication to the MyBlog application is the intent of this chapter.
However, doing so with a web application presents some unique challenges.

This chapter covers
 Flask sessions

 Remembering the user

 Letting users log in

 Registering new users
148

1498.1 The HTTP protocol is stateless
8.1 The HTTP protocol is stateless
The MyBlog web application follows the request/response model supported by HTTP.
The user creates an HTTP GET request from the browser, and the server responds by
sending the requested HTML, CSS, JavaScript, and image files back. Nothing in that
transaction implies that the server has prior knowledge about the requests it received.
The HTTP protocol is stateless, meaning each request is complete and independent
from any previous request. The server maintains no memory of past, present, or
future request/response transactions.

 In this model, the request must contain all the necessary information so the server
can build the appropriate response. Even if the same request is made to the server
multiple times, the server will rebuild the same response each time.

 If servers using the HTTP protocol have no memory, how do retail shopping sites
know who you are when you purchase things? How does the web application running
on that site remember the shopping cart you’ve created across multiple request/
response transactions? And most importantly, how does a shopping site ensure the
credit card belongs to the user making the purchase request? The answers to these
questions involve adding state information to the transactions between the client’s
browser and the web application server.

8.1.1 Sessions

A session allows the server to relate information about a user to incoming requests.
The session commonly establishes the relationship with a cryptographically strong
unique ID value generated by the server and saved as a cookie in the client’s browser.
This is known as a session cookie, though the client’s actual cookie name can vary
depending on the server framework in use.

 The session usually contains a unique identifier the server encrypted when the ses-
sion was created. To prevent the session from being modified on the client side, the
unique identifier is encrypted before being passed to the client. Thereafter, every
request the client makes includes the encrypted identifier.

 When a request with a session arrives at the server, the server can decrypt the
unique identifier and relate it to a specific user and any user information the server
maintains—for example, a user’s name, shopping cart, and more. The server can
retain state information from one request to the next by layering a session on the
HTTP protocol.

FLASK SESSIONS

Flask supports the use of sessions and makes them available to the MyBlog applica-
tion. A session cookie doesn’t exist between a client and the server until the server
explicitly creates it. You can create a session by adding information to any URL route
handler code you develop. The session is created and added to the client as a cookie
in the response when that URL is accessed.

150 CHAPTER 8 Do I know you? Authentication
 Flask uses the SECRET_KEY we created in the configuration from the previous
chapter to sign the session cookie when created cryptographically. By doing this, the
cookie can be viewed on the client side but can’t be modified unless the SECRET_KEY
is available. As mentioned in the previous chapter, when the SECRET_KEY is added to
enable the Flask Debug Toolbar, it is essential that the SECRET_KEY be cryptographi-
cally strong and kept private.

 By default, session cookies exist until the client browser is closed. This can be
changed by modifying the session’s permanent attribute, a Python datetime
.timedelta() value. You can make a session exist for a year by adding the following
in the server code:

session.permanent = True
app.permanent_session_lifetime =

➥datetime.timedelta(days=365)

Once a session exists, you can use it to maintain information across the request/
response transaction. Using a session cookie for information storage is convenient but
has limitations. A cookie has a memory size limit imposed on it by the browser that
can vary from browser to browser. The memory constraint on cookie size is one prob-
lem; another is the size of the data going across the internet for every request/
response message.

 The information stored in a cookie is sent back and forth with every transaction
between the client and the browser. Even in the age of widely available high-speed
internet access, that’s still a concern, especially for mobile devices. The solution to
both these concerns is to use the session cookie to store the unique user identifier
value and incorporate it on the server side to retrieve all the other information neces-
sary to build the correct response to the request.

8.2 Remembering someone
Remembering the user gives the MyBlog application ways to control what features are
available to users. For example, blog entries and comments are visible to anyone, but
the ability to add a new blog entry or comment on an existing one is reserved for
known users.

 The user information described previously can be stored on the server and
retrieved using the session cookie’s unique user identifier. A unique user identifier
value has to be created and stored and then used to authenticate that user. For a web-
site, identifying a user happens when a user logs in through an authentication system.

8.2.1 Authentication

The MyBlog application uses the flask_login extension module from the Python
Package Index (https://pypi.org/). The flask_login extension gives the MyBlog
application session management abilities and tools to log users in and out and handle
the somewhat difficult “remember me” functionality. It also adds protection to URL
endpoints so only authenticated users can access the protected endpoints.

Marks the session
as permanent

Uses the Flask app instance to set the
lifetime of the permanent session

https://pypi.org/

1518.2 Remembering someone
 The login process follows the common email/password pattern to authenticate
users. The process is illustrated in figure 8.1. The user’s email address is a valid choice
as a unique identifier because it is already unique and likely well remembered. From a
high-level view, the login system you’re going to create follows a stepwise workflow.

Figure 8.1 A visual representation of the login process workflow steps

The user login process follows this sequence of steps:

1 The user makes a GET request from their browser to the authentication login
URL endpoint.

2 The authentication login handler responds to the GET request by returning the
rendered login HTML page.

3 The user fills out the login page form fields and submits the form.
4 The form is submitted to the authentication login system using a POST request.
5 The login system tries to find a user with a matching email and password by

using the models supported by the application.
6 The User model tries to find a user with a matching email and password in the

application storage system.

GET

Login

Keep me logged in

Email

Password

Log In

Authentication

Login

Models

User Database

Home or destination
page with session

cookie

User accessing
the MyBlog site

SQLite
database

SQLAlchemy
models

Authentication
handler

Login HTML
web page

POST

152 CHAPTER 8 Do I know you? Authentication
7 If a matching user is found, the user is directed to the home page or the origi-
nal destination page that the user wanted to view.

Because powerful computer CPU and GPU hardware are readily available, the ability
to crack user passwords is easier for hackers to implement. The MyBlog application
uses the Flask_bcrypt extension to hash the passwords stored on the server. The
bcrypt functionality creates a computationally expensive hash, making it resistant to
brute force attacks, even with increasing computer power.

TIP Plain-text passwords should never be stored in a database and should
always be cryptographically hashed first. This means your users will have to
reset their passwords if they forget them. It also means the user accounts are
protected if a hacker manages to gain access to your site’s database, as the
passwords are encrypted.

Figure 8.1 shows a storage mechanism accessed by step six. The flask_login exten-
sion requires this storage to persist users to retrieve and identify them later. To do this,
you’ll use SQLAlchemy to manage the user data in an SQLite database. This chapter
focuses primarily on authenticating users and will defer more detailed information
about SQLAlchemy and utilizing a database until chapter 10.

 To install all the modules necessary to run the example applications for this chap-
ter, run the following command from within a Python virtual environment using the
requirements.txt file from the repository:

pip install -r requirements.txt

This makes the modules available in the code you create to add authentication.

LOGINMANAGER

First, add the modules necessary for authentication, password encryption, and user
persistence to the app/__init__.py module. Adding them to the import section at
the top of the module makes the functionality available to the create_app() appli-
cation factory function:

import os
import yaml
from pathlib import Path
from flask import Flask, send_from_directory
from dynaconf import FlaskDynaconf
from Flask-sqlalchemy import SQLAlchemy
from flask_login import LoginManager
from Flask_bcrypt import Bcrypt
import logging
import logging.config

Then, right above the create_app() function, add new global instance variables for
the new functionality:

Imports the SQLAlchemy
functionality to manage
the data persistence

Imports the LoginManager to
handle user authentication

Imports the Bcrypt module
to cryptographically
encrypt user passwords

1538.2 Remembering someone
login_manager = LoginManager()
login_manager.login_view = "auth_bp.login"
Flask_bcrypt = Bcrypt()
db = SQLAlchemy()

Inside the scope of the create_app() function in the initialize plugins section, ini-
tialize the new instance variables you just created with the app instance variable as
follows:

os.environ["ROOT_PATH_FOR_DYNACONF"] = app.root_path
dynaconf.init_app(app)
login_manager.init_app(app)
flask_bcrypt.init_app(app)
db.init_app(app)

In the import routes section, import an auth module that you’ll create shortly:

from . import intro
from . import auth

In the register blueprints section, register an auth Blueprint that will be created soon:

app.register_blueprint(intro.intro_bp)
app.register_blueprint(auth.auth_bp)

Add this new section just above the return app line at the bottom of the
create_app() function:

db.create_all()

The new code uses functionality that’s defined in later sections of this chapter. This
work initializes the authentication, encryption, and database systems whenever the
app package is accessed or imported. The next step is to create the auth Blueprint
that handles the user authentication functionality.

AUTH BLUEPRINT

Like the intro Blueprint, the auth Blueprint is a Python package containing distinct
functionality. Create a directory named auth under the app package and then create
an __init__.py file inside the auth directory. The __init__.py file generates and
initializes the auth_bp Blueprint instance as we’ve done before:

from flask import Blueprint

auth_bp = Blueprint(
 "auth_bp", __name__,
 static_folder="static",

Creates an uninitialized instance
of the LoginManager class

Points the LoginManager
instance to the Blueprint
view to be created later

Creates an uninitialized
instance of the Bcrypt() class

Creates an uninitialized instance
of the SQLAlchemy class

Creates the SQLite database
if it doesn’t already exist

154 CHAPTER 8 Do I know you? Authentication
 static_url_path="/auth/static",
 template_folder="templates"
)

from . import auth

This code creates the auth_bp Blueprint instance whenever the auth package is
accessed or imported. The actual authentication functionality is contained in the
auth.py file also created in the app/auth directory:

from logging import getLogger
from flask import render_template, redirect, url_for, request
from . import auth_bp
from ..models import db_session_manager, User
from .. import login_manager
from .forms import LoginForm
from flask-login import login_user, logout_user, current_user
from werkzeug.urls import url_parse

logger = getLogger(__name__)

@login_manager.user_loader
def load_user(user_id):
 with db_session_manager() as db_session:
 return db_session.query(User).get(user_id)

@auth_bp.route("/login", methods=["GET", "POST"])
def login():
 form = LoginForm()
 if form.validate_on_submit():
 with db_session_manager() as db_session:
 user = db_session.query(User)
 ➥.filter(User.email == form.email.data)
 ➥.one_or_none()
 if user is None or not
 ➥user.verify_password(form.password.data):
 flash("Invalid email or
 ➥password", "warning")
 return redirect(
 ➥[url_for("auth_bp.login"))
 login_user(user,
 ➥remember=form.remember_me.data)
 next = request.args.get("next")
 if not next or
 ➥url_parse(next).netloc != "":
 next = url_for("intro_bp.home")
 return redirect(next)
 return render_template("login.html", form=form)

The auth.py module creates a route called "/login" associated with the auth_bp
Blueprint instance and associates it with the login() handler function. The login()
handler function has two purposes. When it is called because of an HTTP GET

Imports the auth_bp Blueprint
instance from the package

Imports the
models, which will
be created next

Imports the
login_manager
instance from
the package

Imports the LoginForm, which will
be created in the next section

The function called every time
the login_manager needs to
determine if the user exists

The login function registered
with the auth_bp Blueprint
for the "/login" route

Begins a database session
context manager scope to
close the database session
when the scope endsGets a user from

the database
based on the form

email value
If no user is found, or the
password doesn’t verify,
warn the user and redirect
to the login.

Sets the logged-in user and
creates a session cookie

1558.2 Remembering someone
request, it returns the rendered login.html template, which will be created in the
next section. If the function is called as the result of an HTTP POST request, it will
process the contents of the form parameters in the login.html template.

 The if form.validate_on_submit() code determines if the HTTP request
method is a GET or a POST and branches accordingly. If the method is a POST, it will
validate the form parameters against a set of rules configured in the LoginForm class.
If the form parameters are valid, the function takes the following actions:

 Gets a user from the database using the form email parameter.
 If the user doesn’t exist or the form password parameter is not valid:

– Flashes a warning message to the user and re-renders the login screen. Flask
uses the term Flash to mean presenting additional information to the user.

 If the user does exist and the form password parameter is valid:
– Updates the login manager system about the user and creates a session

cookie to remember them.
 Gets the page to which the user was trying to navigate when presented with the

login action.
 Validates the request for that page if the netloc attribute is valid.
 Redirects the user to that page or the home page if netloc is empty.

USER MODELS

One of the goals of adding a login mechanism to the MyBlog application was to layer
state information on top of the HTTP protocol to remember the user. Using the
flask_login system, you’re getting closer to that, but we need to have a unique
identifier to save in the session cookie. The identifier can be used to retrieve informa-
tion about the user.

 Both require us to define
and implement a user data
structure. We will create a
Python SQLAlchemy class—
User—that will be stored in an
SQLite database.

 SQLite is a relational data-
base system that Python can
access via modules. An in-
depth discussion about data-
bases and accessing them with
SQLAlchemy will be presented
in chapter 10. Figure 8.2 shows
all the information you’ll be
storing about logged-in users—
their name, email, hashed pass-
word, and whether they are
active. The created and

User

PK user_uid

first_name

last_name

email

hashed_password

active

created

updated

string

string

string

string

string

boolean

datetime

datetime

Data field names

Primary
Key field

Data type of the fields

Figure 8.2 The ERD (entity relationship diagram) of the
User table showing its fields and their data types

156 CHAPTER 8 Do I know you? Authentication
updated fields are simple audit information showing a timestamp when the record
was created or updated.

 The MyBlog application will store and present information it remembers, such as
users, blog content, and comments. Each item will need to be defined and imple-
mented as you create more features that the application supports. Because everything
the MyBlog application can present is stored in a database, you’ll start by using a data-
base term—models.

 The app/models.py module holds all database models that define and imple-
ment everything the MyBlog application stores. Because you need a User model to
enable users to log into the system, let’s create the app/models.py file now. The first
thing to do in the app/models.py file is to import the modules needed:

from contextlib import contextmanager
from flask_bcrypt import (
 generate_password_hash,
 check_password_hash
)
from . import db
from flask_login import UserMixin
from uuid import uuid4
from datetime import datetime

The import statements give the app/models.py module access to the functionality
needed to create the User class. The User class is employed with the flask_login
extension to authenticate a user of the MyBlog application. Authenticating a user
means identifying and verifying that the user is known to the MyBlog application and
can access features available to those users.

 We’ll begin by creating the User class, which contains information about the
user—their name, email address, and password, as well as the unique ID associated
with the user that will be stored in the HTTP session cookie.

UUID DATABASE PRIMARY KEYS

When creating a database table, a common practice is to use an auto-incrementing inte-
ger value as the unique ID associated with each record in the table. Instead, the MyBlog
application will use UUID values for this unique ID, called the primary key, for records
in the table. A UUID is a long string of alphanumeric characters that is unique world-
wide. The pros and cons of taking this approach are covered in chapter 10.

 A small function is created to supply UUID string values when User records are
created and inserted into the database:

def get_uuid():
 return uuid4().hex

The get_uuid() function uses the imported uuid4() function to create UUID val-
ues and then returns the hex string version of that value. Returning the hex string
version makes the UUID value a little shorter.

1578.2 Remembering someone
 Next, you must add the definition of the User class to app/models.py. This class
uses multiple inheritances to obtain built-in functionality from the modules imported
at the top of app/models.py.

 The first is the UserMixin class, which presents the child class methods that the
flask_login system expects to be available to access User information. The second
is the db.Model class, which comes from the db instance variable created and initial-
ized in the app module. The db.Model class gives a child class that inherits from it
the SQLAlchemy functionality needed to interact with the database and define the
columns in a table associated with the attributes of the class:

class User(UserMixin, db.Model):
 __tablename__ = "user"
 user_uid = db.Column(db.String, primary_key=True, default=get_uuid)
 first_name = db.Column(db.String, nullable=False)
 last_name = db.Column(db.String, nullable=False)
 email = db.Column(db.String, nullable=False,
 ➥unique=True, index=True)
 hashed_password = db.Column("password",
 ➥db.String, nullable=False)
 active = db.Column(db.Boolean, nullable=False, default=False)
 created = db.Column(db.DateTime, nullable=False,
 ➥default=datetime.utcnow)
 updated = db.Column(db.DateTime, nullable=False,
 ➥default=datetime.utcnow, onupdate=datetime.utcnow)

 def get_id(self):
 return self.user_uid

 @property
 def password(self):
 raise AttributeError("user password can’t be read")

 @password.setter
 def password(self, password):
 self.hashed_password = generate_password_hash(password)

 def verify_password(self, password):
 return check_password_hash(self.hashed_password, password)

 def __repr__(self):
 return f"""
 user_uid: {self.user_uid}
 name: {self.first_name} {self.last_name}
 email: {self.email}
 active: {'True' if self.active else 'False'}
 """

The User class inherits from the imported UserMixin and db.Model classes. This
means the User class IS-A UserMixin class and IS-A db.model class and has access to
both classes’ methods and attributes.

The User class multiply inherits from
the UserMixin and db.Model classes.

Defines the table name in
the database where records
of this class will be stored

Defines the unique
ID value for User

records using the
get_uuid function

Defines
other User
attributes

Defines record-auditing
timestamp attributes

158 CHAPTER 8 Do I know you? Authentication
 By inheriting from the UserMixin class, the User class gets methods needed to
function by the LoginManager() instance created in the app package. These meth-
ods use attributes defined in the User class to authenticate a user.

 The User class also inherits from the db.Model and is how the SQLAlchemy func-
tionality is added to the class, giving it access to the database. The User model defines
the structure of a single row of data in a table named "user", where each defined
attribute is a column in a database table record.

 The get_id() method overrides the method of the same name provided by the
UserMixin class, replacing its functionality. The default get_id() method returns a
self.id value, but because the User class defines the unique ID attribute name as
user_uid, it’s necessary to override the default behavior. The get_id() method is
used whenever the LoginManager instance needs to determine if the unique identi-
fier stored in the session cookie relates to a real user in the system.

 Note the pair of password() methods that create a write-only attribute on the
User class. Because it’s not helpful (or even possible) to read the password because
it’s cryptographically hashed, the method decorated with @property raises an attri-
bute error.

 The password() method decorated with @password.setter creates the write
behavior. The method intercepts setting the password attribute and generates a cryp-
tographically strong hash of the password, which is stored in the hashed_password
class attribute. Even though hashed_password is the attribute’s name, the corre-
sponding database column is named "password". The verify_password()
method is used in the auth.py module to determine if the password retrieved from
the login form template matches the hashed version stored for the user.

8.2.2 Logging in

Coding up an HTML form to gather user input for the email and password is a
straightforward process. With a submit button, the form contents can be sent to the
MyBlog server as an HTTP POST request, and you can then process the form
information.

 Because users can make unintentional and intentional errors when entering form
data, validating the form input information is necessary. For example, are the email
and password within the required length restrictions? Are the email and password
present at all? Does the email address conform to a standardized format? Implement-
ing these validation steps is extra work that’s difficult to get right. Fortunately, there’s
another Flask extension that dramatically simplifies form handling—Flask-WTF.

FLASK-WTF
The Flask-WTF extension integrates the more generalized WTForms package into
Flask. Using the extension allows you to bind MyBlog server code to HTML form ele-
ments and automate handling those elements when the corresponding form is
received by a handler using the HTTP POST method. To create the login form and its
validation, add a new file to the app/auth package named forms.py:

1598.2 Remembering someone
from flask_wtf import FlaskForm
from wtforms import PasswordField,

➥BooleanField, SubmitField
from wtforms.fields.html5 import EmailField
from wtforms.validators import DataRequired,

➥Length, Email, EqualTo

class LoginForm(FlaskForm):
 email = EmailField(
 "Email",
 validators=[DataRequired(), Length(
 min=4,
 max=128,
 message="Email must be between 4
 ➥and 128 characters long"
), Email()],
 render_kw={"placeholder": " "}
)
 password = PasswordField(
 "Password",
 validators=[DataRequired(), Length(
 min=3,
 max=64,
 message="Password must be between 3
 ➥and 64 characters long"
)],
 render_kw={"placeholder": “ “}
)
 remember_me = BooleanField(" Keep me logged in")
cancel = SubmitField(
 label="Cancel",
 render_kw={"formnovalidate": True},
)
 submit = SubmitField("Log In")

The LoginForm class defines an object to create when the form is rendered, contain-
ing all HTML elements in the form. The elements have a required first parameter—
the name used for labels, the element form name, and the ID value. The validators
parameter defines a list of validation steps that the element must pass for the form to
be valid. The render_kw parameter is optional and defines additional HTML form
attributes to be rendered with the element.

 The email element is an instance of the EmailField class. The class constructor
has a parameter "Email" used as is for any label rendered with the element and con-
verted to lowercase when used for name and ID values in the HTML DOM (document
object model). The validators define that an entry is required; the length must be
between 4 and 128 characters long inclusive, and the element value must be in a valid
email format.

 The password element is an instance of the PasswordField class. The
PasswordField renders the element as an HTML type of password, so the

Imports the
FlaskForm classImports the field type

classes to create in the form

Imports the field validation classes
used to validate the form elements

Creates the LoginForm, inheriting
from the base FlaskForm class

Creates the email form
element and validators

Creates the password form
element and validators

Creates the remember_me
form element

Creates the form
cancel button

Creates the form
submit button

160 CHAPTER 8 Do I know you? Authentication
user-entered text is shown as a sequence of asterisk characters. The class constructor
has a parameter "Password" used in the same manner as the email element. The
validators define that a password is required, and the length must be between 3
and 64 characters long inclusive.

 Notice the render_kw={"placeholder": “ “} parameters on both the email and
password attributes. These are necessary to make the Bootstrap styling input element’s
visual functionality work as intended.

 The remember_me element is an instance of the BooleanField class. This will be
rendered as an HTML checkbox with the label “Keep me logged in.”

 The cancel element is an instance of the SubmitField class and creates a cancel
button that will take the user to the home screen when clicked. The submit element
is also an instance of the SubmitField class and creates a submit button when the
form is rendered. With the forms.py module in place, you’ll need to create an
HTML page where the LoginForm class will render the contained elements.

LOGIN FORM

The login.html file is created in the app/auth/templates directory, where the
auth_bp Blueprint can access it.

{% extends "base.html" %}
{% import "macros.jinja" as macros %}

{% block content %}
<div class="login-wrapper mx-auto mt-3">
 <div class="container login">
 <form method="POST" novalidate>
 <div class="card">
 <h5 class="card-header">
 User Login
 </h5>
 <div class="card-body">
 <div class="card-text">
 {{form.csrf_token}}
 <div
 ➥class="form-floating mb-3">
 {{form.email(
 ➥class_="form-control")}}
 {{form.email.label(
 ➥class_="form-label")}}
 {{macros.
 ➥validation_errors(form.email.errors)}}
 </div>
 <div class="mb-3">
 {{form.password(
 ➥class_="form-control")}}
 {{form.password.label(
 ➥class_="form-label")}}

{{macros.validation_errors(form.password.errors)}}
 </div>

The login.html template inherits
from base.html so it gets all the

MyBlog page elements.

Imports the macros.jinja macros
file, which we’ll discuss next

Cross-Site Request Forgery
protection token reviewed
at the end of this chapter

Creates the email element on
the page, passing the element

Bootstrap class information

Creates the password
element on the page,
passing the element
Bootstrap class
information

1618.2 Remembering someone
 <div class="mb-3">
 {{form.remember_me}}
 {{form.remember_me.label(
 ➥class_="form-check-label")}}
 </div>
 </div>
 </div>
 <div class="card-footer text-end">
 {{form.cancel(
 ➥class_="btn btn-warning me-2")}}
 {{form.submit(
 ➥class_="btn btn-primary")}}
 </div>
 </div>
</form>
 </div>
</div>
{% endblock %}

{% block styles %}
 {{ super() }}
 <link rel="stylesheet" type="text/css"
 ➥href="{{ url_for('.static',
 ➥filename='css/login.css') }}" />
{% endblock %}

Remember back to the auth.py module and the login() handler assigned to the
/login route. Two lines of code are of interest as related to rendering the login form
and connecting it to the LoginForm instance created in forms.py:

form = LoginForm()

and

return render_template("login.html", form=form)

These two lines of code are important when the login() handler is invoked by an
HTTP GET or POST request. The first creates the LoginForm class instance variable.
The second passes that form instance to render_template as the second parameter,
giving the Jinja template engine access to the form instance when rendering the
login.html template elements. This is how the LoginForm definition instance is
connected to the login.html template.

 When a GET request is received, the template engine uses the form instance to
help render it in the browser window. When a POST request is received, the body of
the form contains the form data entered by the user, which populates the LoginForm
attributes. The form validation methods for each attribute run to validate that the
form data meets the validation requirements.

 Running the code in examples/CH_08/examples/01 and navigating to
127.0.0.1:5000/login presents the login form shown in the figure 8.3 screenshot
to the user. The login form presents input elements for the user to enter their email
and password and whether they should be kept logged in.

Creates the remember me element
on the page, passing the element

Bootstrap class information

Creates the cancel button,
passing the element
Bootstrap class information

Creates the submit button,
passing the element
Bootstrap class information

162 CHAPTER 8 Do I know you? Authentication
Figure 8.3 The MyBlog-generated login screen lets the user enter their email and
password to access the site.

JINJA MACROS

Notice this line in the login.html template that’s part of the email and password
definition sections:

{{macros.validation_errors(form.email.errors)}}

This references a Jinja macro in the app/templates/macros.jinja file imported
at the top of the login.html template. The validation_errors() macro handles
displaying any LoginForm validation errors to the user so they can be corrected:

{% macro validation_errors(errors) %}
 {% if errors %}
 {% for error in errors %}
 <div class="text-danger small">{{error}}</div>
 {% endfor %}
 {% endif %}
{% endmacro %}

A macro is a function definition in the Jinja template engine, much like defining a
Python function. The validation_errors() macro receives a list of LoginForm
validation errors. It first checks if there are any errors and, if so, iterates over that list,
displaying the error message in small red text below the form field that failed valida-
tion. The results of entering an invalid email address and a password of only two char-
acters render the login.html template and include error messages indicating the
problem to the user. Those errors are shown in the figure 8.4 screenshot.

 You’ll notice nothing happens if you enter a valid email address and password with
an acceptable length and click the submit button. The login.html template is

Email form element

Password form
element

Remember me
form element

Cancel form, go
to home screen

Submit form button

1638.3 News flash
rendered again, and there is no information presented to the user about what, if any-
thing, happened. Looking back at the login() function in the auth.py file, there is
a conditional check in the code right after trying to find a user by their email address:

user = db_session.query(User)

➥.filter(User.email == form.email.data)

➥.one_or_none()
if user is None or not user.verify_password(form.password.data):
 flash("Invalid email or password", "warning")
 return redirect(url_for("auth_bp.login"))

If the user is not found, it has a value of None, and the code executes the flash()
message function and redirects to the login route; the login.html template is ren-
dered again. No user was found because none had been created in the application yet.
The intended code for this condition ran, and the user was redirected to the login
screen. However, why isn’t the flash() function doing anything to inform the user
by displaying the invalid email or password message?

8.3 News flash
The Flask flash() function provides users feedback about events and activities in an
application. When a message is created and sent to the flash() function, the mes-
sage is appended to a list of messages available in the context of the next request and
only the next request. This makes those flash messages available to the next rendered
template.

Invalid
email
address

Invalid
password
length

Figure 8.4 Errors presented if the email or password is invalid

164 CHAPTER 8 Do I know you? Authentication

to
 The template has to access the message list and add the messages to the rendered
HTML to display the flash messages. A direct way to do this is to iterate over the flash
messages list using a Jinja for loop and create an HTML unordered list of the mes-
sages as part of the rendered HTML. We’ll use Bootstrap to render the messages to
display them temporarily and not disrupt the template style and presentation.

8.3.1 Improving the login form

The Bootstrap framework provides a component called toasts, which are lightweight
alert messages that “float” above the content. Toasts have been made popular in both
mobile and desktop operating systems. They are useful in the MyBlog application
because they don’t disrupt the template layout and are transient, and they disappear
soon after the message is presented.

 Because any URL endpoint handler can call the flash() function, it’s useful to
centralize where the flash messages are handled. The base.html template is ideal as
it’s intended to be inherited by every template in the MyBlog system.

 Creating a Bootstrap toast involves a significant amount of HTML code that would
need to be added to the base.html template file. A better option is to pull the flash
message handling out of the base.html template and create a Jinja macro. The
flask_flash_messages() macro function is added to the app/templates/
macros.jinja file:

{% macro flask_flash_messages() %}
 {% with messages = get_flashed_messages(
 ➥with_categories=true) %}
 {% if messages %}
 <div aria-live="polite"
 aria-atomic="true"
 class="position-relative">
 <div class="toast-container position-absolute top-0 end-0 p-3"
 style="z-index: 2000; opacity: 1;">
 {% for category, message in messages %}
 {% set category = "white" if
 ➥category == "message" else category %}
 {% set text_color = "text-dark" if category in [
 "warning",
 "info",
 "light",
 "white",
] else "text-white"
 %}
 <div class="toast bg-{{category}}"
 role="alert"
 aria-live="assertive"
 aria-atomic="true">
 <div class="toast-header bg-{{category}} {{text_color}}">
 {% set toast_title = category if category in [
 "success", "danger", "warning", "info"
] else "message" %}
 <strong class="me-auto">MyBlog: {{toast_title.title()}}

Begins the definition of the
flask_flash_messages() macro

Begins a with context block to
get the flash messagesAre there

any flash
messages
 process?

Begins the for loop
to iterate over the
list of flash messages

1658.3 News flash
 <button type="button"
 class="btn-close"
 data-bs-dismiss="toast"
 aria-label="Close"></button>
 </div>
 <div class="toast-body {{text_color}}">
 {{message}}
 </div>
 </div>
 {% endfor %}
 </div>
 </div>
 {% endif %}
 {% endwith %}
{% endmacro %}

Most of the flask_flash_messages() macro concerns itself with generating the
Bootstrap styling required to present toast messages. The toast messages are added to
the rendered template but aren’t displayed to the user immediately. To do that
requires JavaScript code to show the messages. The JavaScript code has to run every
time a template that inherits from base.html is rendered, so create an app/
static/js/base.js file as follows:

(function() {
 var option = {
 animation: true,
 delay: 3000
 }
 var toastElements = [].slice.call(document.querySelectorAll('.toast'))
 toastElements.map(function (toastElement) {
 toast = new bootstrap.Toast(toastElement, option)
 toast.show()
 })
}())

This code creates a self-invoking anonymous JavaScript function, meaning it runs as
soon as the browser JavaScript engine parses the code. This kind of function is useful
when you want to run some code immediately and keep variables out of the global
JavaScript scope. Because base.js is included at the end of the base.html tem-
plate, the function runs after the HTML DOM elements have been created, including
the toast elements.

 The option variable is a JavaScript object literal and is something like a Python
dictionary. It contains configuration information passed to the Bootstrap Toast class
to animate the toast message and remove it after 3000 milliseconds, or 3 seconds.

 The function then creates the toastElements array variable containing all the
toast HTML DOM elements on the page. An array in JavaScript is similar to a Python
list. JavaScript arrays have a method called map that applies a function to each ele-
ment in the array. The anonymous function passed to the map creates a new Toast
instance passing the option object and then calls the show() method to display the
toast message in the browser window.

166 CHAPTER 8 Do I know you? Authentication
 Suppose you run the application in examples/CH_08/examples/02 and enter a
valid email address and password, but the values are unknown to the MyBlog applica-
tion. In that case, the login page will be re-rendered with a toast message about the
email or password being invalid. The screenshot in figure 8.5 shows the error
produced.

Figure 8.5 The rendered template presenting a Bootstrap toast message containing
an error message

Now that users can theoretically log into the MyBlog application, it’s time to allow a new
user to register with the application, so they have an account to use when logging in!

8.4 Making new friends
Registering new users on the MyBlog application also uses the flask_login exten-
sion. The register-new-user process follows a pattern like the login process, as shown
by figure 8.6. Instead of looking for a user, it creates and saves one to the database.

 The register-new-user process is as follows:

1 The user makes a GET request from their browser to the authentication register-
new-user URL endpoint.

2 The authentication register-new-user handler responds to the GET request by
returning the rendered register-new-user HTML page.

3 The user fills out the register-new-user page form fields and submits the form.
4 The form is submitted to the authentication register-new-user system using a

POST request.

Toast message
that will be
removed after
3 seconds

1678.4 Making new friends
Figure 8.6 A visual representation of the register-new-user process workflow steps

5 The register-new-user system creates a user from the form data using the mod-
els supported by the application.

6 The User model saves the newly created user in the application storage system.
7 The user is directed to the authentication login page to enter their login cre-

dentials.

8.4.1 Auth Blueprint

The register-new-user handler is in the app/auth/auth.py file. Like the login han-
dler, a form is derived from the FlaskForm class in the forms.py module called
RegisterNewUserForm. Add this class instance to the line of code in app/auth.py
that imports the LoginForm class:

from .forms import LoginForm, RegisterNewUserForm

GET

POST

Login

First name

Last name

Log In

Email

Password

Confirm password

Authentication

Login

Models

User Database

Login page

SQLite
database

SQLAlchemy
models

New user
registration form

Authentication
handler

New User
registering on

the MyBlog site

168 CHAPTER 8 Do I know you? Authentication
Add a new handler to the module at the bottom of the file:

@auth_bp.route("/register_new_user",

➥methods=["GET", "POST"])
def register_new_user():
 if current_user.is_authenticated:
 return redirect(url_for("intro_bp.home"))
 form = RegisterNewUserForm()
 if form.validate_on_submit():
 with db_session_manager() as db_session:
 user = User(
 first_name=form.first_name.data,
 last_name=form.last_name.data,
 email=form.email.data,
 password=form.password.data,
 active=True
)
 db_session.add(user)
 db_session.commit()
 logger.debug(f"new user
 ➥{form.email.data} added")
 return redirect(url_for("auth_bp.login"))
 return render_template("register_new_user.html",
 ➥form=form)

8.4.2 New user form

Repeating the pattern used for the login form, a Flask-WTForm and HTML template
file were created to complete the register-new-user functionality. Add the Register-
NewUserForm class definition to the app/auth/forms.py file:

from wtforms.validators import DataRequired, Length,

➥Email, EqualTo
from wtforms import ValidationError
from ..models import User, db_session_manager

: intervening code

class RegisterNewUserForm(FlaskForm):
 first_name = StringField(
 "First Name",
 validators=[DataRequired()],
 render_kw={"placeholder": " ",
 ➥"tabindex": 1, "autofocus": True}
)
 last_name = StringField(
 "Last Name",
 validators=[DataRequired()],
 render_kw={"placeholder": " ",
 ➥"tabindex": 2}
)
 email = EmailField(
 "Email",

Marks the register_new_user() function as
the handler for the /register_new_user
route for both GET and POST HTTP requests

If the user is already
authenticated,
redirect them to the
home screen.

Creates an instance of the
RegisterNewUserForm()

If the HTTP request is a POST,
validate the incoming form data.

Creates a new user initializing
the attributes with form data

Adds the newly created user
to the database, logs that a
new user was created, and
redirects to the login page

If the HTTP request is a GET, render the empty
register_new_user.html template, passing in
the form instance for use in the template.

New items to add to
the import section

Defines the
RegisterNewUserForm class

Creates the first_name, last_
name, email, password, and
confirm_password form
elements and validators

1698.4 Making new friends
 validators=[DataRequired(), Length(
 min=4,
 max=128,
 message="Email must be between 4 and
 ➥128 characters long"
), Email()],
 render_kw={"placeholder": " ", "tabindex": 3}
)
 password = PasswordField(
 "Password",
 validators=[DataRequired(), Length(
 min=3,
 max=64,
 message="Password must be between
 ➥3 and 64 characters long"
),
 EqualTo("confirm_password",
 ➥message="Passwords must match")
],
 render_kw={"placeholder": " ", "tabindex": 4}
)
 confirm_password = PasswordField(
 "Confirm Password",
 validators=[DataRequired(), Length(
 min=3,
 max=64,
 message="Password must be between
 ➥3 and 64 characters long"
)],
 render_kw={"placeholder": " ", "tabindex": 5}
)
create_new_user = SubmitField("Create New User",

➥render_kw={"tabindex": 6})
 cancel = SubmitField("Cancel",
 ➥render_kw={"tabindex": 7})

This code creates the form passed to the register-new-user template to create the
HTML DOM elements to render and apply validation rules when the form is submit-
ted by a POST request. There is one additional method to add at the bottom of the
RegisterNewUserForm class:

def validate_email(self, field):
 with db_session_manager() as db_session:
 user = db_session.query(User)

➥.filter(User.email == field.data)

➥.one_or_none()
 if user is not None:
 raise ValidationError("Email already registered")

The validate_email() method is a custom validation that ensures a new user isn’t
using an email address that already exists in the system. The FlaskForm class has the
functionality to introspect classes that inherit from it. That introspection finds the
validate_email() method and adds it to the validation for the email form field.

Creates the first_name, last_
name, email, password, and
confirm_password form
elements and validators

Creates the form
submit buttons

170 CHAPTER 8 Do I know you? Authentication
 The RegisterNewUserForm class instance created in the handler is passed to the
register_new_user.html template to render the user’s form. This template is like
the login.html template and isn’t presented here. However, you can see the tem-
plate by editing the examples/CH_08/examples/03/app/auth/templates/

register_new_user.html file.
 If you move to the examples/CH_08/examples/03 directory and run the

MyBlog application and navigate to the 127.0.0.1:5000/register_new_user
route, the form in figure 8.7 will be rendered in the browser. The form provides fields
for new users to enter their first name, last name, email, and password and confirm
the password. When the Create New User button is clicked, the form data is sent to
the server, and the email address is checked to see if it already exists in the system. If
the email is unknown in the MyBlog application, a new user is created and saved to
the database.

Figure 8.7 The create new user form rendered in a browser

8.4.3 Oh yeah: logging out

Now that users can log in to the MyBlog application, we also need to provide a way to
log out. Besides nice symmetry, logging out of an authenticated application is vital so
users have control over who can access the application with their credentials.

New user’s first name

New user’s last name

New user’s email

 New user’s password

Input field to confirm
password

Cancel registration and return
to home screen

Submit the form and create user

171Summary
 For the MyBlog application, the logout functionality is created by adding another
URL route to the auth module. When a user navigates to the logout route, no tem-
plate is presented. Instead, the route handler resets the session cookie and redirects
the user to the application home page. Because the home page is available to any user,
authenticated or not, this is a reasonable approach.

 In the app/auth/auth.py module, modify the from flask_login line like this:

from flask_login import login_user, logout_user, current_user

And add this to the bottom of the app/auth.py module:

@auth_bp.route("/logout")
def logout():
 logout_user()
 flash("You've been logged out", "light")
 return redirect(url_for("intro_bp.home"))

8.5 What’s next
We’ve got the basics of our authentication system in place but need to add more func-
tionality to make it fully useful. In the next chapter, you’ll add the login capability to
the navigation system so users can easily log in and out. We’ll add the ability to con-
firm the user’s email address, which will close the loop on authenticating that a user is
who they say they are.

 Users will need to reset their passwords if they’ve forgotten them and view and edit
their profiles. We’ll add these features to the MyBlog application as well.

 We’ll also add authorization roles to users to help the MyBlog application control
what users can do when they’re logged into the application. The roles will control who
can create content, who can edit the content, and who can activate and deactivate that
content. Once we have both authentication and authorization mechanisms in place,
we can use those concepts to protect routes in the application so that only authenti-
cated users with specific roles can navigate and see certain URL routes.

Summary
 Authentication is all about identifying who someone is in a consistent, reliable

way. Doing so with the HTTP protocol takes some thought and code to make it
happen.

 The Flask framework and third-party modules provide tools to aid you as a
developer to manage users and the login and logout process.

 The Flask flash functionality combined with Bootstrap provides a good-looking
and functional way to send messages to your users without disrupting the work-
flow or design of your site.

Adds a new route and handler for
logging a user out of the system

Calls the flask_login
logout_user() function
to log the user out

Flashes a message to
inform the user they’ve
been logged outRedirects the user to the

application home page

What can you do?
Authorization
In the previous chapter, you created functionality to support users logging in and
out of the MyBlog application. Logging in and out is essential functionality we
need to make easily accessible to users. Therefore, you’ll add this navigation func-
tionality to the parent base.html template so that it’s available everywhere on the
MyBlog application.

9.1 Login/logout navigation
You’ve created a working authentication system, but, currently, it’s accessible pri-
marily by entering the URL into the browser navigation bar. Let’s add the login/
logout URL routes to the Bootstrap navigation system.

This chapter covers
 Adding login/logout to page navigation

 Confirming new users with email

 Allowing users to reset forgotten passwords

 Allowing existing users to change passwords

 Adding authorization roles to users

 Securing routes in the application
172

1739.1 Login/logout navigation
 The authentication system has two mutually exclusive states as a user; you can only
be logged in or logged out. Because of this, the authentication system is represented
in the navigation menu as a single item that toggles between states depending on the
user’s current authentication status. Keeping with the idea of single responsibility and
not overcomplicating the base.html template, the login/logout menu functionality
will exist as a Jinja macro in the examples/CH_09/examples/01/app/templates/
macros.jinja file:

{% macro build_login_logout_items(current_user) %}
 {% if not current_user.is_authenticated %}
 {% if request.endpoint == "auth_bp.login" %}
 <a class="nav-link ml-2 active"
 ➥aria-current="page"
 ➥href="{{url_for('auth_bp.login')}}">
 {% else %}
 <a class="nav-link ml-2"
 ➥href="{{url_for('auth_bp.login')}}">
 {% endif %}
 Login

 {% else %}
 <a class= "nav-link ml-2"
 ➥href=" {{url_for('auth_bp.logout')}}">
 Logout

 {% endif %}
{% endmacro %}

The build_login_logout_items() macro will toggle the navigation display to
show “login” or “logout,” depending on the user’s authentication state. The two menu
items are tied to the login and logout URL endpoints.

 The macro is added to the base.html template so the system can render it on any
page the MyBlog application presents. Modify the section of code in the base.html
template that creates the navigation menu to add this functionality:

<div class=" collapse navbar-collapse

➥justify-content-between"
 id= "navbarSupportedContent">
 <div class=" navbar-nav mr-auto">
 {{ macros.build_nav_item(nav_item) }}
 </div>
 <div class="navbar-nav">
 {{ macros.build_login_logout_items(
 ➥current_user) }}
 </div>
</div>

With the above changes in place, the MyBlog web application will display a high-
lighted login menu item when the login menu item is clicked and rendered. Run the
application from the examples/CH_09/examples/01 directory and see the login
menu item rendered. Figure 9.1 is a screenshot of the updated login page.

Begins the
build_login_
logout_items
macro, passing
in the current
user from the
base.html
template

Is the current user
unauthenticated?

Presents the login
menu item and route
as highlighted or not
depending on the
current route

Otherwise, if the current
user is authenticated

Presents the logout
menu item and route

Right and left justify the
two navbar-nav sections

Creates the second navbar-nav
section and calls the macro to
render the login/logout items

174 CHAPTER 9 What can you do? Authorization
9.2 Confirming new friends
When a potential user of the MyBlog application registers with the system, it’s import-
ant to confirm who they are. This is often done by sending an email with a confirma-
tion link to the email address they registered with. Since the MyBlog application uses
the user’s email address as a unique identifier, sending a confirmation email to that
address closes the loop that the user intended to register with the MyBlog application.
We’ll add the ability to send emails from the MyBlog application so we can send the
confirmation emails.

9.2.1 Sending email

Similar to using SQLite as the database, we’ll implement a straightforward email sys-
tem that works for MyBlog. To help keep things focused on MyBlog, I’m using an
email service provider called SendInBlue (https://www.sendinblue.com/). I’ve set up
a free account that lets the MyBlog application send 300 emails a month for free (300
is more than enough for this book).

 SendInBlue provides an installable API module that lets Python applications send
emails by making function calls. This module can be installed with this command:

pip install sib-api-v3-sdk

However, the module is included in the requirements.txt file for this chapter and
was installed when you ran

pip install -r requirements.txt

at the time you built the Python virtual environment for this chapter. The SendInBlue
service handles all the details of sending emails and simplifies the code we need to
write for the MyBlog application.

TIP By using an external service like SendInBlue, we avoid having to set up
an SMTP (Simple Mail Transfer Protocol) server. Not a small task, and out-
side the scope of this book.

New navbar
login menu
item Figure 9.1 The user login

registration form, including the
newly added login menu item

https://www.sendinblue.com/

1759.2 Confirming new friends
When a new user registers with the MyBlog application on the New User Registration
form, we want to add two things:

 A Boolean field called confirmed on the user database model, initially set to
False

 The functionality to send an email with a confirmation link to the registering
user’s email address

Adding a confirmed field to the user model is simple enough and is shown in the
examples/CH_09/examples/02/app/models.py code in the repository for this
chapter.

EMAILER

We could send the email directly from the auth.py module’s register_new_
user() function, which would work fine. However, we’ll likely want to send emails
from elsewhere in the MyBlog application, so we’ll embed the functionality into a new
module that can be reused.

 We’ll create a new module as follows called app/emailer.py that has a single
function, send_mail():

from logging import getLogger

import sib_api_v3_sdk
from flask import current_app
from sib_api_v3_sdk.rest import ApiException

logger = getLogger(__name__)
configuration = sib_api_v3_sdk.Configuration()
configuration.api_key['api-key'] =

➥current_app.config.get("SIB_API_KEY")

def send_mail(to, subject, contents):
 api_instance = sib_api_v3_sdk.TransactionalEmailsApi(
 ➥sib_api_v3_sdk.ApiClient(configuration))
 smtp_email = sib_api_v3_sdk.SendSmtpEmail(
 to=[{"email": to}],
 html_content= contents,
 sender={"name": "MyBlog", "email":
 ➥"no-reply@myblog.com"},
 subject=subject
)
 try:
 api_instance.send_transac_email(smtp_email)
 logger.debug(f"Confirmation email sent to {to}")
 except ApiException as e:
 logger.exception("Exception sending email", exc_info=e)

This code creates an instance of the SendInBlue API and configures it with the user’s
API key. I received the API key—which is in the secrets.toml file—when I created
my account with SendInBlue.

 The API instance variable api_instance is used to send the email object. The
API expects the email contents to be in HTML, so the messages sent must include
some basic HTML tags to render the email correctly.

Imports the SendInBlue
API module

Configures the API
with your API key

Creates an instance
of the API

Creates the email object

Sends the email
object to be emailed

176 CHAPTER 9 What can you do? Authorization
CONFIRMATION EMAIL

Now that MyBlog can send emails, let’s use it to send a confirmation email to newly
registered users. The confirmation email will contain a link back to the MyBlog appli-
cation. The link includes encrypted information sent along when the user clicks the
link. When MyBlog handles a call to the link, it decrypts the information to determine
if the request is valid. If it is, the user is confirmed in the database.

 The encoded information also contains a current timestamp. When the link is
clicked and the application handles that request, the timestamp is compared to the
current time. The user has confirmed if the application handles the request within a
timeout period. However, if the user waited longer than the defined timeout period,
the confirmation link is considered expired, and the user isn’t confirmed. The time-
out value is set in the settings.toml file as 12 hours, which can be changed.

 We’ll add two function calls to the register_new_user() function handler to
send the new user confirmation email. The first is a call to a new function, send_
confirmation_email(user), and the second is a call to the Flask flash() func-
tion, notifying the user with a toast message to check for the confirmation email:

@ auth_bp.get("/register_new_user")
@ auth_bp.post("/register_new_user")
def register_new_user():
 if current_user.is_authenticated:
 return redirect(url_for("intro_bp.home"))
 form = RegisterNewUserForm()
 if form.cancel.data:
 return redirect(url_for("intro_bp.home"))
 if form.validate_on_submit():
 with db_session_manager() as db_session:
 user = User(
 first_name=form.first_name.data,
 last_name=form.last_name.data,
 email=form.email.data,
 password=form.password.data,
 active=True
)
 role_name = "admin" if user.email in
 ➥current_app.config.get("ADMIN_USERS") else "user"
 role = db_session.query(Role).filter(Role.name ==
 ➥role_name).one_or_none()
 role.users.append(user)
 db_session.add(user)
 db_session.commit()
 send_confirmation_email(user)
 timeout = current_app.config.get(
 ➥"CONFIRMATION_LINK_TIMEOUT")
 flash((
 "Please click the confirmation
 ➥link just sent "
 f"to your email address within
 ➥{timeout} hours "
 "to complete your registration"
 ➥))

Calls to new
send_confirmation_email(user)
function to send email

Calls Flask flash()
functionality to notify the
user to check their email
within the confirmation
link timeout

1779.2 Confirming new friends
 logger.debug(f"new user {form.email.data} added")
 return redirect(url_for("intro_bp.home"))
 return render_template("register_new_user.html", form=form)

Let’s take a look at the send_confirmation_email() function:

def send_confirmation_email(user):
 confirmation_token = user.confirmation_token()
 confirmation_url = url_for(
 "auth_bp.confirm",
 confirmation_token=confirmation_token,
 _external=True
)
 timeout = current_app.config.get(
 ➥"CONFIRMATION_LINK_TIMEOUT")
 to = user.email
 subject = "Confirm Your Email"
 contents = (
 f"""Dear {user.first_name},

 Welcome to MyBlog, please click the link to
 ➥confirm your email within {timeout} hours:
 {confirmation_url}

 Thank you!
 """
)
 send_mail(to=to, subject=subject,
 ➥contents=contents)

The send_confirmation_email() function calls a new method of the User model
confirmation_token() to build a unique token with an expiration timeout. It then
builds a URL to a new URL handler, auth_bp.confirm. Finally, the _external
=True parameter causes url_for() to create a full URL that will work when a user
clicks the link from their email client context.

 Once the confirmation link is created, an email is created inline containing the
confirmation link is sent to the new user. If the new user clicks the confirmation link
within the 12-hour time limit, their account is confirmed.

 Notice the

 HTML line-break elements in the email message. These
HTML elements help format the message, so it’s easily readable by the user.

USER CONFIRMATION TOKEN

Because the confirmation token is unique for each user, it’s generated by a new
method attached to the User model class:

def confirmation_token(self):
 serializer = URLSafeTimedSerializer(current_app.config["SECRET_KEY"])
 return serializer.dumps({"confirm": self.user_uid})

This method uses the URLSafeTimedSerializer() function to create a serializing
instance based on the Flask SECRET_KEY and includes the current timestamp. Then,
the serializer instance is used to create the unique token based on the new user’s
user_id value.

Calls the new user method to
construct a confirmation token

Constructs a URL to insert in the
email that, when clicked, will inform
MyBlog that the user has confirmed

Constructs and sends an
email with the confirmation
URL to the user

178 CHAPTER 9 What can you do? Authorization
CONFIRM USER HANDLER

When a new user clicks the confirmation link in their email, this action makes a
request to a new URL handler in the auth module to confirm that the token passed
in the request is valid:

@ auth_bp.get("/confirm/<confirmation_token>")
@ login_required
def confirm(confirmation_token):
 if current_user.confirmed:
 return redirect(url_for("intro_bp.home"))
 try:
 # is the confirmation token confirmed?
 if current_user.confirm_token(
 ➥confirmation_token):
 with db_session_manager()
 ➥as db_session:
 current_user.confirmation = True
 db_session.add(current_user)
 db_session.commit()
 flash("Thank you for confirming your account")
 # confirmation token bad or expired
 except Exception as e:
 logger.exception(e)
 flash(e.message)
 return redirect(url_for(
 ➥"auth_bp.resend_confirmation"))
 return redirect(url_for("intro_bp.home"))

USER CONFIRM TOKEN

The application needs to confirm a token received in response to clicking the link in
the email is valid to verify that the user completed the registration process. This code
acts as part of the confirmation process:

def confirm_token(self, token):
 serializer = URLSafeTimedSerializer(current_app.config["SECRET_KEY"])
 with db_session_manager() as session:
 confirmation_link_timeout =

current_app.config.get("CONFIRMATION_LINK_TIMEOUT")
 timeout = confirmation_link_timeout * 60 * 1000
 try:
 data = serializer.loads(token, max_age=timeout)
 if data.get("confirm") != self.user_uid:
 return False
 self.confirmed = True
 session.add(self)
 return True
 except (SignatureExpired, BadSignature) as e:
 return False

The confirm_token() URL handler creates a serializer instance just as the
confirmation_token() creator method did. It then enters a database context

Registers new/confirm
URL route with Blueprint

Confirms a token, requires
the user to log in

If the user is already
confirmed, redirect them
to the home page.

Confirms
the token is

valid If the token is valid, set the current
user’s confirmation status to True
and save it in the database.

If confirming the token raises an
exception, log it, inform the user,
and redirect them to the resend
confirmation page.

1799.3 Resetting passwords
manager and gets the confirmation timeout value and the confirmation data sent in
the request.

 The code then compares the "confirm" value of the data dictionary to the user’s
user_id value. If the values match, the user who clicked the link is the user who sent
the confirmation link. The code to confirm the token is wrapped in an exception han-
dler to return False if the token has expired or is invalid.

9.3 Resetting passwords
We’re at a point where new users can register and confirm their email and existing
users can log in to use the MyBlog application. We need to create a way for existing
users to reset their password if they’ve forgotten it. In some ways, a password reset
request is similar to confirming a new user; it sends a link to the user’s email. A han-
dler exists to present the user with the password reset form when the user clicks the
associated link.

 The link sent in the reset password email contains the encrypted user_uid value
of the requesting user, along with an expiration timeout. The timeout value is set in
the settings.toml file at 10 minutes and is configurable:

@ auth_bp.get("/request_reset_password")
@ auth_bp.post("/request_reset_password")
def request_reset_password():
 if current_user.is_authenticated:
 return redirect("intro_bp.home")
 form = RequestResetPasswordForm()
 if form.cancel.data:
 return redirect(url_for("intro_bp.home"))
 if form.validate_on_submit():
 with db_session_manager() as db_session:
 user = (
 db_session.query(User)
 .filter(User.email ==
 ➥form.email.data)
 .one_or_none()
)
 if user is not None:
 send_password_reset(user)
 timeout = current_app.config.get(
 ➥"PASSWORD_RESET_TIMEOUT")
 flash(f"Check your email to reset
 ➥your password within {timeout} minutes")
 return redirect(url_for("intro_bp.home"))
 return render_template(
 ➥"request_reset_password.html", form=form) #E

The application in the examples/CH_09/examples/03 directory presents the reset
password form, as shown in figure 9.2 when it receives an HTTP GET request. The
Password Reset form only presents a single field for the user’s email that will be used
to generate an email with the password reset link.

Registers the request_reset_password function
for both GET and POST HTTP methods

Creates an instance of the
request password form

Gets the user
associated with the
email from the form

Sends the password
reset email and
notifies the current
user to check for it
within the timeout

180 CHAPTER 9 What can you do? Authorization
Figure 9.2 The form that allows registered users to reset their password

If a user is found for the email entered in the form, that user is passed as a parameter
to a new function, send_password_reset():

def send_password_reset(user):
 timeout = current_app.config.get(
 ➥"PASSWORD_RESET_TIMEOUT")
 token = user.get_reset_token(timeout)
 to = user.email
 subject = "Password Reset"
 contents = (
 f"""{user.first_name},

 Click the following link to reset
 ➥your password within {timeout} minutes:
 {url_for('auth_bp.reset_password',
 ➥token=token, _external=True)}
 If you haven't requested a password
 ➥reset ignore this email.

 Sincerely,
 MyBlog
 """
)
 send_mail(to=to, subject=subject, contents=contents)

When the user clicks the link in the reset password email, a new URL endpoint func-
tion, reset_password(), is invoked:

@ auth_bp.get("/reset_password/<token>")
@ auth_bp.post("/reset_password/<token>")
def reset_password(token):
 if current_user.is_authenticated:
 return redirect("intro_bp.home")

Cancel and return to the
home screen.

Send reset password
link to the
entered email.

Email address
where reset
link should
be sent

Creates the encrypted reset token
with the expiration timeout

Builds the
email content

Sends the email
to the passed-in
user’s email address

Registers the request_reset_password function
for both GET and POST HTTP methods

1819.3 Resetting passwords
 try:
 user_uid = User.verify_reset_token(token)
 with db_session_manager() as db_se
 user = (
 db_session
 .query(User)
 .filter(User.user_uid ==
 ➥user_uid)
 .one_or_none()
)
 if user is None:
 flash("Reset token invalid")
 return redirect("intro_bp.home")
 form = ResetPasswordForm()
 if form.cancel.data:
 return redirect(url_for("intro_bp.home"))
 if form.validate_on_submit():
 user.password = form.password.data
 db_session.commit()
 flash("Your password has been reset")
 return redirect(url_for("intro_bp.home"))
 except Exception as e:
 flash(str(e))
 logger.exception(e)
 return redirect("intro_bp.home")
 return render_template("reset_password.html", form=form)

The form shown in figure 9.3 lets the user enter and confirm a new password. When
they click the Reset Password button, the handler is called with the HTTP POST
method. The user_uid is decrypted from the token passed with the URL, and that
user is searched for in the database. If the user is found and the form validates, the
user’s password is updated and saved in the database.

Gets the user_uid from
the encrypted token
passed with the URL

Finds a user
matching the
user_uid

Updates and saves the
user’s new password

Cancel and return to
the home screen.

Reset the password
of the user.

Enter the new
password.

Re-enter the password
for confirmation.

Figure 9.3
The Reset Password
form accepts a new
password and a
matching
confirmation
password.

182 CHAPTER 9 What can you do? Authorization
9.4 User profiles
The MyBlog application currently saves only a few pieces of information about regis-
tered users: first name, last name, email, and password; whether they are confirmed;
and if they are active. In addition to being able to reset their passwords if forgotten,
users also want to change their passwords. So, we’ll add a profile page that shows most
of the user information and allows for password changes.

 The profile is a form that presents and gathers information. It shows the user’s
name and email and has input fields to enter and confirm a new password. The form
class that presents the profile information is added to the auth/forms.py file:

class UserProfileForm(FlaskForm):
 first_name = StringField("First Name")
 last_name = StringField("Last Name")
 email = EmailField("Email")
 password = PasswordField(
 "Update Password",
 validators=[DataRequired(), Length(
 min=3,
 max=64,
 message= "Password must be between 3 and 64 characters long"
),
 EqualTo("confirm_password", message="Passwords must match")
]
)
 confirm_password = PasswordField(
 "Confirm Updated Password",
 validators=[DataRequired(), Length(
 min=3,
 max=64,
 message= "Password must be between 3 and 64 characters long"
)]
)
 cancel = SubmitField(
 label= "Cancel",
 render_kw={"formnovalidate": True},
)
 submit = SubmitField(label="Okay")

To generate the HTML to display on the browser requires a new URL handler in the
auth/auth.py module:

@ auth_bp.get("/profile/<user_uid>")
@ auth_bp.post("/profile/<user_uid>")
@ login_required
def profile(user_uid):
 with db_session_manager() as db_session:
 user = (
 db_session
 .query(User)
 .filter(User.user_uid == user_uid)
 .one_or_none()
)

Registers the profile function for
both GET and POST HTTP methods

To view a profile,
the user must be
logged in (as
discussed in the
next section).

Gets the user associated with
the user_uid in the URL path

1839.5 Security
 if user is None:
 flash("Unknown user")
 abort(404)
 if user.user_uid != current_user.user_uid:
 flash("Can't view profile
 ➥for other users")
 return redirect("intro_bp.home")
 form = UserProfileForm(obj=user)
 if form.cancel.data:
 return redirect(url_for("intro_bp.home"))
 if form.validate_on_submit():
 user.password = form.password.data
 db_session.commit()
 flash("Your password has been updated")
 return redirect(url_for("intro_bp.home"))
 return render_template("profile.html", form=form)

The HTML template to render the profile form isn’t shown here but can be seen in
the examples/CH_09/examples/03/auth/templates/profile.html template
file. The rendered profile page, presented in figure 9.4, shows the user’s information
and provides a means to change the user’s password.

Figure 9.4 The user profile page shows everything the MyBlog application knows about the user.

9.5 Security
The goal of building an authentication system is to provide security for an application’s
users, features, and functions. Security includes the features and functions that a user
can perform when using the application. It also includes protecting the application

If no user is found, this notifies the
user and aborts with a 404 error.

Prevents users from viewing
profiles other than their own

For a valid form submission, this
updates the user’s password.

The user information
known to the MyBlog
application, including
the ability to change
the password

184 CHAPTER 9 What can you do? Authorization
by maintaining control and only allowing known users to access protected features
and functions.

9.5.1 Protecting routes

Authenticated users have a cryptographically secure session cookie that the applica-
tion identifies. In addition, we can use the session and flask_login module to pro-
tect routes in the application so that only users who are logged in and authenticated
can navigate to those routes.

 Currently, the MyBlog application only has two routes that aren’t associated with
authentication—the home page and the about page. Therefore, you’ll temporarily
create two new routes to demonstrate how to protect a route. Protecting a page is
done by adding another decorator provided by the flask_login module to a URL
route page handler. Add this to the import section of the app/intro.py module:

from flask_login import login_required

Add a new route and handler to the app/intro.py module:

@ intro_bp.route("/auth_required")
@ login_required
def auth_required():
 return render_template("auth_required.html")

The auth_required() handler has two decorators: @intro_bp.route() and
@login_required. Stacking decorators this way is absolutely fine. The decorator
functionality wraps around other decorator functionality, working from the inner
level outward. In this case, the @login_required decorator must be placed after the
@intro_bp.route() (or any Blueprint instance routing) to make sure the @login_
required functionality wraps the auth_required() handler functionality.

 With the auth_required() handler protected by the @login_required deco-
rator, an unauthenticated user will be redirected to the login page and unable to access
the protected auth_required page. This is useful when you only allow authenticated
users to see sensitive or private information or prevent access to forms that could
change server data or functionality. An example use case for this security is allowing
only authenticated users to create and post blog content to the MyBlog application.

9.6 User authorization roles
The other side of the authentication coin is authorization. Where authentication pro-
vides a mechanism to identify a user, authorization offers a way to control the user’s
capabilities.

 One of the requirements of the MyBlog application is to give users roles in the
application. A role would allow users with specific roles to perform actions not avail-
able to other users. For example, a user with an administrator role could update,

Imports the login_required decorator
functionality from the flask_login module

Adds a new route
for "/auth_required"

Decorates the auth_required
handler with the
login_required functionality

1859.6 User authorization roles
activate, or deactivate any content in the system, not just content created by that user.
Likewise, an administrator could also activate or deactivate a user.

 A user with the editor role could update any content in the system, not just the
content they created. However, an editor can’t deactivate a user or their content.

 A registered user can create content and activate or deactivate it but can’t change
the active state of another user or their content. We will add three roles to the MyBlog
application: administrator, editor, and registered user.

9.6.1 Creating the roles

The roles will be initialized by the application and maintained in the database. The
users in the database have a relationship to the defined roles. Because many users can
have a certain role, but each user can only have one role, we have a one-to-many rela-
tionship concerning roles to users. The ERD shown in figure 9.5 illustrates this
relationship.

Figure 9.5 The new Role table and its relationship to the existing User table

The Role model is defined in the examples/CH_09/examples/03/app/models
.py file:

class Role(db.Model):
 class Permissions(Flag):
 REGISTERED = auto()
 EDITOR = auto()
 ADMINISTRATOR = auto()

 __tablename__ = "role"
 role_uid = db.Column(db.String,
 ➥primary_key=True, default=get_uuid)
 name = db.Column(db.String, nullable=False,
 ➥unique=True)

User

PK user_uid

FK role_uid

first_name

last_name

email

hashed_password

active

created

updated

string

string

string

string

string

datetime

Role

PK role_uid

name

description

raw_permissions

active

created

updated

string

string

string

string

datetime

datetime

The one-to-many relationship
is established by the role_uid
foreign key in the User table.

datetime

boolean

string

boolean

Creates the Role
class modelCreates the

Permissions class
internal to the Role class

Defines the table name
for roles in the database

Creates the columns
for a Role record

186 CHAPTER 9 What can you do? Authorization
 description = db.Column(db.String,
 ➥nullable=False)
 raw_permissions = db.Column(db.Integer)
 users = db.relationship("User",
 ➥backref=db.backref("role", lazy="joined"))
 active = db.Column(db.Boolean, nullable=False, default=True)
 created = db.Column(db.DateTime,
 ➥nullable=False, default=datetime.now(
 ➥tz=timezone.utc))
 updated = db.Column(
 db.DateTime,
 nullable=False,
 default=datetime.now(tz=timezone.utc),
 onupdate=datetime.now(tz=timezone.utc)
)

 @property
 def permissions(self):
 return Role.Permissions(
 ➥self.raw_permissions)

This code creates the Role database definition class. Notice the definition of the
Permissions class inside the scope of the Role class definition. This is acceptable
Python syntax and puts the Permission class inside the scope of the Role class.

 The Permissions class is a Flag enum and gives the names REGISTERED,
EDITOR, and ADMINISTRATOR automatically generated values. This class helps refer
to the values by name, even though the permission value is stored as an integer in
the raw_permissions column of the database.

 The values in the roles database table need to exist for the life of the MyBlog appli-
cation and act as a lookup table to constants. A method called initialize_
role_table() in the Role class definition accomplishes this. This method is deco-
rated with a @staticmethod, meaning it can be called without a Role instance vari-
able. The method’s purpose is to populate the Roles table at application startup. The
method isn’t included here but can be found in the examples/CH_09/examples/
03/app/models.py file.

 To initialize the Roles table, the following code is added to the examples/CH_09/
examples/03/app/__init__.py file at the bottom of the create_app() function:

initialize the role table
from .models import Role
Role.initialize_role_table()

These lines import the Role table class and then use it to call the initialize_
role_table() static method to populate the Roles database table. In anticipation
of upcoming functionality, the following code is also added to the end of the create_
app() function:

inject the role permissions class into all template contexts
@ app.context_processor
def inject_permissions():
 return dict(Permissions=Role.Permissions)

Creates the columns
for a Role record

Establishes the one-to-many
relationship with the User table

Creates a read property
for a role’s permissions

1879.6 User authorization roles
These lines of code add the Role.Permissions property into the template context.
This makes the Role.Permissions available for all templates as Permissions.

9.6.2 Authorizing routes

Besides protecting URL routes in the MyBlog application so only authenticated users
can access them, you’ll also want to protect URL routes so only authenticated users
with specific permissions can access them. This will be useful in later chapters when
forms are created that should only be accessed by editors or administrators.

 To create this functionality, you’ll need to create a decorator similar to @login_
required but, instead, it should examine the user’s authorization. To do this, create
another module inside of the app directory, app/decorators.py:

from functools import wraps
from flask import abort
from flask_login import current_user

def authorization_required(permissions):
 def wrapper(func):
 @wraps(func)
 def wrapped_function(*args, **kwargs):
 if not current_user.role.permissions
 ➥ & permissions:
 abort(403)
 return func(*args, **kwargs)
 return wrapped_function
 return wrapper

Let’s demonstrate the authorization_required() decorator function. Update the
app/intro/intro.py module and add this code to the bottom of the import
section:

from ..decorators import authorization_required
from ..models import Role

With these lines added, create a new URL route and handler:

@ intro_bp.route("/admin_required")
@ login_required
@ authorization_required(

➥Role.Permissions.ADMINISTRATOR)
def admin_required():
 return render_template("admin_required.html")

With this route in place, you can run the application and try to navigate to the URL
http:/ /127.0.0.1/admin_required. The system will generate a 403 error (Forbidden)
for all users except those with administrator permissions. How to create an adminis-
trator will be covered next.

Creates the decorator
function expecting to pass
a permissions bitmask

Creates the wrapper to
receive the wrapped function

Uses the @wraps(func)
decorator to maintain the
wrapped function signature

Creates the
wrapper to
receive the

wrapped
function’s

parameters
Determines if the current user has the

permissions necessary for this route

Aborts with an HTTP 403 error code if the
user doesn’t have the required permissions

Adds a new route for
"/admin_required"

Decorates the
admin_required handler
with the login_required
functionality

Decorates the admin_required
handler with the
authorization_required functionality

188 CHAPTER 9 What can you do? Authorization
CREATING ADMINISTRATOR USERS
The MyBlog application has a relatively easy way to create an administrator user. In
the secrets.toml file, there’s a section of code like this:

admin_users = ["user's email you want to designate as an administrator"]

This creates a configuration variable admin_users, which is a list of email addresses.
When a new user registers with an email in this list, they will have the administrator
role assigned to them. By making the admin_users variable a list, you can have more
than one administrator for the MyBlog application.

TIP Creating the administrator(s) roles in the way described works well
enough for the MyBlog application. It can also be used to create editors,
though you’d have to know editor users ahead of time to put them in the
secrets.toml file. Creating an admin interface to the application would
create forms to allow for the creation and updating of additional roles. That’s
work for another day.

With the previous configuration in place, we can make this active by modifying the
examples/CH_09/examples/03/app/auth/auth.py file and adding three lines to
the register_new_user() function:

@ auth_bp.get("/register_new_user")
@ auth_bp.post("/register_new_user")
def register_new_user():
 if current_user.is_authenticated:
 return redirect(url_for("intro_bp.home"))
 form = RegisterNewUserForm()
 if form.cancel.data:
 return redirect(url_for("intro_bp.home"))
 if form.validate_on_submit():
 with db_session_manager() as db_session:
 user = User(
 first_name=form.first_name.data,
 last_name=form.last_name.data,
 email=form.email.data,
 password=form.password.data,
)
 role_name = "admin" if user.email
 ➥in current_app.config.get("ADMIN_USERS") else
 ➥"user"
 role = db_session.query(Role)
 ➥.filter(Role.name == role_name).one_or_none()
 role.users.append(user)
 db_session.add(user)
 db_session.commit()
 send_confirmation_email(user)
 timeout = current_app.config.get("CONFIRMATION_LINK_TIMEOUT")
 flash((
 "Please click the confirmation link just sent"
 f" to your email address within {timeout} hours"
 "to complete your registration"

If the registered user’s
email is in the admin_users

list, it gives them the
administrator role.

Gets the assigned
role from the
roles table

Adds the
registered user to

the role collection,
connecting the

relationship

1899.8 Closing thoughts
))
 logger.debug(f"new user {form.email.data} added")
 return redirect(url_for("intro_bp.home"))
 return render_template("register_new_user.html", form=form)

The new code looks for the currently registering user in the admin_user configuration
variable and creates the role_name variable with the appropriate value. It then uses
the role_name variable to perform a lookup in the Roles table to obtain the desig-
nated role. The user is then added to the role.users collection to connect the role
to the user, establishing the relationship. If you create a new user with the email in the
admin_users list in the secrets.toml file and navigate to the /admin_required
URL created earlier, you’ll be able to navigate to that page successfully.

9.7 Protecting forms
There’s another protection relevant to forms that we’ve glossed over. In both the
login.html and register_new_user.html templates, there’s a field within the
form context that looks like this:

<form action="" method="POST" novalidate>
 {{form.csrf_token}}
 <!—rest of the form 
</form>

What is the {{form.csrf_token}} Jinja substitution element? If you view the source
of either the login or register_new_user pages, you’ll see an <input…> element
that looks something like this:

<input id="csrf_token" name="csrf_token"

➥type="hidden"

➥value="IjE1NzU4NjE3OWNlMTUxYmM0Yzc3OTAyTOZiODk4N

➥jRmNTdmZGM5OGUi.

➥YEULPg.jVDKYLM3MMlpKK-BQSh2f1hWUfQ">

The element is a hidden input element (not shown on the browser page) with a
strange-looking value. The MyBlog application server generates the value using the
Flask SECRET_KEY configuration value and the user session unique identifier. This
element aims to prevent cross-site request forgery (CSRF) attacks. The form.csrf_
token is intended to protect a request that would take action (like an HTTP POST).
When the server receives a protected form, it will validate both the session and
form.csrf_token to ensure a malicious user hasn’t altered it.

 This protection is provided automatically by using the Flask-WTF module. You
simply need to include the {{form.csrf_token}} in any form you want to protect.

9.8 Closing thoughts
You’ve created an effective authentication and authorization system by using the new
modules you’ve learned about—flask_login, Flask_bcrypt, Flask-WTF, and
Flask-SQLAlchemy. Ensuring user security is a decisive step toward having an

190 CHAPTER 9 What can you do? Authorization
application accepted by users. The authorization system you’ve created is functional
and valuable to the MyBlog application. However, it is far from the last word in secu-
rity. For example, suppose you need to secure a web application more tightly. You’ll
need to consider two-factor authentication or, more realistically, use a third-party ser-
vice to host your authentication.

 You’ve focused on authenticating/authorizing users of your application to an
almost microscopic level. This level of detail helped create a useful and serviceable
login/logout system to safeguard the users of MyBlog and the MyBlog system itself.

 The next chapter will magnify your view of the database information introduced
here. Then, you’ll dive deeper into designing database tables and their relationships
and how SQLAlchemy integrates the Python and database worlds.

Summary
 Taking advantage of the base.html template and inheritance allows us to add

the login/logout functionality to every page in the MyBlog application.
 Interacting with an external service through their API lets us send emails to our

users to confirm who they are and reset their passwords. Using such services
helps scale the MyBlog application and eliminates the work of configuring, run-
ning, and maintaining an email server.

 A user’s authorization is the other side of the coin to authenticating a user. The
authorization information determines the user’s role—what they can do while
logged into a web application.

 Authentication and authorization can be used with Flask to only allow logged-in
users with specific roles access to particular MyBlog pages. Pages that allow
users to make system-wide changes, or changes created by other users, are usu-
ally protected in this way.

Persistence is good:
Databases
You’ve shown a great deal of persistence in getting this far, and I hope the journey
has been rewarding and held your interest. As satisfying as sticking with something
is, that kind of persistence isn’t what this chapter covers.

 This chapter is about persisting application data over time. You don’t run the
applications you use forever, and despite the stability of computer systems, they are
shut down and restarted periodically.

 Imagine using a complex spreadsheet and having to re-enter all the data every
time you restarted the application or powered on the computer. Even with the
enormous processing power of a computer, it would hardly be a helpful device if
there was no way to save and restore the information entered into it.

This chapter covers
 Persisting data

 Database systems

 Database structures

 Modeling data with SQLAlchemy
191

192 CHAPTER 10 Persistence is good: Databases
10.1 The other half
As a developer, it’s easy to think of the application code you’re creating as the primary
product of your efforts. But, in reality, your cool, essential application with all its well-
thought-out features and functions is only half the story. The other, equally important
half is the data that your application helps the user work with. Modifying, transform-
ing, and providing insights into the data in which your users are interested is the raw
material an application works with.

10.1.1 Maintaining information over time

A filesystem saves data to a storage medium independent of electrical power. Most per-
sonal computer systems maintain filesystems on either mechanical or solid-state
drives. These storage devices have filesystem structures layered over them by the oper-
ating system of the computer.

 The filesystem provides a hierarchically organized mechanism to save and retrieve
files from the storage device. As far as the filesystem is concerned, a file is a sequence
of data bytes connected to a file name existing somewhere in the hierarchy. In addi-
tion, the filesystem can create, modify, and delete files and maintains housekeeping
metadata about the files, such as read, write, and executable status.

 Application programs give meaning to the data in a file. For example, when a photo-
viewing application opens a JPEG image file, the user sees a picture. The photo appli-
cation can interpret the contents of the file and generate the expected visual results.

 If a user were to open the same JPEG image file with a text editor, they would see a
block of largely incomprehensible data. Most of the files in a filesystem are like this;
their content makes sense only to the applications that can read and interpret them.

 The MyBlog application needs to save, modify, and recall content to display to
users. The content saved to the filesystem is in a format understood by the applica-
tion. The MyBlog application already saves registered user information to the file-
system using a database. This chapter is a tangential topic away from the MyBlog
application to take a closer look at databases.

10.2 Accessing data
Before diving directly into database systems, let’s talk about storing data in general. To
do so, we’ll use customer orders for products, something everyone who’s made online
purchases is familiar with. Later, we’ll use this idea to illustrate some issues when stor-
ing data in filesystems.

 To begin with, imagine an online store that only sells a single product to many cus-
tomers. Each customer might create multiple orders for that single product. To make
the data relatively easy to present on the pages of this book, we’ll keep the amount of
information very low—the customer’s name, their address, the product name, and the
quantity in the order.

 A common format for data in a filesystem is the comma-separated value format or
CSV. A CSV file is easy to understand and has the advantage of being human-readable
and accessible by computer systems.

19310.2 Accessing data
 A CSV file is a simple text file in which each line of text is a record of data ending
in a newline character. A comma character separates the data elements in each line of
text. The first line of text in a CSV file often contains the names of each comma-
separated field in the remaining rows in the text file.

 A CSV file contains no information about the data type for each element in a
record, everything is just text. An application reads the CSV file and splits each
comma-separated line of text into fields of text data. The imaginary company selling
only one product to each customer could save all their customers’ information and
their orders in a single CSV file. Figure 10.1 shows one possible way the data could be
saved.

Figure 10.1 The CSV file structure containing all the company orders and the data for those orders

This CSV file is sufficient to represent the customers, their shipping address, and their
orders. The first field contains the customer’s name, the second their address, the
third their zip code, the fourth field is the product name, and the last field is the num-
ber of products in the order. Because the company only sells a single product, this
could work.

 Even in this example, you might notice a potential problem. There’s redundant
data in the file. For example, customers and their addresses are represented multiple
times for each separate order, as in the case of the orders for Joe and Mary.

 The same data stored multiple times can be a problem if the customer Joe wants to
start using his full name, Joseph. To accommodate this, the company would have to
update all the records in the file related to Joe. This kind of update is prone to error,
particularly if the file has become very large. Making a mistake and missing one or
more of the Joe records would create two sets of customer records, one for Joe and
another for Joseph.

 We could resolve the problem by removing the redundancy and having only one
record for each customer and representing multiple orders in that same record. You
could create more comma-separated fields containing the quantities, but because
there’s no way to know how many orders a customer will create, it would be difficult
for an application reading the CSV file to know how many order fields to expect.

name,street,zipcode,product,qty

Joe,12,Main St,12345,widget,2

Mary,2 Orange Ave,40321,widget,1

Sue,212 Grove St,34213,widget,3

Joe,12 Main St,12345,widget,5

Mary,2 Orange Ave,40321,widget,7

The company’s order
data. Each row is an
order, and the data
items are separated
by comma characters.

The header row contains
the comma-separated
data field names.

194 CHAPTER 10 Persistence is good: Databases
 We could pack multiple product and quantity fields into the single order field, but
we’d need to use a delimiter distinct from a comma to separate the values. So, instead,
we use the pipe character (vertical bar, |) to separate orders and the hyphen character
(-) to separate the product from the quantity. Doing this allows you to maintain multi-
ple orders per record so that an application can still parse the lines of text in the file.

 Implementing this idea creates a CSV with all the data for multiple orders con-
tained in one line of the file. Figure 10.2 shows the file with this structural change.
The order information is still one comma-separated data item, but it will need to be
parsed specifically to get the order data items.

Figure 10.2 The CSV file restructured to reduce data redundancy

This implementation reduces the redundancy in the file as well as its size. Reducing
the redundancy comes at the cost of increased processing when reading and inter-
preting the data in this CSV file. The application will have to parse for the comma, the
pipe, and the dash character delimiters in the order field.

 Suppose our imaginary company decides to sell multiple products, and customers
can ship an order to any address they want. Now customer orders need to contain the
shipping address information, which needs its own delimiters within the field to stay
distinct. Figure 10.3 illustrates this additional complication to the CSV file.

Figure 10.3 The CSV file restructured to accommodate multiple products and shipping addresses

name,street,zipcode,order

Joe,12,Main St,12345,widget-2|widget-5

Mary,2 Orange Ave,40321,widget-1|widget-7

Sue,212 Grove St,34213,widget-3

The company’s order data.
Each row is an order, and the
data items are separated by
commas. The order portion is
separated by dash and bar
characters.

The header row contains the
comma-separated data field
names.

The company’s order
data. Each row is an
order, and the data
items are separated by
commas. The order
portion is separated by
dash, bar, hash, and
colon characters.

The header row contains
the comma-separated
data field names.name,order

Joe,12,Main St=12345,#widget-2:thingy-3|12 Main St=1234#thing-5

Mary,2 Orange Ave=40321#widget-1:thingy-9|127 Margolis St=40322#widget-7

Sue,212 Grove St=34213#widget-3

19510.2 Accessing data
Adding more delimiters could work, but it’s getting silly with multiple data items to
parse in the orders field. This approach also doesn’t scale well, as adding more prod-
ucts makes the orders field even more complicated.

 Resolving this problem means recognizing the logical divisions between the data
elements to be stored. For example, a customer can ship multiple orders to different
shipping addresses, and each order can contain multiple products and quantities.

 Each customer can have multiple orders, but each order is related to only a single
customer. Similarly, each address can be related to multiple orders, but each order
will ship to only a single address.

 Orders and products are a little more challenging. An order can contain multiple
products, and a product can be part of multiple orders. To resolve this, we invent the
concept of an order having an item. An item relates to an order and a product, pro-
viding this two-way connection. An item might also contain the quantity of products
the item represents.

 We can break the data into separate CSV files along these logical lines, essentially
where we’ve added additional delimiters in the text. Taking this action creates five
CSV files: customer, address, product, order, and item. The five CSV files separate the
data along logical lines. Unfortunately, there’s no way to connect a customer to an
order, an order to an address, or an item to either an order or a product.

 To connect the data, we need to create relationships between the rows of data in
the files. We can do this by creating a unique identifying value for each row in every
CSV file. At a minimum, the row identifier only needs to be unique across the rows in
an individual CSV file.

 We’ll add another column at the beginning of each row and assign an integer
value incremented for each row. The integer value uniquely identifies each row of
data in a single CSV file, but there are still no relationships between CSV files.

 To create relationships, we add the unique identifier from one record in a CSV file
to another to indicate the relationship between the two. We’ll add the unique identi-
fier as a new value to all the rows in the order CSV file that relate to that customer to
create this relationship. This kind of relationship is called one-to-many.

 There’s also another relationship we must establish. Each order can consist of mul-
tiple products, and each product can relate to multiple orders. A relationship like this
is called a many-to-many. Conceptually, this is a many-to-one relationship combined
with a one-to-many and is implemented by creating relationship associations. This is
how the concept of an order item, as mentioned earlier, is implemented.

 To do this, we’ll create an item CSV file that contains the unique IDs from both the
order and product CSV files for each item. In this way, an order can connect to multi-
ple items and multiple products.

 Figure 10.4 shows the five CSV files, their contents, and the relationships between
them. Each file has a unique ID value as the first field in each row of data. The struc-
ture shows the Customer, Product, and Address files have no redundant data. It
also shows the Order and Item files contain primarily relationship data, aside from
the unique ID and the qty value in the Item file.

196 CHAPTER 10 Persistence is good: Databases
Figure 10.4 The CSV files eliminate data redundancy and allow for multiple products and addresses.

Because of the structure and contents of the CSV files, our imaginary company could
continue to add new customers, new products to sell, and new shipping addresses, all
without creating unsustainable redundant information. The program in examples/
CH_10/examples/01/main.py uses this information to create simple invoice PDF
files for all the orders in the system.

 The program, available in the code repository, works by reading all the CSV files
into memory and creating a Transactions container class to hold the information.
Next, the orders in the Transactions class are inserted into the transaction informa-
tion fields in a Jinja2 template. The resulting rendered HTML is converted to a PDF
file, as shown in figure 10.5.

 These ideas and their implementation work but have significant limitations.
Because the CSV files are read into memory, the number of customers, products, and
orders are limited to the amount of memory the application has available.

customer_id,name

1,Joe

2,Mary

3,Sue

product_id,name

1,widget

2,thingy

order_id,customer_id,address_id

1,1,1

2,1,1

3,2,2

4,2,3

5,3,4

item_id,order_id,product_id,qty

1,1,1,2

2,1,2,3

3,2,2,5

4,3,1,1

5,3,2,9

6,4,1,7

7,5,1,3

address_id,street,zipcode

1,12 Main St,12345

2,41 Orange Ave,40321

3,127 Margolis St,40322

4,212 Grove St,34213

Customer CSV File Product CSV File

Order CSV File

Item CSV File

Address CSV File

The connecting arrows indicate the
relationship from one table to
another. The arrows originate at
the foreign key of a table and
point to the primary key field
the table relates to.

19710.2 Accessing data
Figure 10.5 The PDF invoice generated by the examples/CH_10/examples/
01/main.py program

The example program has only one use, to create a set of order invoices for all the
orders in the system. There is no facility to search for an order, customer, or product.
Any additional use cases our imaginary company might want, like searching or report-
ing, require more programming development.

 Our imaginary company would likely want to have multiple users—both customers
and employees—interacting with the data. Coordinating multiple access must be han-
dled by the application so the data stays consistent and uncorrupted. If multiple appli-
cations access the CSV files, this presents another level of complexity to coordinate
that access, keep the data synchronized and current in all applications, and prevent
the files from becoming corrupted.

 There’s also no standardized way to use the CSV files. The CSV files are shared eas-
ily enough, but anyone wanting to use them would need detailed knowledge of the
structure of the files and the relationships implied by that structure. They’d also have
to maintain that structure if they wanted to modify the data contents.

 For any application written in any language to work with the data, it would have to
handle the intention of the CSV files specifically. In addition, any changes in the struc-
ture of the CSV files would necessitate changes to the software to be aware of those
changes.

 Many of our imaginary company’s data shortcomings have to do with explicit man-
agement of the data and detailed programming to implement how to access and main-
tain the data. One solution to the problem is to move the data to a database system.

Invoice

Customer: Joe

Street: 12 Main St

Zipcode: 12345

Order Number: 1

Order Items

Order Items Order Items Order Items

2 thingy 3

1 widget 2

Customer CSV name

Address CSV street

Address CSV zip code

Order CSV order_id

Item CSV qty
Product
CSV name

Item loop
index in
template

198 CHAPTER 10 Persistence is good: Databases
10.3 Database systems
Database systems allow you to persist data as well as the relationships between that
data. One common type of database is the relational database management system, or
RDBMS. RDBMS systems provide the functionality to create, read, update, and delete
tables stored within them. These tables are analogous to the two-dimensional tables
represented by the CSV files used in the previous example.

 RDBMS systems also have the functionality to create and update the relationships
between tables by connecting unique ID values across table boundaries. One of the
advantages of a database system over using files to persist information is that creating,
updating, and maintaining the data is handled by the database, not by your applica-
tion code.

10.3.1 Tables

Tables represent the data that a database maintains. Conceptually, tables in a database
are two-dimensional collections of rows and columns.

 Like the CSV files presented previously, the rows are the individual records and the
columns are the fields within a row. Unlike a CSV file where the columns are strings
separated by a delimiter, the columns in database tables have defined data types. The
data types supported depend on the particular database, but data types of text, inte-
ger, real (decimal numbers), and blob (binary objects) are generally supported.

 Tables in a database can be represented graphically as part of an entity relation-
ship diagram, or ERD. Rather than show the rows and columns that make up a table,
the column and data-type information for a record are shown.

 The ERD diagram header is the capitalized table name. The following rows con-
tain specific information about each column, like the name of the column and its data
type. The PK is shorthand for the primary key (the unique identifier for the table)
and indicates that the customer_id is the primary key for the Customer table. Fig-
ure 10.6 shows a visual definition of the Customer database table.

The order CSV file contained nothing but unique ID values—one for the row unique
ID and two others to connect to the customer and address CSV file rows. The new FK
abbreviation in figure 10.7 is shorthand for foreign key. A foreign key creates a rela-
tionship between two tables by referencing the primary key of another table.

Customer

PK customer_id

name

integer

text

Customer name

Primary Key

Data type

Figure 10.6 The ERD diagram for
the Customer table showing the
field names and data types

19910.3 Database systems
10.3.2 Relationships

As important as storing and modifying data is to any application, the relationships
between the data are just as important. The updated CSV files for our imaginary com-
pany enabled you to reduce the data redundancy of the original single CSV file.
Reducing data redundancy is one important aspect of database normalization.

 The separation of distinct data into multiple tables indicates the need to reconnect
related data. RDBMS systems establish relationships between multiple tables with the
use of primary and foreign keys.

 The primary key in a database table is a column in a row (a record) whose value is
unique across the entire table. It’s often the case that the primary key column exists
for the sole purpose of providing this unique ID value and contains no information
about the record itself.

 It’s not always necessary to create a distinct primary key field. If a column of useful
data is unique across a table, that column can be the primary key. For example, sup-
pose a table containing information about people included their social security num-
bers. In this case, the social security number should be unique for every record in the
table and could be the primary key.

TIP Even if a column in a table contains data that’s unique enough to be
used as the primary key, it’s often easier and more future-proof to create a dis-
tinct primary key column that’s not dependent on the uniqueness of the data
in the table.

Most RDBMS systems have the functionality to create auto-incrementing integer val-
ues when new rows are inserted into a table. These make convenient primary key val-
ues that are assured to be unique across the table as new records are inserted into the
table and the value increments.

UUID PRIMARY KEYS

Another option to create primary key values is to use UUID (universally unique identi-
fier) values. A primary key with a UUID value is not only unique across the table but
unique across all tables in all databases. Having a universally unique primary key can
be helpful as the structure and use of the database change.

 As conditions and requirements change over time, database structures are updated
to meet the needs of those requirements. One example might be merging two tables.

Order

PK order_id

FK customer_id

FK address_id

integer

integer

Column name

Primary key

Data type

integer

Foreign key

Foreign key
Figure 10.7 The Order table
contains a primary key and two
foreign keys referencing other tables.

200 CHAPTER 10 Persistence is good: Databases
In this situation, all of the records from both should exist in the merged table, and
each record still needs a unique primary key.

 If both source tables were created with auto-incrementing integer primary key val-
ues, merging the tables likely creates primary key conflicts. If the primary key values
are changed to resolve the conflict, any relationships depending on a foreign key that
points to the original primary key value are broken. A considerable amount of effort is
necessary to fix this kind of problem.

 However, if the primary key values are UUID values, then merging the tables pres-
ents no conflicts because the definition of a UUID value is that it’s unique everywhere.
Any foreign key that references a UUID primary key still works with the merged table.

 Another interesting, perhaps small advantage of using UUID-based primary keys is
“security through obscurity.” For example, in a web application for our imaginary
company, they might have a URL like this:

https:/ /imaginary_company.com/orders/2

Someone might guess that the last part of that URL is an auto-incrementing primary
key for a particular order in a database. Therefore, they could change the last value in
the URL and see every order in the system, which might reveal more information than
you’d like.

 However, if the database used UUID primary key values, the URL might look like
this:

https:/ /imaginary_company.com/orders/1a99289c9de5482b90c3b45e20a60c20

Now the last part of the URL that references a particular order in the orders collec-
tion is a UUID value with the hyphen (-) characters stripped out. Now it’s essentially
impossible for someone to guess an order primary key value that would work. It’s not
really a security step, just a side effect of using UUID primary keys.

 Using a UUID as the primary key in database tables does increase the storage cost,
as UUID values are larger than integers. They might also adversely affect the perfor-
mance of the database in a small way. The cost versus value question needs to be con-
sidered when deciding whether to use UUID values as primary keys. The MyBlog
application database uses UUID primary keys, not so much because of any require-
ments for MyBlog functionality but to present the implementation.

ONE-TO-MANY

In our imaginary company, a one-to-many relationship exists between customers and
orders. To establish a one-to-many relationship, the unique customer_id value from
the customer table is also present as a column of data in the order table as customer_
id. The customer_id value is a foreign key relating to the customer table. Any num-
ber of order records can have the same customer_id foreign key value, creating the
one-to-many relationship.

 When creating a foreign key in a table, part of the definition given to the database
engine is to what table the foreign key relates. The foreign key tells the database engine
there’s a relationship and helps it provide the functionality to use that relationship.

20110.3 Database systems
MANY-TO-MANY

Our imaginary company also establishes a many-to-many relationship. Establishing a
many-to-many relationship is more involved and, in some ways, can be thought of as a
one-to-many relationship connected to a many-to-one relationship. Creating this
requires an association table that acts as the many parts between the two just
mentioned.

 The Item table creates the association between the Order and Product tables.
The Item table has a foreign key to the Order table order_id field and a foreign key
to the Product table product_id field.

10.3.3 Transaction database

The transaction database you’ll create uses a naming convention for the tables and
the columns within those tables. The tables are named using singular nouns for what
they contain: customer, product, and so on.

 The naming convention seems counterintuitive because a table has multiple
records, and a plural version of the noun might seem more fitting. However, the table
is defined in terms of one row of data and the data types and meanings of the record’s
columns. How the table is accessed can return one or more records, but the table
itself is configured based on a single record.

 Additionally, it can get surprisingly awkward to use plurals when naming tables.
For example, try to define a person in a database table. The plural version would be a
table named people, with possibly a primary key of people_id, which seems inele-
gant. Renaming the primary key to person_id works better, but now there is a cogni-
tive disconnect between the table name and the primary key.

 The primary key columns are named using a convention of the table name
appended with _id. Although seemingly redundant and wordy as the primary key
name, it’s apparent that the column with such a name is a foreign key when used in
another table.

TIP The naming convention used in this example database is by no means
the definitive one to use. As has been mentioned, naming things is hard, and
it’s no different with databases. There are many conventions about how to
name things in databases, and the right one comes down to comfort for you
and your team.

Figure 10.8 represents the transaction database table’s structure and the relationships
between them using common database ERD notation and symbols. Notice how the con-
nection between tables goes from primary key in one table to foreign key in another.

 The connecting lines are all variations of one-to-many relationships. The existence
of the Item table creates the one-to-many and many-to-many relationship between the
Order  Item  Product tables. Figure 10.8 presents the complete ERD diagram
for the company database. Creating, updating, and interacting with the data in an
RDBMS system uses the Structured Query Language (SQL) that most RDBMS systems
provide.

202 CHAPTER 10 Persistence is good: Databases
Figure 10.8 The complete ERD for the transaction database of our imaginary company

10.3.4 Structured query language: SQL

Accessing the functionality of a database is standardized so any programming lan-
guage that has a library available to connect to the database can use it. This standard-
ization makes the database much easier to share between applications than a
proprietary system.

 Much of the standardized functionality of RDBMS systems is exposed to the user
by using Structured Query Language, or SQL. SQL interacts with an RDBMS system as
a declarative programming language. A declarative language lets you express what you
want a computer system to do and not explicitly instruct the system on how to do it.

 One way to think about this would be to go to a bakery and ask for a cake. You
expect the baker will hand you a cake, not ask for a recipe to make a cake.

GETTING DATA

You’ll be creating the transaction database later in this chapter, but here I’ll show
some SQL queries to access data. This SQL statement

SELECT * FROM customer;

returns these results:

customer_id name
----------- ----------
1 Joe
2 Mary
3 Sue

Customer

PK customer_id

name

Order

PK order_id

FK customer_id

FK address_id

integer

integer

integer

integer

text

Product

PK product_id

name

integer

text

Address

PK address_id

street

zipcode

integer

text

text

Item

PK item_id

FK order_id

FK product_id

qty

integer

integer

integer

integer

Relationship Connectors

One-to-Many

One-to-Zero or -Many

20310.3 Database systems
The SQL command keywords are in uppercase, which is just a convention. The state-
ment asks the database to return all rows from the customer table. The asterisk (*)
character is a wildcard to get all columns for each row returned. The semicolon (;)
character at the end of the SQL statement is the terminator for the command.

 This SQL query asks for only the names in the customer database sorted in
descending alphabetical order:

SELECT name FROM customer ORDER BY name DESC;

name

Sue
Mary
Joe

SQL also provides functions that transform and act on the data. The statement below
returns the number of customers:

SELECT COUNT(*) AS 'Total Customers' FROM customer;
Total Customers

3

The COUNT function returns the total number of results produced by the query and
assigns that value to an alias—'Total Customers'—used as the column heading for
the results output.

USING RELATIONSHIPS

Because the tables in the transaction database represent normalized data without
redundancies, making interesting queries requires using relationships. In this SQL
statement, the customers, all the addresses used for their orders, and the number of
times they’ve used an address for an order are returned and sorted alphabetically by
name:

SELECT c.name, a.street, a.zipcode, COUNT(c.name) AS 'Times Used'
FROM CUSTOMER c
JOIN 'order' o ON o.customer_id = c.customer_id
JOIN address a ON a.address_id = o.address_id
GROUP BY a.street
ORDER BY c.name;

name street zipcode Times Used
---------- ---------- ---------- ----------
Joe 12 Main St 12345 2
Mary 127 Margol 40322 1
Mary 41 Orange 40321 1
Sue 212 Grove 34213 1

Here, the SQL statement spans multiple lines, which works fine as the statement isn’t
completed until the final termination character (;). As before, only some values from
the tables are returned, but those values span multiple tables.

204 CHAPTER 10 Persistence is good: Databases
 Initially, the query starts at the customer table and assigns it to an alias shorthand
used in other parts of the query to reduce ambiguity. To get the customer address
used with each order, the query needs to use the relationships between the customer,
order, and address tables. Using the JOIN keyword achieves this. It tells the database
how to connect one table to another using the primary key from one to the foreign
key of another.

 The primary key from one table must equal the foreign key of the other for that
row to be part of the results. The code that follows the ON keyword provides the condi-
tion to be met to include the data.

 Notice the 'order' table is in single quotes in the first JOIN statement. The single
quotes are necessary because the word order is an SQL keyword; placing it in single
quotes tells SQL to interpret 'order' as the table name rather than a keyword.

 The text GROUP BY a.street tells SQL to aggregate the results based on identi-
cal street values. The results returned indicate this. For example, Joe has two orders
but used the same address for both. Mary also has two orders but used a different
address for each one.

 The SQL used to build invoices for all the orders of our imaginary company is writ-
ten like this:

SELECT
c.name, a.street, a.zipcode, o.order_id, p.name, i.qty
FROM 'order' o
JOIN customer c ON c.customer_id = o.customer_id
JOIN address a ON a.address_id = o.address_id
JOIN item i ON o.order_id = i.order_id
JOIN product p ON p.product_id = i.product_id

And returns these results:

name street zipcode order_id name qty
---------- ---------- ---------- ---------- ---------- ----------
Joe 12 Main St 12345 1 widget 2
Joe 12 Main St 12345 1 thingy 3
Joe 12 Main St 12345 2 thingy 5
Mary 41 Orange 40321 3 widget 1
Mary 41 Orange 40321 3 thingy 9
Mary 127 Margol 40322 4 widget 7
Sue 212 Grove 34213 5 widget 3

This SQL query joins all the tables in the transaction database to re-create the redun-
dant data for customers, orders, addresses, products, and items.

10.4 SQLite as the database
Before we get to creating and using a database with SQLAlchemy, let’s talk about the
particular database we’ll use for the transaction database and MyBlog in general. In
chapter 8, we used SQLite to persist data. For the transaction database and the rest of
the MyBlog development, we’ll continue to use SQLite.

20510.5 SQLAlchemy
 The decision to use SQLite was based on a few considerations. The SQLite website
states that SQLite is likely one of the most widely used database systems globally if you
look at the numbers and types of systems that use it. It’s also small, fast, full-featured,
and completely serves the needs of the MyBlog application.

 The other, and probably more relevant consideration regarding this book, is that
SQLite runs as an in-process database, which means that it runs as a module pulled
into the application like any other Python module. There’s no need to install, config-
ure, and maintain a database server like MySQL, PostgreSQL, or SQL Server to build
and learn with the MyBlog development process.

TIP Database servers like MySQL, PostgreSQL, and SQL Server are powerful,
capable systems that could easily handle the needs of the MyBlog application.
However, it would take time and book real estate to help readers get those sys-
tems up and running.

Lastly, the use of SQLAlchemy helps to abstract away the underlying database and lets
you focus on development and database concepts rather than a particular database
implementation. Should your needs with MyBlog outgrow what SQLite can do for
you, replacing it with another database system is easier because of the abstraction that
SQLAlchemy provides.

10.5 SQLAlchemy
SQLAlchemy is a popular and powerful database access library for Python that pro-
vides an object-relational mapper (ORM). One of the benefits of working with Python
is that it’s an object-oriented language, and everything in Python is an object. Working
with data as Python objects feels more natural and more Pythonic.

 Python can access database systems using SQL directly, and this is a viable
approach. Most Python database libraries that support SQL return lists of tuples or
dictionaries containing the results of the SQL statement.

 The SQL statement illustrating how to get the data to create invoices for orders
shows the data, but all relationship information is lost. Using this data would require
software to glean the hierarchal relationships in Order  Item  Product. The dis-
connect between objects and flat data is known as object-relational impedance mis-
match, and it’s a problem the SQLAlchemy ORM solves.

10.5.1 Benefits

Using SQLAlchemy to access a database allows you to think about objects and meth-
ods rather than SQL and result sets. For the most part, you don’t need to know SQL to
work with the underlying database. Instead, SQLAlchemy builds the necessary SQL
statement to map the resulting data to Python objects and vice versa.

 Most RDBMS databases support SQL; however, they often add proprietary func-
tionality to their implementation. Aside from specific use cases, SQLAlchemy abstracts
these differences away and works at a higher level.

206 CHAPTER 10 Persistence is good: Databases

C
th
in
 Another advantage SQLAlchemy provides is protecting your application from SQL
injection attacks. For example, if your application adds user-supplied information to
use with database queries, your application is vulnerable to this kind of attack. The
XKCD comic in figure 10.9 shows this nicely.

Figure 10.9 Exploits of a Mom (Source: xkcd.com. Licensed under CC BY-NC 2.5)

10.6 Modeling the database
Connecting the database to SQLAlchemy requires modeling the table structures with
Python class definitions. The models map the table record structure, the field data
types, and the relationships between tables to Python class definitions. Instances of
these Python classes are created by calling methods on the classes, which SQLAlchemy
translates to SQL statements.

 Because the ultimate goal is to use SQLAlchemy with the MyBlog application, we’ll
use Flask and the flask_sqlalchemy modules to help define the classes. The
flask_sqlalchemy module provides convenience features and definitions, but the
classes defined here could just as easily have been defined with the SQLAlchemy
module alone.

10.6.1 Defining the classes

The examples/CH_10/examples/02/main.py program imports a models.py
module. The models.py module contains all of the code to create the database
object, model the tables, and populate the database with data from the CSV files of
examples/01.

THE DATABASE CONNECTION

All of the classes to be defined inherit from a common SQLAlchemy-provided data-
base object. The database object is created in this way prior to defining the classes:

app = Flask(__name__)
app.config["SQLALCHEMY_DATABASE_URI"] =

➥"sqlite:/ //transaction.sqlite"
app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False
db = SQLAlchemy(app, session_options=

➥{"autoflush": False})

reates
e Flask
stance

Configures SQLAlchemy to
use SQLite and where to
create the database file

Turns off an unnecessary
default configuration that
generates a warning

Creates the SQLAlchemy database object, in this case with
autoflush turned off, which helps make DB operations

more atomic at the point of issuing a commit()

20710.6 Modeling the database

C
nam
The intent of this code is to create the db object instance used to define the table
models. The database itself is stored in the single transaction.sqlite file.

MODELING THE TABLES

The transaction database ERD shown previously is a good guide to creating the class
definitions needed to access the database with SQLAlchemy. The class definitions
define the database tables to be created, the column names within a record, and their
data types.

 There are also fields defined that don’t exist in the database but are created and
maintained by SQLAlchemy when instances of the models are created. These extra
fields provide useful functionality when working with the model instances, particularly
for relationships between tables—for example, the orders attribute defined next in
the Customer model. SQLAlchemy maintains a Python list of all the orders associated
with a Customer instance. Let’s look at the Customer and Order class definitions:

class Customer(db.Model):
 __tablename__ = "customer"
 customer_id = db.Column(db.Integer,
 ➥primary_key=True)
 name = db.Column(db.String)
 orders = db.relationship("Order",
 ➥backref=db.backref("customer"))

class Order(db.Model):
 __tablename__ = "order"
 order_id = db.Column(db.Integer,
 ➥primary_key=True)
 customer_id = db.Column(db.Integer,
 ➥db.ForeignKey("customer.customer_id"))
 address_id = db.Column(db.Integer,
 ➥db.ForeignKey("address.address_id"))

Quite a lot is happening in these class definitions. By inheriting from the db.Model
class, the Customer and Order classes get SQLAlchemy functionality, allowing the
classes to interact with the underlying database.

 The customer_id column is defined as an integer and as the primary key. By
doing this, the customer_id field is initialized by an auto-incrementing function
every time a new Customer instance is added to the database. The same happens for
the order_id field in the Order class.

 The name column is a simple string that maps to whatever database type best sup-
ports Python string-type variables. Because SQLite is the underlying database, that
type is TEXT.

Creates the class, inheriting from
the db instance Model class

Associates the class
definition with the
customer database table

Creates the customer_id column as an
integer type and as the primary_key

reates the
e column

as a string
Creates the attribute orders, connecting
a customer to all their orders

Creates the class, inheriting from
the db instance Model class

Associates the class
definition with the
order database table

Creates the order_id column as an
integer type and as the primary_key

Creates the customer_id as an
integer and as the ForeignKey to the
customer table and customer_id field

Creates the address_id as an
integer and as the ForeignKey to

the address table and address_id field

208 CHAPTER 10 Persistence is good: Databases
 The Customer class attribute orders is interesting and useful. It does not define a
column in the database customer table at all. Instead, it creates an attribute main-
tained by SQLAlchemy that is available to you as a developer.

 The orders attribute uses the relationship established by the customer_id for-
eign key created in the Order class. A Customer instance has an orders attribute
that is a Python list of the Order instances associated with the customer. The odd-
looking backref parameter passed to db.relationship(…) creates a SQLAlchemy-
maintained attribute named customer in the Order class definition that points back
to the Customer instance to which the order relates. Figure 10.10 presents a visual
representation of this SQLAlchemy-maintained list of orders in the customer
instance.

The orders attribute lets you write Python code like this when you have a Customer
instance:

print(f"Customer {customer.name} has these order number")
for order in customer.orders:
 print(f"Order number: {order.order_id}")

The relationships and the attributes created and maintained by SQLAlchemy are very
useful when printing out order invoices. The rest of the SQLAlchemy model defini-
tions follow:

class Address(db.Model):
 __tablename__ = "address"
 address_id = db.Column(db.Integer, primary_key=True)
 street = db.Column(db.String)
 zipcode = db.Column(db.String)
 orders = db.relationship("Order", backref=db.backref("address"))

class Product(db.Model):
 __tablename__ = "product"
 product_id = db.Column(db.Integer, primary_key=True)
 name = db.Column(db.String)

class Item(db.Model):
 __tablename__ = "item"
 order_id = db.Column(db.Integer,
 ➥db.ForeignKey("order.order_id"),

Customer instance Order instance

The backref parameter creates a SQLAlchemy-maintained
Python list of orders in instances of the Customer model.

Figure 10.10 The one-to-many
relationship between a customer
and their orders is a Python list.

Creates the class, inheriting from
the db instance Model class

Associates the class with
the item database table

20910.7 Creating and using the database
 ➥primary_key=True)
 product_id = db.Column(db.Integer,
 ➥db.ForeignKey("product.product_id"),
 ➥primary_key=True)
 qty = db.Column(db.Integer)
 order = db.relationship("Order",
 ➥backref=db.backref("items"))
 product = db.relationship("Product")

The Item class definition creates the many-to-many association relationship between
an order, the items in that order, and the products related to the items.

10.7 Creating and using the database
Once the SQLAlchemy models are defined, the database can be created. This line of
Python code creates the database:

db.create_all()

If the transaction.sqlite SQLite database file defined earlier doesn’t exist, it’s
created with table structures defined by the models, and those tables will be empty.
However, if the transaction.sqlite database file does exist, the code won’t re-
create it; it will just connect to it.

 It’s essential to recognize that any changes made to the SQLAlchemy models won’t
appear in the database if the database already exists. You can delete and re-create the
database, and it will match the updated models, which is fine in this case but an unrea-
sonable action most of the time.

TIP With an existing database, you’ll need to use SQL statements, or other
database migration tools, to modify the database to match the updated
SQLAlchemy models. As a working developer, it’s not common to create a
database from scratch. The more frequent activity is modifying an existing
database to add new features and functionality to it. Python tools like Alembic
(https://pypi.org/project/alembic/) are useful for this kind of activity with
SQLAlchemy.

10.7.1 Adding data

Even though creating and populating a database from scratch isn’t an everyday activity
for a developer, we’ll look at it in the examples/CH_10/examples/02/models.py
to see how SQLAlchemy creates and inserts database table records. The program’s
goal in examples/CH_10/examples/02/main.py is to replicate the behavior of
examples/CH_10/examples/01/main.py but use a database instead of CSV tables.
To do so means parsing the CSV files and inserting the data into the database using
SQLAlchemy. The models.py module contains the SQLAlchemy models and the

Creates the order_id as an integer
and as the ForeignKey to the order
table and order_id field

Creates the product_id as an integer and as the
ForeignKey to the product table and product_id field

Creates the qty field to track the
quantity of product for this item

Creates the instance-only attribute
order, connecting an order to this item

Creates the instance-only attribute
product, connecting a product to this item

https://pypi.org/project/alembic/

210 CHAPTER 10 Persistence is good: Databases
statement to create the database. It also has a custom function to read the CSV files
and load them into the database tables as follows:

def load_database():
 customers = CsvData("customer.csv")
 addresses = CsvData("address.csv")
 orders = CsvData("order.csv")
 products = CsvData("product.csv")
 items = CsvData("item.csv")

 with session_manager() as session:
 # create the customers
 for customer in customers.data.values():
 session.add(Customer(
 name=customer.get("name")
))

 # create addresses
 for address in addresses.data.values():
 session.add(Address(
 street=address.get("street"),
 zipcode=address.get("zipcode")
))
 # create products
 for product in products.data.values():
 session.add(Product(
 name=product.get("name")
))
 # commit these items
 session.commit()

 # build a map of orders
 orders_map = {str(index): Order()
 ➥for index, order in enumerate(
 ➥orders.data.values(), start=1)}

 # build the orders and items
 for item in items.data.values():
 # get the order_id and order associated
 ➥with this item
 order_id = item.get("order_id")
 order = orders_map.get(order_id)

 # get the customer, address and product associated with the item
 customer_id = orders.data
 ➥.get(order_id)
 ➥.get("customer_id")
 customer = session.query(Customer)
 ➥.filter(Customer.customer_id == customer_id)
 ➥.one_or_none()
 address_id = orders.data
 ➥.get(order_id).get("address_id")
 address = session.query(Address)
 ➥.filter(Address.address_id == address_id)
 ➥.one_or_none()

Loads all of the CSV files into variables
that are rows of dictionaries

Uses a context manager to control
when the objects are committed
(or not) to the databaseCreates Customer

instances and
adds them to the
database session

Creates Address instances and adds
them to the database session

Creates Product instances and adds
them to the database session

Commits the session to the database,
assigning unique IDs to all the objects in that
session and persisting them in the database

Creates an orders map to help connect
orders, items, customers, and products

Iterates over
the items

Finds the order to which the
current item is related

Finds the customer
to which the found

order is related. The
second statement is

an SQLAlchemy
query to get the

customer instance.

Finds the address to which
the found order is related.
The second statement is an
SQLAlchemy query to get
the address instance.

21110.7 Creating and using the database

 if order.customer is None:
 order.customer = customer
 if order.address is None:
 order.address = address

 # create an item with it's many-to-many associations
 product_id = item.get("product_id")
 product = session.query(Product)
 ➥.filter(Product.product_id == product_id)
 ➥.one_or_none()
 new_item = Item(
 qty=item.get("qty")
)
 new_item.product = product
 order.items.append(new_item)

 # add the populated orders to the
 ➥session and database
 for order in orders_map.values():
 session.add(order)
 session.commit()

There is quite a lot happening in this code. The gist is to read the CSV files and use
the data to create instances of the corresponding SQLAlchemy models. Then use the
SQLAlchemy-maintained attributes to develop the relationships between the
instances.

 Creating the customer, address, and product instances and then persisting
them to the database with the session.commit() statement generates the unique
ID primary key value for each record. The primary key values are used later to estab-
lish relationships when creating the orders and their associated items.

10.7.2 Using the data

The examples/CH_10/examples/02/main.py program demonstrates using the
transaction.sqlite database to generate the invoice PDF files for all the orders:

import os
import csv
import sqlite3
from pathlib import Path
from jinja2 import Environment, FileSystemLoader
from weasyprint import HTML
from models import load_database, Order,

➥session_manager

def create_invoice(order):
 """Create the PDF invoice for the order

 Args:
 info (dict): The info information to generate the invoice with
 """
 invoice_filename = f"invoice_{order.order_id}.pdf"

Assigns the customer and
address to the order only if
they don’t already exist

Finds the product instance to
relate to the item, assigns it
to the item, and then appends
the item to the order

Adds all the initialized orders to the
session and commits the session to the
database, persisting the orders and items

Imports functionality from the
models.py module. Notice that only the
SQLAlchemy Order definition is used.

Passes a single Order instance
to the create_invoice function

212 CHAPTER 10 Persistence is good: Databases

he
 # delete existing order invoice file if exists
 if os.path.exists(invoice_filename):
 os.remove(invoice_filename)

 # set up Jinja2 to generate the HTML and then the PDF file
 path = Path(__file__).parent
 env = Environment(loader=FileSystemLoader(Path(path)))
 template = env.get_template("invoice_template.jinja")
 html_out = template.render(order=order)
 HTML(string=html_out).write_pdf(
 invoice_filename,
 stylesheets=[
 "page.css",
 "bootstrap.css",
]
)

load the database
load_database()

generate an invoice file for all the orders
with session_manager() as session:
 for order in session.query(Order).all():
 create_invoice(order)

The bulk of this program creates the invoice PDF files from the single SQLAlchemy
Order instance passed to it. Because of the relationships established by the models,
everything necessary to print an invoice is connected to the Order instance. The Jinja
template uses the order context parameter to fill in the dynamic parts of the template:

<html lang="en">
 <head>
 <title>Invoice</title>
 </head>
 <body>
 <div class="container border border-dark border-2 rounded-2">
 <div class="container border border-dark mt-3 mb-3">
 <h3>Invoice</h3>
 Customer: {{order.customer.name}}

 Street: {{order.address.street}}

 Zip Code: {{order.address.zipcode}}

 Order Number: {{order.order_id}}

 </div>
 <table class="table table-striped table-bordered caption-top">
 <caption>
 Order Items
 </caption>
 <thead>
 <tr>
 <th>Item Number</th>
 <th>Product Name</th>
 <th>Quantity</th>
 </tr>
 </thead>
 <tbody>

Passes the single order
instance to the Jinja template
as the context parameter

Calls the load_database function defined in the
models.py module to populate the database

With a database session, queries the database
for all orders, iterates over them, and passes t
single instances to the create_invoice function

Uses the order instance customer
attribute to get the customer’s name

Uses the order instance address
attribute to get the address to
which the order was shippedPrints out

 the order’s
unique

ID value

213Summary
 {% for item in order.items %}
 <tr>
 <td>{{loop.index}}
 <td>{{item.product.name}}
 <td>{{item.qty}}
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
 </body>
</html>

Creating models for the tables with one-to-many relationships between the tables,
SQLAlchemy provides attributes to access the data hierarchically rather than in a flat,
two-dimensional way. The models, and the object instances created from them, allow
you to consider the data in Pythonic terms rather than manage relationships yourself
and jump from list to dictionary and back.

 Our imaginary company and its simple data requirements allowed us to see how
databases can greatly enhance merely persisting data. By adding relationships to the
data structure, the storage of interrelated data is greatly simplified and functionality is
improved.

10.8 Closing thoughts
You’ve taken a microscopic view of database systems to gain knowledge about what
they do, how they do it, and why they’re useful. Database systems give you access to
powerful functionality and using SQLAlchemy to interact with those systems lets you
think about them in Pythonic terms. In addition, using tools like SQLAlchemy helps
you stay in the single Python domain rather than make mental context switches
between SQL and Python domains. It’s certainly possible to work in the latter, but it’s
more productive to work in the former.

Summary
 Persisting data over time usually means saving it to a long-term storage device,

like the hard- or solid-state drive system attached to a computer. Files provide a
simple solution but present some disadvantages.

 Database systems give applications a way to persist data in a structured way and
establish relationships between that data. Relational database management sys-
tems (RDBMS) are applications that provide storage for structured, related data.

 Data storage is important to any application, but the relationships between data
groups are equally important. The support for one-to-many and many-to-many
relationships (among others) dramatically increases the utility of modern data-
base systems.

 The Python SQLAlchemy module bridges the gap between the tables with rows
of data in a database system to a more object-oriented access method in a
Python application.

Uses the order instance items
collection to print out the item
information in a table

I’ve got something to say
At long last, we’re at the point of adding content to the MyBlog application. Every-
thing we’ve done so far to build the application has been aimed at creating the
infrastructure to enable posting content to the blog.

 You’ve created a database to persist information the MyBlog application man-
ages over time. In addition, you’ve created users with roles so those users can regis-
ter with and use the application. You’ve also modularized the application using
Flask Blueprints to help manage the app’s growing complexity, which adds struc-
ture and control to the application to help you and your users create and manage
content on the MyBlog application.

This chapter covers
 Creating and modifying MyBlog content posts

 Creating and displaying content posts

 Creating and displaying post comments

 Notifying users about posts and comments

 Handling errors
214

21511.1 MyBlog posts
 Let’s establish a naming convention to help us discuss content. Content is the
engaging information a user writes and other users read and comment on. Content
has an author, a creation timestamp, an update timestamp, and a title. The author,
timestamps, and title are all associated with the content and its metadata. We’ll gather
this information into what we’ll call a post, like on a bulletin board, where a user
“posts” information they want others to read.

11.1 MyBlog posts
A MyBlog Post object gathers the content and all the information associated with it in
one place. The Post object is persisted in the database to be accessed, searched, and
managed.

 Before getting too far into creating content, I want to talk about one of the MyBlog
design goals—the presentation of content. The content presented by the MyBlog
application is stored as plain text. However, that text can contain markdown syntax to
enhance the presentation of the content. Markdown is a way to include plain ASCII
characters in text content used during presentation to render text in bold or italics,
include header sections in the visually rendered content, and generate many other
features.

 To achieve this, we’ll be using the Flask-PageDown module created by Miguel Grin-
berg. This module takes care of presenting MyBlog markdown content correctly. It also
provides tools to use markdown text and preview how it will be rendered interactively.
You can find information about the Flask-PageDown module here: https://blog
.miguelgrinberg.com/post/flask-pagedown-markdown-editor-extension-for-flask-wtf.

TIP Miguel Grinberg is a software engineer who writes about Python and
Flask on his blog and publishes books and modules useful to a well-grounded
Python developer. His work is well worth checking out.

11.1.1 Modeling the database

The Post object is another SQLAlchemy class defining the structure of the post data-
base table where the information is persisted. Because users who register with the
MyBlog application can create multiple posts, there is a one-to-many relationship
between users and posts. Figure 11.1 is the ERD (entity relationship diagram)
between the existing User and new Post tables. Next, we’ll create the SQLAlchemy
model the MyBlog Python application uses to communicate with the database and the
Post table.

SQLALCHEMY POST CLASS

You’ll create the Post class to model the Post table as you’ve done for other models
in the MyBlog application. The Post class inherits from the db.Model class to give it
SQLAlchemy functionality. It also uses the get_uuid() function to create UUID pri-
mary key values.

https://blog.miguelgrinberg.com/post/flask-pagedown-markdown-editor-extension-for-flask-wtf
https://blog.miguelgrinberg.com/post/flask-pagedown-markdown-editor-extension-for-flask-wtf
https://blog.miguelgrinberg.com/post/flask-pagedown-markdown-editor-extension-for-flask-wtf

216 CHAPTER 11 I’ve got something to say
Figure 11.1 The ERD shows the one-to-zero or multiple relationships between users and
their posts.

Here’s the Post class definition from examples/CH_11/examples/01/app/
models.py:

class Post(db.Model):
 __tablename__ = "post"
 post_uid = db.Column(db.String,
 ➥primary_key=True, default=get_uuid)
 user_uid = db.Column(db.String,
 ➥db.ForeignKey("user.user_uid"), nullable=False, index=True)
 title = db.Column(db.String)
 content = db.Column(db.String)
 active = db.Column(db.Boolean, nullable=False, default=True)
 created = db.Column(db.DateTime,
 ➥nullable=False, default=datetime.now(tz=timezone.utc))
 updated = db.Column(db.DateTime, nullable=False, default=datetime.now(
 tz=timezone.utc), onupdate=datetime.now(tz=timezone.utc))

The Post class creates a structure to manage the content, user (author), title, and
audit information. Because we’ve established a relationship between the Post class
and the User class, we need to modify the User class to take advantage of this
relationship:

class User(UserMixin, db.Model):
 __tablename__ = "user"
 user_uid = db.Column(db.String, primary_key=True, default=get_uuid)

User

PK user_uid

FK role_uid

first_name

last_name

email

hashed_password

active

created

updated

string

string

string

string

string

datetime

datetime

boolean

string

Post

PK post_uid

FK user_uid

title

content

active

created

updated

string

string

datetime

datetime

boolean

string

string

The one-to-zero-or-more relationship between users
and their post is established by the user_uid foreign
key in the Post table.

Connects the model to the
table named Post, as defined

in the ERD diagram Creates the
primary key for
the table using
the get_uuid()
function

Creates the foreign
key relationship to
the user table and

user_uid value and
indexes this

column for faster
querying

Marks the created field so the database
will automatically add a UTC
timestamp when the record is created

Marks the updated field so the database
will automatically update the UTC

timestamp when the record is updated

21711.2 Change of direction
 role_uid = db.Column(db.String,
 ➥db.ForeignKey("role.role_uid"), index=True, nullable=False)
 first_name = db.Column(db.String, nullable=False)
 last_name = db.Column(db.String, nullable=False)
 email = db.Column(db.String, nullable=False, unique=True, index=True)
 hashed_password = db.Column("password", db.String, nullable=False)
 posts = db.relationship("Post",
 ➥backref=db.backref("user", lazy="joined"))
 active = db.Column(db.Boolean, nullable=False, default=True)
 confirmed = db.Column(db.Boolean, default=False)
 created = db.Column(db.DateTime,
 ➥nullable=False,
 ➥default=datetime.now(tz=timezone.utc))
 updated = db.Column(db.DateTime, nullable=False, default=datetime.now(
 tz=timezone.utc), onupdate=datetime.now(tz=timezone.utc))

The newly added posts attribute of the User class creates an association between the
User and Post class. The posts attribute doesn’t exist in the User table; it is created
and managed by SQLAlchemy. The posts attribute is created when instances of the
User class are created in response to database queries.

 The use of posts plural is intentional, as the db.relationship() definition con-
nects the single user to the many possible posts. The posts attribute is a Python list
containing zero or more possible posts that the user can create.

 The first parameter of the db.relationship() definition is "Post". It is a string
because the Post class is defined after the User class definition, and the use of a
string causes SQLAlchemy to resolve the relationship at run time. It connects to the
Post class using the user_uid attribute defined in the Post class as a ForeignKey
to the "user.user_uid" attribute of the user table.

 The second parameter to db.relationship() is backref=db.backref
("user", lazy="joined"), which handles two elements:

1 Creates an attribute named "user" on instances of Post classes that refer back
to the parent user. SQLAlchemy maintains the "user" attribute.

2 Indicates that the relationship between User and Posts should use "joined"
in the same select statement so the posts associated with a user are available
immediately rather than requiring additional queries to retrieve them.

With the new Post and updated User class definitions, we can persist content and
retrieve it in a consistent, structured way. Now we need to build a system to create and
display that content.

11.2 Change of direction
Before proceeding much further, I should point out that the remainder of this book
changes its presentation pattern. Previous chapters included extensive or complete
code samples because I felt they were helpful to see the new concepts implemented.
There are new concepts still to come, but they also include blocks of boilerplate code
that you’ve seen before.

The new posts attribute,
which is a relationship

to the Post class

218 CHAPTER 11 I’ve got something to say
 Presenting blocks of code in a book makes for dry reading and doesn’t further the
aims of the chapter, which are to introduce new ideas and how to implement them.
So, rather than reviewing large code sections, we’ll focus on what the code provides
and refer to the specific code in the GitHub repository that accompanies this book.

11.3 Content Blueprint
At the beginning of this chapter, we discussed the benefits of having the infrastructure
in place. We’re going to take advantage of that infrastructure—in a cognitive sense
because of what you know, and in an actual sense because of the structure you’ve built
for the MyBlog application.

 You’re going to build a Content Blueprint to manage the MyBlog content. In
every way, this is like the Auth Blueprint; it isolates functionality into a separate mod-
ule, making it easier to think and work in the context of the content domain. Doing so
puts into practice the idea of the separation of concerns.

 As you did for the auth Blueprint, you’ll add a new package directory named con-
tent under the app package. This directory has an __init__.py file containing the
following code:

from flask import Blueprint

content_bp = Blueprint(
 "content_bp", __name__,
 static_folder="static",
 static_url_path="/content/static",
 template_folder="templates"
)

from . import content

This code is conceptually identical to what you’ve done previously for the auth/
.__init__.py file. It creates a Blueprint instance called content_bp and configures
it to have distinct static and templates folders. It also imports a module called
content containing the handler for managing user content. Now that you’ve got a
Blueprint namespace for MyBlog content posts, let’s use it to present the content.

11.4 Displaying and creating posts
The MyBlog application needs a Python handler to intercept, as well as a function to
process calls to the content URL to display the content. It also needs templates to ren-
der the posts as HTML pages in the browser.

11.4.1 Display handler

The content handler needs to access other parts of the MyBlog application, which it
does by importing the required modules and instances in the examples/CH_11/
examples/01/app/content/content.py module. The first handler in the content
module is for the URL "/blog_posts", and it deals with two functions:

21911.4 Displaying and creating posts
 First, if the URL is invoked with a query string where action is None, it displays
all the content posts in the MyBlog application.

 If the URL is invoked with a query string of action=create, it presents a
logged-in user with a web page form where post content is created. That con-
tent can be saved to the database when the form is submitted.

The blog_posts() handler is a simple dispatch function to two other functions,
depending on how the URL is invoked. Both actions could be handled in a single
function, but that would have been more complex and harder to follow. The complex-
ity is reduced by splitting the behavior into two functions.

 The first dispatch function is blog_posts_display(), responsible for rendering
all the MyBlog blog posts to a browser page. The blog_posts_display() function
takes the following steps to display the list of blog posts:

1 Gets the search string from the request.

2 Begins a database session context manager.

3 Gets the current page from the request.

4 Creates a query to the database for content posts sorted in updated timestamp
descending order.

5 Conditionally adds a filter to the query to control whether the user can see
active posts or all posts. This allows users with editor or administrator permis-
sions to see both active and inactive posts.

6 Conditionally adds a filter to the query to return posts only containing the
search term.

7 Gets the relevant posts based on the query.

8 Renders the lists of posts to the browser display.

11.4.2 Display template

The content handler is responsible for gathering the intended data passed to the tem-
plate. The template examples/CH_11/examples/01/app/content/templates/
posts.html can then be rendered and sent to the browser.

 Like the templates in the auth Blueprint, the content templates inherit from the
system-wide base.html template file and build the content block from there. The tem-
plate iterates over the list of posts, if any, passed by the content handler. The template
code formats a one-hundred-character snippet of the content and renders it as a Boot-
strap card. If you run the MyBlog application in examples/CH_11/examples/01, and
you have sample content in the database, the system will render a content post page.

 Notice the blog posts are displayed in order of the most recent first. This is because
the query sorts the results in descending order using the updated timestamp. Because
“The Second Post” was created after “This is the first post,” it appears first in the ren-
dered display.

220 CHAPTER 11 I’ve got something to say
 Because there were only two posts in the database I used when the screenshot
(shown in figure 11.2) was captured, there is no need to paginate the display, and only
the single page link “1” is shown. The render_pagination() macro in the handler
creates these page links. The number of blog posts to display per page is controlled by
the configuration variable blog_posts_per_page in the settings.toml file.

Figure 11.2 The browser page showing the rendered content for the
first and second posts

11.5 Creating posts
Creating a MyBlog content post requires a URL handler, a form, and a template for
the user to enter content and review it. Once users are satisfied with what they’ve cre-
ated, they can save it to the database.

11.5.1 Creation handler

The second function in the blog_posts() dispatch handler is the blog_posts
_create() function, which renders a form-based page with which a registered user

The second blog post with its title
and contents comes first because
the posts are sorted by the
updated date in descending order.

The first blog post with its title and
contents comes after the second.

22111.5 Creating posts
can create and save blog post content. The blog_posts_create() handler function
follows these steps to access the content from the form and save it to the database:

1 Creates an instance of the PostForm form handling class.
2 Checks if the form Cancel button was clicked and redirects to the home page if

it was.
3 Validates the form if the Submit button was clicked and renders the empty form

if it was not.
4 If the form was submitted and it passes validation, a database session context

manager opens.
5 Creates an instance of the Post SQLAlchemy model class, passing in the form

content.
6 Adds the Post instance to the database session.
7 Commits the session to the database.
8 Notifies the user that the post was created.
9 Redirects the user to the newly created post.

11.5.2 Creation form

Because the post is created using a form, the handler needs to have access to a class
definition to manage that form. The PostForm class exists in the examples/CH_11/
examples/01/app/content/forms.py file.

 The PostForm class inherits from FlaskForm, just like the forms used in the
auth Blueprint. The form to create post content has four elements:

 title—A StringField to contain the title text
 content—A PageDownField to contain the text, which can use markdown

syntax for display when the content is rendered
 post_create—The SubmitField that submits the form to the handler
 cancel—Another SubmitField item that is intercepted by the handler to

cancel any actions and return the user to the home screen

The render_kw parameter is added to all of the fields in the form. The render_kw
parameter is a dictionary that adds extra HTML attributes to the elements when they
are rendered to the browser display.

 The tabindex key in the render_kw dictionary controls the order that the cursor
will move from element to element when the TAB or ALT-TAB keys are pressed on the
keyboard. The autofocus key in the render_kw dictionary controls which element
has cursor focus when the form is rendered. The tabindex and autofocus keys add
useability features to the form to help the user reduce the number of clicks necessary
to navigate and use the form.

11.5.3 Creation template

The post-create template is connected to the PostForm class through the post-create
handler. The handler uses the template file examples/CH_11/examples/01/app/

222 CHAPTER 11 I’ve got something to say
content/templates/post_create.html to render the form and send it to the
browser. The interactive markdown behavior of the form is handled by creating a
form field of type PageDownField and then rendering it on the page.

 If you run the application from the examples/CH_11/examples/01/ directory,
log in, and navigate to create a post, you’ll be presented with the post content creation
form. The screenshot in figure 11.3 shows this display. The form has two text input
fields, Title and Content. The bottom part of the screen interactively represents how
the text in the Content field will be rendered by the browser. I’ve entered some text con-
taining markdown for headers to show how the markdown is displayed by the Flask-
PageDown module.

Figure 11.3 The blog post content-creation form uses markdown to style the content.

As the user types in the Content input field, the system will interactively update the
lower part of the display to render that content. This is very useful when creating
markdown content, and similar behavior is seen on sites like Stackoverflow and
GitHub. Now that users can create MyBlog content, let’s give them a way to edit that
content to update their posts.

11.6 Displaying and editing a post
You’ve developed infrastructure to display multiple posts and create a new post. Now
you need to build systems to display and edit a single post.

Markdown source text

Rendered markdown text

22311.6 Displaying and editing a post
11.6.1 Display handler

In the previous section, you handled displaying multiple, abbreviated posts to the
browser. You’ve also provided the ability to create new posts. Now we need to add sup-
port to display a single post. If you look back at the template to render the list of
MyBlog posts, you’ll see each post is wrapped in an HTML hyperlink anchor tag <a…>
that generates a "/blog_posts/{post_uid}" URL. This link navigates the user to
the single post using the unique post_uid value.

 Like the initial handler for multiple posts, a single post is handled with a dispatch
routine in anticipation of handling an HTTP GET request with or without a query
string. The blog_post() handler is another such dispatch function, delegating to
two other functions—one to display a single post and another to edit a single post.

 The first function is the blog_post_display(post_uid), which renders a sin-
gle MyBlog post based on the post_uid parameter passed in the link. The function
takes the following steps to get the post content from the database and display it in the
browser:

1 Begins a database session context manager.
2 Creates the initial database query to get the post with the post_uid value. The

query also performs a JOIN operation with the user table to get the user infor-
mation related to the post.

3 Modifies the query based on the user permissions to see all posts or only active
ones.

4 Executes the database query.
5 If no post was returned from the query, aborts with a NOT FOUND error.
6 Renders the post with the related single post template.

11.6.2 Display template

The blog_post() content handler gets the content post from the database using the
post_uid value passed as a path parameter in the URL that invoked the dispatch func-
tion. Next, the post information is passed to the display template examples/CH_11/
examples/01/app/content/templates/post.html. The template is responsible
for rendering the data sent to it as an HTML page to display in the user’s browser.

 The template conditionally renders the Active badge in the upper right corner of
the page to indicate the active/inactive state of the post. This is displayed for MyBlog
administrators and editors as well as the author of the post. In addition, the template
conditionally renders the Update button, anticipating navigation to the edit system.
Figure 11.4 presents a screenshot of the rendered display.

 The Created and Updated fields displayed a timestamp when the post’s author cre-
ated and last updated it. Both timestamps are presented in the logged-in user’s local
time zone. If you recall, all models of the tables in the MyBlog database have created
and updated fields, and those fields are automatically populated with a UTC time-
stamp. So how is the system presenting local time zone timestamps when all it has

224 CHAPTER 11 I’ve got something to say
access to are UTC timestamps? Take a look at the post.html template, and you’ll see
this code snippet:

<li class="list-group-item">
 Created: {{ post.created | format_datetime | safe }}

<li class="list-group-item">
 Updated: {{ post.updated | format_datetime | safe }}

These few lines of code render the created and updated timestamps as HTML
unordered list items. Notice that timestamp data is piped into format_datetime
and then piped into safe. Previously, the safe filter has been used in MyBlog tem-
plates, but format_datetime is a new filter function that’s added to the app/
__init__.py module:

@ app.template_filter()
def format_datetime(value, format="%Y-%m-%d %H:%M:%S"):
 value_with_timezone = value.replace(tzinfo=timezone.utc)
 tz = pytz.timezone(session.get("timezone_info", {}).get("timeZone", "US/

Eastern"))

The Active badge
is displayed for
administrators,
editors, and
post author.

Updating the post
is displayed for
administrators,
editors, and
the post author.

The created and
updated timestamps
are displayed in the
user’s locale time zone.

Figure 11.4 A single-content post display as rendered for the post author

22511.6 Displaying and editing a post
 local_now = value_with_timezone.astimezone(tz)
 return local_now.strftime(format)

The decorator adds the format_datetime() function as a filter to the template
engine, making it available in the HTML template snippet shown previously. Because
it’s part of a filter pipeline, it accepts the value of whatever is before it in the template
pipeline as a parameter—in this case, a UTC timestamp. It then uses timezone_info
from the user’s session to create a timestamp in the local time zone. That local time-
stamp is then formatted into a string and returned.

 The timezone_info data comes from the user’s session information. How does it
get there? The examples/CH_11/examples/01/app/auth/auth.py module’s
login() function has been modified to add time zone information to the user’s ses-
sion. When a user logs in, the following line of code adds the time zone information
to their session:

session["timezone_info"] = json.loads(form.timezone_info.data)

This line of code creates a dictionary of time zone information from a string stored in
a form field called timezone_info. The timezone_info is a hidden field in the
form populated by a small JavaScript function in the login.js file included in the
login template:

(function() {
 let timezone_info = document.getElementById(‘timezone_info’);
 timezone_info.value = JSON.stringify(Intl.DateTimeFormat().
 ➥resolvedOptions());
}())

The self-evaluating function runs when the browser has rendered the template. It
finds the timezone_info hidden field element in the HTML page and populates it
with the JSON.stringify results of calling the function Intl.DateTimeFormat()
.resolvedOptions(). In the Chrome browser on my computer, this generates the
JavaScript object:

{
 calendar: "gregory",
 day: "numeric",
 locale: "en-US",
 month: "numeric",
 numberingSystem: "latn",
 timeZone: "America/New_York",
 year: "numeric"
}

The previous object is useful information when presenting time and date information
in a locale context. It’s necessary to do this work in JavaScript because the functionality
runs on the user’s computer, which could be anywhere in the world. This makes the
data returned relevant to the user, not the server where the MyBlog application could
be running. The format_datetime filter function uses the timeZone field to deter-
mine how to create a local time zone value of the created and updated timestamps.

226 CHAPTER 11 I’ve got something to say
TIP When you’re working on a web-based application, it’s worth thinking
about time zones when presenting data to your users. If you deploy your
application to the internet, your users could be anywhere in the world. Pre-
senting the UTC would be easy, but not very helpful to your user base.

11.6.3 Update handler

If a user decides to make changes to their blog content and clicks the Update button,
they are directed to the dispatch function with the query string "action=update".
The dispatch function handles the request and calls the blog_post_update() func-
tion. The function follows these steps to populate and present the page:

1 blog_post_update is decorated with @login_required, requiring a user to
be logged in to update a post.

2 Begins a database context manager.
3 Creates a query to get the post based on the passed post_uid.
4 Modifies the query based on the user’s role to get only active posts, or all posts.
5 Executes the query and gets the results.
6 Was no post found? Then the function aborts the request with NOT FOUND.
7 Gets the template form information and populates the fields with the post

values.
8 Was the form Cancel button clicked? Then the function redirects the user to

the home page.
9 Was the form submitted, and is it valid? Then it updates the post returned by

the query with form data, saves the updated post to the database, and redirects
the user to the post display page to show the updates.

10 Renders the post_update template using the form and the post returned by
the query.

11.6.4 Update form

The data to update the post comes from the PostUpdateForm in the content/
forms.py module. The form contains the field information used in the post_
update.html template to build and render the HTML page to the browser.

 The form provides the title, content, post_update, and cancel fields visible
when the form is rendered. It also provides a hidden field called active_state,
which holds the user’s selected active state. The active state is controlled by the tem-
plate conditionally rendering one of two other fields—activate and deactivate.
The current user must be the author of the content or a MyBlog administrator for the
activate and deactivate fields to be displayed.

 Depending on the current active state of the post, one or the other of these fields
are presented to the user as buttons. The form is submitted if the user clicks the but-
ton, and the active state value is toggled. The activate and deactivate buttons
represent mutually exclusive actions to take, and only one is shown on the page at a
time.

22711.6 Displaying and editing a post

11.6.5 Update template

The post_update.html template is responsible for rendering the page to the
browser where the logged-in user can modify the post’s content. The template uses
the form information and data passed to it to render the update-post display in the
browser. Depending on the current user’s role, they can toggle the active state of the
post with the conditionally presented activate and deactivate buttons. The snippet of
the template controlling this behavior is shown here:

{% if can_set_blog_post_active_state(post) %}
 {% if post.active == True %}
 {{form.deactivate(class_="btn btn-danger me-2")}}
 {% else %}
 {{form.activate(class_="btn btn-success me-2")}}
 {% endif %}
{% endif %}

The outer if statement calls the function can_set_blog_post_active_state(),
which returns True or False if the currently logged-in user can change the active
state of the post. The user must be an administrator or the post’s author to do so.

 The inner if/else conditional determines which field to render—deactivate

or activate—depending on the current active state of the post.
 The function can_set_blog_post_active_state() exists in the content.py

handler module as part of two functions made available in the context of template
processing:

@ content_bp.context_processor
def utility_processor():
 def can_update_blog_post(post):
 if not current_user.is_anonymous:
 if current_user.role.permissions &
 ➥(Role.Permissions.ADMINISTRATOR |
 ➥Role.Permissions.EDITOR):
 return True
 if current_user.user_uid == post.user.user_uid:
 return True
 return False

 def can_set_blog_post_active_state(post):
 if current_user.is_anonymous:
 return False
 if current_user.role.permissions & (Role.Permissions.ADMINISTRATOR):
 return True
 else:
 if current_user.user_uid == post.user.user_uid:
 return True
 return False

 return dict(
 can_update_blog_post=can_update_blog_post,
 can_set_blog_post_active_state=can_set_blog_post_active_state,
)

Decorator to add template context
functionality to the content Blueprint

Returns True if the currently logged-
in user is an ADMINISTRATOR or
EDITOR, otherwise returns False

Returns True if the currently
logged-in user is an ADMINISTRATOR
or the author of the post content

Returns the two functions to
add to the template context

228 CHAPTER 11 I’ve got something to say
11.7 Content to comment hierarchy
The MyBlog application can have many content posts. Each post can have many com-
ments associated with it. Each of those first-level comments can also have many com-
ments associated with it. The MyBlog application will limit comment nesting to two
levels to keep things reasonable.

 The hierarchy in figure 11.5 shows two content posts, posts 0 and 1. Content post 0
has two level 1 comments associated with it, with the first comment having two level 2
comments and the second comment having one level 2 comment. Content post 1 has
three level 1 comments, with only one having a level 2 comment.

Figure 11.5 The content and comment relationship structure forms a hierarchy.

Post content can contain markdown syntax, used at display rendering time, but is oth-
erwise stored in the database as text. Comments on content won’t support markdown
when displayed but are also stored as text. Aside from the title field associated with
content, comments look very much like content when storing them in the database.

 This suggests a relationship between content and comments that we can take
advantage of in the application. Content is stored in the post table, and it wouldn’t
be unreasonable to store level 1 and 2 comments in separate tables based on the listed
hierarchy. By creating separate tables, the post table could have a one-to-many

Content 0

Content 1

Comment 0-0

Comment 0-0-0

Comment 0-0-1

Comment 0-1

Comment 0-1-0

Comment 1-0

Comment 1-0-0

Comment 1-1

Comment 1-2

Level 0 Level 1 Level 2

The content
and comment
hierarchy

22911.7 Content to comment hierarchy
relationship to level 1 comments, and level 1 comments could have a one-to-many
relationship to level 2 comments.

 A three-table database structure would work and provide the desired functionality.
However, I think it has some drawbacks. First, content and comment posts are almost
identical in structure. They both have content related to the user who posted them,
and they have created and updated timestamps.

 The primary difference between them is that comments don’t have a title. The
SQLite database engine doesn’t allocate space in the database for text fields unless
needed, so not using the title field doesn’t cost anything in terms of disk space.

 The second drawback is the arbitrary two-level nesting limit of comments. For
MyBlog, the two-level limit helps keep examples in this chapter within reason. In a pub-
licly available application, the requirements could easily change to three, four, or more
levels of comments. Extending support for more levels by using a table for each level
means adding new tables, where each new table essentially replicates its parent table.

 We can overcome these drawbacks by being clever. For example, rather than hav-
ing content—level 1 and level 2 comments—in separate, nearly identical tables, why
not extend the existing Post table to support both content and comment posts? This
is possible by adding a parent_uid field to the table, as illustrated in figure 11.6. In
this way, a row can be the parent of another row while simultaneously being the child
of some other parent row.

Figure 11.6 The self-referential Post table creates a hierarchal content/comment structure.

We’ve created a self-referential hierarchy by adding the parent_uid to the Post
table and making it a foreign key to the post_uid of the same table. Any row with a
parent_uid equal to NULL is the root of a hierarchy and a content post. Any row
with a non-NULL parent_uid references another row in the table and is a child

User

PK user_uid

FK role_uid

first_name

last_name

email

hashed_password

active

created

updated

string

string

string

string

string

datetime

datetime

boolean

string

Post

PK post_uid

FK parent_uid

FK user_uid

title

content

active

created

updated

string

string

string

string

string

datetime

datetime

boolean

The user has a one-to-zero
or many posts relationship.

A parent post has a one-to-zero or many other
posts, which are comment posts, relationship.

230 CHAPTER 11 I’ve got something to say
comment. The parent_uid that a child row references can be a content post or a
comment post.

TIP Self-referential tables are very useful when you’re trying to store hierar-
chical data. This is true if the nodes in the hierarchy are identical in structure,
or close enough to identical.

Each row in the table can have a one-to-many relationship to a list of child rows within
the same table. The top-level rows with no parent are content posts; others are com-
ments. This structure has no inherent limit on the depth of comment nesting the
table can support. With this self-referential structure, the two-level nesting constraint
is a function of the application, not the database.

11.7.1 Modifying the post class

To implement the ERD diagram of the Post table, the Post class in the models.py
module must be updated. You’ll see the changes in examples/CH_11/examples/
02/app/models.py:

class Post(db.Model):
 __tablename__ = "post"
 post_uid = db.Column(db.String, primary_key=True, default=get_uuid)
 parent_uid = db.Column(db.String,
 ➥db.ForeignKey("post.post_uid"),
 ➥default=None)
 sort_key = db.Column(db.Integer,
 ➥nullable=False, unique=True,
 ➥default=get_next_sort_key)
 user_uid = db.Column(db.String,
 ➥db.ForeignKey("user.user_uid"),
 ➥nullable=False, index=True)
 title = db.Column(db.String)
 content = db.Column(db.String)
 children = db.relationship("Post",
 ➥backref=db.backref("parent",
 ➥remote_side=[post_uid], lazy="joined"))
 active = db.Column(db.Boolean, nullable=False, default=True)
 created = db.Column(db.DateTime,
 ➥nullable=False,
 ➥default=datetime.now(tz=timezone.utc))
 updated = db.Column(db.DateTime, nullable=False, default=datetime.now(
 tz=timezone.utc), onupdate=datetime.now(tz=timezone.utc))

The parent_uid value creates the one-to-many relationship between rows of the
post table. The children attribute doesn’t exist in the database but is created by
SQLAlchemy when a Post object is returned by a query, adding a list of children asso-
ciated with the post. It also adds a parent attribute to child rows referencing their
parent row.

 The sort_key attribute is used to keep the hierarchy in properly nested order
when displaying a content post and its related comments. The default value of
sort_key is a custom Python function called when a new row is created:

Adds the parent_uid foreign key
to post_uid of the post table

Adds the sort_key, which is an
auto-incrementing value
that’s not a primary key

Adds the child relationship, creates
the list of children associated with
this post, and adds "parent" to each
child, referencing the child’s parent

23111.7 Content to comment hierarchy
def get_next_sort_key() -> int:
 with db_session_manager(session_close=False) as db_session:
 retval = db_session.query(func.ifnull(
 ➥func.max(Post.sort_key) + 1, 0)).scalar()
 if retval is None:
 raise RuntimeError("Failed to get new value for sort_key")
 return retval

The get_next_sort_key() function gets the current max sort_key value from the
post table, adds 1 to it, and returns that value. Having the function called as the default
value of sort_key creates an automatically incrementing unique sort_key value for
every row created in the post table. This behavior emulates the database’s autoincre-
ment behavior for a primary key field. Unfortunately, SQLite doesn’t allow this behav-
ior for nonprimary key fields, which sort_key is not. The value is used when querying
the table to render a post and its hierarchy of comments, shown in another section.

11.7.2 Display handler

Comment posts are variations of content posts in the MyBlog application. Because of
this, displaying, creating, and updating them are handled by modifying the existing
handlers in content.py. Additional forms are added to get the user input to create
comments. These changes are in the examples/CH_11/examples/02/app directory.

 The most significant change to the content.py module occurs in the blog_
post_display() function. Displaying a MyBlog content post requires rendering any
comments associated with the post in a meaningful hierarchical order. Structuring the
post table in a clever manner and making it self-referential means you have to be
clever with the query to get the post content and its comments.

 Figure 11.5 indicates a treelike structure where one root node—a content post—
branches out to multiple comment post nodes. This kind of structure can be traversed
using recursion.

 Because the content and comment posts are identical in definition, each one can
have zero or many children; the same functionality can be applied to each. The list of
associated children is iterated over at each node, and each child is descended into to
use the functionality again.

 The same functionality is applied again until a node with no children is reached, at
which point the functionality ascends back to the child’s parent, and the next child is
processed. This process continues until the entire tree attached to the content root
node has been traversed.

 To create this kind of functionality with SQLAlchemy, and ultimately in SQL, we’ll
use common table expressions (CTE) with recursion. A CTE is a temporary, named
result of an SQL query used within the context of a larger, enclosing query. A recur-
sive CTE can traverse tree structures like the self-referential Post table.

 The blog_post_display(post_uid) handler function has been simplified to:

def blog_post_display(post_uid):
 logger.debug("rendering blog post page")
 form = PostCommentForm()

232 CHAPTER 11 I’ve got something to say
 with db_session_manager() as db_session:
 posts = _build_posts_hierarchy(db_session, post_uid)
 if posts is None:
 flash(f"Unknown post uid: {post_uid}")
 abort(HTTPStatus.NOT_FOUND)
 return render_template("post.html", form=form, posts=posts)

This handler function is passed the post_uid value as a parameter from the URL
that invoked the handler and takes the following steps:

1 Gets the form associated with the display for user comment input.
2 Begins a database session context manager.
3 Gets the hierarchy of the posts related to the post_uid value.
4 Did we get any return posts? If not, it aborts the request.
5 Renders the post.html template, passing it the form, and posts data.

Getting the hierarchy of the posts results from calling the function _build_posts_
hierarchy(db_session, post_uid). This function moves the relative complexity
of the recursive query out of the display function for clarity. The leading _ character
is just a convention to indicate the function is considered nonpublic. The
_build_posts_hierarchy()function does the heavy lifting to get the hierarchy of
the posts from the database starting from the root node (parent_uid equals NULL)
and traverses the tree recursively to get all comments:

def _build_posts_hierarchy(db_session, post_uid):
 # build the list of filters here to use in the CTE
 filters = [
 Post.post_uid == post_uid,
 Post.parent_uid == None
]
 if current_user.is_anonymous or
 ➥current_user.can_view_posts():
 filters.append(Post.active == True)

 # build the recursive CTE query
 hierarchy = (
 db_session
 .query(Post, Post.sort_key.label(
 ➥"sorting_key"))
 .filter(*filters)
 .cte(name=‘hierarchy’, recursive=True)
)
 children = aliased(Post, name="c")
 hierarchy = hierarchy.union_all(
 db_session
 .query(
 children,
 (
 func.cast(hierarchy.c.sorting_key,
 ➥String) +
 " " +
 func.cast(children.sort_key,
 ➥String)

Creates filters used to get the post
matching the passed post_uid and
ensure it’s a root (content) node

Adds a filter so only posts the user is
allowed to view are returned by the query

Begins creating
the recursive CTE

Creates an alias
for the Post class

Completes the CTE

23311.7 Content to comment hierarchy
).label("sorting_key")
) #
 .filter(children.parent_uid ==
 ➥hierarchy.c.post_uid)
)
 # query the hierarchy for the post
 ➥and it’s comments
 return (
 db_session
 .query(Post, func.cast(
 ➥hierarchy.c.sorting_key, String))
 .select_entity_from(hierarchy)
 .order_by(hierarchy.c.sorting_key)
 .all()
)

This is the most complicated query in the MyBlog application and deserves an expla-
nation. The hierarchy variable is set to the root node of the post based on the
post_uid value. It’s also declared as a recursive CTE. Remember, recursive behavior
descends a tree with similar operations on similar objects. That recursive behavior is
provided by the hierarchy query instance having a union_all() operation applied
to it. This descends the tree by connecting parent_uid with post_uid values.

 Notice what’s going on with the sort_key value. The sort_key value is an auto-
incrementing integer in the database, but the query casts it to a string labeled
sorting_key. Comparing two posts by their sort_key values, the post with the
higher sort_key value was inserted into the database after the post with the lower
value. This is because the sort_key value auto-increments, so a new post inserted
into the database gets a greater sort_key value than any other previous post.

 The sorting_key value is a cumulative string of sort_key values, parent to child
to child, separated by a space character. The sorting_key value provides the full
path in descending chronological order to each post returned by the query. Because it
is a string rather than a number, it sorts appropriately to display the post contents and
its comments in order. The function returns the results of querying the recursive CTE
and uses the sorting_key to apply an order_by() clause.

11.7.3 Display template

The post.html template is modified to display the post content and its comments. It
has two phases: the first renders the content much as before; the second adds the hier-
archy of related comments indented to indicate the hierarchy.

 Because a content post can have many comments, the template iterates over the
comment posts to render them to the HTML page. The rendering operation is almost
identical for each comment, so the functionality is in a macro that is called during
each iteration of the comment loop. The indent level of each comment is determined
by splitting the sorting_key value of the post on space characters and using the
length of the returned array to calculate the indent level.

 The template also provides interface elements to create new comments and edit
existing ones. This is done by using the Bootstrap modal functionality to open a

Completes the CTE

Queries the CTE for
the hierarchical posts

234 CHAPTER 11 I’ve got something to say
dialog window over the current display to create and edit comments. A macro func-
tion provides the necessary modal HTML.

 Both the comment and modal macros are in a new file. Keeping with the Blueprint
namespacing, the template imports a content-specific macro file, content_macros
.jinja. This file is located in the content/templates folder. Running the MyBlog
application in examples/CH_11/examples/02 and navigating to a post that con-
tains content and related comments renders a page that displays both. Figure 11.7 is a
screenshot of the rendered display.

Figure 11.7 The content display will also show any related comments and subcomments.

11.8 Creating comments
The previous display shows user interface elements to create comments on the con-
tent and comment on an existing comment. Both behaviors depend on creating a
post that references a parent post.

11.8.1 Creation template

We’re changing the order of the presentation to talk about the comment creation
template first because it exists in the post.html template already. Rather than navi-
gate away from the currently displayed post to create a comment, MyBlog uses Boot-
strap’s ability to create modal windows.

First post content

First post content,
first comment

First post content,
first comment,
first subcomment

First post content,
second comment

23511.8 Creating comments
 Modal windows are subordinate to the main window but disable interaction and
display as a child window over the main window. This is useful in UI design to help
keep the user’s frame of reference connected to the task at hand.

 Bootstrap creates the HTML elements of a modal window in the HTML of the win-
dow the modal will appear over. The containing HTML DOM element of the modal
window is set to invisible when the parent window is rendered and appears because of
an action by the user.

 At the end of the post.html template, a call to a content macro is made:

{{ content_macros.form_create_comment_modal() }}

The file examples/CH_11/examples/02/app/content/template/content-

macros.jinja contains the macro code. The macro inserts the HTML elements nec-
essary to build the modal window into the rendered post display.

 Each of the comment buttons in the display activates the modal window, making it
visible (figure 11.8). The modal window presents a form with an HTML text area to

The create comment modal window is
displayed over the current content display.

Figure 11.8 Creating a comment happens in a modal window over the current content display.

236 CHAPTER 11 I’ve got something to say
enter the comment. It also has a hidden field populated with the post_uid value of
the parent post to which this comment relates. The hidden field was populated by the
Comment button when it was clicked. The Create button submits the form to be pro-
cessed, and the Cancel button closes the modal window. Because the modal exists in
the post.html template, the parent form elements were available when the template
was rendered.

11.8.2 Creation form

The form to handle creating a comment exists in the app/content/forms.py mod-
ule. This simple form creates the hidden field for the parent_post_uid of the par-
ent post, the text area field for the comment, and the create submit button.

11.8.3 Creation handler

When a user has entered comment text and clicked the Create button, the form is
submitted to the handler as an HTTP POST request to the URL "/blog_post_
create_comment":

@ content_bp.post("/blog_post_create_comment")
def blog_post_create_comment():
form = PostCommentForm()
if form.validate_on_submit():
 with db_session_manager() as db_session:
 post = Post(
 user_uid=current_user.user_uid,
 parent_uid=form.parent_post_uid.data,
 content=form.comment.data.strip(),
)
 db_session.add(post)
 db_session.commit()
 root_post = post.parent
 while root_post.parent is not None:
 root_post = root_post.parent
 flash("Comment created")
 return redirect(url_for("content_bp.blog_post",

post_uid=root_post.post_uid))
else:
 flash("No comment to create")
return redirect(url_for("intro_bp.home"))

The handler is responsible for validating the submitted form and creating the new
comment post in the database. The created post has a parent_uid value that comes
from making this a child of that post.

 After the comment post is committed to the database, the while loop exists to iter-
ate up the hierarchy and get the root post. The root post is used to redirect the user to
the root post of the hierarchy where the newly created comment will be rendered and
displayed.

23711.9 Notifying users
11.9 Notifying users
Another feature we’d like to add to the MyBlog application is notifying users when
someone they’re following creates a new content post. A user who comments on a
post is automatically added as a follower of the post.

 Implementing followers creates a many-to-many relationship between users and
posts. A user can follow many posts, and many users can follow a single post. As was
shown in chapter 10, a many-to-many relationship uses an association table to connect
two other tables. The examples/CH_11/examples/03/app/models.py module is
modified to add the association table:

user_post = db.Table(
"user_post",
db.Column("user_uid", db.String, db.ForeignKey("user.user_uid")),
db.Column("post_uid", db.String, db.ForeignKey("post.post_uid"))
)

Instead of a class to model the user_post table, it’s created as an instance of the
Table class of SQLAlchemy. The user_post table has just two fields—foreign keys to
the primary keys of each of the associated tables. The user model class is also modified
to add the many-to-many relationship connection between it and the Post model:

posts_followed = db.relationship(
 "Post",
 secondary=user_post,
 backref=db.backref(
 "users_following",
 lazy="dynamic"
)
)

The user.posts_followed attribute doesn’t exist in the database but is maintained
by SQLAlchemy. An instance of the User class returned from a query will have the
posts_followed attribute as a list of Post instances.

 The secondary parameter connects a User instance with a Post instance
through the user_post association table. The backref parameter creates a users_
following attribute in the Post class. This also isn’t in the database but is main-
tained by SQLAlchemy. For a Post instance, the attribute users_following is a list
of User instances following the Post.

 To populate the user_post association table and create the many-to-many rela-
tionship, the blog_post_create_comment() handler function is modified with the
addition of the following lines of code:

root_post = post.parent
while root_post.parent is not None:
root_post = root_post.parent
follow_root_post(db_session, root_post)
notify_root_post_followers(db_session, root_post)

238 CHAPTER 11 I’ve got something to say
The while loop to traverse upward in the post hierarchy was created in the previous
example to get the root_post value. The two new functions—follow_root_

post() and notify_root_post_followers()—use the root_post value:

def follow_root_post(db_session, root_post):
user = (
 db_session.query(User)
 .filter(User.user_uid == current_user.user_uid)
 .one_or_none()
)
if user is not None and root_post not in

➥user.posts_followed:
 user.posts_followed.append(root_post)

The follow_root_post() function gets an instance of the current user. When
the user is found, the root_post is added to the posts_followed list if the user
isn’t already following that post:

def notify_root_post_followers(db_session, root_post):
post_url = url_for(
 "content_bp.blog_post",
 post_uid=root_post.post_uid,
 _external=True
)
for user_following in root_post.users_following:
 to = user_following.email
 subject = "A post you’re following has
 ➥been updated"
 contents = (
 f"""Hi {user_following.first_name},
 A blog post you’re following has had a
 ➥comment update added to it. You can view
 that post here: {post_url}
 Thank you!
 """
)
 send_mail(to=to, subject=subject,
 ➥contents=contents)

The notify_root_post_followers() function first sets the post_url variable to
the URL of the newly created content post. It then iterates over the list of the users who
follow the post’s author. Inside the loop, it uses the emailer module created for authen-
tication to send a short email containing the post_url to the user_following user.

11.10 Handling site errors
So far, the MyBlog application has tried to handle errors and exceptions gracefully
and redirect the user to another place in the application. Where exceptions have
been raised and caught in try/except blocks, the exception handling has consisted of
either logging the error or raising another, more specific one.

 Flask handles exceptions that bubble up by rendering very generic HTML to dis-
play the exception message. This is great because the exception was handled and
reported and didn’t crash the MyBlog application, but it’s not a good user experience.

23911.10 Handling site errors
A better solution is for the exception to be reported within the context of the MyBlog
application, with the navigation bar present and a quick way to get back to another
part of the experience.

 Flask provides mechanisms to register error-handling functions using the
register_error_handler method that is part of the app instance. Looking at
examples/CH_11/examples/04/app/__init__.py in the create_app() func-
tion, you’ll see these lines of code:

app.register_error_handler(404, error_page)
app.register_error_handler(500, error_page)

These lines of code use the Flask app instance that the create_app() function gen-
erated to call the register_error_handler() method. The first parameter to the
call is the HTTP error code for which an error handler function is registered, and the
second is the name of the handler function.

 The method is called twice, once for a 404 (Page Not Found) error and again for a
500 (Internal Server Error) error. Any number of other standard HTTP errors can be
handled in this way. Both calls register the same error_page() function as the han-
dler. The error_page() function is at the bottom of the __init__.py module:

def error_page(e):
 return render_template("error.html", e=e), e.code

This function is passed the exception that caused the error as a parameter. Inside the
function, a new template, "error.html", is rendered and passed the exception value.
The exception code value is used as the HTTP return value for the page. The
examples/CH_11/examples/04/app/templates/error.html template file does
a few simple things:

{% extends "base.html" %}

{% block title %}{{ e.name }}{% endblock %}

{% block content %}
<div class="error_page mx-auto mt-3" style="width: 50%;">
 <div class="container">
 <div class="card text-center">
 <h5 class="card-header">
 {{ e.code }} : {{ e.name }}
 </h5>
 <div class="card-body">
 <div class="card-text">
 {{ e.description }}
 </div>
 </div>
 </div>
 </div>
</div>
{% endblock %}

In terms of user experience, the most important thing is the template inheriting from
"base.html". This gives the page the style of the rest of the MyBlog application and

240 CHAPTER 11 I’ve got something to say
its navigation bar. In addition, this gives users who find themselves on an error page a
way to get back to another page in the application. The rest of the template styles the
output of the exception code, name, and description as a Bootstrap card.

CROSS-SITE SCRIPTING

Another area of concern that the code in examples/CH_11/examples/04 attempts
to handle are cross-site scripting (XSS) injection attacks. This kind of attack occurs
when JavaScript is injected into a site and later runs on another user’s browser.

 Because creating content and comments lets the user enter plain text, that text
could contain embedded JavaScript code in this form:

"… some benign content

➥<script>malicious_function()</script>

➥more plain content…"

The text is then saved in the database. If another user views the post containing this
JavaScript, their browser has no way of knowing the script could be dangerous and
runs it.

 To prevent this behavior, a new module called Bleach is used to sanitize the user
input text. The Bleach module is part of the requirements.txt file for this chap-
ter and is imported at the top of the content/forms.py module. The user-entered
text is filtered by the content/forms.py module before being saved:

def remove_html_and_script_tags(

➥input_string: str) -> str:
 return bleach.clean(input_string)

➥if input_string is not None else input_string

This function uses the bleach.clean method to sanitize the input_string param-
eter if it is not None, otherwise it just returns input_string. The remove_
html_and_script_tags() function is added to all of the form classes that contain
StringField or PageDownField elements. As an example, the PostForm content
field has been updated to this:

content = PageDownField(
 "Content",
 validators=[DataRequired()],
 filters=(remove_html_and_script_tags,),
 render_kw={"placeholder": " ", "tabindex": 2}
)

The filters parameter is passed a tuple, the first element being the remove_
html_and_script_tags function. When the form is submitted to the server, the fil-
ter function will be executed before the form provides the data during calls like this in
blog_post_create():

content=form.content.data.strip()

In this way, any embedded HTML code/scripts are disabled before the content is
saved to the database.

241Summary
11.11 Closing thoughts
This was a lot of ground to cover, and even if it uses some patterns you’ve seen before
in other parts of the application, it represents a significant milestone in developing
your skill set. By developing the MyBlog application, you’re now able to zoom out to
see the big picture necessary to build a larger application. You’re also able to zoom in
to see the detailed view needed to implement the parts of a big application.

 The MyBlog application is now complete, as it has met the book’s stated goals. As a
teaching tool, I hope it has served you well. The application offers many opportunities
for addition, modification, and improvement. I also think it’s a good reference if you
tackle developing another web application. To adapt an old cliché, “That’s left as an
exercise for the developer.”

Summary
 Python classes using SQLAlchemy generate the MyBlog API to create posts and

the user’s relation to those posts. Doing so models the database tables, making
them available to your Python application.

 By capitalizing on the Flask-PageDown module, we’ve added useful function-
ality to the MyBlog application without having to code that functionality our-
selves. This is a key feature of an evolved developer, being able to recognize the
talents of others and incorporate it into our own work.

 Self-referential hierarchal data maintained in a single database table is a power-
ful concept and feature of which to take advantage. By using common table
expressions (CTEs) and recursion, it’s possible to achieve this with SQL-
Alchemy and Python.

 Bootstrap has useful capabilities to create modal dialog boxes. These are useful
to produce a form to gather data and keep them in the context of their current
workflow. Using a modal to create comments on user content posts takes advan-
tage of this feature.

Are we there yet?
Are we there yet?
 So help me, I will turn this book around!
 Joking aside, reading this book provides a great leap forward for a Python devel-

oper. If you’ve worked through the examples and built the MyBlog code, you’ve
created an interesting application and managed the complexity of doing so. You’ve
pulled together tools and techniques from many software engineering domains to
create a cohesive whole that delivers useful functionality.

 What’s more, you’ve followed good practices to manage the complexity of the
application. Having managed that complexity means the MyBlog application is main-
tainable over time and can be expanded on without making the structure brittle.

This chapter covers
 Testing

 Debugging

 Tools

 Networking

 Collaboration
242

24312.1 Testing
 To answer the question “Are we there yet?” elicits the age-old response, “Well, yes
and no.” Let’s talk about why the answer isn’t definitive and how that’s an energizing
and exciting invitation to an adventurous journey to expand your skills as a developer
even further.

12.1 Testing
An important aspect of creating software applications is testing them. I purposefully
haven’t included any discussion, or examples, of testing the code presented in this
book. I did this for a couple of reasons.

 First, writing test code often creates as much, if not more, code than the applica-
tion being tested. This isn’t a reason to avoid it, but in the context of this book, it
would have added another technical domain of work over the examples. It would have
also detracted from the educational intent of those examples.

 Second, software testing is a big subject and warrants its own book. Including a
subset of what software testing means would have done the subject matter, and you, a
disservice. A great book about testing in the Python world is Brian Okken’s Python Test-
ing with pytest (http://mng.bz/Zql9).

 Testing software benefits from automation in every way. Using testing tools and
frameworks (like pytest) to automate tests provides consistency and early warnings if
conditions change during development.

 Also, in most cases, it’s better if people other than the developer of the application
perform the testing. It’s far too easy as a developer to unconsciously follow the “happy
path” that produces the desired results. This is very different from what users of your
software do. They will push your software to its limits with edge cases and unintended
boundary conditions. That being said, there are many types of testing to consider that
apply to the applications and code you develop.

12.1.1 Unit testing

Unit testing is one of the cases where the developer of an application creates the tests.
A unit test isolates a function or component and validates that it handles the inputs
passed to the function and produces the expected outputs. Besides testing that the
expected inputs produce the expected outputs, the tests should exercise edge cases.
The tests should determine if the function reasonably handles unexpected inputs and
if the output is an expected error condition or exception.

 Unit tests should only examine the function or component being tested and not
dependencies on external resources outside the test framework’s ability to control or
predict. Accessing a database, a network, or some unpredictable timing operation can
cause a test to fail because the resource failed. In those cases, the external resource
must be “mocked” to make the test repeatable. Mocking an external resource replaces

http://mng.bz/Zql9

244 CHAPTER 12 Are we there yet?
the actual resource object with something that simulates its behavior but in a repeat-
able, dependable way.

12.1.2 Functional testing

Functional testing builds on unit testing by examining the functionality of systems and
subsystems, which are built on functions and components. The purpose of the tests is
to compare the actual functionality of a system against the requirements of that sys-
tem. This draws on the specification to guide the development of a system and its
intended purpose.

12.1.3 End-to-end testing

End-to-end (e2e) testing determines if the workflows provided by an application
behave as expected from beginning to end. Is a user able to start, continue, and com-
plete the process that the application is intended to provide?

12.1.4 Integration testing

Integration testing is similar to end-to-end testing with the addition that a system is
run on the target hardware and in the environment where the application will be
deployed. This isn’t always possible, but steps should be taken to get as close to the tar-
get hardware and environment as reasonably practical.

12.1.5 Load testing

Load testing determines if an application running on its target hardware in its
expected environment can handle the workload for which it’s designed. Unit tests
often use small subsets of controlled data to exercise functionality. Load testing data
sets can be much larger to simulate actual use case data-handling expectations. For
multi-user systems, like web applications, load testing also examines whether a system
can handle the number of simultaneous users expected to access the system and
remain responsive enough to meet their needs.

12.1.6 Performance testing

Performance testing determines if a system meets the performance requirements.
The requirements can be expressed in terms of speed of processing, handling a speci-
fied number of multiple requests, the throughput of data, and other metrics. This
kind of testing is dependent on a clear understanding of what the performance met-
rics are, how they will be measured, and that users and developers understand and
agree on both.

12.1.7 Regression testing

Regression testing helps developers discover if code modifications in a system break
functionality, adversely affect resource consumption, or change performance charac-
teristics. Regression testing can automate examining and reporting on the results of
end-to-end tests.

24512.2 Debugging
12.1.8 Accessibility testing

Accessibility testing is very dependent on who the audience is for the software you
develop. If you are creating library code for users who are other developers, accessibil-
ity problems might focus on the developer experience.

 However, if you are creating mobile or web applications that will be generally avail-
able to anyone, you need to think about how users with disabilities will access your
application. The relevant disabilities can include vision and hearing impairment and
other physical and cognitive concerns.

12.1.9 Acceptance testing

Acceptance testing is focused on whether software, or an application, meets the require-
ments that initiated creating it. The requirements can be defined by yourself, your col-
leagues, your company, or your customers. These are the stakeholders who determine
if an application meets the agreed-upon requirements and can be considered complete.

 It’s enticing to assume that a fully complete and clear specification document is a
necessity for acceptance testing. In my experience, for the average software project,
no such document exists. Requirements are often vague and open-ended, which can
lead to wildly different assumptions and understandings between users and develop-
ers about an application’s functionality. Misunderstandings like this can cause the
relationship between the end user and the developer to become adversarial, especially
in situations where the developer accepts the requirements, and the user isn’t
involved in acceptance testing until the end of the project.

 A different approach can often create a better path toward acceptance, with agree-
ment all around. Because requirements are often insufficiently defined, it’s better if
the developer involves the user in an iterative process. As features are developed, they
are demonstrated to the user, and course corrections are addressed as the product
and its requirements are better understood by both parties.

 Iterative development and acceptance-testing practice can turn an adversarial rela-
tionship into a more collaborative one. The final acceptance testing is more likely to
be successful because the project outcome has been participated in by both the user
and developer.

12.2 Debugging
If you attempted any of the examples, modified them, or wrote programs of your own,
you’ve run into bugs in the code. There are no perfect programs, and bugs are part of
a developer’s life. There are runtime errors such as trying to divide by zero, and there
are logical errors where the results of a program are not what you want or expect.
Growing as a developer includes being able to find and fix problems—our own or
others’—in program code.

12.2.1 Reproducing bugs

Before diving in and reading thousands, perhaps tens of thousands, of lines of code,
it’s essential to determine if the bug can be reproduced. Is there a series of steps you

246 CHAPTER 12 Are we there yet?
can take to cause the bug to occur reliably? Is there a set of data you can feed to the
program to cause the bug to appear?

 It’s far more difficult to find and fix a bug if you can’t exercise the bug consistently.
This can mean taking the time to write harness code, or unit tests, to isolate the prob-
lem and inform you when the problem is resolved.

12.2.2 Breakpoints

Using a debugger to set breakpoints as part of your toolset is very effective for finding
bugs in applications. A breakpoint is a location that you set in your application that
triggers the application to stop running and transfer control to the debugger.

 When a debugger intercepts a breakpoint, you can examine the state of the run-
ning application at that time. You can view variables, evaluate statements, and single-
step to the next line of code to see the results.

 Many debuggers can set conditional breakpoints, which are only triggered if cer-
tain conditions are true. For example, you can reproduce a bug, but only after thou-
sands of iterations through a large data set. A conditional breakpoint can be set to
trigger when a counter is equal to the number of iterations needed to trigger the bug.
Examining code at a breakpoint is a valuable tool to ascertain what’s occurring in an
application at that snapshot of time.

12.2.3 Logging

Being able to observe the state of an application at a breakpoint is valuable, but some-
times you’ll need to see the history of events as well. Logging events over the runtime
of an application gives you a view of the path an application has taken through the code.

 Adding a timestamp to those logging events also gives you a chronology of those
events, when they occurred, and how much time has transpired between them. You
can add print statements for this, but Python provides a better tool—the logging sys-
tem. The Python logger module adds a great deal of visibility to the inner workings of
your applications.

 If you add logger.debug(…) statements to your code, you can log as much infor-
mation as you need to help debug an application. Then, when the application is
deployed, the logger.level can be set to INFO and the debug statements are
ignored. This means the logger.debug(…) statements can be left in the code,
unlike print statements, which should usually be removed to declutter the applica-
tion’s log output. If another bug manifests, the logger.level can be set to DEBUG
and your logger.debug(…) statements become active again to assist with finding
and resolving a new bug.

12.2.4 Bad results

Is the bug an application crash or are bad results being produced? In this case, it’s
very useful to use a debugger (standalone or built into an IDE) to understand the
state of the application at the point the bug occurs or is about to occur.

24712.3 Tools
 Looking for the computation that generated the bad results can mean moving
back and forth in the call stack (order of operations and function calls) to observe the
values that contribute to the results. A pad and pencil, or a text editor, are useful here
to keep track of these intermediary values. If the computations look right, perhaps the
data set being fed to the application contains bad data.

12.2.5 Process of elimination

Often, the search for a bug is a process of elimination, constantly narrowing down the
domain where the bug lives until you find it. This process can be in the code or the
data. Using debugger breakpoints or logging statements can help narrow the domain
in the code.

 If you suspect the input data set is the source of the problem, use a divide-and-
conquer approach to narrow in on the problem data. Cut the data in half and feed
one half at a time to the application. Continue to repeat this process with the half that
exhibited the problem until you find the value(s) that are triggering the bad results.
Even with huge datasets, this process takes relatively few iterations.

12.2.6 Rubber-ducking the problem

Perhaps the simplest, and sometimes most effective, path to a solution is to talk about
the problem with a friend or colleague. The act of putting your thoughts into words
that clarify the problem for your audience often presents the solution or a path to the
solution.

12.3 Tools
Like any complex, interesting task, there are tools available to help you accomplish
your goals. Learning about useful tools and becoming proficient with them makes you
a much more powerful developer.

12.3.1 Source control

The example code accompanying this book resides in a Git repository hosted on
GitHub. Git is one tool used to create repositories for the source-code files necessary
to create applications. Repository tools help manage the history of a project’s develop-
ment and the documentation of that history.

 If you’re working as the sole developer of an application, it’s still well worth learn-
ing how to use a source-code management tool. Being able to review and restore the
history of your work can be invaluable while working on a complex application over
time. If you’re part of a team working on an application, source control is a necessity
to help manage and prevent collisions while more than one person works on the same
section of code.

 Lastly, using a hosted solution like GitHub offers a stable and convenient backup
solution, over and above any backup system you maintain locally. You do backup your
hard disk, don’t you?

248 CHAPTER 12 Are we there yet?
12.3.2 Optimization

When I was first writing software, I had daydreams about creating games with moving
images that reacted to the player’s input. At that time, computers were 8-bit systems
with some 16-bit functionality, very limited memory, and CPUs that ran in the single-
digit megahertz range.

 With those goals, under those conditions, optimizing code for performance was a
necessity. It was also a lot of fun figuring out how to pull a little more speed out of a
system by using code only.

 The lure of optimization is a siren song drawing in many a developer. Software
runs exceptionally fast on modern computers, and thinking about how you can make
an application run faster by different implementations, data structures, caching, and a
host of other techniques is tempting.

 The first element to consider when optimizing an application is the performance
target. A general statement such as “make it faster” is not a clear requirement. Any
reasonably complex application provides many features; you must determine which of
those features is important to make faster, and by how much.

 The second element to consider is measuring the performance of an application.
It’s important to measure the current baseline performance to establish if changes in
the application improve the performance at all.

 While thinking about optimizing an application, it’s useful to keep the 90/10 rule
in mind. As a rule of thumb, many applications spend 90 percent of their time in 10
percent of the code. If you embark on an optimization journey, this rule implies that
you spend 90 percent of your development time working on the 10 percent of code
where the application spends the bulk of its time.

 Keep in mind a relevant concept I discussed in Chapter 1—optimizing your time as
a developer. Reaching a “fast enough” state of an application that delivers the
intended features right away is often more desirable than a marginally faster applica-
tion that you deliver later. Remember the adage, “Shipping is a feature.”

 Lastly, an application’s performance can be enormously improved by running it on
a faster computer, on a network with more bandwidth, using a database with more
capacity, and other dependencies outside of the application. These kinds of changes
are often much less expensive in terms of developer time.

 Becoming proficient with a tool also means knowing when not to use it.

12.3.3 Containers

A container provides an environment configured by the developer for an application
to run in. In this way, an application in a container can run on any computing
resource that can host the container. No matter what host the container runs on, the
application in the container always interacts with the same environment.

 The application in the container runs on what is commonly called a “guest” operat-
ing system. The guest operating system is a subset of a full operating system and is much
smaller than a traditional virtual machine (VM). The application in the container

24912.3 Tools
makes calls to the guest OS for services, and the guest OS, in turn, makes calls to the
“host” OS for services of the computing resource on which it resides.

 Applications can also be developed directly in containers running on your devel-
opment computer, which acts as the host for the container. This has the advantage of
developing the application in the same environment (the container) with which it will
be deployed.

12.3.4 Databases

The MyBlog application uses an SQLite database to persist the content and relation-
ships created by users of the application. RDBMSs are often much larger and more
complex than what we’ve created here, with many more tables containing millions of
rows of data.

 In the past, I have worked with existing databases far more than I’ve created them.
As a developer, it’s useful to learn more about database structures, tools, and tech-
niques to expand the features of a database and maintain its performance. The data-
bases presented in this book have done this by eliminating redundant data and taking
advantage of the relationships possible in an RDBMS. It’s also important to learn
when redundant data is acceptable to improve query performance for an application.

 Some database systems are document based rather than table based. These are
often called NoSQL databases, as they sometimes don’t provide SQL access to the
data. Instead, the data is accessed by making function calls against the database API
and passing parameters.

 The NoSQL document-oriented databases often store information in JavaScript
Object Notation (JSON) structures. Instead of table structures with strict data typing,
the stored JSON data can be dynamically changed at will.

 Both database approaches have advantages and disadvantages, and it falls to the
developer and application stakeholders to determine which would serve the needs of
an application best. A NoSQL database can be faster to retrieve data for certain kinds
of applications. An RDBMS database can offer more structure and consistency to the
data.

 An additional wrinkle when considering either type of database is that both are
acquiring more and more features of the other. Modern RDBMS databases offer the
ability to store JSON data as a column within tables and functions to interact with the
data contained by JSON documents. By the same token, NoSQL databases are offer-
ing SQL interfaces that allow more traditional queries to access the managed data.

12.3.5 Languages

This is a Python book, and Python is a powerful general-purpose language that is the
right choice for many technical domains that can benefit from computer applications.
That doesn’t mean Python is the only, or even the best, choice in every situation.

 One of the goals of this book is to give you a well-stocked toolbelt when construct-
ing a Python application. Sometimes, however, the problem at hand would benefit

250 CHAPTER 12 Are we there yet?
from another toolbelt entirely. Learning and knowing other programming languages
will benefit a well-grounded developer in many ways throughout their career.

 For example, JavaScript is essentially the standard language when working in a web
browser. Its superset, TypeScript, is also gaining traction, not only in the browser but
as a server-side language.

 Rust, C#, Go, Java, Kotlin, and many others all have wide application and accep-
tance as tools used in various programming domains. Those domains overlap, and the
decision about which to use can be based on what language is most appealing and
comfortable to a software developer.

 Throughout my career, I’ve worked in Fortran, Pascal, C/C++, Visual Basic,
PHP, JavaScript, TypeScript, and, of course, Python. Some of them I’d gladly work in
again, some I’d rather not, but they all served me and my career well at the time.
Staying current is an interesting and challenging part of being a developer. Spending
time learning new technology tools should benefit you and your life, so spend it
wisely.

12.4 OS environments
Many of the applications running in the world are hosted on Windows, Linux, or Mac
computers. As a developer, the computer you work on will also most likely be a Win-
dows, Linux, or Mac system. You can spend a career working in a single environment
to develop and deploy your applications, but doing so might shrink the domain of the
kinds of applications you can write.

 Programming in Python allows you to create applications that are unaware of what
operating system the application runs on most of the time. It’s that last part, “most of
the time,” that is worth keeping in mind.

 Becoming familiar with developing for other operating systems is valuable because
it puts another tool in your hands to reach a wider audience. With the growing adop-
tion of cloud computing and the use of containers for applications, developing on
one platform and targeting another for deployment is common.

12.5 Cloud computing
Cloud computing systems allow computing resources to be located elsewhere and
accessed securely through the internet. Besides moving the responsibility of running
and maintaining computing hardware for a service, it gives developers the ability to
size the computing resources and capabilities appropriately for user requirements.
The size and capabilities of the resource can also be changed dynamically up or down,
depending on the workload on the system.

 Applications rarely execute in isolation and have dependencies on networks, file
storage, load balancers, databases, and more. These dependencies are also available
from cloud service providers and can be scaled to meet the needs of an entire inte-
grated system. Applications can run independently in a cloud provider’s computing
instance, but it’s becoming more common for an application to exist in a container.

25112.8 Closing thoughts
12.6 Networking
The world is a very connected place and becoming more so all the time. Connections
and what they bring to conversations and the choices we make have changed the fab-
ric of society in extraordinary ways. A software application working in isolation would
be a rare exception, as almost all significant applications run and depend on environ-
ments connected to a network and often beyond to the internet.

 While working on the MyBlog application—getting the server running and access-
ing it with a local browser—it can be easy to forget that it’s a networked application.
There’s no reason the application couldn’t run on a server located in one part of the
world and be accessed by a web browser somewhere else in the world. Writing applica-
tions for computer systems connected to networks means your application can pro-
vide information and resources to other systems, as well as consume information and
resources provided by other systems on the network.

 All modern languages provide tools and libraries to interface with networks and
communicate across them. The MyBlog application is an example that uses the HTTP
protocol to connect the server to the browser. Learning how to use and develop net-
worked applications can increase the power and feature sets of your applications by
orders of magnitude.

12.7 Collaboration
Building relationships is an important aspect of being a well-grounded developer. Cer-
tainly, creating and maintaining relationships in a database is vital, but building and
maintaining relationships with the people in your life is far more important.

 Even as the sole developer on a personal project, you’ll be reaching out to ask ques-
tions on sites, blogs, and user groups, and of colleagues and friends, seeking help with
challenges you’ll face. Remember the idiom “Good developers are lazy”? It doesn’t
mean well-grounded developers are slow to complete their projects; it means we take
advantage of already-existing solutions to problems to implement elements faster.

 Being part of a community is a two-way street. We should listen more than talk,
strive to offer more help than we ask for, and work hard to build and maintain rela-
tionships so others in the community seek us out.

 Being part of a diverse community of developers means encountering various per-
spectives. In my experience, this exposure presents approaches, ideas, and solutions
that I wouldn’t have established on my own.

 Collaboration is a multiplier. Connecting and sharing with people multiplies your
talents and abilities as a developer manyfold.

12.8 Closing thoughts
You’ve come a long way on your journey as a well-grounded Python developer—from
the early chapters of observing through a telescope to the huge field of view of many
possible destinations and the many small details of a fully realized and focused appli-
cation. The characteristics of being a software developer are unique from any other

252 CHAPTER 12 Are we there yet?
engineering endeavor. The domains in which we work span the macroscopic view of
the unfathomably huge to the microscopic details of the unimaginably small.

 I’ve been developing software for nearly forty years and accept that there are so
many things I still want to learn. The desire to learn and the fortunate ability to do so
have been key for me.

 My goal for this book was to help guide you along a path that leads to being a well-
grounded Python developer. Yet, the answer to the question “Are we there yet?” is hap-
pily “no.” You are at a way station that branches into many paths, and you can follow
any of them. I hope that you find the journeys ahead as enlightening and enjoyable
and just plain as much fun as possible.

Summary
 Application testing is an important aspect of developing useful and stable appli-

cations. Many facets exist to testing an application—some can be automated,
and some can’t. It’s also a big topic worthy of its own book.

 Being able to reproduce, find, and fix bugs is an essential skill of the well-
grounded developer. Good tools and the right mindset are the starting places
to begin debugging an application.

 Code optimization is a double-edged sword. It can offer great improvements to
an application’s performance, and it can be a huge time sink. Having reasons to
optimize an application, specific goals to achieve, and metrics to measure
whether you’ve achieved those goals are essential first steps.

 We’ve only touched on what databases can do for you as a developer and for
your applications as a resource. Learning more about their capabilities and con-
straints is time well spent.

appendix
Your development

environment

As a Python developer, you need a suitable environment on your computer. The
developer environment must cover a lot of ground. In general, it should include a
set of tools with which you’re familiar and some ideas about how you will structure
project directories. Depending on your computer, it might also include environ-
ment variables you’ve set up to help make things more automated and therefore
useful.

 You’ll find that what you’re about to create and configure is a good starting
point on the way to building your own useful and powerful development environ-
ment. For those of you who already have a development environment you’re com-
fortable with, feel free to skim over this. However, be aware of any differences
presented here; you’ll need to account for them in your environment.

A.1 Installing Python
First, you’re going to need Python installed on your computer. This might seem
obvious, but it’s a little more involved than it might first appear. Not all operating
systems come with Python installed, and sometimes when Python is installed it’s
older than currently available versions. Even if the version of Python installed on
your computer is recent, it’s still a good idea to install Python for your use while
developing.

 If Python is installed along with the operating system, there’s a good chance it’s
being used for system-level functions by the operating system. If that’s the case,
there’s also a good chance your operating system is dependent on the version of
Python it came with and any modules that were installed for that version to use.
253

254 APPENDIX Your development environment
 The programming examples in this book will ask you to install additional third-
party libraries using the Python package management tool pip. It’s a bad idea to
install these additional libraries in your system Python because a newly installed ver-
sion of a library might change the functionality of an existing system requirement and
break it. You also don’t want updates to the operating system to change the Python
functionality on which you depend for your development efforts.

 With that in mind, you’ll install version 3.10.3 of Python, which will be distinct
from any operating system–installed version. The newly installed version of Python is
entirely under your control and independent of the operating system. This means you
can add, remove, and update library modules as you see fit, and only your program
code will be affected.

 You’ll need to install the stable 3.10.3 version of Python so you’ll have the same
Python version that the sample programs in this book were coded and tested against
to minimize runtime problems.

A.1.1 Windows

Python may or may not be installed by default on your Windows operating system,
which isn’t known to use Python. So once Python is installed, it’s available solely for
your development work.

 Recent Windows versions have Python available in the Microsoft Store, making
installation very easy. The Microsoft Store version of Python at the time of this writing
is being evaluated, and not all features are guaranteed to be stable. This doesn’t mean
you shouldn’t use it, just that you should be aware of these issues.

 If you prefer, use the stable 3.10.3 version of Python available for your version of
Windows by navigating to http://www.python.org in your browser and following the
download links. For most users, the right version to use is the executable installer suit-
able for your CPU and OS version.

 During the installation process, the installer allows you to check a box that adds
Python to your PATH environment variable. Check this box and save yourself some
trouble later. If you miss this and Python doesn’t run from within PowerShell at the
command prompt, you can always rerun the installer and add Python to the path.

A.1.2 Mac

On Macs, an older version of Python is installed that you should avoid using for your
development. Instead, install the 3.10.3 version of Python that’s completely separate
from the system. To perform this installation, use the pyenv utility program. This pro-
gram lets you install as many versions of Python as you’d like and switch between
them. For the examples in this book, install Python version 3.10.3.

 You’ll need to have the Homebrew program installed on your Mac to follow the next
steps. Homebrew is a package manager for Mac OS that you can use to install many
useful command-line tools, like pyenv. The Homebrew program and its installation
instructions are available here: https://brew.sh. After installing the brew program,
open your terminal program and follow these command-line steps to install pyenv:

http://www.python.org/
https://brew.sh

255A.2 Python virtual environment
1 To install the pyenv utility program on your Mac, run the command: brew
install pyenv.

2 To add useful setup information to your terminal configuration file to make
using pyenv easier, run the following command to add pyenv support to your
configuration file (.zshrc for me, but could be .bash_profile for you):

echo -e 'if command -v pyenv 1>/dev/null 2>&1; then\n

➥eval "$(pyenv init -)"\nfi' >> ~/.zshrc

3 To rerun your shell initialization scripts and activate the previous commands,
run the command exec "$SHELL".

4 To install Python v3.10.3 on your computer in your home folder, run the com-
mand pyenv install 3.10.3.

5 To verify the installation of Python and the version, run the command pyenv
versions.

NOTE If you have a recent Mac with an M1 or higher CPU, the previous steps
may be somewhat different for you.

A.1.3 Linux

There are so many versions of Linux in general use, it would be awkward and outside
the scope of this book to present pyenv installation instructions for all those versions.
However, if you’re using Linux as your development platform, you’re probably already
familiar with how to find what you need to install applications like pyenv on the Linux
system you’re using.

 Even on Linux systems that have Python 3 installed, it’s better to install and explic-
itly control the version of Python you’re going to use for development. Once pyenv is
installed, use it to install Python version 3.10.3 with the following command lines:

pyenv install 3.10.3
pyenv versions

The first command installed the version of Python you’re going to use for the exam-
ples in this book in a directory controlled by pyenv. That version is kept separate from
any other Python versions installed with pyenv and the system version of Python. The
second will list the versions installed, which should show the version you just installed.

A.2 Python virtual environment
Now that you have Python 3.10.3 installed on your computer completely separate
from any system-installed Python, you might think you’re ready to go. Even with a ver-
sion of Python installed using the pyenv utility, you’ll want to use another level of
abstraction from that version in your projects.

 Python 3.10.3 provides the built-in ability to create virtual environments. Python
virtual environments are not the virtual machines you might be familiar with, like
VMWare, Parallels, or VirtualBox. These tools allow an entire OS to run as a guest
inside a different OS. A Python virtual environment only creates a Python installation

256 APPENDIX Your development environment
inside a project directory. This Python installation can have modules added to it with
the pip command, and these modules are only installed and available for the project-
specific Python.

 You can have many projects that use the same version of Python installed by pyenv,
but each Python virtual environment is separate from the others. This means you can
have different versions of modules installed by the pip command without conflict in
each virtual environment.

NOTE The value of Python virtual environments can’t be overstated. Being
able to create, maintain, and work with stable and complete Python and
library installations goes a long way toward eliminating future problems. You
want to be a Python developer, not a system administrator after all.

The pip command-line tool that comes with Python is a fantastic utility. It is the pack-
age installer for Python that allows you to add additional modules from the Python
Package Index (https://pypi.org/). The modules available from the Python Package
Index provide functionality above and beyond what comes with the Python standard
library. The code examples in this book use quite a few modules from that resource.

A.2.1 Windows

In a Windows system, you install Python directly rather than using pyenv, as Windows
doesn’t use Python as part of its operation. You’ll still want to use a project-specific
Python virtual environment to keep your system-level Python installation separated
from any modules you’re going to install with pip.

 To run the Python virtual environment activation and deactivation scripts, you’ll
need to change the execution policy of your computer. To do this, you’ll need to run
the PowerShell program as an administrator. Follow these steps:

1 Click on the Windows Start icon.
2 Scroll down to the PowerShell menu selection and drop down the submenu.
3 Right-click on the PowerShell submenu item.
4 Select Run as Administrator from that context menu.
5 Once you’re in PowerShell running as administrator, run this command:

Set ExecutionPolicy Unrestricted

The system will prompt you with a question, which you answer with y and then hit the
return key. At this point, exit PowerShell so you’re no longer in administrator mode.
You only need to do this once as it’s a system-wide setting.

 Open the PowerShell program again—not as an administrator—to get to a
command-line prompt and follow these steps to create a new Python virtual environ-
ment specific to the project directory:

1 Run the command mkdir <project directory name>.
2 Run the command cd <project directory name>.

https://pypi.org/

257A.2 Python virtual environment
3 Run the command python -m venv .venv.
4 Run the command .venv/Scripts/activate.
5 Run the command python -m pip install –-upgrade pip [optional].

Line 1 creates a new project directory with whatever name you want to give it. Line 2
changes your current working context into the newly created directory. Line 3 uses
Python to create the Python virtual environment. This might take a few moments to
complete.

 Line 4 activates the virtual environment, prepending the command prompt with
(.venv), indicating the environment is active. Once the environment is active, any
additional libraries installed will be installed in the .venv directory and won’t affect
the Python version you previously installed. To deactivate the virtual environment, just
enter deactivate at the command prompt.

 Line 5 is optional and upgrades the version of the pip command that exists within
the Python virtual environment you’ve just set up. If pip detects you are running an
older version, it will print out a message informing you that you’re running an older ver-
sion and that you should update that version. You can ignore the information and skip
line 5 if you like. I included it because I ran the command to stop seeing that message.

A.2.2 Mac and Linux

Setting up a Python virtual environment on the Mac is straightforward if you’ve
installed the Python 3.10.3 version using pyenv, as described previously. Open your
terminal program and follow these steps to create a new Python virtual environment
specific to the project directory:

1 Run the command mkdir <project directory name>.
2 Run the command cd <project directory name>.
3 Run the command pyenv local 3.10.3.
4 Run the command python -m venv .venv.
5 Run the command source .venv/bin/activate.
6 Run the command pip install –-upgrade pip [optional].

Line 1 creates a new project directory with whatever name you want to give it. Line 2
changes your current working context into the newly created directory. Line 3 creates
the local file .python-version, which pyenv uses to control what version of Python
to run when you’re working in this directory—in this case, version 3.10.3.

 Line 4 uses the local Python version to create the Python virtual environment in
the .venv directory. Line 5 activates the virtual environment, prepending the com-
mand prompt with (.venv), indicating the environment is active. Once the environ-
ment is active, any additional libraries will be installed in the .venv directory and
won’t affect the pyenv Python version previously installed. To deactivate the virtual
environment, enter deactivate at the command prompt.

 Line 6 is optional and upgrades the version of the pip command that exists within
the Python virtual environment you’ve set up previously. If pip detects you are

258 APPENDIX Your development environment
running an older version, it will print out a message that you’re running an older ver-
sion, and that you should update that version. You can ignore the information and
skip line 6 if you like. I included it because I wanted to stop seeing that message.

A.3 Setting up Visual Studio Code
It’s possible to write Python code using just a text editor. Within the context of writing
Python program code, a text editor is precisely that—an editor that adds no more or
less than what you type on the keyboard. The Notepad application on Windows and
the Textedit application on Mac are both examples of simple, capable text editors.

 Microsoft Word, while a powerful editor, is not a good choice to create plain text,
as its default is to save what you type without a great deal of additional information
about formatting, font choices, and so on, that has nothing to do with program code.
Any word processor application makes writing plain Python code more complicated
than using a text editor.

 Python programs are just plain text files having the .py file extension. Many text
editors understand that a file with the .py extension is a Python file. These editors will
provide whitespace indenting automatically when you hit the enter key at the end of a
line of code that includes the block indicator character (`:`). They will also syntax
highlight your code, which means changing the color of the text to highlight Python
keywords, strings, variables, and other visual cues about the program you’re creating.

 Microsoft provides a free code editor called Visual Studio Code (VSCode for
short), and it is a great choice to use as a Python program editor. Besides being an
excellent editor, it has many extensions available to make it an even better system to
work with when developing Python applications. You’ll install one of those extensions
for Python that turns Visual Studio Code into a complete integrated development
environment (IDE). This extension provides Python syntax highlighting and other
language-specific features. The most powerful feature is the ability to run and debug
your code interactively from within the editor.

A.3.1 Installing Visual Studio Code

At the time of this book’s publication, you can download Visual Studio Code at
https://code.visualstudio.com. This link takes you to the Microsoft web page, which
has links to download VSCode for Windows, Mac, and Linux. Visual Studio Code is a
separate application from Visual Studio, which is Microsoft’s much larger commercial
application development system.

 For Windows and Mac installation, the process is relatively simple: click on the link
to download the installation program, then double-click on the downloaded file to
install the application. For Linux installations, click on the link and, depending on
your Linux version, choose the package manager that will run the installation process.
After installation, add the VSCode application icon to the Windows taskbar, Mac dock,
or the Linux desktop/application menu to make it more readily accessible.

https://code.visualstudio.com/

259A.3 Setting up Visual Studio Code
A.3.2 Installing the Python extension

Once VSCode is installed, you’ll need to add the Python extension from Microsoft.
This extension provides syntax highlighting, IntelliSense, debugging capabilities, and
many other features. Follow these steps:

1 Open the VSCode application.
2 Within VSCode, open the Extensions.

– Click on the Extensions icon.
– Select View -> Extensions.

3 In the Search Extensions in the Marketplace text box, enter “python” and click
the return key.

4 Make sure to use the Python extension from Microsoft.
5 On that first item, click the install button.

Create a new Python code file with the .py file extension and enter some Python
code. Does VSCode syntax highlight the code? Are you able to save and run the code
from within VSCode?

 At this point, VSCode is configured to work with Python files. Take some time and
read the documentation about the Python extension in the right-hand windowpane of
the application.

A.3.3 Other useful extensions

Besides the Python extension provided by Microsoft, there are other useful extensions
available:

 Python Docstring Generator—Automatically generates Python docstring com-
ments when you enter triple quotes (""") immediately after a function or
method definition and click the enter key. The docstring is a template contain-
ing all the parameters and return values in an easy-to-navigate manner, making
documenting your code much simpler.

 Code Runner—Makes it easier to run Python code files from a right-click context
menu within VSCode.

 DotENV—Adds syntax highlighting for .env files, which are local environment
files useful to initialize environment variables outside of code files.

 Better Jinja—Adds syntax highlighting to the Jinja templating language, which is
the default for Flask web applications.

A.3.4 Starting from the command line

VSCode is a powerful GUI application that can be started by double-clicking on its
icon or by clicking on its name/icon from a visual menu. This is a common use case
for visual tools on the desktop but isn’t the most helpful way to start the application
for your purposes. Because all of this book’s example code will use a Python virtual
environment, it’s useful to create a virtual environment before starting VSCode. It’s

260 APPENDIX Your development environment
also helpful to be able to start VSCode from the command line within the project
directory containing the virtual environment. Starting VSCode this way will help it
“see” and use the virtual environment in the directory. To configure VSCode to start
from the command line in the directory you’re in, do the following:

 Windows:
– After installing VSCode, the system is already configured to open VSCode in

the current directory from the PowerShell command prompt by entering
this command:

code .

 Mac:
– Start VSCode.
– Navigate to the Command Palette (View -> Command Palette).
– Enter shell command to find the Shell Command: Install “code” command

in PATH command.
– Click on the above.

 Linux:
– After installing VSCode, the system is already configured to open VSCode in

the current directory from a terminal by entering the command:

code .

A.3.5 Starting a project

With VSCode installed and configured to start from the command line, you can go
through the steps of creating a project directory and starting VSCode to use it. Start-
ing VSCode this way is used for all the example projects in this book and, in general, is
an excellent way to create projects of your own. Follow these steps to create a new
project:

1 Open a terminal or PowerShell and get to a command prompt.
2 Change your directory to where you’d like to create your project.
3 In that directory, create a new directory mkdir <project name>.
4 Change your directory to the newly created <project name> directory.
5 For Mac and Linux, enter this command: pyenv local 3.10.3.
6 Enter this command: python -m venv .venv.

At this point, the project is set up to use the Python version 3.10.3 virtual environment
installed in the .venv directory. The name .venv is commonly used as the directory
name for a locally installed virtual environment. You can activate your local Python
environment and see if it’s working by following these steps:

1 Activate your Python virtual environment as follows:
Mac and Linux, enter this command: source .venv/bin/activate

Windows, enter this command: .venv\Scripts\activate

261A.4 Some advice
2 Your command prompt will be prepended with (.venv).
3 Enter this command: python –-version.
4 The system will respond with Python 3.10.3.

Now that your Python virtual environment is created in your project directory, VSCode
will discover it when you start from the command line. Entering code . from the com-
mand line will open VSCode in the project directory. Because you created a Python vir-
tual environment in the directory, VSCode will prompt you if you want to use that
environment, to which you should respond yes. Follow these steps to continue config-
uring VSCode to work with any Python code you create within your project:

1 Open the Command Palette (View -> Command Palette).
2 Type Select Interpreter in the text box and click Python: Select Inter-

preter.
3 In the popup menu that appears, select the virtual environment you created as

follows:
Windows: .venv\Scripts\python.exe

Mac and Linux: .venv/bin/python

4 Create a new file (File -> New File).
5 In the file editor window that’s generated, enter the following code:

print("hello world")

6 Save the file as a Python file (File -> Save -> test.py).
VSCode will show a prompt informing you, “Linter pylint is not installed.”

Click the Install button. VSCode will use the pip command from your virtual
environment to install PyLinter. A linter is a pre-runtime tool that checks your
code for syntax errors, bugs, unusual constructs, and more and is a useful tool
to have installed for every project.

7 Right-click on the test.py editor window and select Run Python File in
Terminal.

NOTE It might feel like a great deal of work to get VSCode up and running
and that you’ve simply given yourself another tool to learn. That’s all true, but
I encourage you to use and learn the tool. An IDE is a great effort multiplier
and gives you, as a developer, real advantages.

After the last step, you should see "hello world" printed in a terminal window
opened within VSCode. Congratulations, you’ve just run your first Python program
within your powerful project environment!

A.4 Some advice
One more concept to emphasize is the most useful tool available to you—yourself.
Invest time to optimize how you work as a developer. Having a suitable development
environment that you’re familiar with is powerful, but setting up a productive

262 APPENDIX Your development environment
personal working environment is time well spent. If you’re going to develop software
for yourself, professionally, or both, you’re going to spend a considerable amount of
time doing so. A reasonable desk, a comfortable chair, a good monitor, and a suitable
keyboard are all part of that environment.

 This last piece of advice is based on years of working as a developer, both singly
and in teams. (If it doesn’t apply to you, please feel free to disregard it.) Spend time
making the interface between you and your code as fast and seamless as possible.
Learn to touch type and make use of keyboard shortcuts instead of using the mouse.
My mom made me take typing classes in junior high back in the days of the IBM Selec-
tric typewriter. I can tell you I was not too happy about it and didn’t appreciate it for
many years. Now I consider it one of the many gifts she gave me that I am thankful for
every day.

 There are many things you’ll write as a developer besides code: documents, wiki
pages, web pages, presentations, notes, emails—the list is long and only getting lon-
ger. Sending your thoughts out through your hands and onto the screen quickly and
accurately moves the mechanics out of the way and lets your thoughts and ideas flow.

index
Symbols

__builtins__ object 21
__init__.py module 239
__init__() initializer 63
__init__() method 50, 65–66, 68
_external=True parameter 177
.banner CSS class 122
.banner section 119
.ico format 145
.svg format 145
{{super()}} expression 107
@app.route decorator 128
@login_required decorator 184
@media query 120
@property decorator 57
@x.setter decorator 57

A

about pages 131–132
about.html template 132
about() function 132
acceptance testing 245
accessibility testing 245
active class 135
api_instance variable 175
APIs (application programming interfaces)

32–47
as contract between pieces of code 34–35
documentation 45–46

functions 39–45
idempotence 44
length of 44
naming 39
parameters 40–42
return values 42
side effects of 44–45
with single responsibility 43

input 35–37
output 37–39

actions on system 38
exceptions 38–39
return values 37–38

overview of 33–34
app instance 97
app instance variable 153
app object 97
application styling 113–147

application configuration 136–137
configuration files 137
private information 137

Bootstrap 115–122
favicons 144–145
Flask app instance 123–127

application factory 125–127
resolving app instance problem

124–125
restructuring 125

Flask Debug Toolbar 137–141
logging information 141–144
263

INDEX264
application styling (continued)
namespaces 127–133

about pages 131–132
Flask Blueprints 128–131
refactored app instance 133

navigation 133–136
creating navigation information 133–134
displaying navigation information 134–135

normalizing styles 114–115
responsive design 115

auth Blueprint
login process 153–155
registering new users 167–168

auth module 153, 171, 178
auth.py module 154, 158, 161, 175
authentication 148–171

flash() function 163–166
HTTP protocol

Flask sessions 149–150
sessions 149–150
stateless nature of 149–150

login process 150–163
auth Blueprint 153–155
Flask-WTF extension 158–160
login form 160–161, 164–166
LoginManager 152–153
User models 155–156

registering new users 166–171
auth Blueprint 167–168
logging out 170–171
new user form 168–170

toasts 164–166
authorization 172–190

confirmation emails 174–179
confirm user handler 178
confirmation email 176–177
emailer module 175
user confirm token 178–179
user confirmation token 177

login/logout navigation 172–173
protecting forms 189
resetting passwords 179–181
security 183–184
user authorization roles 184–189

authorizing routes 187–189
creating 185–187
creating administrator users 188–189

user profiles 182–183

authorization_required() decorator
function 187

B

backref parameter 208, 237
bcrypt functionality 152
Bleach module 240
Blueprints 128–131

app package changes 131
auth Blueprint 153–155, 167–168
overview of 128

breakpoints 246
builtins namespace 21–22

C

Cascading Style Sheet (CSS) files 92
CDN (content delivery network) 117
child templates 105–107
Circle class 63, 65–68
classes

composition 68–71
decorators 58–60
defining 49–51
drawing application 51–71
inheritance 60–66
polymorphism 67–68
properties 55–58

common table expressions (CTE) 231
configure_logging() function 143
confirmation emails 174–179

confirm user handler 178
emailer module 175
sending 176–177
user confirm token 178–179
user confirmation token 177

create_app() function 126, 128, 131, 133,
142–143, 152–153, 186, 239

CSRF (cross-site request forgery) 189

D

databases 191–213
accessing data 192–197
creating and using 209–213

adding data 209–211
using data 211–213

modeling 206–209, 215–217

INDEX 265
SQLAlchemy 205–206
SQLite as 204–205

Debug Toolbar 137–141
debugging 245–247

bad results 246–247
breakpoints 246
logging 246
process of elimination 247
reproducing bugs 245–246
rubber-ducking 247

decorators 58–60
development environment 253–262

Python installation 253–254
Linux 255
Mac 254–255
Windows 254

Python virtual environment 255–256
Linux 257–258
Mac 257–258
Windows 256–258

Visual Studio Code 258–261
installing 258
installing Python extension 259
starting from command line 259–260
starting projects 260–261
useful extensions 259

drawing application 51–71
composition 68–71
decorators 58–60
inheritance 60–66
multiple shapes 63–66
polymorphism 67–68
properties 55–58

DRY (don’t repeat yourself) principle 60, 104

E

ERD (entity relationship diagram) 215
error handling 238–240
error_page() function 239
Exception class 75, 83
exceptions 38–39, 73–85

creating custom 82–84
handling 77–81

allowing exceptions to flow upward 78
informing users 78
silencing exceptions 78–81
where they occur 77–78

overview of 75–77
raising 81–82

F

favicons 144–145
Flask 95–110

Jinja2 features 101–110
child templates 105–107
interactivity 109–110
parent templates 104–105
presentation 107–109
template inheritance 103–104

reasons for using 95–96
sessions 149–150
web servers 96–98

connecting routes 97
event loop 97
serving content 98–100
undefined routes 98

flask run command 96–97, 110, 131
FLASK_APP environment variable 110
FLASK_ENV environment variable 131
form.csrf_token 189
forms

creation form 221, 236
login form 160–161, 164–166
new user form 168–170
protecting 189
update form 226

functions 39–45
idempotence 44
length of 44
naming 39
output of 37–39

actions on system 38
exceptions 38–39
return values 37–38

parameters 40–42
input 35–37
keyword parameter dictionary 41–42
keyword parameters 40–41
list of 41
positional parameters 40

return values 42
side effects of 44–45
with single responsibility 43

INDEX266
G

get_uuid() function 156, 215
Gunicorn 111

H

HAS-A relationship 71
HTTP protocol

Flask sessions 149–150
sessions 149–150
stateless nature of 149–150

HTTP requests 93–95

I

IDE (integrated development environment) 8,
258

intro_bp Blueprint 130–131
IS-A relationship 67

J

Jinja2 101–110
child templates 105–107
interactivity 109–110
macros 162–163
parent templates 104–105
presentation 107–109
template inheritance 103–104

K

KeyboardInterrupt exception 79

L

logging
debugging 246
Flask Debug Toolbar 141–144

logging module 81
LoginForm 155, 159, 161–162, 167
LoginManager 152–153, 158

M

many-to-many relationships 201
MyBlog application 89–112

advantages of web applications 90
application configuration 136–137

configuration files 137
private information 137

authentication 148–171
flash() function 163–166
HTTP protocol 149–150
login process 150–166
registering new users 166–171

authorization 172–190
confirmation emails 174–179
login/logout navigation 172–173
protecting forms 189
resetting passwords 179–181
security 183–184
user authorization roles 184–189
user profiles 182–183

Bootstrap 116–122
base.css 119–120
base.html 118–119
index.html 120–122

challenges of web applications 90–91
databases 191–213

accessing data 192–197
creating and using 209–213
database systems 198–204
modeling 206–209
persisting data 192
SQLAlchemy 205–206
SQLite as 204–205

debugging 245–247
favicons 144–145
Flask 95–110

app instance 123–127
Debug Toolbar 137–141
FlaskDynaConf 138–141
Jinja2 features 101–110
reasons for using 95–96
serving content 98–100
web servers 96–98

logging information 141–144
namespaces 127–133

about pages 131–132
Flask Blueprints 128–131
refactored app instance 133

navigation 133–136
creating navigation information

133–134
displaying navigation information

134–135

INDEX 267
posts 214–241
Content Blueprint 218
content/comment hierarchy 228–234
creating 220–222
creating comments 234–236
displaying and creating 218–220
displaying and editing 222–227
error handling 238–240
modeling database 215–217
notifications 237–238
Post object 215–217

request-response model 92–93
servers 91–93
testing 243–245
web servers 93–95

HTTP requests 93–95
running 110–111

N

names 13–31
experiment involving 17–20
naming things 15–17
of functions 39
overview of 14–15

navigation information 133–136
creating 133–134
displaying 134–135

netloc attribute 155
Not Found error 98

O

object-oriented programming see OOP
on_draw() method 54, 68
on_update() method 54, 68
OOP (object-oriented programming) 4,

48–72
class definition 49–51
drawing application 51–71

composition 68–71
decorators 58–60
inheritance 60–66
polymorphism 67–68
properties 55–58

OS environments 250

P

parameters 40–42
input 35–37
keyword parameter dictionary 41–42
keyword parameters 40–41
list of 41
positional parameters 40

performance testing 244
Post class

blog posts 215–217
content/comment hierarchy 230–231

Post instance 221, 237
POST method 158, 181
Post model 237
Post objects 215–217
POST request 151, 155, 158, 161, 166, 169, 236
Post SQLAlchemy model class 221
Post table 215, 229, 231
PostForm class 221
PostForm form handling class 221
posts 214–241

Content Blueprint 218
content/comment hierarchy 228–234

display handler 231–233
display template 233–234
modifying Post class 230–231

creating 220–222
creation form 221
creation handler 220–221
creation template 221–222

creating comments 234–236
creation form 236
creation handler 236
creation template 234–236

displaying and creating 218–220
display handler 218–219
display template 219–220

displaying and editing 222–227
display handler 223
display template 223–225
update form 226
update handler 226
update template 227

error handling 238–240
modeling database 215–217
notifications 237–238
Post object 215–217

INDEX268
pyenv utility program 254–255
Python developers 1–4

commitment to learning 2–3
goals 3–4

building applications 3–4
thinking like a developer 3

Python developers (continued)
language community 7
programmers vs. 1–10

R

register_error_handler() method 239
regression testing 244
relationships 199–201

many-to-many 201
one-to-many 200
SQL 203–204
UUID primary keys 199–200

remove_html_and_script_tags() function 240
routes

authorizing 187–189
protecting 184

rubber-ducking 247

S

safe filter 224
scope 25
secondary parameter 237
SECRET_KEY 138, 150, 177
secrets module 138
self parameter 50–51
servers 91–93

request-response model 92–93
web servers 93–98

connecting routes 97
event loop 97
HTTP requests 93–95
running 110–111
serving content 98–100
undefined routes 98

SQL (Structured Query Language) 202–204
getting data 202–203
using relationships 203–204

SQLAlchemy
benefits of 205–206
overview of 205–206
Post class 215–217

SQLite 204–205
super() method 65
super().__init__() call 66
superclass inheritence 60

T

t variable 15
testing 243–245

acceptance testing 245
accessibility testing 245
end-to-end testing 244
functional testing 244
integration testing 244
load testing 244
performance testing 244
regression testing 244
unit testing 243–244

try statement 77

U

UML (Unified Modeling Language) 50
URLSafeTimedSerializer() function 177
UserMixin class 157
UUID (universally unique identifier) primary

keys 156–158, 199–200

V

VSCode (Visual Studio Code) 258–261
installing 258
installing Python extension 259
starting from command line 259–260
starting projects 260–261
useful extensions 259

W

web applications 89–112
advantages of 90
challenges of 90–91
Flask 95–110

Jinja2 features 101–110
reasons for using 95–96
serving content 98–100
web servers 96–98

request-response model 92–93
servers 91–93

INDEX 269
web servers 93–95
HTTP requests 93–95
running 110–111

web servers 93–98
connecting routes 97
event loop 97
HTTP requests 93–95
running 110–111

commercial hosting 111

Gunicorn 111
serving content 98–100

dynamic content 98–99
template language 99–100

undefined routes 98

X

XSS (cross-site scripting) 240

For ordering information, go to www.manning.com

RELATED MANNING TITLES

Fast Python
by Tiago Rodrigues Antão

ISBN 9781617297939
304 pages, $59.99

April 2023

Publishing Python Packages
by Dane Hillard

Foreword by David Beazley

ISBN 9781617299919
248 pages, $59.99

December 2022

Python Concurrency with asyncio
by Matthew Fowler

ISBN 9781617298660
376 pages, $59.99

February 2022

Full Stack Python Security
by Dennis Byrne

ISBN 9781617298820
304 pages, $59.99

July 2021

3

By using a web application, you can present database information to users in a more accessible way. The web
application in the book creates a user table and the posts related to it. The posts have a parent/child relationship
to themselves, creating a hierarchy within one table. The web application can query those database tables and
present the content posts, and the comments related to it, in a visual hierarchy.

First post content

First post content,
first comment

First post content,
first comment,
first subcomment

First post content,
second comment

ISBN-13: 978-1-61729-744-1

THE WELL-GROUNDED Python Developer

PYTHON / SOFTWARE DEVELOPMENT

M A N N I N G

“A fun journey, and a great
resource. With this book as your
guide, you’ll be on the summit

before you know it.”—From the Foreword by
Michael Kennedy, founder of

Talk Python Training

“Well-structured with excellent
code examples. I highly

recommend getting this book
 to build your Python skills.”—Stanley Anozie

Hospitality Digital

“An excellent tutorial in the
foundations of Python develop-
ment for both the novice and

experienced developer.”—Philip Best, Amazon

“Th is is the best Python
 reference I’ve read so far.”—Julien Pohie, Th oughtWorks

See first page

Doug Farrell ● Foreword by Michael Kennedy

A
s a new programmer, you’re happy just to see your code
run. A professional developer, on the other hand, needs
to create software that runs reliably. It must be fast,

maintainable, scalable, secure, well designed and document-
ed, easy for others to update, and quick to ship. Th is book
teaches you the skills you need to go from Python program-
mer to Python developer.

The Well-Grounded Python Developer shows you why Python,
the world’s most popular programming language, is a fantas-
tic tool for professional development. It guides you through
the most important skills like how to name variables, func-
tions, and classes, how to identify and write a good API,
and how to use objects. You’ll also learn how to deal with
inevitable failures, how to make software that connects to the
internet, core security practices, and many other professional-
grade techniques.

What’s Inside
● Create a web application
● Connect to a database
● Design programs to handle big tasks

For experienced beginners who want to learn professional-
level skills.

Doug Farrell has been a professional developer since 1983, and
has worked with Python for over 20 years.

For print book owners, all ebook formats are free:
https://www.manning.com/freebook

	The Well-Grounded Python Developer
	contents
	foreword
	preface
	acknowledgments
	about this book
	Who should read this book
	How this book is organized: A road map
	About the code
	liveBook discussion forum

	about the author
	about the cover illustration
	brief contents
	1 Becoming a Pythonista
	1.1 Commitment to learning
	1.2 Reaching goals
	1.2.1 Thinking like a developer
	1.2.2 Building applications

	1.3 Using Python
	1.3.1 Programming paradigms
	1.3.2 Creating maintainable code
	1.3.3 Performance
	1.3.4 The language community
	1.3.5 Developer tooling

	1.4 Selecting which Python version to use
	1.5 Closing thoughts
	Summary

	Part 1 Groundwork
	2 That’s a good name
	2.1 Names
	2.1.1 Naming things
	2.1.2 Naming experiment

	2.2 Namespaces
	2.3 Python namespaces
	2.3.1 Built-ins level
	2.3.2 Module level
	2.3.3 Function level
	2.3.4 Namespace scope
	2.3.5 Namespace experiment

	Summary

	3 The API: Let’s talk
	3.1 Starting a conversation
	3.1.1 A contract between pieces of code
	3.1.2 What’s passed as input
	3.1.3 What’s expected as output

	3.2 Function API
	3.2.1 Naming
	3.2.2 Parameters
	3.2.3 Return value
	3.2.4 Single responsibility
	3.2.5 Function length
	3.2.6 Idempotence
	3.2.7 Side effects

	3.3 Documentation
	3.4 Closing thoughts
	Summary

	4 The object of conversation
	4.1 Object-oriented programming (OOP)
	4.1.1 Class definition
	4.1.2 Drawing with class
	4.1.3 Inheritance
	4.1.4 Polymorphism
	4.1.5 Composition

	4.2 Closing thoughts
	Summary

	5 Exceptional events
	5.1 Exceptions
	5.2 Handling exceptions
	5.2.1 Handling an exception if the code can do something about it
	5.2.2 Allowing exceptions to flow upward in your programs
	5.2.3 Informing the user
	5.2.4 Never silence an exception

	5.3 Raising an exception
	5.4 Creating your own exceptions
	5.5 Closing thoughts
	Summary

	Part 2 Fieldwork
	6 Sharing with the internet
	6.1 Sharing your work
	6.1.1 Web application advantages
	6.1.2 Web application challenges

	6.2 Servers
	6.2.1 Request-response model

	6.3 Web servers
	6.4 Flask
	6.4.1 Why Flask?
	6.4.2 Your first web server
	6.4.3 Serving content
	6.4.4 More Jinja2 features

	6.5 Running the web server
	6.5.1 Gunicorn
	6.5.2 Commercial hosting

	6.6 Closing thoughts
	Summary

	7 Doing it with style
	7.1 Application styling
	7.1.1 Creating appealing styles
	7.1.2 Styling consistency
	7.1.3 Normalizing styles
	7.1.4 Responsive design

	7.2 Integrating Bootstrap
	7.2.1 The previous example, now with Bootstrap

	7.3 Helping MyBlog grow
	7.3.1 The Flask app instance

	7.4 Namespaces
	7.4.1 Flask Blueprints
	7.4.2 Add Blueprints to MyBlog
	7.4.3 Create the about page
	7.4.4 Refactored app instance

	7.5 Navigation
	7.5.1 Creating navigation information
	7.5.2 Displaying navigation information
	7.5.3 MyBlog’s current look

	7.6 Application configuration
	7.6.1 Configuration files
	7.6.2 Private information

	7.7 Flask Debug Toolbar
	7.7.1 FlaskDynaConf

	7.8 Logging information
	7.8.1 Configuration

	7.9 Adding a favicon
	7.10 Closing thoughts
	Summary

	8 Do I know you? Authentication
	8.1 The HTTP protocol is stateless
	8.1.1 Sessions

	8.2 Remembering someone
	8.2.1 Authentication
	8.2.2 Logging in

	8.3 News flash
	8.3.1 Improving the login form

	8.4 Making new friends
	8.4.1 Auth Blueprint
	8.4.2 New user form
	8.4.3 Oh yeah: logging out

	8.5 What’s next
	Summary

	9 What can you do? Authorization
	9.1 Login/logout navigation
	9.2 Confirming new friends
	9.2.1 Sending email

	9.3 Resetting passwords
	9.4 User profiles
	9.5 Security
	9.5.1 Protecting routes

	9.6 User authorization roles
	9.6.1 Creating the roles
	9.6.2 Authorizing routes

	9.7 Protecting forms
	9.8 Closing thoughts
	Summary

	10 Persistence is good: Databases
	10.1 The other half
	10.1.1 Maintaining information over time

	10.2 Accessing data
	10.3 Database systems
	10.3.1 Tables
	10.3.2 Relationships
	10.3.3 Transaction database
	10.3.4 Structured query language: SQL

	10.4 SQLite as the database
	10.5 SQLAlchemy
	10.5.1 Benefits

	10.6 Modeling the database
	10.6.1 Defining the classes

	10.7 Creating and using the database
	10.7.1 Adding data
	10.7.2 Using the data

	10.8 Closing thoughts
	Summary

	11 I’ve got something to say
	11.1 MyBlog posts
	11.1.1 Modeling the database

	11.2 Change of direction
	11.3 Content Blueprint
	11.4 Displaying and creating posts
	11.4.1 Display handler
	11.4.2 Display template

	11.5 Creating posts
	11.5.1 Creation handler
	11.5.2 Creation form
	11.5.3 Creation template

	11.6 Displaying and editing a post
	11.6.1 Display handler
	11.6.2 Display template
	11.6.3 Update handler
	11.6.4 Update form
	11.6.5 Update template

	11.7 Content to comment hierarchy
	11.7.1 Modifying the post class
	11.7.2 Display handler
	11.7.3 Display template

	11.8 Creating comments
	11.8.1 Creation template
	11.8.2 Creation form
	11.8.3 Creation handler

	11.9 Notifying users
	11.10 Handling site errors
	11.11 Closing thoughts
	Summary

	12 Are we there yet?
	12.1 Testing
	12.1.1 Unit testing
	12.1.2 Functional testing
	12.1.3 End-to-end testing
	12.1.4 Integration testing
	12.1.5 Load testing
	12.1.6 Performance testing
	12.1.7 Regression testing
	12.1.8 Accessibility testing
	12.1.9 Acceptance testing

	12.2 Debugging
	12.2.1 Reproducing bugs
	12.2.2 Breakpoints
	12.2.3 Logging
	12.2.4 Bad results
	12.2.5 Process of elimination
	12.2.6 Rubber-ducking the problem

	12.3 Tools
	12.3.1 Source control
	12.3.2 Optimization
	12.3.3 Containers
	12.3.4 Databases
	12.3.5 Languages

	12.4 OS environments
	12.5 Cloud computing
	12.6 Networking
	12.7 Collaboration
	12.8 Closing thoughts
	Summary

	appendix Your development environment
	A.1 Installing Python
	A.1.1 Windows
	A.1.2 Mac
	A.1.3 Linux

	A.2 Python virtual environment
	A.2.1 Windows
	A.2.2 Mac and Linux

	A.3 Setting up Visual Studio Code
	A.3.1 Installing Visual Studio Code
	A.3.2 Installing the Python extension
	A.3.3 Other useful extensions
	A.3.4 Starting from the command line
	A.3.5 Starting a project

	A.4 Some advice

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	The Well-Grounded Python Developer - back

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

