
M A N N I N G

Naomi Ceder
Foreword by Nicholas Tollervey

PRAISE FOR THE SECOND EDITION

The quickest way to learn the basics of Python.
 —Massimo Perga, Microsoft

This is my favorite Python book ... a competent way into serious Python programming.
—Edmon Begoli, Oak Ridge National Laboratory

Great book...covers the new incarnation of Python.
—William Kahn-Greene, Participatory Culture Foundation

Like Python itself, the book’s emphasis is on readability and rapid development.
—David McWhirter, Cranberryink

It’s definitely worth reading, and I would recommend that you buy it if you are new to
Python.

 —Jerome Lanig, BayPiggies User Group

Python coders will love this nifty book.
 —Sumit Pal, Leapfrogrx

If you’ve ever wanted to learn Python or have a convenient desktop reference, this is the
book for you. The author gives you a brief run-through of the language syntax and func-
tional capabilities, then re-explores all aspects of the language as well as libraries and
modules that extend Python into the space of practical applications.

 —Jim Kohli, Dzone

This is the best book to learn Python for professional programmers or people who already
know how to program in a different language … This won't be your only Python book,
but it definitely has to be your first!
 —Amazon reader

 The Quick Python Book

ii

The Quick Python Book
THIRD EDITION

NAOMI CEDER
FOREWORD BY NICHOLAS TOLLERVEY

M A N N I N G
SHELTER ISLAND

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact

Special Sales Department
Manning Publications Co.
20 Baldwin Road
PO Box 761
Shelter Island, NY 11964
Email: orders@manning.com

©2018 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.
Recognizing also our responsibility to conserve the resources of our planet, Manning books
are printed on paper that is at least 15 percent recycled and processed without the use of
elemental chlorine.

Manning Publications Co. Development editor: Christina Taylor
20 Baldwin Road Technical development editor: Scott Steinman
PO Box 761 Project Manager: Janet Vail
Shelter Island, NY 11964 Copyeditor Kathy Simpson

Proofreader: Elizabeth Martin
Technical proofreader: André Brito

Typesetter and cover design: Marija Tudor

ISBN 9781617294037
Printed in the United States of America
1 2 3 4 5 6 7 8 9 10 – EBM – 23 22 21 20 19 18

http://www.manning.com

brief contents
PART 1 STARTING OUT .. 1

1 ■ About Python 3
2 ■ Getting started 11
3 ■ The Quick Python overview 20

PART 2 THE ESSENTIALS .. 35

4 ■ The absolute basics 37
5 ■ Lists, tuples, and sets 49
6 ■ Strings 68
7 ■ Dictionaries 89
8 ■ Control flow 99
9 ■ Functions 113

10 ■ Modules and scoping rules 127
11 ■ Python programs 142
12 ■ Using the filesystem 158
13 ■ Reading and writing files 175
14 ■ Exceptions 190

PART 3 ADVANCED LANGUAGE FEATURES 205

15 ■ Classes and object-oriented programming 207
16 ■ Regular expressions 231
v

BRIEF CONTENTSvi
17 ■ Data types as objects 241
18 ■ Packages 255
19 ■ Using Python libraries 264

PART 4 WORKING WITH DATA .. 273

20 ■ Basic file wrangling 275
21 ■ Processing data files 283
22 ■ Data over the network 300
23 ■ Saving data 319
24 ■ Exploring data 337

Case study 354

contents
foreword xvii
preface xviii
acknowledgments xix
about this book xxi
about the cover illustration xxvi

PART 1 STARTING OUT .. 1

1 About Python 3
1.1 Why should I use Python? 3
1.2 What Python does well 4

Python is easy to use 4 ■ Python is expressive 4 ■ Python is
readable 5 ■ Python is complete—“batteries included” 6
Python is cross-platform 6 ■ Python is free 6

1.3 What Python doesn’t do as well 7
Python isn’t the fastest language 7 ■ Python doesn’t have the
most libraries 7 ■ Python doesn’t check variable types at compile
time 8 ■ Python doesn’t have much mobile support 8
Python doesn’t use multiple processors well 8

1.4 Why learn Python 3? 9
vii

CONTENTSviii
2 Getting started 11
2.1 Installing Python 12
2.2 Basic interactive mode and IDLE 13

The basic interactive mode 13 ■ The IDLE integrated development
environment 14 ■ Choosing between basic interactive mode and
IDLE 15

2.3 Using IDLE’s Python shell window 15
2.4 Hello, world 17
2.5 Using the interactive prompt to explore Python 17

3 The Quick Python overview 20
3.1 Python synopsis 21
3.2 Built-in data types 21

Numbers 21 ■ Lists 23 ■ Tuples 24 ■ Strings 25
Dictionaries 26 ■ Sets 26 ■ File objects 27

3.3 Control flow structures 28
Boolean values and expressions 28 ■ The if-elif-else statement 28
The while loop 28 ■ The for loop 29 ■ Function definition 29
Exceptions 30 ■ Context handling using the with keyword 31

3.4 Module creation 31
3.5 Object-oriented programming 32

PART 2 THE ESSENTIALS .. 35

4 The absolute basics 37
4.1 Indentation and block structuring 37
4.2 Differentiating comments 39
4.3 Variables and assignments 39
4.4 Expressions 41
4.5 Strings 42
4.6 Numbers 43

Built-in numeric functions 44 ■ Advanced numeric
functions 44 ■ Numeric computation 44 ■ Complex
numbers 44 ■ Advanced complex-number functions 45

4.7 The None value 46
4.8 Getting input from the user 46

CONTENTS ix
4.9 Built-in operators 47
4.10 Basic Python style 47

5 Lists, tuples, and sets 49
5.1 Lists are like arrays 50
5.2 List indices 50
5.3 Modifying lists 52
5.4 Sorting lists 55

Custom sorting 56 ■ The sorted() function 57

5.5 Other common list operations 57
List membership with the in operator 57 ■ List concatenation
with the + operator 57 ■ List initialization with the * operator 58
List minimum or maximum with min and max 58 ■ List search
with index 58 ■ List matches with count 59 ■ Summary of list
operations 59

5.6 Nested lists and deep copies 60
5.7 Tuples 62

Tuple basics 62 ■ One-element tuples need a comma 63
Packing and unpacking tuples 64 ■ Converting between
lists and tuples 65

5.8 Sets 66
Set operations 66 ■ Frozensets 66

6 Strings 68
6.1 Strings as sequences of characters 68
6.2 Basic string operations 69
6.3 Special characters and escape sequences 70

Basic escape sequences 70 ■ Numeric (octal and hexadecimal)
and Unicode escape sequences 70 ■ Printing vs. evaluating
strings with special characters 71

6.4 String methods 72
The split and join string methods 72 ■ Converting strings
to numbers 74 ■ Getting rid of extra whitespace 74
String searching 76 ■ Modifying strings 77 ■ Modifying
strings with list manipulations 79 ■ Useful methods and
constants 79

6.5 Converting from objects to strings 81

CONTENTSx
6.6 Using the format method 82
The format method and positional parameters 82 ■ The format
method and named parameters 83 ■ Format specifiers 83

6.7 Formatting strings with % 84
Using formatting sequences 84 ■ Named parameters and
formatting sequences 85

6.8 String interpolation 86
6.9 Bytes 87

7 Dictionaries 89
7.1 What is a dictionary? 90
7.2 Other dictionary operations 91
7.3 Word counting 94
7.4 What can be used as a key? 95
7.5 Sparse matrices 96
7.6 Dictionaries as caches 97
7.7 Efficiency of dictionaries 98

8 Control flow 99
8.1 The while loop 99
8.2 The if-elif-else statement 100
8.3 The for loop 101

The range function 102 ■ Controlling range with starting and
stepping values 102 ■ Using break and continue in for
loops 103 ■ The for loop and tuple unpacking 103
The enumerate function 104 ■ The zip function 104

8.4 List and dictionary comprehensions 104
Generator expressions 106

8.5 Statements, blocks, and indentation 106
8.6 Boolean values and expressions 109

Most Python objects can be used as Booleans 109 ■ Comparison
and Boolean operators 110

8.7 Writing a simple program to analyze a text file 111

9 Functions 113
9.1 Basic function definitions 113

CONTENTS xi
9.2 Function parameter options 115
Positional parameters 115 ■ Passing arguments by parameter
name 116 ■ Variable numbers of arguments 117
Mixing argument-passing techniques 118

9.3 Mutable objects as arguments 118
9.4 Local, nonlocal, and global variables 119
9.5 Assigning functions to variables 121
9.6 lambda expressions 122
9.7 Generator functions 122
9.8 Decorators 124

10 Modules and scoping rules 127
10.1 What is a module? 127
10.2 A first module 128
10.3 The import statement 131
10.4 The module search path 132

Where to place your own modules 132

10.5 Private names in modules 133
10.6 Library and third-party modules 134
10.7 Python scoping rules and namespaces 135

11 Python programs 142
11.1 Creating a very basic program 143

Starting a script from a command line 143 ■ Command-line
arguments 144 ■ Redirecting the input and output of a
script 144 ■ The argparse module 145 ■ Using the fileinput
module 146

11.2 Making a script directly executable on UNIX 148
11.3 Scripts on macOS 149
11.4 Script execution options in Windows 149

Starting a script from a command window or PowerShell 149
Other Windows options 150

11.5 Programs and modules 150
11.6 Distributing Python applications 155

Wheels packages 155 ■ zipapp and pex 155 ■ py2exe and
py2app 155 ■ Creating executable programs with freeze 156

CONTENTSxii
12 Using the filesystem 158
12.1 os and os.path vs. pathlib 159
12.2 Paths and pathnames 159

Absolute and relative paths 160 ■ The current working
directory 161 ■ Accessing directories with pathlib 162
Manipulating pathnames 162 ■ Manipulating pathnames
with pathlib 164 ■ Useful constants and functions 165

12.3 Getting information about files 167
Getting information about files with scandir 168

12.4 More filesystem operations 168
More filesystem operations with pathlib 170

12.5 Processing all files in a directory subtree 171

13 Reading and writing files 175
13.1 Opening files and file objects 175
13.2 Closing files 176
13.3 Opening files in write or other modes 176
13.4 Functions to read and write text or binary data 177

Using binary mode 179

13.5 Reading and writing with pathlib 179
13.6 Screen input/output and redirection 180
13.7 Reading structured binary data with the struct module 182
13.8 Pickling objects files 184

Reasons not to pickle 187

13.9 Shelving objects 187

14 Exceptions 190
14.1 Introduction to exceptions 191

General philosophy of errors and exception handling 191
A more formal definition of exceptions 193 ■ Handling different
types of exceptions 194

14.2 Exceptions in Python 194
Types of Python exceptions 195 ■ Raising exceptions 197
Catching and handling exceptions 198 ■ Defining new
exceptions 199 ■ Debugging programs with the assert
statement 200 ■ The exception inheritance hierarchy 201
Example: a disk-writing program in Python 201

CONTENTS xiii
Example: exceptions in normal evaluation 202 ■ Where to
use exceptions 203

14.3 Context managers using the with keyword 203

PART 3 ADVANCED LANGUAGE FEATURES 205

15 Classes and object-oriented programming 207
15.1 Defining classes 208

Using a class instance as a structure or record 208

15.2 Instance variables 209
15.3 Methods 210
15.4 Class variables 211

An oddity with class variables 213

15.5 Static methods and class methods 214
Static methods 214 ■ Class methods 215

15.6 Inheritance 216
15.7 Inheritance with class and instance variables 218
15.8 Recap: Basics of Python classes 219
15.9 Private variables and private methods 221

15.10 Using @property for more flexible instance variables 222
15.11 Scoping rules and namespaces for class instances 223
15.12 Destructors and memory management 227
15.13 Multiple inheritance 228

16 Regular expressions 231
16.1 What is a regular expression? 232
16.2 Regular expressions with special characters 232
16.3 Regular expressions and raw strings 233

Raw strings to the rescue 234

16.4 Extracting matched text from strings 235
16.5 Substituting text with regular expressions 238

17 Data types as objects 241
17.1 Types are objects, too 242
17.2 Using types 242
17.3 Types and user-defined classes 242

CONTENTSxiv
17.4 Duck typing 245
17.5 What is a special method attribute? 245
17.6 Making an object behave like a list 246
17.7 The __getitem__ special method attribute 247

How it works 248 ■ Implementing full list functionality 249

17.8 Giving an object full list capability 249
17.9 Subclassing from built-in types 252

Subclassing list 252 ■ Subclassing UserList 253

17.10 When to use special method attributes 254

18 Packages 255
18.1 What is a package? 255
18.2 A first example 256
18.3 A concrete example 257

__init__.py files in packages 258 ■ Basic use of the mathproj
package 259 ■ Loading subpackages and submodules 259
import statements within packages 260

18.4 The __all__ attribute 261
18.5 Proper use of packages 262

19 Using Python libraries 264
19.1 “Batteries included”: The standard library 265

Managing various data types 265 ■ Manipulating files and
storage 266 ■ Accessing operating system services 267
Using internet protocols and formats 268 ■ Development and
debugging tools and runtime services 269

19.2 Moving beyond the standard library 269
19.3 Adding more Python libraries 270
19.4 Installing Python libraries using pip and venv 270

Installing with the –user flag 271 ■ Virtual environments 271

19.5 PyPI (aka “The Cheese Shop”) 272

PART 4 WORKING WITH DATA 273

20 Basic file wrangling 275
20.1 The problem: The never-ending flow of data files 275
20.2 Scenario: The product feed from hell 276

CONTENTS xv
20.3 More organization 278
20.4 Saving storage space: Compression and grooming 279

Compressing files 280 ■ Grooming files 281

21 Processing data files 283
21.1 Welcome to ETL 284
21.2 Reading text files 284

Text encoding: ASCII, Unicode, and others 284 ■ Unstructured
text 286 ■ Delimited flat files 288 ■ The csv module 289
Reading a csv file as a list of dictionaries 292

21.3 Excel files 292
21.4 Data cleaning 294

Cleaning 295 ■ Sorting 295 ■ Data cleaning issues and
pitfalls 296

21.5 Writing data files 297
CSV and other delimited files 297 ■ Writing Excel files 298
Packaging data files 299

22 Data over the network 300
22.1 Fetching files 300

Using Python to fetch files from an FTP server 301 ■ Fetching files
with SFTP 302 ■ Retrieving files over HTTP/HTTPS 303

22.2 Fetching data via an API 304
22.3 Structured data formats 306

JSON data 306 ■ XML data 310

22.4 Scraping web data 314

23 Saving data 319
23.1 Relational databases 320

The Python Database API 320

23.2 SQLite: Using the sqlite3 database 320
23.3 Using MySQL, PostgreSQL, and other relational

databases 322
23.4 Making database handling easier with an ORM 323

SQLAlchemy 323 ■ Using Alembic for database schema
changes 327

23.5 NoSQL databases 330

CONTENTSxvi
23.6 key:value stores with Redis 330
23.7 Documents in MongoDB 333

24 Exploring data 337
24.1 Python tools for data exploration 337

Python’s advantages for exploring data 338 ■ Python can be better
than a spreadsheet 338

24.2 Jupyter notebook 338
Starting a kernel 339 ■ Executing code in a cell 340

24.3 Python and pandas 341
Why you might want to use pandas 341 ■ Installing
pandas 341 ■ Data frames 342

24.4 Data cleaning 343
Loading and saving data with pandas 344 ■ Data cleaning with
a data frame 346

24.5 Data aggregation and manipulation 348
Merging data frames 348 ■ Selecting data 349 ■ Grouping and
aggregation 350

24.6 Plotting data 352
24.7 Why you might not want to use pandas 352

Case study 354
Downloading the data 354
Parsing the inventory data 358
Selecting a station based on latitude and longitude 359
Selecting a station and getting the station metadata 361
Fetching and parsing the actual weather data 364

Fetching the data 364 ■ Parsing the weather data 364

Saving the weather data in a database (optional) 368
Selecting and graphing data 369
Using pandas to graph your data 369

appendix A A guide to Python’s documentation 371
appendix B Exercise answers 391

index 431

foreword
I’ve known Naomi Ceder for many years, as a collaborator and a friend. She has a rep-
utation in the Python community as an inspiring teacher, an expert coder, and a for-
midable community organizer. You would do well to listen to her wise words.

 But don’t just take my word for it! Naomi, in her role as a teacher, has helped innu-
merable people learn Python. Many members of the Python community, myself
included, have benefitted from her work. Such extensive experience means she knows
what aspects of the language are important for new Pythonistas to learn and which
may require extra care and attention from the student. Such wisdom is skillfully dis-
tilled into the pages of this book.

 Python is, famously, a “batteries included” language: there are many things you could
do and areas of endeavor covered by Python’s extensive ecosystem of modules. It’s an
exciting time to get involved with this powerful, easy to learn, and flourishing language.

 That this is a “Quick” Python book reflects Naomi’s concise teaching style and
ensures you have the essentials of Python at your fingertips. Moreover, such essentials
provide a firm foundation upon which to build your Python programming. Most impor-
tant, by reading this book you will gain enough insight and context to act autonomously
and effectively: you’ll know what to do, where to look, and what to ask for when you
inevitably encounter bumps in the road as you grow as a Python developer.

 Naomi’s book is the epitome of what it is to be “Pythonic”: beautiful is better than
ugly, simple is better than complex, and readability counts.

 You have in your hands a wonderful guide for taking your first steps with Python.
Best of luck for the journey ahead, and remember to enjoy the ride!

 NICHOLAS TOLLERVEY
 PYTHON SOFTWARE FOUNDATION FELLOW
xvii

preface
I’ve been coding in Python for 16 years now, far longer than in any other language
I’ve ever used. I’ve used Python for system administration, for web applications, for
database management, and for data analysis over those years, but most important, I’ve
come to use Python just to help myself think about a problem more clearly.

 Based on my earlier experience, I would have expected that by now I would have
been lured away by some other language that was faster, cooler, sexier, whatever. I
think there are two reasons that didn’t happen. First, while other languages have
come along, none has helped me do what I needed to do quite as effectively as
Python. Even after all these years, the more I use Python and the more I understand
it, the more I feel the quality of my programming improve and mature.

 The second reason I’m still around is the Python community. It’s one of the most
welcoming, inclusive, active, and friendly communities I’ve seen, embracing scientists,
quants, web developers, systems people, and data scientists on every continent. It’s
been a joy and honor to work with members of this community, and I encourage
everyone to join in.

 Writing this book has been a bit of a journey. While we’re still on Python 3, today’s
Python 3 has evolved considerably from 3.1, and the ways people are using Python
have also evolved. Although my goal has always been to keep the best bits of the previ-
ous edition, there have been a fair number of additions, deletions, and reorganiza-
tions that I hope make this edition both useful and timely. I’ve tried to keep the style
clear and low-key without being stuffy.

 For me, the aim of this book is to share the positive experiences I’ve gotten from
coding in Python by introducing people to Python 3, the latest and, in my opinion, the
greatest version of Python to date. May your journey be as satisfying as mine has been.
xviii

acknowledgments
I want to thank David Fugate of LaunchBooks for getting me into this book in the first
place and for all of the support and advice he has provided over the years. I can’t
imagine having a better agent and friend. I also need to thank Michael Stephens of
Manning for pushing the idea of doing a third edition of this book and supporting me
in my efforts to make it as good as the first two. Also at Manning, many thanks to every
person who worked on this project, with special thanks to Marjan Bace for his support,
Christina Taylor for guidance in the development phases, Janet Vail for getting the
book (and me) through the production process, Kathy Simpson for her patience in
copy editing, and Elizabeth Martin for proofreading. Likewise, hearty thanks to the
many reviewers whose insights and feedback were of immense help, including André
Filipe de Assunção e Brito, the technical proofreader for this edition of the book,
along with Aaron Jensen, Al Norman, Brooks Isoldi, Carlos Fernández Manzano,
Christos Paisios, Eros Pedrini, Felipe Esteban Vildoso Castillo, Giuliano Latini, Ian
Stirk, Negmat Mullodzhanov, Rick Oller, Robert Trausmuth, Ruslan Vidert, Shobha
Iyer, and William E. Wheeler.

 I have to thank the authors of the first edition, Daryl Harms and Kenneth MacDon-
ald, for writing a book so sound that it has remained in print well beyond the average
lifespan of most tech books, and for giving me a chance to update the second and now
the third edition, as well as everyone who bought and gave positive reviews to the sec-
ond edition. I hope this version carries on the successful and long-lived tradition of
the first and second editions.

 Thanks also go to Nicholas Tollervey for the kindness (not to mention speed) with
which he wrote the foreword to this edition, as well as for our years of friendship and
all that he has done for the Python community. I also owe thanks to the global Python
xix

ACKNOWLEDGMENTSxx
community, an unfailing source of support, wisdom, friendship, and joy over the
years. Thank you, my friends. Thanks also to my canine associate, Aeryn, who has
faithfully kept me company and helped me keep my sense of perspective as I worked
on this edition, just as she did for the second edition.

 Most important, as always, thanks to my wife, Becky, who both encouraged me to
take on this project and supported me through the entire process. I really couldn’t
have done it without you.

about this book
The Quick Python Book, Third Edition, is intended for people who already have experi-
ence in one or more programming languages and want to learn the basics of Python 3
as quickly and directly as possible. Although some basic concepts are covered, there’s
no attempt to teach fundamental programming skills in this book, and the basic con-
cepts of flow control, OOP, file access, exception handling, and the like are assumed.
This book may also be of use to users of earlier versions of Python who want a concise
reference for Python 3.

How to use this book

Part 1 introduces Python and explains how to download and install it on your system.
It also includes a very general survey of the language, which will be most useful for
experienced programmers looking for a high-level view of Python.

 Part 2 is the heart of the book. It covers the ingredients necessary for obtaining a
working knowledge of Python as a general-purpose programming language. The
chapters are designed to allow readers who are beginning to learn Python to work
their way through sequentially, picking up knowledge of the key points of the lan-
guage. These chapters also contain some more-advanced sections, allowing you to
return to find in one place all the necessary information about a construct or topic.

 Part 3 introduces advanced language features of Python—elements of the lan-
guage that aren’t essential to its use but that can certainly be a great help to a serious
Python programmer.

 Part 4 describes more-advanced or specialized topics that are beyond the strict syn-
tax of the language. You may read these chapters or not, depending on your needs.

 A suggested plan if you’re new to Python programming is to start by reading chap-
ter 3 to obtain an overall perspective and then work through the chapters in part 2
xxi

ABOUT THIS BOOKxxii
that are applicable. Enter in the interactive examples as they are introduced to imme-
diately reinforce the concepts. You can also easily go beyond the examples in the text
to answer questions about anything that may be unclear. This has the potential to
amplify the speed of your learning and the level of your comprehension. If you aren’t
familiar with OOP or don’t need it for your application, skip most of chapter 15.

 Those who are familiar with Python should also start with chapter 3. It’s a good
review and introduces differences between Python 3 and what may be more familiar.
It’s also a reasonable test of whether you’re ready to move on to the advanced chap-
ters in parts 3 and 4 of this book.

 It’s possible that some readers, although new to Python, will have enough experience
with other programming languages to be able to pick up the bulk of what they need to
get going by reading chapter 3 and by browsing the Python standard library modules
listed in chapter 19 and the Python Library Reference in the Python documentation.

Roadmap

Chapter 1 discusses the strengths and weaknesses of Python and shows why Python 3 is
a good choice of programming language for many situations.

 Chapter 2 covers downloading, installing, and starting up the Python interpreter
and IDLE, its integrated development environment.

 Chapter 3 is a short overview of the Python language. It provides a basic idea of the
philosophy, syntax, semantics, and capabilities of the language.

 Chapter 4 starts with the basics of Python. It introduces Python variables, expres-
sions, strings, and numbers. It also introduces Python’s block-structured syntax.

 Chapters 5, 6, and 7 describe the five powerful built-in Python data types: lists,
tuples, sets, strings, and dictionaries.

 Chapter 8 introduces Python’s control flow syntax and use (loops and if-else
statements).

 Chapter 9 describes function definition in Python along with its flexible parame-
ter-passing capabilities.

 Chapter 10 describes Python modules, which provide an easy mechanism for seg-
menting the program namespace.

 Chapter 11 covers creating standalone Python programs, or scripts, and running
them on Windows, macOS, and Linux platforms. The chapter also covers the support
available for command-line options, arguments, and I/O redirection.

 Chapter 12 describes how to work with and navigate through the files and directo-
ries of the filesystem. It shows how to write code that’s as independent as possible of
the actual operating system you’re working on.

 Chapter 13 introduces the mechanisms for reading and writing files in Python,
including the basic capability to read and write strings (or byte streams), the mecha-
nism available for reading binary records, and the ability to read and write arbitrary
Python objects.

ABOUT THIS BOOK xxiii
 Chapter 14 discusses the use of exceptions, the error-handling mechanism used by
Python. It doesn’t assume that you have any previous knowledge of exceptions,
although if you’ve previously used them in C++ or Java, you’ll find them familiar.

 Chapter 15 introduces Python’s support for writing object-oriented programs.
 Chapter 16 discusses the regular-expression capabilities available for Python.
 Chapter 17 introduces more-advanced OOP techniques, including the use of

Python’s special method-attributes mechanism, metaclasses, and abstract base classes.
 Chapter 18 introduces the package concept in Python for structuring the code of

large projects.
 Chapter 19 is a brief survey of the standard library. It also includes a discussion of

where to find other modules and how to install them.
 Chapter 20 dives deeper into manipulating files in Python.
 Chapter 21 covers strategies for reading, cleaning, and writing various types of data

files.
 Chapter 22 surveys the process, issues, and tools involved in fetching data over the

network.
 Chapter 23 discusses how Python accesses relational and NoSQL databases.
 Chapter 24 is a brief introduction to using Python, Jupyter notebook, and pandas

to explore data sets.
 The case study walks you through using Python to fetch data, clean it, and then

graph it. The project combines several features of the language discussed in the chap-
ters, and it gives you a chance to a see a project worked through from beginning to
end.

 Appendix A contains a guide to obtaining and accessing Python’s full documenta-
tion, the Pythonic style guide, PEP 8, and “The Zen of Python,” a slightly wry summary
of the philosophy behind Python.

 Appendix B has the answers to most of the exercises. In a few cases, the exercises
ask you to experiment on your own. I don’t attempt to provide answers for those
exercises.

Code conventions

The code samples in this book, and their output, appear in a fixed-width font and
are often accompanied by annotations. The code samples are deliberately kept as sim-
ple as possible, because they aren’t intended to be reusable parts that can be plugged
into your code. Instead, the code samples are stripped down so that you can focus on
the principle being illustrated.

 In keeping with the idea of simplicity, the code examples are presented as interac-
tive shell sessions where possible; you should enter and experiment with these samples
as much as you can. In interactive code samples, the commands that need to be
entered are on lines that begin with the >>> prompt, and the visible results of that
code (if any) are on the line below.

ABOUT THIS BOOKxxiv
 In some cases a longer code sample is needed, and these cases are identified in the
text as file listings. You should save these listings as files with names matching those
used in the text and run them as standalone scripts.

Exercises

Starting in chapter 4, this book provides three kinds of exercises. The Quick Check
exercises are very brief questions that encourage you to pause and make sure you’re
clear on an idea just presented. The Try This exercises are a bit more demanding and
usually suggest that you try your hand at some Python code. At the end of many chap-
ters is a Lab, which gives you a chance to put the concepts of the current and previous
chapters together for a complete script.

Exercise answers

Answers to most of the exercises are available in appendix B and are also included in a
separate directory along with the book’s source code. Keep in mind that the answers
are not meant to be the only answers for the coding problems; there may be several
other approaches. The best way to judge your answers is to understand what the sug-
gested answer does and then decide whether your answer achieves the same end.

Source code downloads

The source code for the samples in this book is available from the publisher’s website
at www.manning.com/books/the-quick-python-book-third-edition.

System requirements

The samples and code in this book have been written with Windows (Windows 7
through 10), macOS, and Linux in mind. Because Python is a cross-platform lan-
guage, the samples and code should work on other platforms for the most part, except
for platform-specific issues, such as the handling of files, paths, and GUIs.

Software requirements

This book is based on Python 3.6, and all examples should work on any subsequent
version of Python 3. (Most have been tested with a prerelease version of Python 3.7.)
With a few exceptions, the examples also work on Python 3.5, but I strongly recom-
mend using 3.6; there are no advantages to using the earlier version, and 3.6 has sev-
eral subtle improvements. Note that Python 3 is required and that an earlier version of
Python will not work with the code in this book.

Book forum

The purchase of The Quick Python Book, Third Edition, includes free access to a private
web forum run by Manning Publications, where you can make comments about the
book, ask technical questions, and receive help from the author and from other users.

http://www.manning.com/books/the-quick-python-book-third-edition

ABOUT THIS BOOK xxv
To access the forum, go to https://forums.manning.com/forums/the-quick-python-
book-third-edition. You can also learn more about Manning's forums and the rules of
conduct at https://forums.manning.com/forums/about.

 Manning’s commitment to our readers is to provide a venue where a meaningful
dialogue between individual readers and between readers and the author can take
place. It’s not a commitment to any specific amount of participation on the part of the
author, whose contribution to the book’s forum remains voluntary (and unpaid). We
suggest that you try asking her some challenging questions, lest her interest stray!

 The forum and the archives of previous discussions will be accessible from the pub-
lisher’s website as long as the book is in print.

About the author

NAOMI CEDER, the author of this third edition, has been programming in various lan-
guages for nearly 30 years and has been a Linux system administrator, programming
teacher, developer, and system architect. She started using Python in 2001, and since
then has taught Python to users at all levels, from 12-year-olds to professionals. She
gives talks on Python and the benefits of an inclusive community to whomever will lis-
ten. Naomi currently leads a development team for Dick Blick Art Materials and is the
chair of the Python Software Foundation.

https://forums.manning.com/forums/the-quick-python-book-third-edition
https://forums.manning.com/forums/the-quick-python-book-third-edition
https://forums.manning.com/forums/about

about the cover illustration
The illustration on the cover of The Quick Python Book, Third Edition, is taken from a
late-eighteenth-century edition of Sylvain Maréchal’s four-volume compendium of
regional dress customs published in France. Each illustration is finely drawn and col-
ored by hand. The rich variety of Maréchal’s collection reminds us vividly of how cul-
turally apart the world’s towns and regions were just 200 years ago. Isolated from one
another, people spoke different dialects and languages. In the streets or in the coun-
tryside, it was easy to identify where people lived and what their trades or stations in
life were just by what they were wearing.

 Dress codes have changed since then, and the diversity by region, so rich at the
time, has faded away. It’s now hard to tell apart the inhabitants of different continents,
let alone different towns or regions. Perhaps we’ve traded cultural diversity for a more
varied personal life—certainly for a more varied and fast-paced technological life.

 At a time when it’s hard to tell one computer book from another, Manning cele-
brates the inventiveness and initiative of the computer business with book covers
based on the rich diversity of regional life of two centuries ago, brought back to life by
Maréchal’s pictures.
xxvi

Part 1

Starting out

These first three chapters tell you a little bit about Python, its strengths and
weaknesses, and why you should consider learning Python 3. In chapter 2 you
see how to install Python on Windows, macOS, and Linux platforms and how to
write a simple program. Chapter 3 is a quick, high-level survey of Python’s syntax
and features.

 If you’re looking for the quickest possible introduction to Python, start with
chapter 3.

2 CHAPTER

About Python
Read this chapter if you want to know how Python compares to other languages
and its place in the grand scheme of things. Skip ahead—go straight to chapter 3—
if you want to start learning Python right away. The information in this chapter is a
valid part of this book—but it’s certainly not necessary for programming with
Python.

1.1 Why should I use Python?
Hundreds of programming languages are available today, from mature languages
like C and C++, to newer entries like Ruby, C#, and Lua, to enterprise juggernauts
like Java. Choosing a language to learn is difficult. Although no one language is
the right choice for every possible situation, I think that Python is a good choice
for a large number of programming problems, and it’s also a good choice if you’re

This chapter covers
 Why use Python?

 What Python does well

 What Python doesn’t do as well

 Why learn Python 3?
3

4 CHAPTER 1 About Python
learning to program. Hundreds of thousands of programmers around the world use
Python, and the number grows every year.

 Python continues to attract new users for a variety of reasons. It’s a true cross-plat-
form language, running equally well on Windows, Linux/UNIX, and Macintosh plat-
forms, as well as others, ranging from supercomputers to cell phones. It can be used
to develop small applications and rapid prototypes, but it scales well to permit devel-
opment of large programs. It comes with a powerful and easy-to-use graphical user
interface (GUI) toolkit, web programming libraries, and more. And it’s free.

1.2 What Python does well
Python is a modern programming language developed by Guido van Rossum in the
1990s (and named after a famous comedic troupe). Although Python isn’t perfect for
every application, its strengths make it a good choice for many situations.

1.2.1 Python is easy to use

Programmers familiar with traditional languages will find it easy to learn Python. All
of the familiar constructs—loops, conditional statements, arrays, and so forth—are
included, but many are easier to use in Python. Here are a few of the reasons why:

 Types are associated with objects, not variables. A variable can be assigned a value of
any type, and a list can contain objects of many types. This also means that type
casting usually isn’t necessary and that your code isn’t locked into the strait-
jacket of predeclared types.

 Python typically operates at a much higher level of abstraction. This is partly the result
of the way the language is built and partly the result of an extensive standard
code library that comes with the Python distribution. A program to download a
web page can be written in two or three lines!

 Syntax rules are very simple. Although becoming an expert Pythonista takes time
and effort, even beginners can absorb enough Python syntax to write useful
code quickly.

Python is well suited for rapid application development. It isn’t unusual for coding an
application in Python to take one-fifth the time it would in C or Java and to take as lit-
tle as one-fifth the number of lines of the equivalent C program. This depends on the
particular application, of course; for a numerical algorithm performing mostly inte-
ger arithmetic in for loops, there would be much less of a productivity gain. For the
average application, the productivity gain can be significant.

1.2.2 Python is expressive

Python is a very expressive language. Expressive in this context means that a single line
of Python code can do more than a single line of code in most other languages. The
advantages of a more expressive language are obvious: The fewer lines of code you
have to write, the faster you can complete the project. The fewer lines of code there
are, the easier the program will be to maintain and debug.

5What Python does well
 To get an idea of how Python’s expressiveness can simplify code, consider swap-
ping the values of two variables, var1 and var2. In a language like Java, this requires
three lines of code and an extra variable:

int temp = var1;
var1 = var2;
var2 = temp;

The variable temp is needed to save the value of var1 when var2 is put into it, and
then that saved value is put into var2. The process isn’t terribly complex, but reading
those three lines and understanding that a swap has taken place takes a certain
amount of overhead, even for experienced coders.

 By contrast, Python lets you make the same swap in one line and in a way that
makes it obvious that a swap of values has occurred:

var2, var1 = var1, var2

Of course, this is a very simple example, but you find the same advantages throughout
the language.

1.2.3 Python is readable

Another advantage of Python is that it’s easy to read. You might think that a program-
ming language needs to be read only by a computer, but humans have to read your code
as well: whoever debugs your code (quite possibly you), whoever maintains your code
(could be you again), and whoever might want to modify your code in the future. In all
of those situations, the easier the code is to read and understand, the better it is.

 The easier code is to understand, the easier it is to debug, maintain, and modify.
Python’s main advantage in this department is its use of indentation. Unlike most lan-
guages, Python insists that blocks of code be indented. Although this strikes some
people as odd, it has the benefit that your code is always formatted in a very easy-to-
read style.

 Following are two short programs, one written in Perl and one in Python. Both
take two equal-size lists of numbers and return the pairwise sum of those lists. I think
the Python code is more readable than the Perl code; it’s visually cleaner and contains
fewer inscrutable symbols:

Perl version.
sub pairwise_sum {
 my($arg1, $arg2) = @_;
 my @result;
 for(0 .. $#$arg1) {
 push(@result, $arg1->[$_] + $arg2->[$_]);
 }
 return(\@result);
}

Python version.
def pairwise_sum(list1, list2):
 result = []

6 CHAPTER 1 About Python
 for i in range(len(list1)):
 result.append(list1[i] + list2[i])
 return result

Both pieces of code do the same thing, but the Python code wins in terms of readabil-
ity. (There are other ways to do this in Perl, of course, some of which are much more
concise—but in my opinion harder to read—than the one shown.)

1.2.4 Python is complete—“batteries included”

Another advantage of Python is its “batteries included” philosophy when it comes to
libraries. The idea is that when you install Python, you should have everything you
need to do real work without the need to install additional libraries. This is why the
Python standard library comes with modules for handling email, web pages, data-
bases, operating-system calls, GUI development, and more.

 For example, with Python, you can write a web server to share the files in a direc-
tory with just two lines of code:

import http.server
http.server.test(HandlerClass=http.server.SimpleHTTPRequestHandler)

There’s no need to install libraries to handle network connections and HTTP; it’s
already in Python, right out of the box.

1.2.5 Python is cross-platform

Python is also an excellent cross-platform language. Python runs on many platforms:
Windows, Mac, Linux, UNIX, and so on. Because it’s interpreted, the same code can
run on any platform that has a Python interpreter, and almost all current platforms
have one. There are even versions of Python that run on Java (Jython) and .NET
(IronPython), giving you even more possible platforms that run Python

1.2.6 Python is free

Python is also free. Python was originally, and continues to be, developed under the
open source model, and it’s freely available. You can download and install practically
any version of Python and use it to develop software for commercial or personal appli-
cations, and you don’t need to pay a dime.

 Although attitudes are changing, some people are still leery of free software
because of concerns about a lack of support, fearing that they lack the clout of paying
customers. But Python is used by many established companies as a key part of their
business; Google, Rackspace, Industrial Light & Magic, and Honeywell are just a few
examples. These companies and many others know Python for what it is: a very stable,
reliable, and well-supported product with an active and knowledgeable user commu-
nity. You’ll get an answer to even the most difficult Python question more quickly on
the Python internet newsgroup than you will on most tech-support phone lines, and
the Python answer will be free and correct.

7What Python doesn’t do as well
Python has a lot going for it: expressiveness, readability, rich included libraries, and
cross-platform capabilities. Also, it’s open source. What’s the catch?

1.3 What Python doesn’t do as well
Although Python has many advantages, no language can do everything, so Python
isn’t the perfect solution for all your needs. To decide whether Python is the right lan-
guage for your situation, you also need to consider the areas where Python doesn’t do
as well.

1.3.1 Python isn’t the fastest language

A possible drawback with Python is its speed of execution. It isn’t a fully compiled lan-
guage. Instead, it’s first compiled to an internal bytecode form, which is then exe-
cuted by a Python interpreter. There are some tasks, such as string parsing using
regular expressions, for which Python has efficient implementations and is as fast as,
or faster than, any C program you’re likely to write. Nevertheless, most of the time,
using Python results in slower programs than in a language like C. But you should
keep this in perspective. Modern computers have so much computing power that for
the vast majority of applications, the speed of the program isn’t as important as the
speed of development, and Python programs can typically be written much more
quickly. In addition, it’s easy to extend Python with modules written in C or C++,
which can be used to run the CPU-intensive portions of a program.

1.3.2 Python doesn’t have the most libraries

Although Python comes with an excellent collection of libraries, and many more are
available, Python doesn’t hold the lead in this department. Languages like C, Java, and

Python and open source software
Not only is Python free of cost, but also, its source code is freely available, and you’re
free to modify, improve, and extend it if you want. Because the source code is freely
available, you have the ability to go in yourself and change it (or to hire someone to
go in and do so for you). You rarely have this option at any reasonable cost with pro-
prietary software.

If this is your first foray into the world of open source software, you should understand
that you’re not only free to use and modify Python, but also able (and encouraged) to
contribute to it and improve it. Depending on your circumstances, interests, and
skills, those contributions might be financial, as in a donation to the Python Software
Foundation (PSF), or they may involve participating in one of the special interest
groups (SIGs), testing and giving feedback on releases of the Python core or one of
the auxiliary modules, or contributing some of what you or your company develops
back to the community. The level of contribution (if any) is, of course, up to you; but
if you’re able to give back, definitely consider doing so. Something of significant value
is being created here, and you have an opportunity to add to it.

8 CHAPTER 1 About Python
Perl have even larger collections of libraries available, in some cases offering a solution
where Python has none or a choice of several options where Python might have only
one. These situations tend to be fairly specialized, however, and Python is easy to
extend, either in Python itself or through existing libraries in C and other languages.
For almost all common computing problems, Python’s library support is excellent.

1.3.3 Python doesn’t check variable types at compile time

Unlike in some languages, Python’s variables don’t work like containers; instead,
they’re more like labels that reference various objects: integers, strings, class
instances, whatever. That means that although those objects themselves have types,
the variables referring to them aren’t bound to that particular type. It’s possible (if not
necessarily desirable) to use the variable x to refer to a string in one line and an inte-
ger in another:

>>> x = "2"
>>> x
'2'
>>> x = int(x)
>>> x
2

The fact that Python associates types with objects and not with variables means that
the interpreter doesn’t help you catch variable type mismatches. If you intend a vari-
able count to hold an integer, Python won’t complain if you assign the string "two"
to it. Traditional coders count this as a disadvantage, because you lose an additional
free check on your code. But errors like this usually aren’t hard to find and fix, and
Python’s testing features makes avoiding type errors manageable. Most Python pro-
grammers feel that the flexibility of dynamic typing more than outweighs the cost.

1.3.4 Python doesn’t have much mobile support

In the past decade the numbers and types of mobile devices have exploded, and
smartphones, tablets, phablets, Chromebooks, and more are everywhere, running on
a variety of operating systems. Python isn’t a strong player in this space. While options
exist, running Python on mobile devices isn’t always easy, and using Python to write
and distribute commercial apps is problematic.

1.3.5 Python doesn’t use multiple processors well

Multiple-core processors are everywhere now, producing significant increases in per-
formance in many situations. However, the standard implementation of Python isn’t
designed to use multiple cores, due to a feature called the global interpreter lock
(GIL). For more information, look for videos of GIL-related talks and posts by David
Beazley, Larry Hastings, and others, or visit the GIL page on the Python wiki at
https://wiki.python.org/moin/GlobalInterpreterLock. While there are ways to run

x is string "2"

x is now integer 2

https://wiki.python.org/moin/GlobalInterpreterLock

9Summary
concurrent processes by using Python, if you need concurrency out of the box,
Python may not be for you.

1.4 Why learn Python 3?
Python has been around for a number of years and has evolved over that time. The
first edition of this book was based on Python 1.5.2, and Python 2.x has been the dom-
inant version for several years. This book is based on Python 3.6 but has also been
tested on the alpha version of Python 3.7.

 Python 3, originally whimsically dubbed Python 3000, is notable because it’s the
first version of Python in the history of the language to break backward compatibility.
What this means is that code written for earlier versions of Python probably won’t run
on Python 3 without some changes. In earlier versions of Python, for example, the
print statement didn’t require parentheses around its arguments:

print "hello"

In Python 3, print is a function and needs the parentheses:

print("hello")

You may be thinking, “Why change details like this if it’s going to break old code?”
Because this kind of change is a big step for any language, the core developers of
Python thought about this issue carefully. Although the changes in Python 3 break
compatibility with older code, those changes are fairly small and for the better; they
make the language more consistent, more readable, and less ambiguous. Python 3
isn’t a dramatic rewrite of the language; it’s a well-thought-out evolution. The core
developers also took care to provide a strategy and tools to safely and efficiently
migrate old code to Python 3, which will be discussed in a later chapter, and the Six
and Future libraries are also available to make the transition easier.

 Why learn Python 3? Because it’s the best Python so far. Also, as projects switch to
take advantage of its improvements, it will be the dominant Python version for years to
come. The porting of libraries to Python 3 has been steady since its introduction, and
by now many of the most popular libraries support Python 3. In fact, according to the
Python Readiness page (http://py3readiness.org), 319 of the 360 most popular librar-
ies have already been ported to Python 3. If you need a library that hasn’t been con-
verted yet, or if you’re working on an established code base in Python 2, by all means
stick with Python 2.x. But if you’re starting to learn Python or starting a project, go
with Python 3; it’s not only better, but also the future.

Summary
 Python is a modern, high-level language with dynamic typing and simple, con-

sistent syntax and semantics.
 Python is multiplatform, highly modular, and suited for both rapid develop-

ment and large-scale programming.

http://py3readiness.org

10 CHAPTER 1 About Python
 It’s reasonably fast and can be easily extended with C or C++ modules for
higher speeds.

 Python has built-in advanced features such as persistent object storage, advanced
hash tables, expandable class syntax, and universal comparison functions.

 Python includes a wide range of libraries such as numeric processing, image
manipulation, user interfaces, and web scripting.

 It’s supported by a dynamic Python community.

Getting started
This chapter guides you through downloading, installing, and starting up Python
and IDLE, an integrated development environment for Python. At this writing,
Python 3.6 is the most current version, and 3.7 is under development. After years of
refinement, Python 3 is the first version of the language that isn’t fully backward-
compatible with earlier versions, so be sure to get a version of Python 3. It should
be several years before another such dramatic change occurs, and any future
enhancements will be developed with concern to avoid affecting an already-signifi-
cant existing code base. Therefore, the material presented after this chapter isn’t
likely to become dated any time soon.

This chapter covers
 Installing Python

 Using IDLE and the basic interactive mode

 Writing a simple program

 Using IDLE’s Python shell window
11

12 CHAPTER 2 Getting started
2.1 Installing Python
Installing Python is a simple matter, regardless of which platform you’re using. The
first step is to obtain a recent distribution for your machine; the most recent one can
always be found at www.python.org. This book is based on Python 3.6. If you have
Python 3.5 or even 3.7, that’s fine. In fact, you should have little trouble using most of
this book with any version of Python 3.

Some basic platform-specific descriptions for the Python installation are given next.
The specifics can vary quite a bit depending on your platform, so be sure to read the
instructions on the download pages and for the various versions. You’re probably
familiar with installing software on your particular machine, so I’ll keep these descrip-
tions short:

 Microsoft Windows—Python can be installed in most versions of Windows by
using the Python installer program, currently called python-3.6.1.exe. Down-
load it, execute it, and follow the installer’s prompts. You may need to be
logged in as administrator to run the install. If you’re on a network and don’t
have the administrator password, ask your system administrator to do the instal-
lation for you.

 Macintosh—You need to get a version of Python 3 that matches your OS X ver-
sion and your processor. After you determine the correct version, download the
disk image file, double-click to mount it, and run the installer inside. The OS X
installer sets up everything automatically, and Python 3 will be in a subfolder
inside the Applications folder, labeled with the version number. macOS ships
with various versions of Python as part of the system, but you don’t need to
worry about that; Python 3 will be installed in addition to the system version. If
you have brew installed, you can also use it to install Python by using the com-
mand brew install python3. You can find more information about using
Python on OS X by following the links on the Python home page.

 Linux/UNIX—Most Linux distributions come with Python installed. But the ver-
sions of Python vary, and the version of Python installed may not be version 3;

Having more than one version of Python
You may already have an earlier version of Python installed on your machine. Many
Linux distributions and macOS come with Python 2.x as part of the operating system.
Because Python 3 isn’t completely compatible with Python 2, it’s reasonable to won-
der whether installing both versions on the same computer will cause a conflict.

There’s no need to worry; you can have multiple versions of Python on the same com-
puter. In the case of UNIX-based systems like OS X and Linux, Python 3 installs along-
side the older version and doesn’t replace it. When your system looks for “python,”
it still finds the one it expects, and when you want to access Python 3, you can run
python3 or idle. In Windows, the different versions are installed in separate loca-
tions and have separate menu entries.

www.python.org

13Basic interactive mode and IDLE
for this book, you need to be sure you have the Python 3 packages installed. It’s
also possible that IDLE isn’t installed by default and that you’ll need to install
that package separately. Although it’s also possible to build Python 3 from the
source code available on the www.python.org website, additional libraries are
needed, and the process isn’t for novices. If a precompiled version of Python
exists for your distribution of Linux, I recommend using that. Use the software
management system for your distribution to locate and install the correct pack-
ages for Python 3 and IDLE. Versions are also available for running Python
under many other operating systems. See www.python.org for a current list of
supported platforms and specifics on installation.

2.2 Basic interactive mode and IDLE
You have two built-in options for obtaining interactive access to the Python inter-
preter: the original basic (command-line) mode and IDLE. IDLE is available on many
platforms, including Windows, Mac, and Linux, but it may not be available on others.
You may need to do more work and install additional software packages to get IDLE
running, but doing so will be worthwhile because IDLE offers a somewhat smoother
experience than the basic interactive mode. On the other hand, even if you normally
use IDLE, at times you’ll likely want to fire up the basic mode. You should be familiar
enough to start and use either one.

2.2.1 The basic interactive mode

The basic interactive mode is a rather primitive environment, but the interactive
examples in this book are generally small. Later in this book, you learn how to easily
bring code you’ve placed in a file into your session (by using the module mechanism).
Here’s how to start a basic session on Windows, macOS, and UNIX:

Anaconda: an alternative Python distribution
In addition to the distribution of Python that you can get directly from Python.org, a
distribution called Anaconda is gaining popularity, particularly among scientific and
data science users. Anaconda is an open data science platform with Python at its
core. When you install Anaconda, you get not only Python, but also the R language
and a generous collection of preinstalled data science packages, and you can add
many more by using the included conda package manager. You can also install mini-
conda, which includes only Python and conda, and then add the packages you need.

You can get Anaconda or miniconda from www.anaconda.com/download/. Download
the Python 3 version of the installer that matches your operating system, and run it
according to the instructions. When that’s done, you’ll have a full version of Python
on your machine.

Particularly if your primary interest is in data science, you may find Anaconda to be a
quicker and easier way to get up and running with Python.

https://www.python.org
https://www.python.org
www.anaconda.com/download/

14 CHAPTER 2 Getting started
 Starting a basic session on Windows—For version 3.x of Python, you navigate to the
Python 3.6 (32-bit) entry on the Python 3.6 submenu of the Programs folder on
the Start menu, and click it. Alternatively, you can directly find the Python.exe
executable (for example, in C:\Users\myuser\AppData\Local\Programs\Python
\Python35-32) and double-click it. Doing so brings up the window shown in
figure 2.1.

 Starting a basic session on macOS—Open a terminal window and type python3. If
you get a “Command not found” error, run the Update Shell Profile com-
mand script located in the Python3 subfolder in the Applications folder.

 Starting a basic session on UNIX—Type python3 at a command prompt. A ver-
sion message similar to the one shown in figure 2.1 followed by the Python
prompt >>> appears in the current window.

Figure 2.1 Basic interactive mode on Windows 10

Most platforms have a command-line-editing and command-history mechanism. You
can use the up and down arrows, as well as the Home, End, Page Up, and Page Down
keys, to scroll through past entries and repeat them by pressing the Enter key. This is
all you need to work your way through this book as you’re learning Python. Another
option is to use the excellent Python mode available for Emacs, which, among other
things, provides access to the interactive mode of Python through an integrated shell
buffer.

2.2.2 The IDLE integrated development environment

IDLE is the built-in development environment for Python. Its name is based on the
acronym for integrated development environment (though of course, it may have been
influenced by the last name of a certain cast member of a particular British television

Exiting the interactive shell
To exit from a basic session, press Ctrl-Z (if you’re on Windows) or Ctrl-D (if you’re on
Linux or UNIX), or type exit() at a command prompt.

15Using IDLE’s Python shell window
show). IDLE combines an interactive interpreter with code editing and debugging
tools to give you one-stop shopping as far as creating Python code is concerned.
IDLE’s various tools make it an attractive place to start as you learn Python. This is
how you run IDLE on Windows, macOS, and Linux:

 Starting IDLE on Windows—For version 3.6 of Python, you navigate to the IDLE
(Python GUI) entry of the Python 3.6 submenu of the All apps folder of
your Windows menu, and click it. Doing so brings up the window shown in
figure 2.2.

 Starting IDLE on macOS—Navigate to the Python 3.x subfolder in the Applica-
tions folder, and run IDLE from there.

 Starting IDLE on Linux or UNIX—Type idle3 at a command prompt. This
brings up a window similar to the one shown in figure 2.2. If you installed IDLE
through your distribution’s package manager, there should also be a menu
entry for IDLE on the Programming submenu or something similar.

Figure 2.2 IDLE on Windows

2.2.3 Choosing between basic interactive mode and IDLE

Which should you use: IDLE or the basic shell window? To begin, use either IDLE or
the Python shell window. Both have all you need to work through the code examples
in this book until you reach chapter 10. From there, I cover writing your own mod-
ules, and IDLE will be a convenient way to create and edit files. But if you have a
strong preference for another editor, you may find that a basic shell window and your
favorite editor serve you just as well. If you don’t have any strong editor preferences, I
suggest using IDLE from the beginning.

2.3 Using IDLE’s Python shell window
The Python shell window (figure 2.3) opens when you fire up IDLE. It provides auto-
matic indentation and colors your code as you type it in, based on Python syntax types.

 You can move around the buffer by using the mouse, the arrow keys, the Page Up
and Page Down keys, and/or some of the standard Emacs key bindings. Check the
Help menu for the details.

16 CHAPTER 2 Getting started
Everything in your session is buffered. You can scroll or search up, place the cursor on
any line, and press Enter (creating a hard return), and that line will be copied to the
bottom of the screen, where you can edit it and then send it to the interpreter by
pressing the Enter key again. Or, leaving the cursor at the bottom, you can toggle up
and down through the previously entered commands by pressing Alt-P and Alt-N,
which successively bring copies of the lines to the bottom. When you have the one you
want, you can again edit it and then send it to the interpreter by pressing the Enter
key. You can see a list of possible completions with Python keywords or user-defined
values by pressing Tab.

 If you ever find yourself in a situation where you seem to be hung and can’t get a
new prompt, the interpreter is likely in a state where it’s waiting for you to enter some-
thing specific. Pressing Ctrl-C sends an interrupt and should get you back to a prompt.
It can also be used to interrupt any running command. To exit IDLE, choose Exit
from the File menu.

 The Edit menu is the one you’ll likely be using most to begin with. As with any of
the other menus, you can tear it off by double-clicking the dotted line at its top and
leaving it up beside your window.

Figure 2.3 Using the Python shell in IDLE. Code is automatically colored (based on
Python syntax) as it’s typed in. Placing the cursor on any previous command and
pressing the Enter key moves the command and the cursor to the bottom, where
you can edit the command and then press Enter to send it to the interpreter.
Placing the cursor at the bottom, you can toggle up and down through the history
of previous commands by pressing Alt-P and Alt-N. When you have the command
you want, edit it as desired and press Enter, and it will be sent to the interpreter.

17Using the interactive prompt to explore Python
2.4 Hello, world
Regardless of how you’re accessing Python’s interactive mode, you should see a
prompt consisting of three angle braces: >>>. This prompt is the Python command
prompt, and it indicates that you can type in a command to be executed or an expres-
sion to be evaluated. Start with the obligatory “Hello, World” program, which is a one-
liner in Python (ending each line you type with a hard return):

>>> print("Hello, World")
Hello, World

Here, I entered the print function at the command prompt, and the result appeared
on the screen. Executing the print function causes its argument to be printed to the
standard output—usually, the screen. If the command had been executed while
Python was running a Python program from a file, exactly the same thing would have
happened: “Hello, World” would have been printed to the screen.

 Congratulations! You’ve just written your first Python program, and I haven’t even
started talking about the language.

2.5 Using the interactive prompt to explore Python
Whether you’re in IDLE or at a standard interactive prompt, a couple of handy tools
can help you explore Python. The first is the help() function, which has two modes.
You can enter help() at the prompt to enter the help system, where you can get help
on modules, keywords, or topics. When you’re in the help system, you see a help>
prompt, and you can enter a module name, such as math or some other topic, to
browse Python’s documentation on that topic.

 Usually, it’s more convenient to use help() in a more targeted way. Entering a
type or variable name as a parameter for help() gives you an immediate display of
that type’s documentation:

>>> x = 2
>>> help(x)
Help on int object:

class int(object)
 | int(x=0) -> integer
 | int(x, base=10) -> integer
 |
 | Convert a number or string to an integer, or return 0 if no arguments
 | are given. If x is a number, return x.__int__(). For floating point
 | numbers, this truncates towards zero.
 |
 | If x is not a number or if base is given, then x must be a string,
 | bytes, or bytearray instance representing an integer literal in the...
(continues with the documentation for an int)

Using help() in this way is handy for checking the exact syntax of a method or the
behavior of an object.

18 CHAPTER 2 Getting started
 The help() function is part of the pydoc library, which has several options for
accessing the documentation built into Python libraries. Because every Python instal-
lation comes with complete documentation, you can have all of the official documen-
tation at your fingertips, even if you aren’t online. See appendix A for more
information on accessing Python’s documentation.

 The other useful function is dir(), which lists the objects in a particular
namespace. Used with no parameters, it lists the current globals, but it can also list
objects for a module or even a type:

>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__',

'__package__', '__spec__', 'x']
>>> dir(int)
['__abs__', '__add__', '__and__', '__bool__', '__ceil__', '__class__',

'__delattr__', '__dir__', '__divmod__', '__doc__', '__eq__',
'__float__', '__floor__', '__floordiv__', '__format__', '__ge__',
'__getattribute__', '__getnewargs__', '__gt__', '__hash__', '__index__',
'__init__', '__int__', '__invert__', '__le__', '__lshift__', '__lt__',
'__mod__', '__mul__', '__ne__', '__neg__', '__new__', '__or__',
'__pos__', '__pow__', '__radd__', '__rand__', '__rdivmod__',
'__reduce__', '__reduce_ex__', '__repr__', '__rfloordiv__',
'__rlshift__', '__rmod__', '__rmul__', '__ror__', '__round__',
'__rpow__', '__rrshift__', '__rshift__', '__rsub__', '__rtruediv__',
'__rxor__', '__setattr__', '__sizeof__', '__str__', '__sub__',
'__subclasshook__', '__truediv__', '__trunc__', '__xor__', 'bit_length',
'conjugate', 'denominator', 'from_bytes', 'imag', 'numerator', 'real',
'to_bytes']

>>>

dir() is useful for finding out what methods and data are defined, for reminding
yourself at a glance of all the members that belong to an object or module, and for
debugging because you can see what is defined where.

 Unlike dir, both globals and locals show the values associated with the
objects. In the current situation, both functions return the same thing, so we have
only shown the output from globals():

>>> globals()
{'__name__': '__main__', '__doc__': None, '__package__': None, '__loader__':

<class '_frozen_importlib.BuiltinImporter'>, '__spec__': None,
'__annotations__': {}, '__builtins__': <module 'builtins' (built-in)>,
'x': 2}

Unlike dir, both globals and locals show the values associated with the objects.
You find out more about both of these functions in chapter 10; for now, it’s enough to
be aware that you have several options for examining what’s going on within a Python
session.

Summary
 Installing Python 3 on Windows systems is as simple as downloading the latest

installer from www.python.org and running it. Installation on Linux, UNIX,
and Mac systems will vary.

https://www.python.org

19Summary
 Refer to installation instructions on the Python website, and use your system’s
software package installer where possible.

 Another installation option is to install the Anaconda (or miniconda) distribu-
tion from https://www.anaconda.com/download/.

 After you’ve installed Python, you can use either the basic interactive shell (and
later, your favorite editor) or the IDLE integrated development environment.

https://www.anaconda.com/download/

The Quick Python
overview
The purpose of this chapter is to give you a basic feeling for the syntax, semantics,
capabilities, and philosophy of the Python language. It has been designed to pro-
vide you an initial perspective or conceptual framework on which you’ll be able to
add details as you encounter them in the rest of the book.

 On an initial read, you needn’t be concerned about working through and
understanding the details of the code segments. You’ll be doing fine if you pick up
a bit of an idea about what’s being done. The subsequent chapters walk you
through the specifics of these features and don’t assume previous knowledge. You
can always return to this chapter and work through the examples in the appropri-
ate sections as a review after you’ve read the later chapters.

This chapter covers
 Surveying Python

 Using built-in data types

 Controlling program flow

 Creating modules

 Using object-oriented programming
20

21Built-in data types
3.1 Python synopsis
Python has several built-in data types, such as integers, floats, complex numbers,
strings, lists, tuples, dictionaries, and file objects. These data types can be manipulated
using language operators, built-in functions, library functions, or a data type’s own
methods.

 Programmers can also define their own classes and instantiate their own class
instances.1 These class instances can be manipulated by programmer-defined meth-
ods, as well as the language operators and built-in functions for which the program-
mer has defined the appropriate special method attributes.

 Python provides conditional and iterative control flow through an if-elif-else
construct along with while and for loops. It allows function definition with flexible
argument-passing options. Exceptions (errors) can be raised by using the raise state-
ment, and they can be caught and handled by using the try-except-else-
finally construct.

 Variables (or identifiers) don’t have to be declared and can refer to any built-in
data type, user-defined object, function, or module.

3.2 Built-in data types
Python has several built-in data types, from scalars such as numbers and Booleans to
more complex structures such as lists, dictionaries, and files.

3.2.1 Numbers

Python’s four number types are integers, floats, complex numbers, and Booleans:

 Integers—1, –3, 42, 355, 888888888888888, –7777777777 (integers aren’t limited
in size except by available memory)

 Floats—3.0, 31e12, –6e-4
 Complex numbers—3 + 2j, –4- 2j, 4.2 + 6.3j
 Booleans—True, False

You can manipulate them by using the arithmetic operators: + (addition), – (subtrac-
tion), * (multiplication), / (division), ** (exponentiation), and % (modulus).

 The following examples use integers:

>>> x = 5 + 2 - 3 * 2
>>> x
1
>>> 5 / 2
2.5
>>> 5 // 2
2
>>> 5 % 2

1 The Python documentation and this book use the term object to refer to instances of any Python data type,
not just what many other languages would call class instances. This is because all Python objects are instances
of one class or another.

B

c

22 CHAPTER 3 The Quick Python overview
1
>>> 2 ** 8
256
>>> 1000000001 ** 3
1000000003000000003000000001

Division of integers with / B results in a float (new in Python 3.x), and division of
integers with // c results in truncation. Note that integers are of unlimited size d;
they grow as large as you need them to, limited only by the memory available.

 These examples work with floats, which are based on the doubles in C:

>>> x = 4.3 ** 2.4
>>> x
33.13784737771648
>>> 3.5e30 * 2.77e45
9.695e+75
>>> 1000000001.0 ** 3
1.000000003e+27

These examples use complex numbers:

>>> (3+2j) ** (2+3j)
(0.6817665190890336-2.1207457766159625j)
>>> x = (3+2j) * (4+9j)
>>> x
(-6+35j)
>>> x.real
-6.0
>>> x.imag
35.0

Complex numbers consist of both a real element and an imaginary element, suffixed
with j. In the preceding code, variable x is assigned to a complex number B. You can
obtain its “real” part by using the attribute notation x.real and obtain the “imagi-
nary” part with x.imag.

 Several built-in functions can operate on numbers. There are also the library mod-
ule cmath (which contains functions for complex numbers) and the library module
math (which contains functions for the other three types):

>>> round(3.49)
3
>>> import math
>>> math.ceil(3.49)
4

Built-in functions are always available and are called by using a standard function-calling
syntax. In the preceding code, round is called with a float as its input argument B.

 The functions in library modules are made available via the import statement.
At c, the math library module is imported, and its ceil function is called using attri-
bute notation: module.function(arguments).

d

B

B

c

23Built-in data types
 The following examples use Booleans:

>>> x = False
>>> x
False
>>> not x
True
>>> y = True * 2
>>> y
2

Other than their representation as True and False, Booleans behave like the num-
bers 1 (True) and 0 (False) B.

3.2.2 Lists

Python has a powerful built-in list type:

[]
[1]
[1, 2, 3, 4, 5, 6, 7, 8, 12]
[1, "two", 3, 4.0, ["a", "b"], (5,6)]

A list can contain a mixture of other types as its elements, including strings, tuples,
lists, dictionaries, functions, file objects, and any type of number B.

 A list can be indexed from its front or back. You can also refer to a subsegment, or
slice, of a list by using slice notation:

>>> x = ["first", "second", "third", "fourth"]
>>> x[0]
'first'
>>> x[2]
'third'
>>> x[-1]
'fourth'
>>> x[-2]
'third'
>>> x[1:-1]
['second', 'third']
>>> x[0:3]
['first', 'second', 'third']
>>> x[-2:-1]
['third']
>>> x[:3]
['first', 'second', 'third']
>>> x[-2:]
['third', 'fourth']

Index from the front B using positive indices (starting with 0 as the first element).
Index from the back c using negative indices (starting with -1 as the last element).
Obtain a slice using [m:n] d, where m is the inclusive starting point and n is the
exclusive ending point (see table 3.1). An [:n] slice e starts at its beginning, and an
[m:] slice goes to a list’s end.

B

B

b

c

d

e

24 CHAPTER 3 The Quick Python overview

You can use this notation to add, remove, and replace elements in a list or to obtain
an element or a new list that’s a slice from it:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x[1] = "two"
>>> x[8:9] = []
>>> x
[1, 'two', 3, 4, 5, 6, 7, 8]
>>> x[5:7] = [6.0, 6.5, 7.0]
>>> x
[1, 'two', 3, 4, 5, 6.0, 6.5, 7.0, 8]
>>> x[5:]
[6.0, 6.5, 7.0, 8]

The size of the list increases or decreases if the new slice is bigger or smaller than the
slice it’s replacing B.

 Some built-in functions (len, max, and min), some operators (in, +, and *), the
del statement, and the list methods (append, count, extend, index, insert, pop,
remove, reverse, and sort) operate on lists:

>>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> len(x)
9
>>> [-1, 0] + x
[-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> x.reverse()
>>> x
[9, 8, 7, 6, 5, 4, 3, 2, 1]

The operators + and * each create a new list, leaving the original unchanged B. A
list’s methods are called by using attribute notation on the list itself: x.method
(arguments) c.

 Some of these operations repeat functionality that can be performed with slice
notation, but they improve code readability.

3.2.3 Tuples

Tuples are similar to lists but are immutable—that is, they can’t be modified after
they’ve been created. The operators (in, +, and *) and built-in functions (len, max,
and min) operate on them the same way as they do on lists because none of them
modifies the original. Index and slice notation work the same way for obtaining ele-
ments or slices but can’t be used to add, remove, or replace elements. Also, there are
only two tuple methods: count and index. An important purpose of tuples is for use

Table 3.1 List indices

x= ["first" , "second" , "third" , "fourth"]

Positive indices 0 1 2 3

Negative indices –4 –3 –2 –1

B

B

c

25Built-in data types
as keys for dictionaries. They’re also more efficient to use when you don’t need modi-
fiability.

()
(1,)
(1, 2, 3, 4, 5, 6, 7, 8, 12)
(1, "two", 3L, 4.0, ["a", "b"], (5, 6))

A one-element tuple B needs a comma. A tuple, like a list, can contain a mixture of
other types as its elements, including strings, tuples, lists, dictionaries, functions, file
objects, and any type of number c.

 A list can be converted to a tuple by using the built-in function tuple:

>>> x = [1, 2, 3, 4]
>>> tuple(x)
(1, 2, 3, 4)

Conversely, a tuple can be converted to a list by using the built-in function list:

>>> x = (1, 2, 3, 4)
>>> list(x)
[1, 2, 3, 4]

3.2.4 Strings

String processing is one of Python’s strengths. There are many options for delimiting
strings:

"A string in double quotes can contain 'single quote' characters."
'A string in single quotes can contain "double quote" characters.'
'''\tA string which starts with a tab; ends with a newline character.\n'''
"""This is a triple double quoted string, the only kind that can
 contain real newlines."""

Strings can be delimited by single (' '), double (" "), triple single (''' '''), or triple
double (""" """) quotations and can contain tab (\t) and newline (\n) characters.

 Strings are also immutable. The operators and functions that work with them
return new strings derived from the original. The operators (in, +, and *) and built-in
functions (len, max, and min) operate on strings as they do on lists and tuples. Index
and slice notation works the same way for obtaining elements or slices but can’t be
used to add, remove, or replace elements.

 Strings have several methods to work with their contents, and the re library mod-
ule also contains functions for working with strings:

>>> x = "live and let \t \tlive"
>>> x.split()
['live', 'and', 'let', 'live']
>>> x.replace(" let \t \tlive", "enjoy life")
'live and enjoy life'
>>> import re
>>> regexpr = re.compile(r"[\t]+")
>>> regexpr.sub(" ", x)
'live and let live'

B

c

B

26 CHAPTER 3 The Quick Python overview
The re module B provides regular-expression functionality. It provides more sophis-
ticated pattern extraction and replacement capabilities than the string module.

 The print function outputs strings. Other Python data types can be easily con-
verted to strings and formatted:

>>> e = 2.718
>>> x = [1, "two", 3, 4.0, ["a", "b"], (5, 6)]
>>> print("The constant e is:", e, "and the list x is:", x)
The constant e is: 2.718 and the list x is: [1, 'two', 3, 4.0,
['a', 'b'], (5, 6)]
>>> print("the value of %s is: %.2f" % ("e", e))
the value of e is: 2.72

Objects are automatically converted to string representations for printing B. The %
operator c provides formatting capability similar to that of C’s sprintf.

3.2.5 Dictionaries

Python’s built-in dictionary data type provides associative array functionality imple-
mented by using hash tables. The built-in len function returns the number of key-
value pairs in a dictionary. The del statement can be used to delete a key-value pair.
As is the case for lists, several dictionary methods (clear, copy, get, items, keys,
update, and values) are available.

>>> x = {1: "one", 2: "two"}
>>> x["first"] = "one"
>>> x[("Delorme", "Ryan", 1995)] = (1, 2, 3)
>>> list(x.keys())
['first', 2, 1, ('Delorme', 'Ryan', 1995)]
>>> x[1]
'one'
>>> x.get(1, "not available")
'one'
>>> x.get(4, "not available")
'not available'

Keys must be of an immutable type B, including numbers, strings, and tuples. Values
can be any kind of object, including mutable types such as lists and dictionaries. If you
try to access the value of a key that isn’t in the dictionary, a KeyError exception is
raised. To avoid this error, the dictionary method get c optionally returns a user-
definable value when a key isn’t in a dictionary.

3.2.6 Sets

A set in Python is an unordered collection of objects, used in situations where mem-
bership and uniqueness in the set are the main things you need to know about that
object. Sets behave as collections of dictionary keys without any associated values:

>>> x = set([1, 2, 3, 1, 3, 5])
>>> x
{1, 2, 3, 5}

B

c

Sets the value of a new
key, “first”, to “one”

b

c

b

c

27Built-in data types
>>> 1 in x
True
>>> 4 in x
False
>>>

You can create a set by using set on a sequence, like a list B. When a sequence is
made into a set, duplicates are removed c. The in keyword d is used to check for
membership of an object in a set.

3.2.7 File objects

A file is accessed through a Python file object:

>>> f = open("myfile", "w")
>>> f.write("First line with necessary newline character\n")
44
>>> f.write("Second line to write to the file\n")
33
>>> f.close()
>>> f = open("myfile", "r")
>>> line1 = f.readline()
>>> line2 = f.readline()
>>> f.close()
>>> print(line1, line2)
First line with necessary newline character
Second line to write to the file
>>> import os
>>> print(os.getcwd())
c:\My Documents\test
>>> os.chdir(os.path.join("c:\\", "My Documents", "images"))
>>> filename = os.path.join("c:\\", "My Documents",
"test", "myfile")
>>> print(filename)
c:\My Documents\test\myfile
>>> f = open(filename, "r")
>>> print(f.readline())
First line with necessary newline character
>>> f.close()

The open statement B creates a file object. Here, the file myfile in the current work-
ing directory is being opened in write ("w") mode. After writing two lines to it and
closing it c, you open the same file again, this time in read ("r") mode. The os
module d provides several functions for moving around the filesystem and working
with the pathnames of files and directories. Here, you move to another directory e.
But by referring to the file by an absolute pathname f, you’re still able to access it.

 Several other input/output capabilities are available. You can use the built-in
input function to prompt and obtain a string from the user. The sys library module
allows access to stdin, stdout, and stderr. The struct library module provides
support for reading and writing files that were generated by, or are to be used by, C
programs. The Pickle library module delivers data persistence through the ability to
easily read and write the Python data types to and from files.

d

b

c

d

e

f

28 CHAPTER 3 The Quick Python overview
3.3 Control flow structures
Python has a full range of structures to control code execution and program flow,
including common branching and looping structures.

3.3.1 Boolean values and expressions

Python has several ways of expressing Boolean values; the Boolean constant False, 0,
the Python nil value None, and empty values (for example, the empty list [] or empty
string "") are all taken as False. The Boolean constant True and everything else is
considered True.

 You can create comparison expressions by using the comparison operators (<, <=,
==, >, >=, !=, is, is not, in, not in) and the logical operators (and, not, or), which
all return True or False.

3.3.2 The if-elif-else statement

The block of code after the first True condition (of an if or an elif) is executed. If
none of the conditions is True, the block of code after the else is executed:

x = 5
if x < 5:
 y = -1
 z = 5
elif x > 5:
 y = 1
 z = 11
else:
 y = 0
 z = 10
print(x, y, z)

The elif and else clauses are optional B, and there can be any number of elif
clauses. Python uses indentation to delimit blocks c. No explicit delimiters, such as
brackets or braces, are necessary. Each block consists of one or more statements sepa-
rated by newlines. All these statements must be at the same level of indentation. The
output in the example would be 5 0 10.

3.3.3 The while loop

The while loop is executed as long as the condition (which here is x > y) is True:

u, v, x, y = 0, 0, 100, 30
while x > y:
 u = u + y
 x = x - y
 if x < y + 2:
 v = v + x
 x = 0
 else:
 v = v + y + 2
 x = x - y - 2
print(u, v)

b

c

b

c

29Control flow structures
This is a shorthand notation. Here, u and v are assigned a value of 0, x is set to 100,
and y obtains a value of 30 B. This is the loop block c. It’s possible for a loop to con-
tain break (which ends the loop) and continue statements (which abort the current
iteration of the loop). The output would be 60 40.

3.3.4 The for loop

The for loop is simple but powerful because it’s possible to iterate over any iterable
type, such as a list or tuple. Unlike in many languages, Python’s for loop iterates over
each of the items in a sequence (for example, a list or tuple), making it more of a
foreach loop. The following loop finds the first occurrence of an integer that’s divis-
ible by 7:

item_list = [3, "string1", 23, 14.0, "string2", 49, 64, 70]
for x in item_list:
 if not isinstance(x, int):
 continue
 if not x % 7:
 print("found an integer divisible by seven: %d" % x)
 break

x is sequentially assigned each value in the list B. If x isn’t an integer, the rest of this
iteration is aborted by the continue statement c. Flow control continues with x set
to the next item from the list. After the first appropriate integer is found, the loop is
ended by the break statement d. The output would be

found an integer divisible by seven: 49

3.3.5 Function definition

Python provides flexible mechanisms for passing arguments to functions:

>>> def funct1(x, y, z):
... value = x + 2*y + z**2
... if value > 0:
... return x + 2*y + z**2
... else:
... return 0
...
>>> u, v = 3, 4
>>> funct1(u, v, 2)
15
>>> funct1(u, z=v, y=2)
23
>>> def funct2(x, y=1, z=1):
... return x + 2 * y + z ** 2
...
>>> funct2(3, z=4)
21
>>> def funct3(x, y=1, z=1, *tup):
... print((x, y, z) + tup)
...
>>> funct3(2)

b

c

d

b

c

d

e

f

30 CHAPTER 3 The Quick Python overview
(2, 1, 1)
>>> funct3(1, 2, 3, 4, 5, 6, 7, 8, 9)
(1, 2, 3, 4, 5, 6, 7, 8, 9)
>>> def funct4(x, y=1, z=1, **kwargs):
... print(x, y, z, kwargs)
>>> funct4(1, 2, m=5, n=9, z=3)
1 2 3 {'n': 9, 'm': 5}

Functions are defined by using the def statement B. The return statement c is what
a function uses to return a value. This value can be of any type. If no return statement
is encountered, Python’s None value is returned. Function arguments can be entered
either by position or by name (keyword). Here, z and y are entered by name d. Func-
tion parameters can be defined with defaults that are used if a function call leaves them
out e. A special parameter can be defined that collects all extra positional arguments
in a function call into a tuple f. Likewise, a special parameter can be defined that col-
lects all extra keyword arguments in a function call into a dictionary g.

3.3.6 Exceptions

Exceptions (errors) can be caught and handled by using the try-except-else-
finally compound statement. This statement can also catch and handle exceptions
you define and raise yourself. Any exception that isn’t caught causes the program to
exit. This listing shows basic exception handling.

class EmptyFileError(Exception):
 pass
filenames = ["myfile1", "nonExistent", "emptyFile", "myfile2"]
for file in filenames:
 try:
 f = open(file, 'r')
 line = f.readline()
 if line == "":
 f.close()
 raise EmptyFileError("%s: is empty" % file)
 except IOError as error:
 print("%s: could not be opened: %s" % (file, error.strerror)
 except EmptyFileError as error:
 print(error)
 else:
 print("%s: %s" % (file, f.readline()))
 finally:
 print("Done processing", file)

Here, you define your own exception type inheriting from the base Exception type
B. If an IOError or EmptyFileError occurs during the execution of the state-
ments in the try block, the associated except block is executed c. This is where an
IOError might be raised d. Here, you raise the EmptyFileError e. The else
clause is optional f; it’s executed if no exception occurs in the try block. (Note that

Listing 3.1 File exception.py

g

b

c

d

e

f

g

31Module creation
in this example, continue statements in the except blocks could have been used
instead.) The finally clause is optional g; it’s executed at the end of the block
whether an exception was raised or not.

3.3.7 Context handling using the with keyword

A more streamlined way of encapsulating the try-except-finally pattern is to use
the with keyword and a context manager. Python defines context managers for things
like file access, and it’s possible for the developer to define custom context managers.
One benefit of context managers is that they may (and usually do) have default clean-
up actions defined, which always execute whether or not an exception occurs.

 This listing shows opening and reading a file by using with and a context manager.

filename = "myfile.txt"
with open(filename, "r") as f:
 for line in f:
 print(f)

Here, with establishes a context manager which wraps the open function and the
block that follows. In this case, the context manager’s predefined clean-up action
closes the file, even if an exception occurs, so as long as the expression in the first line
executes without raising an exception, the file is always closed. That code is equivalent
to this code:

filename = "myfile.txt"
try:
 f = open(filename, "r")
 for line in f:
 print(f)
except Exception as e:
 raise e
finally:
 f.close()

3.4 Module creation
It’s easy to create your own modules, which can be imported and used in the same way
as Python’s built-in library modules. The example in this listing is a simple module
with one function that prompts the user to enter a filename and determines the num-
ber of times that words occur in this file.

"""wo module. Contains function: words_occur()"""
interface functions
def words_occur():
 """words_occur() - count the occurrences of words in a file."""
 # Prompt user for the name of the file to use.

Listing 3.2 File with.py

Listing 3.3 File wo.py

b
c

32 CHAPTER 3 The Quick Python overview
 file_name = input("Enter the name of the file: ")
 # Open the file, read it and store its words in a list.
 f = open(file_name, 'r')
 word_list = f.read().split()
 f.close()
 # Count the number of occurrences of each word in the file.
 occurs_dict = {}
 for word in word_list:
 # increment the occurrences count for this word
 occurs_dict[word] = occurs_dict.get(word, 0) + 1
 # Print out the results.
 print("File %s has %d words (%d are unique)" \
 % (file_name, len(word_list), len(occurs_dict)))
 print(occurs_dict)
if __name__ == '__main__':
 words_occur()

Documentation strings, or docstrings, are standard ways of documenting modules,
functions, methods, and classes B. Comments are anything beginning with a # char-
acter c. read returns a string containing all the characters in a file d, and split
returns a list of the words of a string “split out” based on whitespace. You can use a \
to break a long statement across multiple lines e. This if statement allows the pro-
gram to be run as a script by typing python wo.py at a command line f.

 If you place a file in one of the directories on the module search path, which can
be found in sys.path, it can be imported like any of the built-in library modules by
using the import statement:

>>> import wo
>>> wo.words_occur()

This function is called B by using the same attribute syntax used for library module
functions.

 Note that if you change the file wo.py on disk, import won’t bring your changes
into the same interactive session. You use the reload function from the imp library in
this situation:

>>> import imp
>>> imp.reload(wo)
<module 'wo'>

For larger projects, there is a generalization of the module concept called packages,
which allows you to easily group modules in a directory or directory subtree and then
import and hierarchically refer to them by using a package.subpackage.module
syntax. This entails little more than creating a possibly empty initialization file for
each package or subpackage.

3.5 Object-oriented programming
Python provides full support for OOP. Listing 3.4 is an example that might be the start
of a simple shapes module for a drawing program. It’s intended mainly to serve as a

d

e

f

b

33Object-oriented programming
reference if you’re already familiar with OOP. The callout notes relate Python’s syntax
and semantics to the standard features found in other languages.

"""sh module. Contains classes Shape, Square and Circle"""
class Shape:
 """Shape class: has method move"""
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def move(self, deltaX, deltaY):
 self.x = self.x + deltaX
 self.y = self.y + deltaY
class Square(Shape):
 """Square Class:inherits from Shape"""
 def __init__(self, side=1, x=0, y=0):
 Shape.__init__(self, x, y)
 self.side = side
class Circle(Shape):
 """Circle Class: inherits from Shape and has method area"""
 pi = 3.14159
 def __init__(self, r=1, x=0, y=0):
 Shape.__init__(self, x, y)
 self.radius = r
 def area(self):
 """Circle area method: returns the area of the circle."""
 return self.radius * self.radius * self.pi
 def __str__(self):
 return "Circle of radius %s at coordinates (%d, %d)"\
 % (self.radius, self.x, self.y)

Classes are defined by using the class keyword B. The instance initializer method
(constructor) for a class is always called __init__ c. Instance variables x and y are
created and initialized here d. Methods, like functions, are defined by using the def
keyword e. The first argument of any method is by convention called self. When
the method is invoked, self is set to the instance that invoked the method. Class
Circle inherits from class Shape f and is similar to, but not exactly like, a standard
class variable g. A class must, in its initializer, explicitly call the initializer of its base
class h. The __str__ method is used by the print function i. Other special
method attributes permit operator overloading or are employed by built-in methods
such as the length (len) function.

 Importing this file makes these classes available:

>>> import sh
>>> c1 = sh.Circle()
>>> c2 = sh.Circle(5, 15, 20)
>>> print(c1)
Circle of radius 1 at coordinates (0, 0)
>>> print(c2)
Circle of radius 5 at coordinates (15, 20)

Listing 3.4 File sh.py

b

c
d

e

f

g

h

i

b

c

34 CHAPTER 3 The Quick Python overview
>>> c2.area()
78.539749999999998
>>> c2.move(5,6)
>>> print(c2)
Circle of radius 5 at coordinates (20, 26)

The initializer is implicitly called, and a circle instance is created B. The print func-
tion implicitly uses the special __str__ method c. Here, you see that the move
method of Circle’s parent class Shape is available d. A method is called by using
attribute syntax on the object instance: object.method(). The first (self) parame-
ter is set implicitly.

Summary
 This chapter is a rapid and very high-level overview of Python; the following

chapters provide more detail. This chapter ends the book’s overview of Python.
 You may find it valuable to return to this chapter and work through the appro-

priate examples as a review after you read about the features covered in subse-
quent chapters.

 If this chapter was mostly a review for you, or if you’d like to learn more about
only a few features, feel free to jump around, using the index or table of con-
tents.

 You should have a solid understanding of the Python features in this chapter
before skipping ahead to part 4.

d

Part 2

The essentials

In the chapters that follow, I show you the essentials of Python. I start from
the absolute basics of what makes a Python program and move through Python’s
built-in data types and control structures, as well as defining functions and using
modules.

 The last chapter of this part moves on to show you how to write standalone
Python programs, manipulate files, handle errors, and use classes.

36 CHAPTER

The absolute basics
This chapter describes the absolute basics in Python: how to use assignments and
expressions, how to type a number or a string, how to indicate comments in code,
and so forth. It starts with a discussion of how Python block structures its code,
which differs from every other major language.

4.1 Indentation and block structuring
Python differs from most other programming languages because it uses whitespace
and indentation to determine block structure (that is, to determine what constitutes

This chapter covers
 Indenting and block structuring

 Differentiating comments

 Assigning variables

 Evaluating expressions

 Using common data types

 Getting user input

 Using correct Pythonic style
37

38 CHAPTER 4 The absolute basics
the body of a loop, the else clause of a conditional, and so on). Most languages use
braces of some sort to do this. Here is C code that calculates the factorial of 9, leaving
the result in the variable r:

/* This is C code */
int n, r;
n = 9;
r = 1;
while (n > 0) {
 r *= n;
 n--;
}

The braces delimit the body of the while loop, the code that is executed with each
repetition of the loop. The code is usually indented more or less as shown, to make
clear what’s going on, but it could also be written like this:

/* And this is C code with arbitrary indentation */
 int n, r;
 n = 9;
 r = 1;
 while (n > 0) {
r *= n;
n--;
}

The code still would execute correctly, even though it’s rather difficult to read.
 Here’s the Python equivalent:

This is Python code. (Yea!)
n = 9
r = 1
while n > 0:
 r = r * n
 n = n - 1

Python doesn’t use braces to indicate code structure; instead, the indentation itself is
used. The last two lines of the previous code are the body of the while loop because
they come immediately after the while statement and are indented one level further
than the while statement. If those lines weren’t indented, they wouldn’t be part of
the body of the while.

 Using indentation to structure code rather than braces may take some getting used
to, but there are significant benefits:

 It’s impossible to have missing or extra braces. You never need to hunt through
your code for the brace near the bottom that matches the one a few lines from
the top.

 The visual structure of the code reflects its real structure, which makes it easy to
grasp the skeleton of code just by looking at it.

Python also supports
C-style r *= n Python also

supports n -= 1

39Variables and assignments
 Python coding styles are mostly uniform. In other words, you’re unlikely to go
crazy from dealing with someone’s idea of aesthetically pleasing code. Every-
one’s code will look pretty much like yours.

You probably use consistent indentation in your code already, so this won’t be a big
step for you. If you’re using IDLE, it automatically indents lines. You just need to back-
space out of levels of indentation when desired. Most programming editors and
IDEs—Emacs, VIM, and Eclipse, to name a few—provide this functionality as well.
One thing that may trip you up once or twice until you get used to it is the fact that the
Python interpreter returns an error message if you have a space (or spaces) preceding
the commands you enter at a prompt.

4.2 Differentiating comments
For the most part, anything following a # symbol in a Python file is a comment and is
disregarded by the language. The obvious exception is a # in a string, which is just a
character of that string:

Assign 5 to x
x = 5
x = 3 # Now x is 3
x = "# This is not a comment"

You’ll put comments in Python code frequently.

4.3 Variables and assignments
The most commonly used command in Python is assignment, which looks pretty close
to what you might’ve used in other languages. Python code to create a variable called
x and assign the value 5 to that variable is

x = 5

In Python, unlike in many other computer languages, neither a variable type declara-
tion nor an end-of-line delimiter is necessary. The line is ended by the end of the line.
Variables are created automatically when they’re first assigned.

Variables in Python: buckets or labels?
The name variable is somewhat misleading in Python; name or label would be more
accurate. However, it seems that pretty much everyone calls variables variables at
some time or another. Whatever you call them, you should know how they really work
in Python.

A common, but inaccurate, explanation is that a variable is a container that stores a
value, somewhat like a bucket. This would be reasonable for many programming lan-
guages (C, for example).

40 CHAPTER 4 The absolute basics
Python variables can be set to any object, whereas in C and many other languages,
variables can store only the type of value they’re declared as. The following is perfectly
legal Python code:

>>> x = "Hello"
>>> print(x)
Hello
>>> x = 5
>>> print(x)
5

x starts out referring to the string object "Hello" and then refers to the integer
object 5. Of course, this feature can be abused, because arbitrarily assigning the same
variable name to refer successively to different data types can make code confusing to
understand.

(continued)

However, in Python variables aren’t buckets. Instead, they’re labels or tags that refer
to objects in the Python interpreter’s namespace. Any number of labels (or variables)
can refer to the same object, and when that object changes, the value referred to by
all of those variables also changes.

To see what this means, look at the following simple code:

>>> a = [1, 2, 3]
>>> b = a
>>> c = b
>>> b[1] = 5
>>> print(a, b, c)
[1, 5, 3] [1, 5, 3] [1, 5, 3]

If you’re thinking of variables as containers, this result makes no sense. How could
changing the contents of one container simultaneously change the other two? How-
ever, if variables are just labels referring to objects, it makes sense that changing the
object that all three labels refer to would be reflected everywhere.

If the variables are referring to constants or immutable values, this distinction isn’t
quite as clear:

>>> a = 1
>>> b = a
>>> c = b
>>> b = 5
>>> print(a, b, c)
1 5 1

Because the objects they refer to can’t change, the behavior of the variables in this
case is consistent with either explanation. In fact, in this case, after the third line a,
b, and c all refer to the same unchangeable integer object with the value 1. The next
line, b = 5, makes b refer to the integer object 5 but doesn’t change the references
of a or c.

41Expressions
 A new assignment overrides any previous assignments. The del statement deletes
the variable. Trying to print the variable’s contents after deleting it results in an error,
as though the variable had never been created in the first place:

>>> x = 5
>>> print(x)
5
>>> del x
>>> print(x)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'x' is not defined
>>>

Here, you have your first look at a traceback, which is printed when an error, called an
exception, has been detected. The last line tells you what exception was detected, which
in this case is a NameError exception on x. After its deletion, x is no longer a valid
variable name. In this example, the trace returns only line 1, in <module> because
only the single line has been sent in the interactive mode. In general, the full dynamic
call structure of the existing function at the time of the error’s occurrence is returned.
If you’re using IDLE, you obtain the same information with some small differences.
The code may look something like this:

Traceback (most recent call last):
 File "<pyshell#3>", line 1, in <module>
 print(x)
NameError: name 'x' is not defined

Chapter 14 describes this mechanism in more detail. A full list of the possible excep-
tions and what causes them is in the Python standard library documentation. Use the
index to find any specific exception (such as NameError) you receive.

 Variable names are case-sensitive and can include any alphanumeric character as
well as underscores but must start with a letter or underscore. See section 4.10 for
more guidance on the Pythonic style for creating variable names.

4.4 Expressions
Python supports arithmetic and similar expressions; these expressions will be familiar
to most readers. The following code calculates the average of 3 and 5, leaving the
result in the variable z:

x = 3
y = 5
z = (x + y) / 2

Note that arithmetic operators involving only integers do not always return an integer.
Even though all the values are integers, division (starting with Python 3) returns a
floating-point number, so the fractional part isn’t truncated. If you want traditional
integer division returning a truncated integer, you can use // instead.

42 CHAPTER 4 The absolute basics
 Standard rules of arithmetic precedence apply. If you’d left out the parentheses in
the last line, the code would’ve been calculated as x + (y / 2).

 Expressions don’t have to involve just numerical values; strings, Boolean values,
and many other types of objects can be used in expressions in various ways. I discuss
these objects in more detail as they’re used.

TRY THIS: VARIABLES AND EXPRESSIONS In the Python shell, create some vari-
ables. What happens when you try to put spaces, dashes, or other nonalpha-
numeric characters in the variable name? Play around with a few complex
expressions, such as x = 2 + 4 * 5 – 6 / 3. Use parentheses to group the
numbers in different ways and see how the result changes compared with the
original ungrouped expression.

4.5 Strings
You’ve already seen that Python, like most other programming languages, indicates
strings through the use of double quotes. This line leaves the string "Hello, World"
in the variable x:

x = "Hello, World"

Backslashes can be used to escape characters, to give them special meanings. \n
means the newline character, \t means the tab character, \\ means a single normal
backslash character, and \" is a plain double-quote character. It doesn’t end the
string:

x = "\tThis string starts with a \"tab\"."
x = "This string contains a single backslash(\\)."

You can use single quotes instead of double quotes. The following two lines do the
same thing:

x = "Hello, World"
x = 'Hello, World'

The only difference is that you don’t need to backslash " characters in single-quoted
strings or ' characters in double-quoted strings:

x = "Don't need a backslash"
x = 'Can\'t get by without a backslash'
x = "Backslash your \" character!"
x = 'You can leave the " alone'

You can’t split a normal string across lines. This code won’t work:

This Python code will cause an ERROR -- you can't split the string
across two lines.
x = "This is a misguided attempt to
put a newline into a string without using backslash-n"

43Numbers
But Python offers triple-quoted strings, which let you do this and include single and
double quotes without backslashes:

x = """Starting and ending a string with triple " characters
permits embedded newlines, and the use of " and ' without
backslashes"""

Now x is the entire sentence between the """ delimiters. (You can use triple single
quotes—'''—instead of triple double quotes to do the same thing.)

 Python offers enough string-related functionality that chapter 6 is devoted to the
topic.

4.6 Numbers
Because you’re probably familiar with standard numeric operations from other lan-
guages, this book doesn’t contain a separate chapter describing Python’s numeric
abilities. This section describes the unique features of Python numbers, and the
Python documentation lists the available functions.

 Python offers four kinds of numbers: integers, floats, complex numbers, and Booleans.
An integer constant is written as an integer—0, –11, +33, 123456—and has unlimited
range, restricted only by the resources of your machine. A float can be written with a
decimal point or in scientific notation: 3.14, –2E-8, 2.718281828. The precision of
these values is governed by the underlying machine but is typically equal to double
(64-bit) types in C. Complex numbers are probably of limited interest and are dis-
cussed separately later in the section. Booleans are either True or False and behave
identically to 1 and 0 except for their string representations.

 Arithmetic is much like it is in C. Operations involving two integers produce an
integer, except for division (/), which results in a float. If the // division symbol is
used, the result is an integer, with truncation. Operations involving a float always pro-
duce a float. Here are a few examples:

>>> 5 + 2 - 3 * 2
1
>>> 5 / 2 # floating-point result with normal division
2.5
>>> 5 / 2.0 # also a floating-point result
2.5
>>> 5 // 2 # integer result with truncation when divided using '//'
2
>>> 30000000000 # This would be too large to be an int in many languages
30000000000
>>> 30000000000 * 3
90000000000
>>> 30000000000 * 3.0
90000000000.0
>>> 2.0e-8 # Scientific notation gives back a float
2e-08
>>> 3000000 * 3000000

44 CHAPTER 4 The absolute basics
9000000000000
>>> int(200.2)
200
>>> int(2e2)
200
>>> float(200)
200.0

These are explicit conversions between types B. int truncates float values.
 Numbers in Python have two advantages over C or Java: Integers can be arbitrarily

large, and the division of two integers results in a float.

4.6.1 Built-in numeric functions

Python provides the following number-related functions as part of its core:

abs, divmod, float, hex, int, max, min, oct,
pow, round

See the documentation for details.

4.6.2 Advanced numeric functions

More advanced numeric functions such as the trig and hyperbolic trig functions, as
well as a few useful constants, aren’t built into Python but are provided in a standard
module called math. I explain modules in detail later. For now, it’s sufficient to know
that you must make the math functions in this section available by starting your
Python program or interactive session with the statement

from math import *

The math module provides the following functions and constants:

acos, asin, atan, atan2, ceil, cos, cosh, e, exp, fabs, floor, fmod,
frexp, hypot, ldexp, log, log10, mod, pi, pow, sin, sinh, sqrt, tan,
tanh

See the documentation for details.

4.6.3 Numeric computation

The core Python installation isn’t well suited to intensive numeric computation
because of speed constraints. But the powerful Python extension NumPy provides
highly efficient implementations of many advanced numeric operations. The empha-
sis is on array operations, including multidimensional matrices and more advanced
functions such as the Fast Fourier Transform. You should be able to find NumPy (or
links to it) at www.scipy.org.

4.6.4 Complex numbers

Complex numbers are created automatically whenever an expression of the form nj is
encountered, with n having the same form as a Python integer or float. j is, of course,

b

https://www.scipy.org

45Numbers
standard notation for the imaginary number equal to the square root of –1, for
example:

>>> (3+2j)
(3+2j)

Note that Python expresses the resulting complex number in parentheses as a way of
indicating that what’s printed to the screen represents the value of a single object:

>>> 3 + 2j - (4+4j)
(-1-2j)
>>> (1+2j) * (3+4j)
(-5+10j)
>>> 1j * 1j
(-1+0j)

Calculating j * j gives the expected answer of –1, but the result remains a Python
complex-number object. Complex numbers are never converted automatically to
equivalent real or integer objects. But you can easily access their real and imaginary
parts with real and imag:

>>> z = (3+5j)
>>> z.real
3.0
>>> z.imag
5.0

Note that real and imaginary parts of a complex number are always returned as float-
ing-point numbers.

4.6.5 Advanced complex-number functions

The functions in the math module don’t apply to complex numbers; the rationale is
that most users want the square root of –1 to generate an error, not an answer!
Instead, similar functions, which can operate on complex numbers, are provided in
the cmath module:

acos, acosh, asin, asinh, atan, atanh, cos, cosh, e, exp, log, log10,
pi, sin, sinh, sqrt, tan, tanh.

To make clear in the code that these functions are special-purpose complex-number
functions and to avoid name conflicts with the more normal equivalents, it’s best to
import the cmath module by saying

import cmath

and then to explicitly refer to the cmath package when using the function:

>>> import cmath
>>> cmath.sqrt(-1)
1j

46 CHAPTER 4 The absolute basics
The important thing to keep in mind is that by importing the cmath module, you can
do almost anything you can do with other numbers.

TRY THIS: MANIPULATING STRINGS AND NUMBERS In the Python shell, create
some string and number variables (integers, floats, and complex numbers).
Experiment a bit with what happens when you do operations with them,
including across types. Can you multiply a string by an integer, for example,
or can you multiply it by a float or complex number? Also load the math mod-
ule and try a few of the functions; then load the cmath module and do the
same. What happens if you try to use one of those functions on an integer or
float after loading the cmath module? How might you get the math module
functions back?

4.7 The None value
In addition to standard types such as strings and numbers, Python has a special basic
data type that defines a single special data object called None. As the name suggests,
None is used to represent an empty value. It appears in various guises throughout
Python. For example, a procedure in Python is just a function that doesn’t explicitly
return a value, which means that by default, it returns None.

 None is often useful in day-to-day Python programming as a placeholder to indi-
cate a point in a data structure where meaningful data will eventually be found, even
though that data hasn’t yet been calculated. You can easily test for the presence of
None because there’s only one instance of None in the entire Python system (all refer-
ences to None point to the same object), and None is equivalent only to itself.

4.8 Getting input from the user
You can also use the input() function to get input from the user. Use the prompt
string you want to display to the user as input’s parameter:

>>> name = input("Name? ")
Name? Jane
>>> print(name)
Jane
>>> age = int(input("Age? "))
Age? 28

Minimizing from <module> import *
This is a good example of why it’s best to minimize the use of the from <module>
import * form of the import statement. If you used it to import first the math mod-
ule and then the cmath module, the commonly named functions in cmath would
override those of math. It’s also more work for someone reading your code to figure
out the source of the specific functions you use. Some modules are explicitly
designed to use this form of import.

See chapter 10 for more details on how to use modules and module names.

Converts input
from string to int

47Basic Python style
>>> print(age)
28
>>>

This is a fairly simple way to get user input. The one catch is that the input comes in as
a string, so if you want to use it as a number, you have to use the int() or float()
function to convert it.

TRY THIS: GETTING INPUT Experiment with the input() function to get string
and integer input. Using code similar to the previous code, what is the effect
of not using int() around the call to input()for integer input? Can you
modify that code to accept a float—say, 28.5? What happens if you deliber-
ately enter the wrong type of value? Examples include a float in which an inte-
ger is expected and a string in which a number is expected—and vice versa.

4.9 Built-in operators
Python provides various built-in operators, from the standard (+, *, and so on) to the
more esoteric, such as operators for performing bit shifting, bitwise logical functions,
and so forth. Most of these operators are no more unique to Python than to any other
language; hence, I won’t explain them in the main text. You can find a complete list of
the Python built-in operators in the documentation.

4.10 Basic Python style
Python has relatively few limitations on coding style with the obvious exception of the
requirement to use indentation to organize code into blocks. Even in that case, the
amount of indentation and type of indentation (tabs versus spaces) isn’t mandated.
However, there are preferred stylistic conventions for Python, which are contained in
Python Enhancement Proposal (PEP) 8, which is summarized in appendix A and
available online at www.python.org/dev/peps/pep-0008/. A selection of Pythonic
conventions is provided in table 4.1, but to fully absorb Pythonic style, periodically
reread PEP 8.

Table 4.1 Pythonic coding conventions

Situation Suggestion Example

Module/package names Short, all lowercase, underscores
only if needed

imp, sys

Function names All lowercase,
underscores_for_readablitiy

foo(), my_func()

Variable names All lowercase,
underscores_for_readablitiy

my_var

Class names CapitalizeEachWord MyClass

Constant names ALL_CAPS_WITH_UNDERSCORES PI, TAX_RATE

https://www.python.org/dev/peps/pep-0008/

48 CHAPTER 4 The absolute basics
I strongly urge you to follow the conventions of PEP 8. They’re wisely chosen and
time-tested, and they’ll make your code easier for you and other Python programmers
to understand.

QUICK CHECK: PYTHONIC STYLE Which of the following variable and function
names do you think are not good Pythonic style? Why?

bar(), varName, VERYLONGVARNAME, foobar, longvarname,
foo_bar(), really_very_long_var_name

Summary
 The basic syntax summarized above is enough to start writing Python code.
 Python syntax is predictable and consistent.
 Because the syntax offers few surprises, many programmers can get started writ-

ing code surprisingly quickly.

Indentation Four spaces per level, no tabs

Comparisons Don't compare explicitly to True
or False

if my_var:
if not my_var:

Table 4.1 Pythonic coding conventions (continued)

Situation Suggestion Example

Lists, tuples, and sets
In this chapter, I discuss the two major Python sequence types: lists and tuples. At
first, lists may remind you of arrays in many other languages, but don’t be fooled:
lists are a good deal more flexible and powerful than plain arrays.

 Tuples are like lists that can’t be modified; you can think of them as a restricted
type of list or as a basic record type. I discuss the need for such a restricted data
type later in the chapter. This chapter also discusses a newer Python collection type:
sets. Sets are useful when an object’s membership in the collection, as opposed to
its position, is important

This chapter covers
 Manipulating lists and list indices

 Modifying lists

 Sorting

 Using common list operations

 Handling nested lists and deep copies

 Using tuples

 Creating and using sets
49

50 CHAPTER 5 Lists, tuples, and sets
 Most of the chapter is devoted to lists, because if you understand lists, you pretty
much understand tuples. The last part of the chapter discusses the differences
between lists and tuples in both functional and design terms.

5.1 Lists are like arrays
A list in Python is much the same thing as an array in Java or C or any other language;
it’s an ordered collection of objects. You create a list by enclosing a comma-separated
list of elements in square brackets, like so:

This assigns a three-element list to x
x = [1, 2, 3]

Note that you don’t have to worry about declaring the list or fixing its size ahead of
time. This line creates the list as well as assigns it, and a list automatically grows or
shrinks as needed.

Unlike lists in many other languages, Python lists can contain different types of ele-
ments; a list element can be any Python object. Here’s a list that contains a variety of
elements:

First element is a number, second is a string, third is another list.
x = [2, "two", [1, 2, 3]]

Probably the most basic built-in list function is the len function, which returns the
number of elements in a list:

>>> x = [2, "two", [1, 2, 3]]
>>> len(x)
3

Note that the len function doesn’t count the items in the inner, nested list.

QUICK CHECK: LEN() What would len() return for each of the following:
[0]; []; [[1, 3, [4, 5], 6], 7]?

5.2 List indices
Understanding how list indices work will make Python much more useful to you.
Please read the whole section!

Arrays in Python
A typed array module available in Python provides arrays based on C data types.
Information on its use can be found in the Python Library Reference. I suggest that
you look into it only if you really need the performance improvement. If a situation
calls for numerical computations, you should consider using NumPy, mentioned in
chapter 4 and available at www.scipy.org.

www.scipy.org

51List indices
 Elements can be extracted from a Python list by using a notation like C’s array
indexing. Like C and many other languages, Python starts counting from 0; asking for
element 0 returns the first element of the list, asking for element 1 returns the second
element, and so forth. Here are a few examples:

>>> x = ["first", "second", "third", "fourth"]
>>> x[0]
'first'
>>> x[2]
'third'

But Python indexing is more flexible than C indexing. If indices are negative num-
bers, they indicate positions counting from the end of the list, with –1 being the last
position in the list, –2 being the second-to-last position, and so forth. Continuing with
the same list x, you can do the following:

>>> a = x[-1]
>>> a
'fourth'
>>> x[-2]
'third'

For operations involving a single list index, it’s generally satisfactory to think of the
index as pointing at a particular element in the list. For more advanced operations,
it’s more correct to think of list indices as indicating positions between elements. In the
list ["first", "second", "third", "fourth"], you can think of the indices as
pointing like this:

This is irrelevant when you’re extracting a single element, but Python can extract or
assign to an entire sublist at once—an operation known as slicing. Instead of entering
list[index] to extract the item just after index, enter list[index1:index2] to
extract all items including index1 and up to (but not including) index2 into a new
list. Here are some examples:

>>> x = ["first", "second", "third", "fourth"]
>>> x[1:-1]
['second', 'third']
>>> x[0:3]
['first', 'second', 'third']
>>> x[-2:-1]
['third']

x =["first", "second", "third", "fourth"]

Positive indices 0 1 2 3

Negative indices –4 –3 –2 –1

52 CHAPTER 5 Lists, tuples, and sets
It may seem reasonable that if the second index indicates a position in the list before
the first index, this code would return the elements between those indices in reverse
order, but this isn’t what happens. Instead, this code returns an empty list:

>>> x[-1:2]
[]

When slicing a list, it’s also possible to leave out index1 or index2. Leaving out
index1 means “Go from the beginning of the list,” and leaving out index2 means
“Go to the end of the list”:

>>> x[:3]
['first', 'second', 'third']
>>> x[2:]
['third', 'fourth']

Omitting both indices makes a new list that goes from the beginning to the end of the
original list—that is, copies the list. This technique is useful when you want to make a
copy that you can modify without affecting the original list:

>>> y = x[:]
>>> y[0] = '1 st'
>>> y
['1 st', 'second', 'third', 'fourth']
>>> x
['first', 'second', 'third', 'fourth']

TRY THIS: LIST SLICES AND INDEXES Using what you know about the len()
function and list slices, how would you combine the two to get the second half
of a list when you don’t know what size it is? Experiment in the Python shell
to confirm that your solution works.

5.3 Modifying lists
You can use list index notation to modify a list as well as to extract an element from it.
Put the index on the left side of the assignment operator:

>>> x = [1, 2, 3, 4]
>>> x[1] = "two"
>>> x
[1, 'two', 3, 4]

Slice notation can be used here too. Saying something like lista[index1:index2]
= listb causes all elements of lista between index1 and index2 to be replaced by
the elements in listb. listb can have more or fewer elements than are removed
from lista, in which case the length of lista is altered. You can use slice assign-
ment to do several things, as shown here:

>>> x = [1, 2, 3, 4]
>>> x[len(x):] = [5, 6, 7]
>>> x
[1, 2, 3, 4, 5, 6, 7]

Appends list
to end of list

53Modifying lists
>>> x[:0] = [-1, 0]
>>> x
[-1, 0, 1, 2, 3, 4, 5, 6, 7]
>>> x[1:-1] = []
>>> x
[-1, 7]

Appending a single element to a list is such a common operation that there’s a special
append method for it:

>>> x = [1, 2, 3]
>>> x.append("four")
>>> x
[1, 2, 3, 'four']

One problem can occur if you try to append one list to another. The list gets
appended as a single element of the main list:

>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7]
>>> x.append(y)
>>> x
[1, 2, 3, 4, [5, 6, 7]]

The extend method is like the append method except that it allows you to add one
list to another:

>>> x = [1, 2, 3, 4]
>>> y = [5, 6, 7]
>>> x.extend(y)
>>> x
[1, 2, 3, 4, 5, 6, 7]

There’s also a special insert method to insert new list elements between two existing
elements or at the front of the list. insert is used as a method of lists and takes two
additional arguments. The first additional argument is the index position in the list
where the new element should be inserted, and the second is the new element itself:

>>> x = [1, 2, 3]
>>> x.insert(2, "hello")
>>> print(x)
[1, 2, 'hello', 3]
>>> x.insert(0, "start")
>>> print(x)
['start', 1, 2, 'hello', 3]

insert understands list indices as discussed in section 5.2, but for most uses, it’s easi-
est to think of list.insert(n, elem) as meaning insert elem just before the
nth element of list. insert is just a convenience method. Anything that can be done
with insert can also be done with slice assignment. That is, list.insert(n,
elem) is the same thing as list[n:n] = [elem] when n is nonnegative. Using

Appends list
to front of list

Removes elements
from list

54 CHAPTER 5 Lists, tuples, and sets
insert makes for somewhat more readable code, and insert even handles negative
indices:

>>> x = [1, 2, 3]
>>> x.insert(-1, "hello")
>>> print(x)
[1, 2, 'hello', 3]

The del statement is the preferred method of deleting list items or slices. It doesn’t
do anything that can’t be done with slice assignment, but it’s usually easier to remem-
ber and easier to read:

>>> x = ['a', 2, 'c', 7, 9, 11]
>>> del x[1]
>>> x
['a', 'c', 7, 9, 11]
>>> del x[:2]
>>> x
[7, 9, 11]

In general, del list[n] does the same thing as list[n:n+1] = [], whereas del
list[m:n] does the same thing as list[m:n] = [].

 The remove method isn’t the converse of insert. Whereas insert inserts an ele-
ment at a specified location, remove looks for the first instance of a given value in a
list and removes that value from the list:

>>> x = [1, 2, 3, 4, 3, 5]
>>> x.remove(3)
>>> x
[1, 2, 4, 3, 5]
>>> x.remove(3)
>>> x
[1, 2, 4, 5]
>>> x.remove(3)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: list.remove(x): x not in list

If remove can’t find anything to remove, it raises an error. You can catch this error by
using the exception-handling abilities of Python, or you can avoid the problem by using
in to check for the presence of something in a list before attempting to remove it.

 The reverse method is a more specialized list modification method. It efficiently
reverses a list in place:

>>> x = [1, 3, 5, 6, 7]
>>> x.reverse()
>>> x
[7, 6, 5, 3, 1]

TRY THIS: MODIFYING LISTS Suppose that you have a list 10 items long. How
might you move the last three items from the end of the list to the beginning,
keeping them in the same order?

55Sorting lists
5.4 Sorting lists
Lists can be sorted by using the built-in Python sort method:

>>> x = [3, 8, 4, 0, 2, 1]
>>> x.sort()
>>> x
[0, 1, 2, 3, 4, 8]

This method does an in-place sort—that is, changes the list being sorted. To sort a list
without changing the original list, you have two options. You can use the sorted()
built-in function, discussed in section 5.4.2, or you can make a copy of the list and sort
the copy:

>>> x = [2, 4, 1, 3]
>>> y = x[:]
>>> y.sort()
>>> y
[1, 2, 3, 4]
>>> x
[2, 4, 1, 3]

Sorting works with strings, too:

>>> x = ["Life", "Is", "Enchanting"]
>>> x.sort()
>>> x
['Enchanting', 'Is', 'Life']

The sort method can sort just about anything because Python can compare just
about anything. But there’s one caveat in sorting: The default key method used by
sort requires all items in the list to be of comparable types. That means that using
the sort method on a list containing both numbers and strings raises an exception:

>>> x = [1, 2, 'hello', 3]
>>> x.sort()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: '<' not supported between instances of 'str' and 'int'

Conversely, you can sort a list of lists:

>>> x = [[3, 5], [2, 9], [2, 3], [4, 1], [3, 2]]
>>> x.sort()
>>> x
[[2, 3], [2, 9], [3, 2], [3, 5], [4, 1]]

According to the built-in Python rules for comparing complex objects, the sublists are
sorted first by ascending first element and then by ascending second element.

 sort is even more flexible; it has an optional reverse parameter that causes the
sort to be in reverse order when reverse=True, and it’s possible to use your own key
function to determine how elements of a list are sorted.

56 CHAPTER 5 Lists, tuples, and sets
5.4.1 Custom sorting

To use custom sorting, you need to be able to define functions—something I haven’t
talked about yet. In this section, I also discuss the fact that len(string) returns the
number of characters in a string. String operations are discussed more fully in
chapter 6.

 By default, sort uses built-in Python comparison functions to determine ordering,
which is satisfactory for most purposes. At times, though, you want to sort a list in a
way that doesn’t correspond to this default ordering. Suppose that you want to sort a
list of words by the number of characters in each word, as opposed to the lexico-
graphic sort that Python normally carries out.

 To do this, write a function that returns the value, or key, that you want to sort on,
and use it with the sort method. That function in the context of sort is a function
that takes one argument and returns the key or value that the sort function is to use.

 For number-of-characters ordering, a suitable key function could be

def compare_num_of_chars(string1):
 return len(string1)

This key function is trivial. It passes the length of each string back to the sort
method, rather than the strings themselves.

 After you define the key function, using it is a matter of passing it to the sort
method by using the key keyword. Because functions are Python objects, they can be
passed around like any other Python objects. Here’s a small program that illustrates
the difference between a default sort and your custom sort:

>>> def compare_num_of_chars(string1):
... return len(string1)
>>> word_list = ['Python', 'is', 'better', 'than', 'C']
>>> word_list.sort()
>>> print(word_list)
['C', 'Python', 'better', 'is', 'than']
>>> word_list = ['Python', 'is', 'better', 'than', 'C']
>>> word_list.sort(key=compare_num_of_chars)
>>> print(word_list)
['C', 'is', 'than', 'Python', 'better']

The first list is in lexicographical order (with uppercase coming before lowercase),
and the second list is ordered by ascending number of characters.

 Custom sorting is very useful, but if performance is critical, it may be slower than
the default. Usually, this effect is minimal, but if the key function is particularly com-
plex, the effect may be more than desired, especially for sorts involving hundreds of
thousands or millions of elements.

 One particular place to avoid custom sorts is where you want to sort a list in
descending, rather than ascending, order. In this case, use the sort method’s
reverse parameter set to True. If for some reason you don’t want to do that, it’s still
better to sort the list normally and then use the reverse method to invert the order

57Other common list operations
of the resulting list. These two operations together—the standard sort and the
reverse—will still be much faster than a custom sort.

5.4.2 The sorted() function

Lists have a built-in method to sort themselves, but other iterables in Python, such as
the keys of a dictionary, don’t have a sort method. Python also has the built-in func-
tion sorted(), which returns a sorted list from any iterable. sorted() uses the same
key and reverse parameters as the sort method:

>>> x = (4, 3, 1, 2)
>>> y = sorted(x)
>>> y
[1, 2, 3, 4]
>>> z = sorted(x, reverse=True)
>>> z
[4, 3, 2, 1]

TRY THIS: SORTING LISTS Suppose that you have a list in which each element is
in turn a list: [[1, 2, 3], [2, 1, 3], [4, 0, 1]]. If you wanted to sort
this list by the second element in each list so that the result would be [[4,
0, 1], [2, 1, 3], [1, 2, 3]], what function would you write to pass as
the key value to the sort() method?

5.5 Other common list operations
Several other list methods are frequently useful, but they don’t fall into any specific
category.

5.5.1 List membership with the in operator

It’s easy to test whether a value is in a list by using the in operator, which returns a
Boolean value. You can also use the converse, the not in operator:

>>> 3 in [1, 3, 4, 5]
True
>>> 3 not in [1, 3, 4, 5]
False
>>> 3 in ["one", "two", "three"]
False
>>> 3 not in ["one", "two", "three"]
True

5.5.2 List concatenation with the + operator

To create a list by concatenating two existing lists, use the + (list concatenation) oper-
ator, which leaves the argument lists unchanged:

>>> z = [1, 2, 3] + [4, 5]
>>> z
[1, 2, 3, 4, 5]

58 CHAPTER 5 Lists, tuples, and sets
5.5.3 List initialization with the * operator

Use the * operator to produce a list of a given size, which is initialized to a given value.
This operation is a common one for working with large lists whose size is known ahead
of time. Although you can use append to add elements and automatically expand the
list as needed, you obtain greater efficiency by using * to correctly size the list at the
start of the program. A list that doesn’t change in size doesn’t incur any memory real-
location overhead:

>>> z = [None] * 4
>>> z
[None, None, None, None]

When used with lists in this manner, * (which in this context is called the list multiplica-
tion operator) replicates the given list the indicated number of times and joins all the
copies to form a new list. This is the standard Python method for defining a list of a
given size ahead of time. A list containing a single instance of None is commonly used
in list multiplication, but the list can be anything:

>>> z = [3, 1] * 2
>>> z
[3, 1, 3, 1]

5.5.4 List minimum or maximum with min and max

You can use min and max to find the smallest and largest elements in a list. You’ll prob-
ably use min and max mostly with numerical lists, but you can use them with lists con-
taining any type of element. Trying to find the maximum or minimum object in a set of
objects of different types causes an error if comparing those types doesn’t make sense:

>>> min([3, 7, 0, -2, 11])
-2
>>> max([4, "Hello", [1, 2]])
Traceback (most recent call last):
 File "<pyshell#58>", line 1, in <module>
 max([4, "Hello",[1, 2]])
TypeError: '>' not supported between instances of 'str' and 'int'

5.5.5 List search with index

If you want to find where in a list a value can be found (rather than wanting to know
only whether the value is in the list), use the index method. This method searches
through a list looking for a list element equivalent to a given value and returns the
position of that list element:

>>> x = [1, 3, "five", 7, -2]
>>> x.index(7)
3
>>> x.index(5)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: 5 is not in list

59Other common list operations
Attempting to find the position of an element that doesn’t exist in the list raises an
error, as shown here. This error can be handled in the same manner as the analogous
error that can occur with the remove method (that is, by testing the list with in
before using index).

5.5.6 List matches with count

count also searches through a list, looking for a given value, but it returns the num-
ber of times that the value is found in the list rather than positional information:

>>> x = [1, 2, 2, 3, 5, 2, 5]
>>> x.count(2)
3
>>> x.count(5)
2
>>> x.count(4)
0

5.5.7 Summary of list operations

You can see that lists are very powerful data structures, with possibilities that go far
beyond those of plain old arrays. List operations are so important in Python program-
ming that it’s worth laying them out for easy reference, as shown in table 5.1.

Table 5.1 List operations

List operation Explanation Example

[] Creates an empty list x = []

len Returns the length of a list len(x)

append Adds a single element to the end of a list x.append('y')

extend Adds another list to the end of the list x.extend(['a',
'b'])

insert Inserts a new element at a given position in the list x.insert(0, 'y')

del Removes a list element or slice del(x[0])

remove Searches for and removes a given value from a list x.remove('y')

reverse Reverses a list in place x.reverse()

sort Sorts a list in place x.sort()

+ Adds two lists together x1 + x2

* Replicates a list x = ['y'] * 3

min Returns the smallest element in a list min(x)

max Returns the largest element in a list max(x)

index Returns the position of a value in a list x.index['y']

count Counts the number of times a value occurs in a list x.count('y')

60 CHAPTER 5 Lists, tuples, and sets
Being familiar with these list operations will make your life as a Python coder much
easier.

QUICK CHECK: LIST OPERATIONS What would be the result of len([[1,2]] * 3)?

What are two differences between using the in operator and a list’s index()
method?

Which of the following will raise an exception?: min(["a", "b”, "c"]);
max([1, 2, "three"]); [1, 2, 3].count("one")

TRY THIS: LIST OPERATIONS If you have a list x, write the code to safely remove
an item if—and only if—that value is in the list.

Modify that code to remove the element only if the item occurs in the list
more than once.

5.6 Nested lists and deep copies
This section covers another advanced topic that you may want to skip if you’re just
learning the language.

 Lists can be nested. One application of nesting is to represent two-dimensional
matrices. The members of these matrices can be referred to by using two-dimensional
indices. Indices for these matrices work as follows:

>>> m = [[0, 1, 2], [10, 11, 12], [20, 21, 22]]
>>> m[0]
[0, 1, 2]
>>> m[0][1]
1
>>> m[2]
[20, 21, 22]
>>> m[2][2]
22

This mechanism scales to higher dimensions in the manner you’d expect.
 Most of the time, this is all you need to concern yourself with. But you may run into

an issue with nested lists; specifically the way that variables refer to objects and how
some objects (such as lists) can be modified (are mutable). An example is the best way
to illustrate:

>>> nested = [0]
>>> original = [nested, 1]
>>> original
[[0], 1]

sum Sums the items (if they can be summed) sum(x)

in Returns whether an item is in a list 'y' in x

Table 5.1 List operations (continued)

List operation Explanation Example

61Nested lists and deep copies
Figure 5.1 shows what this example looks like.
 Now the value in the nested list can be changed by

using either the nested or the original variables:

>>> nested[0] = 'zero'
>>> original
[['zero'], 1]
>>> original[0][0] = 0
>>> nested
[0]
>>> original
[[0], 1]

But if nested is set to another list, the connection between them is broken:

>>> nested = [2]
>>> original
[[0], 1]

Figure 5.2 illustrates this condition.
 You’ve seen that you can obtain a copy of a list by taking

a full slice (that is, x[:]). You can also obtain a copy of a
list by using the + or * operator (for example, x + [] or
x * 1). These techniques are slightly less efficient than the
slice method. All three create what is called a shallow copy
of the list, which is probably what you want most of the
time. But if your list has other lists nested in it, you may
want to make a deep copy. You can do this with the deep-
copy function of the copy module:

>>> original = [[0], 1]
>>> shallow = original[:]
>>> import copy
>>> deep = copy.deepcopy(original)

See figure 5.3 for an illustration.
 The lists pointed at by the original or shallow

variables are connected. Changing the value in
the nested list through either one of them affects
the other:

>>> shallow[1] = 2
>>> shallow
[[0], 2]
>>> original
[[0], 1]
>>> shallow[0][0] = 'zero'
>>> original
[['zero'], 1]

Figure 5.1 A list with its
first item referring to a
nested list

Figure 5.2 The first item
of the original list is still a
nested list, but the nested
variable refers to a different
list.

Figure 5.3 A shallow copy doesn’t
copy nested lists.

62 CHAPTER 5 Lists, tuples, and sets
The deep copy is independent of the original, and no change to it has any effect on
the original list:

>>> deep[0][0] = 5
>>> deep
[[5], 1]
>>> original
[['zero'], 1]

This behavior is the same for any other nested objects in a list that are modifiable
(such as dictionaries).

 Now that you’ve seen what lists can do, it’s time to look at tuples.

TRY THIS: LIST COPIES Suppose that you have the following list: x = [[1, 2,
3], [4, 5, 6], [7, 8, 9]] What code could you use to get a copy y of
that list in which you could change the elements without the side effect of
changing the contents of x?

5.7 Tuples
Tuples are data structures that are very similar to lists, but they can’t be modified; they
can only be created. Tuples are so much like lists that you may wonder why Python
bothers to include them. The reason is that tuples have important roles that can’t be
efficiently filled by lists, such as keys for dictionaries.

5.7.1 Tuple basics

Creating a tuple is similar to creating a list: assign a sequence of values to a variable. A
list is a sequence that’s enclosed by [and]; a tuple is a sequence that’s enclosed by (
and):

>>> x = ('a', 'b', 'c')

This line creates a three-element tuple.
 After a tuple is created, using it is so much like using a list that it’s easy to forget

that tuples and lists are different data types:

>>> x[2]
'c'
>>> x[1:]
('b', 'c')
>>> len(x)
3
>>> max(x)
'c'
>>> min(x)
'a'
>>> 5 in x
False
>>> 5 not in x
True

63Tuples
The main difference between tuples and lists is that tuples are immutable. An attempt
to modify a tuple results in a confusing error message, which is Python’s way of saying
that it doesn’t know how to set an item in a tuple:

>>> x[2] = 'd'
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment

You can create tuples from existing ones by using the + and * operators:

>>> x + x
('a', 'b', 'c', 'a', 'b', 'c')
>>> 2 * x
('a', 'b', 'c', 'a', 'b', 'c')

A copy of a tuple can be made in any of the same ways as for lists:

>>> x[:]
('a', 'b', 'c')
>>> x * 1
('a', 'b', 'c')
>>> x + ()
('a', 'b', 'c')

If you didn’t read section 5.6, you can skip the rest of this paragraph. Tuples them-
selves can’t be modified. But if they contain any mutable objects (for example, lists or
dictionaries), these objects may be changed if they’re still assigned to their own vari-
ables. Tuples that contain mutable objects aren’t allowed as keys for dictionaries.

5.7.2 One-element tuples need a comma

A small syntactical point is associated with using tuples. Because the square brackets
used to enclose a list aren’t used elsewhere in Python, it’s clear that [] means an
empty list and that [1] means a list with one element. The same thing isn’t true of the
parentheses used to enclose tuples. Parentheses can also be used to group items in
expressions to force a certain evaluation order. If you say (x + y) in a Python pro-
gram, do you mean that x and y should be added and then put into a one-element
tuple, or do you mean that the parentheses should be used to force x and y to be
added before any expressions to either side come into play?

 This situation is a problem only for tuples with one element, because tuples with
more than one element always include commas to separate the elements, and the
commas tell Python that the parentheses indicate a tuple, not a grouping. In the case
of one-element tuples, Python requires that the element in the tuple be followed by a
comma, to disambiguate the situation. In the case of zero-element (empty) tuples,
there’s no problem. An empty set of parentheses must be a tuple because it’s mean-
ingless otherwise:

>>> x = 3
>>> y = 4
>>> (x + y) # This line adds x and y.

64 CHAPTER 5 Lists, tuples, and sets
7
>>> (x + y,) # Including a comma indicates that the parentheses denote a

tuple.
(7,)
>>> () # To create an empty tuple, use an empty pair of parentheses.
()

5.7.3 Packing and unpacking tuples

As a convenience, Python permits tuples to appear on the left side of an assignment
operator, in which case variables in the tuple receive the corresponding values from
the tuple on the right side of the assignment operator. Here’s a simple example:

>>> (one, two, three, four) = (1, 2, 3, 4)
>>> one
1
>>> two
2

This example can be written even more simply, because Python recognizes tuples in
an assignment context even without the enclosing parentheses. The values on the
right side are packed into a tuple and then unpacked into the variables on the left
side:

one, two, three, four = 1, 2, 3, 4

One line of code has replaced the following four lines of code:

one = 1
two = 2
three = 3
four = 4

This technique is a convenient way to swap values between variables. Instead of saying

temp = var1
var1 = var2
var2 = temp

simply say

var1, var2 = var2, var1

To make things even more convenient, Python 3 has an extended unpacking feature,
allowing an element marked with * to absorb any number of elements not matching
the other elements. Again, some examples make this feature clearer:

>>> x = (1, 2, 3, 4)
>>> a, b, *c = x
>>> a, b, c
(1, 2, [3, 4])
>>> a, *b, c = x
>>> a, b, c
(1, [2, 3], 4)

65Tuples
>>> *a, b, c = x
>>> a, b, c
([1, 2], 3, 4)
>>> a, b, c, d, *e = x
>>> a, b, c, d, e
(1, 2, 3, 4, [])

Note that the starred element receives all the surplus items as a list and that if there
are no surplus elements, the starred element receives an empty list.

 Packing and unpacking can also be performed by using list delimiters:

>>> [a, b] = [1, 2]
>>> [c, d] = 3, 4
>>> [e, f] = (5, 6)
>>> (g, h) = 7, 8
>>> i, j = [9, 10]
>>> k, l = (11, 12)
>>> a
1
>>> [b, c, d]
[2, 3, 4]
>>> (e, f, g)
(5, 6, 7)
>>> h, i, j, k, l
(8, 9, 10, 11, 12)

5.7.4 Converting between lists and tuples

Tuples can be easily converted to lists with the list function, which takes any
sequence as an argument and produces a new list with the same elements as the origi-
nal sequence. Similarly, lists can be converted to tuples with the tuple function,
which does the same thing but produces a new tuple instead of a new list:

>>> list((1, 2, 3, 4))
[1, 2, 3, 4]
>>> tuple([1, 2, 3, 4])
(1, 2, 3, 4)

As an interesting side note, list is a convenient way to break a string into characters:

>>> list("Hello")
['H', 'e', 'l', 'l', 'o']

This technique works because list (and tuple) apply to any Python sequence, and a
string is just a sequence of characters. (Strings are discussed fully in chapter 6.)

QUICK CHECK: TUPLES Explain why the following operations aren’t legal for
the tuple x = (1, 2, 3, 4):

x.append(1)
x[1] = "hello"
del x[2]

If you had a tuple x = (3, 1, 4, 2), how might you end up with x sorted?

66 CHAPTER 5 Lists, tuples, and sets
5.8 Sets
A set in Python is an unordered collection of objects used when membership and
uniqueness in the set are main things you need to know about that object. Like dic-
tionary keys (discussed in chapter 7), the items in a set must be immutable and hash-
able. This means that ints, floats, strings, and tuples can be members of a set, but lists,
dictionaries, and sets themselves can’t.

5.8.1 Set operations

In addition to the operations that apply to collections in general, such as in, len, and
iteration in for loops, sets have several set-specific operations:

>>> x = set([1, 2, 3, 1, 3, 5])
>>> x
{1, 2, 3, 5}
>>> x.add(6)
>>> x
{1, 2, 3, 5, 6}
>>> x.remove(5)
>>> x
{1, 2, 3, 6}
>>> 1 in x
True
>>> 4 in x
False
>>> y = set([1, 7, 8, 9])
>>> x | y
{1, 2, 3, 6, 7, 8, 9}
>>> x & y
{1}
>>> x ^ y
{2, 3, 6, 7, 8, 9}
>>>

You can create a set by using set on a sequence, such as a list B. When a sequence is
made into a set, duplicates are removed c. After creating a set by using the set func-
tion, you can use add d and remove e to change the elements in the set. The in
keyword is used to check for membership of an object in a set f. You can also use |
g to get the union, or combination, of two sets, & to get their intersection h, and ^
i to find their symmetric difference—that is, elements that are in one set or the
other but not both.

 These examples aren’t a complete listing of set operations but are enough to give
you a good idea of how sets work. For more information, refer to the official Python
documentation.

5.8.2 Frozensets

Because sets aren’t immutable and hashable, they can’t belong to other sets. To rem-
edy that situation, Python has another set type, frozenset, which is just like a set but

B
c

d

e

f

f

g

h

i

67Summary
can’t be changed after creation. Because frozensets are immutable and hashable, they
can be members of other sets:

>>> x = set([1, 2, 3, 1, 3, 5])
>>> z = frozenset(x)
>>> z
frozenset({1, 2, 3, 5})
>>> z.add(6)
Traceback (most recent call last):
 File "<pyshell#79>", line 1, in <module>
 z.add(6)
AttributeError: 'frozenset' object has no attribute 'add'
>>> x.add(z)
>>> x
{1, 2, 3, 5, frozenset({1, 2, 3, 5})}

QUICK CHECK: SETS If you were to construct a set from the following list, how
many elements would the set have?: [1, 2, 5, 1, 0, 2, 3, 1, 1, (1,
2, 3)]

LAB 5: EXAMINING A LIST In this lab, the task is to read a set of temperature
data (the monthly high temperatures at Heathrow Airport for 1948 through
2016) from a file and then find some basic information: the highest and low-
est temperatures, the mean (average) temperature, and the median tempera-
ture (the temperature in the middle if all the temperatures are sorted).

The temperature data is in the file lab_05.txt in the source code directory for
this chapter. Because I haven’t yet discussed reading files, here’s the code to
read the files into a list:

temperatures = []
with open('lab_05.txt') as infile:
 for row in infile:
 temperatures.append(int(row.strip())

You should find the highest and lowest temperature, the average, and the
median. You’ll probably want to use the min(), max(), sum(), len(),
and sort() functions/methods.

BONUS Determine how many unique temperatures are in the list.

Summary
 Lists and tuples are structures that embody the idea of a sequence of elements,

as are strings.
 Lists are like arrays in other languages, but with automatic resizing, slice nota-

tion, and many convenience functions.
 Tuples are like lists but can’t be modified, so they use less memory and can be

dictionary keys (see chapter 7).
 Sets are iterable collections, but they’re unordered and can’t have duplicate ele-

ments.

Strings
Handling text—from user input to filenames to chunks of text to be processed—is
a common chore in programming. Python comes with powerful tools to handle
and format text. This chapter discusses the standard string and string-related oper-
ations in Python.

6.1 Strings as sequences of characters
For the purposes of extracting characters and substrings, strings can be considered
to be sequences of characters, which means that you can use index or slice notation:

This chapter covers
 Understanding strings as sequences of characters

 Using basic string operations

 Inserting special characters and escape sequences

 Converting from objects to strings

 Formatting strings

 Using the byte type
68

69Basic string operations
>>> x = "Hello"
>>> x[0]
'H'
>>> x[-1]
'o'
>>> x[1:]
'ello'

One use for slice notation with strings is to chop the newline off the end of a string
(usually, a line that’s just been read from a file):

>>> x = "Goodbye\n"
>>> x = x[:-1]
>>> x
'Goodbye'

This code is just an example. You should know that Python strings have other, better
methods to strip unwanted characters, but this example illustrates the usefulness of
slicing.

 You can also determine how many characters are in the string by using the len
function, just like finding out the number of elements in a list:

>>> len("Goodbye")
7

But strings aren’t lists of characters. The most noticeable difference between strings
and lists is that unlike lists, strings can’t be modified. Attempting to say something like
string.append('c') or string[0] = 'H' results in an error. You’ll notice in the
previous example that I stripped off the newline from the string by creating a string
that was a slice of the previous one, not by modifying the previous string directly. This
is a basic Python restriction, imposed for efficiency reasons.

6.2 Basic string operations
The simplest (and probably most common) way to combine Python strings is to use
the string concatenation operator +:

>>> x = "Hello " + "World"
>>> x
'Hello World'

Python also has an analogous string multiplication operator that I’ve found to be use-
ful sometimes, but not often:

>>> 8 * "x"
'xxxxxxxx'

70 CHAPTER 6 Strings
6.3 Special characters and escape sequences
You’ve already seen a few of the character sequences that Python regards as special
when used within strings: \n represents the newline character, and \t represents the
tab character. Sequences of characters that start with a backslash and that are used to
represent other characters are called escape sequences. Escape sequences are generally
used to represent special characters—that is, characters (such as tab and newline) that
don’t have a standard one-character printable representation. This section covers
escape sequences, special characters, and related topics in more detail.

6.3.1 Basic escape sequences

Python provides a brief list of two-character escape sequences to use in strings (see
table 6.1). The same sequences also apply to bytes objects, which will be introduced at
the end of this chapter.

The ASCII character set, which is the character set used by Python and the standard
character set on almost all computers, defines quite a few more special characters.
These characters are accessed by the numeric escape sequences, described in the next
section.

6.3.2 Numeric (octal and hexadecimal) and Unicode escape sequences

You can include any ASCII character in a string by using an octal (base 8) or hexadec-
imal (base 16) escape sequence corresponding to that character. An octal escape
sequence is a backslash followed by three digits defining an octal number; the ASCII
character corresponding to this octal number is substituted for the octal escape
sequence. A hexadecimal escape sequence is with \x rather than just \ and can

Table 6.1 Escape sequences for string and bytes literals

Escape sequence Character represented

\' Single-quote character

\" Double-quote character

\\ Backslash character

\a Bell character

\b Backspace character

\f Formfeed character

\n Newline character

\r Carriage-return character (not the same as \n)

\t Tab character

\v Vertical tab character

71Special characters and escape sequences
consist of any number of hexadecimal digits. The escape sequence is terminated when
a character is found that’s not a hexadecimal digit. For example, in the ASCII charac-
ter table, the character m happens to have decimal value 109. This value is octal value
155 and hexadecimal value 6D, so

>>> 'm'
'm'
>>> '\155'
'm'
>>> '\x6D'
'm'

All three expressions evaluate to a string containing the single character m. But these
forms can also be used to represent characters that have no printable representation.
The newline character \n, for example, has octal value 012 and hexadecimal value 0A:

>>> '\n'
'\n'
>>> '\012'
'\n'
>>> '\x0A'
'\n'

Because all strings in Python 3 are Unicode strings, they can also contain almost
every character from every language available. Although a discussion of the Unicode
system is far beyond the scope of this book, the following examples illustrate that you
can also escape any Unicode character, either by number (as shown earlier) or by
Unicode name:

>>> unicode_a ='\N{LATIN SMALL LETTER A}'
>>> unicode_a
'a'
>>> unicode_a_with_acute = '\N{LATIN SMALL LETTER A WITH ACUTE}'
>>> unicode_a_with_acute
'á'
>>> "\u00E1"
'á'
>>>

The Unicode character set includes the common ASCII characters B.

6.3.3 Printing vs. evaluating strings with special characters

I talked earlier about the difference between evaluating a Python expression interac-
tively and printing the result of the same expression by using the print function.
Although the same string is involved, the two operations can produce screen outputs
that look different. A string that’s evaluated at the top level of an interactive Python
session is shown with all of its special characters as octal escape sequences, which
makes clear what’s in the string. Meanwhile, the print function passes the string
directly to the terminal program, which may interpret special characters in special

Escapes by
Unicode nameb

Escapes by number,
using \u

72 CHAPTER 6 Strings
ways. Here’s what happens with a string consisting of an a followed by a newline, a tab,
and a b:

>>> 'a\n\tb'
'a\n\tb'
>>> print('a\n\tb')
a
 b

In the first case, the newline and tab are shown explicitly in the string; in the second,
they’re used as newline and tab characters.

 A normal print function also adds a newline to the end of the string. Sometimes
(that is, when you have lines from files that already end with newlines), you may not
want this behavior. Giving the print function an end parameter of "" causes the
print function to not append the newline:

>>> print("abc\n")
abc

>>> print("abc\n", end="")
abc
>>>

6.4 String methods
Most of the Python string methods are built into the standard Python string class, so
all string objects have them automatically. The standard string module also contains
some useful constants. Modules are discussed in detail in chapter 10.

 For the purposes of this section, you need only remember that most string meth-
ods are attached to the string object they operate on by a dot (.), as in x.upper().
That is, they’re prepended with the string object followed by a dot. Because strings are
immutable, the string methods are used only to obtain their return value and don’t
modify the string object they’re attached to in any way.

 I begin with those string operations that are the most useful and most commonly
used; then I discuss some less commonly used but still useful operations. At the end of
this section, I discuss a few miscellaneous points related to strings. Not all the string
methods are documented here. See the documentation for a complete list of string
methods.

6.4.1 The split and join string methods

Anyone who works with strings is almost certain to find the split and join methods
invaluable. They’re the inverse of one another: split returns a list of substrings in
the string, and join takes a list of strings and puts them together to form a single
string with the original string between each element. Typically, split uses whitespace
as the delimiter to the strings it’s splitting, but you can change that behavior via an
optional argument.

 String concatenation using + is useful but not efficient for joining large numbers
of strings into a single string, because each time + is applied, a new string object is

73String methods
created. The previous “Hello World” example produces two string objects, one of
which is immediately discarded. A better option is to use the join function:

>>> " ".join(["join", "puts", "spaces", "between", "elements"])
'join puts spaces between elements'

By changing the string used to join, you can put anything you want between the
joined strings:

>>> "::".join(["Separated", "with", "colons"])
'Separated::with::colons'

You can even use an empty string, "", to join elements in a list:

>>> "".join(["Separated", "by", "nothing"])
'Separatedbynothing'

The most common use of split is probably as a simple parsing mechanism for string-
delimited records stored in text files. By default, split splits on any whitespace, not
just a single space character, but you can also tell it to split on a particular sequence by
passing it an optional argument:

>>> x = "You\t\t can have tabs\t\n \t and newlines \n\n " \
 "mixed in"
>>> x.split()
['You', 'can', 'have', 'tabs', 'and', 'newlines', 'mixed', 'in']
>>> x = "Mississippi"
>>> x.split("ss")
['Mi', 'i', 'ippi']

Sometimes, it’s useful to permit the last field in a joined string to contain arbitrary text,
perhaps including substrings that may match what split splits on when reading in that
data. You can do this by specifying how many splits split should perform when it’s
generating its result, via an optional second argument. If you specify n splits, split
goes along the input string until it has performed n splits (generating a list with n+1 sub-
strings as elements) or until it runs out of string. Here are some examples:

>>> x = 'a b c d'
>>> x.split(' ', 1)
['a', 'b c d']
>>> x.split(' ', 2)
['a', 'b', 'c d']
>>> x.split(' ', 9)
['a', 'b', 'c', 'd']

When using split with its optional second argument, you must supply a first argu-
ment. To get it to split on runs of whitespace while using the second argument, use
None as the first argument.

 I use split and join extensively, usually when working with text files generated
by other programs. If you want to create more standard output files from your pro-
grams, good choices are the csv and json modules in the Python standard library.

74 CHAPTER 6 Strings
QUICK CHECK: SPLIT AND JOIN How could you use split and join to change
all the whitespace in string x to dashes, such as changing "this is a test"
to "this-is-a-test"?

6.4.2 Converting strings to numbers

You can use the functions int and float to convert strings to integer or floating-
point numbers, respectively. If they’re passed a string that can’t be interpreted as a
number of the given type, these functions raise a ValueError exception. Exceptions
are explained in chapter 14.

 In addition, you may pass int an optional second argument, specifying the
numeric base to use when interpreting the input string:

>>> float('123.456')
123.456
>>> float('xxyy')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: could not convert string to float: 'xxyy'
>>> int('3333')
3333
>>> int('123.456')
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for int() with base 10: '123.456'
>>> int('10000', 8)
4096
>>> int('101', 2)
5
>>> int('ff', 16)
255
>>> int('123456', 6)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
ValueError: invalid literal for int() with base 6: '123456'

Did you catch the reason for that last error? I requested that the string be interpreted
as a base 6 number, but the digit 6 can never appear in a base 6 number. Sneaky!

QUICK CHECK: STRINGS TO NUMBERS Which of the following will not be con-
verted to numbers, and why?

int('a1')
int('12G', 16)
float("12345678901234567890")
int("12*2")

6.4.3 Getting rid of extra whitespace

A trio of surprisingly useful simple methods are the strip, lstrip, and rstrip
functions. strip returns a new string that’s the same as the original string, except
that any whitespace at the beginning or end of the string has been removed. lstrip

Can’t have decimal
point in integer.

Interprets 10000
as octal number

Can’t interpret 123456
as base 6 number.

75String methods
and rstrip work similarly, except that they remove whitespace only at the left or
right end of the original string, respectively:

>>> x = " Hello, World\t\t "
>>> x.strip()
'Hello, World'
>>> x.lstrip()
'Hello, World\t\t '
>>> x.rstrip()
' Hello, World'

In this example, tab characters are considered to be whitespace. The exact meaning
may differ across operating systems, but you can always find out what Python considers
to be whitespace by accessing the string.whitespace constant. On my Windows
system, Python returns the following:

>>> import string
>>> string.whitespace
' \t\n\r\x0b\x0c'
>>> " \t\n\r\v\f"
' \t\n\r\x0b\x0c'

The characters given in backslashed hex (\xnn) format represent the vertical tab and
formfeed characters. The space character is in there as itself. It may be tempting to
change the value of this variable, to attempt to affect how strip and so forth work, but
don’t do it. Such an action isn’t guaranteed to give you the results you’re looking for.

 But you can change which characters strip, rstrip, and lstrip remove by pass-
ing a string containing the characters to be removed as an extra parameter:

>>> x = "www.python.org"
>>> x.strip("w")
'.python.org'
>>> x.strip("gor")
'www.python.'
>>> x.strip(".gorw")
'python'

Note that strip removes any and all of the characters in the extra parameter string,
no matter in which order they occur B.

 The most common use for these functions is as a quick way to clean up strings that
have just been read in. This technique is particularly helpful when you’re reading
lines from files (discussed in chapter 13), because Python always reads in an entire
line, including the trailing newline, if one exists. When you get around to processing
the line read in, you typically don’t want the trailing newline. rstrip is a convenient
way to get rid of it.

QUICK CHECK: STRIP If the string x equals "(name, date),\n", which of
the following would return a string containing "name, date"?
x.rstrip("),")
x.strip("),\n")
x.strip("\n)(,")

Strips off all ws

Strips off all gs,
os, and rsb

Strips off all dots,
gs, os, rs and ws

76 CHAPTER 6 Strings
6.4.4 String searching

The string objects provide several methods to perform simple string searches. Before I
describe them, though, I’ll talk about another module in Python: re. (This module is
discussed in-depth in chapter 16.)

The four basic string-searching methods are similar: find, rfind, index, and
rindex. A related method, count, counts how many times a substring can be found
in another string. I describe find in detail and then examine how the other methods
differ from it.

 find takes one required argument: the substring being searched for. find returns
the position of the first character of the first instance of substring in the string
object, or –1 if substring doesn’t occur in the string:

>>> x = "Mississippi"
>>> x.find("ss")
2
>>> x.find("zz")
-1

find can also take one or two additional, optional arguments. The first of these argu-
ments, if present, is an integer start; it causes find to ignore all characters before
position start in string when searching for substring. The second optional argu-
ment, if present, is an integer end; it causes find to ignore characters at or after posi-
tion end in string:

>>> x = "Mississippi"
>>> x.find("ss", 3)
5
>>> x.find("ss", 0, 3)
-1

rfind is almost the same as find, except that it starts its search at the end of string
and so returns the position of the first character of the last occurrence of substring
in string:

Another method for searching strings: the re module
The re module also does string searching but in a far more flexible manner, using
regular expressions. Rather than search for a single specified substring, a re search
can look for a string pattern. You could look for substrings that consist entirely of dig-
its, for example.

Why am I mentioning this when re is discussed fully later? In my experience, many
uses of basic string searches are inappropriate. You’d benefit from a more powerful
searching mechanism but aren’t aware that one exists, so you don’t even look for
something better. Perhaps you have an urgent project involving strings and don’t have
time to read this entire book. If basic string searching does the job for you, that’s
great. But be aware that you have a more powerful alternative.

77String methods
>>> x = "Mississippi"
>>> x.rfind("ss")
5

rfind can also take one or two optional arguments, with the same meanings as those
for find.

 index and rindex are identical to find and rfind, respectively, except for one
difference: If index or rindex fails to find an occurrence of substring in string,
it doesn’t return –1 but raises a ValueError exception. Exactly what this means will
be clear after you read chapter 14.

 count is used identically to any of the previous four functions, but returns the
number of non-overlapping times the given substring occurs in the given string:

>>> x = "Mississippi"
>>> x.count("ss")
2

You can use two other string methods to search strings: startswith and endswith.
These methods return a True or False result, depending on whether the string
they’re used on starts or ends with one of the strings given as parameters:

>>> x = "Mississippi"
>>> x.startswith("Miss")
True
>>> x.startswith("Mist")
False
>>> x.endswith("pi")
True
>>> x.endswith("p")
False

Both startswith and endswith can look for more than one string at a time. If the
parameter is a tuple of strings, both methods check for all the strings in the tuple and
return True if any one of them is found:

>>> x.endswith(("i", "u"))
True

startswith and endswith are useful for simple searches where you’re sure that
what you’re checking for is at the beginning or end of a line.

QUICK CHECK: STRING SEARCHING If you wanted to check whether a line ends
with the string "rejected", what string method would you use? Would there
be any other ways to get the same result?

6.4.5 Modifying strings

Strings are immutable, but string objects have several methods that can operate on
that string and return a new string that’s a modified version of the original string. This
provides much the same effect as direct modification for most purposes. You can find
a more complete description of these methods in the documentation.

78 CHAPTER 6 Strings
 You can use the replace method to replace occurrences of substring (its first
argument) in the string with newstring (its second argument). This method also
takes an optional third argument (see the documentation for details):

>>> x = "Mississippi"
>>> x.replace("ss", "+++")
'Mi+++i+++ippi'

Like the string search functions, the re module is a much more powerful method of
substring replacement.

 The functions string.maketrans and string.translate may be used
together to translate characters in strings into different characters. Although rarely
used, these functions can simplify your life when they’re needed.

 Suppose that you’re working on a program that translates string expressions from
one computer language into another. The first language uses ~ to mean logical not,
whereas the second language uses !; the first language uses ^ to mean logical and, the
second language uses &; the first language uses (and), whereas the second language
uses [and]. In a given string expression, you need to change all instances of ~ to !,
all instances of ^ to &, all instances of (to [, and all instances of) to]. You could do
this by using multiple invocations of replace, but an easier and more efficient way is

>>> x = "~x ^ (y % z)"
>>> table = x.maketrans("~^()", "!&[]")
>>> x.translate(table)
'!x & [y % z]'

The second line uses maketrans to make up a translation table from its two string
arguments. The two arguments must each contain the same number of characters,
and a table is made such that looking up the nth character of the first argument in
that table gives back the nth character of the second argument.

 Next, the table produced by maketrans is passed to translate. Then trans-
late goes over each of the characters in its string object and checks to see whether
they can be found in the table given as the second argument. If a character can be
found in the translation table, translate replaces that character with the corre-
sponding character looked up in the table to produce the translated string.

 You can give translate an optional argument to specify characters that should
be removed from the string. See the documentation for details.

 Other functions in the string module perform more specialized tasks.
string.lower converts all alphabetic characters in a string to lowercase, and upper
does the opposite. capitalize capitalizes the first character of a string, and title
capitalizes all words in a string. swapcase converts lowercase characters to uppercase
and uppercase to lowercase in the same string. expandtabs gets rid of tab characters
in a string by replacing each tab with a specified number of spaces. ljust, rjust, and
center pad a string with spaces to justify it in a certain field width. zfill left-pads a
numeric string with zeros. Refer to the documentation for details on these methods.

79String methods
6.4.6 Modifying strings with list manipulations

Because strings are immutable objects, you have no way to manipulate them directly
in the same way that you can manipulate lists. Although the operations that produce
new strings (leaving the original strings unchanged) are useful for many things, some-
times you want to be able to manipulate a string as though it were a list of characters.
In that case, turn the string into a list of characters, do whatever you want, and then
turn the resulting list back into a string:

>>> text = "Hello, World"
>>> wordList = list(text)
>>> wordList[6:] = []
>>> wordList.reverse()
>>> text = "".join(wordList)
>>> print(text)
,olleH

You can also turn a string into a tuple of characters by using the built-in tuple func-
tion. To turn the list back into a string, use "".join().

 You shouldn’t go overboard with this method because it causes the creation and
destruction of new string objects, which is relatively expensive. Processing hundreds
or thousands of strings in this manner probably won’t have much of an impact on
your program; processing millions of strings probably will.

QUICK CHECK: MODIFYING STRINGS What would be a quick way to change all
punctuation in a string to spaces?

6.4.7 Useful methods and constants

string objects also have several useful methods to report various characteristics of
the string, such as whether it consists of digits or alphabetic characters, or is all upper-
case or lowercase:

>>> x = "123"
>>> x.isdigit()
True
>>> x.isalpha()
False
>>> x = "M"
>>> x.islower()
False
>>> x.isupper()
True

For a list of all the possible string methods, refer to the string section of the official
Python documentation.

 Finally, the string module defines some useful constants. You’ve already seen
string.whitespace, which is a string made up of the characters Python thinks of as
whitespace on your system. string.digits is the string '0123456789'.
string.hexdigits includes all the characters in string.digits, as well as

Removes everything
after comma

Joins with no
space between

80 CHAPTER 6 Strings
'abcdefABCDEF', the extra characters used in hexadecimal numbers. string
.octdigits contains '01234567'—only those digits used in octal numbers.
string.lowercase contains all lowercase alphabetic characters; string

.uppercase contains all uppercase alphabetic characters; string.letters con-
tains all the characters in string.lowercase and string.uppercase. You might
be tempted to try assigning to these constants to change the behavior of the language.
Python would let you get away with this action, but it probably would be a bad idea.

 Remember that strings are sequences of characters, so you can use the convenient
Python in operator to test for a character’s membership in any of these strings,
although usually the existing string methods are simpler and easier. The most com-
mon string operations are shown in table 6.2.

Note that these methods don’t change the string itself; they return either a location in
the string or a new string.

TRY THIS: STRING OPERATIONS Suppose that you have a list of strings in which
some (but not necessarily all) of the strings begin and end with the double
quote character:
x = ['"abc"', 'def', '"ghi"', '"klm"', 'nop']

Table 6.2 Common string operations

String operation Explanation Example

+ Adds two strings together x = "hello " + "world"

* Replicates a string x = " " * 20

upper Converts a string to uppercase x.upper()

lower Converts a string to lowercase x.lower()

title Capitalizes the first letter of each
word in a string

x.title()

find, index Searches for the target in a string x.find(y)
x.index(y)

rfind, rindex Searches for the target in a
string, from the end of the string

x.rfind(y)
x.rindex(y)

startswith, endswith Checks the beginning or end of a
string for a match

x.startswith(y)
x.endswith(y)

replace Replaces the target with a new
string

x.replace(y, z)

strip, rstrip, lstrip Removes whitespace or other
characters from the ends of a
string

x.strip()

encode Converts a Unicode string to a
bytes object

x.encode("utf_8")

81Converting from objects to strings
What code would you use on each element to remove just the double quotes?

What code could you use to find the position of the last p in Mississippi?
When you’ve found that position, what code would you use to remove just
that letter?

6.5 Converting from objects to strings
In Python, almost anything can be converted to some sort of a string representation by
using the built-in repr function. Lists are the only complex Python data types you’re
familiar with so far, so here, I turn some lists into their representations:

>>> repr([1, 2, 3])
'[1, 2, 3]'
>>> x = [1]
>>> x.append(2)
>>> x.append([3, 4])
>>> 'the list x is ' + repr(x)
'the list x is [1, 2, [3, 4]]'

The example uses repr to convert the list x to a string representation, which is then
concatenated with the other string to form the final string. Without the use of repr,
this code wouldn’t work. In an expression like "string" + [1, 2] + 3, are you try-
ing to add strings, add lists, or just add numbers? Python doesn’t know what you want
in such a circumstance, so it does the safe thing (raises an error) rather than make any
assumptions. In the previous example, all the elements had to be converted to string
representations before the string concatenation would work.

 Lists are the only complex Python objects that I’ve described to this point, but
repr can be used to obtain some sort of string representation for almost any Python
object. To see this, try repr around a built-in complex object, which is an actual
Python function:

>>> repr(len)
'<built-in function len>'

Python hasn’t produced a string containing the code that implements the len func-
tion, but it has at least returned a string—<built-in function len>—that
describes what that function is. If you keep the repr function in mind and try it on
each Python data type (dictionaries, tuples, classes, and the like) in the book, you’ll
see that no matter what type of Python object you have, you can get a string that
describes something about that object.

 This is great for debugging programs. If you’re in doubt about what’s held in a
variable at a certain point in your program, use repr and print out the contents of
that variable.

 I’ve covered how Python can convert any object to a string that describes that
object. The truth is, Python can do this in either of two ways. The repr function
always returns what might be loosely called the formal string representation of a Python
object. More specifically, repr returns a string representation of a Python object from

82 CHAPTER 6 Strings
which the original object can be rebuilt. For large, complex objects, this may not be
the sort of thing you want to see in debugging output or status reports.

 Python also provides the built-in str function. In contrast to repr, str is
intended to produce printable string representations, and it can be applied to any
Python object. str returns what might be called the informal string representation of the
object. A string returned by str need not define an object fully and is intended to be
read by humans, not by Python code.

 You won’t notice any difference between repr and str when you start using them,
because until you begin using the object-oriented features of Python, there’s no differ-
ence. str applied to any built-in Python object always calls repr to calculate its result.
Only when you start defining your own classes does the difference between str and
repr become important, as discussed in chapter 15.

 So why talk about this now? I want you to be aware that there’s more going on
behind the scenes with repr than just being able to easily write print functions for
debugging. As a matter of good style, you may want to get into the habit of using str
rather than repr when creating strings for displaying information.

6.6 Using the format method
You can format strings in Python 3 in two ways. The newer way is to use the string class’s
format method. The format method combines a format string containing replace-
ment fields marked with { } with replacement values taken from the parameters given
to the format command. If you need to include a literal { or } in the string, you double
it to {{ or }}. The format command is a powerful string-formatting mini-language
that offers almost endless possibilities for manipulating string formatting. Conversely,
it’s fairly simple to use for the most common use cases, so I look at a few basic patterns
in this section. Then, if you need to use the more advanced options, you can refer to the
string-formatting section of the standard library documentation.

6.6.1 The format method and positional parameters

A simple way to use the string format method is with numbered replacement fields
that correspond to the parameters passed to the format function:

>>> "{0} is the {1} of {2}".format("Ambrosia", "food", "the gods")
'Ambrosia is the food of the gods'
>>> "{{Ambrosia}} is the {0} of {1}".format("food", "the gods")
'{Ambrosia} is the food of the gods'

Note that the format method is applied to the format string, which can also be a
string variable B. Doubling the { } characters escapes them so that they don’t mark
a replacement field c.

 This example has three replacement fields, {0}, {1}, and {2}, which are in turn
filled by the first, second, and third parameters. No matter where in the format string
you place {0}, it’s always be replaced by the first parameter, and so on.

 You can also use the named parameters.

B

c

83Using the format method
6.6.2 The format method and named parameters

The format method also recognizes named parameters and replacement fields:

>>> "{food} is the food of {user}".format(food="Ambrosia",
... user="the gods")
'Ambrosia is the food of the gods'

In this case, the replacement parameter is chosen by matching the name of the
replacement field with the name of the parameter given to the format command.

 You can also use both positional and named parameters, and you can even access
attributes and elements within those parameters:

>>> "{0} is the food of {user[1]}".format("Ambrosia",
... user=["men", "the gods", "others"])
'Ambrosia is the food of the gods'

In this case, the first parameter is positional, and the second, user[1], refers to the
second element of the named parameter user.

6.6.3 Format specifiers

Format specifiers let you specify the result of the formatting with even more power
and control than the formatting sequences of the older style of string formatting. The
format specifier lets you control the fill character, alignment, sign, width, precision,
and type of the data when it’s substituted for the replacement field. As noted earlier,
the syntax of format specifiers is a mini-language in its own right and too complex to
cover completely here, but the following examples give you an idea of its usefulness:

>>> "{0:10} is the food of gods".format("Ambrosia")
'Ambrosia is the food of gods'
>>> "{0:{1}} is the food of gods".format("Ambrosia", 10)
'Ambrosia is the food of gods'
>>> "{food:{width}} is the food of gods".format(food="Ambrosia", width=10)
'Ambrosia is the food of gods'
>>> "{0:>10} is the food of gods".format("Ambrosia")
' Ambrosia is the food of gods'
>>> "{0:&>10} is the food of gods".format("Ambrosia")
'&&Ambrosia is the food of gods'

:10 is a format specifier that makes the field 10 spaces wide and pads with spaces B.
:{1} takes the width from the second parameter c. :>10 forces right-justification of
the field and pads with spaces d. :&>10 forces right-justification and pads with &
instead of spaces e.

QUICK CHECK: THE FORMAT() METHOD What will be in x when the following
snippets of code are executed?:

x = "{1:{0}}".format(3, 4)
x = "{0:$>5}".format(3)
x = "{a:{b}}".format(a=1, b=5)
x = "{a:{b}}:{0:$>5}".format(3, 4, a=1, b=5, c=10)

B

c

d

e

84 CHAPTER 6 Strings
6.7 Formatting strings with %
This section covers formatting strings with the string modulus (%) operator. This opera-
tor is used to combine Python values into formatted strings for printing or other use. C
users will notice a strange similarity to the printf family of functions. The use of % for
string formatting is the old style of string formatting, and I cover it here because it was
the standard in earlier versions of Python, and you’re likely to see it in code that’s been
ported from earlier versions of Python or was written by coders who are familiar with
those versions. This style of formatting shouldn’t be used in new code, however,
because it’s slated to be deprecated and then removed from the language in the future.

 Here’s an example:

>>> "%s is the %s of %s" % ("Ambrosia", "food", "the gods")
'Ambrosia is the food of the gods'

The string modulus operator (the bold % that occurs in the middle, not the three
instances of %s that come before it in the example) takes two parts: the left side,
which is a string, and the right side, which is a tuple. The string modulus operator
scans the left string for special formatting sequences and produces a new string by substi-
tuting the values on the right side for those formatting sequences, in order. In this
example, the only formatting sequences on the left side are the three instances of %s,
which stands for “Stick a string in here.”

 Passing in different values on the right side produces different strings:

>>> "%s is the %s of %s" % ("Nectar", "drink", "gods")
'Nectar is the drink of gods'
>>> "%s is the %s of the %s" % ("Brussels Sprouts", "food",
... "foolish")
'Brussels Sprouts is the food of the foolish'

The members of the tuple on the right have str applied to them automatically by %s,
so they don’t have to already be strings:

>>> x = [1, 2, "three"]
>>> "The %s contains: %s" % ("list", x)
"The list contains: [1, 2, 'three']"

6.7.1 Using formatting sequences

All formatting sequences are substrings contained in the string on the left side of the
central %. Each formatting sequence begins with a percent sign and is followed by one
or more characters that specify what is to be substituted for the formatting sequence
and how the substitution is to be accomplished. The %s formatting sequence used
previously is the simplest formatting sequence; it indicates that the corresponding
string from the tuple on the right side of the central % should be substituted in place
of the %s.

85Formatting strings with %
 Other formatting sequences can be more complex. The following sequence speci-
fies the field width (total number of characters) of a printed number to be six, speci-
fies the number of characters after the decimal point to be two, and left-justifies the
number in its field. I’ve put this formatting sequence in angle brackets so you can see
where extra spaces are inserted into the formatted string:

>>> "Pi is <%-6.2f>" % 3.14159 # use of the formatting sequence: %–6.2f
'Pi is <3.14 >'

All the options for characters that are allowable in formatting sequences are given in
the documentation. There are quite a few options, but none is particularly difficult to
use. Remember that you can always try a formatting sequence interactively in Python
to see whether it does what you expect it to do.

6.7.2 Named parameters and formatting sequences

Finally, one additional feature available with the % operator can be useful in certain
circumstances. Unfortunately, to describe it, I have to employ a Python feature that I
haven’t yet discussed in detail: dictionaries, commonly called hash tables or associative
arrays in other languages. You can skip ahead to chapter 7 to learn about dictionaries;
skip this section for now and come back to it later; or read straight through, trusting
the examples to make things clear.

 Formatting sequences can specify what should be substituted for them by name
rather than by position. When you do this, each formatting sequence has a name in
parentheses immediately following the initial % of the formatting sequence, like so:

"%(pi).2f"

In addition, the argument to the right of the % operator is no longer given as a single
value or tuple of values to be printed, but as a dictionary of values to be printed, with
each named formatting sequence having a correspondingly named key in the diction-
ary. Using the previous formatting sequence with the string modulus operator, you
might produce code like this:

>>> num_dict = {'e': 2.718, 'pi': 3.14159}
>>> print("%(pi).2f - %(pi).4f - %(e).2f" % num_dict)
3.14 - 3.1416 - 2.72

This code is particularly useful when you’re using format strings that perform a large
number of substitutions, because you no longer have to keep track of the positional
correspondences of the right-side tuple of elements with the formatting sequences in
the format string. The order in which elements are defined in the dict argument is
irrelevant, and the template string may use values from dict more than once (as it
does with the 'pi' entry).

Note name in parentheses.

86 CHAPTER 6 Strings
Using the print function’s options gives you enough control for simple text output,
but more complex situations are best served by using the format method.

QUICK CHECK: FORMATTING STRINGS WITH % What would be in the variable x
after the following snippets of code have executed?

x = "%.2f" % 1.1111
x = "%(a).2f" % {'a':1.1111}
x = "%(a).08f" % {'a':1.1111}

6.8 String interpolation
Starting in Python 3.6, there’s a way to create string constants containing arbitrary val-
ues, which is called string interpolation. String interpolation is a way to include the val-
ues of Python expressions inside literal strings. These f-strings, as they’re commonly
called because they are prefixed with f, use a syntax similar to that of the format
method, but with a little less overhead. The following examples should give you a
basic idea of how f-strings work:

>>> value = 42
>>> message = f"The answer is {value}"

Controlling output with the print function
Python’s built-in print function also has some options that can make handling sim-
ple string output easier. When used with one parameter, print prints the value and
a newline character, so that a series of calls to print prints each value on a sepa-
rate line:

>>> print("a")
a
>>> print("b")
b

But print can do more. You can also give the print function several arguments,
and those arguments are printed on the same line, separated by spaces and ending
with a newline:

>>> print("a", "b", "c")
a b c

If that’s not quite what you need, you can give the print function additional param-
eters to control what separates each item and what ends the line:

>>> print("a", "b", "c", sep="|")
a|b|c
>>> print("a", "b", "c", end="\n\n")
a b c

>>>

Finally, the print function can be used to print to files as well as console output.

>>> print("a", "b", "c", file=open("testfile.txt", "w")

87Bytes
>>> print(message)
The answer is 42

Just as with the format method, format specifiers may be added:

>>> pi = 3.1415
>>> print(f"pi is {pi:{10}.{2}}")
pi is 3.1

Because string interpolation is a new feature, it’s not yet clear how it will be used. For
the complete documentation on f-strings and format specifiers, refer to PEP-498 in
the online Python documentation.

6.9 Bytes
A bytes object is similar to a string object but with an important difference: A
string is an immutable sequence of Unicode characters, whereas a bytes object is a
sequence of integers with values from 0 to 256. Bytes can be necessary when you’re
dealing with binary data, such as reading from a binary data file.

 The key thing to remember is that bytes objects may look like strings, but they
can’t be used exactly like strings or combined with strings:

>>> unicode_a_with_acute = '\N{LATIN SMALL LETTER A WITH ACUTE}'
>>> unicode_a_with_acute
'á'
>>> xb = unicode_a_with_acute.encode()
>>> xb
b'\xc3\xa1'
>>> xb += 'A'
Traceback (most recent call last):
 File "<pyshell#35>", line 1, in <module>
 xb += 'A'
TypeError: can't concat str to bytes
>>> xb.decode()
'á'

The first thing you can see is that to convert from a regular (Unicode) string to
bytes, you need to call the string’s encode method B. After it’s encoded to a bytes
object, the character is 2 bytes and no longer prints the same way that the string did
c. Further, if you attempt to add a bytes object and a string object together, you get
a type error because the two types are incompatible d. Finally, to convert a bytes
object back to a string, you need to call that object’s decode method e.

 Most of the time, you shouldn’t need to think about Unicode or bytes at all. But
when you need to deal with international character sets (an increasingly common
issue), you must understand the difference between regular strings and bytes.

QUICK CHECK: BYTES For which of the following kinds of data would you want
to use a string? For which could you use bytes?

B Data file storing binary data
c Text in a language with accented characters

b
c

d

e

88 CHAPTER 6 Strings
d Text with only uppercase and lowercase roman characters
e A series of integers no larger than 255

LAB 6: PREPROCESSING TEXT In processing raw text, it’s quite often necessary
to clean and normalize the text before doing anything else. If you want to
find the frequency of words in text, for example, you can make the job easier
if, before you start counting, you make sure that everything is lowercase (or
uppercase, if you prefer) and that all punctuation has been removed. You can
also make things easier by breaking the text into a series of words. In this lab,
the task is to read the first part of the first chapter of Moby Dick (found in the
book's source code), make sure that everything is one case, remove all punc-
tuation, and write the words one per line to a second file. Because I haven’t
yet covered reading and writing files, here’s the code for those operations:

with open("moby_01.txt") as infile, open("moby_01_clean.txt", "w") as outfile:
 for line in infile:
 # make all one case
 # remove punctuation
 # split into words
 # write all words for line
 outfile.write(cleaned_words)

Summary
 Python strings have powerful text-processing features, including searching and

replacing, trimming characters, and changing case.
 Strings are immutable; they can’t be changed in place.
 Operations that appear to change strings actually return a copy with the

changes.
 The re (regular expression) module has even more powerful string capabili-

ties, which are discussed in chapter 16.

Dictionaries
This chapter discusses dictionaries, Python’s name for associative arrays or maps,
which it implements by using hash tables. Dictionaries are amazingly useful, even in
simple programs.

 Because dictionaries are less familiar to many programmers than other basic
data structures such as lists and strings, some of the examples illustrating dictionary
use are slightly more complex than the corresponding examples for other built-in
data structures. It may be necessary to read parts of chapter 8 to fully understand
some of the examples in this chapter.

This chapter covers
 Defining a dictionary

 Using dictionary operations

 Determining what can be used as a key

 Creating sparse matrices

 Using dictionaries as caches

 Trusting the efficiency of dictionaries
89

90 CHAPTER 7 Dictionaries
7.1 What is a dictionary?
If you’ve never used associative arrays or hash tables in other languages, a good way to
start understanding the use of dictionaries is to compare them with lists:

 Values in lists are accessed by means of integers called indices, which indicate
where in the list a given value is found.

 Dictionaries access values by means of integers, strings, or other Python objects
called keys, which indicate where in the dictionary a given value is found. In
other words, both lists and dictionaries provide indexed access to arbitrary val-
ues, but the set of items that can be used as dictionary indices is much larger
than, and contains, the set of items that can be used as list indices. Also, the
mechanism that dictionaries use to provide indexed access is quite different
from that used by lists.

 Both lists and dictionaries can store objects of any type.
 Values stored in a list are implicitly ordered by their positions in the list, because

the indices that access these values are consecutive integers. You may or may not
care about this ordering, but you can use it if desired. Values stored in a dictionary
are not implicitly ordered relative to one another because dictionary keys aren’t
just numbers. Note that if you’re using a dictionary but also care about the order
of the items (the order in which they were added, that is), you can use an ordered
dictionary, which is a dictionary subclass that can be imported from the collec-
tions module. You can also define an order on the items in a dictionary by using
another data structure (often a list) to store such an ordering explicitly; this won’t
change the fact that basic dictionaries have no implicit (built-in) ordering.

In spite of the differences between them, the use of dictionaries and lists often
appears to be the same. As a start, an empty dictionary is created much like an empty
list, but with curly braces instead of square brackets:

>>> x = []
>>> y = {}

Here, the first line creates a new, empty list and assigns it to x. The second line creates
a new, empty dictionary and assigns it to y.

 After you create a dictionary, you may store values in it as though it were a list:

>>> y[0] = 'Hello'
>>> y[1] = 'Goodbye'

Even in these assignments, there’s already a significant operational difference
between the dictionary and list usage. Trying to do the same thing with a list would
result in an error, because in Python, it’s illegal to assign to a position in a list that
doesn’t exist. For example, if you try to assign to the 0th element of the list x, you
receive an error:

>>> x[0] = 'Hello'
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list assignment index out of range

91Other dictionary operations
This isn’t a problem with dictionaries; new positions in dictionaries are created as
necessary.

 Having stored some values in the dictionary, now you can access and use them:

>>> print(y[0])
Hello
>>> y[1] + ", Friend."
'Goodbye, Friend.'

All in all, this makes a dictionary look pretty much like a list. Now for the big differ-
ence. Store (and use) some values under keys that aren’t integers:

>>> y["two"] = 2
>>> y["pi"] = 3.14
>>> y["two"] * y["pi"]
6.28

This is definitely something that can’t be done with lists! Whereas list indices must be
integers, dictionary keys are much less restricted; they may be numbers, strings, or
one of a wide range of other Python objects. This makes dictionaries a natural for jobs
that lists can’t do. For example, it makes more sense to implement a telephone-direc-
tory application with dictionaries than with lists because the phone number for a per-
son can be stored indexed by that person’s last name.

 A dictionary is a way of mapping from one set of arbitrary objects to an associated
but equally arbitrary set of objects. Actual dictionaries, thesauri, or translation books
are good analogies in the real world. To see how natural this correspondence is, here’s
the start of an English-to-French color translator:

>>> english_to_french = {}
>>> english_to_french['red'] = 'rouge'
>>> english_to_french['blue'] = 'bleu'
>>> english_to_french['green'] = 'vert'
>>> print("red is", english_to_french['red']) C
red is rouge

TRY THIS: CREATE A DICTIONARY Write the code to ask the user for three
names and three ages. After the names and ages are entered, ask the user for
one of the names, and print the correct age.

7.2 Other dictionary operations
Besides basic element assignment and access, dictionaries support several operations.
You can define a dictionary explicitly as a series of key-value pairs separated by commas:

>>> english_to_french = {'red': 'rouge', 'blue': 'bleu', 'green': 'vert'}

len returns the number of entries in a dictionary:

>>> len(english_to_french)
3

Creates empty
dictionary

Stores three
words in it

Obtains value
for 'red'

92 CHAPTER 7 Dictionaries
You can obtain all the keys in the dictionary with the keys method. This method is
often used to iterate over the contents of a dictionary using Python’s for loop,
described in chapter 8:

>>> list(english_to_french.keys())
['green', 'blue', 'red']

In Python 3.5 and earlier, the order of the keys in a list returned by keys has no mean-
ing; the keys aren’t necessarily sorted, and they don’t necessarily occur in the order in
which they were created. Your Python code may print out the keys in a different order
than my Python code did. If you need keys sorted, you can store them in a list variable
and then sort that list. However, starting with Python 3.6, dictionaries preserve the
order that the keys were created and return them in that order.

 It’s also possible to obtain all the values stored in a dictionary by using values:

>>> list(english_to_french.values())
 ['vert', 'bleu', 'rouge']

This method isn’t used nearly as often as keys.
 You can use the items method to return all keys and their associated values as a

sequence of tuples:

>>> list(english_to_french.items())
[('green', 'vert'), ('blue', 'bleu'), ('red', 'rouge')]

Like keys, this method is often used in conjunction with a for loop to iterate over
the contents of a dictionary.

 The del statement can be used to remove an entry (key-value pair) from a
dictionary:

>>> list(english_to_french.items())
[('green', 'vert'), ('blue', 'bleu'), ('red', 'rouge')]
>>> del english_to_french['green']
>>> list(english_to_french.items())
 [('blue', 'bleu'), ('red', 'rouge')]

Dictionary view objects
The keys, values, and items methods return not lists, but views that behave like
sequences but are dynamically updated whenever the dictionary changes. That’s why
you need to use the list function to make them appear as a list in these examples.
Otherwise, they behave like sequences, allowing code to iterate over them in a for
loop, using in to check membership in them, and so on.

The view returned by keys (and in some cases the view returned by items) also
behaves like a set, with union, difference, and intersection operations.

93Other dictionary operations
Attempting to access a key that isn’t in a dictionary is an error in Python. To handle
this error, you can test the dictionary for the presence of a key with the in keyword,
which returns True if a dictionary has a value stored under the given key and False
otherwise:

>>> 'red' in english_to_french
True
>>> 'orange' in english_to_french
False

Alternatively, you can use the get function. This function returns the value associated
with a key if the dictionary contains that key, but returns its second argument if the
dictionary doesn’t contain the key:

>>> print(english_to_french.get('blue', 'No translation'))
bleu
>>> print(english_to_french.get('chartreuse', 'No translation'))
No translation

The second argument is optional. If that argument isn’t included, get returns None if
the dictionary doesn’t contain the key.

 Similarly, if you want to safely get a key’s value and make sure that it’s set to a
default in the dictionary, you can use the setdefault method:

>>> print(english_to_french.setdefault('chartreuse', 'No translation'))
No translation

The difference between get and setdefault is that after the setdefault call,
there’s a key in the dictionary 'chartreuse' with the value 'No translation'.

 You can obtain a copy of a dictionary by using the copy method:

>>> x = {0: 'zero', 1: 'one'}
>>> y = x.copy()
>>> y
{0: 'zero', 1: 'one'}

This method makes a shallow copy of the dictionary, which is likely to be all you need
in most situations. For dictionaries that contain any modifiable objects as values (for
example, lists or other dictionaries), you may want to make a deep copy by using the
copy.deepcopy function. See chapter 5 for an introduction to the concept of shal-
low and deep copies.

 The update method updates a first dictionary with all the key-value pairs of a sec-
ond dictionary. For keys that are common to both dictionaries, the values from the
second dictionary override those of the first:

>>> z = {1: 'One', 2: 'Two'}
>>> x = {0: 'zero', 1: 'one'}
>>> x.update(z)
>>> x
{0: 'zero', 1: 'One', 2: 'Two'}

94 CHAPTER 7 Dictionaries
Dictionary methods give you a full set of tools to manipulate and use dictionaries. For
quick reference, table 7.1 lists some of the main dictionary functions.

This table isn’t a complete list of all dictionary operations. For a complete list, refer to
the Python standard library documentation.

QUICK CHECK: DICTIONARY OPERATIONS Assume that you have a dictionary x =
{'a':1, 'b':2, 'c':3, 'd':4} and a dictionary y = {'a':6, 'e':5,
'f':6}. What would be the contents of x after the following snippets of code
have executed?:

del x['d']
z = x.setdefault('g', 7)
x.update(y)

7.3 Word counting
Assume that you have a file that contains a list of words, one word per line. You want
to know how many times each word occurs in the file. You can use dictionaries to per-
form this task easily:

>>> sample_string = "To be or not to be"
>>> occurrences = {}
>>> for word in sample_string.split():
... occurrences[word] = occurrences.get(word, 0) + 1
...

Table 7.1 Dictionary operations

Dictionary operation Explanation Example

{} Creates an empty dictionary x = {}

len Returns the number of entries in a dictionary len(x)

keys Returns a view of all keys in a dictionary x.keys()

values Returns a view of all values in a dictionary x.values()

items Returns a view of all items in a dictionary x.items()

del Removes an entry from a dictionary del(x[key])

in Tests whether a key exists in a dictionary 'y' in x

get Returns the value of a key or a configurable
default

x.get('y', None)

setdefault Returns the value if the key is in the dictionary;
otherwise, sets the value for the key to the
default and returns the value

x.setdefault('y',
None)

copy Makes a shallow copy of a dictionary y = x.copy()

update Combines the entries of two dictionaries x.update(z)

b

95What can be used as a key?
>>> for word in occurrences:
... print("The word", word, "occurs", occurrences[word], \
... "times in the string")
...
The word To occurs 1 times in the string
The word be occurs 2 times in the string
The word or occurs 1 times in the string
The word not occurs 1 times in the string
The word to occurs 1 times in the string

Increment the occurrences count for each word B. This is a good example of the
power of dictionaries. The code is simple, but because dictionary operations are
highly optimized in Python, it’s also quite fast. This pattern is so handy, in fact, that it’s
been standardized as the Counter class in the collections module of the standard
library.

7.4 What can be used as a key?
The previous examples use strings as keys, but Python permits more than just strings
to be used in this manner. Any Python object that is immutable and hashable can be
used as a key to a dictionary.

 In Python, as discussed earlier, any object that can be modified is called mutable.
Lists are mutable because list elements can be added, changed, or removed. Diction-
aries are also mutable for the same reason. Numbers are immutable. If a variable x is
referring to the number 3, and you assign 4 to x, you’ve made x refer to a different
number (4), but you haven’t changed the number 3 itself; 3 still has to be 3. Strings
are also immutable. list[n] returns the nth element of list, string[n] returns
the nth character of string, and list[n] = value changes the nth element of
list, but string[n] = character is illegal in Python and causes an error, because
strings in Python are immutable.

 Unfortunately, the requirement that keys be immutable and hashable means that
lists can’t be used as dictionary keys, but in many instances, it would be convenient to
have a listlike key. For example, it’s convenient to store information about a person
under a key consisting of the person’s first and last names, which you could easily do if
you could use a two-element list as a key.

 Python solves this difficulty by providing tuples, which are basically immutable lists;
they’re created and used similarly to lists, except that once created, they can’t be mod-
ified. There’s one further restriction: Keys must also be hashable, which takes things a
step further than just immutable. To be hashable, a value must have a hash value (pro-
vided by a __hash__ method) that never changes throughout the life of the value.
That means that tuples containing mutable values are not hashable, although the
tuples themselves are technically immutable. Only tuples that don’t contain any muta-
ble objects nested within them are hashable and valid to use as keys for dictionaries.
Table 7.2 illustrates which of Python’s built-in types are immutable, hashable, and eli-
gible to be dictionary keys.

96 CHAPTER 7 Dictionaries

The next sections give examples illustrating how tuples and dictionaries can work
together.

QUICK CHECK: WHAT CAN BE A KEY? Decide which of the following expressions
can be a dictionary key: 1; 'bob'; ('tom', [1, 2, 3]); ["file-
name"]; "filename"; ("filename", "extension")

7.5 Sparse matrices
In mathematical terms, a matrix is a two-dimensional grid of
numbers, usually written in textbooks as a grid with square brack-
ets on each side, as shown here.

 A fairly standard way to represent such a matrix is by means of
a list of lists. In Python, a matrix is presented like this:

matrix = [[3, 0, -2, 11], [0, 9, 0, 0], [0, 7, 0, 0], [0, 0, 0, -5]]

Elements in the matrix can be accessed by row and column number:

element = matrix[rownum][colnum]

But in some applications, such as weather forecasting, it’s common for matrices to be
very large—thousands of elements to a side, meaning millions of elements in total. It’s
also common for such matrices to contain many zero elements. In some applications,
all but a small percentage of the matrix elements may be set to zero. To conserve
memory, it’s common for such matrices to be stored in a form in which only the non-
zero elements are actually stored. Such representations are called sparse matrices.

Table 7.2 Python values eligible to be used as dictionary keys

Python type Immutable? Hashable? Dictionary key?

int Yes Yes Yes

float Yes Yes Yes

boolean Yes Yes Yes

complex Yes Yes Yes

str Yes Yes Yes

bytes Yes Yes Yes

bytearray No No No

list No No No

tuple Yes Sometimes Sometimes

set No No No

frozenset Yes Yes Yes

dictionary No No No

97Dictionaries as caches
 It’s simple to implement sparse matrices by using dictionaries with tuple indices.
For example, the previous sparse matrix can be represented as follows:

matrix = {(0, 0): 3, (0, 2): -2, (0, 3): 11,
 (1, 1): 9, (2, 1): 7, (3, 3): -5}

Now you can access an individual matrix element at a given row and column number
by this bit of code:

if (rownum, colnum) in matrix:
 element = matrix[(rownum, colnum)]
else:
 element = 0

A slightly less clear (but more efficient) way of doing this is to use the dictionary get
method, which you can tell to return 0 if it can’t find a key in the dictionary and oth-
erwise return the value associated with that key, preventing one of the dictionary
lookups:

element = matrix.get((rownum, colnum), 0)

If you’re considering doing extensive work with matrices, you may want to look into
NumPy, the numeric computation package.

7.6 Dictionaries as caches
This section shows how dictionaries can be used as caches, data structures that store
results to avoid recalculating those results over and over. Suppose that you need a
function called sole, which takes three integers as arguments and returns a result.
The function might look something like this:

def sole(m, n, t):
 # . . . do some time-consuming calculations . . .
 return(result)

But if this function is very time-consuming, and if it’s called tens of thousands of
times, the program might run too slowly.

 Now suppose that sole is called with about 200 different combinations of argu-
ments during any program run. That is, you might call sole(12, 20, 6) 50 or more
times during the execution of your program and similarly for many other combinations
of arguments. By eliminating the recalculation of sole on identical arguments, you’d
save a huge amount of time. You could use a dictionary with tuples as keys, like so:

sole_cache = {}
def sole(m, n, t):
 if (m, n, t) in sole_cache:
 return sole_cache[(m, n, t)]
 else:
 # . . . do some time-consuming calculations . . .
 sole_cache[(m, n, t)] = result
 return result

98 CHAPTER 7 Dictionaries
The rewritten sole function uses a global variable to store previous results. The
global variable is a dictionary, and the keys of the dictionary are tuples corresponding
to argument combinations that have been given to sole in the past. Then any time
sole passes an argument combination for which a result has already been calculated,
it returns that stored result rather than recalculating it.

TRY THIS: USING DICTIONARIES Suppose that you’re writing a program that
works like a spreadsheet. How might you use a dictionary to store the con-
tents of a sheet? Write some sample code to both store a value and retrieve a
value in a particular cell. What might be some drawbacks to this approach?

7.7 Efficiency of dictionaries
If you come from a traditional compiled-language background, you may hesitate to
use dictionaries, worrying that they’re less efficient than lists (arrays). The truth is that
the Python dictionary implementation is quite fast. Many of the internal language fea-
tures rely on dictionaries, and a lot of work has gone into making them efficient.
Because all of Python’s data structures are heavily optimized, you shouldn’t spend
much time worrying about which is faster or more efficient. If the problem can be
solved more easily and cleanly by using a dictionary than by using a list, do it that way,
and consider alternatives only if it’s clear that dictionaries are causing an unaccept-
able slowdown.

LAB 7: WORD COUNTING In the previous lab, you took the text of the first chap-
ter of Moby Dick, normalized the case, removed punctuation, and wrote the
separated words to a file. In this lab, you read that file, use a dictionary to
count the number of times each word occurs, and then report the most com-
mon and least common words.

Summary
 Dictionaries are powerful data structures, used for many purposes even within

Python itself.
 Dictionary keys must be immutable, but any immutable object can be a diction-

ary key.
 Using keys means accessing collections of data more directly and with less code

than many other solutions.

Control flow
Python provides a complete set of control-flow elements, with loops and condition-
als. This chapter examines each element in detail.

8.1 The while loop
You’ve come across the basic while loop several times already. The full while loop
looks like this:

while condition:
 body
else:
 post-code

This chapter covers
 Repeating code with a while loop

 Making decisions: the if-elif-else statement

 Iterating over a list with a for loop

 Using list and dictionary comprehensions

 Delimiting statements and blocks with indentation

 Evaluating Boolean values and expressions
99

100 CHAPTER 8 Control flow
condition is a Boolean expression—that is, one that evaluates to a True or False
value. As long as it’s True, the body is executed repeatedly. When the condition
evaluates to False, the while loop executes the post-code section and then termi-
nates. If the condition starts out by being False, the body won’t be executed at
all—just the post-code section. The body and post-code are each sequences of
one or more Python statements that are separated by newlines and are at the same
level of indentation. The Python interpreter uses this level to delimit them. No other
delimiters, such as braces or brackets, are necessary.

 Note that the else part of the while loop is optional and not often used. That’s
because as long as there’s no break in the body, this loop

while condition:
 body
else:
 post-code

and this loop

while condition:
 body
post-code

do the same things—and the second is simpler to understand. I probably wouldn’t
mention the else clause except that if you don’t know about it, you may find it con-
fusing if you run across this syntax in another person’s code. Also, it’s useful in some
situations.

 The two special statements break and continue can be used in the body of a
while loop. If break is executed, it immediately terminates the while loop, and not
even the post-code (if there is an else clause) is executed. If continue is exe-
cuted, it causes the remainder of the body to be skipped over; the condition is eval-
uated again, and the loop proceeds as normal.

8.2 The if-elif-else statement
The most general form of the if-then-else construct in Python is

if condition1:
 body1
elif condition2:
 body2
elif condition3:
 body3
.
.
.
elif condition(n-1):
 body(n-1)

else:
 body(n)

101The for loop
It says: If condition1 is True, execute body1; otherwise, if condition2 is True,
execute body2; otherwise . . . and so on until it either finds a condition that evaluates
to True or hits the else clause, in which case it executes body(n). As with the while
loop, the body sections are again sequences of one or more Python statements that
are separated by newlines and are at the same level of indentation.

 You don’t need all that luggage for every conditional, of course. You can leave out
the elif parts, the else part, or both. If a conditional can’t find any body to execute
(no conditions evaluate to True, and there’s no else part), it does nothing.

 The body after the if statement is required. But you can use the pass statement
here (as you can anywhere in Python where a statement is required). The pass state-
ment serves as a placeholder where a statement is needed, but it performs no action:

if x < 5:
 pass
else:
 x = 5

There’s no case (or switch) statement in Python.

8.3 The for loop
A for loop in Python is different from for loops in some other languages. The tradi-
tional pattern is to increment and test a variable on each iteration, which is what C
for loops usually do. In Python, a for loop iterates over the values returned by any

Where’s the case statement in Python?
As just mentioned, there’s no case statement in Python. In most cases where a case
or switch statement would be used in other languages, Python gets by just fine with
a ladder of if… elif… elif… else. In the few cases where that gets cumbersome, a
dictionary of functions usually works, as in this example:

def do_a_stuff():
 #process a
def do_b_stuff():
 #process b
def do_c_stiff():
 #process c

func_dict = {'a' : do_a_stuff,
 'b' : do_b_stuff,
 'c' : do_c_stuff }

x = 'a'
func_dict[x]()

In fact, there have been proposals (see PEP 275 and PEP 3103) to add a case state-
ment to Python, but overall consensus has been that it’s not needed or worth the
trouble.

run function
from dictionary

102 CHAPTER 8 Control flow
iterable object—that is, any object that can yield a sequence of values. For example, a
for loop can iterate over every element in a list, a tuple, or a string. But an iterable
object can also be a special function called range or a special type of function called a
generator or a generator expression, which can be quite powerful. The general form is

for item in sequence:
 body
else:
 post-code

body is executed once for each element of sequence. item is set to be the first ele-
ment of sequence, and body is executed; then item is set to be the second element
of sequence, and body is executed, and so on for each remaining element of the
sequence.

 The else part is optional. Like the else part of a while loop, it’s rarely used.
break and continue do the same thing in a for loop as in a while loop.

 This small loop prints out the reciprocal of each number in x:

x = [1.0, 2.0, 3.0]
for n in x:
 print(1 / n)

8.3.1 The range function

Sometimes, you need to loop with explicit indices (such as the positions at which val-
ues occur in a list). You can use the range command together with the len command
on the list to generate a sequence of indices for use by the for loop. This code prints
out all the positions in a list where it finds negative numbers:

x = [1, 3, -7, 4, 9, -5, 4]
for i in range(len(x)):
 if x[i] < 0:
 print("Found a negative number at index ", i)

Given a number n, range(n) returns a sequence 0, 1, 2, …, n – 2, n – 1. So passing it
the length of a list (found using len) produces a sequence of the indices for that list’s
elements. The range function doesn’t build a Python list of integers; it just appears
to. Instead, it creates a range object that produces integers on demand. This is useful
when you’re using explicit loops to iterate over really large lists. Instead of building a
list with 10 million elements in it, for example, which would take up quite a bit of
memory, you can use range(10000000), which takes up only a small amount of
memory and generates a sequence of integers from 0 up to (but not including)
10000000 as needed by the for loop.

8.3.2 Controlling range with starting and stepping values

You can use two variants on the range function to gain more control over the
sequence it produces. If you use range with two numeric arguments, the first argu-
ment is the starting number for the resulting sequence, and the second number is the

103The for loop
number the resulting sequence goes up to (but doesn’t include). Here are a few
examples:

>>> list(range(3, 7))
[3, 4, 5, 6]
>>> list(range(2, 10))
[2, 3, 4, 5, 6, 7, 8, 9]
>>> list(range(5, 3))
[]

list() is used only to force the items range would generate to appear as a list. It’s
not normally used in actual code B.

 This still doesn’t allow you to count backward, which is why the value of
list(range(5, 3)) is an empty list. To count backward, or to count by any amount
other than 1, you need to use the optional third argument to range, which gives a
step value by which counting proceeds:

>>> list(range(0, 10, 2))
[0, 2, 4, 6, 8]
>>> list(range(5, 0, -1))
[5, 4, 3, 2, 1]

Sequences returned by range always include the starting value given as an argument
to range and never include the ending value given as an argument.

8.3.3 Using break and continue in for loops

The two special statements break and continue can also be used in the body of a
for loop. If break is executed, it immediately terminates the for loop, and not even
the post-code (if there is an else clause) is executed. If continue is executed in a
for loop, it causes the remainder of the body to be skipped over, and the loop pro-
ceeds as normal with the next item.

8.3.4 The for loop and tuple unpacking

You can use tuple unpacking to make some for loops cleaner. The following code
takes a list of two-element tuples and calculates the value of the sum of the products of
the two numbers in each tuple (a moderately common mathematical operation in
some fields):

somelist = [(1, 2), (3, 7), (9, 5)]
result = 0
for t in somelist:
 result = result + (t[0] * t[1])

Here’s the same thing, but cleaner:

somelist = [(1, 2), (3, 7), (9, 5)]
result = 0

for x, y in somelist:
 result = result + (x * y)

B

B

104 CHAPTER 8 Control flow
This code uses a tuple x, y immediately after the for keyword instead of the usual
single variable. On each iteration of the for loop, x contains element 0 of the current
tuple from list, and y contains element 1 of the current tuple from list. Using a
tuple in this manner is a convenience of Python, and doing this indicates to Python
that each element of the list is expected to be a tuple of appropriate size to unpack
into the variable names mentioned in the tuple after the for.

8.3.5 The enumerate function

You can combine tuple unpacking with the enumerate function to loop over both the
items and their index. This is similar to using range but has the advantage that the
code is clearer and easier to understand. Like the previous example, the following
code prints out all the positions in a list where it finds negative numbers:

x = [1, 3, -7, 4, 9, -5, 4]
for i, n in enumerate(x):
 if n < 0:
 print("Found a negative number at index ", i)

The enumerate function returns tuples of (index, item) B. You can access the item
without the index c. The index is also available d.

8.3.6 The zip function

Sometimes, it’s useful to combine two or more iterables before looping over them.
The zip function takes the corresponding elements from one or more iterables and
combines them into tuples until it reaches the end of the shortest iterable:

>>> x = [1, 2, 3, 4]
>>> y = ['a', 'b', 'c']
>>> z = zip(x, y)
>>> list(z)
[(1, 'a'), (2, 'b'), (3, 'c')]

TRY THIS: LOOPING AND IF STATEMENTS Suppose that you have a list x = [1,
3, 5, 0, -1, 3, -2], and you need to remove all negative numbers from
that list. Write the code to do this.

How would you count the total number of negative numbers in a list
y = [[1, -1, 0], [2, 5, -9], [-2, -3, 0]]?

What code would you use to print very low if the value of x is below -5, low
if it’s from -5 up to 0, neutral if it’s equal to 0, high if it’s greater than 0 up
to 5, and very high if it’s greater than 5?

8.4 List and dictionary comprehensions
The pattern of using a for loop to iterate through a list, modify or select individual
elements, and create a new list or dictionary is very common. Such loops often look a
lot like the following:

>>> x = [1, 2, 3, 4]
>>> x_squared = []

B
c

d

y is 3 elements;
x is 4 elements.

z has only
3 elements.

105List and dictionary comprehensions
>>> for item in x:
... x_squared.append(item * item)
...
>>> x_squared
[1, 4, 9, 16]

This sort of situation is so common that Python has a special shortcut for such opera-
tions, called a comprehension. You can think of a list or dictionary comprehension as a
one-line for loop that creates a new list or dictionary from a sequence. The pattern of
a list comprehension is as follows:

new_list = [expression1 for variable in old_list if expression2]

and a dictionary comprehension looks like this:

new_dict = {expression1:expression2 for variable in list if expression3}

In both cases, the heart of the expression is similar to the beginning of a for loop—
for variable in list—with some expression using that variable to create a new
key or value and an optional conditional expression using the value of the variable to
select whether it’s included in the new list or dictionary. The following code does
exactly the same thing as the previous code but is a list comprehension:

>>> x = [1, 2, 3, 4]
>>> x_squared = [item * item for item in x]
>>> x_squared
[1, 4, 9, 16]

You can even use if statements to select items from the list:

>>> x = [1, 2, 3, 4]
>>> x_squared = [item * item for item in x if item > 2]

>>> x_squared
[9, 16]

Dictionary comprehensions are similar, but you need to supply both a key and a value.
If you want to do something similar to the previous example but have the number be
the key and the number’s square be the value in a dictionary, you can use a dictionary
comprehension, like so:

>>> x = [1, 2, 3, 4]
>>> x_squared_dict = {item: item * item for item in x}
>>> x_squared_dict
{1: 1, 2: 4, 3: 9, 4: 16}

List and dictionary comprehensions are very flexible and powerful, and when you get
used to them, they make list-processing operations much simpler. I recommend that
you experiment with them and try them any time you find yourself writing a for loop
to process a list of items.

106 CHAPTER 8 Control flow
8.4.1 Generator expressions

Generator expressions are similar to list comprehensions. A generator expression
looks a lot like a list comprehension, except that in place of square brackets, it uses
parentheses. The following example is the generator-expression version of the list
comprehension already discussed:

>>> x = [1, 2, 3, 4]
>>> x_squared = (item * item for item in x)
>>> x_squared
<generator object <genexpr> at 0x102176708>
>>> for square in x_squared:
... print(square,)
...
1 4 9 16

Other than the change from square brackets, notice that this expression doesn’t
return a list. Instead, it returns a generator object that could be used as the iterator in
a for loop, as shown, which is very similar to what the range() function does. The
advantage of using a generator expression is that the entire list isn’t generated in
memory, so arbitrarily large sequences can be generated with little memory overhead.

TRY THIS: COMPREHENSIONS What list comprehension would you use to pro-
cess the list x so that all negative values are removed?

Create a generator that returns only odd numbers from 1 to 100. (Hint: A
number is odd if there is a remainder if divided by 2; use % 2 to get the
remainder of division by 2.)

Write the code to create a dictionary of the numbers and their cubes from 11
through 15.

8.5 Statements, blocks, and indentation
Because the control flow constructs you’ve encountered in this chapter are the first to
make use of blocks and indentation, this is a good time to revisit the subject.

 Python uses the indentation of the statements to determine the delimitation of the
different blocks (or bodies) of the control-flow constructs. A block consists of one or
more statements, which are usually separated by newlines. Examples of Python state-
ments are the assignment statement, function calls, the print function, the place-
holder pass statement, and the del statement. The control-flow constructs (if-
elif-else, while, and for loops) are compound statements:

compound statement clause:
 block
compound statement clause:
 block

A compound statement contains one or more clauses that are each followed by
indented blocks. Compound statements can appear in blocks just like any other state-
ments. When they do, they create nested blocks.

107Statements, blocks, and indentation
 You may also encounter a couple of special cases. Multiple statements may be
placed on the same line if they’re separated by semicolons. A block containing a sin-
gle line may be placed on the same line after the semicolon of a clause of a compound
statement:

>>> x = 1; y = 0; z = 0
>>> if x > 0: y = 1; z = 10
... else: y = -1
...
>>> print(x, y, z)
1 1 10

Improperly indented code results in an exception being raised. You may encounter
two forms of this exception. The first is

>>>
>>> x = 1
File "<stdin>", line 1
 x = 1
 ^
 IndentationError: unexpected indent
>>>

This code indented a line that shouldn’t have been indented. In the basic mode, the
carat (^) indicates the spot where the problem occurred. In the IDLE Python shell
(see figure 8.1), the invalid indent is highlighted. The same message would occur if
the code didn’t indent where necessary (that is, the first line after a compound state-
ment clause).

One situation where this can occur can be confusing. If you’re using an editor that
displays tabs in four-space increments (or Windows interactive mode, which indents
the first tab only four spaces from the prompt) and indent one line with four spaces
and then the next line with a tab, the two lines may appear to be at the same level of
indentation. But you receive this exception because Python maps the tab to eight
spaces. The best way to avoid this problem is to use only spaces in Python code. If you
must use tabs for indentation, or if you’re dealing with code that uses tabs, be sure
never to mix them with spaces.

Figure 8.1 Indentation error

108 CHAPTER 8 Control flow
 On the subject of the basic interactive mode and the IDLE Python shell, you’ve
likely noticed that you need an extra line after the outermost level of indentation:

>>> x = 1
>>> if x == 1:
... y = 2
... if v > 0:
... z = 2
... v = 0
...
>>> x = 2

No line is necessary after the line z = 2, but one is needed after the line v = 0. This
line is unnecessary if you’re placing your code in a module in a file.

 The second form of exception occurs if you indent a statement in a block less than
the legal amount:

>>> x = 1
>>> if x == 1:
 y = 2
 z = 2
File "<stdin>", line 3
 z = 2
 ^
 IndentationError: unindent does not match any outer indentation level

In this example, the line containing z = 2 isn’t lined up properly below the line con-
taining y = 2. This form is rare, but I mention it again because in a similar situation,
it may be confusing.

 Python allows you to indent any amount and won’t complain regardless of how
much you vary indentation as long as you’re consistent within a single block. Please
don’t take improper advantage of this flexibility. The recommended standard is to use
four spaces for each level of indentation.

 Before leaving indentation, I’ll cover breaking up statements across multiple lines,
which of course is necessary more often as the level of indentation increases. You can
explicitly break up a line by using the backslash character. You can also implicitly
break any statement between tokens when within a set of (), {}, or [] delimiters
(that is, when typing a set of values in a list, a tuple, or a dictionary; a set of arguments
in a function call; or any expression within a set of brackets). You can indent the con-
tinuation line of a statement to any level you desire:

>>> print('string1', 'string2', 'string3' \
... , 'string4', 'string5')
string1 string2 string3 string4 string5
>>> x = 100 + 200 + 300 \
... + 400 + 500
>>> x
1500
>>> v = [100, 300, 500, 700, 900,
... 1100, 1300]

109Boolean values and expressions
>>> v
[100, 300, 500, 700, 900, 1100, 1300]
>>> max(1000, 300, 500,
... 800, 1200)
1200
>>> x = (100 + 200 + 300
... + 400 + 500)
>>> x
1500

You can break a string with a \ as well. But any indentation tabs or spaces become part
of the string, and the line must end with the \. To avoid this situation, remember that
any string literals separated by whitespace are automatically concatenated by the
Python interpreter:

>>> "strings separated by whitespace " \
... """are automatically""" ' concatenated'
'strings separated by whitespace are automatically concatenated'
>>> x = 1
>>> if x > 0:
... string1 = "this string broken by a backslash will end up \
... with the indentation tabs in it"
...
>>> string1
'this string broken by a backslash will end up \t\t\twith
 the indentation tabs in it'
>>> if x > 0:
... string1 = "this can be easily avoided by splitting the " \
... "string in this way"
...
>>> string1
'this can be easily avoided by splitting the string in this way'

8.6 Boolean values and expressions
The previous examples of control flow use conditional tests in a fairly obvious manner
but never really explain what constitutes true or false in Python or what expressions
can be used where a conditional test is needed. This section describes these aspects of
Python.

 Python has a Boolean object type that can be set to either True or False. Any
expression with a Boolean operation returns True or False.

8.6.1 Most Python objects can be used as Booleans

In addition, Python is similar to C with respect to Boolean values, in that C uses the
integer 0 to mean false and any other integer to mean true. Python generalizes this
idea: 0 or empty values are False, and any other values are True. In practical terms,
this means the following:

 The numbers 0, 0.0, and 0+0j are all False; any other number is True.
 The empty string "" is False; any other string is True.
 The empty list [] is False; any other list is True.

110 CHAPTER 8 Control flow
 The empty dictionary {} is False; any other dictionary is True.
 The empty set set() is False; any other set is True.
 The special Python value None is always False.

We haven’t looked at some Python data structures yet, but generally, the same rule
applies. If the data structure is empty or 0, it’s taken to mean false in a Boolean con-
text; otherwise, it’s taken to mean true. Some objects, such as file objects and code
objects, don’t have a sensible definition of a 0 or empty element, and these objects
shouldn’t be used in a Boolean context.

8.6.2 Comparison and Boolean operators

You can compare objects by using normal operators: <, <=, >, >=, and so forth. == is
the equality test operator, and!= is the “not equal to” test. There are also in and not
in operators to test membership in sequences (lists, tuples, strings, and dictionaries),
as well as is and is not operators to test whether two objects are the same.

 Expressions that return a Boolean value may be combined into more complex
expressions using the and, or, and not operators. This code snippet checks to see
whether a variable is within a certain range:

if 0 < x and x < 10:
 ...

Python offers a nice shorthand for this particular type of compound statement. You
can write it as you would in a math paper:

if 0 < x < 10:
 ...

Various rules of precedence apply; when in doubt, you can use parentheses to make
sure that Python interprets an expression the way you want it to. Using parentheses is
probably a good idea for complex expressions, regardless of whether it’s necessary,
because it makes clear to future maintainers of the code exactly what’s happening.
See the Python documentation for more details on precedence.

 The rest of this section provides more advanced information. If you’re reading this
book as you’re learning the language, you may want to skip that material for now.

 The and and or operators return objects. The and operator returns either the first
false object (that an expression evaluates to) or the last object. Similarly, the or opera-
tor returns either the first true object or the last object. This may seem a little confus-
ing, but it works correctly; if an expression with and has even one false element, that
element makes the entire expression evaluate as False, and that False value is
returned. If all of the elements are True, the expression is True, and the last value,
which must also be True, is returned. The converse is true for or; only one True ele-
ment makes the statement logically True, and the first True value found is returned.
If no True values are found, the last (False) value is returned. In other words, as with

111Writing a simple program to analyze a text file
many other languages, evaluation stops as soon as a true expression is found for the
or operator or as soon as a false expression is found for the and operator:

>>> [2] and [3, 4]
[3, 4]
>>> [] and 5
[]
>>> [2] or [3, 4]
[2]
>>> [] or 5
5
>>>

The == and!= operators test to see whether their operands contains the same values.
== and != are used in most situations, as opposed to is and is not operators, which
test to see whether their operands are the same object:

>>> x = [0]
>>> y = [x, 1]
>>> x is y[0]
True
>>> x = [0]
>>> x is y[0]
False
>>> x == y[0]
True

Revisit section 5.6, “Nested lists and deep copies,” if this example isn’t clear to you.

QUICK CHECK: BOOLEANS AND TRUTHINESS Decide whether the following state-
ments are true or false: 1, 0, -1, [0], 1 and 0, 1 > 0 or [].

8.7 Writing a simple program to analyze a text file
To give you a better sense of how a Python program works, this section looks at a small
sample that roughly replicates the UNIX wc utility and reports the number of lines,
words, and characters in a file. The sample in this listing is deliberately written to be
clear to programmers who are new to Python and to be as simple as possible.

#!/usr/bin/env python3

""" Reads a file and returns the number of lines, words,
 and characters - similar to the UNIX wc utility
"""

infile = open('word_count.tst')

lines = infile.read().split("\n")

line_count = len(lines)

Listing 8.1 word_count.py

They reference the
same object.

x has been assigned
to a different object.

Opens file

Reads file;
splits into lines

Gets number of
lines with len()

112 CHAPTER 8 Control flow
word_count = 0
char_count = 0

for line in lines:

 words = line.split()
 word_count += len(words)

 char_count += len(line)

print("File has {0} lines, {1} words, {2} characters".format
 (line_count, word_count, char_count))

To test, you can run this sample against a sample file containing the first paragraph of
this chapter’s summary, like this.

Python provides a complete set of control flow elements,
including while and for loops, and conditionals.
Python uses the level of indentation to group blocks
of code with control elements.

Upon running word_count.py, you get the following output:

naomi@mac:~/quickpythonbook/code $ python3.1 word_count.py
File has 4 lines, 30 words, 189 characters

This code can give you an idea of a Python program. There isn’t much code, and most
of the work gets done in three lines of code in the for loop. In fact, this program
could be made even shorter and more idiomatic. Most Pythonistas see this conciseness
as one of Python’s great strengths.

LAB 8: REFACTOR WORD_COUNT Rewrite the word-count program from section
8.7 to make it shorter. You may want to look at the string and list operations
already discussed, as well as think about different ways to organize the code.
You may also want to make the program smarter so that only alphabetic
strings (not symbols or punctuation) count as words.

Summary
 Python uses indentation to group blocks of code.
 Python has loops using while and for, and conditionals using if-elif-else.
 Python has the Boolean values True and False, which can be referenced by

variables.
 Python also considers any 0 or empty value to be False and any nonzero or

nonempty value to be True.

Listing 8.2 word_count.tst

Initializes other counts
Iterates
through lines

Splits into words

Returns number
of characters

Prints
answers

Functions
This chapter assumes that you’re familiar with function definitions in at least one
other computer language and with the concepts that correspond to function defi-
nitions, arguments, parameters, and so forth.

9.1 Basic function definitions
The basic syntax for a Python function definition is

def name(parameter1, parameter2, . . .):
 body

This chapter covers
 Defining functions

 Using function parameters

 Passing mutable objects as parameters

 Understanding local and global variables

 Creating and using generator functions

 Creating and using lambda expressions

 Using decorators
113

114 CHAPTER 9 Functions
As it does with control structures, Python uses indentation to delimit the body of the
function definition. The following simple example puts the factorial code from a pre-
vious section into a function body, so you can call a fact function to obtain the facto-
rial of a number:

>>> def fact(n):
... """Return the factorial of the given number."""
... r = 1
... while n > 0:
... r = r * n
... n = n - 1
... return r
...

The second line B is an optional documentation string, or docstring. You can obtain its
value by printing fact.__doc__. The intention of docstrings is to describe the exter-
nal behavior of a function and the parameters it takes, whereas comments should doc-
ument internal information about how the code works. Docstrings are strings that
immediately follow the first line of a function definition and are usually triple quoted
to allow for multiline descriptions. Browsing tools are available that extract the first
line of document strings. It’s standard practice for multiline documentation strings to
give a synopsis of the function in the first line, follow this synopsis with a blank second
line, and end with the rest of the information. This line indicates that the value after
the return is sent back to the code calling the function c.

Although all Python functions return values, it’s up to you whether a function’s return
value is used:

>>> fact(4)
24
>>> x = fact(4)
>>> x
24
>>>

The return value isn’t associated with a variable b. The fact function’s value is printed
in the interpreter only c. The return value is associated with the variable x d.

Procedure or function?
In some languages, a function that doesn’t return a value is called a procedure.
Although you can (and will) write functions that don’t have a return statement, they
aren’t really procedures. All Python procedures are functions; if no explicit return
is executed in the procedure body, the special Python value None is returned, and if
return arg is executed, the value arg is immediately returned. Nothing else in the
function body is executed after a return has been executed. Because Python
doesn’t have true procedures, I’ll refer to both types as functions.

b

c

B

c
d

115Function parameter options
9.2 Function parameter options
Most functions need parameters, and each language has its own specifications for how
function parameters are defined. Python is flexible and provides three options for
defining function parameters. These options are outlined in this section.

9.2.1 Positional parameters

The simplest way to pass parameters to a function in Python is by position. In the first
line of the function, you specify variable names for each parameter; when the func-
tion is called, the parameters used in the calling code are matched to the function’s
parameter variables based on their order. The following function computes x to the
power of y:

>>> def power(x, y):
... r = 1
... while y > 0:
... r = r * x
... y = y - 1
... return r
...
>>> power(3, 3)
27

This method requires that the number of parameters used by the calling code exactly
matches the number of parameters in the function definition; otherwise, a Type-
Error exception is raised:

>>> power(3)
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: power() missing 1 required positional argument: 'y'
>>>

Default values
Function parameters can have default values, which you declare by assigning a
default value in the first line of the function definition, like so:

def fun(arg1, arg2=default2, arg3=default3, . . .)

Any number of parameters can be given default values. Parameters with default val-
ues must be defined as the last ones in the parameter list because Python, like most
languages, pairs arguments with parameters on a positional basis. There must be
enough arguments to a function that the last parameter in that function’s parameter
list without a default value gets an argument. See section 9.2.2, “Passing arguments
by parameter name,” for a more flexible mechanism.

116 CHAPTER 9 Functions
The following function also computes x to the power of y. But if y isn’t given in a
call to the function, the default value of 2 is used, and the function is just the square
function:

>>> def power(x, y=2):
... r = 1
... while y > 0:
... r = r * x
... y = y - 1
... return r
...

You can see the effect of the default argument in the following interactive session:

>>> power(3, 3)
27
>>> power(3)
9

9.2.2 Passing arguments by parameter name

You can also pass arguments into a function by using the name of the corresponding
function parameter rather than its position. Continuing with the previous interactive
example, you can type

>>> power(2, 3)
8
>>> power(3, 2)
9
>>> power(y=2, x=3)
9

Because the arguments to power in the final invocation are named, their order is
irrelevant; the arguments are associated with the parameters of the same name in the
definition of power, and you get back 3^2. This type of argument passing is called key-
word passing.

 Keyword passing, in combination with the default argument capability of Python
functions, can be highly useful when you’re defining functions with large numbers of
possible arguments, most of which have common defaults. Consider a function that’s
intended to produce a list with information about files in the current directory and
that uses Boolean arguments to indicate whether that list should include information
such as file size, last modified date, and so forth, for each file. You can define such a
function along these lines

def list_file_info(size=False, create_date=False, mod_date=False, ...):
 ...get file names...
 if size:
 # code to get file sizes goes here
 if create_date:
 # code to get create dates goes here
 # do any other stuff desired

 return fileinfostructure

117Function parameter options
and then call it from other code using keyword argument passing to indicate that you
want only certain information (in this example, the file size and modification date but
not the creation date):

fileinfo = list_file_info(size=True, mod_date=True)

This type of argument handling is particularly suited for functions with very complex
behavior, and one place where such functions occur is in a graphical user interface
(GUI). If you ever use the Tkinter package to build GUIs in Python, you’ll find that
the use of optional, keyword-named arguments like this is invaluable.

9.2.3 Variable numbers of arguments

Python functions can also be defined to handle variable numbers of arguments, which
you can do in two ways. One way handles the relatively familiar case in which you want
to collect an unknown number of arguments at the end of the argument list into a list.
The other method can collect an arbitrary number of keyword-passed arguments,
which have no correspondingly named parameter in the function parameter list, into
a dictionary. These two mechanisms are discussed next.

DEALING WITH AN INDEFINITE NUMBER OF POSITIONAL ARGUMENTS

Prefixing the final parameter name of the function with a * causes all excess non-key-
word arguments in a call of a function (that is, those positional arguments not
assigned to another parameter) to be collected together and assigned as a tuple to the
given parameter. Here’s a simple way to implement a function to find the maximum
in a list of numbers.

 First, implement the function:

>>> def maximum(*numbers):
... if len(numbers) == 0:
... return None
... else:
... maxnum = numbers[0]
... for n in numbers[1:]:
... if n > maxnum:
... maxnum = n
... return maxnum
...

Now test the behavior of the function:

>>> maximum(3, 2, 8)
8
>>> maximum(1, 5, 9, -2, 2)
9

DEALING WITH AN INDEFINITE NUMBER OF ARGUMENTS PASSED BY KEYWORD

An arbitrary number of keyword arguments can also be handled. If the final parame-
ter in the parameter list is prefixed with **, it collects all excess keyword-passed argu-
ments into a dictionary. The key for each entry in the dictionary is the keyword

118 CHAPTER 9 Functions
(parameter name) for the excess argument. The value of that entry is the argument
itself. An argument passed by keyword is excess in this context if the keyword by which
it was passed doesn’t match one of the parameter names in the function definition.

 For example:

>>> def example_fun(x, y, **other):
... print("x: {0}, y: {1}, keys in 'other': {2}".format(x,
... y, list(other.keys())))
... other_total = 0
... for k in other.keys():
... other_total = other_total + other[k]
... print("The total of values in 'other' is {0}".format(other_total))

Trying out this function in an interactive session reveals that it can handle arguments
passed in under the keywords foo and bar, even though foo and bar aren’t parame-
ter names in the function definition:

>>> example_fun(2, y="1", foo=3, bar=4)
x: 2, y: 1, keys in 'other': ['foo', 'bar']
The total of values in 'other' is 7

9.2.4 Mixing argument-passing techniques

It’s possible to use all of the argument-passing features of Python functions at the
same time, although it can be confusing if not done with care. The general rule for
using mixed argument-passing is that positional arguments come first, then named
arguments, followed by the indefinite positional argument with a single *, and last of
all the indefinite keyword argument with **. See the documentation for full details.

QUICK CHECK: FUNCTIONS AND PARAMETERS How would you write a function
that could take any number of unnamed arguments and print their values out
in reverse order?
What do you need to do to create a procedure or void function—that is, a
function with no return value?
What happens if you capture the return value of a function with a variable?

9.3 Mutable objects as arguments
Arguments are passed in by object reference. The parameter becomes a new refer-
ence to the object. For immutable objects (such as tuples, strings, and numbers), what
is done with a parameter has no effect outside the function. But if you pass in a muta-
ble object (such as a list, dictionary, or class instance), any change made to the object
changes what the argument is referencing outside the function. Reassigning the
parameter doesn’t affect the argument, as shown in figures 9.1 and 9.2:

>>> def f(n, list1, list2):
... list1.append(3)
... list2 = [4, 5, 6]
... n = n + 1
...
>>> x = 5
>>> y = [1, 2]

119Local, nonlocal, and global variables
>>> z = [4, 5]
>>> f(x, y, z)
>>> x, y, z
(5, [1, 2, 3], [4, 5])

Figures 9.1 and 9.2 illustrate what happens when function f is called. The variable x
isn’t changed because it’s immutable. Instead, the function parameter n is set to refer
to the new value of 6. Likewise, variable z is unchanged because inside function f, its
corresponding parameter list2 was set to refer to a new object, [4, 5, 6]. Only y
sees a change because the actual list it points to was changed.

QUICK CHECK: MUTABLE FUNCTION PARAMETERS What would be the result of
changing a list or dictionary that was passed into a function as a parameter
value? Which operations would be likely to create changes that would be visi-
ble outside the function? What steps might you take to minimize that risk?

9.4 Local, nonlocal, and global variables
Here, you return to the definition of fact from the beginning of this chapter:

def fact(n):
 """Return the factorial of the given number."""
 r = 1
 while n > 0:
 r = r * n
 n = n - 1
 return r

Both the variables r and n are local to any particular call of the factorial function;
changes to them made when the function is executing have no effect on any variables

Figure 9.2 At the end of function f(),
y (list1 inside the function) has been
changed internally, whereas n and
list2 refer to different objects.

Figure 9.1 At the beginning of
function f(), both the initial
variables and the function parameters
refer to the same objects.

120 CHAPTER 9 Functions

in

nl_va
outside the function. Any variables in the parameter list of a function, and any vari-
ables created within a function by an assignment (like r = 1 in fact), are local to the
function.

 You can explicitly make a variable global by declaring it so before the variable is
used, using the global statement. Global variables can be accessed and changed by
the function. They exist outside the function and can also be accessed and changed by
other functions that declare them global or by code that’s not within a function.
Here’s an example that shows the difference between local and global variables:

>>> def fun():
... global a
... a = 1
... b = 2
...

This example defines a function that treats a as a global variable and b as a local vari-
able, and attempts to modify both a and b.

 Now test this function:

>>> a = "one"
>>> b = "two"

>>> fun()
>>> a
1
>>> b
'two'

The assignment to a within fun is an assignment to the global variable a also existing
outside fun. Because a is designated global in fun, the assignment modifies that
global variable to hold the value 1 instead of the value "one". The same isn’t true for
b; the local variable called b inside fun starts out referring to the same value as the
variable b outside fun, but the assignment causes b to point to a new value that’s local
to the function fun.

 Similar to the global statement is the nonlocal statement, which causes an iden-
tifier to refer to a previously bound variable in the closest enclosing scope. I discuss
scopes and namespaces in more detail in chapter 10, but the point is that global is
used for a top-level variable, whereas nonlocal can refer to any variable in an enclos-
ing scope, as the example in listing 9.1 illustrates.

g_var = 0
nl_var = 0
print("top level-> g_var: {0} nl_var: {1}".format(g_var, nl_var))
def test():
 nl_var = 2
 print("in test-> g_var: {0} nl_var: {1}".format(g_var, nl_var))
 def inner_test():

Listing 9.1 File nonlocal.py

g_var in inner_test
binds top-level g_var.

nl_var in
ner_test
binds to
r in test.

121Assigning functions to variables

inner
 global g_var
 nonlocal nl_var
 g_var = 1
 nl_var = 4
 print("in inner_test-> g_var: {0} nl_var: {1}".format(g_var,
 nl_var))

 inner_test()
 print("in test-> g_var: {0} nl_var: {1}".format(g_var, nl_var))

test()
print("top level-> g_var: {0} nl_var: {1}".format(g_var, nl_var))

When run, this code prints the following:

top level-> g_var: 0 nl_var: 0
in test-> g_var: 0 nl_var: 2
in inner_test-> g_var: 1 nl_var: 4
in test-> g_var: 1 nl_var: 4
top level-> g_var: 1 nl_var: 0

Note that the value of the top-level nl_var hasn’t been affected, which would happen
if inner_test contained the line global nl_var.

 The bottom line is that if you want to assign to a variable existing outside a func-
tion, you must explicitly declare that variable to be nonlocal or global. But if you’re
accessing a variable that exists outside the function, you don’t need to declare it
nonlocal or global. If Python can’t find a variable name in the local function scope, it
attempts to look up the name in the global scope. Hence, accesses to global variables
are automatically sent through to the correct global variable. Personally, I don’t rec-
ommend using this shortcut. It’s much clearer to a reader if all global variables are
explicitly declared as global. Further, you probably want to limit the use of global vari-
ables within functions to rare occasions.

TRY THIS: GLOBAL VS. LOCAL VARIABLES Assuming that x = 5, what will be the
value of x after funct_1() below executes? After funct_2() executes?

def funct_1():
 x = 3
def funct_2():
 global x
 x = 2

9.5 Assigning functions to variables
Functions can be assigned, like other Python objects, to variables, as shown in this
example:

>>> def f_to_kelvin(degrees_f):
... return 273.15 + (degrees_f - 32) * 5 / 9
...
>>> def c_to_kelvin(degrees_c):
... return 273.15 + degrees_c

g_var in inner_test
binds top-level g_var.nl_var in

_test binds to
nl_var in test.

Defines the f_to_kelvin
kelvin function

Defines the c_to_kelvin
function

122 CHAPTER 9 Functions
...
>>> abs_temperature = f_to_kelvin
>>> abs_temperature(32)
273.15
>>> abs_temperature = c_to_kelvin
>>> abs_temperature(0)
273.15

You can place functions in lists, tuples, or dictionaries:

>>> t = {'FtoK': f_to_kelvin, 'CtoK': c_to_kelvin}
>>> t['FtoK'](32)
273.15
>>> t['CtoK'](0)
273.15

A variable that refers to a function can be used in exactly the same way as the function
B. This last example shows how you can use a dictionary to call different functions by
the value of the strings used as keys. This pattern is common in situations in which dif-
ferent functions need to be selected based on a string value, and in many cases, it
takes the place of the switch structure found in languages such as C and Java.

9.6 lambda expressions
Short functions like those you just saw can also be defined by using lambda expres-
sions of the form

lambda parameter1, parameter2, . . .: expression

lambda expressions are anonymous little functions that you can quickly define inline.
Often, a small function needs to be passed to another function, like the key function
used by a list’s sort method. In such cases, a large function is usually unnecessary, and
it would be awkward to have to define the function in a separate place from where it’s
used. The dictionary in the previous subsection can be defined all in one place with

>>> t2 = {'FtoK': lambda deg_f: 273.15 + (deg_f - 32) * 5 / 9,
... 'CtoK': lambda deg_c: 273.15 + deg_c}
>>> t2['FtoK'](32)
273.15

This example defines lambda expressions as values of the dictionary B. Note that
lambda expressions don’t have a return statement because the value of the expres-
sion is automatically returned.

9.7 Generator functions
A generator function is a special kind of function that you can use to define your own
iterators. When you define a generator function, you return each iteration’s value
using the yield keyword. The generator will stop returning values when there are no
more iterations, or it encounters either an empty return statement or the end of the

Assigns function
to variable

Assigns function
to variable

B
Accesses the f_to_kelvin
function as value in dictionary

Accesses the c_to_kelvin
function as value in dictionary

B

123Generator functions
function. Local variables in a generator function are saved from one call to the next,
unlike in normal functions:

>>> def four():
... x = 0
... while x < 4:
... print("in generator, x =", x)
... yield x
... x += 1
...
>>> for i in four():
... print(i)
...
in generator, x = 0
0
in generator, x = 1
1
in generator, x = 2
2
in generator, x = 3
3

Note that this generator function has a while loop that limits the number of times
the generator executes. Depending on how it’s used, a generator that doesn’t have
some condition to halt it could cause an endless loop when called.

yield vs. yield from
Starting with Python 3.3, the new key word for generators, yield from, joins
yield. Basically, yield from makes it possible to string generators together.
yield from behaves the same way as yield, except that it delegates the gener-
ator machinery to a subgenerator. So in a simple case, you could do this:

>>> def subgen(x):
... for i in range(x):
... yield i
...
>>> def gen(y):
... yield from subgen(y)
...
>>> for q in gen(6):
... print(q)
...
0
1
2
3
4
5

This example allows the yield expression to be moved out of the main generator,
making refactoring easier.

Sets initial value
of x to 0

Returns current
value of xIncrements

value of x

124 CHAPTER 9 Functions
You can also use generator functions with in to see whether a value is in the series that
the generator produces:

>>> 2 in four()
in generator, x = 0
in generator, x = 1
in generator, x = 2
True
>>> 5 in four()
in generator, x = 0
in generator, x = 1
in generator, x = 2
in generator, x = 3
False

QUICK CHECK: GENERATOR FUNCTIONS What would you need to modify in the
previous code for the function four()to make it work for any number? What
would you need to add to allow the starting point to also be set?

9.8 Decorators
Because functions are first-class objects in Python, they can be assigned to variables, as
you’ve seen. Functions can also be passed as arguments to other functions and passed
back as return values from other functions.

 It’s possible, for example, to write a Python function that takes another function as
its parameter, wraps it in another function that does something related, and then
returns the new function. This new combination can be used instead of the original
function:

>>> def decorate(func):
... print("in decorate function, decorating", func.__name__)
... def wrapper_func(*args):
... print("Executing", func.__name__)
... return func(*args)
... return wrapper_func
...
>>> def myfunction(parameter):
... print(parameter)
...
>>> myfunction = decorate(myfunction)
in decorate function, decorating myfunction
>>> myfunction("hello")
Executing myfunction
hello

A decorator is syntactic sugar for this process and lets you wrap one function inside
another with a one-line addition. It still gives you exactly the same effect as the previ-
ous code, but the resulting code is much cleaner and easier to read.

 Very simply, using a decorator involves two parts: defining the function that will
be wrapping or “decorating” other functions and then using an @ followed by the

125Summary
decorator immediately before the wrapped function is defined. The decorator func-
tion should take a function as a parameter and return a function, as follows:

>>> def decorate(func):
... print("in decorate function, decorating", func.__name__)
... def wrapper_func(*args):
... print("Executing", func.__name__)
... return func(*args)
... return wrapper_func
...
>>> @decorate
... def myfunction(parameter):
... print(parameter)
...
in decorate function, decorating myfunction
>>> myfunction("hello")
Executing myfunction
hello

The decorate function prints the name of the function it’s wrapping when the func-
tion is defined B. When it’s finished, the decorator returns the wrapped function c.
myfunction is decorated using @decorate d. The wrapped function is called after
the decorator function has completed e.

 Using a decorator to wrap one function in another can be handy for several pur-
poses. In web frameworks such as Django, decorators are used to make sure that a
user is logged in before executing a function; and in graphics libraries, decorators can
be used to register a function with the graphics framework.

TRY THIS: DECORATORS How would you modify the code for the decorator
function to remove unneeded messages and enclose the return value of the
wrapped function in "<html>" and "</html>", so that myfunction
("hello") would return "<html>hello<html>"?

LAB 9: USEFUL FUNCTIONS Looking back at the labs in chapters 6 and 7, refac-
tor that code into functions for cleaning and processing the data. The goal
should be that most of the logic is moved into functions. Use your own judg-
ment as to the types of functions and parameters, but keep in mind that func-
tions should do just one thing, and they shouldn’t have any side effects that
carry over outside the function.

Summary
 External variables can easily be accessed within a function by using the global

statement.
 Arguments may be passed by position or by parameter name.
 Default values may be provided for function parameters.
 Functions can collect arguments into tuples, giving you the ability to define

functions that take an indefinite number of arguments.

B

c

d

e

126 CHAPTER 9 Functions
 Functions can collect arguments into dictionaries, giving you the ability to
define functions that take an indefinite number of arguments passed by param-
eter name.

 Functions are first-class objects in Python, which means that they can be
assigned to variables, accessed by way of variables, and decorated.

Modules and scoping rules
Modules are used to organize larger Python projects. The Python standard library
is split into modules to make it more manageable. You don’t need to organize your
own code into modules, but if you’re writing any programs that are more than a
few pages long or any code that you want to reuse, you should probably do so.

10.1 What is a module?
A module is a file containing code. It defines a group of Python functions or other
objects, and the name of the module is derived from the name of the file.

This chapter covers:
 Defining a module

 Writing a first module

 Using the import statement

 Modifying the module search path

 Making names private in modules

 Importing standard library and third-party modules

 Understanding Python scoping rules and namespaces
127

128 CHAPTER 10 Modules and scoping rules
 Modules most often contain Python source code, but they can also be compiled C
or C++ object files. Compiled modules and Python source modules are used the same
way.

 As well as grouping related Python objects, modules help avert name-clash prob-
lems. You might write a module for your program called mymodule, which defines a
function called reverse. In the same program, you might also want to use somebody
else’s module called othermodule, which also defines a function called reverse but
does something different from your reverse function. In a language without mod-
ules, it would be impossible to use two different functions named reverse. In
Python, the process is trivial; you refer to the functions in your main program as
mymodule.reverse and othermodule.reverse.

 Using the module names keeps the two reverse functions straight because
Python uses namespaces. A namespace is essentially a dictionary of the identifiers avail-
able to a block, function, class, module, and so on. I discuss namespaces a bit more at
the end of this chapter, but be aware that each module has its own namespace, which
helps prevent naming conflicts.

 Modules are also used to make Python itself more manageable. Most standard
Python functions aren’t built into the core of the language but are provided via spe-
cific modules, which you can load as needed.

10.2 A first module
The best way to learn about modules is probably to make one, so you get started in
this section.

 Create a text file called mymath.py, and in that text file, enter the Python code in
listing 10.1. (If you’re using IDLE, choose File > New Window and start typing, as
shown in figure 10.1.)

"""mymath - our example math module"""
pi = 3.14159
def area(r):
 """area(r): return the area of a circle with radius r."""
 global pi
 return(pi * r * r)

Figure 10.1 An IDLE edit window provides the same editing functionality as
the shell window, including automatic indentation and colorization.

Listing 10.1 File mymath.py

129A first module
Save this code for now in the directory where your Python executable is. This code
merely assigns pi a value and defines a function. The .py filename suffix is strongly
suggested for all Python code files; it identifies that file to the Python interpreter as
consisting of Python source code. As with functions, you have the option of putting in
a document string as the first line of your module.

 Now start up the Python shell and type the following:

>>> pi
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'pi' is not defined
>>> area(2)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'area' is not defined

In other words, Python doesn’t have the constant pi or the function area built in.
 Now type

>>> import mymath
>>> pi
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'pi' is not defined
>>> mymath.pi
3.14159
>>> mymath.area(2)
12.56636
>>> mymath.__doc__
'mymath - our example math module'
>>> mymath.area.__doc__
'area(r): return the area of a circle with radius r.'

You’ve brought in the definitions for pi and area from the mymath.py file, using the
import statement (which automatically adds the .py suffix when it searches for the
file defining the module named mymath). But the new definitions aren’t directly
accessible; typing pi by itself gave an error, and typing area(2) by itself would give an
error. Instead, you access pi and area by prepending them with the name of the mod-
ule that contains them, which guarantees name safety. Another module out there may
also define pi (maybe the author of that module thinks that pi is 3.14 or 3.14159265),
but that module is of no concern. Even if that other module is imported, its version of
pi will be accessed by othermodulename.pi, which is different from mymath.pi.
This form of access is often referred to as qualification (that is, the variable pi is being
qualified by the module mymath). You may also refer to pi as an attribute of mymath.

 Definitions within a module can access other definitions within that module with-
out prepending the module name. The mymath.area function accesses the
mymath.pi constant as just pi.

130 CHAPTER 10 Modules and scoping rules
 If you want to, you can also specifically ask for names from a module to be
imported in such a manner that you don’t have to prepend them with the module
name. Type

>>> from mymath import pi
>>> pi
3.14159
>>> area(2)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name 'area' is not defined

The name pi is now directly accessible because you specifically requested it by using
from mymath import pi. The function area still needs to be called as mymath
.area, though, because it wasn’t explicitly imported.

 You may want to use the basic interactive mode or IDLE’s Python shell to incre-
mentally test a module as you’re creating it. But if you change your module on disk,
retyping the import command won’t cause it to load again. You need to use the
reload function from the importlib module for this purpose. The importlib
module provides an interface to the mechanisms behind importing modules:

>>> import mymath, importlib
>>> importlib.reload(mymath)
<module 'mymath' from '/home/doc/quickpythonbook/code/mymath.py'>

When a module is reloaded (or imported for the first time), all of its code is parsed. A
syntax exception is raised if an error is found. On the other hand, if everything is okay,
a .pyc file (for example, mymath.pyc) containing Python byte code is created.

 Reloading a module doesn’t put you back into exactly the same situation as when
you start a new session and import it for the first time. But the differences won’t nor-
mally cause you any problems. If you’re interested, you can look up reload in the sec-
tion on the importlib module in the Python Language Reference, found at https://
docs.python.org/3/reference/import.html in this page’s importlib section, to find
the details.

 Modules don’t need to be used only from the interactive Python shell, of course.
You can also import them into scripts (or other modules, for that matter); enter suit-
able import statements at the beginning of your program file. Internally to Python,
the interactive session and a script are considered to be modules as well.

 To summarize:

 A module is a file defining Python objects.
 If the name of the module file is modulename.py, the Python name of the mod-

ule is modulename.
 You can bring a module named modulename into use with the import

modulename statement. After this statement is executed, objects defined in the
module can be accessed as modulename.objectname.

https://docs.python.org/3/reference/import.html
https://docs.python.org/3/reference/import.html

131The import statement
 Specific names from a module can be brought directly into your program by
using the from modulename import objectname statement. This statement
makes objectname accessible to your program without your needing to pre-
pend it with modulename, and it’s useful for bringing in names that are often
used.

10.3 The import statement
The import statement takes three different forms. The most basic is

import modulename

which searches for a Python module of the given name, parses its contents, and makes
it available. The importing code can use the contents of the module, but any refer-
ences by that code to names within the module must still be prepended with the mod-
ule name. If the named module isn’t found, an error is generated. I discuss exactly
where Python looks for modules in section 10.4.

 The second form permits specific names from a module to be explicitly imported
into the code:

from modulename import name1, name2, name3, . . .

Each of name1, name2, and so forth from within modulename is made available to the
importing code; code after the import statement can use any of name1, name2,
name3, and so on without your prepending the module name.

 Finally, there’s a general form of the from . . . import . . . statement:

from modulename import *

The * stands for all the exported names in modulename. from modulename import
* imports all public names from modulename—that is, those that don’t begin with an
underscore—and makes them available to the importing code without the necessity of
prepending the module name. But if a list of names called __all__ exists in the mod-
ule (or the package’s __init__.py), the names are the ones imported, whether or not
they begin with an underscore.

 You should take care when using this particular form of importing. If two modules
both define a name, and you import both modules using this form of importing,
you’ll end up with a name clash, and the name from the second module will replace
the name from the first. This technique also makes it more difficult for readers of
your code to determine where the names you’re using originate. When you use either
of the two previous forms of the import statement, you give your reader explicit infor-
mation about where they’re from.

 But some modules (such as tkinter) name their functions to make it obvious
where they originate and to make it unlikely that name clashes will occur. It’s also
common to use the general import to save keystrokes when using an interactive shell.

132 CHAPTER 10 Modules and scoping rules
10.4 The module search path
Exactly where Python looks for modules is defined in a variable called path, which
you can access through a module called sys. Enter the following:

>>> import sys
>>> sys.path
list of directories in the search path

The value shown in place of _list of directories in the search path_
depends on the configuration of your system. Regardless of the details, the string indi-
cates a list of directories that Python searches (in order) when attempting to execute
an import statement. The first module found that satisfies the import request is
used. If there’s no satisfactory module in the module search path, an ImportError
exception is raised.

 If you’re using IDLE, you can graphically look at the search path and the modules
on it by using the Path Browser window, which you can start from the File menu of the
Python shell window.

 The sys.path variable is initialized from the value of the environment (operating
system) variable PYTHONPATH, if it exists, or from a default value that’s dependent on
your installation. In addition, whenever you run a Python script, the sys.path vari-
able for that script has the directory containing the script inserted as its first element,
which provides a convenient way of determining where the executing Python pro-
gram is located. In an interactive session such as the previous one, the first element of
sys.path is set to the empty string, which Python takes as meaning that it should first
look for modules in the current directory.

10.4.1 Where to place your own modules

In the example that starts this chapter, the mymath module is accessible to Python
because (1) when you execute Python interactively, the first element of sys.path is
"", telling Python to look for modules in the current directory; and (2) you executed
Python in the directory that contained the mymath.py file. In a production environ-
ment, neither of these conditions typically is true. You won’t be running Python inter-
actively, and Python code files won’t be located in your current directory. To ensure
that your programs can use the modules you coded, you need to:

 Place your modules in one of the directories that Python normally searches for
modules.

 Place all the modules used by a Python program in the same directory as the
program.

 Create a directory (or directories) to hold your modules, and modify the sys
.path variable so that it includes this new directory (or directories).

Of these three options, the first is apparently the easiest and is also an option that you
should never choose unless your version of Python includes local code directories in its
default module search path. Such directories are specifically intended for site-specific

133Private names in modules
code (that is, code specific to your machine) and aren’t in danger of being overwrit-
ten by a new Python install because they’re not part of the Python installation. If your
sys.path refers to such directories, you can put your modules there.

 The second option is a good choice for modules that are associated with a particu-
lar program. Just keep them with the program.

 The third option is the right choice for site-specific modules that will be used in
more than one program at that site. You can modify sys.path in various ways. You
can assign to it in your code, which is easy, but doing so hardcodes directory locations
into your program code. You can set the PYTHONPATH environment variable, which is
relatively easy, but it may not apply to all users at your site; or you can add it to the
default search path by using a .pth file.

 Examples of how to set PYTHONPATH are in the Python documentation in the
Python Setup and Usage section (under Command line and environment). The direc-
tory or directories you set it to are prepended to the sys.path variable. If you use
PYTHONPATH, be careful that you don’t define a module with the same name as one of
the existing library modules that you’re using. If you do that your module will be
found before the library module. In some cases, this may be what you want, but prob-
ably not often.

 You can avoid this issue by using a .pth file. In this case, the directory or directo-
ries you added will be appended to sys.path. The last of these mechanisms is best
illustrated by an example. On Windows, you can place a .pth file in the directory
pointed to by sys.prefix. Assume your sys.prefix is c:\program files
\python, and place the file in this listing in that directory.

mymodules
c:\Users\naomi\My Documents\python\modules

The next time a Python interpreter is started, sys.path will have c:\program files
\python\mymodules and c:\Users\naomi\My Documents\python\modules

added to it, if they exist. Now you can place your modules in these directories. Note that
the mymodules directory still runs the danger of being overwritten with a new installa-
tion. The modules directory is safer. You also may have to move or create a mymod-
ules.pth file when you upgrade Python. See the description of the site module in the
Python Library Reference if you want more details on using .pth files.

10.5 Private names in modules
I mentioned earlier in the chapter that you can enter from module import * to
import almost all names from a module. The exception is that identifiers in the mod-
ule beginning with an underscore can’t be imported with from module import *.
People can write modules that are intended for importation with from module
import * but still keep certain function or variables from being imported. By starting

Listing 10.2 File myModules.pth

134 CHAPTER 10 Modules and scoping rules
all internal names (that is, names that shouldn’t be accessed outside the module) with
an underscore, you can ensure that from module import * brings in only those
names that the user will want to access.

 To see this technique in action, assume that you have a file called modtest.py con-
taining this code.

"""modtest: our test module"""
def f(x):
 return x
def _g(x):
 return x
a = 4
_b = 2

Now start up an interactive session and enter the following:

>>> from modtest import *
>>> f(3)
3
>>> _g(3)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name '_g' is not defined
>>> a
4
>>> _b
Traceback (innermost last):
 File "<stdin>", line 1, in ?
NameError: name '_b' is not defined

As you can see, the names f and a are imported, but the names _g and _b remain hid-
den outside modtest. Note that this behavior occurs only with from ... import *.
You can do the following to access _g or _b:

>>> import modtest
>>> modtest._b
2
>>> from modtest import _g
>>> _g(5)
5

The convention of leading underscores to indicate private names is used throughout
Python, not just in modules.

10.6 Library and third-party modules
At the beginning of this chapter, I mentioned that the standard Python distribution is
split into modules to make it more manageable. After you’ve installed Python, all the
functionality in these library modules is available to you. All that’s needed is to import
the appropriate modules, functions, classes, and so forth explicitly, before you use them.

Listing 10.3 File modtest.py

135Python scoping rules and namespaces
 Many of the most common and useful standard modules are discussed throughout
this book. But the standard Python distribution includes far more than what this book
describes. At the very least, you should browse the table of contents of the Python
Library Reference.

 In IDLE, you can easily browse to and look at those modules written in Python by
using the Path Browser window. You can also search for example code that uses mod-
ules with the Find in Files dialog box, which you can open from the Edit menu of the
Python shell window. You can search your own modules as well in this way.

 Available third-party modules and links to them are identified in the Python Pack-
age Index (pyPI), which I discuss in chapter 19. You need to download these modules
and install them in a directory in your module search path to make them available for
import into your programs.

QUICK CHECK: MODULES Suppose that you have a module called new_math
that contains a function called new_divide. What are the ways that you
might import and then use that function? What are the pros and cons of each
method?

Suppose that the new_math module contains a function call
_helper_math(). How will the underscore character affect the way that
_helper_math() is imported?

10.7 Python scoping rules and namespaces
Python’s scoping rules and namespaces will
become more interesting as your experience
as a Python programmer grows. If you’re
new to Python, you probably don’t need to
do anything more than quickly read through
the text to get the basic ideas. For more
details, look up namespaces in the Python Lan-
guage Reference.

 The core concept here is that of a
namespace. A namespace in Python is a map-
ping from identifiers to objects—that is, how
Python keeps track of what variables and
identifiers are active and what they point to.
So a statement like x = 1 adds x to a
namespace (assuming that it isn’t already
there) and associates it with the value 1.
When a block of code is executed in Python,
it has three namespaces: local, global, and
built-in (see figure 10.2).

 When an identifier is encountered dur-
ing execution, Python first looks in the local

Figure 10.2 The order in which
namespaces are checked to locate
identifiers

136 CHAPTER 10 Modules and scoping rules
namespace for it. If the identifier isn’t found, the global namespace is looked in next. If
the identifier still hasn’t been found, the built-in namespace is checked. If it doesn’t
exist there, this situation is considered to be an error, and a NameError exception
occurs.

 For a module, a command executed in an interactive session, or a script running
from a file, the global and local namespaces are the same. Creating any variable or
function or importing anything from another module results in a new entry, or bind-
ing, being made in this namespace.

 But when a function call is made, a local namespace is created, and a binding is
entered in it for each parameter of the call. Then a new binding is entered into this
local namespace whenever a variable is created within the function. The global
namespace of a function is the global namespace of the containing block of the func-
tion (that of the module, script file, or interactive session). It’s independent of the
dynamic context from which it’s called.

 In all of these situations, the built-in namespace is that of the __builtins__
module. This module contains, among other things, all the built-in functions
you’ve encountered (such as len, min, max, int, float, list, tuple, range, str,
and repr) and the other built-in classes in Python, such as the exceptions (like
NameError).

 One thing that sometimes trips up new Python programmers is the fact that you
can override items in the built-in module. If, for example, you create a list in your pro-
gram and put it in a variable called list, you can’t subsequently use the built-in list
function. The entry for your list is found first. There’s no differentiation between
names for functions and modules and other objects. The most recent occurrence of a
binding for a given identifier is used.

 Enough talk—it’s time to explore some examples. The examples use two built-in
functions: locals and globals. These functions return dictionaries containing the
bindings in the local and global namespaces, respectively.

 Start a new interactive session:

>>> locals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__',

➥ '__doc__': None, '__package__': None}
>>> globals()
{'__builtins__': <module 'builtins' (built-in)>, '__name__': '__main__',

➥ '__doc__': None, '__package__': None}>>>

The local and global namespaces for this new interactive session are the same. They
have three initial key-value pairs that are for internal use: (1) an empty documenta-
tion string __doc__, (2) the main module name __name__ (which for interactive ses-
sions and scripts run from files is always __main__), and (3) the module used for the
built-in namespace __builtins__ (the module __builtins__).

 Now if you continue by creating a variable and importing from modules, you see
several bindings created:

137Python scoping rules and namespaces
>>> z = 2
>>> import math
>>> from cmath import cos
>>> globals()
{'cos': <built-in function cos>, '__builtins__': <module 'builtins'

➥ (built-in)>, '__package__': None, '__name__': '__main__', 'z': 2,
➥ '__doc__': None, 'math': <module 'math' from
➥ '/usr/local/lib/python3.0/libdynload/math.so'>}
>>> locals()
{'cos': <built-in function cos>, '__builtins__':

➥ <module 'builtins' (built-in)>, '__package__': None, '__name__':
➥ '__main__', 'z': 2, '__doc__': None, 'math': <module 'math' from
➥ '/usr/local/lib/python3.0/libdynload/math.so'>}
>>> math.ceil(3.4)
4

As expected, the local and global namespaces continue to be equivalent. Entries have
been added for z as a number, math as a module, and cos from the cmath module as
a function.

 You can use the del statement to remove these new bindings from the namespace
(including the module bindings created with the import statements):

>>> del z, math, cos
>>> locals()
{'__builtins__': <module 'builtins' (built-in)>, '__package__': None,
'__name__': '__main__', '__doc__': None}
>>> math.ceil(3.4)
Traceback (innermost last):
 File "<stdin>", line 1, in <module>
NameError: math is not defined
>>> import math
>>> math.ceil(3.4)
4

The result isn’t drastic, because you’re able to import the math module and use it
again. Using del in this manner can be handy when you’re in the interactive mode.1

 For the trigger-happy, yes, it’s also possible to use del to remove the __doc__,
__main__, and __builtins__ entries. But resist doing this, because it wouldn’t be
good for the health of your session!

 Now look at a function created in an interactive session:

>>> def f(x):
... print("global: ", globals())
... print("Entry local: ", locals())
... y = x
... print("Exit local: ", locals())
...
>>> z = 2

1 Using del and then import again won’t pick up changes made to a module on disk. It isn’t removed from
memory and then loaded from disk again. The binding is taken out of and then put back into your
namespace. You still need to use importlib.reload if you want to pick up changes made to a file.

138 CHAPTER 10 Modules and scoping rules
>>> globals()
{'f': <function f at 0xb7cbfeac>, '__builtins__': <module 'builtins'

➥ (built-in)>, '__package__': None, '__name__': '__main__', 'z': 2,
➥ '__doc__': None}
>>> f(z)
global: {'f': <function f at 0xb7cbfeac>, '__builtins__': <module

➥ 'builtins' (built-in)>, '__package__': None, '__name__': '__main__',
➥ 'z': 2, '__doc__': None}
Entry local: {'x': 2}
Exit local: {'y': 2, 'x': 2}
>>>

If you dissect this apparent mess, you see that as expected, upon entry the parameter
x is the original entry in f’s local namespace, but y is added later. The global
namespace is the same as that of your interactive session, which is where f was
defined. Note that it contains z, which was defined after f.

 In a production environment, you normally call functions that are defined in mod-
ules. Their global namespace is that of the module in which the functions are defined.
Assume that you’ve created the file in this listing.

"""scopetest: our scope test module"""
v = 6
def f(x):
 """f: scope test function"""
 print("global: ", list(globals().keys()))
 print("entry local:", locals())
 y = x
 w = v
 print("exit local:", locals().keys())

Note that you’ll be printing only the keys (identifiers) of the dictionary returned by
globals to reduce clutter in the results. You print only the keys because modules are
optimized to store the whole __builtins__ dictionary as the value field for the
__builtins__ key:

>>> import scopetest
>>> z = 2
>>> scopetest.f(z)
global: ['__name__', '__doc__', '__package__', '__loader__', '__spec__',

'__file__', '__cached__', '__builtins__', 'v', 'f']
entry local: {'x': 2}
exit local: dict_keys(['x', 'w', 'y'])

Now the global namespace is that of the scopetest module and includes the func-
tion f and integer v (but not z from your interactive session). Thus, when creating a
module, you have complete control over the namespaces of its functions.

Listing 10.4 File scopetest.py

139Python scoping rules and namespaces
 I’ve covered local and global namespaces. Next, I move on to the built-in
namespace. This example introduces another built-in function, dir, which, given a
module, returns a list of the names defined in it:

>>> dir(__builtins__)
['ArithmeticError', 'AssertionError', 'AttributeError', 'BaseException',

'BlockingIOError', 'BrokenPipeError', 'BufferError', 'BytesWarning',
'ChildProcessError', 'ConnectionAbortedError', 'ConnectionError',
'ConnectionRefusedError', 'ConnectionResetError', 'DeprecationWarning',
'EOFError', 'Ellipsis', 'EnvironmentError', 'Exception', 'False',
'FileExistsError', 'FileNotFoundError', 'FloatingPointError',
'FutureWarning', 'GeneratorExit', 'IOError', 'ImportError',
'ImportWarning', 'IndentationError', 'IndexError', 'InterruptedError',
'IsADirectoryError', 'KeyError', 'KeyboardInterrupt', 'LookupError',
'MemoryError', 'ModuleNotFoundError', 'NameError', 'None',
'NotADirectoryError', 'NotImplemented', 'NotImplementedError',
'OSError', 'OverflowError', 'PendingDeprecationWarning',
'PermissionError', 'ProcessLookupError', 'RecursionError',
'ReferenceError', 'ResourceWarning', 'RuntimeError', 'RuntimeWarning',
'StopAsyncIteration', 'StopIteration', 'SyntaxError', 'SyntaxWarning',
'SystemError', 'SystemExit', 'TabError', 'TimeoutError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',
'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UnicodeWarning', 'UserWarning', 'ValueError', 'Warning',
'ZeroDivisionError', '__build_class__', '__debug__', '__doc__',
'__import__', '__loader__', '__name__', '__package__', '__spec__',
'abs', 'all', 'any', 'ascii', 'bin', 'bool', 'bytearray', 'bytes',
'callable', 'chr', 'classmethod', 'compile', 'complex', 'copyright',
'credits', 'delattr', 'dict', 'dir', 'divmod', 'enumerate', 'eval',
'exec', 'exit', 'filter', 'float', 'format', 'frozenset', 'getattr',
'globals', 'hasattr', 'hash', 'help', 'hex', 'id', 'input', 'int',
'isinstance', 'issubclass', 'iter', 'len', 'license', 'list', 'locals',
'map', 'max', 'memoryview', 'min', 'next', 'object', 'oct', 'open',
'ord', 'pow', 'print', 'property', 'quit', 'range', 'repr', 'reversed',
'round', 'set', 'setattr', 'slice', 'sorted', 'staticmethod', 'str',
'sum', 'super', 'tuple', 'type', 'vars', 'zip']

There are a lot of entries here. Those entries ending in Error and Exit are the
names of the exceptions built into Python, which I discuss in chapter 14.

 The last group (from abs to zip) is built-in functions of Python. You’ve already
seen many of these functions in this book and will see more, but I don’t cover all of
them here. If you’re interested, you can find details on the rest in the Python Library
Reference. You can also easily obtain the documentation string for any of them by using
the help() function or by printing the docstring directly:

>>> print(max.__doc__)
max(iterable[, key=func]) -> value
max(a, b, c, ...[, key=func]) -> value

With a single iterable argument, return its largest item.
With two or more arguments, return the largest argument.

140 CHAPTER 10 Modules and scoping rules
As I mentioned earlier, it’s not unheard-of for a new Python programmer to inadver-
tently override a built-in function:

>>> list("Peyto Lake")
['P', 'e', 'y', 't', 'o', ' ', 'L', 'a', 'k', 'e']
>>> list = [1, 3, 5, 7]
>>> list("Peyto Lake")
Traceback (innermost last):
 File "<stdin>", line 1, in ?
TypeError: 'list' object is not callable

The Python interpreter won’t look beyond the new binding for list as a list, even
though you’re using the built-in list function syntax.

 The same thing happens, of course, if you try to use the same identifier twice in a
single namespace. The previous value is overwritten, regardless of its type:

>>> import mymath
>>> mymath = mymath.area
>>> mymath.pi
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'function' object has no attribute 'pi'

When you’re aware of this situation, it isn’t a significant issue. Reusing identifiers,
even for different types of objects, wouldn’t make for the most readable code anyway.
If you do inadvertently make one of these mistakes when in interactive mode, it’s easy
to recover. You can use del to remove your binding, to regain access to an overridden
built-in, or to import your module again to regain access:

>>> del list
>>> list("Peyto Lake")
['P', 'e', 'y', 't', 'o', ' ', 'L', 'a', 'k', 'e']
>>> import mymath
>>> mymath.pi
3.14159

The locals and globals functions can be useful as simple debugging tools. The
dir function doesn’t give the current settings, but if you call it without parameters, it
returns a sorted list of the identifiers in the local namespace. This practice helps you
catch the mistyped variable error that compilers usually catch for you in languages
that require declarations:

>>> x1 = 6
>>> xl = x1 - 2
>>> x1
6
>>> dir()
['__annotations__', '__builtins__', '__doc__', '__loader__', '__name__',

'__package__', '__spec__', 'x1', 'xl']

141Summary
The debugger that’s bundled with IDLE has settings that allow you to view the local
and global variable settings as you step through your code; it displays the output of the
locals and globals functions.

QUICK CHECK: NAMESPACES AND SCOPE Consider a variable width that’s in
the module make_window.py. In which of the following contexts is width in
scope?:

(A) within the module itself
(B) inside the resize() function in the module
(C) within the script that imported the make_window.py module

LAB 10: CREATE A MODULE Package the functions created at the end of chap-
ter 9 as a standalone module. Although you can include code to run the mod-
ule as the main program, the goal should be for the functions to be
completely usable from another script.

Summary
 Python modules allow you to put related code and objects into a file.
 Using modules also helps prevent conflicting variable names, because imported

objects are normally named in association with their module.

Python programs
Up until now, you’ve been using the Python interpreter mainly in interactive mode.
For production use, you’ll want to create Python programs or scripts. Several of the
sections in this chapter focus on command-line programs. If you come from a
Linux/UNIX background, you may be familiar with scripts that can be started from
a command line and given arguments and options that can be used to pass in infor-
mation and possibly redirect their input and output. If you’re from a Windows or
Mac background, these things may be new to you, and you may be more inclined to
question their value.

 It’s true that command-line scripts are sometimes less convenient to use in a
GUI environment, but the Mac has the option of a UNIX command-line shell, and

This chapter covers
 Creating a very basic program

 Making a program directly executable on Linux/UNIX

 Writing programs on macOS

 Selecting execution options in Windows

 Combining programs and modules

 Distributing Python applications
142

143Creating a very basic program
Windows also offers enhanced command-line options. It will be well worth your time
to read the bulk of this chapter at some point. You may find occasions when these
techniques are useful, or you may run across code you need to understand that uses
some of them. In particular, command-line techniques are very useful when you need
to process large numbers of files.

11.1 Creating a very basic program
Any group of Python statements placed sequentially in a file can be used as a program,
or script. But it’s more standard and useful to introduce additional structure. In its
most basic form, this task is a simple matter of creating a controlling function in a file
and calling that function.

def main():
 print("this is our first test script file")
main()

In this script, main is the controlling—and only—function. First, it’s defined, and
then it’s called. Although it doesn’t make much difference in a small program, this
structure can give you more options and control when you create larger applications,
so it’s a good idea to make using it a habit from the beginning.

11.1.1 Starting a script from a command line

If you’re using Linux/UNIX, make sure that Python is on your path and you’re in the
same directory as your script. Then type the following on your command line to start
the script:

python script1.py

If you’re using a Macintosh running OS X, the procedure is the same as for other
UNIX systems. You need to open a terminal program, which is in the Utilities folder of
the Applications folder. You have several other options for running scripts on OS X,
which I discuss shortly.

 If you’re using Windows, open Command Prompt (this can be found in different
menu locations depending on the version of Windows; in Windows 10, it’s in the Win-
dows System menu) or PowerShell. Either of these opens in your home folder, and if
necessary, you can use the cd command to change to a subdirectory. Running
script1.py if it was saved on your desktop would look like this:

C:\Users\naomi> cd Desktop

C:\Users\naomi\Desktop> python script1.py
this is our first test script file

C:\Users\naomi\Desktop>

Listing 11.1 File script1.py

Controlling
function main

Calls main

Changes to
Desktop folder

Runs script1.py

Output of script1.py

144 CHAPTER 11 Python programs
I look at other options for calling scripts later in this chapter, but stick with this option
for now.

11.1.2 Command-line arguments

A simple mechanism is available for passing in command-line arguments.

import sys
def main():
 print("this is our second test script file")
 print(sys.argv)
main()

If you call this with the line

python script2.py arg1 arg2 3

you get

this is our second test script file
['script2.py', 'arg1', 'arg2', '3']

You can see that the command-line arguments have been stored in sys.argv as a list
of strings.

11.1.3 Redirecting the input and output of a script

You can redirect the input and/or the output for a script by using command-line
options. To show this technique, I use this short script.

import sys
def main():
 contents = sys.stdin.read()
 sys.stdout.write(contents.replace(sys.argv[1], sys.argv[2]))
main()

This script reads its standard input and writes to its standard output whatever it reads,
with all occurrences of its first argument replaced with its second argument. Called as
follows, the script places in outfile a copy of infile with all occurrences of zero
replaced by 0:

python replace.py zero 0 < infile > outfile

Note that this script works on UNIX, but on Windows, redirection of input and/or
output works only if you start a script from a command-prompt window.

 In general, the line

python script.py arg1 arg2 arg3 arg4 < infile > outfile

Listing 11.2 File script2.py

Listing 11.3 File replace.py

Reads from stdin
into contents Replaces first

argument
with second

http://www.cygwin.com

145Creating a very basic program
has the effect of having any input or sys.stdin operations directed out of infile
and any print or sys.stdout operations directed into outfile. The effect is as
though you set sys.stdin to infile with 'r' (read) mode and sys.stdout to
outfile with 'w' (write):

python replace.py a A < infile >> outfile

This line causes the output to be appended to outfile rather than to overwrite it, as
happened in the previous example.

 You can also pipe in the output of one command as the input of another command:

python replace.py 0 zero < infile | python replace.py 1 one > outfile

This code results in outfile containing the contents of infile, with all occurrences
of 0 changed to zero and all occurrences of 1 changed to one.

11.1.4 The argparse module

You can configure a script to accept command-line options as well as arguments. The
argparse module provides support for parsing different types of arguments and can
even generate usage messages.

 To use the argparse module, you create an instance of ArgumentParser, popu-
late it with arguments, and then read both the optional and positional arguments.
This listing illustrates the module’s use.

from argparse import ArgumentParser

def main():
 parser = ArgumentParser()
 parser.add_argument("indent", type=int, help="indent for report")
 parser.add_argument("input_file", help="read data from this file")
 parser.add_argument("-f", "--file", dest="filename",
 help="write report to FILE", metavar="FILE")
 parser.add_argument("-x", "--xray",
 help="specify xray strength factor")
 parser.add_argument("-q", "--quiet",
 action="store_false", dest="verbose", default=True,
 help="don't print status messages to stdout")

 args = parser.parse_args()

 print("arguments:", args)
main()

This code creates an instance of ArgumentParser and then adds two positional argu-
ments, indent and input_file, which are the arguments entered after all of the
optional arguments have been parsed. Positional arguments are those without a prefix
character (usually ("-") and are required, and in this case, the indent argument
must also be parsable as an int B.

Listing 11.4 File opts.py

b

c

d

146 CHAPTER 11 Python programs
 The next line adds an optional filename argument with either '-f' or '--file'
c. The final option added, the "quiet" option, also adds the ability to turn off the
verbose option, which is True by default (action="store_false"). The fact that
these options begin with the prefix character "-" tells the parser that they’re
optional.

 The final argument, "-q", also has a default value (True, in this case) that will be
set if the option isn’t specified. The action="store_false" parameter specifies
that if the argument is specified, a value of False will be stored in the destination. d

 The argparse module returns a Namespace object containing the arguments as
attributes. You can get the values of the arguments by using dot notation. If there’s no
argument for an option, its value is None. Thus, if you call the previous script with the
line

python opts.py -x100 -q -f outfile 2 arg2

the following output results:

arguments: Namespace(filename='outfile', indent=2, input_file='arg2',
verbose=False, xray='100')

If an invalid argument is found, or if a required argument isn’t given, parse_args
raises an error:

python opts.py -x100 -r

This line results in the following response:

usage: opts.py [-h] [-f FILE] [-x XRAY] [-q] indent input_file
opts.py: error: the following arguments are required: indent, input_file

11.1.5 Using the fileinput module

The fileinput module is sometimes useful for scripts. It provides support for pro-
cessing lines of input from one or more files. It automatically reads the command-line
arguments (out of sys.argv) and takes them as its list of input files. Then it allows
you to sequentially iterate through these lines. The simple example script in this list-
ing (which strips out any lines starting with ##) illustrates the module’s basic use.

import fileinput
def main():
 for line in fileinput.input():
 if not line.startswith('##'):
 print(line, end="")
main()

Now assume that you have the data files shown in the next two listings.

Listing 11.5 File script4.py

Options come after
script name.

147Creating a very basic program

sole1.tst: test data for the sole function
0 0 0
0 100 0
##
0 100 100

sole2.tst: more test data for the sole function
12 15 0
##
100 100 0

Also assume that you make this call:

python script4.py sole1.tst sole2.tst

You obtain the following result with the comment lines stripped out and the data from
the two files combined:

0 0 0
0 100 0
0 100 100
12 15 0
100 100 0

If no command-line arguments are present, the standard input is all that is read. If
one of the arguments is a hyphen (-), the standard input is read at that point.

 The module provides several other functions. These functions allow you at any
point to determine the total number of lines that have been read (lineno), the num-
ber of lines that have been read out of the current file (filelineno), the name of
the current file (filename), whether this is the first line of a file (isfirstline),
and/or whether standard input is currently being read (isstdin). You can at any
point skip to the next file (nextfile) or close the whole stream (close). The short
script in the following listing (which combines the lines in its input files and adds file-
start delimiters) illustrates how you can use these functions.

import fileinput
def main():
 for line in fileinput.input():
 if fileinput.isfirstline():
 print("<start of file {0}>".format(fileinput.filename()))
 print(line, end="")
main()

Using the call

python script5.py file1 file2

Listing 11.6 File sole1.tst

Listing 11.7 File sole2.tst

Listing 11.8 File script5.py

148 CHAPTER 11 Python programs
results in the following (where the dotted lines indicate the lines in the original files):

<start of file file1>
.......................
.......................
<start of file file2>
.......................
.......................

Finally, if you call fileinput.input with an argument of a single filename or a list
of filenames, they’re used as its input files rather than the arguments in sys.argv.
fileinput.input also has an inplace option that leaves its output in the same file
as its input while optionally leaving the original around as a backup file. See the docu-
mentation for a description of this last option.

QUICK CHECK: SCRIPTS AND ARGUMENTS Match the following ways of interact-
ing with the command line and the correct use case for each:

11.2 Making a script directly executable on UNIX
If you’re on UNIX, you can easily make a script directly executable. Add the following
line to its top, and change its mode appropriately (that is, chmod +x replace.py):

#! /usr/bin/env python

Note that if Python 3.x isn’t your default version of Python, you may need to change
the python in the snippet to python3, python3.6, or something similar to specify
that you want to use Python 3.x instead of an earlier default version.

 Then if you place your script somewhere on your path (for example, in your bin
directory), you can execute it regardless of the directory you’re in by typing its name
and the desired arguments:

replace.py zero 0 < infile > outfile

On UNIX, you’ll have input and output redirection and, if you’re using a modern
shell, command history and completion.

 If you’re writing administrative scripts on UNIX, several library modules are avail-
able that you may find useful. These modules include grp for accessing the group
database, pwd for accessing the password database, resource for accessing resource
usage information, syslog for working with the syslog facility, and stat for working
with information about a file or directory obtained from an os.stat call. You can
find information on these modules in the Python Library Reference.

Multiple argurments and options sys.agrv

No arguments or just one argument Use file_input module

Processing multiple files Redirect standard input and output

Using the script as a filter Use argparse module

149Script execution options in Windows
11.3 Scripts on macOS
In many ways, Python scripts on macOS behave the same way as they do on Linux/
UNIX. You can run Python scripts from a terminal window exactly the same way as on
any UNIX box. But on the Mac, you can also run Python programs from the Finder,
either by dragging the script file to the Python Launcher app or by configuring
Python Launcher as the default application for opening your script (or, optionally, all
files with a .py extension.)

 You have several options for using Python on a Mac. The specifics of all the options
are beyond the scope of this book, but you can get a full explanation by going to the
www.python.org website and checking out the Mac section of the “Using Python” sec-
tion of the documentation for your version of Python. You should also see section 11.6
of the documentation, “Distributing Python applications,” for more information on
how to distribute Python applications and libraries for the Mac platform.

 If you’re interested in writing administrative scripts for macOS, you should look at
packages that bridge the gap between Apple’s Open Scripting Architectures (OSA)
and Python. Two such packages are appscript and PyOSA.

11.4 Script execution options in Windows
If you’re on Windows, you have several options for starting a script that vary in their
capability and ease of use. Unfortunately, exactly what those options might be and
how they are configured can vary considerably across the various versions of Windows
currently in use. This book focuses on running Windows from a command prompt or
PowerShell. For information on the other options for running Python on your system,
you should consult the online Python documentation for your version of Python and
look for “Using Python on Windows.”

11.4.1 Starting a script from a command window or PowerShell

To run a script from a command window or PowerShell window, open a command
prompt or PowerShell window. When you’re at the command prompt and have navi-
gated to the folder where your scripts are located, you can use Python to run your
scripts in much the same way as on UNIX/Linux/MacOS systems:

> python replace.py zero 0 < infile > outfile

Python doesn’t run?
If Python doesn’t run when you enter python at the Windows command prompt, it
probably means that the location of the Python executable isn’t on your command
path. You either need to add the Python executable to your system’s PATH environ-
ment variable manually or rerun the installer to have it do the job. To get more help
on setting up Python on Windows, refer to the Python Setup and Usage section of the
online Python documentation. There, you’ll find a section on using Python on Win-
dows, with instructions for installing Python.

www.python.org

150 CHAPTER 11 Python programs
This is the most flexible of the ways to run a script on Windows because it allows you to
use input and output redirection.

11.4.2 Other Windows options

Other options are available to explore. If you’re familiar with writing batch files, you
can wrap your commands in them. A port of the GNU BASH shell comes with the Cyg-
win tool set, which you can read about at www.cygwin.com and which provides UNIX-
like shell capability for Windows.

 On Windows, you can edit the environment variables (see the previous section) to
add .py as a magic extension, making your scripts automatically executable:

PATHEXT=.COM;.EXE;.BAT;.CMD;.VBS;.JS;.PY

TRY THIS: MAKING A SCRIPT EXECUTABLE Experiment with executing scripts on
your platform. Also try to redirect input and output into and out of your
scripts.

11.5 Programs and modules
For small scripts that contain only a few lines of code, a single function works well. But
if the script grows beyond this size, separating your controlling function from the rest
of the code is a good option to take. The rest of this section illustrates this technique
and some of its benefits. I start with an example using a simple controlling function.
The script in the next listing returns the English-language name for a given number
between 0 and 99.

#! /usr/bin/env python3
import sys
conversion mappings
_1to9dict = {'0': '', '1': 'one', '2': 'two', '3': 'three', '4': 'four',
 '5': 'five', '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'}
_10to19dict = {'0': 'ten', '1': 'eleven', '2': 'twelve',
 '3': 'thirteen', '4': 'fourteen', '5': 'fifteen',
 '6': 'sixteen', '7': 'seventeen', '8': 'eighteen',
 '9': 'nineteen'}
_20to90dict = {'2': 'twenty', '3': 'thirty', '4': 'forty', '5': 'fifty',
 '6': 'sixty', '7': 'seventy', '8': 'eighty', '9': 'ninety'}
def num2words(num_string):
 if num_string == '0':
 return'zero'
 if len(num_string) > 2:
 return "Sorry can only handle 1 or 2 digit numbers"
 num_string = '0' + num_string
 tens, ones = num_string[-2], num_string[-1]
 if tens == '0':
 return _1to9dict[ones]

Listing 11.9 File script6.py

Pads on left in case it’s
a single-digit number

https://packaging.python.org

151Programs and modules
 elif tens == '1':
 return _10to19dict[ones]
 else:
 return _20to90dict[tens] + ' ' + _1to9dict[ones]
def main():
 print(num2words(sys.argv[1]))
main()

If you call it with

python script6.py 59

you get this result:

fifty nine

The controlling function here calls the function num2words with the appropriate
argument and prints the result B. It’s standard to have the call at the bottom, but
sometimes you’ll see the controlling function’s definition at the top of the file. I pre-
fer this function at the bottom, just above the call, so that I don’t have to scroll back
up to find it after going to the bottom to find out its name. This practice also cleanly
separates the scripting plumbing from the rest of the file, which is useful when com-
bining scripts and modules.

 People combine scripts with modules when they want to make functions they’ve
created in a script available to other modules or scripts. Also, a module may be instru-
mented so it can run as a script either to provide a quick interface to it for users or to
provide hooks for automated module testing.

 Combining a script and a module is a simple matter of putting the following condi-
tional test around the controlling function:

if __name__ == '__main__':
 main()
else:
 # module-specific initialization code if any

If it’s called as a script, it will be run with the name __main__, and the controlling
function, main, will be called. If the test has been imported into an interactive session
or another module, its name will be its filename.

 When creating a script, I often set it as a module as well right from the start. This
practice allows me to import it into a session and interactively test and debug my func-
tions as I create them. Only the controlling function needs to be debugged externally.
If the script grows, or if I find myself writing functions I might be able to use else-
where, I can separate those functions into their own module or have other modules
import this module.

 The script in listing 11.10 is an extension of the previous script but modified to be
used as a module. The functionality has also been expanded to allow the entry of a
number from 0 to 999999999999999 rather than just from 0 to 99. The controlling

b

152 CHAPTER 11 Python programs
function (main) does the checking of the validity of its argument and also strips out
any commas in it, allowing more user-readable input like 1,234,567.

#! /usr/bin/env python3
"""n2w: number to words conversion module: contains function
 num2words. Can also be run as a script
usage as a script: n2w num
 (Convert a number to its English word description)
 num: whole integer from 0 and 999,999,999,999,999 (commas are
 optional)
example: n2w 10,003,103
 for 10,003,103 say: ten million three thousand one hundred three
"""
import sys, string, argparse
_1to9dict = {'0': '', '1': 'one', '2': 'two', '3': 'three', '4': 'four',
 '5': 'five', '6': 'six', '7': 'seven', '8': 'eight',
 '9': 'nine'}
_10to19dict = {'0': 'ten', '1': 'eleven', '2': 'twelve',
 '3': 'thirteen', '4': 'fourteen', '5': 'fifteen',
 '6': 'sixteen', '7': 'seventeen', '8': 'eighteen',
 '9': 'nineteen'}
_20to90dict = {'2': 'twenty', '3': 'thirty', '4': 'forty', '5': 'fifty',
 '6': 'sixty', '7': 'seventy', '8': 'eighty', '9': 'ninety'}
_magnitude_list = [(0, ''), (3, ' thousand '), (6, ' million '),
 (9, ' billion '), (12, ' trillion '),(15, '')]
def num2words(num_string):
 """num2words(num_string): convert number to English words"""
 if num_string == '0':
 return 'zero'
 num_string = num_string.replace(",", "")
 num_length = len(num_string)
 max_digits = _magnitude_list[-1][0]
 if num_length > max_digits:
 return "Sorry, can't handle numbers with more than " \
 "{0} digits".format(max_digits)
 num_string = '00' + num_string
 word_string = ''
 for mag, name in _magnitude_list:
 if mag >= num_length:
 return word_string
 else:
 hundreds, tens, ones = num_string[-mag-3], \
 num_string[-mag-2], num_string[-mag-1]
 if not (hundreds == tens == ones == '0'):
 word_string = _handle1to999(hundreds, tens, ones) + \
 name + word_string
def _handle1to999(hundreds, tens, ones):
 if hundreds == '0':
 return _handle1to99(tens, ones)
 else:

Listing 11.10 File n2w.py

Usage message;
includes example

Conversion
mappings

Handles special
conditions (number
is zero or too large)Removes

commas
from

number

Pads
number

on left

Creates string
containing

number

Initiates string
for number

153Programs and modules
 return _1to9dict[hundreds] + ' hundred ' + _handle1to99(tens, ones)
def _handle1to99(tens, ones):
 if tens == '0':
 return _1to9dict[ones]
 elif tens == '1':
 return _10to19dict[ones]
 else:
 return _20to90dict[tens] + ' ' + _1to9dict[ones]
def test():
 values = sys.stdin.read().split()
 for val in values:
 print("{0} = {1}".format(val, num2words(val)))
def main():
 parser = argparse.ArgumentParser(usage=__doc__)
 parser.add_argument("num", nargs=’*’)
 parser.add_argument("-t", "--test", dest="test",
 action='store_true', default=False,
 help="Test mode: reads from stdin")
 args = parser.parse_args()
 if args.test:
 test()
 else:
 try:
 result = num2words(args.num[0])
 except KeyError:
 parser.error('argument contains non-digits')
 else:
 print("For {0}, say: {1}".format(args.num[0], result))
if __name__ == '__main__':
 main()
else:
 print("n2w loaded as a module")

If it’s called as a script, the name will be __main__. If it’s imported as a module, it will
be named n2w B.

 This main function illustrates the purpose of a controlling function for a com-
mand-line script, which in effect is to create a simple UI for the user. It may handle the
following tasks:

 Ensure that there’s the right number of command-line arguments and that
they’re of the right types. Inform the user, giving usage information if not.
Here, the function ensures that there is a single argument, but it doesn’t explic-
itly test to ensure that the argument contains only digits.

 Possibly handle a special mode. Here, a '--test' argument puts you in a test
mode.

 Map the command-line arguments to those required by the functions, and call
them in the appropriate manner. Here, commas are stripped out, and the sin-
gle function num2words is called.

Function for module
test mode

Gathers all values for
that argument into a list

Runs in test mode
if test variable is set

Catches KeyErrors
due to argument
containing nondigits

b

154 CHAPTER 11 Python programs
 Possibly catch and print a more user-friendly message for exceptions that may
be expected. Here, KeyErrors are caught, which occurs if the argument con-
tains nondigits.1

 Map the output if necessary to a more user-friendly form, which is done here in
the print statement. If this were a script to run on Windows, you’d probably
want to let the user open it with the double-click method—that is, to use the
input to query for the parameter, rather than have it as a command-line
option and keep the screen up to display the output by ending the script with
the line

 input("Press the Enter key to exit")

But you may still want to leave the test mode in as a command-line option.

The test mode in the following listing provides a regression test capability for the
module and its num2words function. In this case, you use it by placing a set of num-
bers in a file.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 98 99 100
101 102 900 901 999
999,999,999,999,999
1,000,000,000,000,000

Then type

python n2w.py --test < n2w.tst > n2w.txt

The output file can be easily checked for correctness. This example was run several
times during its creation and can be rerun any time num2words or any of the func-
tions it calls are modified. And yes, I’m aware that full exhaustive testing certainly
didn’t occur. I admit that well over 999 trillion valid inputs for this program haven’t
been checked!

 Often, the provision of a test mode for a module is the only function of a script. I
know of at least one company in which part of the development policy is to always cre-
ate one for every Python module developed. Python’s built-in data object types and
methods usually make this process easy, and those who practice this technique seem
to be unanimously convinced that it’s well worth the effort. See chapter 21 to find out
more about testing your Python code.

 Another option is to create a separate file with only the portion of the main func-
tion that handles the argument and import n2w into this file. Then only the test mode
would be left in the main function of n2w.py.

1 A better way to do this would be to explicitly check for nondigits in the argument using the regular expression
module that will be introduced later. This would ensure that we don’t hide KeyErrors that occur due to
other reasons.

Listing 11.11 File n2w.tst

155Distributing Python applications
QUICK CHECK: PROGRAMS AND MODULES What issue is the use of if
__name__ == "__main__": meant to prevent, and how does it do that?
Can you think of any other way to prevent this issue?

11.6 Distributing Python applications
You can distribute your Python scripts and applications in several ways. You can share
the source files, of course, probably bundled in a zip or tar file. Assuming that the
applications were written portably, you could also ship only the bytecode as .pyc files.
Both of those options, however, usually leave a lot to be desired.

11.6.1 Wheels packages

The current standard way of packaging and distributing Python modules and applica-
tions is to use packages called wheels. Wheels are designed to make installing Python
code more reliable and to help manage dependencies. The details of how to create
wheels are beyond the scope of this chapter, but full details about the requirements
and the process for creating wheels are in the Python Packaging User Guide at
https://packaging.python.org.

11.6.2 zipapp and pex

If you have an application that’s in multiple modules, you can also distribute it as an
executable zip file. This format relies on two facts about Python.

 First, if a zip file contains a file named __main__.py, Python can use that file as
the entry point to the archive and execute the __main__.py file directly. In addition,
the zip file’s contents are added to sys.path, so they’re available to be imported and
executed by __main__.py.

 Second, zip files allow arbitrary contents to be added to the beginning of the
archive. If you add a shebang line pointing to a Python interpreter, such as #!/usr/
bin/env python3, and give the file the needed permissions, the file can become a
self-contained executable.

 In fact, it’s not that difficult to manually create an executable zipapp. Create a zip
file containing a __main__.py, add the shebang line to the beginning, and set the
permissions.

 Starting with Python 3.5, the zipapp module is included in the standard library; it
can create zipapps either from the command line or via the library’s API.

 A more powerful tool, pex, isn’t in the standard library but is available from the
package index via pip. pex does the same basic job but offers many more features and
options, and it’s available for Python 2.7, if needed. Either way, zip file apps are conve-
nient ways to package and distribute multifile Python apps ready to run.

11.6.3 py2exe and py2app

Although it’s not the purpose of this book to dwell on platform-specific tools, it’s
worth mentioning that py2exe creates standalone Windows programs and that
py2app does the same on the macOS platform. By standalone, I mean that they’re

https://packaging.python.org

156 CHAPTER 11 Python programs
single executables that can run on machines that don’t have Python installed. In many
ways, standalone executables aren’t ideal, because they tend to be larger and less flex-
ible than native Python applications. But in some situations, they’re the best—and
sometimes the only—solution.

11.6.4 Creating executable programs with freeze

It’s also possible to create an executable Python program that runs on machines that
don’t have Python installed by using the freeze tool. You’ll find the instructions for
this in the Readme file inside the freeze directory in the Tools subdirectory of the
Python source directory. If you’re planning to use freeze, you’ll probably need to
download the Python source distribution.

 In the process of “freezing” a Python program, you create C files, which are then
compiled and linked using a C compiler, which you need to have installed on your sys-
tem. The frozen application will run only on the platform for which the C compiler
you use provides its executables.

 Several other tools try in one way or another to convert and package a Python
interpreter/environment with an application in a standalone application. In general,
however, this path is still difficult and complex, and you probably want to avoid it
unless you have a strong need and the time and resources to make the process work.

LAB 11: CREATING A PROGRAM In chapter 8, you created a version of the
UNIX wc utility to count the lines, words, and characters in a file. Now that
you have more tools at your disposal, refactor that program to make it work
more like the original. In particular, the program should have options to
show only lines (-l), only words (-w), and only characters (-c). If none of
those options is given, all three stats are displayed. But if any of these options
is present, only the specified stats are shown.

For an extra challenge, have a look at the man page for wc on a Linux/UNIX
system, and add the -L to show the longest line length. Feel free to try to
implement the complete behavior as listed in the man page and test it against
your system’s wc utility.

Summary
 Python scripts and modules in their most basic form are just sequences of

Python statements placed in a file.
 Modules can be instrumented to run as scripts, and scripts can be set up so that

they can be imported as modules.
 Scripts can be made executable on the UNIX, macOS, or Windows command

lines. They can be set up to support command-line redirection of their input
and output, and with the argparse module, it’s easy to parse out complex
combinations of command-line arguments.

 On macOS, you can use the Python Launcher to run Python programs, either
individually or as the default application for opening Python files.

157Summary
 On Windows, you can call scripts in several ways: by opening them with a dou-
ble-click, using the Run window, or using a command-prompt window.

 Python scripts can be distributed as scripts, as bytecode, or in special packages
called wheels.

 py2exe, py2app, and the freeze tool provide an executable Python program
that runs on machines that don’t contain a Python interpreter.

 Now that you have an idea of the ways to create scripts and applications, the
next step is looking at how Python can interact with and manipulate filesystems.

Using the filesystem
Working with files involves one of two things: basic I/O (described in chapter 13,
“Reading and writing files”) and working with the filesystem (for example, naming,
creating, moving, or referring to files), which is a bit tricky, because different oper-
ating systems have different filesystem conventions.

 It would be easy enough to learn how to perform basic file I/O without learning
all the features Python has provided to simplify cross-platform filesystem interac-
tion—but I wouldn’t recommend it. Instead, read at least the first part of this chap-
ter, which gives you the tools you need to refer to files in a manner that doesn’t
depend on your particular operating system. Then, when you use the basic I/O
operations, you can open the relevant files in this manner.

This chapter covers
 Managing paths and pathnames

 Getting information about files

 Performing filesystem operations

 Processing all files in a directory subtree
158

159Paths and pathnames
12.1 os and os.path vs. pathlib
The traditional way that file paths and filesystem operations have been handled in
Python is by using functions included in the os and os.path modules. These functions
have worked well enough but often resulted in more verbose code than necessary. Since
Python 3.5, a new library, pathlib, has been added; it offers a more object-oriented
and more unified way of doing the same operations. Because a lot of code out there still
uses the older style, I’ve retained those examples and their explanations. On the other
hand, pathlib has a lot going for it and is likely to become the new standard, so after
each example of the old method, I include an example (and brief explanation, where
necessary) of how the same thing would be done with pathlib.

12.2 Paths and pathnames
All operating systems refer to files and directories with strings naming a given file or
directory. Strings used in this manner are usually called pathnames (or sometimes just
paths), which is the word I’ll use for them. The fact that pathnames are strings intro-
duces possible complications into working with them. Python does a good job of pro-
viding functions that help avert these complications; but to use these Python functions
effectively, you need to understand the underlying problems. This section discusses
these details.

 Pathname semantics across operating systems are very similar because the filesys-
tem on almost all operating systems is modeled as a tree structure, with a disk being
the root and folders, subfolders, and so on being branches, subbranches, and so on.
This means that most operating systems refer to a specific file in fundamentally the
same manner: with a pathname that specifies the path to follow from the root of the
filesystem tree (the disk) to the file in question. (This characterization of the root cor-
responding to a hard disk is an oversimplification, but it’s close enough to the truth to
serve for this chapter.) This pathname consists of a series of folders to descend into to
get to the desired file.

 Different operating systems have different conventions regarding the precise syn-
tax of pathnames. The character used to separate sequential file or directory names in
a Linux/UNIX pathname is /, whereas the character used to separate file or directory
names in a Windows pathname is \. In addition, the UNIX filesystem has a single root
(which is referred to by having a / character as the first character in a pathname),
whereas the Windows filesystem has a separate root for each drive, labeled A:\, B:\,
C:\, and so forth (with C: usually being the main drive). Because of these differences,
files have different pathname representations on different operating systems. A file
called C:\data\myfile in MS Windows might be called /data/myfile on UNIX
and on the Mac OS. Python provides functions and constants that allow you to per-
form common pathname manipulations without worrying about such syntactic

160 CHAPTER 12 Using the filesystem
details. With a little care, you can write your Python programs in such a manner that
they’ll run correctly no matter what the underlying filesystem happens to be.

12.2.1 Absolute and relative paths

These operating systems allow two types of pathnames:

 Absolute pathnames specify the exact location of a file in a filesystem without any
ambiguity; they do this by listing the entire path to that file, starting from the
root of the filesystem.

 Relative pathnames specify the position of a file relative to some other point in
the filesystem, and that other point isn’t specified in the relative pathname
itself; instead, the absolute starting point for relative pathnames is provided by
the context in which they’re used.

As examples, here are two Windows absolute pathnames:

C:\Program Files\Doom
D:\backup\June

and here are two Linux absolute pathnames and a Mac absolute pathname:

/bin/Doom
/floppy/backup/June
/Applications/Utilities

and here are two Windows relative pathnames:

mydata\project1\readme.txt
games\tetris

and these are Linux/UNIX/Mac relative pathnames:

mydata/project1/readme.txt
games/tetris
Utilities/Java

Relative paths need context to anchor them. This context is typically provided in one
of two ways.

 The simpler way is to append the relative path to an existing absolute path, pro-
ducing a new absolute path. You might have a relative Windows path, Start
Menu\Programs\Startup, and an absolute path, C:\Users\Administrator. By
appending the two, you have a new absolute path: C:\Users\Administra-
tor\Start Menu\Programs\Startup, which refers to a specific location in the file-
system. By appending the same relative path to a different absolute path (say,
C:\Users\myuser), you produce a path that refers to the Startup folder in a differ-
ent user’s (myuser’s) Profiles directory.

 The second way in which relative paths may obtain a context is via an implicit refer-
ence to the current working directory, which is the particular directory where a Python
program considers itself to be at any point during its execution. Python commands

161Paths and pathnames
may implicitly make use of the current working directory when they’re given a relative
path as an argument. If you use the os.listdir(path) command with a relative
path argument, for example, the anchor for that relative path is the current working
directory, and the result of the command is a list of the filenames in the directory
whose path is formed by appending the current working directory with the relative
path argument.

12.2.2 The current working directory

Whenever you edit a document on a computer, you have a concept of where you are
in that computer’s file structure because you’re in the same directory (folder) as the
file you’re working on. Similarly, whenever Python is running, it has a concept of
where in the directory structure it is at any moment. This fact is important because the
program may ask for a list of files stored in the current directory. The directory that a
Python program is in is called the current working directory for that program. This direc-
tory may be different from the directory the program resides in.

 To see this in action, start Python and use the os.getcwd (get current working
directory) command to find Python’s initial current working directory:

>>> import os
>>> os.getcwd()

Note that os.getcwd is used as a zero-argument function call, to emphasize the fact
that the value it returns isn’t a constant but will change as you issue commands that
alter the value of the current working directory. (That directory probably will be
either the directory the Python program itself resides in or the directory you were in
when you started Python. On a Linux machine, the result is /home/myuser, which is
the home directory.) On Windows machines, you’ll see extra backslashes inserted into
the path because Windows uses \ as its path separator, and in Python strings (as dis-
cussed in section 6.3.1), \ has a special meaning unless it’s itself backslashed.

 Now type

>>> os.listdir(os.curdir)

The constant os.curdir returns whatever string your system happens to use as the
same directory indicator. On both UNIX and Windows, the current directory is repre-
sented as a single dot, but to keep your programs portable, you should always use
os.curdir instead of typing just the dot. This string is a relative path, meaning that
os.listdir appends it to the path for the current working directory, giving the same
path. This command returns a list of all the files or folders inside the current working
directory. Choose some folder name, and type

>>> os.chdir(folder name)
>>> os.getcwd()

As you can see, Python moves into the folder specified as an argument of the
os.chdir function. Another call to os.listdir(os.curdir) would return a list of

"Change directory"
function

162 CHAPTER 12 Using the filesystem
files in folder, because os.curdir would then be taken relative to the new current
working directory. Many Python filesystem operations use the current working direc-
tory in this manner.

12.2.3 Accessing directories with pathlib

To get the current directory with pathlib, you could do the following:

>>> import pathlib
>>> cur_path = pathlib.Path()
>>> cur_path.cwd()
PosixPath('/home/naomi')

There’s no way for pathlib to change the current directory in the way that
os.chdir() does (see the preceding section), but you could work with a new folder
by creating a new path object, as discussed in section 12.2.5, “Manipulating path-
names with pathlib.”

12.2.4 Manipulating pathnames

Now that you have the background to understand file and directory pathnames, it’s
time to look at the facilities Python provides for manipulating these pathnames. These
facilities consist of several functions and constants in the os.path submodule, which
you can use to manipulate paths without explicitly using any operating-system-specific
syntax. Paths are still represented as strings, but you need never think of them or
manipulate them as such.

 To start, construct a few pathnames on different operating systems, using the
os.path.join function. Note that importing os is sufficient to bring in the os.path
submodule also; there’s no need for an explicit import os.path statement.

 First, start Python under Windows:

>>> import os
>>> print(os.path.join('bin', 'utils', 'disktools'))
bin\utils\disktools

The os.path.join function interprets its arguments as a series of directory names
or filenames, which are to be joined to form a single string understandable as a rela-
tive path by the underlying operating system. In a Windows system, that means path
component names should be joined with backslashes, which is what was produced.

 Now try the same thing in UNIX:

>>> import os
>>> print(os.path.join('bin', 'utils', 'disktools'))
bin/utils/disktools

The result is the same path, but using the Linux/UNIX convention of forward slash
separators rather than the Windows convention of backslash separators. In other
words, os.path.join lets you form file paths from a sequence of directory or file-
names without any worry about the conventions of the underlying operating system.

163Paths and pathnames
os.path.join is the fundamental way by which file paths may be built in a manner
that doesn’t constrain the operating systems on which your program will run.

 The arguments to os.path.join need not be a single directory or filename; they
may also be subpaths that are then joined to make a longer pathname. The following
example illustrates this in the Windows environment and is also a case in which you’d
find it necessary to use double backslashes in your strings. Note that you could enter
the pathname with forward slashes (/) as well, because Python converts them before
accessing the Windows operating system:

>>> import os
>>> print(os.path.join('mydir\\bin', 'utils\\disktools\\chkdisk'))
mydir\bin\utils\disktools\chkdisk

If you always use os.path.join to build up your paths, of course, you’ll rarely need
to worry about this situation. To write this example in a portable manner, you should
enter

>>> path1 = os.path.join('mydir', 'bin');
>>> path2 = os.path.join('utils', 'disktools', 'chkdisk')
>>> print(os.path.join(path1, path2))
mydir\bin\utils\disktools\chkdisk

The os.path.join command also has some understanding of absolute versus rela-
tive pathnames. In Linux/UNIX, an absolute path always begins with a / (because a
single slash denotes the topmost directory of the entire system, which contains every-
thing else, including the various floppy and CD drives that might be available). A rela-
tive path in UNIX is any legal path that does not begin with a slash. Under any of the
Windows operating systems, the situation is more complicated because the way in
which Windows handles relative and absolute paths is messier. Rather than go into all
of the details, I’ll just say that the best way to handle this situation is to work with the
following simplified rules for Windows paths:

 A pathname beginning with a drive letter followed by a colon and a backslash
and then a path is an absolute path: C:\Program Files\Doom. (Note that C: by
itself, without a trailing backslash, can’t reliably be used to refer to the top-level
directory on the C: drive. You must use C:\ to refer to the top-level directory on
C:. This requirement is a result of DOS conventions, not Python design.)

 A pathname beginning with neither a drive letter nor a backslash is a relative
path: mydirectory\letters\business.

 A pathname beginning with \\ followed by the name of a server is the path to a
network resource.

 Anything else can be considered to be an invalid pathname.1

Regardless of the operating system used, the os.path.join command doesn’t per-
form sanity checks on the names it’s constructing. It’s possible to construct pathnames

1 Microsoft Windows allows some other constructs, but it’s probably best to stick to the given definitions.

164 CHAPTER 12 Using the filesystem
containing characters that, according to your OS, are forbidden in pathnames. If such
checks are a requirement, probably the best solution is to write a small path-validity-
checker function yourself.

 The os.path.split command returns a two-element tuple splitting the base-
name of a path (the single file or directory name at the end of the path) from the rest
of the path. You might use this example on a Windows system:

>>> import os
>>> print(os.path.split(os.path.join('some', 'directory', 'path')))
('some\\directory', 'path')

The os.path.basename function returns only the basename of the path, and the
os.path.dirname function returns the path up to but not including the last name,
as in this example:

>>> import os
>>> os.path.basename(os.path.join('some', 'directory', 'path.jpg'))
'path.jpg'
>>> os.path.dirname(os.path.join('some', 'directory', 'path.jpg'))
'some\\directory'

To handle the dotted extension notation used by most filesystems to indicate file type
(the Macintosh is a notable exception), Python provides os.path.splitext:

>>> os.path.splitext(os.path.join('some', 'directory', 'path.jpg'))
('some/directory/path', '.jpg')

The last element of the returned tuple contains the dotted extension of the indicated
file (if there was a dotted extension). The first element of the returned tuple contains
everything from the original argument except the dotted extension.

 You can also use more specialized functions to manipulate pathnames.
os.path.commonprefix(path1, path2, ...) finds the common prefix (if any)
for a set of paths. This technique is useful if you want to find the lowest-level directory
that contains every file in a set of files. os.path.expanduser expands username
shortcuts in paths, such as for UNIX. Similarly, os.path.expandvars does the same
for environment variables. Here’s an example on a Windows 10 system:

>>> import os
>>> os.path.expandvars('$HOME\\temp')
'C:\\Users\\administrator\\personal\\temp'

12.2.5 Manipulating pathnames with pathlib

Just as you did in the preceding section, start by constructing a few pathnames on dif-
ferent operating systems, using the path object’s methods.

 First, start Python under Windows:

>>> from pathlib import Path
>>> cur_path = Path()
>>> print(cur_path.joinpath('bin', 'utils', 'disktools'))
bin\utils\disktools

165Paths and pathnames
The same result can be achieved by using the slash operator:

>>> cur_path / 'bin' / 'utils' / 'disktools'
WindowsPath('bin/utils/disktools')

Note that in the representation of the path object, forward slashes are always used, but
Windows Path objects have the forward slashes converted to backslashes as required
by the OS. So if you try the same thing in UNIX:

>>> cur_path = Path()
>>> print(cur_path.joinpath('bin', 'utils', 'disktools'))
bin/utils/disktools

The parts property returns a tuple of all the components of a path. You might use
this example on a Windows system:

>>> a_path = WindowsPath('bin/utils/disktools')
>>> print(a_path.parts)
('bin', 'utils', 'disktools')

The name property returns only the basename of the path, the parent property
returns the path up to but not including the last name, and the suffix property han-
dles the dotted extension notation used by most filesystems to indicate file type (but
the Macintosh is a notable exception). Here’s an example:

>>> a_path = Path('some', 'directory', 'path.jpg')
>>> a_path.name
'path.jpg'
>>> print(a_path.parent)
some\directory
>>> a_path.suffix
'.jpg'

Several other methods associated with Path objects allow flexible manipulation of
both pathnames and files themselves, so you should review the documentation of the
pathlib module. It’s likely that the pathlib module will make your life easier and
your file-handling code more concise.

12.2.6 Useful constants and functions

You can access several useful path-related constants and functions to make your
Python code more system-independent than it otherwise would be. The most basic of
these constants are os.curdir and os.pardir, which respectively define the symbol
used by the operating system for the directory and parent directory path indicators. In
Windows as well as Linux/UNIX and macOS, these indicators are . and .. respec-
tively, and they can be used as normal path elements. This example

os.path.isdir(os.path.join(path, os.pardir, os.curdir))

asks whether the parent of the parent of path is a directory. os.curdir is particularly
useful for requesting commands on the current working directory. This example

os.listdir(os.curdir)

166 CHAPTER 12 Using the filesystem
returns a list of filenames in the current working directory (because os.curdir is a
relative path, and os.listdir always takes relative paths as being relative to the cur-
rent working directory).

 The os.name constant returns the name of the Python module imported to han-
dle the operating system–specific details. Here’s an example on my Windows XP sys-
tem:

>>> import os
>>> os.name
'nt'

Note that os.name returns 'nt' even though the actual version of Windows could be
Windows 10. Most versions of Windows, except for Windows CE, are identified as
'nt'.

 On a Mac running OS X and on Linux/UNIX, the response is posix. You can use
this response to perform special operations, depending on the platform you’re work-
ing on:

import os
if os.name == 'posix':
 root_dir = "/"
elif os.name == 'nt':
 root_dir = "C:\\"
else:
 print("Don't understand this operating system!")

You may also see programs use sys.platform, which gives more exact information.
On Windows 10, sys.platform is set to win32—even if the machine is running the
64-bit version of the operating system. On Linux, you may see linux2, whereas on
Solaris, it may be set to sunos5 depending on the version you’re running.

 All your environment variables and the values associated with them are available in
a dictionary called os.environ. On most operating systems, this directory includes
variables related to paths—typically, search paths for binaries and so forth. If what
you’re doing requires this directory, you know where to find it now.

 At this point, you’ve received an introduction to the major aspects of working with
pathnames in Python. If your immediate need is to open files for reading or writing,
you can jump directly to the next chapter. Continue reading for further information
about pathnames, testing what they point to, useful constants, and so forth.

QUICK CHECK: MANIPULATING PATHS How would you use the os module’s
functions to take a path to a file called test.log and create a new file path
in the same directory for a file called test.log.old? How would you do the
same thing using the pathlib module?

What path would you get if you created a pathlib Path object from os
.pardir? Try it and find out.

167Getting information about files
12.3 Getting information about files
File paths are supposed to indicate actual files and directories on your hard drive.
You’re probably passing a path around, of course, because you want to know some-
thing about what it points to. Various Python functions are available for this purpose.

 The most commonly used Python path-information functions are
os.path.exists, os.path.isfile, and os.path.isdir, all of which take a single
path as an argument. os.path.exists returns True if its argument is a path corre-
sponding to something that exists in the filesystem. os.path.isfile returns True if
and only if the path it’s given indicates a normal data file of some sort (executables
fall under this heading), and it returns False otherwise, including the possibility that
the path argument doesn’t indicate anything in the filesystem. os.path.isdir
returns True if and only if its path argument indicates a directory; it returns False
otherwise. These examples are valid on my system. You may need to use different
paths on yours to investigate the behavior of these functions:

>>> import os
>>> os.path.exists('C:\\Users\\myuser\\My Documents')
True
>>> os.path.exists('C:\\Users\\myuser\\My Documents\\Letter.doc')
True
>>> os.path.exists('C:\\Users\\myuser\\\My Documents\\ljsljkflkjs')
False
>>> os.path.isdir('C:\\Users\\myuser\\My Documents')
True
>>> os.path.isfile('C:\\Users\\ myuser\\My Documents')
False
>>> os.path.isdir('C:\\Users\\ myuser\\My Documents
\\Letter.doc')
False
>>> os.path.isfile('C:\\Users\\ myuser\\My Documents\\Letter.doc')
True

Several similar functions provide more specialized queries. os.path.islink and
os.path.ismount are useful in the context of Linux and other UNIX operating sys-
tems that provide file links and mount points; they return True if, respectively, a path
indicates a file that’s a link or a mount point. os.path.islink does not return True
on Windows shortcuts files (files ending with .lnk), for the simple reason that such
files aren’t true links. However, os.path.islink returns True on Windows systems
for true symbolic links created with the mklink() command. The OS doesn’t assign
them a special status, and programs can’t transparently use them as though they were
the actual file. os.path.samefile(path1, path2) returns True if and only if the
two path arguments point to the same file. os.path.isabs(path) returns True if
its argument is an absolute path; it returns False otherwise. os.path.get-
size(path), os.path.getmtime(path), and os.path.getatime(path) return
the size, last modify time, and last access time of a pathname, respectively.

168 CHAPTER 12 Using the filesystem
12.3.1 Getting information about files with scandir

In addition to the os.path functions listed, you can get more complete information
about the files in a directory by using os.scandir, which returns an iterator of
os.DirEntry objects. os.DirEntry objects expose the file attributes of a directory
entry, so using os.scandir can be faster and more efficient than combining
os.listdir (discussed in the next section) with the os.path operations. If, for
example, you need to know whether the entry refers to a file or directory, os.scan-
dir’s ability to access more directory information than just the name will be a plus.
os.DirEntry objects have methods that correspond to the os.path functions men-
tioned in the previous section, including exists, is_dir, is_file, is_socket,
and is_symlink.

 os.scandir also supports a context manager using with, and using one is recom-
mended to ensure resources are properly disposed of. This example code iterates over
all of the entries in a directory and prints both the name of the entry and whether it’s
a file:

>>> with os.scandir(".") as my_dir:
... for entry in my_dir:
... print(entry.name, entry.is_file())
...
pip-selfcheck.json True
pyvenv.cfg True
include False
test.py True
lib False
lib64 False
bin False

12.4 More filesystem operations
In addition to obtaining information about files, Python lets you perform certain file-
system operations directly through a set of basic but highly useful commands in the os
module.

 I describe only those true cross-platform operations in this section. Many operat-
ing systems have access to more advanced filesystem functions, and you need to check
the main Python library documentation for the details.

 You’ve already seen that to obtain a list of files in a directory, you use os.listdir:

>>> os.chdir(os.path.join('C:', 'my documents', 'tmp'))
>>> os.listdir(os.curdir)
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp']

Note that unlike the list-directory command in many other languages or shells,
Python does not include the os.curdir and os.pardir indicators in the list
returned by os.listdir.

 The glob function from the glob module (named after an old UNIX function
that did pattern matching) expands Linux/UNIX shell-style wildcard characters and

169More filesystem operations
character sequences in a pathname, returning the files in the current working direc-
tory that match. A * matches any sequence of characters. A ? matches any single char-
acter. A character sequence ([h,H] or [0-9]) matches any single character in that
sequence:

>>> import glob
>>> glob.glob("*")
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp']
>>> glob.glob("*bkp")
['registry.bkp']
>>> glob.glob("?.tmp")
['a.tmp', '1.tmp', '7.tmp', '9.tmp']
>>> glob.glob("[0-9].tmp")
['1.tmp', '7.tmp', '9.tmp']

To rename (move) a file or directory, use os.rename:

>>> os.rename('registry.bkp', 'registry.bkp.old')
>>> os.listdir(os.curdir)
['book1.doc.tmp', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']

You can use this command to move files across directories as well as within directories.
 Remove or delete a data file with os.remove:

>>> os.remove('book1.doc.tmp')
>>> os.listdir(os.curdir)
['a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']

Note that you can’t use os.remove to delete directories. This restriction is a safety
feature, to ensure that you don’t accidentally delete an entire directory substructure.

 Files can be created by writing to them, as discussed in chapter 11. To create a
directory, use os.makedirs or os.mkdir. The difference between them is that
os.mkdir doesn’t create any necessary intermediate directories, but os.makedirs
does:

>>> os.makedirs('mydir')
>>> os.listdir(os.curdir)
['mydir', 'a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']
>>> os.path.isdir('mydir')
True

To remove a directory, use os.rmdir. This function removes only empty directories.
Attempting to use it on a nonempty directory raises an exception:

>>> os.rmdir('mydir')
>>> os.listdir(os.curdir)
['a.tmp', '1.tmp', '7.tmp', '9.tmp', 'registry.bkp.old']

To remove nonempty directories, use the shutil.rmtree function. It recursively
removes all files in a directory tree. See the Python standard library documentation
for details on its use.

170 CHAPTER 12 Using the filesystem
12.4.1 More filesystem operations with pathlib

Path objects have most of the same methods mentioned earlier. Some differences
exist, however. The iterdir method is similar to the os.path.listdir function
except that it returns an iterator of paths rather than a list of strings:

>>> new_path = cur_path.joinpath('C:', 'my documents', 'tmp'))
>>> list(new_path.iterdir())
[WindowsPath('book1.doc.tmp'), WindowsPath('a.tmp'), WindowsPath('1.tmp'),

WindowsPath('7.tmp'), WindowsPath('9.tmp'), WindowsPath('registry.bkp')]

Note that in a Windows environment, the paths returned are WindowsPath objects,
whereas on Mac OS or Linux, they’re PosixPath objects.

 pathlib path objects also have a glob method built in, which again returns not a
list of strings but an iterator of path objects. Otherwise, this function behaves very
much like the glob.glob function demonstrated above:

>>> list(cur_path.glob("*"))
[WindowsPath('book1.doc.tmp'), WindowsPath('a.tmp'), WindowsPath('1.tmp'),

WindowsPath('7.tmp'), WindowsPath('9.tmp'), WindowsPath('registry.bkp')]
>>> list(cur_path.glob("*bkp"))
[WindowsPath('registry.bkp')]
>>> list(cur_path.glob("?.tmp"))
[WindowsPath('a.tmp'), WindowsPath('1.tmp'), WindowsPath('7.tmp'),

WindowsPath('9.tmp')]
>>> list(cur_path.glob("[0-9].tmp"))
[WindowsPath('1.tmp'), WindowsPath('7.tmp'), WindowsPath('9.tmp')]

To rename (move) a file or directory, use the path object’s rename method:

>>> old_path = Path('registry.bkp')
>>> new_path = Path('registry.bkp.old')
>>> old_path.rename(new_path)
>>> list(cur_path.iterdir())
[WindowsPath('book1.doc.tmp'), WindowsPath('a.tmp'), WindowsPath('1.tmp'),

WindowsPath('7.tmp'), WindowsPath('9.tmp'),
WindowsPath('registry.bkp.old')]

You can use this command to move files across directories as well as within directories.
 Remove or delete a data file with unlink:

>>> new_path = Path('book1.doc.tmp')
>>> new_path.unlink()
>>> list(cur_path.iterdir())
[WindowsPath('a.tmp'), WindowsPath('1.tmp'), WindowsPath('7.tmp'),

WindowsPath('9.tmp'), WindowsPath('registry.bkp.old')]

Note that as with os.remove, you can’t use the unlink method to delete directories.
This restriction is a safety feature, to ensure that you don’t accidentally delete an
entire directory substructure.

 To create a directory by using a path object, use the path object’s mkdir method. If
you give the mkdir method a parents=True parameter, it creates any necessary

171Processing all files in a directory subtree
intermediate directories; otherwise, it raises a FileNotFoundError if an intermedi-
ate directory isn’t there:

>>> new_path = Path ('mydir')
>>> new_path.mkdir(parents=True)
>>> list(cur_path.iterdir())
[WindowsPath('mydir'), WindowsPath('a.tmp'), WindowsPath('1.tmp'),

WindowsPath('7.tmp'), WindowsPath('9.tmp'),
WindowsPath('registry.bkp.old')]]

>>> new_path.is_dir('mydir')
True

To remove a directory, use the rmdir method. This method removes only empty
directories. Attempting to use it on a nonempty directory raises an exception:

>>> new_path = Path('mydir')
>>> new_path.rmdir()
>>> list(cur_path.iterdir())
[WindowsPath('a.tmp'), WindowsPath('1.tmp'), WindowsPath('7.tmp'),

WindowsPath('9.tmp'), WindowsPath('registry.bkp.old']

LAB 12: MORE FILE OPERATIONS How might you calculate the total size of all
files ending with .txt that aren’t symlinks in a directory? If your first answer
was using os.path, also try it with pathlib, and vice versa.

Write some code that builds off your solution to move the same .txt files in
the lab question to a new subdirectory called backup in the same directory.

12.5 Processing all files in a directory subtree
Finally, a highly useful function for traversing recursive directory structures is the
os.walk function. You can use it to walk through an entire directory tree, returning
three things for each directory it traverses: the root, or path, of that directory; a list of
its subdirectories; and a list of its files.

 os.walk is called with the path of the starting, or top, directory and can have
three optional arguments: os.walk(directory, topdown=True, onerror=None,
followlinks= False). directory is a starting directory path; if topdown is True
or not present, the files in each directory are processed before its subdirectories, result-
ing in a listing that starts at the top and goes down; whereas if topdown is False, the
subdirectories of each directory are processed first, giving a bottom-up traversal of the
tree. The onerror parameter can be set to a function to handle any errors that result
from calls to os.listdir, which are ignored by default. os.walk by default doesn’t
walk down into folders that are symbolic links unless you give it the follow-
links=True parameter.

 When called, os.walk creates an iterator that recursively applies itself to all the
directories contained in the top parameter. In other words, for each subdirectory
subdir in names, os.walk recursively invokes a call to itself, of the form
os.walk(subdir, ...). Note that if topdown is True or not given, the list of subdi-
rectories may be modified (using any of the list-modification operators or methods)

172 CHAPTER 12 Using the filesystem
before its items are used for the next level of recursion; you can use this to control
into which—if any—subdirectories os.walk will descend.

 To get a feel for os.walk, I recommend iterating over the tree and printing out
the values returned for each directory. As an example of the power of os.walk, list
the current working directory and all of its subdirectories along with a count of the
number of entries in each of them, excluding any .git directories:

import os
for root, dirs, files in os.walk(os.curdir):
 print("{0} has {1} files".format(root, len(files)))
 if ".git" in dirs:
 dirs.remove(".git")

This example is complex, and if you want to use os.walk to its fullest extent, you
should probably play around with it quite a bit to understand the details of what’s
going on.

 The copytree function of the shutil module recursively makes copies of all the
files in a directory and all of its subdirectories, preserving permission mode and stat
(that is, access/modify times) information. shutil also has the already-mentioned
rmtree function for removing a directory and all of its subdirectories, as well as sev-
eral functions for making copies of individual files. See the standard library documen-
tation for details.

Summary
 Python provides a group of functions and constants that handle filesystem refer-

ences (pathnames) and filesystem operations in a manner independent of the
underlying operating system.

 For more advanced and specialized filesystem operations that typically are tied
to a certain operating system or systems, look at the main Python documenta-
tion for the os, pathlib, and posix modules.

 For convenience, a summary of the functions discussed in this chapter is given
in table 12.1 and table 12.2.

Table 12.1 Summary of filesystem values and functions

Function Filesystem value or operation

os.getcwd(), Path.cwd() Gets the current directory

os.name Provides generic platform identification

sys.platform Provides specific platform information

os.environ Maps the environment

os.listdir(path) Gets files in a directory

os.scandir(path) Gets an iterator of os.DirEntry objects for a directory

Checks for directory
named .git

Removes .git (only the .git
directory) from directory list

173Summary
os.chdir(path) Changes directory

os.path.join(elements),
Path.joinpath(elements)

Combines elements into a path

os.path.split(path) Splits the path into a base and tail (the last element of the path)

Path.parts A tuple of the path’s elements

os.path.splitext(path) Splits the path into a base and a file extension

Path.suffix The path’s file extension

os.path.basename(path) Gets the base of the path

Path.name The base name of the path

os.path.commonprefix(list_
of_paths)

Gets the common prefix for all paths on a list

os.path.expanduser(path) Expands ~ or ~user to a full pathname

os.path.expandvars(path) Expands environment variables

os.path.exists(path) Tests to see if a path exists

os.path.isdir(path),
Path.is_dir()

Tests to see if a path is a directory

os.path.isfile(path),
Path.is_file()

Tests to see if a path is a file

os.path.islink(path),
Path.is_link()

Tests to see if a path is a symbolic link (not a Windows shortcut)

os.path.ismount(path) Tests to see if a path is a mount point

os.path.isabs(path),
Path.is_absolute()

Tests to see if a path is an absolute path

os.path.samefile(path_1,
path_2)

Tests to see if two paths refer to the same file

os.path.getsize(path) Gets the size of a file

os.path.getmtime(path) Gets the modification time

os.path.getatime(path) Gets the access time

os.rename(old_path,
new_path)

Renames a file

os.mkdir(path) Creates a directory

os.makedirs(path) Creates a directory and any needed parent directories

os.rmdir(path) Removes a directory

Table 12.1 Summary of filesystem values and functions (continued)

Function Filesystem value or operation

174 CHAPTER 12 Using the filesystem

glob.glob(pattern) Gets matches to a wildcard pattern

os.walk(path) Gets all filenames in a directory tree

Table 12.2 Partial list of pathlib properties and functions

Method or property Value or operation

Path.cwd() Gets the current directory

Path.joinpath(elements) or
Path / element / element

Combines elements into a new path

Path.parts A tuple of the path’s elements

Path.suffix The path’s file extension

Path.name The base name of the path

Path.exists() Tests to see if a path exists

Path.is_dir() Tests to see if a path is a directory

Path.is_file() Tests to see if a path is a file

Path.is_symlink() Tests to see if a path is a symbolic link (not a Windows shortcut)

Path.is_absolute() Tests to see if a path is an absolute path

Path.samefile(Path2) Tests to see if two paths refer to the same file

Path1.rename(Path2) Renames a file

Path.mkdir([parents=True]) Creates a directory, if parents is True also creates needed
parent directories

Path.rmdir() Removes a directory

Path.glob(pattern) Gets matches to a wildcard pattern

Table 12.1 Summary of filesystem values and functions (continued)

Function Filesystem value or operation

Reading and writing files
13.1 Opening files and file objects
Probably the single most common thing you’ll want to do with files is open and
read them.

 In Python, you open and read a file by using the built-in open function and var-
ious built-in reading operations. The following short Python program reads in one
line from a text file named myfile:

with open('myfile', 'r') as file_object:
 line = file_object.readline()

This chapter covers
 Opening files and file objects
 Closing files
 Opening files in different modes
 Reading and writing text or binary data
 Redirecting screen input/output
 Using the struct module
 Pickling objects into files
 Shelving objects
175

176 CHAPTER 13 Reading and writing files
open doesn’t read anything from the file; instead, it returns an object called a file
object that you can use to access the opened file. A file object keeps track of a file
and how much of the file has been read or written. All Python file I/O is done using
file objects rather than filenames.

 The first call to readline returns the first line in the file object, everything up to
and including the first newline character or the entire file if there’s no newline charac-
ter in the file; the next call to readline returns the second line, if it exists, and so on.

 The first argument to the open function is a pathname. In the previous example,
you’re opening what you expect to be an existing file in the current working directory.
The following opens a file at an absolute location—c:\My Documents\test

\myfile:

import os
file_name = os.path.join("c:", "My Documents", "test", "myfile")
file_object = open(file_name, 'r')

Note also that this example uses the with keyword, indicating that the file will be
opened with a context manager, which I explain more in chapter 14. For now, it’s
enough to note that this style of opening files better manages potential I/O errors
and is generally preferred.

13.2 Closing files
After all data has been read from or written to a file object, it should be closed. Clos-
ing a file object frees up system resources, allows the underlying file to be read or
written to by other code, and in general makes the program more reliable. For small
scripts, not closing a file object generally doesn’t have much of an effect; file
objects are automatically closed when the script or program terminates. For larger
programs, too many open file objects may exhaust system resources, causing the
program to abort.

 You close a file object by using the close method when the file object is no
longer needed. The earlier short program then becomes this:

file_object = open("myfile", 'r')
line = file_object.readline()
. . . any further reading on the file_object . . .
file_object.close()

Using a context manager and the keyword with is also a good way to automatically
close files when you’re done:

with open("myfile", 'r') as file_object:
 line = file_object.readline()
 # . . . any further reading on the file_object . . .

13.3 Opening files in write or other modes
The second argument of the open command is a string denoting how the file should be
opened. 'r' means “Open the file for reading,” 'w' means “Open the file for writing”

177Functions to read and write text or binary data
(any data already in the file will be erased), and 'a' means “Open the file for append-
ing” (new data will be appended to the end of any data already in the file). If you want
to open the file for reading, you can leave out the second argument; 'r' is the default.
The following short program writes “Hello, World” to a file:

file_object = open("myfile", 'w')
file_object.write(“Hello, World\n”)
file_object.close()

Depending on the operating system, open may also have access to additional file
modes. These modes aren’t necessary for most purposes. As you write more advanced
Python programs, you may want to consult the Python reference manuals for details.

 open can take an optional third argument, which defines how reads or writes for
that file are buffered. Buffering is the process of holding data in memory until enough
data has been requested or written to justify the time cost of doing a disk access. Other
parameters to open control the encoding for text files and the handling of newline
characters in text files. Again, these features aren’t things you typically need to worry
about, but as you become more advanced in your use of Python, you may want to read
up on them.

13.4 Functions to read and write text or binary data
I’ve already presented the most common text file–reading function, readline. This
function reads and returns a single line from a file object, including any newline
character on the end of the line. If there’s nothing more to be read from the file,
readline returns an empty string, which makes it easy to (for example) count the
number of lines in a file:

file_object = open("myfile", 'r')
count = 0
while file_object.readline() != "":
 count = count + 1
print(count)
file_object.close()

For this particular problem, an even shorter way to count all the lines is to use the
built-in readlines method, which reads all the lines in a file and returns them as a
list of strings, one string per line (with trailing newlines still included):

file_object = open("myfile", 'r')
print(len(file_object.readlines()))
file_object.close()

If you happen to be counting all the lines in a huge file, of course, this method may
cause your computer to run out of memory because it reads the entire file into memory
at once. It’s also possible to overflow memory with readline if you have the misfor-
tune to try to read a line from a huge file that contains no newline characters, although
this situation is highly unlikely. To handle such circumstances, both readline and

178 CHAPTER 13 Reading and writing files
readlines can take an optional argument affecting the amount of data they read at
any one time. See the Python reference documentation for details.

 Another way to iterate over all of the lines in a file is to treat the file object as an
iterator in a for loop:

file_object = open("myfile", 'r')
count = 0
for line in file_object:
 count = count + 1
print(count)
file_object.close()

This method has the advantage that the lines are read into memory as needed, so
even with large files, running out of memory isn’t a concern. The other advantage of
this method is that it’s simpler and easier to read.

 A possible problem with the read method may arise due to the fact that on Win-
dows and Macintosh machines, text-mode translations occur if you use the open com-
mand in text mode—that is, without adding a b to the mode. In text mode, on a
Macintosh any \r is converted to "\n", whereas on Windows "\r\n" pairs are con-
verted to "\n". You can specify the treatment of newline characters by using the new-
line parameter when you open the file and specifying newline="\n", "\r", or
"\r\n", which forces only that string to be used as a newline:

input_file = open("myfile", newline="\n")

This example forces only "\n" to be considered to be a newline. If the file has been
opened in binary mode, the newline parameter isn’t needed, because all bytes are
returned exactly as they are in the file.

 The write methods that correspond to the readline and readlines methods are
the write and writelines methods. Note that there’s no writeline function.
write writes a single string, which can span multiple lines if newline characters are
embedded within the string, as in this example:

myfile.write("Hello")

write doesn’t write out a newline after it writes its argument; if you want a newline in
the output, you must put it there yourself. If you open a file in text mode (using w),
any \n characters are mapped back to the platform-specific line endings (that is,
'\r\n' on Windows or '\r' on Macintosh platforms). Again, opening the file with a
specified newline prevents this situation.

 writelines is something of a misnomer because it doesn’t necessarily write lines;
it takes a list of strings as an argument and writes them, one after the other, to the
given file object without writing newlines. If the strings in the list end with newlines,
they’re written as lines; otherwise, they’re effectively concatenated in the file. But
writelines is a precise inverse of readlines in that it can be used on the list
returned by readlines to write a file identical to the file readlines read from.

179Reading and writing with pathlib
Assuming that myfile.txt exists and is a text file, this bit of code creates an exact copy
of myfile.txt called myfile2.txt:

input_file = open("myfile.txt", 'r')
lines = input_file.readlines()
input_file.close()
output = open("myfile2.txt", 'w')
output.writelines(lines)
output.close()

13.4.1 Using binary mode

On some occasions, you may want to read all the data in a file into a single bytes
object, especially if the data isn’t a string, and you want to get it all into memory so you
can treat it as a byte sequence. Or you may want to read data from a file as bytes
objects of a fixed size. You may be reading data without explicit newlines, for example,
where each line is assumed to be a sequence of characters of a fixed size. To do so, use
the read method. Without any argument, this method reads all of a file from the cur-
rent position and returns that data as a bytes object. With a single-integer argument,
it reads that number of bytes (or less, if there isn’t enough data in the file to satisfy the
request) and returns a bytes object of the given size:

input_file = open("myfile", 'rb')
header = input_file.read(4)
data = input_file.read()
input_file.close()

The first line opens a file for reading in binary mode, the second line reads the first
four bytes as a header string, and the third line reads the rest of the file as a single
piece of data.

 Keep in mind that files open in binary mode deal only in bytes, not strings. To use
the data as strings, you must decode any bytes objects to string objects. This point
is often important in dealing with network protocols, where data streams often behave
as files but need to be interpreted as bytes, not strings.

QUICK CHECK: What is the significance of adding a "b" to the file open mode
string, as in open("file", "wb")?

Suppose that you want to open a file named myfile.txt and write addi-
tional data on the end of it. What command would you use to open
myfile.txt? What command would you use to reopen the file to read from
the beginning?

13.5 Reading and writing with pathlib
In addition to its path-manipulation powers discussed in chapter 12, a Path object
can be used to read and write text and binary files. This capability can be convenient
because no open or close is required, and separate methods are used for text and

180 CHAPTER 13 Reading and writing files
binary operations. One limitation, however, is that you have no way to append by
using Path methods, because writing replaces any existing content:

>>> from pathlib import Path
>>> p_text = Path('my_text_file')
>>> p_text.write_text('Text file contents')
18
>>> p_text.read_text()
'Text file contents'
>>> p_binary = Path('my_binary_file')
>>> p_binary.write_bytes(b'Binary file contents')
20
>>> p_binary.read_bytes()
b'Binary file contents'

13.6 Screen input/output and redirection
You can use the built-in input method to prompt for and read an input string:

>>> x = input("enter file name to use: ")
enter file name to use: myfile
>>> x
'myfile'

The prompt line is optional, and the newline at the end of the input line is stripped
off. To read in numbers by using input, you need to explicitly convert the string that
input returns to the correct number type. The following example uses int:

>>> x = int(input("enter your number: "))
enter your number: 39
>>> x
39

input writes its prompt to the standard output and reads from the standard input.
Lower-level access to these and standard error can be obtained by using the sys mod-
ule, which has sys.stdin, sys.stdout, and sys.stderr attributes. These attri-
butes can be treated as specialized file objects.

 For sys.stdin, you have the read, readline, and readlines methods. For
sys.stdout and sys.stderr, you can use the standard print function as well as
the write and writelines methods, which operate as they do for other file
objects:

>>> import sys
>>> print("Write to the standard output.")
Write to the standard output.
>>> sys.stdout.write("Write to the standard output.\n")
Write to the standard output.
30
>>> s = sys.stdin.readline()
An input line
>>> s
'An input line\n'

sys.stdout.write returns the
number of characters written.

181Screen input/output and redirection
You can redirect standard input to read from a file. Similarly, standard output or stan-
dard error can be set to write to files and then programmatically restored to their orig-
inal values by using sys.__stdin__, sys.__stdout__, and sys.__stderr__:

>>> import sys
>>> f = open("outfile.txt", 'w')
>>> sys.stdout = f
>>> sys.stdout.writelines(["A first line.\n", "A second line.\n"])
>>> print("A line from the print function")
>>> 3 + 4
>>> sys.stdout = sys.__stdout__
>>> f.close()
>>> 3 + 4
7

The print function also can be redirected to any file without changing standard
output:

>>> import sys
>>> f = open("outfile.txt", 'w')
>>> print("A first line.\n", "A second line.\n", file=f)
>>> 3 + 4
7
>>> f.close()
>>> 3 + 4
7

While the standard output is redirected, you receive prompts and tracebacks from
errors but no other output. If you’re using IDLE, these examples using sys.__
stdout__ won’t work as indicated; you have to use the interpreter’s interactive mode
directly.

 You’d normally use this technique when you’re running from a script or program.
But if you’re using the interactive mode on Windows, you may want to temporarily
redirect standard output to capture what might otherwise scroll off the screen. The
short module shown here implements a set of functions that provides this capability.

"""mio: module, (contains functions capture_output, restore_output,
 print_file, and clear_file)"""
import sys
_file_object = None
def capture_output(file="capture_file.txt"):
 """capture_output(file='capture_file.txt'): redirect the standard
 output to 'file'."""
 global _file_object
 print("output will be sent to file: {0}".format(file))
 print("restore to normal by calling 'mio.restore_output()'")
 _file_object = open(file, 'w')
 sys.stdout = _file_object

Listing 13.1 File mio.py

After this line outfile.txt
contains two lines:

A first line
A second line

outfile.txt now contains
three lines:
A first line
A second line
A line from the print function

outfile.txt contains:
A first line
A second line

182 CHAPTER 13 Reading and writing files
def restore_output():
 """restore_output(): restore the standard output back to the
 default (also closes the capture file)"""
 global _file_object
 sys.stdout = sys.__stdout__
 _file_object.close()
 print("standard output has been restored back to normal")

def print_file(file="capture_file.txt"):
 """print_file(file="capture_file.txt"): print the given file to the
 standard output"""
 f = open(file, 'r')
 print(f.read())
 f.close()

def clear_file(file="capture_file.txt"):
 """clear_file(file="capture_file.txt"): clears the contents of the
 given file"""
 f = open(file, 'w')
 f.close()

Here, capture_output() redirects standard output to a file that defaults to
"capture_file.txt". The function restore_output() restores standard output
to the default. Assuming capture_output hasn't been executed, print_file()
prints this file to the standard output, and clear_file() clears its current contents.

TRY THIS: REDIRECTING INPUT AND OUTPUT Write some code to use the mio.py
module in listing 13.1 to capture all the print output of a script to a file
named myfile.txt, reset the standard output to the screen, and print that file
to screen.

13.7 Reading structured binary data with the struct module
Generally speaking, when working with your own files, you probably don’t want to
read or write binary data in Python. For very simple storage needs, it’s usually best to
use text or bytes input and output. For more sophisticated applications, Python pro-
vides the ability to easily read or write arbitrary Python objects (pickling, described in
section 13.8). This ability is much less error-prone than directly writing and reading
your own binary data and is highly recommended.

 But there’s at least one situation in which you’ll likely need to know how to read or
write binary data: when you’re dealing with files that are generated or used by other
programs. This section describes how to do this by using the struct module. Refer to
the Python reference documentation for more details.

 As you’ve seen, Python supports explicit binary input or output by using bytes
instead of strings if you open the file in binary mode. But because most binary files
rely on a particular structure to help parse the values, writing your own code to read
and split them into variables correctly is often more work than it’s worth. Instead, you
can use the standard struct module to permit you to treat those strings as formatted
byte sequences with some specific meaning.

183Reading structured binary data with the struct module
 Assume that you want to read in a binary file called data, containing a series of
records generated by a C program. Each record consists of a C short integer, a C dou-
ble float, and a sequence of four characters that should be taken as a four-character
string. You want to read this data into a Python list of tuples, with each tuple contain-
ing an integer, a floating-point number, and a string.

 The first thing to do is define a format string understandable to the struct mod-
ule, which tells the module how the data in one of your records is packed. The format
string uses characters meaningful to struct to indicate what type of data is expected
where in a record. The character 'h', for example, indicates the presence of a single
C short integer, and the character 'd' indicates the presence of a single C double-pre-
cision floating-point number. Not surprisingly, 's' indicates the presence of a string.
Any of these may be preceded by an integer to indicate the number of values; in this
case, '4s' indicates a string consisting of four characters. For your records, the
appropriate format string is therefore 'hd4s'. struct understands a wide range of
numeric, character, and string formats. See the Python Library Reference for details.

 Before you start reading records from your file, you need to know how many bytes
to read at a time. Fortunately, struct includes a calcsize function, which takes
your format string as an argument and returns the number of bytes used to contain
data in such a format.

 To read each record, you use the read method described earlier in this chapter.
Then the struct.unpack function conveniently returns a tuple of values by parsing
a read record according to your format string. The program to read your binary data
file is remarkably simple:

import struct
record_format = 'hd4s'
record_size = struct.calcsize(record_format)
result_list = []
input = open("data", 'rb')
while 1:
 record = input.read(record_size)
 if record == '':
 input.close()
 break
 result_list.append(struct.unpack(record_format, record))

If the record is empty, you’re at the end of the file, so you quit the loop B. Note that
there’s no checking for file consistency; if the last record is an odd size, the
struct.unpack function raises an error.

 As you may already have guessed, struct also provides the ability to take Python
values and convert them to packed byte sequences. This conversion is accomplished
through the struct.pack function, which is almost, but not quite, an inverse of
struct.unpack. The almost comes from the fact that whereas struct.unpack
returns a tuple of Python values, struct.pack doesn’t take a tuple of Python values;
rather, it takes a format string as its first argument and then enough additional

Reads in a single
record

b
Unpacks record
into a tuple;
appends to results

184 CHAPTER 13 Reading and writing files
arguments to satisfy the format string. To produce a binary record of the form used in
the previous example, you might do something like this:

>>> import struct
>>> record_format = 'hd4s'
>>> struct.pack(record_format, 7, 3.14, b'gbye')
b'\x07\x00\x00\x00\x00\x00\x00\x00\x1f\x85\xebQ\xb8\x1e\t@gbye'

struct gets even better; you can insert other special characters into the format string
to indicate that data should be read/written in big-endian, little-endian, or machine-
native-endian format (default is machine-native) and to indicate that things like a C
short integer should be sized either as native to the machine (the default) or as stan-
dard C sizes. If you need these features, it’s nice to know that they exist. See the Python
Library Reference for details.

QUICK CHECK: STRUCT What use cases can you think of in which the struct
module would be useful for either reading or writing binary data?

13.8 Pickling objects files
Python can write any data structure into a file, read that data structure back out of a
file, and re-create it with just a few commands. This capability is unusual but can be
useful, because it can save you many pages of code that do nothing but dump the state
of a program into a file (and can save a similar amount of code that does nothing but
read that state back in).

 Python provides this capability via the pickle module. Pickling is powerful but
simple to use. Assume that the entire state of a program is held in three variables: a, b,
and c. You can save this state to a file called state as follows:

import pickle
.
.
.
file = open("state", 'wb')
pickle.dump(a, file)
pickle.dump(b, file)
pickle.dump(c, file)
file.close()

It doesn’t matter what was stored in a, b, and c. The content might be as simple as
numbers or as complex as a list of dictionaries containing instances of user-defined
classes. pickle.dump saves everything.

 Now, to read that data back in on a later run of the program, just write

import pickle
file = open("state", 'rb')
a = pickle.load(file)
b = pickle.load(file)
c = pickle.load(file)
file.close()

185Pickling objects files
Any data that was previously in the variables a, b, or c is restored to them by
pickle.load.

 The pickle module can store almost anything in this manner. It can handle lists,
tuples, numbers, strings, dictionaries, and just about anything made up of these types
of objects, which includes all class instances. It also handles shared objects, cyclic ref-
erences, and other complex memory structures correctly, storing shared objects only
once and restoring them as shared objects, not as identical copies. But code objects
(what Python uses to store byte-compiled code) and system resources (like files or
sockets) can’t be pickled.

 More often than not, you won’t want to save your entire program state with
pickle. Most applications can have multiple documents open at one time, for exam-
ple. If you saved the entire state of the program, you would effectively save all open
documents in one file. An easy and effective way of saving and restoring only data of
interest is to write a save function that stores all data you want to save into a dictionary
and then uses pickle to save the dictionary. Then you can use a complementary
restore function to read the dictionary back in (again using pickle) and to assign the
values in the dictionary to the appropriate program variables. This technique also has
the advantage that there’s no possibility of reading values back in an incorrect order—
that is, an order different from the order in which the values were stored. Using this
approach with the previous example, you get code looking something like this:

import pickle
.
.
.
def save_data():
 global a, b, c
 file = open("state", 'wb')
 data = {'a': a, 'b': b, 'c': c}
 pickle.dump(data, file)
 file.close()

def restore_data():
 global a, b, c
 file = open("state", 'rb')
 data = pickle.load(file)
 file.close()
 a = data['a']
 b = data['b']
 c = data['c']
 .
 .

This example is somewhat contrived. You probably won’t be saving the state of the top-
level variables of your interactive mode very often.

 A real-life application is an extension of the cache example given in chapter 7. In
that chapter, you called a function that performed a time-intensive calculation based
on its three arguments. During the course of a program run, many of your calls to that

186 CHAPTER 13 Reading and writing files
function ended up using the same set of arguments. You were able to obtain a signifi-
cant performance improvement by caching the results in a dictionary, keyed by the
arguments that produced them. But it was also the case that many sessions of this pro-
gram were being run many times over the course of days, weeks, and months. There-
fore, by pickling the cache, you can avoid having to start over with every session. Here
is a pared-down version of the module you might use for this purpose.

"""sole module: contains functions sole, save, show"""
import pickle
_sole_mem_cache_d = {}
_sole_disk_file_s = "solecache"
file = open(_sole_disk_file_s, 'rb')
_sole_mem_cache_d = pickle.load(file)
file.close()

def sole(m, n, t):
 """sole(m, n, t): perform the sole calculation using the cache."""
 global _sole_mem_cache_d
 if _sole_mem_cache_d.has_key((m, n, t)):
 return _sole_mem_cache_d[(m, n, t)]
 else:
 # . . . do some time-consuming calculations . . .
 _sole_mem_cache_d[(m, n, t)] = result
 return result

def save():
 """save(): save the updated cache to disk."""
 global _sole_mem_cache_d, _sole_disk_file_s
 file = open(_sole_disk_file_s, 'wb')
 pickle.dump(_sole_mem_cache_d, file)
 file.close()

def show():
 """show(): print the cache"""
 global _sole_mem_cache_d
 print(_sole_mem_cache_d)

This code assumes that the cache file already exists. If you want to play around with it,
use the following to initialize the cache file:

>>> import pickle
>>> file = open("solecache",'wb')
>>> pickle.dump({}, file)
>>> file.close()

You also, of course, need to replace the comment # . . . do some time-consum-
ing calculations with an actual calculation. Note that for production code, this
situation is one in which you’d probably use an absolute pathname for your cache file.
Also, concurrency isn’t being handled here. If two people run overlapping sessions,

Listing 13.2 File sole.py

Initialization code executes
when module loads.

Public functions

187Shelving objects
you end up with only the additions of the last person to save. If this situation were an
issue, you could limit the overlap window significantly by using the dictionary update
method in the save function.

13.8.1 Reasons not to pickle

Although it may make some sense to use a pickled object in the previous scenario, you
should also be aware of the drawbacks to pickles:

 Pickling is neither particularly fast nor space-efficient as a means of serializa-
tion. Even using JSON to store serialized objects is faster and results in smaller
files on disk.

 Pickling isn’t secure, and loading a pickle with malicious content can result in
the execution of arbitrary code on your machine. Therefore, you should avoid
pickling if there’s any chance at all that the pickle file will be accessible to any-
one who might alter it.

QUICK CHECK: PICKLES Think about why a pickle would or would not be a
good solution in the following use cases:

 Saving some state variables from one run to the next
 Keeping a high-score list for a game
 Storing usernames and passwords
 Storing a large dictionary of English terms

13.9 Shelving objects
This topic is somewhat advanced but certainly not difficult. You can think of a shelve
object as being a dictionary that stores its data in a file on disk rather than in memory,
which means that you still have the convenience of access with a key, but you don’t
have the limitations of the amount of available RAM.

 This section is likely of most interest to people whose work involves storing or
accessing pieces of data in large files, because the Python shelve module does
exactly that: permits the reading or writing of pieces of data in large files without read-
ing or writing the entire file. For applications that perform many accesses of large files
(such as database applications), the savings in time can be spectacular. Like the
pickle module (which it uses), the shelve module is simple.

 In this section, you explore this module through an address book. This sort of
thing usually is small enough that an entire address file can be read in when the appli-
cation is started and written out when the application is done. If you’re an extremely
friendly sort of person and your address book is too big for this example, it would be
better to use shelve and not worry about it.

 Assume that each entry in your address book consists of a tuple of three elements,
giving the first name, phone number, and address of a person. Each entry is indexed
by the last name of the person the entry refers to. This setup is so simple that your
application will be an interactive session with the Python shell.

188 CHAPTER 13 Reading and writing files
 First, import the shelve module, and open the address book. shelve.open cre-
ates the address book file if it doesn’t exist:

>>> import shelve
>>> book = shelve.open("addresses")

Now add a couple of entries. Notice that you’re treating the object returned by
shelve.open as a dictionary (although it’s a dictionary that can use only strings as
keys):

>>> book['flintstone'] = ('fred', '555-1234', '1233 Bedrock Place')
>>> book['rubble'] = ('barney', '555-4321', '1235 Bedrock Place')

Finally, close the file and end the session:
>>> book.close()

So what? Well, in that same directory, start Python again, and open the same address
book:

>>> import shelve
>>> book = shelve.open("addresses")

But now, instead of entering something, see whether what you put in before is still
around:

>>> book['flintstone']
('fred', '555-1234', '1233 Bedrock Place')

The addresses file created by shelve.open in the first interactive session has acted
just like a persistent dictionary. The data you entered before was stored to disk, even
though you did no explicit disk writes. That’s exactly what shelve does.

 More generally, shelve.open returns a shelf object that permits basic diction-
ary operations, key assignment or lookup, del, in, and the keys method. But unlike
a normal dictionary, shelf objects store their data on disk, not in memory. Unfortu-
nately, shelf objects do have one significant restriction compared with dictionaries:
They can use only strings as keys, versus the wide range of key types allowable in dic-
tionaries.

 It’s important to understand the advantage shelf objects give you over dictionar-
ies when dealing with large data sets. shelve.open makes the file accessible; it
doesn’t read an entire shelf object file into memory. File accesses are done only
when needed (typically, when an element is looked up), and the file structure is main-
tained in such a manner that lookups are very fast. Even if your data file is really large,
only a couple of disk accesses will be required to locate the desired object in the file,
which can improve your program in several ways. The program may start faster,
because it doesn’t need to read a potentially large file into memory. Also, the program
may execute faster because more memory is available to the rest of the program; thus,
less code must be swapped out into virtual memory. You can operate on data sets that
are otherwise too large to fit in memory.

189Summary
 You have a few restrictions when using the shelve module. As previously men-
tioned, shelf object keys can be only strings, but any Python object that can be pick-
led can be stored under a key in a shelf object. Also, shelf objects aren’t suitable
for multiuser databases because they provide no control for concurrent access. Make
sure that you close a shelf object when you’re finished; closing is sometimes
required for the changes you’ve made (entries or deletions) to be written back to disk.

 As written, the cache example in listing 13.1 is an excellent candidate to be han-
dled with shelves. You wouldn’t, for example, have to rely on the user to explicitly save
their work to the disk. The only possible issue is that you wouldn’t have the low-level
control when you write back to the file.

QUICK CHECK: SHELVE Using a shelf object looks very much like using a dic-
tionary. In what ways is using a shelf object different? What disadvantages
would you expect in using a shelf object?

LAB 13: FINAL FIXES TO WC If you look at the man page for the wc utility, you
see two command-line options that do very similar things. -c makes the utility
count the bytes in the file, and -m makes it count characters (which in the
case of some Unicode characters can be two or more bytes long). In addition,
if a file is given, it should read from and process that file, but if no file is given,
it should read from and process stdin.

Rewrite your version of the wc utility to implement both the distinction
between bytes and characters and the ability to read from files and standard
input.

Summary
 File input and output in Python uses various built-in functions to open, read,

write, and close files.
 In addition to reading and writing text, the struct module gives you the ability

to read or write packed binary data.
 The pickle and shelve modules provide simple, safe, and powerful ways of

saving and accessing arbitrarily complex Python data structures.

Exceptions
This chapter discusses exceptions, which are language features specifically aimed at
handling unusual circumstances during the execution of a program. The most
common use for exceptions is to handle errors that arise during the execution of a
program, but they can also be used effectively for many other purposes. Python
provides a comprehensive set of exceptions, and new ones can be defined by users
for their own purposes.

 The concept of exceptions as an error-handling mechanism has been around
for some time. C and Perl, the most commonly used systems and scripting lan-
guages, don’t provide any exception capabilities, and even programmers who use
languages such as C++, which does include exceptions, are often unfamiliar with
them. This chapter doesn’t assume familiarity with exceptions on your part but
instead provides detailed explanations.

This chapter covers
 Understanding exceptions

 Handling exceptions in Python

 Using the with keyword
190

191Introduction to exceptions
14.1 Introduction to exceptions
The following sections provide an introduction to exceptions and how they’re used. If
you’re already familiar with exceptions, you can skip directly to “Exceptions in
Python” (section 14.2).

14.1.1 General philosophy of errors and exception handling

Any program may encounter errors during its execution. For the purposes of illustrat-
ing exceptions, I look at the case of a word processor that writes files to disk and that
therefore may run out of disk space before all of its data is written. There are various
ways of coming to grips with this problem.

SOLUTION 1: DON’T HANDLE THE PROBLEM

The simplest way to handle this disk-space problem is to assume that there’ll always be
adequate disk space for whatever files you write and that you needn’t worry about it.
Unfortunately, this option seems to be the most commonly used. It’s usually tolerable
for small programs dealing with small amounts of data, but it’s completely unsatisfac-
tory for more mission-critical programs.

SOLUTION 2: ALL FUNCTIONS RETURN SUCCESS/FAILURE STATUS

The next level of sophistication in error handling is realizing that errors will occur
and defining a methodology using standard language mechanisms for detecting and
handling them. There are numerous ways to do this, but a typical method is to have
each function or procedure return a status value that indicates whether that function
or procedure call executed successfully. Normal results can be passed back in a call-by-
reference parameter.

 Consider how this solution might work with a hypothetical word-processing pro-
gram. Assume that the program invokes a single high-level function, save_to_file,
to save the current document to file. This function calls subfunctions to save different
parts of the entire document to the file, such as save_text_to_file to save the
actual document text, save_prefs_to_file to save user preferences for that docu-
ment, save_formats_to_file to save user-defined formats for the document, and
so forth. Any of these subfunctions may in turn call its own subfunctions, which save
smaller pieces to the file. At the bottom are built-in system functions, which write prim-
itive data to the file and report on the success or failure of the file-writing operations.

 You could put error-handling code into every function that might get a disk-space
error, but that practice makes little sense. The only thing the error handler will be
able to do is put up a dialog box telling the user that there’s no more disk space and
asking the user to remove some files and save again. It wouldn’t make sense to dupli-
cate this code everywhere you do a disk write. Instead, put one piece of error-handling
code into the main disk-writing function: save_to_file.

192 CHAPTER 14 Exceptions
 Unfortunately, for save_to_file to be able to determine when to call this error-
handling code, every function it calls that writes to disk must itself check for disk space
errors and return a status value indicating the success or failure of the disk write. In
addition, the save_to_file function must explicitly check every call to a function
that writes to disk, even though it doesn’t care about which function fails. The code,
using C-like syntax, looks something like this:

const ERROR = 1;
const OK = 0;
int save_to_file(filename) {
 int status;
 status = save_prefs_to_file(filename);
 if (status == ERROR) {
 ...handle the error...
 }
 status = save_text_to_file(filename);
 if (status == ERROR) {
 ...handle the error...
 }
 status = save_formats_to_file(filename);
 if (status == ERROR) {
 ...handle the error...
 }
 .
 .
 .
}
int save_text_to_file(filename) {
 int status;
 status = ...lower-level call to write size of text...
 if (status == ERROR) {
 return(ERROR);
 }
 status = ...lower-level call to write actual text data...
 if (status == ERROR) {
 return(ERROR);
 }
 .
 .
 .
}

The same applies to save_prefs_to_file, save_formats_to_file, and all other
functions that either write to filename directly or (in any way) call functions that
write to filename.

 Under this methodology, code to detect and handle errors can become a signifi-
cant portion of the entire program, because every function and procedure containing
calls that might result in an error needs to contain code to check for an error. Often,
programmers don’t have the time or the energy to put in this type of complete error
checking, and programs end up being unreliable and crash-prone.

193Introduction to exceptions
SOLUTION 3: THE EXCEPTION MECHANISM

It’s obvious that most of the error-checking code in the previous type of program is
largely repetitive: The code checks for errors on each attempted file write and passes
an error status message back up to the calling procedure if an error is detected. The
disk-space error is handled in only one place: the top-level save_to_file. In other
words, most of the error-handling code is plumbing code that connects the place
where an error is generated with the place where it’s handled. What you really want to
do is get rid of this plumbing and write code that looks something like this:

def save_to_file(filename)
 try to execute the following block
 save_text_to_file(filename)
 save_formats_to_file(filename)
 save_prefs_to_file(filename)
 .
 .
 .
 except that, if the disk runs out of space while
 executing the above block, do this
 ...handle the error...

def save_text_to_file(filename)
 ...lower-level call to write size of text...
 ...lower-level call to write actual text data...
 .
 .
 .

The error-handling code is completely removed from the lower-level functions; an
error (if it occurs) is generated by the built-in file writing routines and propagates
directly to the save_to_file routine, where your error-handling code will (presum-
ably) take care of it. Although you can’t write this code in C, languages that offer
exceptions permit exactly this sort of behavior—and of course, Python is one such lan-
guage. Exceptions let you write clearer code and handle error conditions better.

14.1.2 A more formal definition of exceptions

The act of generating an exception is called raising or throwing an exception. In the
previous example, all exceptions are raised by the disk-writing functions, but excep-
tions can also be raised by any other functions or can be explicitly raised by your own
code. In the previous example, the low-level disk-writing functions (not seen in the
code) would throw an exception if the disk were to run out of space.

 The act of responding to an exception is called catching an exception, and the
code that handles an exception is called exception-handling code or just an exception han-
dler. In the example, the except that... line catches the disk-write exception, and
the code that would be in place of the ...handle the error... line would be an
exception handler for disk-write (out of space) exceptions. There may be other
exception handlers for other types of exceptions or even other exception handlers
for the same type of exception but at another place in your code.

194 CHAPTER 14 Exceptions
14.1.3 Handling different types of exceptions

Depending on exactly what event causes an exception, a program may need to take
different actions. An exception raised when disk space is exhausted needs to be han-
dled quite differently from an exception that’s raised if you run out of memory, and
both of these exceptions are completely different from an exception that arises when
a divide-by-zero error occurs. One way to handle these different types of exceptions is
to globally record an error message indicating the cause of the exception, and have all
exception handlers examine this error message and take appropriate action. In prac-
tice, a different method has proved to be much more flexible.

 Rather than defining a single kind of exception, Python, like most modern lan-
guages that implement exceptions, defines different types of exceptions corresponding
to various problems that may occur. Depending on the underlying event, different types
of exceptions may be raised. In addition, the code that catches exceptions may be told
to catch only certain types. This feature is used in the pseudocode in solution 3 earlier
in this chapter that said except that, if the disk runs out of space . . .,
do this; this pseudocode specifies that this particular exception-handling code is
interested only in disk-space exceptions. Another type of exception wouldn’t be caught
by that exception-handling code. That exception would be caught by an exception han-
dler that was looking for numeric exceptions, or (if no such exception handler existed)
it would cause the program to exit prematurely with an error.

14.2 Exceptions in Python
The remaining sections of this chapter talk specifically about the exception mecha-
nisms built into Python. The entire Python exception mechanism is built around an
object-oriented paradigm, which makes it both flexible and expandable. If you aren’t
familiar with object-oriented programming (OOP), you don’t need to learn object-
oriented techniques to use exceptions.

 An exception is an object generated automatically by Python functions with a
raise statement. After the object is generated, the raise statement, which raises an
exception, causes execution of the Python program to proceed in a manner different
from what would normally occur. Instead of proceeding with the next statement after
the raise or whatever generated the exception, the current call chain is searched for
a handler that can handle the generated exception. If such a handler is found, it’s
invoked and may access the exception object for more information. If no suitable
exception handler is found, the program aborts with an error message.

Easier to ask forgiveness than permission
The way that Python thinks about handling error situations in general is different from
that common in languages such as Java, for example. Those languages rely on check-
ing for possible errors as much as possible before they occur, since handling excep-
tions after they occur tends to be costly in various ways. This style is described in the

195Exceptions in Python
14.2.1 Types of Python exceptions

It’s possible to generate different types of exceptions to reflect the actual cause of the
error or exceptional circumstance being reported. Python 3.6 provides several excep-
tion types:

BaseException
 SystemExit
 KeyboardInterrupt
 GeneratorExit
 Exception
 StopIteration
 ArithmeticError
 FloatingPointError
 OverflowError
 ZeroDivisionError
 AssertionError
 AttributeError
 BufferError
 EOFError
 ImportError
 ModuleNoteFoundError
 LookupError
 IndexError
 KeyError
 MemoryError
 NameError
 UnboundLocalError
 OSError
 BlockingIOError
 ChildProcessError
 ConnectionError
 BrokenPipeError
 ConnectionAbortedError
 ConnectionRefusedError
 ConnectionResetError
 FileExistsError
 FileNotFoundError
 InterruptedError
 IsADirectoryError
 NotADirectoryError
 PermissionError
 ProcessLookupError

first section of this chapter and is sometimes described as a look before you leap
(LBYL) approach.

Python, on the other hand, is more likely to rely on exceptions to deal with errors after
they occur. Although this reliance may seem to be risky, if exceptions are used well,
the code is less cumbersome and easier to read, and errors are dealt with only as
they occur. This Pythonic approach to handling errors is often described by the phrase
“easier to ask forgiveness than permission” (EAFP).

196 CHAPTER 14 Exceptions
 TimeoutError
 ReferenceError
 RuntimeError
 NotImplementedError
 RecursionError
 SyntaxError
 IndentationError
 TabError
 SystemError
 TypeError
 ValueError
 UnicodeError
 UnicodeDecodeError
 UnicodeEncodeError
 UnicodeTranslateError
 Warning
 DeprecationWarning
 PendingDeprecationWarning
 RuntimeWarning
 SyntaxWarning
 UserWarning
 FutureWarning
 ImportWarning
 UnicodeWarning
 BytesWarningException
 ResourceWarning

The Python exception set is hierarchically structured, as reflected by the indentation
in this list of exceptions. As you saw in a previous chapter, you can obtain an alphabet-
ized list from the __builtins__ module.

 Each type of exception is a Python class, which inherits from its parent exception
type. But if you’re not into OOP yet, don’t worry about that. An IndexError, for
example, is also a LookupError and (by inheritance) an Exception and also a
BaseException.

 This hierarchy is deliberate: Most exceptions inherit from Exception, and it’s
strongly recommended that any user-defined exceptions also subclass Exception,
not BaseException. The reason is that if you have code set up like this

try:
 # do stuff
except Exception:
 # handle exceptions

you could still interrupt the code in the try block with Ctrl-C without triggering the
exception-handling code, because the KeyboardInterrupt exception is not a sub-
class of Exception.

 You can find an explanation of the meaning of each type of exception in the docu-
mentation, but you’ll rapidly become acquainted with the most common types as you
program!

197Exceptions in Python
14.2.2 Raising exceptions

Exceptions are raised by many of the Python built-in functions:

>>> alist = [1, 2, 3]
>>> element = alist[7]
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: list index out of range

Error-checking code built into Python detects that the second input line requests an
element at a list index that doesn’t exist and raises an IndexError exception. This
exception propagates all the way back to the top level (the interactive Python inter-
preter), which handles it by printing out a message stating that the exception has
occurred.

 Exceptions may also be raised explicitly in your own code through the use of the
raise statement. The most basic form of this statement is

raise exception(args)

The exception(args) part of the code creates an exception. The arguments to the
new exception are typically values that aid you in determining what happened—some-
thing that I discuss next. After the exception has been created, raise throws it
upward along the stack of Python functions that were invoked in getting to the line
containing the raise statement. The new exception is thrown up to the nearest (on
the stack) exception catcher looking for that type of exception. If no catcher is found
on the way to the top level of the program, the program terminates with an error or
(in an interactive session) causes an error message to be printed to the console.

 Try the following:

>>> raise IndexError("Just kidding")
Traceback (innermost last):
 File "<stdin>", line 1, in ?
IndexError: Just kidding

The use of raise here generates what at first glance looks similar to all the Python
list-index error messages you’ve seen so far. Closer inspection reveals this isn’t the
case. The actual error reported isn’t as serious as those other ones.

 The use of a string argument when creating exceptions is common. Most of the
built-in Python exceptions, if given a first argument, assume that the argument is a
message to be shown to you as an explanation of what happened. This isn’t always the
case, though, because each exception type is its own class, and the arguments
expected when a new exception of that class is created are determined entirely by the
class definition. Also, programmer-defined exceptions, created by you or by other pro-
grammers, are often used for reasons other than error handling; as such, they may not
take a text message.

198 CHAPTER 14 Exceptions
14.2.3 Catching and handling exceptions

The important thing about exceptions isn’t that they cause a program to halt with an
error message. Achieving that function in a program is never much of a problem.
What’s special about exceptions is that they don’t have to cause the program to halt.
By defining appropriate exception handlers, you can ensure that commonly encoun-
tered exceptional circumstances don’t cause the program to fail; perhaps they display
an error message to the user or do something else, perhaps even fix the problem, but
they don’t crash the program.

 The basic Python syntax for exception catching and handling is as follows, using
the try, except, and sometimes else keywords:

try:
 body
except exception_type1 as var1:
 exception_code1
except exception_type2 as var2:
 exception_code2
 .
 .
 .
except:
 default_exception_code
else:
 else_body
finally:
 finally_body

A try statement is executed by first executing the code in the body part of the state-
ment. If this execution is successful (that is, no exceptions are thrown to be caught by
the try statement), the else_body is executed, and the try statement is finished.
Because there is a finally statement, finally_body is executed. If an exception is
thrown to the try, the except clauses are searched sequentially for one whose associ-
ated exception type matches that which was thrown. If a matching except clause is
found, the thrown exception is assigned to the variable named after the associated
exception type, and the exception code body associated with the matching exception
is executed. If the line except exception_type as var: matches some thrown
exception exc, the variable var is created, and exc is assigned as the value of var
before the exception-handling code of the except statement is executed. You don’t
need to put in var; you can say something like except exception_type:, which
still catches exceptions of the given type but doesn’t assign them to any variable.

 If no matching except clause is found, the thrown exception can’t be handled by
that try statement, and the exception is thrown farther up the call chain in hope that
some enclosing try will be able to handle it.

 The last except clause of a try statement can optionally refer to no exception
types at all, in which case it handles all types of exceptions. This technique can be con-
venient for some debugging and extremely rapid prototyping but generally isn’t a
good idea: all errors are hidden by the except clause, which can lead to some confus-
ing behavior on the part of your program.

199Exceptions in Python
 The else clause of a try statement is optional and rarely used. This clause is exe-
cuted if and only if the body of the try statement executes without throwing any errors.

 The finally clause of a try statement is also optional and executes after the try,
except, and else sections have executed. If an exception is raised in the try block
and isn’t handled by any of the except blocks, that exception is raised again after the
finally block executes. Because the finally block always executes, it gives you a
chance to include code to clean up after any exception handling by closing files, reset-
ting variables, and so on.

TRY THIS: CATCHING EXCEPTIONS Write code that gets two numbers from the
user and divides the first number by the second. Check for and catch the
exception that occurs if the second number is zero (ZeroDivisionError).

14.2.4 Defining new exceptions

You can easily define your own exception. The following two lines do this for you:

class MyError(Exception):
 pass

This code creates a class that inherits everything from the base Exception class. But
you don’t have to worry about that if you don’t want to.

 You can raise, catch, and handle this exception like any other exception. If you
give it a single argument (and you don’t catch and handle it), it’s printed at the end of
the traceback:

>>> raise MyError("Some information about what went wrong")
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
__main__.MyError: Some information about what went wrong

This argument, of course, is available to a handler you write as well:

try:
 raise MyError("Some information about what went wrong")
except MyError as error:
 print("Situation:", error)

The result is

Situation: Some information about what went wrong

If you raise your exception with multiple arguments, these arguments are delivered to
your handler as a tuple, which you can access through the args variable of the error:

try:
 raise MyError("Some information", "my_filename", 3)
except MyError as error:
 print("Situation: {0} with file {1}\n error code: {2}".format(
 error.args[0],
 error.args[1], error.args[2]))

200 CHAPTER 14 Exceptions
The result is

Situation: Some information with file my_filename
error code: 3

Because an exception type is a regular class in Python and happens to inherit from the
root Exception class, it’s a simple matter to create your own subhierarchy of excep-
tion types for use by your own code. You don’t have to worry about this process on a
first read of this book. You can always come back to it after you’ve read chapter 15.
Exactly how you create your own exceptions depends on your particular needs. If
you’re writing a small program that may generate only a few unique errors or excep-
tions, subclass the main Exception class as you’ve done here. If you’re writing a
large, multifile code library with a special goal in mind—say, weather forecasting—you
may decide to define a unique class called WeatherLibraryException and then
define all the unique exceptions of the library as subclasses of WeatherLibrary-
Exception.

QUICK CHECK: EXCEPTIONS AS CLASSES If MyError inherits from Exception,
what is the difference between except Exception as e and except
MyError as e?

14.2.5 Debugging programs with the assert statement

The assert statement is a specialized form of the raise statement:

assert expression, argument

The AssertionError exception with the optional argument is raised if the
expression evaluates to False and the system variable __debug__ is True. The
__debug__ variable defaults to True and is turned off by starting the Python inter-
preter with the -O or -OO option or by setting the system variable PYTHONOPTIMIZE
to True. The optional argument can be used to include an explanation of the
assertion.

 The code generator creates no code for assertion statements if __debug__ is
False. You can use assert statements to instrument your code with debug state-
ments during development and leave them in the code for possible future use with no
runtime cost during regular use:

>>> x = (1, 2, 3)
>>> assert len(x) > 5, "len(x) not > 5"
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AssertionError: len(x) not > 5

TRY THIS: THE ASSERT STATEMENT Write a simple program that gets a number
from the user and then uses the assert statement to raise an exception if the
number is zero. Test to make sure that the assert statement fires; then turn
it off, using one of the methods mentioned in this section.

201Exceptions in Python
14.2.6 The exception inheritance hierarchy

In this section, I expand on an earlier notion that Python exceptions are hierarchi-
cally structured and on what that structure means in terms of how except clauses
catch exceptions.

 The following code

try:
 body
except LookupError as error:
 exception code
except IndexError as error:
 exception code

catches two types of exceptions: IndexError and LookupError. It just so happens
that IndexError is a subclass of LookupError. If body throws an IndexError, that
error is first examined by the except LookupError as error: line, and because
an IndexError is a LookupError by inheritance, the first except succeeds. The sec-
ond except clause is never used because it’s subsumed by the first except clause.

 Conversely, flipping the order of the two except clauses could potentially be use-
ful; then the first clause would handle IndexError exceptions, and the second clause
would handle any LookupError exceptions that aren’t IndexError errors.

14.2.7 Example: a disk-writing program in Python

In this section, I revisit the example of a word-processing program that needs to check
for disk out-of-space conditions as it writes a document to disk:

def save_to_file(filename) :
 try:
 save_text_to_file(filename)
 save_formats_to_file(filename)
 save_prefs_to_file(filename)
 .
 .
 .
 except IOError:
 ...handle the error...
def save_text_to_file(filename):
 ...lower-level call to write size of text...
 ...lower-level call to write actual text data...
 .
 .
 .

Notice how unobtrusive the error-handling code is; it’s wrapped around the main
sequence of disk-writing calls in the save_to_file function. None of the subsidiary
disk-writing functions needs any error-handling code. It would be easy to develop the
program first and add error-handling code later. That’s often what programmers do,
although this practice isn’t the optimal ordering of events.

 As another note of interest, this code doesn’t respond specifically to disk-full
errors; rather, it responds to IOError exceptions, which Python’s built-in functions

202 CHAPTER 14 Exceptions
raise automatically whenever they can’t complete an I/O request, for whatever reason.
That’s probably satisfactory for your needs, but if you need to identify disk-full condi-
tions, you can do a couple of things. The except body can check to see how much
room is available on disk. If the disk is out of space, clearly, the problem is a disk-full
problem and should be handled in this except body; otherwise, the code in the
except body can throw the IOError farther up the call chain to be handled by some
other except. If that solution isn’t sufficient, you can do something more extreme,
such as going into the C source for the Python disk-writing functions and raising your
own DiskFull exceptions as necessary. I don’t recommend the latter option, but it’s
nice to know that this possibility exists if you need to use it.

14.2.8 Example: exceptions in normal evaluation

Exceptions are most often used in error handling but can also be remarkably useful in
certain situations involving what you’d think of as normal evaluation. Consider the
problems in implementing something that works like a spreadsheet. Like most spread-
sheets, it would have to permit arithmetic operations involving cells, and it would also
permit cells to contain values other than numbers. In such an application, blank cells
used in a numerical calculation might be considered to contain the value 0, and cells
containing any other nonnumeric string might be considered invalid and represented
as the Python value None. Any calculation involving an invalid value should return an
invalid value.

 The first step is to write a function that evaluates a string from a cell of the spread-
sheet and returns an appropriate value:

def cell_value(string):
 try:
 return float(string)
 except ValueError:
 if string == "":
 return 0
 else:
 return None

Python’s exception-handling ability makes this function a simple one to write. The code
tries to convert the string from the cell to a number and return it in a try block using
the float built-in function. float raises the ValueError exception if it can’t convert
its string argument to a number, so the code catches that exception and returns either
0 or None, depending on whether the argument string is empty or nonempty.

 The next step is handling the fact that some of the arithmetic might have to deal
with a value of None. In a language without exceptions, the normal way to do this is to
define a custom set of arithmetic functions, which check their arguments for None,
and then use those functions rather than the built-in arithmetic functions to perform
all of the spreadsheet arithmetic. This process is time-consuming and error-prone,
however, and it leads to slow execution because you’re effectively building an inter-
preter in your spreadsheet. This project takes a different approach. All the spread-
sheet formulas can actually be Python functions that take as arguments the x and y

203Context managers using the with keyword
coordinates of the cell being evaluated and the spreadsheet itself, and calculate the
result for the given cell by using standard Python arithmetic operators, using
cell_value to extract the necessary values from the spreadsheet. You can define a
function called safe_apply that applies one of these formulas to the appropriate
arguments in a try block and returns either the formula’s result or None, depending
on whether the formula evaluated successfully:

def safe_apply(function, x, y, spreadsheet):
 try:
 return function(x, y, spreadsheet)
 except TypeError:
 return None

These two changes are enough to integrate the idea of an empty (None) value into the
semantics of the spreadsheet. Trying to develop this ability without the use of excep-
tions is a highly educational exercise.

14.2.9 Where to use exceptions

Exceptions are natural choices for handling almost any error condition. It’s an unfor-
tunate fact that error handling is often added when the rest of the program is largely
complete, but exceptions are particularly good at intelligibly managing this sort of
after-the-fact error-handling code (or, more optimistically, when you’re adding more
error handling after the fact).

 Exceptions are also highly useful in circumstances where a large amount of pro-
cessing may need to be discarded after it becomes obvious that a computational
branch in your program has become untenable. The spreadsheet example is one such
case; others are branch-and-bound algorithms and parsing algorithms.

QUICK CHECK: EXCEPTIONS Do Python exceptions force a program to halt?

Suppose that you want accessing a dictionary x to always return None if a key
doesn’t exist in the dictionary (that is, if a KeyError exception is raised).
What code would you use?

TRY THIS: EXCEPTIONS What code would you use to create a custom Value-
TooLarge exception and raise that exception if the variable x is over 1000?

14.3 Context managers using the with keyword
Some situations, such as reading files, follow a predictable pattern with a set begin-
ning and end. In the case of reading from a file, quite often the file needs to be open
only one time: while data is being read. Then the file can be closed. In terms of excep-
tions, you can code this kind of file access like this:

try:
 infile = open(filename)
 data = infile.read()
finally:
 infile.close()

204 CHAPTER 14 Exceptions
Python 3 offers a more generic way of handling situations like this: context managers.
Context managers wrap a block and manage requirements on entry and departure from
the block and are marked by the with keyword. File objects are context managers,
and you can use that capability to read files:

with open(filename) as infile:
 data = infile.read()

These two lines of code are equivalent to the five previous lines. In both cases, you
know that the file will be closed immediately after the last read, whether or not the
operation was successful. In the second case, closure of the file is also assured because
it’s part of the file object’s context management, so you don’t need to write the code.
In other words, by using with combined with a context management (in this case a
file object), you don’t need to worry about the routine cleanup.

 As you might expect, it’s also possible to create your own context managers if you
need them. You can learn a bit more about how to create context managers and the
various ways they can be manipulated by checking out the documentation for the
contextlib module of the standard library.

 Context managers are great for things like locking and unlocking resources, clos-
ing files, committing database transactions, and so on. Since their introduction, con-
text managers have become standard best practice for such use cases.

QUICK CHECK: CONTEXT MANAGERS Assume that you’re using a context man-
ager in a script that reads and/or writes several files. Which of the following
approaches do you think would be best?

 Put the entire script in a block managed by a with statement.
 Use one with statement for all file reads and another for all file writes.
 Use a with statement each time you read a file or write a file (for each line,

for example).
 Use a with statement for each file that you read or write.

LAB 14: CUSTOM EXCEPTIONS Think about the module you wrote in chapter 9
to count word frequencies. What errors might reasonably occur in those func-
tions? Refactor those functions to handle those exception conditions appro-
priately.

Summary
 Python’s exception-handling mechanism and exception classes provide a rich

system to handle runtime errors in your code.
 By using try, except, else, and finally blocks, and by selecting and even

creating the types of exceptions caught, you can have very fine-grained control
over how exceptions are handled and ignored.

 Python’s philosophy is that errors shouldn’t pass silently unless they’re explicitly
silenced.

 Python exception types are organized in a hierarchy because exceptions, like all
objects in Python, are based on classes.

Part 3

Advanced language features

The previous chapters have been a survey of the basic features of Python:
the features that most programmers will use most of the time. What follows is a
look at some more advanced features, which you may not use every day (depend-
ing on your needs) but which are vital when you need them.

206 CHAPTER

Classes and object-oriented
programming
In this chapter, I discuss Python classes, which can be used to hold both data and
code. Although most programmers are probably familiar with classes or objects in
other languages, I make no particular assumptions about knowledge of a specific
language or paradigm. In addition, this chapter is a description only of the con-
structs available in Python; it’s not an exposition on object-oriented programming
(OOP) itself.

This chapter covers
 Defining classes

 Using instance variables and @property

 Defining methods

 Defining class variables and methods

 Inheriting from other classes

 Making variables and methods private

 Inheriting from multiple classes
207

208 CHAPTER 15 Classes and object-oriented programming
15.1 Defining classes
A class in Python is effectively a data type. All the data types built into Python are
classes, and Python gives you powerful tools to manipulate every aspect of a class’s
behavior. You define a class with the class statement:

class MyClass:
 body

body is a list of Python statements—typically, variable assignments and function defi-
nitions. No assignments or function definitions are required. The body can be just a
single pass statement.

 By convention, class identifiers are in CapCase—that is, the first letter of each com-
ponent word is capitalized, to make the identifiers stand out. After you define the
class, you can create a new object of the class type (an instance of the class) by calling
the class name as a function:

instance = MyClass()

15.1.1 Using a class instance as a structure or record

Class instances can be used as structures or records. Unlike C structures or Java
classes, the data fields of an instance don’t need to be declared ahead of time; they
can be created on the fly. The following short example defines a class called Circle,
creates a Circle instance, assigns a value to the radius field of the circle, and then
uses that field to calculate the circumference of the circle:

>>> class Circle:
... pass
...
>>> my_circle = Circle()
>>> my_circle.radius = 5
>>> print(2 * 3.14 * my_circle.radius)
31.4

As in Java and many other languages, the fields of an instance/structure are accessed
and assigned to by using dot notation.

 You can initialize fields of an instance automatically by including an __init__ ini-
tialization method in the class body. This function is run every time an instance of the
class is created, with that new instance as its first argument, self. The __init__
method is similar to a constructor in Java, but it doesn’t really construct anything; it ini-
tializes fields of the class. Also unlike those in Java and C++, Python classes may only
have one __init__ method. This example creates circles with a radius of 1 by
default:

class Circle:
 def __init__(self):
 self.radius = 1
my_circle = Circle()
print(2 * 3.14 * my_circle.radius)

b

c
d

209Instance variables
6.28
my_circle.radius = 5
print(2 * 3.14 * my_circle.radius)
31.400000000000002

By convention, self is always the name of the first argument of __init__. self is set
to the newly created circle instance when __init__ is run B. Next, the code uses the
class definition. You first create a Circle instance object c. The next line makes use
of the fact that the radius field is already initialized d. You can also overwrite the
radius field e; as a result, the last line prints a different result from the previous
print statement f.

 Python also has something more like a constructor: the __new__ method, which is
what is called on object creation and returns an uninitialized object. Unless you’re
subclassing an immutable type, like str or int, or using a metaclass to modify the
object creation process, it’s rare to override the existing __new__ method.

 You can do a great deal more by using true OOP, and if you’re not familiar with it,
I urge you to read up on it. Python’s OOP constructs are the subject of the remainder
of this chapter.

15.2 Instance variables
Instance variables are the most basic feature of OOP. Take a look at the Circle class
again:

class Circle:
 def __init__(self):
 self.radius = 1

radius is an instance variable of Circle instances. That is, each instance of the Cir-
cle class has its own copy of radius, and the value stored in that copy may be differ-
ent from the values stored in the radius variable in other instances. In Python, you
can create instance variables as necessary by assigning to a field of a class instance:

instance.variable = value

If the variable doesn’t already exist, it’s created automatically, which is how __init__
creates the radius variable.

 All uses of instance variables, both assignment and access, require explicit mention
of the containing instance—that is, instance.variable. A reference to variable
by itself is a reference not to an instance variable, but to a local variable in the execut-
ing method. This is different from C++ and Java, where instance variables are referred
to in the same manner as local method function variables. I rather like Python’s
requirement for explicit mention of the containing instance because it clearly distin-
guishes instance variables from local function variables.

TRY THIS: INSTANCE VARIABLES What code would you use to create a Rectan-
gle class?

e
f

210 CHAPTER 15 Classes and object-oriented programming
15.3 Methods
A method is a function associated with a particular class. You’ve already seen the special
__init__ method, which is called on a new instance when that instance is created. In
the following example, you define another method, area, for the Circle class; this
method can be used to calculate and return the area for any Circle instance. Like
most user-defined methods, area is called with a method invocation syntax that resem-
bles instance variable access:

>>> class Circle:
... def __init__(self):
... self.radius = 1
... def area(self):
... return self.radius * self.radius * 3.14159
...
>>> c = Circle()
>>> c.radius = 3
>>> print(c.area())
28.27431

Method invocation syntax consists of an instance, followed by a period, followed by
the method to be invoked on the instance. When a method is called in this way, it’s a
bound method invocation. However, a method can also be invoked as an unbound
method by accessing it through its containing class. This practice is less convenient
and is almost never done, because when a method is invoked in this manner, its first
argument must be an instance of the class in which that method is defined and is less
clear:

>>> print(Circle.area(c))
28.27431

Like __init__, the area method is defined as a function within the body of the class
definition. The first argument of any method is the instance it was invoked by or on,
named self by convention. In many languages the instance, often called this, is
implicit and is never explicitly passed, but Python’s design philosophy prefers to make
things explicit.

 Methods can be invoked with arguments if the method definitions accept those
arguments. This version of Circle adds an argument to the __init__ method so
that you can create circles of a given radius without needing to set the radius after a
circle is created:

class Circle:
 def __init__(self, radius):
 self.radius = radius
 def area(self):
 return self.radius * self.radius * 3.14159

Note the two uses of radius here. self.radius is the instance variable called
radius. radius by itself is the local function parameter called radius. The two

211Class variables
aren’t the same! In practice, you’d probably call the local function parameter some-
thing like r or rad to avoid any possibility of confusion.

 Using this definition of Circle, you can create circles of any radius with one call
on the Circle class. The following creates a Circle of radius 5:

c = Circle(5)

All the standard Python function features—default argument values, extra arguments,
keyword arguments, and so forth—can be used with methods. You could have defined
the first line of __init__ to be

def __init__(self, radius=1):

Then calls to circle would work with or without an extra argument; Circle()
would return a circle of radius 1, and Circle(3) would return a circle of radius 3.

 There’s nothing magical about method invocation in Python, which can be consid-
ered to be shorthand for normal function invocation. Given a method invocation
instance.method(arg1, arg2, . . .), Python transforms it into a normal func-
tion call by using the following rules:

1 Look for the method name in the instance namespace. If a method has been
changed or added for this instance, it’s invoked in preference over methods in
the class or superclass. This lookup is the same sort of lookup discussed in sec-
tion 15.4.1 later in this chapter.

2 If the method isn’t found in the instance namespace, look up the class type
class of instance, and look for the method there. In the previous examples,
class is Circle—the type of the instance c.

3 If the method still isn’t found, look for the method in the superclasses.
4 When the method has been found, make a direct call to it as a normal Python

function, using the instance as the first argument of the function and shifting
all the other arguments in the method invocation one space over to the right.
So instance.method(arg1, arg2, . . .) becomes class.method

(instance, arg1, arg2, . . .).

TRY THIS: INSTANCE VARIABLES AND METHODS Update the code for a Rectan-
gle class so that you can set the dimensions when an instance is created, just
as for the Circle class above. Also, add an area() method.

15.4 Class variables
A class variable is a variable associated with a class, not an instance of a class, and is
accessible by all instances of the class. A class variable might be used to keep track of
some class-level information, such as how many instances of the class have been cre-
ated at any point. Python provides class variables, although using them requires
slightly more effort than in most other languages. Also, you need to watch out for an
interaction between class and instance variables.

212 CHAPTER 15 Classes and object-oriented programming
 A class variable is created by an assignment in the class body, not in the __init__
function. After it has been created, it can be seen by all instances of the class. You can
use a class variable to make a value for pi accessible to all instances of the Circle
class:

class Circle:
 pi = 3.14159
 def __init__(self, radius):
 self.radius = radius
 def area(self):
 return self.radius * self.radius * Circle.pi

With the definition entered, you can type

>>> Circle.pi
3.14159
>>> Circle.pi = 4
>>> Circle.pi
4
>>> Circle.pi = 3.14159
>>> Circle.pi
3.14159

This example is exactly how you’d expect a class variable to act; it’s associated with and
contained in the class that defines it. Notice in this example that you’re accessing
Circle.pi before any circle instances have been created. Obviously, Circle.pi
exists independently of any specific instances of the Circle class.

 You can also access a class variable from a method of a class, through the class
name. You do so in the definition of Circle.area, where the area function makes
specific reference to Circle.pi. In operation, this has the desired effect; the correct
value for pi is obtained from the class and used in the calculation:

>>> c = Circle(3)
>>> c.area()
28.27431

You may object to hardcoding the name of a class inside that class’s methods. You can
avoid doing so through use of the special __class__ attribute, available to all Python
class instances. This attribute returns the class of which the instance is a member, for
example:

>>> Circle
<class '__main__.Circle'>
>>> c.__class__
<class '__main__.Circle'>

The class named Circle is represented internally by an abstract data structure, and
that data structure is exactly what is obtained from the __class__ attribute of c, an
instance of the Circle class. This example lets you obtain the value of Circle.pi
from c without ever explicitly referring to the Circle class name:

213Class variables
>>> c.__class__.pi
3.14159

You could use this code internally in the area method to get rid of the explicit refer-
ence to the Circle class; replace Circle.pi with self.__class__.pi.

15.4.1 An oddity with class variables

There’s a bit of an oddity with class variables that can trip you up if you aren’t aware of
it. When Python is looking up an instance variable, if it can’t find an instance variable
of that name, it tries to find and return the value in a class variable of the same name.
Only if it can’t find an appropriate class variable will Python signal an error. Class vari-
ables make it efficient to implement default values for instance variables; just create a
class variable with the same name and appropriate default value, and avoid the time
and memory overhead of initializing that instance variable every time a class instance
is created. But this also makes it easy to inadvertently refer to an instance variable
rather than a class variable without signaling an error. In this section, I look at how
class variables operate in conjunction with the previous example.

 First, you can refer to the variable c.pi, even though c doesn’t have an associated
instance variable named pi. Python first tries to look for such an instance variable;
when it can’t find an instance variable, Python looks for and finds a class variable pi in
Circle:

>>> c = Circle(3)
>>> c.pi
3.14159

This result may or may not be what you want. This technique is convenient but can be
prone to error, so be careful.

 Now, what happens if you attempt to use c.pi as a true class variable by changing
it from one instance with the intention that all instances should see the change?
Again, you use the earlier definition for Circle:

>>> c1 = Circle(1)
>>> c2 = Circle(2)
>>> c1.pi = 3.14
>>> c1.pi
3.14
>>> c2.pi
3.14159
>>> Circle.pi
3.14159

This example doesn’t work as it would for a true class variable; c1 now has its own
copy of pi, distinct from the Circle.pi accessed by c2. This happens because the
assignment to c1.pi creates an instance variable in c1; it doesn’t affect the class vari-
able Circle.pi in any way. Subsequent lookups of c1.pi return the value in that
instance variable, whereas subsequent lookups of c2.pi look for an instance variable

214 CHAPTER 15 Classes and object-oriented programming
pi in c2, fail to find it, and resort to returning the value of the class variable Cir-
cle.pi. If you want to change the value of a class variable, access it through the class
name, not through the instance variable self.

15.5 Static methods and class methods
Python classes can also have methods that correspond explicitly to static methods in a
language such as Java. In addition, Python has class methods, which are a bit more
advanced.

15.5.1 Static methods

Just as in Java, you can invoke static methods even though no instance of that class has
been created, although you can call them by using a class instance. To create a static
method, use the @staticmethod decorator, as shown here.

"""circle module: contains the Circle class."""
class Circle:
 """Circle class"""
 all_circles = []
 pi = 3.14159
 def __init__(self, r=1):
 """Create a Circle with the given radius"""
 self.radius = r
 self.__class__.all_circles.append(self)
 def area(self):
 """determine the area of the Circle"""
 return self.__class__.pi * self.radius * self.radius

 @staticmethod
 def total_area():
 """Static method to total the areas of all Circles """
 total = 0
 for c in Circle.all_circles:
 total = total + c.area()
 return total

Now interactively type the following:

>>> import circle
>>> c1 = circle.Circle(1)
>>> c2 = circle.Circle(2)
>>> circle.Circle.total_area()
15.70795
>>> c2.radius = 3
>>> circle.Circle.total_area()
31.415899999999997

Also notice that documentation strings are used. In a real module, you’d probably put
in more informative strings, indicating in the class docstring what methods are avail-
able and including usage information in the method docstrings:

Listing 15.1 File circle.py

Class variable containing list of
all circles that have been created

When an instance is initialized, it
adds itself to the all_circles list.

215Static methods and class methods
>>> circle.__doc__
'circle module: contains the Circle class.'
>>> circle.Circle.__doc__
'Circle class'
>>> circle.Circle.area.__doc__
'determine the area of the Circle'

15.5.2 Class methods

Class methods are similar to static methods in that they can be invoked before an
object of the class has been instantiated or by using an instance of the class. But class
methods are implicitly passed the class they belong to as their first parameter, so you
can code them more simply, as here.

"""circle_cm module: contains the Circle class."""
class Circle:
 """Circle class"""
 all_circles = []
 pi = 3.14159
 def __init__(self, r=1):
 """Create a Circle with the given radius"""
 self.radius = r
 self.__class__.all_circles.append(self)
 def area(self):
 """determine the area of the Circle"""
 return self.__class__.pi * self.radius * self.radius

 @classmethod
 def total_area(cls):
 total = 0
 for c in cls.all_circles:
 total = total + c.area()
 return total
>>> import circle_cm
>>> c1 = circle_cm.Circle(1)
>>> c2 = circle_cm.Circle(2)
>>> circle_cm.Circle.total_area()
15.70795
>>> c2.radius = 3
>>> circle_cm.Circle.total_area()
31.415899999999997

The @classmethod decorator is used before the method def B. The class parame-
ter is traditionally cls c. You can use cls instead of self.__class__ d.

 By using a class method instead of a static method, you don’t have to hardcode the
class name into total_area. As a result, any subclasses of Circle can still call
total_area and refer to their own members, not those in Circle.

TRY THIS: CLASS METHODS Write a class method similar to total_area()
that returns the total circumference of all circles.

Listing 15.2 File circle_cm.py

Variable containing list of all
circles that have been created

B
c

d

216 CHAPTER 15 Classes and object-oriented programming
15.6 Inheritance
Inheritance in Python is easier and more flexible than inheritance in compiled lan-
guages such as Java and C++ because the dynamic nature of Python doesn’t force as
many restrictions on the language.

 To see how inheritance is used in Python, start with the Circle class discussed ear-
lier in this chapter, and generalize. You might want to define an additional class for
squares:

class Square:
 def __init__(self, side=1):
 self.side = side

Now, if you want to use these classes in a drawing program, they must define some
sense of where on the drawing surface each instance is. You can do so by defining an x
coordinate and a y coordinate in each instance:

class Square:
 def __init__(self, side=1, x=0, y=0):
 self.side = side
 self.x = x
 self.y = y
class Circle:
 def __init__(self, radius=1, x=0, y=0):
 self.radius = radius
 self.x = x
 self.y = y

This approach works but results in a good deal of repetitive code as you expand the
number of shape classes, because you presumably want each shape to have this con-
cept of position. No doubt you know where I’m going here; this situation is a standard
one for using inheritance in an object-oriented language. Instead of defining the x
and y variables in each shape class, you can abstract them out into a general Shape
class and have each class defining a specific shape inherit from that general class. In
Python, that technique looks like this:

class Shape:
 def __init__(self, x, y):
 self.x = x
 self.y = y
class Square(Shape):
 def __init__(self, side=1, x=0, y=0):
 super().__init__(x, y)
 self.side = side
class Circle(Shape):
 def __init__(self, r=1, x=0, y=0):
 super().__init__(x, y)
 self.radius = r

There are (generally) two requirements in using an inherited class in Python, both of
which you can see in the bolded code in the Circle and Square classes. The first

Length of any
side of square

Says Square inherits
from Shape

Must call __init__ method
of Shape

Says Circle inherits
from Shape

Must call __init__ method
of Shape

217Inheritance
requirement is defining the inheritance hierarchy, which you do by giving the classes
inherited from, in parentheses, immediately after the name of the class being defined
with the class keyword. In the previous code, Circle and Square both inherit from
Shape. The second and more subtle element is the necessity to explicitly call the
__init__ method of inherited classes. Python doesn’t automatically do this for you,
but you can use the super function to have Python figure out which inherited class to
use. This task is accomplished in the example code by the super().__init__(x,y)
lines. This code calls the Shape initialization function with the instance being initial-
ized and the appropriate arguments. Otherwise, in the example, instances of Circle
and Square wouldn’t have their x and y instance variables set.

 Instead of using super, you could call Shape’s __init__ by explicitly naming the
inherited class using Shape.__init__(self, x, y), which would also call the
Shape initialization function with the instance being initialized. This technique
wouldn’t be as flexible in the long run because it hardcodes the inherited class’s
name, which could be a problem later if the design and the inheritance hierarchy
change. On the other hand, the use of super can be tricky in more complex cases.
Because the two methods don’t exactly mix well, clearly document whichever
approach you use in your code.

 Inheritance also comes into effect when you attempt to use a method that isn’t
defined in the base classes but is defined in the superclass. To see this effect, define
another method in the Shape class called move, which moves a shape by a given dis-
placement. This method modifies the x and y coordinates of the shape by an amount
determined by arguments to the method. The definition for Shape now becomes

class Shape:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def move(self, delta_x, delta_y):
 self.x = self.x + delta_x
 self.y = self.y + delta_y

If you enter this definition for Shape and the previous definitions for Circle and
Square, you can engage in the following interactive session:

>>> c = Circle(1)
>>> c.move(3, 4)
>>> c.x
3
>>> c.y
4

If you try this code in an interactive session, be sure to reenter the Circle class after
the redefinition of the Shape class.

 The Circle class in the example didn’t define a move method immediately within
itself, but because it inherits from a class that implements move, all instances of Cir-
cle can make use of move. In more traditional OOP terms, you could say that all

218 CHAPTER 15 Classes and object-oriented programming
Python methods are virtual—that is, if a method doesn’t exist in the current class, the
list of superclasses is searched for the method, and the first one found is used.

TRY THIS: INHERITANCE Rewrite the code for a Rectangle class to inherit
from Shape. Because squares and rectangles are related, would it make sense
to inherit one from the other? If so, which would be the base class, and which
would inherit?

How would you write the code to add an area() method for the Square
class? Should the area method be moved into the base Shape class and
inherited by circle, square, and rectangle? If so, what issues would result?

15.7 Inheritance with class and instance variables
Inheritance allows an instance to inherit attributes of the class. Instance variables are
associated with object instances, and only one instance variable of a given name exists
for a given instance.

 Consider the following example. Using these class definitions,

class P:
 z = "Hello"
 def set_p(self):
 self.x = "Class P"
 def print_p(self):
 print(self.x)
class C(P):
 def set_c(self):
 self.x = "Class C"
 def print_c(self):
 print(self.x)

execute the following code:

>>> c = C()
>>> c.set_p()
>>> c.print_p()
Class P
>>> c.print_c()
Class P
>>> c.set_c()
>>> c.print_c()
Class C
>>> c.print_p()
Class C

The object c in this example is an instance of class C. C inherits from P but c doesn’t
inherit from some invisible instance of class P. It inherits methods and class variables
directly from P. Because there is only one instance (c), any reference to the instance
variable x in a method invocation on c must refer to c.x. This is true regardless of
which class defines the method being invoked on c. As you can see, when they’re
invoked on c, both set_p and print_p, defined in class P, and refer to the same vari-
able, which is referred to by set_c and print_c when they’re invoked on c.

219Recap: Basics of Python classes

 In general, this behavior is what is desired for instance variables, because it makes
sense that references to instance variables of the same name should refer to the same
variable. Occasionally, somewhat different behavior is desired, which you can achieve
by using private variables (see section 15.9).

 Class variables are inherited, but you should take care to avoid name clashes and
be aware of a generalization of the behavior you saw in the subsection on class vari-
ables. In the example, a class variable z is defined for the superclass P and can be
accessed in three ways: through the instance c, through the derived class C, or directly
through the superclass P:

>>> c.z; C.z; P.z
'Hello'
'Hello'
'Hello'

But if you try setting the class variable z through the class C, a new class variable is cre-
ated for the class C. This result has no effect on P’s class variable itself (as accessed
through P). But future accesses through the class C or its instance c will see this new
variable rather than the original:

>>> C.z = "Bonjour"
>>> c.z; C.z; P.z
'Bonjour'
'Bonjour'
'Hello'

Similarly, if you try setting z through the instance c, a new instance variable is created,
and you end up with three different variables:

>>> c.z = "Ciao"
>>> c.z; C.z; P.z
'Ciao'
'Bonjour'
'Hello'

15.8 Recap: Basics of Python classes
The points I’ve discussed so far are the basics of using classes and objects in Python.
Before I go any farther, I’ll bring the basics together in a single example. In this sec-
tion, you create a couple of classes with the features discussed earlier, and then you
see how those features behave.

 First, create a base class:

class Shape:
 def __init__(self, x, y):
 self.x = x
 self.y = y
 def move(self, delta_x, delta_y):
 self.x = self.x + delta_x
 self.y = self.y + delta_y

__init__ method takes instance
(self) and two parameters

Instance variables
accessed through self.

move method takes instance
(self) and two parameters

Instance variable set
inside move method

220 CHAPTER 15 Classes and object-oriented programming

tota
cla
and

class
as p

p

 Next, create a subclass that inherits from the base class Shape:

class Circle(Shape):
 pi = 3.14159
 all_circles = []
 def __init__(self, r=1, x=0, y=0):
 super().__init__(x, y)
 self.radius = r
 all_circles.append(self)
 @classmethod
 def total_area(cls):
 area = 0
 for circle in cls.all_circles:

 area += cls.circle_area(circle.radius)
 return area
 @staticmethod
 def circle_area(radius):
 return Circle.pi * radius * radius

Now you can create some instances of the Circle class and put them through their
paces. Because Circle’s __init__ method has default parameters, you can create a
Circle without giving any parameters:

>>> c1 = Circle()
>>> c1.radius, c1.x, c1.y
(1, 0, 0)

If you do give parameters, they are used to set the instance’s values:

>>> c2 = Circle(2, 1, 1)
>>> c2.radius, c2.x, c2.y
(2, 1, 1)

If you call the move() method, Python doesn’t find a move() in the Circle class, so
it moves up the inheritance hierarchy and uses Shape’s move() method:

>>> c2.move(2, 2)
>>> c2.radius, c2.x, c2.y
(2, 3, 3)

Also, because part of what the __init__ method does is add each instance to a list
that is a class variable, you get the Circle instances:

>>> Circle.all_circles
[<__main__.Circle object at 0x7fa88835e9e8>, <__main__.Circle object at

0x7fa88835eb00>]
>>> [c1, c2]
[<__main__.Circle object at 0x7fa88835e9e8>, <__main__.Circle object at

0x7fa88835eb00>]

Circle class inherits
from Shape class

pi and all_circles are class
variables for Circle.

Circle’s __init__
takes instance (self)

and 3 parameters,
all with defaults

Circle’s __init__ uses super()
to call Shape’s __init__

In the __init__ method the instance
adds itself to all_circles list

l_area is a
ss method
 takes the
 itself (cls)
arameter.

Uses the cls
arameter to
access static

method
circle_area

circle_area is a static method that
doesn’t get self or cls as parameters.

Accesses class variable pi;
could also use __class__.pi

221Private variables and private methods
You can also call the Circle class’s total_area() class method, either through the
class itself or through an instance:

>>> Circle.total_area()
15.70795
>>> c2.total_area()
15.70795

Finally, you can call the static method circle_area(), again either via the class itself
or an instance. As a static method, circle_area doesn’t get passed the instance or
the class, and it behaves more like an independent function that’s inside the class’s
namespace. In fact, quite often, static methods are used to bundle utility functions
with a class:

>>> Circle.circle_area(c1.radius)
3.14159
>>> c1.circle_area(c1.radius)
3.14159

These examples show the basic behavior of classes in Python. Now that you’ve got the
basics of classes down, you can move on to more advanced topics.

15.9 Private variables and private methods
A private variable or private method is one that can’t be seen outside the methods of the
class in which it’s defined. Private variables and methods are useful for two reasons:
They enhance security and reliability by selectively denying access to important or del-
icate parts of an object’s implementation, and they prevent name clashes that can
arise from the use of inheritance. A class may define a private variable and inherit
from a class that defines a private variable of the same name, but this doesn’t cause a
problem, because the fact that the variables are private ensures that separate copies of
them are kept. Private variables make it easier to read code, because they explicitly
indicate what’s used only internally in a class. Anything else is the class’s interface.

 Most languages that define private variables do so through the use of the keyword
“private” or something similar. The convention in Python is simpler, and it also makes
it easier to immediately see what is private and what isn’t. Any method or instance vari-
able whose name begins—but doesn’t end—with a double underscore (__) is private;
anything else isn’t private.

 As an example, consider the following class definition:

class Mine:
 def __init__(self):
 self.x = 2
 self.__y = 3
 def print_y(self):
 print(self.__y)

Defines __y as private by using
leading double underscores

222 CHAPTER 15 Classes and object-oriented programming
Using this definition, create an instance of the class:

>>> m = Mine()

x isn’t a private variable, so it’s directly accessible:

>>> print(m.x)
2

__y is a private variable. Trying to access it directly raises an error:

>>> print(m.__y)
Traceback (innermost last):
 File "<stdin>", line 1, in ?
AttributeError: 'Mine' object has no attribute '__y'

The print_y method isn’t private, and because it’s in the Mine class, it can access
__y and print it:

>>> m.print_y()
3

Finally, you should note that the mechanism used to provide privacy mangles the name
of private variables and private methods when the code is compiled to bytecode. What
specifically happens is that _classname is prepended to the variable name:

>>> dir(m)
['_Mine__y', 'x', ...]

The purpose is to prevent any accidental accesses. If someone wanted to, he could
deliberately simulate the mangling and access the value. But performing the man-
gling in this easily readable form makes debugging easy.

TRY THIS: PRIVATE INSTANCE VARIABLES Modify the Rectangle class’s code to
make the dimension variables private. What restriction will this modification
impose on using the class?

15.10 Using @property for more flexible instance variables
Python allows you as the programmer to access instance variables directly, without the
extra machinery of the getter and setter methods often used in Java and other object-
oriented languages. This lack of getters and setters makes writing Python classes
cleaner and easier, but in some situations, using getter and setter methods can be
handy. Suppose that you want a value before you put it into an instance variable or
where it would be handy to figure out an attribute’s value on the fly. In both cases, get-
ter and setter methods would do the job, but at the cost of losing Python’s easy
instance-variable access.

 The answer is to use a property. A property combines the ability to pass access to an
instance variable through methods like getters and setters and the straightforward
access to instance variables through dot notation.

223Scoping rules and namespaces for class instances
 To create a property, you use the property decorator with a method that has the
property’s name:

class Temperature:
 def __init__(self):
 self._temp_fahr = 0
 @property
 def temp(self):
 return (self._temp_fahr - 32) * 5 / 9

Without a setter, such a property is read-only. To change the property, you need to add
a setter:

 @temp.setter
 def temp(self, new_temp):
 self._temp_fahr = new_temp * 9 / 5 + 32

Now you can use standard dot notation to both get and set the property temp. Notice
that the name of the method remains the same, but the decorator changes to the
property name (temp, in this case), plus .setter indicates that a setter for the temp
property is being defined:

>>> t = Temperature()
>>> t._temp_fahr
0
>>> t.temp
-17.77777777777778

>>> t.temp = 34
>>> t._temp_fahr
93.2

>>> t.temp
34.0

The 0 in _temp_fahr is converted to centigrade before it’s returned B. The 34 is
converted back to Fahrenheit by the setter c.

 One big advantage of Python’s ability to add properties is that you can do initial
development with plain-old instance variables and then seamlessly change to proper-
ties whenever and wherever you need to without changing any client code. The access
is still the same, using dot notation.

TRY THIS: PROPERTIES Update the dimensions of the Rectangle class to be
properties with getters and setters that don’t allow negative sizes.

15.11 Scoping rules and namespaces for class instances
Now you have all the pieces to put together a picture of the scoping rules and
namespaces for a class instance.

b

c

224 CHAPTER 15 Classes and object-oriented programming
 When you’re in a method of a class, you
have direct access to the local namespace
(parameters and variables declared in the
method), the global namespace (functions and
variables declared at the module level), and
the built-in namespace (built-in functions and
built-in exceptions). These three namespaces
are searched in the following order: local,
global, and built-in (see figure 15.1).

 You also have access through the self
variable to the instance’s namespace (instance
variables, private instance variables, and
superclass instance variables), its class’s
namespace (methods, class variables, private
methods, and private class variables), and its
superclass’s namespace (superclass methods
and superclass class variables). These three
namespaces are searched in the order
instance, class, and then superclass (see fig-
ure 15.2).

Figure 15.2 self variable namespaces

Figure 15.1 Direct namespaces

225Scoping rules and namespaces for class instances
Private superclass instance variables, private superclass methods, and private super-
class class variables can’t be accessed by using self. A class is able to hide these names
from its children.

 The module in listing 15.3 puts these two examples together to concretely demon-
strate what can be accessed from within a method.

"""cs module: class scope demonstration module."""
mv ="module variable: mv"
def mf():
 return "module function (can be used like a class method in " \
 "other languages): mf()"
class SC:
 scv = "superclass class variable: self.scv"
 __pscv = "private superclass class variable: no access"
 def __init__(self):
 self.siv = "superclass instance variable: self.siv " \
 "(but use SC.siv for assignment)"
 self.__psiv = "private superclass instance variable: " \
 "no access"
 def sm(self):
 return "superclass method: self.sm()"
 def __spm(self):
 return "superclass private method: no access"
class C(SC):
 cv = "class variable: self.cv (but use C.cv for assignment)"
 __pcv = "class private variable: self.__pcv (but use C.__pcv " \
 "for assignment)"
 def __init__(self):
 SC.__init__(self)
 self.__piv = "private instance variable: self.__piv"
 def m2(self):
 return "method: self.m2()"
 def __pm(self):
 return "private method: self.__pm()"
 def m(self, p="parameter: p"):
 lv = "local variable: lv"
 self.iv = "instance variable: self.xi"
 print("Access local, global and built-in " \
 "namespaces directly")
 print("local namespace:", list(locals().keys()))
 print(p)

 print(lv)
 print("global namespace:", list(globals().keys()))

 print(mv)

 print(mf())
 print("Access instance, class, and superclass namespaces " \

 "through 'self'")
 print("Instance namespace:",dir(self))

Listing 15.3 File cs.py

Parameter

Local variable

Module variable
Module function

226 CHAPTER 15 Classes and object-oriented programming
 print(self.iv)

 print(self.__piv)

 print(self.siv)
 print("Class namespace:",dir(C))
 print(self.cv)

 print(self.m2())

 print(self.__pcv)

 print(self.__pm())
 print("Superclass namespace:",dir(SC))
 print(self.sm())

 print(self.scv)

This output is considerable, so we’ll look at it in pieces.
 In the first part, class C’s method m’s local namespace contains the parameters

self (which is the instance variable) and p along with the local variable lv (all of
which can be accessed directly):

>>> import cs
>>> c = cs.C()
>>> c.m()
Access local, global and built-in namespaces directly
local namespace: ['lv', 'p', 'self']
parameter: p
local variable: lv

Next, method m’s global namespace contains the module variable mv and the module
function mf (which, as described in a previous section, you can use to provide a class
method functionality). There are also the classes defined in the module (the class C
and the superclass SC). All these classes can be directly accessed:

global namespace: ['C', 'mf', '__builtins__', '__file__', '__package__',
'mv', 'SC', '__name__', '__doc__']

module variable: mv
module function (can be used like a class method in other languages): mf()

Instance C’s namespace contains instance variable iv and the superclass’s instance
variable siv (which, as described in a previous section, is no different from the regu-
lar instance variable). It also has the mangled name of private instance variable __piv
(which you can access through self) and the mangled name of the superclass’s pri-
vate instance variable __psiv (which you can’t access):

Access instance, class, and superclass namespaces through 'self'
Instance namespace: ['_C__pcv', '_C__piv', '_C__pm', '_SC__pscv',

'_SC__psiv', '_SC__spm', '__class__', '__delattr__', '__dict__',
'__doc__', '__eq__', '__format__', '__ge__', '__getattribute__',
'__gt__', '__hash__', '__init__', '__le__', '__lt__', '__module__',

Instance variable

Private instance variable
Superclass instance
variable

Class variable

Method

Private class variable

Private method

Superclass method Superclass class variable
through instance

227Destructors and memory management
'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',
'__setattr__', '__sizeof__', '__str__', '__subclasshook__',
'__weakref__', 'cv', 'iv', 'm', 'm2', 'scv', 'siv', 'sm']

instance variable: self.xi
private instance variable: self.__piv
superclass instance variable: self.siv (but use SC.siv for assignment)

Class C’s namespace contains the class variable cv and the mangled name of the pri-
vate class variable __pcv. Both can be accessed through self, but to assign to them,
you need to use class C. Class C also has the class’s two methods m and m2, along with
the mangled name of the private method __pm (which can be accessed through
self):

Class namespace: ['_C__pcv', '_C__pm', '_SC__pscv', '_SC__spm', '__class__',
'__delattr__', '__dict__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__le__',
'__lt__', '__module__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'cv', 'm', 'm2', 'scv', 'sm']

class variable: self.cv (but use C.cv for assignment)
method: self.m2()
class private variable: self.__pcv (but use C.__pcv for assignment)
private method: self.__pm()

Finally, superclass SC’s namespace contains superclass class variable scv (which can
be accessed through self, but to assign to it, you need to use the superclass SC) and
superclass method sm. It also contains the mangled names of private superclass
method __spm and private superclass class variable __pscv, neither of which can be
accessed through self:

Superclass namespace: ['_SC__pscv', '_SC__spm', '__class__', '__delattr__',
'__dict__', '__doc__', '__eq__', '__format__', '__ge__',
'__getattribute__', '__gt__', '__hash__', '__init__', '__le__',
'__lt__', '__module__', '__ne__', '__new__', '__reduce__',
'__reduce_ex__', '__repr__', '__setattr__', '__sizeof__', '__str__',
'__subclasshook__', '__weakref__', 'scv', 'sm']

superclass method: self.sm()
superclass class variable: self.scv

This example is a rather full one to decipher at first. You can use it as a reference or a
base for your own exploration. As with most other concepts in Python, you can build
a solid understanding of what’s going on by playing around with a few simplified
examples.

15.12 Destructors and memory management
You’ve already seen class initializers (the __init__ methods). A destructor can be
defined for a class as well. But unlike in C++, creating and calling a destructor isn’t
necessary to ensure that the memory used by your instance is freed. Python provides
automatic memory management through a reference-counting mechanism. That is, it
keeps track of the number of references to your instance; when this number reaches

228 CHAPTER 15 Classes and object-oriented programming
zero, the memory used by your instance is reclaimed, and any Python objects refer-
enced by your instance have their reference counts decremented by one. You almost
never need to define a destructor.

 You may occasionally encounter a situation in which you need to deallocate an
external resource explicitly when an object is removed. In such a situation, the best
practice is to use a context manager, as discussed in chapter 14. As mentioned there,
you can use the contextlib module from the standard library to create a custom
context manager for your situation.

15.13 Multiple inheritance
Compiled languages place severe restrictions on the use of multiple inheritance—the
ability of objects to inherit data and behavior from more than one parent class. The
rules for using multiple inheritance in C++, for example, are so complex that many
people avoid using it. In Java, multiple inheritance is disallowed, although Java does
have the interface mechanism.

 Python places no such restrictions on multiple inheritance. A class can inherit from
any number of parent classes in the same way that it can inherit from a single parent
class. In the simplest case, none of the involved classes, including those inherited indi-
rectly through a parent class, contains instance variables or methods of the same name.
In such a case, the inheriting class behaves like a synthesis of its own definitions and all
of its ancestors’ definitions. Suppose that class A inherits from classes B, C, and D; class
B inherits from classes E and F; and class D inherits from class G (see figure 15.3). Also
suppose that none of these classes shares method names. In this case, an instance of
class A can be used as though it were an instance of any of the classes B–G, as well as A;
an instance of class B can be used as though it were an instance of class E or F as well as
class B; and an instance of class D can be used as though it were an instance of class G
as well as class D. In terms of code, the class definitions look like this:

class E:
 . . .
class F:
 . . .
class G:
 . . .
class D(G):
 . . .
class C:
 . . .
class B(E, F):
 . . .
class A(B, C, D):
 . . .

The situation is more complex when some of the classes share method names,
because Python must decide which of the identical names is the correct one. Suppose
that you want to resolve a method invocation a.f() on an instance a of class A, where

Figure 15.3 Inheritance hierarchy

229Multiple inheritance
f isn’t defined in A but is defined in all of F, C, and G. Which of the various methods
will be invoked?

 The answer lies in the order in which Python searches base classes when looking
for a method not defined in the original class on which the method was invoked. In
the simplest cases, Python looks through the base classes of the original class in left-to-
right order, but it always looks through all of the ancestor classes of a base class before
looking in the next base class. In attempting to execute a.f(), the search goes some-
thing like this:

1 Python first looks in the class of the invoking object, class A.
2 Because A doesn’t define a method f, Python starts looking in the base classes

of A. The first base class of A is B, so Python starts looking in B.
3 Because B doesn’t define a method f, Python continues its search of B by look-

ing in the base classes of B. It starts by looking in the first base class of B, class E.
4 E doesn’t define a method f and also has no base classes, so there’s no more

searching to be done in E. Python goes back to class B and looks in the next
base class of B, class F.

Class F does contain a method f, and because it was the first method found with the
given name, it’s the method used. The methods called f in classes C and G are ignored.

 Using internal logic like this isn’t likely to lead to the most readable or maintain-
able of programs, of course. And with more complex hierarchies, other factors come
into play to make sure that no class is searched twice and to support cooperative calls
to super.

 But this hierarchy is probably more complex than you’d expect to see in practice.
If you stick to the more standard uses of multiple inheritance, as in the creation of
mixin or addin classes, you can easily keep things readable and avoid name clashes.

 Some people have a strong conviction that multiple inheritance is a bad thing. It
can certainly be misused, and nothing in Python forces you to use it. One of the big-
gest dangers seems to be creating inheritance hierarchies that are too deep, and mul-
tiple inheritance can sometimes be used to help keep this problem from happening.
That issue is beyond the scope of this book. The example I use here only illustrates
how multiple inheritance works in Python and doesn’t attempt to explain the use
cases for it (such as in mixin or addin classes).

LAB 15: HTML CLASSES In this lab, you create classes to represent an HTML
document. To keep things simple, assume that each element can contain only
text and one subelement. So the <html> element contains only a <body> ele-
ment, and the <body> element contains (optional) text and a <p> element
that contains only text.

The key feature to implement is the __str__() method, which in turn calls
its subelement's __str__() method, so that the entire document is returned
when the str() function is called on an <html> element. You can assume
that any text comes before the subelement.

230 CHAPTER 15 Classes and object-oriented programming
Here’s example output from using the classes:

para = p(text="this is some body text")
doc_body = body(text="This is the body", subelement=para)
doc = html(subelement=doc_body)
print(doc)

<html>
<body>
This is the body
<p>
this is some body text
</p>
</body>
</html>

Summary
 Defining a class in effect creates a new data type.
 __init__ is used to initialize data when a new instance of a class is created, but

it isn’t a constructor.
 The self parameter refers to the current instance of the class and is passed as

the first parameter to methods of a class.
 Static methods can be called without creating an instance of the class, so they

don’t receive a self parameter.
 Class methods are passed a cls parameter, which is a reference to the class,

instead of self.
 All Python methods are virtual. That is, if a method isn’t overridden in the sub-

class or private to the superclass, it’s accessible by all subclasses.
 Class variables are inherited from superclasses unless they begin with two

underscores (__), in which case they’re private and can’t be seen by subclasses.
Methods can be made private in the same way.

 Properties let you have attributes with defined getter and setter methods, but
they still behave like plain instance attributes.

 Python allows multiple inheritance, which is often used with mixin classes.

Regular expressions
Some might wonder why I’m discussing regular expressions in this book at all. Reg-
ular expressions are implemented by a single Python module and are advanced
enough that they don’t even come as part of the standard library in languages like
C or Java. But if you’re using Python, you’re probably doing text parsing; if you’re
doing that, regular expressions are too useful to be ignored. If you’ve used Perl,
Tcl, or Linux/UNIX, you may be familiar with regular expressions; if not, this chap-
ter goes into them in some detail.

This chapter covers
 Understanding regular expressions

 Creating regular expressions with special
characters

 Using raw strings in regular expressions

 Extracting matched text from strings

 Substituting text with regular expressions
231

232 CHAPTER 16 Regular expressions
16.1 What is a regular expression?
A regular expression (regex) is a way of recognizing and often extracting data from cer-
tain patterns of text. A regex that recognizes a piece of text or a string is said to match
that text or string. A regex is defined by a string in which certain characters (the so-
called metacharacters) can have a special meaning, which enables a single regex to
match many different specific strings.

 It’s easier to understand this through example than through explanation. Here’s a
program with a regular expression that counts how many lines in a text file contain
the word hello. A line that contains hello more than once is counted only once:

import re
regexp = re.compile("hello")
count = 0
file = open("textfile", 'r')
for line in file.readlines():
 if regexp.search(line):
 count = count + 1
file.close()
print(count)

The program starts by importing the Python regular expression module, called re.
Then it takes the text string "hello" as a textual regular expression and compiles it into
a compiled regular expression, using the re.compile function. This compilation isn’t
strictly necessary, but compiled regular expressions can significantly increase a pro-
gram’s speed, so they’re almost always used in programs that process large amounts
of text.

 What can the regex compiled from "hello" be used for? You can use it to recog-
nize other instances of the word "hello" within another string; in other words, you
can use it to determine whether another string contains "hello" as a substring. This
task is accomplished by the search method, which returns None if the regular expres-
sion isn’t found in the string argument; Python interprets None as false in a Boolean
context. If the regular expression is found in the string, Python returns a special
object that you can use to determine various things about the match (such as where in
the string it occurred). I discuss this topic later.

16.2 Regular expressions with special characters
The previous example has a small flaw: It counts how many lines contain "hello" but
ignores lines that contain "Hello" because it doesn’t take capitalization into account.

 One way to solve this problem would be to use two regular expressions—one for
"hello" and one for "Hello"—and test each against every line. A better way is to
use the more advanced features of regular expressions. For the second line in the pro-
gram, substitute

regexp = re.compile("hello|Hello")

233Regular expressions and raw strings
This regular expression uses the vertical-bar special character |. A special character is a
character in a regex that isn’t interpreted as itself; it has some special meaning. |
means or, so the regular expression matches "hello" or "Hello".

 Another way of solving this problem is to use

regexp = re.compile("(h|H)ello")

In addition to using |, this regular expression uses the parentheses special characters to
group things, which in this case means that the | chooses between a small or capital
H. The resulting regex matches either an h or an H, followed by ello.

 Another way to perform the match is

regexp = re.compile("[hH]ello")

The special characters [and] take a string of characters between them and match
any single character in that string. There’s a special shorthand to denote ranges of
characters in [and]; [a-z] match a single character between a and z, [0-9A-Z]
match any digit or any uppercase character, and so forth. Sometimes, you may want to
include a real hyphen in the [], in which case you should put it as the first character
to avoid defining a range; [-012] match a hyphen, a 0, a 1, or a 2, and nothing else.

 Quite a few special characters are available in Python regular expressions, and
describing all of the subtleties of using them in regular expressions is beyond the
scope of this book. A complete list of the special characters available in Python regular
expressions, as well as descriptions of what they mean, is in the online documentation
of the regular expression re module in the standard library. For the remainder of
this chapter, I describe the special characters I use as they appear.

QUICK CHECK: SPECIAL CHARACTERS IN REGULAR EXPRESSIONS What regular
expression would you use to match strings that represent the numbers -5
through 5?

What regular expression would you use to match a hexadecimal digit?
Assume that allowed hexadecimal digits are 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, a, B, b,
C, c, D, d, E, e, F, and f.

16.3 Regular expressions and raw strings
The functions that compile regular expressions, or search for matches to regular
expressions, understand that certain character sequences in strings have special
meanings in the context of regular expressions. regex functions understand that \n
represents a newline character, for example. But if you use normal Python strings as
regular expressions, the regex functions typically never see such special sequences,
because many of these sequences also possess a special meaning in normal strings. \n,
for example, also means newline in the context of a normal Python string, and Python
automatically replaces the string sequence \n with a newline character before the

234 CHAPTER 16 Regular expressions
regex function ever sees that sequence. The regex function, as a result, compiles
strings with embedded newline characters—not with embedded \n sequences.

 In the case of \n, this situation makes no difference because regex functions
interpret a newline character as exactly that and do the expected thing: attempt to
match the character with another newline character in the text being searched.

 Now look at another special sequence, \\, which represents a single backslash to
regular expressions. Assume that you want to search text for an occurrence of the
string "\ten". Because you know that you have to represent a backslash as a double
backslash, you might try

regexp = re.compile("\\ten")

This example compiles without complaining, but it’s wrong. The problem is that \\
also means a single backslash in Python strings. Before re.compile is invoked,
Python interprets the string you typed as meaning \ten, which is what is passed to
re.compile. In the context of regular expressions, \t means tab, so your compiled
regular expression searches for a tab character followed by the two characters en.

 To fix this problem while using regular Python strings, you need four backslashes.
Python interprets the first two backslashes as a special sequence representing a single
backslash, and likewise for the second pair of backslashes, resulting in two actual back-
slashes in the Python string. Then that string is passed in to re.compile, which inter-
prets the two actual backslashes as a regex special sequence representing a single
backslash. Your code looks like this:

regexp = re.compile("\\\\ten")

That seems confusing, and it’s why Python has a way of defining strings that doesn’t
apply the normal Python rules to special characters. Strings defined this way are called
raw strings.

16.3.1 Raw strings to the rescue

A raw string looks similar to a normal string except that it has a leading r character
immediately preceding the initial quotation mark of the string. Here are some raw
strings:

r"Hello"
r"""\tTo be\n\tor not to be"""
r'Goodbye'
r'''12345'''

As you can see, you can use raw strings with either the single or double quotation
marks and with the regular or triple-quoting convention. You can also use a leading R
instead of r if you want to. No matter how you do it, raw-string notation can be taken
as an instruction to Python saying “Don’t process special sequences in this string.” In
the previous examples, all the raw strings are equivalent to their normal string coun-
terparts except the second example, in which the \t and \n sequences aren’t

235Extracting matched text from strings
interpreted as tabs or newlines but are left as two-string character sequences begin-
ning with a backslash.

 Raw strings aren’t different types of strings. They represent a different way of defin-
ing strings. It’s easy to see what’s happening by running a few examples interactively:

>>> r"Hello" == "Hello"
True
>>> r"\the" == "\\the"
True
>>> r"\the" == "\the"
False
>>> print(r"\the")
\the
>>> print("\the")
 he

Using raw strings with regular expressions means that you don’t need to worry about
any funny interactions between string special sequences and regex special sequences.
You use the regex special sequences. Then the previous regex example becomes

regexp = re.compile(r"\\ten")

which works as expected. The compiled regex looks for a single backslash followed by
the letters ten.

 You should get into the habit of using raw strings whenever defining regular
expressions, and you’ll do so for the remainder of this chapter.

16.4 Extracting matched text from strings
One of the most common uses of regular expressions is to perform simple pattern-
based parsing on text. This task is something you should know how to do, and it’s also
a good way to learn more regex special characters.

 Assume that you have a list of people and phone numbers in a text file. Each line
of the file looks like this:

surname, firstname middlename: phonenumber

You have a surname followed by a comma and space, followed by a first name, fol-
lowed by a space, followed by a middle name, followed by colon and a space, followed
by a phone number.

 But to make things complicated, a middle name may not exist, and a phone num-
ber may not have an area code. (It might be 800-123-4567 or 123-4567.) You could
write code to explicitly parse data out from such a line, but that job would be tedious
and error-prone. Regular expressions provide a simpler answer.

 Start by coming up with a regex that matches lines of the given form. The next
few paragraphs throw quite a few special characters at you. Don’t worry if you don’t
get them all on the first read; as long as you understand the gist of things, that’s
all right.

236 CHAPTER 16 Regular expressions
 For simplicity’s sake, assume that first names, surnames, and middle names consist
of letters and possibly hyphens. You can use the [] special characters discussed in the
previous section to define a pattern that defines only name characters:

[-a-zA-z]

This pattern matches a single hyphen, a single lowercase letter, or a single uppercase
letter.

 To match a full name (such as McDonald), you need to repeat this pattern. The +
metacharacter repeats whatever comes before it one or more times as necessary to
match the string being processed. So the pattern

[-a-zA-Z]+

matches a single name, such as Kenneth or McDonald or Perkin-Elmer. It also
matches some strings that aren’t names, such as --- or -a-b-c-, but that’s all right for pur-
poses of this example.

 Now, what about the phone number? The special sequence \d matches any digit,
and a hyphen outside [] is a normal hyphen. A good pattern to match the phone
number is

\d\d\d-\d\d\d-\d\d\d\d

That’s three digits followed by a hyphen, followed by three digits, followed by a hyphen,
followed by four digits. This pattern matches only phone numbers with an area code,
and your list may contain numbers that don’t have one. The best solution is to enclose
the area-code part of the pattern in (); group it; and follow that group with a ? special
character, which says that the thing coming immediately before the ? is optional:

(\d\d\d-)?\d\d\d-\d\d\d\d

This pattern matches a phone number that may or may not contain an area code. You
can use the same sort of trick to account for the fact that some of the people in your
list have middle names (or initials) included and others don’t. (To do so, make the
middle name optional by using grouping and the ? special character.)

 You can also use {} to indicate the number of times that a pattern should repeat,
so for the phone-number examples above, you could use:

(\d{3}-)?\d{3}-\d{4}

This pattern also means an optional group of three digits plus a hyphen, three digits
followed by a hyphen, and then four digits.

 Commas, colons, and spaces don’t have any special meanings in regular expres-
sions; they mean themselves.

 Putting everything together, you come up with a pattern that looks like this:

[-a-zA-Z]+, [-a-zA-Z]+([-a-zA-Z]+)?: (\d{3}-)?\d{3}-\d{4}

237Extracting matched text from strings
A real pattern probably would be a bit more complex, because you wouldn’t assume
that there’s exactly one space after the comma, exactly one space after the first and
middle names, and exactly one space after the colon. But that’s easy to add later.

 The problem is that, whereas the above pattern lets you check to see whether a line
has the anticipated format, you can’t extract any data yet. All you can do is write a pro-
gram like this:

import re
regexp = re.compile(r"[-a-zA-Z]+,"
 r" [-a-zA-Z]+"
 r"([-a-zA-Z]+)?"
 r": (\d{3}-)?\d{3}-\d{4}"
)
file = open("textfile", 'r')
for line in file.readlines():
 if regexp.search(line):
 print("Yeah, I found a line with a name and number. So what?")
file.close()

Notice that you’ve split your regex pattern, using the fact that Python implicitly con-
catenates any set of strings separated by whitespace. As your pattern grows, this tech-
nique can be a great aid in keeping the pattern maintainable and understandable. It
also solves the problem with the line length possibly increasing beyond the right edge
of the screen.

 Fortunately, you can use regular expressions to extract data from patterns, as well as
to see whether the patterns exist. The first step is to group each subpattern correspond-
ing to a piece of data you want to extract by using the () special characters. Then give
each subpattern a unique name with the special sequence ?P<name>, like this:

(?P<last>[-a-zA-Z]+), (?P<first>[-a-zA-Z]+)((?P<middle>([-a-zA-Z]+)))?:
(?P<phone>(\d{3}-)?\d{3}-\d{4}

(Please note that you should enter these lines as a single line, with no line breaks. Due
to space constraints, the code can’t be represented here in that manner.)

 There’s an obvious point of confusion here: The question marks in ?P<...> and
the question-mark special characters indicating that the middle name and area code
are optional have nothing to do with one another. It’s an unfortunate semi-coinci-
dence that they happen to be the same character.

 Now that you’ve named the elements of the pattern, you can extract the matches for
those elements by using the group method. You can do so because when the search
function returns a successful match, it doesn’t return just a truth value; it also returns
a data structure that records what was matched. You can write a simple program to
extract names and phone numbers from your list and print them out again, as follows:

import re
regexp = re.compile(r"(?P<last>[-a-zA-Z]+),"
 r" (?P<first>[-a-zA-Z]+)"
 r"((?P<middle>([-a-zA-Z]+)))?"

Last name
and comma

First name

Optional
middle name

Colon and
phone number

Last name
and commaFirst

name

Optional
middle name

238 CHAPTER 16 Regular expressions
 r": (?P<phone>(\(\d{3}-)?\d{3}-\d{4})"
)
file = open("textfile", 'r')
for line in file.readlines():
 result = regexp.search(line)
 if result == None:
 print("Oops, I don't think this is a record")
 else:
 lastname = result.group('last')
 firstname = result.group('first')
 middlename = result.group('middle')
 if middlename == None:
 middlename = ""
 phonenumber = result.group('phone')
 print('Name:', firstname, middlename, lastname,' Number:', phonenumber)
file.close()

There are some points of interest here:

 You can find out whether a match succeeded by checking the value returned by
search. If the value is None, the match failed; otherwise, the match succeeded,
and you can extract information from the object returned by search.

 group is used to extract whatever data matched your named subpatterns. You
pass in the name of the subpattern you’re interested in.

 Because the middle subpattern is optional, you can’t count on it to have a value,
even if the match as a whole is successful. If the match succeeds, but the match
for the middle name doesn’t, using group to access the data associated with the
middle subpattern returns the value None.

 Part of the phone number is optional, but part isn’t. If the match succeeds, the
phone subpattern must have some associated text, so you don’t have to worry
about it having a value of None.

TRY THIS: EXTRACTING MATCHED TEXT Making international calls usually
requires a + and the country code. Assuming that the country code is two dig-
its, how would you modify the code above to extract the + and the country
code as part of the number? (Again, not all numbers have a country code.)
How would you make the code handle country codes of one to three digits?

16.5 Substituting text with regular expressions
In addition to extracting strings from text, you can use Python’s regex module to find
strings in text and substitute other strings in place of those that were found. You
accomplish this task by using the regular substitution method sub. The following
example replaces instances of "the the" (presumably, a typo) with single instances
of "the":

>>> import re
>>> string = "If the the problem is textual, use the the re module"
>>> pattern = r"the the"
>>> regexp = re.compile(pattern)

Colon and
phone number

239Substituting text with regular expressions
>>> regexp.sub("the", string)
'If the problem is textual, use the re module'

The sub method uses the invoking regex (regexp, in this case) to scan its second
argument (string, in the example) and produces a new string by replacing all
matching substrings with the value of the first argument ("the", in this example).

 But what if you want to replace the matched substrings with new ones that reflect
the value of those that matched? This is where the elegance of Python comes into play.
The first argument to sub—the replacement substring, "the" in the example—
doesn’t have to be a string at all. Instead, it can be a function. If it’s a function, Python
calls it with the current match object; then it lets that function compute and return a
replacement string.

 To see this function in action, build an example that takes a string containing inte-
ger values (no decimal point or decimal part) and returns a string with the same
numerical values but as floating numbers (with a trailing decimal point and zero):

>>> import re
>>> int_string = "1 2 3 4 5"
>>> def int_match_to_float(match_obj):
... return(match_obj.group('num') + ".0")
...
>>> pattern = r"(?P<num>[0-9]+)"
>>> regexp = re.compile(pattern)
>>> regexp.sub(int_match_to_float, int_string)
'1.0 2.0 3.0 4.0 5.0'

In this case, the pattern looks for a number consisting of one or more digits (the [0-
9]+ part). But it’s also given a name (the ?P<num>... part) so that the replacement
string function can extract any matched substring by referring to that name. Then the
sub method scans down the argument string "1 2 3 4 5", looking for anything that
matches [0-9]+. When sub finds a substring that matches, it makes a match object
defining exactly which substring matched the pattern, and it calls the
int_match_to_float function with that match object as the sole argument.
int_match_to_float uses group to extract the matching substring from the match
object (by referring to the group name num) and produces a new string by concatenat-
ing the matched substring with a ".0". sub returns the new string and incorporates it
as a substring into the overall result. Finally, sub starts scanning again right after the
place where it found the last matching substring, and it keeps going like that until it
can’t find any more matching substrings.

TRY THIS: REPLACING TEXT In the checkpoint in section 16.4, you extended a
phone-number regular expression to also recognize a country code. How
would you use a function to make any numbers that didn’t have a country
code now have +1 (the country code for the United States and Canada)?

LAB 16: PHONE-NUMBER NORMALIZER In the United States and Canada, phone
numbers consist of ten digits, usually separated into a three-digit area code, a

240 CHAPTER 16 Regular expressions
three-digit exchange code, and a four-digit station code. As mentioned in sec-
tion 16.4, they may or may not be preceded by +1, the country code. In prac-
tice, however, you have many ways to format a phone number, such as (NNN)
NNN-NNNN, NNN-NNN-NNNN, NNN NNN-NNNN, NNN.NNN.NNNN, and
NNN NNN NNNN, to name a few. Also, the country code may not be present,
may not have a +, and usually (not always) is separated from the number by a
space or dash. Whew!

In this lab, your task is to create a phone-number normalizer that takes any of
the formats and returns a normalized phone number 1-NNN-NNN-NNNN.

The following are all possible phone numbers:

Bonus: The first digit of the area code and the exchange code can only be 2-9,
and the second digit of an area code can’t be 9. Use this information to vali-
date the input and return a ValueError exception of invalid phone
number if the number is invalid.

Summary
 For a complete list and explanation of the regex special characters, refer to the

Python documentation.
 In addition to the search and sub methods, many other methods can be used

to split strings, extract more information from match objects, look for the posi-
tions of substrings in the main argument string, and precisely control the itera-
tion of a regex search over an argument string.

 Besides the \d special sequence, which can be used to indicate a digit character,
many other special sequences are listed in the documentation.

 There are also regex flags, which you can use to control some of the more eso-
teric aspects of how extremely sophisticated matches are carried out.

+1 223-456-7890 1-223-456-7890 +1 223 456-7890

(223) 456-7890 1 223 456 7890 223.456.7890

Data types as objects
By now, you’ve learned the basic Python types as well as how to create your own
data types using classes. For many languages, that would be pretty much it as far as
data types are concerned. But Python is dynamically typed, meaning that types are
determined at runtime, not at compile time. This fact is one of the reasons Python
is so easy to use. It also makes it possible, and sometimes necessary, to compute with
the types of objects (not just the objects themselves).

This chapter covers
 Treating types as objects

 Using types

 Creating user-defined classes

 Understanding duck typing

 Using special method attributes

 Subclassing built-in types
241

242 CHAPTER 17 Data types as objects
17.1 Types are objects, too
Fire up a Python session, and try out the following:

>>> type(5)
<class 'int'>
>>> type(['hello', 'goodbye'])
<class 'list'>

This example is the first time you’ve seen the built-in type function in Python. It can
be applied to any Python object and returns the type of that object. In this example,
the function tells you that 5 is an int (integer) and that ['hello', 'goodbye'] is a
list—things that you probably already knew.

 Of greater interest is the fact that Python returns objects in response to the calls to
type; <class 'int'> and <class 'list'> are the screen representations of the
returned objects. What sort of object is returned by a call of type(5)? You have an
easy way of finding out. Just use type on that result:

>>> type_result = type(5)
>>> type(type_result)
<class 'type'>

The object returned by type is an object whose type happens to be <class 'type'>;
you can call it a type object. A type object is another kind of Python object whose only
outstanding feature is the confusion that its name sometime causes. Saying a type
object is of type <class 'type'> has about the same degree of clarity as the old
Abbott and Costello “Who’s on First?” comedy routine.

17.2 Using types
Now that you know that data types can be represented as Python type objects, what
can you do with them? You can compare them, because any two Python objects can be
compared:

>>> type("Hello") == type("Goodbye")
True
>>> type("Hello") == type(5)
False

The types of "Hello" and "Goodbye" are the same (they’re both strings), but the
types of "Hello" and 5 are different. Among other things, you can use this technique
to provide type checking in your function and method definitions.

17.3 Types and user-defined classes
The most common reason to be interested in the types of objects, particularly
instances of user-defined classes, is to find out whether a particular object is an
instance of a class. After determining that an object is of a particular type, the code
can treat it appropriately. An example makes things much clearer. To start, define a
couple of empty classes so as to set up a simple inheritance hierarchy:

243Types and user-defined classes
>>> class A:
... pass
...
>>> class B(A):
... pass
...

Now create an instance of class B:

>>> b = B()

As expected, applying the type function to b tells you that b is an instance of the class
B that’s defined in your current __main__ namespace:

>>> type(b)
<class '__main__.B'>

You can also obtain exactly the same information by accessing the instance’s special
__class__ attribute:

>>> b.__class__
<class '__main__.B'>

You’ll be working with that class quite a bit to extract further information, so store it
somewhere:

>>> b_class = b.__class__

Now, to emphasize that everything in Python is an object, prove that the class you
obtained from b is the class you defined under the name B:

>>> b_class == B
True

In this example, you didn’t need to store the class of b—you already had it—but I
want to make clear that a class is just another Python object and can be stored or
passed around like any Python object.

 Given the class of b, you can find the name of that class by using its __name___
attribute:

>>> b_class.__name__
'B'

And you can find out what classes a class inherits from by accessing its __bases__
attribute, which contains a tuple of all of its base classes:

>>> b_class.__bases__
(<class '__main__.A'>,)

Used together, __class__, __bases__, and __name__ allow a full analysis of the
class inheritance structure associated with any instance.

244 CHAPTER 17 Data types as objects
 But two built-in functions provide a more user-friendly way of obtaining most of
the information you usually need: isinstance and issubclass. The isinstance
function is what you should use to determine whether, for example, a class passed into
a function or method is of the expected type:

>>> class C:
... pass
...
>>> class D:
... pass
...
>>> class E(D):
... pass
...
>>> x = 12
>>> c = C()
>>> d = D()
>>> e = E()
>>> isinstance(x, E)
False
>>> isinstance(c, E)
False
>>> isinstance(e, E)
True
>>> isinstance(e, D)
True
>>> isinstance(d, E)
False
>>> y = 12
>>> isinstance(y, type(5))
True

The issubclass function is only for class types.

>>> issubclass(C, D)
False
>>> issubclass(E, D)
True
>>> issubclass(D, D)
True
>>> issubclass(e.__class__, D)
True

For class instances, check against the class B. e is an instance of class D because E
inherits from D c. But d isn’t an instance of class E d. For other types, you can use
an example e. A class is considered to be a subclass of itself f.

QUICK CHECK: TYPES Suppose that you want to make sure that object x is a list
before you try appending to it. What code would you use? What would be the
difference between using type() and isinstance()? Would this be the
look before you leap (LBYL) or easier to ask forgiveness than permission
(EAFP) of programming? What other options might you have besides check-
ing the type explicitly?

b

c

d

e

f

245What is a special method attribute?
17.4 Duck typing
Using type, isinstance, and issubclass makes it fairly easy to make code cor-
rectly determine an object’s or class’s inheritance hierarchy. Although this process is
easy, Python also has a feature that makes using objects even easier: duck typing. Duck
typing (as in “If it walks like a duck and quacks like a duck, it probably is a duck”)
refers to Python’s way of determining whether an object is the required type for an
operation, focusing on an object’s interface rather than its type. If an operation needs
an iterator, for example, the object used doesn’t need to be a subclass of any particu-
lar iterator or of any iterator at all. All that matters is that the object used as an iterator
is able to yield a series of objects in the expected way.

 By contrast, in a language like Java, stricter rules of inheritance are enforced. In
short, duck typing means that in Python, you don’t need to (and probably shouldn’t)
worry about type-checking function or method arguments and the like. Instead, you
should rely on readable and documented code combined with thorough testing to
make sure that an object “quacks like a duck” as needed.

 Duck typing can increase the flexibility of well-written code and, combined with
the more advanced object-oriented features, gives you the ability to create classes and
objects to cover almost any situation.

17.5 What is a special method attribute?
A special method attribute is an attribute of a Python class with a special meaning to
Python. It’s defined as a method but isn’t intended to be used directly as such. Special
methods aren’t usually directly invoked; instead, they’re called automatically by
Python in response to a demand made on an object of that class.

 Perhaps the simplest example is the __str__ special method attribute. If it’s
defined in a class, any time an instance of that class is used where Python requires a
user-readable string representation of that instance, the __str__ method attribute is
invoked, and the value it returns is used as the required string. To see this attribute in
action, define a class representing red, green, and blue (RGB) colors as a triplet of
numbers, one each for red, green, and blue intensities. As well as defining the stan-
dard __init__ method to initialize instances of the class, define a __str__ method
to return strings representing instances in a reasonably human-friendly format. Your
definition should look something like this.

class Color:
 def __init__(self, red, green, blue):
 self._red = red
 self._green = green
 self._blue = blue
 def __str__(self):
 return "Color: R={0:d}, G={1:d}, B={2:d}".format (self._red,
 self._green, self._blue)

Listing 17.1 File color_module.py

246 CHAPTER 17 Data types as objects
If you put this definition into a file called color_module.py, you can load it and use it
in the normal manner:

>>> from color_module import Color
>>> c = Color(15, 35, 3)

You can see the presence of the __str__ special method attribute if you use print to
print out c:

>>> print(c)
Color: R=15, G=35, B=3

Even though your __str__ special method attribute hasn’t been explicitly invoked by
any of your code, it has nonetheless been used by Python, which knows that the
__str__ attribute (if present) defines a method to convert objects into user-readable
strings. This characteristic is the defining one of special method attributes; it allows
you to define functionality that hooks into Python in special ways. Among other
things, special method attributes can be used to define classes whose objects behave in
a fashion that’s syntactically and semantically equivalent to lists or dictionaries. You
could, for example, use this ability to define objects that are used in exactly the same
manner as Python lists but that use balanced trees rather than arrays to store data. To
a programmer, such objects would appear to be lists, but with faster inserts, slower iter-
ations, and certain other performance differences that presumably would be advanta-
geous in the problem at hand.

 The rest of this chapter covers longer examples using special method attributes.
The chapter doesn’t discuss all of Python’s available special method attributes, but it
does expose you to the concept in enough detail that you can easily use the other spe-
cial attribute methods, all of which are defined in the standard library documentation
for built-in types.

17.6 Making an object behave like a list
This sample problem involves a large text file containing records of people; each
record consists of a single line containing the person’s name, age, and place of resi-
dence, with a double semicolon (::) between the fields. A few lines from such a file
might look like this:

.

.

.
John Smith::37::Springfield, Massachusetts
Ellen Nelle::25::Springfield, Connecticut
Dale McGladdery::29::Springfield, Hawaii
.
.
.

247The __getitem__ special method attribute
Suppose that you need to collect information about the distribution of ages of people
in the file. There are many ways the lines in this file could be processed. Here’s one
way:

fileobject = open(filename, 'r')
lines = fileobject.readlines()
fileobject.close()
for line in lines:
 . . . do whatever . . .

That technique would work in theory, but it reads the entire file into memory at once.
If the file were too large to be held in memory (and these files potentially are that
large), the program wouldn’t work.

 Another way to attack the problem is this:

fileobject = open(filename, 'r')
for line in fileobject:
 . . . do whatever . . .
fileobject.close()

This code would get around the problem of having too little memory by reading in
only one line at a time. It would work fine, but suppose that you wanted to make open-
ing the file even simpler and that you wanted to get only the first two fields (name and
age) of the lines in the file. You’d need something that could, at least for the purposes
of a for loop, treat a text file as a list of lines but without reading the entire text file in
at once.

17.7 The __getitem__ special method attribute
A solution is to use the __getitem__ special method attribute, which you can define
in any user-defined class, to enable instances of that class to respond to list access syn-
tax and semantics. If AClass is a Python class that defines __getitem__, and obj is
an instance of that class, things like x = obj[n] and for x in obj: are meaningful;
obj may be used in much the same way as a list.

 Here’s the resulting code (explanations follow):

class LineReader:
 def __init__(self, filename):
 self.fileobject = open(filename, 'r')
 def __getitem__(self, index):
 line = self.fileobject.readline()
 if line == "":
 self.fileobject.close()
 raise IndexError

 else:
 return line.split("::")[:2]

for name, age in LineReader("filename"):
 . . . do whatever . . .

Opens file
for reading

Tries to read line

If no more data …
… closes fileobject …

… and raises
IndexError

Otherwise, splits line,
returns first two fields

248 CHAPTER 17 Data types as objects
At first glance, this example may look worse than the previous solution because
there’s more code, and it’s difficult to understand. But most of that code is in a class,
which can be put into its own module, such as the myutils module. Then the pro-
gram becomes

import myutils
for name, age in myutils.LineReader("filename"):
 . . . do whatever . . .

The LineReader class handles all the details of opening the file, reading in lines one
at a time, and closing the file. At the cost of somewhat more initial development time,
it provides a tool that makes working with one-record-per-line large text files easier
and less error-prone. Note that Python already has several powerful ways to read files,
but this example has the advantage that it’s fairly easy to understand. When you get
the idea, you can apply the same principle in many situations.

17.7.1 How it works

LineReader is a class, and the __init__ method opens the named file for reading
and stores the opened fileobject for later access. To understand the use of the
__getitem__ method, you need to know the following three points:

 Any object that defines __getitem__ as an instance method can return ele-
ments as though it were a list: all accesses of the form object[i] are trans-
formed by Python into a method invocation of the form
object.__getitem__(i), which is handled as a normal method invocation.
It’s ultimately executed as __getitem__(object, i), using the version of
__getitem__ defined in the class. The first argument of each call of
__getitem__ is the object from which data is being extracted, and the second
argument is the index of that data.

 Because for loops access each piece of data in a list, one at a time, a loop of
the form for arg in sequence: works by calling __getitem__ over and
over again, with sequentially increasing indexes. The for loop first sets arg to
sequence.__getitem__(0), then to sequence.__getitem__(1), and
so on.

 A for loop catches IndexError exceptions and handles them by exiting the
loop. This process is how for loops are terminated when used with normal lists
or sequences.

The LineReader class is intended for use only with and inside a for loop, and the
for loop always generates calls with a uniformly increasing index:
__getitem__(self, 0), __getitem__(self, 1), __getitem__(self, 2), and
so on. The previous code takes advantage of this knowledge and returns lines one
after the other, ignoring the index argument.

 With this knowledge, understanding how a LineReader object emulates a
sequence in a for loop is easy. Each iteration of the loop causes the special Python
attribute method __getitem__ to be invoked on the object; as a result, the object

249Giving an object full list capability
reads in the next line from its stored fileobject and examines that line. If the line
is nonempty, it’s returned. An empty line means that the end of the file has been
reached; the object closes the fileobject and raises the IndexError exception.
IndexError is caught by the enclosing for loop, which then terminates.

 Remember that this example is here for illustrative purposes only. Usually, iterat-
ing over the lines of a file by using the for line in fileobject: type of loop is
sufficient, but this example does show how easy it is in Python to create objects that
behave like lists or other types.

QUICK CHECK: __GETITEM__ The example use of __getitem__ is very limited
and won’t work correctly in many situations. What are some cases in which
the implementation above will fail or work incorrectly?

17.7.2 Implementing full list functionality

In the previous example, an object of the LineReader class behaves like a list object
only to the extent that it correctly responds to sequential accesses of the lines in the
file it’s reading from. You may wonder how this functionality can be expanded to
make LineReader (or other) objects behave more like a list.

 First, the __getitem__ method should handle its index argument in some way.
Because the whole point of the LineReader class is to avoid reading a large file into
memory, it wouldn’t make sense to have the entire file in memory and return the
appropriate line. Probably the smartest thing to do would be to check that each index
in a __getitem__ call is one greater than the index from the previous __getitem__
call (or is 0, for the first call of __getitem__ on a LineReader instance) and to raise
an error if this isn’t the case. This practice would ensure that LineReader instances
are used only in for loops as was intended.

 More generally, Python provides several special method attributes relating to list
behavior. __setitem__ provides a way of defining what should be done when an
object is used in the syntactic context of a list assignment, obj[n] = val. Some other
special method attributes provide less-obvious list functionality, such as the __add__
attribute, which enables objects to respond to the + operator and hence to perform
their version of list concatenation. Several other special methods also need to be
defined before a class fully emulates a list, but you can achieve complete list emulation
by defining the appropriate Python special method attributes. The next section gives
an example that goes farther toward implementing a full list emulation class.

17.8 Giving an object full list capability
__getitem__ is one of many Python special function attributes that may be defined
in a class to permit instances of that class to display special behavior. To see how spe-
cial method attributes can be carried farther, effectively integrating new abilities into
Python in a seamless manner, look at another, more comprehensive example.

 When lists are used, it’s common for any particular list to contain elements of only
one type, such as a list of strings or a list of numbers. Some languages, such as C++,

250 CHAPTER 17 Data types as objects
have the ability to enforce this restriction. In large programs, the ability to declare a
list as containing a certain type of element can help you track down errors. An attempt
to add an element of the wrong type to a typed list results in an error message, poten-
tially identifying a problem at an earlier stage of program development than would
otherwise be the case.

 Python doesn’t have typed lists built in, and most Python coders don’t miss them.
But if you’re concerned about enforcing the homogeneity of a list, special method
attributes make it easy to create a class that behaves like a typed list. Here’s the begin-
ning of such a class (which makes extensive use of the Python built-in type and
isinstance functions to check the type of objects):

class TypedList:
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 if not isinstance(element, self.type):
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 self.elements = initial_list[:]

The example_element argument defines the type that this list can contain by provid-
ing an example of the type of element B.

 The TypedList class, as defined here, gives you the ability to make a call of the form

x = TypedList ('Hello', ["List", "of", "strings"])

The first argument, 'Hello', isn’t incorporated into the resulting data structure at
all. It’s used as an example of the type of element the list must contain (strings, in this
case). The second argument is an optional list that can be used to give an initial list of
values. The __init__ function for the TypedList class checks that any list elements,
passed in when a TypedList instance is created, are of the same type as the example
value given. If there are any type mismatches, an exception is raised.

 This version of the TypedList class can’t be used as a list, because it doesn’t
respond to the standard methods for setting or accessing list elements. To fix this
problem, you need to define the __setitem__ and __getitem__ special method
attributes. The __setitem__ method is called automatically by Python any time a
statement of the form TypedListInstance[i] = value is executed, and the
__getitem__ method is called any time the expression TypedListInstance[i] is
evaluated to return the value in the ith slot of TypedListInstance. Here’s the next
version of the TypedList class. Because you’ll be type-checking a lot of new ele-
ments, this function is abstracted out into the new private method __check:

class TypedList:
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)

b

251Giving an object full list capability
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)
 self.elements = initial_list[:]
 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 def __setitem__(self, i, element):
 self.__check(element)
 self.elements[i] = element
 def __getitem__(self, i):
 return self.elements[i]

Now instances of the TypedList class look more like lists. The following code is valid,
for example:

>>> x = TypedList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')

The accesses of elements of x in the print statement are handled by __getitem__,
which passes them down to the list instance stored in the TypedList object. The
assignments to x[2] and x[3] are handled by __setitem__, which checks that the
element being assigned into the list is of the appropriate type and then performs the
assignment on the list contained in self.elements. The last line uses __getitem__
to unpack the first five items in x and then pack them into the variables a, b, c, d, and
e, respectively. The calls to __getitem__ and __setitem__ are made automatically
by Python.

 Completion of the TypedList class, so that TypedList objects behave in all
respects like list objects, requires more code. The special method attributes
__setitem__ and __getitem__ should be defined so that TypedList instances can
handle slice notation as well as single item access. __add__ should be defined so that
list addition (concatenation) can be performed, and __mul__ should be defined so
that list multiplication can be performed. __len__ should be defined so that calls of
len(TypedListInstance) are evaluated correctly. __delitem__ should be defined
so that the TypedList class can handle del statements correctly. Also, an append
method should be defined so that elements can be appended to TypedList instances
by means of the standard list-style append, as well as insert and extend methods.

TRY THIS: IMPLEMENTING LIST SPECIAL METHODS Try implementing the
__len__ and __delitem__ special methods, as well as an append method.

252 CHAPTER 17 Data types as objects
17.9 Subclassing from built-in types
The previous example makes for a good exercise in understanding how to implement
a listlike class from scratch, but it’s also a lot of work. In practice, if you were planning
to implement your own listlike structure along the lines demonstrated here, you
might instead consider subclassing the list type or the UserList type.

17.9.1 Subclassing list

Instead of creating a class for a typed list from scratch, as you did in the previous
examples, you can subclass the list type and override all the methods that need to be
aware of the allowed type. One big advantage of this approach is that your class has
default versions of all list operations because it’s a list already. The main thing to keep
in mind is that every type in Python is a class, and if you need a variation on the behav-
ior of a built-in type, you may want to consider subclassing that type:

class TypedListList(list):
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)
 super().__init__(initial_list)

 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")

 def __setitem__(self, i, element):
 self.__check(element)
 super().__setitem__(i, element)

>>> x = TypedListList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')
>>> x[:]
['', '', 'Hello', 'There', '']
>>> del x[2]
>>> x[:]
['', '', 'There', '']
>>> x.sort()
>>> x[:]
['', '', '', 'There']

253Subclassing from built-in types
Note that all that you need to do in this case is implement a method to check the type
of items being added and then tweak __setitem__ to make that check before calling
list’s regular __setitem__ method. Other methods, such as sort and del, work
without any further coding. Overloading a built-in type can save a fair amount of time
if you need only a few variations in its behavior, because the bulk of the class can be
used unchanged.

17.9.2 Subclassing UserList

If you need a variation on a list (as in the previous examples), there’s a third alterna-
tive: You can subclass the UserList class, a list wrapper class found in the collec-
tions module. UserList was created for earlier versions of Python when subclassing
the list type wasn’t possible, but it’s still useful, particularly for the current situation,
because the underlying list is available as the data attribute:

from collections import UserList
class TypedUserList(UserList):
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)
 super().__init__(initial_list)

 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 def __setitem__(self, i, element):
 self.__check(element)
 self.data[i] = element
 def __getitem__(self, i):
 return self.data[i]

>>> x = TypedUserList("", 5 * [""])
>>> x[2] = "Hello"
>>> x[3] = "There"
>>> print(x[2] + ' ' + x[3])
Hello There
>>> a, b, c, d, e = x
>>> a, b, c, d
('', '', 'Hello', 'There')
>>> x[:]
['', '', 'Hello', 'There', '']
>>> del x[2]
>>> x[:]
['', '', 'There', '']
>>> x.sort()
>>> x[:]
['', '', '', 'There']

254 CHAPTER 17 Data types as objects
This example is much the same as subclassing list, except that in the implementa-
tion of the class, the list of items is available internally as the data member. In some
situations, having direct access to the underlying data structure can be useful. Also, in
addition to UserList, there are UserDict and UserString wrapper classes.

17.10 When to use special method attributes
As a rule, it’s a good idea to be somewhat cautious with the use of special method attri-
butes. Other programmers who need to work with your code may wonder why one
sequence-type object responds correctly to standard indexing notation, whereas
another doesn’t.

 My general guidelines are to use special method attributes in either of two situa-
tions:

 If I have a frequently used class in my own code that behaves in some respects
like a Python built-in type, I’ll define such special method attributes as useful.
This situation occurs most often with objects that behave like sequences in one
way or another.

 If I have a class that behaves identically or almost identically to a built-in class, I
may choose to define all of the appropriate special function attributes or sub-
class the built-in Python type and distribute the class. An example of the latter
solution might be lists implemented as balanced trees so that access is slower
but insertion is faster than with standard lists.

These rules aren’t hard-and-fast rules. It’s often a good idea to define the __str__
special method attribute for a class, for example, so that you can say
print(instance) in debugging code and get an informative, nice-looking represen-
tation of your object printed to the screen.

QUICK CHECK: SPECIAL METHOD ATTRIBUTES AND SUBCLASSING EXISTING
TYPES Suppose that you want a dictionary-like type that allows only strings as
keys (maybe to make it work like a shelf object, as described in chapter 13).
What options would you have for creating such a class? What would be the
advantages and disadvantages of each option?

Summary
 Python has the tools to do type checking as needed in your code, but by taking

advantage of duck typing, you can write more flexible code that doesn’t need to
be as concerned with type checking.

 Special method attributes and subclassing built-in classes can be used to add
listlike behavior to user-created classes.

 Python’s use of duck typing, special method attributes, and subclassing makes it
possible to construct and combine classes in a variety of ways.

Packages
Modules make reusing small chunks of code easy. The problem comes when the
project grows and the code you want to reload outgrows, either physically or logi-
cally, what would fit into a single file. If having one giant module file is an unsatis-
factory solution, having a host of little unconnected modules isn’t much better. The
answer to this problem is to combine related modules into a package.

18.1 What is a package?
A module is a file containing code. A module defines a group of usually related
Python functions or other objects. The name of the module is derived from the
name of the file.

This chapter covers
 Defining a package

 Creating a simple package

 Exploring a concrete example

 Using the __all__ attribute

 Using packages properly
255

256 CHAPTER 18 Packages
 When you understand modules, packages are easy, because a package is a directory
containing code and possibly further subdirectories. A package contains a group of
usually related code files (modules). The name of the package is derived from the
name of the main package directory.

 Packages are a natural extension of the module concept and are designed to han-
dle very large projects. Just as modules group related functions, classes, and variables,
packages group related modules.

18.2 A first example
To see how packages might work in practice, consider a design layout for a type of
project that by nature is very large: a generalized mathematics package along the lines
of Mathematica, Maple, or MATLAB. Maple, for example, consists of thousands of
files, and some sort of hierarchical structure is vital to keeping such a project ordered.
Call your project as a whole mathproj.

 You can organize such a project in many ways, but a reasonable design splits the
project into two parts: ui, consisting of the UI elements, and comp, the computational
elements. Within comp, it may make sense to further segment the computational
aspect into symbolic (real and complex symbolic computation, such as high school
algebra) and numeric (real and complex numerical computation, such as numerical
integration). Then it may make sense to have a constants.py file in both the symbolic
and numeric parts of the project.

 The constants.py file in the numeric part of the project defines pi as

pi = 3.141592

whereas the constants.py file in the symbolic part of the project defines pi as

class PiClass:
 def __str__(self):
 return "PI"
pi = PiClass()

This means that a name like pi can be used in (and imported from) two different files
named constants.py, as shown in figure 18.1.

 The symbolic constants.py file defines pi
as an abstract Python object, the sole
instance of the PiClass class. As the system
is developed, various operations can be
implemented in this class, which return sym-
bolic rather than numeric results.

Figure 18.1 Organizing a math package

257A concrete example
 There’s a natural mapping from this design structure to a directory structure. The
top-level directory of the project, called mathproj, contains subdirectories ui and
comp; comp in turn contains subdirectories symbolic and numeric; and each of
symbolic and numeric contains its own constants.pi file.

 Given this directory structure, and assuming that the root mathproj directory is
installed somewhere in the Python search path, Python code both inside and outside
the mathproj package can access the two variants of pi as mathproj.sym-
bolic.constants.pi and mathproj.numeric.constants.pi. In other words,
the Python name for an item in the package is a reflection of the directory pathname
to the file containing that item.

 That’s what packages are all about. They’re ways of organizing very large collec-
tions of Python code into coherent wholes, by allowing the code to be split among dif-
ferent files and directories and imposing a module/submodule naming scheme based
on the directory structure of the package files. Unfortunately, packages aren’t this sim-
ple in practice because details intrude to make their use more complex than their the-
ory. The practical aspects of packages are the basis for the remainder of this chapter.

18.3 A concrete example
The rest of this chapter uses a running example to illustrate the inner workings of the
package mechanism (see figure 18.2). Filenames and paths are shown in plain text to
clarify whether I’m talking about a file/directory or the module/package defined by
that file/directory. The files you’ll be using in your example package are shown in list-
ings 18.1 through 18.6.

print("Hello from mathproj init")
__all__ = ['comp']
version = 1.03

Listing 18.1 File mathproj/__init__.py

Figure 18.2 Example package

258 CHAPTER 18 Packages
__all__ = ['c1']
print("Hello from mathproj.comp init")

x = 1.00

print("Hello from numeric init")

from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h
def g():
 print("version is", version)
 print(h())

def h():
 return "Called function h in module n2"

For the purposes of the examples in this chapter, assume that you’ve created these
files in a mathproj directory that’s on the Python search path. (It’s sufficient to ensure
that the current working directory for Python is the directory containing mathproj
when executing these examples.)

NOTE In most of the examples in this book, it’s not necessary to start up a
new Python shell for each example. You can usually execute the examples in a
Python shell that you’ve used for previous examples and still get the results
shown. This isn’t true for the examples in this chapter, however, because the
Python namespace must be clean (unmodified by previous import state-
ments) for the examples to work properly. If you do run the examples that
follow, please ensure that you run each separate example in its own shell. In IDLE,
this requires exiting and restarting the program, not just closing and reopen-
ing its Shell window.

18.3.1 __init__.py files in packages

You’ll have noticed that all the directories in your package—mathproj, mathproj/
comp, and mathproj/numeric—contain a file called __init__.py. An
__init__.py file serves two purposes:

 Python requires that a directory contain an __init__.py file before it can be
recognized as a package. This requirement prevents directories containing

Listing 18.2 File mathproj/comp/__init__.py

Listing 18.3 File mathproj/comp/c1.py

Listing 18.4 File mathproj/comp/numeric/__init__.py

Listing 18.5 File mathproj/comp/numeric/n1.py

Listing 18.6 File mathproj/comp/numeric/n2.py

259A concrete example
miscellaneous Python code from being accidentally imported as though they
defined a package.

 The __init__.py file is automatically executed by Python the first time a
package or subpackage is loaded. This execution permits whatever package ini-
tialization you desire.

The first point is usually more important. For many packages, you won’t need to put
anything in the package’s __init__.py file; just make sure that an empty
__init__.py file is present.

18.3.2 Basic use of the mathproj package

Before getting into the details of packages, look at accessing items contained in the
mathproj package. Start a new Python shell, and do the following:

>>> import mathproj
Hello from mathproj init

If all goes well, you should get another input prompt and no error messages. Also,
the message "Hello from mathproj init" should be printed to the screen by
code in the mathproj/__init__.py file. I talk more about __init__.py files
soon; for now, all you need to know is that the files run automatically whenever a
package is first loaded.

 The mathproj/__init__.py file assigns 1.03 to the variable version. version
is in the scope of the mathproj package namespace, and after it’s created, you can
see it via mathproj, even from outside the mathproj/__init__.py file:

>>> mathproj.version
1.03

In use, packages can look a lot like modules; they can provide access to objects
defined within them via attributes. This fact isn’t surprising, because packages are a
generalization of modules.

18.3.3 Loading subpackages and submodules

Now start looking at how the various files defined in the mathproj package interact
with one another. To do so, invoke the function g defined in the file mathproj/
comp/numeric/n1.py. The first obvious question is whether this module has been
loaded. You’ve already loaded mathproj, but what about its subpackage? To see
whether it’s known to Python, type

>>> mathproj.comp.numeric.n1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: module 'mathproj' has no attribute 'comp'

In other words, loading the top-level module of a package isn’t enough to load all the
submodules, which is in keeping with Python’s philosophy that it shouldn’t do things
behind your back. Clarity is more important than conciseness.

260 CHAPTER 18 Packages
 This restriction is simple enough to overcome. You import the module of interest
and then execute the function g in that module:

>>> import mathproj.comp.numeric.n1
Hello from mathproj.comp init
Hello from numeric init
>>> mathproj.comp.numeric.n1.g()
version is 1.03
Called function h in module n2

Notice, however, that the lines beginning with Hello are printed out as a side effect of
loading mathproj.comp.numeric.n1. These two lines are printed out by print
statements in the __init__.py files in mathproj/comp and mathproj/comp/
numeric. In other words, before Python can import mathproj.comp.numeric.n1, it
has to import mathproj.comp and then mathproj.comp.numeric. Whenever a
package is first imported, its associated __init__.py file is executed, resulting in the
Hello lines. To confirm that both mathproj.comp and mathproj.comp.numeric
are imported as part of the process of importing mathproj.comp.numeric.n1, you
can check to see that mathproj.comp and mathproj.comp.numeric are now
known to the Python session:

>>> mathproj.comp
<module 'mathproj.comp' from 'mathproj/comp/__init__.py'>
>>> mathproj.comp.numeric
<module 'mathproj.comp.numeric' from 'mathproj/comp/numeric/__init__.py'>

18.3.4 import statements within packages

Files within a package don’t automatically have access to objects defined in other files
in the same package. As in outside modules, you must use import statements to
explicitly access objects from other package files. To see how this use of import works
in practice, look back at the n1 subpackage. The code contained in n1.py is

from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h
def g():
 print("version is", version)
 print(h())

g makes use of both version from the top-level mathproj package and the function
h from the n2 module; hence, the module containing g must import both version
and h to make them accessible. You import version as you would in an import state-
ment from outside the mathproj package: by saying from mathproj import ver-
sion. In this example, you explicitly import h into the code by saying from
mathproj.comp.numeric.n2 import h, and this technique works in any file;
explicit imports of package files are always allowed. But because n2.py is in the same

261The __all__ attribute
directory as n1.py, you can also use a relative import by prepending a single dot to
the submodule name. In other words, you can say

from .n2 import h

as the third line in n1.py, and it works fine.
 You can add more dots to move up more levels in the package hierarchy, and you

can add module names. Instead of writing

from mathproj import version
from mathproj.comp import c1
from mathproj.comp.numeric.n2 import h

you could have written the imports of n1.py as

from ... import version
from .. import c1
from . n2 import h

Relative imports can be handy and quick to type, but be aware that they’re relative to
the module’s __name__ property. Therefore, any module being executed as the
main module and thus having __main__ as its __name__ can’t use relative imports.

18.4 The __all__ attribute
If you look back at the various __init__.py files defined in mathproj, you’ll notice
that some of them define an attribute called __all__. This attribute has to do with
execution of statements of the form from ... import *, and it requires explanation.

 Generally speaking, you’d hope that if outside code executed the statement from
mathproj import *, it would import all nonprivate names from mathproj. In prac-
tice, life is more difficult. The primary problem is that some operating systems have an
ambiguous definition of case when it comes to filenames. Because objects in packages
can be defined by files or directories, this situation leads to ambiguity as to the exact
name under which a subpackage might be imported. If you say from mathproj
import *, will comp be imported as comp, Comp, or COMP? If you were to rely only on
the name as reported by the operating system, the results might be unpredictable.

 There’s no good solution to this problem, which is an inherent one caused by poor
OS design. As the best possible fix, the __all__ attribute was introduced. If present
in an __init__.py file, __all__ should give a list of strings, defining those names
that are to be imported when a from ... import * is executed on that particular
package. If __all__ isn’t present, from ... import * on the given package does
nothing. Because case in a text file is always meaningful, the names under which
objects are imported aren’t ambiguous, and if the operating system thinks that comp is
the same as COMP, that’s its problem.

 Fire up Python again, and try the following:

>>> from mathproj import *
Hello from mathproj init
Hello from mathproj.comp init

262 CHAPTER 18 Packages
The __all__ attribute in mathproj/__init__.py contains a single entry, comp,
and the import statement imports only comp. It’s easy enough to check whether
comp is now known to the Python session:

>>> comp
<module 'mathproj.comp' from 'mathproj/comp/__init__.py'>

But note that there’s no recursive importing of names with a from ... import *
statement. The __all__ attribute for the comp package contains c1, but c1 isn’t mag-
ically loaded by your from mathproj import * statement:

>>> c1
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'c1' is not defined

To insert names from mathproj.comp, you must again do an explicit import:

>>> from mathproj.comp import c1
>>> c1
<module 'mathproj.comp.c1' from 'mathproj/comp/c1.py'>

18.5 Proper use of packages
Most of your packages shouldn’t be as structurally complex as these examples imply.
The package mechanism allows wide latitude in the complexity and nesting of your
package design. It’s obvious that very complex packages can be built, but it isn’t obvi-
ous that they should be built.

 Here are a couple of suggestions that are appropriate in most circumstances:

 Packages shouldn’t use deeply nested directory structures. Except for absolutely
huge collections of code, there should be no need to do so. For most packages,
a single top-level directory is all that’s needed. A two-level hierarchy should be
able to effectively handle all but a few of the rest. As written in The Zen of Python,
by Tim Peters (see appendix A), “Flat is better than nested.”

 Although you can use the __all__ attribute to hide names from from ...
import * by not listing those names, doing so probably is not a good idea,
because it’s inconsistent. If you want to hide names, make them private by pref-
acing them with an underscore.

QUICK CHECK: PACKAGES Suppose that you’re writing a package that takes a
URL, retrieves all images on the page pointed to by that URL, resizes them to
a standard size, and stores them. Leaving aside the exact details of how each
of these functions will be coded, how would you organize those features into a
package?

LAB 18: CREATE A PACKAGE In chapter 14, you added error handling to the
text cleaning and word frequency counting module that you created in chap-
ter 11. Refactor that code into a package containing one module for the

263Summary
cleaning functions, one for the processing functions, and one for the custom
exceptions. Then write a simple main function that uses all three.

Summary
 Packages let you create libraries of code that span multiple files and directories.
 Using packages allows better organization of large collections of code than sin-

gle modules would allow.
 You should be wary of nesting directories in your packages more than one or

two levels deep unless you have a very large and complex library.

Using Python libraries
Python has long proclaimed that one of its key advantages is its “batteries included”
philosophy. This means that a stock install of Python comes with a rich standard
library that lets you handle a wide variety of situations without the need to install
additional libraries. This chapter gives you a high-level survey of some of the con-
tents of the standard library, as well as some suggestions on finding and installing
external modules.

This chapter covers
 Managing various data types—strings, numbers,

and more

 Manipulating files and storage

 Accessing operating system services

 Using internet protocols and formats

 Developing and debugging tools

 Accessing PyPI (a.k.a. “The Cheese Shop”)

 Installing Python libraries and virtual
environments using pip and venv
264

265“Batteries included”: The standard library
19.1 “Batteries included”: The standard library
In Python, what’s considered to be the library consists of several components, includ-
ing built-in data types and constants that can be used without an import statement,
such as numbers and lists, as well as some built-in functions and exceptions. The larg-
est part of the library is an extensive collection of modules. If you have Python, you
also have libraries to manipulate diverse types of data and files, to interact with your
operating system, to write servers and clients for many internet protocols, and to
develop and debug your code.

 What follows is a survey of the high points. Although most of the major modules
are mentioned, for the most complete and current information I recommend that
you spend time on your own exploring the library reference that’s part of the Python
documentation. In particular, before you go in search of an external library, be sure to
scan through what Python already offers. You may be surprised by what you find.

19.1.1 Managing various data types

The standard library naturally contains support for Python’s built-in types, which I
touch on in this section. In addition, three categories in the standard library deal with
various data types: string services, data types, and numeric modules.

 String services include the modules in table 19.1 that deal with bytes as well as
strings. The three main things these modules deal with are strings and text, sequences
of bytes, and Unicode operations.

The data types category is a diverse collection of modules covering various data types,
particularly time, date, and collections, as shown in table 19.2.

Table 19.1 String services modules

Module Description and possible uses

string Compare with string constants, such as digits or whitespace; for-
mat strings (see chapter 6)

re Search and replace text using regular expressions (see chapter 16)

struct Interpret bytes as packed binary data, and read and write structured
data to/from files

difflib Use helpers for computing deltas, find differences between strings or
sequences, and create patches and diff files

textwrap Wrap and fill text, and format text by breaking lines or adding spaces

Table 19.2 Data types modules

Module Description and possible uses

datetime, calendar Date, time, and calendar operations

collections Container data types

266 CHAPTER 19 Using Python libraries
As the name indicates, the numeric and mathematical modules deal with numbers
and mathematical operations, and the most common of these modules are listed in
table 19.3. These modules have everything you need to create your own numeric types
and handle a wide range of math operations.

19.1.2 Manipulating files and storage

Another broad category in the standard library covers files, storage, and data persis-
tence and is summarized in table 19.4. This category ranges from modules for file
access to modules for data persistence and compression and handling special file
formats.

enum Allows creation of enumerator classes that bind symbolic names to con-
stant values

array Efficient arrays of numeric values

sched Event scheduler

queue Synchronized queue class

copy Shallow and deep copy operations

pprint Data pretty printer

typing Support for annotating code with hints as to the types of objects, partic-
ularly of function parameters and return values

Table 19.3 Numeric and mathematical modules

Module Description and possible uses

numbers Numeric abstract base classes

math, cmath Mathematical functions for real and complex numbers

decimal Decimal fixed-point and floating-point arithmetic

statistics Functions for calculating mathematical statistics

fractions Rational numbers

random Generate pseudorandom numbers and choices, and shuffle sequences

itertools Functions that create iterators for efficient looping

functools Higher-order functions and operations on callable objects

operator Standard operators as functions

Table 19.2 Data types modules (continued)

Module Description and possible uses

267“Batteries included”: The standard library

19.1.3 Accessing operating system services

This category is another broad one, containing modules for dealing with your operat-
ing system. As shown in table 19.5, this category includes tools for handling com-
mand-line parameters, redirecting file and print output and input, writing to log files,
running multiple threads or processes, and loading non-Python (usually, C) libraries
for use in Python.

Table 19.4 File and storage modules

Module Description and possible uses

os.path Perform common pathname manipulations

pathlib Deal with pathnames in an object-oriented way

fileinput Iterate over lines from multiple input streams

filecmp Compare files and directories

tempfile Generate temporary files and directories

glob, fnmatch Use UNIX-style pathname and filename pattern handling

linecache Gain random access to text lines

shutil Perform high-level file operations

pickle, shelve Enable Python object serialization and persistence

sqlite3 Work with a DB-API 2.0 interface for SQLite databases

zlib, gzip, bz2,
zipfile, tarfile

Work with archive files and compressions

csv Read and write CSV files

configparser Use a configuration file parser; read/write Windows-style configuration
.ini files

Table 19.5 Operating system modules

Module Description

os Miscellaneous operating system interfaces

io Core tools for working with streams

time Time access and conversions

optparse Powerful command-line option parser

logging Logging facility for Python

getpass Portable password input

curses Terminal handling for character-cell displays

268 CHAPTER 19 Using Python libraries
19.1.4 Using internet protocols and formats

The internet protocols and formats category is concerned with encoding and decod-
ing the many standard formats used for data exchange on the internet, from MIME
and other encodings to JSON and XML. This category also has modules for writing
servers and clients for common services, particularly HTTP, and a generic socket
server for writing servers for custom services. The most commonly used of these mod-
ules are listed in table 19.6.

platform Access to underlying platform’s identifying data

ctypes Foreign function library for Python

select Waiting for I/O completion

threading Higher-level threading interface

multiprocessing Process-based threading interface

subprocess Subprocess management

Table 19.6 Modules supporting internet protocols and formats

Module Description

socket, ssl Low-level networking interface and SSL wrapper for socket
objects

email Email and MIME handling package

json JSON encoder and decoder

mailbox Manipulate mailboxes in various formats

mimetypes Map filenames to MIME types

base64, binhex, binascii, quopri,
uu

Encode/decode files or streams with various
encodings

html.parser, html.entities Parse HTML and XHTML

xml.parsers.expat, xml.dom,
xml.sax, xml.etree.ElementTree

Various parsers and tools for XML

cgi, cgitb Common Gateway Interface support

wsgiref WSGI utilities and reference implementation

urllib.request, urllib.parse Open and parse URLs

ftplib, poplib, imaplib, nntplib,
smtplib, telnetlib

Clients for various internet protocols

socketserver Framework for network servers

Table 19.5 Operating system modules (continued)

Module Description

269Moving beyond the standard library
19.1.5 Development and debugging tools and runtime services

Python has several modules to help you debug, test, modify, and otherwise interact
with your Python code at runtime. As shown in table 19.7, this category includes two
testing tools, profilers, modules to interact with error tracebacks, the interpreter’s gar-
bage collection, and so on, as well as modules that let you tweak the importing of
other modules.

19.2 Moving beyond the standard library
Although Python’s “batteries included” philosophy and well-stocked standard library
mean that you can do a lot with Python out of the box, there will inevitably come a sit-
uation in which you need some functionality that doesn’t come with Python. This

http.server HTTP servers

xmlrpc.client, xmlrpc.server XML-RPC client and server

Table 19.7 Development, debugging, and runtime modules

Module Description

pydoc Documentation generator and online help system

doctest Test interactive Python examples

unittest Unit testing framework

test.support Utility functions for tests

pdb Python debugger

profile, cProfile Python profilers

timeit Measure execution time of small code snippets

trace Trace or track Python statement execution

sys System-specific parameters and functions

atexit Exit handlers

__future__ Future statement definitions—features to be added to Python

gc Garbage collector interface

inspect Inspect live objects

imp Access the import internals

zipimport Import modules from zip archives

modulefinder Find modules used by a script

Table 19.6 Modules supporting internet protocols and formats

Module Description

270 CHAPTER 19 Using Python libraries
section surveys your options when you need to do something that isn’t in the standard
library.

19.3 Adding more Python libraries
Finding a Python package or module can be as easy as entering the functionality
you’re looking for (such as mp3 tags and Python) in a search engine and then sort-
ing through the results. If you’re lucky, you may find the module you need packaged
for your OS—with an executable Windows or macOS installer or a package for your
Linux distribution.

 This technique is one of the easiest ways to add a library to your Python installa-
tion, because the installer or your package manager takes care of all the details of add-
ing the module to your system correctly. It can also be the answer for installing more
complex libraries, such as scientific libraries with complex build requirements and
dependencies.

 In general, except for scientific libraries, such prebuilt packages aren’t the rule for
Python software. Such packages tend to be a bit older, and they offer less flexibility in
where and how they’re installed.

19.4 Installing Python libraries using pip and venv
If you need a third-party module that isn’t prepackaged for your platform, you’ll have
to turn to its source distribution. This fact presents a couple of problems:

 To install the module, you must find and download it.
 Installing even a single Python module correctly can involve a certain amount

of hassle in dealing with Python’s paths and your system’s permissions, which
makes a standard installation system helpful.

Python offers pip as the current solution to both problems. pip tries to find the mod-
ule in the Python Package index (more about that soon), downloads it and any depen-
dencies, and takes care of the installation. The basic syntax of pip is quite simple. To
install the popular requests library from the command line, for example, all you have
to do is

$ python3.6 -m pip install requests

Upgrading to the library’s latest version requires only the addition of the –-upgrade
switch:

$ python3.6 -m pip install –-upgrade requests

Finally, if you need to specify a particular version of a package, you can append it to
the name like this:

$ python3.6 -m pip install requests==2.11.1
$ python3.6 -m pip install requests>=2.9

https://pypi.python.org

271Installing Python libraries using pip and venv
19.4.1 Installing with the –user flag

On many occasions, you can’t or don’t want to install a Python package in the main
system instance of Python. Maybe you need a bleeding-edge version of the library, but
some other application (or the system itself) still uses an older version. Or maybe you
don’t have access privileges to modify the system’s default Python. In cases like those,
one answer is to install the library with the –-user flag. This flag installs the library in
the user’s home directory, where it’s not accessible by any other users. To install
requests for only the local user:

$ python3.6 -m pip install --user requests

As I mentioned previously, this scheme is particularly useful if you’re working on a sys-
tem on which you don’t have sufficient administrator rights to install software, or if
you want to install a different version of a module. If your needs go beyond the basic
installation methods discussed here, a good place to start is “Installing Python Mod-
ules,” which you can find in the Python documentation.

19.4.2 Virtual environments

You have another, better option if you need to avoid installing libraries in the system
Python. This option is called a virtual environment (virtualenv). A virtual environment
is a self-contained directory structure that contains both an installation of Python and
its additional packages. Because the entire Python environment is contained in the
virtual environment, the libraries and modules installed there can’t conflict with those
in the main system or in other virtual environments, allowing different applications to
use different versions on both Python and its packages.

 Creating and using a virtual environment takes two steps. First, you create the envi-
ronment:

$ python3.6 -m venv test-env

This step creates the environment with Python and pip installed in a directory called
test-env. Then, when the environment is created, you activate it. On Windows, you do
this:

> test-env\Scripts\activate.bat

On Unix or MacOS systems, you source the activate script:

$ source test-env/bin/activate

When you’ve activated the environment, you can use pip to manage packages as ear-
lier, but in the virtual environment pip is a standalone command:

$ pip install requests

272 CHAPTER 19 Using Python libraries
In addition, whatever version of Python you used to create the environment is the
default Python for that environment, so you can use just python instead of python3
or python3.6.

 Virtual environments are very useful for managing projects and their dependen-
cies and are very much a standard practice, particularly for developers working on
multiple projects. For more information, look at the “Virtual Environments and Pack-
ages” section of the Python tutorial in the Python online documentation.

19.5 PyPI (a.k.a. “The Cheese Shop”)
Although distutils packages get the job done, there’s one catch: You have to find
the correct package, which can be a chore. And after you’ve found a package, it would
be nice to have a reasonably reliable source from which to download that package.

 To meet this need, various Python package repositories have been made available
over the years. Currently, the official (but by no means the only) repository for Python
code is the Python Package Index, or PyPI (formerly also known as “The Cheese
Shop,” after the Monty Python sketch) on the Python website. You can access it from a
link on the main page or directly at https://pypi.python.org. PyPI contains more than
6,000 packages for various Python versions, listed by date added and name, but also
searchable and broken down by category.

 At this writing, a new version of PyPI is in the wings; currently, it’s called “The
Warehouse.” This version is still in testing but promises to provide a much smoother
and friendlier search experience.

 PyPI is the logical next stop if you can’t find the functionality you want with a
search of the standard library.

Summary
 Python has a rich standard library that covers more common situations than

many other languages, and you should check what’s in the standard library
carefully before looking for external modules.

 If you do need an external module, prebuilt packages for your operating system
are the easiest option, but they’re sometimes older and often hard to find.

 The standard way to install from source is to use pip, and the best way to pre-
vent conflicts among multiple projects is to create virtual environments with the
venv module.

 Usually, the logical first step in searching for external modules is the Python
Package Index (PyPI).

https://pypi.python.org

Part 4

Working with data

In this part, you get some practice in using Python, and in particular using it
to work with data. Handling data is one of Python’s strengths. I start with basic
file handling; then I move through reading from and writing to flat files, work-
ing with more structured formats such as JSON and Excel, using databases, and
using Python to explore data.

 These chapters are more project-oriented than the rest of the book and are
intended to give you the opportunity to get hands-on experience in using
Python to handle data. The chapters and projects in this part can be done in any
order or combination that suits your needs.

274 CHAPTER

Basic file wrangling
This chapter deals with the basic operations you can use when you have an ever-
increasing collection of files to manage. Those files might be log files, or they
might be from a regular data feed, but whatever their source, you can’t simply dis-
card them immediately. How do you save them, manage them, and ultimately dis-
pose of them according to a plan, but without manual intervention?

20.1 The problem: The never-ending flow of data files
Many systems generate a continuous series of data files. These files might be the log
files from an e-commerce server or a regular process; they might be a nightly feed
of product information from a server; they might be automated feeds of items for
online advertising; historical data of stock trades; or they might come from a thou-
sand other sources. They’re often flat text files, uncompressed, with raw data that’s
either an input or a byproduct of other processes. In spite of their humble nature,

This chapter covers
 Moving and renaming files

 Compressing and encrypting files

 Selectively deleting files
275

276 CHAPTER 20 Basic file wrangling
however, the data they contain has some potential value, so the files can’t be discarded
at the end of the day—which means that every day, their numbers grow. Over time,
files accumulate until dealing with them manually becomes unworkable and until the
amount of storage they consume becomes unacceptable.

20.2 Scenario: The product feed from hell
A typical situation I’ve encountered is a daily feed of product data. This data might be
coming in from a supplier or going out for online marketing, but the basic aspects are
the same.

 Consider the example of a product feed coming from a supplier. The feed file
comes in once a day, with one row for each item that the business supplies. Each row
has fields for the supplier’s stock-keeping unit (SKU) number; a brief description of
the item; the item’s cost, height, width, length, and width; the item’s status (in stock or
back-ordered, say); and probably several other things, depending on the business.

 In addition to this basic info file, you might well be getting others, possibly of
related products, more detailed item attributes, or something else. In that case, you
end up with several files with the same filenames arriving every day and landing in the
same directory for processing.

 Now assume that you get three related files every day: item_info.txt,
item_attributes.txt, related_items.txt. These three files come in every day and get pro-
cessed. If processing were the only requirement, you wouldn’t have to worry much;
you could just let each day’s set of files replace the last and be done with it. But what if
you can’t throw the data away? You may want to keep the raw data in case there’s a
question about the accuracy of the process and you need to refer to past files. Or you
may want to track the changes in the data over time. Whatever the reason, the need to
keep the files means that you need to do some processing.

 The simplest thing you might do is mark the files with the dates on which they
were received and move them to an archive folder. That way, each new set of files can
be received, processed, renamed, and moved out of the way so that the process can be
repeated with no loss of data.

 After a few repetitions, the directory structure might look something like this:

working/
 item_info.txt
 item_attributes.txt
 related_items.txt
 archive/
 item_info_2017-09-15.txt
 item_attributes_2017-09-15.txt
 related_items_2017-09-15.txt
 item_info_2016-07-16.txt
 item_attributes_2017-09-16.txt
 related_items_2017-09-16.txt
 item_info_2017-09-17.txt
 item_attributes_2017-09-17.txt
 related_items_2017-09-17.txt
 ...

Main working folder, with
current files for processing

Subdirectory for archiving
processed files

277Scenario: The product feed from hell

C
p

curr
arch
Think about the steps needed to make this process happen. First, you need to rename
the files so that the current date is added to the filename. To do that, you need to get
the names of the files you want to rename; then you need to get the stem of the file-
names without the extensions. When you have the stem, you need to add a string
based on the current date, add the extension back to the end, and then actually
change the filename and move it to the archive directory.

QUICK CHECK : CONSIDER THE CHOICES What are your options for handling the
tasks I’ve identified? What modules in the standard library can you think of
that will do the job? If you want, you can even stop right now and work out the
code to do it. Then compare your solution with the one you develop later.

You can get the names of the files in several ways. If you’re sure that the names are
always exactly the same and that there aren’t many files, you could hardcode them into
your script. A safer way, however, is to use the pathlib module and a path object’s
glob method, as follows:

>>> import pathlib
>>> cur_path = pathlib.Path(".")
>>> FILE_PATTERN = "*.txt"
>>> path_list = cur_path.glob(FILE_PATTERN)
>>> print(list(path_list))
[PosixPath('item_attributes.txt'), PosixPath('related_items.txt'),

PosixPath('item_info.txt')]

Now you can step through the paths that match your FILE_PATTERN and apply the
needed changes. Remember that you need to add the date as part of the name of each
file, as well move the renamed files to the archive directory. When you use pathlib,
the entire operation might look like this.

import datetime
import pathlib

FILE_PATTERN = "*.txt"
ARCHIVE = "archive"

if __name__ == '__main__':

 date_string = datetime.date.today().strftime("%Y-%m-%d")

 cur_path = pathlib.Path(".")
 paths = cur_path.glob(FILE_PATTERN)

 for path in paths:
 new_filename = "{}_{}{}".format(path.stem, date_string, path.suffix)
 new_path = cur_path.joinpath(ARCHIVE, new_filename)
 path.rename(new_path)

Listing 20.1 File files_01.py

Sets the pattern to match files
and the archive directory

A directory named
“archive” must exist
for this code to run.

Uses the date object from the
datetime library to create a date

string based on today’s date

reates a new
ath from the
ent path, the
ive directory,
and the new

filename

Renames (and moves)
the file as one step

278 CHAPTER 20 Basic file wrangling
It’s worth noting here that Path objects make this operation simpler, because no spe-
cial parsing is needed to separate the filename stem and suffix. This operation is also
simpler than you might expect because the rename method can in effect move a file
by using a path that includes the new location.

 This script is a very simple one and does the job effectively in very few lines of
code. In the next sections, you consider how to handle more complex requirements.

QUICK CHECK: POTENTIAL PROBLEMS Because the preceding solution is very
simple, there are likely to be many situations that it won’t handle well. What
are some potential issues or problems that might arise with the example
script? How might you remedy these problems?

Consider the naming convention used for the files, which is based on the
year, month and name, in that order. What advantages do you see in that con-
vention? What might be the disadvantages? Can you make any arguments for
putting the date string somewhere else in the filename, such as the beginning
or the end?

20.3 More organization
The solution to storing files described in the previous section works, but it does have
some disadvantages. For one thing, as the files accumulate, managing them might
become a bit more trouble, because over the course of a year, you’d have 365 sets of
related files in the same directory, and you could find the related files only by inspect-
ing their names. If the files arrive more frequently, of course, or if there are more
related files in a set, the hassle would be even greater.

 To mitigate this problem, you can change the way you archive the files. Instead of
changing the filenames to include the dates on which they were received, you can cre-
ate a separate subdirectory for each set of files and name that subdirectory after the
date received. Your directory structure might look like this:

working/
 item_info.txt
 item_attributes.txt
 related_items.txt
 archive/
 2016-09-15/
 item_info.txt
 item_attributes.txt
 related_items.txt
 2016-09-16/
 item_info.txt
 item_attributes.txt
 related_items.txt
 2016-09-17/
 item_info.txt
 item_attributes.txt
 related_items.txt

Main working folder, with
current files for processing

Main subdirectory for
archiving processed files

Subdirectories
for each set of
files, named for
date received

279Saving storage space: Compression and grooming
This scheme has the advantage that each set of files is grouped together. No matter
how many sets of files you get or how many files you have in a set, it’s easy to find all
the files of a particular set.

TRY THIS: IMPLEMENTATION OF MULTIPLE DIRECTORIES How would you modify
the code that you developed to archive each set of files in subdirectories
named according to date received? Feel free to take the time to implement
the code and test it.

It turns out that archiving the files by subdirectory isn’t much more work than the first
solution. The only additional step is to create the subdirectory before renaming the
file. This script is one way to perform this step.

import datetime
import pathlib

FILE_PATTERN = "*.txt"
ARCHIVE = "archive"

if __name__ == '__main__':

 date_string = datetime.date.today().strftime("%Y-%m-%d")

 cur_path = pathlib.Path(".")

 new_path = cur_path.joinpath(ARCHIVE, date_string)
 new_path.mkdir()

 paths = cur_path.glob(FILE_PATTERN)

 for path in paths:
 path.rename(new_path.joinpath(path.name))

This solution groups related files, which makes managing them as sets somewhat easier.

QUICK CHECK: ALTERNATE SOLUTIONS How might you create a script that does
the same thing without using pathlib? What libraries and functions would
you use?

20.4 Saving storage space: Compression and grooming
So far, you’ve been concerned mainly with managing the groups of files received.
Over time, however, the data files accumulate until the amount of storage they need
becomes a concern. When that happens, you have several choices. One option is to
get a bigger disk. Particularly if you’re on a cloud-based platform, it may be easy and
economical to adopt this strategy. Do keep in mind, however, that adding storage
doesn’t really solve the problem; it merely postpones solving it.

Listing 20.2 File files_02.py

Note that this directory needs
to be created only once, before
the files are moved into it.

280 CHAPTER 20 Basic file wrangling
20.4.1 Compressing files

If the space that the files are taking up is an issue, the next approach you might con-
sider is compressing them. You have numerous ways to compress a file or set of files,
but in general, these methods are similar. In this section, you consider archiving each
day’s data file to a single zip file. If the files are mainly text files and are fairly large,
the savings in storage achieved by compression can be impressive.

 For this script, you use the same date string with a .zip extension as the name of
each zip file. In listing 20.2, you created a new directory in the archive directory and
then moved the files into it, which resulted in a directory structure that looks like this:

working/
 archive/
 2016-09-15.zip
 2016-09-16.zip
 2016-09-17.zip

Obviously, to use zip files you need to change some of the steps you used previously.

TRY THIS: ARCHIVING TO ZIP FILES PSEUDOCODE Write the pseudocode for a solu-
tion that stores data files in zip files. What modules and functions or methods
do you intend to use? Try coding your solution to make sure that it works.

One key addition in the new script is an import of the zipfile library and with it, the
code to create a new zip file object in the archive directory. After that, you can use the
zip file object to write the data files to the new zip file. Finally, because you’re no lon-
ger actually moving files, you need to remove the original files from the working direc-
tory. One solution looks like this.

import datetime
import pathlib
import zipfile

FILE_PATTERN = "*.txt"
ARCHIVE = "archive"

if __name__ == '__main__':

 date_string = datetime.date.today().strftime("%Y-%m-%d")

 cur_path = pathlib.Path(".")
 paths = cur_path.glob(FILE_PATTERN)

 zip_file_path = cur_path.joinpath(ARCHIVE, date_string + ".zip")
 zip_file = zipfile.ZipFile(str(zip_file_path), "w")

Listing 20.3 File files_03.py

Main working folder, where current files are processed;
these files are archived and removed after processing.

Zip files, each one containing that day’s
item_info.txt, attribute_info.text, and
related_items.txt

Imports zipfile
library

Creates the path to the zip
file in the archive directory

Opens the new zip file object for writing; str()
is needed to convert a Path to a string.

281Saving storage space: Compression and grooming
 for path in paths:
 zip_file.write(str(path))
 path.unlink()

20.4.2 Grooming files

Compressing data files into zipfile archives can save an impressive amount of space
and may be all you need. If you have a lot of files, however, or files that don’t compress
much (such as JPEG image files), you may still find yourself running short of storage
space. You may also find that your data doesn’t change much, making it unnecessary
to keep an archived copy of every data set in the longer term. That is, although it may
be useful to keep every day’s data for the past week or month, it may not be worth the
storage to keep every data set for much longer. For data older than a few months, it
may be acceptable to keep just one set of files per week or even one set per month.

 The process of removing files after they reach a certain age is sometimes called
grooming. Suppose that after several months of receiving a set of data files every day
and archiving them in a zip file, you’re told that you should retain only one file a week
of the files that are more than one month old.

 The simplest grooming script removes any files that you no longer need—in this
case, all but one file a week for anything older than a month old. In designing this
script, it’s helpful to know the answers to two questions:

 Because you need to save one file a week, would it be much easier to simply pick
the day of the week you want to save?

 How often should you do this grooming: daily, weekly, or once a month? If you
decide that grooming should take place daily, it might make sense to combine
the grooming with the archiving script. If, on the other hand, you need to
groom only once a week or once a month, the two operations should be in sep-
arate scripts.

For this example, to keep things clear, you write a separate grooming script that can
be run at any interval and that removes all the unneeded files. Further, assume that
you’ve decided to keep only the files received on Tuesdays that are more than one
month old. Here is a sample grooming script.

from datetime import datetime, timedelta
import pathlib
import zipfile

FILE_PATTERN = "*.zip"
ARCHIVE = "archive"
ARCHIVE_WEEKDAY = 1
if __name__ == '__main__':

Listing 20.4 File files_04.py

Writes the current
file to the zip fileRemoves the current file

from the working directory

282 CHAPTER 20 Basic file wrangling

Su

an
tim
 cur_path = pathlib.Path(".")
 zip_file_path = cur_path.joinpath(ARCHIVE)

 paths = zip_file_path.glob(FILE_PATTERN)
 current_date = datetime.today()

 for path in paths:
 name = path.stem
 path_date = datetime.strptime(name, "%Y-%m-%d")
 path_timedelta = current_date - path_date
 if path_timedelta > timedelta(days=30) and path_date.weekday() !=

ARCHIVE_WEEKDAY:
 path.unlink()

The code shows how Python’s datetime and pathlib libraries can be combined to
groom files by date with only a few lines of code. Because your archive files have
names derived from the dates on which they were received, you can get those file
paths by using the glob method, extract the stem, and use strptime to parse it into
a datetime object. From there, you can use datetime’s timedelta objects and the
weekday() method to find a file’s age and the day of the week, and then remove
(unlink) the files you don’t need.

QUICK CHECK: CONSIDER DIFFERENT PARAMETERS Take some time to consider
different grooming options. How would you modify the code in listing 20.4 to
keep only one file a month? How would you change it so that files from the
previous month and older were groomed to save one a week? (Note: This is
not the same as older than 30 days!)

Summary
 The pathlib module can greatly simplify file operations such as finding the

root and extension, moving and renaming, and matching wildcards.
 As the number and complexity of files increase, automated archiving solutions

are vital, and Python offers several easy ways to create them.
 You can dramatically save storage space by compressing and grooming data

files.

Gets a datetime object
for the current daypath.stem

returns the
filename

without any
extension.

strptime parses a string
into a datetime object based

on the format string.

btracting one
date from

other yields a
edelta object. timedelta(days=30) creates a timedelta object of

30 days; the weekday() method returns an integer
for the day of the week, with Monday = 0.

Processing data files
Much of the data available is contained in text files. This data can range from
unstructured text, such as a corpus of tweets or literary texts, to more structured
data in which each row is a record and the fields are delimited by a special charac-
ter, such as a comma, a tab, or a pipe (|). Text files can be huge; a data set can be
spread over tens or even hundreds of files, and the data in it can be incomplete or
horribly dirty. With all the variations, it’s almost inevitable that you’ll need to read
and use data from text files. This chapter gives you strategies for using Python to do
exactly that.

This chapter covers
 Using ETL (extract-transform-load)

 Reading text data files (plain text and CSV)

 Reading spreadsheet files

 Normalizing, cleaning, and sorting data

 Writing data files
283

284 CHAPTER 21 Processing data files
21.1 Welcome to ETL
The need to get data out of files, parse it, turn it into a useful format, and then do
something with it has been around for as long as there have been data files. In fact,
there is a standard term for the process: extract-transform-load (ETL). The extraction
refers to the process of reading a data source and parsing it, if necessary. The transfor-
mation can be cleaning and normalizing the data, as well as combining, breaking up,
or reorganizing the records it contains. The loading refers to storing the transformed
data in a new place, either a different file or a database. This chapter deals with the
basics of ETL in Python, starting with text-based data files and storing the transformed
data in other files. I look at more structured data files in chapter 22 and storage in
databases in chapter 23.

21.2 Reading text files
The first part of ETL—the “extract” portion—involves opening a file and reading its
contents. This process seems like a simple one, but even at this point there can be
issues, such as the file’s size. If a file is too large to fit into memory and be manipu-
lated, you need to structure your code to handle smaller segments of the file, possibly
operating one line at a time.

21.2.1 Text encoding: ASCII, Unicode, and others

Another possible pitfall is in the encoding. This chapter deals with text files, and in
fact, much of the data exchanged in the real world is in text files. But the exact nature
of text can vary from application to application, from person to person, and of course
from country to country.

 Sometimes, text means something in the ASCII encoding, which has 128 charac-
ters, only 95 of which are printable. The good news about ASCII encoding is that it’s
the lowest common denominator of most data exchange. The bad news is that it
doesn’t begin to handle the complexities of the many alphabets and writing systems of
the world. Reading files using ASCII encoding is almost certain to cause trouble and
throw errors on character values that it doesn’t understand, whether it’s a German ü, a
Portuguese ç, or something from almost any language other than English.

 These errors arise because ASCII is based on 7-bit values, whereas the bytes in a
typical file are 8 bits, allowing 256 possible values as opposed to the 128 of a 7-bit
value. It’s routine to use those additional values to store additional characters—any-
thing from extra punctuation (such as the printer’s en dash and em dash) to symbols
(such as the trademark, copyright, and degree symbols) to accented versions of alpha-
betical characters. The problem has always been that if, in reading a text file, you
encounter a character in the 128 outside the ASCII range, you have no way of know-
ing for sure how it was encoded. Is the character value of 214, say, a division symbol,
an Ö, or something else? Short of having the code that created the file, you have no
way to know.

285Reading text files
UNICODE AND UTF-8
One way to mitigate this confusion is Unicode. The Unicode encoding called UTF-8
accepts the basic ASCII characters without any change but also allows an almost
unlimited set of other characters and symbols according to the Unicode standard.
Because of its flexibility, UTF-8 was used in more 85% of web pages served at the time
I wrote this chapter, which means that your best bet for reading text files is to assume
UTF-8 encoding. If the files contain only ASCII characters, they’ll still be read cor-
rectly, but you’ll also be covered if other characters are encoded in UTF-8. The good
news is that the Python 3 string data type was designed to handle Unicode by default.

 Even with Unicode, there’ll be occasions when your text contains values that can’t
be successfully encoded. Fortunately, the open function in Python accepts an optional
errors parameter that tells it how to deal with encoding errors when reading or writ-
ing files. The default option is 'strict', which causes an error to be raised whenever
an encoding error is encountered. Other useful options are 'ignore', which causes
the character causing the error to be skipped; 'replace', which causes the character
to be replaced by a marker character (often, ?); 'backslashreplace', which
replaces the character with a backslash escape sequence; and 'surrogateescape',
which translates the offending character to a private Unicode code point on reading
and back to the original sequence of bytes on writing. Your particular use case will
determine how strict you need to be in handling or resolving encoding issues.

 Look at a short example of a file containing an invalid UTF-8 character, and see
how the different options handle that character. First, write the file, using bytes and
binary mode:

>>> open('test.txt', 'wb').write(bytes([65, 66, 67, 255, 192,193]))

This code results in a file that contains “ABC” followed by three non-ASCII characters,
which may be rendered differently depending on the encoding used. If you use vim to
look at the file, you see

ABCÿÀÁ
~

Now that you have the file, try reading it with the default 'strict' errors option:

>>> x = open('test.txt').read()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/local/lib/python3.6/codecs.py", line 321, in decode
 (result, consumed) = self._buffer_decode(data, self.errors, final)
UnicodeDecodeError: 'utf-8' codec can't decode byte 0xff in position 3:

invalid start byte

The fourth byte, which had a value of 255, isn’t a valid UTF-8 character in that posi-
tion, so the 'strict' errors setting raises an exception. Now see how the other

286 CHAPTER 21 Processing data files
error options handle the same file, keeping in mind that the last three characters
raise an error:

>>> open('test.txt', errors='ignore').read()
'ABC'
>>> open('test.txt', errors='replace').read()
'ABC���'
>>> open('test.txt', errors='surrogateescape').read()
'ABC\udcff\udcc0\udcc1'
>>> open('test.txt', errors='backslashreplace').read()
'ABC\\xff\\xc0\\xc1'
>>>

If you want any problem characters to disappear, 'ignore' is the option to use. The
'replace' option only marks the place occupied by the invalid character, and the
other options in different ways attempt to preserve the invalid characters without
interpretation.

21.2.2 Unstructured text

Unstructured text files are the easiest sort of data to read but the hardest to extract
information from. Processing unstructured text can vary enormously, depending on
both the nature of the text and what you want to do with it, so any comprehensive dis-
cussion of text processing is beyond the scope of this book. A short example, however,
can illustrate some of the basic issues and set the stage for a discussion of structured
text data files.

 One of the simplest issues is deciding what forms a basic logical unit in the file. If you
have a corpus of thousands of tweets, the text of Moby Dick, or a collection of news sto-
ries, you need to be able to break them up into cohesive units. In the case of tweets, each
may fit onto a single line, and you can read and process each line of the file fairly simply.

 In the case of Moby Dick or even a news story, the problem can be trickier. You may
not want to treat all of a novel or news item as a single item in many cases. But if that’s
the case, you need to decide what sort of unit you do want and then come up with a
strategy to divide the file accordingly. Perhaps you want to consider the text paragraph
by paragraph. In that case, you need to identify how paragraphs are separated in your
file and create your code accordingly. If a paragraph is the same as a line in the text
file, the job is easy. Often, however, the line breaks in a text file are shorter, and you
need to do a bit more work.

 Now look at a couple of examples:

Call me Ishmael. Some years ago--never mind how long precisely--
having little or no money in my purse, and nothing particular
to interest me on shore, I thought I would sail about a little
and see the watery part of the world. It is a way I have
of driving off the spleen and regulating the circulation.
Whenever I find myself growing grim about the mouth;
whenever it is a damp, drizzly November in my soul; whenever I
find myself involuntarily pausing before coffin warehouses,
and bringing up the rear of every funeral I meet;
and especially whenever my hypos get such an upper hand of me,

287Reading text files
that it requires a strong moral principle to prevent me from
deliberately stepping into the street, and methodically knocking
people's hats off--then, I account it high time to get to sea
as soon as I can. This is my substitute for pistol and ball.
With a philosophical flourish Cato throws himself upon his sword;
I quietly take to the ship. There is nothing surprising in this.
If they but knew it, almost all men in their degree, some time
or other, cherish very nearly the same feelings towards
the ocean with me.

There now is your insular city of the Manhattoes, belted round by wharves
as Indian isles by coral reefs--commerce surrounds it with her surf.
Right and left, the streets take you waterward. Its extreme downtown
is the battery, where that noble mole is washed by waves, and cooled
by breezes, which a few hours previous were out of sight of land.
Look at the crowds of water-gazers there.

In the sample, which is indeed the beginning of Moby Dick, the lines are broken more
or less as they might be on the page, and paragraphs are indicated by a single blank
line. If you want to deal with each paragraph as a unit, you need to break the text on
the blank lines. Fortunately, this task is easy if you use the string split() method.
Each newline character in a string can represented by "\n". Naturally, the last line of
a paragraph’s text ends with a newline, and if the next line is blank, it’s immediately
followed by a second newline for the blank line:

>>> moby_text = open("moby_01.txt").read()
>>> moby_paragraphs = moby_text.split("\n\n")
>>> print(moby_paragraphs[1])
There now is your insular city of the Manhattoes, belted round by wharves
as Indian isles by coral reefs--commerce surrounds it with her surf.
Right and left, the streets take you waterward. Its extreme downtown
is the battery, where that noble mole is washed by waves, and cooled
by breezes, which a few hours previous were out of sight of land.
Look at the crowds of water-gazers there.

Splitting the text into paragraphs is a very simple first step in handling unstructured
text. You might also need to do more normalization of the text before processing.
Suppose that you want to count the rate of occurrence of every word in a text file. If
you just split the file on whitespace, you get a list of words in the file. Counting their
occurrences accurately will be hard, however, because This, this, this., and this, are not
the same. The way to make this code work is to normalize the text by removing the
punctuation and making everything the same case before processing. For the example
text above, the code for a normalized list of words might look like this:

>>> moby_text = open("moby_01.txt").read()
>>> moby_paragraphs = moby_text.split("\n\n")
>>> moby = moby_paragraphs[1].lower()

Reads all of file as
a single string Splits on two

newlines together

Reads all of the file
as a single string

Makes everything
lowercase

288 CHAPTER 21 Processing data files
>>> moby = moby.replace(".", "")
>>> moby = moby.replace(",", "")
>>> moby_words = moby.split()
>>> print(moby_words)
['there', 'now', 'is', 'your', 'insular', 'city', 'of', 'the', 'manhattoes,',

'belted', 'round', 'by', 'wharves', 'as', 'indian', 'isles', 'by',
'coral', 'reefs--commerce', 'surrounds', 'it', 'with', 'her', 'surf',
'right', 'and', 'left,', 'the', 'streets', 'take', 'you', 'waterward',
'its', 'extreme', 'downtown', 'is', 'the', 'battery,', 'where', 'that',
'noble', 'mole', 'is', 'washed', 'by', 'waves,', 'and', 'cooled', 'by',
'breezes,', 'which', 'a', 'few', 'hours', 'previous', 'were', 'out',
'of', 'sight', 'of', 'land', 'look', 'at', 'the', 'crowds', 'of',
'water-gazers', 'there']

QUICK CHECK: NORMALIZATION Look closely at the list of words generated. Do
you see any issues with the normalization so far? What other issues do you
think you might encounter in a longer section of text? How do you think you
might deal with those issues?

21.2.3 Delimited flat files

Although reading unstructured text files is easy, the downside is their very lack of
structure. It’s often much more useful to have some organization in the file to help
with picking out individual values. The simplest way is to break the file into lines and
have one element of information per line. You may have a list of the names of files to
be processed, a list of people’s names that need to be printed (on name tags, say), or
maybe a series of temperature readings from a remote monitor. In such cases, the data
parsing is very simple: You read in the line and convert it to the right type, if necessary.
Then the file is ready to use.

 Most of the time, however, things aren’t not quite so simple. Usually, you need to
group multiple related bits of information, and you need your code to read them in
together. The common way to do this is to put the related pieces of information on
the same line, separated by a special character. That way, as you read each line of the
file, you can use the special characters to split the file into its different fields and put
the values of those fields in variables for later processing.

 This file is a simple example of temperature data in delimited format:

State|Month Day, Year Code|Avg Daily Max Air Temperature (F)|Record Count for
Daily Max Air Temp (F)

Illinois|1979/01/01|17.48|994
Illinois|1979/01/02|4.64|994
Illinois|1979/01/03|11.05|994
Illinois|1979/01/04|9.51|994
Illinois|1979/05/15|68.42|994
Illinois|1979/05/16|70.29|994
Illinois|1979/05/17|75.34|994
Illinois|1979/05/18|79.13|994
Illinois|1979/05/19|74.94|994

This data is pipe-delimited, meaning that each field in the line is separated by the
pipe (|) character, in this case giving you four fields: the state of the observations, the

Removes
periodsRemoves

commas

289Reading text files
date of the observations, the average high temperature, and the number of stations
reporting. Other common delimiters are the tab character and the comma. The
comma is perhaps the most common, but the delimiter could be any character you
don’t expect to occur in the values. (More about that issue next.) Comma delimiters
are so common that this format is often called CSV (comma-separated values), and
files of this type often have a .csv extension as a hint of their format.

 Whatever character is being used as the delimiter, if you know what character it is,
you can write your own code in Python to break each line into its fields and return
them as a list. In the previous case, you can use the string split() method to break a
line into a list of values:

>>> line = "Illinois|1979/01/01|17.48|994"
>>> print(line.split("|"))
['Illinois', '1979/01/01', '17.48', '994']

Note that this technique is very easy to do but leaves all the values as strings, which
might not be convenient for later processing.

TRY THIS: READ A FILE Write the code to read a text file (assume
temp_data_pipes_00a.txt, as shown in the example), split each line of the file
into a list of values, and add that list to a single list of records.

What issues or problems did you encounter in implementing this code? How
might you go about converting the last three fields to the correct date, real,
and int types?

21.2.4 The csv module

If you need to do much processing of delimited data files, you should become familiar
with the csv module and its options. When I’ve been asked to name my favorite mod-
ule in the Python standard library, more than once I’ve cited the csv module—not
because it’s glamorous (it isn’t), but because it has probably saved me more work and
kept me from more self-inflicted bugs over my career than any other module.

 The csv module is a perfect case of Python’s “batteries included” philosophy.
Although it’s perfectly possible, and in many cases not even terribly hard, to roll your
own code to read delimited files, it’s even easier and much more reliable to use the
Python module. The csv module has been tested and optimized, and it has features
that you probably wouldn’t bother to write if you had to do it yourself, but that are
truly handy and time-saving when available.

 Look at the previous data, and decide how you’d read it by using the csv module.
The code to parse the data has to do two things: read each line and strip off the trail-
ing newline character, and then break up the line on the pipe character and append
that list of values to a list of lines. Your solution to the exercise might look something
like this:

>>> results = []
>>> for line in open("temp_data_pipes_00a.txt"):
... fields = line.strip().split("|")

290 CHAPTER 21 Processing data files

... results.append(fields)

...
>>> results
[['State', 'Month Day, Year Code', 'Avg Daily Max Air Temperature (F)',

'Record Count for Daily Max Air Temp (F)'], ['Illinois', '1979/01/01',
'17.48', '994'], ['Illinois', '1979/01/02', '4.64', '994'], ['Illinois',
'1979/01/03', '11.05', '994'], ['Illinois', '1979/01/04', '9.51',
'994'], ['Illinois', '1979/05/15', '68.42', '994'], ['Illinois', '1979/
05/16', '70.29', '994'], ['Illinois', '1979/05/17', '75.34', '994'],
['Illinois', '1979/05/18', '79.13', '994'], ['Illinois', '1979/05/19',
'74.94', '994']]

To do the same thing with the csv module, the code might be something like this:

>>> import csv
>>> results = [fields for fields in

csv.reader(open("temp_data_pipes_00a.txt", newline=''), delimiter="|")]
>>> results
[['State', 'Month Day, Year Code', 'Avg Daily Max Air Temperature (F)',

'Record Count for Daily Max Air Temp (F)'], ['Illinois', '1979/01/01',
'17.48', '994'], ['Illinois', '1979/01/02', '4.64', '994'], ['Illinois',
'1979/01/03', '11.05', '994'], ['Illinois', '1979/01/04', '9.51',
'994'], ['Illinois', '1979/05/15', '68.42', '994'], ['Illinois', '1979/
05/16', '70.29', '994'], ['Illinois', '1979/05/17', '75.34', '994'],
['Illinois', '1979/05/18', '79.13', '994'], ['Illinois', '1979/05/19',
'74.94', '994']]

In this simple case, the gain over rolling your own code doesn’t seem so great. Still,
the code is two lines shorter and a bit clearer, and there’s no need to worry about
stripping off newline characters. The real advantages come when you want to deal
with more challenging cases.

 The data in the example is real, but it’s actually been simplified and cleaned. The
real data from the source is more complex. The real data has more fields, some fields
are in quotes while others are not, and the first field is empty. The original is tab-
delimited, but for the sake of illustration, I present it as comma-delimited here:

"Notes","State","State Code","Month Day, Year","Month Day, Year Code",Avg
Daily Max Air Temperature (F),Record Count for Daily Max Air Temp
(F),Min Temp for Daily Max Air Temp (F),Max Temp for Daily Max Air Temp
(F),Avg Daily Max Heat Index (F),Record Count for Daily Max Heat Index
(F),Min for Daily Max Heat Index (F),Max for Daily Max Heat Index
(F),Daily Max Heat Index (F) % Coverage

,"Illinois","17","Jan 01, 1979","1979/01/
01",17.48,994,6.00,30.50,Missing,0,Missing,Missing,0.00%

,"Illinois","17","Jan 02, 1979","1979/01/02",4.64,994,-
6.40,15.80,Missing,0,Missing,Missing,0.00%

,"Illinois","17","Jan 03, 1979","1979/01/03",11.05,994,-
0.70,24.70,Missing,0,Missing,Missing,0.00%

,"Illinois","17","Jan 04, 1979","1979/01/
04",9.51,994,0.20,27.60,Missing,0,Missing,Missing,0.00%

,"Illinois","17","May 15, 1979","1979/05/
15",68.42,994,61.00,75.10,Missing,0,Missing,Missing,0.00%

,"Illinois","17","May 16, 1979","1979/05/
16",70.29,994,63.40,73.50,Missing,0,Missing,Missing,0.00%

291Reading text files
,"Illinois","17","May 17, 1979","1979/05/
17",75.34,994,64.00,80.50,82.60,2,82.40,82.80,0.20%

,"Illinois","17","May 18, 1979","1979/05/
18",79.13,994,75.50,82.10,81.42,349,80.20,83.40,35.11%

,"Illinois","17","May 19, 1979","1979/05/
19",74.94,994,66.90,83.10,82.87,78,81.60,85.20,7.85%

Notice that some fields include commas. The convention in that case is to put quotes
around a field to indicate that it’s not supposed to be parsed for delimiters. It’s quite
common, as here, to quote only some fields, especially those in which a value might
contain the delimiter character. It also happens, as here, that some fields are quoted
even if they’re not likely to contain the delimiting character.

 In a case like this one, your home-grown code becomes cumbersome. Now you can
no longer split the line on the delimiting character; you need to be sure that you look
only at delimiters that aren’t inside quoted strings. Also, you need to remove the
quotes around quoted strings, which might occur in any position or not at all. With
the csv module, you don’t need to change your code at all. In fact, because the
comma is the default delimiter, you don’t even need to specify it:

>>> results2 = [fields for fields in csv.reader(open("temp_data_01.csv",
newline=''))]

>>> results2
[['Notes', 'State', 'State Code', 'Month Day, Year', 'Month Day, Year Code',

'Avg Daily Max Air Temperature (F)', 'Record Count for Daily Max Air
Temp (F)', 'Min Temp for Daily Max Air Temp (F)', 'Max Temp for Daily
Max Air Temp (F)', 'Avg Daily Min Air Temperature (F)', 'Record Count
for Daily Min Air Temp (F)', 'Min Temp for Daily Min Air Temp (F)', 'Max
Temp for Daily Min Air Temp (F)', 'Avg Daily Max Heat Index (F)',
'Record Count for Daily Max Heat Index (F)', 'Min for Daily Max Heat
Index (F)', 'Max for Daily Max Heat Index (F)', 'Daily Max Heat Index
(F) % Coverage'], ['', 'Illinois', '17', 'Jan 01, 1979', '1979/01/01',
'17.48', '994', '6.00', '30.50', '2.89', '994', '-13.60', '15.80',
'Missing', '0', 'Missing', 'Missing', '0.00%'], ['', 'Illinois', '17',
'Jan 02, 1979', '1979/01/02', '4.64', '994', '-6.40', '15.80', '-9.03',
'994', '-23.60', '6.60', 'Missing', '0', 'Missing', 'Missing', '0.00%'],
['', 'Illinois', '17', 'Jan 03, 1979', '1979/01/03', '11.05', '994', '-
0.70', '24.70', '-2.17', '994', '-18.30', '12.90', 'Missing', '0',
'Missing', 'Missing', '0.00%'], ['', 'Illinois', '17', 'Jan 04, 1979',
'1979/01/04', '9.51', '994', '0.20', '27.60', '-0.43', '994', '-16.30',
'16.30', 'Missing', '0', 'Missing', 'Missing', '0.00%'], ['',
'Illinois', '17', 'May 15, 1979', '1979/05/15', '68.42', '994', '61.00',
'75.10', '51.30', '994', '43.30', '57.00', 'Missing', '0', 'Missing',
'Missing', '0.00%'], ['', 'Illinois', '17', 'May 16, 1979', '1979/05/
16', '70.29', '994', '63.40', '73.50', '48.09', '994', '41.10', '53.00',
'Missing', '0', 'Missing', 'Missing', '0.00%'], ['', 'Illinois', '17',
'May 17, 1979', '1979/05/17', '75.34', '994', '64.00', '80.50', '50.84',
'994', '44.30', '55.70', '82.60', '2', '82.40', '82.80', '0.20%'], ['',
'Illinois', '17', 'May 18, 1979', '1979/05/18', '79.13', '994', '75.50',
'82.10', '55.68', '994', '50.00', '61.10', '81.42', '349', '80.20',
'83.40', '35.11%'], ['', 'Illinois', '17', 'May 19, 1979', '1979/05/19',
'74.94', '994', '66.90', '83.10', '58.59', '994', '50.90', '63.20',
'82.87', '78', '81.60', '85.20', '7.85%']]

292 CHAPTER 21 Processing data files
Notice that the extra quotes have been removed and that any field values with com-
mas have the commas intact inside the fields—all without any more characters in the
command.

QUICK CHECK: HANDLING QUOTING Consider how you’d approach the problems
of handling quoted fields and embedded delimiter characters if you didn't
have the csv library. Which would be easier to handle: the quoting or the
embedded delimiters?

21.2.5 Reading a csv file as a list of dictionaries

In the preceding examples, you got a row of data back as a list of fields. This result
works fine in many cases, but sometimes it may be handy to get the rows back as dic-
tionaries where the field name is the key. For this use case, the csv library has a
DictReader, which can take a list of fields as a parameter or can read them from the
first line of the data. If you want to open the data with a DictReader, the code would
look like this:

>>> results = [fields for fields in csv.DictReader(open("temp_data_01.csv",
newline=''))]

>>> results[0]
OrderedDict([('Notes', ''), ('State', 'Illinois'), ('State Code', '17'),

('Month Day, Year', 'Jan 01, 1979'), ('Month Day, Year Code', '1979/01/
01'), ('Avg Daily Max Air Temperature (F)', '17.48'), ('Record Count for
Daily Max Air Temp (F)', '994'), ('Min Temp for Daily Max Air Temp (F)',
'6.00'), ('Max Temp for Daily Max Air Temp (F)', '30.50'), ('Avg Daily
Min Air Temperature (F)', '2.89'), ('Record Count for Daily Min Air Temp
(F)', '994'), ('Min Temp for Daily Min Air Temp (F)', '-13.60'), ('Max
Temp for Daily Min Air Temp (F)', '15.80'), ('Avg Daily Max Heat Index
(F)', 'Missing'), ('Record Count for Daily Max Heat Index (F)', '0'),
('Min for Daily Max Heat Index (F)', 'Missing'), ('Max for Daily Max
Heat Index (F)', 'Missing'), ('Daily Max Heat Index (F) % Coverage',
'0.00%')])

Note that the csv.DictReader returns OrderedDicts, so the fields stay in their
original order. Although their representation is a little different, the fields still behave
like dictionaries:

>>> results[0]['State']
'Illinois'

If the data is particularly complex, and specific fields need to be manipulated, a
DictReader can make it much easier to be sure you’re getting the right field; it also
makes your code somewhat easier to understand. Conversely, if your data set is quite
large, you need to keep in mind that DictReader can take on the order of twice as
long to read the same amount of data.

21.3 Excel files
The other common file format that I discuss in this chapter is the Excel file, which is
the format that Microsoft Excel uses to store spreadsheets. I include Excel files here

293Excel files
because the way you end up treating them is very similar to the way you treat delimited
files. In fact, because Excel can both read and write CSV files, the quickest and easiest
way to extract data from an Excel spreadsheet file often is to open it in Excel and then
save it as a CSV file. This procedure doesn’t always make sense, however, particularly if
you have a lot of files. In that case, even though you could theoretically automate the
process of opening and saving each file in CSV format, it’s probably faster to deal with
the Excel files directly.

 It’s beyond the scope of this book to have an in-depth discussion of spreadsheet
files, with their options for multiple sheets in the same file, macros, and various for-
matting options. Instead, in this section I look at an example of reading a simple one-
sheet file simply to extract the data from it.

 As it happens, Python’s standard library doesn’t have a module to read or write
Excel files. To read that format, you need to install an external module. Fortunately,
several modules are available to do the job. For this example, you use one called
OpenPyXL, which is available from the Python package repository. You can install it
with the following command from a command line:

$pip install openpyxl

Here’s a view of the previous data, but in a spreadsheet:

Reading the file is fairly simple, but it’s still more work than CSV files require. First,
you need to load the workbook; next, you need to get the specific sheet; then you can
iterate over the rows; and from there, you extract the values of the cells. Some sample
code to read the spreadsheet looks like this:

>>> from openpyxl import load_workbook
>>> wb = load_workbook('temp_data_01.xlsx')
>>> results = []
>>> ws = wb.worksheets[0]
>>> for row in ws.iter_rows():
... results.append([cell.value for cell in row])
...
>>> print(results)
[['Notes', 'State', 'State Code', 'Month Day, Year', 'Month Day, Year Code',

'Avg Daily Max Air Temperature (F)', 'Record Count for Daily Max Air
Temp (F)', 'Min Temp for Daily Max Air Temp (F)', 'Max Temp for Daily

294 CHAPTER 21 Processing data files
Max Air Temp (F)', 'Avg Daily Max Heat Index (F)', 'Record Count for
Daily Max Heat Index (F)', 'Min for Daily Max Heat Index (F)', 'Max for
Daily Max Heat Index (F)', 'Daily Max Heat Index (F) % Coverage'],
[None, 'Illinois', 17, 'Jan 01, 1979', '1979/01/01', 17.48, 994, 6,
30.5, 'Missing', 0, 'Missing', 'Missing', '0.00%'], [None, 'Illinois',
17, 'Jan 02, 1979', '1979/01/02', 4.64, 994, -6.4, 15.8, 'Missing', 0,
'Missing', 'Missing', '0.00%'], [None, 'Illinois', 17, 'Jan 03, 1979',
'1979/01/03', 11.05, 994, -0.7, 24.7, 'Missing', 0, 'Missing',
'Missing', '0.00%'], [None, 'Illinois', 17, 'Jan 04, 1979', '1979/01/
04', 9.51, 994, 0.2, 27.6, 'Missing', 0, 'Missing', 'Missing', '0.00%'],
[None, 'Illinois', 17, 'May 15, 1979', '1979/05/15', 68.42, 994, 61,
75.1, 'Missing', 0, 'Missing', 'Missing', '0.00%'], [None, 'Illinois',
17, 'May 16, 1979', '1979/05/16', 70.29, 994, 63.4, 73.5, 'Missing', 0,
'Missing', 'Missing', '0.00%'], [None, 'Illinois', 17, 'May 17, 1979',
'1979/05/17', 75.34, 994, 64, 80.5, 82.6, 2, 82.4, 82.8, '0.20%'],
[None, 'Illinois', 17, 'May 18, 1979', '1979/05/18', 79.13, 994, 75.5,
82.1, 81.42, 349, 80.2, 83.4, '35.11%'], [None, 'Illinois', 17, 'May 19,
1979', '1979/05/19', 74.94, 994, 66.9, 83.1, 82.87, 78, 81.6, 85.2,
'7.85%']]

This code gets you the same results as the much simpler code did for a csv file. It’s not
surprising that the code to read a spreadsheet is more complex, because spreadsheets
are themselves much more complex objects. You should also be sure that you under-
stand the way that data has been stored in the spreadsheet. If the spreadsheet contains
formatting that has some significance, if labels need to be disregarded or handled dif-
ferently, or if formulas and references need to be processed, you need to dig deeper
into how those elements should be processed, and you need to write more-complex code.

 Spreadsheets also often have other possible issues. At this writing, it’s common for
spreadsheets to be limited to around a million rows. Although that limit sounds large,
more and more often you’ll need to handle data sets that are larger. Also, spread-
sheets sometimes automatically apply inconvenient formatting. One company I
worked for had part numbers that consisted of a digit and at least one letter followed
by some combination of digits and letters. It was possible to get a part number such as
1E20. Most spreadsheets automatically interpret 1E20 as scientific notation and save it
as 1.00E+20 (1 times 10 to the 20th power) while leaving 1F20 as a string. For some rea-
son, it’s rather difficult to keep this from happening, and particularly with a large data
set, the problem won’t be detected until farther down the pipeline, if all. For these
reasons, I recommend using CSV or delimited files when at all possible. Users usually
can save a spreadsheet as CSV, so there’s usually no need put up with the extra com-
plexity and formatting hassles that spreadsheets involve.

21.4 Data cleaning
One common problem you’ll encounter in processing text-based data files is dirty
data. By dirty, I mean that there are all sorts of surprises in the data, such as null val-
ues, values that aren’t legal for your encoding, or extra whitespace. The data may also
be unsorted or in an order that makes processing difficult. The process of dealing
with situations like these is called data cleaning.

295Data cleaning
21.4.1 Cleaning

In a very simple example data clean, you might need to process a file that was
exported from a spreadsheet or other financial program, and the columns dealing
with money may have percentage and currency symbols (such as %, $, £, and ?), as
well as extra groupings that use a period or comma. Data from other sources may have
other surprises that make processing tricky if they’re not caught in advance. Look
again at the temperature data you saw previously. The first data line looks like this:

 [None, 'Illinois', 17, 'Jan 01, 1979', '1979/01/01', 17.48, 994, 6, 30.5,
2.89, 994, -13.6, 15.8, 'Missing', 0, 'Missing', 'Missing', '0.00%']

Some columns, such as 'State' (field 2) and 'Notes' (field 1), are clearly text, and
you wouldn’t be likely to do much with them. There are also two date fields in differ-
ent formats, and you might well want to do calculations with the dates, possibly to
change the order of the data and to group rows by month or day, or possibly to calcu-
late how far apart in time two rows are.

 The rest of the fields seem to be different types of numbers; the temperatures are
decimals, and the record counts columns are integers. Notice, however, that the heat
index temperatures have a variation: When the value for the 'Max Temp for Daily
Max Air Temp (F)' field is below 80, the values for the heat index fields aren’t
reported, but instead are listed as 'Missing', and the record count is 0. Also note
that the 'Daily Max Heat Index (F) % Coverage' field is expressed as a per-
centage of the number of temperature records that also qualify to have a heat index.
Both of these issues will be problematic if you want to do any math calculations on the
values in those fields, because both 'Missing' and any number ending with % will
be parsed as strings, not numbers.

 Cleaning data like this can be done at different steps in the process. Quite often, I
prefer to clean the data as it’s being read from the file, so I might well replace the
'Missing' with a None value or an empty string as the lines are being processed.
You could also leave the 'Missing' strings in place and write your code so that no
math operations are performed on a value if it is 'Missing'.

TRY THIS: CLEANING DATA How would you handle the fields with 'Missing'
as possible values for math calculations? Can you write a snippet of code that
averages one of those columns?

What would you do with the average column at the end so that you could also
report the average coverage? In your opinion, would the solution to this prob-
lem be at all linked to the way that the 'Missing' entries were handled?

21.4.2 Sorting

As I mentioned earlier, it’s often useful to have data in the text file sorted before pro-
cessing. Sorting the data makes it easier to spot and handle duplicate values, and it
can also help bring together related rows for quicker or easier processing. In one case,
I received a 20 million–row file of attributes and values, in which arbitrary numbers of

296 CHAPTER 21 Processing data files
them needed to be matched with items from a master SKU list. Sorting the rows by the
item ID made gathering each item’s attributes much faster. How you do the sorting
depends on the size of the data file relative to your available memory and on the
complexity of the sort. If all the lines of the file can fit comfortably into available
memory, the easiest thing may be to read all of the lines into a list and use the list’s
sort method:

>>> lines = open("datafile").readlines()
>>> lines.sort()

You could also use the sorted() function, as in sorted_lines = sorted(lines).
This function preserves the order of the lines in your original list, which usually is
unnecessary. The drawback to using the sorted() function is that it creates a new
copy of the list. This process takes slightly longer and consumes twice as much mem-
ory, which might be a bigger concern.

 If the data set is larger than memory and the sort is very simple (just by an easily
grabbed field), it may be easier to use an external utility, such as the UNIX sort com-
mand, to preprocess the data:

$ sort data > data.srt

In either case, sorting can be done in reverse order and can be keyed by values, not
the beginning of the line. For such occasions, you need to study the documentation of
the sorting tool you choose to use. A simple example in Python would be to make a
sort of lines of text case-insensitive. To do this, you give the sort method a key func-
tion that makes the element lowercase before making a comparison:

>>> lines.sort(key=str.lower)

This example uses a lambda function to ignore the first five characters of each string:

>>> lines.sort(key=lambda x: x[5:])

Using key functions to determine the behavior of sorts in Python is very handy, but be
aware that the key function is called a lot in the process of sorting, so a complex key
function could mean a real performance slowdown, particularly with a large data set.

21.4.3 Data cleaning issues and pitfalls

It seems that there are as many types of dirty data as there are sources and use cases
for that data. Your data will always have quirks that do everything from making pro-
cessing less accurate to making it impossible to even load the data. As a result, I can’t
provide an exhaustive list of the problems you might encounter and how to deal with
them, but I can give you some general hints.

 Beware of whitespace and null characters. The problem with whitespace characters
is that you can’t see them, but that doesn’t mean that they can’t cause troubles.
Extra whitespace at the beginning and end of data lines, extra whitespace
around individual fields, and tabs instead of spaces (or vice versa) can all make

297Writing data files
your data loading and processing more troublesome, and these problems aren’t
always easily apparent. Similarly, text files with null characters (ASCII 0) may
seem okay on inspection but break on loading and processing.

 Beware punctuation. Punctuation can also be a problem. Extra commas or peri-
ods can mess up CSV files and the processing of numeric fields, and unescaped
or unmatched quote characters can also confuse things.

 Break down and debug the steps. It’s easier to debug a problem if each step is sepa-
rate, which means putting each operation on a separate line, being more ver-
bose, and using more variables. But the work is worth it. For one thing, it makes
any exceptions that are raised easier to understand, and it also makes debug-
ging easier, whether with print statements, logging, or the Python debugger. It
may also be helpful to save the data after each step and to cut the file size to just
a few lines that cause the error.

21.5 Writing data files
 The last part of the ETL process may involve saving the transformed data to a data-
base (which I discuss in chapter 22), but often it involves writing the data to files.
These files may be used as input for other applications and analysis, either by people
or by other applications. Usually, you have a particular file specification listing what
fields of data should be included, what they should be named, what format and con-
straints there should be for each, and so on

21.5.1 CSV and other delimited files

Probably the easiest thing of all is to write your data to CSV files. Because you’ve
already loaded, parsed, cleaned, and transformed the data, you’re unlikely to hit any
unresolved issues with the data itself. And again, using the csv module from the
Python standard library makes your work much easier.

 Writing delimited files with the csv module is pretty much the reverse of the read
process. Again, you need to specify the delimiter that you want to use, and again, the
csv module takes care of any situations in which your delimiting character is included
in a field:

>>> temperature_data = [['State', 'Month Day, Year Code', 'Avg Daily Max Air
Temperature (F)', 'Record Count for Daily Max Air Temp (F)'],
['Illinois', '1979/01/01', '17.48', '994'], ['Illinois', '1979/01/02',
'4.64', '994'], ['Illinois', '1979/01/03', '11.05', '994'], ['Illinois',
'1979/01/04', '9.51', '994'], ['Illinois', '1979/05/15', '68.42',
'994'], ['Illinois', '1979/05/16', '70.29', '994'], ['Illinois', '1979/
05/17', '75.34', '994'], ['Illinois', '1979/05/18', '79.13', '994'],
['Illinois', '1979/05/19', '74.94', '994']]

>>> csv.writer(open("temp_data_03.csv", "w",
newline='')).writerows(temperature_data)

This code results in the following file:

State,"Month Day, Year Code",Avg Daily Max Air Temperature (F),Record Count
for Daily Max Air Temp (F)

298 CHAPTER 21 Processing data files
Illinois,1979/01/01,17.48,994
Illinois,1979/01/02,4.64,994
Illinois,1979/01/03,11.05,994
Illinois,1979/01/04,9.51,994
Illinois,1979/05/15,68.42,994
Illinois,1979/05/16,70.29,994
Illinois,1979/05/17,75.34,994
Illinois,1979/05/18,79.13,994
Illinois,1979/05/19,74.94,994

Just as when reading from a CSV file, it’s possible to write dictionaries instead of lists if
you use a DictWriter. If you do use a DictWriter, be aware of a couple of points:
You must specify the fields names in a list when you create the writer, and you can use
the DictWriter’s writeheader method to write the header at the top of the file. So
assume that you have the same data as previously, but in dictionary format:

{'State': 'Illinois', 'Month Day, Year Code': '1979/01/01', 'Avg Daily Max
Air Temperature (F)': '17.48', 'Record Count for Daily Max Air Temp
(F)': '994'}

You can use a DictWriter object from the csv module to write each row, a diction-
ary, to the correct fields in the CSV file:

>>> fields = ['State', 'Month Day, Year Code', 'Avg Daily Max Air Temperature
(F)', 'Record Count for Daily Max Air Temp (F)']

>>> dict_writer = csv.DictWriter(open("temp_data_04.csv", "w"),
fieldnames=fields)

>>> dict_writer.writeheader()
>>> dict_writer.writerows(data)
>>> del dict_writer

21.5.2 Writing Excel files

Writing spreadsheet files is unsurprisingly similar to reading them. You need to create
a workbook, or spreadsheet file; then you need to create a sheet or sheets; and finally,
you write the data in the appropriate cells. You could create a new spreadsheet from
your CSV data file like this:

>>> from openpyxl import Workbook
>>> data_rows = [fields for fields in csv.reader(open("temp_data_01.csv"))]
>>> wb = Workbook()
>>> ws = wb.active
>>> ws.title = "temperature data"
>>> for row in data_rows:
... ws.append(row)
...
>>> wb.save("temp_data_02.xlsx")

It’s also possible to add formatting to cells as you write them to the spreadsheet file.
For more on how to add formatting, please refer to the xlswriter documentation.

299Summary
21.5.3 Packaging data files

If you have several related data files, or if your files are large, it may make sense to
package them in a compressed archive. Although various archive formats are in use,
the zip file remains popular and almost universally accessible to users on almost every
platform. For hints on how to create zip-file packages of your data files, please refer to
chapter 20.

LAB 21: WEATHER OBSERVATIONS The file of weather observations provided
here is by month and then by county for the state of Illinois from 1979 to
2011. Write the code to process this file to extract the data for Chicago (Cook
County) into a single CSV or spreadsheet file. This process includes replacing
the 'Missing' strings with empty strings and translating the percentage to a
decimal. You may also consider what fields are repetitive (and therefore can
be omitted or stored elsewhere). The proof that you’ve got it right occurs
when you load the file into a spreadsheet. You can download a solution with
the book’s source code.

Summary
 ETL (extract-transform-load) is the process of getting data from one format,

making sure that it’s consistent, and then putting it in a format you can use.
ETL is the basic step in most data processing.

 Encoding can be problematic with text files, but Python lets you deal with some
encoding problems when you load files.

 Delimited or CSV files are common, and the best way to handle them is with the
csv module.

 Spreadsheet files can be more complex than CSV files but can be handled
much the same way.

 Currency symbols, punctuation, and null characters are among the most com-
mon data cleaning issues; be on the watch for them.

 Presorting your data file can make other processing steps faster.

Data over the network
You’ve seen how to deal with text-based data files. In this chapter, you use Python to
move data files over the network. In some cases, those files might be text or spread-
sheet files, as discussed in chapter 21, but in other cases, they might be in more struc-
tured formats and served from REST or SOAP application programming interfaces
(APIs). Sometimes, getting the data may mean scraping it from a website. This chap-
ter discusses all of these situations and shows some common use cases.

22.1 Fetching files
Before you can do anything with data files, you have to get them. Sometimes, this
process is very easy, such as manually downloading a single zip archive, or maybe
the files have been pushed to your machine from somewhere else. Quite often,
however, the process is more involved. Maybe a large number of files needs to be

This chapter covers
 Fetching files via FTP/SFTP, SSH/SCP, and HTTPS

 Getting data via APIs

 Structured data file formats: JSON and XML

 Scraping data
300

301Fetching files
retrieved from a remote server, files need to be retrieved regularly, or the retrieval
process is sufficiently complex to be a pain to do manually. In any of those cases, you
might well want to automate fetching the data files with Python.

 First of all, I want to be clear that using a Python script isn’t the only way, or always
the best way, to retrieve files. The following sidebar offers more explanation of the fac-
tors I consider when deciding whether to use a Python script for file retrieval. Assum-
ing that using Python does make sense for your particular use case, however, this
section illustrates some common patterns you might employ.

22.1.1 Using Python to fetch files from an FTP server

File Transfer Protocol (FTP) has been around for a very long time, but it’s still a sim-
ple and easy way to share files when security isn’t a huge concern. To access an FTP
server in Python, you can use the ftplib module from the standard library. The steps
to follow are straightforward: create an FTP object, connect to a server, and then log
in with a username and password (or, quite commonly, with a username of “anony-
mous” and an empty password).

 To continue working with weather data, you can connect to the National Oceanic
and Atmospheric Administration (NOAA) FTP server, as shown here:

>>> import ftplib
>>> ftp = ftplib.FTP('tgftp.nws.noaa.gov')
>>> ftp.login()
'230 Login successful.'

When you’re connected, you can use the ftp object to list and change directories:

>>> ftp.cwd('data')
'250 Directory successfully changed.'
>>> ftp.nlst()

Do I use Python?
Although using Python to retrieve files can work very well, it’s not always the best
choice. In making a decision, you might want to consider two things.

 Are simpler options available? Depending on your operating system and your
experience, you may find that simple shell scripts and command-line tools are
simpler and easier to configure. If you don’t have those tools available or
aren’t comfortable using them (or the people who will be maintaining them
aren’t comfortable with them), you may want to consider a Python script.

 Is the retrieval process complex or tightly coupled with processing?
Although those situations are never desirable, they can occur. My rule these
days is that if a shell script requires more than a few lines, or if I have to think
hard about how to do something in a shell script, it’s probably time to switch
to Python.

302 CHAPTER 22 Data over the network
['climate', 'fnmoc', 'forecasts', 'hurricane_products', 'ls_SS_services',
'marine', 'nsd_bbsss.txt', 'nsd_cccc.txt', 'observations', 'products',
'public_statement', 'raw', 'records', 'summaries', 'tampa',
'watches_warnings', 'zonecatalog.curr', 'zonecatalog.curr.tar']

Then you can fetch, for example, the latest METAR report for Chicago O’Hare Inter-
national Airport:

>>> x = ftp.retrbinary('RETR observations/metar/decoded/KORD.TXT',
open('KORD.TXT', 'wb').write)

'226 Transfer complete.'

You pass the ftp.retrbinary method both the path to the file on the remote server
and a method to handle that file’s data on your end—in this case, the write method
of a file you open for binary writing with the same name. When you look at
KORD.TXT, you see that it contains the downloaded data:

CHICAGO O'HARE INTERNATIONAL, IL, United States (KORD) 41-59N 087-55W 200M
Jan 01, 2017 - 09:51 PM EST / 2017.01.02 0251 UTC
Wind: from the E (090 degrees) at 6 MPH (5 KT):0
Visibility: 10 mile(s):0
Sky conditions: mostly cloudy
Temperature: 33.1 F (0.6 C)
Windchill: 28 F (-2 C):1
Dew Point: 21.9 F (-5.6 C)
Relative Humidity: 63%
Pressure (altimeter): 30.14 in. Hg (1020 hPa)
Pressure tendency: 0.01 inches (0.2 hPa) lower than three hours ago
ob: KORD 020251Z 09005KT 10SM SCT150 BKN250 01/M06 A3014 RMK AO2 SLP214

T00061056 58002
cycle: 3

You can also use ftplib to connect to servers using TLS encryption by using
FTP_TLS instead of FTP:

ftp = ftplib.FTPTLS('tgftp.nws.noaa.gov')

22.1.2 Fetching files with SFTP

If the data requires more security, such as in a corporate context in which business
data is being transferred over the network, it’s fairly common to use SFTP. SFTP is a
full-featured protocol that allows file access, transfer, and management over a Secure
Shell (SSH) connection. Even though SFTP stands for SSH File Transfer Protocol and
FTP stands for File Transfer Protocol, the two aren’t related. SFTP isn’t a reimplemen-
tation of FTP on SSH, but a fresh design specifically for SSH.

 Using SSH-based transfers is attractive both because SSH is already the de facto
standard for accessing remote servers and because enabling support for SFTP on a
server is fairly easy (and quite often on by default).

 Python doesn’t have an SFTP/SCP client module in its standard library, but a com-
munity-developed library called paramiko manages SFTP operations as well as SSH
connections. To use paramiko, the easiest thing is to install it via pip. If the NOAA

303Fetching files
site mentioned earlier in this chapter were using SFTP (which it doesn’t, so this code
won’t work!), the SFTP equivalent of the code above would be

>>> import paramiko
>>> t = paramiko.Transport((hostname, port))
>>> t.connect(username, password)
>>> sftp = paramiko.SFTPClient.from_transport(t)

It’s also worth noting that although paramiko supports running commands on a
remote server and receiving its outputs, just like a direct ssh session, it doesn’t
include an scp function. This function is rarely something you’ll miss; if all you want
to do is move a file or two over an ssh connection, a command-line scp utility usually
makes the job easier and simpler.

22.1.3 Retrieving files over HTTP/HTTPS

The last common option for retrieving data files that I discuss in this chapter is getting
files over an HTTP or HTTPS connection. This option is probably the easiest of all the
options; you are in effect retrieving your data from a web server, and support for
accessing web servers is very widespread. Again, in this case you may not need to use
Python. Various command-line tools retrieve files via HTTP/HTTPS connections and
have most of the capabilities you might need. The two most common of these tools
are wget and curl. If you have a reason to do the retrieval in your Python code, how-
ever, that process isn’t much harder. The requests library is by far the easiest and
most reliable way to access HTTP/HTTPS servers from Python code. Again,
requests is easiest to install with pip install requests.

 When you have requests installed, fetching a file is straightforward: import
requests and use the correct HTTP verb (usually, GET) to connect to the server and
return your data.

 The following example code fetches the monthly temperature data for Heathrow
Airport since 1948—a text file that’s served via a web server. If you want to, you can
put the URL in your browser, load the page, and then save it. If the page is large or
you have a lot of pages to get, however, it’s easier to use code like this:

>>> import requests
>>> response = requests.get("http://www.metoffice.gov.uk/pub/data/weather/uk/

climate/stationdata/heathrowdata.txt")

The response will have a fair amount of information, including the header returned
by the web server, which can be helpful in debugging if things aren’t working. The
part of the response object you’ll most often be interested in, however, is data
returned. To retrieve this data, you want to access the response’s text property, which
contains the response body as a string, or the content property, which contains the
response body as bytes:

>>> print(response.text)
Heathrow (London Airport)
Location 507800E 176700N, Lat 51.479 Lon -0.449, 25m amsl

304 CHAPTER 22 Data over the network
Estimated data is marked with a * after the value.
Missing data (more than 2 days missing in month) is marked by ---.
Sunshine data taken from an automatic Kipp & Zonen sensor marked with a #,

otherwise sunshine data taken from a Campbell Stokes recorder.
 yyyy mm tmax tmin af rain sun
 degC degC days mm hours
 1948 1 8.9 3.3 --- 85.0 ---
 1948 2 7.9 2.2 --- 26.0 ---
 1948 3 14.2 3.8 --- 14.0 ---
 1948 4 15.4 5.1 --- 35.0 ---
 1948 5 18.1 6.9 --- 57.0 ---

Typically, you’d write the response text to a file for later processing, but depending on
your needs, you might first do some cleaning or even process directly.

TRY THIS: RETRIEVING A FILE If you’re working with the example data file and
want to break each line into separate fields, how might you do that? What
other processing would you expect to do? Try writing some code to retrieve
this file and calculate the average annual rainfall or (for more of a challenge)
the average maximum and minimum temperature for each year.

22.2 Fetching data via an API
Serving data by way of an API is quite common, following a trend toward decoupling
applications into services that communicate via APIs. APIs can work in several ways,
but they commonly operate over regular HTTP/HTTPS protocols using the standard
HTTP verbs, GET, POST, PUT, and DELETE. Fetching data this way is very similar to
retrieving a file, as in section 22.1.3, but the data isn’t in a static file. Instead of the
application serving static files that contain the data, it queries some other data source
and then assembles and serves the data dynamically on request.

 Although there’s a lot of variation in the ways that an API can be set up, one of the
most common is a RESTful (REpresentational State Transfer) interface that operates
over the same HTTP/HTTPS protocols as the web. There are endless variations on
how an API might work, but commonly, data is fetched by using a GET request, which
is what your web browser uses to request a web page. When you’re fetching via a GET
request, the parameters to select the data you want are often appended to the URL in
a query string.

 If you want to get the current weather on Mars from the Curiosity rover, use http://
mng.bz/g6UY as your URL.1 The ?format=json is a query string parameter that spec-
ifies that the information be returned in JSON, which I discuss in section 22.3.1. If you
want the Martian weather for a specific Martian day, or sol, of its mission—say, the 155th
sol—use the URL http://mng.bz/4e0r. If you want to get the weather on Mars for a
range of Earth dates, such as the month of October 2012, use http://mng.bz/83WO.
Notice that the elements of the query string are separated by ampersands (&).

1 The site (ingenology.com) has been reliable in the past, but is down at the time of this writing and its future
is uncertain.

http:// mng.bz/g6UY
http:// mng.bz/g6UY
http://mng.bz/4e0r
http://mng.bz/83WO

305Fetching data via an API
 When you know the URL to use, you can use the requests library to fetch data from
an API and either process it on the fly or save it to a file for later processing. The sim-
plest way to do this is exactly like retrieving a file:

>>> import requests
>>> response = requests.get("http://marsweather.ingenology.com/v1/latest/

?format=json")
>>> response.text
'{"report": {"terrestrial_date": "2017-01-08", "sol": 1573, "ls": 295.0,

"min_temp": -74.0, "min_temp_fahrenheit": -101.2, "max_temp": -2.0,
"max_temp_fahrenheit": 28.4, "pressure": 872.0, "pressure_string":
"Higher", "abs_humidity": null, "wind_speed": null, "wind_direction": "-
-", "atmo_opacity": "Sunny", "season": "Month 10", "sunrise": "2017-01-
08T12:29:00Z", "sunset": "2017-01-09T00:45:00Z"}}'

>>> response = requests.get("http://marsweather.ingenology.com/v1/archive/
?sol=155&format=json")

>>> response.text
'{"count": 1, "next": null, "previous": null, "results":

[{"terrestrial_date": "2013-01-18", "sol": 155, "ls": 243.7, "min_temp":
-64.45, "min_temp_fahrenheit": -84.01, "max_temp": 2.15,
"max_temp_fahrenheit": 35.87, "pressure": 9.175, "pressure_string":
"Higher", "abs_humidity": null, "wind_speed": 2.0, "wind_direction":
null, "atmo_opacity": null, "season": "Month 9", "sunrise": null,
"sunset": null}]}'

Keep in mind that you should escape spaces and most punctuation in your query
parameters, because those elements aren’t allowed in URLs even though many brows-
ers automatically do the escaping on URLs.

 For a final example, suppose that you want to grab the crime data for Chicago
between noon and 1 PM on Jan. 10, 2017. The way that the API works, you specify a
date range with the query string parameters of $where date=between <start

datetime> and <end datetime>, where the start and end datetimes are quoted in
ISO format. So the URL for getting that one hour of Chicago crime data would be
https://data.cityofchicago.org/resource/6zsd-86xi.json?$where=date between '2015-
01-10T12:00:00' and '2015-01-10T13:00:00'.

 In the example, several characters aren’t welcome in URLs, such as the quote char-
acters and the spaces. This is another situation in which the requests library makes
good on its aim of making things easier for the user, because before it sends the URL,
it takes care of quoting it properly. The URL that the request actually sends is https://
data.cityofchicago.org/resource/6zsd-86xi.json?$where=date%20between%20%
222015-01-10T12:00:00%22%20and%20%222015-01-10T14:00:00%22'.

 Note that all of the single-quote characters have been quoted with %22 and all of
the spaces with %20 without your even needing to think about it.

TRY THIS: ACCESSING AN API Write some code to fetch some data from the city
of Chicago website. Look at the fields mentioned in the results, and see
whether you can select records based on another field in combination with
the date range.

https://data.cityofchicago.org/resource/6zsd-86xi.json?$where=date between ’2015-01-10T12:00:00’ and ’2015-01-10T13:00:00’
https://data.cityofchicago.org/resource/6zsd-86xi.json?$where=date between ’2015-01-10T12:00:00’ and ’2015-01-10T13:00:00’
https://data.cityofchicago.org/resource/6zsd-86xi.json?$where=date%20between%20% 222015-01-10T12:00:00%22%20and%20%222015-01-10T14:00:00%22’
https://data.cityofchicago.org/resource/6zsd-86xi.json?$where=date%20between%20% 222015-01-10T12:00:00%22%20and%20%222015-01-10T14:00:00%22’
https://data.cityofchicago.org/resource/6zsd-86xi.json?$where=date%20between%20% 222015-01-10T12:00:00%22%20and%20%222015-01-10T14:00:00%22’

306 CHAPTER 22 Data over the network
22.3 Structured data formats
Although APIs sometimes serve plain text, it’s much more common for data served
from APIs to be served in a structured file format. The two most common file formats
are JSON and XML. Both of these formats are built on plain text but structure their
contents so that they’re more flexible and able to store more complex information.

22.3.1 JSON data

JSON, which stands for JavaScript Object Notation, dates to 1999. It consists of only
two structures: key-value pairs, called structures, that are very similar to Python diction-
aries; and ordered lists of values, called arrays, that are very much like Python lists.

 Keys can be only strings in double quotes, and values can be strings in double
quotes, numbers, true, false, null, arrays, or objects. These elements make JSON a
lightweight way to represent most data in a way that’s easily transmitted over the net-
work and also fairly easy for humans to read. JSON is so common that most languages
have features to translate JSON to and from native data types. In the case of Python,
that feature is the json module, which became part of the standard library with ver-
sion 2.6. The original externally maintained version of the module is available as sim-
plejson, which is still available. In Python 3, however, it’s far more common to use
the standard library version.

 The data you retrieved from the Mars rover and the city of Chicago APIs in section
22.2 is in JSON format. To send JSON across the network, the JSON object needs to be
serialized— that is, transformed into a sequence of bytes. So although the batch of
data you retrieved from the Mars rover and Chicago APIs looks like JSON, in fact it’s
just a byte string representation of a JSON object. To transform that byte string into a
real JSON object and translate it into a Python dictionary, you need to use the JSON
loads() function. If you want to get the Mars weather report, for example, you can
do that just as you did previously, but this time you’ll convert it to a Python dictionary:

>>> import json
>>> import requests
>>> response = requests.get("http://marsweather.ingenology.com/v1/latest/

?format=json")
>>> weather = json.loads(response.text)
>>> weather
{'report': {'terrestrial_date': '2017-01-10', 'sol': 1575, 'ls': 296.0,

'min_temp': -58.0, 'min_temp_fahrenheit': -72.4, 'max_temp': 0.0,
'max_temp_fahrenheit': None, 'pressure': 860.0, 'pressure_string':
'Higher', 'abs_humidity': None, 'wind_speed': None, 'wind_direction': '-
-', 'atmo_opacity': 'Sunny', 'season': 'Month 10', 'sunrise': '2017-01-
10T12:30:00Z', 'sunset': '2017-01-11T00:46:00Z'}}

>>> weather['report']['sol']
1575

Note that the call to json.loads()is what takes the string representation of the
JSON object and transforms, or loads, it into a Python dictionary. Also, a
json.load() function will read from any filelike object that supports a read method.

http://mng.bz/103V
http://mng.bz/103V
http://mng.bz/103V

307Structured data formats
 If you look at a dictionary’s representation as earlier, it can be very hard to make
sense of what’s going on. Improved formatting, also called pretty printing, can make
data structures much easier to understand. Use the Python prettyprint module to
see what’s in the example dictionary:

>>> from pprint import pprint as pp
>>> pp(weather)
{'report': {'abs_humidity': None,
 'atmo_opacity': 'Sunny',
 'ls': 296.0,
 'max_temp': 0.0,
 'max_temp_fahrenheit': None,
 'min_temp': -58.0,
 'min_temp_fahrenheit': -72.4,
 'pressure': 860.0,
 'pressure_string': 'Higher',
 'season': 'Month 10',
 'sol': 1575,
 'sunrise': '2017-01-10T12:30:00Z',
 'sunset': '2017-01-11T00:46:00Z',
 'terrestrial_date': '2017-01-10',
 'wind_direction': '--',
 'wind_speed': None}}

Both load functions can be configured to control how to parse and decode the origi-
nal JSON to Python objects, but the default translation is listed in table 22.1.

Table 22.1 JSON to Python default decoding

JSON Python

object dict

array list

string str

number (int) int

number (real) float

true True

false False

null None

Fetching JSON with the requests library
In this section, you used the requests library to retrieve the JSON formatted data and
then used the json.loads() method to parse it into a Python object. This tech-
nique works fine, but because the requests library is used so often for exactly this

308 CHAPTER 22 Data over the network
If you want to write JSON to a file or serialize it to a string, the reverse of load() and
loads() is dump() and dumps(). json.dump() takes a file object with a write()
method as a parameter, and json.dumps()returns a string. In both cases, the encod-
ing to a JSON formatted string can be highly customized, but the default is still based
on table 22.1. So if you want to write your Martian weather report to a JSON file, you
could do this:

>>> outfile = open("mars_data_01.json", "w")
>>> json.dump(weather, outfile)
>>> outfile.close()
>>> json.dumps(weather)
'{"report": {"terrestrial_date": "2017-01-11", "sol": 1576, "ls": 296.0,

"min_temp": -72.0, "min_temp_fahrenheit": -97.6, "max_temp": -1.0,
"max_temp_fahrenheit": 30.2, "pressure": 869.0, "pressure_string":
"Higher", "abs_humidity": null, "wind_speed": null, "wind_direction": "-
-", "atmo_opacity": "Sunny", "season": "Month 10", "sunrise": "2017-01-
11T12:31:00Z", "sunset": "2017-01-12T00:46:00Z"}}'

As you can see, the entire object has been encoded as a single string. Here again, it
might be handy to format the string in a more readable way, just as you did by using
the pprint module. To do so easily, use the indent parameter with the dump or
dumps function:

>>> print(json.dumps(weather, indent=2))
{
 "report": {
 "terrestrial_date": "2017-01-10",
 "sol": 1575,
 "ls": 296.0,
 "min_temp": -58.0,
 "min_temp_fahrenheit": -72.4,
 "max_temp": 0.0,
 "max_temp_fahrenheit": null,
 "pressure": 860.0,
 "pressure_string": "Higher",
 "abs_humidity": null,
 "wind_speed": null,
 "wind_direction": "--",
 "atmo_opacity": "Sunny",
 "season": "Month 10",

(continued)
purpose, the library provides a shortcut: The response object actually has a json()
method that does that conversion for you. So in the example, instead of

>>> weather = json.loads(response.text)

you could have used

>>> weather = response.json()

The result is the same, but the code is simpler, more readable, and more Pythonic.

309Structured data formats
 "sunrise": "2017-01-10T12:30:00Z",
 "sunset": "2017-01-11T00:46:00Z"
 }
}

You should be aware, however, that if you use repeated calls to json.dump() to write
a series of objects to a file, the result is a series of legal JSON-formatted objects, but the
contents of the file as a whole is not a legal JSON-formatted object, and attempting to
read and parse the entire file by using a single call to json.load() will fail. If you
have more than one object that you’d like to encode as a single JSON object, you need
to put all those objects into a list (or, better still, an object) and then encode that item
to the file.

 If you have two or more days’ worth of Martian weather data that you want to store
as JSON, you have to make a choice. You could use json.dump()once for each
object, which would result in a file containing JSON-formatted objects. If you assume
that weather_list is a list of weather-report objects, the code might look like this:

>>> outfile = open("mars_data.json", "w")
>>> for report in weather_list:
... json.dump(weather, outfile)
>>> outfile.close()

If you do this, then you need to load each line as a separate JSON-formatted object:

>>> for line in open("mars_data.json"):
... weather_list.append(json.loads(line))

As an alternative, you could put the list into a single JSON object. Because there’s a
possible vulnerability with top-level arrays in JSON, the recommended way is to put
the array in a dictionary:

>>> outfile = open("mars_data.json", "w")
>>> weather_obj = {"reports": weather_list, "count": 2}
>>> json.dump(weather, outfile)
>>> outfile.close()

With this approach, you can use one operation to load the JSON-formatted object
from the file:

>>> with open("mars_data.json") as infile:
>>> weather_obj = json.load(infile)

The second approach is fine if the size of your JSON files is manageable, but it may be
less than ideal for very large files, because handling errors may be a bit harder and
you may run out of memory.

TRY THIS: SAVING SOME JSON CRIME DATA Modify the code you wrote in section
22.2 to fetch the Chicago crime data. Then convert the fetched data from a
JSON-formatted string to a Python object. Next, see whether you can save the
crime events as a series of separate JSON objects in one file and as one JSON
object in another file. Then see what code is needed to load each file.

310 CHAPTER 22 Data over the network
22.3.2 XML data

XML (eXtensible Markup Language) has been around since the end of the 20th cen-
tury. XML uses an angle-bracket tag notation similar to HTML, and elements are
nested within other elements to form a tree structure. XML was intended to be read-
able by both machines and humans, but XML is often so verbose and complex that it’s
very difficult for people to understand. Nevertheless, because XML is an established
standard, it’s quite common to find data in XML format. And although XML is
machine-readable, it’s very likely that you’ll want to translate it into something a bit
easier to deal with.

 Take a look at some XML data, in this case the XML version of weather data for
Chicago:

<dwml xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsi="http://
www.w3.org/2001/XMLSchema-instance" version="1.0"
xsi:noNamespaceSchemaLocation="http://www.nws.noaa.gov/forecasts/xml/
DWMLgen/schema/DWML.xsd">

 <head>
 <product srsName="WGS 1984" concise-name="glance" operational-

mode="official">
 <title>
NOAA's National Weather Service Forecast at a Glance
 </title>
 <field>meteorological</field>
 <category>forecast</category>
 <creation-date refresh-frequency="PT1H">2017-01-08T02:52:41Z</creation-

date>
 </product>
 <source>
 <more-information>http://www.nws.noaa.gov/forecasts/xml/</more-

information>
 <production-center>
Meteorological Development Laboratory
<sub-center>Product Generation Branch</sub-center>
 </production-center>
 <disclaimer>http://www.nws.noaa.gov/disclaimer.html</disclaimer>
 <credit>http://www.weather.gov/</credit>
 <credit-logo>http://www.weather.gov/images/xml_logo.gif</credit-logo>
 <feedback>http://www.weather.gov/feedback.php</feedback>
 </source>
 </head>
 <data>
 <location>
 <location-key>point1</location-key>
 <point latitude="41.78" longitude="-88.65"/>
 </location>
 …
 </data>
</dwml>

This example is just the first section of the document, with most of the data omitted.
Even so, it illustrates some of the issues you typically find in XML data. In particular,
you can see the verbose nature of the protocol, with the tags in some cases taking

311Structured data formats
more space than the value contained in them. This sample also shows the nested or
tree structure common in XML, as well as the common use of a sizeable header of
metadata before the actual data begins. On a spectrum from simple to complex for
data files, you could think of CSV or delimited files as being at the simple end and
XML at the complex end.

 Finally, this file illustrates another feature of XML that makes pulling data a bit
more of a challenge. XML supports the use of attributes to store data as well as the
text values within the tags. So if you look at the point element at the bottom of this
sample, you see that the point element doesn’t have a text value. That element has
just latitude and longitude values within the <point> tag itself:

<point latitude="41.78" longitude="-88.65"/>

This code is certainly legal XML, and it works for storing the data, but it would also be
possible (likely, even) for the same data to be stored as

<point>
 <latitude>41.78</ latitude >
 <longitude>-88.65</longitude>
</point>

You really don’t know which way any given bit of data will be handled without carefully
inspecting the data or studying a specification document.

 This kind of complexity can make simple data extraction from XML more of a
challenge. You have several ways to handle XML. The Python standard library comes
with modules that parse and handle XML data, but none of them is particularly conve-
nient for simple data extraction.

 For simple data extraction, the handiest utility I’ve found is a library called xmlto-
dict, which parses your XML data and returns a dictionary that reflects the tree. In
fact, behind the scenes it uses the standard library’s expat XML parser, parses your
XML document into a tree, and uses that tree to create the dictionary. As a result,
xmltodict can handle whatever the parser can, and it’s also able to take a dictionary
and “unparse” it to XML if necessary, making it a very handy tool. Over several years
of use, I found this solution to be up to all my XML handling needs. To get xmlto-
dict, you can again use pip install xmltodict.

 To convert the XML to a dictionary, you can import xmltodict and use the
parse method on an XML formatted string:

>>> import xmltodict
>>> data = xmltodict.parse(open("observations_01.xml").read())

In this case, for compactness, pass the contents of the file directly to the parse
method. After being parsed, this data object is an ordered dictionary with the same
values it would have if it had been loaded from this JSON:

{
 "dwml": {
 "@xmlns:xsd": "http://www.w3.org/2001/XMLSchema",

312 CHAPTER 22 Data over the network
 "@xmlns:xsi": "http://www.w3.org/2001/XMLSchema-instance",
 "@version": "1.0",
 "@xsi:noNamespaceSchemaLocation": "http://www.nws.noaa.gov/forecasts/

xml/DWMLgen/schema/DWML.xsd",
 "head": {
 "product": {
 "@srsName": "WGS 1984",
 "@concise-name": "glance",
 "@operational-mode": "official",
 "title": "NOAA's National Weather Service Forecast at a Glance",
 "field": "meteorological",
 "category": "forecast",
 "creation-date": {
 "@refresh-frequency": "PT1H",
 "#text": "2017-01-08T02:52:41Z"
 }
 },
 "source": {
 "more-information": "http://www.nws.noaa.gov/forecasts/xml/",
 "production-center": {
 "sub-center": "Product Generation Branch",
 "#text": "Meteorological Development Laboratory"
 },
 "disclaimer": "http://www.nws.noaa.gov/disclaimer.html",
 "credit": "http://www.weather.gov/",
 "credit-logo": "http://www.weather.gov/images/xml_logo.gif",
 "feedback": "http://www.weather.gov/feedback.php"
 }
 },
 "data": {
 "location": {
 "location-key": "point1",
 "point": {
 "@latitude": "41.78",
 "@longitude": "-88.65"
 }
 }
 }
 }
}

Notice that the attributes have been pulled out of the tags, but with an @ prepended to
indicate that they were originally attributes of their parent tag. If an XML node has
both a text value and a nested element in it, notice that the key for the text value is
"#text", as in the "sub-center" element under "production-center".

 Earlier, I said that the result of parsing is an ordered dictionary (officially, an
OrderedDict), so if you print it, the code looks like this:

OrderedDict([('dwml', OrderedDict([('@xmlns:xsd', 'http://www.w3.org/2001/
XMLSchema'), ('@xmlns:xsi', 'http://www.w3.org/2001/XMLSchema-
instance'), ('@version', '1.0'), ('@xsi:noNamespaceSchemaLocation',
'http://www.nws.noaa.gov/forecasts/xml/DWMLgen/schema/DWML.xsd'),
('head', OrderedDict([('product', OrderedDict([('@srsName', 'WGS 1984'),
('@concise-name', 'glance'), ('@operational-mode', 'official'),
('title', "NOAA's National Weather Service Forecast at a Glance"),

313Structured data formats
('field', 'meteorological'), ('category', 'forecast'), ('creation-date',
OrderedDict([('@refresh-frequency', 'PT1H'), ('#text', '2017-01-
08T02:52:41Z')]))])), ('source', OrderedDict([('more-information',
'http://www.nws.noaa.gov/forecasts/xml/'), ('production-center',
OrderedDict([('sub-center', 'Product Generation Branch'), ('#text',
'Meteorological Development Laboratory')])), ('disclaimer', 'http://
www.nws.noaa.gov/disclaimer.html'), ('credit', 'http://www.weather.gov/
'), ('credit-logo', 'http://www.weather.gov/images/xml_logo.gif'),
('feedback', 'http://www.weather.gov/feedback.php')]))])), ('data',
OrderedDict([('location', OrderedDict([('location-key', 'point1'),
('point', OrderedDict([('@latitude', '41.78'), ('@longitude', '-
88.65')]))])), ('#text', '…')]))]))])

Even though the representation of an OrderedDict, with its lists of tuples, looks
rather strange, it behaves exactly the same way as a normal dict except that it prom-
ises to maintain the order of elements, which is useful in this case.

 If an element is repeated, it becomes a list. In a further section of the full version
of the file shown previously the following element occurs (some elements omitted
from this sample):

<time-layout >
 <start-valid-time period-name="Monday">2017-01-09T07:00:00-06:00</start-

valid-time>
 <end-valid-time>2017-01-09T19:00:00-06:00</end-valid-time>
 <start-valid-time period-name="Tuesday">2017-01-10T07:00:00-06:00</start-

valid-time>
 <end-valid-time>2017-01-10T19:00:00-06:00</end-valid-time>
 <start-valid-time period-name="Wednesday">2017-01-11T07:00:00-06:00</

start-valid-time>
 <end-valid-time>2017-01-11T19:00:00-06:00</end-valid-time>
</time-layout>

Note that two elements—"start-valid-time" and "end-valid-time"—repeat in
alternation. These two repeating elements are each translated to a list in the diction-
ary, keeping each set of elements in their proper order:

 "time-layout":
 {
 "start-valid-time": [
 {
 "@period-name": "Monday",
 "#text": "2017-01-09T07:00:00-06:00"
 },
 {
 "@period-name": "Tuesday",
 "#text": "2017-01-10T07:00:00-06:00"
 },
 {
 "@period-name": "Wednesday",
 "#text": "2017-01-11T07:00:00-06:00"
 }
],
 "end-valid-time": [
 "2017-01-09T19:00:00-06:00",

314 CHAPTER 22 Data over the network
 "2017-01-10T19:00:00-06:00",
 "2017-01-11T19:00:00-06:00"
]
 },

Because dictionaries and lists, even nested dictionaries and lists, are fairly easy to deal
with in Python, using xmltodict is an effective way to handle most XML. In fact, I’ve
used it for the past several years in production on a variety of XML documents and
never had a problem.

TRY THIS: FETCHING AND PARSING XML Write the code to pull the Chicago
XML weather forecast from http://mng.bz/103V. Then use xmltodict to
parse the XML into a Python dictionary and extract tomorrow’s forecast max-
imum temperature. Hint: To match up time layouts and values, compare the
layout-key value of the first time-layout section and the time-layout attribute of
the temperature element of the parameters element.

22.4 Scraping web data
In some cases, the data is on a website but for whatever reason isn’t available anywhere
else. In those situations, it may make sense to collect the data from the web pages
themselves through a process called crawling or scraping.

 Before saying anything more about scraping, let me make a disclaimer: Scraping
or crawling websites that you don’t own or control is at best a legal grey area, with a
host of inconclusive and contradictory considerations involving things such as the
terms of use of the site, the way in which the site is accessed, and the use to which the
scraped data is put. Unless you have control of the site you want to scrape, the answer
to the question “Is it legal for me to scrape this site?” usually is “It depends.”

 If you do decide to scrape a production website, you also need to be sensitive to the
load you’re putting on the site. Although an established, high-traffic site might well be
able to handle anything you can throw at it, a smaller, less-active site might be brought
to a standstill by a series of continuous requests. At the very least, you need to be care-
ful that your scraping doesn’t turn into an inadvertent denial-of-service attack.

 Conversely, I’ve worked in situations in which it was actually easier to scrape our
own website to get some needed data than it was to go through corporate channels.
Although scraping web data has its place, it’s too complex for full treatment here. In
this section, I present a very simple example to give you a general idea of the basic
method and follow up with suggestions to pursue in more complex cases.

 Scraping a website consists of two parts: fetching the web page and extracting the
data from it. Fetching the page can be done via requests and is fairly simple.

 Consider the code of a very simple web page with only a little content and no CSS
or JavaScript, as this one.

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html> <head>

Listing 22.1 File test.html

http://mng.bz/103V

315Scraping web data
<title>Title</title>
</head>

<body>
<h1>Heading 1</h1>

This is plan text, and is boring
this is special

Here is a link

<hr>
<address>Ann Address, Somewhere, AState 00000
</address>
</body> </html>

Suppose that you’re interested in only a couple of kinds of data from this page: any-
thing in an element with a class name of "special" and any links. You can process the
file by searching for the strings 'class="special"' and "<a href" and then write
code to pick out the data from there, but even using regular expressions, this process
will be tedious, bug-prone, and hard to maintain. It’s much easier to use a library that
knows how to parse HTML, such as Beautiful Soup. If you want to try the following code
and experiment with parsing HTML pages, you can use pip install bs4.

 When you have Beautiful Soup installed, parsing a page of HTML is simple. For
this example, assume that you’ve already retrieved the web page (presumably, using
the requests library), so you’ll just parse the HTML.

 The first step is to load the text and create a Beautiful Soup parser:

>>> import bs4
>>> html = open("test.html").read()
>>> bs = bs4.BeautifulSoup(html, "html.parser")

This code is all it takes to parse the HTML into the parser object bs. A Beautiful Soup
parser object has a lot of cool tricks, and if you’re working with HTML at all, it’s really
worth your time to experiment a bit and get a feel for what it can do for you. For this
example, you look at only two things: extracting content by HTML tag and getting
data by CSS class.

 First, find the link. The HTML tag for a link is <a> (Beautiful Soup by default con-
verts all tags to lowercase), so to find all link tags, you can use the "a" as a parameter
and call the bs object itself:

>>> a_list = bs("a")
>>> print(a_list)
[link]

Now you have a list of all (one in this case) of the HTML link tags. If that list is all you
get, that’s not so bad, but in fact, the elements returned in the list are also parser
objects and can do the rest of the work of getting the link and text for you:

>>> a_item = a_list[0]
>>> a_item.text

316 CHAPTER 22 Data over the network
'link'
>>> a_item["href"]
'http://bitbucket.dev.null'

The other feature you’re looking for is anything with a CSS class of "special", which
you can extract by using the parser’s select method as follows:

>>> special_list = bs.select(".special")
>>> print(special_list)
[this is special]
>>> special_item = special_list[0]
>>> special_item.text
'this is special'
>>> special_item["class"]
['special']

Because the items returned by the tag or by the select method are themselves parser
objects, you can nest them, which allows you to extract just about anything from
HTML or even XML.

TRY THIS: PARSING HTML Given the file forecast.html (which you can find in
the code on this book’s website), write a script using Beautiful Soup that
extracts the data and saves it as a CSV file, shown here.

<html>
 <body>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Tonight</div>
 <div class="grid col-75 forecast-text">A slight chance of showers and

thunderstorms before 10pm. Mostly cloudy, with a low around 66. West
southwest wind around 9 mph. Chance of precipitation is 20%. New
rainfall amounts between a tenth and quarter of an inch possible.</div>

 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Friday</div>
 <div class="grid col-75 forecast-text">Partly sunny. High near 77,

with temperatures falling to around 75 in the afternoon. Northwest wind
7 to 12 mph, with gusts as high as 18 mph.</div>

 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Friday Night</div>
 <div class="grid col-75 forecast-text">Mostly cloudy, with a low

around 63. North wind 7 to 10 mph.</div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Saturday</div>
 <div class="grid col-75 forecast-text">Mostly sunny, with a high near

73. North wind around 10 mph.</div>
 </div>
 <div class="row row-forecast">

Listing 22.2 File forecast.html

317Scraping web data
 <div class="grid col-25 forecast-label">Saturday Night</div>
 <div class="grid col-75 forecast-text">Partly cloudy, with a low

around 63. North wind 5 to 10 mph.</div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Sunday</div>
 <div class="grid col-75 forecast-text">Mostly sunny, with a high near

73.</div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Sunday Night</div>
 <div class="grid col-75 forecast-text">Mostly cloudy, with a low

around 64.</div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Monday</div>
 <div class="grid col-75 forecast-text">Mostly sunny, with a high near

74.</div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Monday Night</div>
 <div class="grid col-75 forecast-text">Mostly clear, with a low

around 65.</div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Tuesday</div>
 <div class="grid col-75 forecast-text">Sunny, with a high near 75.</

div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Tuesday Night</div>
 <div class="grid col-75 forecast-text">Mostly clear, with a low

around 65.</div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Wednesday</div>
 <div class="grid col-75 forecast-text">Sunny, with a high near 77.</

div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Wednesday Night</div>
 <div class="grid col-75 forecast-text">Mostly clear, with a low

around 67.</div>
 </div>
 <div class="row row-forecast">
 <div class="grid col-25 forecast-label">Thursday</div>
 <div class="grid col-75 forecast-text">A chance of rain showers after

1pm. Mostly sunny, with a high near 81. Chance of precipitation is
30%.</div>

 </div>
 </body>
</html>

LAB 22: TRACK CURIOSITY’S WEATHER Use the API described in section 22.2 to
gather a weather history of Curiosity’s stay on Mars for a month. Hint: You can

318 CHAPTER 22 Data over the network
specify Martian days (sols) by adding ?sol=sol_number to the end of the archive
query, like this:

http://marsweather.ingenology.com/v1/archive/?sol=155

Transform the data so that you can load it into a spreadsheet and graph it.
For a version of this project, see the book’s source code.

Summary
 Using a Python script may not be the best choice for fetching files. Be sure to

consider the options.
 Using the requests module is your best bet for fetching files by using HTTP/

HTTPS and Python.
 Fetching files from an API is very similar to fetching static files.
 Parameters for API requests often need to be quoted and added as a query

string to the request URL.
 JSON-formatted strings are quite common for data served from APIs, and XML

is also used.
 Scraping sites that you don’t control may not be legal or ethical and requires

consideration not to overload the server.

http://marsweather.ingenology.com/v1/archive/?sol=155

Saving data
When you have data and have it cleaned, it’s likely that you’ll want to store it. You’ll
not only want to store it, but also be able to get at it in the future with as little hassle
as possible. The need to store and retrieve significant amounts of data usually calls
for some sort of database. Relational databases such as PostgreSQL, MySQL, and
SQL Server have been established favorites for data storage for decades, and they
can still be great options for many use cases. In recent years, NoSQL databases,
including MongoDB and Redis, have found favor and can be very useful for a vari-
ety of use cases. A detailed discussion of databases would take several books, so in
this chapter I look at some scenarios to show how you can access both SQL and
NoSQL databases with Python.

This chapter covers
 Storing data in relational databases

 Using the Python DB-API

 Accessing databases through an Object
Relational Mapper (ORM)

 Understanding NoSQL databases and how they
differ from relational databases
319

320 CHAPTER 23 Saving data
23.1 Relational databases
Relational databases have long been a standard for storing and manipulating data.
They’re a mature technology and a ubiquitous one. Python can connect with a num-
ber relational databases, but I don’t have the time or the inclination to go through the
specifics of each one in this book. Instead, because Python handles databases in a
mostly consistent way, I illustrate the basics with one of them—sqlite3—and then dis-
cuss some differences and considerations in choosing and using a relational database
for data storages.

23.1.1 The Python Database API

As I mention, Python handles SQL database access very similarly across several data-
base implementations because of PEP-249 (www.python.org/dev/peps/pep-0249/),
which specifies some common practices for connecting to SQL databases. Commonly
called the Database API or DB-API, it was created to encourage “code that is generally
more portable across databases, and a broader reach of database connectivity.”
Thanks to the DB-API, the examples of SQLite that you see in this chapter are quite
similar to what you’d use for PostgreSQL, MySQL, or several other databases.

23.2 SQLite: Using the sqlite3 database
Although Python has modules for many databases, in the following examples I look at
sqlite3. Although it’s not suited for large, high-traffic applications, sqlite3 has two
advantages:

 Because it’s part of the standard library, it can be used anywhere you need a
database without worrying about adding dependencies.

 sqlite3 stores all of its records in a local file, so it doesn’t need both a client and
server, which would be the case for PostgreSQL, MySQL, and other larger data-
bases.

These features make sqlite3 a handy option for both smaller applications and quick
prototypes.

 To use a sqlite3 database, the first thing you need is a Connection object. Getting
a Connection object requires only calling the connect function with the name of
file that will be used to store the data:

>>> import sqlite3
>>> conn = sqlite3.connect("datafile.db")

It’s also possible to hold the data in memory by using ":memory:" as the filename.
For storing Python integers, strings, and floats, nothing more is needed. If you want
sqlite3 to automatically convert query results for some columns into other types, it’s
useful to include the detect_types parameter set to sqlite3.PARSE_DECLTYPES
|sqlite3.PARSE_COLNAMES, which directs the Connection object to parse the
name and types of columns in queries and attempts to match them with converters
you’ve already defined.

www.python.org/dev/peps/pep-0249/

321SQLite: Using the sqlite3 database
 The second step is creating a Cursor object from the connection:

>>> cursor = conn.cursor()
>>> cursor
<sqlite3.Cursor object at 0xb7a12980>

At this point, you’re able to make queries against the database. In the current situa-
tion, because the database has no tables or records yet, you first need to create a table
and insert a couple of records:

>>> cursor.execute("create table people (id integer primary key, name text,
count integer)")

>>> cursor.execute("insert into people (name, count) values ('Bob', 1)")
>>> cursor.execute("insert into people (name, count) values (?, ?)",
... ("Jill", 15))
>>> conn.commit()

The last insert query illustrates the preferred way to make a query with variables.
Rather than constructing the query string, it’s more secure to use a ? for each variable
and then pass the variables as a tuple parameter to the execute method. The advan-
tage is that you don’t need to worry about incorrectly escaping a value; sqlite3 takes
care of it for you.

 You can also use variable names prefixed with : in the query and pass in a corre-
sponding dictionary with the values to be inserted:

>>> cursor.execute("insert into people (name, count) values (:username, \
 :usercount)", {"username": "Joe", "usercount": 10})

After a table is populated, you can query the data by using SQL commands, again
using either ? for variable binding or names and dictionaries:

>>> result = cursor.execute("select * from people")
>>> print(result.fetchall())
[('Bob', 1), ('Jill', 15), ('Joe', 10)]
>>> result = cursor.execute("select * from people where name like :name",
... {"name": "bob"})
>>> print(result.fetchall())
[('Bob', 1)]
>>> cursor.execute("update people set count=? where name=?", (20, "Jill"))
>>> result = cursor.execute("select * from people")
>>> print(result.fetchall())
[('Bob', 1), ('Jill', 20), ('Joe', 10)]

In addition to the fetchall method, the fetchone method gets one row of the
result, and fetchmany returns an arbitrary number of rows. For convenience, it’s also
possible to iterate over a cursor object’s rows similarly to iterating over a file:

>>> result = cursor.execute("select * from people")
>>> for row in result:
... print(row)
...
('Bob', 1)

322 CHAPTER 23 Saving data
('Jill', 20)
('Joe', 10)

Finally, by default, sqlite3 doesn’t immediately commit transactions. This fact means
that you have the option of rolling back a transaction if it fails, but it also means that
you need to use the Connection object’s commit method to ensure that any changes
made have been saved. Doing so before you close a connection to a database is a par-
ticularly good idea because the close method doesn’t automatically commit any
active transactions:

>>> cursor.execute("update people set count=? where name=?", (20, "Jill"))
>>> conn.commit()
>>> conn.close()

Table 23.1 gives an overview of the most common operations on an sqlite3 database.

These operations usually are all you need to manipulate an sqlite3 database. Of
course, several options let you control their precise behavior; see the Python docu-
mentation for more information.

TRY THIS: CREATING AND MODIFYING TABLES Using sqlite3, write the code that
creates a database table for the Illinois weather data you loaded from a flat file
in section 21.2. Suppose that you have similar data for more states and want to
store more information about the states themselves. How could you modify
your database to use a related table to store the state information?

23.3 Using MySQL, PostgreSQL, and other relational
databases
As I mentioned earlier in this chapter, several other SQL databases have client librar-
ies that follow the DB-API. As a result, accessing those databases in Python is quite sim-
ilar, but there are a couple of differences to look out for:

Table 23.1 Common sqlite3 database operations

Operation sqlite3 command

Create a connection to a database. conn = sqlite3.connect(filename)

Create a cursor for a connection. Cursor = conn.cursor()

Execute a query with the cursor. cursor.execute(query)

Return the results of a query. cursor.fetchall(),cursor.fetchmany(num_rows),
cursor.fetchone()
for row in cursor:

Commit a transaction to a database. conn.commit()

Close a connection. conn.close()

323Making database handling easier with an ORM
 Unlike SQLite, those databases require a database server that the client connects
to and that may or may not be on a different machine, so the connection requires
more parameters—usually including host, account name, and password.

 The way in which parameters are interpolated into queries, such as "select *
from test where name like :name", could use a different format—some-
thing like ?, %s 5(name)s.

These changes aren’t huge, but they tend to keep code from being completely porta-
ble across different databases.

23.4 Making database handling easier with an ORM
There are a few problems with the DB-API database client libraries mentioned earlier
in this chapter and their requirement to write raw SQL:

 Different SQL databases have implemented SQL in subtly different ways, so the
same SQL statements won’t always work if you move from one database to
another, as you might want to do if, say, you do local development against
sqlite3 and then want to use MySQL or PostgreSQL in production. Also, as
mentioned earlier, the different implementations have different ways of doing
things like passing parameters into queries.

 The second drawback is the need to use raw SQL statements. Including SQL
statements in your code can make your code more difficult to maintain, partic-
ularly if you have a lot of them. In that case, some of the statements will be boil-
erplate and routine; others will be complex and tricky; and all of them need to
be tested, which can get cumbersome.

 The need to write SQL means that you need to think in at least two languages:
Python and a specific SQL variant. In plenty of cases, it’s worth these hassles to
use raw SQL, but in many other cases, it isn’t.

Given those issues, people wanted a way to handle databases in Python that was easier
to manage and didn’t require anything more than writing regular Python code. The
solution is an Object Relational Mapper (ORM), which converts, or maps, relational
database types and structures to objects in Python. Two of the most common ORMs in
the Python world are the Django ORM and SQLAlchemy, although of course there
are many others. The Django ORM is rather tightly integrated with the Django web
framework and usually isn’t used outside it. Because I’m not delving into Django in
this book, I won’t discuss the Django ORM other than to note that it’s the default
choice for Django applications and a good one, with fully developed tools and gener-
ous community support.

23.4.1 SQLAlchemy

SQLAlchemy is the other big-name ORM in the Python space. SQLAlchemy’s goal is
to automate redundant database tasks and provide Python object-based interfaces to
the data while still allowing the developer control of the database and access to the

324 CHAPTER 23 Saving data
underlying SQL. In this section, I look at some basic examples of storing data into a
relational database and then retrieving it with SQLAlchemy.

 You can install SQLAlchemy in your environment with pip:

> pip install sqlalchemy

NOTE In working with SQLAlchemy and its related tools from this point, it
will be more convenient to have two shell windows open in the same virtual
environment: one for Python and one for your system’s command line.

SQLAlchemy offers several ways to interact with database and its tables. Although an
ORM lets you write SQL statements if you want or need to, the strength of an ORM is
doing what the name suggests: mapping the relational database tables and columns to
Python objects.

 Use SQLAlchemy to replicate what you did in section 23.2: Create a table, add
three rows, query the table, and update one row. You need to do a bit more setup to
use the ORM, but in larger projects, this effort is more than worth it.

 First, you need to import the components you need to connect to the database and
map a table to Python objects. From the base sqlalchemy package, you need the
create_engine and select methods and the MetaData and Table classes. But
because you need to specify the schema information when you create the table
object, you also need to import the Column class and the classes for the data type of
each column—in this case, Integer and String. From the sqlalchemy.orm sub-
package, you also need the sessionmaker function:

>>> from sqlalchemy import create_engine, select, MetaData, Table, Column,
Integer, String

>>> from sqlalchemy.orm import sessionmaker

Now you can think about connecting to the database:

>>> dbPath = 'datafile2.db'
>>> engine = create_engine('sqlite:///%s' % dbPath)
>>> metadata = MetaData(engine)
>>> people = Table('people', metadata,
... Column('id', Integer, primary_key=True),
... Column('name', String),
... Column('count', Integer),
...)
>>> Session = sessionmaker(bind=engine)
>>> session = Session()
>>> metadata.create_all(engine)

To create and connect, you need to create a database engine appropriate for your
database; then you need a MetaData object, which is a container for managing tables
and their schemas. Create a Table object called data, giving the table’s name in the
database, the MetaData object you just created, and the column you want to create,
as well as their data types. Finally, you use the sessionmaker function to create a

325Making database handling easier with an ORM
Session class for your engine and use that class to instantiate a session object. At this
point, you’re connected to the database, and the last step is to use the create_all
method to create the table.

 When the table is created, the next step is inserting some records. Again, you have
many options for doing this in SQLAlchemy, but you’ll be fairly explicit in this exam-
ple. Create an insert object, which you then execute:

>>> people_ins = people.insert().values(name='Bob', count=1)
>>> str(people_ins)
'INSERT INTO people (name, count) VALUES (?, ?)'
>>> session.execute(people_ins)
<sqlalchemy.engine.result.ResultProxy object at 0x7f126c6dd438>
>>> session.commit()

Here, you use the insert() method to create an insert object, also specifying the
fields and values you want to insert. people_ins is the insert object, and you use
the str() function to show that behind the scenes, you created the correct SQL com-
mand. Then you use the session object’s execute method to perform the insertion
and the commit method to commit it to the database:

>>> session.execute(people_ins, [
... {'name': 'Jill', 'count':15},
... {'name': 'Joe', 'count':10}
...])
<sqlalchemy.engine.result.ResultProxy object at 0x7f126c6dd908>
>>> session.commit()
>>> result = session.execute(select([people]))
>>> for row in result:
... print(row)
...
(1, 'Bob', 1)
(2, 'Jill', 15)
(3, 'Joe', 10)

You can streamline things a bit and perform multiple inserts by passing in a list of dic-
tionaries of the field names and values for each insert:

>>> result = session.execute(select([people]).where(people.c.name == 'Jill'))
>>> for row in result:
... print(row)
...
(2, 'Jill', 15)

You can also use the select() method with a where() method to find a particular
record. In the example, you’re looking for any records in which the name column
equals 'Jill'. Note that the where expression uses people.c.name, with the c
indicating that name is a column in the people table:

>>> result = session.execute(people.update().values(count=20).where
(people.c.name == 'Jill'))

>>> session.commit()
>>> result = session.execute(select([people]).where(people.c.name == 'Jill'))

326 CHAPTER 23 Saving data
>>> for row in result:
... print(row)
...
(2, 'Jill', 20)
>>>

Finally, you can combine an update() method with the where() method to update
just one row.

MAPPING TABLE OBJECTS TO CLASSES

So far, you’ve used table objects directly, but it’s also possible to use SQLAlchemy to
map a table directly to a class. This technique has the advantage that the columns are
mapped directly to class attributes. For illustration, make a class People:

>>> from sqlalchemy.ext.declarative import declarative_base
>>> Base = declarative_base()
>>> class People(Base):
... __tablename__ = "people"
... id = Column(Integer, primary_key=True)
... name = Column(String)
... count = Column(Integer)
...
>>> results = session.query(People).filter_by(name='Jill')
>>> for person in results:
... print(person.id, person.name, person.count)
...
2 Jill 20

Inserts can be done just by creating an instance of the mapped class and adding it to
the session:

>>> new_person = People(name='Jane', count=5)
>>> session.add(new_person)
>>> session.commit()
>>>
>>> results = session.query(People).all()
>>> for person in results:
... print(person.id, person.name, person.count)
...
1 Bob 1
2 Jill 20
3 Joe 10
4 Jane 5

Updates are also fairly straightforward. You retrieve the record you want to update,
change the values on the mapped instance, and then add the updated record to the
session to be written back to the database:

>>> jill = session.query(People).filter_by(name='Jill').first()
>>> jill.name
'Jill'
>>> jill.count = 22

327Making database handling easier with an ORM
>>> session.add(jill)
>>> session.commit()
>>> results = session.query(People).all()
>>> for person in results:
... print(person.id, person.name, person.count)
...
1 Bob 1
2 Jill 22
3 Joe 10
4 Jane 5

Deleting is similar to updating; you fetch the record to be deleted and then use the
session’s delete() method to delete it:

>>> jane = session.query(People).filter_by(name='Jane').first()
>>> session.delete(jane)
>>> session.commit()
>>> jane = session.query(People).filter_by(name='Jane').first()
>>> print(jane)
None

Using SQLAlchemy does take a bit more setup than just using raw SQL, but it also has
some real benefits. For one thing, using the ORM means that you don’t need to worry
about any subtle differences in the SQL supported by different databases. The exam-
ple works equally well with sqlite3, MySQL, and PostgreSQL without making any
changes in the code other than giving the string to the create engine and making sure
that the correct database driver is available.

 Another advantage is that the interaction with the data can happen through Python
objects, which may be more accessible to coders who lack SQL experience. Instead of
constructing SQL statements, they can use Python objects and their methods.

TRY THIS: USING AN ORM Using the database from earlier, write an SQLAl-
chemy class to map to the data table, and use it to read the records from the
table.

23.4.2 Using Alembic for database schema changes

In the course of developing code that uses a relational database it’s quite common, if
not universal, to have to change the structure or schema of the database after you’ve
started work. Fields need to be added, or their types need to be changed, and so on.
It’s possible, of course, to manually make the changes to both the database tables and
to the code for the ORM that accesses them, but that approach has some drawbacks.
For one thing, such changes are difficult to roll back if you need to, and it’s hard to
keep track of the configuration of the database that goes with a particular version of
your code.

 The solution is to use a database migration tool to help you make the changes and
track them. Migrations are written as code and should include code both to apply the
needed changes and to reverse them. Then the changes can be tracked and applied

328 CHAPTER 23 Saving data
or reversed in the correct sequence. As a result, you can reliably upgrade or down-
grade your database to any of the states it was in over the course of development.

 As an example, this section looks briefly at Alembic, a popular lightweight migra-
tion tool for SQLAlchemy. To start, switch to the system command-line window in your
project directory, install Alembic, and create a generic environment by using alemic
init:

> pip install alembic
> alembic init alembic

This code creates the file structure you need to use Alembic for data migrations.
There’s an alembic.ini file that you need to edit in at least one place. The squal-
chemy.url line needs to be updated to match your current situation:

sqlalchemy.url = driver://user:pass@localhost/dbname

Change the line to

sqlalchemy.url = sqlite:///datafile.db

Because you’re using a local sqlite file, you don’t need a username or password.
 The next step is creating a revision by using Alembic’s revision command:

> alembic revision -m "create an address table"
Generating /home/naomi/qpb_testing/alembic/versions/

384ead9efdfd_create_a_test_address_table.py ... done

This code creates a revision script, 384ead9efdfd_create_a_test_address_table.py, in
the alembic/versions directory. This file looks like this:

"""create an address table

Revision ID: 384ead9efdfd
Revises:
Create Date: 2017-07-26 21:03:29.042762

"""
from alembic import op
import sqlalchemy as sa

revision identifiers, used by Alembic.
revision = '384ead9efdfd'
down_revision = None
branch_labels = None
depends_on = None

def upgrade():
 pass

def downgrade():
 pass

https://redis.io
https://redis.io
https://redis.io

329Making database handling easier with an ORM
You can see that the file contains the revision ID and date in the header. It also con-
tains a down_revision variable to guide the rollback of each version. If you make a
second revision, its down_revision variable should contain this revision’s ID.

 To perform the revision, update the revision script to supply both the code
describing how to perform the revision in the upgrade() method and the code to
reverse it in the downgrade() method:

def upgrade():
 op.create_table(
 'address',
 sa.Column('id', sa.Integer, primary_key=True),
 sa.Column('address', sa.String(50), nullable=False),
 sa.Column('city', sa.String(50), nullable=False),
 sa.Column('state', sa.String(20), nullable=False),
)

def downgrade():
 op.drop_table('address')

When this code is created, you can apply the upgrade. But first, switch back to the
Python shell window to see what tables you have in your database:

>>> print(engine.table_names())
['people']

As you might expect, you have only the one table you created earlier. Now you can run
Alembic’s upgrade command to apply the upgrade and add a new table. Switch over
to your system command line, and run

> alembic upgrade head
INFO [alembic.runtime.migration] Context impl SQLiteImpl.
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running upgrade -> 384ead9efdfd, create an

address table

If you pop back to Python and check, you see that the database has two additional tables:

>>> engine.table_names()
['alembic_version', 'people', 'address'

The first new table, 'alembic version', is created by Alembic to help track which
version your database is currently on (for reference for future upgrades and down-
grades). The second new table, 'address', is the table you added through your
upgrade and is ready to use.

 If you want to roll back the state of the database to what it was before, all you need
to do is run Alembic’s downgrade command in the system window. You give the
downgrade command -1 to tell Alembic that you want to downgrade by one version:

> alembic downgrade -1
INFO [alembic.runtime.migration] Context impl SQLiteImpl.

330 CHAPTER 23 Saving data
INFO [alembic.runtime.migration] Will assume non-transactional DDL.
INFO [alembic.runtime.migration] Running downgrade 384ead9efdfd -> , create

an address table

Now if you check in your Python session, you’ll be back to where you started except
that the version tracking table remains:

>>> engine.table_names()
['alembic_version', 'people']

If you want to, of course, you can run the upgrade again to put the table back, add fur-
ther revisions, make upgrades, and so on.

TRY THIS: MODIFYING A DATABASE WITH ALEMBIC Experiment with creating an
Alembic upgrade that adds a state table to your database, with columns for
ID, state name, and abbreviation. Upgrade and downgrade. What other
changes would be needed if you were going to use the state table along with
the existing data table?

23.5 NoSQL databases
In spite of their longstanding popularity, relational databases aren’t the only ways to
think about storing data. Although relational databases are all about normalizing data
within related tables, other approaches look at data differently. Quite commonly,
these types of databases are referred to as NoSQL databases, because they usually
don’t adhere to the row/column/table structure that SQL was created to describe.

 Rather than handle data as collections of rows, columns, and tables, NoSQL data-
bases can look at the data they store as key-value pairs, as indexed documents, and even
as graphs. Many NoSQL databases are available, all with somewhat different ways of
handling data. In general, they’re less likely to be strictly normalized, which can make
retrieving information faster and easier. As examples, in this chapter I look at using
Python to access two common NoSQL databases: Redis and MongoDB. What follows
barely scratches the surface of what you can do with NoSQL databases and Python, but
it should give you a basic idea of the possibilities. If you’re already familiar with Redis
or MongoDB, you’ll see a little of how the Python client libraries work, and if you’re new
to NoSQL databases, you’ll at least get an idea of how databases like these work.

23.6 key:value stores with Redis
Redis is an in-memory networked key:value store. Because the values are in memory,
lookups can be quite fast, and the fact that it’s designed to be accessed over the net-
work makes it useful in a variety of situations. Redis is commonly used for caching, as a
message broker, and for quick lookups of information. In fact, the name (which
comes from Remote Dictionary Server) is an excellent way to think of it; it behaves
much like a Python dictionary translated to a network service.

 The following example gives you an idea of how Redis works with Python. If you’re
familiar with the Redis command-line interface or have used a Redis client for

https://redislabs.com
https://redislabs.com
https://redislabs.com
https://redis-py.readthedocs.io
https://redis-py.readthedocs.io

331key:value stores with Redis
another language, these short examples should get you well on your way to using
Redis with Python. If Redis is new to you, the following gives you an idea of how it
works; you can explore more at https://redis.io.

 Although several Python clients are available for Redis, at this writing the way to go
(according to the Redis website) is one called redis-py. You can install it with pip
install redis.

When you get a server running, the following are examples of simple Redis interac-
tions with Python. First, you need to import the Redis library and create a Redis con-
nection object:

>>> import redis
>>> r = redis.Redis(host='localhost', port=6379)

You can use several connection options when creating a Redis connection, including
the host, port, and password or SSH certificate. If the server is running on localhost
on the default port of 6379, no options are needed. When you have the connection,
you can use it to access the key:value store.

 One of the first things you might do is use the keys() method to get a list of the
keys in the database, which returns a list of keys currently stored (if any). Then you
can set some keys of different types and try some ways to retrieve their values:

>>> r.keys()
[]
>>> r.set('a_key', 'my value')
True
>>> r.keys()
[b'a_key']
>>> v = r.get('a_key')
>>> v
b'my value'

Running a Redis server
To experiment, you need to have a Redis server running. Although you could use
cloud-based Redis services, for experimentation your best choices are using a Docker
instance or installing a server on a machine.

If you have Docker installed, using the Redis Docker instance is probably the quickest
and easiest way to get a server up and running. You should be able to launch a Redis
instance from the command line with a command like > docker run -p
6379:6379 redis.

On Linux systems, it should be fairly easy to install Redis by using the system pack-
age manager, and on Mac systems, brew install redis should work. On Win-
dows systems, you should check the https://redis.io website or search online for the
current options for running Redis on Windows. When Redis is installed, you may need
to look online for instructions to make sure that the Redis server is running.

https://redis.io
https://redis.io
https://www.mongodb.com

332 CHAPTER 23 Saving data
>>> r.incr('counter')
1
>>> r.get('counter')
b'1'
>>> r.incr('counter')
2
>>> r.get('counter')
b'2'

These examples show how you can get a list of the keys in the Redis database, how to
set a key with a value, and how to set a key with a counter variable and increment it.

 These examples deal with storing arrays or lists:

>>> r.rpush("words", "one")
1
>>> r.rpush("words", "two")
2
>>> r.lrange("words", 0, -1)
[b'one', b'two']
>>> r.rpush("words", "three")
3
>>> r.lrange("words", 0, -1)
[b'one', b'two', b'three']
>>> r.llen("words")
3
>>> r.lpush("words", "zero")
4
>>> r.lrange("words", 0, -1)
[b'zero', b'one', b'two', b'three']
>>> r.lrange("words", 2, 2)
[b'two']
>>> r.lindex("words", 1)
b'one'
>>> r.lindex("words", 2)
b'two'

When you start the key, "words" isn’t in the database, but the act of adding or push-
ing a value to the end (from the right, the r in rpush) creates the key, makes an
empty list as its value, and then appends the value 'one'. Using rpush again adds
another word to the end. To retrieve the values in the list, you can use the lrange()
function, giving the key and both a starting index and an ending index, with -1 indi-
cating the end of the list.

 Also note that you can add to the beginning, or left side, of the list with lpush().
You can use lindex() to retrieve a single value in the same way as lranger(),
except that you give it the index of the value you want.

EXPIRATION OF VALUES

One feature of Redis that makes it particularly useful for caching is the ability to set an
expiration for a key-value pair. After that time has elapsed, the key and value are
removed. This technique is particularly useful for using Redis as a cache. You can set
the timeout value in seconds when you set the value for a key:

333Documents in MongoDB
>>> r.setex("timed", "10 seconds", 10)
True
>>> r.pttl("timed")
7165
>>> r.pttl("timed")
5208
>>> r.pttl("timed")
1542
>>> r.pttl("timed")
>>>

In this case, you set the expiration of "timed" to 10 seconds. Then, as you use the
pttl() method, you can see the time remaining before expiration in milliseconds.
When the value expires, both the key and value are automatically removed from the
database. This feature and the fine-grained control of it that Redis offers are really
useful. For simple caches, you may not need to write much more code to have your
problem solved.

 It’s worth noting that Redis holds its data in memory, so keep in mind that the data
isn’t persistent; if the server crashes, some data is likely to be lost. To mitigate the pos-
sibility of data loss, Redis has options to manage persistence—everything from writing
every change to disk as it occurs to making periodic snapshots at predetermined times
to not saving to disk at all. You can also use the Python client’s save() and bgsave()
methods to programmatically force a snapshot to be saved, either blocking until the
save is complete with save() or saving in the background in the case of bgsave().

 In this chapter, I’ve only touched on a small part of what Redis can do, as well as its
data types and the ways it can manipulate them. If you’re interested in finding out
more, several sources of documentation are available online, including at https://
redislabs.com and https://redis-py.readthedocs.io.

QUICK CHECK: USES OF KEY:VALUE STORES What sorts of data and applications
would benefit most from a key:value store like Redis?

23.7 Documents in MongoDB
Another popular NoSQL database is MongoDB, which is sometimes called a document-
based database because it isn’t organized in rows and columns but instead stores doc-
uments. MongoDB is designed to scale across many nodes in multiple clusters while
potentially handling billions of documents. In the case of MongoDB, a document is
stored in a format called BSON (Binary JSON), so a document consists of key-value
pairs and looks like a JSON object or Python dictionary. The following examples give
you a taste of how you can use Python to interact with MongoDB collections and doc-
uments, but a word of warning is appropriate. In situations requiring scale and distri-
bution of data, high insert rates, complex and unstable schemas, and so on, MongoDB
is an excellent choice. However, MongoDB isn’t the best choice in many situations, so
be sure to investigate your needs and options thoroughly before choosing.

https://redislabs.com
https://redislabs.com
https://redis-py.readthedocs.io

334 CHAPTER 23 Saving data
As is the case with Redis, several Python client libraries connect to MongoDB data-
bases. To give you an idea of how they work, look at pymongo. The first step in using
pymongo is installing it, which you can do with pip:

> pip install pymongo

When you have pymongo installed, you can connect to a MongoDB server by creating
an instance of MongoClient and specifying the usual connection details:

>>> from pymongo import MongoClient
>>> mongo = MongoClient(host='localhost', port=27017)

MongoDB is organized in terms of a database which contains collections, each of
which can contain documents. Databases and collections don’t need to be created
before you try to access them, however. If they don’t exist, they’re created as you insert
into them, or they simply return no results if you try to retrieve records from them.

 To test the client, make a sample document, which can be a Python dictionary:

>>> import datetime
>>> a_document = {'name': 'Jane',
... 'age': 34,
... 'interests': ['Python', 'databases', 'statistics'],
... 'date_added': datetime.datetime.now()
... }
>>> db = mongo.my_data
>>> collection = db.docs
>>> collection.find_one()
>>> db.collection_names()
[]

Here, you connect to a database and a collection of documents. In this case, they
don’t exist, but they’ll be created as you access them. Note that no exceptions were

Running a MongoDB server
As with Redis, if you want to experiment with MongoDB, you need to have access to
a MongoDB server. Numerous cloud-hosted Mongo services are available, but again,
if you’re just experimenting, you’ll probably be better off running a Docker instance
or installing on a server you own.

As is the case with Redis, the easiest solution is to run a Docker instance. All you
need to do if you have Docker is enter > docker run -p 27017:27017 mongo
at the command line. On a Linux system, your package manager should do the job,
and the Mac’s brew install mongodb will do it. On Windows systems, check on
www.mongodb.com for the Windows version and installation instructions. As with
Redis, search online for any instructions on how to configure and start the server.

host='localhost' and port=27017 are
defaults and don’t need to be specified.

Selects a database (which
hasn’t been created yet)

Selects a collection
in the database (also
not yet created)Searches for first item; doesn’t throw

exception even though neither
collection nor database exists yet

www.mongodb.com

335Documents in MongoDB

Updat
acc
co
$

raised even though the database and collection didn’t exist. When you asked for a list
of the collections, however, you got an empty list because nothing has been stored in
your collection. To store a document, use the collection’s insert() method, which
returns the document’s unique ObjectId if the operation is successful:

>>> collection.insert(a_document)
ObjectId('59701cc4f5ef0516e1da0dec')
>>> db.collection_names()
['docs']

Now that you’ve stored a document in the docs collection, it shows up when you ask
for the collection names in your database. When the document is stored in the collec-
tion, you can query for it, update it, replace it, and delete it:

>>> collection.find_one()
{'_id': ObjectId('59701cc4f5ef0516e1da0dec'), 'name': 'Jane', 'age': 34,

'interests': ['Python', 'databases', 'statistics'], 'date_added':
datetime.datetime(2017, 7, 19, 21, 59, 32, 752000)}

>>> from bson.objectid import ObjectId
>>> collection.find_one({"_id":ObjectId('59701cc4f5ef0516e1da0dec')})
{'_id': ObjectId('59701cc4f5ef0516e1da0dec'), 'name': 'Jane',

'age': 34, 'interests': ['Python', 'databases',
'statistics'], 'date_added': datetime.datetime(2017,
7, 19, 21, 59, 32, 752000)}

>>> collection.update_one({"_id":ObjectId('59701cc4f5ef0516e1da0dec')},
{"$set": {"name":"Ann"}})

<pymongo.results.UpdateResult object at 0x7f4ebd601d38>
>>> collection.find_one({"_id":ObjectId('59701cc4f5ef0516e1da0dec')})
{'_id': ObjectId('59701cc4f5ef0516e1da0dec'), 'name': 'Ann', 'age': 34,

'interests': ['Python', 'databases', 'statistics'], 'date_added':
datetime.datetime(2017, 7, 19, 21, 59, 32, 752000)}

>>> collection.replace_one({"_id":ObjectId('59701cc4f5ef0516e1da0dec')},
{"name":"Ann"})

<pymongo.results.UpdateResult object at 0x7f4ebd601750>
>>> collection.find_one({"_id":ObjectId('59701cc4f5ef0516e1da0dec')})
{'_id': ObjectId('59701cc4f5ef0516e1da0dec'), 'name': 'Ann'}
>>> collection.delete_one({"_id":ObjectId('59701cc4f5ef0516e1da0dec')})
<pymongo.results.DeleteResult object at 0x7f4ebd601d80>
>>> collection.find_one()

First, notice that MongoDB matches according to dictionaries of the fields and their
values to match. Dictionaries are also used to indicate operators, such as $lt (less
than) and $gt (greater than), as well as commands such as $set for the update. The
other thing to notice is that even though the record has been deleted and the collec-
tion is now empty, it still exists unless it’s specifically dropped:

>>> db.collection_names()
['docs']
>>> collection.drop()
>>> db.collection_names()
[]

Unique ObjectId

Retrieves first record

Retrieves record
matching specification—

in this case, ObjectId

es record
ording to
ntents of

set object

Replaces
record with
new object

Deletes record
matching specification

336 CHAPTER 23 Saving data
MongoDB can do many other things, of course. In addition to operating on one
record, versions of the same commands cover multiple records, such as find_many
and update_many. MongoDB also supports indexing to improve performances and
has several methods to group, count, and aggregate data, as well as a built in map-
reduce method.

QUICK CHECK: USES OF MONGODB Thinking back over the various data samples
you’ve seen so far and other types of data in your experience, which do you
think would be well suited to being stored in a database like MongoDB?
Would others clearly not be suited, and if so, why not?

LAB 23: CREATE A DATABASE Choose one of the datasets I’ve discussed in the
past few chapters, and decide which type of database would be best for storing
that data. Create that database, and write the code to load the data into it.
Then choose the two most common and/or likely types of search criteria, and
write the code to retrieve both single and multiple matching records.

Summary
 Python has a Database API (DB-API) that provides a generally consistent inter-

face for clients of several relational databases.
 Using an Object Relational Mapper (ORM) can make database code even more

standard across databases.
 Using an ORM also lets you access relational databases through Python code

and objects rather than SQL queries.
 Tools such as Alembic work with ORMs to use code to make reversible changes

to a relational database schema.
 Key:value stores such as Redis provide quick in-memory data access.
 MongoDB provides scalability without the strict structure of relational data-

bases.

Exploring data
Over the past few chapters, I’ve dealt with some aspects of using Python to get and
clean data. Now it’s time to look at a few of the things that Python can help you do
to manipulate and explore data.

24.1 Python tools for data exploration
In this chapter, we’ll look at some common Python tools for data exploration: Jupy-
ter notebook, pandas, and matplotlib. I can only touch briefly on a few features of
these tools, but the aim is to give you an idea of what is possible and some initial
tools to use in exploring data with Python.

This chapter covers
 Python’s advantages for handling data

 Jupyter Notebook

 pandas

 Data aggregation

 Plots with matplotlib
337

338 CHAPTER 24 Exploring data
24.1.1 Python’s advantages for exploring data

Python has become one of the leading languages for data science and continues to
grow in that area. As I’ve mentioned, however, Python isn’t always the fastest language
in terms of raw performance. Conversely, some data-crunching libraries, such as
NumPy, are largely written in C and heavily optimized to the point that speed isn’t an
issue. In addition, considerations such as readability and accessibility often outweigh
pure speed; minimizing the amount of developer time needed is often more impor-
tant. Python is readable and accessible, and both on its own and in combination with
tools developed in the Python community, it’s an enormously powerful tool for
manipulating and exploring data.

24.1.2 Python can be better than a spreadsheet

Spreadsheets have been the tools of choice for ad-hoc data manipulation for decades.
People who are skilled with spreadsheets can make them do truly impressive tricks:
spreadsheets can combine different but related data sets, pivot tables, use lookup
tables to link data sets, and much more. But although people everywhere get a vast
amount of work done with them every day, spreadsheets do have limitations, and
Python can help you go beyond those limitations.

 One limitation that I’ve already alluded to is the fact that most spreadsheet soft-
ware has a row limit—currently, about 1 million rows, which isn’t enough for many
data sets. Another limitation is the central metaphor of the spreadsheet itself. Spread-
sheets are two-dimensional grids, rows and columns, or at best stacks of grids, which
limits the ways you can manipulate and think about complex data.

 With Python, you can code your way around the limitations of spreadsheets and
manipulate data the way you want. You can combine Python data structures such as
lists, tuples, sets, and dictionaries in endlessly flexible ways, or you can create your own
classes to package both data and behavior exactly the way you need.

24.2 Jupyter notebook
Probably one of the most compelling tools for exploring data with Python doesn’t
augment what the language itself does, but changes the way you use the language to
interact with your data. Jupyter notebook is a web application that allows you to create
and share documents that contain live code, equations, visualizations, and explana-
tory text. Although several other languages are now supported, it originated in con-
nection with IPython, an alternative shell for Python developed by the scientific
community.

 What makes Jupyter such a convenient and powerful tool is the fact that you inter-
act with it in a web browser. It lets you combine text and code, as well as modify and
execute your code interactively. You can not only run and modify code in chunks, but
also save and share the notebooks with others.

339Jupyter notebook
 The best way to get a feel for what Jupyter notebook can do is start playing with it.
It’s fairly easy to run a Jupyter process locally on your machine, or you can access
online versions. For some options, see the sidebar on ways to run Jupyter.

24.2.1 Starting a kernel

When you have Jupyter installed, running, and open in your browser, you need to start
a Python kernel. One nice thing about Jupyter is that it lets you run multiple kernels
at the same time. You can run kernels for different versions of Python and for other
languages such as R, Julia, and even Ruby.

Ways to run Jupyter
Jupyter online: Accessing online instances of Jupyter is one of the easiest ways to get
started. Currently, Project Jupyter, the community behind Jupyter, hosts free note-
books at https://jupyter.org/try. You can also find demo notebooks and kernels for
other languages. At this writing, you can also access free notebooks on Microsoft’s
Azure platform at https://notebooks.azure.com, and many other ways are available.

Jupyter locally: Although using an online instance is quite convenient, it’s not very
much work to set up your own instance of Jupyter on your computer. Usually for
local versions, you point your browser to localhost:8888.

If you use Docker, you have several containers to choose among. To run the data
science notebook container, use something like this:

docker run -it --rm -p 8888:8888 jupyter/datascience-notebook

If you’d rather run directly on your system, it’s easy to install and run Jupyter in a vir-
tualenv.

macOS and Linux systems: First, open a command window, and enter the following
commands:

 > python3 -m venv jupyter
 > cd jupyter
 > source bin/activate
 > pip install jupyter
 > jupyter-notebook

Windows systems:

> python3 -m venv jupyter
 > cd jupyter
 > Scripts/bin/activate
 > pip install jupyter
 > Scripts/jupyter-notebook

The last command should run the Jupyter notebook web app and open a browser win-
dow pointing at it.

https://jupyter.org/try
https://notebooks.azure.com

340 CHAPTER 24 Exploring data
Figure 24.1 Starting a Python kernel

Starting a kernel is easy. Just click the new button and select Python 3 (figure 24.1).

24.2.2 Executing code in a cell

When you have a kernel running, you can start entering and running Python code.
Right away, you’ll notice a few differences from the ordinary Python command shell.
You won’t get the >>> prompt that you see in the standard Python shell, and pressing
Enter just adds new lines in the cell. To execute the code in a cell, illustrated in figure
24.2, choose Cell > Run Cells, click the Run button immediately to the left of the
down arrow on the button bar, or use the key combination Alt-Enter. After you use
Jupyter notebook a little bit, it’s quite likely that the Alt-Enter key combination will
become quite natural to you.

 You can test how it works by entering some code or an expression into the first cell
of your new notebook and then pressing Alt-Enter.

Figure 24.2 Executing code in a notebook cell

As you can see, any output is shown immediately below the cell, and a new cell is cre-
ated and ready for your next input. Also note that each cell that’s executed is num-
bered in the order in which it’s executed.

341Python and pandas
TRY THIS: USING JUPYTER NOTEBOOK Enter some code in the notebook and
experiment with running it. Check out the Edit, Cell, and Kernel menus to
see what options are there. When you have a little code running, use the Ker-
nel menu to restart the kernel, repeat your steps, and then use the Cell menu
to rerun the code in all of the cells.

24.3 Python and pandas
In the course of exploring and manipulating data, you perform quite a few common
operations, such as loading data into a list or dictionary, cleaning data, and filtering
data. Most of these operations are repeated often, have to be done in standard pat-
terns, and are simple and often tedious. If you think that this combination is a strong
reason to automate those tasks you’re not alone. One of the now-standard tools for
handling data in Python—pandas—was created to automate the boring heavy lifting
of handling data sets.

24.3.1 Why you might want to use pandas

pandas was created to make manipulating and analyzing tablular or relational data
easy by providing a standard framework for holding the data, with convenient tools
for frequent operations. As a result, it’s almost more of an extension to Python than a
library, and it changes the way you can interact with data. The plus side is that after
you grok how pandas work, you can do some impressive things and save a lot of time.
It does take time to learn how to get the most from pandas, however. As with many
tools, if you use pandas for what it was designed for, it excels. The simple examples I
show you in the following sections should give you a rough idea whether pandas is a
tool that’s suited for your use cases.

24.3.2 Installing pandas

pandas is easy to install with pip. It’s often used along with matplotlib for plotting, so
you can install both tools from the command line of your Jupyter virtual environment
with this code:

> pip install pandas matplotlib

From a cell in a Jupyter notebook, you can use

In []: !pip install pandas matplotlib

If you use pandas, life will be easier if you use the following three lines:

%matplotlib inline
import pandas as pd
import numpy as np

The first line is a Jupyter “magic” function that enables matplotlib to plot data in the
cell where your code is (which is very useful). The second line imports pandas with
the alias of pd, which is both easier to type and common among pandas users; the last

342 CHAPTER 24 Exploring data
line also imports numpy. Although pandas depends quite a bit on numpy, you won’t
use it explicitly in the following examples, but it’s reasonable to get into the habit of
importing it anyway.

24.3.3 Data frames

One basic structure that you get with pandas is a data frame. A data frame is a two-
dimensional grid, rather similar to a relational database table except in memory. Cre-
ating a data frame is easy; you give it some data. To keep things absolutely simple, give
it a 3 x 3 grid of numbers as the first example. In Python, such a grid is a list of lists:

grid = [[1,2,3], [4,5,6], [7,8,9]]
print(grid)

[[1, 2, 3], [4, 5, 6], [7, 8, 9]]

Sadly, in Python the grid won’t look like a grid unless you make some additional
effort. So see what you can do with the same grid as a pandas data frame:

import pandas as pd
df = pd.DataFrame(grid)
print(df)

 0 1 2
0 1 2 3
1 4 5 6
2 7 8 9

That code is fairly straightforward; all you needed to do was turn your grid into a data
frame. You’ve gained a more gridlike display, and now you have both row and column
numbers. It’s often rather bothersome to keep track of what column number is what,
of course, so give your columns names:

df = pd.DataFrame(grid, columns=["one", "two", "three"])
print(df)

 one two three
0 1 2 3
1 4 5 6
2 7 8 9

You may wonder whether naming the columns has any benefit, but the column names
can be put to use with another pandas trick: the ability to select columns by name. If
you want the contents only of column "two", for example, you can get it very simply:

print(df["two"])
0 2
1 5
2 8
Name: two, dtype: int64

343Data cleaning
Here, you’ve already saved time in comparison to Python. To get only column two of
your grid, you’d need to use a list comprehension while also remembering to use a
zero-based index (and you still wouldn’t get the nice output):

print([x[1] for x in grid])
[2, 5, 8]

You can loop over data frame column values just as easily as the list you got by using a
comprehension:

for x in df["two"]:
 print(x)
2
5
8

That’s not bad for a start, but by using a list of columns in double brackets, you can do
better, getting a subset of the data frame that’s another data frame. Instead of getting
the middle column, get the first and last columns of your data frame as another data
frame:

edges = df[["one", "three"]]
print(edges)
 one three
0 1 3
1 4 6
2 7 9

A data frame also has several methods that apply the same operation and argument to
every item in the frame. If you want to add two to every item in the data frame’s edges,
you could use the add() method:

print(edges.add(2))
 one three
0 3 5
1 6 8
2 9 11

Here again, it’s possible to get the same result by using list comprehensions and/or
nested loops, but those techniques aren’t as convenient. It’s pretty easy to see how
such functionality can make life easier, particularly for someone who’s more inter-
ested in the information that the data contains than in the process of manipulating it.

24.4 Data cleaning
In earlier chapters, I discussed a few ways to use Python to clean data. Now that I’ve
added pandas to the mix, I’ll show you examples of how to use its functionality to
clean data. As I present the following operations, I also refer to ways that the same
operation might be done in plain Python, both to illustrate how using pandas is differ-
ent and to show why pandas isn’t right for every use case (or user, for that matter).

344 CHAPTER 24 Exploring data
24.4.1 Loading and saving data with pandas

pandas has an impressive collection of methods to load data from different sources. It
supports several file formats (including fixed-width and delimited text files, spread-
sheets, JSON, XML, and HTML), but it’s also possible to read from SQL databases,
Google BiqQuery, HDF, and even clipboard data. You should be aware that many of
these operations aren’t actually part of pandas itself; pandas relies on having other
libraries installed to handle those operations, such as SQLAlchemy for reading from
SQL databases. This distinction matters mostly if something goes wrong; quite often,
the problem that needs to be fixed is outside pandas, and you’re left to deal with the
underlying library.

 Reading a JSON file with the read_json() method is simple:

mars = pd.read_json("mars_data_01.json")

This code gives you a data frame like this:

 report
abs_humidity None
atmo_opacity Sunny
ls 296
max_temp -1
max_temp_fahrenheit 30.2
min_temp -72
min_temp_fahrenheit -97.6
pressure 869
pressure_string Higher
season Month 10
sol 1576
sunrise 2017-01-11T12:31:00Z
sunset 2017-01-12T00:46:00Z
terrestrial_date 2017-01-11
wind_direction --
wind_speed None

For another example of how simple reading data into pandas is, load some data from
the CSV file of temperature data from chapter 21 and from the JSON file of Mars
weather data used in chapter 22. In the first case, use the read_csv() method:

 temp = pd.read_csv("temp_data_01.csv")

 4 5 6 7 8 9 10 11 12 13 14 \

0 1979/01/01 17.48 994 6.0 30.5 2.89 994 -13.6 15.8 NaN 0
1 1979/01/02 4.64 994 -6.4 15.8 -9.03 994 -23.6 6.6 NaN 0
2 1979/01/03 11.05 994 -0.7 24.7 -2.17 994 -18.3 12.9 NaN 0
3 1979/01/04 9.51 994 0.2 27.6 -0.43 994 -16.3 16.3 NaN 0
4 1979/05/15 68.42 994 61.0 75.1 51.30 994 43.3 57.0 NaN 0
5 1979/05/16 70.29 994 63.4 73.5 48.09 994 41.1 53.0 NaN 0
6 1979/05/17 75.34 994 64.0 80.5 50.84 994 44.3 55.7 82.60 2

Note that the \ at the end of the header
line is an indication that the table is

too long to be printed on one line and
more columns are printed below.

345Data cleaning
7 1979/05/18 79.13 994 75.5 82.1 55.68 994 50.0 61.1 81.42 349
8 1979/05/19 74.94 994 66.9 83.1 58.59 994 50.9 63.2 82.87 78

 15 16 17
0 NaN NaN 0.0000
1 NaN NaN 0.0000
2 NaN NaN 0.0000
3 NaN NaN 0.0000
4 NaN NaN 0.0000
5 NaN NaN 0.0000
6 82.4 82.8 0.0020
7 80.2 83.4 0.3511
8 81.6 85.2 0.0785

Clearly, loading the file in a single step is appealing, and you can see that pandas had
no issues loading the file. You can also see that the empty first column has been trans-
lated into NaN (not a number). You do still have the same issue with 'Missing' for
some values, and in fact it might make sense to have those 'Missing' values con-
verted to NaN:

temp = pd.read_csv("temp_data_01.csv", na_values=['Missing'])

The addition of the na_values parameter controls what values will be translated to
NaN on load. In this case, you added the string 'Missing' so that the row of the data
frame was translated from

NaN Illinois 17 Jan 01, 1979 1979/01/01 17.48 994 6.0 30.5 2.89994
-13.6 15.8 Missing 0 Missing Missing 0.00%

to

NaN Illinois 17 Jan 01, 1979 1979/01/01 17.48 994 6.0 30.5 2.89994
-13.6 15.8 NaN0 NaN NaN 0.00%

This technique can be particularly useful if you have one of those data files in which, for
whatever reason, "no data" is indicated in a variety of ways: NA, N/A, ?, -, and so on. To
handle a case like that, you can inspect the data to find out what’s used and then reload
it, using the na_values parameter to standardize all those variations as NaN.

SAVING DATA

If you want to save the contents of a data frame, a pandas data frame has a similarly
broad collection of methods. If you take your simple grid data frame, you can write it
in several ways. This line

df.to_csv("df_out.csv", index=False)

writes a file that looks like this:

one,two,three
1,2,3
4,5,6
7,8,9

Setting index to False means that
the row indexes will not be written.

346 CHAPTER 24 Exploring data
Similarly, you can transform a data grid to a JSON object or write it to a file:

df.to_json()
'{"one":{"0":1,"1":4,"2":7},"two":{"0":2,"1":5,"2":8},"three":{"0":3,"1":6,"2

":9}}'

24.4.2 Data cleaning with a data frame

Converting a particular set of values to NaN on load is a very simple bit of data clean-
ing that pandas makes trivial. Going beyond that, data frames support several opera-
tions that can make data cleaning less of a chore. To see how this works, reopen the
temperature CSV file, but this time, instead of using the headers to name the col-
umns, use the range() function with the names parameter to give them numbers,
which will make referring to them easier. You also may recall from an earlier example
that the first field of every line—the "Notes" field—is empty and loaded with NaN
values. Although you could ignore this column, it would be even easier if you didn’t
have it. You can use the range() function again, this time starting from 1, to tell pan-
das to load all columns except the first one. But if you know that all of your values are
from Illinois and you don’t care about the long-form date field, you could start from 4
to make things much more manageable:

temp = pd.read_csv("temp_data_01.csv", na_values=['Missing'], header=0,
names=range(18), usecols=range(4,18))

print(temp)

 4 5 6 7 8 9 10 11 12 13 14 \
0 1979/01/01 17.48 994 6.0 30.5 2.89 994 -13.6 15.8 NaN 0
1 1979/01/02 4.64 994 -6.4 15.8 -9.03 994 -23.6 6.6 NaN 0
2 1979/01/03 11.05 994 -0.7 24.7 -2.17 994 -18.3 12.9 NaN 0
3 1979/01/04 9.51 994 0.2 27.6 -0.43 994 -16.3 16.3 NaN 0
4 1979/05/15 68.42 994 61.0 75.1 51.30 994 43.3 57.0 NaN 0
5 1979/05/16 70.29 994 63.4 73.5 48.09 994 41.1 53.0 NaN 0
6 1979/05/17 75.34 994 64.0 80.5 50.84 994 44.3 55.7 82.60 2
7 1979/05/18 79.13 994 75.5 82.1 55.68 994 50.0 61.1 81.42 349
8 1979/05/19 74.94 994 66.9 83.1 58.59 994 50.9 63.2 82.87 78

 15 16 17
0 NaN NaN 0.00%
1 NaN NaN 0.00%
2 NaN NaN 0.00%
3 NaN NaN 0.00%
4 NaN NaN 0.00%
5 NaN NaN 0.00%
6 82.4 82.8 0.20%
7 80.2 83.4 35.11%
8 81.6 85.2 7.85%

Now you have a data frame that has only the columns you might want to work with.
But you still have an issue: the last column, which lists the percentage of coverage for

Supplying a file path as an argument writes
the JSON to that file rather than returning it.

Setting header=0 turns off reading
the header for column labels.

347Data cleaning
the heat index, is still a string ending with a percentage sign rather than an actual per-
centage. This problem is apparent if you look at the first row’s value for column 17:

temp[17][0]
'0.00%'

To fix this problem, you need to do two things: Remove the % from the end of the value
and then cast the value from string to a number. Optionally, if you want to represent the
resulting percentage as a fraction, you need to divide it by 100. The first bit is simple
because pandas lets you use a single command to repeat an operation on a column:

temp[17] = temp[17].str.strip("%")
temp[17][0]
'0.00'

This code takes the column and calls a string strip() operation on it to remove the
trailing %. Now when you look at the first value in the column (or any of the other val-
ues), you see that the offending percentage sign is gone. It’s also worth noting that
you could have used other operations, such as replace("%", ""), to achieve the
same result.

 The second operation is to convert the string to a numeric value. Again, pandas
lets you perform this operation with one command:

temp[17] = pd.to_numeric(temp[17])
temp[17][0]
0.0

Now the values in column 17 are numeric, and if you want to, you can use the div()
method to finish the job of turning those values into fractions:

temp[17] = temp[17].div(100)
temp[17]

0 0.0000
1 0.0000
2 0.0000
3 0.0000
4 0.0000
5 0.0000
6 0.0020
7 0.3511
8 0.0785
Name: 17, dtype: float64

In fact, it would be possible to achieve the same result in a single line by chaining the
three operations together:

temp[17] = pd.to_numeric(temp[17].str.strip("%")).div(100)

This example is very simple, but it gives you an idea of the convenience that pandas can
bring to cleaning your data. pandas has a wide variety of operations for transforming

348 CHAPTER 24 Exploring data
data, as well as the ability to use custom functions, so it would be hard to think of a sce-
nario in which you couldn’t streamline data cleaning with pandas.

 Although the number of options is almost overwhelming, a wide variety of tutorials
and videos is available, and the documentation at http://pandas.pydata.org is
excellent.

TRY THIS: CLEANING DATA WITH AND WITHOUT PANDAS Experiment with the
operations. When the final column has been converted to a fraction, can you
think of a way to convert it back to a string with the trailing percentage sign?

By contrast, load the same data into a plain Python list by using the csv mod-
ule, and apply the same changes by using plain Python.

24.5 Data aggregation and manipulation
The preceding examples probably gave you some idea of the many options pandas gives
you for performing fairly complex operations on your data with only a few commands.
As you might expect, this level of functionality is also available for aggregating data. In
this section, I walk through a few simple examples of aggregating data to illustrate some
of the many possibilities. Although many options are available, I focus on merging data
frames, performing simple data aggregation, and grouping and filtering.

24.5.1 Merging data frames

Quite often in the course of handling data, you need to relate two data sets. Suppose
that you have one file containing the number of sales calls made per month by mem-
bers of a sales team, and in another file, you have the dollar amounts of the sales in
each of their territories:

calls = pd.read_csv("sales_calls.csv")
print(calls)

 Team member Territory Month Calls
0 Jorge 3 1 107
1 Jorge 3 2 88
2 Jorge 3 3 84
3 Jorge 3 4 113
4 Ana 1 1 91
5 Ana 1 2 129
6 Ana 1 3 96
7 Ana 1 4 128
8 Ali 2 1 120
9 Ali 2 2 85
10 Ali 2 3 87
11 Ali 2 4 87

revenue = pd.read_csv("sales_revenue.csv")
print(revenue)

 Territory Month Amount
0 1 1 54228
1 1 2 61640
2 1 3 43491

http://pandas.pydata.org

349Data aggregation and manipulation
3 1 4 52173
4 2 1 36061
5 2 2 44957
6 2 3 35058
7 2 4 33855
8 3 1 50876
9 3 2 57682
10 3 3 53689
11 3 4 49173

Clearly, it would be very useful to link revenue and team-member activity. These two
files are very simple, yet merging them with plain Python isn’t entirely trivial. pandas
has a function to merge two data frames:

calls_revenue = pd.merge(calls, revenue, on=['Territory', 'Month'])

The merge function creates a new data frame by joining the two frames on the col-
umns specified in the column field. The merge function works similarly to a rela-
tional-database join, giving you a table that combines the columns from the two files:

print(calls_revenue)
 Team member Territory Month Calls Amount
0 Jorge 3 1 107 50876
1 Jorge 3 2 88 57682
2 Jorge 3 3 84 53689
3 Jorge 3 4 113 49173
4 Ana 1 1 91 54228
5 Ana 1 2 129 61640
6 Ana 1 3 96 43491
7 Ana 1 4 128 52173
8 Ali 2 1 120 36061
9 Ali 2 2 85 44957
10 Ali 2 3 87 35058
11 Ali 2 4 87 33855

In this case, you have a one-to-one correspondence between the rows in the two fields,
but the merge function can also do one-to-many and many-to-many joins, as well as
right and left joins.

QUICK CHECK: MERGING DATA SETS How would you go about merging to data
sets like the ones in the Python example?

24.5.2 Selecting data

It can also be useful to select or filter the rows in a data frame based on some condition.
In the example sales data, you may want to look only at territory 3, which is also easy:

 print(calls_revenue[calls_revenue.Territory==3])

 Team member Territory Month Calls Amount
0 Jorge 3 1 107 50876
1 Jorge 3 2 88 57682
2 Jorge 3 3 84 53689
3 Jorge 3 4 113 49173

350 CHAPTER 24 Exploring data
In this example, you select only rows in which the territory is equal to 3 but using
exactly that expression, revenue.Territory==3, as the index for the data frame.
From the point of view of plain Python, such use is nonsense and illegal, but for a pan-
das data frame, it works and makes for a much more concise expression.

 More complex expressions are also allowed, of course. If you want to select only
rows in which the amount per call is greater than 500, you could use this expression
instead:

print(calls_revenue[calls_revenue.Amount/calls_revenue.Calls>500])

 Team member Territory Month Calls Amount
1 Jorge 3 2 88 57682
2 Jorge 3 3 84 53689
4 Ana 1 1 91 54228
9 Ali 2 2 85 44957

Even better, you could calculate and add that column to your data frame by using a
similar operation:

calls_revenue['Call_Amount'] = calls_revenue.Amount/calls_revenue.Calls
print(calls_revenue)

 Team member Territory Month Calls Amount Call_Amount
0 Jorge 3 1 107 50876 475.476636
1 Jorge 3 2 88 57682 655.477273
2 Jorge 3 3 84 53689 639.154762
3 Jorge 3 4 113 49173 435.159292
4 Ana 1 1 91 54228 595.912088
5 Ana 1 2 129 61640 477.829457
6 Ana 1 3 96 43491 453.031250
7 Ana 1 4 128 52173 407.601562
8 Ali 2 1 120 36061 300.508333
9 Ali 2 2 85 44957 528.905882
10 Ali 2 3 87 35058 402.965517
11 Ali 2 4 87 33855 389.137931

Again, note that pandas’s built-in logic replaces a more cumbersome structure in
plain Python.

QUICK CHECK: SELECTING IN PYTHON What Python code structure would you
use to select only rows meeting certain conditions?

24.5.3 Grouping and aggregation

As you might expect, pandas has plenty of tools to summarize and aggregate data as
well. In particular, getting the sum, mean, median, minimum, and maximum values
from a column uses clearly named column methods:

print(calls_revenue.Calls.sum())
print(calls_revenue.Calls.mean())
print(calls_revenue.Calls.median())
print(calls_revenue.Calls.max())
print(calls_revenue.Calls.min())

351Data aggregation and manipulation
1215
101.25
93.5
129
84

If, for example, you want to get all of the rows in which the amount per call is above
the median, you can combine this trick with the selection operation:

print(calls_revenue.Call_Amount.median())
print(calls_revenue[calls_revenue.Call_Amount >=

calls_revenue.Call_Amount.median()])

464.2539427570093
 Team member Territory Month Calls Amount Call_Amount
0 Jorge 3 1 107 50876 475.476636
1 Jorge 3 2 88 57682 655.477273
2 Jorge 3 3 84 53689 639.154762
4 Ana 1 1 91 54228 595.912088
5 Ana 1 2 129 61640 477.829457
9 Ali 2 2 85 44957 528.905882

In addition to being able to pick out summary values, it’s often useful to group the
data based on other columns. In this simple example, you can use the groupby
method to group your data. You may want to know the total calls and amounts by
month or by territory, for example. In those cases, use those fields with the data
frame’s groupby method:

print(calls_revenue[['Month', 'Calls', 'Amount']].groupby(['Month']).sum())

 Calls Amount
Month
1 318 141165
2 302 164279
3 267 132238
4 328 135201

print(calls_revenue[['Territory', 'Calls',
'Amount']].groupby(['Territory']).sum())

 Calls Amount
Territory
1 444 211532
2 379 149931
3 392 211420

In each case, you select the columns that you want to aggregate, group them by the
values in one of those columns, and (in this case) sum the values for each group. You
could also use any of the other methods mentioned earlier in this chapter.

 Again, all these examples are simple, but they illustrate a few of the options you
have for manipulating and selecting data with pandas. If these ideas resonate with
your needs, you can learn more by studying the pandas documentation at http://pan-
das.pydata.org.

http://pandas.pydata.org
http://pandas.pydata.org

352 CHAPTER 24 Exploring data
TRY THIS: GROUPING AND AGGREGATING Experiment with pandas and the data
in previous examples. Can you get the calls and amounts by both team mem-
ber and month?

24.6 Plotting data
Another very attractive feature of pandas is the ability to plot the data in a data frame
very easily. Although you have many options for plotting data in Python and Jupyter
notebook, pandas can use matplotlib directly from a data frame. You may recall that
when you started your Jupyter session, one of the first commands you gave was the
Jupyter “magic” command to enable matplotlib for inline plotting:

%matplotlib inline

Because you have the ability to plot, see how you might plot some data (figure 24.3).
To continue with the sales example, if you want to plot the quarter’s mean sales by ter-
ritory, you can get a graph right in your notebook just by adding .plot.bar():

calls_revenue[['Territory', 'Calls']].groupby(['Territory']).sum().plot.bar()

Figure 24.3 Bar plot of a pandas data frame in Jupyter notebook

Other options are available. plot() alone or .plot.line() creates a line graph,
.plot.pie() creates a pie chart, and so on.

 Thanks to the combination of pandas and matplotlib, plotting data in a Jupyter
notebook is quite easy. I should also note that although such plotting is easy, there are
many things that it doesn’t do extremely well.

TRY THIS: PLOTTING Plot a line graph of the monthly average amount per call.

24.7 Why you might not want to use pandas
The preceding examples illustrate only a tiny fraction of the tools pandas can offer
you in cleaning, exploring, and manipulating data. As I mentioned at the beginning
of this chapter, pandas is an excellent tool set that excels in what it was designed to do.
That doesn’t mean, however, that pandas is the tool for all situations or for all people.

353Summary
 There are reasons why you might elect to use plain old Python (or some other tool)
instead. For one thing, as I mention earlier, learning to fully use pandas is in some ways
like learning another language, which may not be something you have the time or incli-
nation for. Also, pandas may not be ideal in all production situations, particularly with
very large data sets that don’t require much in the way of math operations or with data
that isn’t easy to put into the formats that work best with pandas. Munging large collec-
tions of product information, for example, probably wouldn’t benefit so much from
pandas; neither would basic processing of a stream of transactions.

 The point is that you should choose your tools thoughtfully based on the problems
at hand. In many cases, pandas will truly make your life easier as you work with data,
but in other cases, plain old Python may be your best bet.

Summary
 Python offers many benefits for data handling, including the ability to handle

very large data sets and the flexibility to handle data in ways that match your
needs.

 Jupyter notebook is a useful way to access Python via a web browser, which also
makes improved presentation easier.

 pandas is a tool that makes many common data-handling operations much eas-
ier, including cleaning, combining, and summarizing data.

 pandas also makes simple plotting much easier.

Case study

In this case study, you walk through using Python to fetch some data, clean it, and
then graph it. This project may be a short one, but it combines several features of
the language I’ve discussed, and it gives you a chance to a see a project worked
through from beginning to end. At almost every step, I briefly call out alternatives
and enhancements that you can make.

 Global temperature change is the topic of much discussion, but those discus-
sions are based on a global scale. Suppose that you want to know what the tempera-
tures have been doing near where you are. One way of finding out is to get
historical data for your location, process that data, and plot it to see exactly what's
been happening.

Fortunately, several sources of historical weather data are freely available. I’m going
to walk you through using data from the Global Historical Climatology Network,
which has data from around the world. You may find other sources, which may have
different data formats, but the steps and the processes I discuss here should be gen-
erally applicable to any data set.

Downloading the data
The first step will be to get the data. An archive of daily historical weather data at
https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ has a wide array of data. The
first step is to figure out which files you want and exactly where they are; then you

Getting the case study code
The following case study was done by using a Jupyter notebook, as explained in
chapter 24. If you’re using Jupyter, you can find the notebook I used (with this text
and code) in the source code downloads as Case Study.ipynb. You can also
execute the code in a standard Python shell, and a version that supports that shell
is in the source code as Case Study.py.
354

https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/

355Downloading the data
download them. When you have the data, you can move on to processing and ulti-
mately displaying your results.

 To download the files, which are accessible via HTTPS, you need the requests
library. You can get requests with pip install requests at the command
prompt. When you have requests, your first step is to fetch the readme.txt file,
which can guide you as to the formats and location of the data files you want:

import requests

import requests
get readme.txt file

r = requests.get('https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/readme.txt')
readme = r.text.

When you look at the readme file, you should see something like this:

print(readme)
README FILE FOR DAILY GLOBAL HISTORICAL CLIMATOLOGY NETWORK (GHCN-DAILY)
Version 3.22

--
How to cite:

Note that the GHCN-Daily dataset itself now has a DOI (Digital Object Identifier)
so it may be relevant to cite both the methods/overview journal article as well
as the specific version of the dataset used.

The journal article describing GHCN-Daily is:
Menne, M.J., I. Durre, R.S. Vose, B.E. Gleason, and T.G. Houston, 2012: An

overview
of the Global Historical Climatology Network-Daily Database. Journal of

Atmospheric
and Oceanic Technology, 29, 897-910, doi:10.1175/JTECH-D-11-00103.1.

To acknowledge the specific version of the dataset used, please cite:
Menne, M.J., I. Durre, B. Korzeniewski, S. McNeal, K. Thomas, X. Yin, S.

Anthony, R. Ray,
R.S. Vose, B.E.Gleason, and T.G. Houston, 2012: Global Historical Climatology

Network -
Daily (GHCN-Daily), Version 3. [indicate subset used following decimal,
e.g. Version 3.12].
NOAA National Climatic Data Center. http://doi.org/10.7289/V5D21VHZ [access

date].

In particular, you’re interested in section II, which lists the contents:

II. CONTENTS OF ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily

all: Directory with ".dly" files for all of GHCN-Daily
gsn: Directory with ".dly" files for the GCOS Surface Network
 (GSN)

356 Case study
hcn: Directory with ".dly" files for U.S. HCN
by_year: Directory with GHCN Daily files parsed into yearly
 subsets with observation times where available. See the
 /by_year/readme.txt and
 /by_year/ghcn-daily-by_year-format.rtf
 files for further information
grid: Directory with the GHCN-Daily gridded dataset known
 as HadGHCND
papers: Directory with pdf versions of journal articles relevant
 to the GHCN-Daily dataset
figures: Directory containing figures that summarize the inventory
 of GHCN-Daily station records

ghcnd-all.tar.gz: TAR file of the GZIP-compressed files in the "all"
directory

ghcnd-gsn.tar.gz: TAR file of the GZIP-compressed "gsn" directory
ghcnd-hcn.tar.gz: TAR file of the GZIP-compressed "hcn" directory

ghcnd-countries.txt: List of country codes (FIPS) and names
ghcnd-inventory.txt: File listing the periods of record for each station and

 element
ghcnd-stations.txt: List of stations and their metadata (e.g., coordinates)
ghcnd-states.txt: List of U.S. state and Canadian Province codes
 used in ghcnd-stations.txt
ghcnd-version.txt: File that specifies the current version of GHCN Daily

readme.txt: This file
status.txt: Notes on the current status of GHCN-Daily

As you look at the files available, you see that ghcnd-inventory.txt has a listing of the
recording periods for each station, which will help you find a good data set; and
ghcnd-stations.txt lists the stations, which should help you find the station closest to
your location, so you’ll grab those two files first:

II. CONTENTS OF ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily

all: Directory with ".dly" files for all of GHCN-Daily
gsn: Directory with ".dly" files for the GCOS Surface

Network
 (GSN)
hcn: Directory with ".dly" files for U.S. HCN
by_year: Directory with GHCN Daily files parsed into yearly
 subsets with observation times where available. See

the
 /by_year/readme.txt and
 /by_year/ghcn-daily-by_year-format.rtf
 files for further information
grid: Directory with the GHCN-Daily gridded dataset known
 as HadGHCND
papers: Directory with pdf versions of journal articles relevant
 to the GHCN-Daily dataset
figures: Directory containing figures that summarize the inventory
 of GHCN-Daily station records

357Downloading the data
ghcnd-all.tar.gz: TAR file of the GZIP-compressed files in the "all"
 directory
ghcnd-gsn.tar.gz: TAR file of the GZIP-compressed "gsn" directory
ghcnd-hcn.tar.gz: TAR file of the GZIP-compressed "hcn" directory

ghcnd-countries.txt: List of country codes (FIPS) and names
ghcnd-inventory.txt: File listing the periods of record for each station and
 element
ghcnd-stations.txt: List of stations and their metadata (e.g., coordinates)
ghcnd-states.txt: List of U.S. state and Canadian Province codes
 used in ghcnd-stations.txt
ghcnd-version.txt: File that specifies the current version of GHCN Daily

readme.txt: This file
status.txt: Notes on the current status of GHCN-Daily

get inventory and stations files

r = requests.get('https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-
inventory.txt')

inventory_txt = r.text
r = requests.get('https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/ghcnd-

stations.txt')
stations_txt = r.text

When you have those files, you can save them to your local disk so that you won't need
to download them again if you need to go back to the original data:

save both the inventory and stations files to disk, in case we need them

with open("inventory.txt", "w") as inventory_file:
 inventory_file.write(inventory_txt)

with open("stations.txt", "w") as stations_file:
 stations_file.write(stations_txt)

Start by looking at the inventory file. Here's what the first 137 characters show you:

print(inventory_txt[:137])
ACW00011604 17.1167 -61.7833 TMAX 1949 1949
ACW00011604 17.1167 -61.7833 TMIN 1949 1949
ACW00011604 17.1167 -61.7833 PRCP 1949 1949
If we look at section VII of the readme.txt file we can see that the format

of the inventory file is:
VII. FORMAT OF "ghcnd-inventory.txt"

Variable Columns Type

ID 1-11 Character
LATITUDE 13-20 Real
LONGITUDE 22-30 Real
ELEMENT 32-35 Character
FIRSTYEAR 37-40 Integer
LASTYEAR 42-45 Integer

358 Case study
These variables have the following definitions:

ID is the station identification code. Please see "ghcnd-stations.txt"
 for a complete list of stations and their metadata.

LATITUDE is the latitude of the station (in decimal degrees).

LONGITUDE is the longitude of the station (in decimal degrees).

ELEMENT is the element type. See section III for a definition of elements.

FIRSTYEAR is the first year of unflagged data for the given element.

LASTYEAR is the last year of unflagged data for the given element.

From this description, you can tell that the inventory list has most of the information
you need to find the station you want to look at. You can use the latitude and longi-
tude to find the stations closest to you; then you can use the FIRSTYEAR and LAST-
YEAR fields to find a station with records covering a long span of time.

 The only question remaining is what the ELEMENT field is; for that, the file sug-
gests that you look at section III. In section III (which I look at in more detail later),
you find the following description of the main elements:

ELEMENT is the element type. There are five core elements as well as a
 number of addition elements.

 The five core elements are:

 PRCP = Precipitation (tenths of mm)
 SNOW = Snowfall (mm)
 SNWD = Snow depth (mm)
 TMAX = Maximum temperature (tenths of degrees C)
 TMIN = Minimum temperature (tenths of degrees C)

For purposes of this example, you’re interested in the TMAX and TMIN elements,
which are maximum and minimum temperatures in tenths of degrees Celsius.

Parsing the inventory data
The readme.txt file tells you what you've got in the inventory file so that you can parse
the data into a more usable format. You could just store the parsed inventory data as a
list of lists or list of tuples, but it takes only a little more effort to use namedtuple
from the collections library to create a custom class with the attributes named:

parse to named tuples

use namedtuple to create a custom Inventory class
from collections import namedtuple
Inventory = namedtuple("Inventory", ['station', 'latitude', 'longitude',

'element', 'start', 'end'])

Using the Inventory class you created is very straightforward; you simply create each
instance from the appropriate values, which in this case are a parsed row of inventory
data.

359Selecting a station based on latitude and longitude
 The parsing involves two steps. First, you need to pick out slices of a line according
to the field sizes specified. As you look at the field descriptions in the readme file, it's
also clear that there’s an extra space between files, which you need to consider in com-
ing up with any approach to parsing. In this case, because you’re specifying each slice,
the extra spaces are ignored. In addition, because the sizes of the STATION and ELE-
MENT fields exactly correspond to the values stored in them, you shouldn't need to
worry about stripping excess spaces from them.

 The second thing that would be nice to do is convert the latitude and longitude
values to floats and the start and end years to ints. You could do this at a later stage of
data cleaning, and in fact, if the data is inconsistent and doesn't have values that con-
vert correctly in every row, you might want to wait. But in this case, the data lets you
handle these conversions in the parsing step, so do it now:

parse inventory lines and convert some values to floats and ints

inventory = [Inventory(x[0:11], float(x[12:20]), float(x[21:30]), x[31:35],
int(x[36:40]), int(x[41:45]))

 for x in inventory_txt.split("\n") if x.startswith("US")]

for line in inventory[:5]:
 print(line)
Inventory(station='US009052008', latitude=43.7333, longitude=-96.6333,

element='TMAX', start=2008, end=2016)
Inventory(station='US009052008', latitude=43.7333, longitude=-96.6333,

element='TMIN', start=2008, end=2016)
Inventory(station='US009052008', latitude=43.7333, longitude=-96.6333,

element='PRCP', start=2008, end=2016)
Inventory(station='US009052008', latitude=43.7333, longitude=-96.6333,

element='SNWD', start=2009, end=2016)
Inventory(station='US10RMHS145', latitude=40.5268, longitude=-105.1113,

element='PRCP', start=2004, end=2004)

Selecting a station based on latitude and longitude
Now that the inventory is loaded, you can use the latitude and longitude to find the
stations closest to your location and then pick the one with the longest run of temper-
atures based on start and end years. At even the first line of the data, you can see two
things to worry about:

 There are various element types, but you’re concerned only with TMIN and
TMAX, for minimum and maximum temperature.

 None of the first inventory entries you see covers more than a few years. If
you're going to be looking for an historical perspective, you want to find a
much longer run of temperature data.

To pick out what you need quickly, we can use a list comprehension to make a sublist
of only the station inventory items in which the element is TMIN or TMAX. The other
thing that you care about is getting a station with a long run of data, so while you're
creating this sublist, also make sure that the start year is before 1920 and that the end

360 Case study
year is at least 2015. That way, you’re looking only at stations with at least 95 years’
worth of data:

inventory_temps = [x for x in inventory if x.element in ['TMIN', 'TMAX']
 and x.end >= 2015 and x.start < 1920]
inventory_temps[:5]

[Inventory(station='USC00010252', latitude=31.3072, longitude=-86.5225,
element='TMAX', start=1912, end=2017),

 Inventory(station='USC00010252', latitude=31.3072, longitude=-86.5225,
element='TMIN', start=1912, end=2017),

 Inventory(station='USC00010583', latitude=30.8839, longitude=-87.7853,
element='TMAX', start=1915, end=2017),

 Inventory(station='USC00010583', latitude=30.8839, longitude=-87.7853,
element='TMIN', start=1915, end=2017),

 Inventory(station='USC00012758', latitude=31.445, longitude=-86.9533,
element='TMAX', start=1890, end=2017)]

Looking at the first five records in your new list, you see that you’re in better shape.
Now you have only temperature records, and the start and end years show that you
have longer runs.

 That leaves the problem of selecting the station nearest your location. To do that,
compare the latitude and longitude of the station inventories with those of your loca-
tion. There are various ways to get the latitude and longitude of any place, but proba-
bly the easiest way is to use an online mapping application or online search. (When I
do that for the Chicago Loop, I get a latitude of 41.882 and a longitude of -87.629.)

 Because you’re interested in the stations closest to your location, that interest
implies sorting based on how close the latitude and longitude of the stations are to
those of your location. Sorting a list is easy enough, and sorting by latitude and longi-
tude isn’t too hard. But how do you sort by the distance from your latitude and
longitude?

 The answer is to define a key function for your sort that gets the difference
between your latitude and the station’s latitude, and the difference between your lon-
gitude and the station’s longitude, and combines them into one number. The only
other thing to remember is that you’ll want to add the absolute value of the differ-
ences before you combine them to avoid having a high negative difference combined
with an equally high positive difference that would fool your sort:

Downtown Chicago, obtained via online map
latitude, longitude = 41.882, -87.629

inventory_temps.sort(key=lambda x: abs(latitude-x.latitude) + abs(longitude-
x.longitude))

inventory_temps[:20]
Out[24]:
[Inventory(station='USC00110338', latitude=41.7806, longitude=-88.3092,

element='TMAX', start=1893, end=2017),
 Inventory(station='USC00110338', latitude=41.7806, longitude=-88.3092,

element='TMIN', start=1893, end=2017),

361Selecting a station and getting the station metadata
 Inventory(station='USC00112736', latitude=42.0628, longitude=-88.2861,
element='TMAX', start=1897, end=2017),

 Inventory(station='USC00112736', latitude=42.0628, longitude=-88.2861,
element='TMIN', start=1897, end=2017),

 Inventory(station='USC00476922', latitude=42.7022, longitude=-87.7861,
element='TMAX', start=1896, end=2017),

 Inventory(station='USC00476922', latitude=42.7022, longitude=-87.7861,
element='TMIN', start=1896, end=2017),

 Inventory(station='USC00124837', latitude=41.6117, longitude=-86.7297,
element='TMAX', start=1897, end=2017),

 Inventory(station='USC00124837', latitude=41.6117, longitude=-86.7297,
element='TMIN', start=1897, end=2017),

 Inventory(station='USC00119021', latitude=40.7928, longitude=-87.7556,
element='TMAX', start=1893, end=2017),

 Inventory(station='USC00119021', latitude=40.7928, longitude=-87.7556,
element='TMIN', start=1894, end=2017),

 Inventory(station='USC00115825', latitude=41.3708, longitude=-88.4336,
element='TMAX', start=1912, end=2017),

 Inventory(station='USC00115825', latitude=41.3708, longitude=-88.4336,
element='TMIN', start=1912, end=2017),

 Inventory(station='USC00115326', latitude=42.2636, longitude=-88.6078,
element='TMAX', start=1893, end=2017),

 Inventory(station='USC00115326', latitude=42.2636, longitude=-88.6078,
element='TMIN', start=1893, end=2017),

 Inventory(station='USC00200710', latitude=42.1244, longitude=-86.4267,
element='TMAX', start=1893, end=2017),

 Inventory(station='USC00200710', latitude=42.1244, longitude=-86.4267,
element='TMIN', start=1893, end=2017),

 Inventory(station='USC00114198', latitude=40.4664, longitude=-87.685,
element='TMAX', start=1902, end=2017),

 Inventory(station='USC00114198', latitude=40.4664, longitude=-87.685,
element='TMIN', start=1902, end=2017),

 Inventory(station='USW00014848', latitude=41.7072, longitude=-86.3164,
element='TMAX', start=1893, end=2017),

 Inventory(station='USW00014848', latitude=41.7072, longitude=-86.3164,
element='TMIN', start=1893, end=2017)]

Selecting a station and getting the station metadata
As you look at the top 20 entries in your newly sorted list, it seems that the first station,
USC00110338, is a good fit. It's got both TMIN and TMAX and one of the longer
series, starting in 1893 and running up through 2017, for more than 120 years’ worth
of data. So save that station into your station variable and quickly parse the station
data you've already grabbed to pick up a little more information about the station.

 Back in the readme file, you find the following information about the station data:

IV. FORMAT OF "ghcnd-stations.txt"

Variable Columns Type

ID 1-11 Character
LATITUDE 13-20 Real
LONGITUDE 22-30 Real
ELEVATION 32-37 Real

362 Case study
STATE 39-40 Character
NAME 42-71 Character
GSN FLAG 73-75 Character
HCN/CRN FLAG 77-79 Character
WMO ID 81-85 Character

These variables have the following definitions:

ID is the station identification code. Note that the first two
 characters denote the FIPS country code, the third character
 is a network code that identifies the station numbering system
 used, and the remaining eight characters contain the actual
 station ID.

 See "ghcnd-countries.txt" for a complete list of country codes.
 See "ghcnd-states.txt" for a list of state/province/territory
 codes.

 The network code has the following five values:

 0 = unspecified (station identified by up to eight
 alphanumeric characters)
 1 = Community Collaborative Rain, Hail,and Snow (CoCoRaHS)
 based identification number. To ensure consistency with
 with GHCN Daily, all numbers in the original CoCoRaHS IDs
 have been left-filled to make them all four digits long.
 In addition, the characters "-" and "_" have been removed
 to ensure that the IDs do not exceed 11 characters when
 preceded by "US1". For example, the CoCoRaHS ID
 "AZ-MR-156" becomes "US1AZMR0156" in GHCN-Daily
 C = U.S. Cooperative Network identification number (last six
 characters of the GHCN-Daily ID)
 E = Identification number used in the ECA&D non-blended
 dataset
 M = World Meteorological Organization ID (last five
 characters of the GHCN-Daily ID)
 N = Identification number used in data supplied by a
 National Meteorological or Hydrological Center
 R = U.S. Interagency Remote Automatic Weather Station (RAWS)
 identifier
 S = U.S. Natural Resources Conservation Service SNOwpack
 TELemtry (SNOTEL) station identifier
 W = WBAN identification number (last five characters of the
 GHCN-Daily ID)

LATITUDE is latitude of the station (in decimal degrees).

LONGITUDE is the longitude of the station (in decimal degrees).

ELEVATION is the elevation of the station (in meters, missing = -999.9).

STATE is the U.S. postal code for the state (for U.S. stations only).

NAME is the name of the station.

363Selecting a station and getting the station metadata
GSN FLAG is a flag that indicates whether the station is part of the GCOS
 Surface Network (GSN). The flag is assigned by cross-referencing
 the number in the WMOID field with the official list of GSN
 stations. There are two possible values:

 Blank = non-GSN station or WMO Station number not available
 GSN = GSN station

HCN/ is a flag that indicates whether the station is part of the U.S.
CRN FLAG Historical Climatology Network (HCN). There are three possible
 values:

 Blank = Not a member of the U.S. Historical Climatology
 or U.S. Climate Reference Networks
 HCN = U.S. Historical Climatology Network station
 CRN = U.S. Climate Reference Network or U.S. Regional Climate
 Network Station

WMO ID is the World Meteorological Organization (WMO) number for the
 station. If the station has no WMO number (or one has not yet
 been matched to this station), then the field is blank.

Although you might care more about the metadata fields for more serious research,
right now you want to match the start and end year from the inventory records to the
rest of the station metadata in the station file.

 You have several ways to sift through the stations file to find the one station that
matches the station ID you selected. You could create a for loop to go through each
line and break out when you find it; you could split the data into lines and then sort
and use a binary search, and so on. Depending on the nature and amount of data you
have, one approach or another might be appropriate. In this case, because you have
the data loaded already, and it's not too large, use a list comprehension to return a list
with its single element being the station you’re looking for:

station_id = 'USC00110338'

parse stations
Station = namedtuple("Station", ['station_id', 'latitude', 'longitude',

'elevation', 'state', 'name', 'start', 'end'])

stations = [(x[0:11], float(x[12:20]), float(x[21:30]), float(x[31:37]),
x[38:40].strip(), x[41:71].strip())

 for x in stations_txt.split("\n") if x.startswith(station_id)]

station = Station(*stations[0] + (inventory_temps[0].start,
inventory_temps[0].end))

print(station)
Station(station_id='USC00110338', latitude=41.7806, longitude=-88.3092,

elevation=201.2, state='IL', name='AURORA', start=1893, end=2017)

At this point, you've identified that you want weather data from the station at Aurora,
Illinois, which is the nearest station to downtown Chicago with more than a century’s
worth of temperature data.

364 Case study
Fetching and parsing the actual weather data
With the station identified, the next step is fetching the actual weather data for that
station and parsing it. The process is quite similar to what you did in the preceding
section.

Fetching the data
First, fetch the data file and save it, in case you need to go back to it:

fetch daily records for selected station

r = requests.get('https://www1.ncdc.noaa.gov/pub/data/ghcn/daily/all/
{}.dly'.format(station.station_id))

weather = r.text

save into a text file, so we won't need to fetch again

with open('weather_{}.txt'.format(station), "w") as weather_file:
 weather_file.write(weather)

read from saved daily file if needed (only used if we want to start the
process over without downloadng the file)

with open('weather_{}.txt'.format(station)) as weather_file:
 weather = weather_file.read()

print(weather[:540])
USC00110338189301TMAX -11 6 -44 6 -139 6 -83 6 -100 6 -83 6 -72 6

-83 6 -33 6 -178 6 -150 6 -128 6 -172 6 -200 6 -189 6 -150 6 -
106 6 -61 6 -94 6 -33 6 -33 6 -33 6 -33 6 6 6 -33 6
-78 6 -33 6 44 6 -89 I6 -22 6 6 6

USC00110338189301TMIN -50 6 -139 6 -250 6 -144 6 -178 6 -228 6 -144 6
-222 6 -178 6 -250 6 -200 6 -206 6 -267 6 -272 6 -294 6 -294 6
-311 6 -200 6 -233 6 -178 6 -156 6 -89 6 -200 6 -194 6 -194 6
-178 6 -200 6 -33 I6 -156 6 -139 6 -167 6

Parsing the weather data
Again, now that you have the data, you can see it's quite a bit more complex than the
station and inventory data. Clearly, it's time to head back to the readme.txt file and
section III, which is the description of a weather data file. You have a lot of options,
so filter them down to the ones that concern you, and leave out the other element
types as well as the whole system of flags specifying the source, quality, and type of the
values:

III. FORMAT OF DATA FILES (".dly" FILES)

Each ".dly" file contains data for one station. The name of the file
corresponds to a station's identification code. For example,

"USC00026481.dly"
contains the data for the station with the identification code USC00026481).

365Parsing the weather data
Each record in a file contains one month of daily data. The variables on
each

line include the following:

Variable Columns Type

ID 1-11 Character
YEAR 12-15 Integer
MONTH 16-17 Integer
ELEMENT 18-21 Character
VALUE1 22-26 Integer
MFLAG1 27-27 Character
QFLAG1 28-28 Character
SFLAG1 29-29 Character
VALUE2 30-34 Integer
MFLAG2 35-35 Character
QFLAG2 36-36 Character
SFLAG2 37-37 Character
 . . .
 . . .
 . . .
VALUE31 262-266 Integer
MFLAG31 267-267 Character
QFLAG31 268-268 Character
SFLAG31 269-269 Character

These variables have the following definitions:

ID is the station identification code. Please see "ghcnd-stations.txt"
 for a complete list of stations and their metadata.
YEAR is the year of the record.

MONTH is the month of the record.

ELEMENT is the element type. There are five core elements as well as a
 number of addition elements.

 The five core elements are:

 PRCP = Precipitation (tenths of mm)
 SNOW = Snowfall (mm)
 SNWD = Snow depth (mm)
 TMAX = Maximum temperature (tenths of degrees C)
 TMIN = Minimum temperature (tenths of degrees C)

...

VALUE1 is the value on the first day of the month (missing = -9999).

MFLAG1 is the measurement flag for the first day of the month.

QFLAG1 is the quality flag for the first day of the month.

366 Case study
SFLAG1 is the source flag for the first day of the month.

VALUE2 is the value on the second day of the month

MFLAG2 is the measurement flag for the second day of the month.

QFLAG2 is the quality flag for the second day of the month.

SFLAG2 is the source flag for the second day of the month.

... and so on through the 31st day of the month. Note: If the month has less
than 31 days, then the remaining variables are set to missing (e.g., for April,
VALUE31 = -9999, MFLAG31 = blank, QFLAG31 = blank, SFLAG31 = blank).

The key points you care about right now are that the station ID is the 11 characters of
a row, the year is the next 4, the month the next 2, and the element the next 4 after
that. After that, there are 31 slots for daily data, with each slot consisting of 5 charac-
ters for the temperature, expressed in tenths of a degree Celsius, and 3 characters of
flags. As I mentioned earlier, you can disregard the flags for this exercise. You can also
see that missing values for the temperatures are coded with -9999 if that day isn’t in
the month, so for a typical February, for example, the 29th, 30th, and 31st values
would be -9999.

 As you process your data in this exercise, you're looking to get overall trends, so
you don't need to worry much about individual days. Instead, find average values for
the month. You can save the maximum, minimum, and mean values for the entire
month and use those.

 This means that to process each line of weather data, you need to:

 Split the line into its separate fields, and ignore or discard the flags for each
daily value.

 Remove the values with -9999, and convert the year and month into ints and the
temperature values into floats, keeping in mind that the temperature readings
are in tenths of degrees centigrade.

 Calculate the average value, and pick out the high and low values.

To accomplish all these tasks, you can take a couple of approaches. You could do sev-
eral passes over the data, splitting into fields, discarding the placeholders, converting
strings to numbers, and finally calculating the summary values. Or you can write a
function that performs all of these operations on a single line and do everything in
one pass. Both approaches can be valid. In this case, take the latter approach and cre-
ate a parse_line function to perform all of your data transformations:

def parse_line(line):
 """ parses line of weather data
 removes values of -9999 (missing value)
 """

 # return None if line is empty
 if not line:
 return None

367Parsing the weather data
 # split out first 4 fields and string containing temperature values
 record, temperature_string = (line[:11], int(line[11:15]),

int(line[15:17]), line[17:21]), line[21:]

 # raise exception if the temperature string is too short
 if len(temperature_string) < 248:
 raise ValueError("String not long enough - {}

{}".format(temperature_string, str(line)))

 # use a list comprehension on the temperature_string to extract and

convert the
 values = [float(temperature_string[i:i + 5])/10 for i in range(0, 248, 8)
 if not temperature_string[i:i + 5].startswith("-9999")]

 # get the number of values, the max and min, and calculate average
 count = len(values)
 tmax = round(max(values), 1)
 tmin = round(min(values), 1)
 mean = round(sum(values)/count, 1)

 # add the temperature summary values to the record fields extracted
earlier and return

 return record + (tmax, tmin, mean, count)

If you test this function with the first line of your raw weather data, you get the follow-
ing result:

parse_line(weather[:270])
Out[115]:
('USC00110338', 1893, 1, 'TMAX', 4.4, -20.0, -7.8, 31)

So it looks like you have a function that will work to parse your data. If that function
works, you can parse the weather data and either store it or continue with your
processing:

process all weather data

list comprehension, will not parse empty lines
weather_data = [parse_line(x) for x in weather.split("\n") if x]

len(weather_data)

weather_data[:10]

[('USC00110338', 1893, 1, 'TMAX', 4.4, -20.0, -7.8, 31),
 ('USC00110338', 1893, 1, 'TMIN', -3.3, -31.1, -19.2, 31),
 ('USC00110338', 1893, 1, 'PRCP', 8.9, 0.0, 1.1, 31),
 ('USC00110338', 1893, 1, 'SNOW', 10.2, 0.0, 1.0, 31),
 ('USC00110338', 1893, 1, 'WT16', 0.1, 0.1, 0.1, 2),
 ('USC00110338', 1893, 1, 'WT18', 0.1, 0.1, 0.1, 11),
 ('USC00110338', 1893, 2, 'TMAX', 5.6, -17.2, -0.9, 27),
 ('USC00110338', 1893, 2, 'TMIN', 0.6, -26.1, -11.7, 27),
 ('USC00110338', 1893, 2, 'PRCP', 15.0, 0.0, 2.0, 28),
 ('USC00110338', 1893, 2, 'SNOW', 12.7, 0.0, 0.6, 28)]

368 Case study
Now you have all the weather records, not just the temperature records, parsed and in
your list.

Saving the weather data in a database (optional)
At this point, you can save all of the weather records (and the station records and
inventory records as well, if you want) in a database. Doing so lets you come back in
later sessions and use the same data without having to go to the hassle of fetching and
parsing the data again.

 As an example, the following code is how you could save the weather data in a
sqlite3 database:

import sqlite3

conn = sqlite3.connect("weather_data.db")
cursor = conn.cursor()

create weather table

create_weather = """CREATE TABLE "weather" (
 "id" text NOT NULL,
 "year" integer NOT NULL,
 "month" integer NOT NULL,
 "element" text NOT NULL,
 "max" real,
 "min" real,
 "mean" real,
 "count" integer)"""
cursor.execute(create_weather)
conn.commit()

store parsed weather data in database

for record in weather_data:
 cursor.execute("""insert into weather (id, year, month, element, max,

min, mean, count) values (?,?,?,?,?,?,?,?) """,
 record)

conn.commit()

When you have the data stored, you could retrieve it from the database with code like
the following, which fetches only the TMAX records:

cursor.execute("""select * from weather where element='TMAX' order by year,
month""")

tmax_data = cursor.fetchall()
tmax_data[:5]

[('USC00110338', 1893, 1, 'TMAX', 4.4, -20.0, -7.8, 31),
 ('USC00110338', 1893, 2, 'TMAX', 5.6, -17.2, -0.9, 27),
 ('USC00110338', 1893, 3, 'TMAX', 20.6, -7.2, 5.6, 30),
 ('USC00110338', 1893, 4, 'TMAX', 28.9, 3.3, 13.5, 30),
 ('USC00110338', 1893, 5, 'TMAX', 30.6, 7.2, 19.2, 31)]

369Using pandas to graph your data
Selecting and graphing data
Because you’re concerned only with temperature, you need to select just the tempera-
ture records. You can do that quickly enough by using a couple of list comprehensions
to pick out a list for TMAX and one for TMIN. Or you could use the features of pan-
das, which you'll be using for graphing the date, to filter out the records you don't
want. Because you’re more concerned with pure Python than with pandas, take the
first approach:

tmax_data = [x for x in weather_data if x[3] == 'TMAX']
tmin_data = [x for x in weather_data if x[3] == 'TMIN']
tmin_data[:5]

[('USC00110338', 1893, 1, 'TMIN', -3.3, -31.1, -19.2, 31),
 ('USC00110338', 1893, 2, 'TMIN', 0.6, -26.1, -11.7, 27),
 ('USC00110338', 1893, 3, 'TMIN', 3.3, -13.3, -4.6, 31),
 ('USC00110338', 1893, 4, 'TMIN', 12.2, -5.6, 2.2, 30),
 ('USC00110338', 1893, 5, 'TMIN', 14.4, -0.6, 5.7, 31)]

Using pandas to graph your data
At this point, you have your data cleaned and ready to graph. To make the graphing
easier, you can use pandas and matplotlib, as described in chapter 24. To do this, you
need to have a Jupyter server running and have pandas and matplotlib installed. To
make sure that they’re installed from within your Jupyter notebook, use the following
command:

Install pandas and matplotlib using pip
! pip3.6 install pandas matplotlib

import pandas as pd
%matplotlib inline

When pandas and matplotlib are installed, you can load pandas and create data
frames for your TMAX and TMIN data:

tmax_df = pd.DataFrame(tmax_data, columns=['Station', 'Year', 'Month',
'Element', 'Max', 'Min', 'Mean', 'Days'])

tmin_df = pd.DataFrame(tmin_data, columns=['Station', 'Year', 'Month',
'Element', 'Max', 'Min', 'Mean', 'Days'])

You could plot the monthly values, but 123 years times 12 months of data is almost
1,500 data points, and the cycle of seasons also makes picking out patterns difficult.

 Instead, it probably makes more sense to average the high, low, and mean monthly
values into yearly values and plot those values. You could do this in Python, but
because you already have your data loaded in a pandas data frame, you can use that to
group by year and get the mean values:

select Year, Min, Max, Mean columns, group by year, average and line plot

tmin_df[['Year','Min', 'Mean', 'Max']].groupby('Year').mean().plot(
kind='line', figsize=(16, 4))

370 Case study
This result has a fair amount of variation, but it does seem to indicate that the mini-
mum temperature has been on the rise for the past 20 years.

 Note that if you wanted to get the same graph without using Jupyter notebook and
matplotlib, you could use still use pandas, but you’d write to a CSV or Microsoft Excel
file, using the data frame's to_csv or to_excel method. Then you could load the
resulting file into a spreadsheet and graph from there.

appendix A
A guide to Python’s

documentation

The best and most current reference for Python is the documentation that comes
with Python itself. With that in mind, it’s more useful to explore the ways you can
access that documentation than to print pages of edited documentation.

 The standard bundle of documentation has several sections, including instruc-
tions on documenting, distributing, installing, and extending Python on various
platforms, and is the logical starting point when you’re looking for answers to ques-
tions about Python. The two main areas of the Python documentation that are likely
to be the most useful are the Library Reference and the Language Reference. The Library
Reference is absolutely essential because it has explanations of both the built-in data
types and every module included with Python. The Language Reference is the expla-
nation of how the core of Python works, and it contains the official word on the core
of the language, explaining the workings of data types, statements, and so on. The
“What’s New” section is also worth reading, particularly when a new version of
Python is released, because it summarizes all of the changes in the new version.

A.1 Accessing Python documentation on the web
For many people, the most convenient way to access the Python documentation is
to go to www.python.org and browse the documentation collection there. Although
doing so requires a connection to the web, it has the advantage that the content is
always the most current. Given that for many projects, it’s often useful to search the
web for other documentation and information, having a browser tab permanently
open and pointing to the online Python documentation is an easy way to have a
Python reference at your fingertips.
371

https://www.python.org

372 APPENDIX A A guide to Python’s documentation
A.1.1 Browsing Python documentation on your computer

Many distributions of Python include the full documentation by default. In some
Linux distributions, the documentation is a separate package that you need to install
separately. In most cases, however, full documentation is already on your computer
and easily accessible.

ACCESSING HELP IN THE INTERACTIVE SHELL OR AT A COMMAND LINE

In chapter 2, you saw how to use the help command in the interactive interpreter to
access online help for any Python module or object:

>>> help(int)
Help on int object:

class int(object)
 | int(x[, base]) -> integer
 |
 | Convert a string or number to an integer, if possible. A floating
 | point argument will be truncated towards zero (this does not include a
 | string representation of a floating point number!) When converting a
 | string, use the optional base. It is an error to supply a base when
 | converting a non-string.
 |
 | Methods defined here:
... (continues with a list of methods for an int)

What’s happening is that the interpreter is calling the pydoc module to generate the
documentation. You can also use the pydoc module to search the Python documenta-
tion from a command line. On a Linux or macOS system, to get the same output in a
terminal window, you need only type pydoc int at the prompt; to exit, type q. In a
Windows command window, unless you’ve set your search path to include the Python
Lib directory, you need to type the entire path—probably something like C:\Users
\<user>\AppData\Local\Programs\Python\Python36\Lib\pydoc.py int,
where <user> is your Windows username.

GENERATING HTML HELP PAGES WITH PYDOC

If you want a sleeker look to the documentation that pydoc generates for a Python
object or module, you can have the output written to an HTML file, which you can
view in any browser. To do this, add the –w option to the pydoc command, which on
Windows would then be C:\Users\<user>\AppData\Local\Programs\Python
\Python36\Lib\pydoc.py –w int. In this case, in which you’re looking up docu-
mentation on the int object, pydoc creates a file named int.html in the current
directory, and you can open and view it in a browser from there. Figure A.1 shows
what int.html looks like in a browser.

 If for some reason you want only a limited number pages of documentation avail-
able, this method works well. But in most cases, it’s probably better to use pydoc to
serve more complete documentation, as discussed in the next section.

373Accessing Python documentation on the web
USING PYDOC AS A DOCUMENTATION SERVER

In addition to being able to generate text and HTML documentation on any Python
object, the pydoc module can be used as a server to serve web-based docs. You can
run pydoc with –p and a port number to open a server on that port. Then you can
enter the "b" command to open a browser and access the documentation of all the
modules available, as shown in figure A.2.

Figure A.1 int.html as generated by pydoc

Figure A.2
A partial view of
the module
documentation
served by pydoc

374 APPENDIX A A guide to Python’s documentation
A bonus in using pydoc to serve documentation is that it also scans the current direc-
tory and extracts documentation from the docstrings of any modules it finds, even if
they aren’t part of the standard library. This makes it useful for accessing the docu-
mentation of any Python modules. There’s one caveat, however. To extract the docu-
mentation from a module, pydoc must import it, which means that it will execute any
code at the module’s top level. Thus, scripts that aren’t written to be imported without
side effects (as discussed in chapter 11) will be run, so use this feature with care.

USING THE WINDOWS HELP FILE

On Windows systems, the standard Python 3 package includes complete Python docu-
mentation as Windows Help files. You can find these files in the Doc folder inside the
folder where Python was installed; usually, they’re in the Python 3 program group on
the program menu. When you open the main manuals file, it looks something like
figure A.3.

A.1.2 Downloading documentation

If you want the Python documentation on a computer but don’t necessarily want or
need to be running Python, you can also download the complete documentation
from www.python.org in PDF, HTML, or text format, which is convenient if you want
to be able to access the docs from an e-book reader or similar device.

A.2 Best practices: How to become a Pythonista
Every programming language develops its own traditions and culture, and Python is a
strong example. Most experienced Python programmers (Pythonistas, as they’re

Figure A.3 If you’re comfortable with using Window Help files, this file may be all the
documentation you’ll ever need.

https://www.python.org

375Best practices: How to become a Pythonista
sometimes called) care a great deal about writing Python in a way that matches the
style and best practices of Python. This type of code is commonly called Pythonic code
and is valued highly, as opposed to Python code that looks like Java, C, or JavaScript.

 The question that coders new to Python face is how they learn to write Pythonic
code. Although getting a feel for the language and its style takes a little time and
effort, the rest of this appendix gives you some suggestions on how to start.

A.2.1 Ten tips for becoming a Pythonista

The tips in this section are ones that I share with intermediate Python classes and are
my suggestions for leveling up your Python skills. I’m not saying that everyone abso-
lutely agrees with me, but from what I’ve seen over the years, these tips will put you
soundly on the path to being a true Pythonista:

 Consider the Zen of Python. The Zen of Python, or PEP 20, sums up the design phi-
losophy underlying Python as a language and is commonly invoked in discus-
sions of what makes scripts more Pythonic. In particular, “Beautiful is better
than ugly” and “Simple is better than complex” should guide your coding. I’ve
included the Zen of Python at the end of this appendix; you can always find it
by typing import this at a Python shell prompt.

 Follow PEP 8. PEP 8 is the official Python style guide, which is also included later
in this appendix. PEP 8 offers good advice on everything from code formatting
and variable naming to the use of the language. If you want to write Pythonic
code, become familiar with PEP 8.

 Be familiar with the docs. Python has a rich, well-maintained collection of docu-
mentation, and you should refer to it often. The most useful documents proba-
bly are the standard library documentation, but the tutorials and how-to files
are also rich veins of information on using the language effectively.

 Write as little code as you can as much as you can. Although this advice might apply
to many languages, it fits Python particularly well. What I mean is that you
should strive to make your programs as short and as simple as possible (but no
shorter and no simpler) and that you should practice that style of coding as
much as you can.

 Read as much code as you can. From the beginning, the Python community has
been aware that reading code is more important than writing code. Read as
much Python code as you can, and if possible, discuss the code that you read
with others.

 Use the built-in data structures over all else. You should turn first to Python’s built-in
structures before writing your own classes to hold data. Python’s various data
types can be combined with nearly unlimited flexibility and have the advantage
of years of debugging and optimization. Take advantage of them.

 Dwell on generators and comprehensions. Coders who are new to Python almost
always fail to appreciate how much list and dictionary comprehensions and gen-
erator expressions are part of Pythonic coding. Look at examples in the Python

376 APPENDIX A A guide to Python’s documentation
code that you read, and practice them. You won’t be a Pythonista until you can
write a list comprehension almost without thinking.

 Use the standard library. When the built-ins fail you, look next to the standard
library. The elements in the standard library are the famed “batteries included”
of Python. They’ve stood the test of time and have been optimized and docu-
mented better than almost any other Python code. Use them if you can.

 Write as few classes as you can. Write your own classes only if you must. Experi-
enced Pythonistas tend to be very economical with classes, knowing that design-
ing good classes isn’t trivial and that any classes they create are also classes that
they have to test and debug.

 Be wary of frameworks. Frameworks can be attractive, particularly to coders new to
the language, because they offer so many powerful shortcuts. You should use
frameworks when they’re helpful, of course, but be aware of their downsides.
You may spend more time learning the quirks of an un-Pythonic framework
than learning Python itself, or you may find yourself adapting what you do to
the framework rather than the other way around.

A.3 PEP 8—Style guide for Python code
This section contains a slightly edited excerpt from PEP (Python Enhancement Pro-
posal) 8. Written by Guido van Rossum and Barry Warsaw, PEP 8 is the closest thing
Python has to a style manual. Some more-specific sections have been omitted, but the
main points are covered. You should make your code conform to PEP 8 as much as
possible; your Python style will be the better for it.

 You can access the full text of PEP 8 and all of the other PEPs issued in the history
of Python by going to the documentation section of www.python.org and looking for
the PEP index. The PEPs are excellent sources for the history and lore of Python as
well as explanations of current issues and future plans.

A.3.1 Introduction

This document gives coding conventions for the Python code comprising the stan-
dard library in the main Python distribution. Please see the companion informational
PEP describing style guidelines for the C code in the C implementation of Python.1

This document was adapted from Guido’s original Python Style Guide essay, with
some additions from Barry’s style guide.2 Where there’s conflict, Guido’s style rules for
the purposes of this PEP. This PEP may still be incomplete (in fact, it may never be fin-
ished <wink>).

A FOOLISH CONSISTENCY IS THE HOBGOBLIN OF LITTLE MINDS

One of Guido’s key insights is that code is read much more often than it’s written. The
guidelines provided here are intended to improve the readability of code and make it

1 PEP 7, Style Guide for C Code, van Rossum, https://www.python.org/dev/peps/pep-0007/.
2 Barry’s GNU Mailman style guide, http://barry.warsaw.us/software/STYLEGUIDE.txt. The URL is empty

although it is presented in the PEP 8 style guide.

https://www.python.org
https://www.python.org/dev/peps/pep-0007/
http://barry.warsaw.us/software/STYLEGUIDE.txt

377PEP 8—Style guide for Python code
consistent across the wide spectrum of Python code. As PEP 203 says, “Readability
counts.”

 A style guide is about consistency. Consistency with this style guide is important.
Consistency within a project is more important. Consistency within one module or
function is most important.

 But most important, know when to be inconsistent—sometimes the style guide just
doesn’t apply. When in doubt, use your best judgment. Look at other examples and
decide what looks best. And don’t hesitate to ask!

 Here are two good reasons to break a particular rule:

 When applying the rule would make the code less readable, even for someone
who is used to reading code that follows the rules

 To be consistent with surrounding code that also breaks it (maybe for historic
reasons), although this is also an opportunity to clean up someone else’s mess
(in true XP style)

A.3.2 Code layout

INDENTATION

Use four spaces per indentation level.
 For really old code that you don’t want to mess up, you can continue to use eight-

space tabs.

TABS OR SPACES?
Never mix tabs and spaces.

 The most popular way of indenting Python is with spaces only. The second most
popular way is with tabs only. Code indented with a mixture of tabs and spaces should
be converted to using spaces exclusively. When you invoke the Python command-line
interpreter with the -t option, it issues warnings about code that illegally mixes tabs
and spaces. When you use -tt, these warnings become errors. These options are
highly recommended!

 For new projects, spaces only are strongly recommended over tabs. Most editors
have features that make this easy to do.

MAXIMUM LINE LENGTH

Limit all lines to a maximum of 79 characters.
 Many devices are still around that are limited to 80-character lines; plus, limiting

windows to 80 characters makes it possible to have several windows side by side. The
default wrapping on such devices disrupts the visual structure of the code, making it
more difficult to understand. Therefore, please limit all lines to a maximum of 79
characters. For flowing long blocks of text (docstrings or comments), limiting the
length to 72 characters is recommended.

 The preferred way of wrapping long lines is by using Python’s implied line contin-
uation inside parentheses, brackets, and braces. If necessary, you can add an extra pair

3 PEP 20, The Zen of Python, www.python.org/dev/peps/pep-0020/.

www.python.org/dev/peps/pep-0020/

378 APPENDIX A A guide to Python’s documentation
of parentheses around an expression, but sometimes using a backslash looks better.
Make sure to indent the continued line appropriately. The preferred place to break
around a binary operator is after the operator, not before it. Here are some examples:

class Rectangle(Blob):
 def __init__(self, width, height,
 color='black', emphasis=None, highlight=0):
 if width == 0 and height == 0 and \
 color == 'red' and emphasis == 'strong' or \
 highlight > 100:
 raise ValueError("sorry, you lose")
 if width == 0 and height == 0 and (color == 'red' or
 emphasis is None):
 raise ValueError("I don't think so -- values are %s, %s" %
 (width, height))
 Blob.__init__(self, width, height,
 color, emphasis, highlight)

BLANK LINES

Separate top-level function and class definitions with two blank lines.
 Method definitions inside a class are separated by a single blank line.
 Extra blank lines may be used (sparingly) to separate groups of related functions.

Blank lines may be omitted between a bunch of related one-liners (for example, a set
of dummy implementations).

 Use blank lines in functions, sparingly, to indicate logical sections.
 Python accepts the Control-L (^L) form feed character as whitespace. Many tools

treat these characters as page separators, so you may use them to separate pages of
related sections of your file.

IMPORTS

Imports should usually be on separate lines, for example:

import os
import sys

Don’t put them together like this:

import sys, os

It’s okay to say this, though:

from subprocess import Popen, PIPE

Imports are always put at the top of the file, just after any module comments and doc-
strings and before module globals and constants.

 Imports should be grouped in the following order:

1 Standard library imports
2 Related third-party imports
3 Local application/library–specific imports

Put a blank line between each group of imports.

379PEP 8—Style guide for Python code
 Put any relevant __all__ specification after the imports.
 Relative imports for intra-package imports are highly discouraged. Always use the

absolute package path for all imports. Even now that PEP 3284 is fully implemented in
Python 2.5, its style of explicit relative imports is actively discouraged; absolute
imports are more portable and usually more readable.

 When importing a class from a class-containing module, it’s usually okay to spell them

from myclass import MyClass
from foo.bar.yourclass import YourClass

If this spelling causes local name clashes, then spell them

import myclass
import foo.bar.yourclass
and use myclass.MyClass and foo.bar.yourclass.YourClass.

WHITESPACE IN EXPRESSIONS AND STATEMENTS

Pet peeves—avoid extraneous whitespace in the following situations:
 Immediately inside parentheses, brackets, or braces

Yes:

spam(ham[1], {eggs: 2})

No:

spam(ham[1], { eggs: 2 })

 Immediately before a comma, semicolon, or colon
Yes:

if x == 4: print x, y; x, y = y, x

No:

if x == 4 : print x , y ; x , y = y , x

 Immediately before the open parenthesis that starts the argument list of a func-
tion call

Yes:

spam(1)

No:

spam (1)

 Immediately before the open parenthesis that starts an indexing or slicing
Yes:

dict['key'] = list[index]

No:

dict ['key'] = list [index]

4 PEP 328, Imports: Multi-Line and Absolute/Relative, www.python.org/dev/peps/pep-0328/.

www.python.org/dev/peps/pep-0328/

380 APPENDIX A A guide to Python’s documentation
 More than one space around an assignment (or other) operator to align it with
another

Yes:

x = 1
y = 2
long_variable = 3

No:

x = 1
y = 2
long_variable = 3

OTHER RECOMMENDATIONS

Always surround these binary operators with a single space on either side: assignment
(=), augmented assignment (+=, -=, and so on), comparisons (==, <, >, !=,
<>, <=, >=, in, not in, is, is not), and Booleans (and, or, not).

 Use spaces around arithmetic operators.
Yes:

i = i + 1
submitted += 1

x = x * 2 – 1
hypot2 = x * x + y * y
c = (a + b) * (a - b)

No:

i=i+1
submitted +=1
x = x*2 – 1
hypot2 = x*x + y*y
c = (a+b) * (a-b)

Don’t use spaces around the = sign when used to indicate a keyword argument or a
default parameter value.

Yes:

def complex(real, imag=0.0):
 return magic(r=real, i=imag)

No:

def complex(real, imag = 0.0):
 return magic(r = real, i = imag)

Compound statements (multiple statements on the same line) are generally
discouraged.

Yes:

if foo == 'blah':
 do_blah_thing()
do_one()

381Comments
do_two()
do_three()

Rather not:

if foo == 'blah': do_blah_thing()
do_one(); do_two(); do_three()

While sometimes it’s okay to put an if/for/while with a small body on the same
line, never do this for multiclause statements. Also avoid folding such long lines!

Rather not:

if foo == 'blah': do_blah_thing()
for x in lst: total += x
 while t < 10: t = delay()

Definitely not:

if foo == 'blah': do_blah_thing()
else: do_non_blah_thing()
try: something()
finally: cleanup()
do_one(); do_two(); do_three(long, argument,
 list, like, this)
if foo == 'blah': one(); two(); three()

A.4 Comments
Comments that contradict the code are worse than no comments. Always make a pri-
ority of keeping the comments up to date when the code changes!

 Comments should be complete sentences. If a comment is a phrase or sentence, its
first word should be capitalized, unless it’s an identifier that begins with a lowercase
letter (never alter the case of identifiers!).

 If a comment is short, the period at the end can be omitted. Block comments gen-
erally consist of one or more paragraphs built out of complete sentences, and each
sentence should end in a period.

 You should use two spaces after a sentence-ending period.
 When writing English, Strunk and White apply.
 Python coders from non-English-speaking countries: please write your comments

in English, unless you are 120% sure that the code will never be read by people who
don’t speak your language.

BLOCK COMMENTS

Block comments generally apply to some (or all) code that follows them and are
indented to the same level as that code. Each line of a block comment starts with a #
and a single space (unless it is indented text inside the comment).

 Paragraphs inside a block comment are separated by a line containing a single #.

INLINE COMMENTS

Use inline comments sparingly.

382 APPENDIX A A guide to Python’s documentation
 An inline comment is a comment on the same line as a statement. Inline com-
ments should be separated by at least two spaces from the statement. They should start
with a # and a single space.

 Inline comments are unnecessary and in fact distracting if they state the obvious.
Don’t do this:

x = x + 1 # Increment x

But sometimes, this is useful:

x = x + 1 # Compensate for border

DOCUMENTATION STRINGS

Conventions for writing good documentation strings (aka docstrings) are immortal-
ized in PEP 257.5

 Write docstrings for all public modules, functions, classes, and methods. Doc-
strings are not necessary for nonpublic methods, but you should have a comment that
describes what the method does. This comment should appear after the def line.

 PEP 257 describes good docstring conventions. Note that, most importantly, the
""" that ends a multiline docstring should be on a line by itself and preferably pre-
ceded by a blank line, for example:

"""Return a foobang
Optional plotz says to frobnicate the bizbaz first.

"""

For one-liner docstrings, it’s okay to keep the closing """ on the same line.

VERSION BOOKKEEPING

If you have to have Subversion, CVS, or RCS crud in your source file, do it as follows:

__version__ = "$Revision: 68852 $" # $Source$

These lines should be included after the module’s docstring, before any other code,
separated by a blank line above and below.

A.4.1 Naming conventions

The naming conventions of Python’s library are a bit of a mess, so we’ll never get this
completely consistent. Nevertheless, here are the currently recommended naming
standards. New modules and packages (including third-party frameworks) should be
written to these standards, but where an existing library has a different style, internal
consistency is preferred.

DESCRIPTIVE: NAMING STYLES

There are many different naming styles. It helps to be able to recognize what naming
style is being used, independent of what it’s used for.

5 PEP 257, Docstring Conventions, Goodger, van Rossum, www.python.org/dev/peps/pep-0257/.

www.python.org/dev/peps/pep-0257/

383Comments
 The following naming styles are commonly distinguished:

 b (single lowercase letter)
 B (single uppercase letter)
 lowercase
 lower_case_with_underscores
 UPPERCASE
 UPPER_CASE_WITH_UNDERSCORES
 CapitalizedWords (or CapWords, or CamelCase—so named because of the

bumpy look of its letters6). This is also sometimes known as StudlyCaps.
Note: When using abbreviations in CapWords, capitalize all the letters of the
abbreviation. Thus HTTPServerError is better than HttpServerError.

 mixedCase (differs from CapitalizedWords by initial lowercase character!)
 Capitalized_Words_With_Underscores (ugly!)

There’s also the style of using a short unique prefix to group related names together.
This is seldom used in Python, but I mention it for completeness. For example, the
os.stat() function returns a tuple whose items traditionally have names like
st_mode, st_size, st_mtime, and so on. (This is done to emphasize the correspon-
dence with the fields of the POSIX system call struct, which helps programmers famil-
iar with that.)

 The X11 library uses a leading X for all its public functions. In Python, this style is
generally deemed unnecessary because attribute and method names are prefixed with
an object, and function names are prefixed with a module name.

 In addition, the following special forms using leading or trailing underscores are
recognized (these can generally be combined with any case convention):

 _single_leading_underscore
Weak “internal use” indicator. For example, from M import * does not

import objects whose name starts with an underscore.

 single_trailing_underscore_
Used by convention to avoid conflicts with Python keyword. For example,

tkinter.Toplevel(master, class_='ClassName').

 __double_leading_underscore
When naming a class attribute, it invokes name mangling (inside class

FooBar, __boo becomes _FooBar__boo; see below).

 __double_leading_and_trailing_underscore__
“Magic” objects or attributes that live in user-controlled namespaces. For

example, __init__, __import__ or __file__. Never invent such names; use
them only as documented.

6 For a complete description, see www.wikipedia.com/wiki/CamelCase.

www.wikipedia.com/wiki/CamelCase

384 APPENDIX A A guide to Python’s documentation
PRESCRIPTIVE: NAMING CONVENTIONS

 Names to avoid
Never use the characters l (lowercase letter el), O (uppercase letter oh), or I

(uppercase letter eye) as single-character variable names.

In some fonts, these characters are indistinguishable from the numerals 1
(one) and 0 (zero). When tempted to use l, use L instead.

 Package and module names
Modules should have short, all-lowercase names. Underscores can be used in

a module name if it improves readability. Python packages should also have
short, all-lowercase names, although the use of underscores is discouraged.

Since module names are mapped to filenames, and some file systems are
case-insensitive and truncate long names, it’s important that module names be
fairly short—this won’t be a problem on UNIX, but it may be a problem when
the code is transported to older Mac or Windows versions or DOS.

When an extension module written in C or C++ has an accompanying Python
module that provides a higher-level (for example, more object-oriented) inter-
face, the C/C++ module has a leading underscore (for example, _socket).

 Class names
Almost without exception, class names use the CapWords convention.

Classes for internal use have a leading underscore in addition.

 Exception names
Because exceptions should be classes, the class-naming convention applies

here. However, you should use the suffix Error on your exception names (if
the exception actually is an error).

 Global variable names
(Let’s hope that these variables are meant for use inside one module only.)

The conventions are about the same as those for functions.

Modules that are designed for use via from M import * should use the
__all__ mechanism to prevent exporting globals or use the older convention
of prefixing such globals with an underscore (which you might want to do to
indicate these globals are module nonpublic).

 Function names
Function names should be lowercase, with words separated by underscores as

necessary to improve readability.

mixedCase is allowed only in contexts where that’s already the prevailing
style (for example, threading.py), to retain backward compatibility.

 Function and method arguments
Always use self for the first argument to instance methods.

Always use cls for the first argument to class methods.

385Comments
If a function argument’s name clashes with a reserved keyword, it’s generally
better to append a single trailing underscore than to use an abbreviation or
spelling corruption. Thus, print_ is better than prnt. (Perhaps better is to
avoid such clashes by using a synonym.)

 Method names and instance variables
Use the function-naming rules: lowercase with words separated by under-

scores as necessary to improve readability.

Use one leading underscore only for nonpublic methods and instance vari-
ables.

To avoid name clashes with subclasses, use two leading underscores to invoke
Python’s name-mangling rules.

Python mangles these names with the class name: if class Foo has an attribute
named __a, it cannot be accessed by Foo.__a. (An insistent user could still
gain access by calling Foo._Foo__a.) Generally, double leading underscores
should be used only to avoid name conflicts with attributes in classes designed
to be subclassed.

Note: there is some controversy about the use of __names (see below).

 Constants
Constants are usually declared on a module level and written in all capital

letters with underscores separating words. Examples include MAX_OVERFLOW
and TOTAL.

 Designing for inheritance
Always decide whether a class’s methods and instance variables (collectively

called attributes) should be public or nonpublic. If in doubt, choose nonpublic;
it’s easier to make it public later than to make a public attribute nonpublic.

Public attributes are those that you expect unrelated clients of your class to
use, with your commitment to avoid backward-incompatible changes. Nonpub-
lic attributes are those that are not intended to be used by third parties; you
make no guarantees that nonpublic attributes won’t change or even be
removed.

We don’t use the term private here, since no attribute is really private in
Python (without a generally unnecessary amount of work).

Another category of attributes includes those that are part of the subclass
API (often called protected in other languages). Some classes are designed to be
inherited from, either to extend or modify aspects of the class’s behavior. When
designing such a class, take care to make explicit decisions about which attri-
butes are public, which are part of the subclass API, and which are truly only to
be used by your base class.

With this in mind, here are the Pythonic guidelines:

 Public attributes should have no leading underscores.

386 APPENDIX A A guide to Python’s documentation
 If your public attribute name collides with a reserved keyword, append a single
trailing underscore to your attribute name. This is preferable to an abbreviation
or corrupted spelling. (However, notwithstanding this rule, cls is the preferred
spelling for any variable or argument that’s known to be a class, especially the
first argument to a class method.)

Note 1: See the argument name recommendation above for class methods.

 For simple public data attributes, it’s best to expose just the attribute name,
without complicated accessor/mutator methods. Keep in mind that Python
provides an easy path to future enhancement, should you find that a simple
data attribute needs to grow functional behavior. In that case, use properties to
hide functional implementation behind simple data attribute access syntax.

Note 1: Properties work only on new-style classes.

Note 2: Try to keep the functional behavior side-effect free, although side
effects such as caching are generally fine.

Note 3: Avoid using properties for computationally expensive operations; the
attribute notation makes the caller believe that access is (relatively) cheap.

 If your class is intended to be subclassed, and you have attributes that you don’t
want subclasses to use, consider naming them with double leading underscores
and no trailing underscores. This invokes Python’s name-mangling algorithm,
where the name of the class is mangled into the attribute name. This helps
avoid attribute name collisions should subclasses inadvertently contain attri-
butes with the same name.

Note 1: Only the simple class name is used in the mangled name, so if a sub-
class chooses both the same class name and attribute name, you can still get
name collisions.

Note 2: Name mangling can make certain uses, such as debugging and
__getattr__(), less convenient. However the name-mangling algorithm is
well documented and easy to perform manually.

Note 3: Not everyone likes name mangling. Try to balance the need to avoid
accidental name clashes with potential use by advanced callers.

A.4.2 Programming recommendations

You should write code in a way that does not disadvantage other implementations of
Python (PyPy, Jython, IronPython, Pyrex, Psyco, and such).

 For example, don’t rely on CPython’s efficient implementation of in-place string
concatenation for statements in the form a+=b or a=a+b. Those statements run more
slowly in Jython. In performance-sensitive parts of the library, you should use the
''.join() form instead. This will ensure that concatenation occurs in linear time
across various implementations.

 Comparisons to singletons like None should always be done with is or is not,
never the equality operators.

387Comments
 Also, beware of writing if x when you really mean if x is not None, for exam-
ple, when testing whether a variable or argument that defaults to None was set to some
other value. The other value might have a type (such as a container) that could be
false in a Boolean context!

 Use class-based exceptions.
 String exceptions in new code are forbidden, because this language feature has

been removed in Python 2.6.
 Modules or packages should define their own domain-specific base exception

class, which should be subclassed from the built-in Exception class. Always include a
class docstring, for example:

class MessageError(Exception):
 """Base class for errors in the email package."""

Class-naming conventions apply here, although you should add the suffix Error to
your exception classes if the exception is an error. Non-error exceptions need no spe-
cial suffix.

 When raising an exception, use raise ValueError('message') instead of the
older form raise ValueError, 'message'.

 The paren-using form is preferred because when the exception arguments are
long or include string formatting, you don’t need to use line continuation characters
thanks to the containing parentheses. The older form has been removed in Python 3.

 When catching exceptions, mention specific exceptions whenever possible instead
of using a bare except: clause. For example, use

try:
 import platform_specific_module
except ImportError:
 platform_specific_module = None

A bare except: clause will catch SystemExit and KeyboardInterrupt exceptions,
making it harder to interrupt a program with Control-C, and can disguise other prob-
lems. If you want to catch all exceptions that signal program errors, use except
Exception:.

 A good rule of thumb is to limit use of bare except clauses to two cases:

 If the exception handler will be printing out or logging the traceback; at least
the user will be aware that an error has occurred.

 If the code needs to do some cleanup work but then lets the exception propagate
upward with raise, then try...finally is a better way to handle this case.

In addition, for all try/except clauses, limit the try clause to the absolute mini-
mum amount of code necessary. Again, this avoids masking bugs.

Yes:

try:
 value = collection[key]
except KeyError:

388 APPENDIX A A guide to Python’s documentation
 return key_not_found(key)
else:
 return handle_value(value)

No:
try: # Too broad!
 return handle_value(collection[key])
except KeyError:
 return key_not_found(key)

Use string methods instead of the string module.
 String methods are always much faster and share the same API with Unicode

strings. Override this rule if backward compatibility with Python versions older than
2.0 is required.

 Use ''.startswith() and ''.endswith() instead of string slicing to check for
prefixes or suffixes.

 startswith() and endswith() are cleaner and less error prone.
Yes:

if foo.startswith('bar'):

No:

if foo[:3] == 'bar':

The exception is if your code must work with Python 1.5.2 (but let’s hope not!).
 Object type comparisons should always use isinstance() instead of comparing

types directly.
Yes:

if isinstance(obj, int):

No:

if type(obj) is type(1):

When checking to see if an object is a string, keep in mind that it might be a Unicode
string too! In Python 2.3, str and unicode have a common base class, basestring,
so you can do the following:

if isinstance(obj, basestring):

In Python 2.2, the types module has the StringTypes type defined for that pur-
pose, for example:

from types import StringTypes
if isinstance(obj, StringTypes):

In Python 2.0 and 2.1, you should do the following:

from types import StringType, UnicodeType
if isinstance(obj, StringType) or \
 isinstance(obj, UnicodeType) :

Will also catch KeyError
raised by handle_value()

389The Zen of Python
For sequences (strings, lists, tuples), use the fact that empty sequences are false.
Yes:

if not seq: if seq:

No:

if len(seq) if not len(seq)

Don’t write string literals that rely on significant trailing whitespace. Such trailing
whitespace is visually indistinguishable, and some editors (or more recently, rein-
dent.py) will trim them.

 Don’t compare Boolean values to True or False using ==.
Yes:

if greeting:

No:

if greeting == True:

Worse:

if greeting is True:

Copyright—this document has been placed in the public domain.

A.4.3 Other guides for Python style

Although PEP 8 remains the most influential style guide for Python, you have other
options. In general, these guides don’t contradict PEP 8, but they offer wider exam-
ples and fuller reasoning about how to make your code Pythonic. One good choice is
The Elements of Python Style, freely available at https://github.com/amontalenti/ele-
ments-of-python-style/blob/master/README.md. Another useful guide is The Hitch-
hiker’s Guide to Python, by Kenneth Reitz and Tanya Schlusser, also freely available at
http://docs.python-guide.org/en/latest/.

 As the language and programmers’ skills continue to evolve, there will certainly be
other guides, and I encourage you to take advantage of new guides as they’re pro-
duced, but only after starting with PEP 8.

A.5 The Zen of Python
The following document is PEP 20, also referred to as “The Zen of Python,” a slightly
tongue-in-cheek statement of the philosophy of Python. In addition to being included
in the Python documentation, the Zen of Python is an Easter egg in the Python inter-
preter. Type import this at the interactive prompt to see it.

 Longtime Pythoneer Tim Peters succinctly channels the BDFL’s (Benevolent Dic-
tator for Life) guiding principles for Python’s design into 20 aphorisms, only 19 of
which have been written down.

https://github.com/amontalenti/elements-of-python-style/blob/master/README.md
https://github.com/amontalenti/elements-of-python-style/blob/master/README.md
http://docs.python-guide.org/en/latest/

390 APPENDIX A A guide to Python’s documentation
The Zen of Python

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren’t special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one—and preferably only one—obvious way to do it.
Although that way may not be obvious at first unless you’re Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it’s a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea—let’s do more of those!

Copyright—This document has been placed in the public domain.

appendix B
Exercise answers

B.1 Chapter 4

TRY THIS: VARIABLES AND EXPRESSIONS In the Python shell, create some
variables. What happens when you try to put spaces, dashes, or other non-
alphanumeric characters in the variable name? Play around with a few
complex expressions, such as x = 2 + 4 * 5 – 6 / 3. Use parentheses to
group the numbers in different ways, and see how that changes the result
compared with the original ungrouped expression.

>>> x = 3
>>> y = 3.14
>>> y
3.14
>>> x
3
>>> big var = 12
 File "<stdin>", line 1
 big var = 12
 ^
SyntaxError: invalid syntax
>>> big-var
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'big' is not defined
>>> big&var
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
NameError: name 'big' is not defined
>>> x = 2 + 4 * 5 - 6 /3
>>> x
20.0
>>> x = (2 + 4) * 5 - 6 /3
>>> x
28.0
391

392 APPENDIX B Exercise answers
>>> x = (2 + 4) * (5 - 6) /3
>>> x
-2.0

TRY THIS: MANIPULATING STRINGS AND NUMBERS In the Python shell, create
some string and number variables (integers, floats, and complex numbers).
Experiment a bit with what happens when you do operations with them,
including across types. Can you multiply a string by an integer, for example,
or by a float or complex number? Also, load the math module and try out a
few of the functions; then load the cmath module and do the same. What
happens if you try to use one of those functions on an integer or float after
loading the cmath module? How might you get the math module functions
back?

>>> i = 3
>>> f = 3.14
>>> c = 3j2
 File "<stdin>", line 1
 c = 3j2
 ^
SyntaxError: invalid syntax
>>> c = 3J2
 File "<stdin>", line 1
 c = 3J2
 ^
SyntaxError: invalid syntax
>>> c = 3 + 2j
>>> c
(3+2j)
>>> s = 'hello'
>>> s * f
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'float'
>>> s * i
'hellohellohello'
>>> s * c
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: can't multiply sequence by non-int of type 'complex'
>>> c * i
(9+6j)
>>> c * f
(9.42+6.28j)
>>> from math import sqrt
>>> sqrt(16)
4.0
>>> from cmath import sqrt
>>> sqrt(16)
(4+0j)

To reconnect the first sqrt to your current namespace, you can reimport it. Note that
this code doesn’t reload the file:

393Chapter 5
>>> from math import sqrt
>>> sqrt(4)
2.0

TRY THIS: GETTING INPUT Experiment with the input() function to get string
and integer input. Using code similar to the code above, what is the effect of
not using int() around the call to input()for integer input? Can you mod-
ify that code to accept a float, such as 28.5? What happens if you deliberately
enter the “wrong” type of value, such as a float where an int is expected or a
string where a number is expected, and vice versa?

>>> x = input("int?")
int?3
>>> x
'3'
>>> y = float(input("float?"))
float?3.5
>>> y
3.5
>>> z = int(input("int?"))
int?3.5
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: '3.5'

QUICK CHECK : PYTHONIC STYLE Which of the following variable and function
names do you think are not good Pythonic style, and why?: bar(, varName,
VERYLONGVARNAME, foobar, longvarname, foo_bar(), really_very
_long_var_name

bar(: Not good, not legal, includes symbol
varName: Not good, mixed case
VERYLONGVARNAME: Not good, long, all caps, hard to read
foobar: Good
longvarname: Good, although underscores to separate words
would be better
foo_bar(): Good
really_very_long_var_name: Long, but good if all of the
words are needed, perhaps to distinguish among similar
variables

B.2 Chapter 5

QUICK CHECK: LEN() What would len() return for each of the following:
[0]; []; [[1, 3, [4, 5], 6], 7]?

len([0]) - 1
len([]) - 0
len([[1, 3, [4, 5], 6], 7 s]) - 2
([1, 3, [4, 5], 6] is a list and a single item in the list before the second
item, 7.

394 APPENDIX B Exercise answers
TRY THIS: LIST SLICES AND INDEXES Using what you know about the len()
function and list slices, how would you combine the two to get the second half
of a list when you don’t know what size it is? Experiment in the Python shell
to confirm that your solution works.

>>> my_list = [1, 2, 3, 4, 5, 6]
>>> last_half = my_list[len(my_list)//2:]
>>> last_half
[4, 5, 6]

 len(my_list) // 2 is the halfway point; slice from there to the end.

TRY THIS: MODIFYING LISTS Suppose that you have a list 10 items long. How
might you move the last three items from the end of the list to the beginning,
keeping them in the same order?

>>> my_list = my_list[-3:] + my_list[:-3]
>>> my_list
[4, 5, 6, 1, 2, 3]

TRY THIS: SORTING LISTS Suppose that you have a list in which each element is
in turn a list: [[1, 2, 3], [2, 1, 3], [4, 0, 1]]. If you want to sort
this list by the second element in each list, so that the result is [[4, 0, 1],
[2, 1, 3], [1, 2, 3]], what function would you write to pass as the key
value to the sort() method?

>>> the_list = [[1, 2, 3], [2, 1, 3], [4, 0, 1]]
>>> the_list.sort(key=lambda x: x[1])
>>> the_list
[[4, 0, 1], [2, 1, 3], [1, 2, 3]]

 or

>>> the_list = [[1, 2, 3], [2, 1, 3], [4, 0, 1]]
>>> the_list.sort(key=lambda x: x[1])
>>> the_list
[[4, 0, 1], [2, 1, 3], [1, 2, 3]]

QUICK CHECK: LIST OPERATIONS What is the result of len([[1,2]] * 3)?

3

What are two differences between using the in operator and a list’s index()
method?

 index gives position; in gives a true/false answer.
 index gives an error if an element isn’t in the list.

Which of the following raises an exception? min(["a", "b”, "c"]);
max([1, 2, "three"]); [1, 2, 3].count("one")

max([1, 2, "three"]): Strings and ints can’t be compared, so it’s impossi-
ble to get a max value.

395Chapter 5
TRY THIS: LIST OPERATIONS If you have a list x, write the code to safely remove
an item if and only if that value is in the list.

if element in x:
 x.remove(element)

Modify that code to remove the element only if the item occurs in the list
more than once.

if x.count(element) > 1:
 x.remove(element)

Note: This code removes only the first occurrence of element.

TRY THIS: LIST COPIES Suppose that you have the following list: x = [[1, 2,
3], [4, 5, 6], [7, 8, 9]]. What code could you use to get a copy y of
that list in which you could change its elements without the side effect of
changing the contents of x?

import copy
copy_x = copy.deepcopy(x)

QUICK CHECK: TUPLES Explain why the following operations aren’t legal for
the tuple x = (1, 2, 3, 4):

x.append(1)
x[1] = "hello"
del x[2]

All of these operations change the object in place, and tuples can't be
changed.

If you had a tuple x = (3, 1, 4, 2), how might you end up with x sorted?

x = sorted(x)

QUICK CHECK: SETS If you were to construct a set from the following list, how
many elements would it have?: [1, 2, 5, 1, 0, 2, 3, 1, 1, (1, 2,
3)]

Six unique elements: 1, 2, 5, 0, 3, and the tuple (1, 2, 3)

LAB 5: EXAMINING A LIST In this lab, the task is to read a set of temperature
data (in fact, the monthly high temperatures at Heathrow Airport for 1948–
2016) from a file and then find some basic information: the highest and low-
est temperatures, the mean (average) temperature, and the median tempera-
ture (the temperature in the middle if all of the temperatures are sorted).

The temperature data is in the file lab_05.txt in the source code directory for
this chapter. Because I’ve not yet discussed reading files, the code to read the
files into a list is here:

with open('lab_05.txt') as infile:
 for row in infile:
 temperatures.append(float(row.strip()))

396 APPENDIX B Exercise answers
As mentioned, you should find the highest and lowest temperature, the aver-
age, and the median. You’ll probably want to use min(), max(), sum(),
len(), and sort().

max_temp = max(temperatures)
min_temp = min(temperatures)
mean_temp = sum(temperatures)/len(temperatures)
we'll need to sort to get the median temp
temperatures.sort()
median_temp = temperatures[len(temperatures)//2]
print("max = {}".format(max_temp))
print("min = {}".format(min_temp))
print("mean = {}".format(mean_temp))
print("median = {}".format(median_temp))

max = 28.2
min = 0.8
mean = 14.848309178743966
median = 14.7

Bonus: Determine how many unique temperatures are in the list.

unique_temps = len(set(temperatures))

print("number of temps - {}".format(len(temperatures)))
print("number of temps - {}".format(unique_temps))
number of temps - 828
number of unique temps – 217

B.3 Chapter 6

QUICK CHECK: SPLIT AND JOIN How could you use split and join to change
all of the whitespace in string x to dashes (such as "this is a test" to
"this-is-a-test")?

>>> x = "this is a test"
>>> "-".join(x.split())
'this-is-a-test'

QUICK CHECK: STRINGS TO NUMBERS Which of the following will not be con-
verted to numbers, and why?

1 int('a1')
2 int('12G', 16)
3 float("12345678901234567890")
4 int("12*2")

Only #3 float("12345678901234567890") converts; all the others have a
character that wouldn’t be allowed for conversion to an int.

QUICK CHECK: STRIP If the string x equals "(name, date),\n", which of the
following returns a string containing "name, date" ?

1 x.rstrip("),")
2 x.strip("),\n")

397Chapter 6
3 x.strip("\n)(,")

3 x.strip("\n)(,") will remove the newline as well as the comma and
parentheses.

QUICK CHECK: STRING SEARCHING If you want to see whether a line ends with
the string "rejected", what string method would you use? Are there any
other ways you could get the same result?

endswith('rejected')

You could also do line[:-8] == rejected, but that wouldn’t be as clear
or Pythonic.

QUICK CHECK: MODIFYING STRINGS What would be a quick way to change all
punctuation in a string to spaces?

>>> punct = str.maketrans("!.,:;-?", " ")
>>> x = "This is text, with: punctuation! Right?"
>>> x.translate(punct)
'This is text with punctuation Right '

TRY THIS: STRING OPERATIONS Suppose that you have a list of strings in which
some (but not necessarily all) of the strings begin and end with the double
quote character:

x = ['"abc"', 'def', '"ghi"', '"klm"', 'nop']

What code would you use on each element to remove just the double quotes?

>>> for item in x:
... print(item.strip('"'))
...
abc
def
ghi
klm
nop

What code could you use to find the position of the last p in Mississippi? When
you’ve found its position, what code would you use to remove just that letter?

>>> state = "Mississippi"
>>> pos = state.rfind("p")

>>> state = state[:pos] + state[pos+1:]
>>> print(state)

Mississipi

QUICK CHECK: THE FORMAT() METHOD What will be in x when the following
snippets of code are executed?

x = "{1:{0}}".format(3, 4)
' 4'

x = "{0:$>5}".format(3)
'$$$$3'

398 APPENDIX B Exercise answers
x = "{a:{b}}".format(a=1, b=5)
' 1'

x = "{a:{b}}:{0:$>5}".format(3, 4, a=1, b=5, c=10)
' 1:$$$$3'

QUICK CHECK: FORMATTING STRINGS WITH % What would be in the variable x
after the following snippets of code have executed?

x = "%.2f" % 1.1111
x will contain '1.11'
x = "%(a).2f" % {'a':1.1111}
x will contain '1.11'
x = "%(a).08f" % {'a':1.1111}
x will contain '1.11110000'

QUICK CHECK: BYTES For which of the following kinds of data would you want
to use a string? For which could you use bytes?

(1) Data file storing binary data

Bytes. Because the data is binary, you’re more concerned with the contents as
numbers rather than text. Therefore, it would make sense to use bytes.

(2) Text in a language with accented characters

String. Python 3 strings are Unicode, so they can handle accented characters.

(3) Text with only uppercase and lowercase roman characters

String. Strings should be used for all text in Python 3.

(4) A series of integers no larger than 255

Bytes. A byte is an integer no larger than 255, so the bytes type is perfect for
storing integers like this.

LAB 6: PREPROCESSING TEXT In processing raw text, it’s quite often necessary
to clean and normalize the text before doing anything else. If you want to
find the frequency of words in text, for example, you can make the job easier
if, before you start counting, you make sure that everything is lowercase (or
uppercase, if you prefer) and that all punctuation has been removed. It can
also make things easier to break the text into a series of words.

In this lab, the task is to read an excerpt of the first chapter of Moby Dick,
make sure that everything is one case, remove all punctuation, and write the
words one per line to a second file. Again, because I haven’t yet covered read-
ing and writing files, the code for those operations is supplied below.

Your task is to come up with the code to replace the commented lines in the
sample below:

with open("moby_01.txt") as infile, open("moby_01_clean.txt", "w") as
outfile:

 for line in infile:
 # make all one case
 # remove punctuation

399Chapter 7
 # split into words
 # write all words for line
 outfile.write(cleaned_words)
punct = str.maketrans("", "", "!.,:;-?")

with open("moby_01.txt") as infile, open("moby_01_clean.txt", "w") as
outfile:

 for line in infile:
 # make all one case
 cleaned_line = line.lower()

 # remove punctuation
 cleaned_line = cleaned_line.translate(punct)

 # split into words
 words = cleaned_line.split()
 cleaned_words = "\n".join(words)
 # write all words for line
 outfile.write(cleaned_words)

B.4 Chapter 7

TRY THIS: CREATE A DICTIONARY Write the code to ask the user for three
names and three ages. After the names and ages are entered, ask the user for
one of the names, and print the correct age.

>>> name_age = {}
>>> for i in range(3):
... name = input("Name? ")
... age = int(input("Age? "))
... name_age[name] = age

>>> name_choice = input("Name to find? ")
>>> print(name_age[name_choice])

Name? Tom
Age? 33
Name? Talita
Age? 28
Name? Rania
Age? 35
Name to find? Talita
28

QUICK CHECK: DICTIONARY OPERATIONS Assume that you have a dictionary x =
{'a':1, 'b':2, 'c':3, 'd':4} and a dictionary y = {'a':6, 'e':5,
'f':6}. What would be the contents of x after the following snippets of code
have executed?

del x['d']
z = x.setdefault('g', 7)
x.update(y)

>>> x = {'a':1, 'b':2, 'c':3, 'd':4}
>>> y = {'a':6, 'e':5, 'f':6}

400 APPENDIX B Exercise answers
>>> del x['d']
>>> print(x)
{'a': 1, 'b': 2, 'c': 3}
>>> z = x.setdefault('g', 7)
>>> print(x)
{'a': 1, 'b': 2, 'c': 3, 'g': 7}
>>> x.update(y)
>>> print(x)
{'a': 6, 'b': 2, 'c': 3, 'g': 7, 'e': 5, 'f': 6}

QUICK CHECK: WHAT CAN BE A KEY? Decide which of the following expressions
can be a dictionary key: 1; 'bob'; ('tom', [1, 2, 3]); ["file-
name"]; "filename"; ("filename", "extension")

1: Yes.
'bob': Yes.
('tom', [1, 2, 3]): No; it contains a list, which isn’t hashable.
["filename"]: No; it's a list, which isn’t hashable.
"filename": Yes.
("filename", "extension"): Yes; it's a tuple.

TRY THIS: USING DICTIONARIES Suppose that you’re writing a program that
works like a spreadsheet. How might you use a dictionary to store the con-
tents of a sheet? Write some sample code to both store a value and retrieve a
value in a particular cell. What might be some drawbacks to this approach?

You could use tuples of row, column values as keys to store the values in a dic-
tionary. One drawback would be that the keys wouldn’t be sorted, so you’d
have to manage that situation as you grabbed the keys/values to render as a
spreadsheet.

>>> sheet = {}
>>> sheet[('A', 1)] = 100
>>> sheet[('B', 1)] = 1000

>>> print(sheet[('A', 1)])
100

LAB 7: WORD COUNTING In Lab 6, you took the text of the first chapter of Moby
Dick, normalized the case, removed punctuation, and wrote the separated
words to a file. In this lab, you read that file, use a dictionary to count the
number of times each word occurs, and report the most common and least
common words.

Use this code to read the words from the file into a list called moby_words:
moby_words = []
 for word in infile:
 if word.strip():
 moby_words.append(word.strip())

moby_words = []
with open('moby_01_clean.txt') as infile:

401Chapter 8
 for word in infile:
 if word.strip():
 moby_words.append(word.strip())

word_count = {}
for word in moby_words:
 count = word_count.setdefault(word, 0)
 count += 1
 word_count[word] += 1

word_list = list(word_count.items())
word_list.sort(key=lambda x: x[1])
print("Most common words:")
for word in reversed(word_list[-5:]):
 print(word)
print("\nLeast common words:")
for word in word_list[:5]:
 print(word)

Most common words:
('the', 14)
('and', 9)
('i', 9)
('of', 8)
('is', 7)

Least common words:
('see', 1)
('growing', 1)
('soul', 1)
('having', 1)
('regulating', 1)

B.5 Chapter 8

TRY THIS: LOOPING AND IF STATEMENTS Suppose that you have a list x = [1,
3, 5, 0, -1, 3, -2], and you need to remove all negative numbers from
that list. Write the code to do this.

x = [1, 3, 5, 0, -1, 3, -2]
for i in x:
 if i < 0:
 x.remove(i)
print(x)

[1, 3, 5, 0, 3]

How would you count the total number of negative numbers in a list y =
[[1, -1, 0], [2, 5, -9], [-2, -3, 0]]?

count = 0
y = [[1, -1, 0], [2, 5, -9], [-2, -3, 0]]
for row in y:
 for col in row:
 if col < 0:
 count += 1

402 APPENDIX B Exercise answers
print(count)

4

What code would you use to print "very low" if the value of x is below -5,
"low" if it’s from -4 up to 0, "neutral" if it’s equal to 0, "high" if it’s
greater than 0 up to 4, and "very high" if it’s greater than 5?

if x < -5:
 print("very low")
elif x <= 0:
 print("low")
elif x <= 5:
 print("high")
else:
 print("very high")

TRY THIS: COMPREHENSIONS What list comprehension would you use to pro-
cess the list x so that all negative values are removed?

x = [1, 3, 5, 0, -1, 3, -2]
new_x = [i for i in x if i >= 0]
print(new_x)
[1, 3, 5, 0, 3]

Create a generator that returns only odd numbers from 1 to 100. (Hint: A
number is odd if there’s a remainder when it’s divided by 2; use % 2 to do
this.)

odd_100 = (x for x in range(100) if x % 2)
for i in odd_100:
 print(i))

Write the code to create a dictionary of the numbers and their cubes from 11
through 15.

cubes = {x: x**3 for x in range(11, 16)}
print(cubes)
{11: 1331, 12: 1728, 13: 2197, 14: 2744, 15: 3375}

QUICK CHECK: BOOLEANS AND TRUTHINESS Decide whether the following state-
ments are true or false: 1, 0, -1, [0], 1 and 0, 1 > 0 or []

1 ->: True.
0 ->: False.
-1: True.
[0]: True; it's a list containing one item.
1 and 0: False.
1 > 0 or []: True.

LAB: REFACTOR WORD_COUNT Rewrite the word-count program in section 8.7
to make it shorter. You may want to look at the string and list operations
already discussed, as well as think about different ways to organize the code.

403Chapter 9
You may also want to make the program smarter so that only alphabetic
strings (not symbols or punctuation) count as words.

File: word_count_refactored.py
""" Reads a file and returns the number of lines, words,
 and characters - similar to the UNIX wc utility
"""

initialze counts
line_count = 0
word_count = 0
char_count = 0

open the file
with open('word_count.tst') as infile:
 for line in infile:
 line_count += 1
 char_count += len(line)
 words = line.split()
 word_count += len(words)

print the answers using the format() method
print("File has {0} lines, {1} words, {2} characters".format(line_count,
 word_count, char_count))

B.6 Chapter 9

QUICK CHECK: FUNCTIONS AND PARAMETERS How would you write a function
that could take any number of unnamed arguments and print their values in
reverse order?

def my_funct(*params):
 for i in reversed(params):
 print(i)

my_funct(1,2,3,4)

What do you need to do to create a procedure or void function—that is, a
function with no return value?

Either don’t return a value (use a bare return) or don't use a return state-
ment at all.

What happens if you capture the return value of a function with a variable?

The only result is that you can use that value, whatever it might be.

QUICK CHECK: MUTABLE FUNCTION PARAMETERS What would be the result of
changing a list or dictionary that was passed into a function as a parameter
value? Which operations would be likely to create changes that would be visi-
ble outside the function? What steps might you take to minimize that risk?

Listing B.1 File: word_count_refactored.py

404 APPENDIX B Exercise answers
The changes would persist for future uses of the default parameter. Opera-
tions such as adding and deleting elements, as well as changing the value of
an element, are particularly likely to be problems. To minimize the risk, it's
better not to use mutable types as default parameters.

TRY THIS: GLOBAL VS LOCAL VARIABLES Assuming that x = 5, what will be the
value of x after funct_1() below executes? After funct_2()?

def funct_1():
 x = 3
def funct_2():
 global x
 x = 2

After calling funct_1(), x will be unchanged; after funct_2(), the value in
the global x will be 2.

QUICK CHECK: GENERATOR FUNCTIONS What would you need to modify in the
code for the function four() above to make it work for any number? What
would you need to add to allow the starting point to also be set?

>>> def four(limit):
... x = 0
... while x < limit:
... print("in generator, x =", x)
... yield x
... x += 1
...
>>> for i in four(4):
... print(i)

To specify the start:

>>> def four(start, limit):
... x = start
... while x < limit:
... print("in generator, x =", x)
... yield x
... x += 1
...
>>> for i in four(1, 4):
... print(i)

TRY THIS: DECORATORS How would you modify the code for the decorator
function above to remove unneeded messages and enclose the return value of
wrapped function in "<html>" and "</html>" so that myfunction
("hello") would return "<html>hello<html>"?

This exercise is a hard one, because to define a function that changes the
return value, you need to add an inner wrapper function to call the original
function and add to the return value.

def decorate(func):
 def wrapper_func(*args):

405Chapter 9
 def inner_wrapper(*args):
 return_value = func(*args)
 return "<html>{}<html>".format(return_value)

 return inner_wrapper(*args)
 return wrapper_func

@decorate
def myfunction(parameter):
 return parameter

print(myfunction("Test"))

<html>Test<html>

LAB 9: USEFUL FUNCTIONS Looking back at chapters 6 and 7, refactor the code
into functions for cleaning and processing the data. The goal should be that
most of the logic is moved into functions. Use your own judgment as to the
types of functions and parameters, but keep in mind that functions should do
just one thing and that they shouldn’t have any side effects that carry over
outside the function.

punct = str.maketrans("", "", "!.,:;-?")

def clean_line(line):
 """changes case and removes punctuation"""
 # make all one case
 cleaned_line = line.lower()

 # remove punctuation
 cleaned_line = cleaned_line.translate(punct)
 return cleaned_line

def get_words(line):
 """splits line into words, and rejoins with newlines"""
 words = line.split()
 return "\n".join(words) + "\n"

with open("moby_01.txt") as infile, open("moby_01_clean.txt", "w")

as outfile:
 for line in infile:
 cleaned_line = clean_line(line)

 cleaned_words = get_words(cleaned_line)

 # write all words for line
 outfile.write(cleaned_words)

def count_words(words):
 """takes list of cleaned words, returns count dictionary"""
 word_count = {}
 for word in moby_words:

406 APPENDIX B Exercise answers
 count = word_count.setdefault(word, 0)
 word_count[word] += 1
 return word_count

def word_stats(word_count):
 """Takes word count dictionary and returns top and bottom five

entries"""
 word_list = list(word_count.items())
 word_list.sort(key=lambda x: x[1])
 least_common = word_list[:5]
 most_common = word_list[-1:-6:-1]
 return most_common, least_common

moby_words = []
with open('moby_01_clean.txt') as infile:
 for word in infile:
 if word.strip():
 moby_words.append(word.strip())

word_count = count_words(moby_words)

most, least = word_stats(word_count)
print("Most common words:")
for word in most:
 print(word)
print("\nLeast common words:")
for word in least:
 print(word)

B.7 Chapter 10

QUICK CHECK: MODULES Suppose that you have a module called new_math
that contains a function called new_divide. What are the ways that you
might import and then use that function? What are the pros and cons of each
way?

import new_math
new_math.new_divide(...)

This solution is often preferred because there won’t be a clash between any
identifiers in new_module and the importing namespace. This solution is less
convenient to type, however.

from new_math import new_divide
new_divide(...)

This version is more convenient to use but increases the chance of name
clashes between identifiers in the module and the importing namespace.

Suppose that the new_math module contains a function call
_helper_math(). How will the underscore character affect the way that
_helper_math() is imported?

It won’t be imported if you use from new_math import *

407Chapter 11
QUICK CHECK: NAMESPACES AND SCOPE Consider a variable width that’s in the
module make_window.py. In which of the following contexts is width in
scope?

(A) With the module itself
(B) Inside the resize() function in the module
(C) Within the script that imported the make_window.py module

A and B but not C

LAB 10: CREATE A MODULE Package the functions that you created at the end
of chapter 9 as a standalone module. Although you can include code to run
the module as the main program, the goal should be for the functions to be
completely usable from another script.

(no answer)

B.8 Chapter 11

TRY THIS: MAKING A SCRIPT EXECUTABLE Experiment with executing scripts on
your platform. Also try to redirect input and output into and out of your
scripts.

(no answer)

QUICK CHECK: PROGRAMS AND MODULES What issue is the use of if
__name__ == "__main__": meant to prevent, and how does it do that?
Can you think of any other way to prevent this issue?

When Python loads a module, all of its code is executed. By using the pattern
above, you can have certain code run only if it’s being executed as the main
script file.

LAB 11: CREATING A PROGRAM In chapter 8, you created a version of the
UNIX wc utility to count the lines, words, and characters in a file. Now that
you have more tools at your disposal, refactor that program to make it work
more like the original. In particular, it should have options to show only lines
(-l), only words (-w), and only characters (-c). If none of those options is
given, all three stats are displayed, but if any of them is present, only the spec-
ified stats are shown.

For an extra challenge, look at the man page for wc on a Linux/UNIX sys-
tem, and add the -L to show the longest line length. Feel free to try to imple-
ment the complete behavior as listed in the man page, and test it against your
system’s wc utility.

File: word_count_program.py
""" Reads a file and returns the number of lines, words,
 and characters - similar to the UNIX wc utility
"""
import sys

408 APPENDIX B Exercise answers
def main():
 # initialze counts
 line_count = 0
 word_count = 0
 char_count = 0

 option = None
 params = sys.argv[1:]
 if len(params) > 1:
 # if more than one param, pop the first one as the option
 option = params.pop(0).lower().strip()
 filename = params[0] # open the file
 with open(filename) as infile:
 for line in infile:
 line_count += 1
 char_count += len(line)
 words = line.split()
 word_count += len(words)

 if option == "-c":
 print("File has {} characters".format(char_count))
 elif option == "-w":
 print("File has {} words".format(word_count))
 elif option == "-l":
 print("File has {} lines".format(line_count))
 else:
 # print the answers using the format() method
 print("File has {0} lines, {1} words, {2}

characters".format(line_count,
 word_count, char_count))

if __name__ == '__main__':
 main()

B.9 Chapter 12

QUICK CHECK: MANIPULATING PATHS How would you use the os module’s
functions to take a path to a file called test.log and create a new file path in
the same directory for a file called test.log.old? How would you do the same
thing by using the pathlib module?

import os.path
old_path = os.path.abspath('test.log')
print(old_path)
new_path = '{}.{}'.format(old_path, "old")
print(new_path)

import pathlib
path = pathlib.Path('test.log')
abs_path = path.resolve()
print(abs_path)
new_path = str(abs_path) + ".old"
print(new_path)

409Chapter 13
What path would you get if you created a pathlib Path object from os
.pardir? Try it to find out.

test_path = pathlib.Path(os.pardir)
print(test_path)
test_path.resolve()

..
PosixPath('/home/naomi/Documents/QPB3E/qpbe3e')

LAB 12: MORE FILE OPERATIONS How might you calculate the total size of all
files ending with .txt that aren’t symlinks in a directory? If your first answer
was using os.path, also try it with pathlib, and vice versa.

import pathlib
cur_path = pathlib.Path(".")

size = 0
for text_path in cur_path.glob("*.txt"):
 if not text_path.is_symlink():
 size += text_path.stat().st_size

print(size)

Write some code that builds off your solution above to move the same .txt
files in the question above to a new directory called backup in the same
directory.

import pathlib
cur_path = pathlib.Path(".")
new_path = cur_path.joinpath("backup")

size = 0
for text_path in cur_path.glob("*.txt"):
 if not text_path.is_symlink():
 size += text_path.stat().st_size
 text_path.rename(new_path.joinpath(text_path.name))

print(size)

B.10 Chapter 13

QUICK CHECK: What is the significance of adding a "b" to the file open mode
string?

It makes the file open in binary mode, reading and writing bytes, not charac-
ters.

Suppose that you want to open a file named myfile.txt and write some addi-
tional data at the end of it. What command would you use to open myfile.txt?
What command would you use to reopen the file to read from the beginning?

open("myfile.txt", "a")
open("myfile.txt")

410 APPENDIX B Exercise answers
TRY THIS: REDIRECTING INPUT AND OUTPUT Write some code to use the mio.py
module above to capture all of the print output of a script to a file named
myfile.txt, reset the standard output to the screen, and print that file to
screen.

mio_test.py

import mio

def main():
 mio.capture_output("myfile.txt")
 print("hello")
 print(1 + 3)
 mio.restore_output()

 mio.print_file("myfile.txt")

if __name__ == '__main__':
 main()

output will be sent to file: myfile.txt
restore to normal by calling 'mio.restore_output()'
standard output has been restored back to normal
hello
4

QUICK CHECK: STRUCT What use cases can you think of in which the struct
module would be useful for either reading or writing binary data?

 You’re trying to read/write from a binary-format application file or image file.
 You’re reading from some external interface, such as a thermometer or acceler-

ometer, and you want to save the raw data exactly as it was transmitted.

QUICK CHECK: PICKLES Think about why a pickle would or wouldn’t be a good
solution for the following use cases:

(A) Saving some state variables from one run to the next
(B) Keeping a high-score list for a game
(C) Storing usernames and passwords
(D) Storing a large dictionary of English terms

A and B would be reasonable, although pickles aren’t secure.

C and D wouldn’t be good; the lack of security would be a big problem for C,
and for D, there’d be a need to load the entire pickle into memory.

QUICK CHECK: SHELVE Using a shelf object looks very much like using a dic-
tionary. In what ways is using a shelf object different? What disadvantages
would you expect there to be in using a shelf object?

The key difference is that the objects are stored on disk, not in memory. With
very large amounts of data, particularly with lots of inserts and/or deletes,
you’d expect disk access to make things slow.

411Chapter 13
LAB: FINAL FIXES TO WC If you look at the man page for the wc utility, you see
that two command-line options do very similar things. -c makes the utility
count the bytes in the file, and -m makes it count characters (which in the
case of some Unicode characters can be two or more bytes long). In addition,
if a file is given, it should read from and process that file, but if no file is given,
it should read from and process stdin.

Rewrite your version of the wc utility to implement both the distinction
between bytes and characters and the ability to read from files and standard
input.

File: word_count_program_stdin.py
""" Reads a file and returns the number of lines, words,
 and characters - similar to the UNIX wc utility
"""
import sys

def main():
 # initialze counts
 line_count = 0
 word_count = 0
 char_count = 0
 filename = None

 option = None
 if len(sys.argv) > 1:
 params = sys.argv[1:]
 if params[0].startswith("-"):
 # if more than one param, pop the first one as the option
 option = params.pop(0).lower().strip()
 if params:
 filename = params[0] # open the file
 file_mode = "r"
 if option == "-c":
 file_mode = "rb"
 if filename:
 infile = open(filename, file_mode)
 else:
 infile = sys.stdin
 with infile:
 for line in infile:
 line_count += 1
 char_count += len(line)
 words = line.split()
 word_count += len(words)

 if option in ("-c", "-m"):
 print("File has {} characters".format(char_count))
 elif option == "-w":
 print("File has {} words".format(word_count))
 elif option == "-l":
 print("File has {} lines".format(line_count))

412 APPENDIX B Exercise answers
 else:
 # print the answers using the format() method
 print("File has {0} lines, {1} words, {2}

characters".format(line_count, word_count, char_count))

if __name__ == '__main__':
 main()

B.11 Chapter 14

TRY THIS: CATCHING EXCEPTIONS Write some code that gets two numbers from
the user and divides the first number by the second. Check for and catch the
exception that occurs if the second number is zero (ZeroDivisionError).

the code of your program should do the following
x = int(input("Please enter an integer: "))
y = int(input("Please enter another integer: "))

try:
 z = x / y
except ZeroDivisionError as e:
 print("Can't divide by zero.")

Please enter an integer: 1
Please enter another integer: 0
Can't divide by zero.

QUICK CHECK: EXCEPTIONS AS CLASSES If MyError inherits from Exception,
what will be the difference between except Exception as e and except
MyError as e?

The first catches any exception that inherits from Exception (most of
them), whereas the second catches only MyError exceptions.

TRY THIS: THE ASSERT STATEMENT Write a simple program that gets a number
from the user and then uses the assert statement to raise an exception if the
number is zero. Test to make sure that the assert fires and then turn it off,
using one of the methods mentioned above.

x = int(input("Please enter a non-zero integer: "))

assert x != 0, "Integer can not be zero."

Please enter a non-zero integer: 0
--
AssertionError Traceback (most recent call last)
<ipython-input-222-9f7a09820a1c> in <module>()
 2 x = int(input("Please enter a non-zero integer: "))
 3
----> 4 assert x != 0, "Integer can not be zero."

AssertionError: Integer can not be zero.

413Chapter 14
QUICK CHECK: EXCEPTIONS Do Python exceptions force a program to halt?

No. If exceptions are caught and handled correctly, the program won't need
to halt.

Suppose that you want accessing a dictionary x to always return None if a key
doesn’t exist in the dictionary (that is, if a KeyError exception is raised).
What code would you use to achieve that goal?

try:
 x = my_dict[some_key]
except KeyError as e:
 x = None

TRY THIS: EXCEPTIONS What code would you use to create a custom Value-
TooLarge exception and raise that exception if the variable x is over 1000?

class ValueTooLarge(Exception):
 pass

x = 1001
if x > 1000:
 raise ValueTooLarge()

QUICK CHECK: CONTEXT MANAGERS Assume that you’re using a context man-
ager in a script that reads and/or writes several files. Which of the following
approaches do you think would be best?

(A) Put the entire script in a block managed by a with statement.
(B) Use one with statement for all file reads and another for all file writes.
(C) Use a with statement each time you read a file or write a file (that is, for
each line).
(D) Use a with statement for each file that you read or write.

LAB 14: CUSTOM EXCEPTIONS Think about the module you wrote in chapter 9
to count word frequencies. What errors might reasonably occur in those func-
tions? Rewrite the code to handle those exception conditions appropriately.

class EmptyStringError(Exception):
 pass
def clean_line(line):
 """changes case and removes punctuation"""

 # raise exception if line is empty
 if not line.strip():
 raise EmptyStringError()
 # make all one case
 cleaned_line = line.lower()

 # remove punctuation
 cleaned_line = cleaned_line.translate(punct)
 return cleaned_line

414 APPENDIX B Exercise answers
def count_words(words):
 """takes list of cleaned words, returns count dictionary"""
 word_count = {}
 for word in words:
 try:
 count = word_count.setdefault(word, 0)
 except TypeError:
 #if 'word' is not hashable, skip to next word.
 pass
 word_count[word] += 1
 return word_count

def word_stats(word_count):
 """Takes word count dictionary and returns top and bottom five

entries"""
 word_list = list(word_count.items())
 word_list.sort(key=lambda x: x[1])
 try:
 least_common = word_list[:5]
 most_common = word_list[-1:-6:-1]
 except IndexError as e:
 # if list is empty or too short, just return list
 least_common = word_list
 most_common = list(reversed(word_list))

 return most_common, least_common

B.12 Chapter 15

TRY THIS: INSTANCE VARIABLES What code would you use to create a Rectan-
gle class?

class Rectangle:
 def __init__(self):
 self.height = 1
 self.width = 2

TRY THIS: INSTANCE VARIABLES AND METHODS Update the code for a Rectan-
gle class so that you can set the dimensions when an instance is created, just
as for the Circle class above. Also add an area() method.

class Rectangle:
 def __init__(self, width, height):
 self.height = height
 self.width = width

 def area(self):
 return self.height * self.width

TRY THIS: CLASS METHODS Write a class method that’s similar to
total_area() but returns the total circumference of all circles.

class Circle:
 pi = 3.14159
 all_circles = []

415Chapter 15
 def __init__(self, radius):
 self.radius = radius
 self.__class__.all_circles.append(self)

 def area(self):
 return self.radius * self.radius * Circle.pi

 def circumference(self):
 return 2 * self.radius * Circle.pi

 @classmethod
 def total_circumference(cls):
 """class method to total the circumference of all Circles """
 total = 0
 for c in cls.all_circles:
 total = total + c.circumference()
 return total

TRY THIS: INHERITANCE Rewrite the code for a Rectangle class to inherit
from Shape. Because squares and rectangles are related, would it make sense
to inherit one from the other? If so, which would be the base class, and which
would inherit?

class Shape:
 def __init__(self, x, y):
 self.x = x
 self.y = y

class Rectangle(Shape):
 def __init__(self, x, y):
 super().__init__(x, y)

It probably would make sense to inherit. Because squares are special kinds of
rectangles, Square should inherit from the Rectangle class.

If Square was specialized so that it had only one dimension x, you would
write

def area(self):
 return self.x * self.x

How would you write the code to add an area() method for the Square
class? Should the area() method be moved into the base Shape class and
inherited by Circle, Square, and Rectangle? What issues would that
change cause?

It makes sense to put the area() method in a Rectangle class that Square
inherits from, but putting it in Shape wouldn't be very helpful, because differ-
ent types of shapes have their own rules for calculating area. Every shape
would be overriding the base area() method anyway.

TRY THIS: PRIVATE INSTANCE VARIABLES Modify the Rectangle class’s code to
make the dimension variables private. What restriction will this change
impose on using the class?

416 APPENDIX B Exercise answers
The dimension variables will no longer be accessible outside the class via .x
and .y.

class Rectangle():
 def __init__(self, x, y):
 self.__x = x
 self.__y = y

TRY THIS: PROPERTIES Update the dimensions of the Rectangle class to be
properties with getters and setters that don’t allow negative sizes.

class Rectangle():
 def __init__(self, x, y):
 self.__x = x
 self.__y = y

 @property
 def x(self):
 return self.__x

 @x.setter
 def x(self, new_x):
 if new_x >= 0:
 self.__x = new_x

 @property
 def y(self):
 return self.__y

 @y.setter
 def y(self, new_y):
 if new_y >= 0:
 self.__y = new_y

my_rect = Rectangle(1,2)
print(my_rect.x, my_rect.y)
my_rect.x = 4
my_rect.y = 5
print(my_rect.x, my_rect.y)

1 2
4 5

LAB 15: HTML CLASSES In this lab, you create classes to represent an HTML
document. To keep things simple, assume that each element can contain only
text and one subelement. So the <html> element contains only a <body> ele-
ment, and the <body> element contains (optional) text and a <p> element,
which contains only text.

The key feature to implement is the __str__() method, which in turn calls
its subelement's __str__() method so that the entire document is returned
when the str() function is called on an <html> element. You can assume
that any text comes before the subelement.

417Chapter 15
Following is example output from using the classes:

para = p(text="this is some body text")
doc_body = body(text="This is the body", subelement=para)
doc = html(subelement=doc_body)
print(doc)

<html>
<body>
This is the body
<p>
this is some body text
</p>
</body>
</html>

Answer:

class element:
 def __init__(self, text=None, subelement=None):
 self.subelement = subelement
 self.text = text

 def __str__(self):
 value = "<{}>\n".format(self.__class__.__name__)
 if self.text:
 value += "{}\n".format(self.text)
 if self.subelement:
 value += str(self.subelement)
 value += "</{}>\n".format(self.__class__.__name__)
 return value

class html(element):
 def __init__ (self, text=None, subelement=None):
 super().__init__(text, subelement)
 def __str__(self):
 return super().__str__()

class body(element):
 def __init__ (self, text=None, subelement=None):
 return super().__init__(text, subelement)
 def __str__(self):
 return super().__str__()

class p(element):
 def __init__(self, text=None, subelement=None):
 super().__init__(text, subelement)
 def __str__(self):
 return super().__str__()

para = p(text="this is some body text")
doc_body = body(text="This is the body", subelement=para)
doc = html(subelement=doc_body)
print(doc)

418 APPENDIX B Exercise answers
B.13 Chapter 16
QUICK CHECK: SPECIAL CHARACTERS IN REGULAR EXPRESSIONS What regular
expression would you use to match strings that represent the numbers -5
through 5?

`r"-{0,1}[0-5]"` matches strings that represent the numbers -5 through
5.

What regular expression would you use to match a hexadecimal digit?
Assume that the allowed hexadecimal digits are 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, A, a,
B, b, C, c, D, d, E, e, F, and f.

`r"[0-9A-Fa-f]"`

TRY THIS: EXTRACTING MATCHED TEXT Making international calls usually
requires a plus sign (+) and the country code. Assuming that the country
code is two digits, how would you modify the code above to extract the plus
sign and the country code as part of the number? (Again, not all numbers
have a country code.) How would you make the code handle country codes of
one to three digits?

re.match(r": (?P<phone>(\+\d{2}-)?(\d\d\d-)?\d\d\d-\d\d\d\d)", ":
+01-111-222-3333")

or

re.match(r": (?P<phone>(\+\d{2}-)?(\d{3}-)?\d{3}-\d{4})", ":
+01-111-222-3333")

For one- to three-digit country codes:

re.match(r": (?P<phone>(\+\d{1,3}-)?(\d{3}-)?\d{3}-\d{4})", ":
+011-111-222-3333")

TRY THIS: REPLACING TEXT In the checkpoint above, you extended a phone-
number regular expression to also recognize a country code. How would you
use a function to make any numbers that didn’t have a country code now have
+1 (the country code for the United States and Canada)?

def add_code(match_obj):
 return("+1 "+match_obj.group('phone'))

re.sub(r"(?P<phone>(\d{3}-)?\d{3}-\d{4})", add_code, "111-222-3333")

LAB 16: PHONE NUMBER NORMALIZER In the United States and Canada, phone
numbers consist of 10 digits, usually separated into a 3-digit area code, a 3-
digit exchange code, and a 4-digit station code. As mentioned above, phone
numbers may or may not be preceded by +1, the country code. In practice,
there are many ways of formatting a phone number, such as (NNN) NNN-
NNNN, NNN-NNN-NNNN, NNN NNN-NNNN, NNN.NNN.NNNN, and NNN
NNN NNNN. Also, the country code may not be present, may not have a plus
sign, and is usually (not always) separated from the number by a space or
dash. Whew!

419Chapter 17
In this lab, the task is to create a phone number normalizer that takes any of
the formats mentioned above and returns a normalized phone number
1-NNN-NNN-NNNN.

The following are all possible phone numbers:

Bonus: The first digit of the area code and the exchange code can be only 2–9,
and the second digit of an area code can’t be 9. Use this information to vali-
date the input and return the message "invalid phone number" if the
number is invalid.

test_numbers = ["+1 223-456-7890",
 "1-223-456-7890",
 "+1 223 456-7890",
 "(223) 456-7890",
 "1 223 456 7890",
 "223.456.7890",
 "1-989-111-2222"]

def return_number(match_obj):

 # validate number raise ValueError if not valid
 if not re.match(r"[2-9][0-8]\d", match_obj.group("area")):
 raise ValueError("invalid phone number area code

{}".format(match_obj.group("area")))
 if not re.match(r"[2-9]\d\d", match_obj.group("exch")):
 raise ValueError("invalid phone number exchange

{}".format(match_obj.group("exch")))

 return("{}-{}-{}-{}".format(country, match_obj.group('area'),
 match_obj.group('exch'),

match_obj.group('number')))

 country = match_obj.group("country")
 if not country:
 country = "1"

regexp = re.compile(r"\+?(?P<country>\d{1,3})?[- .]?\(?(?P<area>\
d{3})\)?[- .]?(?P<exch>(\d{3}))[- .](?P<number>\d{4})")

for number in test_numbers:
 print(regexp.sub(return_number, number))

B.14 Chapter 17

QUICK CHECK: TYPES Suppose that you want to make sure that object x is a
list before you try appending to it. What code would you use? What would be
the difference between using type() and isinstance()? Would this be
the LBYL (look before you leap) or EAFP (easier to ask forgiveness than

+1 223-456-7890 1-223-456-7890 +1 223 456-7890

(223) 456-7890 1 223 456 7890 223.456.7890

420 APPENDIX B Exercise answers
permission) style of programming? What other options might you have
besides checking the type explicitly?

x = []
if isinstance(x, list):
 print("is list")

Using type would get only lists, not anything that subclasses lists. Either way,
it's LBYL programming.

You might also wrap the append in a try... except block and catch
TypeError exceptions, which would be more EAFP.

QUICK CHECK: __GETITEM__ The example use of __getitem__ above is very
limited and won’t work correctly in many situations. What are some cases in
which the implementation above will fail or work incorrectly?

This implementation will not work if you try to access an item directly by
index; neither can you move backward.

TRY THIS: IMPLEMENTING LIST SPECIAL METHODS Try implementing the
__len__ and __delitem__ special methods listed earlier, as well as an
append method. The implementation is in bold in the code.

class TypedList:
 def __init__(self, example_element, initial_list=[]):
 self.type = type(example_element)
 if not isinstance(initial_list, list):
 raise TypeError("Second argument of TypedList must "
 "be a list.")
 for element in initial_list:
 self.__check(element)
 self.elements = initial_list[:]
 def __check(self, element):
 if type(element) != self.type:
 raise TypeError("Attempted to add an element of "
 "incorrect type to a typed list.")
 def __setitem__(self, i, element):
 self.__check(element)
 self.elements[i] = element
 def __getitem__(self, i):
 return self.elements[i]

 # added methods
 def __delitem__(self, i):
 del self.elements[i]
 def __len__(self):
 return len(self.elements)
 def append(self, element):
 self.__check(element)
 self.elements.append(element)

x = TypedList(1, [1,2,3])
print(len(x))
x.append(1)
del x[2]

421Chapter 20
QUICK CHECK: SPECIAL METHOD ATTRIBUTES AND SUBCLASSING EXISTING
TYPES Suppose that you want a dictionary like type that allows only strings as
keys (maybe to make it work like a shelf object, as described in Chapter 13).
What options would you have for creating such a class? What would be the
advantages and disadvantages of each option?

You could use the same approach as you did for TypedList and inherit from
the UserDict class. You could also inherit directly from dict, or you could
implement all of the dict functionality yourself.

Implementing everything yourself provides the most control but is the most
work and most prone to bugs. If the changes you need to make are small (in
this case, just checking the type before adding a key), it might make the most
sense to inherit directly from dict. On the other hand, inheriting from User-
Dict is probably safest, because the internal dict object will continue to be
a regular dict, which is a highly optimized and mature implementation.

B.15 Chapter 18

QUICK CHECK: PACKAGES Suppose that you’re writing a package that takes a
URL, retrieves all images on the page pointed to by that URL, resizes them to
a standard size, and stores them. Leaving aside the exact details of how each
of these functions will be coded, how would you organize those features into a
package?

The package will be performing three types of actions: fetching a page and
parsing the HTML for image URLs, fetching the images, and resizing the
images. For this reason, you might consider having three modules to keep the
actions separate:

picture_fetch/
 __init__.py
 find.py
 fetch.py
 resize.py

LAB 18: CREATE A PACKAGE In chapter 14, you added error handling to the
text cleaning and word frequency counting module you created in chapter
11. Refactor that code into a package containing one module for the cleaning
functions, one for the processing functions, and one for the custom excep-
tions. Then write a simple main function that uses all three modules.

word_count
 __init__.py
 exceptions.py
 cleaning.py
 counter.py

B.16 Chapter 20

QUICK CHECK: CONSIDER THE CHOICES Take a moment to consider your
options for handling the tasks identified above. What modules in the

422 APPENDIX B Exercise answers
standard library can you think of that will do the job? If you want to, you can
even stop right now, work out the code to do it, and compare your solution
with the one you’ll develop in the next section.

From the standard library, use datetime for managing the dates/times of
the files, and either os.path and os or pathlib for renaming and archiving
the files.

QUICK CHECK: POTENTIAL PROBLEMS Because the previous solution is very sim-
ple, there are likely to be many situations that it won’t handle well. What are
some potential issues or problems that might arise with the script above? How
might you remedy these problems?

Multiple files during the same day would be a problem, for one thing. If you
have lots of files, navigating the archive directory will become increasingly
difficult.

Consider the naming convention used for the files, which is based on the
year, month and name, in that order. What advantages do you see in that con-
vention? What might be the disadvantages? Can you make any arguments for
putting the date string somewhere else in the filename, such as the beginning
or the end?

Using year-month-day date formats makes a text-based sort of the files sort by
date as well. Putting the date at the end of the filename but before the exten-
sion makes it more difficult to parse the date element visually.

TRY THIS: IMPLEMENTATION OF MULTIPLE DIRECTORIES Using the code you devel-
oped in the section above as a starting point, how would you modify it to imple-
ment archiving each set of files in subdirectories named according to the date
received? Feel free to take the time to implement the code and test it.

import datetime
import pathlib

FILE_PATTERN = "*.txt"
ARCHIVE = "archive"

if __name__ == '__main__':

 date_string = datetime.date.today().strftime("%Y-%m-%d")

 cur_path = pathlib.Path(".")

 new_path = cur_path.joinpath(ARCHIVE, date_string)
 new_path.mkdir()

 paths = cur_path.glob(FILE_PATTERN)

 for path in paths:
 path.rename(new_path.joinpath(path.name))

423Chapter 21
QUICK CHECK: ALTERNATE SOLUTIONS How might you create a script that does
the same thing without using pathlib? What libraries and functions would
you use?

You’d use the os.path and os libraries—specifically, os.path.join(),
os.mkdir(), and os.rename().

TRY THIS: ARCHIVING TO ZIP FILES PSEUDOCODE Take a moment to write the
pseudocode for a solution that stores data files in zip files as shown above.
What modules and functions or methods do you intend to use? Try coding
your solution to make sure that it works.

Pseudocode:

create path for zip file
create empty zipfile
for each file
 write into zipfile
 remove original file

(See the next section for sample code that does this.)

QUICK CHECK: CONSIDER DIFFERENT PARAMETERS Take some time to consider
different grooming options. How would you modify the code in the previous
Try This to keep only one file a month? How would you change the code so
that files from the previous month and older are groomed to save one a week?
(Note: This is not the same as older than 30 days!)

You could use something similar to the code above but also check the month
of the file against the current month.

B.17 Chapter 21
QUICK CHECK: NORMALIZATION Look closely at the list of words generated
above. Do you see any issues with the normalization so far? What other issues
do you think you might encounter with a longer section of text? How do you
think you might deal with those issues?

Double hyphens for em dashes, hyphenation for line breaks and otherwise,
and any other punctuation marks would all be potential problems.

Enhancing the word cleaning module you created in chapter 18 would be a
good way to cover most of the issues.

TRY THIS: READ A FILE Write the code to read a text file (assume that it’s the
file temp_data_00a.txt as shown in the example above), split each line of the
file into a list of values, and add that list to a single list of records.

(no answer)

What issues or problems did you encounter in implementing this solution?
How might you go about converting the last three fields to the correct date,
real, and int types?

424 APPENDIX B Exercise answers
You could use a list comprehension to explicitly convert those fields.

QUICK CHECK: HANDLING QUOTING Consider how you’d approach the problems
of handling quoted fields and embedded delimiter characters if you didn't
have the csv library. Which is easier to handle: the quoting or the embedded
delimiters?

Without using the csv module, you’d have to check whether a field began
and ended with the quote characters and then strip() them off.

To handle embedded delimiters without using the csv library, you’d have to
isolate the quoted fields and treat them differently; then you’d split the rest of
the fields by using the delimiter.

TRY THIS: CLEANING DATA How would you handle the fields with 'Missing'
as a possible value for math calculations? Can you write a snippet of code that
averages one of those columns?

clean_field = [float(x[13]) for x in data_rows if x[13] != 'Missing']
average = sum(clean_field)/len(clean_field)

What would you do with the average column at the end so that you could also
report the average coverage? In your opinion, would the solution to this prob-
lem be at all linked to the way that the 'Missing' entries were handled?

coverage_values = [float(x[-1].strip("%"))/100]

It may not be done at the same time as the 'Missing' values are handled.

LAB: WEATHER OBSERVATIONS The file of weather observations provided here
is by month and then by county for the state of Illinois from 1979 to 2011.
Write the code to process this file and extract the data for Chicago (Cook
County) into a single CSV or spreadsheet file. This code includes replacing
the 'Missing' strings with empty strings and translating the percentage to a
decimal. You may also consider what fields are repetitive and can be omitted
or stored elsewhere. The proof that you’ve got it right occurs when you load
the file into a spreadsheet. You can download a solution with the book’s
source code.

B.18 Chapter 22

TRY THIS: RETRIEVING A FILE If you’re working with the data file above and
want to break each line into separate fields, how might you do that? What
other processing would you expect to do? Try writing some code to retrieve
this file and calculate the average annual rainfall or, for more of a challenge,
the average maximum and minimum temperature for each year.

import requests
response = requests.get("http://www.metoffice.gov.uk/pub/data/weather

/uk/climate/stationdata/heathrowdata.txt")

data = response.text
data_rows = []

425Chapter 22
rainfall = []
for row in data.split("\r\n")[7:]:
 fields = [x for x in row.split(" ") if x]
 data_rows.append(fields)
 rainfall.append(float(fields[5]))

print("Average rainfall = {} mm".format(sum(rainfall)/len(rainfall)))

Average rainfall = 50.43794749403351 mm

TRY THIS: ACCESSING AN API Write some code to fetch some data from the city
of Chicago site used above. Look at the fields mentioned in the results, and
see whether you can select on records based on another field in combination
with the date range.

import requests
response = requests.get("https://data.cityofchicago.org/resource/

6zsd-86xi.json?$where=date between '2015-01-10T12:00:00' and
'2015-01-10T13:00:00'&arrest=true")

print(response.text)

TRY THIS: SAVING SOME JSON CRIME DATA Modify the code you wrote to fetch
Chicago crime data in section 22.2 to convert the fetched data from a JSON-
formatted string to a Python object. See whether you can save the crime events
both as a series of separate JSON objects in one file and as one JSON object in
another file. Then see what code is needed to load each file.

import json
import requests

response = requests.get("https://data.cityofchicago.org/resource/
6zsd-86xi.json?$where=date between '2015-01-10T12:00:00' and
'2015-01-10T13:00:00'&arrest=true")

crime_data = json.loads(response.text)

with open("crime_all.json", "w") as outfile:
 json.dump(crime_data, outfile)

with open("crime_series.json", "w") as outfile:
 for record in crime_data:
 json.dump(record, outfile)
 outfile.write("\n")

with open("crime_all.json") as infile:
 crime_data_2 = json.load(infile)

crime_data_3 = []
with open("crime_series.json") as infile:
 for line in infile:
 crime_data_3 = json.loads(line)

TRY THIS: FETCHING AND PARSING XML Write the code to pull the Chicago
XML weather forecast from http://mng.bz/103V. Then use xmltodict to

http://mng.bz/103V

426 APPENDIX B Exercise answers
parse the XML into a Python dictionary and extract tomorrow’s forecast max-
imum temperature. Hint: To match up time layouts and values, compare the
layout-key value of the first time-layout section and the time-layout attribute of
the temperature element of the parameters element.

import requests
import xmltodict

response = requests.get("https://graphical.weather.gov/xml/SOAP_server/
ndfdXMLclient.php?whichClient=NDFDgen&lat=41.87&lon=+-87.65&
product=glance")

parsed_dict = xmltodict.parse(response.text)
layout_key = parsed_dict['dwml']['data']['time-layout'][0]['layout-key']
forecast_temp =

parsed_dict['dwml']['data']['parameters']['temperature'][0]['value'][0]
print(layout_key)
print(forecast_temp)

TRY THIS: PARSING HTML Given the file forecast.html (which you can find with
the code on this book’s website), write a script using Beautiful Soup that
extracts the data and saves it as a CSV file.

import csv
import bs4

def read_html(filename):
 with open(filename) as html_file:
 html = html_file.read()
 return html

def parse_html(html):
 bs = bs4.BeautifulSoup(html, "html.parser")
 labels = [x.text for x in bs.select(".forecast-label")]
 forecasts = [x.text for x in bs.select(".forecast-text")]

 return list(zip(labels, forecasts))

def write_to_csv(data, outfilename):
 csv.writer(open(outfilename, "w")).writerows(data)

if __name__ == '__main__':
 html = read_html("forecast.html")
 values = parse_html(html)
 write_to_csv(values, "forecast.csv")
 print(values)

LAB 22: TRACK CURIOSITY’S WEATHER Use the application programming inter-
face (API) described in section 22.2 of chapter 22 to gather a weather history
of Curiosity’s stay on Mars for a month. Hint: You can specify Martian days
(sols) by adding ?sol=sol_number to the end of the archive query like this:

http://marsweather.ingenology.com/v1/archive/?sol=155

http://marsweather.ingenology.com/v1/archive/?sol=155

427Chapter 23
Transform the data so that you can load it into a spreadsheet and graph it.
For a version of this project, see the book’s source code.

import json
import csv
import requests

for sol in range(1830, 1863):
 response = requests.get("http://marsweather.ingenology.com/v1/

 archive/?sol={}&format=json".format(sol))
 result = json.loads(response.text)
 if not result['count']:
 continue
 weather = result['results'][0]
 print(weather)
 csv.DictWriter(open("mars_weather.csv", "a"),

list(weather.keys())).writerow(weather)

B.19 Chapter 23

TRY THIS: CREATING AND MODIFYING TABLES Using sqlite3, write the code that
creates a database table for the Illinois weather data you loaded from a flat file
in section 21.2 of chapter 21. Suppose that you have similar data for more
states and want to store more information about the states themselves. How
could you modify your database to use a related table to store the state infor-
mation?

import sqlite3
conn = sqlite3.connect("datafile.db")

cursor = conn.cursor()

cursor.execute("""create table weather (id integer primary key,
state text, state_code text,

 year_text text, year_code text, avg_max_temp real,
max_temp_count integer,

 max_temp_low real, max_temp_high real,
 avg_min_temp real, min_temp_count integer,
 min_temp_low real, min_temp_high real,
 heat_index real, heat_index_count integer,
 heat_index_low real, heat_index_high real,
 heat_index_coverage text)
 """)
conn.commit()

You could add a state table and store only each state’s ID field in the weather
database.

TRY THIS: USING AN ORM Using the database from section 22.3, write a
SQLAlchemy class to map to the data table and use it to read the records from
the table.

from sqlalchemy import create_engine, select, MetaData, Table, Column,
Integer, String, Float

from sqlalchemy.orm import sessionmaker

428 APPENDIX B Exercise answers
dbPath = 'datafile.db'
engine = create_engine('sqlite:///%s' % dbPath)
metadata = MetaData(engine)
weather = Table('weather', metadata,
 Column('id', Integer, primary_key=True),
 Column("state", String),
 Column("state_code", String),
 Column("year_text", String),
 Column("year_code", String),
 Column("avg_max_temp", Float),
 Column("max_temp_count", Integer),
 Column("max_temp_low", Float),
 Column("max_temp_high", Float),
 Column("avg_min_temp", Float),
 Column("min_temp_count", Integer),
 Column("min_temp_low", Float),
 Column("min_temp_high", Float),
 Column("heat_index", Float),
 Column("heat_index_count", Integer),
 Column("heat_index_low", Float),
 Column("heat_index_high", Float),
 Column("heat_index_coverage", String)
)
Session = sessionmaker(bind=engine)
session = Session()
result = session.execute(select([weather]))
for row in result:
 print(row)

TRY THIS: MODIFYING A DATABASE WITH ALEMBIC Experiment with creating an
a\Alembic upgrade that adds a state table to your database, with columns for
ID, state name, and abbreviation. Upgrade and downgrade. What other
changes would be necessary if you were going to use the state table along with
the existing data table?

(no answer)

QUICK CHECK : USES OF KEY:VALUE STORES What sorts of data and applications
would benefit most from a key:value store like Redis?

 Quick lookup of data
 Caching

QUICK CHECK: USES OF MONGODB Thinking back over the various data samples
you’ve seen so far and other types of data in your experience, can you come
up with any data that you think would be well suited to being stored in a data-
base such as MongoDB? Would others clearly not be suited, and if so, why not?

Data that comes in large and/or more loosely organized chunks is suited to
MongoDB, such as the contents of a web page or document.

Data with a specific structure is better suited to relational data. The weather
data you've seen is a good example.

429Chapter 24
LAB 23: CREATE A DATABASE Choose one of the datasets discussed in the past
few chapters, and decide which type of database would be best to store that
data. Create that database, and write the code to load the data into it. Then
choose the two most common and/or likely types of search criteria, and write
the code to retrieve both single and multiple matching records.

(no answer)

B.20 Chapter 24

TRY THIS: USING JUPYTER NOTEBOOK Enter some code in the notebook, and
experiment with running it. Check out the Edit, Cell, and Kernel menus to
see what options are there. When you have a little code running, use the Ker-
nel menu to restart the kernel, repeat your steps, and then use the cell menu
to rerun the code in all of the cells.

(no answer)

TRY THIS: CLEANING DATA WITH AND WITHOUT PANDAS Experiment with the
operations mentioned above. When the final column has been converted to a
fraction, can you think of a way to convert it back to a string with the trailing
percentage sign?

By contrast, load the same data into a plain Python list by using the csv mod-
ule, and apply the same changes by using plain Python.

QUICK CHECK: MERGING DATA SETS How would you go about actually merging
to data sets like the above in Python?

If you’re sure that you have exactly the same number of items in each set and
that the items are in the right order, you could use the zip() function. Oth-
erwise, you could create a dictionary, with the keys being something common
between the two data sets, and then append the date by key from both sets.

QUICK CHECK: SELECTING IN PYTHON What Python code structure would you
use to select only rows that meet certain conditions?

You’d probably use a list comprehension:

selected = [x for x in old_list if <x meets selection criteria>]

TRY THIS: GROUPING AND AGGREGATING Experiment with pandas and the data
above. Can you get the calls and amounts by both team member and month?

calls_revenue[['Team member','Month', 'Calls', 'Amount']]
.groupby(['Team member','Month']).sum())

TRY THIS: PLOTTING Plot a line graph of the monthly average amount per call.

%matplotlib inline
import pandas as pd
import numpy as np

430 APPENDIX B Exercise answers
see text for these
calls = pd.read_csv("sales_calls.csv")
revenue = pd.read_csv("sales_revenue.csv")
calls_revenue = pd.merge(calls, revenue, on=['Territory', 'Month'])
calls_revenue['Call_Amount'] = calls_revenue.Amount/calls_revenue.Calls

plot
calls_revenue[['Month', 'Call_Amount']].groupby(['Month']).mean().plot()

index
Symbols

!= operator 111
.zip extension 280
@property, for flexible instance variables 222
@staticmethod decorator 214
* operator

initializing lists with 58
overview of 24

// (division) symbol 43
symbol 39
% operator

formatting strings with 84–86
formatting sequences 84–86
named parameters 85–86

overview of 26
+ operator

list concatenation with 57
overview of 24

= sign 380
== operator 111
>>> prompt 340

A

aggregating data 348, 350–351
Alembic framework, for database schema

changes 327–330
__all__ attribute 106, 261
Anaconda 13
and operator 110
angle brackets 17, 85
APIs (application programming interfaces), fetch-

ing data via 304–305
append method 53

applications, distributing 155–157
creating executable programs with freeze

156–157
pex 155
py2app 155–156
py2exe 155–156
wheels packages 155
zipapp 155

area() method 211, 218, 414–415
argparse module 145–146
args variable 199
ArgumentParser 145
arguments

mutable objects as 118
passing by keyword, indefinite number of

117–118
passing by parameter name 116–117
passing techniques 118
positional, indefinite number of 117
variable numbers of 117–118

arithmetic operators 21
array module 50
arrays

overview of 306
similarities to lists 50

ASCII character set 70
assert statement, debugging programs with 200
AssertionError exception 200
assignments 39–41
associative arrays 85

B

backslashed hex (xnn) format 75
backslashes 42
431

INDEX432
basestring class 388
bgsave() method 333
binary data

functions for reading and writing 177–179
reading and writing with pathlib 179–180
using binary mode 179

structured, reading with struct module 182–184
binary mode 179
binding 136
block comments 381
block structuring 37–39
blocks 106–109
Boolean expressions 28
Boolean operators 110–111

comparing objects 110–111
Python objects as 109–110

Boolean values 28
bound method invocation 210
break statement 103
brew install python3 command 12
buckets 39
buffering 177
built-in namespace 136, 224
bytes 87–88, 179

C

caches, dictionaries as 97–98
calcsize function 183
CapCase 208
capture_output() method 182
catching exceptions 193
ceil function 22
cell_value function 203
cells, executing code in 340
character sets, ASCII 70
characters, strings as sequences of 68–69
Circle class 33
class instances

as record 208–209
as structure 208–209
namespaces for 223–227

class methods 215
class statement 208
class variables 211–214

inheritance with 218–219
pitfalls of 213–214

__class__ attribute 212
class’s namespace 224
classes 207–230

basics of 219–221
defining 208–209
mapping table objects to 326–327
user-defined, data types as 242–244

cleaning data 294–297, 343–348

pitfalls of 296–297
with data frame 346–348

clear_file() method 182
cmath module 22, 46, 392
code layout 377, 380–381

blank lines 378
imports 378–379
indentation 377
maximum line length 377–378
tabs vs. spaces 377
whitespace in expressions and statements

379–380
collections module 90
command line

accessing documentation at 372
arguments 144
starting scripts from 143–144

command window, starting scripts from 149–150
commas, for one-element tuples 63
comments 381–389

block comments 381
differentiating 39
documentation strings 382
guides for Python style 389
inline comments 381–382
naming conventions 382–386
programming recommendations 386–389
version bookkeeping 382

comparison operators 28
compiling, checking variable types when 8
complex numbers 21
comprehension 105
compressing files 279–282
concatenation of lists, with + operator 57
consistency 376–377
constants 165–166
context managers, with keyword and 203–204
context, handling using with keyword 31
contextlib module 204, 228
continue statement 29, 103
control flow 28–31, 99–112

analyzing text files 111–112
blocks 106–109
Boolean operators 109–111

comparing objects 110–111
Python objects as 109–110

Boolean values and expressions 28
context handling using with keyword 31
dictionary comprehensions 104–106
exceptions 30–31
for loops 29, 101–104

break statement in 103
continue statement in 103
controlling range with starting and stepping

values 102–103

INDEX 433
enumerate functions 104
range functions 102
tuple unpacking and 103–104
zip functions 104

function definition 29–30
if-elif-else statements 28, 100–101
indentation 106–109
list comprehensions 104–106
statements 106–109
while loops 28–29, 99–100

copies, deep 60, 93
copytree function 172
count operator

matching lists with 59
overview of 8, 24

counting words 94–95
crawling 314
create_all method 325
CSV (comma-separated values) 289

modules 289–292
overview of 297–298
reading files as list of dictionaries 292

currency symbols 295
Cygwin tool set 150

D

data 283–299
aggregating 348, 350–351
built-in types 21–27

dictionaries 26
file objects 27
lists 23–24
numbers 21–23
sets 26–27
strings 25–26
tuples 24–25

cleaning 294–295, 343–348
pitfalls of 296–297
with data frame 346–348

ETL (extract-transform-load) 284
Excel files 292–294
exploring 337–353

Jupyter notebook 338–340
pandas 341–343, 352–353
Python vs. spreadsheets 338
tools for 338

fetching via an API 304–305
flow of 275–276
grouping 350–351
loading, with pandas 344–346
manipulating 348–351
merging data frames 348–349
over networks 300–318
packaging 299

plotting 352
reading text files 284–292

CSV modules 289–292
delimited flat files 288–289
reading CSV files as list of dictionaries 292
text encoding 284–286
unstructured text 286–287

saving 319–336
with MySQL 322–323
with NoSQL databases 330
with pandas 345–346
with PostgreSQL 322–323
with relational databases 320, 322–323
with SQLite 320–322

scraping web data 314–318
selecting 349–350
sorting 295–296
structured formats 306–314

JSON (JavaScript Object Notation) data
306–309

XML (eXtensible Markup Language)
data 310–314

writing 297–299
CSV (comma separated values) 297–298
delimited files 297–298
writing Excel files 298

data frames 342–343
cleaning data with 346–348
merging 348–349

data types 242
as objects 241–254

__getitem__ special method attribute 247–249
duck typing 245
giving objects full list capability 249–251
special method attributes 254

as user-defined classes 242–244
managing 265–266
subclassing from built-in types 252–254

list 252–253
UserList 253–254

databases, handling with ORM 323–330
SQLAlchemy 323–327
using Alembic for database schema

changes 327–330
debugging

modules 269
programs with assert statement 200
tools for 269

decorators 124–126
deep copies 60–62
default values 115
defining

exceptions 199–200
overview of 193

del statement 26, 41, 54, 137

INDEX434
delete() method 327
delimited files 297–298
delimited flat files 288–289
destructors 227–228
development modules 269
development, tools for 269
dictionaries 89–98

as caches 97–98
efficiency of 98
keys 95–96
operations 91–94
overview of 26, 90–91
reading CSV files as list of 292
sparse matrices 96–97
word counting 94–95

dictionary comprehensions 104–106
dictionary functions 94
DictReader 292
differentiating comments 39
dir() function 18
directories

accessing with pathlib 162
current working directory 161–162

directory subtrees, processing all files in 171–172
DiskFull exceptions 202
distributing applications 155–157

creating executable programs with freeze
156–157

pex 155
py2app 155–156
py2exe 155–156
wheels packages 155
zipapp 155

div() method 347
division symbol 43
docstrings 32, 114
documentation 371–390

accessing online 371–374
generating HTML help pages with

PYDOC 372
in interactive shell or at command line 372
PYDOC as documentation server 373–374
Windows help file 374

comments 381–389
block comments 381
documentation strings 382
guides for Python style 389
inline comments 381–382
naming conventions 382, 384–386
programming recommendations 386–389
version bookkeeping 382

downloading 374
Python manual of style 376–381

code layout 377, 380–381
introduction 376–377

Zen of Python 389–390

documents, in MongoDB 333–336
dot character 72, 146
double semicolon 246
double underscore 221
down_revision variable 329
downgrade() method 329
duck typing 245

E

EAFP (easier to ask forgiveness than
permission) 195, 244

else clause 199
empty lists 63
EmptyFileError 30
encode method 87
encoding text 284–286
endswith method 77
enumerate functions 104
escape characters 42
escape sequences 70–72

basic sequences 70
numeric (octal and hexadecimal) 70–71
Unicode 70–71

ETL (extract-transform-load) 284
Excel files

overview of 292–294
writing 298

exception 41
Exception class 387
exception handler 193
exception-handling code 193
exceptions 30–31, 190–204

catching 198–199
context managers using with keyword 203–204
debugging programs with assert statement 200
defining

new 199–200
overview of 193

handling 191–194, 198–199
inheritance hierarchy 201
overview of 191–194
raising 197
types of 195–196
where to use 203

exit() method 14
expandtabs 78
expiring values 332–333
expressions

overview of 41–42
whitespace in 379–380

eXtensible Markup Language (XML), data
310–314

extract-transform-load (ETL) 284
extracting matched text from strings 235–238

INDEX 435
F

f-strings 86
fact function 114
fetchall method 321
fetchone method 321
file modules 267
file objects

opening 175–176
overview of 27

File Transfer Protocol servers, fetching files
from 301–302

fileinput module 146–148
FileNotFoundError 171
files 275–282

closing 176
compressing 279–282
data files, flow of 275–276
delimited 297–298
fetching 300–304

from FTP (File Transfer Protocol)
servers 301–302

over HTTP/HTTPS 303–304
with SFTP (SSH File Transfer Protocol)

302–303
getting information about 167–168
grooming 279, 281–282
manipulating 266
opening 175–177
processing in directory subtrees 171–172
product feeds 276–278
reading 175–189
storing 278–279
writing 175–189

filesystem 158–172
getting information about files 167–168
operations 168–171
os and os.path vs. pathlib 159
pathnames

manipulating 162–165
overview of 159–166

paths 159–166
absolute 160–161
accessing directories with pathlib 162
constants 165–166
current working directory 161–162
functions 165–166
relative 160–161

processing all files in directory subtrees
171–172

finally clause 199
float() function 47
floats 21
for loops 29, 101–104

break statement in 103

continue statement in 103
controlling range with starting and stepping

values 102–103
enumerate functions 104
range functions 102
tuple unpacking and 103–104
zip functions 104

formal string representation 81
format method 82–83

format specifiers 83
named parameters and 83
positional parameters and 82

format specifiers 83
formatting sequences 84–86
formatting strings, with % operator 84–86

named parameters and formatting
sequences 85–86

using formatting sequences 84–85
forward slashes 163
four() function 124, 404
freeze tool, creating executable programs

with 156–157
frozensets 66–67
FTP (File Transfer Protocol) servers, fetching files

from 301–302
ftp.retrbinary method 302
ftplib module 301
functions 113–126, 165–166

assigning to variables 121–122
basic definitions 113–114
decorators 124–126
defining 29–30
for reading and writing binary data 177–179

reading and writing with pathlib 179–180
using binary mode 179

for reading and writing text 177–179
reading and writing with pathlib 179–180
using binary mode 179

generator functions 122–124
global variables 119–121
lambda expressions 122
local variables 119–121
mutable objects as arguments 118–119
nonlocal variables 119–121
parameter options 115–118

mixing argument-passing techniques 118
passing arguments by parameter name

116–117
positional parameters 115–116
variable numbers of arguments 117–118

G

generator expressions 106
generator functions 102, 122–124

INDEX436
get function 93
__getitem__ special method attribute 247–249

implementing full list functionality 249
overview of 248–249

GIL (global interpreter lock) 8
glob method 277
glob.glob function 170
global namespace 136, 224
global statement 120
global variables 119–121
GNU BASH shell 150
graphical user interface (GUI) 4, 117
grooming files 279, 281–282
group method 237
groupby method 351
grouping data 350–351
GUI (graphical user interface) 4, 117

H

handling exceptions 191–194, 198–199
hash tables 85
__hash__ method 95
help() function 17, 139, 372
hexadecimal escape sequences 70–71
HTTP/HTTPS, fetching files over 303–304

I

IDLE (integrated development environment and
learning environment) 14–15

basic interactive mode and, choosing
between 15

Python shell window 15–16
if-elif-else statements 28, 100–101
import statements

overview of 22, 131
within packages 260–261

ImportError exception 132
importlib module 130
imports 378–379
in keyword 27, 66
in operator, list membership with 57
indent argument 145
indentation 37–39, 106–109, 377
index operator, searching lists with 58–59
index() method 24, 394
IndexError exception 197, 201, 249
indices 50–52, 90
infile 145
informal string representation 82
inheritance 216–218

hierarchy 201
multiple 228–230

with class variables 218–219
with instance variables 218–219

__init__ method 208
__init__.py files, in packages 258–259
initializing lists, with * operator 58
inline comments 381–382
inplace option 148
input, getting from users 46–47
input() function 27, 46, 393
insert() function 53, 325, 335
instance variables 209

flexible, @property for 222–223
inheritance with 218–219

instance’s namespace 224
int() function 47
integers 21
interactive mode

IDLE and, choosing between 15
overview of 13–14

interactive prompt, to explore Python 17–19
interactive shell, accessing documentation in 372
interpolating strings 86–87
IOError exceptions 30, 201
isinstance function 244
items method 92
iterdir method 170

J

JavaScript Object Notation, data 306–309
join method 72–73
JSON (JavaScript Object Notation) 306–309
json.loads() method 307
Jupyter notebook 338–340

executing code in cells 340
starting kernels 339–340

K

kernels, starting 339–340
key 330–333

value stores, with Redis 330–333
key keyword 56
KeyboardInterrupt exception 196, 387
KeyError exception 26, 203, 413
KeyErrors exception 154
keys 95–96
keys() method 92, 331
keyword passing 116
keyword-passed arguments 117
keywords, arguments passed by 117–118

INDEX 437
L

labels 39
lambda expressions 122
len() function 26, 33, 50, 52, 81, 394
libraries 7–8, 264–272

adding 270
installing using pip 270–272

installing with -user flag 271
virtual environments 271–272

installing using venv module 270–272
PyPI (Python Package Index) 272
standard library 265–269

accessing operating system services 267
debugging tools 269
development tools 269
managing data types 265–266
manipulating files and storage 266
runtime services 269
using internet protocols and formats 268

third-party modules and 134–135
line graphs 352
LineReader class 248
lines

blank 378
maximum length of 377–378

list comprehensions 104–106
list function 65, 92, 136
list manipulations, modifying strings with 79
list multiplication operator 58
lists 23–24

common operations 57–60
concatenation with + operator 57
converting between tuples and 65
deep copies 60–62
full capability, for objects 249–251
implementing full functionality 249
indices of 50–52
initialization with * operator 58
matches with count 59
membership with in operator 57
minimum or maximum with min and max 58
modifying 52–54
nested 60–62
objects behaving as 246–247
search with index 58–59
similarities to arrays 50
sorting 55–57

custom sorting 56–57
sorted() function 57

subclassing 252–253
summary of operations 59–60

loading data, with pandas 344–346
loads() function 306
local namespace 136, 224

local variables 119–121
look before you leap (LYBL) approach 195, 244
LookupError exception 201
lrange() function 332
lstrip function 75
LYBL (look before you leap) approach 195, 244

M

macOS operating system, scripts on 149
main function 154
map-reduce method 336
mapping table objects, to classes 326–327
matching, lists, with count operator 59
math module 22, 266, 392
mathproj package 259
matrices, sparse 96–97
max operator 58
membership of lists, with in operator 57
memory management 227–228
merge function 349
merging data frames 348–349
metacharacters 232
method invocation syntax 210
methods

overview of 210–211
private 221–222

mf function 226
min operator 58
miniconda 13
mio.py module 182, 410
mobile support, for Python 8
modules 127–141

creating 31–32, 128–131
module search paths 132–133
overview of 127
placing 132–133
private names in 133–134
programs and 150–154
third-party, libraries and 134–135

MongoDB database, documents in 333–336
move() method 34, 220
multiple inheritance 228–230
mutable objects

as arguments 118–119
overview of 95

mv variable 226
mymath.area function 129
MySQL database, saving data with 322–323

N

n splits 73
na_values parameter 345

INDEX438
NameError exception 41
names, in modules 133–134
namespaces

for class instances 223–227
overview of 128
scoping rules and 135–141

naming
conventions 382, 384–386
styles 382–383

NaN (not a number) 344
nested lists 60–62
networks, data over 300–318
new_math module 406
newline characters 25, 70
None value 46
nonlocal variables 119–121
normal operators 110
NoSQL databases 330
not a number (NaN) 345
not in operator 57
null characters 296
num2words function 151
numbers 21–23, 43–46

advanced complex-number functions 45–46
advanced numeric functions 44
built-in numeric functions 44
complex 44–45
converting strings to 74
numeric computation 44

numeric computations 44
numeric escape sequences 70–71
numeric functions

advanced 44
built-in 44

numeric modules 266
NumPy 44

O

objects
behaving as lists 246–247
comparing 110–111
converting to strings 81–82
data types as 241–254

__getitem__ special method attribute
247–249

duck typing 245
special method attributes 254
subclassing from built-in types 252–254

full list capability for 249–251
mutable, arguments as 118–119
pickling 184–187
Python, as Booleans 109–110
shelving 187–189
special method attributes, overview of 245–246

octal escape sequences 70–71
onerror parameter 171
OOP (object-oriented programming) 32–34,

207–230
@property for flexible instance variables

222–223
class methods 215
class variables 211–214
destructors 227–228
inheritance 216–218

with class variables 218–219
with instance variables 218–219

instance variables 209
memory management 227–228
methods 210–211
multiple inheritance 228–230
namespaces for class instances 223–227
overview of 194, 207
private methods 221–222
private variables 221–222
scoping rules 223–227
static methods 214

open function 175, 177
Open Scripting Architectures (OSA) 149
open source software 7
open statement 27
operating system services, accessing 267
operators, built-in 47
or operator 110
ordered dictionary 90, 312
ORM (Object Relational Mapper), handling data-

bases with 323–330
SQLAlchemy 323–327
using Alembic for database schema

changes 327–330
os module, pathlib vs. 159
os.curdir command 161
os.environ dictionary 166
os.getcwd command 161
os.listdir(path) command 161
os.makedirs function 169
os.mkdir function 169
os.path module, pathlib vs. 159
os.path.dirname function 164
os.path.expanduser 164
os.path.expandvars 164
os.path.join function 162
os.path.split command 164
os.rmdir function 169
os.stat() function 383
os.walk function 171–172
OSA (Open Scripting Architectures) 149
outfile 145

INDEX 439
P

package.subpackage.module syntax 32
packages 32, 255–263

__all__ attribute 106, 261
__init__.py files in 258–259
import statements within 260–261
loading subpackages and submodules 259–260
mathproj package 259
of data files 299
overview of 255–256
proper use of 262–263

packing tuples 64–65
pandas 341–343

advantages of 341
data frames 342–343
installing 341–342
loading data with 344–346
pitfalls of 352–353
saving data with 345–346

parameters
named

format method and 83
formatting sequences and 85–86

names, arguments passing by 116–117
positional 115–116

paramiko library 302
parent property 165
parentheses characters 233
pass statement 101
Path Browser window 135
PATH environment variable 149
pathlib 408

accessing directories with 162
filesystem operations with 170–171
manipulating pathnames with 164–165
os module vs. 159
os.path module vs. 159
reading and writing with 179–180

pathnames
manipulating 162–165
overview of 159–162

paths 159–166
absolute 160–161
accessing directories with pathlib 162
constants 165–166
current working directory 161–162
functions 165–166
relative 160–161

PEP 8 (Python Enhancement Proposal) 376–381
code layout 377, 380–381

blank lines 378
imports 378–379
indentation 377
maximum line length 377–378
tabs vs. spaces 377

whitespace in expressions and
statements 379–380

introduction 376–377
PEP 20 (Python Enhancement Proposal) 389–390
Peters, Tim 389
pex tool 155
pi variable 129, 213
pickle.dump 184
pickle.load 185
pickling objects 184–187
PiClass class 256
pie charts 352
pip package management system, installing librar-

ies using 270–272
installing with -user flag 271
virtual environments 271–272

plotting data 352
positional arguments

indefinite number of 117
overview of 145

positional parameters
format method and 82
overview of 115–116

PostgreSQL database, saving data with 322–323
PowerShell framework, starting scripts from

149–150
pprint module 308
pretty printing 307
print function 17, 26, 33, 71, 86, 180
print statement 9
print_file() method 182
printing strings with special characters, evaluating

strings vs. 71–72
procedure 114
processors, multiple 8–9
product feeds 276–278
programs

creating 143–148
argparse module 145–146
command-line arguments 144
fileinput module 146–148
redirecting input and output of scripts

144–145
starting scripts from command line 143–144

modules and 150–154
protocols 268
PSF (Python Software Foundation) 7
pttl() method 333
public attributes 386
py2app tool 155–156
py2exe tool 155–156
pydoc library 18, 372
PYDOC system

as documentation server 373–374
generating HTML help pages with 372

INDEX440
PyPI (Python Package Index) 135, 272
Python 3–10, 20–34

advantages of 4–7
complete 6
cross-platform 6
ease of use 4
expressive 4–5
price 6–7
readable 5–6

basic style 47–48
best practices 374–376
choosing 3–4
disadvantages of 7–9

checking variable types when compiling 8
language speed 7
libraries 7–8
mobile support 8
multiple processors 8–9

exploring with interactive prompt 17–19
installing 12–13
objects, as Booleans 109–110
overview of 21
Python 3 9–10
shell window, IDLE and 15–16
spreadsheets vs. 338

Python Database API 320
Python Package Index (PyPI) 135, 272
Python Readiness page 9
Python Software Foundation (PSF) 7
PYTHONPATH variable 132

Q

qualification 129
quotation characters 25

R

radius variable 209
raise statement 194
raising exceptions 193, 197
range, controlling with starting and stepping

values 102–103
range() function 102, 106, 346
raw strings, regular expressions and 233–235
re library module 25
re module 76
read_csv() method 344
read_json() method 344
reading

binary data, functions for 177–179
files 175–189
text, functions for 177–179

readline function 176–177
readlines function 177
record, class instances as 208–209
red, green, and blue (RGB) 245
redirection, screen input/output and 180–182
Redis store, key 330–333

value stores with 330–333
regular expressions 231–240

extracting matched text from strings 235–238
overview of 232
raw strings and 233–235
substituting text with 238–240
with special characters 232–233

relational databases, saving data with
overview of 322–323
Python Database API 320

reload function 32
remove method 54
rename method 278
replace method 78
repr function 81
RESTful (REpresentational State Transfer)

interface 304
restore_output() method 182
return statement 122
reverse method 54
reverse parameter 55
RGB (red, green, and blue) 245
rmdir method 171
rmtree function 172
rstrip function 75
runtime modules 269
runtime services 269

S

safe_apply function 203
save_formats_to_file function 191
save_prefs_to_file function 191
save_text_to_file function 191
save_to_file function 191, 201
saving data 319–336

with MySQL 322–323
with NoSQL databases 330
with pandas 345–346
with PostgreSQL 322–323
with relational databases 320, 322–323
with SQLite 320–322

scandir, getting information about files with 168
scopetest module 138
scoping rules

namespaces and 135–141
overview of 223–227

scraping web data 314–318
screen input/output, redirection and 180–182

INDEX 441
scripts
execution options in Windows 149–150
making directly executable on UNIX 148
on macOS 149
redirecting input of 144–145
redirecting output of 144–145
starting

from command line 143–144
from command window 149–150
from PowerShell 149–150

searching
lists, with index operator 58–59
strings 76–77

Secure Shell (SSH) 302
self parameter 34
sessionmaker function 324
setdefault function 93
sets 66–67

frozensets 66–67
overview of 26–27
set operations 66

SFTP (SSH File Transfer Protocol), fetching files
with 302–303

shallow copy 61
Shape class 216
shelve module 187
shelve.open 188
shelving objects 187–189
shutil module 172
shutil.rmtree function 169
SIGs (special interest groups) 7
siv variable 226
SKU (stock-keeping unit) number 276
slice notation 69
slicing 51
sole function 98
sort() method 55, 394
sorted() function 55, 57, 296
sorting

data files 295–296
lists 55–57

custom sorting 56–57
sorted() function 57

spaces, tabs vs. 377
sparse matrices 96–97
special characters 70–72

printing vs. evaluating strings with 71–72
regular expressions with 232–233

special interest groups (SIGs) 7
special method attributes 245–246, 254
split() method 72–73, 287
spreadsheets 294, 338
SQLAlchemy class 427
sqlalchemy package 324
SQLAlchemy toolkit 323–327

SQLite library, sqlite3 database 320–322
square brackets 106
SSH (Secure Shell) 302
SSH File Transfer Protocol, fetching files

with 302–303
standard error 180
startswith method 77
statements

overview of 106–109
whitespace in 379–380

static methods 214
stock-keeping unit (SKU) number 276
storage modules 267
storage, manipulating 266
storing files 278–279
__str__ method 34, 229
str() function 416
string modulus (%) operator 84
string representation 82
string services modules 265
string.digits 79
string.hexdigits 79
string.lowercase 80
string.maketrans function 78
string.octdigits 79
string.translate function 78
string.uppercase 80
string.whitespace constant 75, 79
strings 25–26, 42–43, 68–88

as sequences of characters 68–69
bytes 87–88
converting from objects to 81–82
converting to numbers 74
documentation strings 382
escape sequences 70–72

basic sequences 70
numeric escape sequences 70–71
Unicode escape sequences 70–71

extracting matched text from 235–238
formatting with % operator 84–86

named parameters and formatting
sequences 85–86

using formatting sequences 84–85
interpolating 86–87
join method 72–73
methods 72, 79–80
modifying 77–79
operations of, basic 69
removing whitespace 74–75
searching 76–77
special characters 70, 72
split method 72–73
using format method 82–83

format method and named parameters 83
format method and positional parameters 82

INDEX442
format specifiers 83
strip() function 75, 347, 424
struct library module 27
struct module, reading structured binary data

with 182–184
struct.unpack function 183
structure, class instances as 208–209
style guides

overview of 389
Python manual of style 376–381

code layout 377, 380–381
introduction 376–377

subclassing
from built-in types 252–254
lists 252–253
UserList 253–254

subfunctions 191
submodules, loading 259–260
subpackages, loading 259–260
suffix property 165
superclass’s namespace 224
sys library module 27
sys.path variable 132
SystemExit exception 387

T

tab characters 25, 70
table objects, mapping to classes 326–327
tabs, spaces vs. 377
tags 39
text files

analyzing 111–112
CSV (comma separated values)

modules 289–292
reading files as lists of dictionaries 292

delimited flat files 288–289
encoding 284–286

Unicode and UTF-8 285–286
matched, extracting from strings 235–238
reading 284–292

CSV files 292
CSV modules 289–292
delimited flat files 288–289
functions for 177–179
text encoding 284–286
unstructured text 286–287
with pathlib 179–180

substituting with regular expressions 238–240
unstructured 286–287
writing

functions for 177–179
with pathlib 179–180

textual regular expression 232
third-party modules, libraries and 134–135

three angle braces 17
throwing exceptions 193
tkinter module 131
total_area() method 414
traceback 41
try statement 198
try-except-else-finally statement 21, 30
tuple function 65
tuples 24–62, 65

basics of 62–63
converting between lists and 65
one-element tuples need comma 63
packing 64–65
unpacking

for loops and 103–104
overview of 64–65

two-dimensional matrices 60
type object 242
TypedList class 250
TypeError exception 115

U

unbound method invocation 210
Unicode

escape sequences 70–71
overview of 285–286

UNIX filesystem 159
UNIX operating system, making scripts directly

executable on 148
unlinking files 282
unpacking tuples

for loops and 103–104
overview of 64–65

unstructured text 286–287
Update Shell Profile command 14
update() method 93, 326
upgrade() method 329
-user flag, installing libraries with 271
UserDict class 254, 421
UserList, subclassing 253–254
users, getting input from 46–47
UserString class 254
UTF-8 285–286

V

ValueError exception 74, 77, 202
values, expiration of 332–333
ValueTooLarge exception 203, 413
variables 39–41

assigning functions to 121–122
checking types when compiling 8
global 119–121

INDEX 443
local 119–121
nonlocal 119–121
private 221–222

venv module, installing libraries using 270–272
versions, bookkeeping 382
virtual environments 271–272
virtualenvs 271–272

W

wc utility 189
WeatherLibraryException class 200
web data, scraping 314–318
wheels packages 155
where() method 325
while loops 28–29, 38, 99–100
whitespace

in expressions and statements 379–380
overview of 296
removing 74–75

Windows
help file 374
script execution options in 149–150

starting script from command window
149–150

starting script from PowerShell 149–150
with keyword

context managers and 203–204
for context handling 31
overview of 176

words, counting 94–95
writeheader method 298
writeline function 178
writelines function 178

writing
binary data, functions for 177–179
data files 297–299

CSV (comma separated values) 297–298
delimited files 297–298

Excel files 298
files 175–189
text, functions for 177–179

X

X11 library 383
xlswriter documentation 298
XML (eXtensible Markup Language), data

310–314
xmltodict library 311, 425
xnn (backslashed hex) format 75

Y

yield from generator 123
yield generator 123
yield keyword 122

Z

Zen of Python 389–390
zero-element tuples 63
ZeroDivisionError exception 199, 412
zfill 78
zip functions 104, 429
zipapp module 155
zipfile library 280

MORE TITLES FROM MANNING

For ordering information go to www.manning.com

Deep Learning with Python
by François Chollet

ISBN: 9781617294433
384 pages
$49.99
November 2017

Machine Learning with TensorFlow
by Nishant Shukla

ISBN: 9781617293870
272 pages
$44.99
January 2018

Grokking Algorithms
An illustrated guide for programmers
and other curious people
by Aditya Y. Bhargava

ISBN: 9781617292231
375 pages
$44.99
May 2016

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/machine-learning-with-tensorflow
https://www.manning.com/books/grokking-algorithms
www.manning.com
https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/machine-learning-with-tensorflow
https://www.manning.com/books/grokking-algorithms

Naomi Ceder

I
nitially Guido van Rossum’s 1989 holiday project, Python
has grown into an amazing computer language. It’s a joy to
learn and read, and powerful enough to handle everything

from low-level system resources to advanced applications like
deep learning. Elegantly simple and complete, it also boasts
a massive ecosystem of libraries and frameworks. Python
programmers are in high demand—you can’t afford not to
be fl uent!

The Quick Python Book, Third Edition is a comprehensive guide
to the Python language by a Python authority, Naomi Ceder.
With the personal touch of a skilled teacher, she beautifully
balances details of the language with the insights and advice
you need to handle any task. Extensive, relevant examples and
learn-by-doing exercises help you master each important con-
cept the fi rst time through. Whether you’re scraping websites
or playing around with nested tuples, you’ll appreciate this
book’s clarity, focus, and attention to detail.

What’s Inside
● Clear coverage of Python 3
● Core libraries, packages, and tools
● In-depth exercises
● Five new data science–related chapters

Written for readers familiar with programming concepts—no
Python experience assumed.

Naomi Ceder is chair of the Python Software Foundation. She
has been learning, using, and teaching Python since 2001.

To download their free eBook in PDF, ePub, and Kindle formats,
owners of this book should visit

manning.com/books/the-quick-python-book-third-edition

$39.99 / Can $52.99 [INCLUDING eBOOK]

The Quick Python Book Third Edition

PROGRAMMING/PYTHON

M A N N I N G

“Naomi’s book epitomizes
what it is to be Pythonic:

beautiful is better than ugly,
simple is better than complex,

and readability counts.”
—From the Foreword by

Nicholas Tollervey
Python Software Foundation

“Leads you from a basic
knowledge of Python to its
most interesting features,
always using accessible

language.”
—Eros Pedrini, everis

“Unleash your Pythonic
powers with this book and

start coding real-world
 applications fast.”—Carlos Fernández Manzano

Aguas de Murcia

“The complete and
defi nitive book to start

learning Python.”
—Christos Paisios, e-Travel

See first page

	The Quick Python Book
	brief contents
	contents
	foreword
	preface
	acknowledgments
	about this book
	How to use this book
	Roadmap
	Code conventions
	Exercises
	Exercise answers
	Source code downloads
	System requirements
	Software requirements
	Book forum
	About the author

	about the cover illustration
	Part 1 Starting out
	1 About Python
	1.1 Why should I use Python?
	1.2 What Python does well
	1.2.1 Python is easy to use
	1.2.2 Python is expressive
	1.2.3 Python is readable
	1.2.4 Python is complete??batteries included?
	1.2.5 Python is cross-platform
	1.2.6 Python is free

	1.3 What Python doesn?t do as well
	1.3.1 Python isn?t the fastest language
	1.3.2 Python doesn?t have the most libraries
	1.3.3 Python doesn?t check variable types at compile time
	1.3.4 Python doesn?t have much mobile support
	1.3.5 Python doesn?t use multiple processors well

	1.4 Why learn Python 3?
	Summary

	2 Getting started
	2.1 Installing Python
	2.2 Basic interactive mode and IDLE
	2.2.1 The basic interactive mode
	2.2.2 The IDLE integrated development environment
	2.2.3 Choosing between basic interactive mode and IDLE

	2.3 Using IDLE?s Python shell window
	2.4 Hello, world
	2.5 Using the interactive prompt to explore Python
	Summary

	3 The Quick Python overview
	3.1 Python synopsis
	3.2 Built-in data types
	3.2.1 Numbers
	3.2.2 Lists
	3.2.3 Tuples
	3.2.4 Strings
	3.2.5 Dictionaries
	3.2.6 Sets
	3.2.7 File objects

	3.3 Control flow structures
	3.3.1 Boolean values and expressions
	3.3.2 The if-elif-else statement
	3.3.3 The while loop
	3.3.4 The for loop
	3.3.5 Function definition
	3.3.6 Exceptions
	3.3.7 Context handling using the with keyword

	3.4 Module creation
	3.5 Object-oriented programming
	Summary

	Part 2 The essentials
	4 The absolute basics
	4.1 Indentation and block structuring
	4.2 Differentiating comments
	4.3 Variables and assignments
	4.4 Expressions
	4.5 Strings
	4.6 Numbers
	4.6.1 Built-in numeric functions
	4.6.2 Advanced numeric functions
	4.6.3 Numeric computation
	4.6.4 Complex numbers
	4.6.5 Advanced complex-number functions

	4.7 The None value
	4.8 Getting input from the user
	4.9 Built-in operators
	4.10 Basic Python style
	Summary

	5 Lists, tuples, and sets
	5.1 Lists are like arrays
	5.2 List indices
	5.3 Modifying lists
	5.4 Sorting lists
	5.4.1 Custom sorting
	5.4.2 The sorted() function

	5.5 Other common list operations
	5.5.1 List membership with the in operator
	5.5.2 List concatenation with the + operator
	5.5.3 List initialization with the * operator
	5.5.4 List minimum or maximum with min and max
	5.5.5 List search with index
	5.5.6 List matches with count
	5.5.7 Summary of list operations

	5.6 Nested lists and deep copies
	5.7 Tuples
	5.7.1 Tuple basics
	5.7.2 One-element tuples need a comma
	5.7.3 Packing and unpacking tuples
	5.7.4 Converting between lists and tuples

	5.8 Sets
	5.8.1 Set operations
	5.8.2 Frozensets

	Summary

	6 Strings
	6.1 Strings as sequences of characters
	6.2 Basic string operations
	6.3 Special characters and escape sequences
	6.3.1 Basic escape sequences
	6.3.2 Numeric (octal and hexadecimal) and Unicode escape sequences
	6.3.3 Printing vs. evaluating strings with special characters

	6.4 String methods
	6.4.1 The split and join string methods
	6.4.2 Converting strings to numbers
	6.4.3 Getting rid of extra whitespace
	6.4.4 String searching
	6.4.5 Modifying strings
	6.4.6 Modifying strings with list manipulations
	6.4.7 Useful methods and constants

	6.5 Converting from objects to strings
	6.6 Using the format method
	6.6.1 The format method and positional parameters
	6.6.2 The format method and named parameters
	6.6.3 Format specifiers

	6.7 Formatting strings with %
	6.7.1 Using formatting sequences
	6.7.2 Named parameters and formatting sequences

	6.8 String interpolation
	6.9 Bytes
	Summary

	7 Dictionaries
	7.1 What is a dictionary?
	7.2 Other dictionary operations
	7.3 Word counting
	7.4 What can be used as a key?
	7.5 Sparse matrices
	7.6 Dictionaries as caches
	7.7 Efficiency of dictionaries
	Summary

	8 Control flow
	8.1 The while loop
	8.2 The if-elif-else statement
	8.3 The for loop
	8.3.1 The range function
	8.3.2 Controlling range with starting and stepping values
	8.3.3 Using break and continue in for loops
	8.3.4 The for loop and tuple unpacking
	8.3.5 The enumerate function
	8.3.6 The zip function

	8.4 List and dictionary comprehensions
	8.4.1 Generator expressions

	8.5 Statements, blocks, and indentation
	8.6 Boolean values and expressions
	8.6.1 Most Python objects can be used as Booleans
	8.6.2 Comparison and Boolean operators

	8.7 Writing a simple program to analyze a text file
	Summary

	9 Functions
	9.1 Basic function definitions
	9.2 Function parameter options
	9.2.1 Positional parameters
	9.2.2 Passing arguments by parameter name
	9.2.3 Variable numbers of arguments
	9.2.4 Mixing argument-passing techniques

	9.3 Mutable objects as arguments
	9.4 Local, nonlocal, and global variables
	9.5 Assigning functions to variables
	9.6 lambda expressions
	9.7 Generator functions
	9.8 Decorators
	Summary

	10 Modules and scoping rules
	10.1 What is a module?
	10.2 A first module
	10.3 The import statement
	10.4 The module search path
	10.4.1 Where to place your own modules

	10.5 Private names in modules
	10.6 Library and third-party modules
	10.7 Python scoping rules and namespaces
	Summary

	11 Python programs
	11.1 Creating a very basic program
	11.1.1 Starting a script from a command line
	11.1.2 Command-line arguments
	11.1.3 Redirecting the input and output of a script
	11.1.4 The argparse module
	11.1.5 Using the fileinput module

	11.2 Making a script directly executable on UNIX
	11.3 Scripts on macOS
	11.4 Script execution options in Windows
	11.4.1 Starting a script from a command window or PowerShell
	11.4.2 Other Windows options

	11.5 Programs and modules
	11.6 Distributing Python applications
	11.6.1 Wheels packages
	11.6.2 zipapp and pex
	11.6.3 py2exe and py2app
	11.6.4 Creating executable programs with freeze

	Summary

	12 Using the filesystem
	12.1 os and os.path vs. pathlib
	12.2 Paths and pathnames
	12.2.1 Absolute and relative paths
	12.2.2 The current working directory
	12.2.3 Accessing directories with pathlib
	12.2.4 Manipulating pathnames
	12.2.5 Manipulating pathnames with pathlib
	12.2.6 Useful constants and functions

	12.3 Getting information about files
	12.3.1 Getting information about files with scandir

	12.4 More filesystem operations
	12.4.1 More filesystem operations with pathlib

	12.5 Processing all files in a directory subtree
	Summary

	13 Reading and writing files
	13.1 Opening files and file objects
	13.2 Closing files
	13.3 Opening files in write or other modes
	13.4 Functions to read and write text or binary data
	13.4.1 Using binary mode

	13.5 Reading and writing with pathlib
	13.6 Screen input/output and redirection
	13.7 Reading structured binary data with the struct module
	13.8 Pickling objects files
	13.8.1 Reasons not to pickle

	13.9 Shelving objects
	Summary

	14 Exceptions
	14.1 Introduction to exceptions
	14.1.1 General philosophy of errors and exception handling
	14.1.2 A more formal definition of exceptions
	14.1.3 Handling different types of exceptions

	14.2 Exceptions in Python
	14.2.1 Types of Python exceptions
	14.2.2 Raising exceptions
	14.2.3 Catching and handling exceptions
	14.2.4 Defining new exceptions
	14.2.5 Debugging programs with the assert statement
	14.2.6 The exception inheritance hierarchy
	14.2.7 Example: a disk-writing program in Python
	14.2.8 Example: exceptions in normal evaluation
	14.2.9 Where to use exceptions

	14.3 Context managers using the with keyword
	Summary

	Part 3 Advanced language features
	15 Classes and object-oriented programming
	15.1 Defining classes
	15.1.1 Using a class instance as a structure or record

	15.2 Instance variables
	15.3 Methods
	15.4 Class variables
	15.4.1 An oddity with class variables

	15.5 Static methods and class methods
	15.5.1 Static methods
	15.5.2 Class methods

	15.6 Inheritance
	15.7 Inheritance with class and instance variables
	15.8 Recap: Basics of Python classes
	15.9 Private variables and private methods
	15.10 Using @property for more flexible instance variables
	15.11 Scoping rules and namespaces for class instances
	15.12 Destructors and memory management
	15.13 Multiple inheritance
	Summary

	16 Regular expressions
	16.1 What is a regular expression?
	16.2 Regular expressions with special characters
	16.3 Regular expressions and raw strings
	16.3.1 Raw strings to the rescue

	16.4 Extracting matched text from strings
	16.5 Substituting text with regular expressions
	Summary

	17 Data types as objects
	17.1 Types are objects, too
	17.2 Using types
	17.3 Types and user-defined classes
	17.4 Duck typing
	17.5 What is a special method attribute?
	17.6 Making an object behave like a list
	17.7 The __getitem__ special method attribute
	17.7.1 How it works
	17.7.2 Implementing full list functionality

	17.8 Giving an object full list capability
	17.9 Subclassing from built-in types
	17.9.1 Subclassing list
	17.9.2 Subclassing UserList

	17.10 When to use special method attributes
	Summary

	18 Packages
	18.1 What is a package?
	18.2 A first example
	18.3 A concrete example
	18.3.1 __init__.py files in packages
	18.3.2 Basic use of the mathproj package
	18.3.3 Loading subpackages and submodules
	18.3.4 import statements within packages

	18.4 The __all__ attribute
	18.5 Proper use of packages
	Summary

	19 Using Python libraries
	19.1 ?Batteries included?: The standard library
	19.1.1 Managing various data types
	19.1.2 Manipulating files and storage
	19.1.3 Accessing operating system services
	19.1.4 Using internet protocols and formats
	19.1.5 Development and debugging tools and runtime services

	19.2 Moving beyond the standard library
	19.3 Adding more Python libraries
	19.4 Installing Python libraries using pip and venv
	19.4.1 Installing with the ?user flag
	19.4.2 Virtual environments

	19.5 PyPI (a.k.a. ?The Cheese Shop?)
	Summary

	Part 4 Working with data
	20 Basic file wrangling
	20.1 The problem: The never-ending flow of data files
	20.2 Scenario: The product feed from hell
	20.3 More organization
	20.4 Saving storage space: Compression and grooming
	20.4.1 Compressing files
	20.4.2 Grooming files

	Summary

	21 Processing data files
	21.1 Welcome to ETL
	21.2 Reading text files
	21.2.1 Text encoding: ASCII, Unicode, and others
	21.2.2 Unstructured text
	21.2.3 Delimited flat files
	21.2.4 The csv module
	21.2.5 Reading a csv file as a list of dictionaries

	21.3 Excel files
	21.4 Data cleaning
	21.4.1 Cleaning
	21.4.2 Sorting
	21.4.3 Data cleaning issues and pitfalls

	21.5 Writing data files
	21.5.1 CSV and other delimited files
	21.5.2 Writing Excel files
	21.5.3 Packaging data files

	Summary

	22 Data over the network
	22.1 Fetching files
	22.1.1 Using Python to fetch files from an FTP server
	22.1.2 Fetching files with SFTP
	22.1.3 Retrieving files over HTTP/HTTPS

	22.2 Fetching data via an API
	22.3 Structured data formats
	22.3.1 JSON data
	22.3.2 XML data

	22.4 Scraping web data
	Summary

	23 Saving data
	23.1 Relational databases
	23.1.1 The Python Database API

	23.2 SQLite: Using the sqlite3 database
	23.3 Using MySQL, PostgreSQL, and other relational databases
	23.4 Making database handling easier with an ORM
	23.4.1 SQLAlchemy
	23.4.2 Using Alembic for database schema changes

	23.5 NoSQL databases
	23.6 key:value stores with Redis
	23.7 Documents in MongoDB
	Summary

	24 Exploring data
	24.1 Python tools for data exploration
	24.1.1 Python?s advantages for exploring data
	24.1.2 Python can be better than a spreadsheet

	24.2 Jupyter notebook
	24.2.1 Starting a kernel
	24.2.2 Executing code in a cell

	24.3 Python and pandas
	24.3.1 Why you might want to use pandas
	24.3.2 Installing pandas
	24.3.3 Data frames

	24.4 Data cleaning
	24.4.1 Loading and saving data with pandas
	24.4.2 Data cleaning with a data frame

	24.5 Data aggregation and manipulation
	24.5.1 Merging data frames
	24.5.2 Selecting data
	24.5.3 Grouping and aggregation

	24.6 Plotting data
	24.7 Why you might not want to use pandas
	Summary

	Case study
	Downloading the data
	Parsing the inventory data
	Selecting a station based on latitude and longitude
	Selecting a station and getting the station metadata
	Fetching and parsing the actual weather data
	Fetching the data
	Parsing the weather data
	Saving the weather data in a database (optional)
	Selecting and graphing data
	Using pandas to graph your data

	appendix A
	A guide to Python?s documentation
	A.1 Accessing Python documentation on the web
	A.1.1 Browsing Python documentation on your computer
	A.1.2 Downloading documentation

	A.2 Best practices: How to become a Pythonista
	A.2.1 Ten tips for becoming a Pythonista

	A.3 PEP 8?Style guide for Python code
	A.3.1 Introduction
	A.3.2 Code layout

	A.4 Comments
	A.4.1 Naming conventions
	A.4.2 Programming recommendations
	A.4.3 Other guides for Python style

	A.5 The Zen of Python

	appendix B
	Exercise answers
	B.1 Chapter 4
	B.2 Chapter 5
	B.3 Chapter 6
	B.4 Chapter 7
	B.5 Chapter 8
	B.6 Chapter 9
	B.7 Chapter 10
	B.8 Chapter 11
	B.9 Chapter 12
	B.10 Chapter 13
	B.11 Chapter 14
	B.12 Chapter 15
	B.13 Chapter 16
	B.14 Chapter 17
	B.15 Chapter 18
	B.16 Chapter 20
	B.17 Chapter 21
	B.18 Chapter 22
	B.19 Chapter 23
	B.20 Chapter 24

	index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	The Quick Python Book-back

