ROBERT SMALLSHIRE & AUSTIN BINGHAM

THE PYTHON

APPRENTICE

SixtyN®ORTH

The Python Apprentice

Robert Smallshire, Austin Bingham and Sixty North

This book is for sale at http://leanpub.com/python-apprentice
This version was published on 2022-07-15

ISBN 978-82-93483-00-7

)

Leanpub

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2013 - 2022 Sixty North AS

http://leanpub.com/python-apprentice
https://leanpub.com/
https://leanpub.com/manifesto

Tweet This Book!

Please help Robert Smallshire, Austin Bingham and Sixty North by spreading the word
about this book on Twitter!

The suggested tweet for this book is:
I’'m learning #Python with @sixty_north’s book, The Python Apprentice.
The suggested hashtag for this book is #PythonApprentice.

Find out what other people are saying about the book by clicking on this link to search for
this hashtag on Twitter:

#PythonApprentice

http://twitter.com
https://twitter.com/intent/tweet?text=I'm%20learning%20%23Python%20with%20@sixty_north's%20book,%20The%20Python%20Apprentice.
https://twitter.com/search?q=%23PythonApprentice
https://twitter.com/search?q=%23PythonApprentice

Contents

Preface i
Errata and Suggestions. L i
Conventions Used in ThisBook ii
Codeexamples iv

Welcome Apprentice! 1

Python Promo 2

Overview 3

Whatis Python? 5
It’s a programming language! L L L o 5
It’s a standard library! 7
It’'saphilosophy 7

The journey of a thousand miles... 9

Chapter 1 - Getting started 1
Obtaining and installing Python3 1
Starting Python command line REPL 4
Leavingthe REPL. 6
Code structure and significant indentation 7
Pythonculture 10
Importing standard library modules oL L. 13
Getting help() 13
Scalar data types: integers, floats, None and bool 17
Relational operators 23
Control flow: if-statements and while-loops 24

Summary 30

CONTENTS

Chapter 2 - Strings and collections 32
str — an immutable sequence of Unicode code points 33
Momentofzen 35
bytes — an immutable sequence of bytes L L. 43
list —asequence of objects 47
dict — associating keys withvalues L. 49
For-loops - iterating over series of items 50
Putting it all together L 51
SUMMAry o 54

Chapter 3—Modularity 57
Organizing codeina.pyfile 57
Defining functions 59
Organizing our module into functions 61
The Python executionmodel 65
Setting up a main function with command line argument 66
Momentofzen 73
Docstrings e 74
Comments 78
Shebang 78
Summary 79

Chapter 4 — Built-in types and the objectmodel 81
The nature of Python object references 81
Argument passing semantics — pass by object-reference 90
Python return semantics L 95
Function argumentsindetail L o oL 95
The Python type system 100
Variable declaration and scoping L o L. 102
Momentofzen 106
Everythingisanobject 107
Summary 109

Chapter 5 — Exploring built-in collection types 111
tuple — an immutable sequence of objects L L. 111
The tuple constructor L 116
Stringsinaction 117
Momentofzen 120

range — a collection of evenly spaced integers 123

CONTENTS

listinaction. 126
Dictionaries e 145
set — an unordered collection of unique elements 153
Collection protocols 161
Summary 164
Chapter 6 — Exceptions 165
Exceptions and control flow.o oo Lo 165
Handling exceptions 167
Handling multiple exceptions L. 168
Programmer errors L e 170
Empty blocks — the pass statement 171
Exceptionobjects L 172
Imprudent return codes L 173
Re-raising exceptions L 174
Exceptions are part of your function’s APT 175
Guardclauses 180
Exceptions, APIs, and protocols. L L 182
Choosing not to guard against TypeError 184
Pythonic style - EAFP versus LBYL 185
Clean-up actions 187
Momentofzen 189
Platform-specificcode 190
Summary 191
Chapter 7 - Comprehensions, iterables, and generators 193
Comprehensions 193
Momentofzen 200
Iteration protocols 201
Generator functions 203
Generator eXPresSiONS . . .« v v v v v i e e e e e e e e 212
“Batteries included” iterationtools L L 214
Pullingitalltogether. 218
Summary 219
Chapter 8 — Defining new types withclasses 221
Defining classes 222
Instance methods 223

Instance initializers e 224

CONTENTS

Validation and invariants L L 226
Addingasecondclass 227
Collaborating classes 230
Momentofzen 233
Booking seats 234
Naming methods for implementation details 241
Sometimes the only object you need is a function 246
Polymorphism and duck-typing L oo 249
Inheritance and implementation sharing 253
Summary 257
Chapter 9 - Files and resource management 259
Files e 259
Context managers 269
Momentofzen 274
Binary files 276
File-like objects 285
Otherresourcesot i 286
Summary 290
Chapter 10 — Unit testing with the Python standard library 291
Testcases 291
Fixtures e 291
Assertions 292
Unit testing example: text analysis L L. 292
Using fixtures to create temporary files 295
Using the new fixtures 296
Using assertions to test behavior L. 297
Testing for exceptions 302
Testing for file existence L 302
Momentofzen 304
Summary 305
Chapter 11 — Debugging withPDB 306
Debugging commands L L 306
Palindrome debugging L oo 307
Summary e 317

Afterword: Just the Beginning 319

CONTENTS

Appendix A - Virtual environments L L. 321
Creating a virtual environment L oL 321
Activating a virtual environment oL oL oL 322
Deactivating a virtual environment oL L. 322
Other tools for working with virtual environments 323

Appendix B — Packaging and distribution o0 0L 324
Configuring a package with distutils 324
Installing with distutils. 327
Packaging with distutils 329

Appendix C - Installing third-party packages 332
Introducing pip. o 332
The Python PackageIndex 333
Installing local packages withpip 334

Uninstalling packages 335

Preface

This book came about by circuitous means. In 2013, when we incorporated our Norway-
based software consultancy and training business Sixty North, we were courted by Plural-
sight, a publisher of online video training material, to produce Python training videos for
the rapidly growing MOOC market. At the time, we had no experience of producing video
training material, but we were sure we wanted to carefully structure our introductory Python
content to respect certain constraints. For example, we wanted an absolute minimum of
forward references since those would be very inconvenient for our viewers. We’re both men
of words who live by Turing Award winner Leslie Lamport’s maxim “If you’re thinking
without writing you only think you’re thinking”, so it was natural for us to attack video
course production by first writing a script.

In short order our online video course was written, recorded, and published by Pluralsight as
Python Fundamentals’, to a hugely positive reception which has sustained for several years
now. From the earliest days we had in mind that the script could form the basis of a book,
although it’s fair to say we underestimated the effort required to transform the content from
a good script into a better book.

The Python Apprentice is the result of that transformation. It can be used either as a
standalone Python tutorial, or as the companion volume to our video course, depending on
which style of learning suits you best. The Python Apprentice is the first in a trilogy of three
books, comprising in addition The Python Journeyman® and The Python Master®. The two
later books correspond to our subsequent Pluralsight courses Python - Beyond the Basics*
and Advanced Python’.

Errata and Suggestions

All the material in this book has been thoroughly reviewed and tested; nevertheless, it’s
inevitable that some mistakes have crept in. If you do spot a mistake, we’d really appreciate

"https://www.pluralsight.com/courses/python-fundamentals
*https://leanpub.com/python-journeyman
*https://leanpub.com/python-master
“https://app.pluralsight.com/library/courses/python-beyond-basics/
*https://app.pluralsight.com/library/courses/advanced-python/

https://www.pluralsight.com/courses/python-fundamentals
https://leanpub.com/python-journeyman
https://leanpub.com/python-master
https://app.pluralsight.com/library/courses/python-beyond-basics/
https://app.pluralsight.com/library/courses/advanced-python/
https://www.pluralsight.com/courses/python-fundamentals
https://leanpub.com/python-journeyman
https://leanpub.com/python-master
https://app.pluralsight.com/library/courses/python-beyond-basics/
https://app.pluralsight.com/library/courses/advanced-python/

Preface ii

it if you’d let us know via the Leanpub Python Apprentice Discussion® page so we can make
amends and deploy a new version.

Conventions Used in This Book

Code examples in this book are shown in a fixed-width text which is colored with syntax

highlighting:

>>> def square(x):
return x * x

Some of our examples show code saved in files, and others — such as the one above — are
from interactive Python sessions. In such interactive cases, we include the prompts from the
Python session such as the triple-arrow (>>>) and triple-dot (. . .) prompts. You don’t need
to type these arrows or dots. Similarly, for operating system shell-commands we will use
a dollar prompt ($) for Linux, macOS and other Unixes, or where the particular operating
system is unimportant for the task at hand:

$ python3 words.py

In this case, you don’t need to type the $ character.

For Windows-specific commands we will use a leading greater-than prompt:

> python words.py

Again, there’s no need to type the > character.

For code blocks which need to be placed in a file, rather than entered interactively, we show
code without any leading prompts:

“https://leanpub.com/python-apprentice/feedback

https://leanpub.com/python-apprentice/feedback
https://leanpub.com/python-apprentice/feedback

O 00 N O Ul B W N P

= e
N = o

Preface iii

def write sequence(filename, num):
"""Write Recaman's sequence to a text file.
with open(filename, mode='wt', encoding='utf-8') as f:
f.writelines("{0}\n".format(r)
for r in islice(sequence(), num + 1))

We’ve worked hard to make sure that our lines of code are short enough so that each single
logical line of code corresponds to a single physical line of code in your book. However, the
vagaries of publishing e-books to different devices and the very genuine need for occasional
long lines of code mean we can’t guarantee that lines don’t wrap. What we can guarantee,
however, is that where a line does wrap, the publisher has inserted a backslash character \
in the final column. You need to use your judgement to determine whether this character is
legitimate part of the code or has been added by the e-book platform.

>>> print("This is a single line of code which is very long. Too long, in fact, to fit on\
a single physical line of code in the book.")

If you see a backslash at the end of the line within the above quoted string, it is not part of
the code, and should not be entered.

Occasionally, we’ll number lines of code so we can refer to them easily from the narrative
next. These line numbers should not be entered as part of the code. Numbered code blocks

look like this:

def write grayscale(filename, pixels):
height = len(pixels)
width = len(pixels[0])

with open(filename, 'wb') as bmp:
BMP Header
bmp.write(b'BM")

The next four bytes hold the filesize as a 32-bit
little-endian integer. Zero placeholder for now.
size bookmark = bmp.tell()
bmp.write(b'\x00\x00\x00\x00")

Sometimes we need to present code snippets which are incomplete. Usually this is for brevity
where we are adding code to an existing block, and where we want to be clear about the block
structure without repeating all existing contents of the block. In such cases we use a Python
comment containing three dots # ... to indicate the elided code:

Preface iv

class Flight:
...

def make boarding cards(self, card printer):
for passenger, seat in sorted(self. passenger seats()):
card printer(passenger, seat, self.number(), self.aircraft model())

Here it is implied that some other code already exists within the Flight class block before
the make_boarding cards() function.

Finally, within the text of the book, when we are referring to an identifier which is also
a function we will use the identifier with empty parentheses, just as we did with make_-
boarding_cards() in the preceding paragraph.

Code examples

The code examples (and other snippets) used in this book are available in a git repository’.
These are in a fairly “raw” form, but they should help you code along with the book if you
desire.

"https://bitbucket.org/sixty-north/the-python-apprentice-code/

https://bitbucket.org/sixty-north/the-python-apprentice-code/
https://bitbucket.org/sixty-north/the-python-apprentice-code/

Welcome Apprentice!

Welcome to The Python Apprentice! Our goal with this book is to give you a practical and
thorough introduction to the Python programming language, providing you with the tools
and insight you need to be a productive member of nearly any Python project. Python is a
big language, and it’s not our intention with this book to cover everything there is to know.
Rather we want to help you build solid foundations, orient you in the sometimes bewildering
universe of Python, and put you in a position to direct your own continued learning.

This book is primarily aimed at people with some experience programming in another
language. If you’re currently programming in any of the mainstream imperative or object-
oriented languages like C++, C#, or Java, then you’ll have the background you need to get
the most out of this book. If you have experience in other types of languages — for example,
functional or actor-based - then you may have a bit steeper learning curve with Python,
but you won’t encounter any serious difficulties. Most programmers find Python very
approachable and intuitive, and with just a little practice they quickly become comfortable
with it.

On the other hand, if you don’t have any experience with programming this book may be
a bit daunting. You’ll be learning not just a programming language but many of the topics
and issues common to all languages at the same time. And to be fair, we don’t spend a lot of
time trying to explain these areas of “assumed knowledge”. This doesn’t mean you can’t
learn from this book! It just means that you might have to work a bit harder, read sections
multiple times, and perhaps get guidance from others. The reward for this effort, though,
is that you’ll start to develop the knowledge and instincts for approaching other languages,
and this is a critical skill for the professional programmer.

In this first chapter we’ll take a quick tour of the Python language. We’ll cover what Python
is (hint: it’s more than just a language!), take a look at how it was — and still is — developed,
and get a sense of what makes it so appealing to so many programmers. We'll also give a
brief preview of how the rest of the book is structured.

Python Promo

To start with, what’s so great about Python? Why do you want to learn it? There are lots
of good answers to those questions. One is that Python is powerful. The Python language
is expressive and productive, it comes with a great standard library?, and it’s the center of
a huge universe of wonderful third-party libraries’. With Python you can build everything
from simple scripts to complex applications, you can do it quickly, you can do it safely, and
you can do it with fewer lines of code than you might think possible.

But that’s just one part of what makes Python great. Another is that Python is wonderfully
open. It’s open-source, so you can get to know every aspect of it' if you want. At the
same time, Python is hugely popular and has a great community to support you'' when
you run into trouble. This combination of openness and large userbase means that almost
anyone — from casual programmers to professional software developers — can engage with
the language at the level they need.

Another benefit of a large user base is that Python is showing up in more and more places.
You may be wanting learn Python simply because it’s the language of some technology you
want to use, and this is not surprising — many of the most popular web and scientific packages
in the world are written in Python.

But for many people those reasons take back-seat to something more important: Python
is fun! Python’s expressive, readable style, quick edit-and-run development cycle, and
“batteries included” philosophy mean that you can sit down and enjoy writing code rather
than fighting compilers and thorny syntax. And Python will grow with you. As your
experiments become prototypes and your prototypes become products, Python makes the
experience of writing software not just easier but truly enjoyable.

In the words of Randall Munroe, “Come join us! Programming is fun again!”

®https://docs.python.org/3/library/index.html
*https://pypi.python.org/pypi
%https://docs.python.org/devguide/setup.html
“https://www.python.org/community/
“https://xked.com/353/

https://docs.python.org/3/library/index.html
https://pypi.python.org/pypi
https://docs.python.org/devguide/setup.html
https://www.python.org/community/
https://xkcd.com/353/
https://docs.python.org/3/library/index.html
https://pypi.python.org/pypi
https://docs.python.org/devguide/setup.html
https://www.python.org/community/
https://xkcd.com/353/

Overview

This book comprises 10 chapters (not including this one). The chapters build on one another,
so unless you’ve already had some exposure to Python you’ll need to follow them in order.
We'll start with getting Python installed into your system and orienting you a bit.

We’ll then cover language elements, features, idioms, and libraries, all driven by working
examples that you’ll be able to build along with the text. We're firm believers that you’ll
learn more by doing than by just reading, so we encourage you to run the examples yourself.

By the end of the book you’ll know the fundamentals of the Python language. You’ll also
know how to use third-party libraries, and youw’ll know the basics of developing them
yourself. We'll even cover the basics of testing so that you can ensure and maintain the
quality of the code you develop.

The chapters are:

1. Getting started: We go through installing Python, look at some of the basic Python
tools, and cover the core elements of the language and syntax.

2. Strings and collections: We look at some of the fundamental complex data types:
strings, byte sequences, lists, and dictionaries.

3. Modularity: We look at the tools Python has for structuring your code, such as
functions and modules.

4. Built-in types and the object model: We examine Python’s type system and object
system in detail, and we develop a strong sense of Python’s reference semantics.

5. Collection types: We go into more depth on some of the Python collection types, as
well as introduce a few more.

6. Handling exceptions: We learn about Python’s exception-handling system and the
central role that exceptions play in the language.

7. Comprehensions, iterables, and generators: We explore the elegant, pervasive, and
powerful sequence-oriented parts of Python such as comprehensions and generator
functions.

8. Defining new types with classes: We cover developing your own complex data types
in Python using classes to support object-oriented programming.

9. Files and resource management: We look at how to work with files in Python, and
we cover the tools Python has for resource management.

Overview 4

10. Unit testing with the Python standard library: We show you how to use Python’s
unittest package to produce defect-free code that works as expected.

What is Python?

It's a programming language!

So what is Python? Simply put, Python is a programming language. It was initially developed
by Guido van Rossum in the late 1980’s in the Netherlands. Guido continues to be actively
involved in guiding the development and evolution of the language, so much so that he’s
been given the title “Benevolent Dictator for Life”, or, more commonly, BDFL. Python is
developed as an open-source project and is free to download and use as you wish. The non-
profit Python Software Foundation' manages Python’s intellectual property, plays a strong
role in promoting the language, and in some cases funds its development.

On a technical level, Python is a strongly typed language. This means that every object in the
language has a definite type, and there’s generally no way to circumvent that type. At the
same time, Python is dynamically typed, meaning that there’s no type-checking of your code
prior to running it. This is in contrast to statically typed languages like C++ or Java where
a compiler does a lot of type-checking for you, rejecting programs which misuse objects.
Ultimately, the best description of the Python type system is that it uses duck-typing where
an object’s suitability for a context is only determined at runtime. We’ll cover this in more
detail in Chapter 8.

Python is a general-purpose programming language. It’s not intended for use in any
particular domain or environment, but instead can be fruitfully used for a wide variety of
tasks. There are, of course, some areas where it’s less suitable than others — for example
in extremely time-sensitive or memory-constrained environments — but for the most part
Python is as flexible and adaptable as many modern programming languages, and more so
than most.

Python is an interpreted language. This is a bit of a misstatement, technically, because Python
isnormally compiled into a form of byte-code before it’s executed. However, this compilation
happens invisibly, and the experience of using Python is normally one of immediately
executing code without a noticeable compilation phase. This lack of an interruption between
editing and running is one of the great joys of working with Python.

“https://www.python.org/psf/

https://www.python.org/psf/
https://www.python.org/psf/

What is Python? 6

The syntax of Python is designed to be clear, readable, and expressive. Unlike many popular
languages, Python uses white-space to delimit code blocks, and in the process does away
with reams of unnecessary parentheses while enforcing a universal layout. This means that
all Python code looks alike in important ways, and you can learn to read Python very quickly.
At the same time, Python’s expressive syntax means that you can get a lot of meaning into
a single line of code. This expressive, highly-readable code means that Python maintenance
is relatively easy.

There are multiple implementations of the Python language. The original — and still by far
the most common — implementation is written in C. This version is commonly referred to
as CPython. When someone talks about “running Python”, it’s normally safe to assume that

they are talking about CPython, and this is the implementation that we’ll be using for this
book.

Other implementations of Python include:

« Jython', written to target the Java Virtual Machine

« IronPython’, written to target the .NET platform

« PyPy'¢, written (somewhat circularly) in a language called RPython which is designed
for developing dynamic languages like Python

These implementations generally trail behind CPython, which is considered to be the
“standard” for the language. Much of what you will learn in this book will apply to all of
these implementations.

Versions of the Python language

There are two important versions of the Python language in common use right now: Python
2 and Python 3. These two versions represent changes in some key elements of the language,
and code written for one will not generally work for the other unless you take special
precautions. Python 2 is older and more well-established than Python 3!, but Python 3
addresses some known shortcomings in the older version. Python 3 is the definite future
of Python, and you should use it if at all possible.

While there are some critical differences between Python 2 and 3, most of the fundamentals
of the two version are the same. If you learn one, most of what you know transfers cleanly to

“*http://www.jython.org/
http://ironpython.net/

'°http://pypy.org/
""Though more and more projects are starting to be “primarily Python 3” or even “Python 3 only”.

http://www.jython.org/
http://ironpython.net/
http://pypy.org/
http://www.jython.org/
http://ironpython.net/
http://pypy.org/

What is Python? 7

the other. In this book we’ll be teaching Python 3, but we’ll point out important differences
between the versions when necessary.

It's a standard library!

Beyond being a programming language, Python comes with a powerful and broad standard
library. Part of the Python philosophy is “batteries included”, meaning that you can use
Python for many complex, real-world tasks out-of-the box, with no need to install third-
party packages. This is not only extremely convenient, but it means that it’s easier to get
started learning Python by using interesting, engaging examples — something we aim for in
this book!

Another great effect of the “batteries included” approach is that it means that many scripts
— even non-trivial ones — can be run immediately on any Python installation. This removes
a common, annoying barrier to installing software that you can face with other languages.

The standard library has a generally high level of good documentation. The APIs are well
documented, and the modules often have good narrative descriptions with quick start guides,
best practice information, and so forth. The standard library documentation is always
available online'®, and you can also install it locally if you want to.

Since the standard library is such an important part of Python, we’ll be covering parts of
it throughout this book. Even so, we won’t be covering more than a small fraction of it, so
you’re encouraged to explore it on your own.

It's a philosophy

Finally, no description of Python would be complete without mentioning that, to many peo-
ple, Python represents a philosophy for writing code. Principles of clarity and readability are
part of what it means to write correct or pythonic code. It’s not always clear what pythonic
means in all circumstances, and sometimes there may be no single correct way to write
something. But the fact that the Python community is concerned about issues like simplicity,
readability, and explicitness means that Python code tends to be more...well...beautiful!

Many of Python’s principles are embodied in the so-called “Zen of Python™". The “zen” isn’t
a hard-and-fast set of rules, but rather a set of guidelines or touchstones to keep in mind when

**https://docs.python.org/3/library/index.html
“https://www.python.org/dev/peps/pep-0020/

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://www.python.org/dev/peps/pep-0020/
https://docs.python.org/3/library/index.html
https://www.python.org/dev/peps/pep-0020/

What is Python? 8

coding. When you find yourself trying to decide between several courses of action, these

principles can often give you a nudge in the right direction. We’ll be highlighting elements
from the “Zen of Python” throughout this book.

The journey of a thousand miles...

We think Python is a great language, and we’re excited to help you get started with it. By
the time you get through this book, you will be able to write substantial Python programs,
and you’ll be able to read even more complex ones. More importantly, you’ll have the
foundation you need to go out and discover all of the more advanced topics in the language,
and hopefully we’ll get you excited enough about Python to actually do so. Python is a big
language with a huge eco-system of software built in and around it, and it can be a real
adventure to discover everything it has to offer.

Welcome to Python!

Chapter 1 - Getting started

In this chapter we’ll cover obtaining and installing Python on your system for Windows,
Ubuntu Linux, and macOS. We'll also write our first basic Python code and become a
acquainted with the essentials Python programming culture, such as the Zen of Python,
while never forgetting the comical origins of the name of the language.

Obtaining and installing Python 3

There are two major versions of the Python language, Python 2 which is the widely deployed
legacy language and Python 3 which is the present and future of the language. Much Python
code will work without modification between the last version of Python 2 (which is Python
2.7%°) and recent versions of Python 3, such as Python 3.5*'. However, there are some key
differences between the major versions, and in a strict sense the languages are incompatible.
We'll be using Python 3.5 for this book, but we’ll point out key differences with Python 2
as we go. It’s also very likely that, this being a book on Python fundamentals, everything
we present will apply to future versions of Python 3, so don’t be afraid to try those as they
become available.

Before we can start programming in Python we need to get hold of a Python environment.
Python is a highly portable language and is available on all major operating systems. You will
be able to work through this book on Windows, Mac or Linux, and the only major section
where we diverge into platform specifics is coming right up — as we install Python 3. As we
cover the three platforms, feel free to skip over the sections which aren’t relevant for you.

Windows

1. For Windows you need to visit the official Python website*’, and then head to the
Download page by clicking the link on the left. For Windows you should choose one
of the MSI installers depending on whether you’re running on a 32- or 64-bit platform.

2. Download and run the installer.

**https://www.python.org/download/releases/2.7/
*'https://www.python.org/download/releases/3.5.1/
*http://python.org

https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/3.5.1/
http://python.org/
https://www.python.org/download/releases/2.7/
https://www.python.org/download/releases/3.5.1/
http://python.org/

Chapter 1 - Getting started 2

> py
Pytho
win32
Type

>>>

. In the installer, decide whether you only want to install Python for yourself, or for all

users of your machine.

. Choose a location for the Python distribution. The default will be in C:\Python35

in the root of the C: drive. We don’t recommended installing Python into Program
Files because the virtualized file store used to isolate applications from each other
in Windows Vista and later can interfere with easily installing third-party Python
packages.

. On the Customize Python page of the wizard we recommend keeping the defaults,

which use less than 40 MB of space.

. In addition to installing the Python runtime and standard library, the installer will

register various file types, such as *. py files, with the Python interpreter.

. Once Python has been installed, you’ll need to add Python to your system PATH

environment variable. To do this, from the Control Panel choose System and Security,
then System. Another way to get here easily is to hold down your Windows key
and press the Break key on your keyboard. Using the task pane on the left choose
Advanced System Settings to open the Advanced tab of the System Properties dialog.
Click Environment variables to open the child dialog.

. If you have Administrator privileges you should be able to add the paths C: \Python35

and C:\Python35\Scripts to the semicolon separated list of entries associated with
the PATH system variable. If not, you should be able to create, or append to, a PATH
variable specific to your user containing the same value.

. Now open a new console window — either Powershell or cmd will work fine — and

verify that you can run python from the command line:

thon

n 3.5.0 (v3.5.0:374f501f4567, Sep 13 2015, 02:27:37) [MSC v.1900 64 bit (AMD64)]

"help", "copyright", "credits" or "license" for more information.

Welcome to Python!

The triple arrow prompt shows you that Python is waiting for your input.

At this point you might want to skip forward whilst we show how to install Python on Mac
and Linux.

on \

Chapter 1 - Getting started 3

macOS

1. For macOS you need to visit the official Python website at http://python.org. Head to
the Download page by clicking the link on the left. On the Download page, find the
macOS installer matching your version of macOS and click the link to download it.

2. A DMG Disk Image file downloads, which you open from your Downloads stack or
from the Finder.

3. In the Finder window that opens you will see the file Python.mpkg multipackage
installer file. Use the “secondary” click action to open the context menu for that file.
From that menu, select “Open”.

4. On some versions of macOS you will now be told that the file is from an unidentified
developer. Press the “Open” button on this dialog to continue with the installation.

5. You are now in the Python installer program. Follow the directions, clicking through
the wizard.

6. There is no need to customize the install, and you should keep the standard settings.
When it’s available, click the “Install” button to install Python. You may be asked
for your password to authorize the installation. Once the installation completes click
“Close” to close the installer.

7. Now that Python 3 is installed, open a terminal window and verify that you can run
Python 3 from the command line:

> python

Python 3.5.0 (default, Nov 3 2015, 13:17:02)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>>

Welcome to Python!

The triple arrow prompt shows that Python is waiting for your input.

Linux

1. To install Python on Linux you will want to use your system’s package manager. We’ll
show how to install Python on a recent version of Ubuntu, but the process is very
similar on most other modern Linux distributions.

2. On Ubuntu, first start the “Ubuntu Software Center”. This can usually be run by
clicking on its icon in the launcher. Alternatively, you can run it from the dashboard
by searching on “Ubuntu Software Center” and clicking the selection.

http://python.org

Chapter 1 - Getting started 4

3. Once you're in the software center, enter the search term “python 3.5” in the search
bar in the upper right-hand corner and press return.

4. One of the results you’ll get will say “Python (v3.5)” with “Python Interpreter (v3.5)”
in smaller type beneath it. Select this entry and click the “Install” button that appears.

5. You may need to enter your password to install the software at this point.

6. You should now see a progress indicator appear, which will disappear when installation
is complete.

7. Open a terminal (using Ctrl-Alt-T) and verify that you can run Python 3.5 from the
command line:

$ python3.5

Python 3.5.0+ (default, Oct 11 2015, 09:05:38)

[GCC 5.2.1 20151010] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>>

Welcome to Python!

The triple arrow prompt shows you that Python is waiting for your input.

Starting Python command line REPL

Now that Python is installed and running, you can immediately start using it. This is a good
way to get to know the language, as well as a useful tool for experimentation and quick
testing during normal development.

This Python command line environment is a Read-Eval-Print-Loop. Python will READ
whatever input we type in, EVALuate it, PRINT the result and then LOOP back to the
beginning. You’ll often hear it referred to by the acronymn “REPL”.

When started, the REPL will print some information about the version of Python you’re
running, and then it will give you a triple-arrow prompt. This prompt tells you that Python
is waiting for you to type something.

Within an interactive Python session you can enter fragments of Python programs and see
instant results. Let’s start with some simple arithmetic:

Chapter 1 - Getting started 5

>>> 2 + 2

>> 0 * 7

42

As you can see, Python reads our input, evaluates it, prints the result, and loops around to
do the same again.

We can assign to variables in the REPL:

>>> X = 5

print their contents by typing their name:

>>> X
5

and refer to them in expressions:

>>> 3 * x
15

Within the REPL you can use the special underscore variable to refer to the most recently
printed value, this being one of very few obscure shortcuts in Python:

>>>
15

Or you can use the special underscore variable in an expression:

>>> * 2
30

g Remember that this useful trick only works at the REPL; the underscore doesn’t

have any special behavior in Python scripts or programs.

Notice that not all statements have a return value. When we assigned 5 to x there was no
return value, only the side-effect of bringing the variable x into being. Other statements have
more visible side-effects.

Try:

Chapter 1 - Getting started 6

>>> print('Hello, Python')
Hello, Python

You’ll see that Python immediately evaluates and executes this command, printing the string
“Hello, Python” and returning you to another prompt. It’s important to understand that the
response here is not the result of the expression evaluated and displayed by the REPL, but is
a side-effect of the print () function.

As an aside, print is one of the biggest differences between Python 2 and Python 3. In
Python 3, the parentheses are required, whereas is Python 2 they were not. This is because
in Python 3, print() is a function call. More on functions later.

Leaving the REPL

At this point, we should show you how to exit the REPL and get back to your system
shell prompt. We do this by sending the end-of-file control character to Python, although
unfortunately the means of sending this character varies across platforms.

Windows

If you’re on Windows, press Ctrl-Z to exit.

Unix

If you’re on Mac or Linux, press Ctrl-D to exit.

If you regularly switch between platforms and you accidentally press Ctrl-Z on a Unix-
a-like system, you will inadvertently suspend the Python interpreter and return to your
operating system shell. To reactivate Python by making it a foreground process again, run
the fg command:

$ fg

and press Enter a couple of times to get the triple arrow Python prompt back:

Chapter 1 - Getting started 7

>>>

Code structure and significant indentation

Start your Python 3 interpreter:
> python

on Windows or:

$ python3

on Mac or Linux.

The control flow structures of Python, such as for-loops, while-loops, and if-statements, are
all introduced by statements which are terminated by a colon, indicating that the body of
the construct is to follow. For example, for-loops require a body, so if you enter:

>>> for i in range(5):

Python will present you with a prompt of three dots to request that you provide the body.

One distinctive (and sometimes controversial) aspect of Python is that leading whitespace is
syntactically significant. What this means is that Python uses indentation levels, rather than
the braces used by other languages, to demarcate code blocks. By convention, contemporary
Python code is indented by four spaces for each level.

So when Python presents us with the three dot prompt, we provide those four spaces and a
statement to form the body of the loop:

x =1 * 10

Our loop body will contain a second statement, so after pressing Return at the next three dot
prompt we’ll enter another four spaces followed by a call to the built-in print () function:

Chapter 1 - Getting started 8

- print(x)

To terminate our block, we must enter a blank line into the REPL:

With the block complete, Python executes the pending code, printing out the multiples of 10
less than 50:

10
20
30
40

Looking at at screenful of Python code, we can see how the indentation clearly matches —
and in fact must match — the structure of the program.

"""Class model for aircraft flights

class Flight:
"""A flight with a particular aircraft.”"”
def __init__(self, number, aircraft):
if not number[:2].isalpha():
raise ValueError("No airline code in '{}'".format(number))

if not number[:2].isupper():
raise ValueError("Invalid airline code '{}'".format(number))

if not (number[2:].isdigit() and int(number[2:]) <= 9999):
raise ValueError("Invalid route number '{}'".format(number))

self._number = number
self._aircraft = aircraft

rows, seats = self._aircraft.seating_plan()
self._seating = [None] + [{letter:None for letter in seats} for _ in rows]

def _passenger_seats(self):
"""An iterable series of passenger seating allocations.
row_numbers, seat_letters = self._aircraft.seating_plan()
for row in row_numbers:
for letter in seat_letters:
passenger = self._seating[row][letter]
if passenger is not None:
yield (passenger, "{3}{}".format(row, letter))

Python source code

Chapter 1 - Getting started 9

Even if we replace the code by gray lines, the structure of the program is clear.

Grayed out code

Each statement terminated by a colon starts a new line and introduces an additional level
of indentation, which continues until a dedent restores the indentation to a previous level.
Each level of indent is typically four spaces, although we’ll cover the rules in more detail in
a moment.

Python’s approach to significant whitespace has three great advantages:

1. It forces developers to use a single level of indentation in a code-block. This is generally
considered good practice in any language because it makes code much more readable.

2. Code with significant whitespace doesn’t need to be cluttered with unnecessary braces,
and you never need to have code-standard debates about where the braces should go.
All code-blocks in Python code are easily identifiable and everyone writes them the
same way.

3. Significant whitespace requires that a consistent interpretation must be given to the
structure of the code by the author, the Python runtime system and future maintainers
who need to read the code. As a result you can never have code that contains a block

Chapter 1 - Getting started 10

from Python’s point of view, but which doesn’t look like it contains a block from a
cursory human perspective.

The rules for Python indentation can seem complex, but they are quite straightforward in
practice.

+ The whitespace you use can be either spaces or tabs. The general consensus is that
spaces are preferable to tabs, and four spaces has become a standard in the Python
community.

+ One essential rule is NEVER to mix spaces and tabs. The Python interpreter will
complain, and your colleagues will hunt you down.

+ You are allowed to use different amounts of indentation at different times if you wish.
The essential rule is that consecutive lines of code at the same indentation level are
considered to be part of the same code block.

+ There are some exceptions to these rules, but they almost always have to do with
improving code readability in other ways, for example by breaking up necessarily long
statements over multiple lines.

This rigorous approach to code formatting is “Programming as Guido intended it” or, perhaps
more appropriately, “as Guido indented it”! A philosophy of placing a high value on code
qualities such as readability gets to the very heart of Python culture, something we’ll take a
short break to explore now.

Python culture

Many programming languages are at the center of a cultural movement. They have their
own communities, values, practices, and philosophy, and Python is no exception. The
development of the Python language itself is managed through a series of documents called
Python Enhancement Proposals, or PEPs. One of the PEPs, called PEP 8, explains how you
should format your code, and we follow its guidelines throughout this book. For example, it
is PEP 8 which recommends that we use four spaces for indentation in new Python code.

Another of these PEPs, called PEP 20 is called “The Zen of Python”. It refers to 20 aphorisms
describing the guiding principles of Python, only 19 of which have been written down.
Conveniently, the Zen of Python is never further away than the nearest Python interpreter,
as it can always be accessed from the REPL by typing:

Chapter 1 - Getting started 11

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren't special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.

Although never is often better than *right* now.

If the implementation is hard to explain, it's a bad idea.

If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

Throughout this book we’ll be highlighting particular nuggets of wisdom from the Zen of
Python in moments of zen to understand how they apply to what we have learned. As we've
just introduced Python significant indentation, this is a good time for our first moment of
zen.

Chapter 1 - Getting started 12

Moment of Zen

Readability Counts

Clarity Matters
So readability makes
For valuable code

In time, you’ll come to appreciate Python’s significant whitespace for the elegance it brings
to your code, and the ease with which you can read other’s.

Chapter 1 - Getting started 13

Importing standard library modules

As mentioned earlier, Python comes with an extensive standard library, an aspect of Python
that is often referred to as “batteries included”. The standard library is structured as modules,
a topic we’ll discuss in depth later. What’s important at this stage is to know that you gain
access to standard library modules by using the import keyword.

The basic form of importing a module is the import keyword followed by a space and the
name of the module. For example, let’s see how we can use the standard library’s math
module to compute square roots. At the triple-arrow prompt we type:

>>> import math

Since import is a statement which doesn’t return a value, Python doesn’t print anything
if the import succeeds, and we’re immediately returned to the prompt. We can access the
contents of the imported module by using the name of the module, followed by a dot,
followed by the name of the attribute in the module that you need. Like many object
oriented languages the dot operator is used to drill down into object structures. Being expert
Pythonistas, we have inside knowledge that the math module contains a function called
sqrt(). Let’s try to use it:

>>> math.sqrt(81)
9.0

Getting help()

But how can we find out what other functions are available in the math module?

The REPL has a special function help() which can retrieve any embedded documentation
from objects for which documentation has been provided, such as standard library modules.

To get help, type “help” at the prompt:

>>> help
Type help() for interactive help, or help(object) for help about object.

We’ll leave you to explore the first form — for interactive help — in your own time. Here
we’ll go for the second option and pass the math module as the object for which we want
help:

Chapter 1 - Getting started 14

>>> help(math)
Help on module math:

NAME
math

MODULE REFERENCE
http://docs.python.org/3.3/library/math

The following documentation is automatically generated from the Python
source files. It may be incomplete, incorrect or include features that
are considered implementation detail and may vary between Python
implementations. When in doubt, consult the module reference at the
location listed above.

DESCRIPTION
This module is always available. It provides access to the
mathematical functions defined by the C standard.

FUNCTIONS
acos(...)
acos(x)

Return the arc cosine (measured in radians) of x.

You can use the space-bar to page through the help, and if you’re on Mac or Linux use the
arrow keys to scroll up and down.

Browsing through the functions, you’ll see that there’s a math function, factorial, for
computing factorials. Press ‘q’ to exit the help browser, and return us to the Python REPL.

Now practice using help() to request specific help on the factorial function:

>>> help(math.factorial)
Help on built-in function factorial in module math:

factorial(...)
factorial(x) -> Integral

Find x!. Raise a ValueError if x is negative or non-integral.

Press ‘q’ to return to the REPL.

Chapter 1 - Getting started 15

Let’suse factorial() abit. The function accepts an integer argument and returns an integer
value:

>>> math.factorial(5)
120
>>> math.factorial(6)
720

Notice how we need to qualify the function name with the module namespace. This is
generally good practice, as it makes it abundantly clear where the function is coming from.
That said, it can result in code that is excessively verbose.

Counting fruit with math.factorial()

Let’s use factorials to compute how many ways there are to draw three fruit from a set of
five fruit using some math we learned in school:

>>>n =5

>>> k = 3

>>> math.factorial(n) / (math.factorial(k) * math.factorial(n - k))
10.0

This simple expression is quite verbose with all those references to the math module. The
Python import statement has an alternative form that allows us to bring a specific function
from a module into the current namespace by using the from keyword:

>>> from math import factorial
>>> factorial(n) / (factorial(k) * factorial(n - k))
10.0

This is a good improvement, but is still a little long-winded for such a simple expression.

A third form of the import statement allows us to rename the imported function. This can
be useful for reasons of readability, or to avoid a namespace clash. Useful as it is, though, we
recommend that this feature be used infrequently and judiciously:

Chapter 1 - Getting started 16

>>> from math import factorial as fac
>>> fac(n) / (fac(k) * fac(n - k))
10.0

Different types of numbers

Remember that when we used factorial() alone it returned an integer. But our more
complex expression above for calculating combinations is producing a floating point number.
This is because we've used /, Python’s floating-point division operator. Since we know our
operation will only ever return integral results, we can improve our expression by using //,
Python’s integer division operator:

>>> from math import factorial as fac
>>> fac(n) // (fac(k) * fac(n - k))
10

What’s notable is that many other programming languages would fail on the above
expression for even moderate values of n. In most programming languages, regular garden
variety signed integers can only store values less than 23!:

>>> k%31 - 1
2147483647

However, factorials grow so fast that the largest factorial you can fit into a 32-bit signed
integer is 12! since 13! is too large:

>>> fac(13)
6227020800

In most widely used programming languages you would need either more complex code or
more sophisticated mathematics merely to compute how many ways there are to draw three
fruits from a set of thirteen.

Python encounters no such problems and can compute with arbitrarily large integers, limited
only by the memory in your computer. To demonstrate this further, let’s try the larger
problem of computing how many different pairs of fruit we can pick from 100 different
fruits (assuming we can lay our hands on so many fruit!):

Chapter 1 - Getting started 17

>>> n = 100

>>> k = 2
>>> fac(n) // (fac(k) * fac(n - k))
4950

Just to emphasize how large the size of the first term of that expression is, calculate 100! on
it’s own:

>>> fac(n)
93326215443944152681699238856266700490715968264381621468592963895217599993229915608941463\
976156518286253697920827223758251185210916864000000000000000000000000

This number is vastly larger even than the number of atoms in the known universe, with
an awful lot of digits. If, like us, you’re curious to know exactly how many digits, we can
convert our integer to a text string and count the number of characters in it like this:

>>> len(str(fac(n)))
158

That’s definitely a lot of digits. And a lot of fruit. It also starts to show how Python’s different
data types — in this case, integers, floating point numbers, and text strings — work together
in natural ways. In the next section we’ll build on this experience and look at integers, strings,
and other built-in types in more detail.

Scalar data types: integers, floats, None and bool

Python comes with a number of built-in datatypes. These include primitive scalar types like
integers as well as collection types like dictionaries. These built-in types are powerful enough
to be used alone for many programming needs, and they can be used as building blocks for
creating more complex data types.

The basic built-in scalar types we’ll look at are:

+ int — signed, unlimited precision integers
« float — IEEE 754 floating-point numbers
« None — a special, singular null value

+ bool — true/false boolean values

For now we’ll just be looking at their basic details, showing their literal forms and how to
create them.

Chapter 1 - Getting started 18
int
We’ve already seen Python integers in action quite a lot. Python integers are signed and have,

for all practical purposes, unlimited precision. This means that there is no pre-defined limit
to the magnitude of the values they can hold.

Integer literals in Python are typically specified in decimal:

>>> 10
10

They may also be specified in binary with a 0b prefix:

>>> 0b10
2

octal, with a 0o prefix:

>>> 0010
8

or hexadecimal with a 0x prefix:

>>> 0Ox10
16

We can also construct integers by a call to the int constructor which can convert from other
numeric types, such as floats, to integers:

>>> int(3.5)
3

Note that, when using the int constructor, the rounding is always towards zero:

Chapter 1 - Getting started 19

>>> int(-3.5)
-3
>>> int(3.5)
3

We can also convert strings to integers:

>>> int("496")
496

Be aware, though, that Python will throw an exception (much more on those later!) if the
string doesn’t represent an integer.

You can even supply an optional number base when converting from a string. For example,
to convert from base 3 simply pass 3 as the second argument to the constructor:

>>> int("10000", 3)
81

float

Floating point numbers are supported in Python by the float type. Python floats are
implemented as IEEE-754 double-precision floating point numbers® with 53 bits of binary
precision. This is equivalent to between 15 and 16 significant digits in decimal.

Any literal number containing a decimal point is interpreted by Python as a float:

>>> 3,125
3.125

Scientific notation can be used, so for large numbers — such as 3 x 108, the approximate
speed of light in metres per second — we can write:

>>> 3e8
300000000.0

and for small numbers like Planck’s constant 1.616 x 10~3° we can enter:

*https://en.wikipedia.org/wiki/IEEE_floating_point

https://en.wikipedia.org/wiki/IEEE_floating_point
https://en.wikipedia.org/wiki/IEEE_floating_point

Chapter 1 - Getting started 20

>>> 1.616e-35
1.616e-35

Notice how Python automatically switches the display representation to the most readable
form.

As for integers, we can convert to floats from other numeric or string types using the float
constructor. For example, the constructor can accept an int:

>>> float(7)
7.0

or a string:

>>> float("1.618")
1.618

Special floating point values

By passing certain strings to the float constructor, we can create the special floating point
value NaN (short for Not a Number) and also positive and negative infinity:

>>> float("nan")

nan
>>> float("inf")
inf
>>> float("-inf")
-inf

Promotion to float

The result of any calculation involving int and float is promoted to a float:

>>> 3.0 + 1
4.0

You can read more about Python’s number types in the Python documentation®.

**http://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

http://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex
http://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex

Chapter 1 - Getting started 21

None
Python has a special null value called None, spelled with a capital “N”. None is frequently

used to represent the absence of a value. The Python REPL never prints None results, so
typing None into the REPL has no effect:

>>> None

>>>

None can be bound to variable names just like any other object:

>>> a = None

and we can test whether an object is None by using Python’s is operator:

>>> 3 is None
True

We can see here that the response is True, which brings us conveniently on to the bool type.

bool

The bool type represents logical states and plays an important role in several of Python’s
control flow structures, as we’ll see shortly.

As you would expect there are two bool values, True and False, both spelled with initial
capitals:

>>> True
True
>>> False
False

There is also a bool constructor which can be used to convert from other types to bool. Let’s
look at how it works. For ints, zero is considered “falsey” and all other values “truthy”:

Chapter 1 - Getting started 22

>>> bool(0)
False
>>> bool(42)
True
>>> bool(-1)
True

We see the same behavior with floats where only zero is considered “falsey”

>>> bool(0.0)

False

>>> bool(0.207)

True

>>> bool(-1.117)

True

>>> bool(float("NaN"))
True

When converting from collections, such as strings or lists, only empty collections are treated
as “falsey”. When converting from lists — which we’ll look at shortly — we see that only the
empty list (shown here in it’s literal form of []) evaluates to False:

>>> bool([])

False

>>> bool([1, 5, 9])
True

Similarly, with strings only the empty string, "", evaluates to False when passed to bool:

>>> bool("")
False

>>> bool("Spam")
True

In particular, you cannot use the bool constructor to convert from string representations of
True and False:

Chapter 1 - Getting started 23

>>> bool("False")
True

Since the string “False” is not empty, it will evaluate to True!

These conversions to bool are important because they are widely used in Python if-
statements and while-loops which accept bool values in their condition.

Relational operators

Boolean values are commonly produced by Python’s relational operators which can be used
for comparing objects.

Two of the most widely used relational operators are Python’s equality and inequality tests,
which actually test for equivalence or inequivalence of values. That is, two objects are
equivalent if one could be used in place of the other. We’ll learn more about the notion
of object equivalence later in the book. For now, we’ll compare simple integers.

Let’s start by assigning — or binding — a value to a variable g:
>>> g = 20

We test for equality with ==:

>>> g == 20
True
>>> g == 13
False

or for inequality using !=:

>>> g != 20
False
>>> g != 13
True

Rich comparison operators

We can also compare the order of quantities using the rich comparison operators. Use < to
determine if the first argument is less than the second:

Chapter 1 - Getting started 24

>>> g < 30
True

Likewise, use > to determine if the first is greater than the second:

>>> g > 30
False

You can test less-than or equal-to with <=:

>>> g <= 20
True

and greater-than or equal-to with >=:

>>> g >= 20
True

If you have experience with relational operators from other languages, then Python’s oper-
ators are probably not surprising at all. Just remember that these operators are comparing
equivalence, not identity, a distinction we’ll cover in detail in coming chapters.

Control flow: if-statements and while-loops

Now that we’ve examined some basic built-in types, let’s look at two important control flow
structures which depend on conversions to the bool type: if-statements and while-loops.

Conditional control flow: the if-statement
Conditional statements allow us to branch execution based on the value of an expression.
The form of the statement is the if keyword, followed by an expression, terminated by a

colon to introduce a new block. Let’s try this at the REPL:

>>> if True:

Remembering to indent four spaces within the block, we add some code to be executed if
the condition is True, followed by a blank line to terminate the block:

Chapter 1 - Getting started 25

print("It's true!")

It's true!

At this point the block will execute, because self-evidently the condition is True. Conversely,
if the condition is False, the code in the block does not execute:

>>> if False:
print("It's true!")

>>>

The expression used with the if-statement will be converted to a bool just as if the bool()
constructor had been used, so:

>>> if bool("eggs"):
print("Yes please!")

Yes please!
is exactly equivalent to:

>>> if "eggs":
print("Yes please!")

Yes please!

Thanks to this useful shorthand, explicit conversion to bool using the bool constructor is
rarely used in Python.

if...else

The if-statement supports an optional “else” clause which goes in a block introduced by the
else keyword (followed by a colon) which is indented to the same level as the if keyword.
Let’s start by creating (but not finishing) an if-block:

Chapter 1 - Getting started 26

>>> h = 42
>>> if h > 50:
print("Greater than 50")

To start the else block in this case, we just omit the indentation after the three dots:

. else:
print("50 or smaller")

50 or smaller

if...elif...else

For multiple conditions you might be tempted to do something like this:

>>> if h > 50:
print("Greater than 50")
. else:
if h < 20:
print("Less than 20")
else:
print("Between 20 and 50")

Between 20 and 50

Whenever you find yourself with an else-block containing a nested if-statement, like this,
you should consider using Python’s elif keyword which is a combined else-if.

As the Zen of Python reminds us, “Flat is better than nested”:

Chapter 1 - Getting started 27

>>> if h > 50:
print("Greater than 50")
. elif h < 20:
print("Less than 20")
. else:
print("Between 20 and 50")

Between 20 and 50

This version is altogether easier to read.

Conditional repetition: the while-loop

Python has two types of loops: for-loops and while-loops. We've already briefly encountered
for-loops back when we introduced significant whitespace, and we’ll return to them soon,
but right now we’ll cover while-loops.

While-loops in Python are introduced by the while keyword, which is followed by a boolean
expression. As with the condition for if-statements, the expression is implicitly converted to
a boolean value as if it has been passed to the bool() constructor. The while statement is
terminated by a colon because it introduces a new block.

Let’s write a loop at the REPL which counts down from five to one. We’ll initialize a counter
variable called c to five, and keep looping until we reach zero. Another new language feature
here is the use of an augmented-assignment operator, -=, to subtract one from the value of
the counter on each iteration. Similar augmented assignment operators exist for the other
basic math operations such as addition and multiplication:

>>> c =5

>>> while ¢ != 0:
print(c)
c -=1

= N W B~ U

Because the condition — or predicate — will be implicitly converted to bool, just as if a call
to the bool() constructor were present, we could replace the above code with the following
version:

Chapter 1 - Getting started 28

>>> Cc =5

>>> while c:
print(c)
c -=1

5

4

3

2

1

This works because the conversion of the integer value of ¢ to bool results in True until
we get to zero which converts to False. That said, to use this short form in this case might
be described as un-Pythonic, because, referring back to the Zen of Python, explicit is better
than implicit. We place higher value of the readability of the first form over the concision of
the second form.

While-loops are often used in Python where an infinite loop is required. We achieve this by
passing True as the predicate expression to the while construct:

>>> while True:
print("Looping!")

Looping!
Looping!
Looping!
Looping!
Looping!
Looping!
Looping!
Looping!

Now you’re probably wondering how we get out of this loop and regain control of our REPL!
Simply press Ctrl-C:

Chapter 1 - Getting started 29

Looping!

Looping!

Looping!

Looping!

Looping!

Looping!~C

Traceback (most recent call last):
File "<stdin>", line 2, in <module>
KeyboardInterrupt

>>>

Python intercepts the key stroke and raises a special exception which terminates the loop.
We'll be talking much more about what exceptions are, and how to use them, later in Chapter
6.

Exiting loops with break

Many programming languages support a loop construct which places the predicate test at
the end of the loop rather than at the beginning. For example, C, C++, C# and Java support
the do-while construct. Other languages have repeat-until loops instead or as well. This is
not the case in Python, where the idiom is to use while True together with an early exit,
facilitated by the break statement.

The break statement jumps out of the loop — and only the innermost loop if severals loops
have been nested — continuing execution immediately after the loop body.

Let’s look at an example of break, introducing a few other Python features along the way,
and examine it line-by-line:

>>> while True:
response = input()
if int(response) % 7 ==
break

We start with a while True: for an infinite loop. On the first statement of the while block
we use the built-in input () function to request a string from the user. We assign that string
to a variable called response.

We now use an if-statement to test whether the value provided is divisible by seven. We
convert the response string to an integer using the int() constructor and then use the

Chapter 1 - Getting started 30

modulus operator, %, to divide by seven and give the remainder. If the remainder is equal to
zero, the response was divisible by seven, and we enter the body of the if-block.

Within the if-block, now two levels of indentation deep, we start with eight spaces and use
the break keyword. break terminates the inner-most loop — in this case the while-loop —
and causes execution to jump to the first statement after the loop.

Here, that “statement” is the end of the program. We enter a blank line at the three dots
prompt to close both the if-block and the while-block.

Our loop will start executing, and will pause at the call to input () waiting for us to enter a
number. Let’s try a few:

12
67
34
28

>>>

As soon as we enter a number divisible by seven the predicate becomes True, we enter the
if-block, and then we literally break out of the loop to the end of program, returning us to
the REPL prompt.

Summary

« Starting out with Python

— Obtaining and installing Python 3
Starting the Read-Eval-Print-Loop or REPL
Simple arithmetic

Creating variables by binding objects to names

Printing with the built-in print() function
Exiting the REPL with Ctrl-Z (Windows) or Ctrl-D (Unix)
+ Being Pythonic

— Significant indentation

— PEP 8 - The Style Guide for Python Code

— PEP 20 - The Zen of Python
« Importing modules with the import statement in various forms
» Finding and browsing help()

Chapter 1 - Getting started

« Basic types and control flow

— ints, floats, None, and bool, plus conversions between them

Relational operators for equality and ordering tests
if-statements with else and elif blocks

while-loops with implicit conversion to bool

Interrupting infinite loops with Ctrl-C

Breaking out of loops with break

« Requesting text from the user with input()
+ Augmented assignment operators

31

Chapter 2 - Strings and collections

Python includes a rich selection of built-in collection types which are often completely
sufficient for even quite intricate programs without resorting to defining our own data
structures. We’ll give an overview of some of these fundamental collection types now -
enough to allow us to write some interesting code — although we’ll be revisiting each of
these collection types, together with a few additional ones, in later chapters.

Let’s start with these types:

« str - immutable strings of Unicode code points
» bytes — immutable strings of bytes

+ list — mutable sequences of objects

+ dict — mutable mappings from keys to values

Along the way, we’ll also cover Python’s for-loops.

Chapter 2 — Strings and collections 33

str - an immutable sequence of Unicode code
points

Strings in Python have the datatype str and we’ve been using them extensively already. A
string is a sequence of Unicode code-points, and for the most part you can think of code-
points as being like characters, although they aren’t strictly equivalent. The sequence of
code-points in a Python string is immutable, so once you’ve constructed a string, you can’t
modify its contents.

The difference between code points, letters, characters, and glyphs can be confusing. Let’s
try to clarify with an example: The Greek capital letter & (sigma), which is of course
used widely in the writing of Greek text, is also used by mathematicians to signify
summation of a series. These two uses of the letter sigma are represented by distinct
Unicode characters called GREEK CAPITAL LETTER SIGMA and N-ARY SUMMATION
respectively. Typically, where the same letter is used to convey different information, a
different Unicode character is used. Another example would be the GREEK CAPITAL
LETTER OMEGA and OHM SIGN, the symbol for the unit of electrical resistance. A
code point is any one member of the set of numerical values which make up the code
space. Each character is associated with a single code point, so GREEK CAPITAL LETTER
SIGMA is assigned to U+03A3 and N-ARY SUMMATION is assigned to U+2211. As we
have done here, code points are often written in U+nnnn form where nnnn is a four, five or
six digit hexadecimal number. Not all code points have yet been allocated to characters. For
example, U+0378 is an unassigned code point, and there’s nothing to stop you including
this code point in a Python str using the \u6378 escape sequence; hence, str really is a
sequence of code points and not a sequence of characters. Although the term is not used
in the context of Python, for completeness we feel we should point out that a glyph is
the visual representation of a character. Different characters, such as GREEK CAPITAL
LETTER SIGMA and N-ARY SUMMATION may be rendered using the same glyph, or
indeed different glyphs, depending on the font in use.

String quoting styles

Literal strings in Python are delimited by quotes:

Chapter 2 — Strings and collections 34

>>> 'This is a string'

You can use single quotation marks, as we have above. Or you can use double quotation
marks, as shown below:

>>> "This is also a string"

You must, however, be consistent. For example, you can’t use a double quotation mark paired
with a single quotation mark:

>>> "inconsistent'
File "<stdin>", line 1
"inconsistent'

A

SyntaxError: EOL while scanning string literal

Supporting both quoting styles allows you to easily incorporate the other quote character
into the literal string without resorting to ugly escape character gymnastics:

>>> "It's a good thing."

"It's a good thing."

>>> '"Yes!", he said, "I agree!"'
""Yes!", he said, "I agree!"'

Notice that the REPL exploits the same quoting flexibility when echoing the strings back to
us.

Chapter 2 - Strings and collections 35

Moment of zen

Moment of Zen

Practicality beats
purity

Beautiful text strings

Rendered in literal form
Simple elegance

At first sight support for both quoting styles seems to violate an important principle of
Pythonic style. From the Zen of Python:

“There should be one — and preferably only one — obvious way to do it.”

In this case, however, another aphorism from the same source takes precedence:
“...practicality beats purity,”

The utility of supporting two quoting styles is valued more highly than the alternative: a

single quoting style combined with more frequent use of ugly escape sequences, which we’ll
encounter shortly.

Chapter 2 - Strings and collections

36

Chapter 2 — Strings and collections 37

Concatenation of adjacent strings

Adjacent literal strings are concatenated by the Python compiler into a single string:

>>> "first" "second"
'firstsecond'

Although at first this seems rather pointless, it can be useful for nicely formatting code as
we’ll see later.

Multiline strings and newlines

If you want a literal string containing newlines, you have two options: Use multiline strings,
or use escape sequences. First, let’s look at multiline strings.

Multiline strings are delimited by three quote characters rather than one. Here’s an example
using three double-quotes:

>>> """This is
. a multiline
. string"""
'This is\na multiline\nstring'

Notice how, when the string is echoed back to us, the newlines are represented by the \n
escape sequence.

We can also use three single-quotes:

>>> '''So

.. IS

. this.'"'
'So\nis\nthis.'

As an alternative to using multiline quoting, we can just embed the control characters
ourselves:

Chapter 2 — Strings and collections 38

>>> m = 'This string\nspans mutiple\nlines'
>>> M
'This string\nspans mutiple\nlines'

To get a better sense of what we’re representing in this case, we can use the built-in print()
function to see the string:

>>> print(m)
This string
spans mutiple
lines

If you're working on Windows, you might be thinking that newlines should be represented
by the carriage-return, newline couplet \r\n rather than just the newline character, \n.
There’s no need to do that with Python, since Python 3 has a feature called universal newline
support which translates from the simple \n to the native newline sequence for your platform
on input and output. You can read more about Universal Newline Support in PEP 278%.

We can use the escape sequences for other purposes, too, such as incorporating tabs with \t
or using quote characters inside strings with \":

>>> "This is a \" in a string"
'This is a " in a string’'

or the other way around:

>>> 'This is a \' in a string'
"This is a ' in a string"

As you can see, Python is smarter than we are at using the most convenient quote delimiters,
although Python will also resort to escape sequences when we use both types of quotes in a
string:

>>> 'This is a \" and a \' in a string'
'This is a " and a \' in a string'

Because the backslash has special meaning, to place a backslash in a string we must escape
the backslash with itself:

*http://www.python.org/dev/peps/pep-0278/

http://www.python.org/dev/peps/pep-0278/
http://www.python.org/dev/peps/pep-0278/

Chapter 2 — Strings and collections 39

>>> k = 'A \\ in a string'
"A\\ in a string'

To reassure ourselves that there really is only one backslash in that string, we can print()
it:

>>> print(k)
A\ in a string

You can read more about escape sequences in the Python documentation® .

Raw strings

Sometimes, particularly when dealing with strings such as Windows filesystem paths or
regular expression patterns > which use backslashes extensively, the requirement to double-
up on backslashes can be ugly and error prone. Python comes to the rescue with its raw
strings. Raw strings don’t support any escape sequences and are very much what-you-see-
is-what-you-get. To create a raw string, precede the opening quote with a lower-case r:

>>> path = r'C:\Users\Merlin\Documents\Spells"

>>>

>>> path
"C:\\Users\\Merlin\\Documents\\Spells'
>>> print(path)
C:\Users\Merlin\Documents\Spells

Although it’s common to store and manipulate filesystem paths as strings, for
anything but the most straightforward path handling, you should investigate the
Python Standard Library pathlib module.

The str constructor

We can use the str constructor to create strings representations of other types, such as
integers:

*http://docs.python.org/3/reference/lexical_analysis.html#strings
*"We don’t cover regular expressions — also known as regexes — in this book. See the documentation for the Python Standard
Library re module for more information. https://docs.python.org/3/library/re.html

http://docs.python.org/3/reference/lexical_analysis.html#strings
http://docs.python.org/3/reference/lexical_analysis.html#strings
https://docs.python.org/3/library/re.html

Chapter 2 — Strings and collections 40

>>> str(496)
>>> '496'

or floats:

>>> str(6.02e23)
'6.02e+23"

Strings as sequences
Strings in Python are what are called sequence types, which means they support certain

common operations for querying ordered series of elements. For example, we can access
individual characters using square brackets with an zero-based integer index:

>>> s = 'parrot’
>>> s[4]
o

In contrast to many other programming languages, there is no separate character type
distinct from the string type. The indexing operation returns a full-blown string that just
contains a single code point element, a fact we can demonstrate using Python’s built-in
type() function:

>>> type(s[4])
<class 'str'>

We'll be looking at types and classes much more later in this book.

String methods

String objects also support a wide variety of operations implemented as methods. We can
list those methods by using help() on the string type:

>>> help(str)

When you press enter, you should see a display like this:

Chapter 2 - Strings and collections 41

Help on class str in module builtins:

class str(object)

str(object="") -> str
str(bytes or buffer[, encoding[, errors]]) -> str

Create a new string object from the given object. If encoding or
errors is specified, then the object must expose a data buffer
that will be decoded using the given encoding and error handler.
Otherwise, returns the result of object. str () (if defined)
or repr(object).

encoding defaults to sys.getdefaultencoding().

errors defaults to 'strict'.

Methods defined here:

__add__ (self, value, /)

Return self+value.

__contains__ (self, key, /)
Return key in self.

__eq_ (self, value, /)

On any platform you can browse through the help page by pressing the spacebar to advance
one page at a time until you see the documentation for the capitalize() method, skipping
over all the methods that begin and end with double underscores:

Create and return a new object. See help(type) for accurate signature.

__repr__(self, /)
Return repr(self).

__rmod__ (self, value, /)
Return value%self.

_ rmul__ (self, value, /)
Return self*value.

__sizeof (...)
S. sizeof () -> size of S in memory, in bytes

Chapter 2 — Strings and collections 42

str (self, /)
Return str(self).

|

|

|

| capitalize(...)

| S.capitalize() -> str
|

|

|

|

Return a capitalized version of S, i.e. make the first character
have upper case and the rest lower case.

Press ‘q’ to quit the help browser, and we’ll try to use capitalize(). Let’s make a string
that deserves capitalization — the name of a capital city no less!

>>> ¢ = "oslo"

To call methods on objects in Python we use the dot after the object name and before the
method name. Methods are functions, so we must use the parentheses to indicate that the
method should be called.

>>> c.capitalize()
'Oslo’

Remember that strings are immutable, so the capitalize() method didn’t modify c in
place. Rather, it returned a new string. We can verify this, by displaying c, which remains
unchanged:

>>> C
'oslo’

You might like to spend a little time familiarizing yourself with the various useful methods
provided by the string type by browsing the help.

Strings with Unicode

Strings are fully Unicode capable, so you can use them with international characters easily,
even in literals, because the default source code encoding for Python 3 is UTF-8. For example,
if you have access to Norwegian characters, you can simply enter this:

Chapter 2 — Strings and collections 43

>>> "Vi er sd glad for & hgre og lare om Python!"
'Vi er sd glad for a@ hgre og lare om Python!'

Alternatively, you can use the hexadecimal representations of Unicode code points as an
escape sequence prefixed by \u:

>>> "Vi er s\u@0e5 glad for \u@0e5 h\xf8re og 1\u@0e6bre om Python!"
'Vi er sd glad for a@ hgre og lare om Python!'

We're sure you’ll agree, though, that this is somewhat more unwieldy.

Similarly, you can use the \x escape sequence followed by a 2-character hexadecimal string
to include one-byte Unicode code points in a string literal:

>>> '\xe5'
|é|

You can even use an escaped octal string using a single backlash followed by three digits in
the range zero to seven, although we confess we’'ve never seen this used in practice, except
inadvertently as a bug:

>>> '\345'
|é|

There are no such Unicode capabilities in the otherwise similar bytes type, which we’ll look
at next.

bytes - an immutable sequence of bytes

The bytes type is similar to the str type, except that rather than each instance being a
sequence of Unicode code points, each instance is a sequence of, well, bytes. As such, bytes
objects are used for raw binary data and fixed-width, single-byte character encodings, such
as ASCIL

Literal bytes

As with strings they have a simple, literal form delimited by either single or double quotes,
although for literal bytes the opening quote must be preceded by a lower-case b:

Chapter 2 — Strings and collections 44

>>> b'data’
b'data’
>>> p"data"
b'data’

There is also a bytes constructor, but it has fairly complex behavior and we defer coverage
of it to the second book in this series, The Python Journeyman. At this point in our journey,
it’s sufficient for us to recognize bytes literals and understand that they support many of
the same operations as str, such as indexing and splitting:

>>> d = b'some bytes'
>>> d.split()
[b'some', b'bytes']

You'll see that the split() method returns a list of of bytes objects.

Converting between bytes and str

To convert between bytes and str we must know the encoding of the byte sequence used
to represent the string’s Unicode code points as bytes. Python supports a wide-variety of
so-called codecs such as UTF-8, UTF-16, ASCII, Latin-1, Windows-1251, and so on — consult
the Python documentation for a current list of codecs*

In Python we can encode a Unicode str into a bytes object, and going the other way we
can decode a bytes object into a Unicode str. In either direction it’s up to us to specify
the encoding. Python won’t — and generally speaking can’t —— do anything to prevent you
erroneously decoding UTF-16 data stored in a bytes object using, say, a CP037 codec for
handling strings on legacy IBM mainframes. If you're lucky the decoding will fail with a
UnicodeError at runtime; if you’re unlucky you’ll wind up with a str full of garbage that
will go undetected by your program.

**http://docs.python.org/3/library/codecs.html#standard-encodings

http://docs.python.org/3/library/codecs.html#standard-encodings
http://docs.python.org/3/library/codecs.html#standard-encodings

Chapter 2 — Strings and collections 45

'T 9 Tromsg'
Q 1 2 3 4 5 6 7 8 9
I v Tlrlo/m/ s|@

Each element is a Unicode code point - obtainable as a single codepoint string

my_bytes = my_str.encode('utf-8")

Unicode Code Point UTF-8 Encoding
LATIN CAPITAL LETTER I (U+0049) 49

SPACE (U+0020) 20

HEAVY BLACK HEART (U+2764) E2 9D A4 EF B8 8F
SPACE (U+0020) 20

LATIN CAPITAL LETTER T (U+0054) 54

LATIN SMALL LETTER R (U+0072) 72

LATIN SMALL LETTER O (U+006F) 6F

LATIN SMALL LETTER M (U+006D) 6D

LATIN SMALL LETTER S (U+0073) 73

LATIN SMALL LETTER O WITH STROKE (U+QQF8) C3 B8

my_str = my_bytes.decode('utf-8")

e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
|49 20|E2|9D|A4 EF |B8|8F 20|54 72|6F|6D|73|C3 BS|

Each element is a byte - obtainable as an integer 0-255

b'T \xe2\x9d\xa4\xef\xb8\x8f Troms\xc3\xb8'

Encoding and decoding strings.

Chapter 2 - Strings and collections 46

Let’s kick off an interactive session looking at strings, with an interesting Unicode string
which contains all the characters of the 29 letter Norwegian alphabet — a pangram:

>>> norsk = "Jeg begynte & fortazre en sandwich mens jeg kjerte taxi pd vei til quiz"

We’'ll now encode that using the UTF-8 codec into a bytes object using the encode () method
of the str object:

>>> data = norsk.encode('utf-8"')

>>> data

b'Jeg begynte \xc3\xa5 fort\xc3\xabre en sandwich mens jeg kj\xc3\xb8rte taxi p\xc3\xa5 v\
ei til quiz'

See how each of the Norwegian letters has been rendered as a pair of bytes.

We can reverse the process using the decode () method of the bytes object. Again, it is up
to us to supply the correct encoding:

>>> norwegian = data.decode('utf-8')

We can check that the encoding/decoding round-trip gives us a result equal to what we
started with:

>>> norwegian == norsk
True

and display it for good measure:

>>> norwegian
‘Jeg begynte & fortare en sandwich mens jeg kjgrte taxi pad vei til quiz'

All this messing about with encodings may seem like unnecessary detail at this juncture
— especially if you operate in an anglophone environment — but it’s crucial to understand
since files and network resources such as HTTP responses are transmitted as byte streams,
whereas we prefer to work with the convenience of Unicode strings.

Chapter 2 — Strings and collections 47

o String differences between Python 3 and
Python 2

The biggest difference between contemporary Python 3 and legacy Python 2 is the
handling of strings. In versions of Python up to and including Python 2 the str
type was a so-called byte string, where each character was encoded as a single
byte. In this sense, Python 2 str was similar to the Python 3 bytes, however, the
interface presented by str and bytes is in fact different in significant ways. In
particular their constructors are completely different and indexing into a bytes
object returns an integer rather than a single code point string. To confuse matters
further, there is also a bytes type in Python 2.6 and Python 2.7, but this is just a
synonym for str and as such has an identical interface.

If you’re writing text handling code intended to be portable across Python 2 and
Python 3 — which is perfectly possible — tread carefully!

list - a sequence of objects

Python lists, such as those returned by the string split () method, are sequences of objects.
Unlike strings lists are mutable, insofar as the elements within them can be replaced or
removed, and new elements can be inserted or appended. 1ists are the workhorse of Python
data structures.

Literal lists are delimited by square brackets, and the items within the 1ist are separated by
commas. Here is a 1ist of three numbers:

>>> [1, 9, 8]
(1, 9, 8]

And here is a 1ist of three strings:
>>> a = ["apple", "orange", "pear"]

We can retrieve elements by using square brackets with a zero-based index:

Chapter 2 — Strings and collections 48

>>> a[l]
"orange"

We can replace elements by assigning to a specific element:

>>> a[l] =7
>>> a
['apple', 7, 'pear']

See how lists can be heterogeneous with respect to the type of the contained objects. We
now have a list containing an str, an int, and another str.

It’s often useful to create an empty list, which we can do using empty square brackets:

>>> b = []

We can modify the 1ist in other ways. Let’s add some floats to the end of the 1ist using
the append() method:

>>> b.append(1.618)

>>> b

[1.618]

>>> b.append(1.414)
[1.618, 1.414]

There are many other useful methods for manipulating lists, which we’ll cover in a later
chapter. Right now, we just need to be able to perform rudimentary 1ist operations.

There is also a 1ist constructor, which can be used to create lists from other collections,
such as strings:

>>> list("characters")

[ICI, Ihl, |a|, |r,

a,

CI, Itl, IeI’ IrI’ ISI]

Although the significant whitespace rules in Python can, at first, seem very rigid, there is a
lot of flexibility. For example, if you have unclosed brackets, braces, or parentheses at the
end of a line, you can continue on the next line. This can be very useful for representing long

literal collections, or improving the readability of even short collections:

Chapter 2 — Strings and collections 49

>>> ¢ = ['bear',

'giraffe',
'elephant’,
"caterpillar',]
>>> C
['bear', 'giraffe', 'elephant', 'caterpillar']

See also how we’re allowed to use an additional comma after the last element, a handy
feature that improves the maintainability of the code.

dict - associating keys with values

Dictionaries — embodied in the dict type — are completely fundamental to the way the
Python language works, and are very widely used. A dictionary maps keys to values, and in
some languages it is known as a map or associative array. Let’s look at how to create and
use dictionaries in Python.

Literal dictionaries are created using curly braces containing key-value pairs. Each pair is
separated by a comma, and each key is separated from its corresponding value by a colon.
Here we use a dictionary to create a simple telephone directory:

>>> d = {'alice': '878-8728-922', 'bob': '256-5262-124', 'eve': '198-2321-787'}

We can retrieve items by key using the square brackets operator:

>>> d['alice']
'878-8728-922"'

And we can update the value associated with a particular key by assigning through the
square brackets:

>>> d['alice'] = '966-4532-6272"'
>>> d
{'bob': '256-5262-124"', 'eve': '198-2321-787', 'alice': '966-4532-6272'}

If we assign to a key that has not yet been added, a new entry is created:

Chapter 2 — Strings and collections 50

>>> d['charles'] = '334-5551-913"

>>> d

{'bob': '256-5262-124', 'eve': '198-2321-787"',
'charles': '334-5551-913', 'alice': '966-4532-6272'}

Be aware that the entries in the dictionary can’t be relied upon to be stored in any particular
order, and in fact the order that Python chooses may even change between runs of the same
program.

Similarly to lists, empty dictionaries can be created using empty curly braces:

>>> e = {}

This has been a very cursory look at dictionaries, but we’ll be revisiting them in much more
detail in Chapter 5.

For-loops - iterating over series of items

Now that we have the tools to make some interesting data structures, we’ll look at Python’s
other type of loop construct, the for-loop. For-loops in Python correspond to what are called
for-each loops in many other programming languages. They request items one-by-one from
a collection — or more strictly from an iterable series (but more of that later) — and assign
them in turn to the variable we specify. Let’s create a 1ist collection, and use a for-loop to
iterate over it, remembering to indent the code within the for-loop by four spaces:

>>> cities = ["London", "New York", "Paris", "Oslo", "Helsinki"]
>>> for city in cities:
print(city)
London
New York
Paris

Oslo
Helsinki

So iterating over a list yields the items one-by-one. If you iterate over a dictionary, you get
just the keys in seemingly random order, which can then be used within the for-loop body to
retrieve the corresponding values. Let’s define a dictionary which maps color name strings
to hexadecimal integer color codes stored as integers:

0 N O U A W N

Chapter 2 - Strings and collections 51

>>> colors = {'crimson': Oxdcl43c, 'coral': Oxff7f50, 'teal': Ox008080}
>>> for color in colors:
print(color, colors[color])

coral 16744272
crimson 14423100
teal 32896

Here we use the ability of the built-in print() function to accept multiple arguments,
passing the key and the value for each color separately. See also how the color codes returned
to us are in decimal.

Now, before we put some of what we’'ve learned together into a useful program, practice
exiting the Python REPL with Ctrl-Z on Windows or Ctrl-D on Mac or Linux.

Putting it all together

Let’s take a short detour to try out some of the tools we’ve introduced on a slightly larger
example. Textbooks typically avoid such pragmatism, especially in the early chapters, but
we think it’s fun to apply new ideas to practical situations. To avoid getting off the wrong
stylistic foot, we’ll need to introduce a few “black-box” components to get the job done, but
you’ll learn about them in detail later, so don’t worry.

We’'re going to write a longer snippet at the REPL, and briefly introduce the with statement.
Our code will fetch some text data for some classic literature from the web using a Python
standard library function called urlopen(). Here’s the code entered at the REPL in full.
We’ve annotated this code snippet with line numbers to facilitate referring to lines from the
explanation:

>>> from urllib.request import urlopen
>>> with urlopen('http://sixty-north.com/c/t.txt') as story:
story words = []
for line in story:
line words = line.split()
for word in line words:
story words.append(word)

We'll work through this code, explaining each line in turn.

Chapter 2 - Strings and collections 52

1. To get access to urlopen() we need to import the function from the request module,
which itself resides within the standard library urllib package.

2. We're going to call urlopen() with the URL to the story text. We use a Python
construct called a with-block to manage the resource obtained from the URL, since
fetching the resource from the web requires operating system sockets and suchlike.
We’ll be talking more about with statements in a later chapter, but for now it’s enough
to know that using a with statement with objects which use external resources is good
practice to avoid so-called resource leaks. The with statement calls the urlopen()
function and binds the response object to a variable named story.

3. Notice that the with statement is terminated by a colon, which introduces a new block,
so within the block we must indent four spaces. We create an empty list which
ultimately will hold all of the words from the retrieved text.

4. We open a for-loop which will iterate through the story. Recall that for-loops request
items one-by-one from the expression on the right of the in keyword — in this case
story — and assign them in turn to the name on the left — in this case line. It so
happens that that type of HTTP response object referred to by story yields successive
lines of text from the response body when iterated over in this way, so the for-loop
retrieves one line of text at a time from the story. The for statement is also terminated
by a colon because it introduces the body of the for-loop, which is a new block and
hence a further level of indentation.

5. For each line of text, we use the split () method to divide it into words on whitespace
boundaries, resulting in a list of words we call line_words.

6. Now we use a second for-loop nested inside the first to iterate over this list of words.

7. We append () each word in turn to the accumulating story words list.

8. Finally, we enter a blank line at the three dots prompt to close all open blocks — in this
case the inner for-loop , the outer for-loop, and the with-block will all be terminated.
The block will be executed, and after a short delay, Python now returns us to the regular
triple-arrow prompt. At this point if Python gives you an error, such as a SyntaxError
or IndentationError, you should go back, review what you entered, and carefully re-
enter the code until Python accepts the whole block without complaint. If you get an
HTTPError, then you were unable to fetch the resource over the Internet, and you
should check your network connection or try again later, although it’s worth checking
that you typed the URL correctly.

HTTP access problems?

Chapter 2 — Strings and collections 53

If you have trouble with this urlopen() call - for example, if you see a message about
HTTP errors or proxies - you can replace it with a call to open(). Instead of passing a URL
as we do in the example, you’ll need to pass a normal filesystem path to open ().

For example, if you download the file t . txt to your desktop on Windows, the urlopen('http://sixty-nort
call could become open('c:\Users\username\Desktop\t.txt").

We can look at the words we’ve collected by asking Python to evaluate the value of story -
words:

>>> story words

[b'It', b'was', b'the', b'best', b'of', b'times', b'it', b'was', b'the’,
b'worst', b'of', b'times',b'it', b'was', b'the', b'age', b'of', b'wisdom',
b'it', b'was', b'the', b'age', b'of', b'foolishness', b'it', b'was',
b'the', b'epoch', b'of', b'belief', b'it', b'was', b'the', b'epoch', b'of"',
b'incredulity', b'it', b'was', b'the', b'season', b'of', b'Light', b'it"',
b'was', b'the', b'season', b'of', b'Darkness', b'it', b'was', b'the',
b'spring', b'of', b'hope', b'it', b'was', b'the', b'winter', b'of"',
b'despair', b'we', b'had', b'everything', b'before', b'us', b'we', b'had',
b'nothing', b'before', b'us', b'we', b'were', b'all', b'going', b'direct’',
b'to', b'Heaven', b'we', b'were', b'all', b'going', b'direct', b'the',
b'other', b'way', b'in', b'short', b'the', b'period', b'was', b'so', b'far',
b'like', b'the', b'present', b'period', b'that', b'some', b'of', b'its',
b'noisiest', b'authorities', b'insisted', b'on', b'its', b'being’',
b'received', b'for', b'good', b'or', b'for', b'evil', b'in', b'the"',
b'superlative', b'degree', b'of', b'comparison', b'only']

This sort of exploratory programming at the REPL is very common for Python, as it allows
us to figure out what bits of code do before we decide to use them. In this case notice that
each of the single-quoted words is prefixed by a lower-case letter b meaning that we have
a list of bytes objects where we would have preferred a list of str objects. This is because
the HTTP request transferred raw bytes to us over the network. To get a list of strings we
should decode the byte stream in each line from UTF-8 into Unicode strings. We can do
this by inserting a call to the decode () method of the bytes object, and then operating on
the resulting Unicode string. The Python REPL supports a simple command history, and by
careful use of the up and down arrow keys, we can re-enter our snippet, although there’s no
need to re-import urlopen, so we can skip the first line:

Chapter 2 — Strings and collections 54

>>> with urlopen('http://sixty-north.com/c/t.txt') as story:
story words = []
for line in story:
line words = line.decode('utf-8').split()
for word in line words:
story words.append(word)

It is the fourth line here we have changed - you can just edit it using the left and right arrow
keys to insert the requisite call to decode() when you get to that part of the command
history. When we re-run the block and take a fresh look at story words, we should see we
have a list of strings:

>>> story_words

['It', 'was', 'the', 'best', 'of', 'times',6 'it',

'was', 'the', 'worst', 'of', 'times', 'it', 'was', 'the', 'age',6 'of',
'wisdom', 'it', 'was', 'the', 'age', 'of', 'foolishness', 'it', ‘'was',
"the', 'epoch', 'of', 'belief', 'it', 'was', 'the', 'epoch', 'of',
"incredulity', 'it', 'was', 'the', 'season', 'of', 'Light', 'it',
'was', 'the', 'season', 'of', 'Darkness', 'it', ‘'was', 'the',
'spring', 'of', 'hope', 'it', 'was', 'the', 'winter', 'of', 'despair',
'we', 'had', 'everything', 'before', 'us', 'we', 'had', 'nothing',
'before', 'us', 'we', 'were', 'all', 'going', 'direct', 'to',
'Heaven', 'we', 'were', 'all', 'going', 'direct', 'the', 'other',
'way', 'in', 'short', 'the', ‘'period', 'was', 'so', 'far', 'like',
"the', 'present', 'period', 'that', 'some', 'of', 'its', 'noisiest',
'authorities', 'insisted', 'on', 'its', 'being', 'received', 'for',
'good', 'or', 'for', 'evil', 'in', 'the', ‘'superlative', ‘'degree',
'of', 'comparison', 'only']

We've just about reached the limit of what’s comfortable to enter and revise at the Python
REPL, so in the next chapter we’ll look at how to move this code into a file where it can be
more easily worked with in a text editor.

Summary

+ str Unicode strings and bytes strings:
— We looked at the various forms of quotes (single or double quotation marks)

for quoting strings, useful for incorporating quote marks themselves into strings.
Python is flexible over which quoting style you use, but you must be consistent
when delimiting a particular string.

Chapter 2 - Strings and collections 55

o list

We demonstrated that so-called triple quotes, consisting of three consecutive
quotation mark characters can be used to delimit a multi-line string. Traditionally,
each quote character is itself a double-quotation mark, although single quotation
marks can also be used.

We saw how adjacent string literals are implicitly concatenated.

Python has support for universal newlines, so no matter what platform you’re
using it’s sufficient to use a single \n character, safe in the knowledge that is will
be appropriately translated from and to the native newline during I/O.

Escape sequences provide an alternative means of incorporating newlines and
other control characters into literal strings.

The backslashes used for escaping can be a hindrance for Windows filesystem
paths or regular expressions, so raw strings with an r prefix can be used to
suppress the escaping mechanism.

Other types, such as integers, can be converted to strings using the str()
constructor.

Individual characters, returned as one character strings, can be retrieved using
square brackets with integer zero-based indices.

Strings support a rich variety of operations, such as splitting, through their
methods.

In Python 3, literal strings can contain any Unicode character directly in the
source, which is interpreted as UTF-8 by default.

The bytes type has many of the capabilities of strings, but it is a sequence as
bytes rather than a sequence of Unicode code points.

bytes literals are prefixed with a lowercase b.

To convert between string and bytes instances we use the encode () method of
str or the decode() method of bytes, in both cases passing the name of the
codec, which we must know in advance.

Lists are mutable, heterogeneous sequences of objects.

List literals are delimited by square brackets and the items are separated by
commas.

Individual elements can be retrieved by indexing into a list with square brackets
containing a zero-based integer index.

In contrast to strings individual list elements can be replaced by assigning to the
indexed item.

Lists can be grown by append ()-ing to them, and can be constructed from other
sequences using the 1ist() constructor.

Chapter 2 - Strings and collections 56
- dict
— Dictionaries associate keys with values.

— Literal dictionaries are delimited by curly braces. The key-value pairs are sepa-

rated from each other by commas, and each key is associated with its correspond-
ing value with a colon.

« for loops

— For-loops take items one-by-one from an iterable object such as a 1ist, and bind
the same name to the current item.

— They correspond to what are called for-each loops in other languages.

Chapter 3 - Modularity

Modularity is an important property for anything but trivial software systems as it gives us
the power to make self-contained, reusable pieces which can be combined in new ways to
solve different problems. In Python, as with most programming languages, the most fine-
grained modularization facility is the definition of reusable functions. But Python also gives
us several other powerful modularization mechanisms.

Collections of related functions are themselves grouped together in a form of modularity
called modules. Modules are source code files ** that can be referenced by other modules,
allowing the functions defined in one module to be re-used in another. So long as you take
care to avoid any circular dependencies, modules are a simple and flexible way to organize
programs.

In previous chapters we’ve seen that we can import modules into the REPL. We’ll also show
you how modules can be executed directly as programs or scripts. As part of this we’ll
investigate the Python execution model, to ensure that you have a good understanding of
exactly when code is evaluated and executed. We’ll round off this chapter by showing you
how to use command-line arguments to get basic configuration data into your program and
make your program executable.

To illustrate this chapter, we’ll start with the code snippet for retrieving words from a web-
hosted text document that we developed at the end of the previous chapter. We’ll elaborate
on that code by organizing it into a fully-fledged Python module.

Organizing code in a .py file

Let’s start with the snippet we worked with in Chapter 2. Open a text editor — preferably
one with syntax highlighting support for Python — and configure it to insert four spaces per
indent level when you press the tab key. You should also check that your editor saves the file
using the UTF 8 encoding as that’s what the Python 3 runtime expects by default.

Create a directory called pyfund in your home directory. This is where we’ll put the code
for the chapter.

**Technically modules don’t have to be simple source code files, but for the purposes of this book that is a sufficient definition.

Chapter 3 — Modularity 58

All Python source files use the . py extension, so let’s get the snippet we wrote at the REPL
at end of the previous module into a text file called pyfund/words.py. The file’s contents
should looks like this:

from urllib.request import urlopen

with urlopen('http://sixty-north.com/c/t.txt"') as story:
story words = []
for line in story:
line words = line.decode('utf-8').split()
for word in line words:
story words.append(word)

You’ll notice some minor differences between the code above and what we wrote previously
at the REPL. Now that we’re using a text file for our code we can pay a little more attention
to readability, so, for example, we’ve put a blank line after the import statement.

Save this file before moving on.

Running Python programs from the operating system shell

Switch to a console with your operating system’s shell prompt and change to the new pyfund
directory:

$ cd pyfund

We can execute our module by calling Python and passing the module’s filename:
$ python3 words.py

on Mac or Linux, or:

> python words.py

on Windows.

When you press return, after a short delay you’ll be returned to the system prompt. Not very
impressive, but if you got no response then the program is running as expected. If, on the
other hand, you saw some error out, then something is wrong. An HTTPError, for example,

Chapter 3 — Modularity 59

indicates there’s a network problem, whilst other types of errors probably mean you have
mistyped the code.

Let’s add another for-loop to the end of the program to print out one word per line. Add this
code to the end of your Python file:

for word in story words:
print(word)

If you go to your command prompt and execute the code again, you should see some output.
Now we have the beginnings of a useful program!

Importing modules into the REPL

Our module can also be imported into the REPL. Let’s try that and see what happens. Start
the REPL and import your module. When importing a module, you use import <module-
name>, omitting the .py extension from the module name. In our case, it looks something
like this:

$ python

Python 3.5.0 (default, Nov 3 2015, 13:17:02)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import words

It

was

the

best

of

times

The code in your module is executed immediately when imported! That’s maybe not what
you expected, and it’s certainly not very useful. To give us more control over when our code
is executed, and to allow it to be reused, we’ll need to put our code in a function.

Defining functions

Functions are defined using the def keyword followed by the function name, an argument
list in parentheses, and a colon to start a new block. Let’s quickly define a few functions at
the REPL to get the idea:

Chapter 3 — Modularity 60

>>> def square(x):
return x * x

We use the return keyword to return a value from the function.

As we’ve seen previously, we call functions by providing the actual arguments in parentheses
after the function name:

>>> square(5)
25

Functions aren’t required to explicitly return a value though — perhaps they produce side
effects:

>>> def launch missiles():
print("Missiles launched!")

>>> launch_missiles()
Missiles launched!

You can return early from a function by using the return keyword with no parameter:

>>> def even or odd(n):
if n% 2 ==0:
print("even")
return
print("odd")

>>> even_or_odd(4)
even

>>> even or_odd(5)
odd

If you don’t have an explicit return in your function, Python will implicitly add one at the
end of your function. This implicit return, or a return without a parameter, actually causes
the function to return None. Remember, though, that the REPL doesn’t display None results,
so we don’t see them. By capturing the returned object into a named variable we can test
for None:

Chapter 3 — Modularity 61

>>> w = even or _odd(31)
odd

>>> w is None

True

Organizing our module into functions

Let’s organize our words module using functions.

First we’ll move all the code except the import statement into a function called fetch_-
words (). You do that by adding the def statement and indenting the code below it by one
extra level:

from urllib.request import urlopen

def fetch words():
with urlopen('http://sixty-north.com/c/t.txt') as story:
story words = []
for line in story:
line words = line.decode('utf-8').split()
for word in line words:
story words.append(word)

for word in story words:
print(word)

Save the module, and reload the module using a fresh Python REPL:

$ python3

Python 3.5.0 (default, Nov 3 2015, 13:17:02)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import words

The module imports, but the words are not fetched until we call the fetch words () function:

Chapter 3 — Modularity 62

>>> words. fetch words()
It

was

the

best

of

times

Alternatively we can import our specific function:

>>> from words import fetch words
>>> fetch _words()

It

was

the

best

of

times

So far so good, but what happens when we try to run our module directly from the operating
system shell?

Exit from the REPL with Ctrl-D from Mac or Linux or Ctrl-Z for Windows, and run Python
3 passing the module filename:

$ python3 words.py

No words are printed. This is because all the module does now is to define a function and
then immediately exit. To make a module from which we can usefully import functions into
the REPL and which can be run as a script, we need to learn a new Python idiom.

__name__ and executing modules from the command line

The Python runtime system defines some special variables and attributes, the names of which
are delimited by double underscores. One such special variable is called _ name__, and it
gives us the means for our module to determine whether it has been run as a script or, instead,
imported into another module or the REPL. To see how, add:

Chapter 3 — Modularity

print(_ name)

at the end of your module, outside of the fetch words () function.

0 Speaking Python aloud

You will from time to time need to talk about Python aloud, and you’ll invariably
find that — like any programming language — Python has elements which
don’t lend themselves to human speech. The special names denoted by double
underscores are a prime example because they’re ubiquitous in Python and,
frankly, you can only say “double underscore name double underscore” so many
times before you start to think about changing careers.

To help alleviate this situation, a common practice among Pythonistas is to use
the term “dunder” as shorthand for “surrounded by double underscores”. So, for
example, name__ would be pronounced “dunder name”. As an added bonus,
saying “dunder” is fun! Try it and I guarantee you’ll feel better.

First of all, let’s import the modified words module back into the REPL:

$ python3
Python 3.5.0 (default, Nov 3 2015, 13:17:02)
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import words
words

We can see that when imported, name does indeed evaluate to the module’s name.

63

As a brief aside, if you import the module again, the print statement will not be executed;
module code is only executed once, on first import:

>>> import words

>>>

Generally speaking, an import only has any effect the first time you import it in a REPL
session (or in any program).

If you do want to reload a module in an existing REPL session you can look at im-
portlib.reload()? in the Standard Library. Make sure you understand its caveats and

https://docs.python.org/3/library/importlib.%20html#importlib.reload
https://docs.python.org/3/library/importlib.%20html#importlib.reload

Chapter 3 — Modularity 64

behaviors, though!

*https://docs.python.org/3/library/importlib.html#importlib.reload

Now let’s try running the module as a script:

$ python3 words.py
main

In this case the special _ name__ variable is equal to the string _ main__ which is also

delimited by double underscores. Our module can use this behavior to detect how it is being

used. We replace the print statement with an if-statement which tests the value of name .

If the value is equal to __main__ then our function is executed:

if name == "' main ':
fetch words()

Now we can safely import our module without unduly executing our function:

$ python3
>>> import words

>>>

and we can usefully run our function as a script:

$ python3 words.py
It

was

the

best

of

times

https://docs.python.org/3/library/importlib.%20html#importlib.reload

Chapter 3 — Modularity 65

The Python execution model

In order to have a really solid foundation in Python, it’s important to understand the Python
execution model. By this, we mean the rules defining precisely when function definitions and
other important events occur during module import and execution. To help you develop this
understanding, we’ll focus on the def keyword since you’re already familiar with it. Once
you have an understanding of how def is processed by Python, you’ll know most of what
you need to know about Python’s execution model.

What’s important to understand is this: def isn’t merely a declaration, it’s a statement.
What this means is that def is actually executed at runtime along with the rest of the top-
level module-scope code. What def does is to bind the code in the function’s body to the
name following def. When modules are imported or run, all of the top-level statements are
run, and this is the means by which the functions within the module namespace are defined.

To reiterate, def is executed at runtime. This is very different from how function definitions
are handled in many other languages, especially compiled languages like C++, Java, and C#.
In those languages, function definitions are processed by the compiler at compile time, not
at runtime.*® By the time the program is actually executing, those function definitions are
fixed. In Python there is no compiler *!; and functions don’t exist in any form — except that
of source code — until execution. In fact, since a function is only defined when its def is
processed on import, a function in a module which is never imported will never be defined.

Understanding this dynamic nature of Python function definitions is critical to understand-
ing important concepts later in this book, so make sure you’re comfortable with it. If you’ve
access to a Python debugger, e.g. in an IDE, you might spend some time stepping through
your words . py module as it’s imported.

The difference between modules, scripts, and programs

We’re sometimes asked about the differences between Python modules, Python scripts, and
Python programs. Any .py file constitutes a Python module, but as we have seen modules
can be written for convenient import, convenient execution, or, using the if _ name_ ==
" main_ " idiom, both.

We strongly recommend making even simple scripts importable since it eases development
and testing so much if you can access your code from the Python REPL. Likewise, even

**Technically some of these compiled languages do provide mechanisms for defining functions dynamically at runtime. However,
these methods are by far the exception rather than the rule in almost all situations.

*'Python code is actually compiled to byte-code, so in that sense Python has a compiler. But the compiler is doing substantially
different kinds of work than what you might be used to from popular compiled, statically-typed languages.

Chapter 3 — Modularity 66

modules which are only ever meant to be imported in production settings benefit from
having executable test code. For this reason nearly all modules we create have this form
of defining one or more importable functions with a postscript to facilitate execution.

Whether you consider a module to be a Python script or Python program is a matter of
context and usage. It’s certainly wrong to consider Python to be merely a scripting tool
— in the vein of Windows batch files or Unix shell scripts — as many large and complex
applications have been built exclusively with Python.

Setting up a main function with command line
argument

Let’s refine our word fetching module a little further. First, we’ll perform a small refactoring
and separate the word retrieval and collection on the one hand from the word printing on
the other:

from urllib.request import urlopen

This fetches the words and returns them as a list.
def fetch words():
with urlopen('http://sixty-north.com/c/t.txt') as story:
story words = []
for line in story:
line words = line.decode('utf-8").split()
for word in line words:
story words.append(word)
return story words

This prints a list of words
def print words(story words):
for word in story words:
print(word)

if name == ' main_ ':
words = fetch words()
print words(words)

Chapter 3 — Modularity 67

We do this because it separates two important concerns: when importing we’d rather get the
words as a list, but when running directly, we’d prefer the words to be printed.

Next, we'll extract the code from our if __name == ' main_ ' block into a function
called main():

def main():
words = fetch words()
print words(words)

if npame == "' main ':
main()

By moving this code into a function we can test it from the REPL, something which isn’t
possible while it’s in the module scope if-block.

We can now try these functions from the REPL:

>>> from words import (fetch words, print words)
>>> print words(fetch words())

We’ve used this opportunity to introduce a couple of new forms of the import statement.
The first new form imports multiple objects from a module using a comma separated list.
The parentheses are optional, but they do allow you to break this list over multiple lines if it
gets long. This form is perhaps the most widely used form of the import statement.

A second new form imports everything from a module using an asterisk wildcard:

>>> from words import *

This latter form is recommended only for casual use at the REPL. It can wreak havoc in
programs since what is imported is now potentially beyond your control, opening yourself
up to potential namespace clashes at some future time.

Having done this, we can fetch words from the URL:

Chapter 3 - Modularity 68

>>> fetch words()

['It', 'was', 'the', 'best', 'of', 'times', 'it', 'was', 'the', 'worst',
'of', 'times', 'it', 'was', 'the', 'age', 'of', 'wisdom', 'it', 'was',
'the', 'age', 'of', 'foolishness', 'it', 'was', 'the', 'epoch', ‘'of',
'belief', 'it', 'was', 'the', 'epoch', 'of', 'incredulity', 'it', 'was',
"the', 'season', 'of', 'Light', 'it', 'was', 'the', 'season',6 'of',
'Darkness', 'it', 'was', 'the', 'spring', 'of', 'hope', 'it', 'was', 'the',
'winter', 'of', 'despair', 'we', 'had', 'everything', 'before', 'us', 'we',
'had', 'nothing', 'before', 'us', 'we', 'were', 'all', 'going', 'direct',
'to', 'Heaven', 'we', 'were', 'all', 'going', 'direct', 'the', 'other',
'way', 'in', 'short', 'the', 'period', 'was', 'so', 'far', 'like', 'the',
'present', 'period', 'that', 'some', 'of', 'its', 'noisiest', 'authorities',
'insisted', 'on', 'its', 'being', 'received', 'for', 'good', 'or', 'for',
'evil', 'in', 'the', 'superlative', 'degree', 'of', 'comparison', ‘'only']

Since we’ve separated the fetching code from the printing code, we can also print any list of
words:

>>> print words(['Any', 'list', 'of', 'words'l])
Any

list

of

words

Indeed, we can even run the main program:

>>> main()
It

was

the

best

of

times

Notice that the print_words() function isn’t fussy about the type items in the list. It’s
perfectly happy to print a list of numbers:

Chapter 3 — Modularity 69

>>> print_words([1, 7, 3])
1
7
3

So perhaps print words() isn’t the best name. In fact, the function doesn’t mention lists
either - it will happily print any collection that the for-loop is capable of iterating over, such
as a string:

>>> print words("Strings are iterable too")

® nw Q S H 5 + WD

® —~ T ® 5 O + -

o r+

So let’s perform a minor refactoring and rename this function to print_items (), changing
the variable names within the function to suit:

Chapter 3 — Modularity 70

def print items(items):
for item in items:
print(item)

We'll talk more about the dynamic typing in Python which allows this degree of
flexibility in the next module.

Finally, one obvious improvement to our module would be to replace the hard-coded URL

with a value we can pass in. Let’s extract that value into an argument of the fetch_words ()
function:

def fetch words(url):
with urlopen(url) as story:
story words = []
for line in story:
line words = line.decode('utf-8').split()
for word in line words:
story words.append(word)
return story words

Accepting command line arguments

That last change actually breaks our main() since it’s not passing the new url argument.
When running our module as a standalone program, we’ll need to accept the URL as a
command line argument. Access to command line arguments in Python is through an
attribute of the sys module called argv which is a list of strings. To use it we must first
import the sys module at the top of our program:

import sys

We then get the second argument (with an index of one) from the list:

Chapter 3 — Modularity 71

def main():
url = sys.argv[1]
words = fetch words(url)
print_items(words)

And of course this works as expected:

$ python3 words.py http://sixty-north.com/c/t.txt
It

was

the

best

of

times

This looks fine until we realize that we can’t usefully test main() any longer from the
REPL because it refers to sys.argv[1] which is unlikely to have a useful value in that
environment:

$ python3
Python 3.5.0 (default, Nov 3 2015, 13:17:02)
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from words import *
>>> main()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "/Users/sixtynorth/projects/sixty-north/the-python-apprentice/manuscript/code/pyfu\
nd/words.py", line 21, in main

url = sys.argv[1l]

IndexError: list index out of range
>>>

The solution is to allow the argument list to be passed as a formal argument to the main()
function, using sys.argv as the actual parameter in the if _ name == ' main__
block:

Chapter 3 — Modularity 72

def main(url):
words = fetch words(url)
print_items(words)

if name == ' main_ "':
main(sys.argv[1])

Testing from the REPL again, we can see that everything works as expected:

>>> from words import *

>>> main("http://sixty-north.com/c/t.txt")
It

was

the

best

of

times

Python is a great tool for developing command line tools, and you’ll likely find that you need
to handle command line arguments for many situations. For more sophisticated command
line processing we recommend you look at the Python Standard Library argparse® module
or the inspired third-party docopt module®.

**https://docs.python.org/3/library/argparse. html
**http://docopt.org/

https://docs.python.org/3/library/argparse.html
http://docopt.org/
https://docs.python.org/3/library/argparse.html
http://docopt.org/

Chapter 3 - Modularity 73

Moment of zen

Moment of Zen

Sparse is better
than dense

Two between functions
That is the number of lines
PEP eight recommends

You’'ll notice that our top level functions have two blank lines between them. This is
conventional for modern Python code.

According to the PEP 8 style-guide® it’s customary to use two blank lines between module-

level functions. We find this convention has served us well, making code easier to navigate.
Similarly, we use single blank lines for logical breaks within functions.

**https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/

Chapter 3 — Modularity 74

Docstrings

We saw previously how it was possible to ask at the REPL for help on Python functions. Let’s
look at how to add this self-documenting capability to our own module.

API documentation in Python uses a facility called docstrings. Docstrings are literal strings
which occur as the first statement within a named block, such as a function or module. Let’s
document the fetch words() function:

def fetch words(url):
"""Fetch a list of words from a URL."""
with urlopen(url) as story:
story words = []
for line in story:
line words = line.decode('utf-8').split()
for word in line words:
story words.append(word)
return story words

We use triple-quoted strings even for single-line docstrings because they can be easily
expanded to add more detail.

One Python convention for docstrings is documented in PEP 257, although it is not widely
adopted. Various tools, such as Sphinx*®, are available to build HTML documentation from
Python docstrings, and each tool mandates its preferred docstring format. Our preference
is to use the form presented in Google’s Python style-guide®’, since it is amenable to being
machine parsed whilst still remaining readable at the console:

**https://www.python.org/dev/peps/pep-0257/
*http://www.sphinx-doc.org/
*"https://google.github.io/styleguide/pyguide. html

https://www.python.org/dev/peps/pep-0257/
http://www.sphinx-doc.org/
https://google.github.io/styleguide/pyguide.html
https://www.python.org/dev/peps/pep-0257/
http://www.sphinx-doc.org/
https://google.github.io/styleguide/pyguide.html

Chapter 3 - Modularity 75

def fetch words(url):
"""Fetch a list of words from a URL.

Args:
url: The URL of a UTF-8 text document.

Returns:
A list of strings containing the words from
the document.
with urlopen(url) as story:
story words = []
for line in story:
line words = line.decode('utf-8').split()
for word in line words:
story words.append(word)
return story words

Now we’ll access this help() from the REPL:

$ python3

Python 3.5.0 (default, Nov 3 2015, 13:17:02)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from words import *

>>> help(fetch words)

Help on function fetch words in module words:

fetch words(url)
Fetch a list of words from a URL.

Args:
url: The URL of a UTF-8 text document.

Returns:
A list of strings containing the words from
the document.
(END)

We’ll add similar docstrings for our other functions:

Chapter 3 — Modularity 76

def print items(items):
"""Print items one per line.

Args:
items: An iterable series of printable items.

for item in items:
print(item)

def main(url):
"""Print each word from a text document at a URL.

Args:
url: The URL of a UTF-8 text document.

words = fetch words(url)
print_items(words)

and one for the module itself. Module docstrings should be placed at the beginning of the
module, before any statements:

"""Retrieve and print words from a URL.
Usage:

python3 words.py <URL>

import sys
from urllib.request import urlopen

Now when we request help() on the module as a whole, we get quite a lot of useful
information:

Chapter 3 — Modularity

$ python3

Python 3.5.0 (default, Nov 3 2015, 13:17:02)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import words

>>> help(words)

Help on module words:

NAME
words - Retrieve and print words from a URL.

DESCRIPTION
Usage:

python3 words.py <URL>

FUNCTIONS
fetch words(url)
Fetch a list of words from a URL.

Args:
url: The URL of a UTF-8 text document.

Returns:
A list of strings containing the words from
the document.

main(url)
Print each word from a text document at a URL.

Args:
url: The URL of a UTF-8 text document.

print items(items)
Print items one per line.

Args:
items: An iterable series of printable items.

FILE
/Users/sixtynorth/the-python-apprentice/words.py

77

Chapter 3 — Modularity 78

(END)

Comments

We believe docstrings are the right place for most documentation in Python code. They
explain how to consume the facilities your module provides rather than how it works. Ideally
your code should be clean enough that ancillary explanation is not required. Nevertheless,
it’s sometimes necessary to explain why a particular approach has be chosen or a particular
technique used, and we can do that using Python comments. Comments in Python begin
with # and continue to the end of the line.

As a demonstration, let’s document the fact that it might not be immediately obvious why
we’re using sys.argv[1] rather than sys.argv[0] in our call to main():

if name == "' main_ ':
main(sys.argv[1l]) # The Oth arg is the module filename.

Shebang

It’s common on Unix-like systems to have the first line of a script include a special comment,
#!, called a shebang. This allows the program loader to identify which interpreter should be
used to run the program. Shebangs have an additional purpose of conveniently documenting
at the top of a file whether the Python code therein is Python 2 or Python 3.

The exact details of your shebang command depend on the location of Python on your
system. Typical Python 3 shebangs use the Unix env program to locate Python 3 on your PATH
environment variable, which importantly is compatible with Python virtual environments:

#!/usr/bin/env python3

Executable Python programs on Linux and Mac

On Mac or Linux, we must mark our script as executable using the chmod command before
the shebang will have any effect:

Chapter 3 — Modularity 79

$ chmod +x words.py

Having done that, we can now run our script directly:

$./words.py http://sixty-north.com/c/t.txt

Executable Python programs on Windows

Starting with Python 3.3, Python on Windows also supports the use of the shebang to make
Python scripts directly executable with the correct version of the Python interpreter, even
to the extent that shebangs that look like they should only work on Unix-like systems will
work as expected on Windows. This works because Windows Python distributions now use
a program called PyLauncher. PyLauncher, the executable for which is called py.exe, will
parse the shebang and locate the appropriate version of Python.

For example, on Windows at the cmd prompt, this command will be sufficient to run your
script with Python 3 (even if you also have Python 2 installed):

> words.py http://sixty-north.com/c/t.txt
In Powershell the equivalent is:

PS> .\words.py http://sixty-north.com/c/t.txt

You can read more about PyLauncher in PEP 397

Summary

« Python modules:
— Python code is placed in *. py files called modules.
— Modules can be executed directly by passing them as the first argument to the
Python interpreter.
— Modules can also be imported into the REPL, at which point all top-level
statements in the module are executed in order.

**https://www.python.org/dev/peps/pep-0397/

https://www.python.org/dev/peps/pep-0397/
https://www.python.org/dev/peps/pep-0397/

Chapter 3 — Modularity 80

« Python functions:

— Named functions are defined using the def keyword followed by the function
name and the argument list in parentheses.

— We can return objects from functions using the return statement.

— Return statements without a parameter return None, as does the implicit return
at the end of every function body.

« Module execution:

— We can detect whether a module has been imported or executed by examining
the value of the special __name__ variable. If it is equal to the string " _main_ "
our module has been executed directly as a program. By executing a function if
this condition is met using the top-level if _ name_ == ' main_ ' idiom at
the end of our module, we can make our module both usefully importable and

executable, an important testing technique even for short scripts.

Module code is only executed once, on first import.

The def keyword is a statement which binds executable code to a function name.

Command line arguments can be accessed as a list of strings accessible through
the argv attribute of the sys module. The zero-th command line argument is the
script filename, so the item at index one is the first true argument.

Python’s dynamic typing means our functions can be very generic with respect
to the type of their arguments.
« Docstrings:

— A literal string as the first line of a function’s definition forms the function’s
docstring. They are typically triple-quoted multiline strings containing usage
information.

— Function documentation provided in docstrings can be retrieved using help() in
the REPL.

— Module docstrings should be placed near the beginning of the module prior to
any Python statements such as import statements.

+ Comments:

— Comments in Python commence with a hash character and continue to the end
of the line.

— The first line of the module can contain a special comment called a shebang,

allowing the program loader to launch the correct Python interpreter on all major
platforms.

Chapter 4 - Built-in types and the
object model

One of the most fundamental design elements of the Python language is its use of objects.
Objects are the central data structure not only of user-level constructs but also many of the
inner workings of the language itself. In this chapter we’ll start to to develop a sense of what
this means, both in principle and in practice, and hopefully you’ll start to appreciate just
how pervasive objects are throughout Python.

We’ll take a look at what objects are, how you use them, and how you manage references to
them. We’ll also start to explore the notion of types in Python, and we’ll see how Python’s
types are both similar to and different from those in many other popular languages. As part
of this exploration we’ll take a more in-depth look at some collection types we’ve met already,
and introduce a few more collection types as well.

The nature of Python object references

In previous chapters we’ve already talked about and used “variables” in Python, but what
exactly is a variable? Consider something as straightforward as assigning an integer to a
variable:

>>> x = 1000

What’s really happening when we do this? First, Python creates an int object with a value
of 1000. This object is anonymous in the sense that it doesn’t, in and of itself, have a name
(x or otherwise). It’s an object allocated and tracked by the Python runtime system.

After creating the object, Python then creates an object reference with the name x and
arranges for x * to refer to the int(1000) object:

**You'll notice that here we've referred to the object reference with the name x as x. This is admittedly a bit sloppy since, of
course, x will generally mean the object referred to by the object reference with the name x. But that’s a mouthful and a bit overly
pedantic. Generally speaking, the context of the use of reference names will be sufficient to tell you whether we mean the object or
the reference.

Chapter 4 — Built-in types and the object model 82

int

X 1000

Assign the name ‘X’ to an integer object with the value 1000

Reassigning a reference

Now we’ll modify the value of x with another assignment:
>>> X = 500

This does not result in any sort of change to the int (1000) object we previously constructed.
Integer objects in Python are immutable and cannot be changed. In fact, what happens here
is that Python first creates a new immutable integer object with the value 500 and then
redirects the x reference to point at the new object:

int

X 1000

I

Reassign the name ‘x’ to a new integer object with the value 500

Since we have no other references to the original int(1000) object, we now have no way of
reaching it from our code. As a result, the Python garbage collector is free to collect it when
and if it chooses. *°

Assigning one reference to another

When we assign from one variable to another, what we’re really doing is assigning from one
object reference to another object reference, so that both references then refer to the same

“’Garbage collection is an advanced topic that we won’t cover in this book. In short, though, it’s the system by which Python
deallocates and reclaims resources (i.e. objects) which it determines are no longer in use.

Chapter 4 — Built-in types and the object model 83

object. For example, let’s assign our existing variable x to a new variable y:

>>> Yy = X

That gives us this resulting reference-object diagram:

HELLO

my name is

Assign the existing name ‘x’ to the name ‘y’

Now both references refer to the same object. We now reassign x to another new integer:

>>> x = 3000

Doing this gives us a reference-object diagram showing our two references and our two
objects:

Chapter 4 — Built-in types and the object model 84

HELLO

my name is

HELLO

my name is

Assign a new integer 3000 to ‘x’

In this case there is no work for the garbage collector to do because all of the objects are
reachable from live references.

Exploring value vs. identity with id()

Let’s dig a little deeper into the relationship between objects and references using the
built-in id() function. id() accepts any object as an argument and returns an integer
identifier which is unique and constant for the lifetime of the object. Let’s re-run the previous
experiment using id():

>>> a = 496
>>> id(a)
4302202064
>>> b = 1729
>>> id(b)
4298456016
>>> b = a
>>> id(b)
4302202064
>>> id(a) == id(b)
True

Here we see that initially a and b refer to different objects and, thus, id() gives us different
values for each variable. However, when we then assign a to b, both names refer to the same

Chapter 4 — Built-in types and the object model 85

object so id () gives the same value for both. The main lesson here is that id() can be used
to establish the identity of an object independent of any particular reference to it.

Testing for equality of identity with is

In reality, the id() function is seldom used in production Python code. Its main use is in
object model tutorials (such as this one!) and as a debugging tool. Much more commonly
used than the id() function is the is operator which tests for equality of identity. That is,
is tests whether two references refer to the same object:

>>> g is b
True

We’ve already met the is operator earlier, in Chapter 1, when we tested for None:

>>> g is None
False

It’s critical to remember that is is always testing identity equality, that is, whether two
references refer to the exact same object. We’ll look in-depth at the other primary type of
equality, value equality, in just a bit.

Mutating without mutating

Even operations which seem naturally mutating in nature are not necessarily so. Consider
the augmented assignment operator:

>>> t =5
>>> id(t)
4297261280
>>> t += 2
>>> id(t)
4297261344

At first glance, it appears that we’re asking Python to increment the integer value t by two.
But the id () results here clearly show that t refers to two different objects before and after
the augmented assignment.

Chapter 4 - Built-in types and the object model 86

Rather than modifying integer objects, here’s a depiction of what’s actually happening.
Initially, we have the name t referring to an int(5) object:

HELLO

my name is

‘t’ refers to the integer 5

Next, to perform the augmented assignment of 2 to t, Python creates an int(2) object
behind the scenes. Note that we never have a named reference to this object; it’s managed
completely by Python on our behalf:

HELLO

my name is

Python creates an integer 2 behind the scenes

Python then performs the addition operation between t and the anonymous int(2) giving
us — you guessed it! — another integer object, this time an int(7):

Chapter 4 - Built-in types and the object model 87

HELLO

my name is

Python creates a new integer as the result of the addition

Finally, Python’s augmented assignment operator reassigns the name t to the new int(7)
object, leaving the other integer objects to be handled by the garbage collector:

5 2

Python reassigned the name ‘t’ to the result of the addition

References to mutable objects

Python objects show this name-binding behavior for all types. The assignment operator only
ever binds objects to names, it never copies an object by value. To help make this point crystal
clear, let’s look at another example using mutable objects: lists. Unlike the immutable ints

Chapter 4 — Built-in types and the object model 88

that we just looked at, 1ist objects have mutable state, meaning that the value of a list
object can change over time.

To illustrate this, we first create a list object with three elements, binding the list object to a
reference named r:

>>> r = [2, 4, 6]
>>> r
[2, 4, 6]

We then assign the reference r to a new reference s:

>>> S = r
>>> S

[2, 4, 6]

The reference-object diagram for this situation makes it clear that we have two names
referring to a single 1ist instance:

S

’s” and ‘r’ refer to the same list object

When we modify the list referred to by s by changing the middle element, we see that the
list referred to by r has changed as well:

Chapter 4 — Built-in types and the object model 89

>>> s[1] = 17

>>> s
[2, 17, 6]
>>> r
[2, 17, 6]

Again, this is because the names s and r refer to the same mutable object *', a fact that we
can verify by using the is keyword which we learned about earlier:

>>> 5 is r
True

The main point of this discussion is that Python doesn’t really have variables in the
metaphorical sense of a box holding a value. It only has named references to objects, and
these references behave more like labels which allow us to retrieve objects. That said, it’s
still common to talk about variables in Python because it’s convenient. We will continue to
do so throughout this book, secure in the knowledge that you now understand what’s really
going on behind the scenes.

Equality of value (equivalence) versus equality of identity

Let’s contrast that behavior with a test for value-equality, or equivalence. We’ll create two
identical lists:

>>>p = [4, 7, 11]
>>> q = [4, 7, 11]

>>> p == (q
True
>>> p is q
False

Here we see that p and q refer to different objects, but that the objects they refer to have the
same value.

“!Since assigning a list reference to another name doesn’t copy the list, you may be wondering how you could make copy if you
wanted. This requires other techniques which we’ll look at later when we cover lists in more detail.

Chapter 4 - Built-in types and the object model 90

p

‘p’ and ‘q’ are different list objects with identical values

As you would expect when testing for value-equality, an object should always be equivalent
to itself **:

>>> p == p
True

Value-equality and identity are fundamentally different notions of “equality”, and it’s
important to keep them separate in your mind.

It’s also worth noting that value comparison is something that is defined programatically.
When you define types, you can control how that class determines value-equality. In contrast,
identity comparison is defined by the language and you can’t change that behavior.

Argument passing semantics - pass by
object-reference

Now let’s look at how all this relates to function arguments and return values. When we call
a function, we literally create new name bindings — those declared in the function definition
— to existing objects — those passed in at the call itself. ** As such, it’s important to really
understand Python reference semantics if you want to know how your functions work.

“’Note, however, that Python does not enforce this behavior. It is entirely possible to create an object which reports that it is
not value-identical to itself. We’ll look at how to do this — should you for some reason feel the urge — in later chapters.

“*Though there’s no universally accepted terminology, you’ll often see the term parameters or formal parameters used to mean
the names declared at the function definition. Likewise, the term arguments is often used to mean the actual objects passed into a
function (and, thus, bound to the parameters). We’ll use this terminology as needed throughout this book.

Chapter 4 — Built-in types and the object model 91

Modifying external objects in a function

To demonstrate Python’s argument passing semantics, we’ll define a function at the REPL
which appends a value to a list and prints the modified list. First we’ll create a 1ist and give
it the name m:

>>>m = [9, 15, 24]

Then we’ll define a function modify() which appends to, and prints, the list passed to it.
The function accepts a single formal argument named k:

>>> def modify(k):
k.append(39)
print("k =", k)

We then call modify(), passing our list m as the actual argument:

>>> modify(m)
k = [9, 15, 24, 39]

This indeed prints the modified list with four elements. But what does our list reference m
outside the function now refer to?

>>> M
[9, 15, 24, 39]

The list referred to by m has been modified because it is the self-same list referred to by
k inside the function. As we mentioned at the beginning of the section, when we pass an
object-reference to a function we’re essentially assigning from the actual argument reference,
in this case m, to the formal argument reference, in this case k.

Chapter 4 — Built-in types and the object model 92

list

m [9, 15, 24, 39]

modify(k):

K

Referring to the same list in and out of a function

As we have seen, assignment causes the assigned-to reference to refer to the same object as
the assigned-from reference. This is exactly what’s going on here. If you want a function to
modify a copy of an object, it’s the responsibility of the function to do the copying.

Binding new objects in a function
Let’s look at another instructive example. First, we’ll create a new list f:

>>> f = [14, 23, 37]

Then we’ll create a function replace(). As the name suggests, rather than modifying its
arguments replace() will change the object that its parameter refers to:

>>> def replace(g):
g = [17, 28, 45]
print("g =", g)

We now call replace() with actual argument f:

Chapter 4 — Built-in types and the object model 93

>>> replace(f)
g = [17, 28, 45]

This is much as we’d expect. But what’s the value of the external reference f now?

>>> f
[14, 23, 37]

f still refers to the original, unmodified list. This time, the function did not modify the object
that was passed in. What’s going on?

The answer is this: the object reference f was assigned to the formal argument named g, so
g and f did indeed refer to the same object, just as in the previous example.

replace(g):

/

Initially ‘f” and ‘g’ refer to the same list object

However, on the first line of the function we re-assigned the reference g to point to a newly
constructed list [17, 28, 45], so within the function the reference to the original [14, 23,
371 list was overwritten, although the unmodified object itself was still pointed to by the f
reference outside the function.

Chapter 4 — Built-in types and the object model 94

Wiy (11,23, 37)

list

[17, 28, 45]

replace(g):

g

After reassignment, ‘f” and ‘g’ refer to different objects

Argument passing is reference binding

So we’ve seen that it’s quite possible to modify the objects through function argument
references, but also that it’s possible to rebind the argument references to new values. If
you want to change the contents of a list parameter and have the changes seen outside the
function, you could modify the contents of the list like this:

>>> def replace contents(g):

g[o] = 17
gl1l] = 28
gl2] =45
print("g =", g)
>>> f
[14, 23, 37]

>>> replace contents(f)
g = [17, 28, 45]

And indeed, if you check the contents of f you’ll see that they have been modified:

Chapter 4 — Built-in types and the object model 95

>>> f
[17, 28, 45]

Function arguments are transferred by what is called “pass by object reference”. This means
that the value of the reference is copied into the function argument, not the value of the
referred to object; no objects are copied.

Python return semantics

Python’s return statement uses the same pass-by-object-reference semantics as function
arguments. When you return an object from a function in Python, what you’re really doing
is passing an object reference back to the caller. If the caller assigns the return value to
a reference, they are doing nothing more than assigning a new reference to the returned
object. This uses the exact same semantics and mechanics that we saw with explicit reference
assignment and argument passing.

We can demonstrate this by writing a function which returns its only argument:

>>> def f(d):
return d

If we create an object such as a list and pass it through this simple function, we see that it
returns the very same object that we passed in:

>>> ¢ = [6, 10, 16]
>>> e = f(c)

>>> c is e

True

Remember that is only returns True when two names refer to the exact same objects, so
this example shows that no copies of the list were made.

Function arguments in detail

Now that we understand the distinction between object references and objects, we’ll look at
some more capabilities of function arguments.

S U A W N =

Chapter 4 — Built-in types and the object model 96

Default parameter values

The formal function arguments specified when a function is defined with the def keyword
are a comma-separated list of the argument names. These arguments can be made optional
by providing default values. Consider a function which prints a simple banner to the console:

>>> def banner(message, border='-"'):
line = border * len(message)
print(line)
print(message)
print(line)

This function takes two arguments, and we provide a default value — in thiscase '-' —ina
literal string. When we define functions using default arguments, the parameters with default
arguments must come after those without defaults, otherwise we will get a SyntaxError.

On line 2 of the function we multiply our border string by the length of the message string.
This line shows two interesting features. First, it demonstrates how we can determine the
number of items in a Python collection using the built-in len () function. Secondly, it shows
how multiplying a string (in this case the single character string border) by an integer results
in a new string containing the original string repeated a number of times. We use that feature
here to make a string equal in length to our message.

On lines 3 through 5 we print the full-width border, the message, and the border again.

When we call our banner() function, we don’t need to supply the border string because
we’ve provided a default value:

>>> banner("Norwegian Blue")

However, if we do provide the optional argument, it is used:

Chapter 4 — Built-in types and the object model 97

>>> banner("Sun, Moon and Stars", "*")
Sk 5k >k 5k >k 3k 5k %k 5k %k %k >k %k 5k %k %k 5k % k

Sun, Moon and Stars
sk >k 5k >k 5k >k 5k >k 5k >k 5k >k >k >k >k >k >k %k ok

Keyword arguments

In production code, this function call is not particularly self documenting. We can improve
that situation by naming the border argument at the call site:

>>> banner("Sun, Moon and Stars", border="*")
skok sk sk ok ok ok ok ok s ok ok ok ok ok ok ok ok ok

Sun, Moon and Stars
sk ok sk sk ok ok ok sk ok ok ok ok ok ok o ok ok ok ok

In this case the message string is called a “positional argument” and the border string a
“keyword argument”. In a call, the positional arguments are matched up in sequence with
the formal arguments declared in the function definition. The keyword arguments, on the
other hand, are matched by name. If we use keyword arguments for both of our parameters,
we have the freedom to supply them in any order:

>>> banner(border=".", message="Hello from Earth")

Remember, though, that all keyword arguments must be specified after any positional
arguments.

When are default arguments evaluated?

When you supply a default parameter value for a function, you do so by providing an
expression. This expression can be a simple literal value, or it can be a more complex function
call. In order to actually use the default value that you provide, Python has to at some point
evaluate that expression.

It’s crucial, then, to have an appreciation of exactly when Python evaluates the default
value expression. This will help you to avoid a common pitfall which frequently ensnares
newcomers to Python. Let’s examine this question closely using the Python standard library
time module:

Chapter 4 — Built-in types and the object model 98

>>> import time

We can easily get the current time as a readable string by using the ctime() function of the
time module:

>>> time.ctime()
'Sat Feb 13 16:06:29 2016

Let’s write a function which uses a value retrieved from ctime() as a default argument
value:

>>> def show default(arg=time.ctime()):
print(arg)

>>> show default()
Sat Feb 13 16:07:11 2016

So far so good, but notice what happens when you call show default() again a few seconds
later:

>>> show default()
Sat Feb 13 16:07:11 2016

and again:

>>> show default()
Sat Feb 13 16:07:11 2016

As you can see, the displayed time never progresses.

Recall how we said that def is a statement that when executed binds a function definition to
a function name? Well, the default argument expressions are evaluated only once, when the
def statement is executed. In many cases the default value is a simple immutable constant
like an integer or a string, so this does not cause any problems. But it can be a confusing
trap for the unwary that usually shows up when you use mutable collections like lists as
argument defaults.

Let’s take a closer look. Consider this function which uses an empty list as a default argument.
It accepts a menu as a list of strings, appends the item "spam" to the list, and returns the
modified menu:

Chapter 4 — Built-in types and the object model 99

>>> def add spam(menu=[]):
menu.append("spam")
return menu

Let’s create a simple breakfast of bacon and eggs:
>>> breakfast = ['bacon', 'eggs'l]
Naturally, we’ll add spam to it:

>>> add spam(breakfast)
['bacon', 'eggs', 'spam']

We’ll do something similar for lunch:

>>> lunch = ['baked beans']
>>> add_spam(lunch)
['baked beans', ‘'spam']

Nothing unexpected so far. But look what happens when you rely on the default argument
by not passing an existing menu:

>>> add_spam()
['spam']

When we append 'spam' to an empty menu we get just spam. This is probably still what
you expected, but if we do that again we get two spams added to our menu:

>>> add_spam()
['spam', ‘'spam']

And three:

>>> add_spam()
['spam', 'spam', 'spam']

And four:

Chapter 4 — Built-in types and the object model 100

>>> add_spam()
['spam', 'spam', 'spam', ‘'spam']

What’s happening here is this. First, the empty list used for the default argument is created
exactly once, when the def statement is executed. This is a normal list like any other we’ve
seen so far, and Python will use this exact list for the entire execution of your program.

The first time we actually use the default, then, we end up adding spam directly to the default
list object. When we use the default a second time, we’re using the same default list object —
the one to which we just added spam — and we end up adding a second instance of "spam"
to it. The third call adds a third spam, ad infinitum. Or perhaps ad nauseum.

The solution to this is straightforward, but perhaps not obvious: Always use immutable
objects such as integers or strings for default values. Following this advice, we can solve
this particular case by using the immutable None object as a sentinel:

>>> def add_spam(menu=None) :
if menu is None:
menu = []
menu.append('spam')
return menu

>>> add_spam()
['spam']
>>> add_spam()
['spam']
>>> add_spam()
['spam']

and now our add_spam() function works as expected.

The Python type system

Programming languages can be distinguished by several characteristics, but one of the most
important is the nature of their type systems. Python can be characterized as having a
dynamic and strong type system. Let’s investigate what that means.

Chapter 4 — Built-in types and the object model 101

Dynamic typing in Python
Dynamic typing means that the type of an object-reference isn’t resolved until the program
is running, and it needn’t be specified up front when the program is written. Take a look at
this simple function for adding two objects:
>>> def add(a, b):

return a + b

Nowhere in this definition do we mention any types. We can use add () with integers:

>>> add(5, 7):
12

And we can use it for floats:

>>> add (3.1, 2.4)
5.5

You might be surprised to see that it even works for strings:

>>> add("news", "paper")
"newspaper’

Indeed, this function works for any types, like list, for which the addition operator has
been defined:

>>> add([1, 6], [21, 107])
[1, 6, 21, 107]

These examples illustrate the dynamism of the type system: the two arguments, a and b, of
the add () function can reference any types of object.

Strong typing in Python

The strength of the type system, on the other hand, can be demonstrated by attempting to
add () types for which addition has not been defined, such as strings and floats:

Chapter 4 — Built-in types and the object model 102

>>> add("The answer is", 42)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 2, in add
TypeError: Can't convert 'int' object to str implicitly

Trying to do this results in a TypeError because Python will not, in general, perform implicit
conversions between object types or otherwise attempt to coerce one type to another. The
primary exception to this is the conversion to bool used for if-statement and while-loop
predicates. “*

Variable declaration and scoping

As we have seen, no type declarations are necessary in Python, and variables are essentially
just untyped name bindings to objects. As such, they can be rebound - or reassigned - as
often as necessary, even to object of different types.

But when we bind a name to an object, where is that binding stored? To answer that question,
we must look at scopes and scoping rules in Python.

The LEGB rule

There are four types of scope in Python, and they are arranged in a hierarchy. Each scope is
a context in which names are stored and in which they can be looked up. The four scopes
from narrowest to broadest are:

+ Local - names defined inside the current function.

+ Enclosing - names defined inside any and all enclosing functions. (This scope isn’t
important for the contents of this book.)

+ Global - names defined at the top-level of a module. Each module brings with it a new
global scope.

« Built-in - names built-in to the Python language through the special builtins module.

Together, these scopes comprise the LEGB rule:

The LEGB Rule

Names are looked up in the narrowest relevant context.

“*And this behavior is part of the syntax implementation, not the type system.

Chapter 4 — Built-in types and the object model 103

It’s important to note that scopes in Python do not, in general, correspond to the source-code
blocks as demarcated by indentation. For-loops, with-blocks, and the like do not introduce
new nested scopes.

Scopes in action

Consider our words . py module. It contains the following global names:

« main - bound by def main()

+ sys - bound by import sys

« __name__ - provided by the Python runtime

« urlopen - bound by from urllib.request import urlopen
« fetch words - bound by def fetch words()

« print_items - bound by def print_items()

Module scope name bindings are typically introduced by import statements and function
or class definitions. It is possible to use other objects at module scope, and this is typically
used for constants, although it can also be used for variables.

Within the fetch_words () function we have the six local names:

+ word - bound by the inner for-loop

« line_words - bound by assignment

« line - bound by the outer for-loop

« story words - bound by assignment

+ url - bound by the formal function argument
« story - bound by the with-statement

Each of these bindings is brought into existence at first use and continues to live within the
function scope until the function completes, at which point the references will be destroyed.

Identical names in global and local scope

Very occasionally we need to rebind a global name at module scope from within a function.
Consider the following simple module:

Chapter 4 — Built-in types and the object model 104

count = 0

def show count():
print(count)

def set count(c):
count = ¢

If we save this module in scopes.py, we can import it into the REPL for experimentation:

$ python3

Python 3.5.0 (default, Nov 3 2015, 13:17:02)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> from scopes import *

>>> show count()

count = 0

When show_count () is called Python looks up the name count in the local namespace (L).
It doesn’t find it so looks in the next most outer namespace, in this case the global module
namespace (G), where it finds the name count and prints the referred-to object.

Now we call set _count () with a new value:

>>> set count(5)

We then call show count() again:

>>> show_count()
count = 0

You might be surprised that show_count () displays @ after the call to set_count(5), so
let’s work through what’s happening.

When we call set _count(), the assignment count = c creates a new binding for the name
count in the local scope. This new binding refers, of course, to the object passed in as c.
Critically, no lookup is performed for the global count defined at module scope. We have
created a new variable which shadows, and thereby prevents access to, the global of the same
name.

Chapter 4 — Built-in types and the object model 105

The global keyword

To avoid this shadowing of names in the global scope, we need to instruct Python to resolve
the name count in the set _count () function to the count defined in the module namespace.
We can do this by using the global keyword. Let’s modify set_count() to do so:

def set count(c):
global count
count = ¢

global introduces a binding in the local scope to a name from the global scope.

Quit and restart the Python interpreter to exercise our revised module:

>>> from scopes import *
>>> show_count()

count = 0

>>> set_count(5)

>>> show_count()

count = 5

It now demonstrates the required behaviour.

Chapter 4 - Built-in types and the object model 106

Moment of zen

Moment of Zen

Special cases aren't
special enough to
break the rules

We follow patterns
Not to kill complexity
But to master it

As we have shown, all variables in Python are references to objects, even in the case of basic
types such as integers. This thorough approach to object orientation is a strong theme in
Python and practically everything in Python is an object, including functions and modules.

Chapter 4 — Built-in types and the object model 107

Everything is an object

Let’s go back to our words module and experiment with it further at the REPL. On this
occasion we’ll import just the module:

$ python3

Python 3.5.0 (default, Nov 3 2015, 13:17:02)

[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)] on darwin
Type "help", "copyright", "credits" or "license" for more information.
>>> import words

The import statement binds a module object to the name words in the current namespace.
We can determine the type of any object by using the type() built-in function:

>>> type(words)
<class 'module'>

If we want to see the attributes of an object, we can use the dir() built-in function in a
Python interactive session to introspect an object:

>>> dir(words)

[' builtins ', ' cached ', ' doc ', ' file ', ' initializing '
' loader ', ' name ', ' package ', 'fetch words', 'main',
'print items', 'sys', ‘'urlopen']

The dir() function returns a sorted list of the module attribute names, including:

« The ones we defined such as the function fetch words()

« Any imported names such as sys and urlopen

« Various special dunder attributes such as __name__ and _ doc__ which reveal the
inner-workings of Python.

Inspecting a function

We can use the type() function on any of these attributes to learn more about them. For
instance, we can see that fetch words is a function object:

Chapter 4 — Built-in types and the object model 108

>>> type(words.fetch words)
<class 'function'>

We can in turn use dir () on the function to reveal its attributes:

>>> dir(words.fetch words)

[' annotations ', ' call ', ' «class ', ' «closure ', ' code '

' defaults ', ' delattr ', ' dict ', ' dir ', ' doc ', ' eq '

' format ', ' ge ', ' get ', ' getattribute ', ' globals ',
‘gt ', ' hash ', ' ipit ', ' kwdefaults ', ' 1le ‘', ' 1t ',

' module ', ' npname ', ' ne ', ' new ', ' qualname ', ' reduce '
' reduce ex ', ' repr_ ', ' setattr ', ' sizeof ', ' str ',

' subclasshook ']

We can see here that function objects have many special attributes to do with how Python
functions are implemented behind the scenes. For now, we’ll just look at a couple of simple
attributes.

As you might expect, its __name__ attribute is the name of the function object as a string:

>>> words.fetch words. name
'fetch words'

Likewise, doc_isthe docstring we provided, giving us some clues about how the built-in
help() function might be implemented.

>>> words.fetch words. doc

'"Fetch a list of words from a URL.\n\n Args:\n url: The URL of a
UTF-8 text document.\n\n Returns:\n A list of strings containing
the words from\n the document.\n

This is just a small example of how you can introspect Python objects at runtime, and there
are many more powerful tools that you can use to learn more about the objects you're using.
Perhaps the most instructive part of the example is that we were dealing with a function
object, demonstrating that Python’s pervasive object orientation includes elements of the
language that may not be accessible at all in other languages.

Chapter 4 — Built-in types and the object model 109

Summary

« Python object references

— Think of Python working in terms of named references to objects rather than
variables and values.

- Assignment doesn’t put a value in a box. It attaches a name tag to an object.
— Assigning from one reference to another puts two name tags on the same object.

— The Python garbage collector will reclaim unreachable objects - those objects with
no name tag.

+ Object identity and equivalence

— The id() function returns a unique and constant identifier but should rarely, if
ever, be used in production.

— The is operator determines equality of identity. That is, whether two names refer
to the same object.

— We can test for equivalence using the double-equals operator.
« Function arguments and return values

— Function arguments are passed by object-reference, so functions can modify their
arguments if they are mutable objects.

— If a formal function argument is rebound through assignment, the reference to
the passed-in object is lost. To change a mutable argument you should replace its
contents rather than replacing the whole object.

— The return statement also passes by object-reference. No copies are made.
— Function arguments can be specified with defaults.

— Default argument expressions are evaluated only once when the def statement is
executed.

« The Python type system

— Python uses dynamic typing, so we don’t need to specify reference types in
advance.

— Python uses strong typing. Types are not coerced to match.
+ Scopes

— Python reference names are looked up in one of four nested scopes according
to the LEGB rule: Local to functions, in Enclosing functions, in the Global (or
module) namespace and Built-ins.

— Global references can be read from a local scope

Chapter 4 — Built-in types and the object model 110

— Assigning to global references from a local scope requires that the reference be

declared global using the global keyword.
+ Objects and introspection

- Everything in Python is an object, including modules and functions. They can be
treated just like other objects.

— The import and def keywords result in binding to named references.
— The built-in type () function can be used to determine the type of an object.

— The built-in dir() function can be used to introspect an object and return a list
of its attribute names.

— The name of a function or module object can be accessed through its __name__ -
attribute.

— The docstring for a function or module object can be accessed through its _ doc_ -
_ attribute.

+ Miscellaneous
— We can use len() to measure the length of a string.

- If we “multiply” a string by an integer we get a new string with multiple copies
of the operand string. This is called the “repetition” operation.

Chapter 5 - Exploring built-in
collection types

We’ve already encountered some of the built-in collections

+ str - the immutable string sequence of Unicode code points
+ list - the mutable sequence of objects
« dict - the mutable dictionary mapping from immutable keys to mutable objects

We’ve only scratched the surface of how these collections work, so we’ll explore their powers
in greater depth in this chapter. We’ll also introduce three new built-in collections types:

« tuple - the immutable sequence of objects
+ range - for arithmetic progressions of integers
« set - a mutable collection of unique, immutable objects

We won’t cover the bytes type any further here. We've already discussed its essential
differences with str, and most of what we learn about str can also be applied to bytes.

This is not an exhaustive list of Python collection types, but it’s completely sufficient for the
overwhelming majority of Python 3 programs you’ll encounter in the wild or are likely to
write yourself.

In this chapter we’ll be covering these collections in the order mentioned above, rounding
things off with an overview of the protocols that unite these collections and which allow
them to be used in consistent and predictable ways.

tuple - an immutable sequence of objects

Tuples in Python are immutable sequences of arbitrary objects. Once created, the objects
within them cannot be replaced or removed, and new elements cannot be added.

Literal tuples

Tuples have a similar literal syntax to lists, except that they are delimited by parentheses
rather than square brackets. Here is a literal tuple containing a string, a float and an integer:

Chapter 5 — Exploring built-in collection types 112

>>> t = ("Norway", 4.953, 3)
>>> t

('Norway', 4.953, 3)

Tuple element access

We can access the elements of a tuple by zero-based index using square brackets:

>>> t[0]
"Norway'
>>> t[2]
3

The length of a tuple

We can determine the number of elements in the tuple using the built-in len() function:

>>> len(t)
3

Iterating over a tuple

We can iterate over it using a for-loop:

>>> for item in t:
>>> print(item)
Norway

4.953

3

Concatenating and repetition of tuples

We can concatenate tuples using the plus operator:

Chapter 5 — Exploring built-in collection types 113

>>> t + (338186.0, 265E9)
('Norway', 4.953, 3, 338186.0, 265000000000.0)

Similarly, we can repeat them using the multiplication operator:

>>> t % 3

('Norway', 4.953, 3, 'Norway', 4.953, 3, 'Norway', 4.953, 3)

Nested tuples

Since tuples can contain any object, it’s perfectly possible to have nested tuples:

>>> a = ((220, 284), (1184, 1210), (2620, 2924), (5020, 5564), (6232, 6368))

We use repeated application of the indexing operator to get to the inner elements:

>>> a[2][1]
2924

Single-element tuples

Sometimes a single element tuple is required. To write this, we can’t just use a simple object
in parentheses. This is because Python parses that as an object enclosed in the precedence
controlling parentheses of a math expression:

>>>

h = (391)
>>> h
391
>>> type(h)
<class 'int'>

To create a single-element tuple we make use of the trailing comma separator which, you’ll
recall, we’re allowed to use when specifying literal tuples, lists, and dictionaries. A single
element with a trailing comma is parsed as a single element tuple:

Chapter 5 — Exploring built-in collection types 114

>>> k = (391,)
>>> kK

(391,)

>>> type(k)
<class 'tuple'>

Empty tuples

This leaves us with the problem of how to specify an empty tuple. In actuality the answer is
simple, we just use empty parentheses:

>>> e = ()

>>> e

>>> type(e)
<class 'tuple'>

Optional parentheses

In many cases, the parentheses of literal tuples may omitted:

>>p=1,1, 1, 4, 6, 19
>>> p

(1, 1, 1, 4, 6, 19)

>>> type(p)

<class 'tuple'>

Returning and unpacking tuples

This feature is often used when returning multiple values from a function. Here we make a
function to return the minimum and maximum values of a sequence, the hard work being
done by two built-in functions min() and max():

Chapter 5 — Exploring built-in collection types 115

>>> def minmax(items):
return min(items), max(items)

>>> minmax([83, 33, 84, 32, 85, 31, 86])
(31, 86)

Returning multiple values as a tuple is often used in conjunction with a wonderful feature of
Python called tuple unpacking. Tuple unpacking is a so-called destructuring operation which
allows us to unpack data structures into named references. For example, we can assign the
result of our minmax () function to two new references like this:

>>> lower, upper = minmax([83, 33, 84, 32, 85, 31, 86])
>>> lower

31

>>> upper

86

This also works with nested tuples:

>>> (a, (b, (c, d))) = (4, (3, (2, 1)))
>>> a

>>> b
>>> ¢

>>> d

Swapping variables with tuple unpacking

Tuple unpacking leads to the beautiful Python idiom for swapping two (or more) variables:

Chapter 5 — Exploring built-in collection types 116

>>> a
>>> b

"jelly'
"bean'
>>>a, b=>b, a
>>> a

bean
>>> b
jelly

The tuple constructor

Should you need to create a tuple from an existing collection object, such as a list, you can
use the tuple() constructor. Here we create a tuple from a list:

>>> tuple([561, 1105, 1729, 2465])
(561, 1105, 1729, 2465)

And here we create a tuple containing the characters of a string:
>>> tuple("Carmichael")

(ICII |a|, |r|, |m|, Iil, ICI, Ihl, |a|’ |e|’ |'L|)

Membership tests

Finally, as with most collection types in Python, we can test for membership using the in
operator:

>>> 5 in (3, 5, 17, 257, 65537)
True

or non-membership with the not in operator:

>>> 5 not in (3, 5, 17, 257, 65537)
False

Chapter 5 — Exploring built-in collection types 117

Strings in action

We covered the str type at some length already in chapter two, but we’ll take time now to
explore its capabilities in a bit more depth.

The length of a string

As with any other Python sequence, we can determine the length of a string with the built-in
len() function.

>>> len("llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch")
58

SILIOGOGOGOCH

The sign for the railway station at Llanfairpwllgwyngyllgogerychwyrndrobwllllantysiliogogogoch on the
Welsh island of Anglesey — the longest placename in Europe.

Concatenating strings

Concatenation of strings is supported using the plus operator:

>>> "New" + "found" + "land"
Newfoundland

or the related augmented assignment operator:

Chapter 5 — Exploring built-in collection types

>>> s = "New"
>>> s += "found"
>>> s += "land"
>>> S
'Newfoundland'

NEWFOUNDLAND
AND LABRADOR

Corner Brook

Newfoundland

st. John's
®

sy of Map Ques

118

Newfoundland, the sixteenth largest island in the world, is one of relative few closed, triple-compound words

in English.

Remember that strings are immutable, so here the augmented assignment operator is binding
a new string object to s on each use. The illusion of modifying s in place is achievable
because s is a reference to an object, not an object itself. That is, although the string itself is
immutable, the reference to it is mutable.

Joining strings

For joining large numbers of strings, avoid using the + or += operators. Instead, the join()
method should be preferred because it is substantially more efficient. This is because
concatenation using the addition operator or its augmented assignment version can lead to

Chapter 5 — Exploring built-in collection types 119

the generation of large numbers of temporaries, with consequent costs for memory allocation
and copies. Let’s see how join() is used.

join() is a method on str which takes a collection of strings as an argument and produces
anew string by inserting a separator between each of them. An interesting aspect of join()
is how the separator is specified: it is the string on which join() is called.

As with many parts of Python, an example is the best explanation. To join a list of HTML
color code strings into a semicolon separated string:

>>> colors = ';'.join(['#45ff23', '#2321fa', '#1298a3', '#a32312'])
>>> colors
"#45Ff23;#2321Fa;#1298a3;#a32312"'

Here, we call join() on the separator we wish to use — the semicolon — and pass in the list
of strings to be joined.

A widespread and fast Python idiom for concatenating together a collection of strings is to
join() using an empty string as the separator:

>>> '' . join(['high', 'way', 'man'l])
highwayman
Splitting strings

We can then split strings up again using the split() method (which we've already
encountered, but this time we’re going to provide its optional argument):

>>> colors.split(';")
["#45ff23"', '"#2321FA', '#1298A3', '#A32912']

The optional argument lets you specify the string — not just the character — on which to
split the string. So, for example, you could parse a hasty breakfast order by splitting on the
word ‘and’:

>>> 'eggsandbaconandspam'.split('and"')
['eggs', 'bacon', 'spam']

Chapter 5 — Exploring built-in collection types 120

Moment of zen

Moment of Zen

The way may not
be obvious at first

To concatenate
Invoke join on empty text
Something for nothing

This use of join() is often confusing to the uninitiated, but with use, the approach taken
by Python will be appreciated as natural and elegant.

Chapter 5 — Exploring built-in collection types 121

Partitioning strings

Another very useful string method is partition() which divides a string into three sections;
the part before a separator, the separator itself, and the part after the separator:

>>> "unforgettable".partition('forget')
(‘un', 'forget', 'table')

The partition() method returns a tuple, so this is commonly used in conjunction with
tuple unpacking:

>>> departure, separator, arrival = "London:Edinburgh".partition(':")
>>> departure

London

>>> arrival

Edinburgh

Often, we’re not interested in capturing the separator value, so you might see the underscore
variable name used. This is not treated in a special way by the Python language, but there’s
an unwritten convention that the underscore variable is for unused or dummy values:

>>> origin, , destination = "Seattle-Boston".partition('-")

This convention is supported by many Python-aware development tools which will suppress
unused variable warnings for underscore.

String formatting

One of the most interesting and frequently used string methods is format (). This supersedes,
although does not replace, the string interpolation technique used in older versions of Python,
and which we do not cover in this book. The format () method can be usefully called on
any string containing so-called replacement fields which are surrounded by curly braces. The
objects provided as arguments to format () are converted to strings and used to populate
these fields. Here’s an example:

Chapter 5 — Exploring built-in collection types 122

>>> "The age of {0} is {1}".format('Jim', 32)
'The age of Jim is 32'

The field names, in this case ® and 1, are matched up with the positional arguments to
format (), and each argument is converted to a string behind the scenes.

A field name may be used more than once:
>>> "The age of {0} is {1}. {0}'s birthday is on {2}".format('Fred', 24, 'October 31')

However, if the field names are used exactly once and in the same order as the arguments,
they can be omitted:

>>> "Reticulating spline {} of {}.".format(4, 23)
'Reticulating spline 4 of 23.'

If keyword arguments are supplied to format () then named fields can be used instead of
ordinals:

>>> "Current position {latitude} {longitude}".format(latitude="60N", longitude="5E")
"Current position 60N 5E'

It’s possible to index into sequences using square brackets inside the replacement field:

>>> "Galactic position x={pos[0]}, y={pos[1l]}, z={pos[2]}".format(pos=(65.2, 23.1, 82.2))
'Galactic position x=65.2, y=23.1, z=82.2'

We can even access object attributes. Here we pass the whole math module to format()
using a keyword argument (Remember — modules are objects too!), then access two of its
attributes from within the replacement fields:

>>> import math
>>> "Math constants: pi={m.pi}, e={m.e}".format(m=math)
'Math constants: pi=3.141592653589793 e=2.718281828459045'

Format strings also give us a lot of control over field alignment and floating-point formatting.
Here’s the same with the constants displayed to only three decimal places:

Chapter 5 — Exploring built-in collection types 123

>>> "Math constants: pi={m.pi:.3f}, e={m.e:.3f}".format(m=math)
'Math constants: pi=3.142, e=2.718'

Other string methods

We recommend you spend some time familiarizing yourself with the other string methods.
Remember, you can find out what they are using:

>>> help(str)

range - a collection of evenly spaced integers

Let’s move on and look at range, which many developers wouldn’t consider to be a
collection®, although we’ll see that in Python 3 it most definitely is.

A range is a type of sequence used for representing an arithmetic progression of integers.
Ranges are created by calls to the range() constructor, and there is no literal form. Most
typically we supply only the stop value, as Python defaults to a starting value of zero:

>>> range(5)
range(0, 5)

Ranges are sometimes used to create consecutive integers for use as loop counters:

>>> for i in range(5):
print(i)

A~ W NN BRE O -

Note that the stop value supplied to range() is one past the end of the sequence, which is
why the previous loop didn’t print 5.

*Back in Python 2 days range() was a function which returned a list. The Python 3 version of range is much more efficient,
useful and powerful.

Chapter 5 — Exploring built-in collection types 124

Starting value

We can also supply a starting value if we wish:

>>> range(5, 10)
range(5, 10)

Wrapping this in a call to the list () constructor is a handy way to force production of each
item:

>>> list(range(5, 10))
[5, 6, 7, 8, 9]

This so-called half-open range convention — with the stop value not being included in the
sequence — at first seems strange, but it actually makes a lot of sense if you’re dealing with
consecutive ranges because the end specified by one range is the start of the next one:

>>> list(range(10, 15))

[l0, 11, 12, 13, 14]

>>> list(range(5, 10)) + list(range(10, 15))
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

Step argument

Range also supports a step argument:

>>> list(range(0, 10, 2))
(6, 2, 4, 6, 8]

Note that in order to use the step argument, we must supply all three arguments. Range is
curious in that it determines what its arguments mean by counting them. Providing only
one argument means that the argument is the stop value. Two arguments are start and
stop, and three arguments are start, stop and step. Python range() works this way so
the first argument, start, can be made optional, something which isn’t normally possible.
Furthermore the range constructor doesn’t support keyword arguments. You might almost
describe it as unPythonic!

Chapter 5 — Exploring built-in collection types 125

Constructor Arguments Result
range(5) stop 0,1,23,4
range(5, 10) start, stop 56,7,89

range(10, 20, 2) start,stop,step 10,12, 14,16,18

The arguably unPythonic constructor for range, where the interpretation of the arguments depends on
whether one, two, or three are provided.

Not using range: enumerate()

At this point we’re going to show you another example of poorly styled code, except this
time it’s one you can, and should, avoid. Here’s a poor way to print the elements in a list:

>>> s = [0, 1, 4, 6, 13]
>>> for i in range(len(s)):
print(s[il)

SO RO

13

Although this works, it is most definitely unPythonic. Always prefer to use iteration over
objects themselves:

Chapter 5 — Exploring built-in collection types 126

>>> s = [0, 1, 4, 6, 13]
>>> for v in s:
print(v)

(o) =l

13

If you need a counter, you should use the built-in enumerate() function which returns an
iterable series of pairs, each pair being a tuple. The first element of each pair is the index
of the current item and the second element of each pair is the item itself:

>>> t = [6, 372, 8862, 148800, 2096886]
>>> for p in enumerate(t):

>>> print(p)
(0, 6)

(1, 372)

(2, 8862)

(3, 148800)

(4, 2096886)

Even better, we can use tuple unpacking and avoid having to directly deal with the tuple:

>>> for i, v in enumerate(t):
print("i = {}, v = {}".format(i, v))

i=0, v=2=56
i=1, v=372
i=2, v = 8862
i=3, v = 148800
i=4, v = 2096886

list in action

We’ve already covered lists a little, and we’ve been making good use of them. We know
how to create lists using the literal syntax, add to them using the append () method, and get
at and modify their contents using the square brackets indexing with positive, zero-based
indexes.

Chapter 5 — Exploring built-in collection types 127

s[4]

show how to index sequences

Zero and positive integers index from the front of a list, so index four is the fifth element in the list.

Now we’ll take a deeper look.

Negative indexing for lists (and other sequences)

One very convenient feature of lists (and other Python sequences, for this applies to tuples
too) is the ability to index from the end, rather than from the beginning. This is achieved by
supplying negative indices. For example:

>>> r = [1, -4, 10, -16, 15]
>>> r[-1]

15

>>> r[-2]

-16

-6 -4 &5 -2 -1

show to index into sequences

Negative integers are -1 based backwards from the end, so index -5 is the last but fourth element.

This is much more elegant than the clunky equivalent of computing a positive index, which
you would otherwise need to use for retrieving that last element:

Chapter 5 — Exploring built-in collection types 128

>>> r[len(r) - 1]

Note that indexing with -0 is the same as indexing with 0 and returns the first element
in the list. Because there is no distinction between 0 and negative zero, negative indexing
is essentially one-based rather than zero-based. This is good to keep in mind if you’re
calculating indices with even moderately complex logic: off-by-one errors can creep into
negative indexing fairly easily.*®

Slicing lists

Slicing is a form of extended indexing which allows us to refer to portions of a list. To use it
we pass the start and stop indices of a half-open range, separated by a colon, as the square-
brackets index argument. Here’s how:

>>> s = [3, 186, 4431, 74400, 1048443]
>>> s[1:3]
[186, 4431]

See how the second index is one beyond the end of the returned range.

s[1:4]

start stop
0 4 5
show into sequences

The slice [1:4]. Slicing extracts part of a list. The slice range is half-open, so the value at the stop index is
not included.

This facility can be combined with negative indices. For example, to take all elements except
the first and last:

“This, of course, brings to mind the classic joke: The two hardest problems in programming are naming, cache coherence, and
off-by-one errors.

Chapter 5 — Exploring built-in collection types 129

>>> s[1:-1]
[186, 4431, 74400]

s[1:-1]

start stop

-2

into sequences

The slice [1:-1] is useful for excluding the first and last elements of a list.

Both the start and stop indices are optional. To slice all elements from the fourth to the end
of the list:

>>> s[3:]
[74400, 1048443]

s[3:]

start stop

4

into sequences

The slice [3:] retains all the elements from the fourth, up to and including the last element.

To slice all elements from the beginning up to, but not including, the fourth:

>>> s[:3]
[3, 186, 4431]

Chapter 5 — Exploring built-in collection types 130

s[:3]

start stop
3 4 5
index into sequences

The slice [:3] retains all elements from the beginning of the list up to, but not including, the fourth element.

Notice that these two lists are complementary, and together form the whole list, demonstrat-
ing the convenience of the half-open range convention.

start stop
3 4 5
index into sequences
start stop

0 1 2 4

s[3:]

show how to into sequences

The slice [:3] and [3:] slices are complementary.

Since both start and stop slice indices are optional, it’s entirely possible to omit both and
retrieve all of the elements:

>>> s[:]
[3, 186, 4431, 74400, 1048443]

This is a called a full slice, and it’s an important technique in Python.

Chapter 5 — Exploring built-in collection types 131

start stop

R2 -1

into sequences

The slice [:] is the full-slice and contains all of the elements from the list. It’s an important idiom for copying
lists.

Copying lists

Indeed, the full slice is an important idiom for copying a list. Recall that assigning references
never copies an object, but rather merely copies a reference to an object:

>>> t = 5§
>>> t is s
True

We deploy the full slice to perform a copy into a new list:
>>> r = s[:]
And confirm that the list obtained with the full slice has a distinct identity:

>>> r is s
False

Although it has an equivalent value:

>>> r == §
True

It’s important to understand that although we have a new list object which can be
independently modified, the elements within it are references to the same objects referred to

Chapter 5 — Exploring built-in collection types 132

by the original list. In the event that these objects are both mutable and modified (as opposed
to replaced) the change will be seen in both lists.

We show this full-slice list copying idiom because you are likely to see it in the wild, and
it’s not immediately obvious what it does. You should be aware that there are other more
readable ways of copying a list, such as the copy () method:

>>> u = s.copy()
>>> u is S
False

Or a simple call to the list constructor, passing the list to be copied:

>>> v = list(s)

Largely the choice between these techniques is a matter of taste. Our preference is for the
third form using the list constructor, since it has the advantage of working with any iterable
series as the source, not just lists.

Shallow copies

You must be aware, however, that all of these techniques perform a shallow copy. That is,
they create a new list containing references to the same objects as the source list, but they
don’t copy the referred-to objects. To demonstrate this, we’ll use nested lists, with the inner
lists serving as mutable objects. Here’s a list containing two elements, each of which is itself
a list:

>>> a = [[1, 21, [3, 4] 1

We copy this list using a full slice:

>>> b = a[:]

and convince ourselves that we do in fact have distinct lists:

Chapter 5 — Exploring built-in collection types 133

>>> g is b
False

with equivalent values:

>>> g ==
True

Notice, however, that the references within these distinct lists refer not only to equivalent
objects:

>>> a[0]
[1, 2]
>>> b[0]
[1, 2]

but, in fact, to the same object:

>>> a[0] 1is b[0]
True

Chapter 5 — Exploring built-in collection types

Copies are shallow

>>> a =
>>> b =
>>> a is
False
sE5 g ==
True

>>> a[0]
[1, 2]
>>> b[0]
[1, 2]
>>> al[o]
True

C[1, 21, [3, 411
al:]
b

b

is b[0]

134

Copies are shallow. When a list is copied the references to the containing objects (yellow diamonds) are

copied, but the referred-to objects (blue rectangles) are not.

This situation holds until we rebind the first element of a to a newly constructed list:

>>> a[0] = [8, 9]

Now the first elements of a and b refer to different lists:

>>> a[0]
[8, 9]
>>> b[0]
[1, 2]

Chapter 5 — Exploring built-in collection types 135

Copies are shallow >>> ale] = [8, 9]
>>> ale]

[8, 9]

>>> b[0o]

[1, 2]

>>>

list

g kel

@
H—{olo

The first elements of lists a and b are now uniquely owned, whereas the second elements are shared.

The second elements of both a and b still refer to the same object. We’ll demonstrate this by
mutating that object through the a list:

>>> a[l].append(5)
>>> all]
[3, 4, 5]

We see the change reflected through the b list:

>>> b[1]
[3, 4, 5]

Chapter 5 — Exploring built-in collection types 136

Copies are shallow >>> a[o] = [8, 9]
>>> ale]

[8, 9]

>>> b[0o]

[1, 2]

>>> a[1].append(5)
>>> al[1]

[3, 4, 5]

>>> b[1]

[3, 4, 5]

list

g kel

@
H—{olo

Modifying an object referred to by two lists.

For completeness, here is the final state of both the a and b lists:

>>> a
[[8, 91, [3, 4, 5]]
>>> b
(1, 21, 3, 4, 5]1

Chapter 5 — Exploring built-in collection types 137

Copies are shallow >>> a
L8, 91, [3, 4, 511
>>> b
LC1, 21, [3, 4, 511

The final state of list a.

Chapter 5 — Exploring built-in collection types 138

Copies are shallow >>> a
L8, 91, [3, 4, 511
>>> b
CC1, 21, [3, 4, 511

list

B—1[[]

The final state of list b.

If you need to perform true deep copies of hierarchical data structures like this — which in
our experience is a rarity — we recommend taking a look at the copy module in the Python
Standard Library.

Repeating lists

As for strings and tuples, lists support repetition using the multiplication operator. It’s simple
enough to use:

>>> ¢ = [21, 37]
>>>d =c¢c * 4
>>> d

[21, 37, 21, 37, 21, 37, 21, 37]

although it’s rarely spotted in the wild in this form. It’s most often useful for initializing a
list of size known in advance to a constant value, such as zero:

Chapter 5 — Exploring built-in collection types 139

>>> [0] * 9
(6, 0, 0, 6, 0, 0, 6, 0, O]

Be aware, though, that in the case of mutable elements the same trap for the unwary lurks
here, since repetition will repeat the reference to each element, without copying the value.
Let’s demonstrate using nested lists as our mutable elements again:

>>> s = [[-1, +1]] * 5
>>> s
(r-1, 11, (-1, 11, (-1, 11, [-1, 1], [-1, 1]]

Repetition is Shallow >>> s =[[-1, +111 5
>>> S
(-1, 11, [-1, 13, -1, 13,
(-1, 13, [-1, 11

>>>

Repetition is shallow.

If we now modify the third element of the outer list:
>>> s[2].append(7)

we see the change through all five references which comprise the outer list elements:

Chapter 5 — Exploring built-in collection types 140

>>> S
(-1, 1, 71, (-1, 1, 71, (-1, 1, 71, [-1, 1, 7], [-1, 1, 7]]

Repetition is Shallow >> s =[[-1, +111%5

>>> S

[C-1, 13, [-1, 13, [-1, 13,
[-1, 11, [-1, 11]

>>> s[3].append(7)

>>> S

cc-1, 1, 71, -1, 1, 71, [-1,
1,71, [-1, 1, 71, [-1, 1, 71

Mutating the repeated contents of a list. Any change to the object is reflected in every index of the outer list.

Finding list elements with index()

To find an element in a list, use the index () method passing the object you’re searching for.
The elements are compared for equivalence until the one you’re looking for is found:

Chapter 5 — Exploring built-in collection types 141

>>> w = "the quick brown fox jumps over the lazy dog".split()

>>> W

['the', 'quick', 'brown', 'fox', 'jumps', ‘'over', 'the', 'lazy', 'dog'l]
>>> 1 = w.index('fox")

>>>]

3

>>> w[i]

'fox'

If you search for a value that isn’t present, you receive a ValueError:

>>> w.index('unicorn')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

ValueError: 'unicorn' is not in list

We’ll learn how to handle such errors gracefully in chapter six.

Membership testing with count() and in
Another means of searching is to count () matching elements:

>>> w.count("the")
2

If you just want to test for membership, you can use the in operator:

>>> 37 in [1, 78, 9, 37, 34, 53]
True

or non-membership with not in:
>>> 78 not in [1, 78, 9, 37, 34, 53]

False

Removing list elements by index with del

Elements are removed using a keyword with which we have not yet become acquainted: del.
The del keyword takes a single parameter which is a reference to a list element and removes
it from the list, shortening the list in the process:

Chapter 5 — Exploring built-in collection types 142

>>> u = "jackdaws love my big sphinx of quartz".split()
>>> U

['jackdaws', 'love', 'my', 'big', 'sphinx', 'of', 'quartz']
>>> del u[3]

>>> U

['jackdaws', 'love', 'my', 'sphinx', 'of', 'quartz']

Removing list elements by value with remove()

It’s also possible to remove elements by value, rather than by position, using the remove()
method:

>>> u.remove('jackdaws")
>>> U
['love', 'my', 'sphinx', 'of', 'quartz']

This is equivalent to the more verbose:
>>> del ufu.index('jackdaws')]

Attempting to remove() an item which is not present will also cause a ValueError to be
raised:

>>> u.remove('pyramid')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: list.remove(x): x not in list

Inserting into a list

Items can be inserted into lists using the insert () method, which accepts the index of the
new item and the new item itself:

Chapter 5 — Exploring built-in collection types 143

>>> a = 'I accidentally the whole universe'.split()

>>> 3

['I', 'accidentally', 'the', 'whole', 'universe']

>>> a.insert(2, "destroyed")

>>> 3

['I', 'accidentally', 'destroyed', 'the', 'whole', ‘'universe']
>>> ' ', join(a)

'I accidentally destroyed the whole universe'

Concatenating lists

Concatenating lists using the addition operator results in a new list without modification of
either of the operands:

>>>m = [2, 1, 3]
>>>n = [4, 7, 11]
>>> Kk =m + n

>>> k

[2, 1, 3, 4, 7, 11]

Whereas the augmented assignment operator += modifies the assignee in place:

>>> k += [18, 29, 47]
>>> k
[2, 1, 3, 4, 7, 11, 18, 29, 47]

A similar effect can also be achieved using the extend () method:
>>> k.extend([76, 129, 199])

>>> k
[2, 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199]

Augmented assignment and the extend () method will work with any iterable series on the
right-hand-side.

Rearranging list elements

Before we move on from lists, let’s look at two operations which rearrange the elements in
place: reversing and sorting.

A list can be reversed in place by calling its reverse () method:

Chapter 5 — Exploring built-in collection types 144

>>> g = [1, 11, 21, 1211, 112111]
>>> g.reverse()

>>> g

[112111, 1211, 21, 11, 1]

A list can be sorted in place, using the sort () method:

>>> d = [5, 17, 41, 29, 71, 149, 3299, 7, 13, 67]
>>> d.sort()
>>> d

7,

[5, 13, 17, 29, 41, 67, 71, 149, 3299]

The sort() method accepts two optional arguments, key and reverse. The latter is self
explanatory and when set to True gives a descending sort:

>>> d.sort(reverse=True)
>>> d
[3299, 149, 71, 67, 41, 29, 17, 13, 7, 5]

The key parameter is more interesting. It accepts any callable object which is then used to
extract a key from each item. The items will then be sorted according to the relative ordering
of these keys. There are several types of callable objects in Python, although the only one
we have encountered so far is the humble function. For example, the len() function is a
callable object which is used to determine the length of a collection, such as a string.

Consider the following list of words:

>>> h = 'not perplexing do handwriting family where I illegibly know doctors'.split()

>>> h

['not', 'perplexing', 'do', 'handwriting', 'family', 'where', 'I', 'illegibly', 'know', '\
doctors']

>>> h.sort(key=1len)

>>> h

['I', 'do', 'not', 'know', 'where', 'family', 'doctors', 'illegibly', 'perplexing', 'hand\
writing']

" '.join(h)

'I do not know where family doctors illegibly perplexing handwriting'

>>>

Chapter 5 — Exploring built-in collection types 145

Out-of-place rearrangement

Sometimes an in situ sort or reversal is not what is required. For example, it may cause a
function argument to be modified, giving the function confusing side effects. For out-of-place
equivalents of the reverse() and sort() list methods you can use the reversed() and
sorted () build-in functions which return a reverse iterator and a new sorted list respectively.
For example:

>>> [4, 9, 2, 1]
sorted(x)

>>>

>>>
[1,
>>>
[4,

O X N K X

and:

>>> p [9, 3, 1, 0]

>>> reversed(p)

>>> q

<list reverseiterator object at 0x1007bf290>
>>> list(q)

[0, 1, 3, 9]

Notice how we used a list constructor to evaluate the result of reversed(). This is because
reversed () returns an iterator, a topic which we’ll cover in much more detail later.

These functions have the advantage that they’ll work on any finite iterable source object.

Dictionaries

We'll now return to dictionaries, which lie at the heart of many Python programs, including
the Python interpreter itself. We briefly looked at literal dictionaries previously, seeing how
they are delimited with curly braces and contain comma-separated key value pairs, with
each pair tied together by a colon:

Chapter 5 — Exploring built-in collection types 146

>>> urls = {'Google': 'http://google.com',
'Twitter': 'http://twitter.com',
'Sixty North': 'http://sixty-north.com',
'Microsoft': 'http://microsoft.com' }

>>>

dict

keys values

str g
"Twitter” s s "http://twitter.com”
str str
"Sixty North” § {‘} "http://sixty-north.com”
O O o
"http://google.com”

str str
"Microsoft” a s "http://microsoft.com”

A dictionary of URLs. The order of dictionary keys is not preserved.

The values are accessible via the keys:

>>> urls['Twitter']
http://twitter.com

Since each key is associated with exactly one value, and lookup is through keys, the keys
must be unique within any single dictionary. It’s fine, however, to have duplicate values.

Internally, the dictionary maintains pairs of references to the key objects and the value
objects. The key objects must be immutable, so strings, numbers and tuples are fine, but
lists are not. The value objects can be mutable, and in practice often are. Our example URL
map uses strings for both keys and values, which is fine.

You should never rely on the order of items in the dictionary - it’s essentially random and

Chapter 5 — Exploring built-in collection types 147

may even vary between different runs of the same program.

As with the other collections, there’s also a named constructor dict () which can convert
other types to dictionaries. We can use the constructor to copy from an iterable series of
key-value pairs stored in tuples, like this:

>>> names_and ages = [('Alice', 32), ('Bob', 48), ('Charlie', 28), ('Daniel', 33)]
>>> d = dict(names_and ages)

>>> d

{'Charlie': 28, 'Bob': 48, 'Alice': 32, 'Daniel': 33}

Recall that the items in a dictionary are not stored in any particular order, so the order of
the pairs within the list is not preserved.

So long as the keys are legitimate Python identifiers it’s even possible to create a dictionary
directly from keyword arguments passed to dict():

>>> phonetic = dict(a='alfa', b='bravo', c='charlie', d='delta', e='echo', f='foxtrot')
>>> phonetic
{'a': 'alfa', 'c': 'charlie', 'b': 'bravo', 'e': 'echo', 'd': 'delta', 'f': 'foxtrot'}

Again, the order of the keyword arguments is not preserved.

Copying dictionaries

As with lists dictionary copying is shallow by default, copying only the references to the key
and value objects, not the objects themselves. There are two means of copying a dictionary,
of which we most commonly see the second. The first technique is to use the copy () method:

>>> d = dict(goldenrod=0xDAA520, indigo=0x4B0082, seashell=0xFFF5EE)
>>> e = d.copy()
>>> e

{'indigo': 4915330, 'goldenrod': 14329120, 'seashell': 16774638}

The second is to pass an existing dictionary to the dict() constructor:

Chapter 5 — Exploring built-in collection types 148

>>> f = dict(e)
>>> f
{'indigo': 4915330, 'seashell': 16774638, 'goldenrod': 14329120}

Updating dictionaries

If you need to extend a dictionary with definitions from another dictionary you can use the
update () method. This is called on the dictionary to be updated and is passed the contents
of the dictionary which is to be merged in:

>>> = dict(wheat=0xF5DEB3, khaki=0xFOE68C, crimson=0xDC143C)

g

>>> f.update(g)

>>> f

>>> {'crimson': 14423100, 'indigo': 4915330, 'goldenrod': 14329120,
'wheat': 16113331, 'khaki': 15787660, 'seashell': 16774638}

If the argument to update () includes keys which are already present in the target dictionary,
the values associated with these keys are replaced in the target by the corresponding values
from the source:

>>> stocks = {'GO0G': 891, 'AAPL': 416, 'IBM': 194}
>>> stocks.update({'GO0OG': 894, 'YHOO': 25})

>>> stocks

{'YHOO': 25, 'AAPL': 416, 'IBM': 194, 'GOOG': 894}

Iterating over dictionary keys

As we have seen in an earlier chapter, dictionaries are iterable and so can be used with for-
loops. The dictionary yields only the key on each iteration, and it’s up to us to retrieve the
corresponding value by lookup using the square-brackets operator:

Chapter 5 — Exploring built-in collection types 149

>>> colors = dict(aquamarine='#7FFFD4', burlywood='#DEB887"',
chartreuse="#7FFF00', cornflower='#6495ED',
firebrick="'#B22222"', honeydew='#FOFFFO"',
. maroon="'#B03060', sienna='#A0522D")
>>> for key in colors:
print("{key} => {value}".format(key=key, value=colors[key]))

firebrick => #B22222
maroon => #B03060
aquamarine => #7FFFD4
burlywood => #DEB887
honeydew => #FOFFFO
sienna => #A0522D
chartreuse => #7FFF00
cornflower => #6495ED

Notice that the keys are returned in an arbitrary order which is neither the order in which
they were specified nor any other meaningful sort order.

Iterating over dictionary values

If we want to iterate over only the values, we can use the values () dictionary method. This
returns an object which provides an iterable view onto the dictionary values without causing
the values to be copied:

>>> for value in colors.values():
print(value)
#B22222
#B03060
#7FFFD4
#DEB887
#FOFFFO
#A0522D

#DEB887
#6495ED

There is no efficient or convenient way to retrieve the corresponding key from a value, so
we only print the values

In the interests of symmetry, there is also a keys () method, although since the iterating over
the dictionary object directly yields the keys, this is less commonly used:

Chapter 5 — Exploring built-in collection types 150

>>> for key in colors.keys():
print(key)

firebrick
maroon
aquamarine
burlywood
honeydew
sienna
chartreuse
cornflower

Iterating over key-value pairs

Often though, we want to iterate over the keys and values in tandem. Each key-value pair
in a dictionary is called an item and we can get hold of an iterable view of items using the
items () dictionary method. When iterated the items () view yields each key-value pair as
a tuple. By using tuple unpacking in the for-statement we can get both key and value in one
operation without the extra lookup:

>>> for key, value in colors.items():
print("{key} => {value}".format(key=key, value=value))

firebrick => #B22222
maroon => #B03060
aquamarine => #7FFFD4
burlywood => #DEB887
honeydew => #FOFFFO
sienna => #A0522D
chartreuse => #DEB887
cornflower => #6495ED

Membership testing for dictionary keys

The membership tests for dictionaries using the in and not in operators work on the keys:

Chapter 5 — Exploring built-in collection types 151

>>> symbols = dict(
usd="'\u0024"', gbp='\ub0a3', nzd='\u0024', krw='\u20a9',
eur="'\u20ac', jpy='\ubba5', nok='kr', hhg='Pu', ils='\u20aa')

>>> symbols

{'jpy': "¥', 'krw': 'W®', 'eur': '€', 'ils': 'N', 'nzd': '$', 'nok': 'kr',

'gbp': '£', 'usd': '$', 'hhg': 'Pu'}

>>> 'nzd' in symbols

True

>>> 'mkd' not in symbols

True

Removing dictionary items

As for lists, to remove an entry from a dictionary, we use the del keyword:

>>> z = {'H': 1, 'Tc': 43, 'Xe': 54, 'Un': 137, 'Rf': 104, 'Fm': 100}

>>> del z['Un']

>>> 7

{'H': 1, 'Fm': 1060, 'Rf': 104, 'Xe': 54, 'Tc': 43}

Mutability of dictionaries

The keys in a dictionary should be immutable, although the values can be modified. Here’s
a dictionary which maps the element symbol to a list of mass numbers for different isotopes

of that element:

>>>m = {'H': [1, 2, 3],

'He': [3, 4],
"Li': [6, 7],
'‘Be': [7, 9, 10],
'B': [10, 117,

‘c': [11, 12, 13, 141}

See how we split the dictionary literal over multiple lines. That’s allowed because the curly
braces for the dictionary literal are open.

Our string keys are immutable, which is a good thing for correct functioning of the dictionary.
But there’s no problem with modifying the dictionary values in the event that we discover
some new isotopes:

Chapter 5 — Exploring built-in collection types 152

>>> m['H'] += [4, 5, 6, 7]

>>> m

{'H': [1, 2, 3, 4, 5, 6, 7], 'Li': [6, 7], 'C': [11, 12, 13, 141, 'B':
[16, 11], 'He': [3, 4], 'Be': [7, 9, 101}

Here, the augmented assignment operator is applied to the list object accessed through the
‘H’ (for hydrogen) key; the dictionary is not being modified.

Of course, the dictionary itself is mutable; we know we can add new items:

>>> m['N'] = [13, 14, 15]

Pretty printing

With compound data structures such as our table of isotopes, it can be helpful to have them
printed out in a much more readable form. We can do this with the Python Standard Library
pretty-printing module called pprint, which contains a function called pprint:

>>> from pprint import pprint as pp

Note that if we didn’t bind the pprint function to a different name pp, the function reference
would overwrite the module reference, preventing further access to contents of the module*’:

>>> pp(m)
{'B': [10, 11],
‘Be': [7, 9, 10],
'C':o[11, 12, 13, 14],
‘H': [1, 2, 3, 4, 5, 6, 71,
‘He': [3, 41,
‘Li': 16, 71,
'N': [13, 14, 151}

gives us a much more comprehensible display.

Let’s move on from dictionaries and look at a new built-in data structure, the set.

" Arguably, it’s poor design to have a module containing functions of the same name, because of this issue.

Chapter 5 — Exploring built-in collection types 153

set - an unordered collection of unique elements

The set data type is an unordered collection of unique elements. The collection is mutable
insofar as elements can be added and removed from the set, but each element must itself be
immutable, very much like the keys of a dictionary.

Sets are unordered groups of distinct elements.

Sets have a literal form very similar to dictionaries, again delimited by curly braces, but each
item is a single object, rather than a pair joined by a colon:

>>> p = {6, 28, 496, 8128, 33550336}

Note that like a dictionary, the set is unordered:

Chapter 5 — Exploring built-in collection types 154

>>> p
{33550336, 8128, 28, 496, 6}

Of course, sets have type set:

>>> type(p)
<class 'set'>

The set constructor

Recall that somewhat confusingly, empty curly braces create an empty dictionary, rather
than an empty set:

>>> d = {}
>>> type(d)
<class 'dict'>

To create an empty set we must resort to the set () constructor:

>>> e = set()
>>> e
set()

This is also the form Python echoes back to us for empty sets.
The set () constructor can create a set from any iterable series, such as a list:
>>> s = set([2, 4, 16, 64, 4096, 65536, 262144])

>>> 5
{64, 4096, 2, 4, 65536, 16, 262144}

Duplicates in the input series are discarded. In fact, a common use of sets is to efficiently
remove duplicate items from series of objects:

Chapter 5 — Exploring built-in collection types 155

>>t =[1, 4, 2, 1, 7, 9, 9]
>>> set(t)
{1, 2, 4, 9, 7}

Iterating over sets

Naturally, sets are iterable, although the order is arbitrary:

>>> for x in {1, 2, 4, 8, 16, 32}:
>>> print(x)

32

1

2

16

Membership testing of sets

Membership is a fundamental operation for sets, and as with the other collection types is
performed using the in and not in operators:

>>q=9{2,9, 6, 41}
>>> 3 in q

False

>>> 3 not in g

True

Adding elements to sets

To add a single element to a set use the add () method:

Chapter 5 — Exploring built-in collection types 156

>>> k = {81, 108}
>>> kK

{81, 108}

>>> k.add(54)

>>> k

{81, 108, 54}

>>> k.add(12)

>>> k

{81, 108, 54, 12}

Adding an element that already exists has no effect:

>>> k.add(108)

although neither does it produce an error.

Multiple elements can be added in one go from any iterable series, including another set,
using the update() method:

>>> k.update([37, 128, 97])
>>> k
{128, 81, 37, 54, 97, 12, 108}

Removing elements from sets

Two methods are provided for removing elements from sets. The first, remove (), requires
that the element to be removed is present in the set, otherwise a KeyError is given:

>>> k.remove(97)

>>> k

{128, 81, 37, 54, 12, 108}

>>> k.remove(98)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

KeyError: 98

The second method, discard(), is less fussy and has no effect if the element is not a member
of the set:

Chapter 5 — Exploring built-in collection types 157

>>> k.discard(98)
>>> k
{128, 81, 37, 54, 12, 108}

Copying sets

As with the other built-in collections, set sports a copy () method which performs a shallow
copy of the set (copying references but not objects):

>>> j = k.copy()
>>> j
{128, 81, 37, 54, 108, 12}

As we have already shown, the set () constructor may be used:

>>>m = set(j)
>>>
{128, 81, 37, 54, 108, 12}

Set algebra operations

Perhaps the most useful aspect of the set type is the group of powerful set algebra operations
which are provided. These allow us to easily compute set unions, set differences, and set
intersections, and to evaluate whether two sets have subset, superset, or disjoint relations.

To demonstrate these methods, we’ll construct some sets of people according to various
phenotypes:

Chapter 5 — Exploring built-in collection types 158

>>> blue eyes = {'Olivia', 'Harry', 'Lily', 'Jack', 'Amelia'}
>>> blond hair = {'Harry', 'Jack', 'Amelia', 'Mia', 'Joshua'}
>>> smell hcn = {'Harry', 'Amelia'}

>>> taste ptc = {'Harry', 'Lily', 'Amelia', 'Lola'}
>>> 0 blood {'Mia', 'Joshua', 'Lily', 'Olivia'}
>>> b blood {'Amelia', 'Jack'}

>>> a blood = {'Harry'}

>>> ab blood = {'Joshua', 'Lola'}

s.union(t) s.intersection(t)

s.difference(t) s.symmetric_difference(t)

Set algebra operations.

Union

To find all the people with blond hair, blue eyes or both, we can use the union() method:

>>> blue eyes.union(blond hair)
{'0Olivia', 'Jack', 'Joshua', 'Harry', 'Mia', 'Amelia‘', 'Lily'}

Set union collects together all of the elements which are in either or both sets.

We can demonstrate that union() is a commutative operation (that is, we can swap the order
of the operands) using the value equality operator to check for equivalence of the resulting
sets:

Chapter 5 — Exploring built-in collection types 159

>>> blue eyes.union(blond hair) == blond hair.union(blue eyes)
True

Intersection

To find all the people with blond hair and blue eyes, we can use the intersection() method:

>>> blue eyes.intersection(blond hair)
{'Amelia', 'Jack', 'Harry'}

which collects together only the elements which are present in both sets.

This is also commutative:

>>> blue eyes.intersection(blond hair) == blond hair.intersection(blue_eyes)
True

Difference

To identify the people with blond hair who don’t have blue eyes, we can use the differ-
ence() method:

>>> blond hair.difference(blue eyes)
{'Joshua', 'Mia'}

This finds all the elements which are in the first set which are not in the second set.

This is non-commutative because the people with blond hair who don’t have blue eyes are
not the same as the people who have blue eyes but don’t have blond hair:

>>> plond_hair.difference(blue_eyes) == blue_eyes.difference(blond_hair)

False

Symmetric difference

However, if we want to determine which people have exclusively blond hair or blue eyes,
but not both, we can use the symmetric_difference() method:

Chapter 5 — Exploring built-in collection types 160

>>> blond hair.symmetric difference(blue eyes)
{'Olivia', 'Joshua', 'Mia', 'Lily'}

This collects all the elements which are in the first set or the second set, but not both.
As you can tell from the name, symmetric_difference() is indeed commutative:
>>> blond hair.symmetric difference(blue eyes) == blue eyes.symmetric difference(blond ha\

ir)
True

Subset relationships

s.issubset(t)

s.issuperset(t)

O,

s.isdisjoint(t)

Set relationships.

In addition, three predicate methods are provided which tell us about the relationships
between sets. We can check whether one set is a subset of another using the issubset()
method. For example, to check whether all of the people who can smell hydrogen cyanide
also have blond hair:

Chapter 5 — Exploring built-in collection types 161

>>> smell hcn.issubset(blond hair)
True

This checks that all the elements of the first set are also present in the second set.

To test whether all the people who can taste phenylthiocarbamide (PTC) can also smell
hydrogen cyanide use the issuperset() method:

>>> taste ptc.issuperset(smell hcn)
True

This checks that all the elements of the second set are present in the first set.

A representation of phenylthiocarbamide (PTC). It has the unusual property that it either tastes very bitter
or is virtually tasteless, depending on the genetics of the taster.

To test that two sets have no members in common, use the isdisjoint() method. For
example, your blood type is either A or O, never both:

>>> a blood.isdisjoint(o_blood)
True

Collection protocols

In Python, a protocol is a group of operations or methods that a type must support if it
is to implement that protocol. Protocols needn’t be defined in the source code as separate

Chapter 5 — Exploring built-in collection types 162

interfaces or base classes as they would in a nominally typed language such as C# or Java.
It’s sufficient to have an object provide functioning implementations of those operations.

We can organize the different collections we have encountered in Python according to which
protocols they support:

Protocol Implementing collections

Container str, list, dict, range, tuple, set, bytes
Sized str, list, dict, range, tuple, set, bytes
Iterable str, list, dict, range, tuple, set, bytes
Sequence str, list, tuple, range, bytes

Mutable Sequence list

Mutable Set set

Mutable Mapping dict

Support for a protocol demands specific behavior from a type.

Container protocol

The container protocol requires that membership testing using the in and not in operators
be supported:

item in container
item not in container

Sized protocol

The sized protocol requires that the number of elements in a collection can be determined
by calling len(sized collection)

Iterable protocol

Iteration is such an important concept that we’re devoting a whole chapter to it later in this
book. In short, though, iterables provide a means for yielding elements one-by-one as they
are requested.

One important property of iterables is that they can be used with for-loops:

Chapter 5 — Exploring built-in collection types 163

for item in iterable:
print(item)

Sequence protocol

The sequence protocol requires that items can be retrieved using square brackets with an
integer index:

item = sequence[index]

that items can be searched for with index():

i = sequence.index(item)

that items can be counted with count():

num = sequence.count(item)

and that a reversed copy of the sequence can be produced with reversed():
r = reversed(sequence)

In addition, the sequence protocol requires that the object support the iterable, sized, and
containers.

Other protocols

We won’t cover the mutable sequence, mutable mapping, and mutable set here. Since we
have only covered one representative type of each protocol, the generality afforded by the
protocol concept doesn’t gain us much at this juncture.

Chapter 5 — Exploring built-in collection types 164

Summary

« Tuples are immutable sequence types.
— Literal syntax is optional parentheses around a comma-separated list.

— Notable syntax for single element tuples utilizing the trailing comma.
— Tuple unpacking - useful for multiple return values and swapping.
« Strings
— String concatenation is most efficiently performed with the join () method rather
than the addition or augmented assignment operators.
— The partition() method is a useful and elegant string parsing tool.
— The format () method provided a powerful means of replacing placeholders with
stringified values.
« Ranges
— range objects represent arithmetic progressions.
— The enumerate() built-in function is often a superior alternative to range() for
generating loop counters.
« Lists
— Lists support indexing from the end of the list with negative indices.
— Slice syntax allows us to copy all, or part, of a list.
— The full slice is a common Python idiom for copying lists, although the copy ()
method and list() constructor are less obscure.
— List (and other collection) copies in Python are shallow copies. References are
copied, but the referenced objects are not.
+ Dictionaries map from keys to values.
— Iteration and membership testing with dictionaries is done with respect to the
keys.
— The keys(), values() and items() methods provide views onto the different
aspects of a dictionary, allowing convenient iteration.
« Sets store an unordered collection of unique elements.
— Sets support powerful set-algebra operations and predicates.
— The built-in collections are organized according to which protocols they support,
such as iterable, sequence and mapping.

In passing we have also discovered that:

+ Underscore is commonly used for dummy or superfluous variables.
« The pprint module supports pretty printing of compound data structures.

Chapter 6 - Exceptions

Exception handling is a mechanism for halting “normal” program flow and continuing at
some surrounding context or code block.

The act of interrupting normal flow is called “raising” an exception. In some enclosing
context the raised exception must be handled, which means control flow is transferred to an
exception handler. If an exception propagates up the call stack to the start of the program,
then an unhandled exception will cause the program to terminate. An exception object,
containing information about where and why an exceptional event occurred, is transported
from the point at which the exception was raised to the exception handler so that the handler
can interrogate the exception object and take appropriate action.

If you’ve used exceptions in other popular imperative languages like C++ or Java, then you’ve
already got a good idea of how exceptions work in Python.

There have been long and tiresome debates over exactly what constitutes an “exceptional
event”, the core issue being that exceptionality is, in reality, a matter of degree (some things
are more exceptional than others). This is problematic because programming languages
impose a false dichotomy by insisting that an event is either entirely exceptional or not
at all exceptional.

The Python philosophy is at the liberal end of the spectrum when it comes to the use of
exceptions. Exceptions are ubiquitous in Python, and it’s crucial to understand how to handle
them.

Exceptions and control flow

Since exceptions are a means of control flow, they can be clumsy to demonstrate at the REPL,
so in this chapter we’ll be using a Python module to contain our code. Let’s start with a very
simple module we can use for exploring these important concepts and behaviors. Place this
code in a module called exceptional. py:

Chapter 6 — Exceptions 166

"""A module for demonstrating exceptions."""

def convert(s):
"""Convert to an integer
X = int(s)
return x

Import the convert () function from this module into the Python REPL:

$ python3

Python 3.5.1 (v3.5.1:37a07cee5969, Dec 5 2015, 21:12:44)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> from exceptional import convert

and call our function with a string to see that it has the desired effect:

>>> convert("33")
33

If we call our function with an object that can’t be converted to an integer, we get a traceback
from the int() call:

>>> convert("hedgehog")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./exceptional.py", line 7, in convert
X = int(s)
ValueError: invalid literal for int() with base 10: 'hedgehog'

What’s happened here is that int () raised an exception because it couldn’t sensibly perform
the conversion. We didn’t have a handler in place, so it was caught by the REPL and the stack
trace was displayed. In other words, the exception went unhandled.

The ValueError referred to in the stack trace is the type of the exception object, and
the error message "invalid literal for int() with base 10: 'hedgehog'" is part
of the payload of the exception object that has been retrieved and printed by the REPL.

Notice that the exception propagates across several levels in the call stack:

Chapter 6 — Exceptions 167

Call stack Effect

int() exception raised here

convert() exception conceptually passes through here
REPL exception caught here

Handling exceptions

Let’s make our convert () function more robust by handling the ValueError using a try ..
except construct. Both the try and except keywords introduce new blocks. The try block
contains code that could raise an exception and the except block contains the code which
performs error handling in the event that an exception is raised. Modify the convert()
function to look like this:

def convert(s):
"""Convert a string to an integer.
try:
X = int(s)
except ValueError:
X = -1
return x

We have decided that if a non-integer string is supplied, we’ll return minus one. To reinforce
your understanding of the control-flow here we’ll also add a couple of print statements:

def convert(s):
"""Convert a string to an integer.
try:
X = int(s)
print("Conversion succeeded! x =",
except ValueError:
print("Conversion failed!")
X = -1
return Xx

X)

Let’s test this interactively after restarting the REPL:

Chapter 6 — Exceptions 168

>>> from exceptional import convert
>>> convert("34")

Conversion succeeded! x = 34

34

>>> convert("giraffe")

Conversion failed!

-1

Note how the print () in the try block after the point at which the exception was raised was
not executed when we passed in 'giraffe' as the function argument. Instead, execution
was transferred directly to the first statement of the except block.

The int () constructor only accepts numbers or strings, so let’s see what happens if we feed
an object of another type into it, say a list:

>>> convert([4, 6, 5])
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./exceptional.py", line 8, in convert
X = int(s)
TypeError: int() argument must be a string or a number, not 'list'

This time our handler didn’t intercept the exception. If we look closely at the trace, we can
see that this time we received a TypeError — a different type of exception.

Handling multiple exceptions

Each try block can have multiple corresponding except blocks which intercept exceptions
of different types. Let’s add a handler for TypeError too:

Chapter 6 — Exceptions

def convert(s):
"""Convert a string to an integer."""
try:
x = int(s)
print("Conversion succeeded! x =", x)
except ValueError:
print("Conversion failed!")
X = -1
except TypeError:
print("Conversion failed!")
X = -1
return x

Now if we re-run the same test in a fresh REPL we find that TypeError is handled too:

>>> from exceptional import convert
>>> convert([1l, 3, 19])

Conversion failed!

-1

169

We’ve got some code duplication between our two exception handlers with that duplicated
print statement and assignment. We’'ll move the assignment in front of the try block, which

doesn’t change the behavior of the program:

def convert(s):

"""Convert a string to an integer."""
X = -1
try:

X = int(s)

print("Conversion succeeded! x =", Xx)
except ValueError:

print("Conversion failed!")
except TypeError:

print("Conversion failed!")
return x

Then we’ll exploit the fact that both handlers do the same thing by collapsing them into one,

using the ability of the except statement to accept a tuple of exception types:

Chapter 6 — Exceptions 170

def convert(s):
"""Convert a string to an integer.
X = -1
try:
X = int(s)
print("Conversion succeeded! x =",
except (ValueError, TypeError):
print("Conversion failed!")
return x

X)

Now we see that everything still works as designed:

>>> from exceptional import convert
>>> convert(29)

Conversion succeeded! x = 29

29

>>> convert("elephant")

Conversion failed!

-1

>>> convert([4, 5, 11)

Conversion failed!

-1

Programmer errors

Now that we’re confident with the control flow for exception behavior, we can remove the
print statements:

def convert(s):
"""Convert a string to an integer.
X = -1
try:
X = int(s)
except (ValueError, TypeError):
return Xx

But now when we try to import our program:

Chapter 6 — Exceptions 171

>>> from exceptional import convert
File "./exceptional.py", line 11
return x

A

IndentationError: expected an indented block

we get yet another type of exception, an IndentationError, because our except block is
now empty and empty blocks are not permitted in Python programs.

This is not an exception type that is ever useful to catch with an except block! Almost
anything that goes wrong with a Python program results in an exception, but some
exception types, such as IndentationError, SyntaxError and NameError, are the result
of programmer errors which should be identified and corrected during development rather
than handled at runtime. The fact that these things are exceptions is mostly useful if you’re
creating a Python development tool such as a Python IDE, embedding Python itself in a larger
system to support application scripting, or designing a plugin system which dynamically
loads code.

Empty blocks - the pass statement

With that said, we still have the problem of what to do with our empty except block. The
solution arrives in the form of the pass keyword, which is a special statement that does
precisely nothing! It’s a no-op, and its only purpose is to allow us to construct syntactically
permissible blocks that are semantically empty:

def convert(s):
"""Convert a string to an integer.
x = -1

try:
X = int(s)

except (ValueError, TypeError):
pass

return x

In this case though, it would be better to simplify further by using multiple return
statements, doing away with the x variable completely:

Chapter 6 — Exceptions 172

def convert(s):
"""Convert a string to an integer.
try:
return int(s)
except (ValueError, TypeError):
return -1

Exception objects

Sometimes, we’d like to get hold of the exception object — in this case an object of type
ValueError or TypeError — and interrogate it for more details of what went wrong. We
can get a named reference to the exception object by tacking an as clause onto the end of
the except statement with a variable name that will be bound to the exception object:

def convert(s):
"""Convert a string to an integer."""
try:
return int(s)
except (ValueError, TypeError) as e:
return -1

We’ll modify our function to print a message with exception details to the stderr stream
before returning. To print to stderr we need to get a reference to the stream from the sys
module, so at the top of our module we’'ll need to import sys. We can then pass sys.stderr
as a keyword argument called file to print():

import sys

def convert(s):
"""Convert a string to an integer.
try:
return int(s)
except (ValueError, TypeError) as e:
print("Conversion error: {}".format(str(e)), file=sys.stderr)
return -1

We take advantage of the fact that exception objects can be converted to strings using the
str() constructor.

Let’s see that at the REPL:

Chapter 6 — Exceptions 173

>>> from exceptional import convert

>>> convert("fail")

Conversion error: invalid literal for int() with base 10: 'fail'
-1

Imprudent return codes

Let’s add a second function, string log() to our module, which calls our convert()
function and computes the natural log of the result:

from math import log

def string log(s):
v = convert(s)
return log(v)

At this point we must confess that we’ve gone out of our way here to be deeply unPythonic
by wrapping the perfectly good int () conversion, which raises exceptions on failure, in our
convert() function which returns a good old-fashioned negative error code. Rest assured
that this unforgivable Python heresy has been committed solely to demonstrate the greatest
folly of error return codes: That they can be ignored by the caller, wreaking havoc amongst
unsuspecting code later in the program. A slightly better program might test the value of v
before proceeding to the log call.

Without such a check log () will of course fail when passed the negative error code value:

>>> from exceptional import string log
>>> string log("ouch!")
Conversion error: invalid literal for int() with base 10: 'ouch!'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "./exceptional.py", line 15, in string log

return log(v)

ValueError: math domain error

Naturally, the consequence of the log() failure is the raising of another exception, also a
ValueError.

Much better, and altogether more Pythonic, to forget about error return codes completely
and revert to raising an exception from convert().

Chapter 6 — Exceptions 174

Re-raising exceptions

Instead of returning an unPythonic error code, we can emit our error message and re-raise
the exception object we’re currently handling. This can be done by replacing the return -1
with a raise statement at the end of our exception handling block:

def convert(s):
"""Convert a string to an integer.
try:
return int(s)
except (ValueError, TypeError) as e:
print("Conversion error: {}".format(str(e)), file=sys.stderr)
raise

Without a parameter raise re-raises the exception that is currently being handled.

Testing in the REPL, we can see that the original exception type is re-raised whether it’s a
ValueErrorora TypeError, and our “Conversion error” message is printed to stderr along
the way:

>>> from exceptional import string log
>>> string log("25")
3.2188758248682006
>>> string log("cat")
Conversion error: invalid literal for int() with base 10: 'cat'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./exceptional.py", line 14, in string log
v = convert(s)
File "./exceptional.py", line 6, in convert
return int(s)
ValueError: invalid literal for int() with base 10: 'cat'
>>> string log([5, 3, 1])
Conversion error: int() argument must be a string or a number, not 'list'
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./exceptional.py", line 14, in string log
v = convert(s)
File "./exceptional.py", line 6, in convert
return int(s)
TypeError: int() argument must be a string or a number, not 'list'

Chapter 6 — Exceptions 175

Exceptions are part of your function’s API

Exceptions are an important aspect of the API of a function. Callers of a function need
to know which exceptions to expect under various conditions so that they can ensure
appropriate exception handlers are in place. We’ll use square-root finding as an example,
using a home-grown square-root function, courtesy of Heron of Alexandria (although he
probably didn’t use Python).

CALLERS NEED
TO KNOW WHICH
EXCEPTIONS TO
EXPECT, AND

Callers of a function need to know which exceptions to expect.

Place the following code in a file sqrt. py:

Chapter 6 — Exceptions 176

def sqrt(x):
"""Compute square roots using the method of Heron of Alexandria.

Args:
x: The number for which the square root is to be computed.

Returns:
The square root of x.

guess = X

i=0

while guess * guess != x and i < 20:
guess = (guess + x / guess) / 2.0
i+=1

return guess

def main():
print(sqrt(9))
print(sqrt(2))

if name == "' main_ ':
main()

There’s only one language feature in this program we haven’t met before: The logical and
operator which we use in this case to test that two conditions are True on each iteration of
the loop. Python also includes a logical or operator which can be used to test whether either
or both of its operands are True.

Running our program, we can see that Heron was really on to something:

$ python3 sqrt.py
3.0
1.41421356237

Exceptions raised by Python

Let’s add a new line to the main() function which takes the square-root of -1:

Chapter 6 — Exceptions 177

def main():

print(sqrt(9))
print(sqrt(2))
print(sqrt(-1))

If we run that, we get a new exception:

$ python3 sqrt.py
3.0
1.41421356237
Traceback (most recent call last):
File "sqrt.py", line 14, in <module>
print(sqrt(-1))
File "sqrt.py", line 7, in sqrt
guess = (guess + x / guess) / 2.0
ZeroDivisionError: float division

What has happened is that Python has intercepted a division by zero, which occurs on the
second iteration of the loop, and raised an exception — a ZeroDivisionError.

Catching exceptions

Let’s modify our code to catch the exception before it propagates up to the top of the call
stack (thereby causing our program to stop) using the try .. except construct:

def main():
print(sqrt(9))
print(sqrt(2))
try:
print(sqrt(-1))
except ZeroDivisionError:
print("Cannot compute square root of a negative number.")

print("Program execution continues normally here.")

Now when we run the script we see that we’re handling the exception cleanly:

Chapter 6 — Exceptions 178

$ python sqrt.py

3.0

1.41421356237

Cannot compute square root of a negative number.
Program execution continues normally here.

We should be careful to avoid a beginners mistake of having too-tight scopes for exception
handling blocks; we can easily use one try .. except block for all of our calls to sqrt (). We
also add a third print statement to show how execution of the enclosed block is terminated:

def main():

try:
print(sqrt(9))
print(sqrt(2))
print(sqrt(-1))
print("This is never printed.")

except ZeroDivisionError:
print("Cannot compute square root of a negative number.")

print("Program execution continues normally here.")

Raising exceptions explicitly

This is an improvement on what we started with, but most likely users of a sqrt () function
don’t expect it to throw a ZeroDivisionError.

Python provides us with several standard exception types to signal common errors. If a
function parameter is supplied with an illegal value, it is customary to raise a ValueError.
We can do this by using the raise keyword with a newly created exception object which
we can create by calling the ValueError constructor.

There are two ways in which we could deal with the division by zero. The first approach
would be to wrap the root-finding while-loop in a try .. except ZeroDivisionError
construct and then raise a new ValueError exception from inside the exception handler.

Chapter 6 — Exceptions 179

def sqrt(x):
"""Compute square roots using the method of Heron of Alexandria.

Args:
x: The number for which the square root is to be computed.

Returns:
The square root of x.

guess = X
i=0
try:
while guess * guess != x and i < 20:
guess = (guess + x / guess) / 2.0
i+=1

except ZeroDivisionError:
raise ValueError()
return guess

While it works, this would be wasteful; we would knowingly proceed with a non-trivial
computation which will ultimately be pointless.

Chapter 6 — Exceptions 180

Guard clauses

We know this routine will always fail with negative numbers so we can detect this
precondition early on and raise an exception at that point, a technique called a guard clause:

def sqrt(x):
"""Compute square roots using the method of Heron of Alexandria.

Args:
x: The number for which the square root is to be computed.

Returns:
The square root of x.

Raises:
ValueError: If x 1is negative.

Chapter 6 — Exceptions 181

if x < 0:
raise ValueError("Cannot compute square root of negative number {}".format(x))

guess = X

i=0

while guess * guess != x and i < 20:
guess = (guess + Xx / guess) / 2.0
i+=1

return guess

The test is a simple if-statement and a call to raise passing a newly minted exception
object. The ValueError() constructor accepts an error message. See how we also modify
the docstring to make it plain which exception type will be raised by sqrt () and under what
circumstances.

But look what happens if we run the program — we’re still getting a traceback and an
ungraceful program exit:

$ python sqrt.py
3.0
1.41421356237
Traceback (most recent call last):
File "sqrt.py", line 25, in <module>
print(sqrt(-1))
File "sqrt.py", line 12, in sqrt
raise ValueError("Cannot compute square root of negative number {0}".format(x))
ValueError: Cannot compute square root of negative number -1

This happens because we forgot to modify our exception handler to catch ValueError rather
than ZeroDivisionError. Let’s modify our calling code to catch the right exception class
and also assign the caught exception object to a named variable so we can interrogate it after
it has been caught. In this case our interrogation is to print the exception object, which
knows how to display itself as the message to stderr:

Chapter 6 — Exceptions 182

import sys

def main():
try:
print(sqrt(9))
print(sqrt(2))
print(sqrt(-1))
print("This is never printed.")
except ValueError as e:
print(e, file=sys.stderr)

print("Program execution continues normally here.")

Running the program again, we can see that our exception is being gracefully handled:

$ python3 sqrt.py

3.0

1.41421356237

Cannot compute square root of negative number -1
Program execution continues normally here.

Exceptions, APIs, and protocols

Exceptions are part of a function’s API, and more broadly are part of certain protocols.
For example, objects which implement the sequence protocol should raise an IndexError
exception for indices which are out of range.

The exceptions which are raised are as much a part of a function’s specification as the
arguments it accepts and must be documented appropriately.

There are a handful of common exception types in Python, and usually when you need to
raise an exception in your own code, one of the built-in types is a good choice. Much more
rarely, you’ll need to define new exception types, but we don’t cover that in this book. (See
the next book in this series The Python Journeyman for how to do that.)

If you’re deciding which exceptions your code should raise, you should look for similar cases
in existing code. The more your code follows existing patterns, the easier it will be for people
to integrate and understand. For example, suppose you were writing a key-value database:
it would be natural to use KeyError to indicate a request for a non-existent key because

Chapter 6 — Exceptions 183

this is how dict works. Which is to say that “mapping” collections in Python follow certain
protocols, and exceptions are part of those protocols.

Let’s look at a few common exception types.

IndexError

An IndexError is raised when an integer index is out of range.

You can see this when you index past the end of a list:

>>> z = [1, 4, 2]

>>> z[4]

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

ValueError

A ValueError is raised when an object is of the right type, but contains an inappropriate
value.

We’ve seen this already when trying to construct an int from a non-numeric string:

>>> int("jim")
Traceback (most recent call last):
File "<stdin>", 1line 1, in <module>
ValueError: invalid literal for int() with base 10:

jim

KeyError

A KeyError is raised when a look-up in a mapping fails.

You can see that here when we look up a non-existent key in a dict:

Chapter 6 — Exceptions 184

>>> codes = dict(gb=44, us=1, no=47, fr=33, es=34)
>>> codes['de']
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
KeyError: 'de'

Choosing not to guard against TypeError

We tend not to protect against TypeErrors in Python. To do so runs against the grain of
dynamic typing in Python and limits the re-use potential of code we write.

For example, we could test whether the argument was a str using the built-in isinstance()
function and raise a TypeError exception if it was not:

def convert(s):
"""Convert a string to an integer."""
if not isinstance(s, str):
raise TypeError("Argument must be a string")

try:
return int(s)

except (ValueError, TypeError) as e:
print("Conversion error: {}".format(str(e)), file=sys.stderr)
raise

But then we’d also want to allow arguments that are instances of float as well. It soon gets
complicated if we want to check whether our function will work with types such as rational,
complex, or any other kind of number, and in any case, who is to say that it does?!

Alternatively we could intercept TypeError inside our function and re-raise it, but to what
end?

Chapter 6 — Exceptions 185

Don’t usually bother to handle TypeErrors.

Usually in Python it’s not worth adding type checking to your functions. If a function works
with a particular type — even one you couldn’t have known about when you designed the
function - then that’s all to the good. If not, execution will probably result in a TypeError
anyway. Likewise, we tend not to catch TypeErrors with except blocks very frequently.

Pythonic style - EAFP versus LBYL

Now let’s look at another tenet of Python philosophy and culture, the idea that “It’s Easier
to Ask for Forgiveness than for Permission”.

There are only two approaches to dealing with a program operation that might fail. The
first approach is to check that all the preconditions for a failure-prone operation are met in
advance of attempting the operation. The second approach is to blindly hope for the best,
but be prepared to deal with the consequences if it doesn’t work out.

In Python culture these two philosophies are known as “Look Before you Leap” (LBYL) and
its “Easier to Ask for Forgiveness than for Permission” (EAFP) — which, incidentally, was

Chapter 6 — Exceptions 186

coined by Rear Admiral Grace Hopper, inventor of the compiler.

Python is strongly in favor of EAFP because it puts primary logic for the “happy path” in its
most readable form, with deviations from the normal flow handled separately, rather than
interspersed with the main flow.

Let’s consider an example — processing a file. The details of the processing aren’t relevant.
All we need to know is that the process file() function will open a file and read some
data from it.

First, the LBYL version:

import os
p = '/path/to/datafile.dat’

if os.path.exists(p):
process file(p)
else:
print('No such file as {}'.format(p))

Before attempting to call process_file() we check that the file exists, and if it doesn’t
we avoid making the call and print a helpful message instead. There are several problems
with this approach, some obvious and some insidious. One obvious problem is that we only
perform an existence check. What if the file exists but contains garbage? What if the path
refers to a directory instead of a file? According to LBYL we should add preemptive tests for
those too.

A more subtle problem is that there is a race condition here. It’s possible for the file to
be deleted, for example by another process, between the existence check and the process_ -
file() call...aclassic race condition. There’s really no good way to deal with this — handling
of errors from process file() will be needed in any case!

Now consider the alternative, using the more Pythonic EAFP approach:

Chapter 6 — Exceptions 187

p = '/path/to/datafile.dat’

try:
process file(f)
except OSError as e:
print('Could not process file because {}'.format(str(e)))

In this version we attempt the operation without checks in advance, but we have an exception
handler in place to deal with any problems. We don’t even need to know in a lot of detail
exactly what might go wrong. Here we catch 0SError which covers all manner of conditions
such as file-not-found and using directories where files are expected.

EAFP is standard in Python, and following that philosophy is primarily facilitated by
exceptions. Without exceptions, and being forced to use error codes instead, you are required
to include error handling directly in the main flow of the logic. Since exceptions interrupt
the main flow, they allow you to handle exceptional cases non-locally.

Exceptions coupled with EAFP are also superior because, unlike error codes, exceptions
cannot be easily ignored. By default exceptions have a big effect, whereas error codes are
silent by default. So the exception-/EAFP-based style makes it very difficult for problems to
be silently ignored.

Clean-up actions

Sometimes you need to perform a clean-up action irrespective of whether an operation
succeeds. In a later module we’ll introduce context managers which are the modern solution
to this common situation, but here we’ll introduce the try .. finally construct, since
creating a context manager can be overkill in simple cases. In any case, an understanding of
try .. finally is useful for making your own context managers.

Consider this function, which uses various facilities of the standard library os module to
change the current working directory, create a new directory at that location, and then
restore the original working directory:

Chapter 6 — Exceptions 188

import os

def make at(path, dir name):
original path = os.getcwd()
os.chdir(path)
os.mkdir(dir _name)
os.chdir(original path)

At first sight this seems reasonable, but should the call to os.mkdir() fail for some reason
the current working directory of the Python process won'’t be restored to its original value,
and the make at () function will have had an unintended side-effect.

To fix this, we’d like the function to restore the original current working directory under
all circumstances. We can achieve this with a try .. finally block. Code in the finally
block is executed whether execution leaves the try block normally by reaching the end of
the block, or exceptionally by an exception being raised.

This construct can be combined with except blocks, used below to add a simple failure

logging facility:

import os
import sys

def make at(path, dir name):

original path = os.getcwd()

try:
os.chdir(path)
os.mkdir(dir_name)

except OSError as e:
print(e, file=sys.stderr)
raise

finally:
0os.chdir(original path)

Now, if os.mkdir() raises an 0SError, the 0SError handler will be run and the exception
will be re-raised. But since the finally block is always run no matter how the try-block
ends, we can be sure that the final directory change will take place in all circumstances.

Chapter 6 — Exceptions 189

Moment of zen

Moment of Zen

Errors should never
pass silently, unless
explicitly silenced.

Errors are like bells
And if we make them silent
They are of no use

Chapter 6 — Exceptions 190

Platform-specific code

Detecting a single keypress from Python - such as the “Press any key to continue”
functionality at the console — requires use of operating system-specific modules. We can’t use
the built-in input () function, because that waits for the user to press Enter before giving us a
string. To implement this on Windows we need to use functionality from the Windows-only
msvcrt module, and on Linux and macOS we need to use functionality from the Unix-only
tty and termios modules, in addition to the sys module.

This example is quite instructive as it demonstrates many Python language features including
import and def as statements, as opposed to merely declarations:

"""keypress - A module for detecting a single keypress."""

try:
import msvcrt

def getkey():
"""Wait for a keypress and return a single character string."""
return msvcrt.getch()

except ImportError:

import sys
import tty
import termios

def getkey():
"""Wait for a keypress and return a single character string."""
fd = sys.stdin.fileno()
original attributes = termios.tcgetattr(fd)
try:
tty.setraw(sys.stdin.fileno())
ch = sys.stdin.read(1)
finally:
termios.tcsetattr(fd, termios.TCSADRAIN, original attributes)
return ch

If either of the Unix-specific tty or termios modules are
not found, we allow the ImportError to propagate from here

Recall that top-level module code is executed on first import. Within the first try-block

Chapter 6 — Exceptions 191

we attempt to import msvcrt, the Microsoft Visual C Runtime. If this succeeds, we then
proceed to define a function getkey () which delegates to the msvcrt.getch() function.
Even though we’re inside a try-block at this point the function will be declared at the current
scope, which is the module scope.

If, however, the import of msvcrt fails, because we’re not running on Windows, an
ImportError will be raised and execution will transfer to the except-block. This is a case
of an error being silenced explicitly, because we’re going to attempt an alternative course of
action in the exception handler.

Within the except-block we import three modules needed for a getkey () implementation on
Unix-like systems and then proceed to the alternative definition of getkey() which again
binds the function implementation to a name in the module scope.

This Unix implementation of getkey() uses a try .. finally construct to restore various
terminal attributes after the terminal has been put into raw mode for the purposes of reading
a single character.

In the event that our program is running on a system that is neither Windows nor Unix-
like, the import tty statement will raise a second ImportError. This time we make no
attempt to intercept this exception; we allow it to propagate to our caller — which is whatever
attempted to import this keypress module. We know how to signal this error, but not how
to handle it, so we defer that decision to our caller. The error will not pass silently.

If the caller has more knowledge or alternative tactics available, it can in turn intercept this
exception and take appropriate action, perhaps degrading to using Python’s input () built-in
function and giving a different message to the user.

Summary

+ The raising of an exception interrupts normal program flow and transfers control to
an exception handler.

+ Exception handlers are defined using the try .. except construct.

+ try blocks define a context in which exceptions can be detected.

+ Corresponding except blocks define handlers for specific types of exceptions.

» Python uses exceptions pervasively and many built-in language features depend on
them.

« except blocks can capture an exception object, which is often of a standard type such
as ValueError, KeyError or IndexError.

Chapter 6 — Exceptions 192

« Programmer errors such as IndentationError and SyntaxError should not normally
be handled.

Exceptional conditions can be signaled using the raise keyword which accepts a single
parameter of an exception object.

+ raise without an argument within an except block re-raises the exception which is
currently being processed.

+ We tend not to routinely check for TypeErrors. To do so would negate the flexibility

afforded to us by Python’s dynamic type system.

Exception objects can be converted to strings using the str() constructor for the

purposes of printing message payloads.

The exceptions thrown by a function form part of its API and should be appropriately

documented.

« When raising exceptions prefer to use the most appropriate built-in exception type.
« Clean-up and restorative actions can be performed using the try .. finally construct
which may optionally be used in conjunction with except blocks.

Along the way we saw that:

+ The output of the print() function can be redirected to stderr using the optional
file argument.

« Python supports the logical operators and and or for combining boolean expressions.

+ Return codes are too easily ignored.

« Platform-specific actions can be implemented using an Easier to Ask Forgiveness
than Permission approach facilitated by intercepting ImportErrors and providing
alternative implementations.

Chapter 7 - Comprehensions,
iterables, and generators

The abstract notion of a sequence of objects is ubiquitous in programming. It can be used
to model such widely different concepts as simple strings, lists of complex objects, and
indefinitely long sensor output streams. It probably won’t surprise you to learn that Python
includes some very powerful and elegant tools for working with sequences. In fact, Python’s
support for creating and manipulating sequences is one of the highlights of the language for
many people.

In this chapter we’ll look at three key tools that Python provides for working with sequences:
comprehensions, iterables, and generators. Comprehensions comprise a dedicated syntax
for creating various types of sequences declaratively. Iterables and the iteration protocols
form the core abstraction and API for sequences and iteration in Python; they allow you to
define new sequence types and exert fine-grained control over iteration. Finally, generators
allow us to define lazy sequences imperatively, a surprisingly powerful technique in many
circumstances.

Let’s jump right in to comprehensions.

Comprehensions

Comprehensions in Python are a concise syntax for describing lists, sets or dictionaries
in a declarative or functional style. This short-hand is readable and expressive, meaning
that comprehensions are very effective at communicating intent to human readers. Some
comprehensions almost read like natural language, making them nicely self-documenting.

List comprehensions

As hinted at above, a list comprehension is a short-hand way of creating a list. It’s an expres-
sion using a succinct syntax that describes how list elements are defined. Comprehensions
are much easier to demonstrate than they are to explain, so let’s bring up a Python REPL.
First we’ll create a list of words by splitting a string:

Chapter 7 - Comprehensions, iterables, and generators 194

>>> words = "If there is hope it lies in the proles".split()
>>> words
['If', 'there', 'is', 'hope', 'it', 'lies', 'in', 'the', 'proles']

Now comes the list comprehension. The comprehension is enclosed in square brackets just
like a literal list, but instead of literal elements it contains a fragment of declarative code
which describes how to construct the elements of the list:

>>> [len(word) for word in words]
[2, 5, 2, 4, 2, 4, 2, 3, 6]

Here the new list is formed by binding the name word to each value in words in turn and
then evaluating len(word) to create the corresponding value in the new list. In other words,
this constructs a new list containing the lengths of the string in words; it’s hard to imagine
a much more effective way of expressing that new list!

List comprehension syntax

The general form for a list comprehension is:

[expr(item) for item in iterable]

That is, for each item in the iterable on the right we evaluate the expression expr(item)
on the left (which is almost always, but not necessarily, in terms of the item). We use the
result of that expression as the next element of the list we are constructing.

The comprehension above is the declarative equivalent of the following imperative code:
>>> lengths = []

>>> for word in words:
lengths.append(len(word))

>>> lengths
[2, 5, 2, 4, 2, 4, 2, 3, 6]

Chapter 7 - Comprehensions, iterables, and generators 195

Elements of a list comprehension

Note that the source object over which we iterate in a list comprehension doesn’t need to be
a list itself. It can be any object which implements the iterable protocol **, such as a tuple.

The expression part of the comprehension can be any Python expression. Here we find the
number of decimal digits in each of the first 20 factorials using range() — which is an
iterable object — to generate the source sequence:

>>> from math import factorial

>>> f = [len(str(factorial(x))) for x in range(20)]

>>> f

[, 1, 1,1, 2, 3, 3, 4, 5,6, 7, 8,9, 10, 11, 13, 14, 15, 16, 18]

Note also that the type of the object produced by list comprehensions is nothing more or less
than a regular list:

>>> type(f)
<class 'list'>

It’s important to keep this fact in mind as we look at other kinds of comprehensions and
consider how to perform iteration over infinite sequences.

Set comprehensions

Sets support a similar comprehension syntax using, as you might expect, curly braces. Our
previous “number of digits in factorials” result contained duplicates, but by building a set
instead of a list we can eliminate them:

>>> s = {len(str(factorial(x))) for x in range(20)}
>>> S
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 18}

Like list comprehensions, set comprehension produce standard set objects:

“We cover the iterable protocol in detail later in this chapter.

Chapter 7 - Comprehensions, iterables, and generators 196

>>> type(s)
<class 'set'>

Note that, since sets are unordered containers, the resulting set is not necessarily stored in a
meaningful order.

Dictionary comprehensions

The third type of comprehension is the dictionary comprehension. Like the set comprehen-
sion syntax, the dictionary comprehension also uses curly braces. It is distinguished from
the set comprehension by the fact that we now provide two colon-separated expressions —
the first for the key and the second for the value — which will be evaluated in tandem for
each new item in the resulting dictionary. Here’s a dictionary we can play with:

>>> country to capital = { 'United Kingdom': 'London',
'Brazil': 'Brasilia‘’,
'Morocco': 'Rabat’',

'Sweden': 'Stockholm' }

One nice use for a dictionary comprehension is to invert a dictionary so we can perform
efficient lookups in the opposite direction:

>>> capital to country = {capital: country for country, capital in country to capital.ite\
ms ()}

>>> from pprint import pprint as pp

>>> pp(capital to country)

{'Brasilia': 'Brazil',
"London': 'United Kingdom',
'Rabat': 'Morocco’',

'Stockholm': 'Sweden'}

Note that dictionary comprehensions do not operate directly on dictionary sources!* If we
want both keys and values from a source dictionary, then we should use the items () method
coupled with tuple unpacking to access the keys and values separately.

Should your comprehension produce some identical keys, later keys will overwrite earlier
keys. In this example we map the first letters of words to the words themselves, but only the
last h-word is kept:

“*Well, they can, but recall that iterating over a dictionary yields only the keys!

Chapter 7 - Comprehensions, iterables, and generators 197

>>> words = ["hi", "hello", "foxtrot", "hotel"]
>>> { x[0]: x for x in words }
{'h': 'hotel', 'f': 'foxtrot'}

Comprehension complexity

Remember that there’s no limit to the complexity of the expression you can use in any
of the comprehensions. For the sake of your fellow programmers, though, you should
avoid going overboard. Instead, extract complex expressions into separate functions to
preserve readability. The following is close to the limit of being reasonable for a dictionary
comprehension:

>>> import os
>>> import glob

>>> file sizes = {os.path.realpath(p): os.stat(p).st size for p in glob.glob('*.py')}

>>> pp(file sizes)

{'/Users/pyfund/examples/exceptional.py': 400,
'/Users/pyfund/examples/keypress.py': 778,
'/Users/pyfund/examples/scopes.py': 133,
'/Users/pyfund/examples/words.py': 1185}

This uses the glob module to find all of the Python source files in a directory. It then creates
a dictionary of paths to file sizes from those files.

Filtering comprehensions

All three types of collection comprehension support an optional filtering clause which
allows us to choose which items of the source are evaluated by the expression on the left.
The filtering clause is specified by adding if <boolean expression> after the sequence
definition of the comprehension; if the boolean expression returns false for an item in the
input sequence, then no value is evaluated for that item in the result.

To make this interesting, we’ll first define a function that determines if its input is a prime
number:

Chapter 7 - Comprehensions, iterables, and generators 198

>>> from math import sqrt
>>> def is prime(x):
if x < 2:
return False
for i in range(2, int(sqrt(x)) + 1):
if x %1 == 0:
return False
return True

We can now use this in the filtering clause of a list comprehension to produce all primes less
than 100:

>>> [x for x in range(101) if is prime(x)]

(2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83,

89, 971

Combining filtering and transformation

We have a slightly odd-looking x for x construct here because we’re not applying any
transformation to the filtered values; the expression in terms of x is simply x itself. There’s
nothing to stop us, however, from combining a filtering predicate with a transforming
expression. Here’s a dictionary comprehension which maps numbers with exactly three
divisors to a tuple of those divisors:

>>> prime_square divisors = {x*x:(1, x, x*x) for x in range(101) if is prime(x)}
>>> pp(prime_square divisors)

{4: (1, 2, 4),

9: (1, 3, 9),

25: (1, 5, 25),

49: (1, 7, 49),

121: (1, 11, 121),
169: (1, 13, 169),
289: (1, 17, 289),
361: (1, 19, 361),
529: (1, 23, 529),
841: (1, 29, 841),
961: (1, 31, 961)
1369: (1, 37, 1369),
1681: (1, 41, 1681),

\

Chapter 7 - Comprehensions, iterables, and generators 199

1849: (1, 43, 1849),
2209: (1, 47, 2209),
2809: (1, 53, 2809),
3481: (1, 59, 3481),
3721: (1, 61, 3721),
4489: (1, 67, 4489),
5041: (1, 71, 5041),
5329: (1, 73, 5329),
6241: (1, 79, 6241),
6889: (1, 83, 6889),
7921: (1, 89, 7921),
9409: (1, 97, 9409)}

Chapter 7 - Comprehensions, iterables, and generators 200

Moment of zen

Moment of Zen

Simple is better
than complex

Code is written once
But read over and over
Fewer is clearer

Comprehensions are often more readable than the alternative. However it’s possible to over-
use comprehensions. Sometimes a long or complex comprehension may be less readable
than the equivalent for-loop. There is no hard-and-fast rule about when one form should be
preferred, but be conscientious when writing your code and try to choose the best form for
your situation.

Above all your comprehensions should ideally be purely functional — that is they should
have no side effects. If you need to create side effects, such as printing to the console during
iteration, use another construct such as a for-loop instead.

Chapter 7 - Comprehensions, iterables, and generators 201

Iteration protocols

Comprehensions and for-loops are the most frequently used language features for perform-
ing iteration. They both take items one by one from a source and do something with each
in turn. However, both comprehensions and for-loops iterate over the whole sequence by
default, whereas sometimes more fine-grained control is needed. In this section we’ll see how
you can exercise this kind of fine-grained control by investigating two important concepts
on top of which a great deal of Python language behavior is constructed: iterable objects and
iterator objects, both of which are reflected in standard Python protocols.

The iterable protocol defines an API that iterable objects must implement. That is, if you
want to be able to iterate over an object using for-loops or comprehensions, that object must
implement the iterable protocol. Built-in classes like 1ist implement the iterable protocol.
You can pass an object that implements the iterable protocol to the built-in iter() function
to get an iterator for the iterable object.

Iterators, for their part, support the iterator protocol. This protocol requires that we can pass
the iterator object to the built-in next () function to fetch the next value from the underlying
collection.

An example of the iteration protocols

As usual, a demonstration at the Python REPL will help all of these concepts crystallize into
something you can work with. We start with a list of the names of the seasons as our iterable
object:

>>> iterable = ['Spring', 'Summer', 'Autumn', 'Winter']

We then ask our iterable object to give us an iterator using the iter() built-in:

>>> iterator = iter(iterable)

Next we request a value from the iterator using the next () built-in:

>>> next(iterator)
'Spring’

Each call to next () moves the iterator through the sequence:

Chapter 7 - Comprehensions, iterables, and generators 202

>>> next(iterator)
"Summer’
>>> next(iterator)
"Autumn’
>>> next(iterator)
'Winter'

But what happens when we reach the end?

>>> next(iterator)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

In a spectacular display of liberalism, Python raises a StopIteration exception. Those of
you coming from other programming languages with a more straight-laced approach to
exceptions may find this mildly outrageous, but, really, what could be more exceptional
than reaching the end of a collection? It only has one end after all!

This attempt at rationalizing the Python language design decision makes even more sense
when one considers that the iterable series may be a potentially infinite stream of data.
Reaching the end in that case really would be something to write home about, or indeed
raise an exception for.

A more practical example of the iteration protocols

With for-loops and comprehensions at our fingertips, the utility of these lower level iteration
protocols may not be obvious. To demonstrate a more concrete use, here’s a little utility
function which, when passed an iterable object, returns the first item from that series or, if
the series is empty, raises a ValueError:

Chapter 7 - Comprehensions, iterables, and generators 203

>>> def first(iterable):
iterator = iter(iterable)
try:
return next(iterator)
except StopIteration:
raise ValueError("iterable is empty")

This works as expected on any iterable object, in this case both a 1ist and a set:

>>> first(["1st", "2nd", "3rd"])
'1st’
>>> first({"1lst", "2nd", "3rd"})
'1st’
>>> first(set())
Traceback (most recent call last):
File "./iterable.py", line 17, in first
return next(iterator)
StopIteration

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./iterable.py", line 19, in first
raise ValueError("iterable is empty")
ValueError: iterable is empty

It’s worth noting that the higher-level iteration constructs, such as for-loops and comprehen-
sions, are built directly upon this lower-level iteration protocol.

Generator functions

Now we come on to generator functions>’, one of the most powerful and elegant features
of the Python programming language. Python generators provide the means for describing
iterable series with code in functions. These sequences are evaluated lazily, meaning they
only compute the next value on demand. This important property allows them to model
infinite sequences of values with no definite end, such as streams of data from a sensor

>*We often just use the term generator to refer to generator functions, though sometimes it may be necessary to distinguish
generator functions from generator expressions, which we cover later.

Chapter 7 - Comprehensions, iterables, and generators 204

or active log files. By carefully designing generator functions we can make generic stream
processing elements which can be composed into sophisticated pipelines.

The yield keyword

Generators are defined by any Python function which uses the yield keyword at least once
in its definition. They may also contain the return keyword with no arguments, and just
like any other function, there is an implicit return at the end of the definition.

To understand what generators do, let’s start with a simple example at the Python REPL.
Let’s define the generator, and then we’ll examine how the generator works.

Generator functions are introduced by def, just as for a regular Python function:

>>> def genl23():
yield 1
yield 2
yield 3

Now let’s call gen123() and assign its return value to g:

>>> g = genl23()

As you can see, gen123() is called just like any other Python function. But what has it
returned?

>>> g
<generator object genl23 at 0x1006eb230>

Generators are iterators

g is a generator object. Generators are, in fact, Python iterators, so we can use the iterator
protocol to retrieve — or yield — successive values from the series:

Chapter 7 - Comprehensions, iterables, and generators 205

>>> next(g)
1
>>> next(g)
2
>>> next(g)
3

Take note of what happens now that we’ve yielded the last value from our generator.
Subsequent calls to next() raise a StopIteration exception, just like any other Python
iterator:

>>> next(g)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
StopIteration

Because generators are iterators, and because iterators must also be iterable, they can be used
in all the usual Python constructs which expect iterable objects, such as for-loops:

>>> for v in genl23():
print(v)

Be aware that each call to the generator function returns a new generator object:

>>> h = genl23()

>>> i = genl23()

>>> h

<generator object genl23 at 0x1006eb2d0>
>>> i

<generator object genl23 at 0x1006eb280>
>>> h is 1

False

Also note how each generator object can be advanced independently:

Chapter 7 - Comprehensions, iterables, and generators 206

>>> next(h)
1
>>> next(h)
2
>>> next(i)
1

When is generator code executed?

Let’s take a closer look at how — and crucially when — the code in the body of our generator
function is executed. To do this, we’ll create a slightly more complex generator that traces
its execution with good old-fashioned print statements:

>>> def gen246():

print("About to yield 2")
yield 2

print("About to yield 4")
yield 4

print("About to yield 6")
yield 6

print("About to return")

>>> ¢ = gen246()

At this point the generator object has been created and returned, but none of the code within
the body of the generator function has yet been executed. Let’s make an initial call to next ():

>>> next(g)
About to yield 2
2

See how, when we request the first value, the generator body runs up to and including the
first yield statement. The code executes just far enough to literally yield the next value.

>>> next(g)
About to yield 4
4

When we request the next value from the generator, execution of the generator function
resumes at the point it left off, and continues running until the next yield:

Chapter 7 - Comprehensions, iterables, and generators 207

>>> next(g)
About to yield 6
6

After the final value has returned the next request causes the generator function to
execute until it returns at the end of the function body, which in turn raises the expected
StopIteration exception.

>>> next(g)
About to return
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
StopIteration

Now that we’ve seen how generator execution is initiated by calls to next () and interrupted
by yield statements, we can progress to placing more complex code in our generator
function body.

Maintaining explicit state in the generator function

Now we’ll look at how our generator functions, which resume execution each time the next
value is requested, can maintain state in local variables. In the process of doing so, our
generators will be both more interesting and more useful. We’ll be showing two generators
which demonstrate lazy evaluation, and later we’ll combine them into a generator pipeline.

The first stateful generator: take()

The first generator we’ll look at is take () which retrieves a specified number of elements
from the front of a sequence:

Chapter 7 - Comprehensions, iterables, and generators 208

def take(count, iterable):
"""Take items from the front of an iterable.

Args:
count: The maximum number of items to retrieve.
iterable: The source of the items.

Yields:
At most 'count' items from 'iterable'.

counter = 0
for item in iterable:
if counter == count:
return
counter += 1
yield item

Note that the function defines a generator because it contains at least one yield statement.
This particular generator also contains a return statement to terminate the stream of yielded
values. The generator uses a counter to keep track of how many elements have been yielded
so far, returning when a request is made for any elements beyond that requested count.

Since generators are lazy, and only produce values on request, we’ll drive execution with a
for-loop in a run_take() function:

def run take():
items = [2, 4, 6, 8, 10]
for item in take(3, items):
print(item)

Here we create a source list named items which we pass to our generator function along
with a count of 3. Internally, the for-loop will use the iterator protocol to retrieve values
from the take() generator until it terminates.

The second stateful generator: distinct()

Now let’s bring our second generator into the picture. This generator function, called
distinct(), eliminates duplicate items by keeping track of which elements it’s already seen
in a set:

Chapter 7 - Comprehensions, iterables, and generators 209

def distinct(iterable):
"""Return unique items by eliminating duplicates.

Args:
iterable: The source of the items.

Yields:
Unique elements in order from 'iterable'.

seen = set()
for item in iterable:
if item in seen:
continue
yield item
seen.add(item)

In this generator we also make use of a control flow construct we have not previously seen:
the continue keyword. The continue statement finishes the current iteration of the loop
and begins the next iteration immediately. When executed in this case execution will be
transferred back to the for statement, but as with break it can also be used with while-
loops.

In this case, the continue is used to skip any values which have already been yielded. We
can add a run_distinct() function to exercise distinct() as well:

def run distinct():
items = [5, 7, 7, 6, 5, 5]
for item in distinct(items):
print(item)

Understand these generators!

At this point you should spend some time exploring these two generators before moving on.
Make sure you understand how they work and how control flows in and out of them as they
maintain state. If you’re using an IDE to run these examples, you can use the debugger to
follow control flow by putting breakpoints in the generators and in the code that uses them.
You can accomplish the same by using Python’s built-in pdb debugger (which we cover later)
or even just by using old-fashioned print statements.

However you do it, make sure you’re really comfortable with how these generators work
before moving to the next sections.

Chapter 7 - Comprehensions, iterables, and generators 210

Lazy generator pipelines

Now that you understand the generators individually, we’ll arrange both of them into a lazy
pipeline. We’ll be using take() and distinct() together to fetch the first three unique
items from a collection:

def run pipeline():
items = [3, 6, 6, 2, 1, 1]
for item in take(3, distinct(items)):
print(item)

Notice that the distinct() generator only does just enough work to satisfy the demands
of the take () generator which is iterating over it - it never gets as far as the last two items
in the source list because they are not needed to produce the first three unique items. This
lazy approach to computation is very powerful, but the complex control flows it produces
can be difficult to debug. It’s often useful during development to force evaluation of all
of the generated values, and this is most easily achieved by inserting a call to the list()
constructor:

take(3, list(distinct(items)))

This interspersed call to 1ist() causes the distinct() generator to exhaustively process
its source items before take() does its work. Sometimes when you’re debugging lazily
evaluated sequences, this can give you the insight you need to understand what’s going
on.

Laziness and the infinite

Generators are lazy, meaning that computation only happens just-in-time when the next
result is requested. This interesting and useful property of generators means they can be used
to model infinite sequences. Since values are only produced as requested by the caller, and
since no data structure needs to be built to contain the elements of the sequence, generators
can safely be used to produce never-ending (or just very large) sequences like:

« sensor readings
« mathematical sequences (e.g. primes, factorials, etc.) **
« the contents of a multi-terabyte file

>'The authors are sworn by sacred oath never to use either Fibonacci or Quicksort implementations in demonstrations or
exercises.

Chapter 7 - Comprehensions, iterables, and generators 211

Generating the Lucas series

Allow us to present a generator function for the Lucas series®:

def lucas():
yield 2
a =2
b =1
while True:
yield b
a, b=>b, a+b

The Lucas series starts with 2, 1, and each value after that is the sum of the two preceding
values. So the first few value of the sequence are:

2,1, 3, 4, 7, 11

The first yield produces the value 2. The function then initializes a and b which hold the
“previous two values” needed as the function proceeds. Then the function enters an infinite
while-loop where:

1. It yields the value of b
2. a and b are updated to hold the new “previous two” values using a neat application of
tuple unpacking

Now that we have a generator, it can be used like any other iterable object. For instance, to
print the Lucas numbers you could use a loop like this:

2This has nothing whatsoever to do with the order in which you should watch the episodes of Star Wars. If that’s what you’re
looking for, might we suggest Machete Order.

http://www.nomachetejuggling.com/2011/11/11/the-star-wars-saga-suggested-viewing-order/

Chapter 7 - Comprehensions, iterables, and generators 212

>>> for x in lucas():
print(x)

76
123
199

Of course, since the Lucas sequence is infinite this will run forever, printing out values until
your computer runs out of memory. Use Control-C to terminate the loop.

Generator expressions

Generator expressions are a cross between comprehensions and generator functions. They
use a similar syntax as comprehensions, but they result in the creation of a generator object
which produces the specified sequence lazily. The syntax for generator expressions is very
similar to list comprehensions:

(expr(item) for item in iterable)

It is delimited by parentheses instead of the brackets used for list comprehensions.

Generator expressions are useful for situations where you want the lazy evaluation of
generators with the declarative concision of comprehensions. For example, this generator
expression yields a list of the first one-million square numbers:

>>> million squares = (x*x for x in range(l, 1000001))

At this point, none of the squares have been created; we’ve just captured the specification of
the sequence into a generator object:

Chapter 7 - Comprehensions, iterables, and generators 213

>>> million squares
<generator object <genexpr> at 0x1007al2d0>

We can force evaluation of the generator by using it to create a (long!) list:

>>> list(million_squares)

999982000081, 999984000064, 999986000049, 999988000036, 999990000025,
999992000016, 999994000009, 999996000004, 999998000001, 1000000000000]

This list obviously consumes a significant chunk of memory - in this case about 40 MB for
the list object and the integer objects contained therein.

Generator objects only run once

Notice that a generator object is just an iterator and, once run exhaustively in this way, will
yield no more items. Repeating the previous statement returns an empty list:

>>> list(million_squares)
[]

Generators are single use objects. Each time we call a generator function we create a new
generator object. To recreate a generator from a generator expression we must execute the
expression itself once more.

Iteration without memory

Let’s raise the stakes by computing the sum of the first fen million squares using the
built-in sum() function which accepts an iterable series of numbers. If we were to use a
list comprehension we could expect this to consume around 400 MB of memory. Using, a
generator expression memory usage will be insignificant:

>>> sum(x*x for x in range(l, 10000001))
333333383333335000000

This produces a result in a second or so and uses almost no memory.

Chapter 7 - Comprehensions, iterables, and generators 214

Optional parentheses

Looking carefully, you see that in this case we didn’t supply separate enclosing parentheses
for the generator expression in addition to those needed for the sum() function call. This
elegant ability to have the parentheses used for the function call also serve for the generator
expression aids readability. You can include the second set of parentheses if you wish.

Using an if-clause in generator expressions

As with comprehensions, you can include an if-clause at the end of the generator expression.
Reusing our admittedly inefficient is_prime() predicate, we can determine the sum of those
integers from the first thousand which are prime like this:

>>> sum(x for x in range(1001) if is prime(x))
76127

Note that is is not the same thing as computing the sum of the first 1000 primes, which is a
more awkward question because we don’t know in advance how many integers we need to
test before we clock up a thousand primes.

“Batteries included” iteration tools

So far we’ve covered the many ways Python offers for creating iterable objects. Comprehen-
sions, generators, and any object that follows the iterable or iterator protocols can be used
for iteration, so it should be clear that iteration is a central feature of Python.

Python provides a number of built-in functions for performing common iterator operations.
These functions form the core of a sort of vocabulary for working with iterators, and they
can be combined to produce powerful statements in very concise, readable code. We’ve met
some of these functions already, including enumerate() for producing integer indices and
sum() for computing summation of numbers.

Introducing itertools

In addition to the built-in functions, the itertools module contains a wealth of useful
functions and generators for processing iterable streams of data.

We'll start demonstrating these functions by solving the first thousand primes problem using
built-in sum() with two generator functions from itertools: islice() and count().

Chapter 7 - Comprehensions, iterables, and generators 215

Earlier we made our own take() generator function for lazily retrieving the start of the
sequence. We needn’t have bothered, however, because islice() allows us to perform lazy
slicing similar to the built-in list slicing functionality. To get the first 1000 primes we need
to do something like:

from itertools import islice, count

islice(all primes, 1000)

But how to generate all_primes? Previously, we’ve been using range() to create the
raw sequences of integers to feed into our primality test, but ranges must always be finite,
that is, bounded at both ends. What we’d like is an open ended version of range(), and
that is exactly what itertools.count() provides. Using count () and islice(), our first
thousand primes expression can be written out as:

>>> thousand primes = islice((x for x in count() if is prime(x)), 1000)

This returns a special islice object which is iterable. We can convert it to a list using the
list constructor.

>>> thousand _primes

<itertools.islice object at 0x1006bael0>

>>> list(thousand primes)

(2, 3, 5, 7, 11, 13 ... ,7877, 7879, 7883, 7901, 7907, 7919]

Answering our question about the sum of the first thousand primes is now easy, remember-
ing to recreate the generators:

>>> sum(islice((x for x in count() if is prime(x)), 1000))
3682913

Sequences of booleans

Two other very useful built-ins which facilitate elegant programs are any() and all().
They’re equivalent to the logical operators and and or but for iterable series of bool values,

Chapter 7 - Comprehensions, iterables, and generators 216

>>> any([False, False, True])
True
>>> all([False, False, True])
False

Here we’ll use any () together with a generator expression to answer the question of whether
there are any prime numbers in the range 1328 to 1360 inclusive:

>>> any(is_prime(x) for x in range(1328, 1361))
False

For a completely different type of problem we can check that all of these city names are
proper nouns with initial upper-case letters:

>>> all(name == name.title() for name in ['London', 'Paris', 'Tokyo', 'New York', 'Sydney\
', 'Kuala Lumpur'])
True

Merging sequences with zip

The last built-in we’ll look at is zip(), which, as its name suggests, gives us a way to
synchronise iterations over two iterable series. For example, let’s zip together two columns
of temperature data, one from Sunday and one from Monday:

>>> sunday = [12, 14, 15, 15, 17, 21, 22, 22, 23, 22, 20, 18]
>>> monday = [13, 14, 14, 14, 16, 20, 21, 22, 22, 21, 19, 17]
>>> for item in zip(sunday, monday):

print(item)
(12, 13)
(14, 14)
(15, 14)
(15, 14)
(17, 16)
(21, 20)
(22, 21)
(22, 22)
(23, 22)
(22, 21)
(20, 19)
()

Chapter 7 - Comprehensions, iterables, and generators 217

We can see that zip() yields tuples when iterated. This in turn means we can use it with
tuple unpacking in the for-loop to calculate the average temperature for each hour on these
days:

>>> for sun, mon in zip(sunday, monday):

print("average =", (sun + mon) / 2)

average = 12.
average = 14.
average = 14.
average = 14.
average = 16.
average = 20.
average = 21.
average = 22.
average = 22.
average = 21.
average = 19.
average = 17.

Ul U U1ul Ul Ul Ul U

More than two sequences with zip()

In fact, zip() can accept any number of iterable arguments. Let’s add a third time-series
and use other built-ins to calculate statistics for corresponding times:

>>> tuesday = [2, 2, 3, 7, 9, 10, 11, 12, 10, 9, 8, 8]
>>> for temps in zip(sunday, monday, tuesday):
print("min={:4.1f}, max={:4.1f}, average={:4.1f}".format(
min(temps), max(temps), sum(temps) / len(temps)))

min= 2.0, max=13.0, average= 9.0
min= 2.0, max=14.0, average=10.0
min= 3.0, max=15.0, average=10.7
min= 7.0, max=15.0, average=12.0
min= 9.0, max=17.0, average=14.0
min=10.0, max=21.0, average=17.0
min=11.0, max=22.0, average=18.0
min=12.0, max=22.0, average=18.7
min=10.0, max=23.0, average=18.3
min= 9.0, max=22.0, average=17.3
min= 8.0, max=20.0, average=15.7
min= 8.0, max=18.0, average=14.3

Chapter 7 - Comprehensions, iterables, and generators 218

Note how we’ve used string formatting features to control the numeric column width to four
characters.

Lazily concatenating sequences with chain()

Perhaps, though, we’d like one long temperature series for Sunday, Monday and Tuesday.
Rather than creating a new list by eagerly combining the three lists of temperatures, we can
lazily concatenate iterables using itertools.chain():

>>> from itertools import chain
>>> temperatures = chain(sunday, monday, tuesday)

temperatures is an iterable object that first yields the values from sunday, followed by
those from monday, and finally those from tuesday. Since it’s lazy, though, it never creates
a single list that contains all of the elements; in fact, it never creates an intermediate list of
any sort!

We can now check that all of those temperatures are above freezing point, without the
memory impact of data duplication:

>>> all(t > 0 for t in temperatures)
True

Pulling it all together

Before we summarize, let’s pull a few pieces of what we have made together and leave your
computer computing the Lucas primes:

Chapter 7 - Comprehensions, iterables, and generators 219

>>> for x in (p for p in lucas() if is prime(p)):
print(x)

521

2207

3571

9349

3010349
54018521
370248451
6643838879
119218851371
5600748293801
688846502588399
32361122672259149

When you’ve seen enough of these, we recommend you spend some time exploring the
itertools module. The more you familiarize yourself with Python’s existing support for
iterables, the more elegant and concise your own code will become.

Summary

» Comprehensions are a concise syntax for describing lists, sets and dictionaries.

« Comprehensions operate on a iterable source object and apply an optional predicate
filter and a mandatory expression, both of which are usually in terms of the current
item.

« Iterables objects are objects over which we can iterate item-by-item.

+ We retrieve an iterator from an iterable object using the built-in iter() function.

« Iterators produce items one-by-one from the underlying iterable series each time they
are passed to the built-in next () function.

« Iterators raise a StopIteration exception when the collection is exhausted.

Chapter 7 - Comprehensions, iterables, and generators 220

Generators

» Generator functions allow us to describe sequences using imperative code.

+ Generator functions contain at least one use of the yield keyword.

+ Generators are iterators. When the iterator is advanced with next() the generator
starts or resumes execution up to and including the next yield.

« Each call to a generator function creates a new generator object.

 Generators can maintain explicit state in local variables between iterations.

+ Generators are lazy and so can model infinite series of data.

« Generator expressions have a similar syntactic form to list comprehensions and allow
for a more declarative and concise way of creating generator objects.

Iteration tools

« Python includes a rich set of tools for dealing with iterable series, both in the form
of built-in functions such as sum(), any() and zip() as well as in the itertools
module.

Chapter 8 - Defining new types
with classes

You can get a long way in Python using the built-in scalar and collections types. For many
problems the built-in types, together with those available in the Python Standard Library, are
completely sufficient. Sometimes though, they aren’t quite what’s required, and the ability
to create custom types is where classes come in.

As we’ve seen, all objects in Python have a type, and when we report that type using the
type () built-in function the result is couched in terms of the class of that type:

>>> type(5)

<class 'int'>

>>> type("python")

<class 'str'>

>>> type([1, 2, 3])

<class 'list'>

>>> type(x*x for x in [2, 4, 6])
<class 'generator'>

A class is used to define the structure and behaviour of one or more objects, each of which
we refer to as an instance of the class. By and large, objects in Python have a fixed type>
from the time they are created — or instantiated — to the time they are destroyed®*. It may
be helpful to think of a class as a sort of template or cookie-cutter used to construct new
objects. The class of an object controls its initialization and which attributes and methods
are available through that object. For example, on a string object the methods we can use on
that object, such as split (), are defined in the str class.

Classes are an important piece of machinery for Object-Oriented Programming (OOP) in
Python, and although it’s true that OOP can be useful for making complex problems more
tractable, it often has the effect of making the solution to simple problems unnecessarily
complex. A great thing about Python is that it’s highly object-oriented without forcing you
to deal with classes until you really need them. This sets the language starkly apart from
Java and C#.

>In fact, it is possible to change the class of an object at runtime, although this is an advanced topic, and the technique is only
rarely used.
“It’s generally unhelpful to think about the destruction of objects in Python. Better to think of objects becoming unreachable.

Chapter 8 — Defining new types with classes 222

Defining classes

Class definitions are introduced by the class keyword followed by the class name. By
convention, new class names in Python use camel case — sometimes known as Pascal case
- with an initial capital letter for each and every component word, without separating
underscores. Since classes are a bit awkward to define at the REPL, we’ll be using a Python
module file to hold the class definitions we use in this chapter.

Let’s start with the very simplest class, to which we’ll progressively add features. In our
example we’ll model a passenger aircraft flight between two airports by putting this code
into airtravel.py:

"""Model for aircraft flights."""

class Flight:
pass

The class statement introduces a new block, so we indent on the next line. Empty blocks
aren’t allowed, so the simplest possible class needs at least a do-nothing pass statement to
be syntactically admissible.

Just as with def for defining functions, class is a statement that can occur anywhere in a
program and which binds a class definition to a class name. When the top-level code in the
airtravel module is executed, the class will be defined.

We can now import our new class into the REPL and try it out.

>>> from airtravel import Flight

The thing we’ve just imported is the class object. Everything is an object in Python, and
classes are no exception.

>>> Flight
<class 'airtravel.Flight'>

To use this class to mint a new object, we must call its constructor, which is done by calling
the class, as we would a function. The constructor returns a new object, which here we assign
to a name f:

Chapter 8 — Defining new types with classes 223

>>> f = Flight()

If we use the type() function to request the type of f, we get airtravel.Flight:

>>> type(f)
<class 'airtravel.Flight'>

The type of f literally is the class.

Instance methods

Let’s make our class a little more interesting, by adding a so-called instance method which
returns the flight number. Methods are just functions defined within the class block, and
instance methods are functions which can be called on objects which are instances of our
class, such as f. Instance methods must accept a reference to the instance on which the
method was called as the first formal argument®, and by convention this argument is always
called self.

We have no way of configuring the flight number value yet, so we’ll just return a constant

string:

class Flight:

def number(self):
return "SNO60"

and from a fresh REPL:

>>> from airtravel import Flight
>>> f = Flight()

>>> f.number()

SNO6O

Notice that when we call the method, we do not provide the instance f for the actual
argument®® self in the argument list. That’s because the standard method invocation form:

>>The formal arguments of a function are the arguments listed in the function definition.
**The actual arguments of a function are the arguments listed in a function call.

Chapter 8 — Defining new types with classes 224

>>> f.number()
SNO60

is syntactic sugar for:

>>> Flight.number(f)
SN060

If you try the latter, you’ll find that it works as expected, although you’ll almost never see
this form used for real.

Instance initializers

This class isn’t very useful, because it can only represent one particular flight. We need to
make the flight number configurable at the point a Flight is created. To do that we need to
write an initializer method.

If provided, the initializer method is called as part of the process of creating a new object
when we call the constructor. The initializer method mustbe called init () delimited by
the double underscores used for Python runtime machinery. Like all other instance methods,
the first argument to __init_ () must be self.

In this case, we also pass a second formal argument to __init_ () which is the flight
number:

class Flight:

def init (self, number):
self. number = number

def number(self):
return self. number

The initializer should not return anything — it modifies the object referred to by self.

If you’re coming from a Java, C#, or C++ background it’s tempting to think of _init ()
as being the constructor. This isn’t quite accurate; in Python the purpose of _ init ()
is to configure an object that already exists by the time init () is called. The self
argument is, however, analogous to this in Java, C#, or C++. In Python the actual constructor

Chapter 8 — Defining new types with classes 225

is provided by the Python runtime system and one of the things it does is check for the
existence of an instance initializer and call it when present.

Within the initializer we assign to an attribute of the newly created instance called _number.
Assigning to an object attribute that doesn’t yet exist is sufficient to bring it into existence.

Just as we don’t need to declare variables until we create them, neither do we need to declare
object attributes before we create them. We choose number with a leading underscore
for two reasons. First, because it avoids a name clash with the method of the same name.
Methods are functions, functions are objects, and these functions are bound to attributes
of the object, so we already have an attribute called number and we don’t want to replace
it. Second, there is a widely followed convention that the implementation details of objects
which are not intended for consumption or manipulation by clients of the object should be
prefixed with an underscore.

We also modify our number () method to access the _number attribute and return it.

Any actual arguments passed to the flight constructor will be forwarded to the initializer, so
to create and configure our Flight object we can now do this:

>>> from airtravel import Flight
>>> f = Flight("SN060")

>>> f.number()

SNO60O

We can also directly access the implementation details:

>>> f. number
SNO60

Although this is not recommended for production code, it’s very handy for debugging and
early testing.

A lack of access modifiers

If you're coming from a bondage and discipline language like Java or C# with public,
private and protected access modifiers, Python’s “everything is public” approach can
seem excessively open-minded.

The prevailing culture among Pythonistas is that “We're all consenting adults here”. In
practice, the leading underscore convention has proven sufficient protection even in large

Chapter 8 — Defining new types with classes 226

and complex Python systems we have worked with. People know not to use these attributes
directly, and in fact they tend not to. Like so many doctrines, lack of access modifiers is a
much bigger problem in theory than in practice.

Validation and invariants

It’s good practice for the initializer of an object to establish so-called class invariants. The
invariants are truths about objects of that class that should endure for the lifetime of the
object. One such invariant for flights is that the flight number always begins with an upper
case two-letter airline code followed by a three or four digit route number.

In Python, we establish class invariants in the init () method and raise exceptions if
they can’t be attained:

class Flight:

def init (self, number):
if not number[:2].isalpha():
raise ValueError("No airline code in '{}'".format(number))

if not number[:2].isupper():
raise ValueError("Invalid airline code '{}'".format(number))

if not (number[2:].isdigit() and int(number[2:]) <= 9999):
raise ValueError("Invalid route number '{}'".format(number))

self. number = number

def number(self):
return self. number

We use string slicing and various methods of the string class to perform validation. For the
first time in this book we also see the logical negation operator not.

Ad hoc testing in the REPL is a very effective technique during development:

Chapter 8 — Defining new types with classes 227

>>> from airtravel import Flight
>>> f = Flight("SNO6O")
>>> f = Flight("060")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./airtravel.py", line 8, in _ init
raise ValueError("No airline code in '{};".format(number))
ValueError: No airline code in '060'
>>> f = Flight("sn060")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./airtravel.py", line 11, in init
raise ValueError("Invalid airline code '{}'".format(number))
ValueError: Invalid airline code 'sn060'
>>> f = Flight("snabcd")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./airtravel.py", line 11, in _ init
raise ValueError("Invalid airline code '{}'".format(number))
ValueError: Invalid airline code 'snabcd'
>>> f = Flight("SN12345")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./airtravel.py", line 14, in _ init
raise ValueError("Invalid route number '{}'".format(number))
ValueError: Invalid route number 'SN12345'

Now that we’re sure of having a valid flight number, we’ll add a second method to return
just the airline code. Once the class invariants have been established, most query methods
can be very simple:

def airline(self):
return self._number[:2]

Adding a second class

One of the things we’d like to do with our flight is accept seat bookings. To do that we need
to know the seating layout, and for that we need to know the type of aircraft. Let’s make a
second class to model different kinds of aircraft:

Chapter 8 — Defining new types with classes 228

class Aircraft:

def init (self, registration, model, num_rows, num seats per row):
self. registration = registration
self. model = model
self. num_rows = num_rows
self. num seats per row = num seats per row

def registration(self):
return self. registration

def model(self):
return self._model

The initializer creates four attributes for the aircraft: registration number, a model name, the
number of rows of seats, and the number of seats per row. In a production code scenario
we could validate these arguments to ensure, for example, that the number of rows is not
negative.

This is straightforward enough, but for the seating plan we’d like something a little more in
line with our booking system. Rows in aircraft are numbered from one, and the seats within
each row are designated with letters from an alphabet which omits T to avoid confusion
with 1.

Chapter 8 — Defining new types with classes 229

seat letters

Seat letter 1 omitted to

avoid confusion with 1

rows

The aircraft seating plan.

We’ll add a seating _plan() method which returns the allowed rows and seats as a 2-tuple
containing a range object and a string of seat letters:

def seating plan(self):
return (range(l, self. num rows + 1),
"ABCDEFGHJK"[:self. num_seats per rowl)

It’s worth pausing for a second to make sure you understand how this function works. The
call to the range() constructor produces a range object which can be used as an iterable
series of row numbers, up to the number of rows in the plane. The string and its slice method
return a string with one character per seat. These two objects — the range and the string -
are bundled up into a tuple.

Let’s construct a plane with a seating plan:

Chapter 8 — Defining new types with classes 230

>>> from airtravel import *

>>> a = Aircraft("G-EUPT", "Airbus A319", num _rows=22, num_seats per row=6)
>>> a.registration()

'G-EUPT'

>>> a.model()

'"Airbus A319'

>>> a.seating plan()

(range(1, 23), 'ABCDEF')

See how we used keyword arguments for the rows and seats for documentary purposes.
Recall the ranges are half-open, so 23 is correctly one-beyond-the-end of the range.

Collaborating classes

The Law of Demeter is an object-oriented design principle that says you should never call
methods on objects you receive from other calls. Or, put another way: Only talk to your
immediate friends.

Chapter 8 — Defining new types with classes 231

The Law of Demeter — Only talk to your immediate friends. The law is really only a guideline and is
named after an aspect-oriented programming project, which was, in turn, named after the Greek goddess of
agriculture who signified its bottom-up philosophy

We’ll now modify our Flight class to accept an aircraft object when it is constructed, and
we’ll follow the Law of Demeter by adding a method to report the aircraft model. This
method will delegate to Aircraft on behalf of the client rather than allowing the client
to “reach through” the Flight and interrogate the Aircraft object directly:

class Flight:
"""A flight with a particular passenger aircraft."""

def init (self, number, aircraft):
if not number[:2].isalpha():

raise ValueError("No airline code in '{}'".format(number))

if not number[:2].isupper():
raise ValueError("Invalid airline code '{}'".format(number))

if not (number[2:].isdigit() and int(number[2:]) <= 9999):

Chapter 8 — Defining new types with classes 232

raise ValueError("Invalid route number '{}'".format(number))

self. number = number
self. aircraft = aircraft

def number(self):
return self. number

def airline(self):
return self. number[:2]

def aircraft model(self):
return self. aircraft.model()

We’ve also added a docstring to the class. These work just like function and module
docstrings, and must be the first non-comment line within the body of the class.

We can now construct a flight with a specific aircraft:

>>> from airtravel import *

>>> f = Flight("BA758", Aircraft("G-EUPT", "Airbus A319", num_ rows=22,
. num_seats per _row=6))

>>> f.aircraft _model()

'"Airbus A319'

Notice that we construct the Aircraft object and directly pass it to the Flight constructor
without needing an intermediate named reference for it.

Chapter 8 — Defining new types with classes 233

Moment of zen

Moment of Zen

Complex is better
than complicated.

Many moving parts
Combined in a clever box
Are now one good tool

The aircraft_model() method is an example of ‘complex is better than complicated’:

def aircraft model(self):
return self. aircraft.model()

The Flight class is more complex — it contains additional code to drill down through
the aircraft reference to find the model. However, all clients of Flight can now be less
complicated; none of them need to know about the Aircraft class, dramatically simplifying
the system.

Chapter 8 — Defining new types with classes 234

Booking seats

Now we can proceed with implementing a simple booking system. For each flight we need
to keep track of who is sitting in each seat. We’ll represent the seat allocations using a
list of dictionaries. The list will contain one entry for each seat row, and each entry will
be a dictionary mapping from seat-letter to occupant name. If a seat is unoccupied, the
corresponding dictionary value will contain None.

We initialize the seating plan in Flight.__init_ () using this fragment:

rows, seats = self. aircraft.seating plan()
self. seating = [None] + [{letter: None for letter in seats} for _ in rows]

In the first line we retrieve the seating plan for the aircraft and use tuple unpacking to put
the row and seat identifiers into local variables rows and seats. In the second line we create
a list for the seat allocations. Rather than continually deal with the fact that row indexes are
one-based whereas Python lists use zero-based indexes, we choose to waste one entry at the
beginning of the list. This first wasted entry is the single element list containing None. To
this single element list we concatenate another list containing one entry for each real row
in the aircraft. This list is constructed by a list comprehension which iterates over the rows
object, which is the range of row numbers retrieved from the aircraft on the previous
line.

Chapter 8 — Defining new types with classes 235

Seating Data Structure

Zeroth row is unused to
simulate one-based
indexing

Ss]

dict

dict
key value key value
string string string

WA “pn “John”

string

“A”

string string

«gn “Bob”

string string string string

| “Mary” e “Tom”

string
“er
string

“p”

string) string string
“cr “Tina” e
string string
“p” s
string | string

“g» y “«g”

string string

= “Fred”

The object graph for the seating-plan data structure, which is a list of dictionaries.

We’re not actually interested in the row number, since we know it will match up with the
list index in the final list, so we discard it by using the dummy underscore variable.

The item expression part of the list comprehension is itself a comprehension; specifically a
dictionary comprehension! This iterates over each row letter, and creates a mapping from
the single character string to None to indicate an empty seat.

We use a list comprehension, rather than list replication with the multiplication operator,
because we want a distinct dictionary object to be created for each row; remember, repetition
is shallow.

Here’s the code after we put it into the initializer:

Chapter 8 — Defining new types with classes

def init (self, number, aircraft):
if not number[:2].isalpha():

raise ValueError("No airline code in '{}'".format(number))

if not number[:2].isupper():

raise ValueError("Invalid airline code '{}'".format(number))

if not (number[2:]1.isdigit() and int(number[2:]) <=

raise ValueError("Invalid route number '{}'".format(number))

self. number = number
self. aircraft = aircraft
seats =

rows, self. aircraft.seating plan()

self. seating = [None] + [{letter: None for letter in seats} for

Before we go further, let’s test our code in the REPL:

>>> from airtravel import *

9999) :

~in rows]

>>> f = Flight("BA758", Aircraft("G-EUPT", "Airbus A319", num rows=22,

num_seats per row=6))
>>>

236

Thanks to the fact that everything is “public” we can access implementation details during
development. It’s clear enough that we’re deliberately defying convention here during
development, since the leading underscore reminds us what’s “public” and what’s “private”:

>>> f. seating

[None, {'F': None, 'D': None, 'E': None, 'B': None, 'C': None, 'A':
{'F': None, 'D': None, 'E': None, 'B': None, 'C': None, 'A': None},
'D': None, 'E': None, 'B': None, 'C': None, 'A': None}, {'F': None,
'"E': None, 'B': None, 'C': None, 'A': None}, {'F': None, 'D': None,
'B': None, 'C': None, 'A': None}, {'F': None, 'D': None, 'E': None,
'C': None, 'A': None}, {'F': None, 'D': None, 'E': None, 'B': None,
'"A': None}, {'F': None, 'D': None, 'E': None, 'B': None, 'C': None,
{'F': None, 'D': None, 'E': None, 'B': None, 'C': None, 'A': None},
'D': None, 'E': None, 'B': None, 'C': None, 'A': None}, {'F': None,
'E': None, 'B': None, 'C': None, 'A': None}, {'F': None, 'D': None,
'B': None, 'C': None, 'A': None}, {'F': None, 'D': None, 'E': None,
'"C': None, 'A': None}, {'F': None, 'D': None, 'E': None, 'B': None,
'"A': None}, {'F': None, 'D': None, 'E': None, 'B': None, 'C': None,
{'F': None, 'D': None, 'E': None, 'B': None, 'C': None, 'A': None},

None},

{'F':
'‘D':
"E':
'‘B':
'C':
Al
{'F':
‘D':
'E':
'‘B':
'C':
At
{'F':

None,
None,
None,
None,
None,
None},

None,
None,
None,
None,
None,
None},

None,

Chapter 8 - Defining new types with classes 237

'D': None, 'E': None, 'B': None, 'C': None, 'A': None}, {'F': None, 'D': None,
'"E': None, 'B': None, 'C': None, 'A': None}, {'F': None, 'D': None, 'E': None,
'B': None, 'C': None, 'A': None}, {'F': None, 'D': None, 'E': None, 'B': None,
'"C': None, 'A': None}, {'F': None, 'D': None, 'E': None, 'B': None, 'C': None,
"A': None}, {'F': None, 'D': None, 'E': None, 'B': None, 'C': None, 'A': None}]

That’s accurate, but not particularly beautiful. Let’s try again with pretty-print:

>>> from pprint import pprint as pp

>>> pp(f. seating)

[None,
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None}]

Perfect!

Allocating seats to passengers

Now we’ll add behavior to Flight to allocate seats to passengers. To keep this simple, a
passenger will be a string name:

Chapter 8 — Defining new types with classes 238

class Flight:
...

def allocate seat(seat, passenger):

"""Allocate a seat to a passenger.

Args:
seat: A seat designator such as '12C' or '21F'.
passenger: The passenger name.

Raises:
ValueError: If the seat is unavailable.

rows, seat letters = self. aircraft.seating plan()

letter = seat[-1]
if letter not in seat letters:
raise ValueError("Invalid seat letter {}".format(letter))

row_text = seat[:-1]
try:
row = int(row_ text)
except ValueError:
raise ValueError("Invalid seat row {}".format(row text))

if row not in rows:
raise ValueError("Invalid row number {}".format(row))

if self. seating[row][letter] is not None:
raise ValueError("Seat {} already occupied".format(seat))

self. seating[row][letter] = passenger

Most of this code is validation of the seat designator and it contains some interesting snippets:

« Line 6: Methods are functions, so deserve docstrings too.

« Line 17: We get the seat letter by using negative indexing into the seat string.

« Line 18: We test that the seat letter is valid by checking for membership of seat_-
letters using the in membership testing operator.

« Line 21: We extract the row number using string slicing to take all but the last character.

Chapter 8 — Defining new types with classes 239

« Line 23: We try to convert the row number substring to an integer using the int()
constructor. If this fails, we catch the ValueError and in the handler raise a new
ValueError with a more appropriate message payload.

+ Line 27: We conveniently validate the row number by using the in operator against
the rows object which is a range. We can do this because range() objects support the
container protocol.

« Line 30: We check that the requested seat is unoccupied using an identity test with
None. If it’s occupied we raise a ValueError.

« Line 33: If we get this far, everything is in good shape, and we can assign the seat.

This code also contains a bug, which we’ll discover soon enough!

Trying our seat allocator at the REPL:

>>> from airtravel import *
>>> f = Flight("BA758", Aircraft("G-EUPT", "Airbus A319",
- num_rows=22, num_seats_per_row=6))
>>> f.allocate seat('12A', 'Guido van Rossum')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: allocate seat() takes 2 positional arguments but 3 were given

Oh dear! Early on in your object-oriented Python career you're likely to see TypeError
messages like this quite often. The problem has occurred because we forgot to include the
self argument in the definition of the allocate_seat() method:

def allocate seat(self, seat, passenger):
...

Once we fix that, we can try again:

Chapter 8 — Defining new types with classes 240

>>> from airtravel import *
>>> from pprint import pprint as pp
>>> f = Flight("BA758", Aircraft("G-EUPT", "Airbus A319",
. num_rows=22, num seats per row=6))
>>> f.allocate seat('12A', 'Guido van Rossum')
>>> f.allocate seat('12A', 'Rasmus Lerdorf')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "./airtravel.py", line 57, in allocate seat

raise ValueError("Seat {} already occupied".format(seat))

ValueError: Seat 12A already occupied

>>> f.allocate seat('15F', 'Bjarne Stroustrup')
>>> f.allocate seat('15E', 'Anders Hejlsberg')
>>> f.allocate seat('E27', 'Yukihiro Matsumoto')

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./airtravel.py", line 45, in allocate seat
raise ValueError("Invalid seat letter {}".format(letter))
ValueError: Invalid seat letter 7
>>> f.allocate seat('1C', 'John McCarthy')
>>> f.allocate seat('1D', 'Richard Hickey')
>>> f.allocate seat('DD', 'Larry Wall')
Traceback (most recent call last):
File "./airtravel.py", line 49, in allocate seat
row = int(row_ text)
ValueError: invalid literal for int() with base 10: 'D'

During handling of the above exception, another exception occurred:

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./airtravel.py", line 51, in allocate seat
raise ValueError("Invalid seat row {}".format(row text))
ValueError: Invalid seat row D

>>> pp(f. seating)
[None,
{'A': None,
'B': None,
'C': '"John McCarthy',
'D': 'Richard Hickey',
"E': None,
"F': None},

Chapter 8 — Defining new types with classes 241

{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},

{'A': 'Guido van Rossum',
'B': None,
"C': None,
‘D': None,
'E': None,
"F': None},

{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},

{'A': None,
'B': None,
'C': None,
'D': None,

'E': 'Anders Hejlsberg',

'"F': 'Bjarne Stroustrup'},

{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None}]

The Dutchman is quite lonely there in row 12, so we’d like to move him back to row 15 with
the Danes. To do so, we’'ll need a relocate passenger() method.

Naming methods for implementation details

First we’ll perform a small refactoring and extract the seat designator parsing and validation
logic into its own method, parse_seat(). We use a leading underscore here because this
method is an implementation detail:

Chapter 8 — Defining new types with classes 242

class Flight:
...

def parse seat(self, seat):
"""Parse a seat designator into a valid row and letter.

Args:
seat: A seat designator such as 12F

Returns:
A tuple containing an integer and a string for row and seat.

row_numbers, seat letters = self. aircraft.seating plan()

letter = seat[-1]
if letter not in seat letters:
raise ValueError("Invalid seat letter {}".format(letter))

row_text = seat[:-1]
try:
row = int(row_text)
except ValueError:
raise ValueError("Invalid seat row {}".format(row text))

if row not in row numbers:
raise ValueError("Invalid row number {}".format(row))

return row, letter

The new parse_seat() method returns a tuple with an integer row number and a seat
letter string. This has made allocate seat() much simpler:

Chapter 8 — Defining new types with classes 243

def allocate seat(self, seat, passenger):
"""Allocate a seat to a passenger.

Args:
seat: A seat designator such as '12C' or '21F'.
passenger: The passenger name.

Raises:
ValueError: If the seat is unavailable.

row, letter = self. parse seat(seat)

if self. seating[row][letter] is not None:
raise ValueError("Seat {} already occupied".format(seat))

self. seating[row][letter] = passenger

Notice how the call to parse_seat() also requires explicit qualification with the self
prefix.

Implementing relocate_passenger()
Now we’ve laid the groundwork for our relocate passenger() method:

class Flight:
...

def relocate_passenger(self, from_seat, to_seat):
"""Relocate a passenger to a different seat.

Args:
from seat: The existing seat designator for the
passenger to be moved.

to seat: The new seat designator.

from row, from letter = self. parse seat(from seat)
if self. seating[from row][from letter] is None:
raise ValueError("No passenger to relocate in seat {}".format(from seat))

to row, to letter = self. parse seat(to seat)

Chapter 8 — Defining new types with classes 244

if self. seating[to row][to letter] is not None:
raise ValueError("Seat {} already occupied".format(to seat))

self. seating[to row][to letter] = self. seating[from row][from letter]
self. seating[from row][from letter] = None

This parses and validates the from_seat and to_seat arguments and then moves the
passenger to the new location.

It’s also getting tiresome recreating the Flight object each time, so we’ll add a module level
convenience function for that too:

def make flight():
f = Flight("BA758", Aircraft("G-EUPT", "Airbus A319",
num_rows=22, num seats per row=6))

f.allocate seat('12A', 'Guido van Rossum')
f.allocate seat('15F', 'Bjarne Stroustrup')
f.allocate seat('15E', 'Anders Hejlsberg')
f.allocate seat('1C', 'John McCarthy')
f.allocate seat('1D', 'Richard Hickey"')
return f

In Python it’s quite normal to mix related functions and classes in the same module. Now,
from the REPL:

>>> from airtravel import make flight
>>> f = make_ flight()

>>> f

<airtravel.Flight object at 0x1007a6690>

You may find it remarkable that we have access to the Flight class when we have only
imported a single function, make_flight. This is quite normal and it’s a powerful aspect of
Python’s dynamic type system that facilitates this very loose coupling between code.

Let’s get on and move Guido back to row 15 with his fellow Europeans:

Chapter 8 — Defining new types with classes 245

>>> f.relocate passenger('12A', '15D')

>>> from pprint import pprint as pp

>>> pp(f. seating)

[None,
{'A': None,
'B': None,
'C': '"John McCarthy',
'D': 'Richard Hickey',
"E': None,
"F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},

{'A': None,
'B': None,
"C': None,
'D': 'Guido van Rossum',

'E': 'Anders Hejlsberg',

"F': 'Bjarne Stroustrup'},

{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A': None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None},
{'A'": None, 'B': None, 'C': None, 'D': None, 'E': None, 'F': None}]

Counting available seats
It’s important during booking to know how many seats are available. To this end we’ll write

anum_available_seats() method. This uses two nested generator expressions. The outer
expression filters for all rows which are not None to exclude our dummy first row. The value

Chapter 8 — Defining new types with classes 246

of each item in the outer expression is the sum of the number of None values in each row.
This inner expression iterates over values of the dictionary and adds 1 for each None found:

def num available seats(self):
return sum(sum(l for s in row.values() if s is None)
for row in self. seating
if row is not None)

Notice how we have split the outer expression over three lines to improve readability.

>>> from airtravel import make flight
>>> f = make flight()

>>> f.num_available seats()

127

A quick check shows that our new calculation is correct:

>>> 6 * 22 - 5
127

Sometimes the only object you need is a function

Now we’ll show how it’s quite possible to write nice object-oriented code without needing
classes. We have a requirement to produce boarding cards for our passengers in alphabetical
order. However, we realize that the flight class is probably not a good home for details
of printing boarding passes. We could go ahead and create a BoardingCardPrinter class,
although that is probably overkill. Remember that functions are objects too and are perfectly
sufficient for many cases. Don’t feel compelled to make classes without good reason.

Rather than have a card printer query all the passenger details from the flight, we’ll follow
the object-oriented design principle of “Tell! Don’t Ask.” and have the Flight tell a simple
card printing function what to do.

First the card printer, which is just a module level function:

Chapter 8 — Defining new types with classes 247

def console card printer(passenger, seat, flight number, aircraft):

output = "| Name: {0}" \
" Flight: {1}" \
Seat: {2}" \

" Aircraft: {3}" \

" |".format(passenger, flight number, seat, aircraft)
banner = '+' + '-' * (len(output) - 2) + '+'
border = '|' + ' ' * (len(output) - 2) + '|'
lines = [banner, border, output, border, banner]

card = '\n'.join(lines)
print(card)
print()

A Python feature we’re introducing here is the use of line continuation backslash characters,
V", which allow us to split long statements over several lines. This is used here, together with

implicit string concatenation of adjacent strings, to produce one long string with no line
breaks.

We measure the length of this output line, build some banners and borders around it, and
concatenate the lines together using the join() method called on a newline separator. The
whole card is then printed, followed by a blank line. The card printer doesn’t know anything
about Flights or Aircraft — it’s very loosely coupled. You can probably easily envisage
an HTML card printer that has the same interface.

Making Flight create boarding cards

To the Flight class we add a new method make_boarding cards () which acceptsa card_-
printer:

class Flight:
...

def make boarding cards(self, card printer):
for passenger, seat in sorted(self. passenger seats()):
card printer(passenger, seat, self.number(), self.aircraft model())

This tells the card printer to print each passenger, having sorted a list of passenger-
seat tuples obtained from a passenger seats() implementation detail method (note the
leading underscore). This method is in fact a generator function which searches all seats for
occupants, yielding the passenger and the seat number as they are found:

Chapter 8 — Defining new types with classes 248

def passenger seats(self):
"""An iterable series of passenger seating allocations."""
row_numbers, seat letters = self. aircraft.seating plan()
for row in row_numbers:
for letter in seat letters:
passenger = self. seating[row][letter]
if passenger is not None:
yield (passenger, "{}{}".format(row, letter))

Now if we run this on the REPL, we can see that the new boarding card printing system
works:

>>> from airtravel import console card printer, make flight
>>> f = make_flight()
>>> f.make boarding cards(console card printer)

| Name: Anders Hejlsberg Flight: BA758 Seat: 15E Aircraft: Airbus A319 |

| Name: Richard Hickey Flight: BA758 Seat: 1D Aircraft: Airbus A319 |

Chapter 8 — Defining new types with classes 249

Polymorphism and duck-typing

Polymorphism is a programming language feature which allows us to use objects of different
types through a uniform interface. The concept of polymorphism applies to both functions
and more complex objects. We've just seen an example of polymorphism with the card
printing example. The make boarding card() method didn’t need to know about an actual
- or as we say ‘concrete” — card printing type, only the abstract details of its interface. This
interface is essentially just the order of its arguments. Replacing our console card printer
with a putative html_card_printer would exercise polymorphism.

Polymorphism in Python is achieved through duck typing. Duck typing is in turn named
after the “duck test”, attributed to James Whitcomb Riley, the American poet.

James Whitcomb Riley — American poet and author

Chapter 8 — Defining new types with classes 250

When I see a bird that walks like a duck and swims like a duck and quacks like
a duck, I call that bird a duck.

Duck typing, where an object’s fitness for a particular use is only determined at runtime,
is the cornerstone of Python’s object system. This is different from many statically typed
languages where a compiler determines if an object can be used. In particular, it means that
an object’s suitability is not based on inheritance hierarchies, base classes, or anything except
the attributes an object has at the time of use.

This is in stark contrast to languages such as Java which depend on what is called nominal
sub-typing through inheritance from base classes and interfaces. We’'ll talk more about
inheritance in the context of Python shortly.

Refactoring Aircraft

Let’s return to our Aircraft class:
class Aircraft:

def init (self, registration, model, num_rows, num seats per row):
self. registration = registration
self. model = model
self. num_rows = num_rows
self. num seats per row = num seats per row

def registration(self):
return self. registration

def model(self):
return self._model

def seating plan(self):
return (range(l, self. num rows + 1),
"ABCDEFGHJIK"[:self. num seats per rowl])

The design of this class is somewhat flawed because users who instantiate it have to supply
a seating configuration that matches the aircraft model. For the purposes of this exercise we
can assume that the seating arrangement is fixed per aircraft model.

Better, and simpler, perhaps to get rid of the Aircraft class entirely and make separate
classes for each specific model of aircraft with a fixed seating configuration. Here’s an Airbus
A319:

Chapter 8 — Defining new types with classes 251

class AirbusA319:

def init (self, registration):
self. registration = registration

def registration(self):
return self. registration

def model(self):
return "Airbus A319"

def seating plan(self):
return range(1l, 23), "ABCDEF"

And here’s a Boeing 777:

class Boeing777:

def init (self, registration):
self. registration = registration

def registration(self):
return self._registration

def model(self):
return "Boeing 777"

def seating plan(self):
For simplicity's sake, we ignore complex
seating arrangement for first-class
return range(1l, 56), "ABCDEFGHJ"

These two aircraft classes have no explicit relationship to each other, or to our original
Aircraft class, beyond having identical interfaces (with the exception of the initializer,
which now takes fewer arguments). As such we can use these new types in place of each

other.

Let’s change our make flight() method to make flights() so we can use them:

Chapter 8 — Defining new types with classes 252

def make flights():

f = Flight("BA758", AirbusA319("G-EUPT"))
.allocate seat('12A', 'Guido van Rossum')
.allocate seat('15F', 'Bjarne Stroustrup')
.allocate seat('15E', 'Anders Hejlsberg')
.allocate seat('1C', 'John McCarthy")
.allocate seat('1D', 'Richard Hickey")

- —h —h —h —h

= Flight("AF72", Boeing777("F-GSPS"))
.allocate seat('55]', 'Larry Wall')
.allocate seat('33G', 'Yukihiro Matsumoto')
.allocate seat('4B', 'Brian Kernighan')
.allocate seat('4A', 'Dennis Ritchie')

Q u o e

return f, g

The different types of aircraft both work fine when used with Flight because they both
quack like ducks. Or fly like planes. Or something:

>>> from airtravel import *

>>> f, g = make flights()

>>> f.aircraft model()

"Airbus A319'

>>> g.aircraft _model()

'Boeing 777'

>>> f.num_available seats()

127

>>> g.num_available seats()

491

>>> g.relocate passenger('55J', '13G'")
>>> g.make boarding cards(console card printer)

| Name: Brian Kernighan Flight: AF72 Seat: 4B Aircraft: Boeing 777 |

| Name: Dennis Ritchie Flight: AF72 Seat: 4A Aircraft: Boeing 777 |

Chapter 8 — Defining new types with classes 253

| Name: Larry Wall Flight: AF72 Seat: 13G Aircraft: Boeing 777 |

| Name: Yukihiro Matsumoto Flight: AF72 Seat: 33G Aircraft: Boeing 777 |

Duck typing and polymorphism is very important in Python. In fact it’s the basis for the
collection protocols we discussed such as iterator, iterable and sequence.

Inheritance and implementation sharing

Inheritance is a mechanism whereby one class can be derived from a base-class allowing us
to make behavior more specific in the subclass. In nominally typed languages such as Java,
class-based inheritance is the means by which run-time polymorphism is achieved. Not so
in Python, as we have just demonstrated. The fact that no Python method calls or attribute
lookups are bound to actual objects until the point at which they are called — known as late-
binding — means we can attempt polymorphism with any object and it will succeed if the
object fits.

Although inheritance in Python can be used to facilitate polymorphism - after all, derived
classes will have the same interfaces as base classes — inheritance in Python is most useful
for sharing implementation between classes.

A base class for aircraft

As usual, this will make much more sense with an example. We would like our aircraft classes
AirbusA319 and Boeing777 to provide a way of returning the total number of seats. We’ll
add a method called num_seats () to both classes to do this:

Chapter 8 — Defining new types with classes 254

def num seats(self):
rows, row seats = self.seating plan()
return len(rows) * len(row_seats)

The implementation can be identical in both classes, since it can be calculated from the
seating plan.

Unfortunately, we now have duplicate code across two classes, and as we add more aircraft
types the code duplication will worsen.

The solution is to extract the common elements of AirbusA319 and Boeing777 into a base
class from which both aircraft types will derive. Let’s recreate the class Aircraft, this time
with the goal of using it as a base class:

class Aircraft:

def num seats(self):
rows, row seats = self.seating plan()
return len(rows) * len(row seats)

The Aircraft class contains just the method we want to inherit into the derived classes.
This class isn’t usable on its own because it depends on a method called seating plan()
which isn’t available at this level. Any attempt to use it standalone will fail:

>>> from airtravel import *
>>> base = Aircraft()
>>> base.num_seats()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "./airtravel.py", line 125, in num_seats

rows, row seats = self.seating plan()

AttributeError: 'Aircraft' object has no attribute 'seating plan'

The class is abstract insofar as it is never useful to instantiate it alone.

Inheriting from Aircraft

Now for the derived classes. We specify inheritance in Python using parentheses containing
the base class name immediately after the class name in the class statement.

Here’s the Airbus class:

Chapter 8 -

Defining new types with classes

class AirbusA319(Aircraft):

def init (self, registration):

self. registration = registration

def registration(self):

return self. registration

def model(self):

return "Airbus A319"

def seating plan(self):

return range(1l, 23), "ABCDEF"

And this is the Boeing class:

class Boeing777 (Aircraft):

def

def

def

def

~init (self, registration):

self. registration = registration

registration(self):
return self._registration

model(self):
return "Boeing 777"

seating plan(self):

For simplicity's sake, we ignore complex
seating arrangement for first-class
return range(1l, 56), "ABCDEFGHJ]"

Let’s exercise them at the REPL:

255

Chapter 8 — Defining new types with classes

>>> from airtravel import *
>>> a = AirbusA319("G-EZBT")
>>> a.num_seats()

132

>>> b = Boeing777("N717AN")
>>> b.num_seats()

495

256

We can see that both subtype aircraft inherited the num_seats () method, which now works
as expected because the call to seating plan() is successfully resolved on the self object

at runtime.

Hoisting common functionality into a base class

Now we have the base Aircraft class we can refactor by hoisting into it other common
functionality. For example, both the initializer and registration() methods are identical

between the two subtypes:

class Aircraft:

def _ init (self, registration):

self. registration = registration

def registration(self):
return self. registration

def num seats(self):

rows, row seats = self.seating plan()
return len(rows) * len(row_seats)

class AirbusA319(Aircraft):

def model(self):
return "Airbus A319"

def seating plan(self):
return range(l, 23), "ABCDEF"

class Boeing777 (Aircraft):

Chapter 8 — Defining new types with classes 257

def model(self):
return "Boeing 777"

def seating plan(self):
For simplicities sake, we ignore complex
seating arrangement for first-class
return range(l, 56), "ABCDEFGHJ"

These derived classes only contain the specifics for that aircraft type. All general functional-
ity is shared from the base class by inheritance.

Thanks to duck-typing, inheritance is less used in Python than in other languages. This is
generally seen as a good thing because inheritance is a very tight coupling between classes.

Summary

« All types in Python have a ‘class’.

« Classes define the structure and behavior of an object.

« The class of an object is determined when the object is created and is almost always
fixed for the lifetime of the object.

« Classes are the key support for Object-Oriented Programming in Python.

« Classes are defined using the class keyword followed by the class name, which is in
CamelCase.

« Instances of a class are created by calling the class as if it were a function.

« Instance methods are functions defined inside the class which should accept an object
instance called self as the first parameter.

+ Methods are called using the instance.method() syntax which is syntactic sugar for
passing the instance as the formal self argument to the method.

« An optional special initializer method called init () can be provided which is
used to configure the self object at creation time.

« The constructor calls the init () method if one is present.

o« The init () method is not the constructor. The object has been already con-
structed by the time the initializer is called. The initializer configures the newly created
object before it’s returned to the caller of the constructor.

« Arguments passed to the constructor are forwarded to the initializer.

« Instance attributes are brought into existence by assigning to them.

Chapter 8 — Defining new types with classes 258

« Attributes and methods which are implementation details are by convention prefixed
with an underscore. There are no public, protected or private access modifiers in
Python.

+ Access to implementation details from outside the class can be very useful during
development, testing and debugging.

« Class invariants should be established in the initializer. If the invariants can’t be
established raise exceptions to signal failure.

+ Methods can have docstrings, just like regular functions.

+ Classes can have docstrings.

+ Even within an object method calls must be qualified with self.

+ You can have as many classes and functions in a module as you wish. Related classes
and global functions are usually grouped together this way.

+ Polymorphism in Python is achieved through duck typing where attributes and
methods are only resolved at point of use - a behaviour called late-binding.

+ Polymorphism in Python does not require shared base classes or named interfaces.

+ Class inheritance in Python is primarily useful for sharing implementation rather than
being necessary for polymorphism.

+ All methods are inherited, including special methods like the initializer.

Along the way we found that:

« Strings support slicing, because they implement the sequence protocol.

« Following the Law of Demeter can reduce coupling.

+ We can nest comprehensions.

« It can sometimes be useful to discard the current item in a comprehension using a
dummy reference, conventionally the underscore.

« When dealing with one-based collections it’s often easier just to waste the zeroth list
entry.

+ Don’t feel compelled to use classes when a simple function will suffice. Functions are
also objects.

« Complex comprehensions or generator expressions can be split over multiple lines to
aid readability.

« Statements can be split over multiple lines using the backslash line continuation
character. Use this feature sparingly and only when it improves readability.

« Object-oriented design where one object tells another information can be more loosely
coupled than those where one object queries another. “Tell! Don’t ask.”

Chapter 9 - Files and resource
management

Reading and writing files is a key part of what many real-world programs do. The notion
of a file, however, is somewhat abstract. In some cases a file might mean collection of bytes
on a hard disk; in others cases it might mean, for example, an HTTP resource on a remote
system. These two entities share some behavior. For example, you can read a sequence of
bytes from each. At the same time, they’re not identical. You can, for example, generally
write bytes back to a local file while you can’t do that with HTTP resources.

In this chapter we’ll look at Python’s basic support for working with files. Since dealing
with local files is both common and important, we’ll focus primarily on working with them.
Be aware, though, that Python and its ecosystem of libraries provides similar file-like APIs
for many other kinds of entities, including URI-based resources, databases, and many other
sources of data. This use of a common API is very convenient and makes it easy to write
code that can work against a wide range of data sources without change.

Also in this chapter we’ll look at context managers, one of Python’s primary means for
managing resources. Context managers allow you to write code that is robust and predictable
in the face of exceptions, ensuring that resources such as files are properly closed and
accounted for when errors occur.

Files

To open a local file in Python we call the built-in open() function. This takes a number of
arguments, but the most commonly used are:

« file: the path to the file. This is required.

« mode: read, write, append and binary or text. This is optional, but we recommend
always specifying it for clarity. Explicit is better than implicit.

+ encoding: If the file contains encoded text data, which encoding to use. It’s often a
good idea to specify this. If you don’t specify it, Python will choose a default encoding
for you.

Chapter 9 - Files and resource management 260

Binary and text modes

At the filesytem level, of course, files contain only a series of bytes. Python, however,
distinguishes between files opened in binary and text modes, even when the underlying
operating system doesn’t. When you open a file in binary mode, you are instructing Python
to use the data in the file without any decoding; binary mode file reflects the raw data in the

file.

A file opened in text mode, on the other hand, treats its contents as if it contains text strings
of the str type. When you get data from a text mode file, Python first decodes the raw
bytes using either a platform-dependent encoding or, if provided, the encoding argument
to open().

By default, text mode files also engage support for Python’s universal newlines. This causes
translation between a single portable newline character in our program strings ('\n') and
a platform dependent newline representation in the raw bytes stored in the file system (for
example carriage-return-newline (' \r\n') on Windows).

The importance of encoding

Getting the encoding right is crucial for correctly interpreting the contents of a text file, so
we want to labor the point a bit. Python®” can’t reliably determine the encoding of a text
file, so it doesn’t try. Yet without knowing the encoding of a file, Python can’t properly
manipulate the data in the file. That’s why it’s critical that you tell Python which encoding
to use.

If you don’t specify an encoding Python will use the default from sys.getdefaultencoding().
In our case, the default encoding is 'utf-8"':

>>> import sys
>>> sys.getdefaultencoding()
'utf-8'

Always remember, though, that there’s no guarantee that the default encoding on your
system is the same as the default encoding on another system with which you wish to
exchange files. It’s better for all concerned to make a conscious decision about the text-to-
bytes encoding by specifying it in your calls to open(). You can get a list of supported text
encodings in the Python documentation®®.

>"Nor any language, for that matter.
**https://docs.python.org/3/library/codecs.html#standard-encodings

https://docs.python.org/3/library/codecs.html#standard-encodings
https://docs.python.org/3/library/codecs.html#standard-encodings

Chapter 9 - Files and resource management 261

Opening a file for writing

Let’s start working with files by opening a file in write mode. We’ll be explicit about using
the UTF-8 encoding, because we have no way of knowing what your default encoding is.
We'll also use keyword arguments to make things clearer still:

>>> f = open('wasteland.txt', mode='wt', encoding='utf-8")

The first argument is the filename. The mode argument is a string containing letters with
different meanings. In this case ‘w’ means write and ‘t’ means text.

All mode strings should consist of one of read, write or append mode. This table lists the
mode codes along with their meanings:

Code Meaning

r Open file for reading. The stream is positioned at the
beginning of the file. This is the default.

r+ Open for reading and writing. The stream is positioned at the
beginning of the file.

w Truncate file to zero length or create file for writing.
The stream is positioned at the beginning of the file.

W+ Open for reading and writing. The file is created if it does not

exist, otherwise it is truncated. The stream is positioned at
the beginning of the file.

a Open for writing. The file is created if it does not exist. The
stream is positioned at the end of the file. Subsequent writes
to the file will always end up at the then current end of file,
irrespective of any intervening seeks or similar.

a+ Open for reading and writing. The file is created if it does not
exist. The stream is positioned at the end of the file.
Subsequent writes to the file will always end up at the then
current end of file, irrespective of any intervening seeks or
similar.

One of the preceding should be combined with a selector from the next table for specifying
text or binary mode:

Chapter 9 - Files and resource management 262

Code Meaning

t File contents interpreted as encoded text strings. The bytes in
the file will be encoded and decoded according to the
specified text encoding, and universal newline translation will
be in effect (unless explicitly disabled). All methods which write
and read data from the file accept and return str objects.
This is the default.

b File contents are treated as raw bytes. All methods which write
and read data from the file accept and return bytes objects.

Examples of typical mode strings might be 'wb' for “write binary” or 'at ' for “append text”.
Although both parts of the mode code support defaults, we recommend being explicit for the
sake of readability.

The exact type of the object returned by open () depends on how the file was opened. This is
dynamic typing in action! For most purposes, however, the actual type returned by open()
is unimportant. It is sufficient to know that the returned object is a file-like object, and as
such we can expect it to support certain attributes and methods.

Writing to files

We’ve shown previously how we can request help () for modules and methods and types,
but in fact we can request help on instances too. This makes sense when you remember that
everything is an object.

| write(self, text, /)

| Write string to stream.

| Returns the number of characters written (which is always equal to
| the length of the string).

Browsing through the help, we can see that f supports a method write(). Quit the help
with ‘q” and continue at the REPL.

Now let’s write some text to our file useing the write() method:

Chapter 9 - Files and resource management 263

>>> f.write('What are the roots that clutch, ')
32

The call to write() returns the number of codepoints or characters written to the file. Let’s
add a few more lines:

>>> f.write('what branches grow\n')

19

>>> f.write('Out of this stony rubbish? ')
27

You’ll notice that we’re explicitly including newlines in the text we write to the file. It’s the
caller’s responsibility to provide newline characters where they are needed; Python does not
provide a writeline() method.

Closing files

When we’ve finished writing, we should remember to close the file by calling the close()
method:

>>> f.close()

Note that it’s only after we close the file that we can be certain that the data we’'ve written
becomes visible to external processes. Closing files is important!

Also remember that you can no longer read from or write to a file after closing it. Attempts
to do so will result in an exception.

The file outside of Python

If you now exit the REPL, and look in your filesystem you can see that you have indeed
created a file. On Unix use the 1s command:

$ s -1
-rw-r--r-- 1 rjs staff 78 12 Jul 11:21 wasteland.txt

You should see the wasteland. txt file with 78 bytes.

On Windows use dir:

Chapter 9 - Files and resource management 264

> dir
Volume is drive C has no label.
Volume Serial Number is 36C2-FF83

Directory of c:\Users\pyfund

12/07/2013 20:54 79 wasteland. txt
1 File(s) 79 bytes
0 Dir(s) 190,353,698,816 bytes free

In this case you should see wasteland. txt with 79 bytes because Python’s universal newline
behavior for files has translated the line ending to your platform’s native endings.

The number returned by the write () method is the number of codepoints (or characters) in
the string passed to write(), not the number of bytes written to the file after encoding and
universal newline translation. In general, when working with text files, you cannot sum the
quantities returned by write() to determine the length of the file in bytes.

Reading files

To read the file back we use open() again, but this time we pass ' rt', for read-text, as the
mode:

>>> g = open('wasteland.txt', mode='rt', encoding='utf-8")

If we know how many bytes to read, or if we want to read the whole file, we can use read ().
Looking back through our REPL we can see that the first write was 32 characters long, so
let’s read that back with a call to the read () method:

>>> g.read(32)
'What are the roots that clutch,

In text mode, the read () method accepts the number of characters to read from the file, not
the number of bytes. The call returns the text and advances the file pointer to the end of
what was read. Because we opened the file in text mode, the return type is str.

To read all the remaining data in the file we can call read () without an argument:

Chapter 9 - Files and resource management 265

>>> g.read()
'what branches grow\nQut of this stony rubbish? '

This gives us parts of two lines in one string — note the newline character in the middle.

At the end of the file, further calls to read() return an empty string:

>>> g.read()

Normally when we have finished reading a file we would close() it. For the purposes of
this exercise, though, we’ll keep the file open and use seek() with an argument of zero to
move the file pointer back to the start of the file:

>>> g.seek(0)
0

The return value of seek() is the new file pointer position.

Reading line by line

Using read () for text is quite awkward, and thankfully Python provides better tools for
reading text files line by line. The first of these is the readline() function:

>>> g.readline()

'What are the roots that clutch, what branches grow\n'
>>> g.readline()

'Out of this stony rubbish? '

Each call to readline() returns a single line of text. The returned lines are terminated by a
single newline character, if there is one present in the file.

The last line here does not terminate with a newline because there is no newline sequence
at the end of the file. You shouldn’t rely on the string returned by readline() being
terminated by a newline. And remember that the universal newline support will have
translated whatever the platform native newline sequence into '\n".

Once we reach the end of the file further calls to readline() return an empty string:

Chapter 9 - Files and resource management 266

>>> g.readline()

Reading multiple lines at once
Let’s rewind our file pointer again and read our file in a different way:

>>> g.seek(0)

Sometimes when we know we want to read every line in the file — and if we’re sure we
have enough memory to do so — we can read all lines from the file into a list with the
readlines () method:

>>> g.readlines()
['What are the roots that clutch, what branches grow\n',
'Out of this stony rubbish? ']

This is particularly useful if parsing the file involves hopping backwards and forwards
between lines; it’s much easier to do this with a list of lines than with a file stream of
characters.

This time, we’ll close the file before moving on:

>>> g.close()

Appending to files

Sometimes we would like to append to an existing file, and we can do that by using the mode
'a'. In this mode, the file is opened for writing and the file pointer is moved to the end of
any existing data. In this example we combine 'a' with 't' to be explicit about using text
mode:

>>> h = open('wasteland.txt', mode='at', encoding='utf-8")

Although there is no writeline() method in Python, there is a writelines() method
which writes an iterable series of strings to the stream. If you want line endings on your
strings you must provide them yourself. This may seem odd at first, but it preserves symmetry
with readlines () whilst also giving us the flexibility for using writelines() to write any
iterable series of strings to a file:

Chapter 9 - Files and resource management 267

>>> h.writelines(
['Son of man,\n',
'You cannot say, or guess, ',
'for you know only,\n',
'A heap of broken images, ',
... 'where the sun beats\n'l])
>>> h.close()

Notice that only three lines are completed here — we say completed because the file we’re
appending to did not itself end with a newline.

File objects as iterators

The culmination of these increasingly sophisticated text file reading tools is the fact that file
objects support the iterator protocol. When you iterate over a file, each iteration yields the
next line in the file. This means that they can be used in for-loops and any other place where
an iterator can be used.

At this point, we’ll take the opportunity to create a Python module file files. py:

import sys

def main(filename):
f = open(filename, mode='rt', encoding='utf-8')
for line in f:
print(line)
f.close()

if npame == "' main ':
main(sys.argv[1])

We can call this directly from the system command line, passing the name of our text file:

Chapter 9 - Files and resource management 268

$ python3 files.py wasteland.txt
What are the roots that clutch, what branches grow

OQut of this stony rubbish? Son of man,
You cannot say, or guess, for you know only

A heap of broken images, where the sun beats

You'll notice that there are empty lines between each line of the poem. This occurs because
each line in the file is terminated by a new line, and then print () adds its own.

To fix that, we could use the strip() method to remove the whitespace from the end of
each line prior to printing. Instead we’ll use the write() method of the stdout stream. This
is exactly the same write() method we used to write to the file earlier — and can be used
because the stdout stream is itself a file-like object.

We get hold of a reference to the stdout stream from the sys module:

import sys

def main(filename):
f = open(filename, mode='rt', encoding='utf-8")
for line in f:
sys.stdout.write(line)
f.close()
if _npame_ == ' main_':
main(sys.argv[1l])

If we re-run our program we get:

$ python3 files.py wasteland.txt

What are the roots that clutch, what branches grow
Out of this stony rubbish? Son of man,

You cannot say, or guess, for you know only

A heap of broken images, where the sun beats

Now, alas, it’s time to move on from one of the most important poems of the twentieth
century and get to grips with something almost as exciting, context managers.

Chapter 9 - Files and resource management 269

Context managers

For the next set of examples we’re going to need a data file containing some numbers.
Using the code in recaman.py below, we’ll write a sequence of numbers called Recaman’s
sequence®” to a text file, with one number per line:

import sys
from itertools import count, islice

def sequence():
"""Generate Recaman's sequence."""
seen = set()

a=20
for n in count(1l):
yield a
seen.add(a)
c=a-n
if ¢ < 0 or c in seen:
c=a+n
a=c¢c

def write sequence(filename, num):
"""Write Recaman's sequence to a text file."""
f = open(filename, mode='wt', encoding='utf-8")
f.writelines("{0}\n".format(r)
for r in islice(sequence(), num + 1))
f.close()

if _npame == ' main_ ':
write sequence(filename=sys.argv[1],

num=int(sys.argv[2]))

Recaman’s sequence itself isn’t important to this exercise; we just needed a way of generating
numeric data. As such, we won’t be explaining the sequence() generator. Feel free to
experiment though.

The module contains a generator for yielding the Recaman numbers and a function which
writes the start of the sequence to file using the writelines () method. A generator expres-
sion is used to convert each number to a string and add a newline. itertools.islice() is
used to truncate the otherwise infinite sequence.

**http://mathworld.wolfram.com/RecamansSequence.html

http://mathworld.wolfram.com/RecamansSequence.html
http://mathworld.wolfram.com/RecamansSequence.html
http://mathworld.wolfram.com/RecamansSequence.html

Chapter 9 - Files and resource management 270

We’ll write the first 1000 Recaman numbers to a file by executing the module, passing the
filename and series length as command line arguments:

$ python3 recaman.py recaman.dat 1000

Now let’s make a complementary module series.py which reads this data file back in:

"""Read and print an integer series.
import sys

def read series(filename):
f = open(filename, mode='rt', encoding='utf-8")
series = []
for line in f:
a = int(line.strip())
series.append(a)
f.close()
return series

def main(filename):
series = read series(filename)
print(series)

if npame == ' main ':
main(sys.argv[1])

We read one line at a time from the open file, strip the newline with a call to the strip()
string method, and convert it to an integer. If we run it from the command line, everything
should work as expected:

$ python3 series.py recaman.dat
[01 1! 31 6, 2, 7, 13,

,3683, 2688, 3684, 2687, 3685, 2686, 3686]

Now let’s deliberately create an exceptional situation. Open recaman.dat in a text editor
and replace one of the numbers with something that isn’t an stringified integer:

Chapter 9 - Files and resource management 271

NN OW R o

13
oops!
12
21

Save the file, and re-run series.py:

$ python3 series.py recaman.dat
Traceback (most recent call last):
File "series.py", line 19, in <module>
main(sys.argv[1])
File "series.py", line 15, in main
series = read series(filename)
File "series.py", line 9, in read series
a = int(line.strip())
ValueError: invalid literal for int() with base 10: 'oops!'

The int () constructor raises a ValueError when passed our new, invalid line. The exception
is unhandled, and so the program terminates with stack trace.

Managing resources with finally

One problem here is that our f.close() call was never executed.

To fix that, we can insert a try .. finally block:

Chapter 9 - Files and resource management 272

def read series(filename):
try:
f = open(filename, mode='rt', encoding='utf-8')
series = []
for line in f:
a = int(line.strip())
series.append(a)
finally:
f.close()
return series

Now the file will always be closed, even in the presence of exceptions. Making this change
opens up the opportunity for another refactoring: we can replace the for-loop with a list
comprehension and return this list directly:

def read series(filename):
try:
f = open(filename, mode='rt', encoding='utf-8")
return [int(line.strip()) for line in f]
finally:
f.close()

Even in this situation close () will still be called; the finally block is called no matter how
the try block is exited.

with-blocks

Up to now our examples have all followed a pattern: open() a file, work with the file,
close() the file. The close() is important because it informs the underlying operating
system that you’re done working with the file. If you don’t close a file when you’re done
with it, it’s possible to lose data. There may be pending writes buffered up which might not
get written completely. Furthermore, if you’re opening lots of files, your system may run
out of resources. Since we always want to pair every open () with a close(), we would like
a mechanism that enforces the relationship even if we forget.

This need for resource clean-up is common enough that Python implements a specific control
flow structure called with-blocks to support it. With-blocks can be used with any object that
supports the context-manager protocol, which includes the file-objects returned by open ().
Exploiting the fact that the file object is a context-manager, our read series() function
can become:

Chapter 9 - Files and resource management 273

def read series(filename):
with open(filename, mode='rt', encoding='utf-8') as f:
return [int(line.strip()) for line in f]

We no longer need to call close() explicitly because the with construct will call it for us
when execution exits the block, no matter how we exit the block.

Now we can go back and modify our Recaman series writing program to use a with-block,
too, again removing the need for the explicit close():

def write sequence(filename, num):
"""Write Recaman's sequence to a text file."""
with open(filename, mode='wt', encoding='utf-8') as f:
f.writelines("{0}\n".format(r)
for r in islice(sequence(), num + 1))

Chapter 9 - Files and resource management 274

Moment of zen

Moment of Zen

Beautiful is better
than ugly

Sugary syntax
fewer defects attained through
sweet fidelity

The with-block syntax looks like this:

with EXPR as VAR:
BLOCK

This is so-called syntactic sugar for a much more complex arrangement of try. ..except
and try...finally blocks:

Chapter 9 - Files and resource management

mgr = (EXPR)
exit = type(mgr). exit # Not calling it yet
value = type(mgr). enter (mgr)
exc = True
try:
try:
VAR = value # Only if "as VAR" is present
BLOCK
except:
The exceptional case is handled here
exc = False
if not exit(mgr, *sys.exc_info()):
raise
The exception is swallowed if exit() returns true
finally:
The normal and non-local-goto cases are handled here
if exc:
exit(mgr, None, None, None)

60

Which do you prefer?

275

Few of us would want our code to look this convoluted, but this is how it would need to
look without the with statement. Sugar may not be good for your health, but it can be very

healthy for your code!

*You can get the full details of the with-statements syntactic equivalence in PEP 343.

https://www.python.org/dev/peps/pep-0343/

© 00 N O U1 B W N -

N N NNNNRRR R B 2 93 3 93 92
U A W NP O O 0WNO UL D WN R O

Chapter 9 - Files and resource management 276

Binary files

So far we’ve looked at text files, where we deal with the file contents as Unicode strings.
There are many cases, however, where files contain data that is not encoded text. In these
situations we need to be able to work with the exact bytes that are present in the file, without
any intermediate encoding or decoding. This is what binary mode is for.

The BMP file format

To demonstrate handling of binary files, we need an interesting binary data format. BMP
is an image file format that contains Device Independent Bitmaps. It’s simple enough that
we can make a BMP file writer from scratch. ** Place the following code in a module called

bmp.py:

bmp.py

"""A module for dealing with BMP bitmap image files."""

def write grayscale(filename, pixels):
"""Creates and writes a grayscale BMP file.

Args:
filename: The name of the BMP file to be created.

pixels: A rectangular image stored as a sequence of rows.
Each row must be an iterable series of integers in the
range 0-255.

Raises:

OSError: If the file couldn't be written.
height = len(pixels)
width = len(pixels[0])

with open(filename, 'wb') as bmp:
BMP Header
bmp.write(b'BM")

®You can learn all about the BMP format here.

https://en.wikipedia.org/wiki/BMP_file_format

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

Chapter 9 - Files and resource management

The next four bytes hold the filesize as a 32-bit
little-endian integer. Zero placeholder for now.
size bookmark = bmp.tell()

bmp

.write(b'\x00\x00\x00\x00")

Two unused 16-bit integers - should be zero

bmp
bmp

.write(b'\x00\x00")
.write(b'\x00\x00")

The next four bytes hold the integer offset
to the pixel data. Zero placeholder for now.

pixel offset bookmark = bmp.tell()
.write(b'\x00\x00\x00\x00")

bmp

Image Header

bmp .

write(b'\x28\x00\x00\x00")

#

bmp.write(int32 to bytes(width))

bmp.write(int32 to bytes(height))

Image header size in bytes - 40 decimal

Image width in pixels
Image height in pixels

Rest of header is essentially fixed

bmp .
bmp .
bmp .
bmp .
bmp .
bmp .
bmp .
bmp .

write(b'\x01\x00")

write(b'\x08\x00")

write(b'\x00\x00\x00\x00")
write(b'\x00\x00\x00\x00")
write(b'\x00\x00\x00\x00")
write(b'\x00\x00\x00\x00")
write(b'\x00\x00\x00\x00")
write(b'\x00\x00\x00\x00")

#

#
#
#
#
#
#
#

Number of image planes

Bits per pixel 8 for grayscale
No compression

Zero for uncompressed images
Unused pixels per meter
Unused pixels per meter

Use whole color table

All colors are important

Color palette - a linear grayscale

for

c in range(256):

bmp.write(bytes((c, ¢, c, 0)))

Pixel data

pixel data bookmark = bmp.tell()
BMP files are bottom to top

for

row in reversed(pixels):
row_data = bytes(row)
bmp.write(row data)

padding = b'\x00' * ((4 - (len(row) % 4)) % 4) # Pad row to multiple
of four bytes

bmp.write(padding)

End of file
eof bookmark = bmp.tell()

Blue, Green, Red, Zero

69
70
71
72
73
74
75
76

Chapter 9 - Files and resource management 278

Fill in file size placeholder
bmp.seek(size bookmark)
bmp.write(int32 to bytes(eof bookmark))

Fill in pixel offset placeholder
bmp.seek(pixel offset bookmark)
bmp.write(int32 to bytes(pixel data bookmark))

This may look complex, but as you’ll see it’s relatively straightforward.

For simplicity’s sake, we have decided to deal only with 8-bit grayscale images. These have
the nice property that they are one byte per pixel. Thewrite grayscale() function accepts
two arguments: the filename and a collection of pixel values. As the docstring points out, this
collection should be a sequence of sequences of integers. For example, a list of lists of int
objects will do just fine. Furthermore:

« Each int must be a pixel value from 0 to 255
« Each inner list is a row of pixels from left to right
« The outer list is a list of pixel rows, from top to bottom.

The first thing we do is figure out the size of the image by counting the number of rows (line
19) to give the height and the number of items in the zeroth row to get the width (line 20).
We assume, but don’t check, that all rows have the same length (in production code that’s a
check we would want to make).

Next , we open() (line 22) the file for write in binary mode using the 'wb' mode string. We
don’t specify an encoding - that makes no sense for raw binary files.

Inside the with-block we start writing what is called the ‘BMP Header’ which begins the
BMP format.

The header must start with a so-called “magic” byte sequence b'BM" to identify it as a BMP
file. We use the write() method (line 24), and, because the file was opened in binary mode,
we must pass a bytes object.

The next four bytes should hold a 32-bit integer containing the file size, a value that we don’t
yet know. We could have computed it in advance, but instead we’ll take a different approach:
we’ll write a placeholder value then return to this point later to fill in the details. To be able
to come back to this point we use the tell() method of the file object (line 28); this gives
us the file poiner’s offset from the beginning of the file. We’ll store this offset in a variable

Chapter 9 - Files and resource management 279

which will act as a sort of bookmark. We write four zero-bytes as the placeholder (line 29),
using escaping syntax to specify the zeros.

The next two pairs of bytes are unused, so we just write zero bytes to them too (lines 32 and
33).

The next four bytes are for another 32-bit integer which should contain the offset in bytes
from the beginning of the file to the start of the pixel data. We don’t know that value yet
either, so we’ll store another bookmark using tell() (line 37) and write another four byte
placeholder (line 38); we’ll return here shortly when we know more.

The next section is called the ‘Tmage Header’. The first thing we have to do is write the length
of the image header as a 32-bit integer (line 41). In our case the header will always be 40 bytes
long. We just hardwire that in hexadecimal. Notice that the BMP format is little-endian - the
least significant byte is written first.

The next four bytes are the image width as a little-endian 32-bit integer. We call a module
scope implementation detail function here called _int32 to_bytes() which converts an
int object into a bytes object containing exactly four bytes (line 42). We then use the same
function again to deal with the image height (line 43).

The remainder of the header is essentially fixed for 8-bit grayscale images and the details
aren’t important here, except to note that the whole header does in fact total 40 bytes (line
45).

Each pixel in an 8-bit BMP image is an index into a color table with 256 entries. Each entry
is a four-byte BGR color. For grayscale images we need to write 256 4-byte gray values
on a linear scale (line 54). This snippet is fertile ground for experimentation, and a natural
enhancement to this function would be to be able to supply this palette separately as an
optional function argument.

At last, we're ready to write the pixel data, but before we do we make a note of the current
file pointer offset using tell() (line 59) as this was one of the locations we need to go back
and fill in later.

Writing the pixel data itself is straightforward enough. We use the reversed() built-in
function (line 60) to flip the order of the rows; BMP images are written bottom to top. For
each row we pass the iterable series of integers to the bytes () constructor (line 61). If any
of the integers are out of the range 0-255, the constructor will raise a ValueError.

Each row of pixel data in a BMP file must be a multiple of four bytes long, irrespective of
image width. To do this (line 63), we take the row length modulus four, to give a number
between zero and three inclusive; this value tells us how far the current row overlaps the
previous four-byte boundary. To get the number of padding bytes required to take us up to

Chapter 9 - Files and resource management 280

the next four byte boundary we subtract this modulus value from four to give a value of 4
to 1 inclusive. However, we never want to pad with four bytes, only with one, two or three,
so we must take modulus four again, to convert the four byte padding to zero byte padding.

This value is used with the repetition operator applied to a single zero-byte to produce a
bytes object containing zero, one, two or three bytes. We write this to the file, to terminate
each row (line 65).

After the pixel data we are at the end of the file. We undertook to record this offset value
earlier, so we record the current position using tell() (line 68) into an end-of-file bookmark
variable.

Now we can return and fulfil our promises by replacing the placeholder offsets we recorded
with the real thing. First, the file length. To do this we seek() (line 71) back to the size -
bookmark we remembered back near the beginning of the file and write() (line 72) the
size stored in eof_bookmark as a little-endian 32-bit integer using our _int32_to_bytes()
function.

Finally, we seek() (line 75) to the pixel data offset placeholder bookmarked by pixel -
offset _bookmark and write the 32-bit integer stored in pixel data_bookmark (line 76).

As we exit the with-block we can rest assured that the context manager will close the file
and commit any buffered writes to the file system.

Bitwise operators

Dealing with binary files often requires pulling apart or assembling data at the byte level.
This is exactly what our _int32_to_bytes () function is doing. We’ll take a quick look at it
because it shows some features of Python we haven’t seen before:

def _int32 to_bytes(i):
"""Convert an integer to four bytes in little-endian format."""
return bytes((i & Oxff,
i>> 8 & Oxff,
i>> 16 & Oxff,
i>> 24 & Oxff))

The function uses the >> (bitwise-shift) and & (bitwise-and) operators to extract individual
bytes from the integer value. Note that bitwise-and uses the ampersand symbol to distinguish
it from logical-and which is the spelled out word “and”. The >> operator shifts the binary
representation of the integer right by the specified number of bits. The routine shifts the

Chapter 9 - Files and resource management 281

integer argument one, two, and three bytes to the right before extracting the least significant
byte with & after each shift. The four resulting integers are used to construct a tuple which
is then passed to the bytes () constructor to produce a four byte sequence.

Writing a BMP file

In order to generate a BMP image file, we’re going to need some pixel data. We’ve included
a simple module fractal.py which produces pixel values for the iconic Mandelbrot set
fractal®®. We’re not going to explain the fractal generation code in detail, still less the math
behind it. But the code is simple enough, and it doesn’t rely on any Python features we
haven’t encountered previously:

fractal.py
"""Computing Mandelbrot sets."""
import math

def mandel(real, imag):
"""The logarithm of number of iterations needed to
determine whether a complex point is in the
Mandelbrot set.

Args:
real: The real coordinate
imag: The imaginary coordinate

Returns:

An integer in the range 1-255.
x =0
y =0
for i in range(l, 257):

if x*x + y*y > 4.0:

break

xt = real + x*x - y*y

y = imag + 2.0 * x * vy

X = xt
return int(math.log(i) * 256 / math.log(256)) - 1

“*https://en.wikipedia.org/wiki/Mandelbrot_set

https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Mandelbrot_set
https://en.wikipedia.org/wiki/Mandelbrot_set

Chapter 9 - Files and resource management

def mandelbrot(size x, size y):
"""Make an Mandelbrot set image.

Args:
size x: Image width

size y: Image height

Returns:

A list of lists of integers in the range 0-255.

return [[mandel((3.5 * x / size x) - 2.
(2.0 *y / size y) -1
for x in range(size x)]
for y in range(size y) 1

282

The key takeaway is that the mandelbrot() function uses nested list comprehensions to
produce a list of lists of integers in the range 0-255. This list of lists represents an image of

the fractal. The integer value for each point is produced by the mandel() function.

Generating fractal images

Let’s fire up a REPL and use the fractal and bmp modules together. First we use the
mandelbrot () function to produce an image of 448 by 256 pixels. You’ll get the best results

using images with an aspect ratio of 7:4:

>>> import fractal
>>> pixels = fractal.mandelbrot(448, 256)

This call to mandelbrot () may take a second or so — our fractal generator is simple rather

than efficient!
We can take a look at the returned data structure:
>>> pixels

(31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31,

49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49]]

It’s a list of lists of integers, just as we were promised. Let’s write those pixel values to a

BMP file:

283

Chapter 9 - Files and resource management

>>> import bmp
>>> bmp.write grayscale("mandel.bmp", pixels)

Find the file and open it in an image viewer, for example by opening it in your web browser.

Reading binary files

Now that we’re producing beautiful Mandelbrot images, we should see about reading those
BMPs back with Python. We're not going to write a full-blown BMP reader, although that
would be an interesting exercise. We’ll just make a simple function to determine the image
dimension in pixels from a BMP file. We’ll add the code into bmp. py:

def dimensions(filename):
"""Determine the dimensions in pixels of a BMP image.

Args:
filename: The filename of a BMP file.

Returns:
A tuple containing two integers with the width

and height in pixels.

Raises:

Chapter 9 - Files and resource management 284

ValueError: If the file was not a BMP file.
OSError: If there was a problem reading the file.

with open(filename, 'rb') as f:
magic = f.read(2)
if magic '= b'BM':
raise ValueError("{} is not a BMP file".format(filename))

f.seek(18)
width bytes = f.read(4)
height bytes = f.read(4)

return (_bytes to int32(width bytes),
_bytes to int32(height bytes))

Of course, we use a with-statement to manage the file, so we don’t have to worry about it
being properly closed. Inside the with-block we perform a simple validation check by looking
for the two first magic bytes that we expect in a BMP file. If they’re not present, we raise a
ValueError which will, of course, cause the context manager to close the file.

Looking back at our BMP writer, we can determine that the image dimensions are stored
exactly 18 bytes from the beginning of the file. We seek() to that location and use the
read () method to read two chunks of four bytes each for the two 32-bit integers which
represent the dimensions. Because we opened the file in binary mode, read() returns a
bytes object. We pass each of these two bytes objects to another implementation detail
function called bytes to_int32() which assembles them back into an integer. The two
integers, representing image width and height, are returned as a tuple.

The bytes to int32() function uses << (bitwise left-shift) and | (bitwise-or), together
with indexing of the bytes object, to reassemble the integer. Note that indexing into a bytes
object returns an integer:

def bytes to_int32(b):
"""Convert a bytes object containing four bytes into an integer.
return b[0] | (b[1] << 8) | (b[2] << 16) | (b[3] << 24)

If we use our new reader code, we can see that it does indeed read the correct values:

Chapter 9 - Files and resource management 285

>>> bmp.dimensions("mandel.bmp")
(448, 256)

File-like objects

There is a notion in Python of “file-like objects”. This isn’t as formal as a specific protocol®?,
but, thanks to the polymorphism afforded by duck-typing, it works well in practice.

The reason it’s not closely specified is that different types of data streams and devices have
many different capabilities, expectations, and behaviors. So in fact defining a set of protocols
to model them would be quite complex, and it wouldn’t actually gain us much in practice,
other than a smug sense of theoretical achievement. This is where the EAFP ** philosophy
comes into its own: if you want to perform seek() on a file-like object without knowing in
advance that it supports random access, go ahead and try (literally!). Just be prepared to fail
if the seek () method doesn’t exist, or if it does exist but doesn’t behave as you expect.

You might say “If it looks like a file and reads like a file, then it is a file”.

You've already seen file-like objects!

We’ve actually seen file-like objects in action already; the objects returned to us when we
open files in text and binary mode are actually of different types, although both with definite
file-like behavior. There are other types in the Python standard library which implement file-
like behavior, and in fact we saw one of them in action back at the beginning of the book,
when we used urlopen() to retrieve data from a URL on the Internet.

Using file-like objects

Let’s exploit this polymorphism across file-like objects by writing a function to count the
number of words per line in a file and return that information as a list:

>>> def words per line(flo):
return [len(line.split()) for line in flo.readlines()]

Now we’ll open a regular text file containing the fragment of T.S. Eliot’s masterpiece we
created earlier, and pass it to our new function:

**Like, for example, sequence protocol is for tuple-like-objects.
*“Easier to Ask Forgiveness Than Permission

Chapter 9 - Files and resource management 286

>>> with open("wasteland.txt", mode='rt', encoding='utf-8') as real file:
wpl = words per line(real file)

>>> wpl
[9, 8, 9, 91

The actual type of real file is:

>>> type(real file)
<class ' io.TextIOWrapper'>

But you shouldn’t normally concern yourself with this specific type; it is an internal Python
implementation detail. You just care that it behaves “like a file”.

We'll now do the same using a file-like object representing a web resource referred to by a
URL:

>>> from urllib.request import urlopen
>>> with urlopen("http://sixty-north.com/c/t.txt") as web file:
wpl = words per_ line(web file)

>>> wpl
[6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 5, 5, 7, 8, 14, 12, 8]

The type of web file is quite different from what we just saw:

>>> type(web file)
<class 'http.client.HTTPResponse'>

However, since they are both file-like objects, our function can work with both.

There’s nothing magical about file-like objects; it’s just a convenient and fairly informal
description for a set of expectations we can place on an object which are exploited through

duck-typing.
Other resources

The with-statement construct can be used with any type of object which implements the
context manager protocol. We’re not going to show you how to implement a context-
manager is this book — for that you’ll need to refer to The Python Journeyman — but we
will show you a simple way to make your own classes usable in a with statement. Put this
code into the module fridge. py:

Chapter 9 - Files and resource management 287

fridge.py

"""Demonstrate raiding a refrigerator.

class RefrigeratorRaider:
"""Raid a refrigerator."""

def open(self):
print("Open fridge door.")

def take(self, food):
print("Finding {}...".format(food))
if food == 'deep fried pizza':
raise RuntimeError("Health warning!'")
print("Taking {}".format(food))

def close(self):
print("Close fridge door.")

def raid(food):
r = RefrigeratorRaider()
r.open()
r.take(food)
r.close()

We’ll import raid() into the REPL and go on the rampage:

>>> from fridge import raid
>>> raid("bacon")

Open fridge door.

Finding bacon...

Taking bacon

Close fridge door.

Importantly, we remembered to close the door, so the food will be preserved until our next
raid. Let’s try another raid for something slightly less healthy:

Chapter 9 - Files and resource management 288

>>> raid("deep fried pizza")
Open fridge door.
Finding deep fried pizza...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./fridge.py", line 23, in raid
r.take(food)
File "./fridge.py", line 14, in take
raise RuntimeError("Health warning!")
RuntimeError: Health warning!

This time, we were interrupted by the health warning and didn’t get around to closing the
door. We can fix that by using a function called closing () in the Python Standard Library
contextlib module®. After importing the function we wrap our RefrigeratorRaider
constructor call in a call to closing(). This wraps our object in a context manager that
always calls the close () method on the wrapped object before exiting. We use this object
to initialise a with-block:

"""Demonstrate raiding a refrigerator."""
from contextlib import closing

class RefrigeratorRaider:
"""Raid a refrigerator."""

def open(self):
print("Open fridge door.")

def take(self, food):
print("Finding {}...".format(food))
if food == 'deep fried pizza':
raise RuntimeError("Health warning!")
print("Taking {}".format(food))

def close(self):

print("Close fridge door.")

def raid(food):
with closing(RefrigeratorRaider()) as r:

®*https://docs.python.org/3/library/contextlib.html#contextlib.closing
“https://docs.python.org/3/library/contextlib.html

https://docs.python.org/3/library/contextlib.html#contextlib.closing
https://docs.python.org/3/library/contextlib.html
https://docs.python.org/3/library/contextlib.html#contextlib.closing
https://docs.python.org/3/library/contextlib.html

Chapter 9 - Files and resource management 289

r.open()
r.take(food)
r.close()

Now when we execute a raid:

>>> raid("spam")
Open fridge door.
Finding spam. ..
Taking spam

Close fridge door.
Close fridge door.

We see that our explicit call to close() is unnecessary, so let’s fix that up:

def raid(food):
with closing(RefrigeratorRaider()) as r:
r.open()
r.take(food)

A more sophisticated implementation would check that the door was already closed and
ignore other requests.

So does it work? Let’s try eating some deep fried pizza once more:

>>> raid("deep fried pizza")

Open fridge door.

Finding deep fried pizza...

Close fridge door.

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "./fridge.py", line 23, in raid

r.take(food)
File "./fridge.py", line 14, in take
raise RuntimeError("Health warning!")

RuntimeError: Health warning!

This time, even though the health warning was triggered, the door was still closed for us by
the context manager.

Chapter 9 - Files and resource management 290

Summary

« Files are opened using the built-in open () function which accepts a file mode to control
read/write/append behaviour and whether the file is to be treated as raw binary or
encoded text data.

« For text data you should specify a text encoding.

« Text files deal with string objects and perform universal newline translation and string
encoding.

« Binary files deal with bytes objects with no newline translation or encoding.

« When writing files, it’s your responsibility to provide newline characters for line
breaks.

« Files should always be closed after use.

« Files provide various line-oriented methods for reading, and are also iterators which
yield line by line.

« Files are context managers and the with-statement can be used with context managers
to ensure that clean up operations, such as closing files, are performed.

« The notion of file-like objects is loosely defined, but very useful in practice. Exercise
EAFP to make the most of them.

« Context managers aren’t restricted to file-like objects. We can use tools in the
contextlib standard library module, such as the closing() wrapper to create our
own context managers.

Along the way we found that:

« help() can be used on instance objects, not just types.
« Python supports bitwise operators &, |, << and >>.

Chapter 10 - Unit testing with the
Python standard library

When we build programs of even minor complexity, there are countless ways for defects to
creep into our code. This can happen when we initially write the code, but we’re just as likely
to introduce defects when we make modifications to it. To help get a handle on defects and
keep our code quality high, it’s often very useful to have a set of tests that you can run that
will tell you if the code is acting as you expect.

To help make such tests, the Python standard library includes the unittest module®.
Despite what its name suggests, this module helps with more than just unit testing. It
is, in fact, a flexible framework for automating tests of all sorts, from acceptance tests
to integration tests to unit tests. Its key feature, like many testing frameworks in many
languages, is that it helps you make automated and repeatable tests. With tests like these,
you can cheaply and easily verify the behavior of your code at any time.

Test cases

The unittest module is built around a handful of key concepts, at the center of which is the
notion of a test case. A test case — embodied in the unittest.TestCase class®® — groups
together a set of related test methods, and it is the basic unit of test organization in the
unittest framework. The individual test methods, as we’ll see later, are implemented as
methods on a unittest.TestCase subclass.

Fixtures

The next important concept is that of fixtures. Fixtures are pieces of code which run before
and/or after every test method. Fixtures serve two main purposes:

1. Set-up fixtures ensure that the test environment is in an expected state before a test is
run.

*"https://docs.python.org/3/library/unittest.html
“*https://docs.python.org/3/library/unittest. html#unittest. TestCase

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html#unittest.TestCase
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html#unittest.TestCase

Chapter 10 — Unit testing with the Python standard library 292

2. Tear-down fixtures clean up the environment after a test has been run, generally by
freeing up resources.

For example, a set-up fixture might create a specific entry in a database prior to running a
test. Similarly, a tear-down fixture might remove database entries created by a test. Fixtures
are not required for tests, but they are very common, and they are often critical for making
tests repeatable.

Assertions

The final key concept is that of assertions. Assertions are specific checks inside test methods
which ultimately determine whether a test passes or fails. Among other things, assertions
can:

» make simple boolean checks
« perform object equality tests
« verify that the proper exceptions are thrown

If an assertion fails, then a test method fails, so assertions represent the lowest level of testing
you can perform. You can find a full list of assertions in the unittest documentation®.

Unit testing example: text analysis

With those concepts in mind, let’s see how we can actually use the unittest module in
practice. For this example, we’ll use test-driven development’ to write a simple text-analysis
function. This function will take a file name as its only parameter. It will then read that file
and calculate:

« the number of lines in the file
« the number of characters in the file

TDD is an iterative development process, so rather than work at the REPL we’ll put the code
for our tests in a file named text _analyzer.py. To start with, we’ll create our first test”
with just enough supporting code to actually run it:

**https://docs.python.org/3/library/unittest. html#assert-methods

"%Test-driven development, or TDD, is a form of software development where tests are written first, i.e. before you write the
actual functionality to be tested. This may seem backwards at first, but it can be a surprisingly powerful technique. You can learn
more about TDD here.

"'Note that we don’t actually try to test any functionality yet. This is just the initial skeleton of our test suite that lets us verify
that the test method executes.

https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.python.org/3/library/unittest.html#assert-methods
https://en.wikipedia.org/wiki/Test-driven_development

Chapter 10 — Unit testing with the Python standard library 293

text analyzer.py
import unittest

class TextAnalysisTests(unittest.TestCase):
"""Tests for the "‘analyze text() " function."""
def test function runs(self):
"""Basic smoke test: does the function run.
analyze text()

if name == "' main "':
unittest.main()

Ths first thing we do is import the unittest module. We then create our test case by defining
a class — TextAnalysisTests — which derives from unittest.TestCase. This is how you
create test cases with the unittest framework.

To define individual test methods in a test case, you simply create methods on your
TestCase subclasses that start with “test ”. The unittest framework automatically
discovers methods like this at execution time, so you don’t need to explicitly register your
test methods.

In this case we define the simplest possible test: we check whether the analyze text()
function runs at all! Our test doesn’t make any explicit checks, but rather it relies on the
fact that a test method will fail if it throws any exceptions. In this case, our test will fail if
analyze text() isn’t defined.

Finally, we define the idiomatic “main” block which calls unittest.main() when this
module is executed. unittest.main() will search for all TestCase subclasses in a module
and execute all of their test methods.

Running the initial tests

Since we’re using test-driven design, we expect our tests to fail at first’”>. And indeed our test
fails spectacularly for the simple reason that we haven’t yet defined analyze_text():

"2A tenet of TDD is that your tests should fail before they pass, and you should only ever write enough implementation code
to make your tests pass. In this way, your tests stand as a complete description how your code should behave.

Chapter 10 — Unit testing with the Python standard library 294

$ python text analyzer.py
E

ERROR: test function runs (_main_ .TextAnalysisTests)

Traceback (most recent call last):
File "text analyzer.py", line 5, in test function runs
analyze text()
NameError: global name 'analyze text' is not defined

Ran 1 test in 0.001s

FAILED (errors=1)

As you can see, unittest.main() produces a simple report telling us how many tests were
run and how many failed. It also shows us how the tests failed, in this case showing us that
we got a NameError when we tried to run the non-existent function analyze text().

Making the test pass

Let’s fix our failing test by defining analyze text(). Remember that in test-driven
development we only write enough code to satisfy our tests, so all we do right now is
create an empty function. For simplicity’s sake we’ll put this function in text_analyzer.py,
though normally your test code and implementation code will be in different modules:

text analyzer.py

def analyze text():
"""Calculate the number of lines and characters in a file.

pass

Put this function at module scope. Running the test again, we find that they now pass:

Chapter 10 — Unit testing with the Python standard library 295

% python text analyzer.py

Ran 1 test in 0.001s

0K

We’ve completed a single TDD cycle, but of course our code doesn’t really do anything yet.
We'll iteratively improve our tests and implementation to arrive at a real solution.

Using fixtures to create temporary files

The next thing we want to do is be able to pass a filename to analyze_text() so that it
knows what to process. Of course, for analyze text() to work this filename should refer
to a file that actually exists! To make sure that a file exists for our tests, we’re going to define
some fixtures.

The first fixture we can define is the method TestCase.setUp(). If defined, this method is
run before each test method in the TestCase. In this case, we’ll use setUp () to create a file
for us and remember the filename as a member of the TestCase:

text analyzer.py
class TextAnalysisTests(unittest.TestCase):

def setUp(self):

"Fixture that creates a file for the text methods to use."

self.filename = 'text analysis test file.txt'

with open(self.filename, 'w') as f:

f.write('Now we are engaged in a great civil war,\n'

'testing whether that nation,\n'
'or any nation so conceived and so dedicated,\n'
‘can long endure.')

The second fixture available to us is TestCase.tearDown().”” The tearDown() method is
run after each test method in the TestCase, and in this case we’re going to use it to delete
the file we created in setUp():

"*You may have noticed that the setUp() and tearDown() method names aren’t in line with what PEP 8 prescribes. This is
because the unittest module predates those parts of PEP 8 which specify the convention of function names being in lower case
with underscores. There are several such cases in the Python standard library but most new Python code follows the PEP 8 style.

Chapter 10 — Unit testing with the Python standard library 296

text analyzer.py
import os
class TextAnalysisTests(unittest.TestCase):

def tearDown(self):
"Fixture that deletes the files used by the test methods."
try:
os.remove(self.filename)
except OSError:
pass

Note that since we’re using the os module in tearDown () we need to import it at the top of
the file.

Also notice how tearDown () swallows any exceptions thrown by os . remove (). We do this
because tearDown () can’t actually be certain that the file exists, so it tries to remove the file
and assumes that any exception can safely be ignored.

Using the new fixtures

With our two fixtures in place, we now have a file that is created before each test method
and which is deleted after each test method. This means that each test method is starting in
a stable, known state. This is critical to making reproducible tests. Let’s pass this filename to
analyze_text() by modifying our existing test:

text analyzer.py
class TextAnalysisTests(unittest.TestCase):

def test function runs(self):
"Basic smoke test: does the function run."
analyze text(self.filename)

Remember that our setUp() stored the filename on self.filename. Since the self
argument passed to the fixtures is the same instance as that passed to the test methods,
our test can access the filename using that attribute.

Of course, when we run our test we see that this test fails because analyze text() doesn’t
accept any arguments yet:

Chapter 10 — Unit testing with the Python standard library 297

% python text analyzer.py

m

ERROR: test function runs (_main_ .TextAnalysisTests)

Traceback (most recent call last):
File "text analyzer.py", line 25, in test function runs
analyze text(self.filename)
TypeError: analyze text() takes no arguments (1 given)

Ran 1 test in 0.003s

FAILED (errors=1)

We can fix this by adding a parameter to analyze text():

text analyzer.py

def analyze text(filename):
pass

And if we run our tests again, we see that we’re once again passing:

% python text analyzer.py

Ran 1 test in 0.003s

0K

We still don’t have an implementation that does anything useful, but you can start to see
how the tests drive the implementation.

Using assertions to test behavior

Now that we’re satisfied that analyze text() exists and accepts the right number of
arguments, let’s see if we can make it do real work. The first thing we want is for the function
to return the number of lines in the file, so let’s define that test:

Chapter 10 — Unit testing with the Python standard library 298

text analyzer.py
class TextAnalysisTests(unittest.TestCase):

def test line count(self):
"Check that the line count is correct."
self.assertEqual(analyze text(self.filename), 4)

Here we see our first example of an assertion. The TestCase class has many assertion
methods™, and in this case we used assertEqual() to check that the number of lines
counted by our function is equal to four. If the value returned by analyze text() is not
equal to four, this assertion will cause the test method to fail. And if we run our new test,
we see that this is precisely what happens:

% python text analyzer.py
.F

FAIL: test line count (_main_ .TextAnalysisTests)

Traceback (most recent call last):
File "text analyzer.py", line 28, in test line count
self.assertEqual(analyze text(self.filename), 4)
AssertionError: None != 4

Ran 2 tests in 0.003s

FAILED (failures=1)

Here we see that we’re now running two tests, that one of them passes, and that the new
one fails with an AssertionError.

Counting lines

Let’s break from the TDD rules and move a bit faster now. First we’ll update the function to
return the number of lines in the file:

"*https://docs.python.org/3/library/unittest.html#assert-methods

https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.python.org/3/library/unittest.html#assert-methods
https://docs.python.org/3/library/unittest.html#assert-methods

Chapter 10 — Unit testing with the Python standard library 299

text analyzer.py

def analyze text(filename):
"""Calculate the number of lines and characters in a file.

Args:
filename: The name of the file to analyze.

Raises:
IOError: If "“filename’ does not exist or can't be read.

Returns: The number of lines in the file.

with open(filename, 'r') as f:
return sum(1l for in f)

This change indeed gives us the results we want ">

% python text analyzer.py

Ran 2 tests in 0.003s

0K

Counting characters

So let’s add a test for the other feature we want, which is to count the number of characters
in the file. Since analyze text() is now supposed to return two values, we’ll have it return
a tuple with line count in the first position and character count in the second. Our new test

looks like this:

"3If we were strictly interpreting TDD here, this amount of implementation would have been too much. To make our existing
test pass, we didn’t need to actually implement line counting; we just needed to return the value 4. Subsequent tests would have
then forced us to continually “update” our implementation as they described a more complete version of the analysis algorithm. We
think you’ll agree that such a dogmatic approach would be inappropriate here and, frankly, in real development as well.

Chapter 10 — Unit testing with the Python standard library 300

text analyzer.py
class TextAnalysisTests(unittest.TestCase):
def test character count(self):

"Check that the character count is correct."
self.assertEqual(analyze text(self.filename)[1], 131)

And it fails as expected:

% python text analyzer.py

m

ERROR: test character count (_ main_.TextAnalysisTests)

Traceback (most recent call last):
File "text analyzer.py", line 32, in test character count
self.assertEqual(analyze text(self.filename)[1], 131)
TypeError: 'int' object has no attribute ' getitem ‘'

Ran 3 tests in 0.004s

FAILED (errors=1)

This result is telling us that it can’t index into the integer returned by analyze text(). So
let’s fix analyze text() to return the proper tuple:

text analyzer.py

def analyze text(filename):
"""Calculate the number of lines and characters in a file.

Args:
filename: The name of the file to analyze.

Raises:
IOError: If ““filename’ ' does not exist or can't be read.

Returns: A tuple where the first element is the number of lines in
the files and the second element is the number of characters.

Chapter 10 — Unit testing with the Python standard library 301

lines = 0
chars = 0
with open(filename, 'r') as f:
for line in f:
lines += 1
chars += len(line)
return (lines, chars)

This fixes our new test, but we find we’ve broken an old one:

% python text analyzer.py
.F

FAIL: test line count (_main_ .TextAnalysisTests)

Traceback (most recent call last):
File "text analyzer.py", line 34, in test line count
self.assertEqual(analyze text(self.filename), 4)
AssertionError: (4, 131) !'= 4

Ran 3 tests in 0.004s

FAILED (failures=1)

Fortunately that’s easy enough to fix because all we need to do is account for the new return
type in our earlier test:

text analyzer.py
class TextAnalysisTests(unittest.TestCase):
def test line count(self):

"Check that the line count is correct."
self.assertEqual(analyze text(self.filename)[0], 4)

Now everything is passing again:

Chapter 10 — Unit testing with the Python standard library 302

% python text analyzer.py

Ran 3 tests in 0.004s

0K

Testing for exceptions

Another thing we want to test for is that analyze_text () raises the correct exception when
it is passed a non-existent file name, which we can test like this:

text analyzer.py
class TextAnalysisTests(unittest.TestCase):
def test no such file(self):
"Check the proper exception is thrown for a missing file."

with self.assertRaises(IOError):
analyze text('foobar")

Here we use the TestCase.assertRaises() assertion. This assertion checks that the
specified exception type — in this case I0Error — is thrown from the body of the with-
block.

Since open () raises I0Error for non-existent files, our test already passes with no further
implementation:

% python text analyzer.py

Ran 4 tests in 0.004s

0K

Testing for file existence

Finally, we can see one more very useful type of assertion by writing a test to verify that
analyze_text() doesn’t delete the file — a reasonable requirement for the function!

Chapter 10 — Unit testing with the Python standard library 303

text analyzer.py
class TextAnalysisTests(unittest.TestCase):

def test no deletion(self):
"Check that the function doesn't delete the input file."
analyze text(self.filename)
self.assertTrue(os.path.exists(self.filename))

TestCase.assertTrue() checks that the value passed to it evaluates to True. There is an
equivalent assertFalse() which does the same test for false values.

As you probably expect, this test passes already as well:

% python text analyzer.py

Ran 5 tests in 0.002s
0K
So now we’ve got a useful, passing set of tests! This example is small, but it demonstrates

many of the important parts of the unittest module. There are many more parts to the
unittest module’®, but you can get quite far using just the techniques we’ve seen here.

"®https://docs.python.org/3/library/unittest.html

https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html
https://docs.python.org/3/library/unittest.html

Chapter 10 - Unit testing with the Python standard library 304

Moment of zen

Moment of Zen

In the face of
ambiguity, refuse
the temptation to

guess.

To guess is to know
That you have left something out.
What are you missing?

The temptation to guess, or to ignore ambiguity with wishful thinking, can lead to short
term gains. But it can often lead to confusion in the future, and to bugs which are difficult
to understand and fix. Before you make that next quick fix, ask yourself what information
you need to do it correctly.

Chapter 10 — Unit testing with the Python standard library 305

Summary

+ The unittest module is a framework for developing reliable automated tests.

+ You define test cases by subclassing from unittest.TestCase.

« The unittest.main() function is useful for running all of the tests in a module.

« The setUp() and tearDown () fixtures are used to run code before and after each test
method.

« Test methods are defined by creating method names that start with test on test case
objects.

« The various TestCase.assert... methods can be used to make a test method fail
when the right conditions aren’t met.

« UseTestCase.assertRaises () in a with-statement to check that the right exceptions
are thrown in a test.

Chapter 11 - Debugging with PDB

Even with a comprehensive automated test suite, we can still get into situations where we
need a debugger to figure out what’s going on. Fortunately, Python includes a powerful
debugger with the standard library: PDB. PDB is a command-line debugger, and if you're
familiar with tools like GDB then you’ll already have a good idea of how to use PDB.

The key advantage of PDB over other Python debuggers is that, being part of Python itself,
PDB is available pretty much anywhere that Python is, including specialized environments
where the Python language has been embedded into larger systems, such as ESRI’s ArcGIS
Geographical Information System. That said, it can be much more comfortable to use a
so-called graphical debugger, such as the ones included with products such as Jetbrains’
PyCharm or Microsoft’s Python Tools for Visual Studio. You should feel free to skip this
chapter until such time that familiarity with PDB becomes more pressing; you won’t be
missing anything we rely on later in this book or in The Python Journeyman or The Python
Master.

PDB is different from many debugging tools in that it’s not really a separate program but
rather a module just like any other Python module. You can import pdb into any program and
start the debugger using the set_trace() function call. This function starts the debugger at
whatever point you are at in the program’s execution.

For our first look at PDB, let’s use a REPL and start the debugger with set_trace():
>>> import pdb

>>> pdb.set trace()

--Return- -

> <stdin>(1)<module>()->None
(Pdb)

You'll see that after you execute set trace() your prompt changes from the triple-chevron
to (Pdb) — this is how you know you’re in the debugger.

Debugging commands

The first thing we’ll do is see what commands are available in the debugger by typing help:

Chapter 11 - Debugging with PDB 307

(Pdb) help

Documented commands (type help <topic>):

EOF cl disable interact next return u where
a clear display j p retval unalias

alias commands down jump pp run undisplay

args condition enable 1 print rv unt

b cont exit list q s until

break continue h 1 quit source up

bt d help longlist r step w

C debug ignore n restart tbreak whatis

Miscellaneous help topics:

pdb exec

This lists a few dozen commands, some of which you’ll use in almost every debugging
session, and some of which you may never use at all.

You can get specific help on a command by typing help followed by the command name.
For example, to see what continue does, type help continue:

(Pdb) help continue
c(ont(inue))
Continue execution, only stop when a breakpoint is encountered.

The curious parentheses in the command name tell you that ‘continue’ can be activated
by typing c, cont, or the full word continue. Knowing the shortcuts for common PDB
commands can greatly increase your comfort and speed at debugging.

Palindrome debugging

Rather than list all of the commonly useful PDB commands, we’re going to instead debug
a simple function. Our function — is_palindrome() - takes in an integer and determines
if the digits of the integer are a palindrome or not. A palindrome is a sequence which is the
same both forwards and backwards.

The first thing we’ll do is create a new file, palindrome. py, with this code:

Chapter 11 — Debugging with PDB

import unittest

def

def

digits(x):

"""Convert an integer into a list of digits.

Args:
x: The number whose digits we want.

Returns: A list of the digits, in order, of '

>>> digits(4586378)
[4, 5, 8, 6, 3, 7, 8]

digs = []

while x !'= 0:
div, mod = divmod(x, 10)
digs.append(mod)
x = mod

digs.reverse()

return digs

is_palindrome(x):
"""Determine if an integer 1is a palindrome.

Args:

Xx: The number to check for palindromicity.

Returns: True if the digits of ''x'' are a palindrome,

False otherwise.

>>> 1s palindrome(1234)
False
>>> is palindrome(2468642)
True
digs = digits(x)
for f, r in zip(digs, reversed(digs)):
if f !=r:
return False
return True

class Tests(unittest.TestCase):

308

Chapter 11 - Debugging with PDB 309

"""Tests for the '‘is palindrome()" function."""
def test negative(self):
"Check that it returns False correctly."
self.assertFalse(is palindrome(1234))

def test positive(self):
"Check that it returns True correctly."
self.assertTrue(is palindrome(1234321))

def test single digit(self):
"Check that it works for single digit numbers."
for i in range(10):
self.assertTrue(is palindrome(i))

if npame == "' main ':
unittest.main()

As you can see, our code has three main parts. The first is the digits() function which
converts an integer into a list of digits.

The second is the is_palindrome() function which first calls digits() and then checks if
the resulting list is a palindrome.

The third part is a set of unit tests. We’ll use these tests to drive the program.

As you might expect, this being a section on debugging, there’s a bug in this code. We're
going to first run the program and notice the bug, and then we’ll see how to use PDB to find
the bug.

Bug hunting with PDB

So, let’s run the program. We have three tests that we expect to run, and since this is a
relatively simple program we expect it run very quickly:

$ python palindrome.py

Instead of running quickly, we see that this program seems to run forever! And if you look at
its memory usage, you'll also see that it grows in size the longer it runs. Clearly something
is wrong, so let’s use Ctrl-C to kill the program.

Let’s use PDB to try to understand what’s going on here. Since we don’t know where our
problem might lie, we don’t know where to put a set_trace() call. So we're going to instead
start the program under the control of PDB using a command-line invocation:

Chapter 11 - Debugging with PDB 310

$ python -m pdb palindrome.py

> /Users/sixty north/examples/palindrome.py(1)<module>()
-> import unittest

(Pdb)

Here we’re using the -m argument which tells Python to execute the specific module - in
this case PDB — as a script. The remaining arguments are passed to that script. So here we’re
telling Python to execute the PDB module as a script, and we're passing the name of our
broken file to it.

What we’re seeing is that we’re immediately taken to a PDB prompt. The arrow pointing to
import unittest is telling us that this is the next statement that will be executed when we
continue. But where is that statement?

Let’s use the where command to find out:

(Pdb) where
/Library/Frameworks/Python. framework/Versions/3.5/1ib/python3.5/bdb.py(387)run()
-> exec cmd in globals, locals
<string>(1)<module>()
> /Users/sixty north/examples/palindrome.py(1l)<module>()
-> import unittest

The where command reports our current call stack, with the most recent frames at the bottom,
and we can see that PDB has paused execution at the very first line of palindrome.py.
This reinforces an important aspect of Python execution which we’ve discussed before:
everything is evaluated at runtime. In this case, we’ve paused execution right before an
import statement.

We can execute this import by running to the next statement using the next command:

(Pdb) next

> /Users/sixty north/examples/palindrome.py(3)<module>()
-> def digits(x):

(Pdb)

We see that this takes us to the def call for the digits () function. When we execute another
next, we move to the definition of the is palindrome() function:

Chapter 11 - Debugging with PDB 311

(Pdb) next

> /Users/sixty north/examples/palindrome.py(12)<module>()
-> def is palindrome(x):

(Pdb)

You may be wondering why the debugger didn’t step into the body of digits. After all, isn’t
it evaluated at runtime like everything else? The answer is that the body of the function
can only be evaluated when there are arguments supplied to it, so it will be run only when
the function is called. The bodies of functions are checked for proper syntax when they’re
imported, but PDB doesn’t let us debug that part of the process.

Finding infinite loops with sampling

We could continue using next to move through our program’s execution, but since we don’t
know where the bug lies this might not be a very useful technique. Instead, remember that
the problem with our program is that it seemed to be running forever. This sounds a lot like
an infinite loop!

So rather than stepping through our code, we’ll let it execute and then we’ll use Ctrl-C to
break back into the debugger when we think we might be in that loop:

(Pdb) cont

~C

Program interrupted. (Use 'cont' to resume).

> /Users/sixty north/examples/palindrome.py(9)digits()
-> x = mod

(Pdb)

After letting the program run for a few seconds, we press Ctrl-C which halts the program
and shows us that we’re in the digits () function of palindrome.py. If we want to see the
source code at that line, we can use the PDB command list:

Chapter 11 - Debugging with PDB 312

(Pdb) list
4 "Convert an integer into a list of digits."
5 digs = []
6 while x != 0:
7 div, mod = divmod(x, 10)
8 digs.append(mod)
9 -> X = mod
10 digs.reverse()
11 return digs
12
13 def is palindrome(x):
14 "Determine if an integer is a palindrome."
15 digs = digits(x)
(Pdb)

We see that this is indeed inside a loop, which confirms our suspicion that an infinite loop
might be involved.

We can use the return command to try to run to the end of the current function. If this
doesn’t return, we’ll have very strong evidence that this is an infinite loop:

(Pdb) r

We let this run for a few seconds to confirm that we never exit the function, and then we
press Ctrl-C. Once we get back to a PDB prompt, let’s exit PDB with the quit command:

Setting explicit breaks

Since we know the problem lies in digits(), let’s set an explicit breakpoint in there using
the pdb.set_trace() function mentioned earlier:

Chapter 11 - Debugging with PDB 313

def digits(x):
"""Convert an integer into a list of digits.

Args:
x: The number whose digits we want.

Returns: A list of the digits, in order, of "~ 'x'°

>>> digits(4586378)
[4, 5, 8, 6, 3, 7, 8]

import pdb; pdb.set trace()

digs = []

while x !'= 0:
div, mod = divmod(x, 10)
digs.append(mod)
x = mod

digs.reverse()

return digs

Remember that the set_trace() function will halt execution and enter the debugger.

So now we can just execute our script without specifying the PDB module:

% python palindrome.py

> /Users/sixty north/examples/palindrome.py(8)digits()
-> digs = []

(Pdb)

And we see that we almost immediately go to a PDB prompt with execution halted at the
beginning of our digits() function.

To verify that we know where we are, let’s use where to see our call stack:

Chapter 11 - Debugging with PDB 314

(Pdb) where
/Users/sixty north/examples/palindrome.py(35)<module>()
-> unittest.main()

/Library/Frameworks/Python.framework/Versions/3.5/1ib/python3.5/unittest/main.py(95) i\

nit ()
-> self.runTests()

/Library/Frameworks/Python. framework/Versions/3.5/1ib/python3.5/unittest/main.py(229)ru\

nTests()
-> self.result = testRunner.run(self.test)

/Library/Frameworks/Python.framework/Versions/3.5/1ib/python3.5/unittest/runner.py(151)\

run()
-> test(result)

/Library/Frameworks/Python. framework/Versions/3.5/1ib/python3.5/unittest/suite.py(70) \

call ()
-> return self.run(*args, **kwds)

/Library/Frameworks/Python. framework/Versions/3.5/1ib/python3.5/unittest/suite.py(108)r\

un()
-> test(result)

/Library/Frameworks/Python.framework/Versions/3.5/1ib/python3.5/unittest/suite.py(70)

call ()
-> return self.run(*args, **kwds)

N\

/Library/Frameworks/Python. framework/Versions/3.5/1ib/python3.5/unittest/suite.py(108)r\

un()
-> test(result)

/Library/Frameworks/Python.framework/Versions/3.5/1ib/python3.5/unittest/case.py(391) \

call ()
-> return self.run(*args, **kwds)

/Library/Frameworks/Python. framework/Versions/3.5/1ib/python3.5/unittest/case.py(327)ru\

n()
-> testMethod()

/Users/sixty north/examples/palindrome.py(25)test negative()
-> self.assertFalse(is palindrome(1234))

/Users/sixty north/examples/palindrome.py(17)is palindrome()
-> digs = digits(x)
> /Users/sixty north/examples/palindrome.py(8)digits()
-> digs = []

Remember that the most recent frames are at the end of this listing. After a lot of unittest
functions, we see that we are indeed in the digits() function, and that it was called by
is_palindrome(), just as we expected.

Chapter 11 - Debugging with PDB 315

Stepping through execution

What we want to do now is watch execution and see why we never exit this function’s loop.
Let’s use next to move to the first line of the loop body:

(Pdb) next

> /Users/sixty north/examples/palindrome.py(9)digits()
-> while x != 0:

(Pdb) next

> /Users/sixty north/examples/palindrome.py(10)digits()
-> div, mod = divmod(x, 10)

(Pdb)

Now lets look at the values of some of our variables and try to decide what we expect to
happen. We can examine values by using the print command’”:

(Pdb) print(digs)
[1

(Pdb) print(x)
1234

This looks correct. The digs list — which will contain the sequence of digits in the end — is
empty, and x is what we passed in. We expect the divmod () function to return 123 and 4,
so let’s try that:

(Pdb) next

> /Users/sixty north/examples/palindrome.py(11l)digits()
-> digs.append(mod)

(Pdb) print(div, mod)

123 4

This looks correct: divmod () has clipped off the least significant digits from our number, and
the next line puts that digit into our results list:

""Notice that we can use print with or without parentheses. Don’t be alarmed — we haven’t regressed to Python 2. In this
context print is a PDB command rather than a Python 3 function.

Chapter 11 - Debugging with PDB 316

(Pdb) next
> /Users/sixty north/examples/palindrome.py(12)digits()
-> X = mod

If we look at digs, we’ll see that it now contains mod:

(Pdb) print(digs)
[4]

The next line will now update x so that we can continue clipping digits from it:

(Pdb) next
> /Users/sixty north/examples/palindrome.py(9)digits()
-> while x != 0:

We see that execution goes back up to the while-loop as we expected. Let’s look at x to make
sure it has the right value:

(Pdb) print(x)
4

Wait a second! We expect x to hold the digits that aren’t already in the results list. Instead,
it contains only the digit in the results list. Clearly we’ve made a mistake in updating x!

If we look at our code, it quickly becomes apparent that we should have assigned div rather
than mod to x. Let’s exit PDB:

(Pdb) quit
Note that you may have to run quit a few times because of how PDB and unittest interact.

Fixing the bug

After you’re out of PDB, let’s remove the set _trace() call and modify digits() to fix the
problem we found:

Chapter 11 - Debugging with PDB 317

def digits(x):
"""Convert an integer into a list of digits.

Args:
x: The number whose digits we want.

Returns: A list of the digits, in order, of " "x'°

>>> digits(4586378)
[4, 5, 8, 6, 3, 7, 8]

digs = []

while x != 0:
div, mod = divmod(x, 10)
digs.append(mod)
x = div

digs.reverse()

return digs

If we run our program now, we see that we’re passing all tests, and it runs very quickly:

$ python palindrome.py

Ran 3 tests in 0.001s

0K

So that’s a basic PDB session, and it demonstrates some of the core features of PDB. PDB
has many other commands and features, however, and the best way to learn them is to start
using PDB and trying out the commands. This palindrome program can serve as a good
example for learning most of the features of PDB.

Summary

« Python’s standard debugger is called PDB.

» PDB is a standard command-line debugger.

« The pdb.set_trace() method can be used to stop program execution and enter the
debugger.

Chapter 11 - Debugging with PDB 318

+ Your REPL’s prompt will change to (Pdb) when you’re in the debugger.

« You can access PDB’s built-in help system by typing “help”.

» You can use python -m pdb followed by a script name to run a program under PDB
from the start.

« PDB’s where command shows the current call stack.

« PDB’s next command lets execution continue to the next line of code.

« PDB’s continue command lets program execution continue indefinitely, or until you
stop it with control-c.

« PDB’s list command shows you the source code at your current location.

« PDB’s return command resumes execution until the end of the current function.

« PDB’s print command lets you see the values of objects in the debugger.

« Use quit to exit PDB.

Along the way we found that:

+ divmod() calculates the quotient and remainder for a division operation at one time.
» The reversed() function can reverse a sequence.

+ You can pass -m to your Python command to have it run a module as a script.

« Debugging makes it clear that Python is evaluating everything at run time.

Afterword: Just the Beginning

As we said at the beginning, Python is a big language. Our goal with this book is get you
started in the right direction, to give you the foundation you need to not just program Python
effectively but direct your own growth with the language. Hopefully we’ve done our job!

We encourage you to use what you’ve learned here whenever you can. Practicing these skills
really is the only way to master them, and we’re sure that your appreciation for Python will
deepen as you put the language to use. Perhaps you can use Python immediately in your job
or school work, but if not there are countless open-source projects that would love to have
your help. Or you could start your own project! There are so many ways to get experience
with Python that the real problem may be finding the one that suits you best.

There is, of course, a great deal to Python that is not covered in this book. Our books The
Python Journeyman’® and The Python Master” look at many of the more advanced topics
that weren’t covered here, so give them a look when you’re ready to learn more. Or if
you’re interested in learning Python in other forms be sure to look at our Python courses on
Pluralsight:

« Core Python: Getting Started®

« Core Python: Organizing Larger Programs®

« Core Python: Implementing Iterators, Iterables, and Collections®
« Core Python: Functions and Functional Programming®

« Core Python: Robust Resource and Error Handling®**

« Core Python: Introspection®

« Core Python: Classes and Object-Orientation®

« Core Python: Numeric Types, Dates, and Times®

"®https://leanpub.com/python-journeyman

"https://leanpub.com/python-master

*https://www.pluralsight.com/courses/getting- started-python- core
*thttps://www.pluralsight.com/courses/core-python-organizing-larger-programs
82https://www.pluralsight.com/courses/core-python-implementing-iterators-iterables- collections
*https://www.pluralsight.com/courses/core-python-functions-functional- programming
*https://www.pluralsight.com/courses/core-python-robust-resource-error-handling
®https://www.pluralsight.com/courses/core-python-introspection
https://www.pluralsight.com/courses/core-python- classes-object-orientation
https://www.pluralsight.com/courses/core-python-numeric- types-dates-times

https://leanpub.com/python-journeyman
https://leanpub.com/python-journeyman
https://leanpub.com/python-master
https://www.pluralsight.com/courses/getting-started-python-core
https://www.pluralsight.com/courses/core-python-organizing-larger-programs
https://www.pluralsight.com/courses/core-python-implementing-iterators-iterables-collections
https://www.pluralsight.com/courses/core-python-functions-functional-programming
https://www.pluralsight.com/courses/core-python-robust-resource-error-handling
https://www.pluralsight.com/courses/core-python-introspection
https://www.pluralsight.com/courses/core-python-classes-object-orientation
https://www.pluralsight.com/courses/core-python-numeric-types-dates-times
https://leanpub.com/python-journeyman
https://leanpub.com/python-master
https://www.pluralsight.com/courses/getting-started-python-core
https://www.pluralsight.com/courses/core-python-organizing-larger-programs
https://www.pluralsight.com/courses/core-python-implementing-iterators-iterables-collections
https://www.pluralsight.com/courses/core-python-functions-functional-programming
https://www.pluralsight.com/courses/core-python-robust-resource-error-handling
https://www.pluralsight.com/courses/core-python-introspection
https://www.pluralsight.com/courses/core-python-classes-object-orientation
https://www.pluralsight.com/courses/core-python-numeric-types-dates-times

Afterword: Just the Beginning 320

« Advanced Python®

We also offer in-house Python training®” and consulting”® through our company Sixty North
if you have more substantial needs.

Whatever your journey with Python becomes, we sincerely hope you’ve enjoyed this book.
Python is a wonderful language with a great community, and we want you to get as much
joy from it as we have. Happy programming!

#https://www.pluralsight.com/courses/advanced-python
#http://sixty-north.com/training. html
*http://sixty-north.com/consulting. html

https://www.pluralsight.com/courses/advanced-python
http://sixty-north.com/training.html
http://sixty-north.com/consulting.html
https://www.pluralsight.com/courses/advanced-python
http://sixty-north.com/training.html
http://sixty-north.com/consulting.html

Appendix A - Virtual environments

A virtual environment is a lightweight, self-contained Python installation. The main motiva-
tion for virtual environments is to allow different projects to have control over the versions
of installed Python packages, without interfering with other Python projects installed on
the same host. A virtual environment consists of a directory containing a symbolic link to
(Unix), or a copy of (Windows), an existing Python installation, together with an empty
site-packages directory into which Python packages specific to this virtual environment
can be installed. A second motivation for virtual environments is that users can create a
virtual environment without needing administrator rights on their system, making it easy
for them to install packages locally. A third motivation is that different virtual environments
can be based on different versions of Python, making it easier to test code on, say, Python
3.4 and Python 3.5 on the same computer.

If you’re using Python 3.3 or later, then you should already have a module called venv
installed on your system. You can verify this by running it from the command line:

$ python3 -m venv

usage: venv [-h] [--system-site-packages] [--symlinks | --copies] [--clear]
[--upgrade] [--without-pip]
ENV _DIR [ENV DIR ...]

venv: error: the following arguments are required: ENV DIR

If you don’t have venv installed, there is another tool - virtualenv - which works very
similarly. You can get it from the Python Package Index (PyPI)’*. We explain how to install
packages from PyPI in Appendix C. You can use either venv or virtualenv, though we’ll
use venv here, since it is built in to recent versions of Python.

Creating a virtual environment

Using venv is very simple: You specify the path of a directory which is to contain the new
virtual environment. The tool creates the new directory and populates it with the installation:

*https://pypi.python.org/pypi/virtualenv

https://pypi.python.org/pypi/virtualenv
https://pypi.python.org/pypi/virtualenv

Appendix A - Virtual environments 322

$ python3 -m venv my python 3 5 project env

Activating a virtual environment

Once the environment is created you can activate it by using the activate script in the
environment’s bin directory. On Linux or macOS you have to source the script:

$ source my python 3 5 project env/bin/activate
and on Windows you run it:
> my_python_3_5 project_env\bin\activate

Once you do this your prompt will change to remind you that you’re in a virtual environ-
ment:

(my python 3 5 project env) $

The Python that will execute when you run python is from the virtual environment. In fact,
using virtual environments is by far the best way to get a predictable version of Python
when you invoke python rather than having to remember to use python for Python 2 and
python3 for Python 3.

Once in the virtual environment you can work as normal, secure in the knowledge that
package installations are isolated from the system Python and other virtual environments.

Deactivating a virtual environment

To leave a virtual environment use the deactivate command, which will return you to the
parent shell from which the virtual environment was activated:

(my python 3 5 project env) $ deactivate
$

Appendix A - Virtual environments 323

Other tools for working with virtual environments

If you work with virtual environments a lot — we would advocate that you should almost
always be working within one — managing a plethora of environments can itself become
something of a chore. Integrated Development Environments such as JetBrains’ PyCharm
contain excellent support for creating and using virtual environments. On the command line,
we recommend a tool called virtualenv wrapper®* which makes switching between projects
which rely on different virtual environments almost trivial, once you've done some initial
configuration.

*?https://virtualenvwrapper.readthedocs.io/en/latest/

https://virtualenvwrapper.readthedocs.io/en/latest/
https://virtualenvwrapper.readthedocs.io/en/latest/

Appendix B - Packaging and
distribution

Packaging and distributing your Python code can be a complex and sometimes confusing
task, especially if your projects have lots of dependencies or involve components more exotic
than straight Python code. However, for many cases it’s very straightforward to make your
code accessible to others in a standard way, and we’ll see how to do that using the standard
distutils module in this section. The main advantage of distutils is that it’s included
in the Python Standard Library. For much beyond the simplest packaging requirements
you’ll probably want to look at setuptools instead, which has capabilities beyond those
of distutils, but which is correspondingly more confusing.

The distutils module allows you to write a simple Python script which knows how to
install your Python modules into any Python installation, including one hosted in a virtual
environment. By convention this script is called setup.py and it exists at the top level of
your project structure. This script can then be executed to perform the actual installation.

Configuring a package with distutils

Let’s see a simple example of distutils. We’ll create a basic setup.py installation script
for the palindrome module we wrote in the Chapter 11.

The first thing we want to do is to create a directory to hold our project. Let’s call this
palindrome:

$ mkdir palindrome
$ cd palindrome

Let’s put a copy of our palindrome.py in this directory:

Appendix B - Packaging and distribution

"""palindrome.py - Detect palindromic integers"""
import unittest

def digits(x):
"""Convert an integer into a list of digits.

Args:
x: The number whose digits we want.

Returns: A list of the digits, in order, of *°

>>> digits(4586378)
[4, 5, 8, 6, 3, 7, 8]

digs = []

while x !'= 0:
div, mod = divmod(x, 10)
digs.append(mod)
x = div

digs.reverse()

return digs

def is palindrome(x):
"""Determine if an integer is a palindrome.

Args:
x: The number to check for palindromicity.

Returns: True if the digits of ''x'' are a palindrome,

False otherwise.

>>> 1s palindrome(1234)
False
>>> is palindrome(2468642)
True
digs = digits(x)
for f, r in zip(digs, reversed(digs)):
if f !=r:
return False
return True

325

Appendix B - Packaging and distribution 326

class Tests(unittest.TestCase):
"Tests for the ““is palindrome()" " function."
def test negative(self):
"Check that it returns False correctly."
self.assertFalse(is palindrome(1234))

def test positive(self):
"Check that it returns True correctly."
self.assertTrue(is palindrome(1234321))

def test single digit(self):
"Check that it works for single digit numbers."
for i in range(10):
self.assertTrue(is palindrome(i))
if _name_ == ' main_':
unittest.main()

And finally let’s create the setup. py script:

from distutils.core import setup

setup(
name = 'palindrome’,
version = '1.0"',
py _modules = ['palindrome'],

metadata

author = 'Austin Bingham',

author_email = ‘'austin@sixty-north.com',

description = 'A module for finding palindromic integers.',
license = 'Public domain',

keywords = 'palindrome’,

)

The first line in the file imports the functionality we need from the distutils.core module,
namely the setup() function. This function does all of the work of installing our code, so
we need to tell it about the code we’re installing. We do this, of course, with the arguments
we pass to setup().

The first thing we tell setup() is the name of this project. We’ve chosen palindrome in this

Appendix B - Packaging and distribution 327

case, but you can choose any name you like. In general, though, it’s simplest to just keep the
name the same as your project name.

The next argument we pass to setup() is the version. Again, this can be any string you
want. Python doesn’t rely on the version to follow any rules.

The next argument, py_modules, is probably the most interesting. We use this to specify the
Python modules we want to install. Each entry in this list is the name of the module without
the . py extension. setup () will look for a matching . py file and install it. So, in our example,
we’ve asked setup () to install palindrome.py which, of course, is a file in our project.

The rest of the arguments we’re using here are fairly self-explanatory and are there mostly to
help people to use your module correctly and to know who to contact if they have problems.

Before we start using our setup. py, we first need to create a virtual environment into which
we’ll install our module. In your palindrome directory, create a virtual environment called
palindrome_env:

$ python3 -m venv palindrome_env

When this completes, activate the new environment. On Linux or macOS, source the activate
script:

$ source palindrome env/bin/activate
or on Windows call the script directly:

> palindrome env\bin\activate

Installing with distutils

Now that we’ve got our setup.py, we can use it to do a number of interesting things.
The first, and perhaps most obvious, thing we can do is install our module into our virtual
environment! We do this by passing the install argument to setup.py:

Appendix B - Packaging and distribution 328

(palindrome env)$ python setup.py install
running install

running build

running build py

copying palindrome.py -> build/lib
running install 1lib

copying build/lib/palindrome.py -> /Users/sixty north/examples/palindrome/palindrome_env/\

lib/python3.5/site-packages

byte-compiling /Users/sixty north/examples/palindrome/palindrome env/lib/python3.5/site-p\

ackages/palindrome.py to palindrome.cpython-35.pyc
running install egg info

Writing /Users/sixty north/examples/palindrome/palindrome _env/1lib/python3.5/site-packages\

/palindrome-1.0-py3.5.egg-info

When invoked setup() prints out a few lines to tell you about its progress. The most
important line for us is where it actually copies palindrome.py into the installation folder:

copying build/lib/palindrome.py -> /Users/sixty north/examples/palindrome/palindrome_env/\

lib/python3.5/site-packages

The site-packages directory of a Python installation is where third-party packages such
as ours are normally installed. So it looks like the installation worked properly.

Let’s verify this by running Python and seeing that our module can be imported. Note that
we want to change directories before we do this, otherwise when we import palindrome
Python will load the source file in our current directory:

(palindrome env)$ cd ..

(palindrome _env)$ python

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.
>>> import palindrome

>>> palindrome. file

'/Users/sixty north/examples/palindrome/palindrome _env/lib/python3.5/site-packages/palind\

rome.py'

Here we use the file_ attribute on the module to see where it was imported from, and
we see that we're importing it from our virtual environment’s site-packages, which is
exactly what we wanted.

Don’t forget to switch back to your source directory after exiting the Python REPL:

Appendix B - Packaging and distribution 329

(palindrome env)$ cd palindrome

Packaging with distutils

Another useful feature of setup () is that it can create various types of “distribution” formats.
It will take all of the modules you’ve specified and bundle them up into packages that are
easy to distribute to others. You can do this with the sdist command (which is shorthand
for ‘source distribution’):

(palindrome _env)$ python setup.py sdist --format zip
running sdist

running check

warning: check: missing required meta-data: url

warning: sdist: manifest template 'MANIFEST.in' does not exist (using default file list)
warning: sdist: standard file not found: should have one of README, README.txt

writing manifest file 'MANIFEST'

creating palindrome-1.0

making hard links in palindrome-1.0...

hard linking palindrome.py -> palindrome-1.0

hard linking setup.py -> palindrome-1.0

creating dist

creating 'dist/palindrome-1.0.zip' and adding 'palindrome-1.0' to it
adding 'palindrome-1.0/palindrome.py'

adding 'palindrome-1.0/PKG-INFO'

adding 'palindrome-1.0/setup.py'’

removing 'palindrome-1.0' (and everything under it)

If we look, we’ll see that this command created a new directory, dist, which contains the
newly generated distribution file:

(palindrome env) $ ls dist
palindrome-1.0.zip

and if we unzip that file we’ll see that it contains our project’s source code, including the
setup.py:

Appendix B - Packaging and distribution 330

(palindrome env)$ cd dist

(palindrome env)$ unzip palindrome-1.0.zip

Archive: palindrome-1.0.zip
inflating: palindrome-1.0/palindrome.py
inflating: palindrome-1.0/PKG-INFO
inflating: palindrome-1.0/setup.py

So now you can send this zip file to anyone who wants to use your code, and they can use
the setup.py to install it into their system. Very convenient!

Note that the sdist command can produce distributions of various types. To see the available
opﬁons,youcantwethe--help-formatsopﬁon:

(palindrome _env) $ python setup.py sdist --help-formats
List of available source distribution formats:
--formats=bztar bzip2'ed tar-file
--formats=gztar gzip'ed tar-file
--formats=tar uncompressed tar file
--formats=zip ZIP file
--formats=ztar compressed tar file

This section really just touches on the very basics of distutils. You can find out more
about how to use distutils by passing - -help to setup.py:

(palindrome env) $ python setup.py --help
Common commands: (see '--help-commands' for more)

setup.py build will build the package underneath 'build/'
setup.py install will install the package

Global options:

--verbose (-v) run verbosely (default)

--quiet (-q) run quietly (turns verbosity off)
--dry-run (-n) don't actually do anything

--help (-h) show detailed help message

--command-packages list of packages that provide distutils commands

Information display options (just display information, ignore any commands)

--help-commands list all available commands
- -name print package name
--version (-V) print package version

--fullname print <package name>-<version>

Appendix B - Packaging and distribution 331

--author print the author's name

--author-email print the author's email address

--maintainer print the maintainer's name

--maintainer-email print the maintainer's email address

--contact print the maintainer's name if known, else the author's

--contact-email print the maintainer's email address if known, else the
author's

--url print the URL for this package

--license print the license of the package

--licence alias for --license

--description print the package description

--long-description print the long package description

--platforms print the list of platforms

--classifiers print the list of classifiers

- -keywords print the list of keywords

--provides print the list of packages/modules provided

--requires print the list of packages/modules required

--obsoletes print the list of packages/modules made obsolete

usage: setup.py [global opts] cmdl [cmdl opts] [cmd2 [cmd2 opts] ...]
or: setup.py --help [cmdl cmd2 ...]
or: setup.py --help-commands
or: setup.py cmd --help

For many simple projects you’ll find that what we’ve just covered is almost all you need to
know.

Appendix C - Installing third-party
packages

Packaging in Python has had a troubled and confusing history. Thankfully, the situation has
settled down and a tool called pip has emerged as the clear front-runner among package
installation tools for general purpose Python use. For more specialist uses such as numerical
or scientific computing which rely on the Numpy or Scipy packages you should consider
Anaconda as a strong alternative to pip.

Introducing pip

In this appendix we’ll focus on pip, as it is officially blessed by the core Python developers
and comes with support out of the box. The pip tool is included and installed with Python
since Python 3.4. For older versions of Python 3, you’ll need to look up specific instructions
on how to install pip for your platform, as you may need to use your operating system’s
package manager, depending on how you originally installed Python. The best place to start
is the Python Packaging User Guide™.

The venv module will also ensure that pip is installed into newly created environments.

The pip tool is developed independently of the rest of the standard library, so there are
often more recent versions available than the version that came packaged with your Python
distribution. You can use pip to upgrade itself with:

$ pip install --upgrade pip

This is useful to do, to avoid repeated warning from pip about not being up-to-date. Bear
in mind though, that this will only take effect in your current Python environment, which
may be a virtual environment.

*https://packaging.python.org/tutorials/installing-packages/#install- pip- setuptools-and- wheel

https://packaging.python.org/tutorials/installing-packages/#install-pip-setuptools-and-wheel
https://packaging.python.org/tutorials/installing-packages/#install-pip-setuptools-and-wheel

Appendix C - Installing third-party packages 333

The Python Package Index

The pip tool can search for packages in a central repository — the Python Package Index,
or PyPI, also known by the nickname “CheeseShop” — and then download and install them
along with their dependencies. You can browse the PyPI at https://pypi.python.org/pypi. This
is an extremely convenient way to install Python software, so it’s good to understand how
to use it.

Installing with pip

We’ll demonstrate how to use pip by installing the nose testing tool. nose is a sort of power-
tool for running unittest based tests such as those we developed in Chapter 10. One really
useful thing it can do is discover all of your tests and run them. This means that you don’t
need to add unittest.main() into your code; you can just use nose to find and run your
tests.

First though, we need to do some groundwork. Let’s create a virtual environment (see
Appendix B) so we don’t inadvertently install into our system Python installation. Create
a virtual environment using venv, and activate it:

$ python3 -m venv test env
$ source activate test env/bin/activate
(test env) $

As pip is updated much more frequently than Python itself, it’s good practice to upgrade
pip in any new virtual environment, so let’s do that. Fortunately, pip is capable of updating
itself:

(test env) $ pip install --upgrade pip
Collecting pip

Using cached pip-8.1.2-py2.py3-none-any.whl
Installing collected packages: pip

Found existing installation: pip 8.1.1

Uninstalling pip-8.1.1:
Successfully uninstalled pip-8.1.1

Successfully installed pip-8.1.2

If you don’t upgrade pip it will give you warnings every time you use it, if a new version
has become available since you last upgraded.

https://pypi.python.org/pypi

Appendix C - Installing third-party packages 334

Now let’s use pip to install nose. pip uses subcommands to decide what to do, and to install
modules you use pip install package-name:

(test env) $ pip install nose
Collecting nose
Downloading nose-1.3.7-py3-none-any.whl (154kB)

100% | N | 1G3KB 2.1MB/s

Installing collected packages: nose
Successfully installed nose-1.3.7

If this succeeds, nose is ready to use in our virtual environment. Let’s check that it’s available
by trying to import it at the REPL and instrospecting the path at which it is installed:

(test env) $ python

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 26 2016, 10:47:25)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> import nose

>>> nose. file

'/Users/sixty north/.virtualenvs/test env/lib/python3.5/site-packages/nose/ init .py'

As well as installing a module, nose installs the nosetests program in the bin directory of
the virtual environment. To really put the icing on the cake, let’s use nosetests to run the
tests from palindrome.py from Chapter 11:

(test_env) $ cd palindrome
(test env) $ nosetests palindrome.py

Ran 3 tests in 0.001s

0K

Installing local packages with pip

You can also use pip to install from local packages in files rather than from the Python
Package Index. To do this, pass the filename of the packaged distribution to pip install.
For example, in Appendix B we showed how to build a so-called source distribution using
distutils. To install this using pip, do:

Appendix C - Installing third-party packages 335

(test env) $ cd dist
(test env) $ pip install palindrome-1.0.zip

Uninstalling packages

A key advantage to installing packages with pip rather than directly invoking setup.py
of the source distribution is that pip knows how to uninstall packages. To do so, use the
uninstall subcommand:

(test env) $ pip uninstall palindrome-1.0.zip
Uninstalling palindrome-1.0:
Proceed (y/n)? vy

Successfully uninstalled palindrome-1.0

	Table of Contents
	Preface
	Errata and Suggestions
	Conventions Used in This Book
	Code examples

	Welcome Apprentice!
	Python Promo
	Overview
	What is Python?
	It's a programming language!
	It's a standard library!
	It's a philosophy

	The journey of a thousand miles…
	Chapter 1 – Getting started
	Obtaining and installing Python 3
	Starting Python command line REPL
	Leaving the REPL
	Code structure and significant indentation
	Python culture
	Importing standard library modules
	Getting help()
	Scalar data types: integers, floats, None and bool
	Relational operators
	Control flow: if-statements and while-loops
	Summary

	Chapter 2 – Strings and collections
	str – an immutable sequence of Unicode code points
	Moment of zen
	bytes – an immutable sequence of bytes
	list – a sequence of objects
	dict – associating keys with values
	For-loops – iterating over series of items
	Putting it all together
	Summary

	Chapter 3 – Modularity
	Organizing code in a .py file
	Defining functions
	Organizing our module into functions
	The Python execution model
	Setting up a main function with command line argument
	Moment of zen
	Docstrings
	Comments
	Shebang
	Summary

	Chapter 4 – Built-in types and the object model
	The nature of Python object references
	Argument passing semantics – pass by object-reference
	Python return semantics
	Function arguments in detail
	The Python type system
	Variable declaration and scoping
	Moment of zen
	Everything is an object
	Summary

	Chapter 5 – Exploring built-in collection types
	tuple – an immutable sequence of objects
	The tuple constructor
	Strings in action
	Moment of zen
	range – a collection of evenly spaced integers
	list in action
	Dictionaries
	set – an unordered collection of unique elements
	Collection protocols
	Summary

	Chapter 6 – Exceptions
	Exceptions and control flow
	Handling exceptions
	Handling multiple exceptions
	Programmer errors
	Empty blocks – the pass statement
	Exception objects
	Imprudent return codes
	Re-raising exceptions
	Exceptions are part of your function's API
	Guard clauses
	Exceptions, APIs, and protocols
	Choosing not to guard against TypeError
	Pythonic style – EAFP versus LBYL
	Clean-up actions
	Moment of zen
	Platform-specific code
	Summary

	Chapter 7 - Comprehensions, iterables, and generators
	Comprehensions
	Moment of zen
	Iteration protocols
	Generator functions
	Generator expressions
	``Batteries included'' iteration tools
	Pulling it all together
	Summary

	Chapter 8 – Defining new types with classes
	Defining classes
	Instance methods
	Instance initializers
	Validation and invariants
	Adding a second class
	Collaborating classes
	Moment of zen
	Booking seats
	Naming methods for implementation details
	Sometimes the only object you need is a function
	Polymorphism and duck-typing
	Inheritance and implementation sharing
	Summary

	Chapter 9 – Files and resource management
	Files
	Context managers
	Moment of zen
	Binary files
	File-like objects
	Other resources
	Summary

	Chapter 10 – Unit testing with the Python standard library
	Test cases
	Fixtures
	Assertions
	Unit testing example: text analysis
	Using fixtures to create temporary files
	Using the new fixtures
	Using assertions to test behavior
	Testing for exceptions
	Testing for file existence
	Moment of zen
	Summary

	Chapter 11 – Debugging with PDB
	Debugging commands
	Palindrome debugging
	Summary

	Afterword: Just the Beginning
	Appendix A – Virtual environments
	Creating a virtual environment
	Activating a virtual environment
	Deactivating a virtual environment
	Other tools for working with virtual environments

	Appendix B – Packaging and distribution
	Configuring a package with distutils
	Installing with distutils
	Packaging with distutils

	Appendix C – Installing third-party packages
	Introducing pip
	The Python Package Index
	Installing local packages with pip
	Uninstalling packages

