


Software Design by 
Example

The best way to learn design in any field is to study examples, and some of the best examples 
of software design come from the tools programmers use in their own work. Software De-
sign by Example: A Tool-Based Introduction with Python therefore builds small versions 
of the things programmers use in order to demystify them and give some insights into how ex-
perienced programmers think. From a file backup system and a testing framework to a regular 
expression matcher, a browser layout engine, and a very small compiler, we explore common 
design patterns, show how making code easier to test also makes it easier to re-use, and help 
readers understand how debuggers, profilers, package managers, and version control systems 
work so that they can use them more effectively. 

This material can be used for self-paced study, in an undergraduate course on software design, 
or as the core of an intensive weeklong workshop for working programmers. Each chapter has 
a set of exercises ranging in size and difficulty from half a dozen lines to a full day’s work. Read-
ers should be familiar with the basics of modern Python, but the more advanced features of the 
language are explained and illustrated as they are introduced.

All the written material in this project can be freely re-used under the terms of the Creative 
Commons - Attribution license, while all of the software is made available under the terms of 
the Hippocratic License. All proceeds from the sale of this book will go to support the Red Door 
Family Shelter in Toronto.

Features:

•  �Teaches software design by showing programmers how to build the tools they use every day
•  �Each chapter includes exercises to help readers check and deepen their understanding
•  �All the example code can be downloaded, re-used, and modified under an open license

Dr. Greg Wilson is a programmer, author, and educator based in Toronto. He co-founded and 
was the first Executive Director of Software Carpentry, which has taught basic software skills to 
tens of thousands of researchers worldwide, and he has authored or edited over a dozen books 
(including two for children). Greg is a member of the Python Software Foundation and a recipi-
ent of ACM SIGSOFT’s Influential Educator of the Year Award.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


Software Design by 
Example

A Tool-Based Introduction with Python

Greg Wilson 



First edition published 2024 
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2024 Greg Wilson 

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot as-
sume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have 
attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders 
if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please 
write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or 
utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including pho-
tocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission 
from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the 
Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are 
not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for iden-
tification and explanation without intent to infringe.

ISBN: 978-1-032-72525-3 (hbk)
ISBN: 978-1-032-72521-5 (pbk)
ISBN: 978-1-032-72523-9 (ebk)

DOI: 10.1201/9781032725239

Typeset in Arial 
by KnowledgeWorks Global Ltd.

Publisher’s note: This book has been prepared from camera-ready copy provided by the authors.

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781032725239


Dedication

This one’s for Mike and Jon:
I’m glad you always found time to chat.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


Contents

1 Introduction 1
1.1 Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Big Ideas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Formatting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 What People Are Saying . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Objects and Classes 7
2.1 Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4 Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Finding Duplicate Files 17
3.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Hashing Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Better Hashing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Matching Patterns 25
4.1 Simple Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4.2 Rethinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Parsing Text 35
5.1 Tokenizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2 Parsing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6 Running Tests 43
6.1 Storing and Running Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
6.2 Finding Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
6.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



viii Contents

7 An Interpreter 51
7.1 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
7.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
7.3 Introspection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

8 Functions and Closures 59
8.1 Definition and Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
8.2 Calling Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
8.3 Closures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

9 Protocols 69
9.1 Mock Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
9.2 Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9.3 Decorators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
9.4 Iterators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

10 A File Archiver 81
10.1 Saving Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.3 Tracking Backups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.4 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
10.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

11 An HTML Validator 91
11.1 HTML and the DOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
11.2 The Visitor Pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.3 Checking Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
11.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
11.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

12 A Template Expander 99
12.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
12.2 Managing Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
12.3 Visiting Nodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
12.4 Implementing Handlers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
12.5 Control Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
12.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
12.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

13 A Code Linter 111
13.1 Machinery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
13.2 Finding Duplicate Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
13.3 Finding Unused Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
13.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
13.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



Contents ix

14 Page Layout 119
14.1 Sizing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
14.2 Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
14.3 Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
14.4 Wrapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
14.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
14.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

15 Performance Profiling 131
15.1 Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
15.2 Row-Wise Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132
15.3 Column-Wise Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
15.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
15.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
15.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

16 Object Persistence 145
16.1 Built-in Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
16.2 Converting to Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
16.3 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
16.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
16.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

17 Binary Data 155
17.1 Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
17.2 Bitwise Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
17.3 Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
17.4 And Now, Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
17.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
17.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

18 A Database 165
18.1 Starting Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
18.2 Saving Records . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
18.3 A File-Backed Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
18.4 Playing with Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
18.5 Persisting Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
18.6 Cleaning Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
18.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
18.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

19 A Build Manager 177
19.1 Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
19.2 Initial Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
19.3 Topological Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
19.4 A Better Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
19.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
19.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184



x Contents

20 A Package Manager 187
20.1 Semantic Versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
20.2 Exhaustive Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
20.3 Generating Possibilities Manually . . . . . . . . . . . . . . . . . . . . . . . 191
20.4 Incremental Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
20.5 Using a Theorem Prover . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
20.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
20.7 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

21 Transferring Files 201
21.1 Using TCP/IP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
21.2 Chunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
21.3 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
21.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
21.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

22 Serving Web Pages 209
22.1 Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
22.2 Hello, Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
22.3 Serving Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
22.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
22.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216
22.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217

23 A File Viewer 219
23.1 Curses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219
23.2 Windowing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
23.3 Moving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
23.4 Refactoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
23.5 Clipping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
23.6 Viewport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
23.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
23.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

24 Undo and Redo 233
24.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
24.2 Insertion and Deletion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
24.3 Going Backward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
24.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
24.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240

25 A Virtual Machine 243
25.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
25.2 Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
25.3 Assembly Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
25.4 Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 250
25.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
25.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253



Contents xi

26 A Debugger 255
26.1 One Step at a Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
26.2 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 257
26.3 Extensibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
26.4 Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261
26.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
26.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

27 Conclusion 267

A Bibliography 269

B Bonus Material 271
B.1 Using Function Attributes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
B.2 Lazy Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
B.3 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
B.4 Tracing Inheritance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
B.5 Inspecting Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
B.6 User-Defined Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
B.7 Floating Point Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282
B.8 Big and Little Endian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283
B.9 Generating Test Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

C Syllabus 287

D License 293
D.1 Writing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
D.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

E Code of Conduct 297
E.1 Our Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
E.2 Our Responsibilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
E.3 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
E.4 Enforcement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298
E.5 Attribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

F Contributing 299
F.1 Editing Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299
F.2 Making Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
F.3 FAQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

G Glossary 303

Index 327



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


1
Introduction

• The complexity of a system increases more rapidly than its size.

• The best way to learn design is to study examples, and the best programs to use as
examples are the ones programmers use every day.

• These lessons assume readers can write small programs and want to write larger
ones, or are looking for material to use in software design classes that they teach.

• All of the content is free to read and re-use under open licenses, and all royalties
from sales of this book will go to charity.

Terms defined: cognitive load

The best way to learn design in any field is to study examples [Schon1984; Petre2016],
and themost approachable examples are ones that readers are already familiar with. These
lessons therefore build small versions of tools that programmers use every day1 to show
how experienced software designers think. Along the way, they introduce some fundamen-
tal ideas in computer science that many self-taught programmers haven’t encountered. We
hope these lessons will help you design better software yourself, and that if you know how
programming tools work, you’ll be more likely to use them and better able to use them well.

1.1 Audience
This learner persona [Wilson2019] describes who this book is for:

Maya has a master’s degree in genomics. She knows enough Python to analyze
data from her experiments, but struggles to write code other people can use. These
lessons will show her how to design, build, and test large programs in less time and
with less pain.

Like Maya, you should be able to:

• Write Python programs using lists, loops, conditionals, dictionaries, and functions.

• Puzzle your way through Python programs that use classes and exceptions.

• Run basic Unix shell commands like ls and mkdir.

• Read and write a little bit of HTML.

• Use Git2 to save and share files. (It’s OK not to know the more obscure commands3.)

1https://en.wikipedia.org/wiki/Programming_tool
2https://git-scm.com/
3https://git-man-page-generator.lokaltog.net/

1

https://en.wikipedia.org
https://git-scm.com
https://git-man-page-generator.lokaltog.net


2 1 Introduction

Objects and
Classes

Running

Tests

An

Interpreter

Functions and

Closures

Object

Persistence

A Template
Expander

Protocols

Binary

Data

A Build
Manager

Undo and
Redo

A File

Viewer

A Debugger A Virtual

Machine

A Database

Performance

Profiling

Page

Layout

An HTML

Validator

A Code
Linter

Parsing

Text

Matching

Patterns

A File

Archiver

Finding

Duplicate Files

Transferring

Files

Serving

Web Pages

A Package
Manager

source

sink

Legend

2

3
4

5

6

7

8

9

10

11

12

12

14

15

16

17

18

19

20
21

22

23 24

2526

Figure 1.1: Lesson topics and dependencies.

These chapters (Figure 1.1) are also designed to help another persona:

Yim teaches two college courses on software development. They are frustrated that
so many books talk about details but not about design and use examples that their
students can’t relate to. This book will give them material they can use in class and
starting points for course projects.

1.2 The Big Ideas
Our approach to design is based on three big ideas. First, as the number of components
in a system grows, the complexity of the system increases rapidly (Figure 1.2). However,
the number of things we can hold in working memory at any time is fixed and fairly small
[Hermans2021]. If we want to build large programs that we can understand, we therefore
need to construct them out of pieces that interact in a small number of ways. Figuring out
what those pieces and interactions should be is the core of what we call “design”.

Second, “making sense” depends on who we are. When we use a low-level language,
we incur the cognitive load of assembling micro-steps into something more meaningful.
When we use a high-level language, on the other hand, we incur a similar load translating
functions of functions into actual operations on actual data.

More experienced programmers are more capable at both ends of the curve, but that’s
not the only thing that changes. If a novice’s comprehension curve looks like the lower one
in Figure 1.3, then an expert’s looks like the upper one. Experts don’t just understand more
at all levels of abstraction; their preferred level has also shifted so they find

√
x2 + y2 easier

to read than the Medieval equivalent “the side of the square whose area is the sum of the
areas of the two squares whose sides are given by the first part and the second part”. This



1.3 Formatting 3

A B

C

A B

C

D E

F

A B

C

D E

F

3 components have

3 interactions

6 components have

30 interactions

2 components with 3 sub-components

have 7 interactions

Figure 1.2: How complexity grows with size.

Abstraction

C
om

pr
eh

en
si

on



expert

novice

Figure 1.3: Novice and expert comprehension curves.

curve means that for any given task, the code that is quickest for a novice to comprehend
will almost certainly be different from the code that an expert can understand most quickly.

Our third big idea is that programs are just another kind of data. Source code is just text,
which we can process like other text files. Likewise, a program in memory is just a data
structure that we can inspect and modify like any other. Treating code like data enables us
to solve hard problems in elegant ways, but at the cost of increasing the level of abstraction
in our programs. Once again, finding the balance is what we mean by “design”.

1.3 Formatting
We display Python source code like this:
for ch in "example":

print(ch)

and Unix shell commands like this:
for filename in *.dat
do

cut -d , -f 10 $filename
done



4 1 Introduction

Data files and program output are shown like this:
- name: read

params:
- sample_data.csv

alpha
beta
gamma
delta

We use ... to show where lines have been omitted, and occasionally break lines in
unnatural ways to make them fit on the page. Where we do this, we end all but the last line
with a single backslash \. Finally, we show glossary entries in bold text and write functions
as function_name rather than function_name(). The latter is more common, but the empty
parentheses makes it hard to tell whether we’re talking about the function itself or a call to
the function with no parameters.

1.4 Usage
The source for this book is available in our Git repository4 and all of it can be read on our
website5. All of the written material in this book is licensed under the Creative Commons -
Attribution - NonCommercial 4.0 International license6 (CC-BY-NC-4.0), while the software
is covered by the Hippocratic License7. The first license allows you to use and remix this
material for noncommercial purposes, as-is or in adapted form, provided you cite its orig-
inal source; if you want to sell copies or make money from this material in any other way,
you must contact us8 and obtain permission first. The second license allows you to use
and remix the software on this site provided you do not violate international agreements
governing human rights; please see Appendix D for details.

If you would like to improve what we have, add new material, or ask questions, please
file an issue in our GitHub repository9 or send an email10. All contributors are required to
abide by our Code of Conduct (Appendix E).

1.5 What People Are Saying
Here’s what people said about the JavaScript version of this book [Wilson2022a]:

• Jessica Kerr11: “Software Design by Example is the book I’ll recommend to every new
dev... It is nice to you. It wants you to succeed... It’s a bridge from ‘learn to program’ to
working programmer.”

4https://github.com/gvwilson/sdxpy/
5https://third-bit.com/sdxpy/
6https://creativecommons.org/licenses/by-nc/4.0/
7https://firstdonoharm.dev/
8mailto:gvwilson@third-bit.com
9https://github.com/gvwilson/sdxpy/
10mailto:gvwilson@third-bit.com
11https://jessitron.com/2023/02/20/book-review-software-design-by-example/

https://github.com
https://third-bit.com
https://creativecommons.org
https://firstdonoharm.dev
https://github.com
https://jessitron.com
mailto:gvwilson@third-bit.com
mailto:gvwilson@third-bit.com


1.6 Acknowledgments 5

• Jenn Schiffer12: “I am v much enjoying gvwilson’s book Software Design by Example. It
makes me miss teaching, it would be such a fun text to use!”

• Emily Gorcenski13: “There’s a lot of books on programming but fewer books that couple
software development with effective and practical use of tools, presenting a language not
as a main course but as a part of an engineering ecosystem. Greg Wilson’s book hits all
the right notes in bringing together theory, pragmatism, and best practices.”

• Danielle Navarro14: “The book is really bloody lovely.”

1.6 Acknowledgments
Like [Wilson2022a], this book was inspired by [Kamin1990; Kernighan1979; Kernighan1981;
Kernighan1983; Kernighan1988; Oram2007; Wirth1976] and by:

• The Architecture of Open Source Applications15 series [Brown2011; Brown2012; Arm-
strong2013; Brown2016];

• Mary Rose Cook’s16 Gitlet17;

• Matt Brubeck’s18 browser engine tutorial19;

• Web Browser Engineering20 by Pavel Panchekha21 and Chris Harrelson22;

• Connor Stack’s23 database tutorial24;

• Maël Nison’s25 package manager tutorial26;

• Paige Ruten’s27 kilo text editor28 and Wasim Lorgat’s29 editor tutorial30;

• Bob Nystrom’s31 Crafting Interpreters32 [Nystrom2021]; and

• the posts and zines33 created by Julia Evans34.
12https://mastodon.social/@jenn@pixel.kitchen/109985276835264400
13https://emilygorcenski.com/post/book-report-software-design-by-example-by-greg-wilson/
14https://blog.djnavarro.net/posts/2023-05-31_software-design-by-example/
15https://aosabook.org/
16https://maryrosecook.com/
17http://gitlet.maryrosecook.com/
18https://limpet.net/mbrubeck/
19https://limpet.net/mbrubeck/2014/08/08/toy-layout-engine-1.html
20https://browser.engineering/
21https://pavpanchekha.com/
22https://twitter.com/chrishtr
23https://connorstack.com/
24https://cstack.github.io/db_tutorial/
25https://arcanis.github.io/
26https://classic.yarnpkg.com/blog/2017/07/11/lets-dev-a-package-manager/
27https://viewsourcecode.org/
28https://viewsourcecode.org/snaptoken/kilo/index.html
29https://wasimlorgat.com/
30https://github.com/seem/editor
31http://journal.stuffwithstuff.com/
32https://craftinginterpreters.com/
33https://wizardzines.com/
34https://jvns.ca/

https://mastodon.social
https://emilygorcenski.com
https://blog.djnavarro.net
https://aosabook.org
https://maryrosecook.com
http://gitlet.maryrosecook.com
https://limpet.net
https://limpet.net
https://browser.engineering
https://pavpanchekha.com
https://twitter.com
https://connorstack.com
https://cstack.github.io
https://arcanis.github.io
https://classic.yarnpkg.com
https://viewsourcecode.org
https://viewsourcecode.org
https://wasimlorgat.com
https://github.com
http://journal.stuffwithstuff.com
https://craftinginterpreters.com
https://wizardzines.com
https://jvns.ca


6 1 Introduction

I am grateful to Miras Adilov, Alvee Akand, Rohan Alexander, Alexey Alexapolsky, Lina
Andrén, Alberto Bacchelli, Yanina Bellini Saibene, MatthewBluteau, Adrienne Canino, Marc
Chéhab, Stephen Childs, Hector Correa, Socorro Dominguez, Christian Drumm, Christian
Epple, Julia Evans, Davide Fucci, Thomas Fritz, Francisco Gabriel, Florian Gaudin-Delrieu,
Craig Gross, Jonathan Guyer, McKenzie Hagen, Han Qi, Fraser Hay, Alexandru Hurjui,
Bahman Karimi, Carolyn Kim, Kitsios Konstantinos, Jenna Landy, Peter Lin, Zihan Liu,
Becca Love, Dan McCloy, Ramiro Mejia, Michael Miller, Firas Moosvi, Joe Nash, Sheena
Ng, Reiko Okamoto, Juanan Pereira, Mahmoodur Rahman, Arpan Sarkar, Silvan Schlegel,
Rosan Shanmuganathan, DaveW. Smith, Stephen M. Sturdevant, Diyar Taskiran, Ece Tur-
nator, and Yao Yundong for feedback on early drafts of this material.

I am also grateful to Shashi Kumar for help with LaTeX, to Odin Beuchat35 for help with
JavaScript, and to the creators of Black36, flake837, Glosario38, GNU Make39, isort40, ark41,
LaTeX42, pip43, Python44, Remark45, WAVE46, and many other open source tools: if we all
give a little, we all get a lot.

All royalties from this book will go to the Red Door Family Shelter47 in Toronto.

1.7 Exercises
Setting Up
1. Use pip48 to install Black49, flake850, and isort51 on your computer.

2. Run them on a few programs you have already written. (The file setup.cfg in the root
directory of this book’s GitHub repository52 has the settings we use for these tools.) What
problems do they report? Which of these reports do you disagree with?

Avoiding Potholes
Go to the GitHub repository53 for this book and look at the open issues. Which of them can
you understand? What makes the others hard to understand? What could you add, leave
out, or write differently when you report a problem that you have found?

35https://www.drafolin.ch/
36https://black.readthedocs.io/
37https://flake8.pycqa.org/
38https://glosario.carpentries.org/
39https://www.gnu.org/software/make/
40https://pycqa.github.io/isort/
41https://www.dmulholl.com/docs/ark/main/
42https://www.latex-project.org/
43https://pip.pypa.io/
44https://www.python.org/
45https://remarkjs.com/
46https://wave.webaim.org/
47https://www.reddoorshelter.ca/
48https://pip.pypa.io/
49https://black.readthedocs.io/
50https://flake8.pycqa.org/
51https://pycqa.github.io/isort/
52https://github.com/gvwilson/sdxpy/
53https://github.com/gvwilson/sdxpy/

https://www.drafolin.ch
https://black.readthedocs.io
https://flake8.pycqa.org
https://glosario.carpentries.org
https://www.gnu.org
https://pycqa.github.io
https://www.dmulholl.com
https://www.latex-project.org
https://pip.pypa.io
https://www.python.org
https://remarkjs.com
https://wave.webaim.org
https://www.reddoorshelter.ca
https://pip.pypa.io
https://black.readthedocs.io
https://flake8.pycqa.org
https://pycqa.github.io
https://github.com
https://github.com


2
Objects and Classes

• Objects are useful without classes, but classes make them easier to understand.

• A well-designed class defines a contract that code using its instances can rely on.

• Objects that respect the same contract are polymorphic, i.e., they can be used
interchangeably even if they do different specific things.

• Objects and classes can be thought of as dictionaries with stereotyped behavior.

• Most languages allow functions and methods to take a variable number of
arguments.

• Inheritance can be implemented in several ways that differ in the order in which
objects and classes are searched for methods.

Terms defined: alias, argument, cache, class method, constructor, derived class,
design by contract, monkey patching, multiple inheritance, object-oriented
programming, parameter, polymorphism, recursion, spread, static method,
upcall, varargs

We are going to create a lot of objects and classes in these lessons, and they will be a
lot easier to use if we understand how they are implemented. Historically, object-oriented
programming (OOP) was invented to solve two problems:

1. What is a natural way to represent real-world “things” in code?

2. How can we organize code to make it easier to understand, test, and extend?

2.1 Objects
As a motivating problem, let’s define some of the things a generic shape in a drawing
package must be able to do:
class Shape:

def __init__(self, name):
self.name = name

def perimeter(self):
raise NotImplementedError("perimeter")

def area(self):
raise NotImplementedError("area")

A specification like this is sometimes called a contract because an object must satisfy it
in order to be considered a shape, i.e., must provide methods with these names that do

7



8 2 Objects and Classes

what those names suggest. For example, we can derive classes from Shape to represent
squares and circles.
class Square(Shape):

def __init__(self, name, side):
super().__init__(name)
self.side = side

def perimeter(self):
return 4 * self.side

def area(self):
return self.side ** 2

class Circle(Shape):
def __init__(self, name, radius):

super().__init__(name)
self.radius = radius

def perimeter(self):
return 2 * math.pi * self.radius

def area(self):
return math.pi * self.radius ** 2

Since squares and circles have the same methods, we can use them interchangeably.
This is called polymorphism, and it reduces cognitive load by allowing the people using
related things to ignore their differences:
examples = [Square("sq", 3), Circle("ci", 2)]
for thing in examples:

n = thing.name
p = thing.perimeter()
a = thing.area()
print(f"{n} has perimeter {p:.2f} and area {a:.2f}")

sq has perimeter 12.00 and area 9.00
ci has perimeter 12.57 and area 12.57

But how does polymorphism work? The first thing we need to understand is that a func-
tion is an object. While the bytes in a string represent characters and the bytes in an image
represent pixels, the bytes in a function are instructions (Figure 2.1). When Python exe-
cutes the code below, it creates an object in memory that contains the instructions to print
a string and assigns that object to the variable example:
def example():

print("in example")

We can create an alias for the function by assigning it to another variable and then call the
function by referencing that second variable. Doing this doesn’t alter or erase the connection
between the function and the original name:
alias = example
alias()

in example

We can also store function objects in data structures like lists and dictionaries. Let’s
write some functions that do the same things as the methods in our original Python and
store them in a dictionary to represent a square (Figure 2.2):



2.1 Objects 9

as text
"it's all just bytes" as image old_x = x


x = 2 * x + 1

as instructions

bytes

74 69 73 27 61 20 6C 6C 6A 20 73 75 20 74 79 62 65 74 0A 73

Figure 2.1: Bytes can be interpreted as text, images, instructions, and more.

name
side
perim
area

square

"sq"
2
square_perim()
square_area()

name
radius
perim
area

circle

"ci"
3
circle_perim()
circle_area()

Figure 2.2: Using dictionaries to emulate objects.

def square_perimeter(thing):
return 4 * thing["side"]

def square_area(thing):
return thing["side"] ** 2

def square_new(name, side):
return {

"name": name,
"side": side,
"perimeter": square_perimeter,
"area": square_area

}

If we want to use one of the “methods” in this dictionary, we call it like this:
def call(thing, method_name):

return thing[method_name](thing)

examples = [square_new("sq", 3), circle_new("ci", 2)]
for ex in examples:

n = ex["name"]
p = call(ex, "perimeter")
a = call(ex, "area")
print(f"{n} {p:.2f} {a:.2f}")

The function call looks up the function stored in the dictionary, then calls that function with
the dictionary as its first object; in other words, instead of using obj.meth(arg) we use
obj["meth"](obj, arg). Behind the scenes, this is (almost) how objects actually work.



10 2 Objects and Classes

We can think of an object as a special kind of dictionary. A method is just a function that
takes an object of the right kind as its first parameter (typically called self in Python).

2.2 Classes
One problem with implementing objects as dictionaries is that it allows every single object
to behave slightly differently. In practice, we want objects to store different values (e.g.,
different squares to have different sizes) but the same behaviors (e.g., all squares should
have the same methods). We can implement this by storing the methods in a dictionary
called Square that corresponds to a class and having each individual square contain a ref-
erence to that higher-level dictionary (Figure 2.3). In the code below, that special reference
uses the key "_class":
def square_perimeter(thing):

return 4 * thing["side"]

def square_area(thing):
return thing["side"] ** 2

Square = {
"perimeter": square_perimeter,
"area": square_area,
"_classname": "Square"

}

def square_new(name, side):
return {

"name": name,
"side": side,
"_class": Square

}

Calling a method now involves one more lookup because we have to go from the object
to the class to the method, but once again we call the “method” with the object as the first
argument:

name
side

perim
area

square
"sq"
2

square_perim()
square_area()

name
radius

perim
area

circle
"ci"
3

circle_perim()
circle_area()

_class

_class

_classname "square"

_classname "circle"

Square

Circle

Figure 2.3: Using dictionaries to emulate classes.



2.3 Arguments 11

def call(thing, method_name):
return thing["_class"][method_name](thing)

examples = [square_new("sq", 3), circle_new("ci", 2)]
for ex in examples:

n = ex["name"]
p = call(ex, "perimeter")
a = call(ex, "area")
c = ex["_class"]["_classname"]
print(f"{n} is a {c}: {p:.2f} {a:.2f}")

As a bonus, we can now reliably identify objects’ classes and ask whether two objects are
of the same class or not by checking what their "_class" keys refer to.

Arguments vs. Parameters

Many programmers use the words argument and parameter interchangeably, but
to make our meaning clear, we call the values passed into a function its arguments
and the names the function uses to refer to them as its parameters. Put another way,
parameters are part of the definition, and arguments are given when the function is
called.

2.3 Arguments
The methods we have defined so far operate on the values stored in the object’s dictionary,
but none of them take any extra arguments as input. Implementing this is a little bit tricky
because different methods might need different numbers of arguments. We could define
functions call_0, call_1, call_2 and so on to handle each case, but like most modern
languages, Python gives us a better way. If we define a parameter in a function with a
leading *, it captures any “extra” values passed to the function that don’t line up with named
parameters. Similarly, if we define a parameter with two leading stars **, it captures any
extra named parameters:
def show_args(title, *args, **kwargs):

print(f"{title} args '{args}' and kwargs '{kwargs}'")

show_args("nothing")
show_args("one unnamed argument", 1)
show_args("one named argument", second="2")
show_args("one of each", 3, fourth="4")

nothing args '()' and kwargs '{}'
one unnamed argument args '(1,)' and kwargs '{}'
one named argument args '()' and kwargs '{'second': '2'}'
one of each args '(3,)' and kwargs '{'fourth': '4'}'

This mechanism is sometimes referred to as varargs (short for “variable arguments”).
A complementary mechanism called spreading allows us to take a list or dictionary full of
arguments and spread them out in a call to match a function’s parameters:



12 2 Objects and Classes

def show_spread(left, middle, right):
print(f"left {left} middle {middle} right {right}")

all_in_list = [1, 2, 3]
show_spread(*all_in_list)

all_in_dict = {"right": 30, "left": 10, "middle": 20}
show_spread(**all_in_dict)

left 1 middle 2 right 3
left 10 middle 20 right 30

With these tools in hand, let’s add a method to our Square class to tell us whether a
square is larger than a user-specified size:
def square_larger(thing, size):

return call(thing, "area") > size

Square = {
"perimeter": square_perimeter,
"area": square_area,
"larger": square_larger,
"_classname": "Square"

}

The function that implements this check for circles looks exactly the same:
def circle_larger(thing, size):

return call(thing, "area") > size

We then modify call to capture extra arguments in *args and spread them into the function
being called:
def call(thing, method_name, *args):

return thing["_class"][method_name](thing, *args)

Our tests show that this works:
examples = [square_new("sq", 3), circle_new("ci", 2)]
for ex in examples:

result = call(ex, "larger", 10)
print(f"is {ex['name']} larger? {result}")

is sq larger? False
is ci larger? True

However, we now have two functions that do exactly the same thing—the only difference
between them is their names. Anything in a program that is duplicated in several places
will eventually be wrong in at least one, so we need to find some way to share this code.

2.4 Inheritance
The tool we want is inheritance. To see how this works in Python, let’s add a method called
density to our original Shape class that uses other methods defined by the class



2.4 Inheritance 13

class Shape:
def __init__(self, name):

self.name = name

def perimeter(self):
raise NotImplementedError("perimeter")

def area(self):
raise NotImplementedError("area")

def density(self, weight):
return weight / self.area()

examples = [Square("sq", 3), Circle("ci", 2)]
for ex in examples:

n = ex.name
d = ex.density(5)
print(f"{n}: {d:.2f}")

sq: 0.56
ci: 0.40

To enable our dictionary-based “classes” to do the same thing, we create a dictionary
to represent a generic shape and give it a “method” to calculate density:
def shape_density(thing, weight):

return weight / call(thing, "area")

Shape = {
"density": shape_density,
"_classname": "Shape",
"_parent": None

}

We then add another specially-named field to the dictionaries for “classes” like Square
to keep track of their parents:
Square = {

"perimeter": square_perimeter,
"area": square_area,
"_classname": "Square",
"_parent": Shape

}

and modify the call function to search for the requested method (Figure 2.4):
def call(thing, method_name, *args):

method = find(thing["_class"], method_name)
return method(thing, *args)

def find(cls, method_name):
while cls is not None:

if method_name in cls:
return cls[method_name]

cls = cls["_parent"]
raise NotImplementedError("method_name")



14 2 Objects and Classes

name
side

perim
area

square
"sq"
2

square_perim()
square_area()

name
radius

perim
area

circle
"ci"
3

circle_perim()
circle_area()

_class

_class

_classname "square"

_classname "circle"

Square

Circle

_parent

_parent

density shape_density()
_classname "shape"

Shape

_parent

Figure 2.4: Using dictionary search to implement inheritance.

A simple test shows that this is working as intended:
examples = [square_new("sq", 3), circle_new("ci", 2)]
for ex in examples:

n = ex["name"]
d = call(ex, "density", 5)
print(f"{n}: {d:.2f}")

sq: 0.56
ci: 0.40

We do have one task left, though: we need to make sure that when a square or circle
is made, it is made correctly. In short, we need to implement constructors. We do this
by giving the dictionaries that implement classes a special key _new whose value is the
function that builds something of that type:
def shape_new(name):

return {
"name": name,
"_class": Shape

}

Shape = {
"density": shape_density,
"_classname": "Shape",
"_parent": None,
"_new": shape_new

}

In order to make an object, we call the function associated with its _new key:
def make(cls, *args):

return cls["_new"](*args)

That function is responsible for upcalling the constructor of its parent. For example, the
constructor for a square calls the constructor for a generic shape and adds square-specific
values using | to combine two dictionaries:



2.5 Summary 15

def square_new(name, side):
return make(Shape, name) | {

"side": side,
"_class": Square

}

Square = {
"perimeter": square_perimeter,
"area": square_area,
"_classname": "Square",
"_parent": Shape,
"_new": square_new

}

Of course, we’re not done until we test it:
examples = [make(Square, "sq", 3), make(Circle, "ci", 2)]
for ex in examples:

n = ex["name"]
d = call(ex, "density", 5)
print(f"{n}: {d:.2f}")

sq: 0.56
ci: 0.40

2.5 Summary
We have only scratched the surface of Python’s object system.Multiple inheritance, class
methods, static methods, and monkey patching are powerful tools, but they can all be
understood in terms of dictionaries that contain references to properties, functions, and
other dictionaries (Figure 2.5).

class

object

methods

attributes

defines

has

instance of

contract

respects

dictionary

dictionarystored

in

refers

to

constructor

includes

stored

in

Figure 2.5: Concept map for implementing objects and classes.



16 2 Objects and Classes

2.6 Exercises
Handling Named Arguments
The final version of call declares a parameter called *args to capture all the positional
arguments of the method being called and then spreads them in the actual call. Modify it to
capture and spread named arguments as well.

Multiple Inheritance
Implement multiple inheritance using dictionaries. Does your implementation look methods
up in the same order as Python would?

Class Methods and Static Methods
1. Explain the differences between class methods and static methods.

2. Implement both using dictionaries.

Reporting Type
Python type method reports the most specific type of an object, while isinstance deter-
mines whether an object inherits from a type either directly or indirectly. Add your own
versions of both to dictionary-based objects and classes.

Using Recursion
A recursive function is one that calls itself, either directly or indirectly. Modify the find
function that finds a method to call so that it uses recursion instead of a loop. Which version
is easier to understand? Which version is more efficient?

Method Caching
Our implementation searches for the implementation of a method every time that method
is called. An alternative is to add a cache to each object to save the methods that have
been looked up before. For example, each object could have a special key called _cache
whose value is a dictionary. The keys in that dictionary are the names of methods that have
been called in the past, and the values are the functions that were found to implement
those methods. Add this feature to our dictionary-based objects. How much more complex
does it make the code? How much extra storage space does it need compared to repeated
lookup?



3
Finding Duplicate Files

• A hash function creates a fixed-size value from an arbitrary sequence of bytes.

• Use big-oh notation to estimate the running time of algorithms.

• The output of a hash function is deterministic but not easy to predict.

• A good hash function’s output is evenly distributed.

• A large cryptographic hash can be used to uniquely identify a file’s contents.

Terms defined: big-oh notation, binary mode, bucket, collision (in hashing),
cryptographic hash function, hash code, hash function, hexadecimal, SHA-256
(hash function), streaming API, time complexity

Suppose we want to find duplicated files, such as extra copies of photos or data sets.
People often rename files, so we must compare their contents, but this will be slow if we
have a lot of files.

We can estimate how slow “slow” will be with a simple calculation. N objects can be
paired in N(N − 1) ways. If we remove duplicate pairings (i.e., if we count A-B and B-A
as one pair) then there are N(N − 1)/2 = (N2 − N)/2 distinct pairs. As N gets large,
this value is approximately proportional to N2. A computer scientist would say that the
time complexity of our algorithm is O(N2), which is pronounced “big-oh of N squared”.
In simpler terms, when the number of files doubles, the running time roughly quadruples,
which means the time per file increases as the number of files increases.

Slowdown like this is often unavoidable, but in our case there’s a better way. If we
generate a shorter identifier for each file that depends only on the bytes it contains, we can
group together the files that have the same identifier and only compare the files within a
group. This approach is faster because we only do the expensive byte-by-byte comparison
on files that might be equal. And as we’ll see, if we are very clever about how we generate
identifiers then we can avoid byte-by-byte comparisons entirely.

3.1 Getting Started
We’ll start by implementing the inefficient N2 approach so that we can compare our later
designs to it. The short program below takes a list of filenames from the command line,
finds duplicates, and prints the matches:
def find_duplicates(filenames):

matches = []
for left in filenames:

for right in filenames:
if same_bytes(left, right):

matches.append((left, right))
return matches

17



18 3 Finding Duplicate Files

if __name__ == "__main__":
duplicates = find_duplicates(sys.argv[1:])
for (left, right) in duplicates:

print(left, right)

This program uses a function called same_bytes that reads two files and compares them
byte by byte:
def same_bytes(left_name, right_name):

left_bytes = open(left_name, "rb").read()
right_bytes = open(right_name, "rb").read()
return left_bytes == right_bytes

Notice that the files are opened in binary mode using "rb" instead of the usual "r". As
we’ll see in Chapter 17, this tells Python to read the bytes exactly as they are rather than
trying to convert them to characters.

To test this program and the others we’re about to write, we create a tests directory
with six files:

Filename a1.txt a2.txt a3.txt b1.txt b2.txt c1.txt
Content aaa aaa aaa bb bb c

We expect the three a files and the two b files to be reported as duplicates. There’s no
particular reason for these tests—we just have to start somewhere. Our first test looks like
this:
python brute_force_1.py tests/*.txt

tests/a1.txt tests/a1.txt
tests/a1.txt tests/a2.txt
tests/a1.txt tests/a3.txt
tests/a2.txt tests/a1.txt
tests/a2.txt tests/a2.txt
tests/a2.txt tests/a3.txt
tests/a3.txt tests/a1.txt
tests/a3.txt tests/a2.txt
tests/a3.txt tests/a3.txt
tests/b1.txt tests/b1.txt
tests/b1.txt tests/b2.txt
tests/b2.txt tests/b1.txt
tests/b2.txt tests/b2.txt
tests/c1.txt tests/c1.txt

Our program’s output is correct but not useful: every file is reported as being identical
to itself, and every match of different files is reported twice. Let’s fix the nested loop in
find_duplicates so that we only check potentially differing pairs once (Figure 3.1):
def find_duplicates(filenames):

matches = []
for i_left in range(len(filenames)):

left = filenames[i_left]
for i_right in range(i_left):

right = filenames[i_right]
if same_bytes(left, right):

matches.append((left, right))
return matches



3.2 Hashing Files 19

1

2

3

0

0 1 2 3

i_left

i_
rig

ht

Figure 3.1: Scoping the inner loop to produce unique combinations.

3.2 Hashing Files
Instead of comparing every file against every other, let’s process each file once to produce
a short identifier that depends only on the file’s contents and then only compare files that
have the same identifier, i.e., that might be equal. If files are evenly divided into g groups
then each group will contain roughly N/g files, so the total work will be roughly O(g(N/g)2)
(i.e., g groups times (N/g)2 comparisons within each group). Simplifying, this is N2/g, so
as the number of groups grows, and the overall running time should decrease (Figure 3.2).

a1.txt
a2.txt
a3.txt
b1.txt
b2.txt
c1.txt

aaa
aaa
aaa
bb
bb
c

6
6
6

10
10
5

filename contents hash code

Figure 3.2: Grouping by hash code reduces comparisons from 15 to 4.

We can construct IDs for files using a hash function to produce a hash code. Since
bytes are just numbers, we can create a very simple hash function by adding up the bytes
in a file and taking the remainder modulo some number:
def naive_hash(data):

return sum(data) % 13

Here’s a quick test that calculates the hash code for successively longer substrings of
the word "hashing":
example = bytes("hashing", "utf-8")
for i in range(1, len(example) + 1):

substring = example[:i]
hash = naive_hash(substring)
print(f"{hash:2} {substring}")

0 b'h'
6 b'ha'
4 b'has'
4 b'hash'
5 b'hashi'



20 3 Finding Duplicate Files

0 2 4 6 8 10 12
0

1000

2000

3000

hash

co
un

t

Figure 3.3: Distribution of hash codes per line in Dracula.

0 2 4 6 8 10 12
0

200

400

600

800

1000

hash

co
un

t

Figure 3.4: Distribution of hash codes per unique line in Dracula.

11 b'hashin'
10 b'hashing'

The output seems random, but is it? As a more stringent test, let’s try hashing every
line of text in the Project Gutenberg1 version of the novel Dracula and plot the distribution
(Figure 3.3).

Most of the buckets are approximately the same height, but why is there a peak at
zero? Our big-oh estimate of how efficient our algorithm would be depended on files being
distributed evenly between groups; if that’s not the case, our code won’t be as fast as we
hoped.

After a bit of digging, it turns out that the text file we’re processing uses a blank line to
separate paragraphs. These hash to zero, so the peak reflects an unequal distribution in
our data. If we plot the distribution of hash codes of unique lines, the result is more even
(Figure 3.4).

1https://www.gutenberg.org/

https://www.gutenberg.org


3.3 Better Hashing 21

Hashing is a tremendously powerful tool: for example, Python’s dictionaries hash their
keys to make lookup fast. Now that we can hash files, we can build a dictionary with hash
codes as keys and sets of filenames as values. The code that does this is shown below;
each time it calculate a hash code, it checks to see if that value has been seen before. If
not, it creates a new entry in the groups dictionary with the hash code as its key and an
empty set as a value. It can then be sure that there’s a set to add the filename to:
def find_groups(filenames):

groups = {}
for fn in filenames:

data = open(fn, "rb").read()
hash_code = naive_hash(data)
if hash_code not in groups:

groups[hash_code] = set()
groups[hash_code].add(fn)

return groups

We can now re-use most of the code we wrote earlier to find duplicates within each
group:
groups = find_groups(sys.argv[1:])
for filenames in groups.values():

duplicates = find_duplicates(list(filenames))
for (left, right) in duplicates:

print(left, right)

tests/a2.txt tests/a1.txt
tests/a3.txt tests/a1.txt
tests/a3.txt tests/a2.txt
tests/b1.txt tests/b2.txt

3.3 Better Hashing
Let’s go back to the formula O(N2/g) that tells us how much work we have to do if we have
divided N files between g groups. If we have exactly as many groups as files—i.e., if g is
equal to N—then the work to process N files would be O(N2/N) = O(N), which means
that the work will be proportional to the number of files. We have to read each file at least
once anyway, so we can’t possibly do better than this, but how can we ensure that each
unique file winds up in its own group?

The answer is to use a cryptographic hash function. The output of such a function
is completely deterministic: given the same bytes in the same order, it will always produce
the same output. However, the output is distributed like a uniform random variable: each
possible output is equally likely, which ensures that files will be evenly distributed between
groups.

Cryptographic hash functions are hard to write, and it’s very hard to prove that a partic-
ular algorithm has the properties we require. We will therefore use a function from Python’s
hashing module2 that implements the SHA-256 hashing algorithm. Given some bytes as
input, this function produces a 256-bit hash, which is normally written as a 64-character
hexadecimal string. This uses the letters A-F (or a-f) to represent the digits from 10 to 15,
so that (for example) 3D5 is (3×162) + (13×161) + (5×160), or 981 in decimal:
2https://docs.python.org/3/library/hashlib.html

https://docs.python.org


22 3 Finding Duplicate Files

example = bytes("hash", "utf-8")
for i in range(1, len(example) + 1):

substring = example[:i]
hash = sha256(substring).hexdigest()
print(f"{substring}\n{hash}")

b'h'
aaa9402664f1a41f40ebbc52c9993eb66aeb366602958fdfaa283b71e64db123
b'ha'
8693873cd8f8a2d9c7c596477180f851e525f4eaf55a4f637b445cb442a5e340
b'has'
9150c74c5f92d51a92857f4b9678105ba5a676d308339a353b20bd38cd669ce7
b'hash'
d04b98f48e8f8bcc15c6ae5ac050801cd6dcfd428fb5f9e65c4e16e7807340fa

The Birthday Problem

The odds that two people share a birthday are 1/365 (ignoring February 29). The
odds that they don’t are therefore 364/365. When we add a third person, the odds
that they don’t share a birthday with either of the preceding two people are 363/365,
so the overall odds that nobody shares a birthday are (364/365)×(363/365). If we
keep going, there’s a 50% chance of two people sharing a birthday in a group of just
23 people, and a 99.9% chance with 70 people.

The same math can tell us how many files we need to hash before there’s a 50%
chance of a collision with a 256-bit hash. According to Wikipedia3, the answer is
approximately 4×1038 files. We’re willing to take that risk.

Using this library function makes our duplicate file finder much shorter:
import sys
from hashlib import sha256

def find_groups(filenames):
groups = {}
for fn in filenames:

data = open(fn, "rb").read()
hash_code = sha256(data).hexdigest()
if hash_code not in groups:

groups[hash_code] = set()
groups[hash_code].add(fn)

return groups

if __name__ == "__main__":
groups = find_groups(sys.argv[1:])
for filenames in groups.values():

print(", ".join(sorted(filenames)))

python dup.py tests/*.txt

tests/a1.txt, tests/a2.txt, tests/a3.txt
tests/b1.txt, tests/b2.txt
tests/c1.txt

3https://en.wikipedia.org/wiki/Birthday_problem

https://en.wikipedia.org


3.4 Summary 23

More importantly, our new approach scales to very large sets of files: as explained
above, we only have to look at each file once, so the running time is as good as it possibly
can be.

3.4 Summary
Figure 3.5 summarizes the key ideas in this chapter, the most important of which is that
some algorithms are intrinsically better than others.

hash function

bytesfile

hash code

from

input is

output

is

deterministic

uniformly

distributed

is

unique for

each sequence of

duplicatesmay be efficiency

improves

of detecting

big-oh

measured by

such

as

linear O(N)

quadratic O(N2)

Figure 3.5: Concept map for duplicate file detection with hashing.

3.5 Exercises
Odds of Collision
If hashes were only 2 bits long, then the chances of collision with each successive file
assuming no previous collision are:

Number of Files Odds of Collision
1 0%
2 25%
3 50%
4 75%
5 100%

A colleague of yours says this means that if we hash four files, there’s only a 75% chance
of any collision occurring. What are the actual odds?



24 3 Finding Duplicate Files

Streaming I/O
A streaming API delivers data one piece at a time rather than all at once. Read the doc-
umentation for the update method of hashing objects in Python’s hashing module4 and
rewrite the duplicate finder from this chapter to use it.

Big Oh
Chapter 1 said that as the number of components in a system grows, the complexity of the
system increases rapidly. How fast is “rapidly” in big-oh terms?

The hash Function
1. Read the documentation for Python’s built-in hash function.

2. Why do hash(123) and hash("123") work when hash([123]) raises an exception?

How Good Is SHA-256?
1. Write a function that calculates the SHA-256 hash code of each unique line of a text file.

2. Convert the hex digests of those hash codes to integers.

3. Plot a histogram of those integer values with 20 bins.

4. How evenly distributed are the hash codes? How does the distribution change as you
process larger files?

4https://docs.python.org/3/library/hashlib.html

https://docs.python.org


4
Matching Patterns

• Use globs and regular expressions to match patterns in text.

• Use inheritance to make matchers composable and extensible.

• Simplify code by having objects delegate work to other objects.

• Use the Null Object pattern to eliminate special cases in code.

• Use standard refactorings to move code from one working state to another.

• Build and check the parts of your code you are least sure of first to find out if your
design will work.

Terms defined: Chain of Responsibility pattern, child class, Extract Parent
Class refactoring, globbing, greedy matching, helper method, inheritance, lazy
matching, literal (in parsing), Null Object pattern, refactor, regular expression,
signature, technical debt, test-driven development

We used *.txt to tell the duplicate file finder of Chapter 3 which files to compare. Older
programmers (like this author) refer to this kind of pattern-matching as globbing because
early versions of Unix had a tool called glob1 to do it. Globbing was so useful that it was
quickly added to the shell, and the Python standard library includes amodule called glob2 to
match filenames in the same way. For example, 2023-*.{pdf,txt}matches 2023-01.txt
and 2023-final.pdf but not draft-2023.docx (Figure 4.1).

Globbing patterns are simpler than the regular expressions used to scrape data from
text files, but the principles are the same. This chapter therefore implements a simple ver-
sion of globbing to show how pattern-matching works in general. This matcher will only
handle the cases in Table 4.1, but as the exercises will show, our design makes it easy to
add new kinds of patterns.

2023- * . {pdf,txt}

2023- 01 . txt

2023- * . {pdf,txt}

2023- final . pdf

2023- * . {pdf,txt}

draft 2023 . docx

Figure 4.1: Examples of glob matching.

1https://en.wikipedia.org/wiki/Glob_(programming)
2https://docs.python.org/3/library/glob.html

25

https://docs.python.org
https://en.wikipedia.org


26 4 Matching Patterns

Pattern Text Match? Pattern Text Match?
abc “abc” true a*c “abc” true
ab “abc” false {a,b} “a” true
abc “ab” false {a,b} “c” false
* ”“ true {a,b} “ab” false
* “abc” true *{x,y} “abcx” true

Table 4.1: Pattern-matching cases.

4.1 Simple Patterns
Matching is conceptually simple. If the first element of the pattern matches the target string
at the current location, we check if the rest of the pattern matches what’s left of the string.
If the element doesn’t match the front of the string, or if the rest of the pattern can’t match
the rest of the string, matching fails. (This behavior makes globbing different from regular
expressions, which can match parts of strings.)

This design makes use of the Chain of Responsibility design pattern. Each matcher
matches if it can then asks the next matcher in the chain to try to match the remaining text
(Figure 4.2). Crucially, objects don’t know how long the chain after them is: they just know
whom to ask next.

In some cases we only need to knowwhat kind of matching we’re doing: for example, the
* pattern matches any characters. In other cases, though, we need some extra information,
such as the literal text "abc" or the two alternatives "pdf" and "txt". We therefore decide to
creatematching objects that can hold this extra information rather than just writing functions.

Our first matcher checks whether a piece of text like "abc" matches a string. We call
this class Lit because a fixed string of characters is sometimes called a literal, and it has
a constructor and a match method:
class Lit:

def __init__(self, chars, rest=None):
self.chars = chars
self.rest = rest

def match(self, text, start=0):
end = start + len(self.chars)
if text[start:end] != self.chars:

return False
if self.rest:

return self.rest.match(text, end)
return end == len(text)

chars is the characters to be matched, while rest is responsible for matching the rest of
the text. If rest is None, this matcher is the last one in the chain, so it must match to the
end of the target string.

2023- * . {pdf,txt}

2023- 01 . txt

Literal Any Literal Either

Figure 4.2: Matching with Chain of Responsibility.



4.1 Simple Patterns 27

The matchmethod takes the text to be matched as an input along with an optional start
parameter that indicates where matching is to start. This parameter has a default value of
0 (meaning “start at the beginning”), but if this Lit follows other matchers, they need to tell
it where to start looking. To see if this works, let’s write and run a few tests:
def test_literal_match_entire_string():

# /abc/ matches "abc"
assert Lit("abc").match("abc")

def test_literal_substring_alone_no_match():
# /ab/ doesn't match "abc"
assert not Lit("ab").match("abc")

def test_literal_superstring_no_match():
# /abc/ doesn't match "ab"
assert not Lit("abc").match("ab")

Notice that we give tests long, meaningful names to make failure reports from the test
runner easier to read.

We could go ahead and build some more matchers right away, but as [Petre2016] ex-
plains, good programmers build and check the parts of their code that they are least sure
of as early as possible to find out if their entire design is going to work or not. We there-
fore write a test to make sure that chaining works when one literal matcher is followed by
another:
def test_literal_followed_by_literal_match():

# /a/+/b/ matches "ab"
assert Lit("a", Lit("b")).match("ab")

def test_literal_followed_by_literal_no_match():
# /a/+/b/ doesn't match "ac"
assert not Lit("a", Lit("b")).match("ac")

Chaining two literal matchers together is unnecessary: we could (and probably should)
write Lit("ab") instead of Lit("a", Lit("b")). However, the fact that these two tests
pass reassures us that our design is working.

Test-Driven Development

Some programmers write the tests for a piece of code before writing the code itself.
This practice is called test-driven development, and its advocates claim that it yields
better code in less time because (a) writing tests helps people think about what the
code should do before they’re committed to a particular implementation and (b) if
people write tests first, they’ll actually write tests. However, research shows that the
order in which the tests are written doesn’t actually make a difference [Fucci2016];
what actually matters is alternating short bursts of testing and coding.

These tests for Lit pass, so we’re ready to move on to wildcards. A * character in our
pattern matches zero or more characters, so if there are no more matchers in the chain,
then this *matches to the end of the target string and match returns True right away. If there
are other matchers, on the other hand, we try matching no characters, one character, two
characters, and so on and see if those other matchers can get us to the end of the string if
we do so. If none of these possibilities succeeds, the overall match fails (Figure 4.3).



28 4 Matching Patterns

a * .txt
0

no

.txta b c

a * .txt

1 no

.txta b c

a * .txt

yes

.txta b c

2

Figure 4.3: How wildcard matching works.

class Any:
def __init__(self, rest=None):

self.rest = rest

def match(self, text, start=0):
if self.rest is None:

return True
for i in range(start, len(text)):

if self.rest.match(text, i):
return True

return False

Once again we write a few tests before moving on:
def test_any_matches_empty():

# /*/ matches ""
assert Any().match("")

def test_any_matches_entire_string():
# /*/ matches "abc"
assert Any().match("abc")

def test_any_matches_as_prefix():
# /*def/ matches "abcdef"
assert Any(Lit("def")).match("abcdef")

def test_any_matches_as_suffix():
# /abc*/ matches "abcdef"
assert Lit("abc", Any()).match("abcdef")

def test_any_matches_interior():
# /a*c/ matches "abc"
assert Lit("a", Any(Lit("c"))).match("abc")

Either/or matching works much the same way. If the first alternative matches, we try the
rest of the chain. If not, we try the second alternative, and if that doesn’t work either, we
fail:
class Either:

def __init__(self, left, right, rest=None):
self.left = left
self.right = right
self.rest = rest

def match(self, text, start=0):
return self.left.match(text, start) or \

self.right.match(text, start)



4.2 Rethinking 29

Our first few tests pass:
def test_either_two_literals_first():

# /{a,b}/ matches "a"
assert Either(Lit("a"), Lit("b")).match("a")

def test_either_two_literals_not_both():
# /{a,b}/ doesn't match "ab"
assert not Either(Lit("a"), Lit("b")).match("ab")

but further testing uncovers a bug:
def test_either_followed_by_literal_match():

# /{a,b}c/ matches "ac"
assert Either(Lit("a"), Lit("b"), Lit("c")).match("ac")

def test_either_followed_by_literal_no_match():
# /{a,b}c/ doesn't match "ax"
assert not Either(Lit("a"), Lit("b"), Lit("c")).match("ax")

======================= test session starts ========================

test_glob_problem.py F. [100%]

===================== short test summary info ======================
FAILED test_glob_problem.py::test_either_followed_by_literal_match
=================== 1 failed, 1 passed in 0.00s ====================

The problem is that Either.match isn’t using rest properly—in fact, it’s not using rest
at all because it doesn’t know what to pass it as a starting point. Instead of having match
methods return True or False, we need them to return an indication of where the next
match should start so that Either can pass that information along to rest. Before making
this change, we will clear up a bit of technical debt in our code.

4.2 Rethinking
We now have three matchers with the same interfaces. Before we do any further work, we
will refactor using a pattern called Extract Parent Class to make the relationship between
the matchers clear (Figure 4.4). At the same time, each matcher is checking to see if its
rest is None. We can simplify this by creating a class to represent “nothing here”, which is
known as the Null Object pattern.

We Didn’t Invent This

We didn’t invent any of the patterns or refactorings used in this chapter. Instead,
we learned them from books like [Gamma1994; Fowler2018; Kerievsky2004]. And
as [Tichy2010] showed, learning these patterns makes people better programmers.



30 4 Matching Patterns

Lit
__init__()
match()

Any
__init__()
match()

Either
__init__()
match()

Lit
__init__()
_match()

Any
__init__()
_match()

Either
__init__()
_match()

Null
__init__()
_match()

Match
__init__()
match() calls

Figure 4.4: Using the Extract Parent Class refactoring.

Our new parent class Match looks like this:
class Match:

def __init__(self, rest):
self.rest = rest if rest is not None else Null()

def match(self, text):
result = self._match(text, 0)
return result == len(text)

Match.rest requires every child class to have a helper method called _match that returns
the location from which searching is to continue. Match.match checks whether the entire
match reaches the end of the target string and returns True or False as appropriate.

Our new Null Object class looks like this:
class Null(Match):

def __init__(self):
self.rest = None

def _match(self, text, start):
return start

Null objects must be at the end of the matching chain, i.e., their rest must be None, so
we remove the rest parameter from the class’s constructor and pass None up to the parent
constructor every time. Since Null objects don’t match anything, Null._match immediately
returns whatever starting point it was given. Every other matcher can now pass responsi-
bility down the chain without having to test whether it’s the last matcher in line or not.

With these changes in place, our literal matcher becomes:
class Lit(Match):

def __init__(self, chars, rest=None):
super().__init__(rest)
self.chars = chars

def _match(self, text, start):
end = start + len(self.chars)
if text[start:end] != self.chars:

return None
return self.rest._match(text, end)

Lit’s constructor calls the constructor of its parent class to initialize the things that all
classes share, then adds the data specific to this class. It returns None for “no match” or
whatever self.rest returns If this object’s rest is an instance of Null, this result will be
the index after the overall match.



4.3 Summary 31

As before, the matcher for * checks what happens if it matches an ever-larger part of
the target string:
class Any(Match):

def __init__(self, rest=None):
super().__init__(rest)

def _match(self, text, start):
for i in range(start, len(text) + 1):

end = self.rest._match(text, i)
if end == len(text):

return end
return None

(The exercises will ask why loop has to run to len(text) + 1.) Finally, the either/or matcher
that prompted this refactoring becomes:
class Either(Match):

def __init__(self, left, right, rest=None):
super().__init__(rest)
self.left = left
self.right = right

def _match(self, text, start):
for pat in [self.left, self.right]:

end = pat._match(text, start)
if end is not None:

end = self.rest._match(text, end)
if end == len(text):

return end
return None

Looping over the left and right alternative saves us from repeating code or introducing a
helper method. It also simplifies the handling of more than two options, which we explore
in the exercises.

Crucially, none of the existing tests change because none of the matching classes’
constructors changed and the signature of the match method (which they now inherit
from the generic Match class) stayed the same as well. We should add some tests for
Null, but we have now met our original goal, and as the exercises will show we can easily
add matchers for other kinds of patterns.

4.3 Summary
Figure 4.5 summarizes the key ideas in this chapter; we will see the Null Object and Chain
of Responsibility design patterns again.



32 4 Matching Patterns

glob pattern text

matchers

class base class

Chain of
Responsiblity

is a

matches

written as
made up of

each implemented as

of

cooperate

using

Null Object ends

with

Figure 4.5: Regular expression matching concept map.

4.4 Exercises
Looping
Rewrite the matchers so that a top-level object manages a list of matchers, none of which
know about any of the others. Is this design simpler or more complicated than the Chain of
Responsibility design?

Length Plus One
Why does the upper bound of the loop in the final version of Any run to len(text) + 1?

Find One or More
Extend the regular expression matcher to support +, meaning “match one or more charac-
ters”.

Match Sets of Characters
1. Add a new matching class that matches any character from a set, so that

Charset('aeiou') matches any lower-case vowel.

2. Create a matcher that matches a range of characters. For example, Range("a", "z")
matches any single lower-case Latin alphabetic character. (This is just a convenience
matcher: ranges can always be spelled out in full.)

3. Write some tests for your matchers.

Exclusion
1. Create amatcher that doesn’t match a specified pattern. For example, Not(Lit("abc"))

only succeeds if the text isn’t “abc”.

2. Write some tests for it.



4.4 Exercises 33

Make Repetition More Efficient
Rewrite Any so that it does not repeatedly re-match text.

Multiple Alternatives
1. Modify Either so that it can match any number of sub-patterns, not just two.

2. Write some tests for it.

3. What does your implementation do when no sub-patterns are specified?

Returning Matches
Modify the matcher so that it returns the substrings that matched each part of the expres-
sion. For example, when *.txtmatches name.txt, the library should return some indication
that * matched the string "name".

Alternative Matching
The tool we have built implements lazymatching, i.e., the * character matches the shortest
string it can that results in the overall pattern matching. Modify the code to do greedy
matching instead, and combine it with the solution to the previous exercise for testing.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


5
Parsing Text

• Parsing transforms text that’s easy for people to read into objects that are easy for
computers to work with.

• A grammar defines the textual patterns that a parser recognizes.

• Most parsers tokenize input text and then analyze the tokens.

• Most parsers need to implement some form of precedence to prioritize different
patterns.

• Operations like addition and function call work just like user-defined functions.

• Programs can overload built-in operators by defining specially-named methods that
are recognized by the compiler or interpreter.

Terms defined: abstract syntax tree, concrete class, CSV, grammar, JSON,
operator overloading, parser, token, tokenizer, YAML

We constructed objects to match patterns in Chapter 4, but an expression like
"2023-*{pdf,txt}" is a lot easier to read and write than code like Lit("2023-",
Any(Either("pdf", "txt"))). If we want to use the former, we need a parser to con-
vert those human-readable strings into machine-comprehensible objects.

Table 5.1 shows the grammar our parser will handle. When we are done, our parser
should be able to recognize that 2023-*.{pdf,txt} means the literal 2023-, any charac-
ters, a literal ., and then either a literal pdf or a literal txt.

Please Don’t Write Parsers

Languages that are comfortable for people to read and write are usually difficult for
computers to understand and vice versa, so we need parsers to translate the former
into the latter. However, the world doesn’t need more file formats: please use CSV,
JSON, YAML, or something else that already has an acronym rather than inventing
something of your own.

5.1 Tokenizing
Most parsers are written in two parts (Figure 5.1). The first stage groups characters into
atoms of text called “tokens“, which are meaningful pieces of text like the digits making up
a number or the letters making up a variable name. Our grammar’s tokens are the special
characters ,, {, }, and *. Any sequence of one or more other characters is a single multi-
letter token. This classification determines the design of our tokenizer:

35



36 5 Parsing Text

Meaning Character
Any literal character c c
Zero or more characters *
Alternatives {x,y}

Table 5.1: Glob grammar.

1. If a character is not special, then append it to the current literal (if there is one) or start
a new literal (if there isn’t).

2. If a character is special, then close the existing literal (if there is one) and create a token
for the special character. Note that the , character closes a literal but doesn’t produce
a token.

The result of tokenization is a flat list of tokens. The second stage of parsing assembles
tokens to create an abstract syntax tree (AST) that represents the structure of what was
parsed. We will re-use the classes defined in Chapter 4 for this purpose.

Before we start writing our tokenizer, we have to decide whether to implement it as a
set of functions or as one or more classes. Based on previous experience, we choose the
latter: this tokenizer is simple enough that we’ll only need a handful of functions, but one
capable of handling a language like Python would be much larger, and classes are a handy
way to group related functions together.

The main method of our tokenizer looks like this:
def tok(self, text):

self._setup()
for ch in text:

if ch == "*":
self._add("Any")

elif ch == "{":
self._add("EitherStart")

elif ch == ",":
self._add(None)

elif ch == "}":
self._add("EitherEnd")

elif ch in CHARS:
self.current += ch

else:
raise NotImplementedError(f"what is '{ch}'?")

self._add(None)
return self.result

This method calls self._setup() at the start so that the tokenizer can be re-used. It
doesn’t call self._add() for regular characters; instead, it creates a Lit entry when it

"2023-*{pdf,txt}"

["Lit", "2023-"]

["Any"]

["Either", "pdf", "txt"]

Lit

"2023-" Any

Either

"pdf" "txt" Null

tokenizer parser

Figure 5.1: Stages in parsing pipeline.



5.1 Tokenizing 37

A
*
{
B
,
C
}

"A*{B,C}"

current result

"A" [ ]
""

ch

[["Lit", "A"], ["Any"]]
"" [["Lit", "A"], ["Any"], ["EitherStart"]]

"B" [["Lit", "A"], ["Any"], ["EitherStart"]]
"" [["Lit", "A"], ["Any"], ["EitherStart"], ["Lit", B"]]

"C" [["Lit", "A"], ["Any"], ["EitherStart"], ["Lit", B"]]
"" [["Lit", "A"], ["Any"], ["EitherStart"],


 ["Lit", B"], ["Lit", "C"], ["EitherEnd"]]

Figure 5.2: Steps in tokenizing a string.

encounters a special character (i.e., when the current literal ends) and after all the input
has been parsed (to capture the last literal).

The method self._add adds the current thing to the list of tokens. As a special case,
self._add(None) means “add the literal but nothing else” (Figure 5.2):
def _add(self, thing):

if len(self.current) > 0:
self.result.append(["Lit", self.current])
self.current = ""

if thing is not None:
self.result.append([thing])

Finally, we work backward to initialize the tokenizer when we construct it and to define
the set of characters that make up literals:
CHARS = set(string.ascii_letters + string.digits)

class Tokenizer:
def __init__(self):

self._setup()

def _setup(self):
self.result = []
self.current = ""

A Simple Constant

The code fragment above defines CHARS to be a set containing ASCII letters and digits.
We use a set for speed: if we used a list, Python would have to search through it each
time we wanted to check a character, but finding something in a set is much faster.
Chapter 17 will explain why the word “ASCII” appears in string library’s definition of
characters, but using it and string.digits greatly reduces the chances of us typing
"abcdeghi...yz" rather than "abcdefghi...yz". (The fact that it took you a moment
to spot the missing letter ‘f’ proves this point.)

We can now write a few tests to check that the tokenizer is producing a list of lists in
which each sub-list represents a single token:



38 5 Parsing Text

def test_tok_empty_string():
assert Tokenizer().tok("") == []

def test_tok_any_either():
assert Tokenizer().tok("*{abc,def}") == [

["Any"],
["EitherStart"],
["Lit", "abc"],
["Lit", "def"],
["EitherEnd"],

]

5.2 Parsing
We now need to turn the list of tokens into a tree. Just as we used a class for tokenizing,
we will create one for parsing and give it a _parse method to start things off. This method
doesn’t do any conversion itself. Instead, it takes a token off the front of the list and figures
out which method handles tokens of that kind:
def _parse(self, tokens):

if not tokens:
return Null()

front, back = tokens[0], tokens[1:]
if front[0] == "Any": handler = self._parse_Any
elif front[0] == "EitherStart": handler = self._parse_EitherStart
elif front[0] == "Lit": handler = self._parse_Lit
else:

assert False, f"Unknown token type {front}"

return handler(front[1:], back)

The handlers for Any and Lit are straightforward:
def _parse_Any(self, rest, back):

return Any(self._parse(back))

def _parse_Lit(self, rest, back):
return Lit(rest[0], self._parse(back))

Either is a little messier. We didn’t save the commas, so we’ll just pull two tokens and
store them after checking to make sure that we actually have two tokens:
def _parse_EitherStart(self, rest, back):

if (
len(back) < 3
or (back[0][0] != "Lit")
or (back[1][0] != "Lit")
or (back[2][0] != "EitherEnd")

):
raise ValueError("badly-formatted Either")

left = Lit(back[0][1])
right = Lit(back[1][1])
return Either([left, right], self._parse(back[3:]))



5.2 Parsing 39

An alternative approach is to take tokens from the list until we see an EitherEndmarker:
def _parse_EitherStart(self, rest, back):

children = []
while back and (back[0][0] == "Lit"):

children.append(Lit(back[0][1]))
back = back[1:]

if not children:
raise ValueError("empty Either")

if back[0][0] != "EitherEnd":
raise ValueError("badly-formatted Either")

return Either(children, self._parse(back[1:]))

This achieves the same thing in the two-token case but allows us to write alternatives
with more options without changing the code (assuming you solved the “Multiple Alterna-
tives” exercise in Chapter 4). Tests confirm that we’re on the right track:
def test_parse_either_two_lit():

assert Parser().parse("{abc,def}") == Either(
[Lit("abc"), Lit("def")]

)

This test assumes we can compare Match objects using ==, just as we would compare
numbers or strings. so we add a __eq__ method to our classes:
class Match:

def __init__(self, rest):
self.rest = rest if rest else Null()

def __eq__(self, other):
return (other is not None and

self.__class__ == other.__class__ and
self.rest == other.rest)

class Lit(Match):
def __init__(self, chars, rest=None):

super().__init__(rest)
self.chars = chars

def __eq__(self, other):
return super().__eq__(other) and (

self.chars == other.chars
)

Since we’re using inheritance to implement our matchers, we write the check for equality
in two parts. The parent class Match performs the checks that all classes need to perform
(in this case, that the objects being compared have the same concrete class). If the child
class needs to do any more checking (for example, that the characters in two Lit objects
are the same) it calls up to the parent method first, then adds its own tests.

They’re Just Methods

Operator overloading relies on the fact that when Python sees a == b it calls
a.__eq__(b). Similarly, a + b is “just” a call to a.__add__(b), so if we create methods
with the right names, we can manipulate objects using familiar operations.



40 5 Parsing Text

5.3 Summary
Figure 5.3 summarizes the key ideas in this chapter. Once again, while it’s useful to un-
derstand how parsers work, please don’t create new data formats that need new parsers if
you can possibly avoid it.

lexer

text tokens

literal symbol

parser formal
language

uses

turns

can be

into

turns

for

ASTinto

Figure 5.3: Parser concept map.

5.4 Exercises
Escape Characters
Modify the parser to handle escape characters, so that (for example) \* is interpreted as a
literal ‘*’ character and \\ is interpreted as a literal backslash.

Character Sets
Modify the parser so that expressions like [xyz] are interpreted to mean “match any one
of those three characters”. (Note that this is a shorthand for {x,y,z}.)

Negation
Modify the parser so that [!abc] is interpreted as “match anything except one of those
three characters”.

Nested Lists
Write a function that accepts a string representing nested lists containing numbers and
returns the actual list. For example, the input [1, [2, [3, 4], 5]] should produce the
corresponding Python list.



5.4 Exercises 41

Simple Arithmetic
Write a function that accepts a string consisting of numbers and the basic arithmetic oper-
ations +, -, *, and /, and produces a nested structure showing the operations in the correct
order. For example, 1 + 2 * 3 should produce ["+", 1, ["*", 2, 3]].



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


6
Running Tests

• Functions are objects you can save in data structures or pass to other functions.

• Python stores local and global variables in dictionary-like structures.

• A unit test performs an operation on a fixture and passes, fails, or produces an error.

• A program can use introspection to find functions and other objects at runtime.

Terms defined: actual result (of test), assertion, dynamic typing, error (result of
test), exception, expected result (of test), failure (result of test), fixture, global,
local, pass (result of test), pretty print, raise (an exception), register (in code),
scope, unit test

Not all software needs rigorous testing: for example, it’s OK to check a one-off data
analysis script by looking at the output of each stage as we add it. But we should all be
grateful that 98% of the lines of code in the SQLite1 database are there to make the other
2% always do the right thing.

The examples in this book lie somewhere between these two extremes. Together, they
are over 7000 lines long; to make sure they work correctly, we wrote several hundred unit
tests using pytest2. We used this framework because it makes tests easier to write, and
because it runs them in a reliable, repeatable way [Meszaros2007; Aniche2022]. Under-
standing how tools like this work will help you use them more effectively, and will reinforce
one of the big ideas of this book: programs are just another kind of data.

6.1 Storing and Running Tests
As we said in Chapter 2, a function is just an object that we can assign to a variable. We
can also store them in lists just like numbers or strings (Figure 6.1):
def first():

print("First")

def second():
print("Second")

def third():
print("Third")

everything = [first, second, third]
for func in everything:

func()

1https://sqlite.org/
2https://docs.pytest.org/

43

https://sqlite.org
https://docs.pytest.org


44 6 Running Tests

everything

def first():

    print("First")


def second():

    print("Second")


def third():

    print("Third")


Figure 6.1: A list of functions.

First
Second
Third

However, we have to be able to call the functions in the same way in order for this trick to
work, which means they must have the same signature:
def zero():

print("zero")

def one(value):
print("one", value)

for func in [zero, one]:
func()

zero
Traceback (most recent call last):

File "/sdx/test/signature.py", line 8, in <module>
func()

TypeError: one() missing 1 required positional argument: 'value'

Now suppose we have a function we want to test:
def sign(value):

if value < 0:
return -1

else:
return 1

and some functions that test it (two of which contain deliberate errors):
def test_sign_negative():

assert sign(-3) == -1

def test_sign_positive():
assert sign(19) == 1

def test_sign_zero():
assert sign(0) == 0

def test_sign_error():
assert sgn(1) == 1

Each test does something to a fixture (such as the number 19) and uses assertions
to compare the actual result against the expected result. The outcome of each test can
be:



6.1 Storing and Running Tests 45

• Pass: the test subject works as expected.

• Fail: something is wrong with the test subject.

• Error: something is wrong in the test itself, which means we don’t know if the thing we’re
testing is working properly or not.

We can implement this classification scheme as follows:

1. If a test function completes without raising any kind of exception, it passes. (We don’t
care if it returns something, but by convention tests don’t return a value.)

2. If the function raises an AssertionError exception, then the test has failed. Python’s
assert statement does this automatically when the condition it is checking is false, so
almost all tests use assert for checks.

3. If the function raises any other kind of exception, then we assume the test itself is broken
and count it as an error.

Translating these rules into code gives us the function run_tests that runs every test
in a list and counts how many outcomes of each kind it sees:
def run_tests(all_tests):

results = {"pass": 0, "fail": 0, "error": 0}
for test in all_tests:

try:
test()
results["pass"] += 1

except AssertionError:
results["fail"] += 1

except Exception:
results["error"] += 1

print(f"pass {results['pass']}")
print(f"fail {results['fail']}")
print(f"error {results['error']}")

We use run_tests by putting all of our test functions into a list and passing that to the
test runner:
TESTS = [

test_sign_negative,
test_sign_positive,
test_sign_zero,
test_sign_error

]

run_tests(TESTS)

pass 2
fail 1
error 1



46 6 Running Tests

Independence

Our function runs tests in the order they appear in the list. The tests should not rely on
that: every unit test should work independently so that an error or failure in an early
test doesn’t affect other tests’ behavior.

6.2 Finding Functions
Making lists of functions is clumsy and error-prone: sooner or later we’ll add a function to
TESTS twice or forget to add it at all. We’d therefore like our test runner to find tests for itself,
which it can do by exploiting the fact that Python stores variables in a structure similar to a
dictionary.

Let’s run the Python interpreter and call the globals function. To make its output easier
to read, we will pretty-print it using Python’s pprint3 module:
import pprint
pprint.pprint(globals())

{'__annotations__ ': {},
'__builtins__ ': <module 'builtins' (built-in)>,
'__cached__ ': None,
'__doc__': None,
'__file__': '/sdx/test/globals.py',
'__loader__ ': <_frozen_importlib_external.SourceFileLoader object \

at 0x109d65290>,
'__name__': '__main__',
'__package__ ': None,
'__spec__': None,
'pprint': <module 'pprint' from \

'/sdx/conda/envs/sdxpy/lib/python3.11/pprint.py'>}

As the output shows, globals is a dictionary containing all the variables in the program’s
global scope. Since we just started the interpreter, all we see are the variables that Python
defines automatically. (By convention, Python uses double underscores for names that
mean something special to it.)

What happens when we define a variable of our own?
import pprint
my_variable = 123
pprint.pprint(globals())

{'__annotations__ ': {},
'__builtins__ ': <module 'builtins' (built-in)>,
'__cached__ ': None,
'__doc__': None,
'__file__': '/sdx/test/globals_plus.py',
'__loader__ ': <_frozen_importlib_external.SourceFileLoader object \

at 0x108039290>,
'__name__': '__main__',
'__package__ ': None,

3https://docs.python.org/3/library/pprint.html

https://docs.python.org


6.2 Finding Functions 47

'__spec__': None,
'my_variable ': 123,
'pprint': <module 'pprint' from \

'/sdx/conda/envs/sdxpy/lib/python3.11/pprint.py'>}

Sure enough, my_variable is now in the dictionary.
If function names are just variables and a program’s variables are stored in a dictionary,

we can loop over that dictionary to find all the functions whose names start with test_:
def find_tests(prefix):

for (name, func) in globals().items():
if name.startswith(prefix):

print(name, func)

find_tests("test_")

test_sign_negative <function test_sign_negative at 0x105bcd440>
test_sign_positive <function test_sign_positive at 0x105bcd4e0>
test_sign_zero <function test_sign_zero at 0x105bcd580>
test_sign_error <function test_sign_error at 0x105bcd620>

The hexadecimal numbers in the output show where each function object is stored in mem-
ory, which isn’t particularly useful unless we’re extending the language, but at least it doesn’t
take up much space on the screen.

Having a running program find things in itself like this is called introspection, and is the
key to many of the designs in upcoming chapters. Combining introspection with the pass-
fail-error pattern of the previous section gives us something that finds test functions, runs
them, and summarizes their results:
def run_tests():

results = {"pass": 0, "fail": 0, "error": 0}
for (name, test) in globals().items():

if not name.startswith("test_"):
continue

try:
test()
results["pass"] += 1

except AssertionError:
results["fail"] += 1

except Exception:
results["error"] += 1

print(f"pass {results['pass']}")
print(f"fail {results['fail']}")
print(f"error {results['error']}")

pass 2
fail 1
error 1

We could add many more features to this (and pytest4 does), but almost every modern test
runner uses this design.

4https://docs.pytest.org/

https://docs.pytest.org


48 6 Running Tests

6.3 Summary
When reviewing the ideas introduced in this chapter (Figure 6.2), it’s worth remembering
Clarke’s Third Law5, which states that any sufficiently advanced technology is indistinguish-
able from magic. The same is true of programming tricks like introspection: the code that
finds tests dynamically seems transparent to an expert who understands that code is data,
but can be incomprehensible to a novice. As we said in the discussion of comprehension
curves in Chapter 1, no piece of software can be optimal for both audiences; the only
solution to this problem is education, which is why books like this one exist. Please see
Appendix B for extra material related to these ideas.

unit test

pass fail error

actual

result


expected

result


introspection


assertions

result can be

compares

using

function

tests

found by

global
dictionary

looks instored

in

stored

in

attributes hasdocstring such

as

Figure 6.2: Concept map.

6.4 Exercises
Looping Over globals
What happens if you run this code?
for name in globals():

print(name)

What happens if you run this code instead?
name = None
for name in globals():

print(name)

Why are the two different?

5https://en.wikipedia.org/wiki/Clarke%27s_three_laws

https://en.wikipedia.org


6.4 Exercises 49

Individual Results
1. Modify the test framework so that it reports which tests passed, failed, or had errors and

also reports a summary of how many tests produced each result.

2. Write unit tests to check that your answer works correctly.

Setup and Teardown
Testing frameworks often allow programmers to specify a setup function that is to be run
before each test and a corresponding teardown function that is to be run after each test.
(setup usually recreates complicated test fixtures, while teardown functions are sometimes
needed to clean up after tests, e.g., to close database connections or delete temporary
files.)

Modify the testing tool in this chapter so that if a file of tests contains a function called
setup then the tool calls it exactly once before running each test in the file. Add a similar
way to register a teardown function.

Timing Tests
Modify the testing tool so that it records how long it takes to run each test. (The function
time.time may be useful.)

Selecting Tests
Modify the testing tool so that if a user provides -s pattern or --select pattern on the
command line then the tool only runs tests that contain the string pattern in their name.

Finding Functions
Python is dynamically typed, which means it checks the types of values as code runs. We
can do this ourselves using the type function, which shows that 3 is an integer:
print(type(3))

<class 'int'>

or that a function is a function:
def example():

pass

print(type(example))

<class 'function'>

However, built-in functions have a different type:
print(type(len))

<class 'builtin_function_or_method '>

so it’s safer to use callable to check if something can be called:



50 6 Running Tests

def example():
pass

print(callable(example), callable(len))

True True

1. Modify the test runner in this chapter so that it doesn’t try to call things whose names
start with test_ but which aren’t actually functions.

2. Should the test runner report these cases as errors?

Local Variables
Python has a function called locals that returns all the variables defined in the current
local scope.

1. Predict what the code below will print before running it. When does the variable i first
appear and is it still there in the final line of output?

2. Run the code and compare your prediction with its behavior.

def show_locals(low, high):
print(f"start: {locals()}")
for i in range(low, high):

print(f"loop {i}: {locals()}")
print(f"end: {locals()}")

show_locals(1, 3)



7
An Interpreter

• Compilers and interpreters are just programs.

• Basic arithmetic operations are just functions that have special notation.

• Programs can be represented as trees, which can be stored as nested lists.

• Interpreters recursively dispatch operations to functions that implement low-level
steps.

• Programs store variables in stacked dictionaries called environments.

• One way to evaluate a program’s design is to ask how extensible it is.

Terms defined: compiler, control flow, defensive programming, dictionary
comprehension, dynamic dispatch, environment, expression, infix notation,
interpreter, introspection, prefix notation, runtime, statement, type hint

Chapter 2 and Chapter 6 introduced the idea that programs are just data. Compilers
and interpreters are just programs too. Instead of calculating sums or drawing characters
on a screen, compilers turn text into instructions for interpreters or hardware to run.

Most real programming languages have two parts: a parser that translates the source
code into a data structure, and a runtime that executes the instructions in that data struc-
ture. Chapter 5 explored parsing; this chapter will build a runtime for a very simple inter-
preter, while Chapter 25 will look at how we can compile code so that it runs more efficiently.

Two Ways to Run Code

A compiler translates a program into runnable instructions before the program runs,
while an interpreter generates instructions on the fly as the program is running. The
differences between the two are blurry in practice: for example, Python translates the
instructions in a program into instructions as it loads files, but saves those instructions
in .pyc files to save itself work the next time it runs the program.

7.1 Expressions
Let’s start by building something that can evaluate simple expressions such as 1+2 or
abs(-3.5). We represent each expression as a list with the name of the operation as the
first item and the values to be operated on as the other items. If we havemultiple operations,
we use nested lists:
["add", 1, 2] # 1 + 2
["abs", -3.5] # abs(-3.5)
["add", ["abs", -5], 9] # abs(-5) + 9

51



52 7 An Interpreter

Notation

We use infix notation like 1+2 for historical reasons in everyday life, but our inter-
preter uses prefix notation—i.e., always puts the operations’ names first—to make
the operations easier to find. Similarly, we have special symbols for addition, subtrac-
tion, and so on for historical reasons, but our list representation doesn’t distinguish
between things like + and abs because it doesn’t need to. If our program is being
compiled into low-level instructions for a particular CPU, it’s the compiler’s job to de-
cide what can be done directly and what needs multiple instructions. For example,
early CPUs didn’t have instructions to do division, while modern CPUs may have in-
structions to do addition or multiplication on multiple values at once.

The function to add two expressions looks like this:
def do_add(args):

assert len(args) == 2
left = do(args[0])
right = do(args[1])
return left + right

Its single parameter is a list containing the two sub-expressions to be evaluated and added.
After checking that this list contains the required number of values, it calls an as-yet-
unwritten function do to evaluate those sub-expressions. (We’ve called the function do in-
stead of eval because Python already has a function called eval.) Once do_add has two
actual values, it adds them and returns the result.

do_abs implements absolute values the same way. The only differences are that it ex-
pects one value instead of two and calculates a different return value:
def do_abs(args):

assert len(args) == 1
val = do(args[0])
return abs(val)

Notice that do_abs and do_add have the same signature. As with the unit testing functions
in Chapter 6, this allows us to call them interchangeably.

So how does do work? It starts by checking if its input is an integer. If so, it returns that
value right away because integers “evaluate” to themselves. Otherwise, do checks that its
parameter is a list and then uses the first value in the list to decide what other function to
call.
def do(expr):

# Integers evaluate to themselves.
if isinstance(expr, int):

return expr

# Lists trigger function calls.
assert isinstance(expr, list)
if expr[0] == "abs":

return do_abs(expr[1:])
if expr[0] == "add":

return do_add(expr[1:])
assert False, f"Unknown operation {expr[0]}"



7.1 Expressions 53

"abs"

1 2

argsdo_abs

argsdo_add

function arguments

call stack memory

argsdo

argsdo "add"

ol
de

st
ne

w
es

t

Figure 7.1: Recursively evaluating the expression ['abs',['add',1,2]].

This lookup-and-call process is called dynamic dispatch, since the program decides
who to give work to on the fly. It leads to a situation where do calls a function like do_add,
which in turn calls do, which may then call do_add (or something other function) and so
on (Figure 7.1). Having a function call itself either directly or indirectly is called recursion,
which has a reputation for being hard to understand. As our interpreter shows, though, it’s a
natural way to solve a wide range of problems: each recursive step handles a smaller part
of the overall problem until we reach an integer or some other value that doesn’t require
any further work.

With all of this code in place, the main body of the program can read the file containing
the instructions to execute, call do, and print the result:
def main():

assert len(sys.argv) == 2, "Usage: expr.py filename"
with open(sys.argv[1], "r") as reader:

program = json.load(reader)
result = do(program)
print(f"=> {result}")

if __name__ == "__main__":
main()

The program we want to interpret is a list of lists of lists, so we can read it as JSON using
json.load rather than writing our own parser. For example, if our program file contains:
["add", ["abs", -3], 2]

then our little interpreter prints:
=> 5

This is a lot of code to do something that Python already does, but it shows what Python
(and other languages) do themselves. When we run:
python expr.py expr.tll

Python reads expr.py, turns it into a data structure with operation identifiers and con-
stants, and uses those operation identifiers to decide what functions to call. The functions
inside Python are written in C and have been compiled to machine instructions, but the
cycle of lookup and call is exactly the same as it is in our little interpreter.



54 7 An Interpreter

7.2 Variables
Doing arithmetic on constants is a start, but our programs will be easier to read if we can de-
fine variables that give names to values. We can add variables to our interpreter by passing
around a dictionary containing all the variables seen so far. Such a dictionary is sometimes
called an environment because it is the setting in which expressions are evaluated; the
dictionaries returned by the globals and locals functions introduced in Chapter 6 are both
environments.

Let’s modify do_add, do_abs, do, and main to take an environment as an extra parameter
and pass it on as needed:
def do_abs(env, args):

assert len(args) == 1
val = do(env, args[0])
return abs(val)

Looking up variables when we need their values is straightforward. We check that we
have a variable name and that the name is in the environment, then return the stored value:
def do_get(env, args):

assert len(args) == 1
assert isinstance(args[0], str)
assert args[0] in env, f"Unknown variable {args[0]}"
return env[args[0]]

To define a new variable or change an existing one, we evaluate an expression and
store its value in the environment:
def do_set(env, args):

assert len(args) == 2
assert isinstance(args[0], str)
value = do(env, args[1])
env[args[0]] = value
return value

We need to add one more function to make this all work. Our programs no longer consist
of a single expression; instead, we may have several expressions that set variables’ values
and then use them in calculations. To handle this, we add a function do_seq that runs a
sequence of expressions one by one. This function is our first piece of control flow: rather
than calculating a value itself, it controls when and how other expressions are evaluated.
Its implementation is:
def do_seq(env, args):

assert len(args) > 0
for item in args:

result = do(env, item)
return result

Let’s try it out. Our test program is:
[

"seq",
["set", "alpha", 1],
["set", "beta", 2],
["add", ["get", "alpha"], ["get", "beta"]]

]



7.3 Introspection 55

=> 3

Everything Is An Expression

As we said above, Python distinguishes expressions that produce values from state-
ments that don’t. But it doesn’t have to, and many languages don’t. For example,
Python could have been designed to allow this:
# not actually legal Python
result =

if a > 0:
1

elif a == 0:
0

else:
-1

7.3 Introspection
Now that we have evaluation, function lookup, and environments, we can write small pro-
grams. However, our do function now looks like this:
def do(env, expr):

if isinstance(expr, int):
return expr

assert isinstance(expr, list)
if expr[0] == "abs":

return do_abs(env, expr[1:])
if expr[0] == "add":

return do_add(env, expr[1:])
if expr[0] == "get":

return do_get(env, expr[1:])
if expr[0] == "seq":

return do_seq(env, expr[1:])
if expr[0] == "set":

return do_set(env, expr[1:])
assert False, f"Unknown operation {expr[0]}"

The sequence of if statements that decide what function to call is becoming unwieldy.
(Quick: can you see if any of the instruction names are accidentally duplicated?) We can
replace this by using introspection to create a lookup table that stores every function
whose name starts with do_ (Figure 7.2):
OPS = {

name.replace("do_", ""): func
for (name, func) in globals().items()
if name.startswith("do_")

}



56 7 An Interpreter

"abs" do_abs

"set" do_set

.


.


.

.


.


.

OPS

do

main

Figure 7.2: Dynamically-generated function lookup table.

Line by line:

1. We use a dictionary comprehension to create a dictionary in a single statement.

2. We only add functions whose names start with do_.

3. Each key-value pair in the dictionary is the name of an operation and the function that
implements the operation. The operation’s name is what comes after do_ in the function’s
name.

With this lookup table in hand, the code to select and run an operation is:
def do(env, expr):

# Integers evaluate to themselves.
if isinstance(expr, int):

return expr

# Lists trigger function calls.
assert isinstance(expr, list)
assert expr[0] in OPS, f"Unknown operation {expr[0]}"
func = OPS[expr[0]]
return func(env, expr[1:])

As with unit test functions in Chapter 6, the do_* functions must have exactly the same
signature so that we can call any of them with an environment and a list of arguments
without knowing exactly which function we’re calling. And as with finding tests, introspection
is more reliable than a hand-written lookup table but is harder to understand. If we write out
the lookup table explicitly like this:
OPS = {

"abs": do_abs,
"add": do_add,
"get": do_get,
"seq": do_seq,
"set": do_set,

}

then we can see exactly what operations are available and what their names are. If we use
introspection, we have to search through the source file (or possibly several files) to find all
the available operations, but we can write do once and never worry about it again.



7.4 Summary 57

7.4 Summary
Figure 7.3 summarizes the ideas introduced in this chapter. A lot is going on here, but the
central idea is that a program is just another kind of data. Please see Appendix B for extra
material related to these ideas.

parser

runtime

interpreter

recursive
evaluation dispatch

environments

global
environment

local

environment

introspection

functions

lazy eager

extensible

has

 uses 

stores

variables in can be

found by

searches

many

one

 to   simple 

makes

systems

Figure 7.3: Interpreter concept map.

7.5 Exercises
Arrays
Implement fixed-size, one-dimensional arrays: ["array", 10] creates an array of 10 el-
ements, while other instructions that you design get and set particular array elements by
index.

Better Error Handling
Several of the instruction functions started with assert statements, which means that users
get a stack trace of TLL itself when there’s a bug in their program.

1. Define a new exception class called TLLException.

2. Write a utility function called check that raises a TLLException with a useful error mes-
sage when there’s a problem.

3. Add a catch statement to handle these errors.



58 7 An Interpreter

More Statements
Add print and repeat commands to the interpreter so that the following program produces
the output shown:
[

"seq",
["set", "a", 1],
["print", "initial", ["get", "a"]],
[

"repeat", 4,
[

"seq",
["set", "a", ["add", ["get", "a"], ["get", "a"]]],

["if",
["leq", ["get", "a"], 10],
["print", "small", ["get", "a"]],
["print", "large", ["get", "a"]]
]
]

]
]

initial 1
small 2
small 4
small 8
large 16
=> None

Does your repeat command handle “repeat zero times” correctly, i.e., does it handle the
program below? If so, what does your do_repeat function return as a result in this case?
["repeat", 0, ["print", "zero"]]

Tracing
Add a --trace command-line flag to the interpreter. When enabled, it makes TLL print a
message showing each function call and its result.

While Loops
Implement a while loop instruction. Your implementation can use either a Python while
loop or recursion.

Internal Checks
Defensive programming is an approach to software development that starts from the as-
sumption that people make mistakes and should therefore put checks in their code to catch
“impossible” situations. These checks are typically implemented as assert statements that
check the state of the program as it executes, like those in our interpreter that checks the
lengths of lists.

1. What other assertions could we add to this code?

2. How many of these checks can be implemented as type hints instead?



8
Functions and Closures

• When we define a function, our programming system saves instructions for later use.

• Since functions are just data, we can separate creation from naming.

• Most programming languages use eager evaluation, in which arguments are
evaluated before a function is called.

• Programming languages can also use lazy evaluation, in which expressions are
passed to functions for just-in-time evaluation.

• Every call to a function creates a new stack frame on the call stack.

• When a function looks up variables it checks its own stack frame and the global
frame.

• A closure stores the variables referenced in a particular scope.

Terms defined: anonymous function, call stack, closure, dynamic scoping, eager
evaluation, extensibility, lambda expression, lazy evaluation, lexical scoping,
name collision, stack frame, variable capture

One way to evaluate the design of a piece of software is to ask how extensible it is, i.e.,
how easily we can add or change things [Wilson2022b]. The answer for the interpreter of
Chapter 7 is “pretty easily” but the answer for the little language it interprets is “not at all”,
because users cannot define new operations in the little language itself. We need to give
them a way to define and call functions. Doing this will take less than 60 lines of code, and
once we understand how definition works, we will be able to understand how an advanced
feature of most modern programming languages works as well.

8.1 Definition and Storage
Let’s start by defining a function that takes a single parameter and immediately returns it.
In Python, this is:
def same(num):

return num

It has a name, a (possibly empty) list of parameters, and a body, which in this case is a
single statement.

Our little language does things differently. Since a function is just another kind of object,
we can define it on its own without naming it:
["func", ["num"], ["get", "num"]]

59



60 8 Functions and Closures

To save the function for later use, we simply assign it to a name as we would assign any
other value:
["set", "same", ["func", ["num"], ["get", "num"]]]

Anonymity

A function without a name is called an anonymous function. JavaScript makes heavy
use of anonymous functions; Python supports a very limited version of them using
lambda expressions:
double = lambda x: 2 * x
double(3)

8.2 Calling Functions
In Python, we would call this function as same(3). Our little language requires us to specify
an operator explicitly, so we write the call as:
["call", "same", 3]

To make "call" work the way most programmers expect, we need to implement scope
so that the parameters and variables used in a function aren’t confused with those defined
outside it. In other words, we need to prevent name collision. When a function is called
with one or more expressions as arguments, we will:

1. Evaluate all of these expressions.

2. Look up the function.

3. Create a new environment from the function’s parameter names and the expressions’
values.

4. Call do to run the function’s action and capture the result.

5. Discard the environment created in Step 3.

6. Return the function’s result.

Eager and Lazy

Evaluating a function’s arguments before we run it is called eager evaluation. We
could instead use lazy evaluation, in which case we would pass the argument sub-
lists into the function and let it evaluate them when it needed their values. Python and
most other languages are eager, but a handful of languages, such as R, are lazy. It’s
a bit more work, but it allows the function to inspect the expressions it has been called
with and to decide how to handle them.



8.2 Calling Functions 61

To make this work, the environment must be a list of dictionaries instead of a single
dictionary. This list is the call stack of our program, and each dictionary in it is usually
called a stack frame. When a function wants the value associated with a name, we look
through the list from the most recent dictionary to the oldest.

Scoping Rules

Searching through all active stack frames for a variable is called dynamic scoping. In
contrast, most programming languages used lexical scoping, which figures out what
a variable name refers to based on the structure of the program text. The former is
easier to implement (which is why we’ve chosen it); the latter is easier to understand,
particularly in large programs. [Nystrom2021] has an excellent step-by-step explana-
tion of how to build lexical scoping.

The completed implementation of function definition is:
def do_func(env, args):

assert len(args) == 2
params = args[0]
body = args[1]
return ["func", params, body]

and the completed implementation of function call is:
def do_call(env, args):

# Set up the call.
assert len(args) >= 1
name = args[0]
values = [do(env, a) for a in args[1:]]

# Find the function.
func = env_get(env, name)
assert isinstance(func, list) and (func[0] == "func")
params, body = func[1], func[2]
assert len(values) == len(params)

# Run in new environment.
env.append(dict(zip(params, values)))
result = do(env, body)
env.pop()

# Report.
return result

and our test program and its output are:
["seq",

["set", "double",
["func", ["num"],

["add", ["get", "num"], ["get", "num"]]
]

],
["set", "a", 1],
["repeat", 4, ["seq",

["set", "a", ["call", "double", ["get", "a"]]],
["print", ["get", "a"]]

]]
]



62 8 Functions and Closures

2
4
8
16
=> None

Unpacking One Line

do_call contains the line:
env.append(dict(zip(params, values)))

Working from the inside out, it uses the built-in function zip to create a list of pairs of
corresponding items from params and values, then passes that list of pairs to dict
to create a dictionary, which it then appends to the list env. The exercises will explore
whether rewriting this would make it easier to read.

Once again, Python and other languages do more or less what we’ve done here. When
we define a function, the interpreter saves the instructions in a lookup table. When we call
a function at runtime, the interpreter finds the function in the table, creates a new stack
frame, executes the instructions in the function, and pops the frame off the stack.

8.3 Closures
We normally define functions at the top level of our program, but Python and most other
modern languages allow us to define functions within functions. Those inner functions have
access to the variables defined in the enclosing function, just as the functions we’ve seen
in earlier examples have access to things defined at the global level of the program:
def outer(value):

def inner(current):
print(f"inner sum is {current + value}")

print(f"outer value is {value}")
for i in range(3):

inner(i)

outer(10)

outer value is 10
inner sum is 10
inner sum is 11
inner sum is 12

But since functions are just another kind of data, the outer function can return the inner
function it defined as its result:



8.3 Closures 63

def make_hidden(thing):
def _inner():

return thing
return _inner

has_secret = make_hidden(1 + 2)
print("hidden thing is", has_secret())

hidden thing is 3

The inner function still has access to the value of thing, but nothing else in the program
does. A computer scientist would say that the inner function captures the variables in
the enclosing function to create a closure (Figure 8.1). Doing this is a way to make data
private: once make_hidden returns _inner and we assign it to has_secret in the example
above, nothing else in our program has any way to access the value that was passed to
make_hidden as thing.

function(thing):

    def _inner():

        return thing

    return _inner

make_hidden

variables values

closure "thing" 3has_secret function():

    return thing

Figure 8.1: Closures.

One common use of closures is to turn a function that needs many arguments into one
that needs fewer, i.e., to create a function now that remembers some values it’s supposed
to use later ; we will explore this in Chapter 9. Closures are also another way to imple-
ment objects. Instead of building a dictionary ourselves as we did in Chapter 2, we use the
one that Python creates behind the scenes to implement a closure. In the code below, for
example, the function make_object creates a dictionary containing two functions:
def make_object(initial_value):

private = {"value": initial_value}

def getter():
return private["value"]

def setter(new_value):
private["value"] = new_value

return {"get": getter, "set": setter}

object = make_object(00)
print("initial value", object["get"]())
object["set"](99)
print("object now contains", object["get"]())

initial value 0
object now contains 99



64 8 Functions and Closures

make_object

variables values

object

function(initial_value):
    ...

getter

setter

function():
    ...

function(value):
    ...

"private"

closure

closure

"value"99

Figure 8.2: Implementing objects using closures.

When this code runs, Python creates a closure that is shared by the two functions (Fig-
ure 8.2). The closure has a key "private"; there is nothing special about this name, but
nothing in the program can see the data in the closure except the two functions. We could
add more keys to this dictionary to create more complex objects and build an entire system
of objects and classes this way.

8.4 Summary
Figure 8.3 summarizes the ideas in this chapter, which is one of the most technically chal-
lenging in this book. In particular, don’t be surprised if it takes several passes to understand
closures: they are as subtle as they are useful.

function

closure

has

variables

object

is an

parametersbody

has
are

refers

to
name

call framestored

in


call stack

stored in


hides

Figure 8.3: Concept map.



8.5 Exercises 65

8.5 Exercises
Rewriting Environment Creation
Re-read the description of how this line in do_call works:
env.append(dict(zip(params, values)))

and then rewrite the line using a loop to insert parameter names and values into a dictionary.
Do you find your rewritten code easier to read?

Chained Maps
Look at the documentation for the ChainMap1 class and modify the interpreter to use that
to manage environments.

Defining Named Functions
Modify do_func so that if it is given three arguments instead of two, it uses the first one as
the function’s name without requiring a separate "set" instruction.

Evaluating Parameters
do_func stores the new function’s parameters and body without evaluating them. What
would happen if it did evaluate them immediately?

Implicit Sequence
1. Modify do_func so that if it is given more than one argument, it uses all but the first

as the body of the function (i.e., treats everything after the parameter list as an implicit
"seq").

2. Is there a way to make this work in combination with naming-at-creation from the previ-
ous exercise?

Preventing Redefinition
1. Modify the interpreter so that programs cannot redefine functions, i.e., so that once a

function has been assigned to a variable, that variable’s value cannot be changed.

2. Why might this be a good idea? What does it make more difficult?

Generalizing Closure-Based Objects
Modify the getter/setter example so that:

1. make_object accepts any number of named parameters and copies them into the
private dictionary.

1https://docs.python.org/3/library/collections.html#collections.ChainMap

https://docs.python.org


66 8 Functions and Closures

2. getter takes a name as an argument and returns the corresponding value from the
dictionary.

3. setter takes a name and a new value as arguments and updates the dictionary.

What does your implementation of getter do if the name isn’t already in the private
dictionary? What does your setter do if the name isn’t already there? What does it do if
the update value has a different type than the current value?

What Can Change?
Explain why this program doesn’t work:
def make_counter():

value = 0
def _inner():

value += 1
return value

return _inner

c = make_counter()
for i in range(3):

print(c())

Explain why this one does:
def make_counter():

value = [0]
def _inner():

value[0] += 1
return value[0]

return _inner

c = make_counter()
for i in range(3):

print(c())

How Private Are Closures?
If the data in a closure is private, explain why lines 1 and 2 are the same in the output of
this program but lines 3 and 4 are different.
def wrap(extra):

def _inner(f):
return [f(x) for x in extra]

return _inner

odds = [1, 3, 5]
first = wrap(odds)
print("1.", first(lambda x: 2 * x))

odds = [7, 9, 11]
print("2.", first(lambda x: 2 * x))

evens = [2, 4, 6]
second = wrap(evens)
print("3.", second(lambda x: 2 * x))



8.5 Exercises 67

evens.append(8)
print("4.", second(lambda x: 2 * x))

1. [2, 6, 10]
2. [2, 6, 10]
3. [4, 8, 12]
4. [4, 8, 12, 16]



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


9
Protocols

• Temporarily replacing functions with mock objects can simplify testing.

• Mock objects can record their calls and/or return variable results.

• Python defines protocols so that code can be triggered by keywords in the language.

• Use the context manager protocol to ensure cleanup operations always execute.

• Use decorators to wrap functions after defining them.

• Use closures to create decorators that take extra parameters.

• Use the iterator protocol to make objects work with for loops.

Terms defined: append mode, context manager, decorator, infinite recursion,
iterator, Iterator pattern, mock object, protocol

This book is supposed to teach software design by implementing small versions of real-
world tools, but we have reached a point where we need to learn a little more about Python
itself in order to proceed. Our discussion of closures in Chapter 8 was the first step; in this
chapter, we will look at how Python allows users to tell it to do things at specific moments.

9.1 Mock Objects
We have already seen that functions are objects referred to by variable names just like
other values. We can use this fact to change functions at runtime to make testing easier.
For example, if the function we want to test uses the time of day, we can temporarily replace
the real time.time function with one that returns a specific value so we know what result
to expect in our test:
import time

def elapsed(since):
return time.time() - since

def mock_time():
return 200

def test_elapsed():
time.time = mock_time
assert elapsed(50) == 150

Temporary replacements like this are called mock objects because we usually use
objects even if the thing we’re replacing is a function. We can do this because Python lets
us create objects that can be “called” just like functions. If an object obj has a __call__
method, then obj(...) is automatically turned into obj.__call__(...) just as a == b is

69



70 9 Protocols

automatically turned into a.__eq__(b) (Chapter 5). For example, the code below defines a
class Adder whose instances add a constant to their input:
class Adder:

def __init__(self, value):
self.value = value

def __call__(self, arg):
return arg + self.value

add_3 = Adder(3)
result = add_3(8)
print(f"add_3(8): {result}")

add_3(8): 11

Let’s create a reusable mock object class that:

1. defines a __call__ method so that instances can be called like functions;

2. declares the parameters of that method to be *args and **kwargs so that it can be
called with any number of regular or keyword arguments;

3. stores those arguments so we can see how the replaced function was called; and

4. returns either a fixed value or a value produced by a user-defined function.

The class itself is only 11 lines long:
class Fake:

def __init__(self, func=None, value=None):
self.calls = []
self.func = func
self.value = value

def __call__(self, *args, **kwargs):
self.calls.append([args, kwargs])
if self.func is not None:

return self.func(*args, **kwargs)
return self.value

For convenience, let’s also define a function that replaces some function we’ve already
defined with an instance of our Fake class:
def fakeit(name, func=None, value=None):

assert name in globals()
fake = Fake(func, value)
globals()[name] = fake
return fake

To show how this works, we define a function that adds two numbers and write a test
for it:
def adder(a, b):

return a + b

def test_with_real_function():
assert adder(2, 3) == 5



9.1 Mock Objects 71

def test_with_real_function():


    assert adder(2, 3) == 5


def test_with_fixed_return_value():


    fixit("adder", value=99)


    assert adder(2, 3) == 99


function(a, b):


    return a + b


adder

def test_with_real_function():


    assert adder(2, 3) == 5


def test_with_fixed_return_value():


    fixit("adder", value=99)


    assert adder(2, 3) == 99


function(a, b):


    return a + b


adder

value 99

def test_with_real_function():


    assert adder(2, 3) == 5


def test_with_fixed_return_value():


    fixit("adder", value=99)


    assert adder(2, 3) == 99


function(a, b):


    return a + b


adder

Fake

func

value

-

99

Fake

func -

Figure 9.1: Timeline of mock operation.

We then use fakeit to replace the real adder function with a mock object that always
returns 99 (Figure 9.1):
def test_with_fixed_return_value():

fakeit("adder", value=99)
assert adder(2, 3) == 99

Another test proves that our Fake class records all of the calls:
def test_fake_records_calls():

fake = fakeit("adder", value=99)
assert adder(2, 3) == 99
assert adder(3, 4) == 99
assert adder.calls == [[(2, 3), {}], [(3, 4), {}]]

And finally, the user can provide a function to calculate a return value:
def test_fake_calculates_result():

fakeit("adder", func=lambda left, right: 10 * left + right)
assert adder(2, 3) == 23



72 9 Protocols

9.2 Protocols
Mock objects are very useful, but the way we’re using them is going to cause strange
errors. The problem is that each test replaces adderwith amock object that does something
different. As a result, any test that doesn’t replace adder will use whatever mock object was
last put in place rather than the original adder function.

We could tell users it’s their job to put everything back after each test, but people are
forgetful. It would be better if Python did this automatically; luckily for us, it provides a
protocol for exactly this purpose. A protocol is a rule that specifies how programs can
tell Python to do specific things at specific moments. Giving a class a __call__ method
is an example of this: when Python sees thing(...), it automatically checks if thing has
that method. Defining an __init__ method for a class is another example: if a class has a
method with that name, Python calls it automatically when constructing a new instance of
that class.

What we want for managing mock objects is a context manager that replaces the real
function with our mock at the start of a block of code and then puts the original back at
the end. The protocol for this relies on two methods called __enter__ and __exit__. If the
class is called C, then when Python executes a with block like this:
with C…(…args) as name:…

do …things

it does the following (Figure 9.2):

1. Call C’s constructor to create an object that it associates with the code block.

2. Call that object’s __enter__ method and assign the result to the variable name.

3. Run the code inside the with block.

4. Call name.__exit__() when the block finishes.

with CM() as thing:

    …do operations…

thing = CM()

thing.__enter__()

thing.__exit__(…)

Figure 9.2: Operations performed by a context manager.

Here’s a mock object that inherits all the capabilities of Fake and adds the two methods
needed by with:
class ContextFake(Fake):

def __init__(self, name, func=None, value=None):
super().__init__(func, value)
self.name = name
self.original = None

def __enter__(self):
assert self.name in globals()
self.original = globals()[self.name]
globals()[self.name] = self



9.3 Decorators 73

return self

def __exit__(self, exc_type, exc_value, exc_traceback):
globals()[self.name] = self.original

Notice that __enter__ doesn’t take any extra parameters: anything it needs must be
provided via the object’s constructor. On the other hand, __exit__ will always be called
with three values that tell it whether an exception occurred, and if so, what the exception
was. This test shows that our context manager is doing what it’s supposed to:
def subber(a, b):

return a - b

def check_no_lasting_effects():
assert subber(2, 3) == -1
with ContextFake("subber", value=1234) as fake:

assert subber(2, 3) == 1234
assert len(fake.calls) == 1

assert subber(2, 3) == -1

Context managers can’t prevent people from making mistakes, but they make it easier
for people to do the right thing. They are also an example of how programming languages
often evolve: eventually, if enough people are doing something the same way in enough
places, support for that way of doing things is added to the language.

9.3 Decorators
Python programs rely on several other protocols, each of which gives user-level code a
way to interact with some aspect of the Python interpreter. One of the most widely used is
called a decorator, which allows us to wrap one function with another.

In order to understand how decorators work, we must take another look at closures
(Chapter 8). Suppose we want to create a function called logging that prints a message
before and after each call to some other arbitrary function. We could try to do it like this:
def original(value):

print(f"original: {value}")

def logging(value):
print("before call")
original(value)
print("after call")

original = logging
original("example")

but when we try to call original we wind up in an infinite loop. The wrapped version of our
function refers to original, but Python looks up the function associated with that name at
the time of call, which means it finds our wrapper function instead of the original function
(Figure 9.3). We can prevent this infinite recursion by creating a closure to capture the
original function for later use:



74 9 Protocols

original function(value):

    print(…)

variable value

1

original function(value):

    print(…)

variable value

2

logging
function(value):

    print(…)

    original(value)

    print(…)

original function(value):

    print(…)

variable value

3

logging
function(value):

    print(…)

    original(value)

    print(…)

Figure 9.3: Infinite recursion caused by careless use of a wrapped function.

def original(value):
print(f"original: {value}")

def logging(func):
def _inner(value):

print("before call")
func(value)
print("after call")

return _inner

original = logging(original)
original("example")

before call
original: example
after call

Using a closure also gives us a way to pass extra arguments when we create the
wrapped function:



9.3 Decorators 75

def original(value):
print(f"original: {value}")

def logging(func, label):
def _inner(value):

print(f"++ {label}")
func(value)
print(f"-- {label}")

return _inner

original = logging(original, "call")
original("example")

++ call
original: example
-- call

Wrapping functions like this is so useful that Python has built-in support for doing it. We
define the decorator function that does the wrapping as before, but then use @wrap to apply
it rather than name = wrap(name):
def wrap(func):

def _inner(*args):
print("before call")
func(*args)
print("after call")

return _inner

@wrap
def original(message):

print(f"original: {message}")

original("example")

before call
original: example
after call

If we want to pass arguments at the time we apply the decorator, though, it seems
like we’re stuck: a Python decorator must take exactly one argument, which must be the
function we want to decorate. The solution is to define a function inside a function inside
yet another function to create a closure that captures the arguments:
def wrap(label): # function returning a decorator

def _decorate(func): # the decorator Python will apply
def _inner(*args): # the wrapped function

print(f"++ {label}") # 'label' is visible because
func(*args) # …it's captured in the closure
print(f"-- {label}") # …of '_decorate'

return _inner
return _decorate

@wrap("wrapping") # call 'wrap' to get a decorator
def original(message): # decorator applied here

print(f"original: {message}")

original("example")



76 9 Protocols

++ wrapping
original: example
-- wrapping

Decorators didn’t need to be this complicated. In order to define a method that takes N
parameters in Python, we have to write a function of N + 1 parameters, the first of which
represents the object for which the method is being called. Python could have done the
same thing with decorators, i.e., allowed people to define a function of N + 1 parameters
and have @ fill in the first automatically:
def decorator(func, label):

def _inner(arg):
print(f"entering {label}")
func(arg)

return _inner

@decorator("message")
def double(x): # equivalent to

return 2 * x # double = decorator(double, "message")

But this isn’t the path Python took, and as a result, decorators are harder to learn and use
than they could have been.

9.4 Iterators
As a last example of how protocols work, consider the for loop. The statement for thing
in collection assigns items from collection to the variable thing one at a time. Python
implements this using a two-part iterator protocol, which is a version of the Iterator design
pattern:

1. If an object has an __iter__ method, that method is called to create an iterator object.

2. That iterator object must have a __next__method, which must return a value each time
it is called. When there are no more values to return, it must raise a StopIteration
exception.

For example, suppose we have a class that stores a list of strings and we want to return
the characters from the strings in order. (We will use a class like this to store lines of text
in Chapter 23.) In our first attempt, each object is its own iterator, i.e., each object keeps
track of what value to return next when looping:
class NaiveIterator:

def __init__(self, text):
self._text = text[:]

def __iter__(self):
self._row, self._col = 0, -1
return self

def __next__(self):
self._advance()
if self._row == len(self._text):

raise StopIteration
return self._text[self._row][self._col]



9.4 Iterators 77

If we think of the text in terms of rows and columns, the advance method moves the
column marker forward within the current row. When we reach the end of a row, we reset
the column to 0 and advance the row index by one:
def _advance(self):

if self._row < len(self._text):
self._col += 1
if self._col == len(self._text[self._row]):

self._row += 1
self._col = 0

Our first test seems to work:
def gather(buffer):

result = ""
for char in buffer:

result += char
return result

def test_naive_buffer():
buffer = NaiveIterator(["ab", "c"])
assert gather(buffer) == "abc"

However, our iterator doesn’t work if the buffer contains an empty string:
def test_naive_buffer_empty_string():

buffer = NaiveIterator(["a", ""])
with pytest.raises(IndexError):

assert gather(buffer) == "a"

It also fails when we use a nested loop:
def test_naive_buffer_nested_loop():

buffer = NaiveIterator(["a", "b"])
result = ""
for outer in buffer:

for inner in buffer:
result += inner

assert result == "abab"

We can fix the first problem with more careful bookkeeping—we leave that as an
exercise—but fixing the second problem requires us to re-think our design. The problem is
that we only have one pair of variables (the _row and _col attributes of the buffer) to store
the current location, but two loops trying to use them. What we need to do instead is create
a separate object for each loop to use:
class BetterIterator:

def __init__(self, text):
self._text = text[:]

def __iter__(self):
return BetterCursor(self._text)

Each cursor keeps track of the current location for a single loop using code identical to
what we’ve already seen (including the same bug with empty strings):
class BetterCursor:

def __init__(self, text):
self._text = text
self._row = 0



78 9 Protocols

self._col = -1

def __next__(self):
self._advance()
if self._row == len(self._text):

raise StopIteration
return self._text[self._row][self._col]

With this change in place, our test of nested loops passes.

9.5 Summary
Figure 9.4 summarizes the ideas and tools introduced in this chapter.

interpreter actions
performs specific


momentsat

user objects
provides

use

protocolsimplement include

operator overloading

context manager

iterator

decorator

Figure 9.4: Concept map.

9.6 Exercises
Testing Exceptions
Create a context manager that works like pytest.raises from the pytest1module, i.e., that
does nothing if an expected exception is raised within its scope but fails with an assertion
error if that kind of exception is not raised.

Timing Blocks
Create a context manager called Timer that reports how long it has been since a block of
code started running:
# your class goes here

with Timer() as start:
# …do some lengthy …operation
print(start.elapsed()) # time since the start of the block

1https://docs.pytest.org/

https://docs.pytest.org


9.6 Exercises 79

Handling Empty Strings
Modify the iterator example so that it handles empty strings correctly, i.e., so that iterating
over the list ["a", ""] produces ["a"].

An Even Better Cursor
Rewrite the BetterCursor class so that it initializes self._row to 0 and self._col to −1
and always calls self._advance() as the first action in self.__next__. (You will need to
make a few other changes as well.) Do you think this implementation is simpler than the
one presented in this chapter?

Logging to a File
Create a decorator that takes the name of a file as an extra parameter and appends a log
message to that file each time a function is called. (Hint: open the file in append mode
each time it is needed.)



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


10
A File Archiver

• Version control tools use hashing to uniquely identify each saved file.

• Each snapshot of a set of files is recorded in a manifest.

• Using a mock filesystem for testing is safer and faster than using the real thing.

• Operations involving multiple files may suffer from race conditions.

• Use a base class to specify what a component must be able to do and derive child
classes to implement those operations.

Terms defined: atomic operation, base class, compression (of file), Coordinated
Universal Time, data migration, file locking, helper function, manifest, race
condition, successive refinement, time of check - time of use, timestamp,
top-down design, version control system

We’ve written almost a thousand lines of Python so far. We could recreate it if we had
to, but we’d rather not have to. We’d also like to be able to see what we’ve changed and to
collaborate with other people.

A version control system like Git1 solves all of these problems at once. It keeps track
of changes to files so that we can see what we’ve changed, recover old versions, andmerge
our changes with those made by other people.

The core of a modern version control tool is a way to archive files that:

1. records which versions of which files existed at the same time, so that we can go back
to a consistent previous state, and

2. stores any particular version of a file only once, so that we don’t waste disk space.

This chapter builds a tool that does both tasks. It won’t create and merge branches; if
you would like to see how that works, please see Mary Rose Cook’s2 Gitlet3 or Thibault
Polge’s Write yourself a Git4.

10.1 Saving Files
Many files only change occasionally after they’re created, or not at all. It would be wasteful
for a version control system to make copies each time the user saved a snapshot of a
project, so instead we will copy each unique file to something like abcd1234.bck, where
abcd1234 is the hash of the file’s contents (Chapter 3). We will then record the filenames

1https://git-scm.com/
2https://maryrosecook.com/
3http://gitlet.maryrosecook.com/
4https://wyag.thb.lt/

81

https://git-scm.com
https://maryrosecook.com
http://gitlet.maryrosecook.com
https://wyag.thb.lt


82 10 A File Archiver

0104.csv

0105.csv

0106.csv

top.txt

bottom.txt

abc123

def456

top.txt

renamed.txt

abc123

def456

sub/new.txt

renamed.txt

ghi789

def456

abc123.bck

def456.bck

ghi789.bck

Figure 10.1: Organization of backup file storage.

and hash keys in each snapshot: The hash keys tell us which unique files existed at the
time of the snapshot, while the filenames tell us what the file’s contents were named when
the snapshot was made. To restore a particular snapshot, we will copy the .bck files back
to their original locations (Figure 10.1).

The first step is to find all the files in or below a given directory that we need to save. As
described in Chapter 4, Python’s glob5 module can do this for us. Let’s use this to create
a table of files and hashes:
HASH_LEN = 16

def hash_all(root):
result = []
for name in glob("**/*.*", root_dir=root, recursive=True):

full_name = Path(root, name)
with open(full_name, "rb") as reader:

data = reader.read()
hash_code = sha256(data).hexdigest()[:HASH_LEN]
result.append((name, hash_code))

return result

Notice that we’re truncating the hash code of each file to just 16 hexadecimal digits. This
greatly increases the odds of collision, so real version control systems don’t do this, but it
makes our program’s output easier to show on screen. For example, if our test directory
looks like this:
sample_dir
|-- a.txt
|-- b.txt
`-- sub_dir

`-- c.txt

1 directory, 3 files

then our program’s output is:
python hash_all.py sample_dir

5https://docs.python.org/3/library/glob.html

https://docs.python.org


10.2 Testing 83

filename,hash
b.txt,3cf9a1a81f6bdeaf
a.txt,17e682f060b5f8e4
sub_dir/c.txt,5695d82a086b6779

10.2 Testing
Before we go any further we need to figure out how we’re going to test our code. The
obvious approach is to create directories and sub-directories containing some files we can
use as fixtures. However, we are going to change or delete those files as we back things up
and restore them. To make sure early tests don’t contaminate later ones, we would have
to recreate those files and directories after each test.

As discussed in Chapter 9, a better approach is to use a mock object instead of the
real filesystem. The pyfakefs6 module replaces key functions like open with functions that
behave the same way but act on “files” stored in memory (Figure 10.2). Using it prevents
our tests from accidentally disturbing the filesystem; it also makes tests much faster since
in-memory operations are thousands of times faster than ones that touch the disk.

write()

create()

delete()

read()

program

fs

hard drive

pyfakefs

memory

Figure 10.2: Using a mock filesystem to simplify testing.

If we import pyfakefs, we automatically get a fixture called fs that we can use to
create files. We tell pytest7 we want to use this fixture by passing it as an argument to our
testing function:
from pathlib import Path

def test_simple_example(fs):
sentence = "This file contains one sentence."
with open("alpha.txt", "w") as writer:

writer.write(sentence)
assert Path("alpha.txt").exists()
with open("alpha.txt", "r") as reader:

assert reader.read() == sentence

We can use fs to create more complicated fixtures of our own with multiple directories
and files:
from pathlib import Path
import pytest

6https://pytest-pyfakefs.readthedocs.io/
7https://docs.pytest.org/

https://pytest-pyfakefs.readthedocs.io
https://docs.pytest.org


84 10 A File Archiver

@pytest.fixture
def our_fs(fs):

fs.create_file("a.txt", contents="aaa")
fs.create_file("b.txt", contents="bbb")
fs.create_file("sub_dir/c.txt", contents="ccc")

def test_nested_example(our_fs):
assert Path("a.txt").exists()
assert Path("b.txt").exists()
assert Path("sub_dir/c.txt").exists()

def test_deletion_example(our_fs):
assert Path("a.txt").exists()
Path("a.txt").unlink()
assert not Path("a.txt").exists()

and then test that hash_all finds all the files:
import pytest

from hash_all import hash_all, HASH_LEN

@pytest.fixture
def our_fs(fs):

fs.create_file("a.txt", contents="aaa")
fs.create_file("b.txt", contents="bbb")
fs.create_file("sub_dir/c.txt", contents="ccc")

def test_hashing(our_fs):
result = hash_all(".")
expected = {"a.txt", "b.txt", "sub_dir/c.txt"}
assert {r[0] for r in result} == expected
assert all(len(r[1]) == HASH_LEN for r in result)

and that hashes change when files change:
def test_change(our_fs):

original = hash_all(".")
original = [entry for entry in original if entry[0] == "a.txt"][0]
with open("a.txt", "w") as writer:

writer.write("this is new content for a.txt")
changed = hash_all(".")
changed = [entry for entry in changed if entry[0] == "a.txt"][0]
assert original != changed

10.3 Tracking Backups
The second part of our backup tool keeps track of which files have and haven’t been backed
up already. It stores backups in a directory that contains files like abcd1234.bck (the hash
followed by .bck) and creates a manifest that describes the content of each snapshot. A
real system would support remote storage as well so that losing one hard drive wouldn’t
mean losing all our work, so we need to design our system with multiple back ends in mind.

For now, we will store manifests in CSV files named ssssssssss.csv, where
ssssssssss is the UTC timestamp of the backup’s creation.



10.3 Tracking Backups 85

Time of Check/Time of Use

Our naming convention for manifests will fail if we try to create two or more backups
in the same second. This might seem unlikely, but many faults and security holes are
the result of programmers assuming things weren’t going to happen.

We could try to avoid this problem by using a two-part naming scheme
ssssssss-a.csv, ssssssss-b.csv, and so on, but this leads to a race condition
called time of check/time of use. If two users run the backup tool at the same time,
they will both see that there isn’t a file (yet) with the current timestamp, so they will both
try to create the first one. Ensuring that multi-file updates are atomic operations (i.e.,
that they always appear to be a single indivisible step) is a hard problem; file locking
is a common approach, but complete solutions are out of the scope of this book.

This function creates a backup—or rather, it will once we fill in all the functions it depends
on:
def backup(source_dir, backup_dir):

manifest = hash_all(source_dir)
timestamp = current_time()
write_manifest(backup_dir, timestamp, manifest)
copy_files(source_dir, backup_dir, manifest)
return manifest

Writing a high-level function first and then filling in the things it needs is called successive
refinement or top-down design. In practice, nobody designs code and then implements
the design without changes unless they have solved closely-related problems before [Pe-
tre2016]. Instead, good programmers jump back and forth between higher and lower levels
of design, adjusting their overall strategy as work on low-level details reveals problems or
opportunities they hadn’t foreseen.
When writing the manifest, we check that the backup directory exists, create it if it does not,
and then save the manifest as CSV:
def write_manifest(backup_dir, timestamp, manifest):

backup_dir = Path(backup_dir)
if not backup_dir.exists():

backup_dir.mkdir()
manifest_file = Path(backup_dir, f"{timestamp}.csv")
with open(manifest_file, "w") as raw:

writer = csv.writer(raw)
writer.writerow(["filename", "hash"])
writer.writerows(manifest)

We then copy those files that haven’t already been saved:
def copy_files(source_dir, backup_dir, manifest):

for (filename, hash_code) in manifest:
source_path = Path(source_dir, filename)
backup_path = Path(backup_dir, f"{hash_code}.bck")
if not backup_path.exists():

shutil.copy(source_path, backup_path)

We have introduced several more race conditions here: for example, if two people are
creating backups at the same time, they could both discover that the backup directory
doesn’t exist and then both try to create it. Whoever does so first will succeed, but whoever
comes second will fail. We will look at ways to fix this in the exercises as well.



86 10 A File Archiver

What Time Is It?

Our backup function relies on a helper function called current_time that does noth-
ing but call time.time from Python’s standard library:
def current_time():

return f"{time.time()}".split(".")[0]

We could call time.time directly, but wrapping it up like this makes it easier to replace
with a mock for testing.

Let’s do one test with real files:
BACKUPS=/tmp/backups
rm -rf $BACKUPS
python backup.py sample_dir $BACKUPS
tree --charset ascii $BACKUPS

/tmp/backups
|-- 1695482691.csv
|-- 17e682f060b5f8e4.bck
|-- 3cf9a1a81f6bdeaf.bck
`-- 5695d82a086b6779.bck

0 directories, 4 files

The rest of our tests use a fake filesystem and amock replacement for the current_time
function (so that we know what the manifest file will be called). The setup is:
FILES = {"a.txt": "aaa", "b.txt": "bbb", "sub_dir/c.txt": "ccc"}

@pytest.fixture
def our_fs(fs):

for name, contents in FILES.items():
fs.create_file(name, contents=contents)

and an example of a single test is:
def test_nested_example(our_fs):

with patch("backup.current_time", return_value=1234):
manifest = backup(".", "/backup")

for filename, hash_code in manifest:
assert Path("/backup", f"{hash_code}.bck").exists()
assert Path("/backup", "1234.csv").exists()

10.4 Refactoring
Now that we have a better idea of what we’re doing, we can refactor to create a base class
that prescribes the general steps in creating a backup:
class Archive:

def __init__(self, source_dir):
self._source_dir = source_dir



10.5 Summary 87

def backup(self):
manifest = hash_all(self._source_dir)
self._write_manifest(manifest)
self._copy_files(manifest)
return manifest

We can then derive a child class to archive things locally and fill in its methods by re-
using code from the functions we have just written. Once we’ve done this, we can create
the specific archiver we want with a single line:
archiver = ArchiveLocal(source_dir, backup_dir)

Doing this makes life easier when we want to write archivers that behave the same
way but work differently. For example, we could create an archiver that compresses the
files it archives by deriving a new class from ArchiveLocal and writing a new _copy_files
method. More importantly, other code can use an archiver without knowing what it’s doing.
For example, the function analyze_and_save reads some data, analyzes it, saves the re-
sults, and then creates an archive of those results. It doesn’t know whether the archive is
compressing files or whether they’re being saved locally or remotely.
def analyze_and_save(options, archiver):

data = read_data(options)
results = analyze_data(data)
save_everything(results)
archiver.backup()

This example highlights one of the strengths of object-oriented programming: it allows old
code to use new code without any changes.

10.5 Summary
Figure 10.3 summarizes the key ideas in this chapter, which are the foundation of most
modern tools for doing backups and version control.

version control

hash
function

files

hash
code

mock

object

manifestunique
name

race

conditions

uses

saves

creates

records

set of

 needs 

must avoid

uniquely

identifies

 reads 

produces

tested

with

instead of

Figure 10.3: Concept map for hashing-based file backup.



88 10 A File Archiver

10.6 Exercises
Sequencing Backups
Modify the backup program so that manifests are numbered sequentially as 00000001.csv,
00000002.csv, and so on rather than being timestamped. Why doesn’t this solve the time
of check/time of use race condition mentioned earlier?

JSON Manifests
1. Modify backup.py so that it can save JSON manifests as well as CSV manifests based

on a command-line flag.

2. Write another program called migrate.py that converts a set of manifests from CSV to
JSON. (The program’s name comes from the term data migration.)

3. Modify backup.py programs so that each manifest stores the user name of the person
who created it along with file hashes, and then modify migrate.py to transform old files
into the new format.

Mock Hashes
1. Modify the file backup program so that it uses a function called ourHash to hash files.

2. Create a replacement that returns some predictable value, such as the first few charac-
ters of the data.

3. Rewrite the tests to use this function. How did you modify the main program so that the
tests could control which hashing function is used?

Comparing Manifests
Write a program compare-manifests.py that reads two manifest files and reports:

• Which files have the same names but different hashes (i.e., their contents have changed).

• Which files have the same hashes but different names (i.e., they have been renamed).

• Which files are in the first hash but neither their names nor their hashes are in the second
(i.e., they have been deleted).

• Which files are in the second hash but neither their names nor their hashes are in the first
(i.e., they have been added).

From One State to Another
1. Write a program called from_to.py that takes a directory and a manifest file as

command-line arguments, then adds, removes, and/or renames files in the directory
to restore the state described in the manifest. The program should only perform file op-
erations when it needs to, e.g., it should not delete a file and re-add it if the contents
have not changed.

2. Write some tests for from_to.py using pytest and a mock filesystem.



10.6 Exercises 89

File History
1. Write a program called file_history.py that takes the name of a file as a command-

line argument and displays the history of that file by tracing it back in time through the
available manifests.

2. Write tests for your program using pytest and a mock filesystem.

Pre-commit Hooks
Modify backup.py to load and run a function called pre_commit from a file called
pre_commit.py stored in the root directory of the files being backed up. If pre_commit
returns True, the backup proceeds; if it returns False or raises an exception, no backup is
created.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


11
An HTML Validator

• HTML consists of text and of elements represented by tags with attributes.

• HTML is represented in memory as a Document Object Model (DOM) tree.

• Trees are usually processed using recursion.

• The Visitor design pattern is often used to perform an action for each member of a
data structure.

• We can summarize and check the structure of an HTML page by visiting each node
and recording what we find there.

Terms defined: attribute, child (in a tree), closing tag, DOM, DOM tree, element
(in HTML), HTML, node, opening tag, self-closing tag, tag (in HTML), tree, Visitor
pattern

Suppose we want to generate web pages to show the results of data analyses. We
want to check that these pages all have the same structure so that people can find things
in them, and that they meet accessibility standards so that everyone can find things in them.
This chapter builds a small tool to do this checking, which introduces ideas we will use in
building a page generator (Chapter 12) and another to check the structure and style of our
code (Chapter 13).

11.1 HTML and the DOM
An HTML document is made up of elements and text. (It can actually contain other things,
but we’ll ignore those for now.) Elements are represented using tags enclosed in < and
>. An opening tag like <p> starts an element, while a closing tag like </p> ends it. If the
element is empty, we can use a self-closing tag like <br/> to save some typing. Tags must
be properly nested, i.e., they must be closed in the reverse of the order in which they were
opened. This rule means that things like <a><b></a></b> are not allowed; it also means
that a document’s elements form a tree of nodes and text like the one shown in Figure 11.1.

This figure also shows that opening and self-closing tags can have attributes, which
are written as key="value". For example, if we want to put an image in an HTML page, we
specify the image file’s name using the src attribute of the img tag:
<img src="banner.png" />

The objects that represent the nodes and text in an HTML tree are called the Document
Object Model or DOM. Hundreds of tools have been written to convert HTML text to DOM;
our favorite is a Python module called Beautiful Soup1, which can handle messy real-world
documents as well as those that conform to every rule of the standard.
1https://beautiful-soup-4.readthedocs.io/

91

https://beautiful-soup-4.readthedocs.io


92 11 An HTML Validator

<html>

  <head>

    <title>Example</title>

  </head>

  <body>

    <h1>Title</h1>

    <blockquote id="important">

      <p>Opening</p>

      <p>Explanation</p>

      <p class="highlight">Warning</p>

    </blockquote>

    <p>Closing</p>

  </body>

</html>


html

head
body

h1

blockquote {id: 'important'}

p

p

p {class: 'highlight'}

p

title

"Example"

"Title"

"Opening"

"Explanation"

"Warning"

"Closing"

Figure 11.1: Representing HTML elements as a DOM tree.

Beautiful Soup’s DOM has two main classes: NavigableString for text and Tag for
elements. To parse a document, we import what we need and call BeautifulSoup with the
text to be parsed and a string specifying exactly what kind of parsing we want to do. (In
practice, this is almost always "html.parser".)
from bs4 import BeautifulSoup, NavigableString, Tag

doc = BeautifulSoup(text, "html.parser")
display(doc)

Tag nodes have two properties name and children to tell us what element the tag rep-
resents and to give us access to the node’s children, i.e., the nodes below it in the tree.
We can therefore write a short recursive function to show us everything in the DOM:
def display(node):

if isinstance(node, NavigableString):
print(f"string: {repr(node.string)}")
return

else:
print(f"node: {node.name}")
for child in node:

display(child)

We can test this function with a short example:
text = """<html>
<body>
<h1>Title</h1>
<p>paragraph</p>
</body>
</html>"""

node: [document]
node: html
string: '\n'



11.2 The Visitor Pattern 93

node: body
string: '\n'
node: h1
string: 'Title'
string: '\n'
node: p
string: 'paragraph'
string: '\n'
string: '\n'

In order to keep everything in one file, we have written the HTML “page” as a multiline
Python string; we will do this frequently when writing unit tests so that the HTML fixture is
right beside the test code. Notice in the output that the line breaks in the HTML have been
turned into text nodes containing only a newline character. It’s easy to forget about these
when writing code that processes pages.

The last bit of the DOM that we need is its representation of attributes. Each Tag node
has a dictionary called attrs that stores the node’s attributes. The values in this dictionary
are either strings or lists of strings depending on whether the attribute has a single value
or multiple values:
def display(node):

if isinstance(node, Tag):
print(f"node: {node.name} {node.attrs}")
for child in node:

display(child)

text = """<html lang="en">
<body class="outline narrow">
<p align="left" align="right">paragraph</p>
</body>
</html>"""

node: [document] {}
node: html {'lang': 'en'}
node: body {'class': ['outline', 'narrow']}
node: p {'align': 'right'}

11.2 The Visitor Pattern
Before building an HTML validator, let’s build something to tell us which elements appear
inside which others in a document. Our recursive function takes two arguments: the current
node and a dictionary whose keys are node names and whose values are sets containing
the names of those nodes’ children. Each time it encounters a node, the function adds the
names of the child nodes to the appropriate set and then calls itself once for each child to
collect their children:
def recurse(node, catalog):

assert isinstance(node, Tag)

if node.name not in catalog:
catalog[node.name] = set()



94 11 An HTML Validator

for child in node:
if isinstance(child, Tag):

catalog[node.name].add(child.name)
recurse(child, catalog)

return catalog

When we run our function on this page:
<html>

<head>
<title>Software Design by Example</title>

</head>
<body>

<h1>Main Title</h1>
<p>introductory paragraph</p>
<ul>

<li>first item</li>
<li>second item is <em>emphasized </em></li>

</ul>
</body>

</html>

it produces this output (which we print in sorted order to make things easier to find):
body: h1, p, ul
em:
h1:
head: title
html: body, head
li: em
p:
title:
ul: li

At this point we have written several recursive functions that have almost exactly the
same control flow. A good rule of software design is that if we have built something three
times, we should make what we’ve learned reusable so that we never have to write it again.
In this case, we will rewrite our code to use the Visitor design pattern.

A visitor is a class that knows how to get to each element of a data structure and call
a user-defined method when it gets there. Our visitor will have three methods: one that it
calls when it first encounters a node, one that it calls when it is finished with that node, and
one that it calls for text (Figure 11.2):
class Visitor:

def visit(self, node):
if isinstance(node, NavigableString):

self._text(node)
elif isinstance(node, Tag):

self._tag_enter(node)
for child in node:

self.visit(child)
self._tag_exit(node)

def _tag_enter(self, node): pass

def _tag_exit(self, node): pass

def _text(self, node): pass



11.2 The Visitor Pattern 95

html

head body

h1

blockquote

p p p

ptitle

"Example" "Title"

"Opening" "Explanation" "Warning"

"Closing"

0

1

2

3

4

5

6

Depth Traversal

Figure 11.2: Visitor checking each node in depth-first order.

We provide do-nothing implementations of the three action methods rather than having
them raise a NotImplementedError because a particular use of our Visitor class may not
need some of these methods. For example, our catalog builder didn’t need to do anything
when leaving a node or for text nodes, and we shouldn’t require people to implement things
they don’t need.

Here’s what our catalog builder looks like when re-implemented on top of our Visitor
class:
class Catalog(Visitor):

def __init__(self):
super().__init__()
self.catalog = {}

def _tag_enter(self, node):
if node.name not in self.catalog:

self.catalog[node.name] = set()
for child in node:

if isinstance(child, Tag):
self.catalog[node.name].add(child.name)

with open(sys.argv[1], "r") as reader:
text = reader.read()

doc = BeautifulSoup(text, "html.parser")

cataloger = Catalog()
cataloger.visit(doc.html)
result = cataloger.catalog

for tag, contents in sorted(result.items()):
print(f"{tag}: {', '.join(sorted(contents))}")

It is only a few lines shorter than the original, but the more complicated the data structure
is, the more helpful the Visitor pattern becomes.



96 11 An HTML Validator

11.3 Checking Style
To wrap up our style checker, let’s create a manifest that specifies which types of nodes
can be children of which others:
body:
- section
head:
- title
html:
- body
- head
section:
- h1
- p
- ul
ul:
- li

We’ve chosen to use YAML for the manifest because it’s a relatively simple way to write
nested rules. JSON would have worked just as well, but as we said in Chapter 5, we
shouldn’t invent a syntax of our own: there are already too many in the world.

Our Check class needs a constructor to set everything up and a _tag_enter method to
handle nodes:
class Check(Visitor):

def __init__(self, manifest):
self.manifest = manifest
self.problems = {}

def _tag_enter(self, node):
actual = {child.name for child in node

if isinstance(child, Tag)}
errors = actual - self.manifest.get(node.name, set())
if errors:

errors |= self.problems.get(node.name, set())
self.problems[node.name] = errors

To run this, we load a manifest and an HTML document, create a checker, ask the
checker to visit each node, then print out every problematic parent-child combination it
found:
def read_manifest(filename):

with open(filename, "r") as reader:
result = yaml.load(reader, Loader=yaml.FullLoader)
for key in result:

result[key] = set(result[key])
return result

manifest = read_manifest(sys.argv[1])
with open(sys.argv[2], "r") as reader:

text = reader.read()
doc = BeautifulSoup(text, "html.parser")

checker = Check(manifest)
checker.visit(doc.html)
for key, value in checker.problems.items():

print(f"{key}: {', '.join(sorted(value))}")



11.4 Summary 97

body: h1, p, ul
li: em

The output tells us that content is supposed to be inside a section element, not directly
inside the body, and that we’re not supposed to emphasize words in lists. Other users’ rules
may be different, but we now have the tool we need to check that any HTML we generate
conforms to our intended rules. More importantly, we have a general pattern for building
recursive code that we can use in upcoming chapters.

11.4 Summary
HTML is probably the most widely used data format in the world today; Figure 11.3 sum-
marizes how it is represented and processed.

DOM

tree

elementstext

can be

represented

as attributeshave

nested
in

HTML stored in

memory as


recursion
usually


processed

using


Visitor

pattern

can be implemented using

nodes

consists of

calls a method

for each
schema

should conform to

accumulatoroften collects

data in

Figure 11.3: Concept map for checking HTML using the Visitor pattern.

11.5 Exercises
Simplify the Logic
1. Trace the operation of Check._tag_enter and convince yourself that it does the right

thing.

2. Rewrite it to make it easier to understand.

Detecting Empty Elements
Write a visitor that builds a list of nodes that could be written as self-closing tags but aren’t,
i.e., node that are written as <a></a>. The Tag.sourceline attribute may help you make
your report more readable.



98 11 An HTML Validator

Eliminating Newlines
Write a visitor that deletes any text nodes from a document that only contains newline
characters. Do you need to make any changes to Visitor, or can you implement this using
the class as it is?

Linearize the Tree
Write a visitor that returns a flat list containing all the nodes in a DOM tree in the order in
which they would be traversed. When you are done, you should be able to write code like
this:
for node in Flatten(doc.html).result():

print(node)

Reporting Accessibility Violations
1. Write a program that reads one or more HTML pages and reports images in them that

do not have an alt attribute.

2. Extend your program so that it also reports any figure elements that do not contain
exactly one figcaption element.

3. Extend your program again so that it warns about images with redundant text (i.e., im-
ages in figures whose alt attribute contains the same text as the figure’s caption).

Ordering Headings
Write a program that checks the ordering of headings in a page:

1. There should be exactly one h1 element, and it should be the first heading in the page.

2. Heading levels should never increase by more than 1, i.e., an h1 should only ever be
followed by an h2, an h2 should never be followed directly by an h4, and so on.

Report Full Path
Modify the checking tool so that it reports the full path for style violations when it finds
a problem, e.g., reports ‘div.div.p(meaning "a paragraph in a div in another div")
instead of justp‘.



12
A Template Expander

• Static site generators create HTML pages from templates, directives, and data.

• A static site generator has the same core features as a programming language.

• Special-purpose mini-languages quickly become as complex as other languages.

• Static methods are a convenient way to group functions together.

Terms defined: abstract class, abstract method, Application Programming
Interface, Boolean expression, static site generator, truthy

Every program needs documentation, and the best place to put documentation is on
the web. Writing and updating HTML pages by hand is time-consuming and error-prone,
particularly when many parts are the same. Most modern websites therefore use some kind
of static site generator (SSG) to create pages from templates.

Hundreds of SSGs1 have been written in every popular programming language, and
languages like PHP2 have been invented primarily for this purpose. Most of these systems
use one of three designs (Figure 12.1):

1. Mix commands in an existing language such as JavaScript with the HTML or Markdown
using some kind of marker to indicate which parts are commands and which parts are
to be taken as-is. This approach is taken by EJS3.

2. Create a mini-language with its own commands like Jekyll4. Mini-languages are appeal-
ing because they are smaller and safer than general-purpose languages, but eventually
they acquire most of the features of a general-purpose language. Again, some kind of
marker must be used to show which parts of the page are code and which are ordinary
text.

3. Put directives in specially-named attributes in the HTML. This approach is the least
popular, but it eliminates the need for a special parser.

This chapter builds a simple page templating system using the third strategy. We will
process each page independently by parsing the HTML and walking the DOM to find nodes
with special attributes. Our program will execute the instructions in those nodes to imple-
ment loops and if/else statements; other nodes will be copied as-is to create text.

1https://jamstack.org/generators/
2https://www.php.net/
3https://ejs.co/
4https://jekyllrb.com/

99

https://jamstack.org
https://www.php.net
https://ejs.co
https://jekyllrb.com


100 12 A Template Expander

<% items.forEach(item => { %>
<ul>

    <li><%- item.title %></li>
<% } %>
</ul>

EJS

{% for item in items %}
<ul>

    <li>{{ item.title }}</li>
{% endfor %}
</ul>

Jekyll

  <li><span z-var="item"/></li>
<ul z-loop="item:items">

</ul>

Argon

Figure 12.1: Three different ways to implement page templating.

12.1 Syntax
Let’s start by deciding what “done” looks like. Suppose we want to turn an array of strings
into an HTML list. Our template will look like this:
<html>

<body>
<ul z-loop="item:names">

<li><span z-var="item"/></li>
</ul>

</body>
</html>

The attribute z-loop tells the tool to repeat the contents of that node; the loop variable
and the collection being looped over are separated by a colon. The span with the attribute
z-var tells the tool to fill in the node with the value of the variable. When our tool processes
this page, the output will be standard HTML without any traces of how it was created:
<html>
<body>
<ul>
<li><span>Johnson</span></li>

<li><span>Vaughan</span></li>

<li><span>Jackson</span></li>
</ul>
</body>
</html>

Human-Readable vs. Machine-Readable

Putting the loop variable and target in a single attribute makes loops easy to type
but hides information from standard HTML tools, which can’t know that this attribute
contains multiple values separated by a colon. We should use two attributes like this:
<ul z-loop="names" z-loop-var="item">

but we decided to save ourselves a little typing. We should also call our attributes
data-something instead of z-something to conform with the HTML5 specification5,
but again, decided to save ourselves a bit of typing.

5https://developer.mozilla.org/en-US/docs/Learn/HTML/Howto/Use_data_attributes

https://developer.mozilla.org


12.2 Managing Variables 101

The next step is to define the Application Programming Interface (API) for filling in
templates. Our tool needs the template itself, somewhere to write its output, and the set of
variables to use in the expansion. Those variables might come from a configuration file from
a header in the file itself, or from somewhere else entirely, so we will assume the calling
program has gotten them somehow and have it pass them into the expansion function as
a dictionary (Figure 12.2):
data = {"names": ["Johnson", "Vaughan", "Jackson"]}

dom = read_html("template.html")
expander = Expander(dom, data)
expander.walk()
print(expander.result)

"names" ["Johnson", "Vaughan", "Jackson"]

<html>

    <body>

        <ul z-loop="item:names">

            <li><span z-var="item"/></li>

        </ul>

    </body>

</html>

<html>

    <body>

        <ul>

            <li><span>Johnson</span></li>

            <li><span>Vaughan</span></li>

            <li><span>Jackson</span></li>

        </ul>

    </body>

</html>

Figure 12.2: Combining text and data in templating.

12.2 Managing Variables
As soon as we have variables, we need away to track their values.We also need tomaintain
multiple sets of variables so that (for example) variables used inside a loop don’t conflict
with ones used outside of it. As in Chapter 7, we will use a stack of environments, each of
which is a dictionary.

Our stack-handling class Env has methods to push and pop new stack frames and find
a variable given its name. If the variable can’t be found, Env.find returns None instead of
raising an exception:
class Env:

def __init__(self, initial):
self.stack = [initial.copy()]

def push(self, frame):



102 12 A Template Expander

self.stack.append(frame)

def pop(self):
self.stack.pop()

def find(self, name):
for frame in reversed(self.stack):

if name in frame:
return frame[name]

return None

12.3 Visiting Nodes
As Chapter 11 explained, HTML pages are usually stored in memory as trees and pro-
cessed using the Visitor pattern. We therefore create a Visitor class whose constructor
takes the root node of the DOM tree as an argument and saves it. Calling Visitor.walk
without a value starts recursion from that saved root; when .walk is given a value (as it is
during recursive calls), it uses that instead.
class Visitor:

def __init__(self, root):
self.root = root

def walk(self, node=None):
if node is None:

node = self.root
if self.open(node):

for child in node.children:
self.walk(child)

self.close(node)

def open(self, node):
raise NotImplementedError("open")

def close(self, node):
raise NotImplementedError("close")

Visitor defines two abstract methods open and close that are called when we first
arrive at a node and when we are finished with it. These methods are called “abstract”
because we can’t actually use them: any attempt to do so will raise an exception, which
means child classes must override them. (In object-oriented terminology, this means that
Visitor is an abstract class.) This approach is different from that of the visitor in Chap-
ter 11, where we defined do-nothing methods so that derived classes could override only
the ones they needed.

The Expander class is specialization of Visitor that uses an Env to keep track of
variables. It imports handlers for each type of special node—we will explore those in a
moment—and saves them along with a newly-created environment and a list of strings
making up the output:



12.3 Visiting Nodes 103

class Expander(Visitor):
def __init__(self, root, variables):

super().__init__(root)
self.env = Env(variables)
self.handlers = HANDLERS
self.result = []

When recursion encounters a new node, it calls open to do one of three things:

1. If the node is plain text, copy it to the output.

2. If there is a handler for the node, call the handler’s open or close method.

3. Otherwise, open a regular tag.

def open(self, node):
if isinstance(node, NavigableString):

self.output(node.string)
return False

elif self.hasHandler(node):
return self.getHandler(node).open(self, node)

else:
self.showTag(node, False)
return True

Expander.close works much the same way. Both methods find handlers by comparing the
DOM node’s attributes to the keys in the dictionary of handlers built during construction:
def hasHandler(self, node):

return any(
name in self.handlers
for name in node.attrs

)

def getHandler(self, node):
possible = [

name for name in node.attrs
if name in self.handlers

]
assert len(possible) == 1, "Should be exactly one handler"
return self.handlers[possible[0]]

Finally, we need a few helper methods to show tags and generate output:
def showTag(self, node, closing):

if closing:
self.output(f"</{node.name}>")
return

self.output(f"<{node.name}")
for name in node.attrs:

if not name.startswith("z-"):
self.output(f' {name}="{node.attrs[name]}"')

self.output(">")

def output(self, text):
self.result.append("UNDEF" if text is None else text)

def getResult(self):
return "".join(self.result)



104 12 A Template Expander

Notice that Expander adds strings to an array and joins them all right at the end rather
than concatenating strings repeatedly. Doing this is more efficient; it also helps with debug-
ging, since each string in the array corresponds to a single method call.

12.4 Implementing Handlers
Our last task is to implement the handlers for filling in variables’ values, looping, and so on.
We could define an abstract class with open and close methods, derive one class for each
of the template expander’s capabilities, and then construct one instance of each class for
Expander to use, but there’s a simpler way. When Python executes the statement import
something it executes the file something.py, saves the result in a specialized dictionary-
like object, and assigns that object to the variable something. That object can also be saved
in data structures like lists and dictionaries or passed as an argument to a function just like
numbers, functions, and classes—remember, programs are just data.

Let’s write a pair of functions that each take an expander and a node as inputs and
expand a DOM node with a z-num attribute to insert a number into the output:
def open(expander, node):

expander.showTag(node, False)
expander.output(node.attrs["z-num"])

def close(expander, node):
expander.showTag(node, True)

When we enter a node like <span z-num="123"/> this handler asks the expander to show
an opening tag followed by the value of the z-num attribute. When we exit the node, the
handler asks the expander to close the tag. The handler doesn’t know whether things are
printed immediately, added to an output list, or something else; it just knows that whoever
called it implements the low-level operations it needs.

Here’s how we connect this handler (and others we’re going to write in a second) to the
expander:
import z_if
import z_loop
import z_num
import z_var

HANDLERS = {
"z-if": z_if,
"z-loop": z_loop,
"z-num": z_num,
"z-var": z_var

}

The HANDLERS dictionary maps the names of special attributes in the HTML to modules,
each of which defines open and close functions for the expander to call. In other words,
we are using modules to prevent name collision just as we would use classes or functions.



12.4 Implementing Handlers 105

The handlers for variables are:
def open(expander, node):

expander.showTag(node, False)
expander.output(expander.env.find(node.attrs["z-var"]))

def close(expander, node):
expander.showTag(node, True)

This code is almost the same as the previous example. The only difference is that instead
of copying the attribute’s value directly to the output, we use it as a key to look up a value.

These two pairs of handlers look plausible, but do they work? To find out, we can build
a program that loads variable definitions from a JSON file, reads an HTML template using
the Beautiful Soup6 module, and does the expansion:
import json
import sys
from bs4 import BeautifulSoup
from expander import Expander

def main():
with open(sys.argv[1], "r") as reader:

variables = json.load(reader)

with open(sys.argv[2], "r") as reader:
doc = BeautifulSoup(reader.read(), "html.parser")
template = doc.find("html")

expander = Expander(template, variables)
expander.walk()
print(expander.getResult())

if __name__ == "__main__":
main()

We added new variables for our test cases one by one as we were writing this chapter.
To avoid repeating text repeatedly, here’s the entire set:
{

"firstVar": "firstValue",
"secondVar": "secondValue",
"varName": "varValue",
"yes": true,
"no": false,
"names": ["Johnson", "Vaughan", "Jackson"]

}

Our first test checks whether static text is copied over as-is:

<html>
<body>

<h1>Static Text</h1>
<p>test</p>

</body>
</html>

<html>
<body>
<h1>Static Text</h1>
<p>test</p>
</body>
</html>

6https://beautiful-soup-4.readthedocs.io/

https://beautiful-soup-4.readthedocs.io


106 12 A Template Expander

Good. Now, does the expander handle constants?

<html>
<body>

<p><span z-num="123"/></p>
</body>

</html>

<html>
<body>
<p><span>123</span></p>
</body>
</html>

What about a single variable?

<html>
<body>

<p><span z-var="varName"/></p>
</body>

</html>

<html>
<body>
<p><span>varValue</span></p>
</body>
</html>

What about a page containing multiple variables? There’s no reason it should fail if the
single-variable case works, but we should still check—again, software isn’t done until it has
been tested.

<html>
<body>

<p><span z-var="firstVar" /></p>
<p><span z-var="secondVar" /></p>

</body>
</html>

<html>
<body>
<p><span>firstValue </span></p>
<p><span>secondValue </span></p>
</body>
</html>

Generating Element IDs

It’s often handy to have a unique identifier for every element in a page, so some
templating engines automatically generate id attributes for elements that don’t specify
IDs explicitly. If you do this, please do not generate random numbers, because then
Git and other version control systems will think a regenerated page has changed when
it actually hasn’t. Generating sequential IDs is equally problematic: if you add an item
to a list at the top of the page, for example, that might change the IDs for all of the
items in subsequent (unrelated) lists.



12.5 Control Flow 107

12.5 Control Flow
Our tool supports conditional expressions and loops. Since we’re not implementing
Boolean expressions like and and or, all we have to do for a condition is look up a variable
and then expand the node if Python thinks the variable’s value is truthy:
def open(expander, node):

check = expander.env.find(node.attrs["z-if"])
if check:

expander.showTag(node, False)
return check

def close(expander, node):
if expander.env.find(node.attrs["z-if"]):

expander.showTag(node, True)

Let’s test it:

<html>
<body>

<p z-if="yes">Should be shown.</p>
<p z-if="no">Should <em>not</em> be shown.</p>

</body>
</html>

<html>
<body>
<p>Should be shown.</p>

</body>
</html>

Spot the Bug

This implementation of if contains a subtle bug. open and close both check the value
of the control variable. If something inside the body of the if changes that value, the
result could be an opening tag without a matching closing tag or vice versa.We haven’t
implemented an assignment operator, so right now there’s no way for that to happen,
but it’s a plausible thing for us to add later, and tracking down a bug in old code that
is revealed by new code is always a headache.

Finally we have loops. For these, we need to get the array we’re looping over from the
environment and do the following for each item it contains:

1. Create a new stack frame holding the current value of the loop variable.

2. Expand all of the node’s children with that stack frame in place.

3. Pop the stack frame to get rid of the temporary variable.

def open(expander, node):
index_name, target_name = node.attrs["z-loop"].split(":")
expander.showTag(node, False)
target = expander.env.find(target_name)
for value in target:

expander.env.push({index_name: value})
for child in node.children:



108 12 A Template Expander

expander.walk(child)
expander.env.pop()

return False

def close(expander, node):
expander.showTag(node, True)

Once again, it’s not done until we test it:

<html>
<body>

<ul z-loop="item:names">
<li><span z-var="item"/></li>

</ul>
</body>

</html>

<html>
<body>
<ul>
<li><span>Johnson</span></li>

<li><span>Vaughan</span></li>

<li><span>Jackson</span></li>
</ul>
</body>
</html>

We have just implemented another simple programming language like the one in Chap-
ter 7. It’s unlikely that anyone would want to use it as-is, but adding a new feature is now
as simple as writing a matching pair of open and close functions.

12.6 Summary
Figure 12.3 summarizes the key ideas in this chapter, some of which we first encountered
in Chapter 7. Please see Appendix B for extra material related to these ideas.

static site
generator include page templates

template
language

data

readability capability

trade off

 vs 

HTML pagescombine to
make

Visitor pattern

can use

has

constants

variables

conditionals

loops

Figure 12.3: HTML templating concept map.



12.7 Exercises 109

12.7 Exercises
Tracing Execution
Add a directive <span z-trace="variable"/> that prints the current value of a variable for
debugging.

Unit Tests
Write unit tests for template expansion using pytest7.

Sub-keys
Modify the template expander so that a variable name like person.name looks up the "name"
value in a dictionary called "person" in the current environment.

Literal Text
Add a directive <div z-literal="true">...</div> that copies the enclosed text as-is
without interpreting or expanding any contained directives. (A directive like this would be
needed when writing documentation for the template expander.)

Including Other Files
1. Add a directive <div z-include="filename.html"/> that includes another file in the

file being processed.

2. Should included files be processed and the result copied into the including file, or should
the text be copied in and then processed? What difference does it make to the way
variables are evaluated?

HTML Snippets
Add a directive <div z-snippet="variable">...</div> that saves some text in a variable
so that it can be displayed later. For example:
<html>

<body>
<div z-snippet="prefix"><strong>Important:</strong></div>
<p>Expect three items</p>
<ul>

<li z-loop="item:names">
<span z-var="prefix"><span z-var="item"/>

</li>
</ul>

</body>
</html>

would print the word “Important:” in bold before each item in the list.

7https://docs.pytest.org/

https://docs.pytest.org


110 12 A Template Expander

YAML Headers
Modify the template expander to handle variables defined in a YAML header in the page
being processed. For example, if the page is:
---
name: "Dorothy Johnson Vaughan"
---
<html>

<body>
<p><span z-var="name"/></p>

</body>
</html>

will create a paragraph containing the given name.

Expanding All Files
Write a program expand_all.py that takes two directory names as command-line argu-
ments and builds a website in the second directory by expanding all of the HTML files
found in the first or in sub-directories of the first.

Counting Loops
Add a directive <div z-index="indexName" z-limit="limitName">...</div> that loops
from zero to the value in the variable limitName, putting the current iteration index in
indexName.

Boolean Expression
Design and implement a way to express the Boolean operators and and or.

Element IDs
The callout earlier said that templating systems should not generate random or sequential
IDs for elements. A colleague of yours has proposed generating the IDs by hashing the
element’s content, since this will stay the same as long as the content does. What are the
pros and cons of doing this?



13
A Code Linter

• A linter checks that a program conforms to a set of style and usage rules.

• Linters typically use the Visitor design pattern to find nodes of interest in an abstract
syntax tree.

• Programs can modify a program’s AST and then unparse it to create modified
versions of the original program.

• Dynamic code modification is very powerful, but the technique can produce insecure
and unmaintainable code.

Terms defined: false negative, linter

This book relies on about 1800 lines of Python to turn Markdown into HTML, fill in cross-
references, and so on. To keep that code readable, we use black1, flake82, and isort3
to check that lines aren’t too long, that classes and functions have consistent names, that
modules are imported in a consistent order, and dozens of other things.

Checking tools are often called linters because an early tool like this that found fluff
in C programs was called lint. Many projects insist that code pass linting checks before
being committed to version control. To show how linters work, this chapter builds a trio of
tools that find duplicate keys in dictionaries, look for unused variables, and create a table
showing which classes in a hierarchy define which methods.

13.1 Machinery
Chapter 11 represented HTML as a DOM tree. We can also represent the structure of a
program as an abstract syntax tree (AST) whose nodes represent functions, statements,
variables, array indexing operations, and so on.

Python’s ast4 module will parse Python source code and produce an AST for us. For
example, Figure 13.1 shows key parts of the AST for the short program shown below:
def double(x):

return 2 * x

result = double(3)
print(result)

We said “key parts of the AST” because the complete structure contains many details
that we haven’t bothered to draw. To see them, let’s use ast.parse to turn our example
code into an AST and ast.dump to display it:
1https://black.readthedocs.io/
2https://flake8.pycqa.org/
3https://pycqa.github.io/isort/
4https://docs.python.org/3/library/ast.html

111

https://black.readthedocs.io
https://flake8.pycqa.org
https://pycqa.github.io
https://docs.python.org


112 13 A Code Linter

module

FunctionDef Assign Expr

body

Return

Constant

BinOp

Mult Name

Name Call

Name Constant

Call

Name Name

return

value

left op right

targets value

func args

value

func args

Figure 13.1: The abstract syntax tree for a simple Python program.

import ast
import sys

with open(sys.argv[1], "r") as reader:
source = reader.read()

tree = ast.parse(source)
print(ast.dump(tree, indent=4))

python dump_ast.py simple.py

Module(
body=[

FunctionDef(
name='double',
args=arguments(

posonlyargs=[],
args=[

arg(arg='x')],
kwonlyargs=[],
kw_defaults=[],…

The node representing the definition of the function double is a FunctionDef node with
a name and an arguments sub-node that stores information about the function’s arguments;
other nodes that we have left out represent its return value, the call to double, the assign-
ment to result, and so on.

If we want a list of all the functions defined in this module, we can walk through this
tree to find all the FunctionDef nodes and record their name properties. Since each node’s
structure is a little different, we would have to write one function for each type of node that
knew which fields of that node were worth exploring.

Luckily for us the ast module has tools to do this for us. The class ast.NodeVisitor
uses the now-familiar Visitor design pattern to recurse through a structure like the one in
Figure 13.1. Each time the visitor reaches a node of type Thing, it looks for a method
called visit_Thing; for example, when it reaches a FunctionDef node it looks for



13.1 Machinery 113

visit_FunctionDef. If that method has been defined, NodeVisitor calls it with the node
as an argument. The class CollectNames uses this machinery to create a list of the function
and variable names defined in a program:
class CollectNames(ast.NodeVisitor):

def __init__(self):
super().__init__()
self.names = {}

def visit_Assign(self, node):
for var in node.targets:

self.add(var, var.id)
self.generic_visit(node)

def visit_FunctionDef(self, node):
self.add(node, node.name)
self.generic_visit(node)

def add(self, node, name):
loc = (node.lineno, node.col_offset)
self.names[name] = self.names.get(name, set())
self.names[name].add(loc)

def position(self, node):
return ({node.lineno}, {node.col_offset})

A few things worth noting about this class are:

1. The constructor of CollectNames invokes the constructor of NodeVisitor using
super().__init__() before doing anything else.

2. The methods visit_Assign and visit_FunctionDef must call self.generic_visit
(node) explicitly to recurse down through their children. By requiring this to be explicit,
NodeVisitor gives programmers control on whether and when recursion takes place.

3. The method position relies on the fact that every node in the AST keeps track of where
in the source code it came from.

To use this class, we read the source of the program that we want to analyze, parse it,
and then call the visit method of our class to trigger recursion:
with open(sys.argv[1], "r") as reader:

source = reader.read()
tree = ast.parse(source)
collector = CollectNames()
collector.visit(tree)
print(collector.names)

python walk_ast.py simple.py

{'double': {(1, 0)}, 'result': {(4, 0)}}

With a little more work we could record class names as well, and then check that (for ex-
ample) class names use CamelCase, while function and variable names use pothole_case.
We’ll tackle this in the exercises.



114 13 A Code Linter

13.2 Finding Duplicate Keys
Many programs store their configuration in dictionaries. As those dictionaries grow larger,
it’s easy for programmers to redefine values by accident. For example, the dictionary in this
short piece of code has two entries for the key "third":
has_duplicates = {

"third": 3,
"fourth": 4,
"fourth": 5,
"third": 6

}
print(has_duplicates)

Python could treat this as an error, keep the first entry, keep the last entry, or concatenate
the entries somehow. As the output below shows, it chooses the third option:
{'third': 6, 'fourth': 5}

We can build a linter that finds dictionaries like has_duplicates with just a few lines
of code and the Counter class from Python’s collections5 module (which implements
a specialized dictionary that counts how many times a key has been seen). We define a
visit_Dictmethod for NodeVisitor that adds each constant key to the counter, then look
for keys that have been seen more than once:
class FindDuplicateKeys(ast.NodeVisitor):

def visit_Dict(self, node):
seen = Counter()
for key in node.keys:

if isinstance(key, ast.Constant):
seen[key.value] += 1

problems = {k for (k, v) in seen.items() if v > 1}
self.report(node, problems)
self.generic_visit(node)

def report(self, node, problems):
if problems:

msg = ", ".join(p for p in problems)
print(f"duplicate key(s) {{{msg}}} at {node.lineno}")

When we parse has_duplicate_keys.py and pass the AST to FindDuplicateKeys, we
get:
duplicate key(s) {fourth, third} at 1

As Far as We Can Go

FindDuplicateKeys only considers constant keys, which means it won’t find duplicate
keys that are created on the fly like this:
def label():

return "label"

actually_has_duplicate_keys = {

5https://docs.python.org/3/library/collections.html

https://docs.python.org


13.3 Finding Unused Variables 115

"label": 1,
"la" + "bel": 2,
label(): 3,
"".join(["l", "a", "b", "e", "l"]): 4,

}

We could try adding more code to handle this, but there are so many different ways to
generate keys on the fly that our linter couldn’t possibly catch them all. The possibility
of false negatives doesn’t mean that linting is useless, though: every problem that
linting catches gives programmers more time to check for things that linters can’t find.

13.3 Finding Unused Variables
Finding unused variables—ones that are assigned values but never used—is more chal-
lenging than our previous examples. The problem is scope: a variable defined in a function
or method might have the same name as one defined elsewhere, but they are different
variables.

Let’s start by defining a class that handles variables in modules and functions. Since
functions can be defined inside modules and other functions, the constructor for our class
creates a list that we will use as a stack to keep track of what scopes we’re currently in:
class FindUnusedVariables(ast.NodeVisitor):

def __init__(self):
super().__init__()
self.stack = []

def visit_Module(self, node):
self.search("global", node)

def visit_FunctionDef(self, node):
self.search(node.name, node)

We could just use a list of three values to record information for each scope, but using
namedtuple (which also comes from Python’s collections module) tells readers explicitly
what each scope consists of:
Scope = namedtuple("Scope", ["name", "load", "store"])

Each time we encounter a new scope we push a new Scope triple onto the stack with
a name, a set to hold the variables that are used in the scope, and another set to hold
the variables that are defined in the scope. We then call NodeVisitor.generic_visitor
to trigger recursion, pop the record we just pushed off the stack, and report any problems:
def search(self, name, node):

self.stack.append(Scope(name, set(), set()))
self.generic_visit(node)
scope = self.stack.pop()
self.check(scope)

def check(self, scope):
unused = scope.store - scope.load
if unused:

names = ", ".join(sorted(unused))
print(f"unused in {scope.name}: {names}")



116 13 A Code Linter

The last part of the puzzle is visit_Name. If the variable’s value is being read, the node
will have a property .ctx (short for “context”) of type ast.Load. If the variable is being written
to, the node’s .ctx property will be an instance of ast.Store. Checking this property allows
us to put the name in the right set in the scope that’s at the top of the stack:
def visit_Name(self, node):

if isinstance(node.ctx, ast.Load):
self.stack[-1].load.add(node.id)

elif isinstance(node.ctx, ast.Store):
self.stack[-1].store.add(node.id)

else:
assert False, f"Unknown context"

self.generic_visit(node)

Once again, we can run this by reading the source of a program, converting it to an AST,
constructing an instance of FindUnusedVariables, and running its visit method:
with open(sys.argv[1], "r") as reader:

source = reader.read()
tree = ast.parse(source)
finder = FindUnusedVariables()
finder.visit(tree)

To test our code, let’s create a program that has some unused variables:
used = 3
distractor = 2
not_used = used + distractor

def no_unused(param):
result = 2 * param
return result

def has_unused(param):
used = 3 * param
not_used = 2 * param
distractor = "distraction"
return used

When we run our linter we get:
unused in has_unused: distractor, not_used
unused in global: not_used

13.4 Summary
Figure 13.2 summarizes the ideas introduced in this chapter; please see Appendix B for
some more related material.



13.5 Exercises 117

linter AST

source code

data structure

parse unparse

style rules

examines

checks

is a

apply

to

code generator modifies

Figure 13.2: Concepts for code manipulation.

13.5 Exercises
Finding Unused Parameters
Modify the code that finds unused variables to report unused function parameters as well.

Finding Redundant Assignments
Write a linter that looks for redundant assignments to variables, i.e., assignments that are
immediately overwritten:
x = 1 # redundant
x = 2

(Redundant assignments are a common result of copying and pasting.)

Checking Names
Write a linter that checks that class names are written in CamelCase but function and vari-
able names are in pothole_case.

Missing Documentation
Write a linter that complains about modules, classes, methods, and functions that don’t
have docstrings.

Missing Tests
Write a linter that takes two files as input: one that defines one ormore functions and another
that defines one or more tests of those functions. The linter looks through the tests to see
what functions are being called, then reports any functions from the first file that it hasn’t
seen.



118 13 A Code Linter

Chaining Methods
1. Modify the code that injects methods into NodeVisitor so that any previously injected

methods are also called.

2. Modify the methods again so that each one signals whether or not it has handled recur-
sion (either directly or indirectly).

Sorting Imports
isort6 checks that the imports in a file are sorted correctly: modules from Python’s standard
library come first (in alphabetical order), then installed modules (also in alphabetical order)
and finally local imports (ditto). Write a linter that reports violations of these rules. How did
you distinguish between the three cases?

6https://pycqa.github.io/isort/

https://pycqa.github.io


14
Page Layout

• A layout engine places page elements based on their size and organization.

• Page elements are organized as a tree of basic blocks, rows, and columns.

• The layout engine calculates the position of each block based on its size and the
position of its parent.

• Drawing blocks on top of each other is an easy way to render them.

• Use multiple inheritance and mixin classes to inject methods into classes.

Terms defined: accidental complexity, block (on page), confirmation bias, easy
mode, intrinsic complexity, layout engine, Liskov Substitution Principle, mixin
class, z-buffering

You might be reading this as HTML in your browser, as an e-book, or on the printed
page. In all three cases a layout engine took some text and some layout instructions and
decided where to put each character and image. To explore how they work, we will build a
small layout engine based on Matt Brubeck’s1 tutorial2 and on Pavel Panchekha3 and Chris
Harrelson’s4 book Web Browser Engineering5. Since our focus is layout, we will create
objects ourselves to represent DOM nodes rather than parsing HTML.

14.1 Sizing
Let’s start on easy mode without margins, padding, line-wrapping, or other complications.
Everything we can put on the screen is represented as a rectangular cell, and every cell is
either a row, a column, or a block. A block has a fixed width and height:
class Block:

def __init__(self, width, height):
self.width = width
self.height = height

def get_width(self):
return self.width

def get_height(self):
return self.height

1https://limpet.net/mbrubeck/
2https://limpet.net/mbrubeck/2014/08/08/toy-layout-engine-1.html
3https://pavpanchekha.com/
4https://twitter.com/chrishtr
5https://browser.engineering/

119

https://limpet.net
https://limpet.net
https://pavpanchekha.com
https://twitter.com
https://browser.engineering


120 14 Page Layout

F i r s t

S e c o n d

T h i r d

0 1 2 3 4 5

0

1

2

X

Y

Figure 14.1: Coordinate system with (0, 0) in the upper-left corner.

row

sum

max

column

sum

max

Figure 14.2: Calculating sizes of blocks with fixed width and height.

Upside Down

The coordinate systems for screens puts (0, 0) in the upper-left corner instead of the
lower-left, so Y increases as we go down, rather than up (Figure 14.1). This convention
dates back to teletype terminals that printed on rolls of paper; as Mike Hoye6 has
observed7, the past is all around us.

A row arranges one or more cells horizontally; its width is the sum of the widths of its
children, while its height is the height of its tallest child (Figure 14.2):
class Row:

def __init__(self, *children):
self.children = list(children)

def get_width(self):
return sum([c.get_width() for c in self.children])

def get_height(self):
return max(

[c.get_height() for c in self.children],
default=0

)

6http://exple.tive.org/blarg/
7http://exple.tive.org/blarg/2020/11/26/punching-holes/

http://exple.tive.org
http://exple.tive.org


14.2 Positioning 121

Finally, a column arranges one or more cells vertically: its width is the width of its widest
child and its height is the sum of the heights of its children. (Here and elsewhere, we use
the abbreviation col when referring to columns.)
class Col:

def __init__(self, *children):
self.children = list(children)

def get_width(self):
return max(

[c.get_width() for c in self.children],
default=0

)

def get_height(self):
return sum([c.get_height() for c in self.children])

Rows and columns nest inside one another: a row cannot span two or more columns,
and a column cannot cross the boundary between two rows. We can therefore represent
our document as a tree and calculate the width and height of each cell every time we need
it. This is simple but inefficient: we could calculate both width and height at the same time
and cache those values to avoid recalculation, but we called this “easy mode” for a reason.

As simple as it is, this code could still contain errors (and did during development), so
we write some tests to check that it works properly before trying to build anything more
complicated. One such test is:
def test_lays_out_a_grid_of_rows_of_columns():

fixture = Col(
Row(Block(1, 2), Block(3, 4)),
Row(Block(5, 6), Col(Block(7, 8), Block(9, 10)))

)
assert fixture.get_width() == 14
assert fixture.get_height() == 22

14.2 Positioning
Once we know how big cells are, we can figure out where to put them. Suppose we start
with the upper-left corner of the browser: upper because we lay out the page top-to-bottom
and left because we are doing left-to-right layout. If the cell is a block, we place it there. If
the cell is a row, on the other hand, we get its height and then calculate its lower edge as
y1 = y0 + height. We then place the first child’s upper-left corner at (x0, y1-height0), the
second child’s at (x0 + width0, y1-height0), and so on (Figure 14.3). Similarly, if the cell is
a column, we place the first child at (x0, y0), the next at (x0, y0 + height0), and so on.

To save ourselves some work, we will derive the classes that know how to do layout
from the classes we wrote before. Basic blocks are:
class PlacedBlock(Block):

def __init__(self, width, height):
super().__init__(width, height)
self.x0 = None
self.y0 = None

def place(self, x0, y0):



122 14 Page Layout

row

width

height
y0

y1

height

x0 x1 x2

width0 width1 width2

Figure 14.3: Laying out rows and columns of fixed-size blocks.

self.x0 = x0
self.y0 = y0

def report(self):
return [

"block",
self.x0, self.y0,
self.x0 + self.width, self.y0 + self.height

]

The constructor and reporting method for the PlacedCol class looks much the same. Its
placement method is:
def place(self, x0, y0):

self.x0 = x0
self.y0 = y0
y_current = self.y0
for child in self.children:

child.place(x0, y_current)
y_current += child.get_height()

while the placement method for rows is:
def place(self, x0, y0):

self.x0 = x0
self.y0 = y0
y1 = self.y0 + self.get_height()
x_current = x0
for child in self.children:

child_y = y1 - child.get_height()
child.place(x_current, child_y)
x_current += child.get_width()

Once again, we write and run some tests to check that everything is doing what it’s
supposed to. One such test is:
def test_places_a_column_of_two_blocks():

fixture = Col(Block(1, 1), Block(2, 4))
fixture.place(0, 0)
assert fixture.report() == [

"col",
0, 0, 2, 5,
["block", 0, 0, 1, 1],
["block", 0, 1, 2, 5],

]



14.3 Rendering 123

14.3 Rendering
We drew blocks on graph paper to figure out the expected answers for the tests shown
above. We can do something similar in software by creating a “screen” of space charac-
ters and having each block draw itself in the right place. If we start at the root of the tree,
children will overwrite the marks made by their parents, which will automatically produce
the right appearance (Figure 14.4). (A more sophisticated version of this called z-buffering
used in 3D graphics keeps track of the visual depth of each pixel to draw objects correctly
regardless of their order.)

Our “screen” is a list of lists of characters, with one inner list for each a row on the
screen. (We use lists rather than strings so that we can overwrite characters in place.)
def make_screen(width, height):

screen = []
for i in range(height):

screen.append([" "] * width)
return screen

We will use successive lower-case characters to show each block, i.e., the root block will
draw itself using ‘a’, while its children will be ‘b’, ‘c’, and so on.
def draw(screen, node, fill=None):

fill = next_fill(fill)
node.render(screen, fill)
if hasattr(node, "children"):

for child in node.children:
fill = draw(screen, child, fill)

return fill

def next_fill(fill):
return "a" if fill is None else chr(ord(fill) + 1)

To teach each kind of cell to render itself, we derive new classes from the ones we
have and give each of those new classes a render method with the same signature. Since
Python supports multiple inheritance, we can do this with amixin class (Figure 14.5). The
Renderable mixin is:
class Renderable:

def render(self, screen, fill):
for ix in range(self.get_width()):

for iy in range(self.get_height()):
screen[self.y0 + iy][self.x0 + ix] = fill

block col block

block block

row1

2

3

6

4 5

1

2

3

4

5

6

Figure 14.4: Render blocks by drawing child nodes on top of parent nodes.



124 14 Page Layout

Renderable
+ render

RenderedColumn
+ get_width
+ get_height
+ place
+ render

Column
+ get_width
+ get_height
+ place

Block
+ get_width
+ get_height


Row
+ get_width
+ get_height
+ place

RenderedRow
+ get_width
+ get_height
+ place

+ render


Figure 14.5: Using multiple inheritance and a mixin class to add methods.

Using it, the new cell classes are simply:
class RenderedBlock(PlacedBlock, Renderable):

pass

class RenderedCol(PlacedCol, Renderable):
pass

class RenderedRow(PlacedRow, Renderable):
pass

(Not) The Right Way to Do It

If we were building a real layout engine, we would go back and create a class called
Cell with this render method, then derive our Block, Row, and Col classes from that.
In general, if two or more classes need to be able to do something, we should add the
required method to their lowest common ancestor. We’ve chosen not to do that in this
case both to show when and why mixin classes are sometimes useful, and so that we
can build and test code incrementally.

Simple tests are a little easier to read using rendering, though we still had to draw things
on paper to figure out what to expect:
def test_renders_a_column_of_two_blocks():

fixture = Col(Block(1, 1), Block(2, 4))
fixture.place(0, 0)
expected = "\n".join(["ba", "cc", "cc", "cc", "cc"])
assert render(fixture) == expected



14.4 Wrapping 125

The fact that our tests are difficult to understand is a sign that we should do more testing. It
would be very easy for us to get a wrong result and convince ourselves that it was correct;
this kind of confirmation bias is very common in software development.

14.4 Wrapping
One of the biggest differences between a browser and a printed page is that the text in the
browser wraps automatically as the window is resized. (The other, these days, is that the
printed page doesn’t spy on us, though someone is undoubtedly working on that.)

The first step in adding wrapping to our layout engine is to fix the width of a row. If the
total width of the children is greater than the row’s width, the layout engine needs to wrap
the children around. This assumes that columns can be made as tall as they need to be,
i.e., that we can grow vertically to make up for limited space horizontally. It also assumes
that none of a row’s children is wider than the width of the row so that each can fit in a row
of its own if necessary. We will look at what happens when this isn’t true in the exercises.

Our layout engine manages wrapping by transforming the tree. The height and width of
blocks are fixed, so they become themselves. Columns become themselves as well, but
since they have children that might need to wrap, the class representing columns needs a
new method:
class WrappedBlock(PlacedBlock):

def wrap(self):
return self

class WrappedCol(PlacedCol):
def wrap(self):

return PlacedCol(*[c.wrap() for c in self.children])

(The * in front of the list being passed to PlacedCol in the last line of the code above is
another use of the spreading introduced in Chapter 2.)

Rows do all the hard work. Each original row is replaced with a new row that contains
a single column with one or more rows, each of which is one “line” of wrapped cells (Fig-
ure 14.6). This replacement is unnecessary when everything will fit on a single row, but it’s
easiest to write the code that does it every time; we will look at making this more efficient
in the exercises.

Our new wrappable row’s constructor takes a fixed width followed by the children and
returns that fixed width when asked for its size:
class WrappedRow(PlacedRow):

def __init__(self, width, *children):
super().__init__(*children)
assert width >= 0, "Need non-negative width"
self.width = width

def get_width(self):
return self.width

Wrapping puts the row’s children into buckets, and then converts the buckets to a row of a
column of rows:
def wrap(self):

children = [c.wrap() for c in self.children]
rows = self._bucket(children)



126 14 Page Layout

row

block block

width

row

col

row row

block block

width

Figure 14.6: Wrapping rows by introducing a new row and column.

new_rows = [PlacedRow(*r) for r in rows]
new_col = PlacedCol(*new_rows)
return PlacedRow(new_col)

To bucket the children, we add them one at a time to a temporary list. If adding another
node would make the total width of the nodes in that list too large, we use that node to start
a new temporary list:
def _bucket(self, children):

result = []
current_row = []
current_x = 0

for child in children:
child_width = child.get_width()
if (current_x + child_width) <= self.width:

current_row.append(child)
current_x += child_width

else:
result.append(current_row)
current_row = [child]
current_x = child_width

result.append(current_row)

return result

Once again, we bring forward all the previous tests and write some new ones to test the
functionality we’ve added:
def test_wrap_a_row_of_two_blocks_that_do_not_fit_on_one_row():

fixture = WrappedRow(3, WrappedBlock(2, 1), WrappedBlock(2, 1))
wrapped = fixture.wrap()
wrapped.place(0, 0)
assert wrapped.report() == [

"row",
0, 0, 2, 2,
[



14.5 Summary 127

"col",
0, 0, 2, 2,
["row", 0, 0, 2, 1, ["block", 0, 0, 2, 1]],
["row", 0, 1, 2, 2, ["block", 0, 1, 2, 2]],

],
]

We could have had columns handle resizing rather than rows, but we (probably) don’t
need to make both resizeable. This is an example of intrinsic complexity: the problem
really is this hard, so something has to deal with it somewhere. Programs often contain ac-
cidental complexity as well, which can be removed if people are willing to accept change.
In practice, that often means that it sticks around longer than it should.

The Liskov Substitution Principle

We are able to re-use tests as our code evolved because of the Liskov Substitution
Principle, which states that it should be possible to replace objects in a program with
objects of derived classes without breaking anything. In order to satisfy this principle,
new code must handle the same set of inputs as the old code, though it may be
able to process more inputs as well. Conversely, its output must be a subset of what
the old code produced so that whatever is downstream from it won’t be surprised.
Thinking in these terms leads to the methodology called design by contract discussed
in Chapter 2.

14.5 Summary
Figure 14.7 summarizes the ideas introduced in this chapter. Real page layout systems do
far more than what we have described, but all of them implement some kind of negotiation
between containers and content.

layout engine

coordinate
system

blocks

row

column text

tree

rendering recursion

wrap

uses  handles 

using

of

calculate
can

stored

as

to traverse

position have

in

is
 height

width

can be

Figure 14.7: Page layout concept map.



128 14 Page Layout

14.6 Exercises
Refactoring
Refactor the classes used to represent blocks, rows, and columns so that:

1. They all derive from a common parent class.

2. All common behavior is defined in that parent (if only with placeholder methods).

Removing Spreads
The code shown in this chapter makes heavy use of varargs and spreading, i.e., uses
* to spread the values of lists to match parameters and *children to capture multiple
arguments. Rewrite the code to use lists instead. Do you find your rewritten code easier to
understand?

Recycling
Modify the wrapping code so that new rows and columns are only created if needed. For
example, if a row of width 10 contains a text node that is only 4 characters wide, a new row
and column are not inserted.

Rendering a Clear Background
Modify the rendering code so that only the text in block nodes is shown, i.e., so that the
empty space in rows and columns is rendered as spaces.

Clipping Text
1. Modify the wrapping and rendering so that if a block of text is too wide for the available

space, the extra characters are clipped. For example, if a column of width 5 contains a
line “unfittable”, only “unfit” appears.

2. Extend your solution to break lines on spaces as needed in order to avoid clipping.

Bidirectional Rendering
Modify the existing software to do either left-to-right or right-to-left rendering upon request.

Equal Sizing
Modify the existing code to support elastic columns, i.e., so that all of the columns in a row
are automatically sized to have the same width. If the number of columns does not divide
evenly into the width of the row, allocate the extra space as equally as possible from left to
right.



14.6 Exercises 129

Properties
Look at the documentation for Python’s @property8 decorator and modify the block classes
to replace the get_width and get_height methods with properties called width and
height.

Drawing Borders
1. Modify the existing code so that elements are drawn with borders like this:

+----+
|text|
+----+

Padding Elements
Modify the existing code so that:

1. Authors can define a padding attribute for row and column elements.

2. When the node is rendered, that many blank spaces are added on all four sides of the
contents.

For example, string "text" with a padding of 1 would render as:
+------+
| |
| text |
| |
+------+

where the lines show the outer border of the rendering.

Tables
Add another node type Table such that:

1. All the children of a table must be rows.

2. Every row must contain exactly the same number of columns.

3. When the table is rendered, every column has the same width in every row.

8https://docs.python.org/3/library/functions.html#property

https://docs.python.org


Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


15
Performance Profiling

• Create abstract classes to specify interfaces.

• Store two-dimensional data as rows or as columns.

• Use reflection to match data to function parameters.

• Measure performance to evaluate engineering tradeoffs.

Terms defined: batch processing, benchmark, column-wise storage, data
engineer, dataframe, docstring, immutable, index (a database), join (tables),
online analytical processing, online transaction processing, parameter sweeping,
profiling, row-wise storage

One peril of publishing a book online is obsessing over analytics. How many people
visited the site today? Which pages did they look at, and for how long? Whether we use
Excel, SQL, or Python, we will almost certainly be analyzing tables with named columns
and multiple rows. Such tables are called dataframes, and their performance is important
when we are working with large data sets. This chapter therefore implements dataframes
in two ways and shows how to compare their performance.

15.1 Options
To start, let’s create an abstract class that defines the methods our dataframe classes will
support. This class requires concrete classes to implement the methods shown below:
class DataFrame:

def ncol(self):
"""Report the number of columns."""

def nrow(self):
"""Report the number of rows."""

def cols(self):
"""Return the set of column names."""

def eq(self, other):
"""Check equality with another dataframe."""

def get(self, col, row):
"""Get a scalar value."""

def select(self, *names):
"""Select a named subset of columns."""

def filter(self, func):
"""Select a subset of rows by testing values."""

131



132 15 Performance Profiling

1

2

3

4

10

20

30

40

100

200

300

400

red green blue
{"red": 1, "green": 10, "blue": 100}

{"red": 2, "green": 20, "blue": 200}

{"red": 3, "green": 30, "blue": 300}

{"red": 4, "green": 40, "blue": 400}

Figure 15.1: Storing a dataframe’s data in rows.

1

2

3

4

10

20

30

40

100

200

300

400

red green blue

red:

green:

blue:

[1, 2, 3, 4]

[10, 20, 30, 40]

[100, 200, 300, 400]

Figure 15.2: Storing a dataframe’s data in columns.

Docstrings Are Enough

Every method in Python needs a body, so many programmers will write pass (Python’s
“do nothing” statement). However, a docstring also counts as a body, so if we write
those (which we should) there’s no need to write pass.

For our first usable implementation, we will derive a class DfRow that uses row-wise
storage (Figure 15.1). The dataframe is stored as a list of dictionaries, each of which repre-
sents a row. All of the dictionaries must have the same keys so that the concept of “column”
is meaningful, and the values associated with a particular key must all have the same type.

Our second implementation, DfCol, will use column-wise storage (Figure 15.2). Each
column is stored as a list of values, all of which are of the same type. The dataframe itself
is a dictionary of such lists, all of which have the same length so that there are no holes in
any of the rows. How we store the data determines which methods are easy to implement
and which are hard, and which are fast or slow.

15.2 Row-Wise Storage
We start by deriving DfRow from DataFrame and writing its constructor, which takes a list
of dictionaries as an argument, checks that they’re consistent with each other, and saves
them:
from df_base import DataFrame
from util import dict_match

class DfRow(DataFrame):



15.2 Row-Wise Storage 133

def __init__(self, rows):
assert len(rows) > 0
assert all(dict_match(r, rows[0]) for r in rows)
self._data = rows

The helper function to check that a bunch of dictionaries all have the same keys and
the same types of values associated with those keys is:
def dict_match(d, prototype):

if set(d.keys()) != set(prototype.keys()):
return False

return all(type(d[k]) == type(prototype[k]) for k in d)

Notice that DfRow’s constructor compares all of the rows against the first row. Doing this
means that we can’t create an empty dataframe, i.e., one that has no rows. This restriction
wasn’t part of our original design: it’s an accident of implementation that might surprise our
users. It’s OK not to fix this while we’re prototyping, but we will look at ways to address it
in the exercises.

Four of the methods required by DataFrame are easy to implement on top of row-wise
storage, though once again our implementation assumes there is at least one row:
def ncol(self):

return len(self._data[0])

def nrow(self):
return len(self._data)

def cols(self):
return set(self._data[0].keys())

def get(self, col, row):
assert col in self._data[0]
assert 0 <= row < len(self._data)
return self._data[row][col]

Checking equality is also relatively simple. Two dataframes are the same if they have
exactly the same columns and the same values in every column:
def eq(self, other):

assert isinstance(other, DataFrame)
for (i, row) in enumerate(self._data):

for key in row:
if key not in other.cols():

return False
if row[key] != other.get(key, i):

return False
return True

Notice that we use other.cols() and other.get() rather than reaching into the other
dataframe. We are planning to implement dataframes in several different ways, and we
might want to compare instances of those different implementations. Since they might have
different internal data structures, the only safe way to do this is to rely on the interface
defined in the base class.

Our final operations are selection, which returns a subset of the original dataframe’s
columns, and filtering, which returns a subset of its rows. Since we don’t know how many
columns the user might want, we give the select method a single parameter *names that
will capture zero or more positional arguments. We then build a new list of dictionaries that
only contain the fields with those names (Figure 15.3):



134 15 Performance Profiling

{"red": 1, "green": 10, "blue": 100}

{"red": 2, "green": 20, "blue": 200}

{"red": 3, "green": 30, "blue": 300}

{"red": 4, "green": 40, "blue": 400}

{"red": 1, "blue": 100}

{"red": 2, "blue": 200}

{"red": 3, "blue": 300}

{"red": 4, "blue": 400}

Figure 15.3: Selecting columns from data stored as rows.

def select(self, *names):
assert all(n in self._data[0] for n in names)
rows = [{key: r[key] for key in names} for r in self._data]
return DfRow(rows)

We now need to decide how to filter rows. Typical filtering conditions include, “Keep rows
where red is non-zero,” “Keep rows where red is greater than green,” and, “Keep rows
where red+green is within 10% of blue.” Rather than trying to anticipate every possible
rule, we require users to define functions whose parameters match the names of the table’s
columns. For example, if we have this test fixture:
def odd_even():

return DfRow([{"a": 1, "b": 3}, {"a": 2, "b": 4}])

then we should be able to write this test:
def test_filter():

def odd(a, b):
return (a % 2) == 1

df = odd_even()
assert df.filter(odd).eq(DfRow([{"a": 1, "b": 3}]))

We can implement this by using ** to spread the row across the function’s parameters
(Chapter 2). If there are keys in the row that don’t match parameters in the function or vice
versa, Python will throw an exception, but that’s probably what we want. Using this, the
implementation of DfRow.filter is:
def filter(self, func):

result = [r for r in self._data if func(**r)]
return DfRow(result)

Notice that the dataframe created by filter re-uses the rows of the original dataframe
(Figure 15.4). This is safe and efficient as long as dataframes are immutable, i.e., as long
as their contents are never changed in place. Most dataframe libraries work this way: while
recycling memory can save a little time, it usually also makes bugs much harder to track
down.



15.3 Column-Wise Storage 135

{"red": 1, "green": 10, "blue": 100}

{"red": 2, "green": 20, "blue": 200}

{"red": 3, "green": 30, "blue": 300}

{"red": 4, "green": 40, "blue": 400}

{"red": 1, "green": 10, "blue": 100}

{"red": 3, "green": 30, "blue": 300}

Figure 15.4: Filtering data stored as rows.

15.3 Column-Wise Storage
Having done all of this thinking, our column-wise dataframe class is somewhat easier to
write. We start as before with its constructor:
from df_base import DataFrame
from util import all_eq

class DfCol(DataFrame):
def __init__(self, **kwargs):

assert len(kwargs) > 0
assert all_eq(len(kwargs[k]) for k in kwargs)
for k in kwargs:

assert all_eq(type(v) for v in kwargs[k])
self._data = kwargs

and use a helper function all_eq to check that all of the values in any column have the
same types:
def all_eq(*values):

return (not values) or all(v == values[0] for v in values)

One Allowable Difference

Notice that DfCol’s constructor does not have the same signature as DfRow’s. At some
point in our code we have to decide which of the two classes to construct. If we design
our code well, that decision will be made in exactly one place and everything else will
rely solely on the common interface defined by DataFrame. But since we have to type
a different class name at the point of construction, it’s OK for the constructors to be
different.

The four methods that were simple to write for DfRow are equally simple to write
for DfCol, though once again our prototype implementation accidentally disallows empty
dataframes:
def ncol(self):

return len(self._data)

def nrow(self):
n = list(self._data.keys())[0]
return len(self._data[n])



136 15 Performance Profiling

red:

green:

blue:

[1, 2, 3, 4]

[10, 20, 30, 40]

[100, 200, 300, 400]

red:

blue:

[1, 2, 3, 4]

[100, 200, 300, 400]

Figure 15.5: Column-wise selection.

def cols(self):
return set(self._data.keys())

def get(self, col, row):
assert col in self._data
assert 0 <= row < len(self._data[col])
return self._data[col][row]

As with DfRow, the method that checks equality relies on the internal details of its own
class but uses the interface defined by DataFrame to access the other object:
def eq(self, other):

assert isinstance(other, DataFrame)
for n in self._data:

if n not in other.cols():
return False

for i in range(len(self._data[n])):
if self.get(n, i) != other.get(n, i):

return False
return True

To select columns, we pick the ones named by the caller and use them to create a new
dataframe. Again, this recycles the existing storage:
def select(self, *names):

assert all(n in self._data for n in names)
return DfCol(**{n: self._data[n] for n in names})

Finally, we need to filter the rows of a column-wise dataframe. Doing this is complex:
since values are stored in columns, we have to extract the ones belonging to each row to
pass them into the user-defined filter function (Figure 15.6). And if that wasn’t enough, we
want to do this solely for the columns that the user’s function needs.

For now, we will solve this problem by requiring the user-defined filter function to define
parameters to match all of the dataframe’s columns regardless of whether they are used
for filtering or not. We will then build a temporary dictionary with all the values in a “row”

red:

green:

blue:

[1, 2, 3, 4]

[10, 20, 30, 40]

[100, 200, 300, 400]

red:

green:

blue:

[1, 3]

[10, 30]

[100, 300]

Figure 15.6: Extracting values from columns to create temporary rows.



15.4 Performance 137

(i.e., the corresponding values across all columns) and use ** to spread it across the filter
function. Appendix B looks at a safer, but more complex, way to do this.
def filter(self, func):

result = {n: [] for n in self._data}
for i in range(self.nrow()):

args = {n: self._data[n][i] for n in self._data}
if func(**args):

for n in self._data:
result[n].append(self._data[n][i])

return DfCol(**result)

Time to write some tests. This one checks that we can construct a dataframe with some
values:
def test_construct_with_two_pairs():

df = DfCol(a=[1, 2], b=[3, 4])
assert df.get("a", 0) == 1
assert df.get("a", 1) == 2
assert df.get("b", 0) == 3
assert df.get("b", 1) == 4

while this one checks that filter works correctly:
def test_filter():

def odd(a, b):
return (a % 2) == 1

df = DfCol(a=[1, 2], b=[3, 4])
assert df.filter(odd).eq(DfCol(a=[1], b=[3]))

15.4 Performance
Our two implementations of dataframes have identical interfaces, so how can we choose
which to use?

Transactions vs. Analysis

Regardless of data volumes, different storage schemes are better (or worse) for differ-
ent kinds of work. Online transaction processing (OLTP) refers to adding or query-
ing individual records, such as online sales. Online analytical processing (OLAP),
on the other hand, processes selected columns of a table in bulk to do things like find
averages over time. Row-wise storage is usually best for OLTP, but column-wise stor-
age is better suited for OLAP. If data volumes are large, data engineers will some-
times run two databases in parallel, using batch processing jobs to copy new or
updated records from the OLTP databases over to the OLAP database.

To compare the speed of these classes, let’s write a short program to create dataframes
of each kind and time how long it takes to select their columns and filter their rows. To keep
things simple, we will create dataframes whose columns are called label_1, label_2, and
so on, and whose values are all integers in the range 0–9. A thorough set of benchmarks
would create columns with other datatypes as well, but this example is enough to illustrate
the technique.



138 15 Performance Profiling

RANGE = 10

def make_col(nrow, ncol):
def _col(n, start):

return [((start + i) % RANGE) for i in range(n)]
fill = {f"label_{c}": _col(nrow, c) for c in range(ncol)}
return DfCol(**fill)

def make_row(nrow, ncol):
labels = [f"label_{c}" for c in range(ncol)]
def _row(r):

return {
c: ((r + i) % RANGE) for (i, c) in enumerate(labels)

}
fill = [_row(r) for r in range(nrow)]
return DfRow(fill)

To time filter, we arbitrarily decide to keep rows with an even value in the first column:
FILTER = 2

def time_filter(df):
def f(label_0, **args):

return label_0 % FILTER == 1
start = time.time()
df.filter(f)
return time.time() - start

Since DfCol and DfRow derive from the same base class, time_filter doesn’t care which
we give it. Again, if we were doing this for real, we would look at actual programs to see
what fraction of rows filtering usually kept and simulate that.

To time select, we arbitrarily decide to keep one-third of the columns:
SELECT = 3

def time_select(df):
indices = [i for i in range(df.ncol()) if ((i % SELECT) == 0)]
labels = [f"label_{i}" for i in indices]
start = time.time()
df.select(*labels)
return time.time() - start

Finally, we write a function that takes a list of strings like 3x3 or 100x20, creates
dataframes of each size, times operations, and reports the results. We call this function
sweep because executing code multiple times with different parameters to measure perfor-
mance is called parameter sweeping:
def sweep(sizes):

result = []
for (nrow, ncol) in sizes:

df_col = make_col(nrow, ncol)
df_row = make_row(nrow, ncol)
times = [

time_filter(df_col),
time_select(df_col),
time_filter(df_row),
time_select(df_row),

]
result.append([nrow, ncol, *times])

return result



15.4 Performance 139

The results are shown in Table 15.1 and Figure 15.7. For a 1000× 1000 dataframe, se-
lection is over 250 times faster with column-wise storage than with row-wise, while filtering
is 1.8 times slower.

nrow ncol filter col select col filter row select row
10 10 8.87e-05 7.70e-05 4.41e-05 2.50e-05
100 100 0.00275 4.10e-05 0.00140 8.76e
1000 1000 0.146 0.000189 0.0787 0.0508
10000 10000 19.0 0.00234 9.97 5.57

Table 15.1: Dataframe timings.

0 20 40 60 80

0.5

1

1.5

2

percentage of filter operations (vs. select)

ra
ti
o 

of
 c

ol
um

n-
w

is
e 

ti
m

e 
to

 r
ow

-w
is

e 
ti
m

e

Figure 15.7: Relative performance of row-wise and column-wise storage.

We can get much more insight by profiling our code using Python cProfile1 module,
which collects detailed information on how long each function runs and reports the result:
python -m cProfile --sort=tottime \

timing.py --silent 10x10 50x50 100x100 500x500 1000x1000

3007281 function calls (3003108 primitive calls) in 2.120 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:lineno(function)
2319840 0.671 0.000 0.671 0.000 util.py:10(<genexpr>)

5 0.271 0.054 0.521 0.104 df_col.py:50(filter)
1660 0.261 0.000 0.261 0.000 timing.py:20(<dictcomp>)

8066/3916 0.213 0.000 1.056 0.000 {built-in method builtins.all}
1660 0.191 0.000 0.191 0.000 df_col.py:53(<dictcomp>)…

1https://docs.python.org/3/library/profile.html

https://docs.python.org


140 15 Performance Profiling

The profiler’s output tells us the number of times each function or method was called,
the total time spent in those calls (which is what we care about most), the time spent per
call, and the cumulative time spent in that call and all the things it calls. We can see right
away that the dict_match function that checks the consistency of the rows in a row-oriented
dataframe is eating up a lot of time. It’s only called in the constructor, but since we’re con-
structing a new dataframe for each filter and select, removing that safety check would
speed things up.

Looking down a little further, the dictionary comprehension in DfCol.filter takes a lot
of time as well. That isn’t surprising: we’re copying the values out of the columns into a tem-
porary dictionary for every row when we filter, and building all those temporary dictionaries
adds up to a lot of time.

15.5 Summary
Figure 15.8 summarizes the key ideas introduced in this chapter. The most important is
that experiments can help us decide how to implement key features of our software, but the
results of those experiments depend on exactly what wemeasure. Good software designers
collect and analyze data all the time to find out whether one website design works better
than another [Kohavi2020] or to improve the performance of CPUs [Patterson2017]. A few
simple experiments like these can save weeks or months of misguided effort.

dataframe
columns

rows

row-wise

column-wise

operations

filterselect

storedhas

include

supports

keepkeep

slow

fast

fast

slow

profiling

experiments

such

as


help design


Figure 15.8: Concepts for dataframes.

15.6 Exercises
More Efficient Filtering
Derive a class from DfCol and override its filter method so that the user-defined filtering
functions take zero or more columns and a row index called i_row as parameters and return
True or False to signal whether the row passes the test.



15.6 Exercises 141

1. How much faster does this make filtering?

2. When would it be useful for filtering functions to take no column at all as parameters?

Empty Dataframes
An empty dataframe is as reasonable and as useful as an empty string or an empty list.
DfCol can represent this, but DfRow cannot: if the list of dictionaries is empty, we cannot
ask for column names. Derive another dataframe class from DF that uses row-wise storage
but can represent a dataframe with no rows.

Unified Constructors
Modify the constructors of DfRow and DfCol to have the same signatures. Where and why
might this be useful?

Fixture Functions
Read the documentation for the @fixture decorator in pytest2 and modify the tests in this
chapter to use it.

Using Arrays
Derive another dataframe class from DF that uses Python’s array3 module for column-wise
storage. How does it perform compared to other implementations?

Crossover
1. At what ratio of filter operations to select operations are DfRow and DfCol equally fast?

(Your answer may depend on the size of the dataframe.)

2. How does the relative performance of the two classes change if tables have a fixed num-
ber of columns (such as 10 or 20) but an increasing numbers of rows? Is this scenario
more realistic?

Conversion
Write a function to convert a DfRow into a DfCol and another to do the opposite. Which one
is faster? How does the difference in performance depend on the size and shape of the
dataframes being converted?

Filtering by Strings
Modify the comparison of filter and select to work with tables that contain columns of strings
instead of columns of numbers and see how that changes performance. For testing, create
random 4-letter strings using the characters A-Z and then filter by:

2https://docs.pytest.org/
3https://docs.python.org/3/library/array.html

https://docs.pytest.org
https://docs.python.org


142 15 Performance Profiling

• an exact match,

• strings starting with a specific character, and

• strings that contain a specific character.

Inspection
Rewrite DfCol.filter using Python’s inspect4 module so that users’ filtering functions
only need to define parameters for the columns of interest.

Join Performance
A join combines data from two tables based on matching keys. For example, if the two
tables are:

Key Left
A a1
B b1
C c1

and:

Key Right
A a2
A a3
B b2

then the join is:

Key Left Right
A a1 a2
A a1 a3
B b1 b2

Write a test to compare the performance of row-wise vs. column-wise storage when
joining two tables based onmatching numeric keys. Does the answer depend on the fraction
of keys that match?

Join Optimization
The simplest way to join two tables is to look for matching keys using a double loop. An
alternative is to build an index for each table and then use it to construct matches. For
example, suppose the tables are:

Key Left
A a1
B b1
C c1

4https://docs.python.org/3/library/inspect.html

https://docs.python.org


15.6 Exercises 143

and:

Key Right
A a2
A a3
B b2

The first step is to create a Map showing where each key is found in the first table:
{A: [0], B: [1], C: [2]}

The second step is to create a similar Map for the second table:
{A: [0, 1], B: [2]}

We can then loop over the keys in one of the maps, look up values in the second map, and
construct all of the matches.

Write a function that joins two tables this way. Is it faster or slower than using a double
loop? How does the answer depend on the number of keys and the fraction that match?



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


16
Object Persistence

• A persistence framework saves and restores objects.

• Persistence must handle aliasing and circularity.

• Users should be able to extend persistence to handle objects of their own types.

• Software designs should be open for extension but closed for modification.

Terms defined: atomic value, list comprehension, Open-Closed Principle,
persistence

Version control can keep track of our files, but what should we put in them? Plain text
works well for things like this chapter, but the data structures used to represent HTML
(Chapter 11) or the state of a game aren’t easy to represent in prose.

Another option is to store objects, i.e., to save a list of dictionaries as-is rather than
flattering it into rows and columns. Python’s pickle1 module does this in a Python-specific
way, while the json2 module saves some kinds of data as text formatted like JavaScript
objects. As odd as it may seem, this has become a cross-language standard.

The phrase “some kinds of data” is the most important part of the preceding paragraph.
Since programs can define new classes, a persistence framework has to choose one of
the following:

1. Only handle built-in types, or even more strictly, only handle types that are common
across many languages, so that data saved by Python can be read by JavaScript and
vice versa.

2. Provide a way for programs to convert from user-defined types to built-in types and then
save those. This option is less restrictive than the first but can lead to some information
being lost. For example, if instances of a program’s User class are saved as dictionaries,
the program that reads data may wind up with dictionaries instead of users.

3. Save class definitions as well as objects’ values so that when a program reads saved
data it can reconstruct the classes and then create fully functional instances of them.
This choice is the most powerful, but it is also the hardest to implement, particularly
across languages. It is also the riskiest: if a program is running third-party code in order
to restore objects, it has to trust that code not to do anything malicious.

This chapter starts by implementing the first option (built-in types only), then extends
it to handle objects that the data structure refers to in several places (which JSON does
not). To keep parsing and testing simple, our framework will store everything as text with
one value per line; we will look at non-text options in Chapter 17, and at how to handle
user-defined types in Appendix B.

1https://docs.python.org/3/library/pickle.html
2https://docs.python.org/3/library/json.html

145

https://docs.python.org
https://docs.python.org


146 16 Object Persistence

16.1 Built-in Types
The first thing we need to do is specify our data format. We will store each atomic value
on a line of its own with a type name and a value separated by a colon:
bool:True
int:123

Since we are storing things as text, we have to handle strings carefully: for example,
we might need to save the string "str:something" and later be able to tell that it isn’t the
string "something". We do this by splitting strings on newline characters and saving the
number of lines, followed by the actual data:
# input
this is
two lines

# output
str:2
this is
two lines

The function save handles three of Python’s built-in types to start with:
def save(writer, thing):

if isinstance(thing, bool):
print(f"bool:{thing}", file=writer)

elif isinstance(thing, float):
print(f"float:{thing}", file=writer)

elif isinstance(thing, int):
print(f"int:{thing}", file=writer)

else:
raise ValueError(f"unknown type of thing {type(thing)}")

The function that loads data starts by reading a single line, stripping off the newline at
the end (which is added automatically by the print statement in save), and then splitting
the line on colons. After checking that there are two fields, it uses the type name in the first
field to decide how to handle the second:
def load(reader):

line = reader.readline()[:-1]
assert line, "Nothing to read"
fields = line.split(":", maxsplit=1)
assert len(fields) == 2, f"Badly-formed line {line}"
key, value = fields

if key == "bool":
names = {"True": True, "False": False}
assert value in names, f"Unknown Boolean {value}"
return names[value]

elif key == "float":
return float(value)

elif key == "int":



16.1 Built-in Types 147

return int(value)

else:
raise ValueError(f"unknown type of thing {line}")

Saving a list is almost as easy: we save the number of items in the list, with a recursive
_call_. For example, the list [55, True, 2.71] is saved as shown in Figure 16.1. The
code to do this is:
elif isinstance(thing, list):

print(f"list:{len(thing)}", file=writer)
for item in thing:

save(writer, item)

while to load a list, we just read the specified number of items:
elif key == "list":

return [load(reader) for _ in range(int(value))]

55 True 2.71

list:3
int:55
bool: True
float: 2.71

Figure 16.1: Saving nested data structures.

Notice that save and load don’t need to know what kinds of values are in the list. Each
recursive call advances the input or output stream by precisely as many lines as it needs
to. As a result, this approach should handle empty lists and nested lists without any extra
work.

Our functions handle sets in exactly the same way as lists; the only difference is using
the keyword set instead of the keyword list in the opening line. To save a dictionary, we
save the number of entries and then save each key and value in turn:
elif isinstance(thing, dict):

print(f"dict:{len(thing)}", file=writer)
for (key, value) in thing.items():

save(writer, key)
save(writer, value)

The code to load a dictionary is analogous. With this machinery in place, we can save
our first data structure:
save(sys.stdout, [False, 3.14, "hello", {"left": 1, "right": [2, 3]}])

list:4
bool:False
float:3.14
str:1
hello
dict:2
str:1



148 16 Object Persistence

left
int:1
str:1
right
list:2
int:2
int:3

We now need to write some unit tests. We will use two tricks when doing this:

1. The StringIO class from Python’s io3 module allows us to read from strings and write
to them using the functions we normally use to read and write files. Using this lets us
run our tests without creating lots of little files as a side effect.

2. The dedent function from Python’s textwrap4 module removes leading indentation from
the body of a string. As the example below shows, dedent allows us to indent a fixture
the same way we indent our Python code, which makes the test easier to read.

def test_save_list_flat():
fixture = [0, False]
expected = dedent("""\
list:2
int:0
bool:False
""")
output = StringIO()
save(output, fixture)
assert output.getvalue() == expected

16.2 Converting to Classes
The save and load functions we built in the previous section work, but as we were extending
them we had to modify their internals every time we wanted to do something new.

The Open-Closed Principle states that software should be open for extension but
closed for modification, i.e., that it should be possible to extend functionality without having
to rewrite existing code. This allows old code to use new code, but only if our design per-
mits the kinds of extensions people are going to want to make. (Even then, it often leads
to deep class hierarchies that can be hard for the next programmer to understand.) Since
we can’t anticipate everything, it is normal to have to revise a design the first two or three
times we try to extend it. As [Brand1995] said of buildings, the things we make learn how
to do things better as we use them.

In this case, we can follow the Open-Closed Principle by rewriting our functions as
classes and by using yet another form of dynamic dispatch to handle each item so that
we don’t have to modify a multi-way if statement each time we add a new capability. If
we have an object obj, then hasattr(obj, "name") tells us whether that object has an
attribute called "name". If it does, getattr(obj, "name") returns that attribute’s value; if
that attribute happens to be a method, we can then call it like a function:

3https://docs.python.org/3/library/io.html
4https://docs.python.org/3/library/textwrap.html

https://docs.python.org
https://docs.python.org


16.2 Converting to Classes 149

class Example:
def __init__(self, label):

self.label = label

def get_size(self):
return len(self.label)

ex = Example("thing")
print("ex has missing", hasattr(ex, "missing"))
print("ex has label", hasattr(ex, "label"), "with value", getattr(ex, "label"))
print("ex has get_size", hasattr(ex, "get_size"))
method = getattr(ex, "get_size")
print("result of calling method", method())

ex has missing False
ex has label True with value thing
ex has get_size True
result of calling method 5

Using this, the core of our saving class is:
class SaveObjects:

def __init__(self, writer):
self.writer = writer

def save(self, thing):
typename = type(thing).__name__
method = f"save_{typename}"
assert hasattr(self, method), \

f"Unknown object type {typename}"
getattr(self, method)(thing)

We have called this class SaveObjects instead of just Save because we are going to
create other variations on it. SaveObjects.save figures out which method to call to save a
particular thing by constructing a name based on the thing’s type, checking whether that
method exists, and then calling it. As in _our_ previous example, the methods that handle
specific items must all have the same signature so that they can be called interchangeably.
For example, the methods that write integers and strings are:
def save_int(self, thing):

self._write("int", thing)

def save_str(self, thing):
lines = thing.split("\n")
self._write("str", len(lines))
for line in lines:

print(line, file=self.writer)

LoadObjects.load combines dynamic dispatch with the string handling of our original
load function:
class LoadObjects:

def __init__(self, reader):
self.reader = reader

def load(self):
line = self.reader.readline()[:-1]
assert line, "Nothing to read"
fields = line.split(":", maxsplit=1)



150 16 Object Persistence

assert len(fields) == 2, f"Badly-formed line {line}"
key, value = fields
method = f"load_{key}"
assert hasattr(self, method), f"Unknown object type {key}"
return getattr(self, method)(value)

The methods that load individual items are even simpler. For example, we load a
floating-point number like this:
def load_float(self, value):

return float(value)

16.3 Aliasing
Consider the two lines of code below, which created the data structure shown in Figure 16.2.
If we save this structure and then reload it using what we have built so far, we will wind
up with two copies of the list containing the string "content" instead of one. This won’t
be a problem if we only ever read the reloaded data, but if we modify the new copy of
fixture[0], we won’t see that change reflected in fixture[1], where we would have
seen the change in the original data structure:
shared = ["content"]
fixture = [shared, shared]

shared

fixture

"shared"

Figure 16.2: Saving aliased data without respecting aliases.

The problem is that the list shared is aliased, i.e., there are two or more references to
it. To reconstruct the original data correctly, we need to:

1. keep track of everything we have saved;

2. save a marker instead of the object itself when we try to save it a second time; and

3. reverse this process when loading data.

We can keep track of the things we have saved using Python’s built-in id function, which
returns a unique ID for every object in the program. For example, even if two lists contain
exactly the same values, id will report different IDs for those lists because they’re stored
in different locations in memory. We can use this to:

1. store the IDs of all the objects we’ve already saved in a set, and then

2. write a special entry with the keyword alias and its unique ID when we see an object
for the second time.



16.3 Aliasing 151

Here’s the start of SaveAlias:
class SaveAlias(SaveObjects):

def __init__(self, writer):
super().__init__(writer)
self.seen = set()

def save(self, thing):
thing_id = id(thing)
if thing_id in self.seen:

self._write("alias", thing_id, "")
return

self.seen.add(id(thing))
typename = type(thing).__name__
method = f"save_{typename}"
assert hasattr(self, method), f"Unknown object type {typename}"
getattr(self, method)(thing)

Its constructor creates an empty set of IDs seen so far. If SaveAlias.save notices that the
object it’s about to save has been saved before, it writes a line like this:
alias:12345678:

where 12345678 is the object’s ID. (The exercises will ask why the trailing colon needs to
be there.) If the object hasn’t been seen before, SaveAlias saves the object’s type, its ID,
and either its value or its length:
def save_list(self, thing):

self._write("list", id(thing), len(thing))
for item in thing:

self.save(item)

SaveAlias._list is a little different from SaveObjects._list because it has to save
each object’s identifier along with its type and its value or length. Our LoadAlias class
needs a similar change compared to LoadObjects. The first version is shown below; as we
will see, it contains a subtle bug:
class LoadAlias(LoadObjects):

def __init__(self, reader):
super().__init__(reader)
self.seen = {}

def load(self):
line = self.reader.readline()[:-1]
assert line, "Nothing to read"
fields = line.split(":", maxsplit=2)
assert len(fields) == 3, f"Badly-formed line {line}"
key, ident, value = fields

# the lines below contain a bug
if key == "alias":

assert ident in self.seen
return self.seen[ident]

method = f"load_{key}"
assert hasattr(self, method), f"Unknown object type {key}"
result = getattr(self, method)(value)
self.seen[ident] = result
return result



152 16 Object Persistence

fixture

Figure 16.3: A data structure that contains a reference to itself.

The first test of our new code is:
def test_aliasing_no_aliasing():

fixture = ["a", {"b": True, 7: {"c": "d"}}]
assert roundtrip(fixture) == fixture

which uses this helper function:
def roundtrip(fixture):

writer = StringIO()
SaveAlias(writer).save(fixture)
reader = StringIO(writer.getvalue())
return LoadAlias(reader).load()

There isn’t any aliasing in the test case, but that’s deliberate: we want to make sure we
haven’t broken code that was working before we move on. Here’s a test that actually in-
cludes some aliasing:
def test_aliasing_shared_child():

shared = ["content"]
fixture = [shared, shared]
result = roundtrip(fixture)
assert result == fixture
assert id(result[0]) == id(result[1])
result[0][0] = "changed"
assert result[1][0] == "changed"

It checks that the aliased sub-list is actually aliased after the data is restored, then checks
that changes to the sub-list through one alias show up through the other. The second check
ought to be redundant, but it’s still comforting.

There’s one more case to check, and unfortunately it reveals a bug. The two lines:
fixture = []
fixture.append(fixture)

create the data structure shown in Figure 16.3, in which an object contains a reference to
itself. Our code ought to handle this case but doesn’t: when we try to read in the saved data,
LoadAlias.load sees the alias line but then says it can’t find the object being referred to.
The problem is these lines in LoadAlias.load marked as containing a bug, in combination
with these lines inherited from LoadObjects:
def load_list(self, value):

return [self.load() for _ in range(int(value))]

Let’s trace execution for the saved data:
list:4484025600:1
alias:4484025600:

1. The first line tells us that there’s a list whose ID is 4484025600 so we LoadObjects._list
to load a list of one element.



16.4 Summary 153

2. LoadObjects._list called LoadAlias.load recursively to load that one element.

3. LoadAlias.load reads the second line of saved data, which tells it to re-use the data
whose ID is 4484025600. But LoadObjects._list hasn’t created that list yet—it is still
reading the elements—so LoadAlias.load hasn’t added the list to seen.

The solution is to reorder the operations, which unfortunately means writing new ver-
sions of all the methods defined in LoadObjects. The new implementation of _list is:
def load_list(self, ident, length):

result = []
self.seen[ident] = result
for _ in range(int(length)):

result.append(self.load())
return result

This method creates the list it’s going to return, adds that list to the seen dictionary
immediately, and then loads list items recursively. We have to pass it the ID of the list to
use as the key in seen, and we have to use a loop rather than a list comprehension, but
the changes to save_set and save_dict follow exactly the same pattern.
word = "word"
child = [word, word]
parent = []
parent.append(parent)
parent.append(child)

saver = SaveAlias(sys.stdout)
saver.save(parent)

list:4539747200:2
alias:4539747200:
list:4539552960:2
str:4539552048:1
word
alias:4539552048:

16.4 Summary
Figure 16.4 summarizes the ideas introduced in this chapter, while Appendix B shows how
to extend our framework to handle user-defined classes.

persistence

atomic values

collections

user classes
aliasing

extensible

Open-Closed
Principle

dynamic
dispatch

uniform
signature

must be

to handle

for
can
have

should
respect

via
needs

Figure 16.4: Concepts for persistence.



154 16 Object Persistence

16.5 Exercises
Dangling Colon
Why is there a colon at the end of the line alias:12345678: when we create an alias
marker?

Versioning
We now have several versions of our data storage format. Early versions of our code can’t
read the archives created by later ones, and later ones can’t read the archives created
early on (which used two fields per line rather than three). This problem comes up all the
time in long-lived libraries and applications, and the usual solution is to include some sort of
version marker at the start of each archive to indicate what version of the software created
it (and therefore how it should be read). Modify the code we have written so far to do this.

Strings
Modify the framework so that strings are stored using escape characters like \n instead of
being split across several lines.

Who Calculates?
Why doesn’t LoadAlias.load calculate object IDs? Why does it use the IDs saved in the
archive instead?

Using Globals
The lesson on unit testing introduced the function globals, which can be used to look up
everything defined at the top level of a program.

1. Modify the persistence framework so that it looks for save_ and load_ functions using
globals.

2. Why is this a bad idea?



17
Binary Data

• Programs usually store integers using two’s complement rather than sign and
magnitude.

• Characters are usually encoded as bytes using either ASCII, UTF-8, or UTF-32.

• Programs can use bitwise operators to manipulate the bits representing data directly.

• Low-level compiled languages usually store raw values, while high-level interpreted
languages use boxed values.

• Sets of values can be packed into contiguous byte arrays for efficient transmission
and storage.

Terms defined: ANSI character encoding, ASCII character encoding, bit mask, bit
shifting, bitwise operation, boxed value, buffer (in memory), character encoding,
code point, continuation byte, control code, escape sequence, exclusive or,
format string, sign and magnitude, two’s complement, Unicode, UTF-32, UTF-8,
variable-length encoding

Python and other high-level languages shield programmers from the low-level details
of how computers actually store and manipulate data, but sooner or later someone has to
worry about bits and bytes. This chapter explores how computers represent numbers and
text and shows how to work with data at this level.

17.1 Integers
Let’s start by looking at how integers are stored. The natural way to do this with ones and
zeroes uses base 2, so 1001 in binary is (1×8) + (0×4) + (0×2) + (1×1) or 9 base 10. We
can handle negative numbers by reserving the top bit for the sign, so that 01001 is +9 and
11001 is −9.

This representation has two drawbacks. The less important one is that it gives us two
zeroes, one positive and one negative. The larger one is that the hardware needed to do
arithmetic on this sign and magnitude representation is more complicated than the hard-
ware needed for another scheme called two’s complement. Instead of mirroring positive
values, two’s complement rolls over when going below zero like an odometer. For example,
three-bit integers give us the values in Table 17.1.

We can still tell whether a number is positive or negative by looking at the first bit: nega-
tive numbers have 1, positive numbers have 0. However, two’s complement is asymmetric:
since 0 counts as a positive number, numbers go from −4 to 3, or −16 to 15, and so on. As
a result, even if x is a valid number, -x may not be.

155



156 17 Binary Data

Base 10 Base 2
3 011
2 010
1 001
0 000
-1 111
-2 110
-3 101
-4 100

Table 17.1: 3-bit integer values using two’s complement.

Decimal Hexadecimal Bits Decimal Hexadecimal Bits
0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
5 5 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Table 17.2: Hexadecimal digits.

We can write binary numbers directly in Python using the 0b prefix:
print(0b101101) # (1 * 32) + (1 * 8) + (1 * 4) + 1

45

As noted in Chapter 3, programmers usually use hexadecimal instead: the digits 0–9
have the usual meaning, and the letters A–F (or a–f) are used to represent the digits 11–
15. We signal that we’re using hexadecimal with a 0x prefix, so 0xF7 is (15×16) + 7 or 247
base 10. Each hexadecimal digit corresponds to four bits (Table 17.2), so two hexadecimal
digits are exactly one byte, which makes it easy to translate bits to digits and vice versa:
for example, 0xF7 is 0b11110111.

17.2 Bitwise Operations
Like most languages based on C, Python has bitwise operations for working directly with
1’s and 0’s: & (and), | (or), ^ (xor), ∼ (not). & yields a 1 only if both its inputs are 1’s, while |
yields 1 if either or both are 1. ^, called exclusive or or “xor” (pronounced “ex-or”), produces
1 if the bits are different, i.e., it produces 1 if either input bit is 1 but not both. Finally, ∼ flips
its argument: 1 becomes 0, and 0 becomes 1.When these operators are applied onmulti-bit
values they work on corresponding bits independently as shown in Table 17.3.

We can set individual bits to 0 or 1 with these operators. To set a particular bit to 1,
create a value in which that bit is 1 and the rest are 0. When this is or’d with a value, the bit
we set is guaranteed to come out 1; the other bits will be left as they are. Similarly, to set a



17.3 Text 157

Expression Bitwise Result (bits) Result (decimal)
12 & 6 1100 & 0110 0100 4
12 | 6 1100 | 0110 1110 14
12 ^ 6 1100 ^ 0110 1010 10
∼ 6 ∼ 0110 1001 9
12 << 2 1100 << 2 110000 48
12 >> 2 1100 >> 2 0011 3

Table 17.3: Bitwise operations.

bit to zero, create amask in which that bit is 0 and the others are 1, then use & to combine
the two. To make things easier to read, programmers often set a single bit, negate it with
∼, and then use &:
mask = ~0x0100 # binary 1111 1110 1111 1111
val = val & mask # clears this ^ bit

Finally, Python has bit shifting operators that move bits left or right. Shifting the bits
0110 left by one place produces 1100, while shifting it right by one place produces 0011. In
Python, this is written x << 1 or x >> 1. Just as shifting a decimal number left corresponds
to multiplying by 10, shifting a binary number left is the same as multiplying it by 2. Similarly,
shifting a number right corresponds to dividing by 2 and throwing away the remainder, so
17 >> 3 is 2.

But what if the top bit of an integer changes from 1 to 0 or vice versa as a result of
shifting? If we’re using two’s complement, then the bits 1111 represent the value −1; if we
shift right we get 0111 which is 7. Similarly, if we shift 0111 to the left we get 1110 (assuming
we fill in the bottom with 0), which is −6.

Different languages deal with this problem in different ways. Python always fills with
zeroes, while Java provides two versions of right shift: >> fills in the high end with zeroes,
while >>> copies in the topmost (sign) bit of the original value. C (and by extension C++)
lets the underlying hardware decide, which means that if you want to be sure of getting a
particular answer, you have to handle the top bit yourself.

17.3 Text
The rules for storing text make integers look simple. By the early 1970smost programs used
ASCII, which represented unaccented Latin characters using the numbers from 32 to 127.
(The numbers 0 to 31 were used for control codes such as newline, carriage return, and
bell.) Since computers use 8-bit bytes and the numbers 0–127 only need 7 bits, program-
mers were free to use the numbers 128–255 for other characters. Unfortunately, different
programmers used them to represent different symbols: non-Latin characters, graphic char-
acters like boxes, and so on. The chaos was eventually tamed by the ANSI standard which
(for example) defined the value 231 to mean the character “ç”.

A standard that specifies how characters are represented in memory is called a charac-
ter encoding, and the ANSI standard encoding only solved a small part of a large problem.
It didn’t include characters from Turkish, Devanagari, and many other alphabets, much less
the thousands of characters used in some East Asian writing systems. One solution would
have been to use 16 or even 32 bits per character, but:



158 17 Binary Data

1. existing text files using ANSI would have to be transcribed, and

2. documents would be two or four times larger.

The solution was a new two-part standard called Unicode. The first part defined a code
point for every character: U+0065 for an upper-case Latin “A”, U+2605 for a black star,
and so on. (The Unicode Consortium site1 offers a complete list.) The second part defined
ways to store these values in memory. The simplest of these is UTF-32, which stores every
character as a 32-bit number. This scheme wastes a lot of memory if the text is written in
a Western European language, since it uses four times as much storage as is absolutely
necessary, but it’s easy to process.

The most popular encoding is UTF-8, which is variable length. Every code point from
0 to 127 is stored in a single byte whose high bit is 0, just as it was in the original ASCII
standard. If the top bit in the byte is 1, on the other hand, the number of 1’s after the high
bit but before the first 0 tells UTF-8 how many more bytes are used by that character’s
representation. For example, if the first byte of the character is 11101101 then:

• the first 1 signals that this is a multi-byte character;

• the next two 1’s signal the character includes bits from the following two bytes as well;

• the 0 separates the byte count from the first few bits used in the character; and

• the final 1101 is the first four bits of the character.

But that’s not all: every byte that’s a continuation of a character starts with the bits 10.
(Such bytes are, unsurprisingly, called continuation bytes.) This rule means that if we
look at any byte in a string we can immediately tell if it starts a character or continues a
character. Thus, to represent the character whose code point is 1789:

• We convert decimal 1789 to binary 11011111101.

• We count and realize that we’ll need two bytes: the first storing the high 5 bits of the
character, the second storing the low 6 bits.

• We encode the high 5 bits as 11011011: “start of a character with one continuation byte
and 5 payload bits 11011”.

• We encode the low 6 bits as 10111101: “a continuation byte with 6 payload bits 111101”.

Internal vs. External

Since UTF-8 uses a varying number of bytes per character, the only way to get to a
particular character in a string is to scan the string from the beginning, which means
that indexing a string is O(N). However, when Python loads text into memory, it con-
verts the variable-length encoding to a fixed-length encoding, with the same number
of bytes per character. This allows it to jump directly to any character in the string in
constant time, which a computer scientist would say is O(1).

1https://www.unicode.org/

https://www.unicode.org


17.4 And Now, Persistence 159

17.4 And Now, Persistence
Chapter 16 showed how to store data as human-readable text. There are generally three
reasons to store it in formats that people can’t easily read:

1. Size. The string "10239472" is 8 bytes long, but the 32-bit integer it represents only
needs 4 bytes in memory. This doesn’t matter for small data sets, but it does for large
ones, and it definitely does when data has tomove between disk andmemory or between
different computers.

2. Speed. Adding the integers 34 and 56 is a single machine operation. Adding the values
represented by the strings "34" and "56" is dozens; we’ll explore this in the exercises.
Most programs that read and write text files convert the values in those files into binary
data using something like the int or float functions, but if we’re going to process the
data many times, it makes sense to avoid paying the conversion cost over and over.

3. Lack of anything better. It’s possible to represent images as ASCII art, but sound? Or
video? It would be possible, but it would hardly be sensible.

Finally, no matter how values are eventually stored, someone, somewhere, has to convert
the signals from a digital thermometer to numbers. Those signals almost certainly arrive as
a stream of 1’s and 0’s, and the bitwise operations shown above are almost certainly used
to do the conversion.

The first step toward saving and loading binary data is to write it and read it correctly.
If we open a file for reading using open("filename", "r") then Python assumes we want
to read character strings from the file. It therefore:

• asks the operating system for the default character encoding (which is almost always
UTF-8);

• uses this to convert bytes to characters; and

• converts Windows end-of-line markers to the Unix standard if necessary. For historical
reasons, Windows uses both a carriage return "\r" and a newline "\n" to mark the end
of a line, while Unix uses only the latter. Python converts from Windows to Unix on the
way in and vice versa on the way out so that programs (usually) don’t have to worry about
the difference.

These translations are handy when we’re working with text, but they mess up binary
data: we probably don’t want the pixels in our PNG image translated in these ways. As men-
tioned in Chapter 3, if we open a file in binary mode using open(filename, "rb") with a
lower-case ‘b’ after the ‘r’, Python gives us back the file’s contents as a bytes object instead
of as character strings. In this case we will almost always get data using reader.read(N)
to read N bytes at a time rather than for line in reader because there aren’t actually
lines of text in the file.

But what values should we actually store? C and Fortran manipulate “naked” values:
programs use what the hardware provides directly. Python and other dynamic languages,
on the other hand, put each value in a data structure that keeps track of its type along with
a bit of extra administrative information (Figure 17.1). Something stored this way is called
a boxed value, and this extra information is what allows the interpreter to do introspection
at runtime.



160 17 Binary Data

C

Python

65

2 7 65

count type value

Figure 17.1: Using boxed values to store metadata.

Fortran Python

65 1 19 address

count type values

23 address

1 7 65

count type value

1 7 23

count type value

Figure 17.2: Low-level and high-level array storage.

The same is true of collections. For example, Fortran stores all the values in an array
side by side in memory (Figure 17.2). Writing this to disk is easy: if the array starts at location
L in memory and has N values, each of which is B bytes long, we just copy the bytes from
L to L+NB − 1 to the file.

A Python list, on the other hand, stores references to values rather than the values
themselves. To put the values in a file, we can either write them one at a time or pack them
into a contiguous block and write that. Similarly, when reading from a file, we can either
grab the values one by one or read a larger block and then unpack it in memory.

Packing data is a lot like formatting strings using Python’s str.format method. The
format string specifies what types of data are being packed, how big they are (e.g., is this
a 32-bit or 64-bit floating point number?), and how many values there are, which in turn
exactly determines how much memory is required by the packed representation.

Unpacking reverses this process. After reading data into memory, we can unpack it
according to a format. The most important thing is that we can unpack data any way we
want. Wemight pack an integer and then unpack it as four characters, since both are 32 bits
long (Figure 17.3). Or we might save two characters, an integer, and two more characters,
then unpack it as a 64-bit floating point number. The bits are just bits: it’s our responsibility
to make sure we keep track of their meaning when they’re down there on disk.

Python’s struct2 module packs and unpacks data for us. The function pack(format,
val_1, val_2, ...) takes a format string and a bunch of values as arguments and packs
them into a bytes object. The inverse function, unpack(format, string), takes some
bytes and a format and returns a tuple containing the unpacked values. Here’s an example:

2https://docs.python.org/3/library/struct.html

https://docs.python.org


17.4 And Now, Persistence 161

168423484932-bit integer

a b c d4-character string

1100100011000110110001001100001 bits

Figure 17.3: Packing and unpacking binary values.

Format Meaning
"c" Single character (i.e., string of length 1)
"B" Unsigned 8-bit integer with all 8 bits used for value
"h" 16-bit integer
"i" 32-bit integer
"d" 64-bit float

Table 17.4: struct package formats.

import struct

fmt = "ii" # two 32-bit integers
x = 31
y = 65

binary = struct.pack(fmt, x, y)
print("binary representation:", repr(binary))

normal = struct.unpack(fmt, binary)
print("back to normal:", normal)

binary representation: b'\x1f\x00\x00\x00A\x00\x00\x00'
back to normal: (31, 65)

What is \x1f and why is it in our data? If Python finds a byte in a string that doesn’t
correspond to a printable character, it prints a 2-digit escape sequence in hexadecimal.
Python is therefore telling us that our string contains the eight bytes ['\x1f', '\x00',
'\x00', '\x00', 'A', '\x00', '\x00', '\x00']. 1F in hex is (1×161) + (15×160), or
31; 'A' is our 65, because the ASCII code for an upper-case letter A is the decimal value
65. All the other bytes are zeroes ("\x00") because each of our integers is 32 bits long and
the significant digits only fill one byte’s worth of each.

The struct module offers a lot of different formats, some of which are shown in Ta-
ble 17.4. Some of the formats, like "c" for a single character, are self-explanatory. The "B"
format packs or unpacks the least significant 8 bits of an integer; the "h" format takes the
least significant 16 bits and does likewise. They are needed because binary data formats
often store only as much data as they need to, so we need a way to get 8- and 16-bit values
out of files. (Many audio formats, for example, only store 16 bits per sample.)

Any format can be preceded by a count, so the format "3i" means “three integers”:
from struct import pack

print(pack("3i", 1, 2, 3))
print(pack("5s", bytes("hello", "utf-8")))
print(pack("5s", bytes("a longer string", "utf-8")))



162 17 Binary Data

b'\x01\x00\x00\x00\x02\x00\x00\x00\x03\x00\x00\x00'
b'hello'
b'a lon'

We get the wrong answer in the last call because we only told Python to pack five
characters. How can we tell it to pack all the data that’s there regardless of length?

The short answer is that we can’t: we must specify how much we want packed. But
that doesn’t mean we can’t handle variable-length strings; it just means that we have to
construct the format on the fly using an expression like this:
format = f"{len(str)}s"

If str contains the string "example", the expression above will assign "7s" to format, which
just happens to be exactly the right format to use to pack it provided all the characters can
be represented in a single byte each. We will explore packing and unpacking strings with
other characters in the exercises.

Saving the format when we are writing solves half of the problem, but how do we know
how much data to get when we’re reading? For example, suppose we have the two strings
“hello” and “Python”. We can pack them like this:
pack('5s6s', 'hello', 'Python')

but how do we know how to unpack 5 characters then 6? The trick is to save the size along
with the data. If we always use exactly the same number of bytes to store the size, we can
read it back safely, then use it to figure out how big our string is:
def pack_string(as_string):

as_bytes = bytes(as_string, "utf-8")
header = pack("i", len(as_bytes))
format = f"{len(as_bytes)}s"
body = pack(format, as_bytes)
return header + body

if __name__ == "__main__":
result = pack_string("hello!")
print(repr(result))

b'\x06\x00\x00\x00hello!'

The unpacking function is analogous. We break thememory buffer into a header that’s
exactly four bytes long (i.e., the right size for an integer) and a body made up of whatever’s
left. We then unpack the header, whose format we know, to determine howmany characters
are in the string. Once we’ve got that, we use the trick shown earlier to construct the right
format on the fly and then unpack the string and return it.
def unpack_string(buffer):

header, body = buffer[:4], buffer[4:]
length = unpack("i", header)[0]
format = f"{length}s"
result = unpack(format, body)[0]
return str(result, "utf-8")

buffer = pack_string("hello!")
result = unpack_string(buffer)
print(result)



17.5 Summary 163

hello!

In practice, programmers use the struct module’s calcsize function to figure out how
large (in bytes) the data represented by a format is:
from struct import calcsize

for format in ["4s", "3i4s5d"]:
print(f"format '{format}' needs {calcsize(format)} bytes")

format '4s' needs 4 bytes
format '3i4s5d' needs 56 bytes

Binary data is to programming what chemistry is to biology: you don’t want to spend any
more time thinking at its level than you have to, but there’s no substitute when you do have
to. Please remember that libraries already exist to handle almost every binary format ever
created and to read data from almost every instrument on the market. You shouldn’t worry
about 1’s and 0’s unless you really have to.

17.5 Summary
Figure 17.4 summarizes the ideas introduced in this chapter. Please see Appendix B for
extra material related to floating-point numbers.

sign and
magnitude

two's

complement

integer

character

bits

hexadecimal

bitwise operations

and or xor not

left

shift

right

shift

ASCII

UTF-8

UTF-32

Unicode

bare
value

boxed

value

contiguous
scattered

stored as

encoded
as

are

written as

manipulated

with

usually

values can
be

made of
interpeted as

can
be

can be

pack

unpack

Figure 17.4: Concepts for binary data.



164 17 Binary Data

17.6 Exercises
Adding Strings
Write a function that takes two strings of digits and adds them as if they were numbers
without actually converting them to numbers. For example, add_str("12", "5") should
produce the string "17".

File Types
The first eight bytes of a PNG image file always contain the following (base-10) values:
137 80 78 71 13 10 26 10

Write a program that determines whether a file is a PNG image or not.

Converting Integers to Bits
Using Python’s bitwise operators, write a function that returns the binary representation of
a non-negative integer. Write another function that converts a string of 1’s and 0’s into an
integer (treating it as unsigned).

Encoding and Decoding
1. Write a function that takes a list of integers representing Unicode code points as input

and returns a list of single-byte integers with their UTF-8 encoding.

2. Write the complementary function that turns a list of single-byte integers into the corre-
sponding code points and reports an error if anything is incorrectly formatted.

Storing Arrays
Python’s array3 module manages a block of basic values (characters, integers, or floating-
point numbers). Write a function that takes a list as input, checks that all values in the list
are of the same basic type, and if so, packs them into an array and then uses the struct
module to pack that.

Performance
Getting a single value out of an array created with the array module takes time, since the
value must be boxed before it can be used. Write some tests to see how much slower
working with values in arrays is compared to working with values in lists.

3https://docs.python.org/3/library/array.html

https://docs.python.org


18
A Database

• Database stores records so that they can be accessed by key.

• Log-structured database appends new records to database and invalidates older
versions of records.

• Classes are data structures that can be saved like any other data.

• The filesystem saves data in fixed-size pages.

• We can improve the efficiency of a database by saving records in blocks.

Terms defined: block (of memory), compact (data or files), garbage collection,
key-value store, log-structured database, null byte, page

Persisting objects (Chapter 16) lets us save and restore program state, but we often
want to be able to look things up quickly without reloading all of our data. We would also
like applications written in different languages to be able to get at our data, which might be
easier if we choose a different storage format.

This chapter therefore builds a very simple log-structured database. The phrase “log-
structured” means that records a log of operations, i.e., every new record is appended to the
end of the database. Programmers have invented many other ways to store large amounts
of data, but this is one of the easiest to understand.

18.1 Starting Point
Our starting point is a simple key-value store that lets us save records and look them up
later. To use it, we have to provide a function that takes a record and returns its key. We
store that function in the Database object for later use:
class Database:

def __init__(self, key_func):
"""Initialize with function to get key."""
self._key_func = key_func

def add(self, record):
"""Store the given record."""
raise NotImplementedError("add")

def get(self, key):
"""Return record associated with key or None."""
raise NotImplementedError("get")

If we want a dictionary that only stores things in memory, we can derive a class from
Database that uses a dictionary with the values returned by the user’s key function for
lookup (Figure 18.1):

165



166 18 A Database

index records

memory

Figure 18.1: Storing a database as a single dictionary in memory.

from interface_original import Database

class JustDict(Database):
def __init__(self, key_func):

super().__init__(key_func)
self._data = {}

def add(self, record):
key = self._key_func(record)
self._data[key] = record

def get(self, key):
return self._data.get(key, None)

This simple class is enough to let us start writing some tests. Let’s create a class to
store experimental records:
class BasicRec:

MAX_NAME_LEN = 6 # length of name in chars
TIMESTAMP_LEN = 8 # length of timestamp in chars
MAX_READING = 10 # maximum reading value
MAX_READING_LEN = 2 # length of reading in chars
MAX_READINGS_NUM = 2 # maximum number of readings

@staticmethod
def key(record):

assert isinstance(record, BasicRec)
return record._name

def __init__(self, name, timestamp, readings):
assert 0 < len(name) <= self.MAX_NAME_LEN
assert 0 <= len(readings) <= self.MAX_READINGS_NUM
assert all((0 <= r <= self.MAX_READING) for r in readings)
self._name = name
self._timestamp = timestamp
self._readings = readings



18.1 Starting Point 167

and use the pytest.fixture decorator (Chapter 9) to create a database and two records:
@pytest.fixture
def db():

return JustDict(BasicExperiment.key)

@pytest.fixture
def ex01():

return BasicExperiment("ex01", 12345, [1, 2])

@pytest.fixture
def ex02():

return BasicExperiment("ex02", 67890, [3, 4])

Our first few tests are then:
def test_construct(db):

assert db

def test_get_nothing_from_empty_db(db):
assert db.get("something") is None

def test_add_then_get(db, ex01):
db.add(ex01)
assert db.get("ex01") == ex01

def test_add_two_then_get_both(db, ex01, ex02):
db.add(ex01)
db.add(ex02)
assert db.get("ex01") == ex01
assert db.get("ex02") == ex02

def test_add_then_overwrite(db, ex01):
db.add(ex01)
ex01._timestamp = 67890
db.add(ex01)
assert db.get("ex01") == ex01

Our next step is to save the user’s records in the database without tying the database
to a particular type of record. The cleanest way to solve this problem is to require records
to know how to convert themselves into something storable. Rather than passing a second
function to the database’s constructor, we will refactor the database so that we pass in the
object that represents the record class:
class Database:

def __init__(self, record_cls):
"""Initialize with data manipulation functions."""
self._record_cls = record_cls

def add(self, record):
"""Store the given record."""
raise NotImplementedError("add")

def get(self, key):
"""Return record associated with key or None."""
raise NotImplementedError("get")

We can now refactor our database to use a static method of the record class provided
to its constructor when it needs a key:



168 18 A Database

from interface import Database

class JustDictRefactored(Database):
def __init__(self, record_cls):

super().__init__(record_cls)
self._data = {}

def add(self, record):
key = self._record_cls.key(record)
self._data[key] = record

def get(self, key):
return self._data.get(key, None)

18.2 Saving Records
The next step in building a usable database is to have it store records rather than just
refer to the user’s objects. Since we don’t want the database tied to any particular kind of
record, records must know how to pack and unpack themselves. We could have used the
techniques of Chapter 17, but to make our test and sample output a little more readable,
we will pack numbers as strings with a null byte \0 between each string:
@staticmethod
def pack(record):

assert isinstance(record, Experiment)
readings = "\0".join(str(r) for r in record._readings)
result = f"{record._name}\0{record._timestamp}\0{readings}"
if len(result) < Experiment.RECORD_LEN:

result += "\0" * (Experiment.RECORD_LEN - len(result))
return result

The corresponding method to unpack a stored record is:
@staticmethod
def unpack(raw):

assert isinstance(raw, str)
parts = raw.split("\0")
name = parts[0]
timestamp = int(parts[1])
readings = [int(r) for r in parts[2:] if len(r)]
return Experiment(name, timestamp, readings)

These records look like the example below (which uses . to show null bytes):
from record import Experiment

ex = Experiment("abcdef", 12345, [6, 7])
print(Experiment.pack(ex).replace('\0', '.'))

abcdef.12345.6.7.....

Notice that our packing and unpacking methods are static, i.e., they’re part of the class
but don’t require an object to work. More importantly, they don’t handle strings that contain



18.3 A File-Backed Database 169

null bytes. This limitation wasn’t part of our original design, but is instead an accident of
implementation. We will look at ways around it in the exercises.

To finish off, we write methods to pack and unpack multiple records at once by joining
and splitting single-record data:
@staticmethod
def pack_multi(records):

return ''.join([Experiment.pack(r) for r in records])

@staticmethod
def unpack_multi(raw):

size = Experiment.size()
split = [raw[i:i + size] for i in range(0, len(raw), size)]
return [Experiment.unpack(s) for s in split]

and give our record class a static method that calculates the size of a single record:
class Experiment(BasicRec):

RECORD_LEN = BasicRec.MAX_NAME_LEN + 1 \
+ BasicRec.TIMESTAMP_LEN + 1 \
+ (BasicRec.MAX_READING_LEN * BasicRec.MAX_READINGS_NUM) \
+ (BasicRec.MAX_READINGS_NUM - 1)

@staticmethod
def size():

return Experiment.RECORD_LEN

Tradeoffs

We’re assuming that every record is the same size. If we want to save records with
variable-length fields such as strings, we can either set a maximum size and always
save that much data or make our implementation more complicated (and probably
slower) by saving each record’s size and then scanning records in the same way
that we scanned the bytes making up Unicode characters in Chapter 17. The first
choice spends space (i.e., memory and disk) to save time; the second spends time
to save space. As [Bentley1982] pointed out over 40 years ago, a lot of performance
optimizations in programming come down to trading space for time or vice versa.

18.3 A File-Backed Database
We now have what we need to extend our dictionary-based implementation to write records
to a file and load them as needed:
class FileBacked(Database):

def __init__(self, record_cls, filename):
super().__init__(record_cls)
self._filename = Path(filename)
if not self._filename.exists():

self._filename.touch()
self._load()

def add(self, record):



170 18 A Database

key = self._record_cls.key(record)
self._data[key] = record
self._save()

def get(self, key):
return self._data.get(key, None)

This implementation stores everything in a single file, whose name must be provided to
the database’s constructor (Figure 18.2). If that file doesn’t exist when the database object
is created, we use Path.touch to create an empty file; either way, we then load the entire
database into memory. When we add a record, we save it in the dictionary and call a helper
method _save to write the entire database back to the file. When we get a record, we simply
get it from the in-memory dictionary.

index records

memory

file.db

filesystem

Figure 18.2: Saving the entire database in a single file.

The two helper methods we need to make this work are:
def _save(self):

packed = self._record_cls.pack_multi(self._data.values())
with open(self._filename, "w") as writer:

writer.write(packed)

def _load(self):
assert self._filename.exists()
with open(self._filename, "r") as reader:

raw = reader.read()
records = self._record_cls.unpack_multi(raw)
self._data = {self._record_cls.key(r): r for r in records}

It isn’t very efficient—we are loading the entire database the first time we want a single
record, and saving the entire database every time we add a record—but we are getting
closer to something we might actually use.

18.4 Playing with Blocks
How can we make our file-backed implementation more efficient? One option would be to
save each record in a file of its own, in the same way that we saved each version of a file in



18.4 Playing with Blocks 171

Chapter 10. However, this strategy won’t give us as much of a performance boost as we’d
like. The reason is that computers do file I/O in pages that are typically 2 or 4 kilobytes in
size. Even when we want to read a single byte, the operating system always reads a full
page and then gives us just the byte we asked for.

A more efficient strategy is to group records together in blocks of memory, each of
which is the same size as a page, and to create an index in memory to tell us which records
are in which blocks. When we add a record, we only write its block to disk; similarly, when
we need a record whose block isn’t already in memory, we only read that block.

At this point we need to address an issue we should have tackled earlier. How do we
handle updates to records? For example, suppose we already have a record with the ID
12345; what do we do when we get another record with the same ID? If we are storing the
entire database in a single dictionary, the dictionary takes care of that for us, but if we are
storing things in blocks, we will have multiple dictionaries.

This is where the “log-structured” part of our design comes in. Whenever we add a
record to the database, we append it to the current block or start another block if the current
one is full (Figure 18.3). We give each record a sequence number as we add it, and our
overall index keeps track of the mapping from record IDs to sequence IDs. Since we know
how many records there are in a block, we can quickly calculate which block contains the
record with a particular sequence ID.

index of
record IDs records

memory

blocks of

sequence IDs

Figure 18.3: Mapping records to blocks.

Let’s create a new in-memory database using one dictionary for each block. The con-
structor creates self._next to store the sequence ID of the next record, self._index to
map record IDs to sequence IDs, and a list self._blocks to store blocks:
class Blocked(Database):

RECORDS_PER_BLOCK = 2

@staticmethod
def size():

return Blocked.RECORDS_PER_BLOCK

def __init__(self, record_cls):
super().__init__(record_cls)
self._next = 0
self._index = {}
self._blocks = []

def num_blocks(self):



172 18 A Database

return len(self._blocks)

def num_records(self):
return len(self._index)

To add a record, we:

1. get the sequence ID for the record;

2. store the key-to-sequence mapping in the index;

3. find or create the right block; and

4. add the record.

def add(self, record):
key = self._record_cls.key(record)
seq_id = self._next_seq_id()
self._index[key] = seq_id
block_id = self._get_block_id(seq_id)
block = self._get_block(block_id)
block[seq_id] = record

To get a record given a record ID, we first ask if we even have that record. If we do, we:

1. find its current sequence ID;

2. find the corresponding block; and

3. get the record.

def get(self, key):
if key not in self._index:

return None
seq_id = self._index[key]
block_id = self._get_block_id(seq_id)
block = self._get_block(block_id)
return block[seq_id]

The three helper methods that add and get rely on are:
def _next_seq_id(self):

seq_id = self._next
self._next += 1
return seq_id

def _get_block_id(self, seq_id):
return seq_id // Blocked.RECORDS_PER_BLOCK

def _get_block(self, block_id):
while block_id >= len(self._blocks):

self._blocks.append({})
return self._blocks[block_id]



18.5 Persisting Blocks 173

18.5 Persisting Blocks
We now have working prototypes of the two parts of our design: saving data to file and
dividing records into blocks. In order to combine them, we will inherit from our block-based
implementation and extend the add and get methods to save and load data:
class BlockedFile(Blocked):

def __init__(self, record_cls, db_dir):
super().__init__(record_cls)
self._db_dir = Path(db_dir)
self._build_index()

def add(self, record):
super().add(record)
self._save(record)

def get(self, key):
if key not in self._index:

return None
self._load(key)
return super().get(key)

We will explain the call to self._build_index() in a few paragraphs.

One at a Time

Exploring ideas one at a time and then combining them is a common tactic among
experienced designers [Petre2016]. Creating classes like the all-in-one-file database
that we don’t put into production may feel like a waste of time, but it usually saves us
effort in the long run by reducing cognitive load.

Saving a block is mostly a matter of bookkeeping at this point. Given the record, we
figure out which block it belongs in, save it, pack the block, and write the result to a file:
def _save(self, record):

key = self._record_cls.key(record)
seq_id = self._index[key]
block_id = self._get_block_id(seq_id)

block = self._get_block(block_id)
packed = self._record_cls.pack_multi(block.values())

filename = self._get_filename(block_id)
with open(filename, "w") as writer:

writer.write(''.join(packed))

Loading involves almost the same steps, but our implementation splits it into two pieces:
def _load(self, key):

seq_id = self._index[key]
block_id = self._get_block_id(seq_id)
filename = self._get_filename(block_id)
self._load_block(block_id, filename)

def _load_block(self, block_id, filename):
with open(filename, "r") as reader:



174 18 A Database

raw = reader.read()

records = self._record_cls.unpack_multi(raw)
base = self.size() * block_id
block = self._get_block(block_id)
for i, r in enumerate(records):

block[base + i] = r

We put the code to load a single block in a method of its own because we need to
initialize the in-memory index when restarting the database:
def _build_index(self):

seq_id = 0
for (block_id, filename) in enumerate(

sorted(self._db_dir.iterdir())
):

self._load_block(block_id, filename)
for record in self._get_block(block_id).values():

key = self._record_cls.key(record)
self._index[key] = seq_id
seq_id += 1

An obvious extension to our design is to save the index in a separate file each time
we add or modify a record. However, we should profile this change before putting it into
production to see if it actually improves performance (Chapter 15), since many small writes
might cost more than one large multi-file read. We would also have to do something to
avoid creating a race condition; as in Chapter 10, operating on two files (one for the index
and one for the block) could lead to harmful inconsistencies.

18.6 Cleaning Up
The final step in our implementation is to clean up blocks that are no longer needed because
we have a more recent version of every record they contain. Reclaiming unused space this
way is another form of garbage collection. Python and most other modern languages do
it automatically to recycle unused memory, but it’s our responsibility to do it for the files our
database creates.

The steps in cleanup are:

1. Calculate a new sequence ID for each record.

2. Figure out which blocks contain records that we need to retain.

3. Generate new block IDs for those blocks while also creating a set of IDs of blocks we
can delete because all of their records are out of date.

4. Delete and rename blocks.

5. Generate a new in-memory index.

The implementation of these steps is mostly a matter of bookkeeping:
def _cleanup(self):

new_seq = {
o: i for i, o in enumerate(self._index.values())



18.7 Summary 175

}
keep = {self._get_block_id(o) for o in new_seq}

renaming = {o: i for i, o in enumerate(list(sorted(keep)))}
garbage_ids = {

i for i in range(len(self._blocks))
if i not in renaming

}

self._delete_blocks(garbage_ids)
self._rename_blocks(renaming)

new_index = {
k: new_seq[self._index[k]] for k in self._index

}
self._index = new_index
self._next = len(self._index)

This method doesn’t compact storage, i.e., it doesn’t move records around to get rid
of stale blocks within records. Production-quality databases do this periodically in order to
use the disk more efficiently; we will explore this idea in the exercises.

18.7 Summary
Figure 18.4 summarizes the key ideas introduced in this chapter. Most real databases use
different data structures than ours, but must deal with the same challenges: making data
access fast without ever losing data or allowing it to become inconsistent.

records keys

database

memory
filesystem

index

blocks

fixed

size

have contain a fixed

number of

have references

has

has
all stored in

some stored inall stored in

Figure 18.4: Concept map for a log-structured database.

18.8 Exercises
Packing Null Bytes
Modify the experimental record class so that records are packed as strings but can safely
contain null bytes.



176 18 A Database

Packing in Binary
1. Modify the experimental record class so that it packs itself in a fixed-size binary record.

2. How does this change the file I/O operations in the database class?

3. Should those operations be moved into the record class or not?

Implement Compaction
Add a static method to the database that compacts blocks, i.e., rewrites all of the blocks so
that only live records are stored.

Save the Index Separately
1. Modify the database so that it saves the entire index in a single file.

2. Design and run an experiment to determine if this change improves performance or not.



19
A Build Manager

• Build managers track dependencies between files and update files that are stale.

• Every build rule has a target, some dependencies, and a recipe for updating the
target.

• Build rules form a directed graph which must not contain cycles.

• Pattern rules describe the dependencies and recipes for sets of similar files.

• Pattern rules can use automatic variables to specify targets and dependencies in
recipes.

Terms defined: affordance, build manager, build recipe, build rule, circular
dependency, compiled language, cycle, dependency (in build), directed acyclic
graph, dry run, link (a program), phony target, stable sort, stale (in build), target
(in build), Template Method pattern, topological order

Suppose that plot.py produces result.svg from collated.csv, that collated.csv
is produced from samples.csv and controls.csv by analyze.py, and that samples.csv
depends on normalize.py and raw.csv. If raw.csv changes we want to re-run all three
programs; if controls.csv changes, on the other hand, we only need to re-run the analysis
and plotting programs. If we try to manage this ourselves we will inevitably make mistakes.
Instead, we should use a build manager to keep track of which files depend on which
and what actions to take to create or update files. This chapter shows how a simple build
manager works; along the way, it introduces some algorithms for working with graphs.

19.1 Concepts
The first build manager, Make1, was written by a student intern at Bell Labs in the 1970s.
Many others now exist (such as SCons2 and Snakemake3), but they all perform the same
basic operations. If a target is stale with respect to any of its dependencies, the build
manager runs a recipe to refresh it.

The build manager runs recipes in an order that respects dependencies, and it only
runs each recipe once (if at all). In order for this to be possible, targets and dependencies
must form a directed acyclic graph, i.e., there cannot be a cycle of links leading from a
node back to itself. The build manager constructs a topological ordering of that graph,
i.e., arranges nodes so that each one comes after everything it depends on and then builds
what it needs to in that order (Figure 19.1).

1https://www.gnu.org/software/make/
2https://www.scons.org/
3https://snakemake.readthedocs.io/

177

https://www.gnu.org
https://www.scons.org
https://snakemake.readthedocs.io


178 19 A Build Manager

A

B C

D

order

C , D

B

A

Figure 19.1: Dependencies and topological order.

A Bit of History

Make was created to manage programs in compiled languages like C and Java,
which have to be translated into lower-level forms before they can run. There are
usually two stages to the translation: compiling each source file into some intermediate
form, and then linking the compiled modules to each other and to libraries to create
a runnable program. If a source file hasn’t changed, we don’t need to recompile it
before linking. Skipping unnecessary work in this way can save a lot of time when we
are working with programs that contain thousands or tens of thousands of files.

19.2 Initial Design
Our first step is to decide how we are going to represent build rules. We could invent
a special-purpose syntax to fit the problem, but as we said in Chapter 5, the world has
enough data formats. Instead, we will represent our recipes as JSON. For example, this
file describes two targets A and B and states that the former depends on the latter:
{

"A": {"depends": ["B"], "rule": "build A"},
"B": {"depends": [], "rule": "build B"}

}

As in Chapter 10, we will use successive refinement to create our first build manager.
Our BuildBase class takes a configuration file as a constructor argument, loads it, creates
a topological ordering, and then refreshes each target in order. For now, “refreshing” means
“prints the update rule”; we will come back and make this more sophisticated later.
class BuildBase:

def build(self, config_file):
config = self._configure(config_file)
ordered = self._topo_sort(config)
for node in ordered:

self._refresh(config, node)

def _refresh(self, config, node):
assert node in config, f"Unknown node {node}"
print(config[node]["rule"])

To load a configuration file, we read in the JSON, build a set of known targets, and then
verify each rule using a helper method called _check:



19.2 Initial Design 179

A

B

C

D

rule
depends

build A
{B, C}

rule
depends

build B
{D}

rule
depends

build C
{D}

rule
depends

build D
{}

Figure 19.2: Representing dependency graph.

def _configure(self, config_file):
with open(config_file, "r") as reader:

config = json.load(reader)
known = set(config.keys())
return {

n: self._check(n, d, known)
for n, d in config.items()

}

To check a rule, we make sure the dictionary that represents it has the required keys and
that we have a rule for every dependency it mentions. We also transform the rule’s structure
a bit to simplify later processing:
def _check(self, name, details, known):

assert "rule" in details, f"Missing rule for {name}"
assert "depends" in details, f"Missing depends for {name}"
depends = set(details["depends"])
assert depends.issubset(known), \

f"Unknown depends for {name}"
return {"rule": details["rule"], "depends": depends}

It’s Not Extra Work

We have to implement the consistency checks for our build rules because JSON is
a generic format that knows nothing about dependencies, rules, and required keys.
There is a format called JSON Schema4 for specifying these things and a Python
module5 that implements its checks, but using it here would trade seven lines of code
for 10 minutes of explanation. We will explore its use in the exercises, but the most
important point is that whether we write code by hand or use a library with a bit of
configuration, someone has to write these checks.

4https://json-schema.org/
5https://python-jsonschema.readthedocs.io/

https://json-schema.org
https://python-jsonschema.readthedocs.io


180 19 A Build Manager

19.3 Topological Sorting
The next step is to figure out a safe order in which to build things. Figure 19.3 shows how
our algorithm works:

1. We find all the nodes in the dependency graph that don’t have any outstanding depen-
dencies.

2. We append those to the result and then remove them from the dependencies of all the
other nodes in the graph.

3. If anything is still in the graph, we go back to the first step.

4. If at any point the graph isn’t empty but nothing is available, we have found a circular
dependency, so we report the problem and fail.

The code that implements this algorithm is:
def _topo_sort(self, config):

graph = {n: config[n]["depends"] for n in config}
result = []
while graph:

available = {n for n in graph if not graph[n]}
assert available, f"Circular graph {graph.keys()}"
result.extend(available)
graph = {

n: graph[n] - available
for n in graph
if n not in available

}
return result

With all of this in place, we can run our first test:
{

"A": {"depends": ["B"], "rule": "build A"},
"B": {"depends": [], "rule": "build B"}

}

build B
build A

A

B C

D

graph

result

available

{"A": {"B", "C"},
  "B": {"D"},
  "C": {"D"},
  "D": {}
}

[]

{"D"}

["D"]

{"A": {"B", "C"},
  "B": {},
  "C": {}
}

{"B", "C"}

["D", "B", "C"]

{"A": {}}

{"A"}

["D", "B", "C", "A"]

Figure 19.3: Topological Sort.



19.4 A Better Design 181

19.4 A Better Design
Our implementation works, but we can do better:

1. The configuration might not come directly from a JSON file—for example, it might be
embedded in a larger file or generated by another program—so we should modify the
constructor to take a configuration as input.

2. Printing actions to the screen isn’t very useful, so we should collect them and return an
ordered list of the commands for the build manager.

3. assert isn’t a friendly way to handle user errors; we should raise ValueError (or a
custom exception of our own) to indicate a problem.

4. Our topological sort isn’t stable, i.e., there’s no way to predict the order in which two
“equal” nodes will be added to the ordering. We will explore the reason for this in the
exercises, but for now, we should sort node names when appending to the result list
so that our tests can know what to check for.

5. We might want to add other keys to rules, so we should put that check in a separate
method that we can override.

The top level of our better build manager looks like this:
class BuildBetter:

def build(self, config):
config = self._configure(config)
ordered = self._topo_sort(config)
actions = []
for node in ordered:

self._refresh(config, node, actions)
return actions

def _refresh(self, config, node, actions):
assert node in config, f"Unknown node {node}"
actions.append(config[node]["rule"])

def _must(self, condition, message):
if not condition:

raise ValueError(message)

The revised configuration code is:
def _configure(self, config):

known = set(config.keys())
return {n: self._check(n, d, known)

for n, d in config.items()}

def _check(self, name, details, known):
self._check_keys(name, details)
depends = set(details["depends"])
self._must(

depends.issubset(known), f"Unknown depends for {name}"
)
result = details.copy()
result["depends"] = depends
return result



182 19 A Build Manager

def _check_keys(self, name, details):
self._must("rule" in details, f"Missing rule for {name}")
self._must(

"depends" in details, f"Missing depends for {name}"
)

and the updated topological sorting method is
def _topo_sort(self, config):

graph = {n: config[n]["depends"] for n in config}
result = []
while graph:

available = {n for n in graph if not graph[n]}
self._must(

available,
f"Circular graph {list(graph.keys())}",

)
result.extend(sorted(available))
graph = {

n: graph[n] - available
for n in graph
if n not in available

}
return result

We can now test that the code detects circularities in the dependency graph:
def test_circular():

action_A = "build A"
action_B = "build B"
config = {

"A": {"depends": ["B"], "rule": action_A},
"B": {"depends": ["A"], "rule": action_B},

}
try:

Builder().build(config)
assert False, "should have had exception"

except ValueError:
pass

and that it builds what it’s supposed to:
def test_no_dep():

action_A = "build A"
action_B = "build B"
config = {

"A": {"depends": [], "rule": action_A},
"B": {"depends": [], "rule": action_B},

}
assert Builder().build(config) == [action_A, action_B]

We can also extend it. For example, suppose we only want to update targets that are
older than their dependencies (which is, after all, the whole point of a build manager). If the
targets are actual files we can check their timestamps, but for testing purposes we would
like to specify pretended times in the configuration:
def test_diamond_dep():

action_A = "build A"
action_B = "build B"
action_C = "build C"



19.5 Summary 183

action_D = "build D"
config = {

"A": {"depends": ["B", "C"], "rule": action_A, "time": 0},
"B": {"depends": ["D"], "rule": action_B, "time": 0},
"C": {"depends": ["D"], "rule": action_C, "time": 1},
"D": {"depends": [], "rule": action_D, "time": 1},

}
assert Builder().build(config) == [action_B, action_A]

Starting from the class we have written so far, we need to override three methods:
class BuildTime(BuildBetter):

def _check_keys(self, name, details):
super()._check_keys(name, details)
self._must("time" in details, f"No time for {name}")

def _refresh(self, config, node, actions):
assert node in config, f"Unknown node {node}"
if self._needs_update(config, node):

actions.append(config[node]["rule"])

def _needs_update(self, config, node):
return any(

config[node]["time"] < config[d]["time"]
for d in config[node]["depends"]

)

How We Actually Did It

Our final design uses the Template Method pattern: a method in a parent class de-
fines the control flow, while child classes implement those operations. We didn’t know
in advance exactly how to divide our code into methods; instead, as we were creating
a class that loaded and used timestamps, we reorganized the parent class to create
the affordances we needed. Software design almost always works this way: the first
two or three times we try to extend something, we discover changes that would make
those tasks easier. We should do less of this as time goes by: if we are still doing
large-scale refactoring the tenth time we use something, we should rethink our entire
design.

19.5 Summary
Figure 19.4 summarizes the ideas introduced in this chapter. Note that the small bubble
labelled “graph algorithm” could be expanded to a shelf full of books.



184 19 A Build Manager

files build
manager

build
rules

dependencies

target

recipe

directed
acyclic
graph

stale

topological
order

 updates   obeys 

can
be

form a

sorted
in

consist
of

compared
to

updates

are

are

graph
algorithm

example
of

Figure 19.4: Concept map.

19.6 Exercises
Stable Sorting
Recent versions of Python guarantee that the entries in a dict preserve the order in which
they were added, but do not make any such guarantee for sets. Explain why this makes it
hard to test things that use sets.

Checking Schema
Rewrite the configuration validator to use JSON Schema6 via the associated Python mod-
ule7.

Handling Failure
1. Modify the build manager so that a configuration file can specify whether its rule should

succeed or fail. (This isn’t particularly useful in real life, but it helps with testing.)

2. Modify it so that if a rule fails, other buildable targets are still built (but anything that
depends directly or indirectly on the target whose rule failed is not built).

3. Write tests to check that this change works correctly.

Merging Files
1. Modify the build manager so that it can read multiple build files and execute their com-

bined rules.

2. What does your solution do if two or more files specify rules for the same target?

6https://json-schema.org/
7https://python-jsonschema.readthedocs.io/

https://json-schema.org
https://python-jsonschema.readthedocs.io


19.6 Exercises 185

Using Hashes
1. Write a program called build_init.py that calculates a hash for every file men-

tioned in the build configuration and stores the hash along with the file’s name in
build_hash.json.

2. Modify the build manager to compare the current hashes of files with those stored in
build_hash.json to determine what is out of date, and to update build_hash.json
each time it runs.

Dry Run
A dry run of a build shows the rules that would be executed but doesn’t actually execute
them. Modify the build system in this chapter so that it can do dry runs.

Phony Targets
A phony target is one that doesn’t correspond to a file. Developers often put phony targets
in build files to give themselves an easy way to re-run tests, check code style, and so on.
Modify the build system in this target so that users can mark targets as phony.

Multiple Build Files
1. Modify the tool built in this chapter so that one build file can import definitions and de-

pendencies from another.

2. How does your system prevent circular dependencies?



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


20
A Package Manager

• Software packages often have multiple versions, which are usually identified by
multi-part semantic version numbers.

• A package manager must find a mutually-compatible set of dependencies in order
to install a package.

• Finding a compatible set of packages is equivalent to searching a multi-dimensional
space.

• The work required to find a compatible set of packages can grow exponentially with
the number of packages.

• Eliminating partially-formed combinations of packages can reduce the work required
to find a compatible set.

• An automated theorem prover can determine if a set of logical propositions can be
made consistent with each other.

• Most package managers use some kind of theorem prover to find compatible sets
of packages to install.

Terms defined: accumulator, backward-compatible,Boolean value, combinatorial
explosion, cross product,model, patch,Recursive Enumeration pattern, scoring
function, search space, semantic versioning

Inspired by the Comprehensive TeX Archive Network (CTAN1), most languages have an
online archive from which people can download packages, such as Python’s PyPI2. Each
package typically has a name, one or more versions, and a list of dependencies (which are
also versioned). In order to install a package, we need to figure out exactly what versions
of its dependencies to install: if A and B require different versions of C, we might not be
able to use A and B together.

This chapter explores how to find a workable installation or prove that there isn’t one.
It is based in part on this tutorial3 by Maël Nison4 and on Andreas Zeller’s5 lecture on
academic prototyping6; interested readers might also enjoy Michael Reim’s7 history of Unix
packaging8.

1https://www.ctan.org/
2https://pypi.org/
3https://classic.yarnpkg.com/blog/2017/07/11/lets-dev-a-package-manager/
4https://arcanis.github.io/
5https://andreas-zeller.info/
6https://www.fuzzingbook.org/html/AcademicPrototyping.html
7https://elderlinux.org/
8https://eerielinux.wordpress.com/2017/08/15/the-history-of-nix-package-management/

187

https://www.ctan.org
https://pypi.org
https://classic.yarnpkg.com
https://arcanis.github.io
https://andreas-zeller.info
https://www.fuzzingbook.org
https://elderlinux.org
https://eerielinux.wordpress.com


188 20 A Package Manager

20.1 Semantic Versioning
Most software projects use semantic versioning for software releases. Each version is
three integers X.Y.Z, where X is the major version, Y is the minor version, and Z is the
patch.

A package’s authors increment its major version number when a change to the package
breaks backward compatibility, i.e., if code built for the old version will fail or behave
unpredictably with the new one. The minor version number is incremented when changes
won’t break any existing code, and the patch number is changed for bug fixes that don’t
add any new features.

The notation for specifying ranges of versions looks like arithmetic: >=1.2.3means “any
version from 1.2.3 onward”, <4means “any version before 4.anything”, and 1.0-3.1means
“any version in the specified range (including patches)”. Note that version 2.1 is greater than
version 1.99: no matter how large a minor version number becomes, it never spills over into
the major version number.

It isn’t hard to compare simple semantic version identifiers, but handling the whole stan-
dard9 is almost as tricky as handling dates and times correctly. Our examples therefore
number versions with plain integers; we recommend the semantic-version10 package for
working with the real thing.

20.2 Exhaustive Search
To avoid messing around with parsers, we store the manifest of available packages as
JSON:
{

"A": {
"3": {"B": ["3", "2"], "C": ["2"]},
"2": {"B": ["2"], "C": ["2", "1"]},
"1": {"B": ["1"]}

},
"B": {

"3": {"C": ["2"]},
"2": {"C": ["1"]},
"1": {"C": ["1"]}

},
"C": {

"2": [],
"1": []

}
}

The keys in the main dictionary identify packages (which we’ve called A, B, and C for
simplicity). Each package has a dictionary whose keys are version numbers, and each
version has a dictionary showing which versions of which other packages are dependencies
(Figure 20.1). It’s a complex data structure, but all of the detail is necessary.

9https://semver.org/
10https://pypi.org/project/semantic-version/

https://semver.org
https://pypi.org


20.2 Exhaustive Search 189

A3

A2

A1

B3

B2

B1

C2

C1

Figure 20.1: Structure of version dependency manifest.

1 2 3

1

2

1

2

3

Package A

Pa
ck

ag
e 

C

Pa
ck

ag
e 
B

A=2, B=2, C=1

Figure 20.2: Finding allowable combinations of package versions.

Comments

We have been advising you since Chapter 5 not to design your own data format, but
if you do, please include a single standard way for people to add comments. YAML
has this, but JSON and CSV don’t.

Imagine that each package we need is an axis on a multi-dimensional grid (Figure 20.2),
so each point on the grid is a possible combination of package versions. We can exclude
regions of this grid using the constraints on the package versions; the points that are left
represent legal combinations.

How much work is it to check all of these possibilities? Our example has 3×3×2 = 18
combinations. If we were to add another package to the mix with two versions, the search
space would double; add another, and it would double again, which means that if each
package has approximately c version and there areN packages, the work grows as O(cN ).
This exponential behavior is called combinatorial explosion, and it makes brute-force
solutions impractical even for small problems. We will implement it as a starting point (and
to give us something to test more complicated solutions against), but then we will need to
find a more efficient approach.

Reproducibility

There may not be a strong reason to prefer one mutually-compatible set of packages
over another, but a package manager should resolve the ambiguity the same way
every time. It might not be what everyone wants, but at least they will be unhappy for
the same reasons everywhere. This is why pip list (and similar commands for other



190 20 A Package Manager

1 2 1 2 1 2

1 2 3

1A

B

C 1 2 1 2 1 2

1 2 3

2

1 2 1 2 1 2

1 2 3

3

Figure 20.3: Generating all possible combinations of items.

packagemanagers) produce a listing of the exact versions of packages that have been
installed: a spec written by a developer that lists allowed ranges of versions specifies
what wewant, while the listing created by the package manager specifies exactly what
we got. If we want to reproduce someone else’s setup for debugging purposes, we
should install what is described in the latter file.

Our brute-force program generates all possible combinations of package versions, then
eliminates ones that aren’t compatible with the manifest. Its main body is just those steps
in order with a few print statements to show the results:
def main():

manifest = json.load(sys.stdin)
possible = make_possibilities(manifest)
print(f"{len(possible)} possibilities")
allowed = [p for p in possible if compatible(manifest, p)]
print(f"{len(allowed)} allowed")
for a in allowed:

print(a)

To generate the possibilities, we create a list of the available versions of each package,
then use Python’s itertools11 module to generate the cross product that contains all
possible combinations of items (Figure 20.3):
def make_possibilities(manifest):

available = []
for package, versions in manifest.items():

available.append([(package, v) for v in versions])
return list(itertools.product(*available))

To check a candidate against the manifest, we compare every entry X against every
other entry Y:

1. If X and Y are the same package, we keep looking. We need this rule because we’re
comparing every entry against every entry, which means we’re comparing package ver-
sions to themselves. We could avoid this redundant check by writing a slightly smarter
loop, but there’s no point optimizing a horribly inefficient algorithm.

2. If package X’s requirements say nothing about package Y, we keep searching. This rule
handles the case of X not caring about Y, but it’s also the reason we need to compare
all against all, since Y might care about X.

3. Finally, if X does depend on Y, but this particular version of X doesn’t list this particular
version of Y as a dependency, we can rule out this combination.

11https://docs.python.org/3/library/itertools.html

https://docs.python.org


20.3 Generating Possibilities Manually 191

4. If we haven’t ruled out a candidate after doing all these checks, we add it to the list of
allowed configurations.

Sure enough, these rules find 3 valid combinations among our 18 possibilities:
def compatible(manifest, combination):

for package_i, version_i in combination:
lookup_i = manifest[package_i][version_i]
for package_j, version_j in combination:

if package_i == package_j:
continue

if package_j not in lookup_i:
continue

if version_j not in lookup_i[package_j]:
return False

return True

18 possibilities
3 allowed
(('A', '3'), ('B', '3'), ('C', '2'))
(('A', '2'), ('B', '2'), ('C', '1'))
(('A', '1'), ('B', '1'), ('C', '1'))

20.3 Generating Possibilities Manually
Our brute-force code uses itertools.product to generate all possible combinations of
several lists of items. To see how it works, let’s rewrite make_possibilities to use a func-
tion of our own:
def make_possibilities(manifest):

available = []
for package, versions in manifest.items():

available.append([(package, v) for v in versions])

accum = []
_make_possible(available, [], accum)
return accum

The first half creates the same list of lists as before, where each sub-list is the available
versions of a single package. It then creates an empty accumulator to collect all the com-
binations and calls a recursive function called _make_possible to fill it in.

Each call to _make_possible handles one package’s worth of work (Figure 20.4). If the
package is X, the function loops over the available versions of X, adds that version to the
combination in progress, and calls itself with the remaining lists of versions. If there aren’t
any more lists to loop over, the recursive calls must have included exactly one version of
each package, so the combination is appended to the accumulator.
def _make_possible(remaining, current, accum):

if not remaining:
accum.append(current)

else:
head, tail = remaining[0], remaining[1:]
for h in head:

_make_possible(tail, current + [h], accum)



192 20 A Package Manager

remaining

current

accumulator

head

tail

h

remaining

current

accumulator

head

tail

h

remaining

current

accumulator

head

tail

h

remaining

current

accumulator

[[A3, A2, A1], [B3, B2, B1], [C2, C1]]

[]

[[A3, B3, C2]]

[A3, A2, A1]

[[B3, B2, B1], [C2, C1]]

A3

[[B3, B2, B1], [C2, C1]]

[A3]

[[A3, B3, C2]]

[B3, B2, B1]

[[C2, C1]]

B3

[[C2, C1]]

[A3, B3]

[[A3, B3, C2]]

[C2, C1]

[]

C1

[]

[A3, B3, C1]

[[A3, B3, C2]]

Figure 20.4: Generating all possible combinations of items recursively.



20.4 Incremental Search 193

18 possibilities
3 allowed
[('A', '3'), ('B', '3'), ('C', '2')]
[('A', '2'), ('B', '2'), ('C', '1')]
[('A', '1'), ('B', '1'), ('C', '1')]

_make_possible uses recursion instead of nested loops because we don’t know how
many loops to write. If we knew the manifest only contained three packages, we would
write a triply-nested loop to generate combinations, but if there were four, we would need a
quadruply-nested loop, and so on. This Recursive Enumeration design pattern uses one
recursive function call per loop so that we automatically get exactly as many loops as we
need.

20.4 Incremental Search
Generating an exponentiality of combinations and then throwing most of them away is in-
efficient. Instead, we can modify the recursive generator to stop if a partially-generated
combination of packages isn’t legal. Combining generation and checking made the code
more complicated, but as we’ll see, it leads to some significant improvements.

The main function for our modified program is similar to its predecessor. After loading
the manifest, we generate a list of all package names. Unlike our earlier code, the entries
in this list don’t include versions because we’re going to be checking those as we go:
def main():

manifest = json.load(sys.stdin)
packages = list(manifest.keys())
if len(sys.argv) > 1:

packages.reverse()

accum = []
count = find(manifest, packages, accum, [], 0)

print(f"count {count}")
for a in accum:

print(a)

Notice that we reverse the list of packages before starting our search if the user provides
an extra command-line argument. We’ll use this to see how ordering affects efficiency.

Our find function now has five parameters:

1. The manifest that tells us what’s compatible with what.

2. The names of the packages we haven’t considered yet.

3. An accumulator to hold all the valid combinations we’ve found so far.

4. The partially-completed combination we’re going to extend next.

5. A count of the number of combinations we’ve considered so far, which we will use as a
measure of efficiency.



194 20 A Package Manager

def find(manifest, remaining, accum, current, count):
count += 1
if not remaining:

accum.append(current)
else:

head, tail = remaining[0], remaining[1:]
for version in manifest[head]:

candidate = current + [(head, version)]
if compatible(manifest, candidate):

count = find(
manifest, tail, accum, candidate, count

)
return count

The algorithm combines the generation and checking we’ve already written:

1. If there are no packages left to consider—i.e., if remaining is an empty list—then what
we’ve built so far in current must be valid, so we append it to accumulator.

2. Otherwise, we put the next package to consider in head and all the remaining packages
in tail. We then check each version of the head package in turn. If adding it to the
current collection of packages wouldn’t cause a problem, we continue searching with
that version in place.

How much work does incremental checking save us? Using the same test case as
before, we only create 11 candidates instead of 18, so we’ve reduced our search by about
a third:
python incremental.py < triple.json

count 11
[('A', '3'), ('B', '3'), ('C', '2')]
[('A', '2'), ('B', '2'), ('C', '1')]
[('A', '1'), ('B', '1'), ('C', '1')]

If we reverse the order in which we search, though, we only generate half as many candi-
dates as before:
python incremental.py reversed < triple.json

count 9
[('C', '2'), ('B', '3'), ('A', '3')]
[('C', '1'), ('B', '2'), ('A', '2')]
[('C', '1'), ('B', '1'), ('A', '1')]

20.5 Using a Theorem Prover
Cutting the amount of work we have to do is good: can we do better? The answer is yes, but
the algorithms involved are complicated and the jargon almost impenetrable. To give you a
taste of how they work, we will solve our example problem using the Z3 theorem prover12.
12https://en.wikipedia.org/wiki/Z3_Theorem_Prover

https://en.wikipedia.org


20.5 Using a Theorem Prover 195

Installing packages and proving theorems may not seem to have a lot to do with each
other, but an automated theorem prover’s purpose is to determine how to make a set of
logical propositions consistent with each other, or to prove that doing so is impossible. If
we frame our problem as, “Is there a choice of package versions that satisfies all the inter-
package dependencies at once?”, then a theorem prover is exactly what we need.

To start, let’s import a few things from z3 and create three Boolean variables:
from z3 import Bool, Implies, Not, Solver, sat, unsat

A = Bool("A")
B = Bool("B")
C = Bool("C")

Our three variables don’t have values yet—they’re not either true or false. Instead, each
one represents all the possible states a Boolean could be in. If we had asked z3 to create
one of its special integers, it would have given us something that initially encompassed all
possible integer values.

Instead of assigning values to A, B, and C, we specify constraints on them, then ask z3
whether it’s possible to find a set of values, or model, that satisfies all those constraints at
once. For example, we can ask whether it’s possible for A to equal B and B to equal C at the
same time. The answer is “yes”, and the solution the solver finds is to make them all False:
solver = Solver()
solver.add(A == B)
solver.add(B == C)
report("A == B & B == C", solver.check())

A == B & B == C: sat
A False
B False
C False

What if we say that A and B must be equal, but B and C must be unequal? In this case,
the solver finds a solution in which A and B are True but C is False:
solver = Solver()
solver.add(A == B)
solver.add(B != C)
report("A == B & B != C", solver.check())

A == B & B != C: sat
A True
B True
C False

Finally, what if we require A to equal B and B to equal C but A and C to be unequal? No
assignment of values to the three variables can satisfy all three constraints at once, and
the solver duly tells us that:
solver = Solver()
solver.add(A == B)
solver.add(B == C)
solver.add(A != C)
report("A == B & B == C & B != C", solver.check())

A == B & B == C & B != C: unsat



196 20 A Package Manager

Returning to package management, we can represent the versions from our running
example like this:
A1 = Bool("A.1")
A2 = Bool("A.2")
A3 = Bool("A.3")

B1 = Bool("B.1")
B2 = Bool("B.2")
B3 = Bool("B.3")

C1 = Bool("C.1")
C2 = Bool("C.2")

We then tell the solver that we want one of the available versions of package A:
solver = Solver()
solver.add(Or(A1, A2, A3))

and that the three versions of package A are mutually exclusive:
solver.add(Implies(A1, Not(Or(A2, A3))))
solver.add(Implies(A2, Not(Or(A1, A3))))
solver.add(Implies(A3, Not(Or(A1, A2))))

We need equivalent statements for packages B and C; we’ll explore in the exercises how
to generate all of these from a package manifest.

Finally, we add the inter-package dependencies and search for a result:
solver.add(Implies(A3, And(Or(B3, B2), C2)))
solver.add(Implies(A2, And(B2, Or(C2, C1))))
solver.add(Implies(A1, B1))
solver.add(Implies(B3, C2))
solver.add(Implies(B2, C1))
solver.add(Implies(B1, C1))

print("result", solver.check(), solver.model())

result sat [B.3 = True,
A.1 = False,
C.2 = True,
C.1 = False,
B.2 = False,
A.3 = True,
A.2 = False,
B.1 = False]

The output tells us that the combination of A.3, B.3, and C.2 will satisfy our constraints.
We saw earlier, though, that there are three solutions to our constraints. One way to find

the others is to ask the solver to solve the problem again with the initial solution ruled out.
We can repeat the process many times, adding “not the latest solution” to the constraints
each time until the problem becomes unsolvable:
everything = [A1, A2, A3, B1, B2, B3, C1, C2]
while solver.check() == sat:

model = solver.model()
print([var for var in model.decls() if model[var]])
settings = [var == model[var] for var in everything]
cond = Not(And(*settings))
solver.add(cond)



20.6 Summary 197

[B.3, C.2, A.3]
[C.1, B.2, A.2]
[A.1, C.1, B.1]

20.6 Summary
Figure 20.5 summarizes the key ideas introduced in this chapter. The most important thing
to take away is that modern theorem provers can solve many more problems than most
programmers realize. While formulating problems in ways that theorem provers understand
can be challenging, solving those problems ourselves is usually much harder.

packages

versions
semantic
version

numbers

major minor patch

specific

ranges

specified

as of

dependencies

compatible

have

package
manager

theorem
prover

uses

to find

installed

by

installation

requires sets of

have

are

have

Figure 20.5: Concepts for package manager.

20.7 Exercises
Comparing Semantic Versions
Write a function that takes an array of semantic version specifiers and sorts them in as-
cending order. Remember that 2.1 is greater than 1.99.



198 20 A Package Manager

Parsing Semantic Versions
Write a parser for a subset of the semantic versioning specification13.

Using Scoring Functions
Many different combinations of package versions can be mutually compatible. One way to
decide which actual combination to install is to create a scoring function that measures
how good or bad a particular combination is. For example, a function could measure the
“distance” between two versions as:

• 100 times the difference in major version numbers;

• 10 times the difference in minor version numbers if the major numbers agree; and

• the difference in the patch numbers if both major and minor numbers agree.

Implement this function and use it to measure the total distance between the set of pack-
ages found by the solver and the set containing the most recent version of each package.
Does it actually solve the original problem?

Regular Releases
Some packages release new versions regularly, e.g., Version 2023.1 is released onMarch 1
of 2023, Version 2023.2 is released on September 1 of that year, version 2024.1 is released
on March 1 of the following year, and so on.

1. How does this make package management easier?

2. How does it make it more difficult?

Searching Least First
Rewrite the constraint solver so that it searches packages by looking at those with the
fewest available versions first. Does this reduce the amount of work done for the small
examples in this chapter? Does it reduce the amount of work done for larger examples?

Using Exclusions
1. Modify the constraint solver so that it uses a list of package exclusions instead of a list

of package requirements, i.e., its input tells it that version 1.2 of package Red can not
work with versions 3.1 and 3.2 of package Green (which implies that Red 1.2 can work
with any other versions of Green).

2. Explain why package managers aren’t built this way.

Generating Constraints
Write a function that reads a JSON manifest describing package compatibilities and gen-
erates the constraints needed by the Z3 theorem prover.

13https://semver.org/

https://semver.org


20.7 Exercises 199

Buildability
1. Convert the build dependencies from one of the examples in Chapter 19 to a set of

constraints for Z3 and use the solution to find a legal build order.

2. Modify the constraints to introduce a circular dependency and check that the solver
correctly determines that there is no legal build order.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


21
Transferring Files

• Every computer on a network has a unique IP address.

• The Domain Name System (DNS) translates human-readable names into IP
addresses.

• Programs send and receive messages through numbered sockets.

• The program that receives a message is responsible for interpreting the bytes in the
message.

• To test programs that rely on the network, replace the network with a mock object
that simulates message transmission and receipt.

Terms defined: client, deadlock, Domain Name System, Internet Protocol, IP
address, port, server, socket, test fidelity, Transmission Control Protocol

The Internet is simpler than most people realize (as well as being more complex than
anyone could possibly comprehend). Most systems still follow the rules they did 30 years
ago; in particular, most web servers still handle the same kinds of messages in the same
way.

A typical web application is made up of clients and servers. A client program initiates
communication by sending a message and waiting for a response; a server, on the other
hand, waits for requests and then replies to them. There are typically many more clients
than servers: for example, there may be hundreds or thousands of browsers fetching pages
from this book’s website right now, but there is only one server handling those requests.

This chapter shows how to build a simple low-level network program to move files from
one machine to another. Chapter 22 will extend this to show how to build programs that
communicate using HTTP. A central concern in both chapters is how to test such programs;
while who sends what messages when changes from application to application, the testing
techniques largely remain the same.

21.1 Using TCP/IP
Almost every program on the web uses a family of communication standards called In-
ternet Protocol (IP). The one that concerns us is the Transmission Control Protocol
(TCP/IP), which makes communication between computers look like reading and writing
files. Programs using IP communicate through sockets (Figure 21.1). Each socket is one
end of a point-to-point communication channel, just like a phone is one end of a phone call.
A socket consists of an IP address that identifies a particular machine and a port on that
machine.

The IP address consists of four 8-bit numbers, which are usually written as
93.184.216.34; the Domain Name System (DNS) matches these numbers to symbolic
names like example.com that are easier for human beings to remember. A port is a number

201

https://example.com


202 21 Transferring Files

80HTTP

94.184.216.34

ours 8080

DNS server

application

example.com94.184.216.34

example.com:8080

Figure 21.1: How sockets, IP addresses, and DNS work together.

in the range 0-65535 that uniquely identifies the socket on the host machine. (If an IP ad-
dress is like a company’s phone number, then a port number is like an extension.) Ports
0-1023 are reserved for well-known TCP/IP applications like web servers; custom applica-
tions should use the remaining ports (and should allow users to decide which port, since
there’s always the chance that two different people will pick 1234 or 6789).

A basic socket client looks like this:
import socket

CHUNK_SIZE = 1024
SERVER_ADDRESS = ("localhost", 8080)

message = "message text"

sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
sock.connect(SERVER_ADDRESS)
sock.sendall(bytes(message, "utf-8"))
print(f"client sent {len(message)} bytes")

received = sock.recv(CHUNK_SIZE)
received_str = str(received, "utf-8")
print(f"client received {len(received)} bytes: '{received_str}'")

We call it “basic” rather than “simple” because there’s a lot going on here. From top to
bottom:

1. We import some modules and define two constants. The first, SERVER_ADDRESS, consists
of a host identifier and a port. (The string "localhost" means “the current machine”.)
The second, CHUNK_SIZE, will determine the maximum number of bytes in the messages
we send and receive.

2. We use socket.socket to create a new socket. The values AF_INET and SOCK_STREAM
specify the protocols we’re using; we’ll always use those in our examples, so we won’t
go into detail about alternatives.

3. We connect to the server, send our message as a bunch of bytes with sock.sendall,
and print a message saying the data’s been sent.

4. We then read up to a kilobyte from the socket with sock.recv. If we were expecting
longer messages, we’d keep reading from the socket until there was no more data.

5. Finally, we print another message.



21.1 Using TCP/IP 203

client sent 12 bytes

client received 41 bytes:

'got request from ('127.0.0.1', 59366): 12'

Connection from ('127.0.0.1', 59366)

got request from ('127.0.0.1', 59366): 12

serverclient

create socket

bind socket

listen

accept connection

read data

send reply

close socket

create socket

connect to server

send data

receive data

Figure 21.2: Steps and messages in client-server interaction.

The corresponding server has just as much low-level detail:
import socket

CHUNK_SIZE = 1024

def handler():
host, port = socket.gethostbyname("localhost"), 8080
server_socket = socket.socket()
server_socket.bind((host, port))

server_socket.listen(1)
conn, address = server_socket.accept()
print(f"Connection from {address}")

data = str(conn.recv(CHUNK_SIZE), "utf-8")
msg = f"got request from {address}: {len(data)}"
print(msg)

conn.send(bytes(msg, "utf-8"))
conn.close()

This code claims a socket, listens until it receives a single connection request, reads up to a
kilobyte of data, prints a message, and replies to the client. Figure 21.2 shows the order of
operations and messages when we run the client and server in separate terminal windows.

There’s a lot going on here, so most people who have to program at this level use
Python’s socketserver1 module, which provides two things: a class called TCPServer that
manages incoming connections and another class called BaseRequestHandler that does
everything except process the incoming data. In order to do that, we derive a class of our
own from BaseRequestHandler that provides a handle method (Figure 21.3). Every time
TCPServer gets a new connection, it creates a new object of our class and calls that object’s
handle method.

1https://docs.python.org/3/library/socketserver.html

https://docs.python.org


204 21 Transferring Files

TCPServer
+ server_forever

BaseRequestHandler
+ request
+ client_address
+ sendall
+ handle

MyHandler
+ handle


derived from

calls methods

defined in

class

passed


to

creates

instances


of

Figure 21.3: Classes used in a basic TCP server.

Using TCPServer and BaseRequestHandler as starting points, our server is:
import socketserver

CHUNK_SIZE = 1024
SERVER_ADDRESS = ("localhost", 8080)

class MyHandler(socketserver.BaseRequestHandler):
def handle(self):

data = self.request.recv(CHUNK_SIZE)
cli = self.client_address[0]
msg = f"got request from {cli}: {len(data)}"
print(msg)
self.request.sendall(bytes(msg, "utf-8"))

if __name__ == "__main__":
server = socketserver.TCPServer(SERVER_ADDRESS, MyHandler)
server.serve_forever()

These two classes use a different design than what we’ve seen before. Instead of cre-
ating one class for programmers to extend, the socketserver module puts the low-level
details in TCPServer, which can be used as-is, and asks users to create a plug-in class from
BaseRequestHandler for the server to use. This approach isn’t intrinsically better or worse
than the “derive and override” approach we’ve seen before; they’re just two more tools in
a software designer’s toolbox.

21.2 Chunking
Our latest server reads data exactly once using self.request.recv(CHUNK_SIZE) with
CHUNK_SIZE set to 1024. If the client sends more than a kilobyte of data, our server will
ignore it. This can result in deadlock: the server is trying to send a reply while the client
is trying to send the rest of the message, and since neither is listening, neither can move
forward. Increasing the size of the memory buffer used to store the incomingmessage won’t
make this problem go away: the client (or a malicious attacker) could always send more
data than we have allowed for.

Instead, we need to modify the server so that it keeps reading data until there is nothing
left to read. Each time the handle method shown below goes around the loop, it tries to
read another kilobyte. If it gets that much, it appends it to data and tries again. If it gets less
than a kilobyte, we have reached the end of the transmission and can return the result:



21.2 Chunking 205

class FileHandler(socketserver.BaseRequestHandler):
def handle(self):

print("server about to start receiving")
data = bytes()
while True:

latest = self.request.recv(CHUNK_SIZE)
print(f"...server received {len(latest)} bytes")
data += latest
if len(latest) < CHUNK_SIZE:

print(f"...server breaking")
break

print(f"server finished received, about to reply")
self.request.sendall(bytes(f"{len(data)}", "utf-8"))

We can modify the client to send data in chunks as well, but we handle this a little
differently. Each call to conn.send in the function below tries to send all of the remaining
data. The value returned by the function call tells us how many bytes were actually sent. If
that number gets us to the end of the data we’re sending, the function can exit the loop. If
not, it adds the number of bytes sent to total so that it knows where to start sending the
next time around:
def send_file(conn, filename):

with open(filename, "rb") as reader:
data = reader.read()

print(f"client sending {len(data)} bytes")
total = 0
while total < len(data):

sent = conn.send(data[total:])
print(f"...client sent {sent} bytes")
if sent == 0:

break
total += sent
print(f"...client total now {total} bytes")

return total

While we’re here, we might as well write a function to create a socket:
def make_socket(host, port):

conn = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
conn.connect((host, port))
return conn

and another to wait for the acknowledgment from the server:
def receive_ack(conn):

received = conn.recv(CHUNK_SIZE)
return int(str(received, "utf-8"))

The main program is then:
def main(host, port, filename):

conn = make_socket(host, port)
bytes_sent = send_file(conn, filename)
print(f"client main sent {bytes_sent} bytes")
bytes_received = receive_ack(conn)
print(f"client main received {bytes_received} bytes")
print(bytes_sent == bytes_received)



206 21 Transferring Files

When we run the client and server, the client prints:
client sending 1236 bytes
...client sent 1236 bytes
...client total now 1236 bytes
client main sent 1236 bytes
client main received 1236 bytes
True

and the server prints
server about to start receiving
...server received 1024 bytes
...server received 212 bytes
...server breaking
server finished received, about to reply

21.3 Testing
Testing single-process command-line applications is hard enough. To test a client-server
application like the one above, we have to start the server, wait for it to be ready, then run
the client, and then shut down the server if it hasn’t shut down by itself. It’s easy to do this
interactively, but automating it is difficult because there’s no way to tell how long to wait
before trying to talk to the server and no easy way to shut the server down.

A partial solution is to use a mock object (Chapter 9) in place of a real network connec-
tion so that we can test each part of the application independently. To start, let’s refactor
our server’s handle method so that it calls self.debug instead of printing directly:
class LoggingHandler(socketserver.BaseRequestHandler):

def handle(self):
self.debug("server about to start receiving")
data = bytes()
while True:

latest = self.request.recv(BLOCK_SIZE)
self.debug(f"...server received {len(latest)} bytes")
data += latest
if len(latest) < BLOCK_SIZE:

self.debug(f"...server breaking")
break

self.debug(f"server finished received, about to reply")
self.request.sendall(bytes(f"{len(data)}", "utf-8"))

The debug method takes any number of arguments and passes them to print:
def debug(self, *args):

print(*args)

The handlemethod in this class relies on the self.request object created by the frame-
work to send and receive data. We can create a testable server by deriving a class from
LoggingHandler that inherits the handlemethod (which we want to test) but creates amock
request object and overrides the debug method so it doesn’t print logging messages:
class MockHandler(LoggingHandler):

def __init__(self, message):
self.request = MockRequest(message)



21.4 Summary 207

def debug(self, *args):
pass

Notice that we don’t call the constructor of LoggingHandler in the constructor of
MockHandler. If we did, we would trigger a call to the constructor of BaseRequestHandler,
which would then be upset because we haven’t defined a host or a port.

The class we use to create our mock request object needs three things:

1. A constructor that records the data we’re going to pretend to have received over a socket
and does whatever other setup is needed.

2. A recv method with the same signature as the real object’s recv method.

3. A sendall method whose signature matches that of the real thing as well.

The whole class is:
class MockRequest:

def __init__(self, message):
self._message = message
self._position = 0
self._sent = []

def recv(self, max_bytes):
assert self._position <= len(self._message)
top = min(len(self._message), self._position + BLOCK_SIZE)
result = self._message[self._position:top]
self._position = top
return result

def sendall(self, outgoing):
self._sent.append(outgoing)

With it, we can now write unit tests like this:
def test_short():

msg = bytes("message", "utf-8")
handler = MockHandler(msg)
handler.handle()
assert handler.request._sent == [bytes(f"{len(msg)}", "utf-8")]

The key to our approach is the notion of fidelity: how close is what we test to what
we use in production? In an ideal world they are exactly the same, but in cases like this it
makes sense to sacrifice a little fidelity for testability’s sake.

21.4 Summary
Figure 21.4 summarizes the idea introduces in this chapter. While understanding how to
send data over a network is important, knowing how to test programs that interact with the
outside world is just as important.



208 21 Transferring Files

domain name

IP address

port
client

server

fidelity testingmock

object

computer

service run

concurrently

complicates

simplifies

associated

with

actually known by

translated

into

usually

known by

socket

address

running

on

partially

replace with

reduces

has

messages exchangechunks
usually

broken


into

Figure 21.4: File transfer concept map.

21.5 Exercises
Chunk Sizes
What happens if the client tries to send zero bytes to the server? What happens if it sends
exactly CHUNK_SIZE bytes or CHUNK_SIZE+1 bytes?

Efficiency
Suppose a client sends N chunks of data to a server. The current implementation will copy
the first chunkN−1 times, the second chunkN−2 times, and so on, so that the total copying
work is O(N2). Modify the server so that it collects chunks in a list and concatenates them
at the end instead.

Saving and Listing Files
1. Modify the protocol used by this chapter’s client and server so that the client sends the

file’s name, a newline, and then the file’s contents, and the server saves the file under
that name.

2. Modify the protocol again so that the client can send the word dir followed by a newline
and no other data and the server will send back a list of the files in its current working
directory.

A Socket Client Class
Build a socketclient class that works like the socketserver class but sends data instead
of handling requests. How useful is it in practice?



22
Serving Web Pages

• The HyperText Transfer Protocol (HTTP) specifies one way to interact via messages
over sockets.

• A minimal HTTP request has a method, a URL, and a protocol version.

• A complete HTTP request may also have headers and a body.

• An HTTP response has a status code, a status phrase, and optionally some headers
and a body.

• HTTP is a stateless protocol: the application is responsible for remembering things
between requests.

Terms defined: body (of HTTP request or response), header (of HTTP request or
response), HTTP, HTTP method, HTTP protocol version, HTTP request, HTTP
response, HTTP status code, path resolution, query parameter, throw low, catch
high, Universal Resource Locator

Copying files from one machine to another is useful (Chapter 21), but we want to do
more. What we don’t want to do is create a new protocol for every application, any more
than we create new file formats (Chapter 5).

The HyperText Transfer Protocol (HTTP) defines a way for programs to exchange
data over the web. It is deliberately simple: the client sends a request specifying what
it wants over a socket, and the server sends a response containing some data. Servers
can construct responses however they want: they can copy files from disk, generate HTML
dynamically, or do anything else a programmer can think of.

This chapter shows how to build a simple web server that understands the basics of
HTTP and how to test programs of this kind. What we will build is much simpler than
Apache1, nginx2, or other industrial-strength servers, but all the key ideas will be there.

22.1 Protocol
An HTTP request is just text: any program that wants to can create one or parse one. An
absolutely minimal HTTP request has just the name of a method, a URL, and a protocol
version on a single line separated by spaces:
GET /index.html HTTP/1.1

The HTTP method is almost always either GET (to fetch information) or POST (to submit
form data or upload files). The URL specifies what the client wants: it is often a path to a
file on disk, such as /index.html, but (and this is the crucial part) it’s completely up to the
1https://httpd.apache.org/
2https://nginx.org/

209

https://httpd.apache.org
https://nginx.org


210 22 Serving Web Pages

server to decide what to do with it. The HTTP version is usually “HTTP/1.0” or “HTTP/1.1”;
the differences between the two don’t matter to us.

Most real requests have a few extra lines called headers, which are key-value pairs like
the ones shown below:
GET /index.html HTTP/1.1
Accept: text/html
Accept-Language: en, fr
If-Modified-Since: 16-May-2023

Unlike the keys in hash tables, keys may appear any number of times in HTTP headers,
so that (for example) a request can specify that it’s willing to accept several types of content.

Finally, the body of the request is any extra data associated with it, such as form data or
uploaded files. There must be a blank line between the last header and the start of the body
to signal the end of the headers, and if there is a body, the request must have a header
called Content-Length that tells the server how many bytes are in the body.

An HTTP response is formatted like an HTTP request. Its first line has the protocol
followed by a status code and a status phrase, such as “200 OK” or “404 Not Found”.
There are then some headers (including Content-Length if the reply has a body), a blank
line, and the body:
HTTP/1.1 200 OK
Date: Thu, 16 June 2023 12:28:53 GMT
Content-Type: text/html
Content-Length: 53

<html>
<body>
<h1>Hello, World!</h1>
</body>
</html>

Constructing HTTP requests is tedious, so most people use a library to do the repetitive
work. The most popular one in Python is the requests3 module, and works like this:
import requests

response = requests.get("http://third-bit.com/test.html")
print("status code:", response.status_code)
print("content length:", response.headers["content-length"])
print(response.text)

status code: 200
content length: 103
<html>

<head>
<title>Test Page</title>

</head>
<body>

<p>test page</p>
</body>

</html>

request.get sends an HTTP GET request to a server and returns an object containing
the response (Figure 22.1). That object’s status_code member is the response’s status
code; its content_length member is the number of bytes in the response data, and text

3https://requests.readthedocs.io/

https://requests.readthedocs.io


22.2 Hello, Web 211

makes TCP connection to example.com:80

sends HTTP request with page URL

receives and parses response

makes TCP connection to example.com:80

sends HTTP request with image URL

finds link to image in HTML page

accepts connection

receives request

sends response containing HTML

client server

Figure 22.1: Lifecycle of an HTTP request and response.

is the actual data—in this case, an HTML page that we can analyze or render. Keep in
mind that requests isn’t doing anything magical: it is just formatting some text, opening a
socket connection (Chapter 21), sending that text through the connection, and then reading
a response. We will implement some of this ourselves in the exercises.

22.2 Hello, Web
We’re now ready to write a simple HTTP server that will:

1. wait for someone to connect and send an HTTP request;

2. parse that request;

3. figure out what to send back; and

4. reply with an HTML page.

Steps 1, 2, and 4 are the same from one application to another, so the Python standard
library has a module called http.server4 to do most of the work. Here’s the entire server:
from http.server import BaseHTTPRequestHandler , HTTPServer

PAGE = """<html><body><p>test page</p></body></html>"""

class RequestHandler(BaseHTTPRequestHandler):
def do_GET(self):

content = bytes(PAGE, "utf-8")
self.send_response(200)
self.send_header(

4https://docs.python.org/3/library/http.server.html

https://docs.python.org


212 22 Serving Web Pages

"Content-Type", "text/html; charset=utf-8"
)
self.send_header("Content-Length", str(len(content)))
self.end_headers()
self.wfile.write(content)

if __name__ == "__main__":
server_address = ("localhost", 8080)
server = HTTPServer(server_address, RequestHandler)
server.serve_forever()

Let’s start at the bottom and work our way up.

1. server_address specifies the hostname and port of the server.

2. The HTTPServer class takes care of parsing requests and sending back responses.
When we construct it, we give it the server address and the name of the class we’ve
written that handles requests the way we want—in this case, RequestHandler.

3. Finally, we call the server’s serve_forever method, which runs until it crashes or we
stop it with Ctrl-C.

So what does RequestHandler do?

1. When the server receives a GET request, it looks in the request handler for a method
called do_GET. (If it gets a POST, it looks for do_POST and so on.)

2. do_GET converts the text of the page we want to send back from characters to bytes—
we’ll talk about this below.

3. It then sends a response code (200), a couple of headers to say what the content type
is and how many bytes the receiver should expect, and a blank line (produced by the
end_headers method).

4. Finally, do_GET sends the content of the response by calling self.wfile.write.
self.wfile is something that looks and acts like a write-only file, but is actually sending
bytes to the socket connection.

If we run this program from the command line, it doesn’t display anything:
python basic_http_server.py

but if we then go to http://localhost:8080 with our browser we see this:
Hello, web!

and this in our shell:
127.0.0.1 - - [16/Sep/2022 06:34:59] "GET / HTTP/1.1" 200 -
127.0.0.1 - - [16/Sep/2022 06:35:00] "GET /favicon.ico HTTP/1.1" 200 -

The first line is straightforward: since we didn’t ask for a particular file, our browser
has asked for ‘/’ (the root directory of whatever the server is serving). The second line
appears because our browser automatically sends a second request for an image file called
/favicon.ico, which it will display as an icon in the address bar if it exists.



22.3 Serving Files 213

22.3 Serving Files
Serving the same page for every request isn’t particularly useful, so let’s rewrite our simple
server to return files. The basic logic looks like this:
class RequestHandler(BaseHTTPRequestHandler):

def do_GET(self):
try:

url_path = self.path.lstrip("/")
full_path = Path.cwd().joinpath(url_path)
if not full_path.exists():

raise ServerException(f"{self.path} not found")
elif full_path.is_file():

self.handle_file(self.path, full_path)
else:

raise ServerException(f"{self.path} unknown")
except Exception as msg:

self.handle_error(msg)

We first turn the path in the URL into a local file path by removing the leading /. Trans-
lating filenames this way is called path resolution, and in doing it, we assume that all the
files we’re supposed to serve live in or below the directory in which the server is running.
If the resolved path corresponds to a file, we send it back to the client; if not, we generate
and send an error message.

It might seem simpler to rewrite do_GET to use if/else instead of try/except, but doing
the latter has an advantage: we can handle errors that occur inside methods we’re calling
(like handle_file) in the same place and in the same way as we handle errors that occur
here. This approach is sometimes called throw low, catch high, which means that errors
should be flagged in many places but handled in a few places high up in the code. The
method that handles files is an example of this:
def handle_file(self, given_path, full_path):

try:
with open(full_path, 'rb') as reader:

content = reader.read()
self.send_content(content, HTTPStatus.OK)

except IOError:
raise ServerException(f"Cannot read {given_path}")

If there’s an error at any point in the processing cycle, we send a page with an error
message and an error status code. The former gives human users something to read,
while the latter gives software a meaningful value in a predictable place:
def handle_error(self, msg):

content = ERROR_PAGE.format(path=self.path, msg=msg)
content = bytes(content, "utf-8")
self.send_content(content, HTTPStatus.NOT_FOUND)

The error page is just HTML with some placeholders for the path and message:
ERROR_PAGE = """\
<html>

<head><title>Error accessing {path}</title></head>
<body>

<h1>Error accessing {path}: {msg}</h1>
</body>

</html>
"""



214 22 Serving Web Pages

The code that actually sends the response is similar to what we’ve seen before:
def send_content(self, content, status):

self.send_response(int(status))
self.send_header("Content-Type", "text/html; charset=utf-8")
self.send_header("Content-Length", str(len(content)))
self.end_headers()
self.wfile.write(content)

This server works, but only for a very forgiving definition of “works”. We are careful
not to show clients the actual paths to files on the server in our error messages, but if
someone asked for http://localhost:8080/../../passwords.txt, this server will hap-
pily look two levels up from the directory where it’s running and try to return that file. The
server machine’s passwords probably aren’t stored there, but with enough ..’s and some
patience, an attacker could poke around large parts of our filesystem. We will tackle this in
the exercises.

Another problem is that send_content always tells clients that it is returning an HTML
file with the Content-Type header. It should instead look at the extension on the file’s name
and set the content type appropriately, e.g., return image/png for a PNG-formatted image.

One thing the server is doing right is character encoding. The send_content method
expects content to be a bytes object, not a string, because the HTTP protocol requires
the content length to be the number of bytes. The server reads files in binary mode by
using "rb" instead of just "r" when it opens files in handle_file, converts the internally-
generated error page from characters to bytes using the UTF-8 encoding and specifies
charset=utf-8 as part of the content type.

22.4 Testing
As with the server in Chapter 21, we can work backward from a test we want to be able
to write to create a testable server. We would like to create a file, simulate an HTTP GET
request, and check that the status, headers, and content are correct. Figure 22.2 shows
the final inheritance hierarchy:

• BaseHTTPRequestHandler comes from the Python standard library.

• MockRequestHandler defines replacements for its method.

• ApplicationRequestHandler contains our server’s logic.

• RequestHandler combines our application code with Python’s request handler.

• MockHandler combines it with our mock request handler.

It’s a lot of work to test a single GET request, but we can re-use MockRequestHandler
to test the application-specific code for other servers. Most libraries don’t provide helper
classes like this to support testing, but programmers appreciate those that do.

MockRequestHandler is just a few lines of code, though it would be longer if our appli-
cation relied on more methods from the library class we’re replacing:



22.4 Testing 215

MockRequestHandler
+ send_response

+ send_header
+ end_headers

CombinedHandler
+ send_response

+ send_header
+ end_headers
+ do_GET
+ handle_file
+ handle_error
+ send_content

ApplicationRequestHandler
+ do_GET
+ handle_file
+ handle_error

+ send_content

RequestHandler
+ send_response
+ send_header
+ end_headers
+ do_GET
+ handle_file
+ handle_error
+ send_content

BaseHTTPRequestHandler
+ send_response
+ send_header
+ end_headers

library
methods

testing
methods

Figure 22.2: Class hierarchy for a testable server.

from io import BytesIO

class MockRequestHandler:
def __init__(self, path):

self.path = path
self.status = None
self.headers = {}
self.wfile = BytesIO()

def send_response(self, status):
self.status = status

def send_header(self, key, value):
if key not in self.headers:

self.headers[key] = []
self.headers[key].append(value)

def end_headers(self):
pass

The application-specific class contains the code we’ve already seen:
class ApplicationRequestHandler:

def do_GET(self):
try:

url_path = self.path.lstrip("/")
full_path = Path.cwd().joinpath(url_path)
if not full_path.exists():

raise ServerException(f"'{self.path}' not found")
elif full_path.is_file():

self.handle_file(self.path, full_path)
else:

raise ServerException(f"Unknown object '{self.path}'")
except Exception as msg:

self.handle_error(msg)

# ...etc...

MockHandler handles the simulated request and also stores the values that the client
would receive:



216 22 Serving Web Pages

def test_existing_path(fs):
content_str = "actual"
content_bytes = bytes(content_str, "utf-8")
fs.create_file("/actual.txt", contents=content_str)
handler = MockHandler("/actual.txt")
handler.do_GET()
assert handler.status == int(HTTPStatus.OK)
assert handler.headers["Content-Type"] == \

["text/html; charset=utf-8"]
assert handler.headers["Content-Length"] == \

[str(len(content_bytes))]
assert handler.wfile.getvalue() == content_bytes

The main body of our runnable server combines the two classes to create what it needs:
if __name__ == '__main__':

class RequestHandler(
BaseHTTPRequestHandler ,
ApplicationRequestHandler

):
pass

serverAddress = ('', 8080)
server = HTTPServer(serverAddress, RequestHandler)
server.serve_forever()

Our tests, on the other hand, create a server with mocked methods:
class MockHandler(

MockRequestHandler,
ApplicationRequestHandler

):
pass

22.5 Summary
Figure 22.3 summarizes the ideas introduced in this chapter. Given the impact the World-
Wide Web has had, newcomers are often surprised by how simple of HTTP actually is.

server client

HTTP

request

response

method

URL

version

headers

body

status

file path

exchange
messages

can be

contains

contains

determines

using

contains

mock
test

with

Figure 22.3: HTTP concept map.



22.6 Exercises 217

22.6 Exercises
Parsing HTTP Requests
Write a function that takes a list of lines of text as input and parses them as if they were an
HTTP request. The result should be a dictionary with the request’s method, URL, protocol
version, and headers.

Query Parameters
A URL can contain query parameters. Read the documentation for the urlparse5 mod-
ule and then modify the file server example so that a URL containing a query parameter
bytes=N (for a positive integer N) returns the first N bytes of the requested file.

Better Path Resolution
Modify the file server so that:

1. it must be given the absolute path to a directory as a command-line argument when
started; and

2. it only serves files in or below that directory (so that paths containing .. and other tricks
can’t be used to retrieve arbitrary files).

Better Content Types
Read the documentation for the mimetypes6 module and thenmodify the file server to return
the correct content type for files that aren’t HTML (such as images).

Uploading Files
Modify the file server to handle POST requests.

1. The URL must specify the name of the file being uploaded.

2. The body of the request must be the bytes of the file.

3. All uploaded files are saved in a single directory, i.e., upload paths cannot contain di-
rectory components.

Checking Content Length
Modify the file server so that:

1. if the client sends more content than indicated in the Content-Length header, the extra
bytes are read but ignored; and

2. if the client sends less content, the server doesn’t wait indefinitely for the missing bytes.

What status code should the server return to the client in each case?
5https://docs.python.org/3/library/urllib.parse.html
6https://docs.python.org/3/library/mimetypes.html

https://docs.python.org
https://docs.python.org


218 22 Serving Web Pages

Directory Listing
1. Modify the file server so that if the path portion of the URL identifies a directory, the

server returns a plain text list of the directory’s contents.

2. Write tests for this using the pyfakefs7 module.

Dynamic Results
Modify the file server so that if the client requests the “file” /time, the server returns an
HTML page that reports the current time on the server’s machine.

Templated Results
Modify the file server to:

1. turn the query parameters in the URL into a dictionary;

2. use that dictionary to fill in a template page (Chapter 12); and

3. return the resulting HTML page to the client.

7https://pytest-pyfakefs.readthedocs.io/

https://pytest-pyfakefs.readthedocs.io


23
A File Viewer

• The curses module manages text terminals in a platform-independent way.

• Write debugging information to a log file when the screen is not available.

• We can use a callable object in place of a function to satisfy an API’s requirements.

• Test programs using synthetic data.

• Using delayed construction and/or factory methods can make code easier to evolve.

• Refactor code before attempting to add new features.

• Separate the logic for managing data from the logic for displaying it.

Terms defined: buffer (of text), delayed construction, enumeration, factory
method, log file, synthetic data, viewport

Before they need version control tools or interpreters, programmers need a way to edit
text files. Even simple editors like Notepad and Nano1 do a lot of things: moving a cursor,
inserting and deleting characters, and more. This is too much to fit into one lesson, so this
chapter builds a tool for viewing files, which Chapter 24 extends to create an editor with
undo and redo. Our example is inspired by this tutorial2 written by Wasim Lorgat3.

23.1 Curses
Our starting point is the curses4 module, which handles interaction with text terminals on
several different operating systems in a uniform way. A very simple curses-based program
looks like this:
import curses

def main(stdscr):
while True:

key = stdscr.getkey()

if __name__ == "__main__":
curses.wrapper(main)

curses.wrapper takes a function with a single parameter as input, does some setup,
and then calls that function with an object that acts as an interface to the screen. (It is
called stdscr, for “standard screen”, by analogy with standard input stdin and standard

1https://www.nano-editor.org/
2https://wasimlorgat.com/posts/editor.html
3https://wasimlorgat.com/
4https://docs.python.org/3/library/curses.html

219

https://www.nano-editor.org
https://wasimlorgat.com
https://wasimlorgat.com
https://docs.python.org


220 23 A File Viewer

output stdout.) Our function main is just an infinite loop that consumes keystrokes but does
nothing with them. When we run the program, it clears the screen and waits for the user to
interrupt it by typing Ctrl-C.

We’d like to see what the user is typing, but since the program has taken over the screen,
print statements won’t be of use. Running this program inside a single-stepping debugger
is challenging for the same reason, so for the moment we will cheat and create a log file
for the program to write to:
LOG = None

def open_log(filename):
global LOG
LOG = open(filename, "w")

def log(*args):
print(*args, file=LOG)

With this in hand, we can rewrite our program to take the name of the log file as its sole
command-line argument and print messages to that file to show the keys that are being
pressed. We can also modify the program so that when the user presses q, the program
exits cleanly:
def main(stdscr):

while True:
key = stdscr.getkey()
util.log(repr(key))
if key.lower() == "q":

return

if __name__ == "__main__":
util.open_log(sys.argv[1])
curses.wrapper(main)

Notice that we print the representation of the characters using repr so that (for example)
a newline character shows up in the file as '\n' rather than as a blank line.

We are now ready to actually show some text. Given a list of strings, the revised main
function below will repeatedly:

1. clear the screen,

2. display each line of text in the correct location,

3. wait for a keystroke, and

4. exit if the key is a q.

def main(stdscr, lines):
while True:

stdscr.erase()
for (y, line) in enumerate(lines):

stdscr.addstr(y, 0, line)
key = stdscr.getkey()
if key.lower() == "q":

return

Two things about this function need to be kept in mind. First, as explained in Chapter 14,
screens put (0, 0) in the upper left rather than the lower left, and increasing values of Ymove



23.2 Windowing 221

down rather than up. To make things even more confusing, curses uses (row, column)
coordinates, so we have to remember to write (y, x) instead of (x, y).

The other oddity in this function is that it erases the entire screen each time the user
presses a key. Doing this is unnecessary in most cases—if the user’s action doesn’t modify
the text being shown, there’s no need to redraw it—but keeping track of which actions do
and don’t require redraw would require extra code (and extra debugging). For now, we’ll do
the simple, inefficient thing.

Here’s how we run our revised main function:
if __name__ == "__main__":

num_lines, logfile = int(sys.argv[1]), sys.argv[2]
lines = make_lines(num_lines)
open_log(logfile)
curses.wrapper(lambda stdscr: main(stdscr, lines))

From top to bottom, we make a list of strings to display, open the log file, and then
use lambda to make an anonymous function that takes a single screen object as input
(which curses.wrapper requires) and immediately calls main with the two arguments that
it requires.

A real text viewer would display the contents of a file, but for development we will just
make up a regular pattern of text:
from string import ascii_lowercase

def make_lines(num_lines):
result = []
for i in range(num_lines):

ch = ascii_lowercase[i % len(ascii_lowercase)]
result.append(ch + "".join(str(j % 10) for j in range(i)))

return result

If we ask for five lines, the pattern is:
a
b0
c01
d012
e0123

These lines are a very (very) simple example of synthetic data, i.e., data that is made up
for testing purposes. If the viewer doesn’t work for this text it probably won’t work on actual
files, and the patterns in the synthetic data will help us spot mistakes in the display.

23.2 Windowing
Our file viewer works, but only for small examples. If we ask it to display 100 lines, or
anything else that is larger than our screen, it falls over with the message _curses.error:
addwstr() returned ERR because it is trying to draw outside screen. The solution is to
create a Window class that knows how big the screen is and only displays lines (or parts of
lines) that fit inside it:
class Window:

def __init__(self, screen):
self._screen = screen



222 23 A File Viewer

def draw(self, lines):
self._screen.erase()
for (y, line) in enumerate(lines):

if 0 <= y < curses.LINES:
self._screen.addstr(y, 0, line[:curses.COLS])

Our main function is then:
def main(stdscr, lines):

window = Window(stdscr)
window.draw(lines)
while True:

key = stdscr.getkey()
if key.lower() == "q":

return

Notice that main creates the window object. We can’t create it earlier and pass it into
main as we do with lines because the constructor for Window needs the screen object,
which doesn’t exist until curses.wrapper calls main. This is an example of delayed con-
struction and is going to constrain the rest of our design (Figure 23.1).

__main__ curses.wrapper() main() Window.__init__()

1. create lines

2. define lambda

3. make stdscr

4. call lambda

lambda

5. call main

6. construct Window

7. save screen

8. start drawing

Figure 23.1: Order of operations in delayed construction.

Nothing says we have to make our window exactly the same size as the terminal that
is displaying it. In fact, testing will be a lot simpler if we can create windows of arbitrary
size (so long as they aren’t larger than the terminal). This version of Window takes an extra
parameter size which is either None (meaning “use the full terminal”) or a (rows, columns)
pair specifying the size we want:
class Window:

def __init__(self, screen, size):
self._screen = screen
if size is None:

self._nrow = curses.LINES
self._ncol = curses.COLS

else:
self._nrow, self._ncol = size

def draw(self, lines):
self._screen.erase()



23.3 Moving 223

for (y, line) in enumerate(lines):
if 0 <= y < self._nrow:

self._screen.addstr(y, 0, line[:self._ncol])

We’re going to have a lot of two-dimensional (row, column) coordinates in this program,
a pair _of_constants to be more readable than 0 and 1 or R and C. (We should really create
an enumeration, but a pair of constants is good enough for now.)
ROW = 0
COL = 1

class Window:
def draw(self, lines):

self._screen.erase()
for (y, line) in enumerate(lines):

if 0 <= y < self._size[ROW]:
self._screen.addstr(y, 0, line[:self._size[COL]])

23.3 Moving
Our program no longer crashes when given large input to display, but we can’t see any
of the text outside the window. To fix that, we need to teach the application to scroll. let’s
create another class to keep track of the position of a cursor:
class Cursor:

def __init__(self):
self._pos = [0, 0]

def pos(self):
return tuple(self._pos)

def up(self): self._pos[ROW] -= 1

def down(self): self._pos[ROW] += 1

def left(self): self._pos[COL] -= 1

def right(self): self._pos[COL] += 1

The cursor keeps track of its current (row, column) position in a list, but Cursor.pos returns
the location as a separate tuple so that other code can’t modify it. In general, nothing outside
an object should be able to change the data structures that object uses to keep track of its
state; otherwise, it’s very easy for the internal state to become inconsistent in difficult-to-
debug ways.

Now that we have a way to keep track of where the cursor is, we can tell curses to draw
the cursor in the right location each time it renders the screen:
def main(stdscr, size, lines):

window = Window(stdscr, size)
cursor = Cursor()
while True:

window.draw(lines)
stdscr.move(*cursor.pos())
key = stdscr.getkey()



224 23 A File Viewer

if key == "KEY_UP": cursor.up()
elif key == "KEY_DOWN": cursor.down()
elif key == "KEY_LEFT": cursor.left()
elif key == "KEY_RIGHT": cursor.right()
elif key.lower() == "q":

return

As this code shows, the screen’s getkey method returns the names of the arrow keys.
And since stdscr.move takes two arguments but cursor.pos returns a two-element tuple,
we spread the latter with * to satisfy the former.

When we run this program and start pressing the arrow keys, the cursor does indeed
move. In fact, we can move it to the right of the text, or below the bottom line of the text if
there are fewer lines of text than rows in our window.What’s worse, if wemove the cursor off
the left or top edges of the screen our program crashes with the message _curses.error:
wmove() returned ERR. And we still can’t see all the lines in a long “file”: the text doesn’t
scroll down when we go to the bottom.

We need to constrain the cursor’s movement so that it stays inside the text (not just
the window), while simultaneously moving the text up or down when appropriate. Before
tackling those problems, we will reorganize the code to give ourselves a better starting
point.

23.4 Refactoring
Our first change is to write a class to represent the application as a whole; our program will
then create one instance of this class, which will own the window and cursor. The trick to
making this work is to take advantage of one of the protocols introduced in Chapter 9: if
an object has a method named __call__, that method will be invoked when the object is
“called” as if it were a function:
class Pretend:

def __init__(self, increment):
self._increment = increment

def __call__(self, value):
return value + self._increment

p = Pretend(3)
result = p(10)
print(result)

13

Since the MainApp class below defines __call__, curses.wrapper believes we have
given it the single-parameter function it needs:
class MainApp:

def __init__(self, size, lines):
self._size = size
self._lines = lines

def __call__(self, screen):
self._setup(screen)
self._run()



23.4 Refactoring 225

def _setup(self, screen):
self._screen = screen
self._window = Window(self._screen, self._size)
self._cursor = Cursor()

The __call__method calls _setup to create and store the objects the application needs,
then _run to handle interaction. The latter is:
def _run(self):

while True:
self._window.draw(self._lines)
self._screen.move(*self._cursor.pos())
key = self._screen.getkey()
if key == "KEY_UP": self._cursor.up()
elif key == "KEY_DOWN": self._cursor.down()
elif key == "KEY_LEFT": self._cursor.left()
elif key == "KEY_RIGHT": self._cursor.right()
elif key.lower() == "q":

return

Finally, we pull the startup code into a function start so that we can use it in future
versions of this code:
def start():

num_lines, logfile = int(sys.argv[1]), sys.argv[2]
size = None
if len(sys.argv) > 3:

size = (int(sys.argv[3]), int(sys.argv[4]))
lines = make_lines(num_lines)
open_log(logfile)
return size, lines

and then launch our application like this:
if __name__ == "__main__":

size, lines = start()
app = MainApp(size, lines)
curses.wrapper(app)

Next, we refactor _run to handle keystrokes using dynamic dispatch instead of a long
chain of if/elif statement:
TRANSLATE = {

"\x18": "CONTROL_X"
}

def _interact(self):
key = self._screen.getkey()
key = self.TRANSLATE.get(key, key)
name = f"_do_{key}"
if hasattr(self, name):

getattr(self, name)()

def _do_CONTROL_X(self):
self._running = False

def _do_KEY_UP(self):
self._cursor.up()



226 23 A File Viewer

A little experimentation showed that while the curses module uses names like
"KEY_DOWN" for arrow keys, it returns actual control codes for key combinations like Ctrl-
X. The TRANSLATE dictionary turns these into human-readable names that we can glue
together with _do_ to make a method name; we got the hexadecimal value "\x18" by log-
ging keystrokes to a file and then looking at its contents. We could probably have found this
value in some documentation somewhere if we had looked hard enough, but a ten-second
experiment seemed simpler.

With _interact in place, we can rewrite _run to be just five lines long:
class DispatchApp(MainApp):

def __init__(self, size, lines):
super().__init__(size, lines)
self._running = True

def _run(self):
while self._running:

self._window.draw(self._lines)
self._screen.move(*self._cursor.pos())
self._interact()

It now relies on a member variable called _running to keep the loop going. We could
have had each key handler method return True or False to signal whether to keep going
or not, but we found out the hard way that it’s very easy to forget to do this, since almost
every handler method’s result is going to be the same.

Inheritance

DispatchApp inherits from our first MainApp so that we can recycle the initialization
code we wrote for the latter. To make this happen, DispatchApp.__init__ upcalls to
MainApp.__init__ using super().__init__. We probably wouldn’t create multiple
classes in a real program, but doing this simplifies exposition when teaching. In order
to make this work cleanly, we did have to move some code around as later examples
showed us that we should have divided things up differently in earlier examples.

This is normal. Nobody has perfect foresight; if we haven’t built a particular kind
of application several times, we can’t anticipate all of the affordances we might need,
so going back and refactoring old code to make new code easier to write is perfectly
natural. If we need to refactor every time we want to add something new, though, we
should probably rethink our design entirely.

We now have classes to represent the application, the window, and the cursor, but we
are still storing the text to display as a naked list of lines. Let’s wrap it up in a class:
class Buffer:

def __init__(self, lines):
self._lines = lines[:]

def lines(self):
return self._lines

This text buffer class doesn’t do much yet, but will later keep track of the viewable
region. Again, we make a copy of lines rather than using the list the caller gives us so that
other code can’t change the buffer’s internals. The corresponding change to the application
class is:



23.5 Clipping 227

class BufferApp(DispatchApp):
def __init__(self, size, lines):

super().__init__(size, lines)

def _setup(self, screen):
self._screen = screen
self._make_window()
self._make_buffer()
self._make_cursor()

def _make_window(self):
self._window = Window(self._screen, self._size)

def _make_buffer(self):
self._buffer = Buffer(self._lines)

def _make_cursor(self):
self._cursor = Cursor()

Factory Methods

We want to re-use as much of BufferApp as possible in upcoming versions of our file
viewer. If setup calls the constructors of specific classes to create the window, buffer,
and cursor objects, we will have to rewrite the entire method each time we change the
classes we use for those things. Putting constructor calls in factory methods makes
the code longer but allows us to override them one by one. We didn’t do this when
we were first writing these examples; instead, as described in the previous callout, we
went back and refactored earlier classes to make later ones easier.

23.5 Clipping
We are now ready to keep the cursor inside both the text and the screen. The ClipCursor
class below takes the buffer as a constructor argument so that it can ask how many rows
there are and how big each one is, but its up, down, left, and right methods have exactly
the same signatures as the corresponding methods in the original Cursor class. As a result,
while we have to change the code that creates a cursor, we won’t have tomake any changes
to the code that uses the cursor:
class ClipCursor(Cursor):

def __init__(self, buffer):
super().__init__()
self._buffer = buffer

def up(self):
self._pos[ROW] = max(self._pos[ROW]-1, 0)

def down(self):
self._pos[ROW] = min(self._pos[ROW]+1, self._buffer.nrow()-1)

def left(self):
self._pos[COL] = max(self._pos[COL]-1, 0)



228 23 A File Viewer

def right(self):
self._pos[COL] = min(

self._pos[COL]+1,
self._buffer.ncol(self._pos[ROW])-1

)

The logic in the movement methods in ClipCursor is relatively straightforward. If the
user wants to go up, don’t let the cursor go above line 0. If the user wants to go down, on
the other hand, don’t let the cursor go below the last line, and so on. These methods rely
on the buffer being able to report the number of rows it has and the number of columns
in a particular row, so we define a new ClipBuffer class that provides those, and then
override the _make_buffer and _make_cursormethods in the application class to construct
the appropriate objects without changing the kind of window we are creating:
class ClipBuffer(Buffer):

def nrow(self):
return len(self._lines)

def ncol(self, row):
return len(self._lines[row])

class ClipApp(BufferApp):
def _make_buffer(self):

self._buffer = ClipBuffer(self._lines)

def _make_cursor(self):
self._cursor = ClipCursor(self._buffer)

When we run this program, we are no longer able to move the cursor outside the window
or outside the displayed text—unless, that is, we go to the end of a long line and then move
up to a shorter one. The problem is that up and down only change the cursor’s idea of the
row it is on; they don’t check that the column position is still inside the text. The fix is simple:
class ClipCursorFixed(ClipCursor):

def up(self):
super().up()
self._fix()

def down(self):
super().down()
self._fix()

def _fix(self):
self._pos[COL] = min(

self._pos[COL],
(self._buffer.ncol(self._pos[ROW])-1))

One sign of a good design is that there is one (hopefully obvious) place to make a change
in order to fix a bug or add a feature. By that measure, we seem to be on the right track.

23.6 Viewport
We are finally ready to scroll the text vertically so that all of the lines can be seen no matter
how small the window is. (We will leave horizontal scrolling as an exercise.) A full-featured



23.6 Viewport 229

editor would introduce another class, often called a viewport, to track the currently-visible
portion of the buffer. To keep things simple, we will add two member variables to the buffer
instead to keep track of the top-most visible line and the height of the window:
class ViewportBuffer(ClipBuffer):

def __init__(self, lines):
super().__init__(lines)
self._top = 0
self._height = None

def lines(self):
return self._lines[self._top:self._top + self._height]

def set_height(self, height):
self._height = height

def _bottom(self):
return self._top + self._height

The most important change in the buffer is that lines returns the visible portion of the
text rather than all of it. Another change is that the buffer initializes _height to None and
requires someone to set it to a real value later because the application’s _setup method
creates the cursor, buffer, and window independently. If we were building a single class
rather than layering tutorial classes on top of each other, we would probably go back and
change _setup to remove the need for this.

Our buffer also gains two more methods. The first transforms the cursor’s position from
buffer coordinates to screen coordinates:
def transform(self, pos):

result = (pos[ROW] - self._top, pos[COL])
return result

The second method moves _top up or down when we reach the edge of the display:
def scroll(self, row, col):

old = self._top
if (row == self._top - 1) and self._top > 0:

self._top -= 1
elif (row == self._bottom()) and \

(self._bottom() < self.nrow()):
self._top += 1

As before, we derive a new application class to create the right kind of buffer object. We
also override _run to scroll the buffer after each interaction with the user:
class ViewportApp(ClipAppFixed):

def _make_buffer(self):
self._buffer = ViewportBuffer(self._lines)

def _make_cursor(self):
self._cursor = ViewportCursor(self._buffer, self._window)

def _run(self):
self._buffer.set_height(self._window.size()[ROW])
while self._running:

self._window.draw(self._buffer.lines())
screen_pos = self._buffer.transform(self._cursor.pos())
self._screen.move(*screen_pos)
self._interact()
self._buffer.scroll(*self._cursor.pos())



230 23 A File Viewer

Notice that the ViewportApp class creates a ViewportCursor. When we were testing
the program, we discovered that we had introduced a bug: the cursor could go outside the
window again if the line it was currently on was wider than the window. The solution is to
add another check to _fix and to ensure that left and right movement constrain the cursor’s
position in the same way as vertical movement:
class ViewportCursor(ClipCursorFixed):

def __init__(self, buffer, window):
super().__init__(buffer)
self._window = window

def left(self):
super().left()
self._fix()

def right(self):
super().right()
self._fix()

def _fix(self):
self._pos[COL] = min(

self._pos[COL],
self._buffer.ncol(self._pos[ROW]) - 1,
self._window.size()[COL] - 1

)

23.7 Summary
Figure 23.2 summarizes the ideas introduced in this chapter. Keeping track of several sets
of coordinates is a lot of bookkeeping; one of the big attractions of frameworks like Textu-
alize5 is how much of this they do for us.

terminal

application

buffer

cursor

window

constructs

curses

uses

screen

creates
passed


to

textstores

position in

displayed in

displayed in 

Figure 23.2: Concept map.

5https://www.textualize.io/

https://www.textualize.io


23.8 Exercises 231

23.8 Exercises
Using global
1. Why does open_log need the line global LOG? What happens if it is removed?

2. Why doesn’t the log function need this statement?

Horizontal Scrolling
Modify the application to scroll horizontally as well as vertically.

Explain the Bug
Replace the ViewportCursor class in the final version of the code with the earlier
ClipCursorFixed class, then explain the bug ViewportCursor was created to fix.

Line Numbers
Modify the file viewer to show line numbers on the left side of the text.

Inheritance
Figure 23.3 shows the classes we created in this tutorial. Summarize the changes in each.

first_curses.py

logging_curses.py

show_lines.py

use_window.py

size_window.py

cursor_const.py

move_cursor.py

main_app.py

dispatch_app.py

buffer_class.py

clip_cursor.py

clip_fixed.py

viewport.py

main

main

main

main

main

main

main

main

window

Window

Window

Window

cursor

Cursor

ClipCursor

ClipCursorFixed

ViewportCursor

buffer

Buffer

ClipBuffer

ViewportBuffer

app

MainApp

DispatchApp

BufferApp

ClipApp

ClipAppFixed

ViewportApp

Figure 23.3: Class definitions and inheritance in lesson.



232 23 A File Viewer

Sizing
The Window classes defined in this chapter accept user input to determine the size of the
drawable area, using curses.LINES and curses.COLS by default. If a user provides sizes
which are larger than the available area and tries to draw into that area, curses raises an
error. Modify the code so that it doesn’t.



24
Undo and Redo

• Replace user interface components with mock objects to simplify testing.

• Record actions and state to check behavior these mock objects.

• Use objects to represent actions to record history and enable undo.

• Recording state is easier but more expensive than recording changes.

Terms defined: abstract base class, Command pattern, headless application

Viewing text files is useful, but we’d like to be able to edit them as well. This chapter
therefore modifies the file viewer of Chapter 23 so that we can add and delete text. And
since people make mistakes, we will also implement undo, which will introduce another
commonly-used design pattern.

24.1 Getting Started
Our file viewer has four classes:

• A Window can draw lines and report its size.

• A Buffer stores lines of text, keeps track of a viewport, and transforms buffer coordinates
to screen coordinates.

• A Cursor knows its position in the buffer and can move up, down, left, and right.

• The App makes a window, a buffer, and a cursor, then maps keys to actions.

To make unit testing simpler, we start by adding one more class: a replacement for
the screen object provided by the curses1 module. This class stores the current state of
the display in a rectangular grid so that our tests can check it easily. It also takes a list of
keystrokes as input to simulate interaction with the user:
class HeadlessScreen:

def __init__(self, size, keystrokes):
self._size = size
self._keys = keystrokes
self._i_key = 0
self.erase()

def getkey(self):
if self._i_key == len(self._keys):

key = "CONTROL_X"
else:

1https://docs.python.org/3/library/curses.html

233

https://docs.python.org


234 24 Undo and Redo

key = self._keys[self._i_key]
self._i_key += 1

return key

def addstr(self, row, col, text):
assert 0 <= row < self._size[ROW]
assert col == 0
assert len(text) <= self._size[COL]
self._display[row] = text + self._display[row][len(text):]

GUI applications that don’t display anything are often called headless applications. Giving
our simulated keystrokes to the screen seems odd—it would make more sense for App to
have a method that gets keystrokes—but it’s the simplest way to fit everything in beside
the classes we already have.

Clean Exit

Notice that when the screen runs out of simulated keystrokes it produces CONTROL_X,
meaning “exit the application”. We need this to break out of the keystroke-processing
loop in the application, and no, we didn’t think of this up front.

To finish this change, we also need to define a HeadlessWindow that takes a desired
screen size and passes it to the screen:
class HeadlessWindow(Window):

def __init__(self, screen, size):
assert size is not None and len(size) == 2
super().__init__(screen, size)

Finally, our new application class records keystrokes, the cursor position, and the screen
contents for testing:
class HeadlessApp(App):

def __init__(self, size, lines):
super().__init__(size, lines)
self._log = []

def get_log(self):
return self._log

def _add_log(self, key):
self._log.append((key, self._cursor.pos(), self._screen.display()))

def _make_window(self):
self._window = HeadlessWindow(self._screen, self._size)

We can now write tests like this:
def test_scroll_down():

size = (2, 2)
lines = ["abc", "def", "ghi"]
keys = ["KEY_DOWN"] * 3
screen = HeadlessScreen(size, keys)
app = HeadlessApp(size, lines)
app(screen)
assert app.get_log()[-1] == ("CONTROL_X", (2, 0), ["de", "gh"])



24.2 Insertion and Deletion 235

24.2 Insertion and Deletion
We are now ready to implement insertion and deletion. The first step is to add methods to
the buffer class that update a line of text:
class InsertDeleteBuffer(Buffer):

def insert(self, pos, char):
assert 0 <= pos[ROW] < self.nrow()
assert 0 <= pos[COL] <= self.ncol(pos[ROW])
line = self._lines[pos[ROW]]
line = line[:pos[COL]] + char + line[pos[COL]:]
self._lines[pos[ROW]] = line

def delete(self, pos):
assert 0 <= pos[ROW] < self.nrow()
assert 0 <= pos[COL] < self.ncol(pos[ROW])
line = self._lines[pos[ROW]]
line = line[:pos[COL]] + line[pos[COL] + 1:]
self._lines[pos[ROW]] = line

Notice that we delete the character under the cursor, not the one to the left of the cursor:
this is delete-in-place rather than backspace-delete. Notice also that we have done a lit-
tle defensive programming by checking that the coordinates given for the operation make
sense.

The window, cursor, and screen don’t need to change to support insertion and deletion,
but the application class needs several updates. The first is to define the set of characters
that can be inserted, which for our example will be letters and digits, and to create a buffer
of the appropriate kind:
class InsertDeleteApp(HeadlessApp):

INSERTABLE = set(string.ascii_letters + string.digits)

def _make_buffer(self):
self._buffer = InsertDeleteBuffer(self._lines)

We also need to create handlers for insertion and deletion:
def _do_DELETE(self):

self._buffer.delete(self._cursor.pos())

def _do_INSERT(self, key):
self._buffer.insert(self._cursor.pos(), key)

Finally, since we don’t want to have to add one handler for each insertable character,
let’s write a _get_key method that returns a pair of values. The first indicates the “family”
of the key, while the second is the actual key. If the family is None, the key is a special key
with its own handler; otherwise, we look up the handler for the key’s family:
def _get_key(self):

key = self._screen.getkey()
if key in self.INSERTABLE:

return "INSERT", key
else:

return None, key

def _interact(self):
family, key = self._get_key()
if family is None:



236 24 Undo and Redo

name = f"_do_{key}"
if hasattr(self, name):

getattr(self, name)()
else:

name = f"_do_{family}"
if hasattr(self, name):

getattr(self, name)(key)
self._add_log(key)

We’re going to write a lot of tests for this application, so let’s write a helper function to
create a fixture, run the application, and return it:
def make_fixture(keys, size, lines):

screen = HeadlessScreen(size, keys)
app = InsertDeleteApp(size, lines)
app(screen)
return app

Our tests are now straightforward to set up and check:
def test_delete_middle():

app = make_fixture(["KEY_RIGHT", "DELETE"], (1, 3), ["abc"])
assert app.get_log()[-1] == ("CONTROL_X", (0, 1), ["ac_"])

Edge Case

One of our tests uncovers the fact that our application crashes if we try to delete a
character when the buffer is empty:
def test_delete_when_impossible():

try:
make_fixture(["DELETE"], (1, 1), [""])

except AssertionError:
pass

Our focus is implementing undo, so we will leave fixing this for an exercise.

24.3 Going Backward
In order to undo things we have to:

1. keep track of actions and reverse them, or

2. keep track of state and restore it.

Recording actions can be trickier to implement but requires less space than saving the
entire state of the application after each change, so that’s what most systems do. The
starting point is to append a record of every action to a log:
class HistoryApp(InsertDeleteApp):

def __init__(self, size, keystrokes):
super().__init__(size, keystrokes)
self._history = []



24.3 Going Backward 237

def get_history(self):
return self._history

def _do_DELETE(self):
row, col = self._cursor.pos()
char = self._buffer.char((row, col))
self._history.append(("delete", (row, col), char))
self._buffer.delete(self._cursor.pos())

But what about undoing cursor movement? If we add a character, move to another
location, and then undo, shouldn’t the cursor go back to where it was before deleting the
character? And how are we going to interpret these log records? Will we need a second
dispatch method with its own handlers?

The common solution to these problems is to use the Command design pattern. This
pattern turns verbs into nouns, i.e., each action is represented as an object with methods
to go forward and backward. Our actions all derive from an abstract base class so that
they can be used interchangeably. That base class is:
class Action:

def __init__(self, app):
self._app = app

def do(self):
raise NotImplementedError(f"{self.__class__.__name__}: do")

def undo(self):
raise NotImplementedError(f"{self.__class__.__name__}: undo")

The child classes for insertion and deletion are:
class Insert(Action):

def __init__(self, app, pos, char):
super().__init__(app)
self._pos = pos
self._char = char

def do(self):
self._app._buffer.insert(self._pos, self._char)

def undo(self):
self._app._buffer.delete(self._pos)

class Delete(Action):
def __init__(self, app, pos):

super().__init__(app)
self._pos = pos
self._char = self._app._buffer.char(pos)

def do(self):
self._app._buffer.delete(self._pos)

def undo(self):
self._app._buffer.insert(self._pos, self._char)

We could implement one class for each direction of cursor movement, but instead
choose to create a single class:



238 24 Undo and Redo

class Move(Action):
def __init__(self, app, direction):

super().__init__(app)
self._direction = direction
self._old = self._app._cursor.pos()
self._new = None

def do(self):
self._app._cursor.act(self._direction)
self._new = self._app._cursor.pos()

def undo(self):
self._app._cursor.move_to(self._old)

This class records the new cursor position as well as the old one to make debugging
easier. It depends on adding two new methods to Cursor to move in a particular direction
by name (e.g., “right” or “left”) and to move to a particular location:
def act(self, direction):

assert hasattr(self, direction)
getattr(self, direction)()

def move_to(self, pos):
self._pos = pos
self._fix()

Our application’s _interact method changes too. Instead of relying on keystroke han-
dler methods to do things, it expects them to create action objects (Figure 24.1). These
objects are appended to the application’s history, and then asked to do whatever they do:

Move

_old: (3, 2)

_new: (3, 3)

Move

_old: (2, 2)

_new: (3, 2)

Insert

_pos: (3, 3)

_char: "A"

Delete

_pos: (3, 3)

_char: "Z"

newer

older

forward: "down", "right", "delete Z", "insert A"

backward: "down", "right", "delete Z", "insert A"

Figure 24.1: Representing actions as objects in the Command design pattern.

def _interact(self):
family, key = self._get_key()
name = f"_do_{family}" if family else f"_do_{key}"
if not hasattr(self, name):

return
action = getattr(self, name)(key)
self._history.append(action)
action.do()
self._add_log(key)



24.3 Going Backward 239

Note that we have modified all the handler methods to take the keystroke as an input ar-
gument so that we don’t have to distinguish between cases where it’s needed and cases
where it isn’t. This simplifies the code a little at the expense of introducing unused param-
eters into the handlers for special keys like cursor movement.

Finally, each handler method now builds an object and returns it:
def _do_DELETE(self, key):

return Delete(self, self._cursor.pos())

def _do_INSERT(self, key):
return Insert(self, self._cursor.pos(), key)

def _do_KEY_UP(self, key):
return Move(self, "up")

With all these changes in place, our application almost works. We add an _do_UNDO
handler that pops the most recent action from the history and calls its undo method. When
we test this, though, we wind up in an infinite loop because we are appending the action
to the history before doing the action, so we are essentially undoing our undo forever. The
solution is to modify the base class Action to have a .savemethod that tells the application
whether or not to save this action. The default implementation returns True, but we override
it in Undo to return False:
class Undo(Action):

def do(self):
action = self._app._history.pop()
action.undo()

def save(self):
return False

def __str__(self):
return f"Undo({self._app._history[-1]})"

Note that popping the most recent action off the history stack only works once wemodify
the application’s _interact method so that it only saves actions that ought to be saved:
class UndoableApp(ActionApp):

def _interact(self):
family, key = self._get_key()
name = f"_do_{family}" if family else f"_do_{key}"
if not hasattr(self, name):

return
action = getattr(self, name)(key)
action.do()
if action.save():

self._history.append(action)
self._add_log(key)

We can now write tests like this to check that we can insert a character, undo the action,
and get back the screen we originally had:
def test_insert_undo():

app = make_fixture(["z", "UNDO"])
assert get_screen(app) == ["ab", "cd"]



240 24 Undo and Redo

24.4 Summary
Figure 24.2 summarizes the concepts introduced in this chapter. Real text editors (even
simple ones) obviously have many more features, but we have now seen most of the key
ideas.

terminal

application

buffer

cursor

window

constructsusesheadless
screen

textstores

position in

displayed in

displayed in 

curses
screen

replaces

action
objects

history

saved as 

have

do

undo

redo

Figure 24.2: Concept map.

24.5 Exercises
Combining Movement
Modify the application so that successive movement operations are combined into a single
undo step.

Forgetting Moves
Most editors do not save cursor movements in their undo history. Modify the code in this
chapter so that undo only works on changes to the content being edited.

Limiting History
Modify the application so that only the most recent hundred operations can be undone.

Breaking Lines
Modify the code so that pressing the Enter key inserts a new line or breaks the current line
in two. What information do you have to store to make this operation undoable?



24.5 Exercises 241

Redoing Operations
Implement a “redo” command that re-executes an operation that has been undone. How
does redo differ from undoing an undo? Does it make sense to redo an action that wasn’t
done?

Repeating Operations
1. Implement a command to repeat the most recent operation.

2. How should repeated operations be represented in the application’s history?

Saving Operations
Use the ideas of Chapter 16 to save operations to a file and reload them so that users can
resume editing sessions.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


25
A Virtual Machine

• Every computer has a processor with a particular instruction set, some registers, and
memory.

• Instructions are just numbers but may be represented as assembly code.

• Instructions may refer to registers, memory, both, or neither.

• A processor usually executes instructions in order but may jump to another location
based on whether a conditional is true or false.

Terms defined:ApplicationBinary Interface, assembler, assembly code, bytecode,
conditional jump, disassembler, instruction pointer, instruction set, label (of
address in memory), op code, register (in hardware), virtual machine, word (of
memory)

The interpreter in Chapter 7 relied on Python to do most of the actual work. The standard
version of Python is implemented in C and relies on C’s operators to add numbers, index
arrays, and so on, but C is compiled to instructions for a particular processor. Each operation
in the little language of Chapter 7 is therefore expanded by several layers of software to
become something that hardware can actually run. To show how that lower layer works, this
chapter builds a simulator of a small computer. If you want to dive deeper into programming
at this level, have a look at the game Human Resource Machine1.

25.1 Architecture
Our virtual machine (VM) simulates a computer with three parts (Figure 25.1):

1. The instruction pointer (IP) holds the memory address of the next instruction to exe-
cute. It is automatically initialized to point at address 0, so that is where every program
must start. This requirement is part of our VM’s Application Binary Interface (ABI).

2. Four registers named R0 to R3 that instructions can access directly. There are no
memory-to-memory operations in our VM: everything happens in or through registers.

3. 256 words of memory, each of which can store a single value. Both the program and
its data live in this single block of memory; we chose the size 256 so that the address of
each word will fit in a single byte.

Our processor’s instruction set defines what it can do. Instructions are just numbers,
but we will write them in a simple text format called assembly code that gives those number
human-readable names.

1https://tomorrowcorporation.com/humanresourcemachine

243

https://tomorrowcorporation.com


244 25 A Virtual Machine

0
1
2
3

memory address

108
109

254
255

program

data

IP

R0

R1

R2

R3

registers

Figure 25.1: Architecture of the virtual machine.

Name Code Format Action Example Equivalent
hlt 1 -- Halt program hlt sys.exit(0)
ldc 2 rv Load constant ldc R0 99 R0 = 99
ldr 3 rr Load register ldr R0 R1 R0 = memory[R1]
cpy 4 rr Copy register cpy R0 R1 R0 = R1
str 5 rr Store register str R0 R1 memory[R1] = R0
add 6 rr Add add R0 R1 R0 = R0 + R1
sub 7 rr Subtract sub R0 R1 R0 = R0 - R1
beq 8 rv Branch if equal beq R0 99 if (R0==0) IP = 99
bne 9 rv Branch if not equal bne R0 99 if (R0!=0) IP = 99
prr 10 r- Print register prr R0 print(R0)
prm 11 r- Print memory prm R0 print(memory[R0])

Table 25.1: Virtual machine op codes.

The instructions for our VM are 3 bytes long. The op code fits in one byte, and each
instruction may include zero, one, or two single-byte operands. (Instructions are sometimes
called bytecode, since they’re packed into bytes, but so is everything else in a computer.)

Each operand is a register identifier, a constant, or an address, which is just a constant
that identifies a location in memory. Since constants have to fit in one byte, this means that
the largest number we can represent directly is 256. Table 25.1 uses the letters r and v to
indicate instruction format, where r indicates a register identifier and v indicates a constant
value.

To start building our virtual machine, we put the VM’s details in a file that can be loaded
by other modules:
NUM_REG = 4 # number of registers
RAM_LEN = 256 # number of words in RAM

OPS = {
"hlt": {"code": 0x1, "fmt": "--"}, # Halt program
"ldc": {"code": 0x2, "fmt": "rv"}, # Load value
"ldr": {"code": 0x3, "fmt": "rr"}, # Load register
"cpy": {"code": 0x4, "fmt": "rr"}, # Copy register
"str": {"code": 0x5, "fmt": "rr"}, # Store register



25.2 Execution 245

"add": {"code": 0x6, "fmt": "rr"}, # Add
"sub": {"code": 0x7, "fmt": "rr"}, # Subtract
"beq": {"code": 0x8, "fmt": "rv"}, # Branch if equal
"bne": {"code": 0x9, "fmt": "rv"}, # Branch if not equal
"prr": {"code": 0xA, "fmt": "r-"}, # Print register
"prm": {"code": 0xB, "fmt": "r-"}, # Print memory

}

OP_MASK = 0xFF # select a single byte
OP_SHIFT = 8 # shift up by one byte
OP_WIDTH = 6 # op width in characters when printing

There isn’t a name for this design pattern, but putting all the constants that define a system
in one file instead of scattering them across multiple files makes them easier to find as well
as ensuring consistency.

25.2 Execution
We start by defining a class with an instruction pointer, some registers, and some memory
along with a prompt for output. A program is just an array of numbers representing instruc-
tions. To load a program into our VM, we copy those numbers into memory and reset the
instruction pointer and registers:
class VirtualMachine:

def __init__(self):
self.initialize([])
self.prompt = ">>"

def initialize(self, program):
assert len(program) <= RAM_LEN, "Program too long"
self.ram = [

program[i] if (i < len(program)) else 0
for i in range(RAM_LEN)

]
self.ip = 0
self.reg = [0] * NUM_REG

Notice that the VM’s constructor calls initialize with an empty array (i.e., a program with
no instructions) to do initial setup. If an object has a method to reset or reinitialize itself,
having its constructor use that method is a way to avoid duplicating code.

To execute the next instruction, the VM gets the value in memory that the instruction
pointer currently refers to and moves the instruction pointer on by one address. It then uses
bitwise operations (Chapter 17) to extract the op code and operands from the instruction
(Figure 25.2).
def fetch(self):

instruction = self.ram[self.ip]
self.ip += 1
op = instruction & OP_MASK
instruction >>= OP_SHIFT
arg0 = instruction & OP_MASK
instruction >>= OP_SHIFT
arg1 = instruction & OP_MASK
return [op, arg0, arg1]



246 25 A Virtual Machine

memory

IP

R0

R1

R2

R3 oparg0arg1

Figure 25.2: Using bitwise operations to unpack instructions.

We always unpack two operands regardless of whether the instructions have them or not,
since this is what most hardware implementations would do.

Processor Design

Some processors do have variable-length instructions, but they make the hardware
more complicated and therefore slower. To decide whether these costs are worth pay-
ing, engineers rely on simulation and profiling (Chapter 15). Backward compatibility is
also an issue: if earlier processors supported variable-length instructions, later ones
must somehow do so as well in order to run old programs.

The next step is to add a run method to our VM that fetches instructions and executes
them until told to stop:
def run(self):

running = True
while running:

op, arg0, arg1 = self.fetch()
if op == OPS["hlt"]["code"]:

running = False
elif op == OPS["ldc"]["code"]:

self.reg[arg0] = arg1
elif op == OPS["ldr"]["code"]:

self.reg[arg0] = self.ram[self.reg[arg1]]
elif op == OPS["cpy"]["code"]:

self.reg[arg0] = self.reg[arg1]
else:

assert False, f"Unknown op {op:06x}"

Let’s look more closely at three of these instructions. The first, str, stores the value of
one register in the address held by another register:
elif op == OPS["str"]["code"]:

self.ram[self.reg[arg1]] = self.reg[arg0]

Adding the value in one register to the value in another register is simpler:
elif op == OPS["add"]["code"]:

self.reg[arg0] += self.reg[arg1]

as is jumping to a fixed address if the value in a register is zero. This conditional jump
instruction is how we implement if:
elif op == OPS["beq"]["code"]:

if self.reg[arg0] == 0:
self.ip = arg1



25.3 Assembly Code 247

25.3 Assembly Code
We could write out numerical op codes by hand just as early programmers2 did. However,
it is much easier to use an assembler, which is just a small compiler for a language that
very closely represents actual machine instructions.

Each command in our assembly languages matches an instruction in the VM. Here’s
an assembly language program to print the value stored in R1 and then halt:
# Print initial contents of R1.
prr R1
hlt

Its numeric representation (in hexadecimal) is:
00010a
000001

One thing the assembly language has that the instruction set doesn’t is labels on ad-
dresses in memory. The label loop doesn’t take up any space; instead, it tells the assembler
to give the address of the next instruction a name so that we can refer to @loop in jump
instructions. For example, this program prints the numbers from 0 to 2 (Figure 25.3):

# Count up to 3.
# - R0: loop index.
# - R1: loop limit.
ldc R0 0
ldc R1 3
loop:
prr R0
ldc R2 1
add R0 R2
cpy R2 R1
sub R2 R0
bne R2 @loop
hlt

000002
030102
00000a
010202
020006
010204
000207
020209
000001

Let’s trace this program’s execution (Figure 25.4):

1. R0 holds the current loop index.

2. R1 holds the loop’s upper bound (in this case 3).

3. The loop prints the value of R0 (one instruction).

4. The program adds 1 to R0. This takes two instructions because we can only add register-
to-register.

5. It checks to see if we should loop again, which takes three instructions.

6. If the program doesn’t jump back, it halts.

2http://eniacprogrammers.org/

http://eniacprogrammers.org


248 25 A Virtual Machine

R0 := 0

R1 := 3

print R0

R0 += 1

R2 := R1 - R0

R2 == 0

false

halt

true

Figure 25.3: Flowchart of assembly language program to count up from 0 to 2.

ldc R0 0

ldc R1 3

prr R0

ldc R2 1

add R0 R2

cpy R2 R1

sub R2 R0

bne R2 2

hlt

0

1

2

3

4

5

6

7

8

0/-/-/-

0/3/-/-

0/3/1/-

1/3/1/-

1/3/3/-

1/3/2/-

print 0 print 1

1/3/1/-

2/3/1/-

2/3/3/-

2/3/1/-

jump 2 jump 2

print 2

2/3/1/-

3/3/1/-

3/3/3/-

3/3/0/-

no jump

halt

Figure 25.4: Tracing registers and memory values for a simple counting program.



25.3 Assembly Code 249

The implementation of the assembler mirrors the simplicity of assembly language. The
main method gets interesting lines, finds the addresses of labels, and turns each remaining
line into an instruction:
class Assembler:

def assemble(self, lines):
lines = self._get_lines(lines)
labels = self._find_labels(lines)
instructions = [

ln for ln in lines if not self._is_label(ln)
]
compiled = [

self._compile(instr, labels) for instr in instructions
]
program = self._to_text(compiled)
return program

To find labels, we go through the lines one by one and either save the label or increment
the current address (because labels don’t take up space):
def _find_labels(self, lines):

result = {}
loc = 0
for ln in lines:

if self._is_label(ln):
label = ln[:-1].strip()
assert label not in result, f"Duplicated {label}"
result[label] = loc

else:
loc += 1

return result

def _is_label(self, line):
return line.endswith(":")

To compile a single instruction we break the line into pieces, look up the format for the
operands, and pack the values:
def _compile(self, instruction, labels):

tokens = instruction.split()
op, args = tokens[0], tokens[1:]
fmt, code = OPS[op]["fmt"], OPS[op]["code"]

if fmt == "--":
return self._combine(code)

elif fmt == "r-":
return self._combine(self._reg(args[0]), code)

elif fmt == "rr":
return self._combine(

self._reg(args[1]), self._reg(args[0]), code
)

elif fmt == "rv":
return self._combine(

self._val(args[1], labels),
self._reg(args[0]), code

)



250 25 A Virtual Machine

To convert a value, we either look up the label’s address (if the value starts with @) or
convert the value to a number:
def _val(self, token, labels):

if token[0] != "@":
return int(token)

lbl = token[1:]
assert lbl in labels, f"Unknown label '{token}'"
return labels[lbl]

Combining op codes and operands into a single value is the reverse of the unpacking done
by the virtual machine:
def _combine(self, *args):

assert len(args) > 0, "Cannot combine no arguments"
result = 0
for a in args:

result <<= OP_SHIFT
result |= a

return result

As a test, this program counts up to 3:
# Count up to 3.
# - R0: loop index.
# - R1: loop limit.
ldc R0 0
ldc R1 3
loop:
prr R0
ldc R2 1
add R0 R2
cpy R2 R1
sub R2 R0
bne R2 @loop
hlt

>> 0
>> 1
>> 2
R000000 = 000003
R000001 = 000003
R000002 = 000000
R000003 = 000000
000000: 000002 030102 00000a 010202
000004: 020006 010204 000207 020209
000008: 000001 000000 000000 000000

25.4 Arrays
It’s tedious to write programs when each value needs a unique name. We can do a lot
more once we have arrays, so let’s add those to our assembler. We don’t have to make
any changes to the virtual machine, which doesn’t care if we think of a bunch of numbers
as individuals or elements of an array, but we do need a way to create arrays and refer to
them.



25.4 Arrays 251

ldc R0 0

ldc R1 3

ldc R2 11

str R0 R2

ldc R3 1

add R0 R3

add R2 R3

cpy R3 R1

sub R3 R0

0

1

2

3

4

5

6

7

8

9 bne R3 3

hlt

-

-

-

-

10

11

12

13

20

loop

array

Figure 25.5: Allocating storage for arrays in the virtual machine.

We will allocate storage for arrays at the end of the program by using .data on a line
of its own to mark the start of the data section and then label: number to give a region a
name and allocate some storage space (Figure 25.5).

This enhancement only requires a few changes to the assembler. First, we need to split
the lines into instructions and data allocations:
DIVIDER = ".data"

def assemble(self, lines):
lines = self._get_lines(lines)
to_compile, to_allocate = self._split(lines)

labels = self._find_labels(lines)
instructions = [ln for ln in to_compile if not self._is_label(ln)]

base_of_data = len(instructions)
self._add_allocations(base_of_data, labels, to_allocate)

compiled = [self._compile(instr, labels) for instr in instructions]
program = self._to_text(compiled)
return program

def _split(self, lines):
try:

split = lines.index(self.DIVIDER)
return lines[0:split], lines[split + 1:]

except ValueError:
return lines, []



252 25 A Virtual Machine

Second, we need to figure out where each allocation lies and create a label accordingly:
def _add_allocations(self, base_of_data, labels, to_allocate):

for alloc in to_allocate:
fields = [a.strip() for a in alloc.split(":")]
assert len(fields) == 2, f"Invalid allocation directive '{alloc}'"
lbl, num_words_text = fields
assert lbl not in labels, f"Duplicate label '{lbl}' in allocation"
num_words = int(num_words_text)
assert (base_of_data + num_words) < RAM_LEN, \

f"Allocation '{lbl}' requires too much memory"
labels[lbl] = base_of_data
base_of_data += num_words

And that’s it: no other changes are needed to either compilation or execution. To test it,
let’s fill an array with the numbers from 0 to 3:
# Count up to 3.
# - R0: loop index.
# - R1: loop limit.
# - R2: array index.
# - R3: temporary.
ldc R0 0
ldc R1 3
ldc R2 @array
loop:
str R0 R2
ldc R3 1
add R0 R3
add R2 R3
cpy R3 R1
sub R3 R0
bne R3 @loop
hlt
.data
array: 10

R000000 = 000003
R000001 = 000003
R000002 = 00000e
R000003 = 000000
000000: 000002 030102 0b0202 020005
000004: 010302 030006 030206 010304
000008: 000307 030309 000001 000000
00000c: 000001 000002 000000 000000

25.5 Summary
Figure 25.6 summarizes the new ideas in this chapter. Real processors and the VMs for
languages like Python are more complex, but experience shows that keeping things simple
makes it much easier to make them fast and reliable.



25.6 Exercises 253

instructionsoperate

on

memory

processor

computer has

registers

has

assembly

code


represented

by


numbers

are

assembler

translated by

produces

op code

operands

have

Figure 25.6: Concept map for virtual machine and assembler.

25.6 Exercises
Swapping Values
Write an assembly language program that swaps the values in R1 and R2 without affecting
the values in other registers.

Reversing an Array
Write an assembly language program that starts with:

• the base address of an array in one word

• the length of the array N in the next word

• N values immediately thereafter

and that reverses the array in place.

Increment and Decrement
1. Add instructions inc and dec that add one to the value of a register and subtract one

from the value of a register respectively.

2. Rewrite the examples to use these instructions. How much shorter do they make the
programs? Do they make it easier to read?

Using Long Addresses
1. Modify the virtual machine so that the ldr and str instructions contain 16-bit addresses

rather than 8-bit addresses and increase the virtual machine’s memory to 64K words to
match.

2. How does this complicate instruction interpretation?

Operating on Strings
The C programming language stored character strings as non-zero bytes terminated by a
byte containing zero.



254 25 A Virtual Machine

1. Write a program that starts with the base address of a string in R1 and finishes with the
length of the string (not including the terminator) in the same register.

2. Write a program that starts with the base address of a string in R1 and the base address
of some other block of memory in R2 and copies the string to that new location (including
the terminator).

3. What happens in each case if the terminator is missing?

Call and Return
1. Add another register to the virtual machine called SP (for “stack pointer”) that is auto-

matically initialized to the last address in memory.

2. Add an instruction psh (short for “push”) that copies a value from a register to the address
stored in SP and then subtracts one from SP.

3. Add an instruction pop (short for “pop”) that adds one to SP and then copies a value
from that address into a register.

4. Using these instructions, write a subroutine that evaluates 2x+1 for every value in an
array.

Disassembling Instructions
A disassembler turns machine instructions into assembly code. Write a disassembler
for the instruction set used by our virtual machine. (Since the labels for addresses are
not stored in machine instructions, disassemblers typically generate labels like @L001 and
@L002.)

Linking Multiple Files
1. Modify the assembler to handle .include filename directives.

2. What does your modified assembler do about duplicate label names? How does it pre-
vent infinite includes (i.e., A.as includes B.as which includes A.as again)?

Providing System Calls
Modify the virtual machine so that developers can add “system calls” to it.

1. On startup, the virtual machine loads an array of functions defined in a file called
syscalls.py.

2. The sys instruction takes a one-byte constant argument. It looks up the corresponding
function and calls it with the values of R0-R3 as arguments and places the result in R0.

Unit Testing
1. Write unit tests for the assembler.

2. Once they are working, write unit tests for the virtual machine.



26
A Debugger

• Interactive programs can be tested by simulating input and recording output.

• Testing interactive programs is easier if their inputs and outputs can easily be
replaced with mock objects.

• Debuggers usually implement breakpoints by temporarily replacing actual instructions
with special ones.

• Using lookup tables for function or method dispatch makes programs easier to
extend.

Terms defined: breakpoint, clear (a breakpoint), conditional breakpoint, debugger,
disassemble, reverse lookup, watchpoint

We have finally come to another of the questions that sparked this book: how does a de-
buggerwork? Debuggers are as much a part of good programmers’ lives as version control
but are taught far less often (in part, we believe, because it’s harder to create homework
questions for them). This chapter builds a simple single-stepping debugger for the virtual
machine of Chapter 25 and shows how we can test interactive applications. If you would
like to go further and (much) deeper, please have a look at Sy Brand’s1 tutorial2.

26.1 One Step at a Time
Before we start work, let’s consolidate and reorganize the code in our virtual machine. The
methods all work as they did before, but we’ve made a few changes to allow for future
growth. The first is to pass an output stream to the constructor, which by default will be
sys.stdout:
def __init__(self, writer=sys.stdout):

"""Set up memory."""
self.writer = writer
self.initialize([])

We then replace every print statement with a call to new method called write. For
example, the “print register” instruction calls self.write:
elif op == OPS["prr"]["code"]:

self.assert_is_register(arg0)
self.write(f"{self.reg[arg0]:06x}")

For now, write just prints things to whatever output stream the virtual machine (VM)
was given:

1https://blog.tartanllama.xyz/
2https://blog.tartanllama.xyz/writing-a-linux-debugger-setup/

255

https://blog.tartanllama.xyz
https://blog.tartanllama.xyz


256 26 A Debugger

def write(self, *args):
msg = "".join(args) + "\n"
self.writer.write(msg)

Our virtual machine now loads a program and runs it to completion, so it’s either running
or finished. We want to add a third state for single-step execution, so let’s start by adding
an enumeration to architecture.py:
class VMState(Enum):

"""Virtual machine states."""
FINISHED = 0
STEPPING = 1
RUNNING = 2

We could use strings to keep track of states, but as soon as there are more than two there
are likely to be many, and having them spelled out makes it easier for the next person to
find out what they can be.

We are now in a better position to move forward, so we derive a new class from our
refactored VM:
class VirtualMachineStep(VirtualMachineBase):

(Again, if we were writing this code under normal circumstances, we would enhance the
existing class, but since we want to keep several versions around for teaching, we derive
and extend.)

The old run method kept going until the program finished. The new run method is nec-
essarily more complicated. The VM is initially in the STEPPING state (because if we start
it in the RUNNING state, we would never have an opportunity to interact with it to change
its state). As long as the program isn’t finished, we fetch, decode, and execute the next
instruction as usual, but we stop after each one if we’re single-stepping:
def run(self):

self.state = VMState.STEPPING
while True:

if self.state == VMState.STEPPING:
self.interact(self.ip)

if self.state == VMState.FINISHED:
break

instruction = self.ram[self.ip]
self.ip += 1
op, arg0, arg1 = self.decode(instruction)
self.execute(op, arg0, arg1)

The interaction method needs to handle several cases:

1. The user enters an empty line (i.e., presses return), in which case it loops around and
waits for something else.

2. The user asks to disassemble the current instruction or show the contents of memory,
in which case it does that and loops around.

3. The user wants to quit, so interact changes the VM’s state to FINISHED.

4. The user wants to run the rest of the program without stopping, so interact changes
VM’s state to RUNNING.



26.2 Testing 257

{
    "hlt": {"code": 1, "fmt": "--"},

    "ldc": {"code": 2, "fmt": "rv"},

    "ldr": {"code": 3, "fmt": "rr"},

    ...

}

{
    1: "hlt",

    2: "ldc",

    3: "ldr",

    ...

}

Figure 26.1: Building a consistent lookup table.

5. The user wants to execute a single step, in which case the method breaks out of the loop
without changing the VM’s state. run will then see that the VM is still in single-stepping
mode and will execute a single instruction.
Themethod that disassembles an instruction to show uswhat we’re about to do checks a

reverse lookup table to create a printable representation of an instruction and its operands:
def disassemble(self, addr, instruction):

op, arg0, arg1 = self.decode(instruction)
assert op in OPS_LOOKUP, f"Unknown op code {op} at {addr}"
return f"{OPS_LOOKUP[op]} | {arg0} | {arg1}"

We build the reverse lookup table from the OPS table in architecture.py so that it’s
always in sync with the table we’re using to construct operations (Figure 26.1):
OPS_LOOKUP = {value["code"]: key for key, value in OPS.items()}

If we wrote the reverse lookup table ourselves, sooner or later we’d forget to update it when
updating the forward lookup table.

But there’s a more important change in this new virtual machine. It doesn’t use Python’s
built-in input function to get input from the user—or rather, it does, but only by default. The
constructor for our single-stepping VM is:
def __init__(self, reader=input, writer=sys.stdout):

super().__init__(writer)
self.reader = reader

and its read method is:
def read(self, prompt):

return self.reader(prompt).strip()

As with the write method introduced in the previous section, adding this wrapper
method will help us with testing, which is our next topic.

26.2 Testing
Our debugger is an interactive application that waits for input from the user, does something
that may or may not print output, then waits again. The waiting is a problem for tools like
pytest3, which expect the function being tested to run to completion after being launched.
3https://docs.pytest.org/

https://docs.pytest.org


258 26 A Debugger

To make our single-stepping VM testable, we have to give it input when it wants some
and capture its output for later inspection. We had a similar problem when testing the web
server of Chapter 21 and the editor of Chapter 24, and our solution is similar: we will replace
input and print with mock objects.

As shown earlier, our VM uses an object with a writemethod to produce output. We can
define a class which provides this method but saves messages in a list for later inspection
instead of printing them:
class Writer:

def __init__(self):
self.seen = []

def write(self, *args):
self.seen.extend(args)

Similarly, our VM gets input from a function that takes a prompt as an argument and
returns whatever the user typed. We can define a class with a __call__ method which
acts like such a function but which returns strings from a list instead of waiting for the user:
class Reader:

def __init__(self, *args):
self.commands = args
self.index = 0

def __call__(self, prompt):
assert self.index < len(self.commands)
self.index += 1
return self.commands[self.index - 1]

With these in hand, we can write a helper function that compiles a program, creates a
virtual machine, and runs it with a mock reader and a mock writer:
def execute(source, reader, writer):

program = Assembler().assemble(source.split("\n"), False)
vm = VM(reader, writer)
vm.initialize(program)
vm.run()

We can now write tests, like this one for the “disassemble” command:
def test_disassemble():

source = """
hlt
"""
reader = Reader("d", "q")
writer = Writer()
execute(source, reader, writer)
assert writer.seen == ["hlt | 0 | 0\n"]

Line by line, it:

1. Creates the program to test (which in this case consists of a single hlt instruction).

2. Creates a Reader that will supply the commands "d" (for “disassemble”) and "q" (for
“quit”) in that order.

3. Creates a Writer to capture the program’s output.

4. Runs the program in a fresh VM with that reader and writer.



26.3 Extensibility 259

5. Checks that the output captured in the writer is correct.
Defining two classes and a helper function to test a one-line programmay seem like a lot

of work, but we’re not testing the one-line program or the VM—we’re testing the debugger.
For example, the close below:
1. Defines a multiline string that loads 55 into R0, prints it, and then loads 65 into the same

register to print before halting.
2. Creates a Reader that issues three "s" (single-step) commands and a "q" (quit) com-

mand. Note that this isn’t enough to reach the second print command.
3. Executes the program.
4. Checks that the Writer has only recorded one line of output, not two.

def test_print_two_values():
source = """
ldc R0 55
prr R0
ldc R0 65
prr R0
hlt
"""
reader = Reader("s", "s", "s", "q")
writer = Writer()
execute(source, reader, writer)
assert writer.seen == [

"000037\n"
]

This test actually uncovered a bug in an earlier version of the debugger in which it
would always execute one more instruction when told to quit. Interactive testing might have
spotted that, but it could easily reappear; this test will warn us if it does.

Our Reader and Writer aren’t good for much beyond testing our VM, but there are
other tools that can simulate input and output for a wider range of applications. Expect4
(which can be used through Python’s pexpect5 module) is often used to script command-
line applications as well as to test them. Selenium6 and Cypress7 do the same for browser-
based applications: programmers can use them to simulate mouse clicks, window resizing,
and other events, then check the contents of the page that the application produces in
response. They are all more difficult to set up and use than a simple test that 1+1 is 2,
but that’s because the things they do are genuinely complex. Designing applications with
testing in mind—for example, routing all input and output through a single method each—
helps reduce that complexity.

26.3 Extensibility
We are going to add one more big feature to our debugger, but before we do, let’s do some
refactoring. First, we move every interactive operation into a method of its own that does
4https://en.wikipedia.org/wiki/Expect
5https://pexpect.readthedocs.io/
6https://www.selenium.dev/
7https://www.cypress.io/

https://en.wikipedia.org
https://pexpect.readthedocs.io
https://www.selenium.dev
https://www.cypress.io


260 26 A Debugger

something and then returns True if the debugger is supposed to stay in interactive mode
and False if interaction is over. The method for showing the contents of memory is:
def _do_memory(self, addr):

self.show()
return True

while the one for advancing one step is:
def _do_step(self, addr):

self.state = VMState.STEPPING
return False

and so on. Once that’s done, we modify interact to choose operations from a lookup table
called self.handlers. Its keys are the commands typed by the user, and its values are the
operation methods we just created:
def interact(self, addr):

prompt = "".join(sorted({key[0] for key in self.handlers}))
interacting = True
while interacting:

try:
command = self.read(f"{addr:06x} [{prompt}]> ")
if not command:

continue
elif command not in self.handlers:

self.write(f"Unknown command {command}")
else:

interacting = self.handlers[command](self.ip)
except EOFError:

self.state = VMState.FINISHED
interacting = False

Finally, we extend the virtual machine’s constructor to build the required lookup table.
For convenience, we register the methods under both single-letter keys and longer com-
mand names:
def __init__(self, reader=input, writer=sys.stdout):

super().__init__(reader, writer)
self.handlers = {

"d": self._do_disassemble,
"dis": self._do_disassemble,
"i": self._do_ip,
"ip": self._do_ip,
"m": self._do_memory,
"memory": self._do_memory,
"q": self._do_quit,
"quit": self._do_quit,
"r": self._do_run,
"run": self._do_run,
"s": self._do_step,
"step": self._do_step,

}

As in previous chapters, creating a lookup table like this makes the class easier to
extend. If we want to add another command (which we will do in the next section) we just
add a method to perform the operation and register it in the lookup table. So long as new
commands don’t need anything more than the address of the current instruction, we never
need to modify interact again.



26.4 Breakpoints 261

26.4 Breakpoints
Suppose we suspect there’s a bug in our program that only occurs after several thousand
lines of code have been executed. We would have to be pretty desperate to single-step
through all of that even once, much less dozens of times as we’re exploring new ideas
or trying new fixes. Instead, we want to set a breakpoint to tell the computer to stop at
a particular location and drop us into the debugger. We might even use a conditional
breakpoint that would only stop if, for example, the variable x was zero at that point, but
we’ll leave that for the exercises.

The easiest way to implement breakpoints would be to have the VM store their ad-
dresses in a set. We would then modify run to check that set each time it was supposed to
fetch a new instruction, and stop if it was at one of those addresses (Figure 26.2).

000002

040102

0b0202

020005

010302

030006

030206

010304

000307

030309

000001

000000

000001

000002

000003

000004

000005

000006

000007

000008

000009

000010

address value

000002

000007

breakpoints

Figure 26.2: Storing breakpoints beside the program.

An alternative design is to add a new instruction to our architecture called brk. When
the user sets a breakpoint at some address, we replace the instruction at that address
with a breakpoint instruction and store the original instruction in a lookup table. If the user
later clears the breakpoint, we copy the original instruction back into place, and if the VM
encounters a breakpoint instruction while it is running, it drops into interactive mode (Fig-
ure 26.3).

Putting breakpoints inline is more complicated than storing them beside the program,
but it is how debuggers for low-level languages like C actually work. It also makes the
virtual machine more efficient: instead of spending a few (actual) instructions checking a
breakpoint table every time we execute an instruction, we only pay a price when we actually
encounter a breakpoint. The difference isn’t important in our little toy, but little savings like
this add up quickly in a real interpreter for a language like Python or JavaScript.

The first step in implementing breakpoints is to add two more commands to the lookup
table we created in the previous section:



262 26 A Debugger

000002

040102

00000f

020005

010302

030006

030206

00000f

000307

030309

000001

000000

000001

000002

000003

000004

000005

000006

000007

000008

000009

000010

address value

000002:

000007:

breakpoints

0b0202

010304

Figure 26.3: Inserting breakpoints into a program.

def __init__(self):
super().__init__()
self.breaks = {}
self.handlers |= {

"b": self._do_add_breakpoint,
"break": self._do_add_breakpoint,
"c": self._do_clear_breakpoint ,
"clear": self._do_clear_breakpoint ,

}

To add a breakpoint, we copy the instruction at the given address into the dictionary
self.breaks and replace it with a breakpoint instruction:
def _do_add_breakpoint(self, addr):

if self.ram[addr] == OPS["brk"]["code"]:
return True

self.breaks[addr] = self.ram[addr]
self.ram[addr] = OPS["brk"]["code"]
return True

Notice that if there’s already a breakpoint in place, we don’t do anything. We also return
True to tell interact to wait for another command from the user.

Clearing a breakpoint is just as easy:
def _do_clear_breakpoint(self, addr):

if self.ram[addr] != OPS["brk"]["code"]:
return True

self.ram[addr] = self.breaks[addr]
del self.breaks[addr]
return True

We also update show to display any breakpoints that have been set:
def show(self):

super().show()



26.5 Summary 263

if self.breaks:
self.write("-" * 6)
for key, instruction in self.breaks.items():

self.write(f"{key:06x}: {self.disassemble(key, instruction)}")

The implementation first calls the parent’s show method to display what we’ve seen so
far before adding more information. Extending methods by upcalling this way saves typing
and ensures that changes in the parent class automatically show up in the child class.

The final step is to change run so that the VM actually stops at a breakpoint:
def run(self):

self.state = VMState.STEPPING
while self.state != VMState.FINISHED:

instruction = self.ram[self.ip]
op, arg0, arg1 = self.decode(instruction)

if op == OPS["brk"]["code"]:
original = self.breaks[self.ip]
op, arg0, arg1 = self.decode(original)
self.interact(self.ip)
self.ip += 1
self.execute(op, arg0, arg1)

else:
if self.state == VMState.STEPPING:

self.interact(self.ip)
self.ip += 1
self.execute(op, arg0, arg1)

The logic here is relatively straightforward. If the instruction is a breakpoint, the VM uses
the original instruction from the breakpoint lookup table, then gives the user a chance to
interact before executing that original instruction. Otherwise, the VM interacts with the user
if it is in single-stepping mode and then carries on as before.

We can test our new-and-improved VM using the tools developed earlier in this chapter,
but even before we do that, the changes to run tell us that we should rethink some of our
design. Using a lookup table for interactive commands allowed us to add commands without
modifying interact; another lookup table would enable us to add new instructions without
having to modify run. We will explore this in the exercises.

26.5 Summary
Figure 26.4 summarizes the key ideas in this chapter.

user

mock

objects

debugger VM

breakpoints instructions memory

controls

replace

sets and clears executes

stored

in


designed

to support

interacts

with

Figure 26.4: Concepts for debugger.



264 26 A Debugger

26.6 Exercises
Show Memory Range
Modify the debugger so that if the user provides a single address to the "memory" command,
the debugger shows the value at that address. If the user provides two addresses, on the
other hand, the debugger shows all the memory between those addresses.

1. How did this change the way command lookup and execution work?

2. Is your solution general enough to handle likely future changes without rewriting?

Breakpoint Addresses
Modify the debugger so that if the user provides a single address to the "break" or "clear"
command, it sets or clears the breakpoint at that address. Did this feature require any
changes beyond those made for the previous exercise?

Command Completion
Modify the debugger to recognize commands based on any number of distinct leading
characters. For example, any of "m", "me", "mem", and so on should trigger the _do_memory
method. Programmers should not have to specify all these options themselves; instead,
they should be able to specify the full command name and the method it corresponds to,
and the VM’s constructor should take care of the rest.

Conditional Breakpoints
Modify the debugger so that users can specify conditions for breakpoints, i.e., can specify
that the VM should only stop at a location if R0 contains zero or if the value at a particular
location in memory is greater than 3. (This exercise is potentially very large; you may restrict
the kinds of conditions the user can set to make the problemmore tractable, or explore ways
of using eval to support the general case.)

Watchpoints
Modify the debugger and VM so that the user can create watchpoints, i.e., can specify
that the debugger should halt the VM when the value at a particular address changes. For
example, if the user specifies a watchpoint for address 0x0010, then the VM automatically
halts whenever a new value is stored at that location.

Instruction Lookup
Modify the virtual machine so that execute looks up instructions in a table in the same way
as debugger commands.

Changing Memory
Modify the debugger so that users can change the values in registers or at particular ad-
dresses in memory while the program is running.



26.6 Exercises 265

Displaying Source
1. Modify the debugger so that when the debugger is displaying memory, it shows the

assembly code instructions corresponding to particular addresses as well as the numeric
codes.

2. How can the debugger distinguish between locations that contain instructions and loca-
tions that contain data?

Interleaving Testing
Modify the testing tools developed in this chapter so that users can specify input and output
as they would naturally occur, i.e., can specify one or more commands, then the output
expected from those commands, then some more input and the corresponding output, and
so on.

Pattern Matching in Tests
1. Tools like Expect8 allow programmers to match output with regular expressions. Modify

the testing tools developed in this chapter to do that as well.

2. When is this useful? When is it potentially dangerous?

8https://en.wikipedia.org/wiki/Expect

https://en.wikipedia.org


Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


27
Conclusion

Consider the bicycle: more specifically, the De Rosa SK Pininfarina (Figure 27.1). I think it’s
beautiful, but I wouldn’t call it art, because being beautiful isn’t its primary purpose. It was
created to be useful; the fact that it can also be appreciated aesthetically is an intentional
bonus.

Figure 27.1: De Rosa SK Pininfarina bicycle.

English doesn’t have a word for things like this, but there are lots of other examples.
Architecture and typography have deep roots, and starting in the early 20th century, people
like Christopher Dresser1, Jo Sinel2, and Raymond Loewy3 established industrial design
around the idea that mass-produced artifacts were worthy of serious analysis from an aes-
thetic as well as a utilitarian point of view.

Now think about your favorite piece of software. We have long accepted that its interface
can and should be critiqued in the same way as a power drill:

• Does it do what it’s supposed to?

• Is it pleasurable to use?

1https://en.wikipedia.org/wiki/Christopher_Dresser
2https://en.wikipedia.org/wiki/Joseph_Claude_Sinel
3https://en.wikipedia.org/wiki/Raymond_Loewy

267

https://en.wikipedia.org
https://en.wikipedia.org
https://en.wikipedia.org


268 27 Conclusion

What’s missing is the third leg of the industrial design tripod:

• Did its design facilitate its manufacture and maintenance?

At a deeper level, what’s really missing is a shared vocabulary and a suite of canonical
examples that would give us a basis for critiquing software in the way that we can a train or
a sofa. We use words like “elegant” when referring to Unix’s pipe-and-filter model, but when
asked to explain, we run out of meaning long before any reasonably intelligent industrial
designer runs out of things to say about the design of a toenail clipper.Will thematerials hold
up under constant use? Can it be assembled at a reasonable cost? Will people understand
how to use it without having to wade through a manual? Will it please the eye when it’s
sitting on the counter? Training in industrial design gives weight to all of these separately
and together, and gives students the tools they need to distinguish the good from the bad.

In retrospect, this is what [Oram2007; Brown2011; Brown2012] were groping toward.
If we had decided 50 years ago to call programming “industrial design for software” rather
than “software engineering”, our conversations might be intellectually richer today. I hope
this book will help us get there. I hope that some day we’ll be able to talk to each other
about the beauty of software because it is beautiful and we deserve to have ways to say
that. Until then:

Start where you are.
Use what you have.
Help who you can.



A
Bibliography

[Aniche2022] Maurício Aniche. Effective Software Testing: A developer’s guide. Manning,
2022. ISBN: 978-1633439931.

[Armstrong2013] Tavish Armstrong, ed. The Performance of Open Source Applications.
Lulu, 2013. ISBN: 978-1304488787.

[Bentley1982] Jon Louis Bentley. Writing Efficient Programs. Prentice-Hall PTR, 1982.
ISBN: 978-0139702440.

[Brand1995] Stewart Brand.How Buildings Learn: What Happens After They’re Built. Pen-
guin USA, 1995. ISBN: 978-0140139969.

[Brown2016] Amy Brown and Michael DiBernardo, eds. 500 Lines or Less: Experienced
Programmers Solve Interesting Problems. Lulu, 2016. ISBN: 978-1329871274.

[Brown2011] Amy Brown and Greg Wilson, eds. The Architecture of Open Source Ap-
plications: Elegance, Evolution, and a Few Fearless Hacks. Lulu, 2011. ISBN: 978-
1257638017.

[Brown2012] Amy Brown and Greg Wilson, eds. The Architecture of Open Source Appli-
cations: Structure, Scale, and a Few More Fearless Hacks. Lulu, 2012. ISBN: 978-
0201103427.

[Fowler2018] Martin Fowler.Refactoring: Improving the Design of Existing Code. Addison-
Wesley Professional, 2018. ISBN: 978-0134757599.

[Fucci2016] Davide Fucci, Giuseppe Scanniello, Simone Romano, Martin Shepperd,
Boyce Sigweni, Fernando Uyaguari, Burak Turhan, Natalia Juristo, and Markku Oivo.
“An external replication on the effects of test-driven development using a multi-site
blind analysis approach”. In: Proc. ESEM’16. ACM, Sept. 2016. DOI: 10 . 1145 /
2961111.2962592. URL: https://doi.org/10.1145/2961111.2962592.

[Gamma1994] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional, 1994. ISBN: 978-0201633610.

[Goldberg1991] David Goldberg. “What every computer scientist should know about
floating-point arithmetic”. In: ACM Computing Surveys 23.1 (Mar. 1991). DOI: 10.
1145/103162.103163.

[Hermans2021] Felienne Hermans. The Programmer’s Brain: What Every Programmer
Needs to Know About Cognition. Manning, 2021. ISBN: 9781617298677.

[Kamin1990] Samuel N. Kamin. Programming Languages: An Interpreter-Based Ap-
proach. Addison-Wesley, 1990. ISBN: 978-0201068245.

[Kerievsky2004] Joshua Kerievsky. Refactoring to Patterns. Addison-Wesley Profes-
sional, 2004. ISBN: 978-0321213358.

[Kernighan1983] Brian W. Kernighan and Rob Pike. The Unix Programming Environment.
Prentice-Hall, 1983. ISBN: 978-0139376818.

269

https://doi.org/10.1145/2961111.2962592
https://doi.org/10.1145/2961111.2962592
https://doi.org/10.1145/2961111.2962592
https://doi.org/10.1145/103162.103163
https://doi.org/10.1145/103162.103163


270 A Bibliography

[Kernighan1979] Brian W. Kernighan and P. J. Plauger. The Elements of Programming
Style. McGraw-Hill, 1979. ISBN: 978-0070342071.

[Kernighan1981] BrianW. Kernighan and P. J. Plauger.Software Tools in Pascal. Addison-
Wesley Professional, 1981. ISBN: 978-0201103427.

[Kernighan1988] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Lan-
guage. Prentice-Hall, 1988. ISBN: 978-0131103627.

[Kohavi2020] Ron Kohavi, Diane Tang, and Ya Xu. Trustworthy Online Controlled Exper-
iments: A Practical Guide to A/B Testing. Cambridge University Press, 2020. ISBN:
978-1108724265.

[Meszaros2007] Gerard Meszaros. xUnit Test Patterns: Refactoring Test Code. Addison-
Wesley, 2007. ISBN: 978-0131495050.

[Nystrom2021] Robert Nystrom. Crafting Interpreters. Genever Benning, 2021. ISBN:
978-0990582939.

[Oram2007] Andy Oram and Greg Wilson, eds. Beautiful Code: Leading Programmers
Explain How They Think. O’Reilly, 2007. ISBN: 978-0596510046.

[Patterson2017] David A. Patterson and John L. Hennessy. Computer Organization and
Design: The Hardware/Software Interface. Morgan Kaufmann, 2017. ISBN: 978-
0128122754.

[Petre2016] Marian Petre and André van der Hoek. Software Design Decoded: 66 Ways
Experts Think. MIT Press, 2016. ISBN: 978-0262035187.

[Schon1984] Donald A. Schon. The Reflective Practitioner: How Professionals Think in
Action. Basic Books, 1984. ISBN: 978-0465068784.

[Tichy2010] Walter Tichy. “The Evidence for Design Patterns”. In: Making Software: What
Really Works, and Why We Believe It. Ed. by Andy Oram and Greg Wilson. 2010.
ISBN: 978-0596808327.

[Wilson2019] Greg Wilson. Teaching Tech Together. Chapman & Hall/CRC Press, 2019.
ISBN: 978-0367352974.

[Wilson2022a] Greg Wilson. Software Design by Example: A Tool-Based Introduction with
JavaScript. CRC Press/Taylor & Francis, 2022. ISBN: 978-1032399676.

[Wilson2022b] Greg Wilson. “Twelve quick tips for software design”. In: PLOS Computa-
tional Biology 18.2 (Feb. 2022). DOI: 10.1371/journal.pcbi.1009809.

[Wirth1976] Niklaus Wirth. Algorithms + Data Structures = Programs. Prentice-Hall, 1976.
ISBN: 978-0-13-022418-7.

[Zeller2023] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Chris-
tian Holler. The Fuzzing Book. Viewed 2023-01-07. CISPA Helmholtz Center for In-
formation Security, 2023. URL: https://www.fuzzingbook.org/.

https://www.fuzzingbook.org
https://doi.org/10.1371/journal.pcbi.1009809


B
Bonus Material

Each chapter in this book is designed to be teachable in one classroom hour. This appendix
presents material that extends core ideas but would break that attention budget.

B.1 Using Function Attributes
This material extends Chapter 6.

Since functions are objects, they can have attributes. The function dir (short for “direc-
tory”) returns a list of their names:
def example():

"Docstring for example."
print("in example")

print(dir(example))

['__annotations__', '__builtins__', '__call__', '__class__', \
'__closure__', '__code__', '__defaults__', '__delattr__', \
'__dict__', '__dir__', '__doc__', '__eq__', '__format__', '__ge__', \
'__get__', '__getattribute__', '__getstate__', '__globals__', \
'__gt__', '__hash__', '__init__', '__init_subclass__', \
'__kwdefaults__', '__le__', '__lt__', '__module__', '__name__', \
'__ne__', '__new__', '__qualname__', '__reduce__', '__reduce_ex__', \
'__repr__', '__setattr__', '__sizeof__', '__str__', \
'__subclasshook__ ']

Most programmers never need to use most of these, but __name__ holds the function’s
original name and __doc__ holds its docstring:
print("docstring:", example.__doc__)
print("name:", example.__name__)

docstring: Docstring for example.
name: example

We can modify the test runner of Chapter 6 to use the function’s __name__ attribute in
reports instead of the key in the globals dictionary:
def run_tests(prefix):

for (name, func) in globals().items():
if name.startswith(prefix):

try:
func()
print(func.__name__, "passed")

except AssertionError:
print(func.__name__, "failed")

except Exception:

271



272 B Bonus Material

print(func.__name__, "had error")

run_tests("test_")

test_sign_negative passed
test_sign_positive passed
test_sign_zero failed
test_sign_error had error

More usefully, we can say that if a test function’s docstring contains the string
"test:skip" then we should skip the test, while "test:fail" means we expect this test
to fail. Let’s rewrite our tests to show this off:
TEST_FAIL = "test:fail"
TEST_SKIP = "test:skip"

def test_sign_negative():
"test:skip"
assert sign(-3) == -1

def test_sign_positive():
assert sign(19) == 1

def test_sign_zero():
"test:fail"
assert sign(0) == 0

def test_sign_error():
"""Expect an error."""
assert sgn(1) == 1

and then modify run_tests to look for these strings and act accordingly:
def run_tests(prefix):

all_names = [n for n in globals() if n.startswith(prefix)]
for name in all_names:

func = globals()[name]
try:

if func.__doc__ and TEST_SKIP in func.__doc__:
print(f"skip: {name}")

else:
func()
print(f"pass: {name}")

except AssertionError as e:
if TEST_FAIL in func.__doc__:

print(f"pass (expected failure): {name}")
else:

print(f"fail: {name} {str(e)}")
except Exception as e:

doc = f"/{func.__doc__}" if func.__doc__ else ""
print(f"error: {name}{doc} {str(e)}")

run_tests("test_")

The output is now:
skip: test_sign_negative
pass: test_sign_positive
pass (expected failure): test_sign_zero
error: test_sign_error/Expect an error. name 'sgn' is not defined



B.1 Using Function Attributes 273

Instead of (ab)using docstrings like this, we can instead add our own attributes to func-
tions. Let’s say that if a function has an attribute called skip with the value True then the
function is to be skipped, while if it has an attribute called fail whose value is True then
the test is expected to fail. Our tests become:
def test_sign_negative():

assert sign(-3) == -1
test_sign_negative.skip = True

def test_sign_positive():
assert sign(19) == 1

def test_sign_zero():
assert sign(0) == 0

test_sign_zero.fail = True

def test_sign_error():
assert sgn(1) == 1

We can write a helper function called classify to classify tests. Note that it uses
hasattr to check if an attribute is present before trying to get its value:
def classify(func):

if hasattr(func, "skip") and func.skip:
return "skip"

if hasattr(func, "fail") and func.fail:
return "fail"

return "run"

Finally, our test runner becomes:
def run_tests(prefix):

all_names = [n for n in globals() if n.startswith(prefix)]
for name in all_names:

func = globals()[name]
kind = classify(func)
try:

if kind == "skip":
print(f"skip: {name}")

else:
func()
print(f"pass: {name}")

except AssertionError as e:
if kind == "fail":

print(f"pass (expected failure): {name}")
else:

print(f"fail: {name} {str(e)}")
except Exception as e:

print(f"error: {name} {str(e)}")

run_tests("test_")



274 B Bonus Material

B.2 Lazy Evaluation
This material extends Chapter 7.

Oneway to evaluate a design is to ask how extensible it is. The answer for our interpreter
is now, “Pretty easily.” For example, we can add a comment “operation” that does nothing
and returns None simply by writing do_comment function:
def do_comment(env, args):

"""Ignore instructions.
["comment" "text"] => None
"""
return None

An if statement is a bit more complex. If its first argument is true, it evaluates and
returns its second argument (the “if” branch). Otherwise, it evaluates and returns its second
argument (the “else” branch):
def do_if(env, args):

"""Make a choice: only one sub-expression is evaluated.
["if" C A B] => A if C else B
"""
assert len(args) == 3
cond = do(env, args[0])
choice = args[1] if cond else args[2]
return do(env, choice)

As we said in Chapter 8, this is called lazy evaluation to distinguish it from the more usual
eager evaluation that evaluates everything up front. do_if only evaluates what it absolutely
needs to; most languages do this so that we can safely write things like:
if x != 0:

return 1/x
else:

return None

If the language always evaluated both branches, then the code shown above would fail
whenever x was zero, even though it’s supposed to handle that case. In this case it might
seem obvious what the language should do, but most languages use lazy evaluation for
and and or as well so that expressions like:
thing and thing.part

will produce None if thing is None and reference.part if it isn’t.

B.3 Extension
This material extends Chapter 13.

It’s easy to check a single style rule by extending NodeVisitor, but what if we want to
check dozens of rules? Traversing the AST dozens of times would be inefficient. And what
if we want people to be able to add their own rules? Inheritance is the wrong tool for this: if
several people each create their own NodeVisitor with a visit_Name method, we’d have



B.3 Extension 275

class BlankNodeVisitor(NodeVisitor):

    pass "BlankNodeVisitor" "__init__"

"generic_visit"

...

code

code

def print_name(self, node):

    print(node.id)

globals

"BlankNodeVisitor"

"print_name"

code

"__init__"

"generic_visit"

...

code

code

setattr(BlankNodeVisitor,
"visit_Name", print_name)

"BlankNodeVisitor"

"print_name"

code

"__init__"

"generic_visit"

"visit_Name"

code

code

Figure B.1: Adding methods to classes after their definition.

to inherit from all those classes and then have the new class’s visit_Name call up to all of
its parents’ equivalent methods.

One way around this is to inject methods into classes after they have been defined.
The code fragment below creates a new class called BlankNodeVisitor that doesn’t add
anything to NodeVisitor, then uses setattr to add a method to it after it has been defined
(Figure B.1):
class BlankNodeVisitor(ast.NodeVisitor):

pass

def print_name(self, node):
print(node.id)

setattr(BlankNodeVisitor, "visit_Name", print_name)

This trick works because classes and objects are just specialized dictionaries (for some
large value of “just”). If we create an object of BlankNodeVisitor and call its visitmethod:
with open(sys.argv[1], "r") as reader:

source = reader.read()
tree = ast.parse(source)
finder = BlankNodeVisitor()
finder.visit(tree)



276 B Bonus Material

then the inherited generic_visit method does what it always does. When it encounters a
Name node, it looks in the object for something called visit_Name. Since it doesn’t find any-
thing, it looks in the object’s class for something with that name, finds our injected method,
and calls it.

With a bit more work, we could have our injected method save and then call whatever
visit_Name method was there when it was added to the class, but we would quickly run
into a problem. As we’ve seen in earlier examples, the methods that handle nodes are
responsible for deciding whether and when to recurse into those nodes’ children. If we pile
method on top of one another, then either each one is going to trigger recursion (so we
recurse many times) or there will have to be some way for each one to signal whether it did
that so that other methods don’t.

To avoid this complication, most systems use a different approach. Consider this class:
Handler = namedtuple("Handler", ["func", "data"])

class RegisterNodeVisitor(ast.NodeVisitor):
def __init__(self):

super().__init__()
self.handlers = {}

def add_handler(self, nodeType, func, data=None):
handler = Handler(func, data)
if nodeType not in self.handlers:

self.handlers[nodeType] = []
self.handlers[nodeType].append(handler)

def visit_Name(self, node):
for handler in self.handlers.get(ast.Name, []):

handler.func(node, handler.data)

The add_handler method takes three parameters: the type of node a callback function
is meant to handle, the function itself, and an optional extra piece of data to pass to the
function along with an AST node. It saves the handler function and the data in a lookup
table indexed by the type of node the function is meant to handle. Each of the methods
inherited from NodeVisitor then looks up handlers for its node type and runs them.

So what do handlers look like? Each one is a function that takes a node and some data
as input and does whatever it’s supposed to do:
def count_names(node, counter):

counter[node.id] += 1

Setting up the visitor is a bit more complicated, since we have to create and register the
handler:
with open(sys.argv[1], "r") as reader:

source = reader.read()
tree = ast.parse(source)

finder = RegisterNodeVisitor()
counter = Counter()
finder.add_handler(ast.Name, count_names, counter)

finder.visit(tree)
print(counter)

However, we can now register as many handlers as we want for each kind of node.



B.4 Tracing Inheritance 277

B.4 Tracing Inheritance
This material extends Chapter 13.

In order to keep track of the code we wrote for this book, we built a tool that reports
which methods are defined or redefined in which classes. To show how it works, this file
that defines four classes, each of which defines or redefines some methods:
class Parent:

def red(self):
pass

def green(self):
pass

class LeftChild(Parent):
def green(self):

pass

def blue(self):
pass

class RightChild(Parent):
def red(self):

pass

def blue(self):
pass

class GrandChild(LeftChild):
def red(self):

pass

def blue(self):
pass

def orange(self):
pass

As in Chapter 13, our class’s constructor creates a stack to keep track of where we are.
It also creates a couple of dictionaries to keep track of how classes inherit from each other
and the methods each class defines:
class FindClassesAndMethods(ast.NodeVisitor):

def __init__(self):
super().__init__()
self.stack = []
self.parents = {}
self.methods = {}

When we encounter a new class definition, we push its name on the stack, record its
parents, and create an empty set to hold its methods:
def visit_ClassDef(self, node):

class_name = node.name



278 B Bonus Material

assert class_name not in self.methods
self.stack.append(class_name)
self.methods[class_name] = set()
self.parents[class_name] = {p.id for p in node.bases}
self.generic_visit(node)
self.stack.pop()

When we encounter a function definition, the first thing we do is check the stack. If it’s
empty, we’re looking at a top-level function rather than a method, so there’s nothing for
us to do. (We actually should recurse through the function’s children, since it’s possible to
define classes inside functions, but we’ll leave as an exercise.) If this function definition is
inside a class, on the other hand, we add its name to our records:
def visit_FunctionDef(self, node):

if not self.stack:
return

class_name = self.stack[-1]
assert class_name in self.methods
method_name = node.name
assert method_name not in self.methods[class_name]
self.methods[class_name].add(method_name)

Once we’re done searching the AST, we print out a table of the classes and meth-
ods we’ve seen (Table B.1). We could make this display easier to read—for example, we
could sort the classes from parent to child and display methods in the order they were first
defined—but none of that requires us to inspect the AST.

GrandChild LeftChild Parent RightChild
blue X X X
green X X
orange X
red X X X

Table B.1: Inheritance and methods.

B.5 Inspecting Functions
This material extends Chapter 15.

The implementation of dataframe filtering in Chapter 15 was somewhat brittle. A better
implementation of filtering would make use of the fact that Python’s inspect1 module lets us
examine objects in memory. In particular, inspect.signature can tell us what parameters
a function takes:
import inspect

def example(first, second):
pass

sig = inspect.signature(example)

1https://docs.python.org/3/library/inspect.html

https://docs.python.org


B.6 User-Defined Classes 279

print("signature:", sig)
print("type:", type(sig))
print("names:", sig.parameters)
print("parameters:", list(sig.parameters.keys()))

signature: (first, second)
type: <class 'inspect.Signature'>
names: OrderedDict([('first', <Parameter "first">), ('second', \
<Parameter "second">)])
parameters: ['first', 'second']

If, for example, the user wants to compare the red and blue columns of a dataframe, they
can give us a function that has two parameters called red and blue. We can then use those
parameter names to figure out which columns we need from the dataframe.

B.6 User-Defined Classes
This material extends Chapter 16.

The persistence framework of Chapter 16 only handles built-in data types, but can easily
be extended to handle user-defined classes as well. To start, we refactor the code so that
the save method doesn’t get any larger:
class SaveExtend(SaveAlias):

def __init__(self, writer):
super().__init__(writer)

def save(self, thing):
if self._aliased(thing):

return
if self._builtin(thing):

return
assert False, f"Don't know how to handle {thing}"

The method to handle built-in types is:
def _builtin(self, thing):

typename = type(thing).__name__
method = f"_{typename}"
if not hasattr(self, method):

return False
self.seen.add(id(thing))
getattr(self, method)(thing)
return True

and the one that handles aliases is:
def _aliased(self, thing):

thing_id = id(thing)
if thing_id not in self.seen:

return False
self._write("alias", thing_id, "")
return True

None of this code is new: we’ve just moved things into methods to make each piece easier
to understand.



280 B Bonus Material

So how does a class indicate that it can be saved and loaded by our framework? Our
options are:

1. Require it to inherit from a base class that we provide so that we can use isinstance to
check if an object is persistable. This approach is used in strictly-typed languages like
Java, but method #2 below is considered more Pythonic.

2. Require it to implement a method with a specific name and signature without deriving
from a particular base class. This approach is called duck typing: if it walks like a duck
and quacks like a duck, it’s a duck. Since option #1 would require users to write this
method anyway, it’s the one we’ll choose.

3. Require users to register a helper class that knows how to save and load objects of
the class we’re interested in. This approach is also commonly used in strictly-typed
languages as a way of adding persistence after the fact without disrupting the class
hierarchy.

To implement option #2, we specify that if a class has a method called to_dict, we
will call that to get the object’s contents as a dictionary and then persist that dictionary.
Before doing that, though, we will save a line indicating that this dictionary should be used
to reconstruct an object of a particular class:
def _extension(self, thing):

if not hasattr(thing, "to_dict"):
return False

self._write("@extension", id(thing), thing.__class__.__name__)
self.save(thing.to_dict())
return True

Loading user-defined classes requires more work because we have to map class names
back to actual classes. (We could also use introspection to find all the classes in the pro-
gram and build a lookup table of the ones with the right method.) We start by modifying the
loader’s constructor to take zero or more extension classes as arguments and then build a
name-to-class lookup table from them:
class LoadExtend(LoadAlias):

def __init__(self, reader, *extensions):
super().__init__(reader)
self.seen = {}
self.extensions = {e.__name__: e for e in extensions}

The load method then looks for aliases, built-in types, and extensions in that order.
Instead of using a chain of if statements we loop over the methods that handle these
cases. If a method decides that it can handle the incoming data it returns a result; if it can’t,
it raises a KeyError exception, and if none of the methods handle a case we fail:
def load(self):

key, ident, value = self._next()
for method in (self._aliased, self._builtin, self._extension):

try:
return method(key, ident, value)

except KeyError:
pass

assert False, f"Don't know how to handle {key} {ident} {value}"

The code to handle built-ins and aliases is copied from our previous work and modified
to raise KeyError:



B.6 User-Defined Classes 281

def _aliased(self, key, ident, value):
if key != "alias":

raise KeyError()
assert ident in self.seen
return self.seen[ident]

def _builtin(self, key, ident, value):
method = f"_{key}"
if not hasattr(self, method):

raise KeyError()
return getattr(self, method)(ident, value)

The method that handles extensions checks that the value on the line just read indi-
cates an extension, then reads the dictionary containing the object’s contents from the
input stream and uses it to build an instance of the right class:
def _extension(self, key, ident, value):

if (key != "@extension") or (value not in self.extensions):
raise KeyError()

cls = self.extensions[value]
contents = self.load()
return cls(**contents)

Here’s a class that defines the required method:
class Parent:

def __init__(self, name):
self.name = name

def to_dict(self):
return {"name": self.name}

and here’s a test to make sure everything works:
def test_extend_extension_class():

fixture = Parent("subject")
writer = StringIO()
Save(writer).save(fixture)
reader = StringIO(writer.getvalue())
result = Load(reader, Parent).load()
assert isinstance(result, Parent)
assert result.name == fixture.name

What’s in a Name?

The first version of these classes used the word "extension" rather than
"@extension". That led to the most confusing bug in this whole chapter. When load
reads a line, it runs self._builtin before running self._extension. If the first word
on the line is "extension" (without the @) then self._builtin constructs the method
name _extension, finds that method, and calls it as if we were loading an object of
a built-in type: which we’re not. Using @extension as the leading indicator leads to
self._builtin checking for "_@extension" in the loader’s attributes, which doesn’t
exist, so everything goes as it should.



282 B Bonus Material

B.7 Floating Point Numbers
This material extends Chapter 17.

The rules for storing floating point numbers make those for Unicode look simple. The
root of the problem is that we cannot represent an infinite number of real values with a finite
set of bit patterns. And no matter what values we represent, there will be an infinite number
of values between each of them that we can’t. The explanation that follows is simplified to
keep it manageable; please read [Goldberg1991] for more detail.

Floating point numbers are represented by a sign, a mantissa, and an exponent. In
a 32-bit word the IEEE 754 standard calls for 1 bit of sign, 23 bits for the mantissa, and 8
bits for the exponent. We will illustrate how it works using a much smaller representation:
no sign, 3 bits for the mantissa, and 2 for the exponent. Figure B.2 shows the values this
scheme can represent.

000 001 010 011 100 101 110 111

00

01

10

11

1

0

0

0

1

1

1

1

1

2

4

8

1

3

9

27

1 1 1 1

4 5 6 7

16 25 36 49

64 125 216 343

magnitude

ex
po
ne
nt

Figure B.2: Representing floating point numbers.

The IEEE standard avoids the redundancy in this representation by shifting things
around. Even with that, though, formats like this can’t represent a lot of values: for ex-
ample, ours can store 8 and 10 but not 9. This is exactly like the problem hand calculators
have with fractions like 1/3: in decimal, we have to round that to 0.3333 or 0.3334.

But if this scheme has no representation for 9 then 8 + 1 must be stored as either 8 or
10. What should 8 + 1 + 1 be? If we add from the left, (8 + 1) + 1 is 8 + 1 is 8, but if we
add from the right, 8 + (1 + 1) is 8 + 2 is 10. Changing the order of operations makes the
difference between right and wrong.

The authors of numerical libraries spend a lot of time worrying about things like this. In
this case sorting the values and adding them from smallest to largest gives the best chance
of getting the best possible answer. In other situations, like inverting a matrix, the rules are
much more complicated.

Another observation about our number line is that while the values are unevenly spaced,
the relative spacing between each set of values stays the same: the first group is separated
by 1, then the separation becomes 2, then 4, and so on. This observation leads to a couple
of useful definitions:

• The absolute error in an approximation is the absolute value of the difference between
the approximation and the actual value.

• The relative error is the ratio of the absolute error to the absolute value we’re approxi-
mating.



B.8 Big and Little Endian 283

For example, being off by 1 in approximating 8+1 and 56+1 is the same absolute error,
but the relative error is larger in the first case than in the second. Relative error is almost
always more useful than absolute: it makes little sense to say that we’re off by a hundredth
when the value in question is a billionth.

One implication of this is that we should never compare floating point numbers with ==
or != because two numbers calculated in different ways will probably not have exactly the
same bits. It’s safe to use <, >=, and other orderings, though, since they don’t depend on
being the same down to the last bit.

If we do want to compare floating point numbers we can use something like the approx
class2 from pytest3 which checks whether two numbers are within some tolerance of each
other. A completely different approach is to use something like the fractions4 module,
which (as its name suggests) uses numerators and denominators to avoid some precision
issues. This post5 describes one clever use of the module.

B.8 Big and Little Endian
This material extends Chapter 17.

Suppose we want to store a 32-bit integer in memory. As Figure B.3 shows, we can
order its four bytes in two different ways. Little-endian order stores the least significant
bits of integer at the first (lowest) address in memory, while big-endian order stores the
most significant bits first.

43981 0xABCD

decimal hexadecimal

A
B
C
D A

B
C
D1043

1042
1041
1040

⋮

⋮

big-endianlittle-endian

Figure B.3: Big-endian and little-endian byte order.

Modern Intel processors use little-endian order, but as this article6 explains, some other
processors (and most network protocols) use big-endian order. There are pros and cons to
both, which we won’t go into here. What you do need to know is that if you move data from
one architecture to another, it’s your responsibility to flip the bytes around, because the
machine doesn’t know what the bytes mean. This is such a pain that the struct7 module

2https://docs.pytest.org/en/4.6.x/reference.html#pytest-approx
3https://docs.pytest.org/
4https://docs.python.org/3/library/fractions.html
5https://www.textualize.io/blog/7-things-ive-learned-building-a-modern-tui-framework/
6https://en.wikipedia.org/wiki/Endianness

https://docs.pytest.org
https://docs.pytest.org
https://docs.python.org
https://www.textualize.io
https://en.wikipedia.org


284 B Bonus Material

and other libraries like it will do things for you if you ask it to. If you’re using struct, the first
character of a format string optionally indicates the byte order (Table B.2).

Character Byte order Size Alignment
@ native native native
= native standard none
< little endian standard none
> big endian standard none
! network standard none

Table B.2: struct package endian indicators.

B.9 Generating Test Cases
This material extends Chapter 20.

Theorem provers like Z3 and PicoSAT8 are far more powerful than most programmers
realize. Borrowing an example from Andreas Zeller9, we can use theorem provers to gener-
ate test cases. Suppose we have a function that classifies triangles as equilateral, scalene,
or isosceles. We can set up some integer variables:
A = Int("A")
B = Int("B")
C = Int("C")
lengths = (A > 0, B > 0, C > 0)

and then ask it to create an equilateral triangle based solely on the definition:
equilateral = And(A == B, B == C, C == A)
solver = Solver()
solver.add(lengths)
solver.add(equilateral)
print("equilateral", solver.check(), solver.model())

equilateral sat [C = 1, B = 1, A = 1]

The same technique can generate a test case for scalene triangles:
scalene = And(A != B, B != C, C != A)
solver = Solver()
solver.add(lengths)
solver.add(scalene)
print("scalene", solver.check(), solver.model())

scalene sat [C = 3, A = 1, B = 2]

7https://docs.python.org/3/library/struct.html
8http://fmv.jku.at/picosat/
9https://andreas-zeller.info/

https://docs.python.org
http://fmv.jku.at
https://andreas-zeller.info


B.9 Generating Test Cases 285

and isosceles triangles:
isosceles = Or(

And(A == B, C != A),
And(A == B, B != C),
And(A != B, B == C)

)
solver = Solver()
solver.add(lengths)
solver.add(isosceles)
print("isosceles", solver.check(), solver.model())

isosceles sat [C = 2, A = 1, B = 2]



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


C
Syllabus

Introduction

• The complexity of a system increases more rapidly than its size.

• The best way to learn design is to study examples, and the best programs to use as
examples are the ones programmers use every day.

• These lessons assume readers can write small programs and want to write larger ones,
or are looking for material to use in software design classes that they teach.

• All of the content is free to read and re-use under open licenses, and all royalties from
sales of this book will go to charity.

Objects and Classes

• Objects are useful without classes, but classes make them easier to understand.

• A well-designed class defines a contract that code using its instances can rely on.

• Objects that respect the same contract are polymorphic, i.e., they can be used inter-
changeably even if they do different specific things.

• Objects and classes can be thought of as dictionaries with stereotyped behavior.

• Most languages allow functions and methods to take a variable number of arguments.

• Inheritance can be implemented in several ways that differ in the order in which objects
and classes are searched for methods.

Finding Duplicate Files

• A hash function creates a fixed-size value from an arbitrary sequence of bytes.

• Use big-oh notation to estimate the running time of algorithms.

• The output of a hash function is deterministic but not easy to predict.

• A good hash function’s output is evenly distributed.

• A large cryptographic hash can be used to uniquely identify a file’s contents.

Matching Patterns

• Use globs and regular expressions to match patterns in text.

• Use inheritance to make matchers composable and extensible.

• Simplify code by having objects delegate work to other objects.

• Use the Null Object pattern to eliminate special cases in code.

287



288 C Syllabus

• Use standard refactorings to move code from one working state to another.

• Build and check the parts of your code you are least sure of first to find out if your design
will work.

Parsing Text

• Parsing transforms text that’s easy for people to read into objects that are easy for com-
puters to work with.

• A grammar defines the textual patterns that a parser recognizes.

• Most parsers tokenize input text and then analyze the tokens.

• Most parsers need to implement some form of precedence to prioritize different patterns.

• Operations like addition and function call work just like user-defined functions.

• Programs can overload built-in operators by defining specially-named methods that are
recognized by the compiler or interpreter.

Running Tests

• Functions are objects you can save in data structures or pass to other functions.

• Python stores local and global variables in dictionary-like structures.

• A unit test performs an operation on a fixture and passes, fails, or produces an error.

• A program can use introspection to find functions and other objects at runtime.

An Interpreter

• Compilers and interpreters are just programs.

• Basic arithmetic operations are just functions that have special notation.

• Programs can be represented as trees, which can be stored as nested lists.

• Interpreters recursively dispatch operations to functions that implement low-level steps.

• Programs store variables in stacked dictionaries called environments.

• One way to evaluate a program’s design is to ask how extensible it is.

Functions and Closures

• When we define a function, our programming system saves instructions for later use.

• Since functions are just data, we can separate creation from naming.

• Most programming languages use eager evaluation, in which arguments are evaluated
before a function is called.

• Programming languages can also use lazy evaluation, in which expressions are passed
to functions for just-in-time evaluation.

• Every call to a function creates a new stack frame on the call stack.



C Syllabus 289

• When a function looks up variables it checks its own stack frame and the global frame.

• A closure stores the variables referenced in a particular scope.

Protocols

• Temporarily replacing functions with mock objects can simplify testing.

• Mock objects can record their calls and/or return variable results.

• Python defines protocols so that code can be triggered by keywords in the language.

• Use the context manager protocol to ensure cleanup operations always execute.

• Use decorators to wrap functions after defining them.

• Use closures to create decorators that take extra parameters.

• Use the iterator protocol to make objects work with for loops.

A File Archiver

• Version control tools use hashing to uniquely identify each saved file.

• Each snapshot of a set of files is recorded in a manifest.

• Using a mock filesystem for testing is safer and faster than using the real thing.

• Operations involving multiple files may suffer from race conditions.

• Use a base class to specify what a component must be able to do and derive child classes
to implement those operations.

An HTML Validator

• HTML consists of text and of elements represented by tags with attributes.

• HTML is represented in memory as a Document Object Model (DOM) tree.

• Trees are usually processed using recursion.

• The Visitor design pattern is often used to perform an action for each member of a data
structure.

• We can summarize and check the structure of an HTML page by visiting each node and
recording what we find there.

A Template Expander

• Static site generators create HTML pages from templates, directives, and data.

• A static site generator has the same core features as a programming language.

• Special-purpose mini-languages quickly become as complex as other languages.

• Static methods are a convenient way to group functions together.

A Code Linter

• A linter checks that a program conforms to a set of style and usage rules.



290 C Syllabus

• Linters typically use the Visitor design pattern to find nodes of interest in an abstract
syntax tree.

• Programs can modify a program’s AST and then unparse it to create modified versions
of the original program.

• Dynamic code modification is very powerful, but the technique can produce insecure and
unmaintainable code.

Page Layout

• A layout engine places page elements based on their size and organization.

• Page elements are organized as a tree of basic blocks, rows, and columns.

• The layout engine calculates the position of each block based on its size and the position
of its parent.

• Drawing blocks on top of each other is an easy way to render them.

• Use multiple inheritance and mixin classes to inject methods into classes.

Performance Profiling

• Create abstract classes to specify interfaces.

• Store two-dimensional data as rows or as columns.

• Use reflection to match data to function parameters.

• Measure performance to evaluate engineering tradeoffs.

Object Persistence

• A persistence framework saves and restores objects.

• Persistence must handle aliasing and circularity.

• Users should be able to extend persistence to handle objects of their own types.

• Software designs should be open for extension but closed for modification.

Binary Data

• Programs usually store integers using two’s complement rather than sign and magnitude.

• Characters are usually encoded as bytes using either ASCII, UTF-8, or UTF-32.

• Programs can use bitwise operators to manipulate the bits representing data directly.

• Low-level compiled languages usually store raw values, while high-level interpreted lan-
guages use boxed values.

• Sets of values can be packed into contiguous byte arrays for efficient transmission and
storage.

A Database

• Database stores records so that they can be accessed by key.



C Syllabus 291

• Log-structured database appends new records to database and invalidates older versions
of records.

• Classes are data structures that can be saved like any other data.

• The filesystem saves data in fixed-size pages.

• We can improve the efficiency of a database by saving records in blocks.

A Build Manager

• Build managers track dependencies between files and update files that are stale.

• Every build rule has a target, some dependencies, and a recipe for updating the target.

• Build rules form a directed graph which must not contain cycles.

• Pattern rules describe the dependencies and recipes for sets of similar files.

• Pattern rules can use automatic variables to specify targets and dependencies in recipes.

A Package Manager

• Software packages often have multiple versions, which are usually identified by multi-part
semantic version numbers.

• A package manager must find a mutually-compatible set of dependencies in order to
install a package.

• Finding a compatible set of packages is equivalent to searching a multi-dimensional
space.

• The work required to find a compatible set of packages can grow exponentially with the
number of packages.

• Eliminating partially-formed combinations of packages can reduce the work required to
find a compatible set.

• An automated theorem prover can determine if a set of logical propositions can be made
consistent with each other.

• Most package managers use some kind of theorem prover to find compatible sets of
packages to install.

Transferring Files

• Every computer on a network has a unique IP address.

• The Domain Name System (DNS) translates human-readable names into IP addresses.

• Programs send and receive messages through numbered sockets.

• The program that receives a message is responsible for interpreting the bytes in the
message.

• To test programs that rely on the network, replace the network with a mock object that
simulates message transmission and receipt.



292 C Syllabus

Serving Web Pages

• The HyperText Transfer Protocol (HTTP) specifies one way to interact via messages over
sockets.

• A minimal HTTP request has a method, a URL, and a protocol version.
• A complete HTTP request may also have headers and a body.
• An HTTP response has a status code, a status phrase, and optionally some headers and
a body.

• HTTP is a stateless protocol: the application is responsible for remembering things be-
tween requests.

A File Viewer

• The curses module manages text terminals in a platform-independent way.
• Write debugging information to a log file when the screen is not available.
• We can use a callable object in place of a function to satisfy an API’s requirements.
• Test programs using synthetic data.
• Using delayed construction and/or factory methods can make code easier to evolve.
• Refactor code before attempting to add new features.
• Separate the logic for managing data from the logic for displaying it.
Undo and Redo

• Replace user interface components with mock objects to simplify testing.
• Record actions and state to check behavior these mock objects.
• Use objects to represent actions to record history and enable undo.
• Recording state is easier but more expensive than recording changes.
A Virtual Machine

• Every computer has a processor with a particular instruction set, some registers, and
memory.

• Instructions are just numbers but may be represented as assembly code.
• Instructions may refer to registers, memory, both, or neither.
• A processor usually executes instructions in order but may jump to another location based
on whether a conditional is true or false.

A Debugger

• Interactive programs can be tested by simulating input and recording output.
• Testing interactive programs is easier if their inputs and outputs can easily be replaced
with mock objects.

• Debuggers usually implement breakpoints by temporarily replacing actual instructions
with special ones.

• Using lookup tables for function or method dispatch makes programs easier to extend.



D
License

All of the written material is made available under the Creative Commons - Attribution - Non-
Commercial 4.0 International license (CC-BY-NC-4.0), while the software is made available
under the Hippocratic License.

D.1 Writing
This is a human-readable summary of (and not a substitute for) the license. For the full legal
text of this license, please see https://creativecommons.org/licenses/by-nc/4.0/legalcode.

All of this site is made available under the terms of the Creative Commons Attribution -
NonCommercial 4.0 license. You are free to:

• Share— copy and redistribute the material in any medium or format

• Adapt— remix, transform, and build upon the material

• The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution—You must give appropriate credit, provide a link to the license, and indicate
if changes were made. You may do so in any reasonable manner, but not in any way that
suggests the licensor endorses you or your use.

• NonCommercial— You may not use the material for commercial purposes.

• No additional restrictions— You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

Notices:
You do not have to comply with the license for elements of the material in the public

domain or where your use is permitted by an applicable exception or limitation.
No warranties are given. The license may not give you all of the permissions necessary

for your intended use. For example, other rights such as publicity, privacy, or moral rights
may limit how you use the material.

D.2 Software
Licensor hereby grants permission by this license (“License”), free of charge, to any person
or entity (the “Licensee”) obtaining a copy of this software and associated documentation
files (the “Software”), to deal in the Software without restriction, including without limitation

293

https://creativecommons.org


294 D License

the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so, subject to
the following conditions:

• The above copyright notice and this License or a subsequent version published on the
Hippocratic License Website1 shall be included in all copies or substantial portions of
the Software. Licensee has the option of following the terms and conditions either of the
above numbered version of this License or of any subsequent version published on the
Hippocratic License Website.

• Compliance with Human Rights Laws and Human Rights Principles:

1. Human Rights Laws. The Software shall not be used by any person or entity for any
systems, activities, or other uses that violate any applicable laws, regulations, or rules
that protect human, civil, labor, privacy, political, environmental, security, economic,
due process, or similar rights (the “Human Rights Laws”). Where the Human Rights
Laws ofmore than one jurisdiction are applicable to the use of the Software, the Human
Rights Laws that are most protective of the individuals or groups harmed shall apply.

2. Human Rights Principles. Licensee is advised to consult the articles of the United Na-
tions Universal Declaration of HumanRights2 and the United NationsGlobal Compact3
that define recognized principles of international human rights (the “Human Rights
Principles”). It is Licensor’s express intent that all use of the Software be consistent
with Human Rights Principles. If Licensor receives notification or otherwise learns of
an alleged violation of any Human Rights Principles relating to Licensee’s use of the
Software, Licensor may in its discretion and without obligation (i) (a) notify Licensee of
such allegation and (b) allow Licensee 90 days from notification under (i)(a) to investi-
gate and respond to Licensor regarding the allegation and (ii) (a) after the earlier of 90
days from notification under (i)(a), or Licensee’s response under (i)(b), notify Licensee
of License termination and (b) allow Licensee an additional 90 days from notification
under (ii)(a) to cease use of the Software.

3. Indemnity. Licensee shall hold harmless and indemnify Licensor against all losses,
damages, liabilities, deficiencies, claims, actions, judgments, settlements, interest,
awards, penalties, fines, costs, or expenses of whatever kind, including Licensor’s
reasonable attorneys’ fees, arising out of or relating to Licensee’s non-compliance
with this License or use of the Software in violation of Human Rights Laws or Human
Rights Principles.

• Enforceability: If any portion or provision of this License is determined to be invalid, ille-
gal, or unenforceable by a court of competent jurisdiction, then such invalidity, illegality, or
unenforceability shall not affect any other term or provision of this License or invalidate or
render unenforceable such term or provision in any other jurisdiction. Upon a determina-
tion that any term or provision is invalid, illegal, or unenforceable, to the extent permitted
by applicable law, the court may modify this License to affect the original intent of the
parties as closely as possible. The section headings are for convenience only and are
not intended to affect the construction or interpretation of this License. Any rule of con-
struction to the effect that ambiguities are to be resolved against the drafting party shall
not apply in interpreting this License. The language in this License shall be interpreted
as to its fair meaning and not strictly for or against any party.

1https://firstdonoharm.dev/
2https://www.un.org/en/universal-declaration-human-rights/
3https://www.unglobalcompact.org/what-is-gc/mission/principles

https://firstdonoharm.dev
https://www.un.org
https://www.unglobalcompact.org


D.2 Software 295

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORSORCOPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

The Hippocratic License is an Ethical Source license4.

4https://ethicalsource.dev

https://ethicalsource.dev


Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


E
Code of Conduct

In the interest of fostering an open and welcoming environment, we as contributors and
maintainers pledge to making participation in our project and our community a harassment-
free experience for everyone, regardless of age, body size, disability, ethnicity, gender
identity and expression, level of experience, education, socioeconomic status, nationality,
personal appearance, race, religion, or sexual identity and orientation.

E.1 Our Standards
Examples of behavior that contributes to creating a positive environment include:

• using welcoming and inclusive language,

• being respectful of differing viewpoints and experiences,

• gracefully accepting constructive criticism,

• focusing on what is best for the community, and

• showing empathy towards other community members.

Examples of unacceptable behavior by participants include:

• the use of sexualized language or imagery and unwelcome sexual attention or advances,

• trolling, insulting/derogatory comments, and personal or political attacks,

• public or private harassment,

• publishing others’ private information, such as a physical or electronic address, without
explicit permission, and

• other conduct which could reasonably be considered inappropriate in a professional set-
ting

E.2 Our Responsibilities
Project maintainers are responsible for clarifying the standards of acceptable behavior and
are expected to take appropriate and fair corrective action in response to any instances of
unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or reject comments,
commits, code, wiki edits, issues, and other contributions that are not aligned to this Code
of Conduct, or to ban temporarily or permanently any contributor for other behaviors that
they deem inappropriate, threatening, offensive, or harmful.

297



298 E Code of Conduct

E.3 Scope
This Code of Conduct applies both within project spaces and in public spaces when an
individual is representing the project or its community. Examples of representing a project
or community include using an official project email address, posting via an official social
media account, or acting as an appointed representative at an online or offline event. Rep-
resentation of a project may be further defined and clarified by project maintainers.

E.4 Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be reported by
emailing the project team. All complaints will be reviewed and investigated and will result
in a response that is deemed necessary and appropriate to the circumstances. The project
team is obligated tomaintain confidentiality with regard to the reporter of an incident. Further
details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good faith
may face temporary or permanent repercussions as determined by other members of the
project’s leadership.

E.5 Attribution
This Code of Conduct is adapted from the Contributor Covenant1 version 1.4.

1https://www.contributor-covenant.org/

https://www.contributor-covenant.org


F
Contributing

Contributions are very welcome; please contact us by email or by filing an issue on this
site. All contributors must abide by our Code of Conduct.

F.1 Editing Content
1. Clone the GitHub repository at https://github.com/gvwilson/sdxpy1.

2. Create a new Python virtual environment.

3. pip install -r lib/mccole/requirements.txt.

4. pip install -r ./requirements.txt.

5. make will show a list of available commands.

6. make build to regenerate HTML from Markdown.

• The generated HTML can be found in ./docs.
• You must have draw.io2 installed and on your path to regenerate diagrams.

7. make serve to regenerate HTML and preview it locally.

• The preview appears at http://localhost:4000/.
• Ark3 will regenerate the HTML as the Markdown files are edited and saved.

8. To change a code example and its output:

1. cd ./src/chapter.
2. Edit the Python file(s) you wish to change.
3. Run make in the chapter directory to rebuild the corresponding output files.

Please see CONTRIBUTING.md in the root directory of our GitHub repository4 for a com-
plete description of our formatting rules.

1https://github.com/gvwilson/sdxpy
2https://app.diagrams.net/
3https://www.dmulholl.com/docs/ark/main/
4https://github.com/gvwilson/sdxpy/

299

https://github.com
https://app.diagrams.net
https://www.dmulholl.com
https://github.com
https://github.com


300 F Contributing

F.2 Making Decisions
This project uses Martha’s Rules5 for consensus decision making:

1. Before each meeting, anyone who wishes may sponsor a proposal by filing an issue
in the GitHub repository tagged “comm-proposal”. People must file proposals at least
24 hours before a meeting in order for them to be considered at that meeting, and they
must include:

• a one-line summary (the subject line of the issue)
• the full text of the proposal
• any required background information
• pros and cons
• possible alternatives

2. A quorum is established in a meeting if half or more of voting members are present.

3. Once a person has sponsored a proposal, they are responsible for it. The group may
not discuss or vote on the issue unless the sponsor or their delegate is present. The
sponsor is also responsible for presenting the item to the group.

4. After the sponsor presents the proposal, a “sense” vote is cast for the proposal before
any discussion:

• Who likes the proposal?
• Who can live with the proposal?
• Who is uncomfortable with the proposal?

5. If everyone likes or can live with the proposal, it passes immediately.

6. If most of the group is uncomfortable with the proposal, it is postponed for further rework
by the sponsor.

7. Otherwise, members who are uncomfortable can briefly state their objections. A timer
is then set for a brief discussion moderated by the facilitator. After 10 minutes or when
no one has anything further to add (whichever comes first), the facilitator calls for a
yes-or-no vote on the question: “Should we implement this decision over the stated ob-
jections?” If a majority votes “yes”, the proposal is implemented. Otherwise, the proposal
is returned to the sponsor for further work.

F.3 FAQ
Why is this book free to read online?
Because only a tiny minority of technical books make enough money to pay back the time
required to create them, and because I would rather be able to fix errata than have people
pirating out-of-date PDFs.
5https://journals.sagepub.com/doi/10.1177/088610998600100206

https://journals.sagepub.com/doi/10.1177/088610998600100206


F.3 FAQ 301

Why are the royalties going to charity?
The Red Door Family Shelter6 and places like it have always been short of money and
resources, and the COVID-19 pandemic only made matters worse. They do more good on
the average Tuesday than most of us do in a year (or a lifetime); I’m glad to be able to help
however I can.

What sort of feedback would be useful?
Everything is welcome, but what would help most is:

1. Fixes for mistakes in the code, the descriptions, or the formatting. All of the examples
run and all of the tests pass, but that doesn’t guarantee they’re correct.

2. Reports of continuity errors, e.g., places where a concept is used before it is explained.

3. Suggestions for new diagrams, or for ways to improve existing ones.

4. New or clearer summary points for each chapter’s syllabus.

5. More or better exercises. “This is too hard” or “this is unclear” helps as well.

Why don’t the examples connect with each other?
It was tempting, but attempts to do this in the past have not gone well. First, it makes
maintenance much more difficult because a change in an early chapter may have knock-
on effects on several subsequent chapters. Second, it constrains what is taught and in what
order: if the examples are independent of each other, instructors can pick and choose the
pieces that are most relevant to their audience and goals.

How did you settle on these particular topics?
I started with a list of tools programmers use that can be implemented in the small (like
version control systems and debuggers). I added a few things that programmers rely on
(like page layout and object persistence), then went back and filled in gaps, which is why
there are chapters on functions and closures, protocols, and binary data.

Will there be a sequel?
If enough people want to write chapters I would be happy to organize and edit a second
volume. Some things I’d particularly like to see are:

• An object-relational mapper to show people how tools like SQLAlchemy7 work.

• A discrete event simulator to show people how tools like SimPy8 work.

• An issue-tracking system, mostly to show how workflow management and authentication
work.

• Another build system that uses publish/subscribe instead of the top-down approach of
Chapter 19.

6https://www.reddoorshelter.ca/
7https://www.sqlalchemy.org/
8https://simpy.readthedocs.io/

https://www.reddoorshelter.ca
https://www.sqlalchemy.org
https://simpy.readthedocs.io


302 F Contributing

• A fuzz tester that uses some of the ideas from [Zeller2023].

• A package installer to complement the package manager of Chapter 20.

• A file compression tool like zip.

• A database that uses B-trees instead of a log for storage.

Why did you build your own production pipeline?
I’ve written or edited books with GitBook9, Quarto10, Jupyter Book11, and other tools like
them, and found them more frustrating than helpful. For example, the code samples in this
book often show one or two methods from a class rather than the whole class; there is no
straightforward way to achieve that with tools built on computational notebooks. That said,
I’m sure the authors of those systems would find this book’s tooling just as frustrating as I
find theirs.

9https://www.gitbook.com/
10https://quarto.org/
11https://jupyterbook.org/

https://www.gitbook.com
https://quarto.org
https://jupyterbook.org


G
Glossary

absolute error: The absolute value of the difference between the observed and the correct
value. Absolute error is usually less useful than relative error.

abstract base class: An abstract class from which the class in question is derived.

abstract class: A class that defines or requires methods it does not implement. An abstract
class typically specifies the methods that child classesmust have without providing default
implementations.
See also: concrete class.

abstract method: In object-oriented programming, a method that is defined but not
implemented. Programmers will define an abstract method in a parent class to specify
operations that child classes must provide.

abstract syntax tree (AST): A deeply nested data structure, or tree, that represents the
structure of a program. For example, the AST might have a node representing a while loop
with one child representing the loop condition and another representing the loop body.

accidental complexity: The extra difficulty added to a problem because of poor notation,
poor tooling, an unclear problem statement, distractions, etc. The term is used in contrast
with intrinsic complexity.

accumulator: A variable that collects and/or combines many values. For example, if a
program sums the values in an array by adding them all to a variable called result, then
result is the accumulator.

actual result (of test): The value generated by running code in a test. If this matches the
expected result, the test passes; if the two are different, the test fails.

affordance: An action that a thing can do: for example, a door can be opened or a document
can be printed. Good user interfaces make affordances easy to discover.

alias: A second or subsequent reference to the same object. Aliases are useful, but in-
crease the cognitive load on readers who have to remember that all these names refer to
the same thing.

anonymous function: A function without a name. Languages like JavaScript make fre-
quent use of anonymous functions; Python provides a limited form called a lambda ex-
pression.

ANSI character encoding: An extension of ASCII that standardized the characters repre-
sented by the codes 128 to 255.

303



304 G Glossary

append mode: An option for writing to a file in which new data is appended to existing data
rather than replacing it.

Application Binary Interface (ABI): The low-level layout that a piece of software must
have to work on a particular kind of machine.
See also: Application Programming Interface.

Application Programming Interface (API): A set of functions provided by a software li-
brary or web service that other software can call.
See also: Application Binary Interface.

argument: A value passed into a function or method call.
See also: parameter.

ASCII character encoding: A standard way to represent the characters commonly used in
the Western European languages as 7-bit integers, now largely superceded by Unicode.
See also: ANSI character encoding.

assembler: A compiler that translates software written in assembly code into machine
instructions.
See also: disassembler.

assembly code: A low-level programming language whose statements correspond closely
to the actual instruction set of a particular kind of processor.

assertion: A Boolean expression that must be true at a certain point in a program. As-
sertions may be built into the language or provided as functions.

atomic operation: An operation that is guaranteed to complete, i.e., one that cannot be
interrupted part-way through.

atomic value: A value that cannot be broken down into smaller parts, such as a Boolean
or integer.

attention budget: The amount of time your activity is allowed to require of other people in
an organization.

attribute: A name-value pair associated with an object, used to store metadata about the
object such as an array’s dimensions.

backward-compatible: A property of a system that enables interoperability with an older
legacy system, or with input designed for such a system.

base class: In object-oriented programming, a class from which other classes are de-
rived.
See also: child class, derived class, parent class.

batch processing: Executing a set of non-interactive tasks on a computer, such as backing
up files or copying data from one database to another overnight.



G Glossary 305

benchmark: A program or set of programs used to measure the performance of a computer
system.

big endian: A storage scheme in which the most significant part of a number is stored in
the byte with the lowest address. For example, the 16-bit big-endian representation of 258
stores 0x01 in the lower byte and 0x02 in the higher byte.
See also: little endian.

big-oh notation: A way to express how the running time or memory requirements of an
algorithm increase as the size of the problem increases.
See also: space complexity, time complexity.

binary mode: An option for reading or writing files in which each byte is transferred literally.
The term is used in contrast with text mode.

bit mask: A pattern of bits used to set or clear bits in a byte or word in memory.

bit shifting: To move the bits in a byte or word left or right.

bitwise operation: An operation that manipulates individual bits in memory. Common bit-
wise operations include and, or, not, and xor.

block (of memory): A region of memory of a fixed, constant size. Data is often divided into
blocks to optimize input and output at the hardware level; software is then used to convert
between blocks and streams.

block (on page): A rectangular region of a page that may contain text, images, and other
visual elements along with other blocks.

body (of HTTP request or response): The “extra” data associated with an HTTP request
or response, such as the file being uploaded or the page being returned for display.

Boolean expression: An expression that is either true or false, i.e., one that produces a
Boolean value.

Boolean value: One of the two values “true” or “false”. Named for George Boole, a 19th
century mathematician.

boxed value: A value (such as an integer) that is embedded in a larger structure in memory
that carries metadata about its type, how many structures are referring to it, and so on.

breakpoint: A point in a program where a debugger should halt execution in order to inter-
act with a user.

bucket: A subset of values from a dataset, typically represented by a single bar in a his-
togram.

buffer (in memory): A temporary storage area in memory.

buffer (of text): A data structure that stores text while it is being viewed or edited.



306 G Glossary

build manager: A program that keeps track of how files depend on one another and runs
commands to update any files that are out-of-date. Build managers were invented to com-
pile only those parts of programs that had changed but are now often used to implement
workflows in which plots depend on results files, which in turn depend on raw data files or
configuration files.

build recipe: The part of a build rule that describes how to update something that has
fallen out-of-date.

build rule: A specification for a build manager that describes how some files depend on
others and what to do if those files are out-of-date.

bytecode: A set of instructions designed to be executed efficiently by an interpreter.

cache: Something that stores copies of data so that future requests for it can be satisfied
more quickly. The CPU in a computer uses a hardware cache to hold recently-accessed
values; many programs rely on a software cache to reduce network traffic and latency.
Figuring out when something in a cache is out-of-date and should be replaced is one of the
two hard problems in computer science.

call stack: A data structure that stores information about the active subroutines executed.

catch (an exception): To handle an error or other unexpected event represented by an
exception.

Chain of Responsibility pattern: A design pattern in which each object either handles
a request or passes it on to another object.

character encoding: A way to represent characters as bytes. Common examples include
ASCII and UTF-8.

child (in a tree): A node in a tree that is below another node (call the parent).

child class: In object-oriented programming, a class derived from another class (called
the parent class).

circular dependency: A situation in which a build target depends on itself either directly
or indirectly, i.e., a situation in which the DAG of dependencies contains a cycle.

class: In object-oriented programming, a structure that combines data and operations
(called methods). The program then uses a constructor to create an object with those
properties andmethods. Programmers generally put generic or reusable behavior in parent
classes, and more detailed or specific behavior in child classes.

class method: A function defined inside a class that takes the class object as an input
rather than an instance of the class.
See also: static method.

clear (a breakpoint): To remove a breakpoint from a program.



G Glossary 307

client: A program such as a browser that sends requests to a server and does something
with the response.

closing tag: The textual marker showing the end of an element in an HTML document,
written </tag>.

closure: A record that stores a function and its environment so that variables that were in
scope when the function was defined can still be accessed from within the function even if
they are no longer visible to other parts of the program.

code point: A number that uniquely identifies a character in the Unicode standard.

cognitive load: The mental effort required to solve a problem.

collision (in hashing): A situation in which two or more values have the same hash code.

column-wise storage: To organize the memory of a two-dimensional table so that the
values in each column are laid out in contiguous blocks.
See also: row-wise storage.

combinatorial explosion: The exponential growth in the size of a problem or the time
required to solve it that arises when all possible combinations of a set of items must be
searched.

Command pattern: A design pattern in which operations are represented as objects so
that they can be stored and re-used.

compact (data or files): To pack data so as to remove wasted or unused space.

compile: To translate textual source into another form. Programs in compiled languages
are translated into machine instructions for a computer to run, and Markdown is usually
translated into HTML for display.

compiled language: Originally, a language such as C or Fortran that is translated into
machine instructions for execution. Languages such as Java are also compiled before ex-
ecution, but into bytecode instead of machine instructions, while interpreted languages
like JavaScript are compiled to byte code on the fly.

compiler: An application that translates programs written in some languages into machine
instructions or bytecode.

compression (of file): Any of several techniques for reducing the size required to store a
file. Compression works by finding patterns and replacing them with shorter sequences of
bits or bytes.

concrete class: A class that can actually be instantiated. The term is used in contrast with
abstract class.

conditional breakpoint: A breakpoint at which the debugger should only halt if some
user-specified condition is true.



308 G Glossary

conditional jump: An instruction that tells a processor to start executing somewhere other
than at the next address if a condition is true. Conditional jumps are used to implement
higher-level constructs like if statements and loops.

confirmation bias: The tendency for someone to look for evidence that they are right rather
than searching for reasons why they might be wrong.

constructor: A function that creates an object of a particular class.

context manager: An object that automatically executes some operations at the start of a
code block and some other operations at the end of the block.

continuation byte: The second or subsequent byte in a multi-byte character encoding.

control code: Originally a “character” that made a teletype perform some operation, such
as moving to the next line or ringing the bell. Only a handful of control codes such as tab
and newline are still in common use.

control flow: The order in which a program executes statements and expressions.

Coordinated Universal Time (UTC): The standard time against which all others are de-
fined. UTC is the time at longitude 0° and is not adjusted for daylight savings. Timestamps
are often reported in UTC so that they will be the same no matter what timezone the com-
puter is in.

cross product: The set of all possible combinations of items from one or more sets.

cryptographic hash function: A hash function that produces an apparently-random
value for any input.

CSV (comma-separated values): A text format for tabular data in which each record is
one row and fields are separated by commas. There are manyminor variations, particularly
around quoting of strings.

cycle: A path through a directed graph that leads from a node back to itself.

data engineer: Someone responsible for designing, developing, and maintaining systems
for collecting, storing, and analyzing data.

data migration: The act of moving data from one system or format to another.

dataframe: A two-dimensional data structure for storing tabular data in memory. Rows
represent records and columns represent fields.

deadlock: A situation in which no one can proceed because everyone is blocked on some-
one else.

debugger: A program that enables its user tomonitor and control another program, typically
by single-stepping through its execution or setting breakpoints.



G Glossary 309

decorator: A function A that can be applied to another function B when function B is being
defined to change its behavior in some way.

defensive programming: A set of programming practices that assumes mistakes will hap-
pen and either reports or corrects them, such as inserting assertions to report situations
that are not ever supposed to occur.

delayed construction: The practice of constructing an object after something that needs
it has been constructed rather than before.
See also: lazy evaluation.

dependency (in build): Something that a build target depends on.

derived class: In object-oriented programming, a class that is a direct or indirect exten-
sion of a base class.
See also: child class.

design by contract: A style of designing software in which functions specify the pre-
conditions that must be true in order for them to run and the post-conditions they guar-
antee will be true when they return. A function can then be replaced by one with weaker
pre-conditions (i.e., it accepts a wider set of input) and/or stronger post-conditions (i.e., it
produces a smaller range of output) without breaking anything else.
See also: Liskov Substitution Principle.

design pattern: A recurring pattern in software design that is specific enough to be worth
naming, but not so specific that a single best implementation can be provided by a library.
See also: Iterator pattern, Singleton pattern, Template Method pattern, Visitor pattern.

dictionary: A data structure that allows items to be looked up by value. Dictionaries are
often implemented using hash tables.

dictionary comprehension: A single expression that constructs a dictionary by looping
over key-value pairs.
See also: list comprehension.

directed acyclic graph (DAG): A directed graph which does not contain any cycles (i.e.,
it is not possible to reach a node from itself by following edges).

directed graph: A graph whose edges have directions.

disassemble: To convert machine instructions into assembly code or some higher-level
language.

disassembler: A program that translates machine instructions into assembly code or
some higher-level language.
See also: assembler.

docstring: A string at the start of a module, class, or function in Python that is not assigned
to a variable, which is used to hold the documentation for that part of code.



310 G Glossary

DOM (DOM): A standard, in-memory representation of HTML and XML. Each element is
stored as a node in a DOM tree with a set of named attributes; contained elements are
child nodes.

DOM tree: The tree formed by a set of properly-nested DOM nodes.

Domain Name System (DNS): A decentralized naming system for computers that trans-
lates hostnames into the IP address of particular computers.

dry run: An execution of a program that doesn’t change anything.

duck typing: A programming style in which the methods an object happens to have deter-
mines how it can be used, rather than what classes it inherits from.

dynamic dispatch: To find a function or a property of an object by name while a program is
running. For example, instead of getting a specific property of an object using obj.name, a
program might use obj[someVariable], where someVariable could hold "name" or some
other property name.

dynamic scoping: To find the value of a variable by looking at what is on the call stack at
the moment the lookup is done. Almost all programming languages use lexical scoping
instead, since it is more predictable.

dynamic typing: A system in which types are checked as the program is running.
See also: static typing, type hint.

eager evaluation: Evaluating expressions before they are used.
See also: lazy evaluation.

easy mode: A term borrowed from gaming meaning to do something with obstacles or
difficulties simplified or removed, often for practice purposes.

edge: A connection between two nodes in a graph. An edge may have data associated
with it, such as a name or distance.

element (in HTML): A named component in an HTML or XML document. Elements are
usually written <name>...</name>, where “...” represents the content of the element. Ele-
ments often have attributes.

enumeration: A set of distinct named values defined in a program.

environment: The set of variables currently defined in a program.

error (result of test): Signalled when something goes wrong in a unit test itself rather than
in the system being tested. In this case, we do not know anything about the correctness of
the system.

error handling: What a program does to detect and correct for errors. Examples include
printing a message and using a default configuration if the user-specified configuration
cannot be found.



G Glossary 311

escape sequence: A series of two or more characters used to represent a character that
otherwise couldn’t be represented. For example, the escape sequence \" is used to rep-
resent a single " character inside a double-quoted string.

exception: An object that stores information about an error or other unusual event in a
program. One part of a program will create and raise an exception to signal that something
unexpected has happened; another part will catch it.

exclusive or: A logical (or bitwise) operator that is true (or 1) if its arguments have different
values and false (or 0) if they are the same. Exclusive or implements “either/or” or “one or
the other”.

expected result (of test): The value that a piece of software is supposed to produce when
tested in a certain way, or the state in which it is supposed to leave the system.

exponent: The portion of a floating-point number that controls placement of the decimal
point.
See also: mantissa.

expression: A part of a program that produces a value, such as 1+2.
See also: statement.

extensibility: How easily new features can be added to a program or existing features can
be changed.

Extract Parent Class refactoring: A refactoring in which some functionality of an existing
class or set of classes is moved into a newly-created parent class.

factory method: Amethod whose only job is to construct an object of some type. Factory
methods are typically created to make it easier for child classes to construct objects of
other types.

failure (result of test): A test fails if the actual result does not match the expected result.

false negative: A report that something is missing when it is actually present.
See also: false positive.

false positive: A report that something is present when it is actually absent.
See also: false negative.

falsy: Refers to a value that is treated as false in Boolean expressions. In Python, this
includes empty strings and lists and the number zero.
See also: truthy.

field: A component of a record containing a single value. Every record in a database table
has the same fields.

file locking: The act of restricting updates to a file, or its deletion, so that operations on it
appear atomic.



312 G Glossary

fixture: The thing on which a test is run, such as the parameters to the function being
tested or the file being processed.

format string: A string that contains special markers showing how to format values. For
example, the string "{age:02d} years old" specifies that the value of age is to be inserted
at the front of the string and formatted as a 2-digit decimal number with a leading 0 (if
necessary).

garbage collection: An automatic process in a program that finds and recycles memory
that is no longer being used.

generic function: A collection of functions with similar purpose, each operating on a dif-
ferent class of data.

global: Referring to the top or outermost scope a program.
See also: local.

globbing: Matching filenames against patterns. The name comes from an early Unix utility
called glob (short for “global”). Glob patterns are a subset of regular expressions.
See also: regular expression.

grammar: The rules that define a formal language recognized by a parser.

graph (data structure): A data structure in which nodes are connected to one another by
edges.
See also: tree.

greedy matching: Matching as much as possible while still finding a valid match.
See also: lazy matching.

hash code: A value generated by a hash function. Good hash codes have the same
properties as random numbers in order to reduce the frequency of collisions.

hash function: A function that turns arbitrary data into a bit array, or a key, of a fixed size.
Hash functions are used to determine where data should be stored in a hash table.

hash table: A data structure that calculates a pseudo-random key (location) for each value
passed to it and stores the value in that location. Hash tables enable fast lookup for arbitrary
data. This occurs at the cost of extra memory because hash tables must always be larger
than the amount of information they need to store, to avoid the possibility of data collisions,
when the hash function returns the same key for two different values.

header (of HTTP request or response): A name-value pair at the start of anHTTP request
or response. Headers are used to specify what data formats the sender can handle, the
date and time the message was sent, and so on.

headless application: An application run without its usual graphical interface. Browsers,
editors, and other applications are often run headless for testing purposes.

helper class: A class created to support another class that has no other purpose on its
own.



G Glossary 313

helper function: A function created to support another function (or functions) that has no
other use on its own.

helper method: Amethod designed to be used only by other methods in the same class.
Helper methods are usually created to keep other methods short and readable.

heterogeneous: Containing mixed data types. For example, an array in Javascript can
contain a mix of numbers, character strings, and values of other types.
See also: homogeneous.

hexadecimal: A base-16 numerical representation that uses the letters A-F (or a-f) to rep-
resent the values from 10 to 15.

homogeneous: Containing a single data type. For example, a vector must be homoge-
neous: its values must all be numeric, logical, etc.
See also: heterogeneous.

hostname: The human-readable name for a networked computer, such as example.com.

HTML (HyperText Markup Language): The standard markup language used for web
pages. HTML is represented in memory using DOM (Digital Object Model).
See also: XML.

HTTP (HyperText Transfer Protocol): The protocol used to exchange information between
browsers and websites, and more generally between other clients and servers. Communi-
cation consists of requests and responses.

HTTP method: The verb in an HTTP request that defines what the client wants to do.
Common methods are GET (to get data) and POST (to submit data).

HTTP protocol version: Specifies the version of HTTP being used, which in turn defines
what headers can appear, how they are to be interpreted, etc.

HTTP request: A precisely-formatted block of text sent from a client such as a browser to
a server that specifies what resource is being requested, what data formats the client will
accept, etc.

HTTP response: A precisely-formatted block of text sent from a server back to a client in
reply to a request.

HTTP status code: A numerical code that indicates what happened when an HTTP re-
quest was processed, such as 200 (OK), 404 (not found), or 500 (internal server error).

immutable: Data that cannot be changed after being created. Immutable data is easier to
think about, particularly if data structures are shared between several tasks, but may result
in higher memory requirements.

index (a database): An auxiliary data structure in a database used to speed up search for
some entries. An index increases memory and disk requirements but reduces search time.

https://example.com


314 G Glossary

infinite loop: A loop (usually a while loop) that never ends because its controlling condition
is never false.
See also: infinite recursion.

infinite recursion: Recursion that never stops because it never reaches a case that
doesn’t require further evaluation; the recursive equivalent of an infinite loop.

infix notation: Writing expressions with operators between operands, as in 1 + 2 to add
1 and 2.
See also: prefix notation, postfix notation.

inheritance: The act of creating a new class from an existing class, typically by adding or
changing its properties or methods.
See also: multiple inheritance.

instance: An object of a particular class.

instruction pointer: A special register in a processor that stores the address of the next
instruction to execute.

instruction set: The basic operations that a particular processor can execute directly.

Internet Protocol (IP): A set of specifications for ways computers can communicate.
TCP/IP is the most widely used.

interpreted language: A high-level language that is not executed directly by the computer,
but instead is run by an interpreter that translates program instructions into machine com-
mands on the fly.

interpreter: A program that runs programs written in a high-level interpreted language.
Interpreters can run interactively but may also execute commands saved in a file.

intrinsic complexity: The inherent difficult of a problem. The term is used in contrast to
accidental complexity.

introspection: See reflection.

IP address (IP): A four-part number that uniquely identifies a computer on a network.

ISO date format: An international standard for formatting dates. While the full standard is
complex, the most common form is YYYY-MM-DD, i.e., a four-digit year, a two-digit month,
and a two-digit day, separated by hyphens.

iterator: A function or object that produces each value from a collection in turn for process-
ing.

Iterator pattern: A design pattern that uses iterators to hide the differences between
different kinds of data structures so that everything can be processed using loops.
See also: Visitor pattern.



G Glossary 315

join (tables): An operation that combines two tables, typically by matching keys from one
with keys from another.

JSON (JavaScript Object Notation): A way to represent data by combining basic values
like numbers and character strings in lists and key-value structures. The acronym stands
for “JavaScript Object Notation”; unlike better-defined standards like XML, it is unencum-
bered by a syntax for comments or ways to define a schema.

key: A field or combination of fields whose value(s) uniquely identify a record within a
table or dataset. Keys are often used to select specific records and in joins.

key-value store: A simple form of database in which each record can only be accessed
by a single key.

label (of address in memory): A human-readable name given to a particular location in
memory when writing programs in assembly code.

lambda expression: An expression that takes zero or more parameters and produces
a result. A lambda expression is sometimes called an anonymous function; the name
comes from the mathematical symbol λ used to represent such expressions.

layout engine: A piece of software that decides where to place text, images, and other
elements on a page.

lazy evaluation: Evaluating expressions only when absolutely necessary.
See also: eager evaluation.

lazy matching: Matching as little as possible while still finding a valid match.
See also: greedy matching.

lexical scoping: To look up the value associated with a name according to the textual struc-
ture of a program. Most programming languages use lexical scoping instead of dynamic
scoping because the latter is less predictable.

library: An installable collection of software, also often called a module or package.

link (a program): To combine separately compiled modules into a single runnable pro-
gram.

linter: A program that checks for common problems in software, such as violations of in-
dentation rules or variable naming conventions. The name comes from the first tool of its
kind, called lint.

Liskov Substitution Principle: A design rule stating that it should be possible to replace
objects in a program with objects of derived classes without breaking the program. Design
by contract is intended to enforce this rule.

list: A vector that can contain values of many different (heterogeneous) types.

list comprehension: A single expression that constructs a list by looping over its items.



316 G Glossary

literal (in parsing): A representation of a fixed value in a program, such as the digits 123
for the number 123 or the characters "abc" for the string containing those three letters.

little endian: A storage scheme in which the most significant part of a number is stored in
the byte with the highest address. For example, the 16-bit big-endian representation of 258
stores 0x02 in the lower byte and 0x01 in the higher byte.
See also: big endian.

local: Referring to the current or innermost scope in a program.
See also: global.

log file: A file to which a program writes status or debugging information for later analysis.

log-structured database: A database to which data can only be appended, i.e., existing
records cannot be overwritten.

manifest: A list of something’s parts or components.

mantissa: The portion of a floating-point number that defines its specific value.
See also: exponent.

Markdown: Amarkup languagewith a simple syntax intended as a replacement forHTML.

markup language: A set of rules for annotating text to define its meaning or how it should
be displayed. The markup is usually not displayed, but instead controls how the underlying
text is interpreted or shown. Markdown and HTML are widely-used markup languages for
web pages.
See also: XML.

metadata: Data about data, such as the time a dataset was archived.

method: An implementation of a generic function that handles objects of a specific class.

method injection: To add methods to an existing class after its definition.

mixin class: A class that is not meant to be instantiated itself but which contains methods
to be added to other classes (typically via multiple inheritance).

mock object: A simplified replacement for part of a program whose behavior is easy to con-
trol and predict. Mock objects are used in unit tests to simulate databases, web services,
and other complex systems.

model: A set of values for variables that satisfies a specific set of constraints.

module: A reusable software package, also often called a library.

monkey patching: To replacemethods in a class or object at run-time without modifying
the original code.

multiple inheritance: Inheriting from two or more classes when creating a new class.



G Glossary 317

name collision: A situation in which two or more things are trying to use the same name
at the same time or in the same scope.

node: An element of a graph that is connected to other nodes by edges. Nodes typically
have data associated with them, such as names or weights.

null byte: A byte with the value zero. Null bytes are used to mark the ends of strings in C
and C++, and are sometimes used to fill unused space in fixed-size binary records.

Null Object pattern: A design pattern in which a placeholder object is used instead of
None. The placeholder object has themethods of the object usually used, but thosemethods
do nothing. This pattern saves other code from having to check repeatedly for None.

object: In object-oriented programming, a structure that contains the data for a specific
instance of a class. The operations the object is capable of are defined by the class’s
methods.

object-oriented programming (OOP): A style of programming in which functions and data
are bound together in objects that only interact with each other through well-defined inter-
faces.

off-by-one error: A common error in programming in which the program refers to element
i of a structure when it should refer to element i-1 or i+1, or processes N elements when
it should process N-1 or N+1.

online analytical processing (OLAP): Analyzing data in bulk. The term is used in contrast
to OLTP.

online transaction processing (OLTP): Adding records to a database or querying individ-
ual records. The term is used in contrast to OLAP.

op code: The numerical operation code for an instruction that a processor can execute.

Open-Closed Principle: A design rule stating that software should be open for extension
but closed for modification, i.e., it should be possible to extend functionality without having
to rewrite existing code.

opening tag: The textual marker showing the start of an element in an HTML document,
written <tag>. An opening tag may contain attributes.

operator overloading: Defining or redefining the implementation of built-in operators like
+.

package: A collection of code, data, and documentation that can be distributed and re-
used. Also referred to in some languages as a library or module.

page: A fixed-size block of storage space. Most modern filesystems manage disks using
4K pages, and many other applications such as databases use the same page size to
maximize efficiency.



318 G Glossary

parameter: The name that a function gives to one of the values passed to it when it is
called.
See also: argument.

parameter sweeping: To execute a program multiple times with different parameters to
find out how its behavior or performance depends on those parameters.

parent (in a tree): A node in a tree that is above another node (called a child). Every node
in a tree except the root node has a single parent.

parent class: In object-oriented programming, the class from which a subclass (called
the child class) is derived.

parser: A function or program that reads text formatted according to some grammar and
converts it to a data structure in memory. Every programming language has a parser that
reads programs written in that language; parsers also exist for various data formats.

pass (result of test): A test passes if the actual result matches the expected result.

patch: A single file containing a set of changes to a set of files, separated by markers
that indicate where each individual change should be applied, or the semantic versioning
identifier for such a file.

path resolution: The process of converting the filename portion of a URL into a specific
file on disk.

persistence: The act of saving and restoring data, particularly heterogeneous data with
irregular structure.

phony target: A build recipe that doesn’t update any files. Phony targets are typically
used to make tasks such as running tests reproducible.

pipe (in the Unix shell): The | used to make the output of one command the input of the
next.

polymorphism: Having many different implementations of the same interface. If a set of
functions or objects are polymorphic, they can be called interchangeably.

port: A logical endpoint for communication, like a phone number in an office building. Only
one program on a computer may use a particular port on that computer at any time.

post-condition: Something that is guaranteed to be true after a function runs successfully.
Post-conditions are often expressed as assertions that are guaranteed to be true of a
function’s results.
See also: design by contract, pre-condition.

postfix notation: Writing expressions with the operator after the operand, as in 2 3 + to
add 2 and 3.
See also: infix notation, prefix notation.



G Glossary 319

pre-condition: Something that must be true before a function runs in order for it to work
correctly. Pre-conditions are often expressed as assertions that must be true of a function’s
inputs in order for it to run successfully.
See also: design by contract, post-condition.

prefix notation: Writing expressions with the operator in front of the operand, as in + 3 4
to add 3 and 4.
See also: infix notation, postfix notation.

prerequisite: Something that a build target depends on.
See also: dependency (in build).

pretty print: To format textual output in a way that makes it easier to read.

profiler: A tool that measures one or more aspects of a program’s performance.

profiling: The act of measuring where a program spends its time, which operations con-
sume memory or disk space, etc.
See also: profiler.

protocol: A set of rules that something promises to obey, i.e., the contract between that
thing and its users.

Pythonic: Conforming to common Python programming style and practices.

query parameter: A key-value pair appended to the path portion of a URL.

race condition: A situation in which a result depends on the order in which two or more
concurrent operations are carried out.

raise (an exception): To signal that something unexpected or unusual has happened in
a program by creating an exception and handing it to the error-handling system, which
then tries to find a point in the program that will catch it.
See also: throw exception.

record: A group of related values that are stored together. A record may be represented
as a tuple or as a row in a table; in the latter case, every record in the table has the same
fields.

recursion: To define something in terms of itself, or the act of a function invoking itself
(directly or indirectly).

Recursive Enumeration pattern: A design pattern that generates the cross product of
a set of items using recursive function calls. Each level of recursion adds items from one
more set of possibilities to an accumulator.

refactor: To rewrite existing code in order to make it simpler or more efficient without chang-
ing its functionality.

reflection: To inspect the properties of a running program in a generic way. Reflection relies
on the fact that a program is just another data structure.



320 G Glossary

register (in code): To add a function, class, or other object to a lookup table for later use.

register (in hardware): A small piece of memory (typically one word long) built into a
processor that operations can refer to directly.

regular expression: A pattern for matching text, written as text itself. Regular expressions
are sometimes called “regexp”, “regex”, or “RE”, and are powerful tools for working with
text.

relational database: A database that organizes information into tables, each of which has
a fixed set of named fields (shown as columns) and a variable number of records (shown
as rows).
See also: SQL.

relative error: The absolute value of the difference between the actual and correct value
divided by the correct value. For example, if the actual value is 9 and the correct value is
10, the relative error is 0.1. Relative error is usually more useful than absolute error.

reverse lookup: To find the key associated with a particular value in a table.

root (in a tree): The node in a tree of which all other nodes are direct or indirect children,
or equivalently the only node in the tree that has no parent.

row-wise storage: To organize the memory of a two-dimensional table so that the values
in each row are laid out in contiguous blocks.
See also: column-wise storage.

runtime: A program that implements the basic operations used in a programming language.

sandbox: A space where code can execute safely.

schema: A specification of the format of a dataset, including the name, format, and content
of each table.

scope: A region of a program in which names can be defined without colliding with defi-
nitions in other parts of the program. In Python, each module and function creates a new
scope.

scoring function: A function that measures how good a solution to a problem is.

search space: The set of all possible solutions to a problem, i.e., the set of possibilities
that an algorithm must search through to find an answer.

self-closing tag: A textual marker representing an element in an HTML document that
has no content, written <tag/>. A self-closing tag may contain attributes.

semantic versioning: A standard for identifying software releases. In the version identifier
major.minor.patch, major changes when a new version of software is incompatible with
old versions, minor changes when new features are added to an existing version, and
patch changes when small bugs are fixed.



G Glossary 321

server: A program that waits for requests from clients and sends them data in response.

SHA-256 (hash function): A cryptographic hash function that produces a 256-bit output.

sign andmagnitude: A binary representation of integers in which one bit indicates whether
the value is positive or negative and the remaining bits indicate its magnitude.
See also: two’s complement.

signature: The ordered list of parameters and return values that specifies how a function
must be called and what it returns.

single stepping: To step through a program one line or instruction at a time.

singleton: A set with only one element, or a class with only one instance.
See also: Singleton pattern.

Singleton pattern: A design pattern that creates a singleton object to manage some
resource or service, such as a database or cache. In object-oriented programming, the
pattern is usually implemented by hiding the constructor of the class in some way so that
it can only be called once.

socket: A communication channel between two computers that provides an interface sim-
ilar to reading and writing files.

space complexity: The way the memory required by an algorithm grows as a function of
the problem size, usually expressed using big-oh notation.
See also: time complexity.

spread: To automatically match the values from a list or dictionary supplied by the caller to
the parameters of a function.

SQL: The language used for writing queries for a relational database. The term was orig-
inally an acronym for Structured Query Language.

stable sort: A sorting algorithm that preserves the original order of items that are consid-
ered equal.

stack frame: A section of the call stack that records details of a single call to a specific
function.

stale (in build): To be out-of-date compared to a prerequisite. A build manager finds and
updates things that are stale.

standard error: A predefined communication channel typically used to report errors.
See also: standard input, standard output.

standard input: A predefined communication channel typically used to read input from the
keyboard or from the previous process in a pipe.
See also: standard error, standard output.



322 G Glossary

standard output: A predefined communication channel typically used to send output to the
screen or to the next process in a pipe.
See also: standard error, standard input.

statement: A part of a program that doesn’t produce a value. for loops and if statements
are statements in Python.
See also: expression.

static method: A function that is defined within a class but does not require either the class
itself or an instance of the class as a parameter.
See also: class method.

static site generator (SSG): A software tool that creates HTML pages from templates and
content.

static typing: A system in which the types of values are checked as code is being com-
piled.
See also: dynamic typing, type hint.

stream: A sequence of bytes or other data of variable length that can only be processed in
sequential order.

streaming API: An API that processes data in chunks rather than needing to have all of
it in memory at once. Streaming APIs usually require handlers for events such as “start of
data”, “next block”, and “end of data”.

string: A block of text in a program. The term is short for “character string”.

successive refinement: See top-down design.

synthetic data: Made-up data that has the same significant characteristics as real data,
typically created for testing.

table: A set of records in a relational database or dataframe.

tag (in HTML): The textual marker showing the start and/or end of an element in an HTML
document.
See also: closing tag, opening tag, self-closing tag.

target (in build): The file(s) that a build rule will update if they are out-of-date compared
to their dependencies.

technical debt: The work that will be required in the future because of limited quick-fix
solutions or unaddressed complexity today.

Template Method pattern: A design pattern in which a parent class defines an overall
sequence of operations by calling abstract methods that child classes must then imple-
ment. Each child class then behaves in the same general way, but implements the steps
differently.



G Glossary 323

test fidelity: The degree to which a mock object or other replacement for part or all of a
system mimics the behavior of that system for testing purposes.

test-driven development: The practice of writing tests before writing the code to be tested.
Research shows that the order doesn’t actually make a difference; what does is alternating
in short bursts between testing and coding.

text mode: An option for reading or writing files in which bytes are translated to or from
characters and end-of-line markers are normalized. The term is used in contrast with binary
mode.

throw exception: Another term for raising an exception.

throw low, catch high: A widely-used pattern for managing exceptions whereby they are
raised in many places at low levels of a program but caught in a few high-level places
where corrective action can be taken.

time complexity: The way the running time of an algorithm grows as a function of the
problem size, usually expressed using big-oh notation.
See also: space complexity.

time of check - time of use: A race condition in which a process checks the state of
something and then operates on it, but some other process might alter that state between
the check and the operation.

timestamp: A digital identifier showing the time at which something was created or ac-
cessed. Timestamps should use ISO date format for portability.

token: An indivisible unit of text for a parser, such as a variable name or a number. Exactly
what constitutes a token depends on the language.

tokenizer: A piece of software that groups individual characters together into meaningful
tokens.

top-down design: In software design, the practice of writing the more abstract or higher-
level parts of the program first, then filling in the details layer by layer. In practice, program-
mers almost always modify the upper levels as they work on the lower levels, but high-level
changes become less common as more of the details are filled in.
See also: successive refinement.

topological order: Any ordering of the nodes in a graph that respects the direction of its
edges, i.e., if there is an edge from node A to node B, A comes before B in the ordering.
There may be many topological orderings of a particular graph.

Transmission Control Protocol (TCP/IP): The most popular member of the IP family of
protocols. TCP/IP tries to deliver messages reliably and in order so that programs can
communicate as if they were reading and writing files.

tree: A graph in which every node except the root has exactly one parent.



324 G Glossary

truthy: Refers to a value that is treated as true in Boolean expressions. In Python, this
includes non-empty strings and lists and numbers other than zero.
See also: falsy.

tuple: A value that has a fixed number of parts, such as the three color components of a
red-green-blue color specification.

two hard problems in computer science: Refers to a quote by Phil Karlton: “There are
only two hard problems in computer science—cache invalidation and naming things.” Many
variations add a third problem as a joke, such as off-by-one errors.

two’s complement: A binary representation of integers that “rolls over” like an odometer
to represent negative values.
See also: sign and magnitude.

type hint: Extra information added to a program to indicate what data type or types a
variable is supposed to have. Type hints are a compromise between static typing and
dynamic typing.

Unicode: A standard that defines numeric codes for many thousands of characters and
symbols. Unicode does not define how those numbers are stored; that is done by standards
like UTF-8.

unit test: A test that exercises one function or feature of a piece of software and produces
pass, fail, or error.

Universal Resource Locator (URL): A multi-part identifier that specifies something on a
computer network. A URL may contain a protocol (such as http), a hostname such as
example.com, a port (such as 80), a path (such as /homepage.html), and various other
things.

upcall: The act of explicitly invoking a method of a parent class from inside a child class.
A method in a child class may upcall to the corresponding method in the parent class as
part of extending that method.

UTF-32: A way to store the numeric codes representing Unicode characters in which every
character is stored as a 32-bit integer.

UTF-8: A way to store the numeric codes representing Unicode characters that is
backward-compatible with the older ASCII standard.

varargs: Short for “variable arguments”, a mechanism that captures any “extra” arguments
to a function or method.

variable capture: The process by which a closure “remembers” the variables that were in
scope when it was created.

variable-length encoding: Any technique for representing data in which a single logical
unit of data may be represented by a variable number of bits or bytes.

https://example.com


G Glossary 325

vector: A sequence of values, usually of homogeneous type.

version control system: A system for managing changes made to software during its
development.

viewport: A class or other data structure whose purpose is to keep track of what can
currently be seen by the user.

virtualmachine: A program that pretends to be a computer. Thismay seem a bit redundant,
but VMs are quick to create and start up, and changes made inside the virtual machine are
contained within that VM so we can install new packages or run a completely different
operating system without affecting the underlying computer.

Visitor pattern: A design pattern in which the operation to be done is taken to each el-
ement of a data structure in turn. It is usually implemented by having a generator “visitor”
that knows how to reach the structure’s elements, which is given a function or method to
call for each in turn, and that carries out the specific operation.
See also: Iterator pattern.

watchpoint: A location or variable being monitored by a debugger. If the value at that
location or in that variable changes, the debugger halts and gives the user a chance to
inspect the program.

word (of memory): The unit of memory that a particular processor most naturally works
with. While a byte is a fixed size (8 bits), a word may be 16, 32, or 64 bits long depending
on the processor.

XML (Extensible Markup Language): A set of rules for defining HTML-like tags and using
them to format documents (typically data). XML was popular in the early 2000s, but its
complexity led many programmers to adopt JSON, instead.

YAML (YAML Ain’t Markup Language): A way to represent nested data using indentation
rather than the parentheses and commas of JSON. YAML is often used in configuration
files and to define parameters for various flavors of Markdown documents.

z-buffering: A drawing method that keeps track of the depth of what lies “under” each pixel
so that it displays whatever is nearest to the observer.



Taylor & Francis 
Taylor & Francis Group 
http://taylorandfrancis.com 

https://taylorandfrancis.com


Index

absolute error, 282
abstract base class, 233, 237
abstract class, 99, 102, 104, 131
abstract method, 99, 102
abstract syntax tree, 35, 36, 111
accidental complexity, 119, 127
accumulator, 187, 191
actual result (of test), 43, 44
affordance, 177, 183, 226
alias, 7, 8, 150
anonymous function, 59, 60, 221
ANSI character encoding, 155, 157
append mode, 69, 79
Application Binary Interface, 243
Application Programming Interface, 99, 101
argument, 7, 11, 60, 70, 112
array (implementation of), 250
ASCII character encoding, 155, 157
assembler, 243, 247
assembly code, 243, 265
assertion, 43, 44
atomic operation, 81, 85
atomic value, 145, 146
attention budget, 271
attribute, 91, 99, 129

backward-compatible, 187, 188
base class, 81, 86, 133, 280
batch processing, 131, 137
benchmark, 131, 137
big endian, 283
big-oh notation, 17, 189
binary mode, 17, 18, 159, 214
bit mask, 155, 157
bit shifting, 155, 157
bitwise operation, 155, 156, 245
block, 72
block (of memory), 165, 171, 243
block (on page), 119
body (of HTTP request or response), 209,

210

Boolean expression, 99, 107
Boolean value, 187, 195
boxed value, 155, 159
Brand, Sy, 255
breakpoint, 255, 261
Brubeck, Matt, 119
bucket, 17, 20
buffer (in memory), 155, 162, 204
buffer (of text), 219, 226, 233
build manager, 177
build recipe, 177
build rule, 177, 178
bytecode, 243, 244

C, 178
cache, 7, 16, 121
call stack, 59, 61
Chain of Responsibility pattern, 25, 26
character encoding, 155, 157, 214
child, 120
child (in a tree), 91, 92
child class, 25, 30, 39, 87, 102, 183, 237,

263
circular dependency, 177, 180, 185, 199
class, 1, 7, 94, 145
class method, 7, 15
clear (a breakpoint), 255, 261
client, 201, 209
closing tag, 91, 107
closure, 59, 63, 73
code point, 155, 158
cognitive load, 1, 2, 8, 173
collision (in hashing), 17, 22, 82
column-wise storage, 131, 132
combinatorial explosion, 187, 189
Command pattern, 233, 237
compact (data or files), 165, 175
compiled language, 177, 178
compiler, 51, 247
Comprehensive TeX Archive Network, 187
compression (of file), 81, 87

327



328 Index

concrete class, 35, 39, 131
conditional breakpoint, 255, 261
conditional jump, 243, 246
confirmation bias, 119, 125
constructor, 7, 14, 72, 96, 102, 113, 207, 222
context manager, 69, 72
continuation byte, 155, 158
control code, 155, 157, 226
control flow, 51, 54, 94, 183
Cook, Mary Rose, 81
coordinate system, 120
Coordinated Universal Time, 81, 84
cross product, 187, 190
cryptographic hash function, 17, 21
CSV, 35, 84, 189
cursor, 77
cycle, 177

data engineer, 131, 137
data migration, 81, 88
dataframe, 131
deadlock, 201, 204
debugger, 255
decorator, 69, 73, 129, 141, 167
defensive programming, 51, 58, 235
delayed construction, 219, 222
dependency, 187
dependency (in build), 177
derived class, 7, 8
design by contract, 7, 127
design pattern, 26, 76, 94, 102, 112, 193,

237, 245
dictionary, 8, 46, 54, 93, 147
dictionary comprehension, 51, 56, 140
directed acyclic graph, 177
disassemble, 255, 256
disassembler, 243, 254
docstring, 131, 132, 271
DOM, 91, 99, 119
DOM tree, 91, 98, 102, 111
Domain Name System, 201
dry run, 177, 185
duck typing, 280
dynamic dispatch, 51, 53, 148, 225
dynamic scoping, 59, 61
dynamic typing, 43, 49

eager evaluation, 59, 60, 274
easy mode, 119
EJS, 99
element (in HTML), 91

enumeration, 219, 223, 256
environment, 51, 54, 60, 101
error (result of test), 43, 45
escape sequence, 155, 161
Excel, 131
exception, 1, 43, 45, 73, 102
exclusive or, 155, 156
expected result (of test), 43, 44
exponent, 282
expression, 35, 51
extensibility, 59, 274
Extract Parent Class refactoring, 25, 29

factory method, 219, 227
failure (result of test), 43, 45
false negative, 111, 115
file locking, 81, 85
fixture, 43, 44, 83, 93, 134, 148, 236
format string, 155, 160

garbage collection, 165, 174
Git, 81
global, 43, 46, 62
globbing, 25
grammar, 35
graph, 177
greedy matching, 25, 33

hash code, 17, 19, 82
hash function, 17, 19
header, 162
header (of HTTP request or response), 209,

210
headless application, 233, 234
helper class, 280
helper function, 81, 86, 133, 152, 236, 258
helper method, 25, 30, 170
hexadecimal, 17, 21, 47, 82, 156, 247
hostname, 212
Hoye, Mike, 120
HTML, 1, 91, 99, 119, 209
HTML5 specification, 100
HTTP, 209
HTTP method, 209
HTTP protocol version, 209
HTTP request, 209
HTTP response, 209
HTTP status code, 209, 210
Human Resource Machine, 243

IEEE 754 standard, 282
immutable, 131, 134



Index 329

index (a database), 131, 142, 171
infinite recursion, 69, 73
infix notation, 51, 52
inheritance, 12, 25, 31, 39, 214, 226
instance, 281
instruction pointer, 243
instruction set, 243
Internet Protocol, 201
interpreter, 51, 59, 73
intrinsic complexity, 119, 127
introspection, 47, 51, 55, 159, 280
IP address, 201
iterator, 69, 76
Iterator pattern, 69, 76

Java, 178
Jekyll, 99
join, 142
join (tables), 131, 142
JSON, 35, 53, 88, 96, 178, 189

key, 210
key-value store, 165

label (of address in memory), 243, 247
lambda expression, 59, 60
layout engine, 119
lazy evaluation, 59, 60, 274
lazy matching, 25, 33
lexical scoping, 59, 61
link (a program), 177, 178
linter, 111
Liskov Substitution Principle, 119, 127
list comprehension, 145, 153
literal, 35
literal (in parsing), 25, 26
little endian, 283
local, 43, 50
log file, 219, 220
log-structured database, 165

manifest, 81, 84, 96, 188
mantissa, 282
Markdown, 99
method, 8, 94, 112, 149
method injection, 275
mixin class, 119, 123
mock object, 69, 83, 206, 258
model, 187, 195
module, 115
monkey patching, 7, 15
multiple inheritance, 7, 15, 123

name collision, 59, 60, 104
Nison, Maël, 187
node, 91, 99, 177
null byte, 165, 168
Null Object pattern, 25, 29

object, 7, 8
object-oriented programming, 7, 87
online analytical processing, 131, 137
online transaction processing, 131, 137
op code, 243, 244
Open-Closed Principle, 145, 148
opening tag, 91, 104
operator overloading, 35, 39

package, 187
page, 165, 171
parameter, 7, 10, 11, 59, 136
parameter sweeping, 131, 138
parent class, 39, 128, 183
parser, 35, 51, 92, 99
pass (result of test), 43, 45
patch, 187, 188
path resolution, 209, 213
persistence, 145
phony target, 177, 185
PHP, 99
Polge, Thibault, 81
polymorphism, 7, 8
port, 201, 212
prefix notation, 51, 52
pretty print, 43, 46
profiler, 174
profiling, 131, 139
protocol, 69, 72, 202, 208, 209, 224
Python standard library, 25, 86, 118, 211,

214
Pythonic, 280

query parameter, 209, 217

race condition, 81, 85, 174
raise, 24, 76, 95, 102
raise (an exception), 43, 45
record, 165
recursion, 7, 16, 53, 92, 102, 113, 147, 191
Recursive Enumeration pattern, 187, 193
refactor, 25, 29, 86, 167, 183, 206, 259
register (in code), 43, 49, 260, 276, 280
register (in hardware), 243
regular expression, 25
relative error, 282



330 Index

reverse lookup, 255, 257
root, 123
row-wise storage, 131, 132
runtime, 51

scope, 43, 46, 60, 115
scoring function, 187, 198
search space, 187, 189
self-closing tag, 91
semantic versioning, 187, 188
server, 201, 209
SHA-256 (hash function), 17, 21
sign and magnitude, 155
signature, 25, 31, 44, 52, 56, 123, 135, 149,

227
socket, 201, 209
spread, 7, 11, 134, 224
spreading, 125, 128
SQL, 131
stable sort, 177, 181
stack frame, 59, 61, 101
stale (in build), 177
statement, 51, 55, 59
static method, 7, 15, 167
static site generator, 99
streaming API, 17, 24
successive refinement, 81, 85, 178
synthetic data, 219, 221

tag (in HTML), 91, 103
target (in build), 177
technical debt, 25, 29
Template Method pattern, 177, 183
test fidelity, 201, 207
test-driven development, 25, 27
throw low, catch high, 209, 213

time complexity, 17
time of check - time of use, 81, 85
timestamp, 81, 84, 182
token, 35
tokenizer, 35
top-down design, 81, 85
topological order, 177
Transmission Control Protocol, 201
tree, 91, 121
truthy, 99, 107
tuple, 160
two’s complement, 155
type hint, 51, 58

Unicode, 155, 158, 169
unit test, 43, 52
Universal Resource Locator, 209
upcall, 7, 14, 226, 263
UTF-32, 155, 158
UTF-8, 155, 158, 214

varargs, 7, 11, 128
variable capture, 59, 63
variable-length encoding, 155, 158
variable_capture, 73
version control system, 81
viewport, 219, 229, 233
virtual machine, 243, 255
Visitor pattern, 91, 94, 102, 112

watchpoint, 255, 264
word (of memory), 243, 282

YAML, 35, 96, 189

z-buffering, 119, 123


	Cover
	Half Title
	Title Page
	Copyright Page
	Dedication
	Contents
	1. Introduction
	1.1. Audience
	1.2. The Big Ideas
	1.3. Formatting
	1.4. Usage
	1.5. What People Are Saying
	1.6. Acknowledgments
	1.7. Exercises

	2. Objects and Classes
	2.1. Objects
	2.2. Classes
	2.3. Arguments
	2.4. Inheritance
	2.5. Summary
	2.6. Exercises

	3. Finding Duplicate Files
	3.1. Getting Started
	3.2. Hashing Files
	3.3. Better Hashing
	3.4. Summary
	3.5. Exercises

	4. Matching Patterns
	4.1. Simple Patterns
	4.2. Rethinking
	4.3. Summary
	4.4. Exercises

	5. Parsing Text
	5.1. Tokenizing
	5.2. Parsing
	5.3. Summary
	5.4. Exercises

	6. Running Tests
	6.1. Storing and Running Tests
	6.2. Finding Functions
	6.3. Summary
	6.4. Exercises

	7. An Interpreter
	7.1. Expressions
	7.2. Variables
	7.3. Introspection
	7.4. Summary
	7.5. Exercises

	8. Functions and Closures
	8.1. Definition and Storage
	8.2. Calling Functions
	8.3. Closures
	8.4. Summary
	8.5. Exercises

	9. Protocols
	9.1. Mock Objects
	9.2. Protocols
	9.3. Decorators
	9.4. Iterators
	9.5. Summary
	9.6. Exercises

	10. A File Archiver
	10.1. Saving Files
	10.2. Testing
	10.3. Tracking Backups
	10.4. Refactoring
	10.5. Summary
	10.6. Exercises

	11. An HTML Validator
	11.1. HTML and the DOM
	11.2. The Visitor Pattern
	11.3. Checking Style
	11.4. Summary
	11.5. Exercises

	12. A Template Expander
	12.1. Syntax
	12.2. Managing Variables
	12.3. Visiting Nodes
	12.4. Implementing Handlers
	12.5. Control Flow
	12.6. Summary
	12.7. Exercises

	13. A Code Linter
	13.1. Machinery
	13.2. Finding Duplicate Keys
	13.3. Finding Unused Variables
	13.4. Summary
	13.5. Exercises

	14. Page Layout
	14.1. Sizing
	14.2. Positioning
	14.3. Rendering
	14.4. Wrapping
	14.5. Summary
	14.6. Exercises

	15. Performance Profiling
	15.1. Options
	15.2. Row-Wise Storage
	15.3. Column-Wise Storage
	15.4. Performance
	15.5. Summary
	15.6. Exercises

	16. Object Persistence
	16.1. Built-in Types
	16.2. Converting to Classes
	16.3. Aliasing
	16.4. Summary
	16.5. Exercises

	17. Binary Data
	17.1. Integers
	17.2. Bitwise Operations
	17.3. Text
	17.4. And Now, Persistence
	17.5. Summary
	17.6. Exercises

	18. A Database
	18.1. Starting Point
	18.2. Saving Records
	18.3. A File-Backed Database
	18.4. Playing with Blocks
	18.5. Persisting Blocks
	18.6. Cleaning Up
	18.7. Summary
	18.8. Exercises

	19. A Build Manager
	19.1. Concepts
	19.2. Initial Design
	19.3. Topological Sorting
	19.4. A Better Design
	19.5. Summary
	19.6. Exercises

	20. A Package Manager
	20.1. Semantic Versioning
	20.2. Exhaustive Search
	20.3. Generating Possibilities Manually
	20.4. Incremental Search
	20.5. Using a Theorem Prover
	20.6. Summary
	20.7. Exercises

	21. Transferring Files
	21.1. Using TCP/IP
	21.2. Chunking
	21.3. Testing
	21.4. Summary
	21.5. Exercises

	22. Serving Web Pages
	22.1. Protocol
	22.2. Hello, Web
	22.3. Serving Files
	22.4. Testing
	22.5. Summary
	22.6. Exercises

	23. A File Viewer
	23.1. Curses
	23.2. Windowing
	23.3. Moving
	23.4. Refactoring
	23.5. Clipping
	23.6. Viewport
	23.7. Summary
	23.8. Exercises

	24. Undo and Redo
	24.1. Getting Started
	24.2. Insertion and Deletion
	24.3. Going Backward
	24.4. Summary
	24.5. Exercises

	25. A Virtual Machine
	25.1. Architecture
	25.2. Execution
	25.3. Assembly Code
	25.4. Arrays
	25.5. Summary
	25.6. Exercises

	26. A Debugger
	26.1. One Step at a Time
	26.2. Testing
	26.3. Extensibility
	26.4. Breakpoints
	26.5. Summary
	26.6. Exercises

	27. Conclusion
	A. Bibliography
	B. Bonus Material
	B.1. Using Function Attributes
	B.2. Lazy Evaluation
	B.3. Extension
	B.4. Tracing Inheritance
	B.5. Inspecting Functions
	B.6. User-Defined Classes
	B.7. Floating Point Numbers
	B.8. Big and Little Endian
	B.9. Generating Test Cases

	C. Syllabus
	D. License
	D.1. Writing
	D.2. Software

	E. Code of Conduct
	E.1. Our Standards
	E.2. Our Responsibilities
	E.3. Scope
	E.4. Enforcement
	E.5. Attribution

	F. Contributing
	F.1. Editing Content
	F.2. Making Decisions
	F.3. FAQ

	G. Glossary
	Index



