

SciPy and NumPy

Eli Bressert

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

SciPy and NumPy
by Eli Bressert

Copyright © 2013 Eli Bressert. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online
editions are also available for most titles (http://my.safaribooksonline.com). For more information,
contact our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Interior Designer: David Futato Project Manager: Paul C. Anagnostopoulos
Cover Designer: Randy Comer Copyeditor: MaryEllen N. Oliver
Editors: Rachel Roumeliotis, Proofreader: Richard Camp

Meghan Blanchette Illustrators: Eli Bressert, Laurel Muller
Production Editor: Holly Bauer

November 2012: First edition

Revision History for the First Edition:

2012-10-31 First release

See http://oreilly.com/catalog/errata.csp?isbn=0636920020219 for release details.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks
of O’Reilly Media, Inc. SciPy and NumPy, the image of a three-spined stickleback, and related trade
dress are trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly Media, Inc.,
was aware of a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 978-1-449-30546-8
[LSI]

Table of Contents

Preface . v

1. Introduction . 1
1.1 Why SciPy and NumPy? 1
1.2 Getting NumPy and SciPy 2
1.3 Working with SciPy and NumPy 3

2. NumPy . 5
2.1 NumPy Arrays 5
2.2 Boolean Statements and NumPy Arrays 10
2.3 Read and Write 12
2.4 Math 14

3. SciPy . 17
3.1 Optimization and Minimization 17
3.2 Interpolation 22
3.3 Integration 26
3.4 Statistics 28
3.5 Spatial and Clustering Analysis 32
3.6 Signal and Image Processing 38
3.7 Sparse Matrices 40
3.8 Reading and Writing Files Beyond NumPy 41

4. SciKit: Taking SciPy One Step Further . 43
4.1 Scikit-Image 43
4.2 Scikit-Learn 48

5. Conclusion . 55
5.1 Summary 55
5.2 What’s Next? 55

iii

Preface

Python, a high-level language with easy-to-read syntax, is highly flexible, which makes
it an ideal language to learn and use. For science and R&D, a few extra packages are used
to streamline the development process and obtain goals with the fewest steps possible.
Among the best of these are SciPy and NumPy. This book gives a brief overview of
different tools in these two scientific packages, in order to jump start their use in the
reader’s own research projects.

NumPy and SciPy are the bread-and-butter Python extensions for numerical arrays
and advanced data analysis. Hence, knowing what tools they contain and how to use
them will make any programmer’s life more enjoyable. This book will cover their uses,
ranging from simple array creation to machine learning.

Audience
Anyone with basic (and upward) knowledge of Python is the targeted audience for this
book. Although the tools in SciPy and NumPy are relatively advanced, using them is
simple and should keep even a novice Python programmer happy.

Contents of this Book
This book covers the basics of SciPy and NumPy with some additional material.
The first chapter describes what the SciPy and NumPy packages are, and how to
access and install them on your computer. Chapter 2 goes over the basics of NumPy,
starting with array creation. Chapter 3, which comprises the bulk of the book, covers
a small sample of the voluminous SciPy toolbox. This chapter includes discussion and
examples on integration, optimization, interpolation, and more. Chapter 4 discusses
two well-known scikit packages: scikit-image and scikit-learn. These provide much
more advanced material that can be immediately applied to real-world problems. In
Chapter 5, the conclusion, we discuss what to do next for even more advanced material.

v

Conventions Used in This Book
The following typographical conventions are used in this book:

Plain text
Indicates menu titles, menu options, menu buttons, and keyboard accelerators
(such as Alt and Ctrl).

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and Unix utilities.

Constant width
Indicates commands, options, switches, variables, attributes, keys, functions, types,
classes, namespaces, methods, modules, properties, parameters, values, objects,
events, event handlers, XML tags, HTML tags, macros, the contents of files, or
the output from commands.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “SciPy and NumPy by Eli Bressert (O’Reilly).
Copyright 2013 Eli Bressert, 978-1-449-30546-8.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

We’d Like to Hear from You
Please address comments and questions concerning this book to the publisher:

vi | Preface

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, links to the code and
data sets used, and any additional information. You can access this page at:

http://oreil.ly/SciPy_NumPy

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Safari® Books Online
Safari Books Online (www.safaribooksonline.com) is an on-demand digital
library that delivers expert content in both book and video form from the
world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and cre-
ative professionals use Safari Books Online as their primary resource for research,
problem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi-
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable data-
base from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley
Professional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol-
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

Acknowledgments
I would like to thank Meghan Blanchette and Julie Steele, my current and previous
editors, for their patience, help, and expertise. This book wouldn’t have materialized
without their assistance. The tips, warnings, and package tools discussed in the book

Preface | vii

were much improved thanks to the two book reviewers: Tom Aldcroft and Sarah
Kendrew. Colleagues and friends that have helped discuss certain aspects of this book
and bolstered my drive to get it done are Leonardo Testi, Nate Bastian, Diederik
Kruijssen, Joao Alves, Thomas Robitaille, and Farida Khatchadourian. A big thanks
goes to my wife and son, Judith van Raalten and Taj Bressert, for their help and
inspiration, and willingness to deal with me being huddled away behind the computer
for endless hours.

viii | Preface

CHAPTER 1

Introduction

Python is a powerful programming language when considering portability, flexibility,
syntax, style, and extendability. The language was written by Guido van Rossum
with clean syntax built in. To define a function or initiate a loop, indentation is used
instead of brackets. The result is profound: a Python programmer can look at any given
uncommented Python code and quickly understand its inner workings and purpose.

Compiled languages like Fortran and C are natively much faster than Python, but not
necessarily so when Python is bound to them. Using packages like Cython enables
Python to interface with C code and pass information from the C program to Python
and vice versa through memory. This allows Python to be on par with the faster
languages when necessary and to use legacy code (e.g., FFTW). The combination of
Python with fast computation has attracted scientists and others in large numbers.
Two packages in particular are the powerhouses of scientific Python: NumPy and SciPy.
Additionally, these two packages makes integrating legacy code easy.

1.1 Why SciPy and NumPy?
The basic operations used in scientific programming include arrays, matrices, integra-
tion, differential equation solvers, statistics, and much more. Python, by default, does
not have any of these functionalities built in, except for some basic mathematical op-
erations that can only deal with a variable and not an array or matrix. NumPy and
SciPy are two powerful Python packages, however, that enable the language to be used
efficiently for scientific purposes.

NumPy specializes in numerical processing through multi-dimensional ndarrays,
where the arrays allow element-by-element operations, a.k.a. broadcasting. If needed,
linear algebra formalism can be used without modifying the NumPy arrays before-
hand. Moreover, the arrays can be modified in size dynamically. This takes out the
worries that usually mire quick programming in other languages. Rather than creating
a new array when you want to get rid of certain elements, you can apply a mask to it.

1

SciPy is built on the NumPy array framework and takes scientific programming to
a whole new level by supplying advanced mathematical functions like integration,
ordinary differential equation solvers, special functions, optimizations, and more. To
list all the functions by name in SciPy would take several pages at minimum. When
looking at the plethora of SciPy tools, it can sometimes be daunting even to decide
which functions are best to use. That is why this book has been written. We will run
through the primary and most often used tools, which will enable the reader to get
results quickly and to explore the NumPy and SciPy packages with enough working
knowledge to decide what is needed for problems that go beyond this book.

1.2 Getting NumPy and SciPy
Now you’re probably sold and asking, “Great, where can I get and install these pack-
ages?” There are multiple ways to do this, and we will first go over the easiest ways for
OS X, Linux, and Windows.

There are two well-known, comprehensive, precompiled Python packages that include
NumPy and SciPy, and that work on all three platforms: the Enthought Python Dis-
tribution (EPD) and ActivePython (AP). If you would like the free versions of the two
packages, you should download EPD Free1 or AP Community Edition.2 If you need
support, then you can always opt for the more comprehensive packages from the two
sources.

Optionally, if you are a MacPorts3 user, you can install NumPy and SciPy through the
package manager. Use the MacPorts command as given below to install the Python
packages. Note that installing SciPy and NumPy with MacPorts will take time, espe-
cially with the SciPy package, so it’s a good idea to initiate the installation procedure
and go grab a cup of tea.

sudo port install py27-numpy py27-scipy py27-ipython

MacPorts supports several versions of Python (e.g., 2.6 and 2.7). So, although py27 is
listed above, if you would like to use Python 2.6 instead with SciPy and NumPy then
you would simply replace py27 with py26.

If you’re using a Debian-based Linux distro like Ubuntu or Linux Mint, then use apt-get
to install the packages.

sudo apt-get install python-numpy python-scipy

With an RPM-based system like Fedora or OpenSUSE, you can install the Python
packages using yum.

sudo yum install numpy scipy

1 http://www.enthought.com/products/epd_free.php
2 http://www.activestate.com/activepython/downloads
3 www.macports.com

2 | Chapter 1: Introduction

Building and installing NumPy and SciPy on Windows systems is more complicated
than on the Unix-based systems, as code compilation is tricky. Fortunately, there is
an excellent compiled binary installation program called python(x,y)4 that has both
NumPy and SciPy included and is Windows specific.

For those who prefer building NumPy and SciPy from source, visit www.scipy.org/
Download to download from either the stable or bleeding-edge repositories. Or clone
the code repositories from scipy.github.com and numpy.github.com. Unless you’re a
pro at building packages from source code and relish the challenge, though, I would
recommend sticking with the precompiled package options as listed above.

1.3 Working with SciPy and NumPy
You can work with Python programs in two different ways: interactively or through
scripts. Some programmers swear that it is best to script all your code, so you don’t have
to redo tedious tasks again when needed. Others say that interactive programming is
the way to go, as you can explore the functionalities inside out. I would vouch for both,
personally. If you have a terminal with the Python environment open and a text editor
to write your script, you get the best of both worlds.

For the interactive component, I highly recommend using IPython.5 It takes the best of
the bash environment (e.g., using the tab button to complete a command and changing
directories) and combines it with the Python environment. It does far more than this,
but for the purpose of the examples in this book it should be enough to get it up and
running.

Bugs in programs are a fact of life and there’s no way around them.
Being able to find bugs and fix them quickly and easily is a big part
of successful programming. IPython contains a feature where you can
debug a buggy Python script by typing debug after running it. See http:/
/ipython.org/ipython-doc/stable/interactive/tutorial.html for details under
the debugging section.

4 http://code.google.com/p/pythonxy/
5 http://ipython.org/

1.3 Working with SciPy and NumPy | 3

CHAPTER 2

NumPy

2.1 NumPy Arrays
NumPy is the fundamental Python package for scientific computing. It adds the capa-
bilities of N -dimensional arrays, element-by-element operations (broadcasting), core
mathematical operations like linear algebra, and the ability to wrap C/C++/Fortran
code. We will cover most of these aspects in this chapter by first covering what NumPy
arrays are, and their advantages versus Python lists and dictionaries.

Python stores data in several different ways, but the most popular methods are lists
and dictionaries. The Python list object can store nearly any type of Python object as
an element. But operating on the elements in a list can only be done through iterative
loops, which is computationally inefficient in Python. The NumPy package enables
users to overcome the shortcomings of the Python lists by providing a data storage
object called ndarray.

The ndarray is similar to lists, but rather than being highly flexible by storing different
types of objects in one list, only the same type of element can be stored in each column.
For example, with a Python list, you could make the first element a list and the second
another list or dictionary. With NumPy arrays, you can only store the same type of
element, e.g., all elements must be floats, integers, or strings. Despite this limitation,
ndarray wins hands down when it comes to operation times, as the operations are sped
up significantly. Using the %timeit magic command in IPython, we compare the power
of NumPy ndarray versus Python lists in terms of speed.

import numpy as np

Create an array with 10^7 elements.
arr = np.arange(1e7)

Converting ndarray to list
larr = arr.tolist()

Lists cannot by default broadcast,
so a function is coded to emulate
what an ndarray can do.

5

def list_times(alist, scalar):
for i, val in enumerate(alist):

alist[i] = val * scalar
return alist

Using IPython's magic timeit command
timeit arr * 1.1
>>> 1 loops, best of 3: 76.9 ms per loop

timeit list_times(larr, 1.1)
>>> 1 loops, best of 3: 2.03 s per loop

The ndarray operation is ∼ 25 faster than the Python loop in this example. Are you
convinced that the NumPy ndarray is the way to go? From this point on, we will be
working with the array objects instead of lists when possible.

Should we need linear algebra operations, we can use the matrix object, which does not
use the default broadcast operation from ndarray. For example, when you multiply two
equally sized ndarrays, which we will denote as A and B, the ni,j element of A is only
multiplied by the ni,j element of B. When multiplying two matrix objects, the usual
matrix multiplication operation is executed.

Unlike the ndarray objects, matrix objects can and only will be two dimensional. This
means that trying to construct a third or higher dimension is not possible. Here’s an
example.

import numpy as np

Creating a 3D numpy array
arr = np.zeros((3,3,3))

Trying to convert array to a matrix, which will not work
mat = np.matrix(arr)

"ValueError: shape too large to be a matrix."

If you are working with matrices, keep this in mind.

2.1.1 Array Creation and Data Typing
There are many ways to create an array in NumPy, and here we will discuss the ones
that are most useful.

First we create a list and then
wrap it with the np.array() function.
alist = [1, 2, 3]
arr = np.array(alist)

Creating an array of zeros with five elements
arr = np.zeros(5)

What if we want to create an array going from 0 to 100?
arr = np.arange(100)

6 | Chapter 2: NumPy

Or 10 to 100?
arr = np.arange(10,100)

If you want 100 steps from 0 to 1...
arr = np.linspace(0, 1, 100)

Or if you want to generate an array from 1 to 10
in log10 space in 100 steps...
arr = np.logspace(0, 1, 100, base=10.0)

Creating a 5x5 array of zeros (an image)
image = np.zeros((5,5))

Creating a 5x5x5 cube of 1's
The astype() method sets the array with integer elements.
cube = np.zeros((5,5,5)).astype(int) + 1

Or even simpler with 16-bit floating-point precision...
cube = np.ones((5, 5, 5)).astype(np.float16)

When generating arrays, NumPy will default to the bit depth of the Python environ-
ment. If you are working with 64-bit Python, then your elements in the arrays will
default to 64-bit precision. This precision takes a fair chunk memory and is not al-
ways necessary. You can specify the bit depth when creating arrays by setting the data
type parameter (dtype) to int, numpy.float16, numpy.float32, or numpy.float64. Here’s
an example how to do it.

Array of zero integers
arr = np.zeros(2, dtype=int)

Array of zero floats
arr = np.zeros(2, dtype=np.float32)

Now that we have created arrays, we can reshape them in many other ways. If we have
a 25-element array, we can make it a 5 × 5 array, or we could make a 3-dimensional
array from a flat array.

Creating an array with elements from 0 to 999
arr1d = np.arange(1000)

Now reshaping the array to a 10x10x10 3D array
arr3d = arr1d.reshape((10,10,10))

The reshape command can alternatively be called this way
arr3d = np.reshape(arr1s, (10, 10, 10))

Inversely, we can flatten arrays
arr4d = np.zeros((10, 10, 10, 10))
arr1d = arr4d.ravel()

print arr1d.shape
(1000,)

The possibilities for restructuring the arrays are large and, most importantly, easy.

2.1 NumPy Arrays | 7

Keep in mind that the restructured arrays above are just different views
of the same data in memory. This means that if you modify one of the
arrays, it will modify the others. For example, if you set the first element
of arr1d from the example above to 1, then the first element of arr3d will
also become 1. If you don’t want this to happen, then use the numpy.copy
function to separate the arrays memory-wise.

2.1.2 Record Arrays
Arrays are generally collections of integers or floats, but sometimes it is useful to store
more complex data structures where columns are composed of different data types.
In research journal publications, tables are commonly structured so that some col-
umns may have string characters for identification and floats for numerical quantities.
Being able to store this type of information is very beneficial. In NumPy there is the
numpy.recarray. Constructing a recarray for the first time can be a bit confusing, so we
will go over the basics below. The first example comes from the NumPy documentation
on record arrays.

Creating an array of zeros and defining column types
recarr = np.zeros((2,), dtype=('i4,f4,a10'))
toadd = [(1,2.,'Hello'),(2,3.,"World")]
recarr[:] = toadd

The dtype optional argument is defining the types designated for the first to third
columns, where i4 corresponds to a 32-bit integer, f4 corresponds to a 32-bit float,
and a10 corresponds to a string 10 characters long. Details on how to define more
types can be found in the NumPy documentation.1 This example illustrates what the
recarray looks like, but it is hard to see how we could populate such an array easily.
Thankfully, in Python there is a global function called zip that will create a list of tuples
like we see above for the toadd object. So we show how to use zip to populate the same
recarray.

Creating an array of zeros and defining column types
recarr = np.zeros((2,), dtype=('i4,f4,a10'))

Now creating the columns we want to put
in the recarray
col1 = np.arange(2) + 1
col2 = np.arange(2, dtype=np.float32)
col3 = ['Hello', 'World']

Here we create a list of tuples that is
identical to the previous toadd list.
toadd = zip(col1, col2, col3)

Assigning values to recarr
recarr[:] = toadd

1 http://docs.scipy.org/doc/numpy/user/basics.rec.html

8 | Chapter 2: NumPy

Assigning names to each column, which
are now by default called 'f0', 'f1', and 'f2'.

recarr.dtype.names = ('Integers' , 'Floats', 'Strings')

If we want to access one of the columns by its name, we
can do the following.

recarr('Integers')
array([1, 2], dtype=int32)

The recarray structure may appear a bit tedious to work with, but this will become
more important later on, when we cover how to read in complex data with NumPy in
the Read and Write section.

If you are doing research in astronomy or astrophysics and you commonly
work with data tables, there is a high-level package called ATpy2 that
would be of interest. It allows the user to read, write, and convert data
tables from/to FITS, ASCII, HDF5, and SQL formats.

2.1.3 Indexing and Slicing
Python index lists begin at zero and the NumPy arrays follow suit. When indexing lists
in Python, we normally do the following for a 2 × 2 object:

alist=[[1,2],[3,4]]

To return the (0,1) element we must index as shown below.
alist[0][1]

If we want to return the right-hand column, there is no trivial way to do so with Python
lists. In NumPy, indexing follows a more convenient syntax.

Converting the list defined above into an array
arr = np.array(alist)

To return the (0,1) element we use ...
arr[0,1]

Now to access the last column, we simply use ...
arr[:,1]

Accessing the columns is achieved in the same way,
which is the bottom row.
arr[1,:]

Sometimes there are more complex indexing schemes required, such as conditional
indexing. The most commonly used type is numpy.where(). With this function you can
return the desired indices from an array, regardless of its dimensions, based on some
conditions(s).

2 http://atpy.github.com

2.1 NumPy Arrays | 9

Creating an array
arr = np.arange(5)

Creating the index array
index = np.where(arr > 2)
print(index)

(array([3, 4]),)

Creating the desired array
new_arr = arr[index]

However, you may want to remove specific indices instead. To do this you can use
numpy.delete(). The required input variables are the array and indices that you want
to remove.

We use the previous array
new_arr = np.delete(arr, index)

Instead of using the numpy.where function, we can use a simple boolean array to return
specific elements.

index = arr > 2
print(index)

[False False True True True]
new_arr = arr[index]

Which method is better and when should we use one over the other? If speed is
important, the boolean indexing is faster for a large number of elements. Additionally,
you can easily invert True and False objects in an array by using ∼ index, a technique
that is far faster than redoing the numpy.where function.

2.2 Boolean Statements and NumPy Arrays
Boolean statements are commonly used in combination with the and operator and the
or operator. These operators are useful when comparing single boolean values to one
another, but when using NumPy arrays, you can only use & and | as this allows fast
comparisons of boolean values. Anyone familiar with formal logic will see that what we
can do with NumPy is a natural extension to working with arrays. Below is an example
of indexing using compound boolean statements, which are visualized in three subplots
(see Figure 2-1) for context.

Figure 2-1. Three plots showing how indexing with NumPy works.

10 | Chapter 2: NumPy

Creating an image
img1 = np.zeros((20, 20)) + 3
img1[4:-4, 4:-4] = 6
img1[7:-7, 7:-7] = 9
See Plot A

Let's filter out all values larger than 2 and less than 6.
index1 = img1 > 2
index2 = img1 < 6
compound_index = index1 & index2

The compound statement can alternatively be written as
compound_index = (img1 > 3) & (img1 < 7)
img2 = np.copy(img1)
img2[compound_index] = 0
See Plot B.

Making the boolean arrays even more complex
index3 = img1 == 9
index4 = (index1 & index2) | index3
img3 = np.copy(img1)
img3[index4] = 0
See Plot C.

When constructing complex boolean arguments, it is important to use
parentheses. Just as with the order of operations in math (PEMDAS), you
need to organize the boolean arguments contained to construct the right
logical statements.

Alternatively, in a special case where you only want to operate on specific elements in
an array, doing so is quite simple.

import numpy as np
import numpy.random as rand

Creating a 100-element array with random values
from a standard normal distribution or, in other
words, a Gaussian distribution.
The sigma is 1 and the mean is 0.
a = rand.randn(100)

Here we generate an index for filtering
out undesired elements.
index = a > 0.2
b = a[index]

We execute some operation on the desired elements.
b = b ** 2 - 2

Then we put the modified elements back into the
original array.
a[index] = b

2.2 Boolean Statements and NumPy Arrays | 11

2.3 Read and Write
Reading and writing information from data files, be it in text or binary format, is
crucial for scientific computing. It provides the ability to save, share, and read data
that is computed by any language. Fortunately, Python is quite capable of reading and
writing data.

2.3.1 Text Files
In terms of text files, Python is one of the most capable programming languages. Not
only is the parsing robust and flexible, but it is also fast compared to other languages
like C. Here’s an example of how Python opens and parses text information.

Opening the text file with the 'r' option,
which only allows reading capability
f = open('somefile.txt', 'r')

Parsing the file and splitting each line,
which creates a list where each element of
it is one line
alist = f.readlines()

Closing file
f.close()
.
.
.
After a few operations, we open a new text file
to write the data with the 'w' option. If there
was data already existing in the file, it will be overwritten.
f = open('newtextfile.txt', 'w')

Writing data to file
f.writelines(newdata)

Closing file
f.close()

Accessing and recording data this way can be very flexible and fast, but there is one
downside: if the file is large, then accessing or modulating the data will be cumbersome
and slow. Getting the data directly into a numpy.ndarray would be the best option. We
can do this by using a NumPy function called loadtxt. If the data is structured with
rows and columns, then the loadtxt command will work very well as long as all the data
is of a similar type, i.e., integers or floats. We can save the data through numpy.savetxt
as easily and quickly as with numpy.readtxt.

import numpy as np

arr = np.loadtxt('somefile.txt')

np.savetxt('somenewfile.txt')

If each column is different in terms of formatting, loadtxt can still read the data, but
the column types need to be predefined. The final construct from reading the data will

12 | Chapter 2: NumPy

be a recarray. Here we run through a simple example to get an idea of how NumPy
deals with this more complex data structure.

example.txt file looks like the following
#
XR21 32.789 1
XR22 33.091 2

table = np.loadtxt('example.txt',
dtype='names': ('ID', 'Result', 'Type'),
'formats': ('S4', 'f4', 'i2'))

array([('XR21', 32.78900146484375, 1),
('XR22', 33.090999603271484, 2)],
dtype=[('ID', '|S4'), ('Result', '<f4'), ('Type', '<i2')])

Just as in the earlier material covering recarray objects, we can access each column by
its name, e.g., table[’Result’]. Accessing each row is done the same was as with normal
numpy.array objects.

There is one downside to recarray objects, though: as of version NumPy 1.8, there
is no dependable and automated way to save numpy.recarray data structures in text
format. If saving recarray structures is important, it is best to use the matplotlib.mlab3

tools.

There is a highly generalized and fast text parsing/writing package called
Asciitable.4 If reading and writing data in ASCII format is frequently
needed for your work, this is a must-have package to use with NumPy.

2.3.2 Binary Files
Text files are an excellent way to read, transfer, and store data due to their built-in
portability and user friendliness for viewing. Binary files in retrospect are harder to deal
with, as formatting, readability, and portability are trickier. Yet they have two notable
advantages over text-based files: file size and read/write speeds. This is especially
important when working with big data.

In NumPy, files can be accessed in binary format using numpy.save and numpy.load.
The primary limitation is that the binary format is only readable to other systems that
are using NumPy. If you want to read and write files in a more portable format, then
scipy.io will do the job. This will be covered in the next chapter. For the time being,
let us review NumPy’s capabilities.

import numpy as np

Creating a large array
data = np.empty((1000, 1000))

3 http://matplotlib.sourceforge.net/api/mlab_api.html
4 http://cxc.harvard.edu/contrib/asciitable/

2.3 Read and Write | 13

Saving the array with numpy.save
np.save('test.npy', data)

If space is an issue for large files, then
use numpy.savez instead. It is slower than
numpy.save because it compresses the binary
file.
np.savez('test.npz', data)

Loading the data array
newdata = np.load('test.npy')

Fortunately, numpy.save and numpy.savez have no issues saving numpy.recarray objects.
Hence, working with complex and structured arrays is no issue if portability beyond
the Python environment is not of concern.

2.4 Math
Python comes with its own math module that works on Python native objects. Unfor-
tunately, if you try to use math.cos on a NumPy array, it will not work, as the math
functions are meant to operate on elements and not on lists or arrays. Hence, NumPy
comes with its own set of math tools. These are optimized to work with NumPy array
objects and operate at fast speeds. When importing NumPy, most of the math tools are
automatically included, from simple trigonometric and logarithmic functions to the
more complex, such as fast Fourier transform (FFT) and linear algebraic operations.

2.4.1 Linear Algebra
NumPy arrays do not behave like matrices in linear algebra by default. Instead, the
operations are mapped from each element in one array onto the next. This is quite
a useful feature, as loop operations can be done away with for efficiency. But what
about when transposing or a dot multiplication are needed? Without invoking other
classes, you can use the built-in numpy.dot and numpy.transpose to do such operations.
The syntax is Pythonic, so it is intuitive to program. Or the math purist can use
the numpy.matrix object instead. We will go over both examples below to illustrate
the differences and similarities between the two options. More importantly, we will
compare some of the advantages and disadvantages between the numpy.array and the
numpy.matrix objects.

Some operations are easy and quick to do in linear algebra. A classic example is solving
a system of equations that we can express in matrix form:

3x + 6y − 5z = 12
x − 3y + 2z = −2
5x − y + 4z = 10

(2.1)

⎡
⎣

3 6 −5

1 −3 2

5 −1 4

⎤
⎦

⎡
⎣

x

y

z

⎤
⎦ =

⎡
⎣

12

−2

10

⎤
⎦ (2.2)

14 | Chapter 2: NumPy

Now let us represent the matrix system as AX = B, and solve for the variables. This
means we should try to obtain X = A−1B. Here is how we would do this with NumPy.

import numpy as np

Defining the matrices
A = np.matrix([[3, 6, -5],

[1, -3, 2],
[5, -1, 4]])

B = np.matrix([[12],
[-2],
[10]])

Solving for the variables, where we invert A
X = A ** (-1) * B
print(X)

matrix([[1.75],
[1.75],
[0.75]])

The solutions for the variables are x = 1.75, y = 1.75, and z = 0.75. You can easily check
this by executing AX, which should produce the same elements defined in B. Doing
this sort of operation with NumPy is easy, as such a system can be expanded to much
larger 2D matrices.

Not all matrices are invertible, so this method of solving for solutions
in a system does not always work. You can sidestep this problem by
using numpy.linalg.svd,5 which usually works well inverting poorly
conditioned matrices.

Now that we understand how NumPy matrices work, we can show how to do the same
operations without specifically using the numpy.matrix subclass. (The numpy.matrix
subclass is contained within the numpy.array class, which means that we can do the
same example as that above without directly invoking the numpy.matrix class.)

import numpy as np

a = np.array([[3, 6, -5],
[1, -3, 2],
[5, -1, 4]])

Defining the array
b = np.array([12, -2, 10])

Solving for the variables, where we invert A
x = np.linalg.inv(a).dot(b)
print(x)

array([1.75, 1.75, 0.75])

5 http://docs.scipy.org/doc/numpy/reference/generated/numpy.linalg.svd.html

2.4 Math | 15

Both methods of approaching linear algebra operations are viable, but which one is the
best? The numpy.matrix method is syntactically the simplest. However, numpy.array is
the most practical. First, the NumPy array is the standard for using nearly anything in
the scientific Python environment, so bugs pertaining to the linear algebra operations
will be less frequent than with numpy.matrix operations. Furthermore, in examples such
as the two shown above, the numpy.array method is computationally faster.

Passing data structures from one class to another can become cumbersome and lead
to unexpected results when not done correctly. This would likely happen if one were to
use numpy.matrix and then pass it to numpy.array for further operations. Sticking with
one data structure will lead to fewer headaches and less worry than switching between
matrices and arrays. It is advisable, then, to use numpy.array whenever possible.

16 | Chapter 2: NumPy

CHAPTER 3

SciPy

With NumPy we can achieve fast solutions with simple coding. Where does SciPy
come into the picture? It’s a package that utilizes NumPy arrays and manipulations to
take on standard problems that scientists and engineers commonly face: integration,
determining a function’s maxima or minima, finding eigenvectors for large sparse
matrices, testing whether two distributions are the same, and much more. We will cover
just the basics here, which will allow you to take advantage of the more complex features
in SciPy by going through easy examples that are applicable to real-world problems.

We will start with optimization and data fitting, as these are some of the most common
tasks, and then move through interpolation, integration, spatial analysis, clustering,
signal and image processing, sparse matrices, and statistics.

3.1 Optimization and Minimization
The optimization package in SciPy allows us to solve minimization problems easily and
quickly. But wait: what is minimization and how can it help you with your work? Some
classic examples are performing linear regression, finding a function’s minimum and
maximum values, determining the root of a function, and finding where two functions
intersect. Below we begin with a simple linear regression and then expand it to fitting
non-linear data.

The optimization and minimization tools that NumPy and SciPy provide
are great, but they do not have Markov Chain Monte Carlo (MCMC)
capabilities—in other words, Bayesian analysis. There are several popular
MCMC Python packages like PyMC,1 a rich package with many options,
and emcee,2 an affine invariant MCMC ensemble sampler (meaning that
large scales are not a problem for it).

1 http://pymc-devs.github.com/pymc/
2 http://danfm.ca/emcee/

17

3.1.1 Data Modeling and Fitting
There are several ways to fit data with a linear regression. In this section we will use
curve_fit, which is a χ2-based method (in other words, a best-fit method). In the
example below, we generate data from a known function with noise, and then fit the
noisy data with curve_fit. The function we will model in the example is a simple linear
equation, f (x) = ax + b.

import numpy as np
from scipy.optimize import curve_fit

Creating a function to model and create data
def func(x, a, b):

return a * x + b

Generating clean data
x = np.linspace(0, 10, 100)
y = func(x, 1, 2)

Adding noise to the data
yn = y + 0.9 * np.random.normal(size=len(x))

Executing curve_fit on noisy data
popt, pcov = curve_fit(func, x, yn)

popt returns the best fit values for parameters of
the given model (func).

print(popt)

The values from popt, if a good fit, should be close to the values for the y assignment.
You can check the quality of the fit with pcov, where the diagonal elements are the
variances for each parameter. Figure 3-1 gives a visual illustration of the fit.

Taking this a step further, we can do a least-squares fit to a Gaussian profile, a non-linear
function:

a ∗ exp
(−(x − μ)2

2 σ 2

)
,

where a is a scalar, μ is the mean, and σ is the standard deviation.

Creating a function to model and create data
def func(x, a, b, c):

return a*np.exp(-(x-b)**2/(2*c**2))

Generating clean data
x = np.linspace(0, 10, 100)
y = func(x, 1, 5, 2)

Adding noise to the data
yn = y + 0.2 * np.random.normal(size=len(x))

Executing curve_fit on noisy data
popt, pcov = curve_fit(func, x, yn)

18 | Chapter 3: SciPy

Figure 3-1. Fitting noisy data with a linear equation.

Figure 3-2. Fitting noisy data with a Gaussian equation.

popt returns the best-fit values for parameters of the given model (func).
print(popt)

As we can see in Figure 3-2, the result from the Gaussian fit is acceptable.

Going one more step, we can fit a one-dimensional dataset with multiple Gaussian
profiles. The func is now expanded to include two Gaussian equations with different
input variables. This example would be the classic case of fitting line spectra (see
Figure 3-3).

3.1 Optimization and Minimization | 19

Figure 3-3. Fitting noisy data with multiple Gaussian equations.

Two-Gaussian model
def func(x, a0, b0, c0, a1, b1,c1):

return a0*np.exp(-(x - b0) ** 2/(2 * c0 ** 2))\
+ a1 * np.exp(-(x - b1) ** 2/(2 * c1 ** 2))

Generating clean data
x = np.linspace(0, 20, 200)
y = func(x, 1, 3, 1, -2, 15, 0.5)

Adding noise to the data
yn = y + 0.2 * np.random.normal(size=len(x))

Since we are fitting a more complex function,
providing guesses for the fitting will lead to
better results.

guesses = [1, 3, 1, 1, 15, 1]
Executing curve_fit on noisy data
popt, pcov = curve_fit(func, x, yn,

p0=guesses)

3.1.2 Solutions to Functions
With data modeling and fitting under our belts, we can move on to finding solutions,
such as “What is the root of a function?” or “Where do two functions intersect?” SciPy
provides an arsenal of tools to do this in the optimize module. We will run through the
primary ones in this section.

Let’s start simply, by solving for the root of an equation (see Figure 3-4). Here we will
use scipy.optimize.fsolve.

20 | Chapter 3: SciPy

Figure 3-4. Approximate the root of a linear function at y = 0.

from scipy.optimize import fsolve
import numpy as np

line = lambda x: x + 3

solution = fsolve(line, -2)
print solution

Finding the intersection points between two equations is nearly as simple.3

from scipy.optimize import fsolve
import numpy as np

Defining function to simplify intersection solution
def findIntersection(func1, func2, x0):

return fsolve(lambda x : func1(x) - func2(x), x0)

Defining functions that will intersect
funky = lambda x : np.cos(x / 5) * np.sin(x / 2)
line = lambda x : 0.01 * x - 0.5

Defining range and getting solutions on intersection points
x = np.linspace(0,45,10000)
result = findIntersection(funky, line, [15, 20, 30, 35, 40, 45])

Printing out results for x and y
print(result, line(result))

As we can see in Figure 3-5, the intersection points are well identified. Keep in mind
that the assumptions about where the functions will intersect are important. If these
are incorrect, you could get specious results.

3 This is a modified example from http://glowingpython.blogspot.de/2011/05/hot-to-find-intersection-of-two.html.

3.1 Optimization and Minimization | 21

Figure 3-5. Finding the intersection points between two functions.

3.2 Interpolation
Data that contains information usually has a functional form, and as analysts we want
to model it. Given a set of sample data, obtaining the intermediate values between the
points is useful to understand and predict what the data will do in the non-sampled do-
main. SciPy offers well over a dozen different functions for interpolation, ranging from
those for simple univariate cases to those for complex multivariate ones. Univariate
interpolation is used when the sampled data is likely led by one independent vari-
able, whereas multivariate interpolation assumes there is more than one independent
variable.

There are two basic methods of interpolation: (1) Fit one function to an entire dataset
or (2) fit different parts of the dataset with several functions where the joints of each
function are joined smoothly. The second type is known as a spline interpolation, which
can be a very powerful tool when the functional form of data is complex. We will
first show how to interpolate a simple function, and then proceed to a more complex
case. The example below interpolates a sinusoidal function (see Figure 3-6) using
scipy.interpolate.interp1d with different fitting parameters. The first parameter is a
“linear” fit and the second is a “quadratic” fit.

import numpy as np
from scipy.interpolate import interp1d

Setting up fake data
x = np.linspace(0, 10 * np.pi, 20)
y = np.cos(x)

Interpolating data
fl = interp1d(x, y, kind='linear')
fq = interp1d(x, y, kind='quadratic')

x.min and x.max are used to make sure we do not
go beyond the boundaries of the data for the
interpolation.
xint = np.linspace(x.min(), x.max(), 1000)
yintl = fl(xint)
yintq = fq(xint)

22 | Chapter 3: SciPy

Figure 3-6. Synthetic data points (red dots) interpolated with linear and quadratic parameters.

Figure 3-7. Interpolating noisy synthetic data.

Figure 3-6 shows that in this case the quadratic fit is far better. This
should demonstrate how important it is to choose the proper parameters
when interpolating data.

Can we interpolate noisy data? Yes, and it is surprisingly easy, using a spline-fitting
function called scipy.interpolate.UnivariateSpline. (The result is shown in Figure
3-7.)

import numpy as np
import matplotlib.pyplot as mpl
from scipy.interpolate import UnivariateSpline

Setting up fake data with artificial noise
sample = 30
x = np.linspace(1, 10 * np.pi, sample)
y = np.cos(x) + np.log10(x) + np.random.randn(sample) / 10

Interpolating the data
f = UnivariateSpline(x, y, s=1)

3.2 Interpolation | 23

x.min and x.max are used to make sure we do not
go beyond the boundaries of the data for the
interpolation.
xint = np.linspace(x.min(), x.max(), 1000)
yint = f(xint)

The option s is the smoothing factor, which should be used when fitting data with
noise. If instead s=0, then the interpolation will go through all points while ignoring
noise.

Last but not least, we go over a multivariate example—in this case, to reproduce an
image. The scipy.interpolate.griddata function is used for its capacity to deal with
unstructured N -dimensional data. For example, if you have a 1000 × 1000-pixel image,
and then randomly selected 1000 points, how well could you reconstruct the image?
Refer to Figure 3-8 to see how well scipy.interpolate.griddata performs.

import numpy as np
from scipy.interpolate import griddata

Defining a function
ripple = lambda x, y: np.sqrt(x**2 + y**2)+np.sin(x**2 + y**2)

Generating gridded data. The complex number defines
how many steps the grid data should have. Without the
complex number mgrid would only create a grid data structure
with 5 steps.
grid_x, grid_y = np.mgrid[0:5:1000j, 0:5:1000j]

Generating sample that interpolation function will see
xy = np.random.rand(1000, 2)
sample = ripple(xy[:,0] * 5 , xy[:,1] * 5)

Interpolating data with a cubic
grid_z0 = griddata(xy * 5, sample, (grid_x, grid_y), method='cubic')

Figure 3-8. Original image with random sample (black points, left) and the interpolated image (right).

24 | Chapter 3: SciPy

On the left-hand side of Figure 3-8 is the original image; the black points are the
randomly sampled positions. On the right-hand side is the interpolated image. There
are some slight glitches that come from the sample being too sparse for the finer
structures. The only way to get a better interpolation is with a larger sample size. (Note
that the griddata function has been recently added to SciPy and is only available for
version 0.9 and beyond.)

If we employ another multivariate spline interpolation, how would its results compare?
Here we use scipy.interpolate.SmoothBivariateSpline, where the code is quite similar
to that in the previous example.

import numpy as np
from scipy.interpolate import SmoothBivariateSpline as SBS

Defining a function
ripple = lambda x, y: np.sqrt(x**2 + y**2)+np.sin(x**2 + y**2)

Generating sample that interpolation function will see
xy= np.random.rand(1000, 2)
x, y = xy[:,0], xy[:,1]
sample = ripple(xy[:,0] * 5 , xy[:,1] * 5)

Interpolating data
fit = SBS(x * 5, y * 5, sample, s=0.01, kx=4, ky=4)
interp = fit(np.linspace(0, 5, 1000), np.linspace(0, 5, 1000))

We have a similar result to that in the last example (Figure 3-9). The left panel shows the
original image with randomly sampled points, and in the right panel is the interpolated
data. The SmoothBivariateSpline function appears to work a bit better than griddata,
with an exception in the upper-right corner.

Figure 3-9. Original image with random sample (black points, left) and the interpolated image (right).

3.2 Interpolation | 25

Although from the figure SmoothBivariateSpline does appear to work
better, run the code several times to see what happens. SmoothBivariate-
Spline is very sensitive to the data sample it is given, and interpolations
can go way off the mark. griddata is more robust and can produce a
reasonable interpolation regardless of the data sample it is given.

3.3 Integration
Integration is a crucial tool in math and science, as differentiation and integration are
the two key components of calculus. Given a curve from a function or a dataset, we
can calculate the area below it. In the traditional classroom setting we would integrate
a function analytically, but data in the research setting is rarely given in this form, and
we need to approximate its definite integral.

The main purpose of integration with SciPy is to obtain numerical solu-
tions. If you need indefinite integral solutions, then you should look at
SymPy.4 It solves mathematical problems symbolically for many types of
computation beyond calculus.

SciPy has a range of different functions to integrate equations and data. We will first
go over these functions, and then move on to the data solutions. Afterward, we will
employ the data-fitting tools we used earlier to compute definite integral solutions.

3.3.1 Analytic Integration
We will begin working with the function expressed below. It is straightforward to
integrate and its solution’s estimated error is small. See Figure 3-10 for the visual context
of what is being calculated. ∫ 3

0
cos2(ex) dx (3.1)

import numpy as np
from scipy.integrate import quad

Defining function to integrate
func = lambda x: np.cos(np.exp(x)) ** 2

Integrating function with upper and lower
limits of 0 and 3, respectively
solution = quad(func, 0, 3)
print solution

The first element is the desired value
and the second is the error.
(1.296467785724373, 1.397797186265988e-09)

4 http://sympy.org/en/index.html

26 | Chapter 3: SciPy

Figure 3-10. Definite integral (shaded region) of a function.

Figure 3-11. Definite integral (shaded region) of a function. The original function is the line and the
randomly sampled data points are in red.

3.3.2 Numerical Integration
Let’s move on to a problem where we are given data instead of some known equation
and numerical integration is needed. Figure 3-11 illustrates what type of data sample
can be used to approximate acceptable indefinite integrals.

import numpy as np
from scipy.integrate import quad, trapz

Setting up fake data
x = np.sort(np.random.randn(150) * 4 + 4).clip(0,5)
func = lambda x: np.sin(x) * np.cos(x ** 2) + 1
y = func(x)

Integrating function with upper and lower
limits of 0 and 5, respectively
fsolution = quad(func, 0, 5)
dsolution = trapz(y, x=x)

3.3 Integration | 27

print('fsolution = ' + str(fsolution[0]))
print('dsolution = ' + str(dsolution))
print('The difference is ' + str(np.abs(fsolution[0] - dsolution)))

fsolution = 5.10034506754
dsolution = 5.04201628314
The difference is 0.0583287843989.

The quad integrator can only work with a callable function, whereas trapz is a numerical
integrator that utilizes data points.

3.4 Statistics
In NumPy there are basic statistical functions like mean, std, median, argmax, and argmin.
Moreover, the numpy.arrays have built-in methods that allow us to use most of the
NumPy statistics easily.

import numpy as np

Constructing a random array with 1000 elements
x = np.random.randn(1000)

Calculating several of the built-in methods
that numpy.array has
mean = x.mean()
std = x.std()
var = x.var()

For quick calculations these methods are useful, but more is usually needed for quan-
titative research. SciPy offers an extended collection of statistical tools such as distribu-
tions (continuous or discrete) and functions. We will first cover how to extrapolate the
different types of distributions. Afterward, we will discuss the SciPy statistical functions
used most often in various fields.

3.4.1 Continuous and Discrete Distributions
There are roughly 80 continuous distributions and over 10 discrete distributions.
Twenty of the continuous functions are shown in Figure 3-12 as probability density
functions (PDFs) to give a visual impression of what the scipy.stats package provides.
These distributions are useful as random number generators, similar to the functions
found in numpy.random. Yet the rich variety of functions SciPy provides stands in con-
trast to the numpy.random functions, which are limited to uniform and Gaussian-like
distributions.

When we call a distribution from scipy.stats, we can extract its information in several
ways: probability density functions (PDFs), cumulative distribution functions (CDFs),
random variable samples (RVSs), percent point functions (PPFs), and more. So how do
we set up SciPy to give us these distributions? Working with the classic normal function

PDF = e(−x2/2)/
√

2 π (3.2)

28 | Chapter 3: SciPy

Figure 3-12. A sample of 20 continuous distributions in SciPy.

we demonstrate how to access the distribution.

import numpy as np
import scipy.stats import norm

Set up the sample range
x = np.linspace(-5,5,1000)

3.4 Statistics | 29

Here set up the parameters for the normal distribution,
where loc is the mean and scale is the standard deviation.
dist = norm(loc=0, scale=1)

Retrieving norm's PDF and CDF
pdf = dist.pdf(x)
cdf = dist.cdf(x)

Here we draw out 500 random values from the norm.
sample = dist.rvs(500)

The distribution can be centered at a different point and scaled with the options loc and
scale as shown in the example. This works as easily with all distributions because of
their functional behavior, so it is important to read the documentation5 when necessary.

In other cases one will need a discrete distribution like the Poisson, binomial, or geo-
metric. Unlike continuous distributions, discrete distributions are useful for problems
where a given number of events occur in a fixed interval of time/space, the events occur
with a known average rate, and each event is independent of the prior event.

Equation 3.3 is the probability mass function (PMF) of the geometric distribution.

PMF = (1 − p)(k−1) p (3.3)

import numpy as np
from scipy.stats import geom

Here set up the parameters for the geometric distribution.
p = 0.5
dist = geom(p)

Set up the sample range.
x = np.linspace(0, 5, 1000)

Retrieving geom's PMF and CDF
pmf = dist.pmf(x)
cdf = dist.cdf(x)

Here we draw out 500 random values.
sample = dist.rvs(500)

3.4.2 Functions
There are more than 60 statistical functions in SciPy, which can be overwhelming to
digest if you simply are curious about what is available. The best way to think of
the statistics functions is that they either describe or test samples—for example, the
frequency of certain values or the Kolmogorov-Smirnov test, respectively.

Since SciPy provides a large range of distributions, it would be great to take advantage
of the ones we covered earlier. In the stats package, there are a number of functions

5 http://docs.scipy.org/doc/scipy/reference/stats.html

30 | Chapter 3: SciPy

such as kstest and normaltest that test samples. These distribution tests can be very
helpful in determining whether a sample comes from some particular distribution or
not. Before applying these, be sure you have a good understanding of your data, to
avoid misinterpreting the functions’ results.

import numpy as np
from scipy import stats

Generating a normal distribution sample
with 100 elements
sample = np.random.randn(100)

normaltest tests the null hypothesis.
out = stats.normaltest(sample)
print('normaltest output')
print('Z-score = ' + str(out[0]))
print('P-value = ' + str(out[1]))

kstest is the Kolmogorov-Smirnov test for goodness of fit.
Here its sample is being tested against the normal distribution.
D is the KS statistic and the closer it is to 0 the better.
out = stats.kstest(sample, 'norm')
print('\nkstest output for the Normal distribution')
print('D = ' + str(out[0]))
print('P-value = ' + str(out[1]))

Similarly, this can be easily tested against other distributions,
like the Wald distribution.
out = stats.kstest(sample, 'wald')
print('\nkstest output for the Wald distribution')
print('D = ' + str(out[0]))
print('P-value = ' + str(out[1]))

Researchers commonly use descriptive functions for statistics. Some descriptive func-
tions that are available in the stats package include the geometric mean (gmean), the
skewness of a sample (skew), and the frequency of values in a sample (itemfreq). Using
these functions is simple and does not require much input. A few examples follow.

import numpy as np
from scipy import stats

Generating a normal distribution sample
with 100 elements
sample = np.random.randn(100)

The harmonic mean: Sample values have to
be greater than 0.
out = stats.hmean(sample[sample > 0])
print('Harmonic mean = ' + str(out))

The mean, where values below -1 and above 1 are
removed for the mean calculation
out = stats.tmean(sample, limits=(-1, 1))
print('\nTrimmed mean = ' + str(out))

3.4 Statistics | 31

Calculating the skewness of the sample
out = stats.skew(sample)
print('\nSkewness = ' + str(out))

Additionally, there is a handy summary function called
describe, which gives a quick look at the data.
out = stats.describe(sample)
print('\nSize = ' + str(out[0]))
print('Min = ' + str(out[1][0]))
print('Max = ' + str(out[1][1]))
print('Mean = ' + str(out[2]))
print('Variance = ' + str(out[3]))
print('Skewness = ' + str(out[4]))
print('Kurtosis = ' + str(out[5]))

There are many more functions available in the stats package, so the documentation
is worth a look if you need more specific tools. If you need more statistical tools than
are available here, try RPy.6 R is a cornerstone package for statistical analysis, and RPy
ports the tools available in that system to Python. If you’re content with what is available
in SciPy and NumPy but need more automated analysis, then take a look at Pandas.7 It
is a powerful package that can perform quick statistical analysis on big data. Its output
is supplied in both numerical values and plots.

3.5 Spatial and Clustering Analysis
From biological to astrophysical sciences, spatial and clustering analysis are key to iden-
tifying patterns, groups, and clusters. In biology, for example, the spacing of different
plant species hints at how seeds are dispersed, interact with the environment, and grow.
In astrophysics, these analysis techniques are used to seek and identify star clusters,
galaxy clusters, and large-scale filaments (composed of galaxy clusters). In the computer
science domain, identifying and mapping complex networks of nodes and information
is a vital study all on its own. With big data and data mining, identifying data clusters
is becoming important, in order to organize discovered information, rather than being
overwhelmed by it.

If you need a package that provides good graph theory capabilities, check
out NetworkX.8 It is an excellent Python package for creating, modu-
lating, and studying the structure of complex networks (i.e , minimum
spanning trees analysis).

SciPy provides a spatial analysis class (scipy.spatial) and a cluster analysis class
(scipy.cluster). The spatial class includes functions to analyze distances between data
points (e.g., k-d trees). The cluster class provides two overarching subclasses: vector
quantization (vq) and hierarchical clustering (hierarchy). Vector quantization groups

6 http://rpy.sourceforge.net/
7 http://pandas.pydata.org/
8 http://networkx.lanl.gov/

32 | Chapter 3: SciPy

large sets of data points (vectors) where each group is represented by centroids. The
hierarchy subclass contains functions to construct clusters and analyze their substruc-
tures.

3.5.1 Vector Quantization
Vector quantization is a general term that can be associated with signal processing, data
compression, and clustering. Here we will focus on the clustering component, starting
with how to feed data to the vq package in order to identify clusters.

import numpy as np
from scipy.cluster import vq

Creating data
c1 = np.random.randn(100, 2) + 5
c2 = np.random.randn(30, 2) - 5
c3 = np.random.randn(50, 2)

Pooling all the data into one 180 x 2 array
data = np.vstack([c1, c2, c3])

Calculating the cluster centroids and variance
from kmeans
centroids, variance = vq.kmeans(data, 3)

The identified variable contains the information
we need to separate the points in clusters
based on the vq function.
identified, distance = vq.vq(data, centroids)

Retrieving coordinates for points in each vq
identified core
vqc1 = data[identified == 0]
vqc2 = data[identified == 1]
vqc3 = data[identified == 2]

The result of the identified clusters matches up quite well to the original data, as shown
in Figure 3-13 (the generated cluster data is on the left and the vq-identified clusters are
the on the right). But this was done only for data that had little noise. What happens if
there is a randomly distributed set of points in the field? The algorithm fails with flying
colors. See Figure 3-14 for a nice illustration of this.

3.5.2 Hierarchical Clustering
Hierarchical clustering is a powerful tool for identifying structures that are nested
within larger structures. But working with the output can be tricky, as we do not get
cleanly identified clusters like we do with the kmeans technique. Below is an example9

wherein we generate a system of multiple clusters. To employ the hierarchy function,

9 The original effort in using this can be found at http://stackoverflow.com/questions/2982929/plotting-results-
of-hierarchical-clustering-ontop-of-a-matrix-of-data-in-python.

3.5 Spatial and Clustering Analysis | 33

Figure 3-13. Original clusters (left) and vq.kmeans-identified clusters (right). Points are associated to
a cluster by color.

Figure 3-14. Original clusters (left) and vq.kmeans-identified clusters (right). Points are associated to
a cluster by color. The uniformly distributed data shows the weak point of the vq.kmeans function.

we build a distance matrix, and the output is a dendrogram tree. See Figure 3-15 for a
visual example of how hierarchical clustering works.

import numpy as np
import matplotlib.pyplot as mpl
from mpl_toolkits.mplot3d import Axes3D
from scipy.spatial.distance import pdist, squareform
import scipy.cluster.hierarchy as hy

Creating a cluster of clusters function
def clusters(number = 20, cnumber = 5, csize = 10):

Note that the way the clusters are positioned is Gaussian randomness.
rnum = np.random.rand(cnumber, 2)
rn = rnum[:,0] * number
rn = rn.astype(int)
rn[np.where(rn < 5)] = 5
rn[np.where(rn > number/2.)] = round(number / 2., 0)

34 | Chapter 3: SciPy

Figure 3-15. The pixelated subplot is the distance matrix, and the two dendrogram subplots show
different types of dendrogram methods.

ra = rnum[:,1] * 2.9
ra[np.where(ra < 1.5)] = 1.5

cls = np.random.randn(number, 3) * csize

Random multipliers for central point of cluster
rxyz = np.random.randn(cnumber-1, 3)
for i in xrange(cnumber-1):

tmp = np.random.randn(rn[i+1], 3)
x = tmp[:,0] + (rxyz[i,0] * csize)
y = tmp[:,1] + (rxyz[i,1] * csize)
z = tmp[:,2] + (rxyz[i,2] * csize)
tmp = np.column_stack([x,y,z])
cls = np.vstack([cls,tmp])

return cls

3.5 Spatial and Clustering Analysis | 35

Generate a cluster of clusters and distance matrix.
cls = clusters()
D = pdist(cls[:,0:2])
D = squareform(D)

Compute and plot first dendrogram.
fig = mpl.figure(figsize=(8,8))
ax1 = fig.add_axes([0.09,0.1,0.2,0.6])
Y1 = hy.linkage(D, method='complete')
cutoff = 0.3 * np.max(Y1[:, 2])
Z1 = hy.dendrogram(Y1, orientation='right', color_threshold=cutoff)
ax1.xaxis.set_visible(False)
ax1.yaxis.set_visible(False)

Compute and plot second dendrogram.
ax2 = fig.add_axes([0.3,0.71,0.6,0.2])
Y2 = hy.linkage(D, method='average')
cutoff = 0.3 * np.max(Y2[:, 2])
Z2 = hy.dendrogram(Y2, color_threshold=cutoff)
ax2.xaxis.set_visible(False)
ax2.yaxis.set_visible(False)

Plot distance matrix.
ax3 = fig.add_axes([0.3,0.1,0.6,0.6])
idx1 = Z1['leaves']
idx2 = Z2['leaves']
D = D[idx1,:]
D = D[:,idx2]
ax3.matshow(D, aspect='auto', origin='lower', cmap=mpl.cm.YlGnBu)
ax3.xaxis.set_visible(False)
ax3.yaxis.set_visible(False)

Plot colorbar.
fig.savefig('cluster_hy_f01.pdf', bbox = 'tight')

Seeing the distance matrix in the figure with the dendrogram tree highlights how the
large and small structures are identified. The question is, how do we distinguish the
structures from one another? Here we use a function called fcluster that provides us
with the indices to each of the clusters at some threshold. The output from fcluster will
depend on the method you use when calculating the linkage function, such as complete
or single. The cutoff value you assign to the cluster is given as the second input in the
fcluster function. In the dendrogram function, the cutoff’s default is 0.7 * np.max(Y[:,
2]), but here we will use the same cutoff as in the previous example, with the scaler 0.3.

Same imports and cluster function from the previous example
follow through here.

Here we define a function to collect the coordinates of
each point of the different clusters.
def group(data, index):

number = np.unique(index)
groups = []
for i in number:

groups.append(data[index == i])

return groups

36 | Chapter 3: SciPy

Creating a cluster of clusters
cls = clusters()

Calculating the linkage matrix
Y = hy.linkage(cls[:,0:2], method='complete')

Here we use the fcluster function to pull out a
collection of flat clusters from the hierarchical
data structure. Note that we are using the same
cutoff value as in the previous example for the dendrogram
using the 'complete' method.
cutoff = 0.3 * np.max(Y[:, 2])
index = hy.fcluster(Y, cutoff, 'distance')

Using the group function, we group points into their
respective clusters.
groups = group(cls, index)

Plotting clusters
fig = mpl.figure(figsize=(6, 6))
ax = fig.add_subplot(111)
colors = ['r', 'c', 'b', 'g', 'orange', 'k', 'y', 'gray']
for i, g in enumerate(groups):

i = np.mod(i, len(colors))
ax.scatter(g[:,0], g[:,1], c=colors[i], edgecolor='none', s=50)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)

fig.savefig('cluster_hy_f02.pdf', bbox = 'tight')

The hierarchically identified clusters are shown in Figure 3-16.

Figure 3-16. Hierarchically identified clusters.

3.5 Spatial and Clustering Analysis | 37

Figure 3-17. A stacked image that is composed of hundreds of exposures from the International Space
Station.

3.6 Signal and Image Processing
SciPy allows us to read and write image files like JPEG and PNG images without
worrying too much about the file structure for color images. Below, we run through a
simple illustration of working with image files to make a nice image10 (see Figure 3-17)
from the International Space Station (ISS).

import numpy as np
from scipy.misc import imread, imsave
from glob import glob

Getting the list of files in the directory
files = glob('space/*.JPG')

Opening up the first image for loop
im1 = imread(files[0]).astype(np.float32)

Starting loop and continue co-adding new images
for i in xrange(1, len(files)):

print i
im1 += imread(files[i]).astype(np.float32)

Saving img
imsave('stacked_image.jpg', im1)

10 Original Pythonic effort can be found at http://stackoverflow.com/questions/9251580/stacking-astronomy-
images-with-python.

38 | Chapter 3: SciPy

Figure 3-18. A stacked image that is composed of hundreds of exposures from the International Space
Station.

The JPG images in the Python environment are NumPy arrays with (426, 640, 3),
where the three layers are red, green, and blue, respectively.

In the original stacked image, seeing the star trails above Earth is nearly impossible.
We modify the previous example to enhance the star trails as shown in Figure 3-18.

import numpy as np
from scipy.misc import imread, imsave
from glob import glob

This function allows us to place in the
brightest pixels per x and y position between
two images. It is similar to PIL's
ImageChop.Lighter function.
def chop_lighter(image1, image2):

s1 = np.sum(image1, axis=2)
s2 = np.sum(image2, axis=2)

index = s1 < s2
image1[index, 0] = image2[index, 0]
image1[index, 1] = image2[index, 1]
image1[index, 2] = image2[index, 2]
return image1

Getting the list of files in the directory
files = glob('space/*.JPG')

Opening up the first image for looping
im1 = imread(files[0]).astype(np.float32)
im2 = np.copy(im1)

3.6 Signal and Image Processing | 39

Starting loop
for i in xrange(1, len(files)):

print i
im = imread(files[i]).astype(np.float32)
Same before
im1 += im
im2 shows star trails better
im2 = chop_lighter(im2, im)

Saving image with slight tweaking on the combination
of the two images to show star trails with the
co-added image.
imsave('stacked_image.jpg', im1/im1.max() + im2/im2.max()*0.2)

When dealing with images without SciPy, you have to be more concerned about keeping
the array values in the right format when saving them as image files. SciPy deals with
that nicely and allows us to focus on processing the images and obtaining our desired
effects.

3.7 Sparse Matrices
With NumPy we can operate with reasonable speeds on arrays containing 106 elements.
Once we go up to 107 elements, operations can start to slow down and Python’s memory
will become limited, depending on the amount of RAM available. What’s the best
solution if you need to work with an array that is far larger—say, 1010 elements? If
these massive arrays primarily contain zeros, then you’re in luck, as this is the property
of sparse matrices. If a sparse matrix is treated correctly, operation time and memory
usage can go down drastically. The simple example below illustrates this.

You can determine the byte size of a numpy.array by calling its method
nbytes. This can be especially useful when trying to determine what is
hogging memory in your code. To do the same with sparse matrices, you
can use data.nbytes.

import numpy as np
from scipy.sparse.linalg import eigsh
from scipy.linalg import eigh
import scipy.sparse
import time

N = 3000
Creating a random sparse matrix
m = scipy.sparse.rand(N, N)

Creating an array clone of it
a = m.toarray()

print('The numpy array data size: ' + str(a.nbytes) + ' bytes')
print('The sparse matrix data size: ' + str(m.data.nbytes) + ' bytes')

Non-sparse
t0 = time.time()

40 | Chapter 3: SciPy

res1 = eigh(a)
dt = str(np.round(time.time() - t0, 3)) + ' seconds'
print('Non-sparse operation takes ' + dt)

Sparse
t0 = time.time()
res2 = eigsh(m)
dt = str(np.round(time.time() - t0, 3)) + ' seconds'
print('Sparse operation takes ' + dt)

The memory allotted to the NumPy array and sparse matrix were 68 MB and 0.68 MB,
respectively. In the same order, the times taken to process the Eigen commands were
36.6 and 0.2 seconds on my computer. This means that the sparse matrix was 100 times
more memory efficient and the Eigen operation was roughly 150 times faster than the
non-sparse cases.

If you’re unfamiliar with sparse matrices, I suggest reading http://www
.scipy.org/SciPyPackages/Sparse, where the basics on sparse matrices and
operations are discussed.

In 2D and 3D geometry, there are many sparse data structures used in fields like
engineering, computational fluid dynamics, electromagnetism, thermodynamics, and
acoustics. Non-geometric instances of sparse matrices are applicable to optimization,
economic modeling, mathematics and statistics, and network/graph theories.

Using scipy.io, you can read and write common sparse matrix file formats such as
Matrix Market and Harwell-Boeing, or load MatLab files. This is especially useful for
collaborations with others who use these data formats. In the next section, we expand
on these scipy.io capabilities.

3.8 Reading and Writing Files Beyond NumPy
NumPy provides a good set of input and output capabilities with ASCII files. Its binary
support is great if you only need to share information to be read from one Python
environment to another. But what about more universally used binary file formats?
If you are using Matlab or collaborating with others who are using it, then as briefly
mentioned in the previous section, it is not a problem for NumPy to read and write
Matlab-supported files (using scipy.io.loadmat and scipy.savemat).

In fields like astronomy, geography, and medicine, there is a programming language
called IDL. It saves files in a binary format and can be read by NumPy using a built-in
package called scipy.io.readsav. It is a flexible and fast module, but it does not have
writing capabilities.

Last but not least, you can query, read, and write Matrix Market files. These are very
commonly used to share matrix data structures that are written in ASCII format. This
format is well supported in other languages like C, Fortran, and Matlab, so it is a good
format to use due to its universality and user readability. It is also suitable for sparse
matrices.

3.8 Reading and Writing Files Beyond NumPy | 41

CHAPTER 4

SciKit: Taking SciPy One Step Further

SciPy and NumPy are great tools and provide us with most of the functionality that we
need. Sometimes, though we need more advanced tools, and that’s where the scikits
come in. These are a set of packages that are complementary to SciPy. There are
currently more than 20 scikit packages available; a list can be found at http://scikit
.appspot.com/. Here we will go over two well-maintained and popular packages: Scikit-
image, a more beefed-up image module than scipy.ndimage, is aimed to be an imaging
processing toolkit for SciPy. Scikit-learn is a machine learning package that can be used
for a range of scientific and engineering purposes.

4.1 Scikit-Image
SciPy’s ndimage class contains many useful tools for processing multi-dimensional data,
such as basic filtering (e.g., Gaussian smoothing), Fourier transform, morphology (e.g.,
binary erosion), interpolation, and measurements. From those functions we can write
programs to execute more complex operations. Scikit-image has fortunately taken on
the task of going a step further to provide more advanced functions that we may
need for scientific research. These advanced and high-level modules include color
space conversion, image intensity adjustment algorithms, feature detections, filters for
sharpening and denoising, read/write capabilities, and more.

4.1.1 Dynamic Threshold
A common application in imaging science is segmenting image components from one
another, which is referred to as thresholding. The classic thresholding technique works
well when the background of the image is flat. Unfortunately, this situation is not the
norm; instead, the background visually will be changing throughout the image. Hence,
adaptive thresholding techniques have been developed, and we can easily utilize them
in scikit-image. In the following example, we generate an image with a non-uniform
background that has randomly placed fuzzy dots throughout (see Figure 4-1). Then

43

Figure 4-1. Illustration of thresholding. The original synthetic image is on the left, with classic and
dynamic threshold algorithms at work from middle to right, respectively.

we run a basic and adaptive threshold function on the image to see how well we can
segment the fuzzy dots from the background.

import numpy as np
import matplotlib.pyplot as mpl
import scipy.ndimage as ndimage
import skimage.filter as skif

Generating data points with a non-uniform background
x = np.random.uniform(low=0, high=100, size=20).astype(int)
y = np.random.uniform(low=0, high=100, size=20).astype(int)

Creating image with non-uniform background
func = lambda x, y: x**2 + y**2
grid_x, grid_y = np.mgrid[-1:1:100j, -2:2:100j]
bkg = func(grid_x, grid_y)
bkg = bkg / np.max(bkg)

Creating points
clean = np.zeros((100,100))
clean[(x,y)] += 5
clean = ndimage.gaussian_filter(clean, 3)
clean = clean / np.max(clean)

Combining both the non-uniform background
and points
fimg = bkg + clean
fimg = fimg / np.max(fimg)

Defining minimum neighboring size of objects
block_size = 3

Adaptive threshold function which returns image
map of structures that are different relative to
background
adaptive_cut = skif.threshold_adaptive(fimg, block_size, offset=0)

44 | Chapter 4: SciKit: Taking SciPy One Step Further

Global threshold
global_thresh = skif.threshold_otsu(fimg)
global_cut = fimg > global_thresh

Creating figure to highlight difference between
adaptive and global threshold methods
fig = mpl.figure(figsize=(8, 4))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

ax1 = fig.add_subplot(131)
ax1.imshow(fimg)
ax1.xaxis.set_visible(False)
ax1.yaxis.set_visible(False)

ax2 = fig.add_subplot(132)
ax2.imshow(global_cut)
ax2.xaxis.set_visible(False)
ax2.yaxis.set_visible(False)

ax3 = fig.add_subplot(133)
ax3.imshow(adaptive_cut)
ax3.xaxis.set_visible(False)
ax3.yaxis.set_visible(False)

fig.savefig('scikit_image_f01.pdf', bbox_inches='tight')

In this case, as shown in Figure 4-1, the adaptive thresholding technique (right panel)
obviously works far better than the basic one (middle panel). Most of the code above
is for generating the image and plotting the output for context. The actual code for
adaptively thresholding the image took only two lines.

4.1.2 Local Maxima
Approaching a slightly different problem, but with a similar setup as before, how can
we identify points on a non-uniform background to obtain their pixel coordinates?
Here we can use skimage.morphology.is_local_maximum, which only needs the image
as a default input. The function works surprisingly well; see Figure 4-2, where the
identified maxima are circled in blue.

import numpy as np
import matplotlib.pyplot as mpl
import scipy.ndimage as ndimage
import skimage.morphology as morph

Generating data points with a non-uniform background
x = np.random.uniform(low=0, high=200, size=20).astype(int)
y = np.random.uniform(low=0, high=400, size=20).astype(int)

Creating image with non-uniform background
func = lambda x, y: np.cos(x)+ np.sin(y)
grid_x, grid_y = np.mgrid[0:12:200j, 0:24:400j]
bkg = func(grid_x, grid_y)
bkg = bkg / np.max(bkg)

4.1 Scikit-Image | 45

Figure 4-2. Identified local maxima (blue circles).

Creating points
clean = np.zeros((200,400))
clean[(x,y)] += 5
clean = ndimage.gaussian_filter(clean, 3)
clean = clean / np.max(clean)

Combining both the non-uniform background
and points
fimg = bkg + clean
fimg = fimg / np.max(fimg)

Calculating local maxima
lm1 = morph.is_local_maximum(fimg)
x1, y1 = np.where(lm1.T == True)

Creating figure to show local maximum detection
rate success
fig = mpl.figure(figsize=(8, 4))

ax = fig.add_subplot(111)
ax.imshow(fimg)
ax.scatter(x1, y1, s=100, facecolor='none', edgecolor='#009999')
ax.set_xlim(0,400)
ax.set_ylim(0,200)
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)

fig.savefig('scikit_image_f02.pdf', bbox_inches='tight')

If you look closely at the figure, you will notice that there are identified maxima that
do not point to fuzzy sources but instead to the background peaks. These peaks are a
problem, but by definition this is what skimage.morphology.is_local_maximum will find.
How can we filter out these “false positives”? Since we have the coordinates of the local

46 | Chapter 4: SciKit: Taking SciPy One Step Further

maxima, we can look for properties that will differentiate the sources from the rest. The
background is relatively smooth compared to the sources, so we could differentiate them
easily by standard deviation from the peaks to their local neighboring pixels.

How does scikit-image fare with real-world research problems? Quite well, in fact. In
astronomy, the flux per unit area received from stars can be measured in images by quan-
tifying intensity levels at their locations—a process called photometry. Photometry has
been done for quite some time in multiple programming languages, but there is no de
facto package for Python yet. The first step in photometry is identifying the stars. In the
following example, we will use is_local_maximum to identify sources (hopefully stars) in
a stellar cluster called NGC 3603 that was observed with the Hubble Space Telescope.
Note that one additional package, PyFITS,1 is used here. It is a standard astronomical
package for loading binary data stored in FITS2 format.

import numpy as np
import pyfits
import matplotlib.pyplot as mpl
import skimage.morphology as morph
import skimage.exposure as skie

Loading astronomy image from an infrared space telescope
img = pyfits.getdata('stellar_cluster.fits')[500:1500, 500:1500]

Prep file scikit-image environment and plotting
limg = np.arcsinh(img)
limg = limg / limg.max()
low = np.percentile(limg, 0.25)
high = np.percentile(limg, 99.5)
opt_img = skie.exposure.rescale_intensity(limg, in_range=(low, high))

Calculating local maxima and filtering out noise
lm = morph.is_local_maximum(limg)
x1, y1 = np.where(lm.T == True)
v = limg[(y1, x1)]
lim = 0.5
x2, y2 = x1[v > lim], y1[v > lim]

Creating figure to show local maximum detection
rate success
fig = mpl.figure(figsize=(8,4))
fig.subplots_adjust(hspace=0.05, wspace=0.05)

ax1 = fig.add_subplot(121)
ax1.imshow(opt_img)
ax1.set_xlim(0, img.shape[1])
ax1.set_ylim(0, img.shape[0])
ax1.xaxis.set_visible(False)
ax1.yaxis.set_visible(False)

1 http://www.stsci.edu/institute/software_hardware/pyfits
2 http://heasarc.nasa.gov/docs/heasarc/fits.html

4.1 Scikit-Image | 47

Figure 4-3. Stars (orange circles) in a Hubble Space Telescope image of a stellar cluster, identified using
the is_local_maximum function.

ax2 = fig.add_subplot(122)
ax2.imshow(opt_img)
ax2.scatter(x2, y2, s=80, facecolor='none', edgecolor='#FF7400')
ax2.set_xlim(0, img.shape[1])
ax2.set_ylim(0, img.shape[0])
ax2.xaxis.set_visible(False)
ax2.yaxis.set_visible(False)

fig.savefig('scikit_image_f03.pdf', bbox_inches='tight')

The skimage.morphology.is_local_maximum function returns over 30,000 local maxima
in the image, and many of the detections are false positives. We apply a simple threshold
value to get rid of any maxima peaks that have a pixel value below 0.5 (from the
normalized image) to bring that number down to roughly 200. There are much better
ways to filter out non-stellar maxima (e.g., noise), but we will still stick with the current
method for simplicity. In Figure 4-3 we can see that the detections are good overall. Once
we know where the stars are, we can apply flux measurement algorithms, but that goes
beyond the scope of this chapter.

Hopefully, with this brief overview of what is available in the scikit-image package, you
already have a good idea of how it can be used for your objectives.

4.2 Scikit-Learn
Possibly the most extensive scikit is scikit-learn. It is an easy-to-use machine learning
bundle that contains a collection of tools associated with supervised and unsupervised
learning. Some of you may be asking, “So what can machine learning help me do that
I could not do before?” One word: predictions.

48 | Chapter 4: SciKit: Taking SciPy One Step Further

Let us assume that we are given a problem where there is a good sample of empirical
data at hand: can predictions be made about it? To figure this out, we would try to
create an analytical model to describe the data, though that does not always work due
to complex dependencies. But what if you could feed that data to a machine, teach
the machine what is good and bad about the data, and then let it provide its own
predictions? That is what machine learning is. If used right, it can be very powerful.

Not only is the scikit-learn package impressive, but its documentation is generous and
well organized3. Rather than reinventing the wheel to show what scikit-learn is, I’m
going to take several examples that we did in prior sections and see if scikit-learn could
provide better and more elegant solutions. This method of implementing scikit-learn
is aimed to inspire you as to how the package could be applied to your own research.

4.2.1 Linear Regression
In Chapter 3 we fitted a line to a dataset, which is a linear regression problem. If we are
dealing with data that has a higher number of dimensions, how do we go about a linear
regression solution? Scikit-learn has a large number of tools to do this, such as Lasso
and ridge regression. For now we will stick with the ordinary least squares regression
function, which solves mathematical problems of the form

min
w

‖X β − y‖ (4.1)

where w is the set of coefficients. The number of coefficients depends on the number
of dimensions in the data, N(coeff) = MD − 1, where M > 1 and is an integer. In the
example below we are computing the linear regression of a plane in 3D space, so there
are two coefficients to solve for. Here we show how to use LinearRegression to train the
model with data, approximate a best fit, give a prediction from the data, and test other
data (test) to see how well it fits the model. A visual output of the linear regression is
shown in Figure 4-4.

import numpy as np
import matplotlib.pyplot as mpl
from mpl_toolkits.mplot3d import Axes3D
from sklearn import linear_model
from sklearn.datasets.samples_generator import make_regression

Generating synthetic data for training and testing
X, y = make_regression(n_samples=100, n_features=2, n_informative=1,\

random_state=0, noise=50)

X and y are values for 3D space. We first need to train
the machine, so we split X and y into X_train, X_test,
y_train, and y_test. The *_train data will be given to the
model to train it.
X_train, X_test = X[:80], X[-20:]
y_train, y_test = y[:80], y[-20:]

3 http://scikit-learn.org/

4.2 Scikit-Learn | 49

Figure 4-4. A scikit-learn linear regression in 3D space.

Creating instance of model
regr = linear_model.LinearRegression()

Training the model
regr.fit(X_train, y_train)

Printing the coefficients
print(regr.coef_)
[-10.25691752 90.5463984]

Predicting y-value based on training
X1 = np.array([1.2, 4])
print(regr.predict(X1))
350.860363861

With the *_test data we can see how the result matches
the data the model was trained with.
It should be a good match as the *_train and *_test
data come from the same sample. Output: 1 is perfect
prediction and anything lower is worse.
print(regr.score(X_test, y_test))
0.949827492261

fig = mpl.figure(figsize=(8, 5))
ax = fig.add_subplot(111, projection='3d')
ax = Axes3D(fig)

Data
ax.scatter(X_train[:,0], X_train[:,1], y_train, facecolor='#00CC00')
ax.scatter(X_test[:,0], X_test[:,1], y_test, facecolor='#FF7800')

Function with coefficient variables
coef = regr.coef_
line = lambda x1, x2: coef[0] * x1 + coef[1] * x2

50 | Chapter 4: SciKit: Taking SciPy One Step Further

grid_x1, grid_x2 = np.mgrid[-2:2:10j, -2:2:10j]
ax.plot_surface(grid_x1, grid_x2, line(grid_x1, grid_x2),

alpha=0.1, color='k')
ax.xaxis.set_visible(False)
ax.yaxis.set_visible(False)
ax.zaxis.set_visible(False)
fig.savefig('scikit_learn_regression.pdf', bbox='tight')

This LinearRegression function can work with much higher dimensions, so dealing
with a larger number of inputs in a model is straightforward. It is advisable to look
at the other linear regression models4 as well, as they may be more appropriate for
your data.

4.2.2 Clustering
SciPy has two packages for cluster analysis with vector quantization (kmeans) and hier-
archy. The kmeans method was the easier of the two for implementing and segmenting
data into several components based on their spatial characteristics. Scikit-learn pro-
vides a set of tools5 to do more cluster analysis that goes beyond what SciPy has. For
a suitable comparison to the kmeans function in SciPy, the DBSCAN algorithm is used in
the following example. DBSCAN works by finding core points that have many data points
within a given radius. Once the core is defined, the process is iteratively computed until
there are no more core points definable within the maximum radius? This algorithm
does exceptionally well compared to kmeans where there is noise present in the data.

import numpy as np
import matplotlib.pyplot as mpl
from scipy.spatial import distance
from sklearn.cluster import DBSCAN

Creating data
c1 = np.random.randn(100, 2) + 5
c2 = np.random.randn(50, 2)

Creating a uniformly distributed background
u1 = np.random.uniform(low=-10, high=10, size=100)
u2 = np.random.uniform(low=-10, high=10, size=100)
c3 = np.column_stack([u1, u2])

Pooling all the data into one 150 x 2 array
data = np.vstack([c1, c2, c3])

Calculating the cluster with DBSCAN function.
db.labels_ is an array with identifiers to the
different clusters in the data.
db = DBSCAN().fit(data, eps=0.95, min_samples=10)
labels = db.labels_

4 http://www.scikit-learn.org/stable/modules/linear_model.html
5 http://www.scikit-learn.org/stable/modules/clustering.html

4.2 Scikit-Learn | 51

Figure 4-5. An example of how the DBSCAN algorithm excels over the vector quantization package
in SciPy. The uniformly distributed points are not included as cluster members.

Retrieving coordinates for points in each
identified core. There are two clusters
denoted as 0 and 1 and the noise is denoted
as -1. Here we split the data based on which
component they belong to.
dbc1 = data[labels == 0]
dbc2 = data[labels == 1]
noise = data[labels == -1]

Setting up plot details
x1, x2 = -12, 12
y1, y2 = -12, 12

fig = mpl.figure()
fig.subplots_adjust(hspace=0.1, wspace=0.1)

ax1 = fig.add_subplot(121, aspect='equal')
ax1.scatter(c1[:,0], c1[:,1], lw=0.5, color='#00CC00')
ax1.scatter(c2[:,0], c2[:,1], lw=0.5, color='#028E9B')
ax1.scatter(c3[:,0], c3[:,1], lw=0.5, color='#FF7800')
ax1.xaxis.set_visible(False)
ax1.yaxis.set_visible(False)
ax1.set_xlim(x1, x2)
ax1.set_ylim(y1, y2)
ax1.text(-11, 10, 'Original')

ax2 = fig.add_subplot(122, aspect='equal')
ax2.scatter(dbc1[:,0], dbc1[:,1], lw=0.5, color='#00CC00')
ax2.scatter(dbc2[:,0], dbc2[:,1], lw=0.5, color='#028E9B')
ax2.scatter(noise[:,0], noise[:,1], lw=0.5, color='#FF7800')
ax2.xaxis.set_visible(False)
ax2.yaxis.set_visible(False)
ax2.set_xlim(x1, x2)
ax2.set_ylim(y1, y2)
ax2.text(-11, 10, 'DBSCAN identified')

fig.savefig('scikit_learn_clusters.pdf', bbox_inches='tight')

52 | Chapter 4: SciKit: Taking SciPy One Step Further

Nearly all the data points originally defined to be part of the clusters are retained,
and the noisy background data points are excluded (see Figure 4-5). This highlights
the advantage of DBSCAN over kmeans when data that should not be part of a cluster is
present in a sample. This obviously is dependent on the spatial characteristics of the
given distributions.

4.2 Scikit-Learn | 53

CHAPTER 5

Conclusion

5.1 Summary
This book is meant to help you as the reader to become familiar with SciPy and
NumPy and to walk away with tools that you can use for your own research. The online
documentation for SciPy and NumPy is comprehensive, and it takes time to sort out
what you want from the packages. We all want to learn new tools and use them with
as little time and effort possible. Hopefully, this book was able to do that for you.

We have covered how to utilize NumPy arrays for array indexing, math operations, and
loading and saving data. With SciPy, we went over tools that are important for scientific
research, such as optimization, interpolation, integration, clustering, statistics, and
more. The bulk of the material we discussed was on SciPy since there are so many
modules in it.

As a bonus, we learned about two powerful scikit packages. Scikit-image is a powerful
package that extends beyond the imaging capabilities of SciPy. With scikit-learn, we
demonstrated how to employ machine learning to solve problems that would have been
otherwise tough to solve.

5.2 What’s Next?
You are now familiar with SciPy, NumPy, and two scikit packages. The functions and
tools we covered should allow you to comfortably approach your research investigations
with more confidence. Moreover, using these resources, you probably see new ways of
solving problems that you were not aware of before. If you’re looking for more (e.g.,
indefinite integrals), then you should look for other packages. A good online resource
is the PyPI website,1 where thousands of packages are registered. You can simply browse
through to find what you’re looking for.

1 http://pypi.python.org/pypi

55

Also, joining Python mailing lists associated with your field of research is a good idea.
You will see many discussions among other Python users and may find what you need.
Or just ask a question yourself on these lists. Another good information repository is
stackoverflow.com, which is a central hub where programmers can ask questions, find
answers, and provide solutions to programming-related problems.

56 | Chapter 5: Conclusion

About the Author

Eli Bressert was born in Tucson, Arizona. He worked as a science imager for NASA’s
Chandra X-ray Space Telescope, optimizing science images that are frequently seen
on book covers, newspapers, television, and other media. Afterward, Eli obtained his
PhD in astrophysics at the University of Exeter and is currently a Bolton Fellow at
CSIRO Astronomy and Space Science in Sydney, Australia. For the last six years, Eli
has been programming in Python and giving Python lectures at Harvard University,
the European Space Astronomy Centre, and the European Southern Observatory. He
is one of the founding developers of two well-known astrophysics Python packages:
ATpy and APLpy.

57

	SciPy and NumPy
	Table of Contents
	Preface
	1. Introduction

	1.1 Why SciPy and NumPy?
	1.2 Getting NumPy and SciPy
	1.3 Working with SciPy and NumPy

	2. NumPy

	2.1 NumPy Arrays
	2.2 Boolean Statements and NumPy Arrays
	2.3 Read and Write

	2.4 Math

	3. SciPy

	3.1 Optimization and Minimization
	3.2 Interpolation
	3.3 Integration
	3.4 Statistics
	3.5 Spatial and Clustering Analysis
	3.6 Signal and Image Processing
	3.7 Sparse Matrices
	3.8 Reading andWriting Files Beyond NumPy

	4. SciKit: Taking SciPy One Step Further

	4.1 Scikit-Image
	4.2 Scikit-Learn

	5. Conclusion

	5.1 Summary
	5.2 What’s Next?

	About the Author

