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CHAPTER 1

Quantitative Trading: 
An Introduction
Quantitative trading, also called algorithmic trading, refers to automated trading 

activities that buy or sell particular instruments based on specific algorithms. Here, an 

algorithm can be considered a model that transforms an input into an output. In this 

case, the input includes sufficient data to make a proper trading decision, and the output 

is the action of buying or selling an instrument. The quality of a trading decision thus 

relies on the sufficiency of the input data and the suitability and robustness of the model.

Developing a successful quantitative trading strategy involves the collection and 

processing of vast amounts of input data, such as historical price data, financial news, 

and economic indicators. The data is passed as input to the model development process, 

where the goal is to accurately forecast market trends, identify trading opportunities, and 

manage potential risks, all of which are reflected in the resulting buy or sell signals.

A robust trading algorithm is often identified via the process of backtesting, which 

involves simulating the algorithm’s performance using historical data. Simulating the 

performance of the algorithm under different scenarios allows us to assess the strategy’s 

potential effectiveness better, identify its limitations, and fine-tune the parameters 

to optimize its results. However, one also needs to be aware of the potential risks of 

overfitting and survivorship bias, which can lead to inflated metrics and potentially poor 

test set performance.

In this chapter, we start by covering a few basic and important concepts related to 

quantitative trading. We then switch to hands-on examples of working with financial 

data using Python.
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�Overview of Quantitative Trading
Quantitative trading refers to the use of mathematical models and algorithms to analyze 

large datasets (structured or unstructured), identify consistent patterns, and generate 

robust trading signals. The key components of quantitative trading include data 

collection and preprocessing, feature engineering, model development, backtesting, 

optimization, and execution. Quantitative strategies can vary greatly in complexity, 

ranging from simple moving average crossovers to advanced machine learning 

techniques, all of which are covered in later chapters of the book.

A good trading strategy could be as simple as buying low and selling high (i.e., long 

a security) or selling high and buying low (i.e., short a security). The underlying trading 

model can consume different types of input data. For example, the input data could 

include structured features such as specific performance metrics of a particular stock 

or unstructured news contents pertinent to the company of the stock. When the input 

is financial news, the challenge is often concerned with converting unstructured textual 

information to structured features in a consistent and principled manner. The input data 

could also be raw financial ratios readily available from the balance sheet or derived 

features such as firm-specific technical indicators.

We can categorize the input data into the following four general groups:

•	 Market states: Security-specific price movements such as tick data 

that measures the minimum upward or downward movement in the 

price of a security, or market-specific factors such as bid-ask spread 

in limit-order books (LOB) in high-frequency trading. Besides the tick 

size, other resolution parameters of a LOB include the lot size, which 

specifies the smallest amount of a stock that can be traded.

•	 Financial news: Macroeconomic news, analyst reports, earnings 

conference call transcripts, etc.

•	 Fundamentals: Overall economic or sector-specific conditions and 

firm-specific metrics such as revenue, cash flow, earnings per share 

(EPS), etc.

•	 Technicals: Derived technical indicators based on the raw price 

series, including moving averages, stochastic indicators, etc.

Chapter 1  Quantitative Trading: An Introduction
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More generally, quantitative trading can be defined as the process of order execution 

based on trading signals generated using computer programs and algorithms. The 

purpose is either to seek profits and achieve an abnormal rate of return that beats the 

market (called alpha) or manage different types of risk.

In a nutshell, quantitative trading refers to an algorithm (also called a function or a 

model) that digests any of these structured or unstructured data sources and outputs a 

trading decision. The automatic trading strategies could be in the form of experience-

based rules based on technical analysis or data-driven machine learning models trained 

based on historical data. Upon receiving the output as a trading signal, we would either 

buy (also called long) an asset to open a position or sell (also called short) an asset to 

close a position, make a profit, or stop a loss. Trading signals could occur intraday in a 

high-frequency setting (also called day trading) or in a longer term (also called position 

trading). Figure 1-1 illustrates this process.

Figure 1-1.  Illustrating the overall quantitative trading process

The model used to generate trading signals could be either rule-based or trained 

using data. The rule-based approach mainly relies on domain knowledge and requires 

explicitly writing out the logic flow from input to output, similar to following a cooking 

recipe. On the other hand, the data-driven approach involves training a model using 

machine learning techniques and using the model as a black box for prediction and 

inference. Let us review the overall model training process in a typical machine learning 

workflow.
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�Model Development Workflow
A typical model development workflow starts with some training data. The training 

data consists of input-output pairs in supervised learning tasks where both input and 

output data are given. Each input entry could contain multiple features that describe 

the same observation from different perspectives. The corresponding output has the 

true target, acting as the correct answer to guide the training process. Model training 

aims to generate a mapping function, a model, that correctly maps a given input to the 

corresponding output.

A trained model consists of two parts: parameters and architecture. Parameters 

are the integral components of a model, and the architecture specifies how these 

components interact with the input data to produce the final prediction output. This 

predicted value is then compared with the ground truth target to make an error metric 

jointly. Here, the error indicates the current cost on how close or far away it is between 

the prediction and the actual value. Following a particular optimization procedure, the 

training process adjusts the model parameters for a given architecture to reduce the 

training cost. After changing the weights, the new error is calculated again, forming a 

feedback loop. The whole model training process is depicted in Figure 1-2.
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Figure 1-2.  Example of a typical model training process. The workflow starts 
with the available training data and gradually tunes a model. The tuning process 
requires matching the model prediction to the target output, where the gap is 
measured by a particular cost function and used as feedback for the next round 
of tuning. Each tuning produces a new model, and we want to look for one that 
minimizes the cost

Now let us look at a specific type of algorithmic trading at large institutions: 

institutional algorithmic trading.

�Institutional Algorithmic Trading
Since the underlying decision model could be a black box, algorithmic trading is also 

called automated trading, black-box trading, or robo-trading. It is used to generate and 

execute orders in markets with electronic access. In the context of large institutions, 

hedge funds, and trading desks, the trading volume is often quite large. In this case, 

institutional algorithmic trading often seeks to break up large orders into smaller ones to 

reduce the execution risk, which refers to the case when a large order cannot be fulfilled 

in the market.
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Besides preserving anonymity in transactions, large institutions also use algorithmic 

trading to minimize the price impact of a trade. This is because even if a large order is 

executable, it is difficult to guarantee that the market price will not be impacted due to 

the execution of the large order. Thus, the main objective of institutional algorithmic 

trading is to control the market risk and the execution cost rather than gaining profits.

When executing a large order by an institutional investor, the demand for a large 

amount of liquidity will typically affect the cost of the trade negatively. This is called 

slippage, which refers to situations when a market participant receives a different 

execution price than initially intended. This could happen for many instruments, 

including stocks, bonds, currencies, and derivatives.

To execute these block trades anonymously without generating a noticeable impact 

in the market, large institutions often involve dark pools to carry out these trades. Dark 

pools are private exchanges that execute orders from institutional investors away from 

the central stock exchanges, thus exhibiting little transparency in the transactional 

process.

These large institutional orders, when split into small-sized orders, are also called 

iceberg orders. By partially exposing the tip of an iceberg, the majority of the orders 

could remain hidden and transition into visible orders afterward, thus minimizing 

the disruption to the trading market as opposed to a single large order. These smaller 

orders will then be executed electronically over minutes, hours, or days. To minimize the 

impact of these orders, institutional investors would trade more at the market opens and 

closes when the trading volume is relatively high and less during a slow period around 

lunchtime.

Let us look at a simple example of generating a small subset of iceberg orders 

from the original orders using Python. In Listing 1-1, we create a list of ten random 

integers saved in total_order to indicate all the orders to be executed by an 

institutional investor. We can randomly sample two indexes and use them to access the 

corresponding elements in total_order and save in iceberg_order, representing the 

iceberg orders to be exposed to the market.

Listing 1-1.  Generating iceberg orders

# generate multiple random integers

total_order = [random.randint(0, 10) for p in range(0, 10)]

>>> total_order

[9, 6, 4, 3, 7, 6, 3, 0, 0, 6]
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# randomly sample two indexes to identify iceberg orders

iceberg_order_idx = random.sample(total_order, 2)

>>> iceberg_order_idx

[0, 4]

# retrieve iceberg orders

iceberg_order = np.array(total_order)[iceberg_order_idx]

iceberg_order

array([9, 7])

The institutional algorithmic strategies generate optimal trading signals by analyzing 

daily quotes and prices. For example, an institutional algorithmic strategy may suggest 

entering a long position if the current stock price moves from below to above the volume-

weighted average price (VWAP) over a day, a technical indicator often used by short-term 

traders. The institutional algorithmic strategies may also exploit arbitrage opportunities 

or price spreads between correlated securities. Here, arbitrage means making positive 

sure profits with zero investments. Arbitrage opportunities, if exist, would normally 

disappear very fast as many hedge funds and investors are constantly looking for such 

arbitrage opportunities.

The next section briefly introduces the role of a quant trader.

�Being a Quant Trader
A quant trader is a specialized trader that uses mathematical models and quantitative 

analysis to evaluate different financial products and identify trading opportunities to 

buy or sell the best securities out of hundreds of thousands of candidates. Quant traders 

make use of data-driven methods to make model-based trading decisions, seeking to 

exploit temporary inefficiencies and underlying patterns in the market that may not be 

easily discernible through traditional qualitative analysis.

The first attribute of an aspiring quant trader is familiarity with numbers and 

mathematical models. As the majority of the time is spent on analyzing the data, 

proposing, backtesting, and implementing trading strategies to either buy, sell, or hold 

specific security, a quant trader needs to be comfortable with both mathematical models 

and programming, which often requires an advanced degree in financial modeling or 

related field. When a positive signal pops up, the quant trader needs to act swiftly using 

self-developed programs to capitalize on the current trading opportunities.
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The second attribute lies in soft skills such as handling high pressure with a good 

temperament. This requires good emotional intelligence to neither assume too much 

risk nor be overly risk averse. Knowing when to exit a position and stop loss is a critical 

skill that requires discipline in daily trading activities.

The following section covers the major asset classes and various tradable 

instruments.

�Major Asset Classes and Derivatives
Multiple tradable financial instruments are used to raise capital in public and private 

markets. Institutional and retail investors can enter into long or short positions involving 

different single or combinations of assets, profit-seeking, or risk management (i.e., 

hedging).

Let us first get a glimpse of the many tradable assets. In the following list, we provide 

a short definition of common assets used in the market:

•	 Stocks: Also called equity, a form of security representing 

proportionate ownership of the issuing company. A unit of 

stock is called a share, and the number of shares determines the 

proportionate ownership and, thus, profit sharing of the stock 

owner. The stock owner profits when the stock price increases or by 

receiving dividends.

•	 Bonds: Fixed-income debt instruments representing a fixed-

duration loan from the investor/lender to the borrower (company or 

government). A bond provides the owner with fixed-rate coupon or 

variable interest payments, and the principal is paid to the owner at 

the end date. It is a fixed-income asset due to the regular and stable 

interest paid to the owner.

•	 Annuities: Insurance contracts from financial institutions that 

provide a fixed-income stream to the contract owner in the future. 

Investors mainly purchase annuities for retirement as they can 

receive a guaranteed stream of payments in the future for a specified 

period or the remainder of life.

Chapter 1  Quantitative Trading: An Introduction
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•	 Cash and equivalents: Highly liquid short-term (less than 90 days) 

investment securities with low risk and low return (usually less than 

the inflation rate). The equivalents include bank accounts, near-term 

instruments such as US Treasury bills, and money market funds. 

These current assets can be easily accessed anytime and reflect the 

firm’s ability to pay the short-term debt.

•	 Commodities: Basic goods used in commerce as raw inputs to 

produce other goods or services. Common commodities, such as 

gold, oil, and natural gas, can be traded in the spot (cash) market or 

via derivatives such as futures and options.

•	 Futures: Financial derivatives in the form of legal agreements that 

oblige the futures contract buyer to buy or sell the underlying asset 

at a prespecified price, amount, and time in the future. Futures are 

often used to hedge against price movements of the underlying asset 

and thus avoid losses due to unfavorable price changes in the future. 

The price of a futures contract is settled daily, that is, marked to 

market (MTM).

•	 Forward: Similar to the futures contract. The difference is that a 

forward contract is a private and customizable agreement traded 

over the counter (OTC), which is a decentralized marketplace where 

participants trade instruments directly without engaging a central 

exchange or a broker. The price of a forward contract is settled at the 

end of the agreement.

•	 Options: Financial derivatives that offer the buyer of the options 

contract the opportunity to buy (if it is a call option) or sell (if it is a 

put option) the underlying asset on or before a specific expiration 

(maturity) date and (strike) price. Options give the buyers the right, 

not the obligation, to long or short an underlying asset. They can be 

used for both hedging and speculation. Note that we focus on the 

European option by default.

•	 Currencies: International currencies and currency derivatives traded 

via the (largest and most liquid) global electronic marketplace, also 

called the foreign exchange market or forex. Forex allows investors to 
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exchange one currency for the equivalent value in another currency 

at the current market rate. Traders also speculate on the direction 

of currency values to profit from a favorable price movement of a 

particular pair of currencies.

•	 ETFs: Exchange-traded funds that refer to a type of pooled 

investment security that are baskets of securities (stocks, bonds, 

commodities, etc.) and are traded intraday like regular stocks.

•	 REITs: Real estate investment trusts that refer to companies that own, 

operate, or finance income-generating real estate. Investors in REITs 

(liquid and publicly traded like stocks) can earn a steady income 

stream from real estate investments without purchasing, managing, 

or financing the actual properties themselves.

•	 Mutual funds: A type of financial vehicle that consists of a portfolio 

of stocks, bonds, or other securities. Mutual funds are managed 

by professional money managers and allow individual investors 

to access diversified and professionally managed portfolios at the 

expense of annual fees. Mutual funds only can be purchased at the 

end of each trading day based on a calculated price known as the net 

asset value.

•	 Hedge funds: Actively managed investment pools that aim at earning 

above-average returns for investors via a wide range of (often risky) 

trading strategies at the expense of higher fees than conventional 

investment funds.

These tradable asset types can be grouped into different classes based on a particular 

perspective. We introduce a few popular perspectives in the following section.

�Grouping Tradable Assets
An asset class is a collection of investment instruments that exhibit similar fundamental 

characteristics in terms of risk and return. There are four major asset classes: equities, 

fixed-income instruments, cash and equivalents, and alternative investments, defined as 

financial assets that do not fall into prior investment categories. Figure 1-3 illustrates the 

four classes of investment securities.
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Figure 1-3.  Grouping common investment assets into four major classes

Alternatively, we can group tradable assets based on the type of maturity. Stocks, 

currencies, and commodities are asset classes with no maturity, while fixed-income 

instruments and derivatives have maturities. For vanilla security with a maturity date, 

such as a futures contract, it is possible to compute its fair price based on the no-

arbitrage argument, a topic we will discuss in Chapter 3.

We can also group assets based on the linearity of the payoff function at maturity 

for certain derivative instruments. For example, a futures contract allows the buyer/

seller to buy/sell the underlying asset at an agreed price at maturity. Let us assume the 

underlying (stock) price at the maturity date is ST and the agreed price is K. When a 

buyer enters/longs a futures contract to buy the stock at price K, the buyer would make 

a profit of ST − K if ST ≥ K (purchase the stock at a lower price) or suffer a loss of K − ST 

if ST < K (purchase the stock at a higher price). A similar analysis applies to the case of 

entering a short position in a futures contract. Both functions are linear with respect 

to the underlying asset’s price upon exercise. See Figure 1-4 for an illustration of linear 

payoff functions.
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Figure 1-4.  Illustration of the linear payoff function of entering a long or short 
position in a futures contract

Other derivative products with linear payoff functions include forwards and swaps. 

These are easy to price since their prices are linear functions of the underlying asset. We 

can price these instruments irrespective of the mathematical model for the underlying 

price. In other words, we only require the underlying asset’s price, not the mathematical 

model around the asset. These assets are thus subject to model-independent pricing.

Let us look at the nonlinear payoff function from an options contract. A call option 

gives the buyer a choice to buy the underlying asset at the strike price K at the maturity 

date T when the underlying asset price is ST, while a put option changes such choice 

to selling the underlying asset at the strike price K. Under both situations, the buyer 

can choose not to exercise the option and therefore gains no profit. Given that an 

investor can either long or short a call or put option, there are four combinations when 

participating in an options contract, as listed in the following:

•	 Long a call: Buy a call option to obtain the opportunity to buy the 

underlying asset at a prespecified strike price upon maturity.

•	 Short a call: Sell a call option to allow the buyer the opportunity to 

buy the underlying asset at a prespecified strike price upon maturity.
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•	 Long a put: Buy a put option to obtain the opportunity to sell the 

underlying asset at a prespecified strike price upon maturity.

•	 Short a put: Sell a put option to allow the buyer the opportunity to 

sell the underlying asset at a prespecified strike price upon maturity.

Figure 1-5 contains the payoff functions for the four different combinations, all of 

which are nonlinear functions of the underlying asset price ST.

Figure 1-5.  Four types of nonlinear payoff functions in an options contract

Note that tradable instruments within the same asset class exhibit similar 

characteristics but will differ from one another in some aspects. The market behavior 

will differ for tradable instruments that follow their respective price dynamics.

We can also group a tradable asset according to whether it belongs to the cash 

market or the derivative market. The cash market, also called the spot market, is 

a marketplace where trading instruments are exchanged at the point of sale, and 
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purchasers take immediate possession of the trading products. For example, the stock 

exchange falls into the cash market since investors receive shares of stock almost 

immediately in exchange for cash, thus settling the transactions on the spot.

On the other hand, the derivative market completes a transaction only at a 

prespecified date in the future. Take the futures market, for example. A buyer who 

pays for the right to receive a good only gets to expect the delivery at a prespecified 

future date.

The next section introduces common trading avenues and steps.

�Common Trading Avenues and Steps
As mentioned earlier, investors engage in trading activities for the purpose of profit-

making or risk management. When the purpose is to invest and make profits, the next 

sequence of actions is to observe and analyze the market and act upon the trading 

signals. For example, if investors use predictive methods to predict when the market 

will go up or down, they can initiate trades to turn the market into profits and make 

short, instant wins. Such activity is referred to as market timing, where an investor enters 

or exits a position or rebalances a portfolio (moving money between assets) based on 

predicted market movement in the near future. This is opposite to the buy-and-hold 

strategy, where an investor purchases trading instruments and holds them for a long 

period, irrespective of the market’s volatility (ups and downs).

When engaging in trading activity, it is important to understand the short-term 

and long-term seasonality effect for a particular tradable asset. Take stock trading, for 

example. Short-term swings in stock prices tend to occur when the market opens and 

closes, falling under the regular trading hours of major stock exchanges and forming the 

opening and closing prices of the particular day. In the longer term, trading activities at 

the end of the year tend to be quieter than other periods of the particular year.

Trading activities can happen at one of the following four avenues:

•	 Regulated exchanges, such as the New York Stock Exchange (NYSE) 

and NASDAQ

•	 Dark pools, private exchanges that are less regulated

•	 Brokered market, where transactions between the buyer and the 

seller are performed via middlemen called brokers (or agents, 

intermediaries)
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•	 Over-the-counter (OTC) market, a decentralized market that allows 

direct transactions between buyers and sellers

Let us look at the anatomy of a trade. There are four usual steps involved when 

performing a trade:

•	 Acquisition of information and quotes: Before engaging in a trade, it 

is important to access quality information about the asset and gain 

transparency in many tangible and intangible factors such as supply 

and demand, the risk attitude of investors, and the overall economic 

and geopolitical environment. Information on the market structure, 

liquidity, and information flow eventually determine the price 

discovery of the tradable asset.

•	 Routing of order, such as selecting the broker(s) to handle the 

trade(s) or deciding which market(s) to transmit and execute the 

trade(s).

•	 Execution of order, matching and executing the trading orders 

between buyers and sellers according to the rules of the 

particular market.

•	 Confirmation, clearance, and settlement: This happens at the end of 

executing a trading order. Clearance is the recording and comparison 

of trade records, and settlement involves the actual delivery of the 

security and its payment.

In the next section, we will look at different market structures.

�Market Structures
Before 2010, open outcry was a popular way to communicate trade orders in trading 

pits (floor). Traders would tap into temporary information asymmetry and use verbal 

communication and hand signals to perform trading activities at stock, option, and 

futures exchanges. Traders would arrange their trades face to face on the exchange’s 

trading floor, cry out bids and offers to offer liquidity, and listen for bids and offers to 

take liquidity. The open outcry rule is that traders must announce their bids and offers 

so that other traders may react to them, avoiding whispering among a small group of 

traders. They must also publicly announce that they accept bids (assets sold) or offers 
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(assets taken) of particular trades. The largest pit was the US long-term treasury bond 

futures market, with over 500 floor traders under the Chicago Board of Trade (CBOT), a 

major market maker that later merged into the CMT Group.

As technology advanced, the trading markets moved from physical to electronic, 

shaping a fully automated exchange. First proposed by Fischer Black in 1971, the fully 

automated exchange was also called program trading, which encompasses a wide range 

of portfolio trading strategies.

The trading rules and systems together define a trading market’s market structure. 

One type of market is called the call market, where trades are allowed only when the 

market is called. The other type of market is the continuous market, where trades 

are allowed anytime during regular trading hours. Big exchanges such as NYSE, LSE 

(London Stock Exchange), and SGX (Singapore Exchange) allow a hybrid mode of 

market structure.

The market structure can also be categorized based on the nature of pricing among 

the tradable assets. When the prices are determined based on the bid (buy) and ask (sell) 

quotations from market makers or dealers, it is called a quote-driven or price-driven 

market. The trades are determined by dealers and market makers who participate in 

every trade and match orders from their inventory. Typical assets in a quote-driven 

market include bonds, currencies, and commodities.

On the other hand, when the trades are based on the buyers’ and sellers’ 

requirements, it is called an order-driven market where the bid and ask prices, along 

with the number of shares desired, are put on display. Typical assets in an order-driven 

market include stock markets, futures exchanges, and electronic communications 

networks (ECNs). There are two basic types of orders: market orders, based on the asset’s 

market price, and limit orders, where the assets are only traded based on the preset 

limit price.

Let us look at a few major types of buy-side stock investors.

�Major Types of Buy-Side Stock Investors
Buy-side investors include institutional (account for the majority) and retail investors. 

Here, buy-side activities include purchasing stocks, bonds, or other financial securities 

based on the specific requirements and strategies of the institution’s or client’s portfolio. 

The buy side is a segment of financial markets made up of investing institutions and 

retail investors that purchase financial products for money-management purposes.
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Typical buy-side institutional investors include

•	 Mutual fund

•	 Passive exchange-traded fund (ETF)

•	 Pension fund

•	 Sovereign wealth fund

•	 Hedge fund

•	 Insurance company

•	 Bank

•	 Corporate nominee

Typical buy-side retail investors include

•	 Start-up investor

•	 Family business

•	 Household/individual

The next section introduces the concept of market making.

�Market Making
Market maker refers to a firm or an individual that actively quotes the two-sided markets 

(buy side and sell side) of a particular security. The market maker provides bids, 

meaning the particular price of the security along with the quantity it is willing to buy. It 

also provides offers (asks), meaning the price of the security and the quantity it is willing 

to sell. Naturally, the asking price is supposed to be higher than the bid price, so that the 

market maker can make a profit based on the spread of the two quote prices.

Market makers post quotes and stand ready to trade, thereby providing immediacy 

and liquidity to the market. By quoting bid and ask prices, market makers make the 

assets more liquid for potential buyers and short sellers.

A market maker also takes a significant risk of holding the assets because a security’s 

value may decline between its purchase and sale to another buyer. They need capital to 

finance their inventories. The capital available to them thus limits their ability to offer 

liquidity. Because market making is very risky, investors generally dislike investing in 
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market-making operations. Market-making firms with significant external financing 

typically have excellent risk management systems that prevent their dealers from 

generating large losses.

The next section introduces the concept of scalping.

�Scalping
Scalping is a type of trading that makes small and fast profits by quickly (typically no 

more than a few minutes in large positions) and continuously acquiring and unwinding 

their positions. Traders that engage in scalping are referred to as scalpers.

When engaged in scalping, a trader requires a live feed of quotes in order to move 

fast. The trader, also called the day trader, must follow a strict exit strategy because one 

large loss could eliminate the many small gains the trader worked to accumulate.

Active traders such as day traders are strong believers in market timing, a key 

component of actively managed investment strategies. For example, if traders can 

predict when the market will go up and down, they can make trades to turn that market 

move into a profit. Obviously, this is a difficult and strenuous task as one needs to watch 

the market continuously, from daily to even hourly, as compared to long-term position 

traders that invest for the long run.

The next section introduces the concept of portfolio rebalancing.

�Portfolio Rebalancing
As time goes on, a portfolio’s current asset allocation will drift away from an investor’s 

original target asset allocation. If left unadjusted, the portfolio will either become too 

risky or too conservative. Such rebalancing is completed by changing the position of one 

or more assets in the portfolio, either buying or selling, with the goal of maximizing the 

portfolio return or hedging another financial instrument.

Asset allocations in a portfolio can change as market performance alters the values of 

the assets due to price changes. Rebalancing involves periodically buying or selling the 

assets in a portfolio to regain and maintain that original, desired level of asset allocation 

defined by an investor’s risk and reward profile.

There are several reasons why a portfolio may deviate from its target allocation 

over time, such as due to market fluctuations, additional cash injection or withdrawal, 

and changes in risk tolerance. We can perform portfolio rebalancing using either a 
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time-based rebalancing approach (e.g., quarterly or annually) or a threshold-based 

rebalancing approach, which occurs when the allocation of an asset class deviates from 

the target by a predefined percentage.

In the world of quantitative trading, Python has emerged as a powerful tool 

for formulating and implementing trading algorithms. Part of the reason is its 

comprehensive open source libraries and strong community support. In the next 

section, we will discuss the practical aspect of financial data analysis and start by 

acquiring and summarizing the stock data using Python.

�Getting Started with Financial Data Analysis
Financial data analysis is the process of processing and analyzing financial data to 

support decision-making in various financial applications, such as investing, trading, 

risk management, and corporate finance. It involves the use of advanced analytical 

techniques and models to identify the underlying patterns, trends, and relationships in 

the data, which will be used to support more informed financial decisions.

The interval of stock data can be different, such as by minute, hour, or day. Since 

time is continuous, we need a measure to summarize the profile of the stock price 

data within the interval. Let us start by introducing one of the most popular ways to 

summarize stock data.

�Summarizing Stock Prices
The most common type of summary for stock data is the daily OHLC prices (open, high, 

low, close). An OHLC chart is a bar chart that shows open, high, low, and closing prices 

for each period, often daily. They present a day’s four major data points, with the closing 

price considered the most important indicator by many traders.

The OHLC chart, similar to the candlestick chart shown in Figure 1-6, is useful 

because it can show increasing or decreasing momentum. When the open and closing 

prices have a big gap in between, it shows a strong momentum for an increase or 

decrease in the day. When the open and closing prices are close, it shows indecision or a 

weak momentum. The high and low prices show the full price range and can be used to 

assess the volatility.
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Figure 1-6 shows two candlestick charts, both summarizing the price movements 

over a specified period, for example, daily. The color represents emotions for the stock 

price movement, with an up candle shaded green and a down candle shaded red, 

although these colors can be altered in the specific trading platform. A collection of 

candlestick charts can be used to determine the direction of the market movement. Each 

candlestick chart consists of four main points: open, high, low, and close, following the 

sequence of time in the period. The open and close points determine the real body of 

the candlestick. The green color represents a bullish candlestick, that is, the stock price 

closes above where it opens. Similarly, the red color represents a bearish candlestick, 

that is, the stock price closes below where it opens.

Let us examine the bullish candle in the green of a trading day. When the market 

starts, the stock assumes an opening price and starts to move. Across the day, the stock 

will experience the highest price point (high) and the lowest price point (low), where 

the gap in between indicates the momentum of the movement. We know for a fact that 

the high will always be higher than the low, as long as there is movement. When the 

market closes, the stock registers a close. Figure 1-7 depicts a sample movement path 

summarized by the green candlestick.

Figure 1-6.  Illustrating the bullish candlestick in green and bearish 
candlestick in red
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Figure 1-7.  A sample path of stock price movement represented by the green 
candlestick chart. When the market starts, the stock assumes an opening price and 
starts to move. It will experience the highest price point (high) and the lowest price 
point (low), where the gap in between indicates the momentum of the movement. 
When the market closes, the stock registers a close

Next, we will switch gears and start working on the actual stock price data using 

Python. We will download the data from Yahoo! Finance and introduce different ways to 

graph the data.

�Downloading Stock Price Data
Yahoo! Finance is a common source where we can get market data. To download the 

stock price data, we can use the yfinance library, a popular open source (and free) 

library, to access the financial data available on Yahoo! Finance. It is relatively quick to 

set up and offers a high level of granularity in the data (covering daily or even  

per-minute data).

To start with, we need to install the yfinance package via the pip command in the 

Jupyter notebook environment and import it:

!pip install yfinance

import yfinance as yf

Next, we can use the Ticker() module from the yfinance package to observe the 

profile information of a specific stock. The following code snippet obtains the ticker 

information on Microsoft and prints it out via the info attribute:
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# use the Ticker module to access ticker data

msft = yf.Ticker("MSFT")

# get stock info

>>> msft.info

{'zip': '98052-6399',

 'sector': 'Technology',

 'fullTimeEmployees': 221000,

 �'longBusinessSummary': 'Microsoft Corporation develops, licenses, and 

supports software, services, devices, and solutions worldwide. The 

company operates in three segments: Productivity and Business Processes, 

Intelligent Cloud, and More Personal Computing. The Productivity and 

Business Processes segment offers Office, Exchange, SharePoint, Microsoft 

Teams, Office 365 Security and Compliance, Microsoft Viva, and Skype for 

Business; Skype, Outlook.com, OneDrive, and LinkedIn; and Dynamics 365, a 

set of cloud-based and on-premises business solutions for organizations and 

enterprise divisions. The Intelligent Cloud segment licenses SQL, Windows 

Servers, Visual Studio, System Center, and related Client Access Licenses; 

GitHub that provides a collaboration platform and code hosting service 

for developers; Nuance provides healthcare and enterprise AI solutions; 

and Azure, a cloud platform. It also offers enterprise support, Microsoft 

consulting, and nuance professional services to assist customers in 

developing, deploying, and managing Microsoft server and desktop solutions; 

and training and certification on Microsoft products. The More Personal 

Computing segment provides Windows original equipment manufacturer (OEM) 

licensing and other non-volume licensing of the Windows operating system; 

Windows Commercial, such as volume licensing of the Windows operating 

system, Windows cloud services, and other Windows commercial offerings; 

patent licensing; and Windows Internet of Things. It also offers Surface, 

PC accessories, PCs, tablets, gaming and entertainment consoles, and 

other devices; Gaming, including Xbox hardware, and Xbox content and 

services; video games and third-party video game royalties; and Search, 

including Bing and Microsoft advertising. The company sells its products 

through OEMs, distributors, and resellers; and directly through digital 

marketplaces, online stores, and retail stores. Microsoft Corporation was 

founded in 1975 and is headquartered in Redmond, Washington.',
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 'city': 'Redmond',

 'phone': '425 882 8080',

 'state': 'WA',

 'country': 'United States',

 'companyOfficers': [],

 'website': 'https://www.microsoft.com',

 'maxAge': 1,

 'address1': 'One Microsoft Way',

 'fax': '425 706 7329',

 'industry': 'Software—Infrastructure',

 'ebitdaMargins': 0.48672,

 'profitMargins': 0.34366,

 'grossMargins': 0.6826,

 'operatingCashflow': 87693000704,

 'revenueGrowth': 0.106,

 'operatingMargins': 0.41691002,

 'ebitda': 98841001984,

 'targetLowPrice': 234,

 'recommendationKey': 'buy',

 'grossProfits': 135620000000,

 'freeCashflow': 46155874304,

 'targetMedianPrice': 290,

 'currentPrice': 238.73,

 'earningsGrowth': -0.133,

 'currentRatio': 1.84,

 'returnOnAssets': 0.15223,

 'numberOfAnalystOpinions': 45,

 'targetMeanPrice': 296.91,

 'debtToEquity': 44.442,

 'returnOnEquity': 0.42875,

 'targetHighPrice': 411,

 'totalCash': 107244003328,

 'totalDebt': 77136003072,

 'totalRevenue': 203074994176,

 'totalCashPerShare': 14.387,
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 'financialCurrency': 'USD',

 'revenuePerShare': 27.142,

 'quickRatio': 1.585,

 'recommendationMean': 1.8,

 'exchange': 'NMS',

 'shortName': 'Microsoft Corporation',

 'longName': 'Microsoft Corporation',

 'exchangeTimezoneName': 'America/New_York',

 'exchangeTimezoneShortName': 'EST',

 'isEsgPopulated': False,

 'gmtOffSetMilliseconds': '-18000000',

 'quoteType': 'EQUITY',

 'symbol': 'MSFT',

 'messageBoardId': 'finmb_21835',

 'market': 'us_market',

 'annualHoldingsTurnover': None,

 'enterpriseToRevenue': 8.615,

 'beta3Year': None,

 'enterpriseToEbitda': 17.7,

 '52WeekChange': -0.30287635,

 'morningStarRiskRating': None,

 'forwardEps': 11.18,

 'revenueQuarterlyGrowth': None,

 'sharesOutstanding': 7454470144,

 'fundInceptionDate': None,

 'annualReportExpenseRatio': None,

 'totalAssets': None,

 'bookValue': 23.276,

 'sharesShort': 40445360,

 'sharesPercentSharesOut': 0.0054,

 'fundFamily': None,

 'lastFiscalYearEnd': 1656547200,

 'heldPercentInstitutions': 0.72300005,

 'netIncomeToCommon': 69788999680,

 'trailingEps': 9.29,
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 'lastDividendValue': 0.68,

 'SandP52WeekChange': -0.19752294,

 'priceToBook': 10.256488,

 'heldPercentInsiders': 0.00059,

 'nextFiscalYearEnd': 1719705600,

 'yield': None,

 'mostRecentQuarter': 1664496000,

 'shortRatio': 1.38,

 'sharesShortPreviousMonthDate': 1667174400,

 'floatShares': 7447764118,

 'beta': 0.933189,

 'enterpriseValue': 1749498331136,

 'priceHint': 2,

 'threeYearAverageReturn': None,

 'lastSplitDate': 1045526400,

 'lastSplitFactor': '2:1',

 'legalType': None,

 'lastDividendDate': 1668556800,

 'morningStarOverallRating': None,

 'earningsQuarterlyGrowth': -0.144,

 'priceToSalesTrailing12Months': 8.763292,

 'dateShortInterest': 1669766400,

 'pegRatio': 1.92,

 'ytdReturn': None,

 'forwardPE': 21.353308,

 'lastCapGain': None,

 'shortPercentOfFloat': 0.0054,

 'sharesShortPriorMonth': 36909448,

 'impliedSharesOutstanding': 0,

 'category': None,

 'fiveYearAverageReturn': None,

 'previousClose': 238.19,

 'regularMarketOpen': 236.11,

 'twoHundredDayAverage': 261.927,

 'trailingAnnualDividendYield': 0.010663755,
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 'payoutRatio': 0.26700002,

 'volume24Hr': None,

 'regularMarketDayHigh': 238.87,

 'navPrice': None,

 'averageDailyVolume10Day': 35831410,

 'regularMarketPreviousClose': 238.19,

 'fiftyDayAverage': 240.6454,

 'trailingAnnualDividendRate': 2.54,

 'open': 236.11,

 'toCurrency': None,

 'averageVolume10days': 35831410,

 'expireDate': None,

 'algorithm': None,

 'dividendRate': 2.72,

 'exDividendDate': 1676419200,

 'circulatingSupply': None,

 'startDate': None,

 'regularMarketDayLow': 233.9428,

 'currency': 'USD',

 'trailingPE': 25.697523,

 'regularMarketVolume': 21206982,

 'lastMarket': None,

 'maxSupply': None,

 'openInterest': None,

 'marketCap': 1779605569536,

 'volumeAllCurrencies': None,

 'strikePrice': None,

 'averageVolume': 30495014,

 'dayLow': 233.9428,

 'ask': 238.45,

 'askSize': 800,

 'volume': 21206982,

 'fiftyTwoWeekHigh': 344.3,

 'fromCurrency': None,

 'fiveYearAvgDividendYield': 1.17,
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 'fiftyTwoWeekLow': 213.43,

 'bid': 238.2,

 'tradeable': False,

 'dividendYield': 0.0114,

 'bidSize': 1000,

 'dayHigh': 238.87,

 'coinMarketCapLink': None,

 'regularMarketPrice': 238.73,

 'preMarketPrice': None,

 'logo_url': 'https://logo.clearbit.com/microsoft.com',

 'trailingPegRatio': 2.1113}

The result shows a long list of information about Microsoft, useful for our initial 

analysis of a particular stock. Note that all this information is structured in the form of a 

dictionary, making it easy for us to access a specific piece of information. For example, 

the following code snippet prints the market cap of the stock:

# access a specific attribute from the dictionary

>>> msft.info["marketCap"]

1779605569536

Such structured information, also considered metadata in this context, comes in 

handy when we analyze multiple tickers together.

Now let us focus on the actual stock data of Microsoft. In Listing 1-2, we download 

the stock price data of Microsoft from the beginning of 2022 till the current date. Here, 

the current date is determined automatically by the today() function from the datetime 

package, which means we will obtain a different (bigger) result every time we run the 

code on a future date. We also specify the format of the date to be “YYYY-mm-dd,” an 

important practice to unify the date format.

Listing 1-2.  Downloading stock price data

# download daily stock price data by passing in specified ticker and 

date range

from datetime import datetime

today_date = datetime.today().strftime('%Y-%m-%d')

print(today_date)

data = yf.download("MSFT", start="2022-01-01", end=today_date)
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We can examine the first few rows by calling the head() function of the DataFrame. 

The resulting table contains price-related information such as open, high, low, close, 

and adjustment close prices, along with the daily trading volume:

# view the first few rows.

>>> data.head()

           Open       High       Low        Close      Adj Close  Volume

Date

2022-01-03 335.350006 338.000000 329.779999 334.750000 331.642456 28865100

2022-01-04 334.829987 335.200012 326.119995 329.010010 325.955750 32674300

2022-01-05 325.859985 326.070007 315.980011 316.380005 313.442993 40054300

2022-01-06 313.149994 318.700012 311.489990 313.880005 310.966217 39646100

2022-01-07 314.149994 316.500000 310.089996 314.040009 311.124725 32720000

We can also view the last few rows using the tail() function:

>>> data.tail()

           Open       High       Low        Close      Adj Close  Volume

Date

2022-12-30 238.210007 239.960007 236.660004 239.820007 239.820007 21930800

2023-01-03 243.080002 245.750000 237.399994 239.580002 239.580002 25740000

2023-01-04 232.279999 232.869995 225.960007 229.100006 229.100006 50623400

2023-01-05 227.199997 227.550003 221.759995 222.309998 222.309998 39585600

2023-01-06 223.000000 225.759995 219.350006 224.929993 224.929993 43597700

It is also a good habit to check the dimension of the DataFrame using the shape() 

function:

# check data dimension/size

>>> data.shape

(254, 6)

The following section will look at visualizing the time series data via 

interactive charts.
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�Visualizing Stock Price Data
The plotly package is an interactive graphing library that supports exploratory and 

expository visualizations. Let us demonstrate its use via a few examples, focusing on the 

stock’s closing price for now.

First, let us visualize the closing price as a time series plot. As the name suggests, 

a time series is a sequence of data with a timestamp in each data point. Thus, when 

plotted on a graph, the horizontal axis indicates the time that flows from left to right, 

and the vertical axis represents the quantity of interest, that is, the daily closing price. 

Also, since each timestamp corresponds to one stand-alone point on the graph, we will 

connect all neighboring points via straight lines to form the final time series plot and 

show the trending patterns.

Listing 1-3 completes this task. Here, we pass the index of the DataFrame to indicate 

the dates on the x-axis (passed to the x argument) and the closing pricing on the y-axis 

(passed to the y argument) and specify the presentation mode to be in lines.

Listing 1-3.  Plotting the daily closing price

# plot closing price as a time series chart

import plotly.graph_objects as go

fig = go.Figure(data=go.Scatter(x=data.index,y=data['Close'], 

mode='lines'))

fig.show()

Running the code produces Figure 1-8. Note that the graph is interactive; by hovering 

over each point, the corresponding date and closing price come forward.

Figure 1-8.  Interactive time series plot of the daily closing price of Microsoft
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We can also enrich the graph by overlaying the trading volume information, as 

shown in Listing 1-4.

Listing 1-4.  Overlaying trading volume in the daily closing price chart

# overlay the trading volume

from plotly.subplots import make_subplots

fig2 = make_subplots(specs=[[{"secondary_y": True}]])

fig2.add_trace(go.Scatter(x=data.index,y=data['Close'],name='Price'), 

secondary_y=False)

fig2.add_trace(go.Bar(x=data.index,y=data['Volume'],name='Volume'), 

secondary_y=True)

fig2.show()

Running the code generates Figure 1-9. Note that the trading volume assumes a 

secondary y-axis on the right, by setting secondary_y=True.

Figure 1-9.  Visualizing the daily closing price and trading volume of Microsoft

Based on this graph, a few bars stand out, making it difficult to see the line chart. 

Let us change it by controlling the magnitude of the secondary y-axis. Specifically, we 

can enlarge the total magnitude of the right y-axis to make these bars appear shorter, as 

shown in Listing 1-5.

Listing 1-5.  Rescaling the y-axis

# rescale volume

fig2.update_yaxes(range=[0,500000000],secondary_y=True)

fig2.update_yaxes(visible=True, secondary_y=True)

fig2
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Running the code generates Figure 1-10. Now the bars appear shorter given a bigger 

range (0 to 500M) of the y-axis on the right.

Figure 1-10.  Controlling the magnitude of the daily trading volume as bars

Lastly, let us plot all the price points via candlestick charts. This requires us to pass 

in all the price-related information in the DataFrame. The Candlestick() function can 

help us achieve this, as shown in Listing 1-6.

Listing 1-6.  Plotting the candlestick chart

# switch to candlestick chart

fig3 = make_subplots(specs=[[{"secondary_y": True}]])

fig3.add_trace(go.Candlestick(x=data.index,

                              open=data['Open'],

                              high=data['High'],

                              low=data['Low'],

                              close=data['Close'],

                             ))

fig3

Running the code generates Figure 1-11. Each bar represents one day’s summary 

points (open, high, low, and close), with the green color indicating an increase in price 

and red indicating a decrease in price at the end of the trading day.
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Figure 1-11.  Visualizing all daily price points of Microsoft as candlestick charts

Notice the sliding window at the bottom. We can use it to zoom in a specific range, as 

shown in Figure 1-12. The dates along the x-axis are automatically adjusted as we zoom 

in. Also, note that these bars come in groups of five. This is no incidence—there are five 

trading days in a week.

Figure 1-12.  Zooming in a specific range

�Summary
In this chapter, we covered the basics of quantitative trading, covering topics such as 

institutional algorithmic trading, major asset classes, derivatives such as options, market 

structures, buy-side investors, market making, scalping, and portfolio rebalancing. We 

then delved into exploratory data analysis of the stock data, starting with summarizing 

the periodic data points using candlestick charts. We also reviewed the practical side of 

things, covering data retrieval, analysis, and visualization via interactive charts. These 

will serve as the building blocks as we develop different trading strategies later on.

Chapter 1  Quantitative Trading: An Introduction



33

�Exercises
•	 List a few financial instruments and describe the risk and reward 

profile.

•	 Can a model get exposed to the test set data during training?

•	 A model is considered better if it does better than another model on 

the training set, correct?

•	 For daily stock price data, can we aggregate it as weekly data? How 

about hourly?

•	 What is the payoff function for the issuer of a European call option? 

Put option? How is it connected to the payoff function of the buyer?

•	 Suppose you purchase a futures contract that requires you to sell a 

particular commodity one month later for a price of $10,000. What 

is your payoff when the price of the commodity grows to $12,000? 

Drops to $7000?

•	 What about the payoff for the buyer in both cases?

•	 How do the results change if we switch to an options contract with 

the same strike price and delivery date?

•	 Draw a sample stock price curve of a red candlestick.

•	 Download the stock price data of Apple, plot it as both a line and a 

candlestick chart, and analyze its trend.

•	 Calculate the YTD (year-to-date) average stock price of Apple.
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CHAPTER 2

Electronic Market
In this chapter, we delve into the world of electronic markets, which have revolutionized 

the way financial instruments are traded. With the rapid advancements in technology 

and the widespread adoption of the Internet, electronic markets have largely replaced 

traditional, floor-based trading venues, ushering in an era of speed, efficiency, and 

accessibility for market participants around the globe.

Electronic markets facilitate the buying and selling of financial instruments, 

such as stocks, bonds, currencies, and commodities (covered in Chapter 1), through 

computerized systems and networks. They have played a critical role in democratizing 

access to financial markets, enabling a broader range of participants, including retail 

investors, institutional investors, and high-frequency traders, to engage in trading 

activities with ease and transparency. At the heart of electronic markets lies the trading 

mechanism, which governs how buy and sell orders are matched, executed, and settled.

Furthermore, electronic markets offer a variety of order types that cater to the diverse 

needs and objectives of traders. These order types can be used to achieve specific goals, 

such as minimizing market impact, ensuring a desired level of execution, or managing 

risk. In this chapter, we will examine the most common types of orders, including market 

orders, limit orders, stop orders, and their various iterations.

As we progress through this chapter, readers will gain a comprehensive 

understanding of the inner workings of electronic markets, the trading mechanisms that 

drive them, and the wide array of order types available to market participants.

�Introducing Electronic Market
The electronic market operates on the basis of a discrete price grid where prices are 

arranged linearly according to the price magnitude. Every market has a minimum tick 

size. One tick is the minimum price difference between any two adjacent prices on 

the price grid of a trading instrument in a market. The price movements of different 

© Peng Liu 2023 
P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_2

https://doi.org/10.1007/978-1-4842-9675-2_2


36

trading instruments could vary a lot, and we use their respective tick sizes to represent 

the minimum amount they can move up or down on an exchange. Stocks generally 

trade in one-cent tick size increments, currencies in pips (percentage in point or price 

interest point), and rates in basis points (bps). When the price grid is such that prices are 

arranged from the smallest price to the largest price, it is called the price ladder.

The price ladder plays a crucial role in electronic markets by providing a visual 

representation of the order book, which contains a list of all pending buy and sell orders 

for a specific trading instrument. The order book is continuously updated in real time, 

reflecting the dynamic nature of the market as new orders are placed, modified, or 

canceled. Each rung of the price ladder corresponds to a specific price level, with buy 

orders (or bids) listed on one side and sell orders (or asks) on the other. The highest bid 

and the lowest ask are referred to as the best bid and best ask, respectively, and the gap 

between them is known as the bid-ask spread.

Market participants can use the information provided by the price ladder and order 

book to gain valuable insights into a particular trading instrument’s supply and demand 

dynamics. This data can help traders identify potential trading opportunities, assess 

liquidity, and gauge the depth of the market at various price levels. For instance, large 

clusters of orders at specific price points may indicate significant support or resistance 

levels, while a thinning order book might suggest a lack of liquidity and increased price 

volatility. By carefully analyzing the price ladder and order book, traders can make 

more informed decisions and develop strategies that take advantage of the prevailing 

market conditions. Additionally, understanding the role of tick sizes in the price grid is 

crucial for traders when placing orders, managing risk, and executing trades, as even 

small changes in tick sizes can have a substantial impact on the potential profit or loss of 

a trade.

�Electronic Order
The rise of electronic trading has brought about significant improvements in the 

efficiency, speed, and accessibility of financial markets. Transactions that once 

took minutes or hours to complete can now be executed in milliseconds or even 

microseconds, thanks to the power of high-speed networks and advanced computer 

algorithms. As a result, market participants can take advantage of fleeting trading 

opportunities, react more swiftly to market news, and benefit from tighter bid-ask 

spreads, which translate into lower transaction costs.
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Moreover, electronic trading has democratized access to global financial markets, 

allowing individual investors to trade alongside institutional players such as hedge 

funds, banks, and proprietary trading firms. Through user-friendly online trading 

platforms, retail investors can access a vast array of financial instruments, from stocks 

and bonds to currencies and derivatives, and participate in various markets around 

the world. These platforms provide a wealth of market data, research tools, and risk 

management features, empowering investors to make more informed decisions 

and execute their trading strategies with precision and ease. At the same time, the 

increased transparency and availability of market data have fostered a more competitive 

landscape, driving innovation in trading strategies, algorithms, and financial products.

Orders are short messages to the exchange through the broker. An order is a set 

of instructions the trader gives to the exchange. It must contain at least the following 

instructions:

•	 Contract/security (or contracts/securities) to trade

•	 Buy or sell or cancel or modify

•	 Size: How many shares or contracts to trade

From an investor’s perspective, making a trade via a computer system is simple and 

easy. However, the complex process behind the scenes sits on top of an impressive array 

of technology. What was once associated with shouting traders and wild hand gestures 

in open outcry markets has now become more closely associated with computerized 

trading strategies.

When you place an order to trade a financial instrument, the complex technology 

enables your brokerage to interact with all the securities exchanges looking to execute 

the trade. Those exchanges simultaneously interact with all the brokerages to facilitate 

trading activities.

For example, the Singapore Exchange (SGX), a Singaporean investment holding 

company, acts through its central depository (CDP) as a central counterparty to all 

matched trades (mainly securities) executed on the SGX ST Trading Engine, as well as 

privately negotiated married trades that are reported to the clearing house for clearing 

on the trade date. Being a central counterparty (CCP), CDP assumes the role of the seller 

to the buying clearing member and buyer to the selling clearing member. CDP, therefore, 

takes the buyer’s credit risks and assumes the seller’s delivery risks. This interposing 

of CDP as the CCP eliminates settlement uncertainty for market participants. SGX 
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provides a centralized order-driven market with automated order routing, supported 

by decentralized computer networks. There are no designated market makers (liquidity 

providers), and member firms act as brokers or principals for clearing and settlement.

�Proprietary and Agency Trading
In the world of finance, the distinction between proprietary and agency trading plays 

a crucial role in determining the objectives and motivations behind trading activities. 

While both types of trading involve the execution of orders in financial markets, they 

serve different purposes and are subject to different regulations and risk profiles.

Proprietary trading allows financial institutions to generate profits by leveraging their 

own capital and expertise in market analysis, risk management, and trading strategies. 

Prop traders often engage in various strategies such as arbitrage, market making, and 

statistical arbitrage, seeking opportunities to capitalize on market inefficiencies and 

price discrepancies. However, proprietary trading carries a higher degree of risk due to 

the full responsibility for potential losses. As a result, proprietary trading desks are often 

subject to strict risk management controls and regulatory oversight, particularly in the 

wake of the 2008 financial crisis.

On the other hand, agency trading focuses on providing execution services for 

clients, prioritizing the best execution of client orders, and ensuring that clients’ interests 

are aligned with the broker’s actions. The primary goal of agency trading is to achieve 

the most favorable terms for the client while minimizing the impact of the trade on the 

market. Brokers engaged in agency trading earn income through commissions and fees, 

rather than by taking positions in the market. Since agency traders do not assume market 

risk on behalf of their clients, they are subject to different regulatory and compliance 

requirements than proprietary traders.

A broker or trading agency can execute trading orders for their clients or their own 

agency. The main difference between agency and proprietary trading is the trading 

client, that is, for whom the trade is executed, and whose investment portfolio is changed 

as a result of trading. Agency trading is any type of trade that a broker executes for their 

clients/investors who are charged a brokerage fee. Proprietary trading, also known as 

prop trading, refers to when an agency or broker executes trades for the benefit of its 

own institution. The orders submitted by traders for their own accounts/institutions are 

called proprietary orders. Since most traders cannot access the markets directly, most 

orders are agency orders, which a broker presents to the market.
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Agency orders can be held or not held. Held orders are those when the broker has 

an obligation to a client to fill the order. Market-not-held orders are institutional orders 

where the trader hires a broker-dealer to execute the order. Working on an order means a 

broker-dealer takes some time to fill the order.

Understanding the differences between proprietary and agency trading is essential 

for market participants to navigate the complex world of financial markets. While 

proprietary trading focuses on generating profits through active market participation, 

agency trading emphasizes the execution of client orders in the best possible manner, 

ensuring that the interests of clients are at the forefront of the broker’s actions.

�Order Matching Systems
A securities exchange needs to pair one or more unsolicited buy orders to one or more 

sell orders to make trades. This process is called matching the trading orders. When 

an investor wants to purchase a specific amount of stock, and another wants to sell the 

same quantity at the same price, the orders from both sides match, and a transaction 

takes place. The process of pairing these orders is called order matching, whereby 

exchanges identify buy orders, or bids, with corresponding sell orders, or asks, to pair 

and execute both orders.

This order matching process has become almost entirely automated, using rule-

based systems to execute the pair of trades if certain conditions are satisfied. Most 

exchanges, some brokerages, and almost all electronic communication networks use 

rule-based order matching systems. These trading rules arrange trades from the orders 

of specific sizes that traders submit to them, not requiring face-to-face negotiation. Note 

that these systems follow particular order precedence rules.

Order precedence rules are a set of guidelines that dictate the priority in which 

orders are matched and executed in the market. These rules aim to ensure a fair and 

efficient order matching process by determining which orders take precedence over 

others in the queue. There are three primary order precedence rules followed by most 

trading systems: price, time, and size.

•	 Price precedence: Orders with better prices are given priority over 

orders with worse prices. In the case of buy orders, higher bids have 

precedence, while for sell orders, lower asks are prioritized. This rule 

ensures that market participants who are willing to buy at higher 

prices or sell at lower prices get their orders executed first.
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•	 Time precedence: If two or more orders have the same price, the 

order that was placed earlier takes precedence. This rule, also known 

as the “first-come, first-served” principle, rewards traders who 

submit their orders earlier, ensuring that they are not disadvantaged 

by others submitting orders at the same price later.

•	 Size precedence: In some markets, when multiple orders have the 

same price and time priority, the order with the larger size may 

be given precedence. This rule encourages market participants to 

place larger orders, which can contribute to enhanced liquidity in 

the market.

There are three common types of orders that an electronic exchange sees: limit 

orders, market orders, and cancelation orders. Limit orders must include information 

such as the limit price, order size, and trade direction (buy or sell). Market orders must 

include the order size and trade direction. A cancelation order cancels a standing limit 

order entirely or reduces its order size.

Note that some exchanges, such as the London Stock Exchange and the NYSE Group, 

support functionality to allow traders to specify whether their limit orders are to be 

displayed or not on the limit order book (LOB). This is called lit (displayed) or unlit (not 

displayed). In that case, the limit order must have at least the following:

•	 Limit price

•	 Order size

•	 Trade direction

•	 Display or non-display

•	 If displayed, the size to be displayed

Several common order precedence rules are considered for execution. For the 

order type precedence, market orders always rank above limit orders. For the price 

precedence, a more competitive price rule is. The display precedence takes the form 

of lit or unlit preference, and the time precedence observes the time of arrival for 

the orders.

The rule used by most exchanges is the price/display/time precedence rule to 

determine the priority of execution. Specifically, the highest bids and lowest offers 

always execute before lower bids and higher offers. Among equally priced orders, 
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displayed orders always get executed before non-displayed orders. Among displayed and 

non-displayed orders at the same price level, the time of arrival determines an order’s 

priority.

The price/display/time precedence rule ensures a fair and efficient trading 

environment by prioritizing orders based on their competitiveness, visibility, and time 

of submission. By adhering to this rule, electronic exchanges can maintain a transparent 

and orderly market, encouraging market participants to submit competitive orders and 

enhancing liquidity.

In addition to the common order types and precedence rules discussed earlier, many 

electronic exchanges also offer a variety of advanced order types and conditional orders 

designed to cater to the diverse needs of traders. These may include

•	 Stop orders: These are orders that are triggered once a specific price 

level is reached. Stop orders can be used to limit losses, protect 

profits, or enter a position once a particular price level is breached. 

They can be further classified into stop-market and stop-limit orders.

•	 Iceberg orders: These are large orders that are divided into smaller 

parts, with only a portion of the order visible on the order book at any 

given time. Once the visible portion is executed, the next portion is 

revealed. This helps to minimize the market impact of large orders 

and can prevent information leakage.

•	 Trailing stop orders: These orders allow traders to set a stop price 

that trails the market price by a specific distance. As the market price 

moves in a favorable direction, the stop price adjusts accordingly, 

helping to protect gains while giving the position room to run.

By offering a diverse range of order types and adhering to well-defined precedence 

rules, electronic exchanges can provide market participants with a flexible and 

efficient trading environment. This enables traders to effectively manage risk, optimize 

execution, and tailor their trading strategies to the unique characteristics of the financial 

instruments they trade.
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�Market Order
The market order is the most common transaction type in the stock markets. It is an 

instruction by an investor to a broker to buy or sell stock shares, bonds, or other assets 

at the best available price in the current financial market. This means a market order 

instructs the broker to buy or sell a security immediately at the current price. Since there 

will be plenty of willing buyers and sellers for large-cap stocks, futures, or ETFs, market 

orders are best used for buying or selling these financial instruments with high liquidity.

Since the market order is an instruction to trade a given quantity at the best price 

possible, the priority of the market-order trader is to execute the order immediately with 

no specific price limit. Thus, the main risk is the uncertainty of the ultimate execution 

price. Once submitted, the market order cannot be canceled since it has already been 

executed.

Note that the electronic market orders don’t wait. Upon receipt of a market order, 

the exchange will match it against the standing limit orders immediately until it is 

completely filled. Such immediacy characterizes market orders compared to limit orders 

(introduced in the following section). This means that when filling a market order, the 

order matching system will buy at the (ideally) lowest ask price or sell at the highest bid 

price, thus ending up paying the bid/ask spread.

Given the nature of market orders, they are particularly suitable for situations 

where the primary goal is to execute a trade quickly, rather than achieving a specific 

target price. This makes market orders especially useful in fast-moving or volatile 

market conditions, where getting in or out of a position promptly is crucial. However, 

the urgency of market orders also exposes investors to the risk of price slippage, which 

occurs when the actual execution price differs from the expected price due to rapid 

market fluctuations.

It is important for investors to understand that market orders offer no price 

protection, meaning that the execution price may be significantly different from the 

current market price, especially for illiquid or thinly traded instruments. In such cases, 

limit orders may be a more appropriate choice, as they allow investors to specify a 

maximum purchase price or a minimum sale price for their orders, providing some level 

of price control. However, limit orders come with the trade-off of potentially not being 

executed if the specified price is not met.
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�Limit Order
A limit order, which instructs the broker to buy or sell at the best price available only if 

the price is no worse than the price limit specified by the investor, is the main alternative 

to the market order for most individual investors. It is preferable when buying or selling a 

less frequently traded or highly volatile asset.

During regular hours, limit orders are arranged according to the exchange’s limit 

price and time of receipt. When a buy market order arrives, first in the queue limit order 

selling at the lowest ask price gets matched first. When a sell market order arrives, first 

in the queue limit orders bidding at the highest bid price gets executed first. If the order 

is not executable, the order will be a standing offer and placed in a file called a limit 

order book.

A buy limit order is an order to purchase a financial instrument at or below a 

specified price, allowing traders to control how much they would pay for the instrument. 

In other words, the investor is guaranteed to pay that price or less by using a limit order 

to make a purchase.

Although the price is guaranteed, the order being filled is not guaranteed to be 

executed in time. After all, a buy limit order will only be executed if the asking price is at 

or below the specified limit price. If the asset does not reach the specified price or moves 

too quickly through the price, the order is not filled and will be stacked into the limit 

order book, causing the investor to miss out on the trading opportunity. That is, by using 

a buy limit order, the investor is guaranteed to pay the buy limit order price or better but 

is not guaranteed to have the order filled.

The same reasoning applies to the sell limit order, where the investor will sell the 

financial instrument at or above a specified selling price. A sell limit order allows traders 

to set a minimum selling price for their financial instruments. In this case, the investor 

is guaranteed to receive the specified price or a better price for the sale, but there is no 

guarantee that the order will be executed. A sell limit order will only be filled if the bid 

price is at or above the specified limit price. If the asset does not reach the specified price 

or moves too quickly through the price, the order is not filled and will be stored in the 

limit order book, potentially causing the investor to miss out on the trading opportunity.

Limit orders offer more control over the execution price than market orders and can 

be particularly useful when trading illiquid or volatile assets, where price slippage is 

more likely. However, they also come with the risk that the order may not be executed if 

the specified price is not reached, potentially resulting in missed trading opportunities.
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To maximize the chances of a limit order being executed, traders should carefully 

monitor market conditions and adjust their limit prices accordingly. They may also 

consider using other advanced order types, such as stop-limit orders or trailing stop-

limit orders, which combine the features of limit orders with additional conditions, 

providing even greater control over the execution price and risk management.

�Limit Order Book
Note that a limit order book likely contains multiple bids and asks for the same 

instrument. These two types of trading directions, that is, bid and ask, represent the 

demand and supply side of the market. These limit orders are shelved on the book 

because they are not executable at the moment, for a reason. That reason is the bid/ask 

spread, defined as the price difference between the best bid and the best offer/ask of a 

LOB for a given instrument.

The best bid represents the limit order with the highest price the underlying investor 

from the demand side is willing to pay for the specific asset, and the best offer/ask is the 

lowest price some other investor from the supply side is willing to sell out the specific 

asset. When this gap is negative, the bordering trades will be automatically filled, 

creating a new spread based on the new best bid and offer. Popular large-cap stocks 

will have little or no spread, as you can almost always find another party who is willing 

to make the trade. The spread becomes wider for those less popular instruments. This 

means you should be careful when entering a position for these less frequently traded 

assets, as it will be challenging to exit the position later on.

The bid/ask spread plays a critical role in trading as it directly relates to the cost 

of trading and the liquidity of the trading market for the specific asset. A small spread 

indicates a highly liquid market where multiple buyers and sellers are involved. This leads 

to lower transaction costs and faster order execution. On the other hand, a big spread 

suggests a less liquid market. In this case, fewer market participants are interested in 

trading the asset, leading to potentially higher transaction costs and slower order execution.

Market makers provide liquidity by continuously quoting both bid and ask prices for 

a particular asset, thus playing an essential role in maintaining a healthy bid/ask spread 

and providing sufficient liquidity to the market. These market participants stand ready to 

buy or sell the asset at their quoted prices, ensuring that there is always a counterparty 

available for traders looking to execute their orders. As a result, the presence of active 

market makers can, and are incentivized to, help reduce the bid/ask spread and improve 

overall market efficiency.
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Figure 2-1 illustrates the limit order book for a particular asset. There are multiple 

price points (along with their sizes/volumes) for the demand from the buy side and the 

supply from the sell side. We take the lowest ask price of the upper box as the best offer 

and the highest bid price of the lower box as the best bid. The difference between the two 

gives the bid/ask spread. A bigger gap corresponds to lower liquidity. A market maker 

would be incentivized to reduce the gap by providing more liquidity to the market, 

making the trades of this asset more executable.

Figure 2-1.  Illustrating the limit order book that consolidates all standing limit 
orders (prices and quantities) from the buy side and the sell side. A market maker 
is incentivized to reduce the gap by providing more liquidity to the market, serving 
as the liquidity provider, and making the trades of this asset more executable

We can also look at the marketability of buy and sell orders at different ranges. As 

shown in Figure 2-2, we divide the limit order book into five different regions: above the 

best offer, at the best offer, between the best bid and best offer, at the best bid, and below 

the best bid. For a buy order, it will be (easily) marketable if the price is at regions 1 and 2,  
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since those eager to sell the asset (at the bottom part of the top box) would love to see a 

buyer with an expected or even higher bid. We call the buy order in the market if it lives 

within region 3, a situation in flux. Region 4 is borderline and is called at the market, 

representing the best bid of all the buyers in the limit order book. When the price of the 

buy order drops to region 5, there is no marginal competitiveness, and the order will 

simply be buried among the rest of the buy orders, leaving it behind the market. The 

same reasoning applies to the marketability of sell orders as well.

Figure 2-2.  Analyzing the marketability of buy and sell orders within different 
regions of the limit order book

It is important for traders and investors to understand the marketability of buy and 

sell orders in these different regions so as to optimize their order execution strategies. 

By strategically placing orders in the appropriate regions, traders can increase the 

likelihood of their orders being executed at the desired price levels, thus minimizing 

transaction costs and better managing trading risks. Furthermore, by monitoring the 

market dynamics and the depth of the limit order book (the number of levels of buy and 

sell limit orders available in the order book at a given point in time), traders can gain 

valuable insights into the market dynamics of the asset.
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�Display vs. Non-display Orders
A display order is a visible order, and a non-display order is a hidden one that is not 

displayed on the limit order book. The former is much more heavily regulated than 

the latter.

A visible order is prohibited from crossing the market. For example, if an offer is 

already on one exchange, another exchange cannot post a bid for the same price or 

higher, thus creating a locked market. These regulations ensure a stable bid/ask spread 

for a particular asset. On the other hand, hidden orders have no such regulation.

Hidden, or non-display, orders offer traders a degree of anonymity by concealing 

their intentions and visibility from other market participants. This is particularly useful 

for large institutional investors who want to avoid revealing their large positions and 

prevent other traders from front-running or anticipating their trades. While hidden 

orders provide anonymity, they usually have lower execution priority compared to 

visible orders at the same price level. This means that when equally priced orders are 

matched, visible orders are executed first, followed by hidden orders based on their time 

of arrival.

The choice between using display and non-display orders depends on specific 

trading objectives and market conditions. Display orders are suitable for traders who 

prioritize execution speed and are willing to reveal their intentions to the market. 

Non-display orders, on the other hand, are more appropriate for traders who prioritize 

discretion and want to minimize the resulting market impact. However, they may have to 

accept the trade-off of lower execution priority and increased time to fill the order.

�Stop Order
By default, a stop order is a market order conditioned on a preset stop price. A stop 

order becomes a market order as soon as the current market price reaches or crosses the 

preset stop price.

A stop order is always executed in the direction that the asset price is moving, 

assuming that such movement will continue in its original direction. For instance, if the 

market for a particular asset is moving downward, the stop order will be to sell at a preset 

price below the current market price. This is called a stop-loss order, which is placed to 

limit potential losses when the investor is in an open position of the asset. The stop-loss 

order will take the investor out of the open position at a preset level if the market moves 

against the existing position.
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Stop-loss orders are essential, especially when one cannot actively keep an eye on 

the market. It’s thus recommended to always have a stop-loss order in place for any 

existing position in order to gain protection from a sudden drop in price due to adverse 

market news. We can also call it a sell-stop order, which is always placed below the 

current market price and is typically used to limit a loss or protect a profit on a long stock 

position.

Alternatively, if the price is moving upward, the stop order will be to buy once the 

security reaches a preset price above the current market price. This is called a stop-entry 

order, or buy-stop order, which can be used to enter the market in the direction the 

market is moving. A buy-stop order is always placed above the current market price.

Therefore, before entering a position, we can use a stop-entry (buy-stop) order to 

long an asset if the market price exceeds the preset stop price, and use a sell-stop order 

to short an asset if the market price drops below the preset stop price. If we are already 

in a long (or short) position, we can use a sell-stop (or buy-stop) order to limit the loss of 

the position in case the market price drops (or rises).

Also, note that stop orders can be subject to slippage, that is, the difference between 

the expected execution price and the actual execution price. Since stop orders are 

triggered and converted into market orders once the preset stop price is reached, there 

is a possibility that the order may be executed at a worse price than initially anticipated, 

especially in fast-moving or illiquid markets. As a result, slippage can lead to a larger loss 

or a smaller profit than originally expected.

Let us look at one example. Say you observe that a particular stock has been moving 

in a sideways range (a fairly stable range without forming any distinct trends over some 

period of time) between $20 and $30, and you believe it will ultimately break out the 

upper limit and move higher. You would like to employ breakout trading, which means 

you will take a position within the early stage of an upward-moving trend. In this case, 

you could place a stop-entry order above the current upper limit of $30. The price of the 

stop-entry order can be set as $30.25 to allow for a margin of error. Placing the stop-

entry order gets you into the market once the sideways range is broken to the upside. 

Also, now that you’re long in the position, if you’re a disciplined trader, you’ll want 

to immediately establish a regular stop-loss sell order to limit your losses in case the 

upward trend is false.

When placing a stop order, we have (unknowingly) entered into the world of 

algorithmic trading. Here, the logic of algorithmic trading is simple: if the market 

price reaches or crosses the stop price, issue a market order; else, keep checking the 

market price.
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�Stop-Limit Order
A stop-limit order is similar to a stop order in that a stop price will activate the order. 

However, unlike the stop order, which is submitted as a market order when elected, the 

stop-limit order is submitted as a limit order. A stop-limit order combines the features of 

a stop order and a limit order, providing more control over the execution price while still 

allowing for the possibility of protecting against significant losses or locking in profits. 

Specifically, when the market price reaches the preset stop price, the stop-limit order 

becomes a limit order that will be executed at the specified limit price or better. This 

ensures that the order will not be executed at a price worse than the limit price, thus 

mitigating the risk associated with market orders.

A stop-limit order is a conditional trade that combines the features of a stop order 

with those of a limit order and is used to mitigate risk. So a stop-limit order is a limit 

order contingent on a preset stop price and a limit price. A stop-limit order eliminates 

the price risk associated with a stop order where the execution price cannot be 

guaranteed. However, it exposes the investor to the risk that the order may never fill even 

if the stop price is reached. A stop-limit order gives traders precise control over when the 

order should be filled, but the order is not guaranteed to be executed. Traders often use 

stop-limit orders to lock in profits or limit downside losses, although they could “miss 

the market” altogether, resulting in missed opportunities if the asset’s price moves in the 

desired direction but doesn’t satisfy the limit price condition.

In summary, stop-limit orders offer a balance between limiting the execution price 

and stopping potential loss due to significant adverse market movements. However, they 

come with the risk of not being executed if the limit price is not met, potentially causing 

traders to miss out on potential profits or fail to limit their losses effectively.

Let us look at an example algorithm behind the stop-limit order. Suppose research 

shows that the slippage is usually three ticks. Regarding the algorithmic rule for a buy-

stop-limit order, if the market price reaches or crosses the stop price, the system would 

issue a limit order of a limit price three ticks above the stop price. Otherwise, it will keep 

checking the market price. Regarding the algorithmic rule for a sell-stop-limit order, if 

the market price reaches or crosses the stop price, the system would issue a limit order 

of a limit price three ticks below the stop price. Otherwise, it will keep checking the 

market price.

Chapter 2  Electronic Market



50

�Pegged Order
A pegged order is a type of order that allows the limit price to be dynamic, adjusting 

automatically based on a reference price. This can be particularly useful in spread 

trading or other trading strategies that require staying in sync with the market’s best bid, 

best offer, or mid-price.

The price in a limit order is fixed and static; we can only issue a new order to have 

a new limit price. However, there are situations when we would like the limit price to 

be dynamic. For example, suppose a trading strategy must trade at an offset of the best 

bid or best ask. But these two quotes fluctuate, and you want your limit order prices to 

change in sync with them. Pegged orders allow you to do just that.

Placing a pegged order requires specifying the reference price to track, along with an 

optional differential offset. The differential offset can be a positive or negative multiple of 

the tick size that represents the minimum price movement for the particular asset. The 

trading system will then manage the pegged order by automatically modifying its price on 

the order book as the reference price moves, maintaining the desired price relationship.

A pegged order is a limit order with a dynamic limit price. It allows traders to keep 

their orders in line with the changing market conditions without having to monitor and 

adjust their orders manually and constantly. This can be particularly beneficial in fast-

moving markets or when trading strategies require maintaining specific price relationships 

with the best bid, best offer, or mid-price. However, it’s essential to understand that pegged 

orders still carry the risk of not being executed if the market moves unfavorably, and the 

dynamic limit price never reaches a level at which the order can be filled.

The pegged order is often used in spread trading, which involves the simultaneous 

buying and selling of related securities as a unit, designed to profit from a change in the 

spread (price difference) between the two securities. Here, spread trading is a strategy 

that takes advantage of the price difference, or spread, between two related securities. 

In this strategy, a trader simultaneously buys one security and sells another security to 

profit from changes in the spread between the two. The objective is to capitalize on the 

temporary mispricing or changing price relationship between the securities rather than 

betting on the direction of the individual securities themselves.

So how does a pegged order work? When entering a pegged order, you must specify 

a reference price they wish to track, which could be the best bid, best offer, or mid-

price. Best bid and best offer pegs may track at a differential offset, which is specified 

as a multiple of the whole tick size. This means that the trading system will manage the 
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pegged order by automatically modifying the pegged order’s price on the order book as 

the reference price moves.

Let us look at an example of pegged order. Suppose your strategy requires you to 

buy a limit order to be filled at three ticks lower than the current best bid and a sell 

limit order to be filled at two ticks higher than the current best offer. When the bid price 

changes, the pegged order becomes a composite order comprising

•	 A cancelation order of total order size (one buy limit order and one 

sell limit order)

•	 A new buy limit order with a limit price pegged at the new best bid 

less an offset of three ticks, and a new sell limit order with a limit 

price pegged at the new best ask plus an offset of two ticks

Let’s say the current best bid is $100, and the best offer is $101. According to this 

strategy, we will place a buy limit order at $100 – (3 ticks) and a sell limit order at $101 + 

(2 ticks). Assuming each tick is $0.01, the buy limit order will be placed at $99.97, and the 

sell limit order will be placed at $101.02.

Now, if the best bid changes to $100.50 and the best offer changes to $101.50, the 

pegged orders will automatically adjust to the new reference prices. Specifically, the buy 

limit order will now be placed at $100.50 – (3 ticks) = $100.47, and the sell limit order will 

be placed at $101.50 + (2 ticks) = $101.52.

The pseudocode for the algorithm behind a pegged buy order with an offset of x is as 

follows:

	 1.	 If the bid price increases to B+

	 a.	 Cancel the current limit order

	 b.	 Submit a buy limit order at a price of B+ − x

	 2.	 Else

	 a.	 If the bid price decreases to B−

	 i.	 If the current limit order is not filled

1.	 Cancel the current limit order

2.	 Submit a buy limit order at a price of B− − x

	 ii.	 Else

1.	 Keep checking whether the bid price has changed

Chapter 2  Electronic Market



52

When the bid price changes, the algorithm checks if the change is an increase or a 

decrease. If the bid price increases, the current limit order is canceled, and a new buy 

limit order is submitted at the new bid price minus the offset x. If the bid price decreases, 

the algorithm first checks if the current limit order has been filled or not. If the current 

limit order is not filled, the order is canceled, and a new buy limit order is submitted at 

the new bid price minus the offset x. If the order is filled, no further action is needed. The 

algorithm will continue monitoring the bid price for changes and adjust the buy limit 

order accordingly.

Pay attention to the inner if condition in the else statement. Here, we check if the 

current limit order is filled. Since there is a price drop, we would execute the limit order if 

it drops to the limit price of the buy limit order.

We can similarly write out the pseudocode for the algorithm behind a pegged sell 

order with an offset of x as follows:

	 1.	 If the ask price decreases to A−

	 a.	 Cancel the current limit order

	 b.	 Submit a sell limit order at a price of A− + x

	 2.	 Else

	 a.	 If the ask price increases to A+

	 i.	 If the current limit order is not filled

1.	 Cancel the current limit order

2.	 Submit a sell limit order at a price of A− + x

	 ii.	 Else

1.	 Keep checking whether the bid price has changed

�Trailing Stop Order
Suppose you have a winning position and want to make it run. And you want to protect 

your gain. This can be achieved with a stop order. But stop order is static. If the run 

continues, you want to raise the stop order automatically in tandem.

So trailing stop order is invented for this purpose. A trailing (sell) stop order sets the 

initial stop price at a fixed amount below the market price. As the market price rises, the 

stop price rises by the trailing amount. But if the stock price falls, the stop price remains 
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unchanged. When the stop price is hit, a market order is submitted. Reverse this for a 

buy trailing stop order. This strategy may allow a trader to limit the maximum possible 

loss without limiting possible gain.

A trailing stop order is a useful tool for managing positions in a dynamic market. It 

allows investors to secure gains and limit losses by automatically adjusting the stop price 

as the market moves in a favorable direction. This flexibility is particularly beneficial 

when a position is experiencing significant price fluctuations, as it helps protect profits 

without limiting potential upside.

Therefore, a trailing stop is a modification of a typical stop order that can be set at 

a defined percentage or dollar amount away from a security’s current market price. An 

investor places a trailing stop loss below the current market price for a long position and 

a trailing stop above the current market price for a short position. It is designed to lock in 

profits or limit losses as a trade moves favorably.

Note that the trailing stops only move if the price moves favorably. Once it moves to 

lock in a profit or reduce a loss, it does not move back in the other direction. The trailing 

stop order is thus a dynamically changing stop order.

�Market If Touched Order
A market if touched (MIT) is an order to buy (sell) below (above) the market. This order 

is held in the system until the trigger price is touched and is then submitted as a market 

order if and when a specified price level is reached. It is a conditional order that becomes 

a market order when a security reaches a specified price. When using a buy MIT order, 

a broker will wait until the security reaches the specified level before purchasing the 

asset. Correspondingly, a sell MIT order will trigger a market sell order when the security 

reaches a specified sell price.

Note that MIT orders are typically used to buy when the price falls or sell when the 

price rises. This is in contrast to stop orders and limit orders. For example, a buy MIT 

order looks for the price of an asset to fall, while a buy-stop order activates when the 

market value of the security increases past a specified level. On the other hand, the buy 

limit order only activates when the market value of the security reaches the limit price.

Take an asset whose current price is $288.7, for example. There is a large buy limit 

order size of $287.9. You want to buy at $288.0 and be among the first to buy. With an 

MIT, you can send a market order to buy when touched.
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�Summarizing Major Types of Orders
Table 2-1 summarizes the major types of orders, including market order, limit order, stop 

order, stop-limit order, pegged order, trailing stop order, and market if touched order.

Table 2-1.  Major types of orders

Order Type Attributes Note

Market order Trading direction and volume Buy or sell immediately at the current best price 

by matching against standing limit orders; no price 

limit; uncertainty in the execution price; pay for the 

bid-ask spread

Limit order Limit price, trading direction, 

and volume

Guaranteed to buy/sell an asset at the specified limit 

price or better for a buy/sell limit order; execution 

not guaranteed; order is shelved into the LOB if not 

executable; different marketability

Stop order Stop price, trading direction, 

and volume

Market order with a stop price; executed in the 

direction of asset price movement; applicable for 

both entering a position and already in a position

Stop-limit 

order

Stop price, limit price, trading 

direction, and volume

A limit order is contingent on a preset stop price and 

a limit price; execution is not guaranteed

Pegged order Reference price, offset, 

trading direction, and volume

A limit order with a dynamic limit price; consists 

of a cancelation order and a new limit order when 

reference price changes

Trailing stop 

order

Trailing amount, trading 

direction, and volume

Dynamic stop order; trailing stops only move if the 

price moves favorably

Market if 

touched order

Trigger price, trading 

direction, and volume

A market order to buy (sell) below (above) the 

market; buy when the price falls or sell when the 

price rises
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�More Order Types: Limit and Cancelation
There exist some other order types. For example, fill or kill (FOK) is a conditional type 

of order used in securities trading that instructs a brokerage to execute a transaction 

immediately and completely (the fill part) or not at all (the kill part). With FOK, the limit 

order is either completely filled at a specified or better price or completely canceled. It 

combines an all-or-none (AON) specification indicating it must be filled entirely; if not, 

it will be canceled. FOK orders are often used when a trader wants to ensure that a large 

order is executed quickly and fully without partial fills. This type of order is more suitable 

for large orders or illiquid markets, where a trader wants to avoid the risk of moving the 

market price.

Similarly, fill and kill (FAK) is a limit order that is executed against any existing orders 

at the stated limit price or better, up to the volume of the order. Any residual volume 

from this order is then immediately canceled. FAK orders are useful when a trader wants 

to take advantage of short-term market opportunities without leaving an open order 

on the books. FAK orders provide a balance between getting an immediate fill for the 

desired quantity, but without the all-or-none restriction of an FOK order.

Both FOK and FAK orders can be useful in specific trading scenarios, depending on 

the trader’s objectives and market conditions. These conditional order types offer greater 

control over trade executions and can help traders manage risk and capture market 

opportunities more effectively.

In addition, in high-frequency trading (HFT), an “immediate or cancel” (IOC) order 

is a type of order that must be executed as soon as it is placed in the market. The unfilled 

portion is immediately canceled when the order cannot be fully executed.

�Price Impact
It is important to note the potential price impact of large market orders, which tend to 

move prices. And the reason is the lack of sufficient liquidity for large orders to fill at 

the best price. Large market orders can have a significant impact on prices, especially 

when there is insufficient liquidity at the best price level. This phenomenon is known as 

price slippage, which occurs when the actual execution price of an order differs from the 

expected price due to insufficient liquidity.
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For example, suppose that a 10K-share market buy order arrives, and the best offer 

is $100 for 5K shares. Half the order will fill at $100, but the next 5K shares will have to fill 

at the next price in the book, say at $100.02 (where we assume there are also 5K shares 

offered). The volume-weighted average price for the order will be $100.01, which is 

larger than $100.00. Thus, the price might move further following the trade.

To mitigate the impact of large market orders on prices, traders can consider using 

alternative order types or strategies, such as using limit orders to control the price at 

which their orders get executed or iceberg orders that divide large orders into smaller 

parts, thus reducing the visibility of the order’s total size.

�Order Flow
In trading, order flow is an important concept. It is the overall trade direction at any 

given period of time. Ex post, order flow can be inferred from the trade direction. For 

example, a trade is said to be buyer initiated if the trade took place at the ask price or 

higher. In this case, the buyer is willing to absorb the bid/ask spread and pay a higher 

price. The trade sign is +1.

Conversely, a trade is seller initiated if the trade occurred at the bid price or lower. 

In this case, the seller is willing to absorb the bid/ask spread and sell for a low price. The 

trade sign is –1.

In essence, the order flow suggests the net direction of the market. When there were 

more buy (sell) market orders (MO) than sell (buy) MO, the market direction would 

typically be up (down). Many papers in the literature have provided ample evidence of 

this intuitive observation. It is also well known among traders. By analyzing the order 

flow, traders can identify buying and selling pressure and anticipate potential price 

movements. The concept of order flow is based on the premise that the net direction of 

market orders can provide insights into market trends and potential price changes.

A positive net order flow, where there are more buy market orders than sell market 

orders, generally indicates a bullish market with upward price movement. Conversely, a 

negative net order flow, where there are more sell market orders than buy market orders, 

signals a bearish market with a downward price movement. This correlation between 

order flow and market direction is well documented in academic literature and widely 

recognized by traders.
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So how do we measure the direction of market order flows? One way is to use the 

net trade sign: the total number of buyer-initiated trades less the total number of seller-

initiated trades. We can also use the net trade volume sign: the aggregate size of buyer-

initiated trades less the aggregate size of seller-initiated trades.

That being said, if we can forecast the direction of order flow ex ante, the trade 

direction in the future can be anticipated. In other words, a positive order flow suggests 

the market is likely to go up, while a negative order flow suggests the market is likely to 

go down.

Therefore, we can use some models to forecast the order flow on the fly. A simple 

model is to generate a trading signal if the forecasted order flow for the next period 

exceeds some threshold. This threshold can be determined via backtesting (to be 

covered in a later chapter).

In the following section, we will look at a sample limit order book data and develop 

familiarity with both concepts and implementation.

�Working with LOB Data
The LOB data mainly consists of limit prices and associated trading volume at each price 

level. Due to the vast disparity in different trading platforms, compiling all LOB data for a 

specific asset is difficult. Fortunately, we begin to see a coordinated effort in the research 

community in compiling and sharing such data with open access.

One example is a recent paper in 2020 titled “Benchmark Dataset for Mid-Price 

Forecasting of Limit Order Book Data with Machine Learning Methods,” where 

the authors share the first publicly available benchmark dataset of high-frequency 

limit order markets for mid-price prediction. The paper extracted normalized data 

representations of time series data for five stocks from the NASDAQ Nordic stock market 

for a time period of ten consecutive days, leading to a dataset of around four million time 

series samples in total and covering a complete market-wide history of ten trading days.

The dataset shared by the paper is available at https://etsin.fairdata.fi/

dataset/73eb48d7-4dbc-4a10-a52a-da745b47a649. We have downloaded a sample 

file named “Train_Dst_NoAuction_DecPre_CF_7.txt” and placed it in the data folder. 

Listing 2-1 imports a few packages for data processing and visualization, followed by 

loading the dataset into df.
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Listing 2-1.  Loading the LOB dataset

import numpy as np

import pandas as pd

import plotly.express as px

from plotly.subplots import make_subplots

import plotly.graph_objects as go

df = np.loadtxt('data/Train_Dst_NoAuction_DecPre_CF_7.txt')

We can access the dimensions of the sample dataset via the shape attribute:

>>> df.shape

(149, 254750)

In this dataset, the rows indicate features such as asset price and volume, and the 

columns indicate timestamps. Typically, we would use the rows to indicate observation-

level data per timestamp and use the columns to represent features or attributes. We 

would need to transpose the dataset.

Also, based on the documentation on the dataset, the first 40 rows carry 10 levels of 

bid and ask from the order book, along with the volume of each particular price point. 

We have a total of 40 entries per timestamp since each side (buy and sell) contains 10 

price levels, and each level includes two points: price and volume. In other words, the 

limit order book in a single time snapshot shows up as an array of 40 elements.

The following code prints out price-volume data of ten price levels for the sell and 

the buy sides at the first timestamp:

>>> df[:40,0]

array([0.2615 , 0.00353, 0.2606 , 0.00326, 0.2618 , 0.002  , 0.2604 ,

       0.00682, 0.2619 , 0.00164, 0.2602 , 0.00786, 0.262  , 0.00532,

       0.26   , 0.00893, 0.2621 , 0.00151, 0.2599 , 0.00159, 0.2623 ,

       0.00837, 0.2595 , 0.001  , 0.2625 , 0.0015 , 0.2593 , 0.00143,

       0.2626 , 0.00787, 0.2591 , 0.00134, 0.2629 , 0.00146, 0.2588 ,

       0.00123, 0.2633 , 0.00311, 0.2579 , 0.00128])

Since each level consists of a price-volume pair for both sides (buy and sell), we 

know that for the first four entries, 0.2615 indicates the ask price, 0.00353 as the volume 

at that ask price level, 0.2606 as the buy price, and 0.00326 as the volume at that buy 

price level. Every two entries constitute a price-volume pair, and every price level 
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corresponds to two consecutive pairs. We have a total of 10 price levels, corresponding 

to 20 price-volume pairs, including 10 for the buy side and 10 for the sell side. Also, we 

know that price levels on the sell side should always be higher than on the buy side, and 

a quick check verifies this.

Let us extract the price-volume pairs across all timestamps. Remember to transpose 

the dataset, which is achieved by accessing the .T attribute. The final result is then 

converted into a Pandas DataFrame format for better processing later. Remember to 

print a few rows of the transformed dataset in df2 for a sanity check:

df2 = pd.DataFrame(df[:40, :].T)

�Understanding Label Distribution
The dataset comes with target labels that assume one of the following three values: up, 

down, or stationary movements. This label is used to describe the direction of movement 

of the mid-price for the limit order book. This label is further differentiated by different 

windows of lookahead in order to analyze the lagging effect further. Specifically, 

we would look at the direction of movement after 10, 20, 30, 50, and 100 events 

(timestamps).

Information on the target labels is contained between rows 145 and 149 of the 

original DataFrame. In Listing 2-2, we define a function to plot the distribution of the 

three movements as bar plots (histograms) for each lookahead window, repeated across 

all five windows. These five subplots are arranged together in one row and five columns 

via the make_subplots() function.

Listing 2-2.  Plotting the label distribution of the mid-point movement

labels = ["Up", "Stationary", "Down"]

def printdistribution(dataset):

    fig = make_subplots(rows=1, cols=5,

                       �subplot_titles=("k=10", "k=20", "k=30", "k=50", 

"k=100"))

    fig.add_trace(

        go.Histogram(x=dataset[144,:], histnorm='percent'),

        row=1, col=1

    )
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    fig.add_trace(

        go.Histogram(x=dataset[145,:], histnorm='percent'),

        row=1, col=2

    )

    fig.add_trace(

        go.Histogram(x=dataset[146,:], histnorm='percent'),

        row=1, col=3

    )

    fig.add_trace(

        go.Histogram(x=dataset[147,:], histnorm='percent'),

        row=1, col=4

    )

    fig.add_trace(

        go.Histogram(x=dataset[148,:], histnorm='percent'),

        row=1, col=5,

    )

    fig.update_layout(

        title="Label distribution of mid-point movement",

        width=700,

        height=300,

        showlegend=False

    )

    fig.update_xaxes(ticktext=labels, tickvals=[1, 2, 3], tickangle = -45)

    fig.update_yaxes(visible=False, showticklabels=False)

    fig.layout.yaxis.title.text = 'percent'

    fig.show()

>>> printdistribution(df)

Running the code generates Figure 2-3. The plot suggests an increasingly obvious 

trend for upward and downward movements as the lookahead window gets large.
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Figure 2-3.  Histogram of three types of movement across different lookahead 
windows in the limit order book

�Understanding Price-Volume Data
We stored the price-volume data in the df2 variable earlier. This DataFrame has 40 

columns, corresponding to 10 price levels for each side, with a unique price-volume 

pair at each price level. For example, the first four columns belong to the level 1 price. 

Within the first four columns, the first is the level 1 ask price, the second is the level 1 ask 

volume, the third is the level 1 bid price, and the fourth is the level 1 bid volume. This 

pattern repeats across all 10 price levels, thus forming a total of 40 columns. Each row is 

a snapshot at a particular timestamp, and together these 40 columns form that snapshot.

Let us get the dimension of df2:

>>> df2.shape

(254750, 40)

Now we would like to dissect this DataFrame and allocate each component to a 

separate DataFrame. In Listing 2-3, we subset the DataFrame based on the sequence 

of columns for each component, resulting in four DataFrames: dfAskPrices, 

dfAskVolumes, dfBidPrices, and dfBidVolumes. Subsetting the DataFrame is completed 

by calling the loc() function and supplying the corresponding row and column indexes.
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Listing 2-3.  Extracting the bid/ask prices and volumes

dfAskPrices = df2.loc[:, range(0,40,4)]

dfAskVolumes = df2.loc[:, range(1,40,4)]

dfBidPrices = df2.loc[:, range(2,40,4)]

dfBidVolumes = df2.loc[:, range(3,40,4)]

One thing to note is that the ask and bid prices do not follow the same sequence 

order. Printing out the first row of dfAskPrices and dfBidPrices helps us verify this:

>>> dfAskPrices.loc[0,:]

0     0.2615

4     0.2618

8     0.2619

12    0.2620

16    0.2621

20    0.2623

24    0.2625

28    0.2626

32    0.2629

36    0.2633

Name: 0, dtype: float64

>>> dfBidPrices.loc[0,:]

2     0.2606

6     0.2604

10    0.2602

14    0.2600

18    0.2599

22    0.2595

26    0.2593

30    0.2591

34    0.2588

38    0.2579

Name: 0, dtype: float64
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The results show that the ask prices follow an increasing sequence, while the bid 

prices follow a decreasing sequence. Since we often work with price data that follow an 

increasing sequence in analyses such as plotting, we need to reverse the order of the 

bid prices. The order could be reversed by rearranging the sequence of columns in the 

DataFrame. The current sequence of the columns is

>>> dfBidPrices.columns

Int64Index([2, 6, 10, 14, 18, 22, 26, 30, 34, 38], dtype='int64')

We can reverse the ordering by the [::-1] command:

>>> dfBidPrices.columns[::-1]

Int64Index([38, 34, 30, 26, 22, 18, 14, 10, 6, 2], dtype='int64')

Now let us reverse both bid prices and volumes, where we passed the reversed 

column names to the respective DataFrames based on column selection:

dfBidPrices = dfBidPrices[dfBidPrices.columns[::-1]]

dfBidVolumes = dfBidVolumes[dfBidVolumes.columns[::-1]]

Examining the first row of dfBidPrices shows an increasing price trend now:

>>> dfBidPrices.loc[0,:]

38    0.2579

34    0.2588

30    0.2591

26    0.2593

22    0.2595

18    0.2599

14    0.2600

10    0.2602

6     0.2604

2     0.2606

Name: 0, dtype: float64

Note that the index for each entry still stays the same. We may need to reset the index 

depending on the specific follow-up process.
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Since the price increases from the bottom (buy side) to the top (sell side) in a limit 

order book, we can join the price tables from both sides to show the continuum. There 

are multiple ways to join two tables, and we choose outer join to avoid missing any entry. 

Listing 2-4 joins the price and volume tables from both sides, followed by renaming the 

columns.

Listing 2-4.  Concatenating bid and ask tables

# Concatenate Bid and Ask together to form complete orderbook picture

dfPrices = dfBidPrices.join(dfAskPrices, how='outer')

dfVolumnes = dfBidVolumes.join(dfAskVolumes, how='outer')

#Rename columns starting from 1->20

dfPrices.columns = range(1, 21)

dfVolumnes.columns = range(1, 21)

We can print out the first row of dfPrices to check the prices across all levels at the 

first timestamp:

>>> dfPrices.loc[0,:]

1     0.2579

2     0.2588

3     0.2591

4     0.2593

5     0.2595

6     0.2599

7     0.2600

8     0.2602

9     0.2604

10    0.2606

11    0.2615

12    0.2618

13    0.2619

14    0.2620

15    0.2621

16    0.2623

17    0.2625

18    0.2626
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19    0.2629

20    0.2633

Name: 0, dtype: float64

The result shows that all prices are in increasing order. Since the first ten columns 

show the buy-side prices and the last ten columns belong to the sell-side prices, the best 

bid price would be the highest price at the buy side, that is, 0.2606, while the best ask 

price (best offer) would be the lowest price at the sell side, that is, 0.2615. The difference 

between the two price points gives us the bid/ask spread for the current snapshot, and 

its movement across different snapshots indicates market dynamics.

We can plot these prices as time series, where each price curve represents the 

evolution of price for the specific particular of a buy or sell trading side. As a matter of 

fact, these curves should not intersect with each other; otherwise, they would have been 

transacted and jointly removed from that price level. Listing 2-5 plots the 20 price curves 

for the first 50 timestamps.

Listing 2-5.  Visualizing sample price curves

fig = go.Figure()

for i in dfPrices.columns:

    fig.add_trace(go.Scatter(y=dfPrices[:50][i]))

fig.update_layout(

    title='10 price levels of each side of the orderbook',

    xaxis_title="Time snapshot index",

    yaxis_title="Price levels",

    height=500,

    showlegend=False,

)

>>> fig.show()

Running the code generates Figure 2-4. Note the big gap in the middle; this is the 

bid/ask spread of the limit order book. The figure also tells us something about market 

dynamics. For example, at time step 20, we observe a sudden jump in ask prices, which 

may be caused by a certain event in the market, causing the sellers to raise the prices as 

a whole.
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Figure 2-4.  Visualizing the 10 price curves for both sides for the first 50 time 
snapshots. Each curve represents the price evolution at a particular price level and 
will not intersect with each other. The big gap in the middle presents the bid/ask 
spread of the limit order book

Note that the graph is interactive, offering the usual set of flexible controls (such as 

zooming, highlighting via selection, and additional data upon hovering) based on the 

plotly library.

We can also plot the volume data as stacked bar charts. The following code snippet 

retrieves the first 5 snapshots of volume data and plots the 20 levels of volumes as 

stack bars:

px.bar(dfVolumnes.head(5).transpose(), orientation='h')

Running this code generates Figure 2-5.
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Figure 2-5.  Plotting the first 5 snapshots of volume as bar charts across all 20 
price levels

Let us plot the volume at each price level for a particular time snapshot. We can use 

the iloc() function to access a particular portion based on the positional index. For 

example, the following code prints out the first row of dfPrices:

>>> dfPrices.iloc[0]

1     0.2579

2     0.2588

3     0.2591

4     0.2593

5     0.2595

6     0.2599

7     0.2600

8     0.2602

9     0.2604

10    0.2606

11    0.2615

12    0.2618

13    0.2619

14    0.2620

15    0.2621

16    0.2623

17    0.2625

18    0.2626

19    0.2629

20    0.2633

Name: 0, dtype: float64
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We can plot the volume data of a particular timestamp as bars. As shown in  

Listing 2-6, we use list comprehension to format the prices to four decimal places  

before passing them to the y argument in the go.Bar() function.

Listing 2-6.  Visualizing the volume data

colors = ['lightslategrey',] * 10

colors = colors + ['crimson',] * 10

fig = go.Figure()

timestamp = 0

fig.add_trace(go.Bar(

    �y= ['price-'+'{:.4f}'.format(x) for x in dfPrices.iloc[timestamp].

tolist()],

    x=dfVolumnes.iloc[timestamp].tolist(),

    orientation='h',

    marker_color=colors

))

fig.update_layout(

    title='Volume of 10 price levels of each side of the orderbook',

    xaxis_title="Volume",

    yaxis_title="Price levels",

#     template='plotly_dark'

)

fig.show()

Running the code generates Figure 2-6.
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Figure 2-6.  Volume data of 20 price levels (10 for the sell side and 10 for the buy 
side) for a particular snapshot in time

We can also combine the previous two charts together, as shown in Listing 2-7.

Listing 2-7.  Combining multiple charts together

fig = make_subplots(rows=1, cols=2)

for i in dfPrices.columns:

    fig.add_trace(go.Scatter(y=dfPrices.head(20)[i]), row=1, col=1)

timestamp = 0

fig.add_trace(go.Bar(

    �y= ['price-'+'{:.4f}'.format(x) for x in dfPrices.iloc[timestamp].

tolist()],

    x= dfVolumnes.iloc[timestamp].tolist(),

    orientation='h',

    marker_color=colors

), row=1, col=2)

fig.update_layout(

    �title='10 price levels of each side of the orderbook for multiple time 

points, bar size represents volume',

    xaxis_title="Time snapshot",

    yaxis_title="Price levels",

    template='plotly_dark'

)

fig.show()
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Running the code generates Figure 2-7.

Figure 2-7.  Combining the price and volume data for each price level

�Visualizing Price Movement
The price at each price level may move across different timestamps as a reflection of 

market dynamics. Visualizing the whole times series of the price index may be too 

granular at first glance, since there are too many observations, given the nature of the 

ultra high-frequency data. Instead, we can pick a fixed-size window to plot the price at a 

particular period within the window and then move the window forward in time to show 

the change in price. The rolling window can then be used to generate an animation of 

prices moving up and down.

Listing 2-8 achieves the desired plotting effect. Here, we set the window length to 

100 and choose the second price level for visualization. The animation is essentially a 

collection of frames changing from one to another. Thus, we supply the corresponding 

sequence of data for each frame in the animation.

Listing 2-8.  Animating the price movement

widthOfTime = 100

priceLevel = 1

fig = go.Figure(

    �data=[go.Scatter(x=dfPrices.index[:widthOfTime].tolist(), 

y=dfPrices[:widthOfTime][priceLevel].tolist(),

                     name="frame",

                     mode="lines",

                     line=dict(width=2, color="blue")),

          ],
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    layout=go.Layout(width=1000, height=400,

#                      �xaxis=dict(range=[0, 100], autorange=False, 

zeroline=False),

#                      �yaxis=dict(range=[0, 1], autorange=False, 

zeroline=False),

                     title="10 price levels of each side of the orderbook",

                     xaxis_title="Time snapshot index",

                     yaxis_title="Price levels",

                     template='plotly_dark',

                     hovermode="closest",

                     updatemenus=[dict(type="buttons",

                                       showactive=True,

                                       x=0.01,

                                       xanchor="left",

                                       y=1.15,

                                       yanchor="top",

                                       font={"color":'blue'},

                                       buttons=[dict(label="Play",

                                                     method="animate",

                                                     args=[None])])]),

    frames=[go.Frame(

        data=[go.Scatter(

            x=dfPrices.iloc[k:k+widthOfTime].index.tolist(),

            y=dfPrices.iloc[k:k+widthOfTime][priceLevel].tolist(),

            mode="lines",

            line=dict(color="blue", width=2))

        ]) for k in range(widthOfTime, 1000)]

)

fig.show()

Running the code generates Figure 2-8. We can click the Play button to start 

animating the line chart, which will change shape as we move forward.
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Figure 2-8.  Animating the price changes of a selected price level via a rolling 
window of 100 timestamps

In addition, we can also plot the animation of change in the volume across all the 

price levels, as shown in Listing 2-9. The change in volume also indicates the market 

dynamics in terms of supply and demand, although less so direct than the price itself.

Listing 2-9.  Animating the volume movement

timeStampStart = 100

fig = go.Figure(

    �data=[go.Bar(y= ['price-'+'{:.4f}'.format(x) for x in 

dfPrices[:timeStampStart].values[0].tolist()],

                 x=dfVolumnes[:timeStampStart].values[0].tolist(),

                 orientation='h',

                 name="priceBar",

                 marker_color=colors),

          ],

    layout=go.Layout(width=800, height=450,

                     �title="Volume of 10 buy, sell price levels of an 

orderbook",

                     xaxis_title="Volume",

                     yaxis_title="Price levels",

                     template='plotly_dark',

                     hovermode="closest",

                     updatemenus=[dict(type="buttons",
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                                       showactive=True,

                                       x=0.01,

                                       xanchor="left",

                                       y=1.15,

                                       yanchor="top",

                                       font={"color":'blue'},

                                       buttons=[dict(label="Play",

                                                     method="animate",

                                                     args=[None])])]),

    frames=[go.Frame(

        �data=[go.Bar(y= ['price-'+'{:.4f}'.format(x) for x in dfPrices.

iloc[k].values.tolist()],

                     x=dfVolumnes.iloc[k].values.tolist(),

                     orientation='h',

                     marker_color=colors)],

        layout=go.Layout(width=800, height=450,

                     �title="Volume of 10 buy, sell price levels of an 

orderbook [Snapshot=" + str(k) +"]",

                     xaxis_title="Volume",

                     yaxis_title="Price levels",

                     template='plotly_dark',

                     hovermode="closest")) for k in 

range(timeStampStart, 500)]

)

fig.show()

Running the code generates Figure 2-9.
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Figure 2-9.  Visualizing the change in the volume across all the price levels

�Summary
In this chapter, we covered the basics of the electronic market and the different types 

of electronic orders, including market order, stop order, limit order, and other forms of 

dynamic order (e.g., pegging, trailing stop, market if touched, limit, and cancelation). We 

discussed the mechanism of the order matching system and order flow.

In the second section, we looked at real LOB data and discussed different ways 

to visualize the price and volume data, such as their movement across time. Working 

with the actual data by first plotting them out and performing some initial analysis is a 

common and important first step in the whole pipeline of devising and implementing 

trading strategies.
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�Exercises
•	 Write a function in Python to illustrate the algorithm of a pegged 

buy order and sell order. (Hint: Start by defining your own input and 

output.)

•	 What’s the difference between the market if touched order (MIT) and 

the stop order?

•	 How to calculate mid-price in a limit order book? Implement the 

logic in code. (Hint: Start by defining your own input and output.)

•	 Describe how a buy trailing stop order works.

•	 Should the trailing stop-loss order be placed above or below the 

current market price for an investor in a long position? A short 

position?
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CHAPTER 3

Forward and Futures 
Contracts
In financial markets, forward and futures contracts serve as popular financial 

instruments for hedging risk (preventing or reducing potential loss) and speculation 

(seeking abnormal and risky profits). These contracts offer market participants the 

opportunity to mitigate or enlarge the impact of price fluctuations on their positions. 

The use of forward and futures contracts has grown exponentially over the years, as 

market participants increasingly recognize their potential benefits in risk management 

and portfolio diversification. As such, understanding the mechanics, advantages, and 

limitations of these contracts is essential in the dynamic financial markets.

Forward and futures contracts find their roots in the age-old practice of producers 

and consumers entering into agreements to exchange goods at a future date for a 

predetermined price. Today, these contracts become popular financial vehicles traded 

on a much larger scale, encompassing a wide variety of underlying assets, including 

commodities, currencies, interest rates, and equity indices. Forwards are typically traded 

over the counter (OTC) and customized to the specific needs of the counterparties on 

both sides. Futures contracts are standardized products traded on regulated exchanges, 

just like stocks. Futures and forward contracts differ in liquidity, counterparty risk, and 

transparency.

In this chapter, we delve deeper into the world of forward and futures contracts, 

exploring their unique characteristics, similarities, and differences. We will discuss 

the process of entering and settling these contracts, their role in managing risk, and 

the strategies employed by market participants to capitalize on anticipated price 

movements.

© Peng Liu 2023 
P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_3

https://doi.org/10.1007/978-1-4842-9675-2_3


78

�Introducing Forward and Futures Contracts
Forward and futures contracts are very similar in nature. Both obligate the buyer 

(or seller) to buy (or sell) a predetermined quantity of an underlying asset at a 

predetermined delivery date and price. Since the price is fixed in advance, market 

participants can rely on this investment vehicle to better manage their operational 

activities. For example, a farmer produces wheat and sells the wheat to a food 

manufacturing company. The wheat price changes every year, causing unexpected 

fluctuations on both sides of the trade. By entering a forward contract, both sides lock in 

the trading price and quantity, thus eliminating future uncertainty in the wheat price.

Let us look at the buy side and the sell side when entering a given forward/futures 

contract. On the buy side, the buyer of the forward/futures contract takes on the 

obligation to purchase and receive the underlying asset at the time point when the 

forward/futures contract expires. On the sell side, the seller of the forward/futures 

contract is obliged to provide and deliver the underlying asset to the buyer at the 

expiration date.

Both are derivative products because they depend on another underlying asset: 

grain, livestock, energy, currencies, or even securities. It obliges the buyer to purchase 

the underlying asset (or the seller to sell that asset) at a predetermined future price 

and date.

Note that counterparty risk often constitutes the biggest risk in a forward contract. 

A forward contract can only be rolled forward based on the consent of both parties. 

Without such consent, the forward contract cannot be exercised afterward; it can only be 

settled between the two parties at the prespecified date.

Futures contracts are more standardized products when compared to forward 

contracts. Forwards, which are similar agreements that lock in a future price at the 

current time, are traded OTC and have customizable terms between the counterparties. 

On the other hand, futures contracts come with the same terms for all counterparties, 

thus making futures contracts highly standardized and tradable products. In other 

words, we can choose to use the contract even before its expiry. For example, we can 

further buy or sell the contract at any time point before the expiry date, which essentially 

transfers the contract to another counterparty in the futures market.

Specifically, while forward contracts are tailor-made for the specific needs of the 

counterparties, a futures contract is a standardized and regulated financial product (in 

small increments) that allows the investor to buy or sell a particular commodity asset 
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or financial security at a predetermined price and at a specified time in the future over 

an exchange. It is a fixed-price deal in the future. Futures contracts have standardized 

features such as contract size, expiration dates, and settlement procedures. This 

standardization makes futures contracts more accessible and liquid, as they can be easily 

traded on exchanges. Since the future price for the commodity or security of interest is 

fixed, there is no risk due to potential fluctuations in the future price. Investors thus often 

use futures to hedge the risk of big changes in price.

Futures contracts are traded through centralized futures exchanges, which serve as 

the middleman and eliminate the counterparty risk, that is, one party does not fulfill the 

obligation required by the futures contract. The counterparty risk exists in the forward 

contract, which is considered a customized OTC trading instrument and is traded 

directly between two parties.

In addition, another key difference between forward and futures contracts is the 

manner in which they are settled. Forward contracts are typically settled through 

physical delivery of the underlying asset upon expiry, whereas futures contracts can be 

settled either through physical delivery or cash settlement (more on this later).

Moreover, the role of margin accounts in futures trading is another distinguishing 

factor between forward and futures contracts. Futures exchanges require both parties to 

maintain a margin account to cover potential price fluctuations in the underlying asset. 

This ensures that the parties have sufficient funds to cover their obligations, thereby 

mitigating the risk of default. In contrast, forward contracts do not involve margin 

accounts, leaving the parties more exposed to counterparty risk.

In summary, forward and futures contracts are financial instruments that enable 

market participants to manage risk and speculate on the future prices of underlying 

assets. Although both instruments share some similarities, they also have key 

differences in terms of standardization, trading venues, settlement procedures, and risk 

management. The futures exchange profits by maintaining a spread between the quoted 

prices from the buyer and the seller of the futures contract. Since the futures contracts 

are standardized, the futures exchange can add a small margin to them before exposing 

them to potential buyers while maintaining a lower price for those who short the futures 

contract. Again, as a measure of protection, the futures exchange also requires both sides 

of the trade to open and maintain a margin account in case the price of the underlying 

asset moves against the exchange, such as a drop in price.
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�Parameters of a Futures Contract
A standardized futures contract features the following four parameters:

•	 Lot size

•	 Contract value

•	 Margin

•	 Expiration date

Let us look at these parameters in detail. The lot size of a futures contract 

specifies the quantity of the underlying asset that an investor will have to trade upon 

entering a futures position. The quantity to be traded in the futures contract must 

be a predetermined multiple of the minimum quantity. The lot size determines the 

predefined quantity of the underlying asset to form a single futures contract. This lot size 

ensures that futures contracts are standardized and easily tradable on exchanges. Take 

the futures contract of Apple’s shares, for example. Say the lot size for Apple’s future is 

100. Therefore, any futures contract would come in a multiple of 100 shares.

The contract value specifies the total monetary value of the futures contract in terms 

of the underlying asset, calculated by multiplying the lot size by the current market price 

of the underlying asset. This value represents the notional exposure of the investor’s 

position in the contract. Suppose Apple stock is trading at $125 per share. Thus, the 

total contractual value of Apple’s futures contract will be equal to $12,500 ($125 × 100), 

assuming the futures contract obligates the investor to purchase one lot (100 shares) of 

Apple’s stock. The contract value is the product of the lot size and the asset price.

Margin is the amount of deposit from the investor to enter a futures contract 

position, consisting of an initial margin and a maintenance margin. The initial margin is 

the initial amount of deposit to open the margin account, and the maintenance margin 

is the minimum amount required by the futures exchange in order to maintain the 

futures position and keep it open. Therefore, we do not need the entire contract value 

to get into a futures position. All we need to do is to deposit the required initial margin 

of the contract value with the broker to sign the futures contract. The margin is blocked 

upon entering a futures contract and released upon exiting it. These margins thus help to 

mitigate counterparty risk and ensure that both parties can fulfill their obligations under 

the contract.
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The expiration date is the date of delivery/settlement for the futures contract, via 

either physical delivery or cash settlement. Each futures contract is time-bound and 

ceases to exist after the expiration date. A futures investor needs to close or roll over the 

futures position on or before the expiration date to avoid settlement.

Understanding these parameters is crucial for investors who wish to trade futures 

contracts, as they determine the contract’s structure, risk profile, and potential return on 

investment. By carefully considering the lot size, contract value, margin requirements, 

and expiration date, investors can tailor their futures positions to align with their specific 

financial goals and risk tolerance.

�Hedging and Speculation
There are two purposes when engaging in a futures contract. The first purpose is 

speculation, as a futures contract allows the investor to speculate on the direction of 

movement for the underlying asset. The second purpose is hedging, so as to help prevent 

losses from unfavorable price changes. This constitutes the two types of participants in 

the market: hedgers and speculators.

Hedging is a common practice for producers and manufacturers who wish to ensure 

a stable production process by locking the price of products or raw materials in the 

future. By entering a futures contract to guarantee the price at which the commodity is 

sold or purchased, hedgers ensure that they transact the commodity at a satisfactory 

price, thus hedging against any changes in the market.

Hedgers are typically involved in the production, processing, or consumption of the 

underlying asset, and they use futures contracts to manage their exposure to fluctuations 

in the asset’s price. By locking in a predetermined price for the asset, they can reduce 

the risk of unexpected price changes impacting their operations or profitability. For 

example, an airline company might hedge against rising fuel prices by entering into 

a futures contract to buy oil at a specific price in the future. This ensures that the 

company’s fuel costs remain predictable, regardless of market volatility.

Speculators, in contrast, are primarily interested in profiting from price fluctuations 

in the underlying asset. Since many commodity prices tend to move in predictable 

ways, many speculators (traders and fund managers) aim to make a profit by trading 

futures, even if they do not have a direct interest in the underlying commodity. They do 

not typically have a direct stake in the production, processing, or consumption of the 
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asset. Instead, they trade futures contracts to capitalize on their market predictions and 

generate profits. Speculators use futures to bet on the price movement of the underlying 

asset. This provides liquidity to the futures market, as their trading activity helps to create 

a market for hedgers to enter and exit positions. By taking on the risk of price changes, 

speculators can earn a return on their investment if their predictions are accurate.

�Obligations at Maturity
There are two types of settlement upon expiration of a futures (and options) contract: 

physical delivery and cash settlement. Such derivative contracts will either be physically 

delivered or cash-settled.

The first type is the physical delivery of the underlying asset. A deliverable futures 

contract stipulates that the buyer in the long position of the futures contract will pay 

the agreed-upon price to the seller, who in turn will deliver the underlying asset to the 

buyer on the predetermined date (settlement date of the futures contract). This process 

is called delivery, where the actual underlying asset needs to be delivered upon the 

specified delivery date, rather than being traded out with offsetting contracts.

For example, a buyer enters a one-year crude oil futures contract with an opposing 

seller at a price of $60. We know that one futures contract corresponds to 1000 barrels of 

crude oil. This means the buyer is obligated to purchase 1000 barrels of crude oil from 

the seller, regardless of the commodity’s spot price on the settlement date. If the spot 

price of the crude oil on the agreed settlement date one year later is below $58, the long 

contract holder loses a total of ($60 – $58) × $1000 = $2000, and the short position holder 

gains $2000. Conversely, if the spot price rises to $65 per barrel, the long position holder 

gains ($65 – $60) × $1000 = $5000, and the short position holder loses $5000.

The second type is cash settlement. When a futures contract is cash-settled, the net 

cash position of the contract on the expiry date is transferred between the buyer and 

the seller. It permits the buyer and seller to pay the net cash value of the position on the 

delivery date.

Take the previous case, for example. When the spot price of the crude oil drops to 

$58, the long position holder will lose $2000, which happens by debiting $2000 from the 

buyer’s account and crediting this amount to the seller’s account. On the other hand, 

when the spot price rises to $65, the account of the long position holder will be credited 

$5000, which comes from debiting the account of the short position holder.
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It is important to understand that the majority of futures contracts are not held 

until maturity, and most participants in the futures market do not actually take 

or make delivery of the underlying asset. Instead, they are traded out before the 

settlement date. Traders and investors often choose to close their positions before the 

contract’s expiration date to avoid the obligations associated with physical delivery or 

cash settlement. This can be achieved by entering into an offsetting transaction that 

effectively cancels out the original position. For example, a trader with a long position in 

a futures contract can sell an identical contract to offset the position, while a trader with 

a short position can buy an identical contract to close the position.

The process of closing out a futures position before maturity is a common practice in 

the market, as it allows participants to lock in gains or limit losses without having to deal 

with the actual delivery or cash settlement of the underlying asset. This flexibility is one 

of the key features of futures trading, as it enables market participants to manage their 

risk exposure and capitalize on market opportunities efficiently.

In conclusion, while futures contracts carry obligations at maturity in the form of 

physical delivery or cash settlement, most participants in the futures market choose to 

close their positions before the expiration date. By engaging in offsetting transactions, 

traders and investors can effectively manage their risk exposure and profit from price 

movements in the underlying asset without having to deal with the logistics of taking or 

making the delivery.

�Leverage in a Futures Contract
As we already know, we only need to deposit a certain margin in the margin account to 

enter a futures contract. This means that high leverage can be used in the futures market. 

The higher the leverage, the higher the risk, and the higher the potential profit.

Let us continue with the previous example. Say we enter a futures contract on 

Apple’s stock that allows us to buy 100 shares at $125 per share, with an initial margin of 

$1000. The total contract value is $125 × 100 = $12,500. If the stock price goes up to $140, 

the contract value becomes $140 × 100 = $14,000, with the additional $1,500 amount 

credited to our margin account due to daily settlement. We made a profit of $1,000 by 

blocking an initial deposit of $1,000.

Suppose now the price of Apple’s stock goes down to $110. The total contract value 

becomes $110 × 100 = $11,000, registering a loss of $1500. We would get a margin call to 

deposit another ($1000 – $1500 + $1500) = $1000 to bring it back to the amount required 

by the initial margin.
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Leverage is a double-edged sword in the futures market, as it can amplify both gains 

and losses. It allows investors and traders to control a larger contract value with a smaller 

amount of capital through the use of margin. While leverage can significantly increase 

potential profits, it can also lead to substantial losses if the market moves against the 

trader’s position.

When utilizing leverage, it is crucial for market participants to employ proper 

risk management strategies to protect their capital. This may involve using stop-loss 

orders to limit potential losses or closely monitoring the position to ensure the margin 

requirements are met. Clearly, this is a zero-sum game. Money moves from the losers to 

the winners on a daily basis. The profit made by the buyer is equivalent to the loss made 

by the seller and vice versa.

�Clearing House
Farmers who sell futures contracts do not sell directly to the buyers. Rather, they sell 

to the clearing house of the futures exchange. As a designated intermediary between 

a buyer and seller in the financial market, the clearing house validates and finalizes 

each transaction, ensuring that both the buyer and the seller honor their contractual 

obligations. The clearing house thus guarantees that all of the traders in the futures 

market will honor their obligations, thus avoiding potential counterparty risk.

The clearing house serves this role by adopting the buyer’s position to every seller 

and the seller’s position to every buyer. Every trader in the futures market has obligations 

only to the clearing house. The clearing house takes no active position in the market, but 

interposes itself between all parties to every transaction. As the middleman, the clearing 

house provides the security and efficiency integral to financial market stability. So as far 

as the farmers are concerned, they can sell their goods to the clearing house at the price 

of the futures contract when the contract expires.

The clearing house will then match and confirm the details of the trades executed 

on the exchange, including the contract size, price, and expiration date, ensuring that all 

parties have accurate and consistent information. Order matching and confirmation is 

thus one of the main roles of a clearing house.

The clearing house of the futures market also has a margin requirement, which is a 

sum of the deposit that serves as the minimum maintenance margin for the (clearing) 

member of the exchange. All members of an exchange are required to clear their trades 

through the clearing house at the end of each trading session and satisfy the margin 
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requirement to cover the corresponding minimum balance requirement. Otherwise, 

the member will receive a margin call to top up the remaining balance when the margin 

account runs low due to fluctuation in asset price. Clearing houses thus collect and 

monitor margin requirements from their members, ensuring that all participants have 

sufficient collateral to cover potential losses. This helps to maintain the financial stability 

of the market and reduces the likelihood of default.

Figure 3-1 illustrates the clearing house as a middle party between the buyer and 

the seller.

Figure 3-1.  Illustrating the role of the clearing house as an intermediary between 
buyers and sellers in a futures market

�Mark-to-Market
Mark-to-market involves updating the price of a futures contract to reflect its current 

market value rather than the book value, so as to ensure that margin requirements are 

being met. If the current market value of the futures contract causes the margin account 

to fall below its required level, the trader will receive a margin call from the exchange to 

top up the remaining balance.

Mark-to-market is a process of pricing futures contracts at the end of every trading 

day. Made to accounts with open futures positions, the cash adjustment in mark-to-

market reflects the day’s profit or loss, based on the settlement price of the product, 

and is determined by the exchange. Since mark-to-market adjustments affect the cash 

balance in a futures account, the margin requirement for the account is being assessed 

on a daily basis to continue holding an open position.

Let us look at a mark-to-market example and understand the daily change in the 

price of the futures contract due to fluctuating prices in the underlying asset. First, 

note the two counterparties on either side of a futures contract, that is, a long position 

trader and a short position trader. The long trader goes bullish as the underlying asset is 

expected to increase in price, while the trader shorting the contract is considered bearish 

due to the expected drop in the price of the underlying asset.
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The futures contract may go up or down in value at the end of the trading day. When 

its price goes up, the long margin account increases in value due to mark-to-market, with 

the daily gain credit to the margin account of the long position trader. Correspondingly, 

the short position trader on the opposing side will suffer a loss of an equal amount, 

which is debited from the margin account.

Similarly, when the price of the futures contract goes down, the long margin account 

decreases in value due to mark-to-market, with the daily loss debited from the margin 

account of the long position trader. This amount will be credited to the margin account 

of the short position trader, who will realize a gain of an equal amount.

By updating the price of a futures contract to reflect its current market value, the 

exchange can monitor the risk exposure of traders in real time. This helps to ensure 

that margin requirements are being met and that traders have enough funds to cover 

their positions, which essentially reduces risk exposure to the traders. This also allows 

traders to accurately assess their profit or loss and make informed decisions about their 

positions.

Figure 3-2 illustrates the two types of traders with an open position in the same 

futures contract and their respective profit and loss due to mark-to-market.

Figure 3-2.  Illustrating the mark-to-market process and the resulting effect on the 
margin account of long and short position traders for the same futures contract
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To better understand the daily dynamics for traders of different positions as a result 

of the daily mark-to-market exercise by the exchange, let us look at a concrete example. 

As shown in Figure 3-3, we plot the daily amount of the margin account for both the long 

and short position holders. The initial amount in the margin account is $100 for both 

traders. Given the increase in asset value on day 1, a $5 increase in the margin account 

of the long position holder is realized ($100 + $5 = $105), while a $5 decrease for the 

short position holder enters ($100 – $5 = $95). On day 2, the net change is –$20 for the 

long position margin account, bringing it from $105 to $85, lower than the minimum 

requirement (called maintenance margin) of $90. The long position trader then gets a 

margin call from the exchange and tops up $15 to increase their margin account to $100, 

based on the required initial amount. The short position trader benefits a total of $20, 

ending with an end-of-day amount of $115 in their margin account.

Figure 3-3.  An example of daily changes in the margin account of long and short 
position traders due to mark-to-market

Note that the margin account changes the balance daily due to gain/loss from mark-

to-market exercise. Although the final settlement price at the delivery date could be 

different from the intended price upon entering the futures position, the traders on both 

sides would still end up transacting at an effective price equal to the initially intended 

price, thus hedging the risk of price fluctuations.
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Now let us look at how to price this derivative product, starting with its similar twin: 

forward contract.

�Pricing Forward Contract
A forward contract is a customizable contract between two parties to buy or sell an asset 

at a specified price on a future date. Different from the futures contract, whose price is 

settled on a daily basis until the end of the contract, a forward contract is only settled at 

the end of the agreement and is traded over the counter. Therefore, it is easier to price.

The price of a forward contract is the predetermined delivery price for the 

underlying asset decided by the buyer and the seller. This is the price to be paid at a 

predetermined date in the future and is determined by the following formula:

	 F S erT0 0= 	

where F0 is the price of the forward contract at the current time point t = 0, and 

S0 is the price of the underlying asset at t = 0. r is the risk-free bond interest rate, the 

theoretical rate of return of an investment with zero risk. T is the duration from the 

current time point t = 0 to the expiration date t = T. More generally, we can write the 

price of the forward contract as follows:

	 F S et t
r T t= −( )	

Here, multiplying the exponential constant simply means increasing the price of 

the forward contract, depending on the baseline interest rate r and the duration T − t in 

a continuously compounding scheme. In other words, suppose we deposit $1000 in a 

bank, which promises a continuously compounded interest rate of r. We can thus expect 

to see the total value of the deposit grow to 1000er at the end of year 1, 1000e2r at the end 

of year 2, etc. This is a common way of compounding in finance and accounting.

Now let us look at how this formula comes into shape. The reasoning follows the 

no-arbitrage argument, which says there is no arbitrage opportunity to make any riskless 

profit, no matter how the price of the underlying asset changes. Suppose we enter into 

a long forward contract that obligates us to buy the asset S at time T for a price of FT. We 

are living at the current time point t, where the spot price of the asset is St, and the future 

price of the asset will be ST. The nature of the agreement fixes the action for us at the 

delivery date; thus, we need to pay an amount of FT to purchase the asset valued at ST. In 

other words, our net profit/loss (P&L) at time T is −FT + ST, where the negative sign means 

cash outflow. Note that this happens in the future at time T and not yet for now at time t.
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However, there is a risk involved upon entering this contract. Since the asset price 

fluctuates in the future, the asset price may drop a lot due to unforeseen circumstances 

in the future, leading to a very negative P&L upon delivery. Although the opposite could 

also be true and the final P&L could be very positive, this still poses a potential risk, 

especially for market participants such as farmers and manufacturers mentioned earlier.

To hedge this risk, we could short one unit of this asset at time t, since we know 

that a short position makes a profit if the asset price drops. A short position in the 

underlying asset profits us from losses in the future due to a decrease in the future asset 

price. It is one unit of the underlying asset because we can use the exact one unit of the 

asset bought based on the forward agreement to close the initial short position in the 

underlying asset, that is, return the asset back to where we borrowed it from.

Now we look at the process in more detail. Upon entering the short position of one 

unit of the underlying asset at time t, we obtain a cash inflow of St, as shorting means 

selling an asset and buying it back later. This means that we will have a cash outflow of ST 

at the delivery date to pay back the asset and close the short position.

Note that the cash St at time t will not sit idle. Instead, we will invest the cash, such as 

depositing t in the bank to enjoy a risk-free interest rate. The money will grow to Ster(T − t) 

upon reaching the delivery date, with an investment period of T − t. This investment will 

be used to cover the short position in the underlying asset.

Figure 3-4 summarizes the positions in different products and the total portfolio 

value with the evolution of time. Here, we have three different products in our portfolio: 

a forward contract, an asset (e.g., one share of stock), and cash. These three constitute 

our portfolio, and we start with zero value in the portfolio at time t. To see this, we 

observe that the forward position is zero at time t since we only make the transaction 

upon reaching the delivery date. The stock position gives −St since we are shorting the 

stock, and the cash position gives St, the income generated by shorting the stock. Adding 

up the value of these three positions gives zero value for the portfolio at time t. The net 

cash flow at time t is zero.
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Figure 3-4.  Pricing the forward contract in a long position using the no-arbitrage 
argument. The stock and cash positions also constitute a replicating portfolio 
that offsets the randomness in the payoff function of the forward contract at the 
delivery date

As time passes by, the value of each position will evolve. Specifically, the forward 

position becomes −F + ST since we would buy one asset valued at ST for a price of F. Our 

stock position becomes −ST due to change in the stock price, and cash position becomes 

Ster(T − t).

Now, using the no-arbitrage argument, we would end up with zero value in our 

portfolio since we started with zero value. Adding the value of the three positions at time T 

gives the total portfolio value of −F + Ster(T − t). And by equating it to zero, we have F = Ster(T − t), 

thus completing the pricing of the forward contract using the no-arbitrage argument.

This is the formula for the price of a forward contract. It demonstrates that the 

forward price is determined by the current price of the underlying asset, the risk-free 

interest rate, and the time until the contract expires. By using this formula, both parties 

in a forward contract can agree on a fair price that eliminates arbitrage opportunities 

and reflects the true value of the underlying asset.

It is interesting to note that the stock and cash positions jointly constitute a 

replicating portfolio that offsets the randomness in the payoff function of the forward 

contract at the delivery date. This means that no matter what the price of the forward 
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contract will be in the future, we will always be able to use another replicating portfolio 

to deliver the same payoff, as if we were in a position of the forward contract. This is 

called pricing by replication.

Let us see what happens if the price of the forward is not equal to the stock price with 

a continuously compounded interest rate. We can argue about arbitrage opportunities 

based on the riskless profit from the buy-low-sell-high principle. When F > Ster(T − t), we 

can borrow an amount of St and use the money to short a forward contract that allows 

us to sell one unit of the underlying asset at price F. Upon reaching the delivery date, 

we receive a total of F by selling the asset, pay back the borrowed money with interest 

Ster(T − t), and earn a net profit of F − Ster(T − t). This is arbitrage, where we made a riskless 

profit by taking advantage of the price difference at the future time T.

Similarly, when F < Ster(T − t), the forward contract is cheaper, and the asset is more 

expensive. In that case, we again exercise the buy-low-sell-high principle by longing a 

forward contract at time t that allows us to buy one unit of the underlying asset at price 

F and time T. We will also short one unit of the underlying asset at time t to gain a total 

amount of St, which further grows to Ster(T − t) upon reaching the delivery date. When the 

contract expires, we will close the short position in the underlying asset by purchasing 

one unit of the asset for a price of F. We get to keep the remaining balance Ster(T − t) − F, 

thus also establishing the arbitrage argument and ensuring a riskless profit.

Note that the futures price is equal to the spot price of the underlying asset at the 

current time t. To see this, simply set T = t and we have F = Ster(t − t) = St.

In a nutshell, the future net cash flow predetermined or fixed in advance (today) 

must equal today’s net cash flow to annihilate arbitrage opportunities. The no-arbitrage 

argument gives a fair price for the forward contract.

�Pricing Futures Contract
The futures contract is priced in a similar way as the forward contract but involves a few 

more factors. Ultimately, the futures contract price is set by the supply and demand in 

the market. When a seller and a buyer agree on an equilibrium price for transacting a 

futures contract, that price is the futures contract price.

Say we would like to price the futures contract at the next month (front month). Also, 

assume that we enter a short position in the futures contract, obliged to sell one unit of 

the underlying asset at the expiration date. The extra factors to consider here are the cost 

and benefit of holding the asset until expiration.
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For the cost of carrying the asset until the delivery date, we need to add it to the price 

of the futures contract since it poses an actual cost we need to factor in from entering the 

position all the way to the delivery date. For example, if we short a futures contract to sell 

1000 barrels of oil at time T, we would borrow money to purchase 1000 barrels of oil from 

the spot market at time t so that we can fulfill the obligation at time T. Doing so requires 

storing these 1000 barrels of oil, which incurs a storage cost to be added to the price of 

the futures contract.

For the benefit of carrying the asset until the delivery date, we need to minus it from 

the futures contract price. This is called the convenience yield, where the party holding 

the underlying asset gains benefits through the course until the delivery date. Such 

a situation usually happens when holding the actual asset is preferred. For example, 

holding stocks may generate dividends payment, holding currencies may generate 

profits due to differences in the interest rate, and holding commodities is preferred when 

the market is in short supply of such commodities.

Building on top of the spot price with interest compounding, the fair price of the 

futures contract can be calculated via the following formula:

Fair price = spot price with compounded interest + cost of storage – convenience yield 

due to holding the asset

When the interest, cost, and convenience yield are all annually compounded, the fair 

price of the forward contract can be calculated via the following formula:

	 F S r s ct
T t= + + −( ) −1 	

where St is the spot price of the underlying asset, r is the risk-free bond interest rate, 

s is the storage cost in percentage and compounded annually, and c is the convenience 

yield also in percentage and compounded annually. We raise it to the power of the 

duration T − t to show the compounding effect in this period.

This formula shows that the futures contract price considers several factors: the 

spot price of the underlying asset, the risk-free interest rate, the storage cost, and the 

convenience yield. These components help market participants to determine a fair price 

for the futures contract, reflecting the true value of the underlying asset while accounting 

for the costs and benefits of holding the asset until the delivery date.

The futures contract price is essential for both buyers and sellers, as it determines 

their potential profits or losses when they enter into a futures contract. By understanding 

how the futures contract price is calculated, market participants can make informed 

decisions about whether to enter into a futures contract and at what price.
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It’s also important to note that the fair price of the futures contract is a theoretical 

value. In reality, the actual futures contract price in the market is influenced by supply 

and demand dynamics, which can cause the market price to deviate from the fair price. 

Market participants need to continuously monitor the futures market, paying attention 

to the changes in the underlying asset’s spot price, interest rates, storage costs, and 

convenience yields, in order to adapt the strategies and make informed decisions about 

the futures contract positions.

Let us look at an example. Suppose the current spot price is St = $80, the interest rate 

is r = 2%, the storage cost is s = 1%, the convenience yield is c = 0.5%, and the position in 

the futures contract is three months. Since the compounding is done on an annual basis, 

we need to convert the duration to a yearly term, making T t− = =
3

12
0 25. . Therefore, the 

fair price of the futures contract can be calculated as

	 F = + + −( ) =80 1 0 02 0 01 0 005 80 5
0 25

. . . .
.

$ 	

Figure 3-5 summarizes the process of calculating the fair price of a futures contract.

Figure 3-5.  Calculating the fair price of a futures contract with an annually 
compounded interest rate, storage cost, and convenience yield
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�Contango and Backwardation
There are a few extra terms often used in the futures world. These terms are listed as 

follows, where the contango is sort of the opposite of backwardation:

•	 Contango: The futures contract price is higher than the current spot 

price of the underlying asset.

•	 Normal contango: The futures contract price is higher than the 

expected spot price of the underlying asset.

•	 Backwardation: The futures contract price is lower than the current 

spot price of the underlying asset.

•	 Normal backwardation: The futures contract price is lower than the 

expected spot price of the underlying asset.

A close look into these terms helps us better understand the price dynamics of 

the futures contract. Let us start with contango. When we say the market for a specific 

futures contract is in contango, what this means is that we have an upward-sloping 

futures price curve. Here, the futures price curve specifies the (increasing) price of a 

futures contract with different delivery dates, at the current time snapshot. A futures 

contract with a longer duration is more expensive than another with a shorter duration. 

In addition, when we say the market is in normal contango, this means that the futures 

price is higher than the (theoretical) expected spot price. Different price points along the 

futures price curve correspond to different paths of price movements across time, with 

the final settlement price of the futures contract converging with the spot price at the 

same (future) delivery date.

The existence of contango or backwardation can have various underlying reasons. 

For instance, storage costs, seasonality, market expectations, and macroeconomic 

factors can all contribute to the formation of these pricing patterns in the futures market.

Contango is commonly observed in commodities markets where there are costs 

associated with holding and storing the underlying assets, such as oil or grain. These 

costs are factored into the futures contract price, causing it to be higher than the current 

spot price. Contango can also arise when market participants expect the underlying 

asset’s price to rise in the future, causing them to bid up the price of longer-dated futures 

contracts.
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Backwardation, on the other hand, can occur when market participants believe that 

the underlying asset’s price will decline in the future. This could be due to a forecasted 

decrease in demand or an anticipated increase in supply. In such cases, market 

participants might be more willing to sell futures contracts at a lower price than the 

current spot price, as they expect the spot price to drop in the future.

Figure 3-6 provides an example to help put these statements in perspective. Here, 

we have two futures contracts with one and two months before the delivery date, 

respectively. A market in contango means an upward-trending price curve for the futures 

contracts as the duration gets longer, as shown on the left panel of the figure. As the asset 

price starts to move across time, as shown by the curve starting with the orange dot, 

the futures contract price will gradually approach the spot price. Eventually, the futures 

price will be equal to the spot price when the delivery date is the current date.

Figure 3-6.  Illustrating the price dynamics of the futures contract in contango. 
The left panel shows the price curve at the current time point, where a futures 
contract with a longer delivery date is more expensive. The right panel shows the 
price evolution of the asset and futures contract with different delivery dates, each 
converging to the spot price upon reaching the respective delivery date

Correspondingly, a market in backwardation displays the opposite behavior, as 

shown in Figure 3-7.
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Figure 3-7.  Illustrating the price dynamics of the futures contract in 
backwardation

�Working with Futures Data
We can retrieve futures data using the yfinance package. In Listing 3-1, we download 

futures data on platinum for the year 2022. Note that the symbol is “PL=F”. After 

downloading the dataset, we rewrite the index to the datetime format so that it facilitates 

plotting, as shown in Listing 3-1.

Listing 3-1.  Downloading futures data

# For data manipulation

import pandas as pd

# To fetch financial data

import yfinance as yf

# For visualisation

import matplotlib.pyplot as plt

plt.style.use('seaborn-darkgrid')

%matplotlib inline

# Download the platinum prices

futures_data = yf.download("PL=F", start="2022-01-01", end="2022-12-31")

# Set the index to a datetime type

futures_data.index = pd.to_datetime(futures_data.index)
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Let us plot the closing price via Listing 3-2. Note the use of the fontsize argument in 

adjusting the font size in the figure.

Listing 3-2.  Visualizing the futures data

# Plot the close price

plt.figure(figsize=(15, 7))

futures_data['Adj Close'].plot()

# Set labels and sizes of the title and axis

plt.title('Platinum Futures Data', fontsize=16)

plt.xlabel('Year', fontsize=15)

plt.ylabel('Price ($)', fontsize=15)

plt.xticks(fontsize=15)

plt.yticks(fontsize=15)

plt.legend(['Close'], prop={'size': 15})

# Show the plot

plt.show()

Running this command generates Figure 3-8.

Figure 3-8.  Visualizing the closing price of platinum futures data in 2022
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We can also download multiple futures contracts in one shot. In Listing 3-3, we 

download the futures data for gold and copper, using the “GC=F” and “HG=F” symbols, 

respectively, followed by formatting the index and printing the last five rows.

Listing 3-3.  Downloading multiple futures

# Fetch gold and copper futures prices

futures_data = yf.download(["GC=F","HG=F"], start="2022-01-01", 

end="2022-12-31", group_by= 'tickers')

# Set the index to a datetime type

futures_data.index = pd.to_datetime(futures_data.index)

# Display the last five rows

futures_data.tail()

Note that the DataFrame has two levels of columns, with the first level specifying the 

symbol name and the second one showing the different price points.

Similarly, we can plot the closing price of the two sets of futures data, as shown in 

Listing 3-4.

Listing 3-4.  Visualizing multiple futures time series

# Set the figure size

ax = plt.figure(figsize=(15, 7))

# Plot both futures close prices

ax = futures_data['GC=F']['Close'].plot(label='Gold Futures')

ax2 = futures_data['HG=F']['Close'].plot(secondary_y=True, 

color='g',  ax=ax, label='Copper Futures')

# Set the title and axis labels and sizes

plt.title('Gold and Copper Futures Data', fontsize=16)

ax.set_xlabel('Year-Month', fontsize=15)

ax.set_ylabel('Gold Price ($)', fontsize=15)

ax2.set_ylabel('Copper Price ($)', fontsize=15)

ax.tick_params(axis='both', labelsize=15)

ax2.tick_params(axis='y', labelsize=15)

h1, l1 = ax.get_legend_handles_labels()
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h2, l2 = ax2.get_legend_handles_labels()

ax.legend(h1+h2, l1+l2, loc=2, prop={'size': 15})

# Show the plot

plt.show()

Running this command generates Figure 3-9.

Figure 3-9.  Visualizing the closing price of gold and copper futures data in 2022

�Adding Technical Indicators
In this section, we will look at the popular S&P 500 E-Mini futures contract and discuss 

how to add common technical indicators to aid technical analysis. The S&P 500 E-Mini 

futures contract is a financial derivative product that tracks the performance of the S&P 

500 index, which represents the 500 largest publicly traded companies in the United 

States. The E-Mini futures contract is a smaller version of the standard S&P 500 futures 

contract, making it more accessible and affordable for individual traders and investors.

Let us fetch the daily futures data for this specific contract using the symbol “ES=F” 

for the full year of 2022, as shown in Listing 3-5.

Listing 3-5.  Downloading S&P 500 E-Mini futures data

futures_symbol = "ES=F"

futures_data = yf.download(futures_symbol, start="2022-01-01", 

end="2022-04-01", interval="1d")
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Now let us calculate a few technical indicators using the ta library. In this example, 

we will calculate the Relative Strength Index (RSI), Bollinger Bands, and MACD (Moving 

Average Convergence Divergence). The following list briefly describes these popular 

technical indicators:

Relative Strength Index (RSI): RSI is a momentum oscillator that 

measures the speed and change of price movements. The RSI 

oscillates between 0 and 100, and traders often consider an asset 

overbought when the RSI is above 70 and oversold when it’s 

below 30.

Bollinger Bands: Bollinger Bands are a volatility indicator that 

measures the standard deviation of price changes. The indicator 

consists of three lines: the middle line (a simple moving average) 

and two outer lines (upper and lower bands) plotted at a specified 

number of standard deviations away from the moving average. 

When the bands widen, it indicates increased volatility, and when 

they narrow, it signifies decreased volatility. Prices often move 

between the upper and lower bands.

Moving Average Convergence Divergence (MACD): MACD is a 

momentum indicator that shows the relationship between two 

moving averages of an asset’s price. It consists of two lines: the MACD 

line (difference between short-term and long-term moving averages) 

and the signal line (a moving average of the MACD line). When the 

MACD line crosses above the signal line, it may suggest a bullish 

signal (buy), and when it crosses below the signal line, it may indicate 

a bearish signal (sell). Additionally, when the MACD line is above 

zero, it suggests an upward momentum, while below zero indicates a 

downward momentum.

Listing 3-6 calculates these technical indicators and concatenates them to the 

DataFrame.
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Listing 3-6.  Calculating common technical indicators

# Calculate RSI

futures_data["RSI"] = ta.momentum.RSIIndicator(futures_data["Close"]).rsi()

# Calculate Bollinger Bands

bbands = ta.volatility.BollingerBands(futures_data["Close"])

futures_data["BB_upper"] = bbands.bollinger_hband()

futures_data["BB_lower"] = bbands.bollinger_lband()

# Calculate MACD

macd = ta.trend.MACD(futures_data["Close"])

futures_data["MACD"] = macd.macd()

futures_data["MACD_signal"] = macd.macd_signal()

Now we can plot the raw futures time series data together with the technical 

indicators to facilitate analysis, as shown in Listing 3-7.

Listing 3-7.  Visualizing futures data and technical indicators

# Create subplots for each indicator

fig, axes = plt.subplots(4, 1, figsize=(10, 15), sharex=True)

# Plot closing price

axes[0].plot(futures_data.index, futures_data["Close"], label="Close")

axes[0].set_title("S&P 500 E-Mini Futures - Closing Price")

axes[0].grid()

# Plot RSI

axes[1].plot(futures_data.index, futures_data["RSI"], label="RSI", 

color="g")

axes[1].axhline(30, linestyle="--", color="r", alpha=0.5)

axes[1].axhline(70, linestyle="--", color="r", alpha=0.5)

axes[1].set_title("Relative Strength Index (RSI)")

axes[1].grid()
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# Plot Bollinger Bands

axes[2].plot(futures_data.index, futures_data["Close"], label="Close")

axes[2].plot(futures_data.index, futures_data["BB_upper"], label="Upper 

Bollinger Band", linestyle="--", color="r")

axes[2].plot(futures_data.index, futures_data["BB_lower"], label="Lower 

Bollinger Band", linestyle="--", color="r")

axes[2].set_title("Bollinger Bands")

axes[2].grid()

# Plot MACD

axes[3].plot(futures_data.index, futures_data["MACD"], label="MACD", 

color="b")

axes[3].plot(futures_data.index, futures_data["MACD_signal"], label="Signal 

Line", linestyle="--", color="r")

axes[3].axhline(0, linestyle="--", color="k", alpha=0.5)

axes[3].set_title("Moving Average Convergence Divergence (MACD)")

axes[3].grid()

Running the code generates Figure 3-10.
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Figure 3-10.  Visualizing futures data and technical indicators
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We can plot a few things here. In the plotted RSI chart, we can observe periods when 

the RSI crossed below 30, which might signal potentially oversold conditions. Traders 

may use these signals to consider entering or exiting positions. In the plotted chart on 

Bollinger Bands, we can see periods when the price touched or crossed the bands, which 

may indicate potential trend reversals or support and resistance levels. In the MACD 

chart, we can observe periods when the MACD line crossed the signal line, which may 

signal potential entry or exit points for traders.

�Summary
In this chapter, we delved into the world of options and futures contracts.

Forward contracts are customized, private agreements between two parties and are 

traded over the counter (OTC). They are only settled at the end of the agreement and are 

priced based on the spot price of the underlying asset, the risk-free interest rate, and the 

time to expiration. However, forward contracts come with potential counterparty risk as 

there is no clearing house to guarantee the fulfillment of the contractual obligations.

Futures contracts, on the other hand, are standardized contracts traded on regulated 

exchanges. They are marked to market daily, meaning that the price of the contract is 

adjusted to reflect its current market value, ensuring that margin requirements are met. 

The clearing house of the futures exchange serves as an intermediary between buyers 

and sellers, mitigating counterparty risk and ensuring the stability of the market.

We also covered the pricing of both types of contracts. For example, the pricing of 

futures contracts is influenced by factors such as the spot price of the underlying asset, 

the risk-free interest rate, storage costs, and convenience yield. In addition, futures 

markets can exhibit contango, where futures prices are higher than the spot price, or 

backwardation, where futures prices are lower than the spot price.
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�Exercises
•	 A farmer sells agricultural products, and a manufacturer purchases 

raw materials for production. In both cases, what position should 

they take in a futures contract in order to hedge against adverse price 

changes in the future?

•	 A wheat farmer takes a short position in ten wheat futures contracts 

on day 1, each valued at $4.5 and representing 5000 bushels. If the 

price of the futures contracts increases to $4.55 on day 2, what is the 

change in the farmer’s margin account?

•	 Suppose we enter into a short forward position. What is the risk 

due to the fluctuating asset price in the future? How can we hedge 

the risk?

•	 Assume we could buy a barrel of oil for $80 today, and the current 

futures price is $85 for delivery three months from today. One futures 

contract can buy 1000 barrels of oil. How can you arbitrage in this 

situation? What is the profit? Assume a zero risk-free interest rate.

•	 Apply the same no-arbitrage argument to value a forward contract in 

a short position.

•	 Write a function to calculate the fair price of a futures contract given 

the spot price of the asset, risk-free interest rate, rate of storage 

cost, convenience yield, and delivery date. Allow for both annual 

compounding and continuous compounding.

•	 Explain the source of riskless profit when a forward contract is 

overpriced or underpriced than its theoretical no-arbitrage value.
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CHAPTER 4

Understanding Risk 
and Return
Any financial asset is characterized by its risk and return. Return means the financial 

reward it brings, such as the percentage increase in the asset value. We hope to maximize 

the percentage return of the asset as much as possible. However, a higher reward often 

comes with higher risk, where risk refers to the volatility of such return. That is, an 

asset displays high oscillations in its historical returns, making its future outlook more 

uncertain than, say, a stable product with little deviation from the expected gain, such as 

the bond. As an investor, the goal of making profits boils down to maximizing the return 

and, at the same time, minimizing the risk.

Return is a measure of the financial gain or loss of an investment over a specific 

period. It can be calculated as a percentage of the initial investment, taking into account 

factors such as capital appreciation, dividends, and interest payments. Returns can be 

either realized (already received) or unrealized (expected to be received in the future). 

There are various ways to measure returns, including absolute return, annualized return, 

and risk-adjusted return.

Risk is the variability or uncertainty in the returns of an investment. It represents 

the potential for losses due to factors such as market fluctuations, economic conditions, 

and company-specific events. There are several types of risk, including market risk, 

credit risk, liquidity risk, and operational risk, among others. In general, investments 

with higher risk tend to offer higher potential returns to compensate for the increased 

uncertainty.

© Peng Liu 2023 
P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_4

https://doi.org/10.1007/978-1-4842-9675-2_4


108

�Risk and Return Trade-Off
With the risk and return trade-off, a low-return asset is associated with low risk, and a 

high-return asset comes with a high risk. This is true for most financial instruments in 

the market. For example, the bond, as a fixed-income asset, is often considered a riskless 

asset that delivers a low return and comes with virtually no risk. The stock market offers a 

higher return but often displays higher volatility due to the uncertain and unpredictable 

future. Under such a trade-off, an investor can only gain a higher return and make more 

profits if they are willing to accept more risk, that is, a higher probability of losses.

The appropriate risk-return trade-off depends on various factors, including an 

investor’s risk tolerance profile, years to retirement, and the potential to replace lost 

funds. The trade-off also depends on the time horizon for a given position. For example, 

position traders typically hold onto a position for a long period of time, which provides 

the trader with the potential to recover from the risks of bear markets and participate 

in bull markets, hoping for an increase in the asset value over the long term. On the 

other hand, swing traders or even day traders enter a position for a short time, seeking 

profits by speculating on the movement of the asset’s price changes. The same equities 

(e.g., stocks) have a higher risk proposition when an investor can only invest in a short 

time frame.

It is important to note that each individual asset has its own risk and return profile, 

and a group of assets can form a portfolio with new risk and return characteristics. 

At the portfolio level, the risk-return trade-off assesses the concentration or diversity 

of holdings and whether the portfolio mix presents an excessive risk or a lower-than-

desired potential for returns. Therefore, the risk-return trade-off applies to both 

individual assets and a portfolio of assets.

However, a diversified portfolio generally reduces the risks presented by individual 

investment positions. Diversification across various asset classes, industries, and 

geographies can help mitigate the impact of poor-performing assets on overall returns, 

providing a more balanced approach to risk management. A better understanding of the 

risk-return trade-off, along with different diversification strategies, allows us to tailor the 

portfolios to achieve the desired financial objectives and, at the same time, effectively 

manage the inherent risks associated with investing.

Let us draw a two-dimensional coordinate system to characterize the risk and 

return. We would often put risk on the horizontal axis and return on the vertical axis. As 

shown in Figure 4-1, the lower-left quadrant has low risk and low return. Representative 

products include fixed-income instruments such as bonds and treasury bills. Moving 
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to the upper-right quadrant, we have products associated with high risk and return. 

Examples include stocks and derivative products. The other two quadrants are less 

frequent. For example, it is not so often to see financial instruments with a low risk and 

high return. Companies could experience an urgent need for funds and thus issue bonds 

with a higher return, but getting into such a situation itself implies an increased default 

risk already. On the other hand, it is very unlikely to see products with a low return but 

high risk, since this goes against the profit maximization nature of trading.

Figure 4-1.  Illustrating the four quadrants of risk and return profile

In the following section, we will start by understanding the fundamentals of returns 

as a performance measure of financial assets. Understanding returns is crucial for us to 

evaluate the success of different investments and make informed decisions in managing 

portfolios.

�Analyzing Returns
The return is the first and foremost metric most investors would look at for a specific 

investment vehicle. It represents the change in value of a financial asset over a specified 

period. It can be expressed in absolute terms (e.g., the dollar amount gained or lost) or as 

a percentage of the initial investment value. As a crucial metric on the performance of an 

asset or portfolio, the return allows us to compare across different investments.
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When measured in percentage terms, the range could range from (theoretically) 

negative infinity to positive infinity. Suppose the asset price changes from St − 1 to St. The 

change in price is St − St − 1, which could be positive or negative. Considering the price 

of an asset changes across different time points, and also the fact that multiple assets 

have multiple price levels, it is difficult to assess whether the price change St − St − 1 is big 

or small. To standardize the price changes and make it easier for comparison, a more 

widely used measure is percentage return Rt, defined as

	
R S S
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t t

t
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− −

−

1

1
	

This equation essentially measures the change in asset price in proportion to the 

previous-period asset price, that is, the baseline. It allows us to transition from prices 

to returns. This percentage change in asset price thus allows us to assess and compare 

different assets. By calculating the percentage return Rt, we can effectively transition 

from focusing on the raw price changes to the proportional changes in asset prices. This 

transition allows us to evaluate the performance of different investments relative to a 

baseline, which is the previous-period asset price. This standardization is particularly 

useful when evaluating investments with different price levels or those that experience 

different magnitudes of price fluctuations.

Note that we may also write the return as Rt − 1, t to emphasize the fact that the return 

measures the relative change in prices between period t − 1 and t:
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Let us analyze some dummy return data to make these calculations tangible.

�Working with Dummy Returns
In Listing 4-1, we first create two five-element (or five-period) lists representing 

the returns of two different assets, stored in asset_return1 and asset_return2, 

respectively. The returns are constructed such that their mean returns are the same. We 

can verify the equality using the == operator.
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Listing 4-1.  Simulating two asset returns

asset_return1 = [0.05, 0.3, -0.1, 0.35, 0.2]

asset_return2 = [0.5, -0.2, 0.3, 0.5, -0.3]

>>> print(np.mean(asset_return1))

>>> print(np.mean(asset_return2))

>>> print(np.mean(asset_return1) == np.mean(asset_return2))

0.16

0.16

True

Next, let us combine these two lists in a Pandas DataFrame for easy manipulation. 

This is achieved by wrapping the two lists in a dictionary and passing it to the pd.

DataFrame() function:

return_df = pd.DataFrame({"Asset1":asset_return1, "Asset2":asset_return2})

>>> return_df

Printing out the return_df variable generates the following, where the two lists now 

appear as the two columns in the DataFrame:

       Asset1 Asset2

0      0.05   0.5

1      0.30  -0.2

2     -0.10   0.3

3      0.35   0.5

4      0.20  -0.3

To facilitate visual analysis, let us plot the two return series in a bar chart using the 

.plot.bar() method:

>>> return_df.plot.bar()

Running this command generates Figure 4-2. The figure suggests that despite having 

the same mean return, these two assets clearly have different risk profiles. Specifically, 

asset 2 (orange bars) is more volatile than asset 1 (blue bars).

Chapter 4  Understanding Risk and Return



112

Figure 4-2.  Visualizing the returns as bar charts

Again, this notion of higher volatility will be more concrete when we introduce its 

precise definition later. For now, we can simply call the std() function to calculate the 

standard deviation (another name for volatility) of the two columns:

>>> return_df.std()

Asset1    0.185068

Asset2    0.384708

dtype: float64

Note that the std() is applied column-wise. Similarly, we can call the mean() 

function to calculate the mean value of each column:

>>> return_df.mean()

Asset1    0.16

Asset2    0.16

dtype: float64

The result aligns with our previous calculations using np.mean(). This example 

shows that merely looking at the average return of an asset is not enough. In fact, it could 

be misleading if we just report the average return of an asset without its volatility.

To see the difference, assume we have an initial investment of $100 in both assets. 

To calculate the running asset value at each period in a sequential manner, we first add 

one to the percentage return values, forming the 1+R format. Take asset 1, for example. 
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As shown in the following, after running the following code snippet, we can use 1.05 

to calculate the asset value after the first period as $100 × 1.05, the asset value after the 

second period as $100 × 1.05 × 1.30, and so on:

>>> return_df + 1

     Asset1 Asset2

0    1.05   1.5

1    1.30   0.8

2    0.90   1.3

3    1.35   1.5

4    1.20   0.7

Instead of multiplying these percentage returns cumulatively, a convenient function 

called cumprod() does the work for us. Therefore, we can obtain the period-wise 

asset value by applying this function on the previous 1+R formatted DataFrame and 

multiplying by $100, as shown in the following code snippet:

init_investment = 100

cum_value = (return_df + 1).cumprod()*100

>>> cum_value

     Asset1     Asset2

0    105.0000   150.0

1    136.5000   120.0

2    122.8500   156.0

3    165.8475   234.0

4    199.0170   163.8

We can similarly plot the evolution of asset values as a line chart:

>>> cum_value.plot.line()

Running this command generates Figure 4-3. Although asset 2 looks more profitable 

in most of the periods, it actually ends with a lower return in the last period. Thus, a key 

takeaway from this chart is that two assets with equal average returns may end up with a 

totally different terminal return.
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Figure 4-3.  Visualizing the evolution of asset values

�The 1+R Format
Recall that to calculate the return Rt − 1, t from the period t − 1 to t, we need asset prices St − 1 

and St in both periods. With simple manipulation, we can express the return as follows:
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1
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t

t
,

	

This is the so-called 1+R format, where we use 1 + Rt − 1, t to denote the percentage of 

current-period asset price St over previous-period asset price St − 1. We can then easily 

calculate the return Rt − 1, t after obtaining the 1+R return 1 + Rt − 1, t:
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One reason why we use this format is the convenience in the calculation. Since 

the prices are arranged along a column from start to end, we can simply shift the price 

column upward by one row to obtain the next-period price and then calculate the ratio 
S
S

t

t−1

 (i.e., 1 + Rt − 1, t) in a separate column. We could then subtract one to obtain Rt − 1, t for 

each period.

Figure 4-4 illustrates the benefits of using the 1+R formatted return. The extra step 

involved is to create a shifted column by moving the price column upward by one 

unit. Calculating the 1+R formatted return is straightforward and fast, as this is a direct 

division between two columns that are performed simultaneously across all the rows. 

This avoids a for loop. We will then minus one to recover the same return.
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Figure 4-4.  Illustrating the calculation process of return using the 1+R format that 
gives a more convenient way to calculate the return

Also, note that the last row in the shifted column is NA, which is due to the fact that 

there is no more future price available at the last time point. This also makes the 1+R 

return column NA. We will demonstrate the calculation process in code later. For now, it 

is good to digest and accept the 1+R formatted return as an equivalent way of describing 

asset returns.

�The Terminal Return
Terminal return refers to the return at the last time period as compared to the initial 

return, that is, R0, T. Suppose we have price data from period t = 0 to t = T. To calculate the 

terminal return R0, T at period T, we can take the initial price S0 and terminal price ST, take 

the ratio, and subtract one, giving

	
R S

ST
T

0

0

1
,
= −

	

This approach essentially ignores the intermediate returns and only considers the 

initial and terminal asset prices. By focusing solely on the initial and terminal asset 

prices, this metric offers a simplified view of the investment’s growth or decline over 

time, disregarding intermediate fluctuations. This can be particularly useful when 
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assessing the long-term performance of an investment or comparing the growth of 

different assets over an extended period. However, note that the terminal return does 

not provide insights into the volatility or risk associated with the investment, as it only 

considers the initial and terminal asset prices.

There is another way to calculate this value. Instead of focusing only on the 

initial and terminal prices, we view the whole price evolution process as sequential, 

changing from one price point to another. Therefore, the terminal return at period T 

(or an arbitrary period t) is the result of multiplying all previous 1+R formatted returns, 

followed by a subtraction of one. Mathematically, we have

	 R R R RT T T0 0 1 1 2 1
1 1 1 1

, , , ,
= +( ) +( )… +( ) −− 	

Plugging in the definition of 1+R formatted return gives the following:
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which is nothing more than the initial equation we presented, after canceling like 

terms. By doing so, we acknowledge the compound effect of each period’s return on the 

overall investment performance. This approach is more comprehensive, as it takes into 

account all price changes during the investment period.

Figure 4-5 illustrates the calculation process of the terminal return.

Figure 4-5.  Calculating the terminal return via different approaches
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�Stock Return with Dividends
Note that dividends also need to be considered when calculating the asset return. 

This means that we own the stock at its current price and also enjoy the dividends it 

brings. The previous definition of return is called the price return, which only considers 

the price movements of the stock. Adding dividends together with the current stock 

price is referred to as the total return, which is more realistic. When analyzing stock 

performance, the total return is almost always used. The difference between the total 

return and the price return gives the dividends.

The total return of a stock is calculated as follows:
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In this equation, the total return is denoted by Rt − 1, t, which is the return from time 

t − 1 to time t. St and St − 1 represent the stock prices at time t and time t − 1, respectively. 

Dt − 1, t represents the dividend paid out during the period from t − 1 to t.

The total return provides a more comprehensive assessment of an investment’s 

performance by incorporating both capital appreciation (i.e., the increase in the stock’s 

price) and dividend income. It is particularly relevant for income-oriented investors, 

who are focused on maximizing their returns through a combination of capital gains and 

dividends.

To calculate the total return of a stock, the formula takes into account the stock price 

at the beginning of the period, the stock price at the end of the period, and any dividends 

paid out during the period. By dividing the sum of the stock price at the end of the period 

and the dividends by the stock price at the beginning of the period, and then subtracting 

one, we obtain the total return as a percentage.

�Multiperiod Return
The terminal return can also be considered as the multiperiod return, or the return 

over a combined period of time. Since the evolution process is sequential, we need to 

compound the returns in each period, sequentially. When we have the 1+R formatted 

returns, it is easy to calculate the multiperiod return by multiplying/compounding the 

intermediate 1+R returns followed by a subtraction of one.
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The multiperiod return is a measure of an investment’s performance over a  

series of consecutive periods. Recall that the terminal return can be calculated via  

R0, T = (1 + R0, 1)(1 + R1, 2)…(1 + RT − 1, T) − 1. When we calculate the two-period return Rt, t + 2, 

the formula becomes

	 R R Rt t t t t t, , ,+ + + += +( ) +( ) −2 1 1 2
1 1 1	

This method allows us to calculate the overall return over the two periods 

while considering the compounding effect of each period’s return on the next. The 

compounded return is thus easy to calculate using the 1+R formatted returns for both 

periods. Figure 4-6 illustrates the process of compounding the two-period return.

Figure 4-6.  Calculating the two-period return by compounding the two single-
period returns in 1+R format, followed by an adjustment of subtraction by one

Similarly, for an n-period return, the formula can be generalized as

	 R R R Rt t n t t t t t n t n, , , ,+ + + + + − += +( ) +( )… +( ) −1 1 1 1
1 1 2 1
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By multiplying the 1+R formatted returns for all n periods and then subtracting one, 

we can determine the compounded return over the entire n-period investment horizon.

Let us look at a simple example. Suppose we invest in an asset for two periods, where 

the first-period return is 10%, and the second-period return is –2%. To calculate the 

compounded return, our first step is to convert both single-period returns to the 1+R 

format, giving 1.1 and 0.98, respectively. We would then multiply these two numbers and 

subtract by one:

	 1 0 1 1 0 02 1 0 078 7 8+( ) −( ) − ≈ =. . . . %	

Note that we should not calculate the two-period terminal return as (10% – 2%) = 8%, 

which ignores the compounding effect. Working through the calculations sequentially 

by multiplying the 1+R returns in each period ensures we obtain the correct result. These 

multiplications give the terminal return in the 1+R format, and we subtract by one to get 

the return itself.

�Annualizing Returns
Once we know how to calculate the terminal return of any asset, the next question is 

comparing assets with different periods of time. For example, some returns are daily, 

while other returns are monthly, quarterly, or yearly. The answer is annualization, where 

we annualize the returns to the same time scale of a year for a fair comparison.

Annualizing returns is a crucial step in comparing the performance of assets with 

different investment horizons. By converting returns to an annualized basis, we can 

more easily evaluate and compare the performance of various assets on a standardized 

time scale. This process helps to level the playing field and facilitate informed 

decision-making.

The overall process for annualizing returns is as follows:

•	 Calculate the 1+R formatted return for the given period.

•	 Raise the 1+R formatted return to the power of the number of periods 

per year.

•	 Subtract one to convert the result from the 1+R format back to the 

return itself.
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Let us look at an example. Suppose we have an asset that generates a monthly return 

of 1%. To calculate the annualized return, we need to enlarge the time horizon to a 

year. However, simply multiplying 12 by 1% is incorrect. To proceed with the sequential 

compounding process, we would construct the 1+R formatted return (1 + 0.01) for each 

month, multiply across all 12 months to reach (1 + 0.01)12, and finally subtract by one 

to give (1 + 0.01)12 − 1 ≈ 12.68%, which is higher than 12%. Calculating the annualized 

return thus involves deriving the 1+R formatted return, multiplying these returns by the 

number of periods per year, and subtracting by one to convert from 1+R to R.

This calculation shows that the annualized return is 12.68%, which is higher 

than simply multiplying the 1% monthly return by 12. This difference is due to the 

compounding effect, which is an essential factor to consider when annualizing returns.

�Calculating Single-Period Returns from Price Data
We often start with the price data of an asset, and there is a process to calculate the 

returns. This section will demonstrate how to achieve this.

The following command creates a list of three price points, which will be used to 

calculate different returns similar to the previous two-period return example:

prices = [0.1, 0.2, -0.05]

The first-period return can be calculated based on the first two price points. We 

would first obtain the 1+R formatted return and then subtract by one to switch to the 

normal return:

>>> prices[1]/prices[0] – 1

1.0

Similarly, we can calculate the second-period normal return as follows:

>>> prices[2]/prices[1] – 1

-1.25

When the list gets large, it would be inconvenient to calculate these single-period 

returns by hand. A more convenient approach is to borrow the idea of shifting the 

prices. Shifting can be done via proper indexing in a list. For example, the following code 

snippet subsets the last two and first two prices, respectively:
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>>> print(prices[1:])

[0.2, -0.05]

>>> print(prices[:-1])

[0.1, 0.2]

Now we can do division for the corresponding elements in one shot. However, we 

need to convert both lists to NumPy arrays in order for the element-wise multiplication 

to work:

>>> print(np.array(prices[1:])/np.array(prices[:-1])-1)

[ 1.   -1.25]

Another approach is to rely on the Pandas ecosystem, which implements a lot of 

NumPy calculations under the hood. Let us convert the list to a Pandas DataFrame by 

converting a dictionary, the same technique used earlier:

prices_df = pd.DataFrame({"price":prices})

>>> prices_df

price

0    0.10

1    0.20

2   -0.05

A common method to subset a Pandas DataFrame is via the iloc() method, which 

returns the elements based on the positional indexes at both row and column levels. The 

following code snippet selects the last two and first two elements, respectively:

>>> prices_df.iloc[1:]

     price

1    0.20

2   -0.05

>>> prices_df.iloc[:-1]

     price

0    0.1

1    0.2
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Pay attention to the indexes in the first column here. These are the default row-

level indexes assigned upon creating the Pandas DataFrame, and these indexes remain 

unchanged even after the subsetting operation. Having misaligned indexes could easily 

lead to problems when trying to combine two DataFrames. In this case, we would end up 

with an unwanted result when we divide these two DataFrames:

>>> prices_df.iloc[1:]/prices_df.iloc[:-1]

price

0    NaN

1    1.0

2    NaN

The reason behind this seemingly irregular behavior is that both DataFrames are 

trying to locate the corresponding element with the same index. When the counterparty 

cannot be found, a NaN value shows up.

To correct this, we can extract the value attribute only from these DataFrames. We 

only need to do this for one DataFrame as the other will be converted to the format of the 

value automatically. The following code snippet shows the way to go, where the result is 

the same as before:

>>> prices_df.iloc[1:].values/prices_df.iloc[:-1] – 1

price

0    1.00

1   -1.25

>>> prices_df.iloc[1:]/prices_df.iloc[:-1].values – 1

     price

1    1.00

2   -1.25

Let us stay with the shifting operation a bit longer. It turns out that there is a function 

with the same name. For example, to shift the prices downward by one unit, we can pass 

one to the shift() function of the Pandas DataFrame object as follows:

>>> prices_df.shift(1)

     price

0    NaN

1    0.1

2    0.2
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Notice that the first element is filled with NaN since there is no value before the first 

price. We can then divide the original DataFrame by the shifted DataFrame to obtain 

the sequence of single-period 1+R formatted returns and subtract by one to get the 

normal return:

>>> prices_df/prices_df.shift(1) - 1

     price

0    NaN

1    1.00

2   -1.25

Finally, we have one more utility function that helps us perform these calculations 

in one shot. The function is pct_change(), which calculates the percentage change 

between two consecutive values in the DataFrame:

returns_df = prices_df.pct_change()

>>> returns_df

     price

0    NaN

1    1.00

2   -1.25

Again, the first entry is NaN as there is no prior price point.

Next, we move on to calculating the cumulative two-period terminal return.

�Calculating Two-Period Terminal Return
The terminal return comes from compounding the previous single-period returns. In 

the case of a single-period horizon, the terminal return is the same as the single-period 

return. In the following example, we are calculating the two-period terminal return 

using a simple DataFrame (returns_df) containing single-period returns. The process 

involves the following steps:

•	 Convert the single-period returns to the 1+R format by adding one.

•	 Calculate the product of the 1+R formatted returns.

•	 Subtract one to convert the result back to the terminal return.
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Specifically, to calculate the two-period terminal return, we first obtain the 1+R 

formatted single-period returns:

>>> returns_df + 1

     price

0    NaN

1    2.00

2   -0.25

We then call the prod() function from NumPy to multiply all elements in an array, 

ignoring the NaN value. This gets us the 1+R formatted terminal return, from which we 

subtract one to convert to the normal terminal return:

>>> np.prod(returns_df + 1) – 1

price   -1.5

dtype: float64

There is also a corresponding Pandas way, which gives the same result:

>>> (returns_df+1).prod() – 1

price   -1.5

dtype: float64

�Calculating Annualized Returns
We consider three scenarios where the return frequencies are different, including a daily 

return of 0.0001, a monthly return of 0.01, and a quarterly return of 0.05. The calculation 

process is the same as calculating the multiperiod terminal return at a yearly mark:

•	 Convert the normal return to the 1+R format for each period.

•	 Raise the 1+R formatted return to the power of the number of periods 

in a year.

•	 Subtract one to convert the result back to the normal return.

For the daily return, we assume a total of 252 trading days in a year, which is a 

typical assumption when working with daily prices. We follow the same recipe here: 

convert normal return to 1+R return for every single period, compound/multiply these 

single periods until reaching a year, and minus one to convert back to the normal 

terminal return:
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r = 0.0001

>>> (1+r)**252-10

0.025518911987694626

For the monthly return, since there are 12 months in a year, we would compound it 

12 times:

r = 0.01

>>> (1+r)**12-1

0.12682503013196977

And lastly, there are four quarters in a year, so we compound it four times:

r = 0.05

>>> (1+r)**4-1

0.21550625000000023

Now we switch to analyzing risk in the following section.

�Analyzing Risk
The risk of an asset is related to volatility, which is of equal or higher importance than 

the reward. Volatility is a crucial metric in assessing the risk of an investment, as it 

represents the level of uncertainty or fluctuations in the asset’s returns. A higher volatility 

implies a higher risk, as the asset’s price can experience more significant ups and downs. 

To quantify the risk associated with an investment, we must understand the concept of 

volatility and how to calculate it.

Recall the returns of two assets in Figure 4-3. Despite having the same average 

reward, asset 2 is more volatile than asset 1. Asset 2 deviates from the mean more often 

and more significantly than asset 1. Volatility thus measures the degree of deviation from 

the mean. We will formalize the notion of volatility in this section.

Before looking at volatility, let us first introduce the concept of variance and standard 

deviation.
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�Introducing Variance and Standard Deviation
Variance and standard deviation are two widely used statistical measures that describe 

the spread of the data around its mean value. Suppose we have a total of N returns Ri i

N{ } =1. 

We know the mean return RP is calculated by averaging all returns:
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Here, the mean return RP describes the central tendency of the returns for the asset 

or portfolio. That is, on average, the return is RP. It is also called the arithmetic mean of 

the returns.

Now comes the measure of the deviation from the mean. For any return Ri, its 

distance with RP is Ri − RP. However, this distance may be positive or negative. Since we 

have a total of N returns and, therefore, N distances, aggregating these N distances by 

summing them up does not seem to be a good idea, as positive and negative distances 

will cancel out each other. Instead of directly summing up these distances, the variance 

measure says that we can square the distances first and then take the average of these 

squared distances. Mathematically, the variance of the returns is expressed as follows:
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Here, Ri − RP also means to de-mean the original return Ri, that is, subtract the 

mean return RP from the original return Ri. This gives deviation from the mean. Also, by 

squaring these deviations, the problem of canceling out positive and negative terms no 

longer exists; all de-meaned returns end up being positive or zero. Finally, we take the 

average of the squared deviations as the variance of the return series. A visual inspection 

of Figure 4-3 also suggests that asset 2 has a higher variance than asset 1.

Although variance summarizes the average degree of deviation from the mean 

return, its unit is the squared distance from the average return, making it difficult to 

interpret the unit. In practice, we would often take the square root of the variance and 

bring it back to the same scale as the return. The result is called standard deviation, 

where the deviation is now standardized and comparable.
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This is also our measure of volatility. It measures how large the prices swing around 

the mean price and serves as a direct measure of the dispersion of returns. The higher 

the volatility, the higher the deviations from the mean return. Figure 4-7 summarizes the 

definitions of common statistical measures such as the mean, variance (both population 

and sample), and standard deviation, also called volatility in the financial context.

Figure 4-7.  Summarizing the common statistical measures, including the mean, 
variance (population and sample), and standard deviation (also called volatility)

In summary, variance and standard deviation are essential statistical measures for 

understanding the risk associated with an investment. They describe the dispersion or 

spread of returns around their mean value, which helps estimate the potential volatility 

of an asset or portfolio. These statistical measures also play an important role in 

assessing the risk tolerance in a portfolio allocation.

�Annualizing Volatility
Similar to return, the volatility also needs to be annualized to warrant a fair comparison. 

Without annualizing the volatility, it is difficult to compare the volatility of monthly data 

with that of daily data.

The formula for annualizing the volatility relies on the fact that the volatility 

increases with the square root of the time period T. The annualized return σP, T can be 

calculated as

	 σ σP T PT, = 	
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where σP is our single-period volatility, which can be daily, monthly, or quarterly. 

This expression relies on the assumption that the returns are normally distributed and 

independent of each other. We are only going to build intuition on this formula instead 

of delving into the technical details.

The time period T is the full time period. Therefore, daily returns give T = 252, 

monthly returns give T = 12, and quarterly returns give T = 4. We would simply multiply 

the square root of this time period with the original single-period volatility to obtain the 

annualized volatility.

To recap, we can follow these steps to calculate the annualized volatility:

•	 Calculate the single-period volatility (σP) for the given data (daily, 

monthly, or quarterly returns).

•	 Determine the number of periods per year (T). For daily returns,  

T = 252 (trading days in a year); for monthly returns, T = 12; and for 

quarterly returns, T = 4.

•	 Multiply the single-period volatility (σP) by the square root of the 

number of periods per year (T) to obtain the annualized volatility; 

that is, σ σP T PT, = .

Keep in mind that the assumption of normally distributed and independent returns 

is critical for this method to hold true. Annualizing volatility using this method allows us 

to compare the volatility of assets with different return frequencies on a common scale, 

making it easier to evaluate and manage the risks associated with different investments.

When the single-period volatility σP is fixed, our annualized return σP, T will grow 

as T increases. Such growth in σP, T is a nonlinear function of T due to the square root 

operation. As the time period T increases, the annualized volatility will also increase, but 

at a decreasing rate because of the square root function. This means that when the daily 

return and monthly return have the same single-period volatility, the daily return will 

have a higher annualized volatility. This makes intuitive sense as it captures short-term 

fluctuations that are smoothed out when using longer time frames like monthly data, 

and we expect to see more variations in the daily data compared to the monthly data.

We can also view the formula from another perspective. Squaring both sides gives us 

the annualized variance on both sides, as shown in the following:

	 σ σP T PT
,

2 2= 	

Chapter 4  Understanding Risk and Return



129

Now the annualized variance σ P T,
2  grows linearly with the time T. Figure 4-8 

illustrates the subtlety here.

Figure 4-8.  Comparing the differences when annualizing volatility and variance. 
When given a fixed single-period volatility or variance, the annualized volatility 
grows nonlinearly with time, while the annualized variance grows linearly 
with time

Let us look at a simple example. Suppose the standard deviation of a stock’s daily 

return series is 0.1%. The annualized volatility can be calculated as

	 0 001 252 1 59. . %∗ ≈ 	

�Combining Risk and Return via the Sharpe Ratio
Now we have two measures for a particular asset: return and risk; both can be 

annualized. One asset may display a low return and a low risk, while another asset may 

deliver a higher return but comes with a higher risk as well. We would like to combine 

these two measures and create a single risk-adjusted return.

One way is to divide the average return RP by the volatility σP, giving 
RP

Pσ
. However, the 

average return RP gives no information on the overall market conditions. We are unsure if 

a higher ratio of 
RP

Pσ
 is due to the portfolio itself or the booming market. It would be good 

to account for the overall market benchmark in the numerator. This is where the Sharpe 

ratio comes in.
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The Sharpe ratio is a measure that is calculated by dividing the portfolio’s excess 

return by its volatility to assess risk-adjusted performance. Here, excess return means the 

return that is above an industry benchmark, typically using the risk-free rate of return 

such as the Treasury bill or bond. With this standardized measure, we can now compare 

different assets or portfolios while taking into account the overall market conditions. We 

will then choose the assets or portfolio with a higher Sharpe ratio.

Mathematically, the Sharpe ratio is defined as follows:

	
Sharpe ratio

R RP f

p

 =
−
σ 	

where RP is the average return of the portfolio, Rf is the risk-free rate, and σp is the 

volatility of the portfolio. A higher Sharpe ratio indicates that the investment generates 

higher returns for the same level of risk compared to other investments or the overall 

market. When comparing different investments, an investment with a higher Sharpe 

ratio is considered to be more attractive because it offers a better risk-adjusted return. By 

incorporating the risk-free rate, the Sharpe ratio provides a more accurate assessment of 

an investment’s performance relative to the overall market conditions.

Let us look at one example. Suppose we have two portfolios whose returns and 

volatilities are (5%, 20%) and (10%, 50%). Clearly, portfolio 2 is more profitable and also 

more volatile than portfolio 1. Such volatility will discount the attractiveness of portfolio 2.  

To compare these two portfolios using a single metric, we calculate RP

Pσ
 as follows:
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Thus, portfolio 1 is more attractive using the risk-adjusted measure. Now suppose 

the risk-free interest rate in the market is 3%. Now we focus on the excess return of both 

portfolios and compare them using the Sharpe ratio:
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Now portfolio 2 has become more attractive. This is because portfolio 2 did provide 

a better return than portfolio 1 after considering the market benchmark. Listing 4-2 

demonstrates the comparison in this example.
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Listing 4-2.  Calculating the Sharpe ratio

p1_ret = 0.05

p1_vol = 0.2

p2_ret = 0.1

p2_vol = 0.5

risk_free_rate = 0.03

>>> p1_ret / p1_vol

0.25

>>> p2_ret / p2_vol

0.2

>>> (p1_ret - risk_free_rate) / p1_vol

0.1

>>> (p2_ret - risk_free_rate) / p2_vol

0.14

Figure 4-9 summarizes the different measures of the risk-adjusted return.

Figure 4-9.  Different risk-adjusted returns. Subtracting the risk-free rate from the 
(annualized) return gives the excess return, which considers the market benchmark 
performance

Let us work with some real data to calculate the aforementioned metrics in the next 

section.
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�Working with Stock Price Data
In this section, we will download the year-to-date stock price data for Apple (AAPL)  

and Google (GOOG). In Listing 4-3, we specify the starting date to be “2023-01-01,” with 

the default end date automatically determined by the system’s current date, which is 

January 20, 2023, at the time of writing.

Listing 4-3.  Downloading stock data using yfinance

import yfinance as yf

prices_df = yf.download(["AAPL","GOOG"], start="2023-01-01")

>>> prices_df.head()

Running the code generates Figure 4-10. Note the multilevel columns here. There are 

two levels of columns, with the first level indicating the price type and the second one 

denoting the ticker symbol. Also, the index of the DataFrame follows a datetime format.

Figure 4-10.  Printing the first few rows of daily stock prices for Apple and Google

Next, we would like to focus on the daily adjusted closing price of the two stocks, 

indexed by date instead of datetime. Listing 4-4 completes these two tasks.

Listing 4-4.  Indexing by date and selecting the daily adjusted closing price

# convert datetime index to date format

prices_df.index = prices_df.index.date

# keep the adjust close

prices_df = prices_df['Adj Close']
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>>> prices_df.head()

           AAPL       GOOG

2023-01-03 125.070000 89.699997

2023-01-04 126.360001 88.709999

2023-01-05 125.019997 86.769997

2023-01-06 129.619995 88.160004

2023-01-09 130.149994 88.800003

Here, we accessed the date attribute of the index and assigned it to the index 

attribute of the DataFrame. We would then calculate the 1+R formatted returns using the 

pct_change() utility function:

returns_df = prices_df.pct_change()

>>> returns_df.head()

            AAPL      GOOG

2023-01-03  NaN       NaN

2023-01-04  0.010314 -0.011037

2023-01-05 -0.010605 -0.021869

2023-01-06  0.036794  0.016019

2023-01-09  0.004089  0.007260

Again, the first row is empty since there is no data point before it. We can remove this 

row using the dropna() function:

returns_df = returns_df.dropna()

>>> returns_df.head()

            AAPL      GOOG

2023-01-04  0.010314 -0.011037

2023-01-05 -0.010605 -0.021869

2023-01-06  0.036794  0.016019

2023-01-09  0.004089  0.007260

2023-01-10  0.004456  0.004955

All rows with any NA value in a cell are removed.

Next, we calculate the mean, variance, and standard deviation of the return series for 

both stocks.
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�Calculating the Mean, Variance, and Standard Deviation
The column-wise arithmetic mean returns can be obtained by calling the mean() 

method of the returns DataFrame:

>>> returns_df.mean()

AAPL    0.007228

GOOG    0.004295

dtype: float64

It seems Apple is having a better start than Google at the beginning of the year. 

To calculate the standard deviation or volatility of the returns, we can use the std() 

function. However, to see the column-wise operation in action, we explicitly specify 

axis=0 in the input argument, which says that the standard deviation should be taken 

along the columns:

>>> returns_df.std(axis=0)

AAPL    0.012995

GOOG    0.016086

dtype: float64

Google’s stock prices were more volatile than Apple’s in the first few days. Now let us 

try setting axis=1:

>>> returns_df.std(axis=1)

2023-01-04    0.015097

2023-01-05    0.007965

2023-01-06    0.014690

2023-01-09    0.002242

2023-01-10    0.000352

2023-01-11    0.009001

2023-01-12    0.002259

2023-01-13    0.000308

2023-01-17    0.011068

2023-01-18    0.000882

2023-01-19    0.016097

dtype: float64
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The result shows the daily standard deviation calculated for the two stocks 

combined.

Now we show how to calculate the volatility manually by going through the exact 

steps described earlier. Our first step is to de-mean the daily returns and obtain the 

deviations from the (arithmetic) mean:

deviations_df = returns_df - returns_df.mean()

>>> deviations_df.head()

            AAPL      GOOG

2023-01-04  0.003086 -0.015332

2023-01-05 -0.017833 -0.026164

2023-01-06  0.029566  0.011724

2023-01-09 -0.003139  0.002964

2023-01-10 -0.002772  0.000660

The next step is to square these deviations so that they would not cancel each other 

when summing together. Squaring is the same as raising the element to the power of 

two, using the double asterisk notation:

squared_deviations_df = deviations_df**2

>>> squared_deviations_df.head()

           AAPL     GOOG

2023-01-04 0.000010 2.350688e-04

2023-01-05 0.000318 6.845668e-04

2023-01-06 0.000874 1.374582e-04

2023-01-09 0.000010 8.787273e-06

2023-01-10 0.000008 4.352158e-07

In the third step, we average these daily squared deviations using the mean() 

function:

variance = squared_deviations_df.mean()

>>> variance

AAPL    0.000154

GOOG    0.000235

dtype: float64
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The last step is to take the square root of the variance to obtain the volatility:

volatility = np.sqrt(variance)

>>> volatility

AAPL    0.012390

GOOG    0.015337

dtype: float64

Notice that the result is different from the one obtained using the std() function! 

The cause for the difference is that the std() function calculates the sample standard 

deviation, which divides N − 1 in the denominator as opposed to N in our manual 

calculations.

To correct this, let us revisit step three and divide the sum of squared deviations by 

N − 1 this time. In Listing 4-5, we first get the number of rows N using the first dimension 

(row dimension) of the shape() function, then plug in the calculation based on the 

formula of variance.

Listing 4-5.  Calculating the sample variance

num_rows = squared_deviations_df.shape[0]

variance2 = squared_deviations_df.sum() / (num_rows-1)

>>> variance2

AAPL    0.000169

GOOG    0.000259

dtype: float64

Taking the square root now gives the same result as using the std() function:

volatility2 = np.sqrt(variance2)

>>> volatility2

AAPL    0.012995

GOOG    0.016086

dtype: float64

Now we have the single-period volatility that measures the daily spread of the returns 

around its mean, the next section calculates the annualized volatility.
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�Calculating the Annualized Volatility
Following the formula for annualizing the single-period volatility to annual volatility, we 

can calculate the annualized volatility as follows, where the total length of time in a year 

is T = 252:

annualized_vol = returns_df.std()*np.sqrt(252)

>>> annualized_vol

AAPL    0.206289

GOOG    0.255356

dtype: float64

We can also calculate the square root of 252 by raising it to the power of 0.5, which 

returns the same result:

annualized_vol = returns_df.std()*(252**0.5)

>>> annualized_vol

AAPL    0.206289

GOOG    0.255356

dtype: float64

The next section looks at annualizing the returns.

�Calculating the Annualized Returns
A note to pay attention to here is that returns follow a sequential compounding process. 

This means that once we have the single-period average return, we need to compound 

it by the corresponding frequency to reach a year’s length. And, to calculate the single-

period average return, we take the geometric mean of the returns. The geometric mean 

is a better choice than the arithmetic mean in this context because it takes into account 

the effects of sequential compounding.

Specifically, we first calculate the geometric mean of the returns as follows. Note that 

the geometric mean aligns with the sequential compounding nature when analyzing the 

cumulative return of an asset:
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returns_per_day = (returns_df+1).prod()**(1/returns_df.shape[0]) - 1

>>> returns_per_day

AAPL    0.007153

GOOG    0.004178

dtype: float64

Let us decompose the sequence of operations here. First, we construct the 1+R 

returns in (returns_df+1) for each day, then perform sequential compounding using 

the prod() function to obtain the cumulative terminal return in 1+R format. Before 

subtracting one, we raise it to the power of 1/N, where N is the number of rows in the 

DataFrame. This gives the geometric mean of the returns in 1+R format. We do not use 

the arithmetic mean here.

Now comes the annualization part. As shown in Listing 4-6, we assume a fixed daily 

return as the geometric mean and roll it forward by a year, corresponding to 252 trading 

days. Again, convert between 1+R return and the normal return.

Listing 4-6.  Annualizing the daily return

annualized_return = (returns_per_day+1)**252-1

>>> annualized_return

AAPL    5.025830

GOOG    1.859802

dtype: float64

It seems Apple is doing quite well compared with Google for the first few days.

There is another way to calculate the annualized return, a faster way:

annualized_return = (returns_df+1).prod()**(252/returns_df.shape[0])-1

>>> annualized_return

AAPL    5.025830

GOOG    1.859802

dtype: float64

The key change here is that we raise the terminal return to the power of 252/N. This 

is standardization, bringing the daily scale to the yearly scale.
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�Calculating the Sharpe Ratio
Finally, let us compute the Sharpe ratio for both stocks. We assume a risk-free interest 

rate of 3%, calculate the excess return by subtracting it from the annualized return, 

and divide it by the annualized volatility to obtain the Sharpe ratio. This is shown in 

Listing 4-7.

Listing 4-7.  Calculating the Sharpe ratio

riskfree_rate = 0.03

excess_return = annualized_return - riskfree_rate

sharpe_ratio = excess_return/annualized_vol

>>> sharpe_ratio

AAPL    24.217681

GOOG     7.165694

dtype: float64

Thus, the Sharpe ratio as a risk-adjusted return is much higher for Apple than Google 

for the first few days.

�Summary
In this chapter, we explored the two key characteristics of any financial asset: risk and 

return. Return refers to the financial reward an asset brings, while risk represents the 

volatility or uncertainty of that return. As investors, our goal is to maximize return while 

minimizing risk.

We introduced different ways to represent and calculate the returns, including the 

simple return, terminal return, multiperiod return, and the 1+R formatted return. It is 

important to understand the connections among these forms of return when translating 

one form to the other.

We then highlighted the risk-return trade-off, where low-return assets are typically 

associated with low risk and high-return assets with high risk. To better compare the 

risk and return for different investment vehicles, we introduced the annualized return 

and volatility, as well as a risk-adjusted return metric called the Sharpe ratio. We also 

provided examples illustrating the importance of considering both risk and return when 

comparing investment products.
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�Exercises
•	 How many inputs do we need to calculate a single-period return?

•	 What is the return if the asset price changes from $5 to $6?

•	 Is the total return of a popular stock typically higher or lower than its 

price return?

•	 Calculate the three-period return that consists of 10%, –5%, and 6%.

•	 If we buy an asset that rises by 10% on day one and drops by 10% on 

day two, is our return positive, negative, or zero?

•	 Calculate the annualized return for an asset with a quarterly (three 

months) return of 2%.

•	 Download the YTD stock data for Apple and Tesla and calculate the 

daily cumulative returns using the daily closing price. Plot the returns 

as line charts.

•	 Both annualized volatility and variance grow linearly with time, 

correct?

•	 Suppose the monthly volatility is 5%. Calculate the annualized 

volatility.

•	 The annualized volatility is always greater than the monthly volatility. 

True or false?

•	 The risk-free rate is the return on an investment that carries a low 

risk. True or false?

•	 If the risk-free rate goes up and the volatility of the portfolio remains 

unchanged, will the Sharpe ratio increase or decrease?

•	 Obtain monthly return data based on the median daily price 

per month of Apple stock in the first half of 2022. Calculate the 

annualized return and volatility based on the monthly returns.
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CHAPTER 5

Trend-Following Strategy
Trend following is a popular investment strategy used in all types of markets, including 

stocks, bonds, commodities, currencies, and even cryptocurrencies. As its name 

suggests, this strategy is based on the assumption that prices tend to move in a particular 

direction (or “trend”) over time, thus offering opportunities to capitalize on these 

movements. At its core, trend following involves analyzing historical price data to 

identify potential trends. The strategy then recommends taking positions that align with 

these trends with the expectation that they will continue. For example, if the price of 

an asset has been steadily rising, a trend follower would typically take a long position, 

expecting the upward trend to continue. Conversely, if the price has been consistently 

falling, the trend follower might take a short position, betting that the price will continue 

to drop.

However, like any trading strategy, trend following is not foolproof. Trends can 

reverse suddenly due to unexpected market events or changes in market sentiment, 

leading to potential losses. Therefore, trend-following strategies typically include 

overlaying risk management techniques, such as setting up stop-loss orders, to limit 

potential losses when the trend reverses.

Trend-following strategies use a variety of technical indicators to identify and 

confirm trends, such as moving averages, trend lines, and momentum indicators. This 

chapter introduces the working mechanism of the trend-following strategies using 

moving averages and then shows its implementation in Python.

Since we will be working with log returns mostly, let us start by going through an 

example of its calculation process.
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�Working with Log Returns
Let us build a further understanding of the logarithmic return (or log return) as we will 

use it to calculate the stock returns when assessing the trend-following strategy. We start 

with the Excel table in Figure 5-1, where we are given a set of dummy stock prices and 

are asked to answer questions from Q1 to Q9. We detail the questions and answers in the 

following.

Figure 5-1.  Daily dummy stock prices

Let us go through each of these nine questions.

Q1: Why do we use percentage return?

Answer: Percentage return provides the same scale of comparison. For example, 

when we have the price data of another stock (stock B) in the range of 1–10, comparing 

it with the stock price data (stock A) given by the Excel table is difficult when using 

absolute terms. A $5 increase means more for stock A than stock B. By converting them 

to the relative percentage terms, we can put both stocks on the scale ruler and measure 

their performance. Thus, using percentage returns, we can accurately compare the 

performance of these two stocks despite their difference in price levels.

Percentage returns are also useful for comparing the performance of an investment 

to a benchmark or standard, such as a market index (like the S&P 500 or the Dow Jones 

Industrial Average). This helps investors to assess how well an investment or a portfolio 

is performing relative to the broader market or a sector of the market.

Q2: Calculate single-period percentage return the original way (based on the 

definition of return).
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Answer: The single-period percentage return, also known as the simple return or the 

holding period return, reflects the percentage change in the value of an investment from 

one period to the next. It is calculated as

	
R S S

St t
t t

t
, +

+=
−

1

1

	

where Rt, t + 1 is the single-period percentage return from time period t to t + 1, and 

St and St + 1 are asset prices at the end of period t and t + 1, respectively. The numerator 

of the formula, St + 1 − St, calculates the change in the price of the asset from time t to 

t + 1. The denominator, St, is the price at the beginning of the period, which serves 

as the baseline for measuring the relative change. Dividing the price change by the 

starting price gives the relative change in price, expressed as a percentage, which is the 

simple return.

Applying the same formula to all cells in column return1 except for day 1 generates 

the result in Figure 5-2.

Figure 5-2.  Calculating the simple returns based on the definition of 
percentage return

Q3: Calculate the same returns using the 1+R way.

Answer: The 1+R approach to calculating returns is slightly different from the 

original method but essentially delivers the same result. This approach emphasizes 

the growth factor of the asset’s price from one period to the next, making it easier to 

understand and interpret. The 1+R approach says that we rewrite the return as
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This requires two steps: first, calculate the ratio 
S
S
t

t

+1
 to obtain the so-called 1+R 

return. This ratio reflects the growth factor of the asset’s price from the beginning of the 

period to the end. If this ratio is greater than one, it indicates that the asset’s price has 

increased over the period. If it’s less than one, it indicates a decrease in the asset’s price. 

If the ratio equals one, it means the asset’s price hasn’t changed.

Next, we would subtract one from the 1+R return to convert it to the simple return. 

This step transforms the growth factor 
S
S
t

t

+1  into the actual percentage return. Subtracting 

one essentially removes the initial investment from the calculation, leaving only 

the gained or lost amount relative to the initial investment, which is the return. See 

Figure 5-3 for an illustration, where the daily returns are the same as in the previous 

approach.

Figure 5-3.  Calculating the simple returns based on the 1+R approach

This 1+R method is often used because it is more intuitive. The growth factor 
S
S
t

t

+1  

easily shows how much the initial investment has grown (or shrunk), and subtracting 

one gives the net growth in percentage terms, which is the simple return. This method is 

especially useful when dealing with multiple time periods, as growth factors can simply 

be multiplied together to calculate the cumulative growth factor over several periods.

Q4: What is the terminal return from day 1 to day 5 without compounding?

Answer: The terminal return is the total return on an investment over a given period 

of time. It’s a measure of the total gain or loss experienced by an investment from the 

start of the investment period to the end, without considering any compounding effect 

over the period.
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To calculate the terminal return without involving the compounding process, we 

would resort to R S S
S

S
S1 5

5 1

1

5

1

1
,
=

−
= − , where the second formula first calculates the ratio 

of the asset’s price on day 5 to its price on day 1 (which reflects the overall growth factor) 

and then subtracts one to convert the growth factor into a terminal return. See Figure 5-4 

for an illustration.

Figure 5-4.  Calculating the terminal return without compounding

Q5: What is the terminal return from day 1 to day 5 with compounding? Is it equal to 

the result in Q4?

Answer: Compounding returns is an important concept in finance. It reflects the fact 

that not only your initial investment earns a return but also the returns from previous 

periods. This leads to exponential growth over time, given a positive return rate.

We will fill in the “return3” column, where each cell is a product between the 1+R 

return of the current period and the cumulative 1+R return of the previous period, offset 

by one. For the first period (from day 1 to day 2), the “return3” value would be just the  

“1 + R” return for this period. See Figure 5-5 for an illustration.
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Figure 5-5.  Calculating the terminal return using compounding

As it turns out, the terminal return is 6%, which is the same as previously calculated.

Q6: Sum up the single-period returns in Q3. Is it equal to the result in Q4?

Answer: The result shows that it is different from 6%. In general, adding up single-

period returns can lead to incorrect conclusions about the overall return on investment. 

The sum of the single-period returns is not equal to the terminal return (from Q4) 

because this approach overlooks the effect of compounding. In other words, by simply 

summing up single-period returns, we are effectively treating each period’s return as 

if it was independent and earned on the initial investment amount, disregarding the 

fact that the investment grows with each period due to the returns earned in the prior 

periods. This is why we see a difference between the summed single-period returns and 

the terminal return calculated through the correct method that takes into account the 

compounding effect.

The principle of compounding acknowledges that returns accumulate over time, 

meaning the returns earned in one period are reinvested and can generate further 

returns in subsequent periods. So, while the sum of single-period returns might provide 

a rough estimate of the total return, it is not a correct measure, especially when the time 

span is long, or the return rate is high. Instead, the appropriate way to calculate the total 

return over multiple periods is to use the concept of compound returns, which considers 

both the initial investment and the reinvestment of returns. It is thus important to 

follow the sequential compounding process when calculating the terminal return. See 

Figure 5-6 for an illustration.
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Figure 5-6.  Summing up all single-period returns

Q7: Calculate the log return for each period.

Answer: The logarithmic return, or continuously compounded return, is another 

method of calculating returns that can simplify various calculations in finance. This 

method uses the natural logarithm (log) to express the rate of return, which is derived 

from the relative changes in price.

To calculate the log return for each period, we can use the formula:

	
log_ lnreturn = +S

S
t

t

1

	

Here, St + 1 and St represent the asset price at the future time t + 1 and the current time 

t, respectively, and ln denotes the natural logarithm. See Figure 5-7 for an illustration.

Figure 5-7.  Calculating the log returns of each period
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For instance, if we have the price data in a sequence, we can compute the log return 

for each period using this formula. Note that the log return is a good approximation 

for small returns, and it also has some desirable mathematical properties, such as time 

additivity, which means that the log return over multiple periods is simply the sum of the 

log returns over each individual period.

Also, note that we need to ensure that the denominator (St in this case) is not zero 

to avoid division by zero error. This can be handled by adding a small constant to the 

denominator when implementing the calculation in programs.

Q8: Calculate the terminal return using the log returns. Is it equal to Q4?

Answer: The terminal return using log returns can be calculated by summing all the 

single-period log returns, then exponentiating the result to reverse the log operation, and 

finally subtracting one to convert back to the simple return format. This is because log 

returns are time additive, meaning that the total log return over a given period is simply 

the sum of the log returns over the subperiods.

In other words, if you have calculated log returns over several periods (say daily), 

you can get the total (terminal) log return over these periods simply by summing up all 

these daily log returns. This property simplifies the calculation of terminal returns over 

multiple periods, making it very convenient, especially for large datasets.

The result shows that it is equal to the one obtained in Q4. See Figure 5-8 for an 

illustration.

Figure 5-8.  Calculating the terminal return using log returns
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Q9: Discuss the advantages of using log returns.

Answer: As mentioned, the use of logarithmic returns, or “log returns,” has several 

advantages, as detailed in the following:

•	 Ease of calculation and analysis: Log returns simplify mathematical 

calculations and statistical analyses. This simplification is particularly 

noticeable when dealing with compounded returns over multiple 

periods. Because logarithms convert multiplication and division 

operations into addition and subtraction, the compounded return (or 

“total return”) over multiple periods can be calculated as the simple 

sum of the log returns over those periods.

•	 Symmetry: Log returns also exhibit a desirable symmetry property. 

If a price doubles and then halves, or halves and then doubles, the 

total log return over the two periods is zero, reflecting the fact that the 

price is unchanged over the two periods. This symmetry property, 

which is not possessed by simple returns, often simplifies analyses 

and improves the interpretability of results.

•	 Suppose a stock price St changes to St + 1 and then changes back to St, 

the resulting log returns will be symmetric around zero. For example, 

when the stock price changes from 100 on day 1 to 108 on day 2 

and then back to 100 on day 3, the resulting log returns are 7.7% on 

day 2 and –7.7% on day 3. A simple mathematical analysis would 

immediately make sense of this:

	
log log log
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•	 Normality: In addition, financial models often assume that returns 

are normally distributed. However, it’s been observed that simple 

returns have skewness and excess kurtosis, implying that they 

deviate from normality. On the other hand, log returns tend to have 

properties closer to normality which makes them a better fit for these 

financial models.
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•	 Continuously compounded returns: Log returns also represent 

continuously compounded returns. This property makes log returns 

the preferred choice in certain financial applications, especially 

those involving options and other derivatives, where continuous 

compounding is commonly used.

In summary, using log returns simplifies mathematical computations and statistical 

analyses, enables symmetry and normality, and represents continuously compounded 

returns. These properties make log returns highly valuable in financial analysis and 

modeling.

Let us look at a concrete example to understand the calculations using log returns.

�Analyzing Stock Prices Using Log Returns
We first download Google’s stock price data for the first few days of 2023, as shown in 

Listing 5-1.

Listing 5-1.  Downloading Google’s stock price

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import yfinance as yf

symbol = 'GOOG'

df = yf.download(symbol, start="2023-01-01", end="2023-01-08")

>>> df

           Open      High      Low       Close Adj Close     Volume

Date

2023-01-03 89.830002 91.550003 89.019997 89.699997 89.699997 20738500

2023-01-04 91.010002 91.239998 87.800003 88.709999 88.709999 27046500

2023-01-05 88.070000 88.209999 86.559998 86.769997 86.769997 23136100

2023-01-06 87.360001 88.470001 85.570000 88.160004 88.160004 26612600

We can use the pct_change() method to calculate the single-period percentage 

returns, as shown in Listing 5-2.
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Listing 5-2.  Calculating the single-period percentage returns

# single-period percentage returns

returns = df.Close.pct_change()

>>> returns

Date

2023-01-03 00:00:00-05:00         NaN

2023-01-04 00:00:00-05:00   -0.011037

2023-01-05 00:00:00-05:00   -0.021869

2023-01-06 00:00:00-05:00    0.016019

Name: Close, dtype: float64

Here, the first-period return is NaN as there is no prior stock price available.

Let us calculate the terminal return using the original approach by taking the first 

and last closing prices as the inputs (based on the definition given earlier), as shown in 

Listing 5-3.

Listing 5-3.  Calculating the terminal return using the original approach by definition

# terminal return

terminal_return = df.Close[-1]/df.Close[0] - 1

>>> terminal_return

-0.01716826464354737

We can also calculate the same value by compounding the (1+R) returns based on 

the .cumprod() function, as shown in Listing 5-4.

Listing 5-4.  Calculating the same cumulative terminal return by compounding 

1+R formatted returns

# cumulative returns

cum_returns = (1+returns).cumprod() - 1

>>> cum_returns

Date

2023-01-03 00:00:00-05:00         NaN

2023-01-04 00:00:00-05:00   -0.011037

2023-01-05 00:00:00-05:00   -0.032664

2023-01-06 00:00:00-05:00   -0.017168

Name: Close, dtype: float64
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The equality operator on both terminal returns evaluates to True:

# check equality on terminal return

>>> cum_returns.values[-1] == terminal_return

True

Now we calculate the same using log returns, starting by obtaining the single-period 

log returns in Listing 5-5.

Listing 5-5.  Calculating the log returns

# log returns (1+R format)

log_returns = np.log(1+returns)

>>> log_returns

Date

2023-01-03 00:00:00-05:00         NaN

2023-01-04 00:00:00-05:00   -0.011098

2023-01-05 00:00:00-05:00   -0.022112

2023-01-06 00:00:00-05:00    0.015892

Name: Close, dtype: float64

We can add all log returns from previous periods together to get the cumulative log 

returns, convert back to the original scale via exponentiation, and, lastly, offset by one to 

convert from 1+R to the simple return format, as shown in Listing 5-6.

Listing 5-6.  Calculating the cumulative returns using log returns

# get cumulative returns using log returns

cum_return2 = np.exp(log_returns.cumsum()) - 1

>>> cum_return2

Date

2023-01-03 00:00:00-05:00         NaN

2023-01-04 00:00:00-05:00   -0.011037

2023-01-05 00:00:00-05:00   -0.032664

2023-01-06 00:00:00-05:00   -0.017168

Name: Close, dtype: float64
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Again, we verify the value of the last entry and verify that it is the same as the 

previous terminal return:

# check equality on terminal return

>>> cum_return2.values[-1] == terminal_return

True

The next section introduces the trend-following strategy.

�Introducing Trend Trading
Trend trading, also known as trend following, is a strategy that attempts to harness the 

momentum of an existing trend in a financial market. It operates on the premise that 

securities tend to move in a relatively sustained direction over time, either upward 

(bullish) or downward (bearish). It is a proactive trading strategy that seeks to capitalize 

on the sustained directional momentum of an asset’s price.

The fundamental principle behind trend trading is that a market’s momentum, or the 

rate of acceleration of the asset’s price, often continues in one direction for a period of 

time. This is where the two key concepts, trend and momentum, come into play. The trend 

represents the direction in which an asset’s price is moving, while momentum indicates 

the strength or speed of this movement over a certain period. It refers to the capacity for 

the asset’s price trend to sustain itself going forward. A strong momentum can continue in 

an upward or downward trend, which can be confirmed by a set of technical indicators.

Trend traders leverage technical analysis tools to identify potential buying and 

selling opportunities. They carefully analyze price charts and use various technical 

indicators, such as moving averages, MACD (Moving Average Convergence Divergence), 

and the Relative Strength Index (RSI), among others, to identify and confirm an asset’s 

trend direction and momentum. These technical indicators provide signals that help 

traders to make educated decisions about when to enter and exit trades.

In an uptrend, a trend trader will enter a long position, meaning they buy the asset with 

the expectation that its price will continue to rise. Conversely, in a downtrend, a trend trader 

will enter a short position, meaning they sell the asset (or sell short) with the expectation 

that its price will continue to fall. The trend-following strategy aims to take advantage of 

these significant movements in price and to profit from both rising and falling markets based 

on the forward-looking uptrends with new highs or anticipated downtrends with new lows.

Let us start with the technical indicators which are used to generate trading signals.
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�Understanding Technical Indicators
Technical indicators are mathematical calculations based on historical price (high, 

low, open, close, etc.) or volume and can be used to determine entry and exit points for 

trades. They are integral to many trading strategies and systems, providing key insights 

into market behavior. They can be considered as additional features derived from 

the raw asset data, a practice of feature engineering in machine learning. This makes 

technical indicators highly security dependent: what can be a good technical indicator 

for a particular security might not hold the case for the other. Selecting the right features 

makes all the difference.

Note that these technical indicators appear as additional features for each 

observation in the dataset. This means that more columns are added to the price-volume 

table we worked with earlier, with each column representing a separate technical 

indicator for the specific asset and time.

When looking at the raw price data, overlaying a set of technical indicators would 

help clarify the market analysis for traders. For example, technical indicators help 

confirm if the market is following a trend or in a range-bound situation, oscillating 

within a price range.

Technical indicators are integral to many trading strategies and systems, providing 

key insights into market behavior. As you’ve described, they are tools derived from 

mathematical calculations on historical price and volume data, designed to predict 

future price trends or patterns.

Some of the most commonly used technical indicators include

•	 Moving averages (MA): Moving averages smooth out price data by 

creating a constantly updated average price. The two most common 

types are the simple moving average (SMA) and the exponential 

moving average (EMA). They can help identify whether a security is 

in an uptrend or downtrend. More on this later.

•	 Relative Strength Index (RSI): The RSI measures the speed and 

change of price movements, typically on a scale of 0 to 100. A high 

RSI (generally above 70) may indicate that the asset is overbought 

and due for a price correction, while a low RSI (generally below 30) 

could suggest that the asset is oversold and might rebound.
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•	 Moving Average Convergence Divergence (MACD): This indicator is 

a trend-following momentum indicator that shows the relationship 

between two moving averages of a security’s price. The MACD is 

calculated by subtracting the 26-day EMA from the 12-day EMA.

•	 Bollinger Bands: These bands are plotted two standard deviations 

away from a simple moving average. They help identify whether an 

asset is overbought or oversold and can signal the end of a trend.

•	 Volume-based indicators: These include indicators such as the on-

balance volume (OBV), which uses volume flow to predict changes in 

stock price.

Each of these indicators provides a unique perspective on potential market 

movements. A combination of these indicators is often used to create a robust trading 

strategy.

Also, note that these indicators don’t predict future prices with absolute certainty. 

Instead, they help traders identify potential trading opportunities based on statistical 

probabilities. Each indicator works best under specific market conditions and may not 

be universally applicable across different asset classes, markets, and trading horizons.

The following section provides more introduction to moving averages.

�Introducing Moving Averages
Moving average, also called rolling average, is the mean or average of the specified data 

field (e.g., daily closing price) for a given set of consecutive periods. As new data becomes 

available, the mean of the data is computed by dropping the oldest value and adding the 

latest one. It is rolling along with the data, hence the name “moving average.” It provides 

a way of smoothing out the price data of a financial asset to identify trends more clearly.

When calculating moving averages of stock prices, it works similarly to moving a 

fixed-size window along the time horizon, where each window reports a single number 

as the average of all price points within the window. And when that window does not 

have full price points for the initial periods, an NA value is often reported.

When working with time series data such as daily stock price, the averaging effect 

can also be considered as smoothening the time series, reducing short-term fluctuations 

and temporary variations in the data.
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There are different types of moving averages, with the simple moving average and 

the exponential moving average being the most popular ones. The simple moving 

average is straightforward to calculate; we simply take the average of all the price points 

in the current fixed-size window, assuming an equal weightage for all the price points in 

this window.

The exponential moving average, or exponentially weighted moving average 

(EWMA), decreases the weightage for older price points. It’s more complex to calculate 

than the SMA, as it involves a smoothing factor that needs to be computed. But the basic 

idea is the same: it’s an average of the closing prices over a certain period.

The choice between using a simple or exponential moving average depends on the 

trader’s preference and the specific trading strategy. In general, EMAs react more quickly 

to recent price changes than SMAs, making them more preferred by short-term traders 

or those trading volatile markets.

Moving averages can be used to identify support and resistance levels. The support 

level is typically a price level or zone that a stock or a market has had difficulty falling 

below over a specific period. The resistance level is the opposite of the support level. 

It’s a price level or zone that a stock or a market has trouble moving above. Prices often 

bounce off these levels, making them useful for identifying potential trade entry and 

exit points.

In addition, when two moving averages (e.g., 50-day and 200-day) cross each other, 

it may signal a change in trend. A bullish signal is given when the shorter MA crosses 

above the longer MA, and a bearish signal is given when the shorter MA crosses below 

the longer MA. These crossover points become potential trading signals.

The following section focuses more on the simple moving averages.

�Delving into Simple Moving Averages
The simple moving average SMAt at time t is defined as follows:

	
SMAt

t M t tS S S

M
=
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In other words, to calculate SMAt, we would take M historical price points, including 

the current period, and then take the average of these M price points. Essentially, it 

involves adding up the prices of the security for the last M periods (days, hours, etc.) and 

then dividing by M. This provides a single output point, the SMA at time t. As new price 
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data becomes available, the oldest data point is dropped, and the newest data point is 

included in the calculation. This “rolling” or “moving” calculation continues as new 

price data is added.

The SMA is often used in trend analysis as it smoothens out short-term fluctuations 

and provides a clearer picture of the overall trend. It is the unweighted mean of the 

previous M price points. Here, the choice of M (the number of periods) is crucial because 

it affects the sensitivity and reliability of the SMA. A smaller M will be more responsive 

to price changes but may also yield more false signals. A larger M will provide a slower, 

more reliable SMA, but it might be slower in signaling changes in trends.

Let us look at how to calculate SMA. We first download Apple’s stock price data for 

2022, as shown in Listing 5-7.

Listing 5-7.  Downloading Apple’s stock price data

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

import yfinance as yf

symbol = 'AAPL'

df = yf.download(symbol, start="2022-01-01", end="2023-01-01")

df.index = pd.to_datetime(df.index)

>>> df.head()

           Open       High       Low        Close Adj  Close      Volume

Date

2022-01-03 177.830002 182.880005 177.710007 182.009995 180.434296 104487900

2022-01-04 182.630005 182.940002 179.119995 179.699997 178.144302 99310400

2022-01-05 179.610001 180.169998 174.639999 174.919998 173.405685 94537600

2022-01-06 172.699997 175.300003 171.639999 172.000000 170.510956 96904000

2022-01-07 172.889999 174.139999 171.029999 172.169998 170.679489 86709100

Note that we have an index named Date which now assumes a datetime format to 

facilitate plotting.

Listing 5-8 generates a plot on the daily adjusted closing price. We will later overlay 

its SMA on the same plot.
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Listing 5-8.  Plotting the daily adjusted closing price

# plot the adj closing price

plt.figure(figsize=(15, 7))

df['Adj Close'].plot()

# set labels and sizes of the title and axis

plt.title('Daily adjusted closing price of Apple', fontsize=16)

plt.xlabel('Time', fontsize=15)

plt.ylabel('Price ($)', fontsize=15)

plt.xticks(fontsize=15)

plt.yticks(fontsize=15)

plt.legend(['Close'], prop={'size': 15})

# show the plot

>>> plt.show()

Running the commands generates Figure 5-9, suggesting a download trend overall.

Figure 5-9.  Visualizing the daily closing price of Apple in 2022

Now we create an SMA series with a window size of three. We can create the rolling 

window using the rolling() method for a Pandas Series, followed by the mean() 

method to extract the average value from the window (a collection of price points). 

Listing 5-9 creates a new SMA column called SMA-3 and subsets to keep only two 

columns: the adjusted closing price and the SMA column.
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Listing 5-9.  Creating simple moving averages

window = 3

SMA1 = "SMA-"+str(window)

df[SMA1] = df['Adj Close'].rolling(window).mean()

colnames = ["Adj Close",SMA1]

df2 = df[colnames]

>>> df2.head()

           Adj Close  SMA-3

Date

2022-01-03 180.434296 NaN

2022-01-04 178.144302 NaN

2022-01-05 173.405685 177.328094

2022-01-06 170.510956 174.020315

2022-01-07 170.679489 171.532043

Let us pause for a moment and look at how this column is generated. We see that 

the first two rows in the SMA column are missing. This makes sense as both of them are 

unable to get a full three-period moving window to calculate the average. In other words, 

we cannot calculate the average when there is an empty value in the window unless 

additional treatment is applied here, such as ignoring the empty value while calculating 

the average.

We note that the third entry of the SMA column is 177.844493. Let us verify through 

manual calculation. The following command takes the first three entries of the adjusted 

closing price column and calculates the average, which reports the same value:

>>> np.mean(df['Adj Close'][:3])

177.84449259440103

which verifies the calculation. Figure 5-10 summarizes the process of calculating 

SMA in our running example.
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Figure 5-10.  Illustrating the process of calculating simple moving averages

Note that we can configure the min_periods argument in the rolling() function to 

control the behavior at the initial windows with incomplete data. For example, by setting 

min_periods=1, the previous code will report the average value based on the available 

data in the window. See the following code snippet for a comparison:

df['New_SMA'] = df['Adj Close'].rolling(window, min_periods=1).mean()

>>> df[colnames + ['New_SMA']].head()

           Adj Close  SMA-3      New_SMA

Date

2022-01-03 180.434296 NaN        180.434296

2022-01-04 178.144302 NaN        179.289299

2022-01-05 173.405685 177.328094 177.328094

2022-01-06 170.510956 174.020315 174.020315

2022-01-07 170.679489 171.532043 171.532043

Note that the only difference is in the first two entries, where we have an incomplete 

set of values in the rolling window.

Next, we plot the three-period SMA alongside the original daily adjusted closing 

price series, as shown in Listing 5-10.
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Listing 5-10.  Plotting the closing price and its SMA

# colors for the line plot

colors = ['blue', 'red']

# line plot for original price and SMA

df2.plot(color=colors, linewidth=3, figsize=(12,6))

# modify ticks size

plt.xticks(fontsize=13)

plt.yticks(fontsize=13)

plt.legend(labels = colnames, fontsize=13)

# title and labels

plt.title('Daily adjusted closing price and its SWA', fontsize=20)

plt.xlabel('Date', fontsize=16)

plt.ylabel('Price', fontsize=16)

Running these commands generates Figure 5-11. Note that the three-period SMA 

curve in red looks less volatile than the original price series in blue. Also, the three-

period SMA curve starts from the third entry.

Figure 5-11.  Visualizing the original price and three-period SMA

Chapter 5  Trend-Following Strategy



162

Now let us add another SMA with a longer period. In Listing 5-11, we add a 20-period 

SMA as an additional column to df2.

Listing 5-11.  Creating 20-period SMA

window = 20

SMA2 = "SMA-"+str(window)

df2["SMA-"+SMA2] = df2['Adj Close'].rolling(window).mean()

colnames = ["Adj Close",SMA1,SMA2]

Next, we overlay the 20-period SMA on the previous graph, as shown in Listing 5-12.

Listing 5-12.  Plotting the closing price and two SMAs

# colors for the line plot

colors = ['blue', 'red', 'green']

# line plot for original price and SMA

df2.plot(color=colors, linewidth=3, figsize=(12,6))

# modify ticks size

plt.xticks(fontsize=13)

plt.yticks(fontsize=13)

plt.legend(labels = colnames, fontsize=13)

# title and labels

plt.title('Daily adjusted closing price and its SWA', fontsize=20)

plt.xlabel('Date', fontsize=16)

plt.ylabel('Price', fontsize=16)

Running these commands generates Figure 5-12, which shows that the 20-period 

SMA is smoother than the 3-period SMA due to a larger window size.
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Figure 5-12.  Visualizing the daily prices together with 3-period and 
20-period SMAs

The next section focuses on the exponential moving averages (EMA).

�Delving into Exponential Moving Averages
The exponential moving average (EMA), also known as an exponentially weighted 

moving average (EWMA), is another type of moving average that places a higher weight 

and significance on the most recent data points. This is a key difference compared to the 

simple moving average, which gives equal weight to all data points within the period.

The exponential moving average (EMA) is a widely used method to reduce the noise 

in the data and identify long-term trends. Each EMA entry is a weighted combination 

of historical prices and the current price. The weight of each price point decreases 

progressively over time, giving greater weight to recent data points. It is calculated using 

the following formula:
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where α is the smoothing factor which ranges between zero and one. The smoothing 

factor α determines the weight given to the most recent price relative to the existing 

EMA. A higher α emphasizes recent prices more strongly.
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As for the first EWMA value at time t = 0, a default choice is to set EWMA0 = S0. 

Therefore, EMA assumes that recent data is more relevant than old data. Such an 

assumption has its merit since EMA can react faster to changes and is thus more sensitive 

to recent movements as compared to the simple moving average. This also means there is 

no window size to be specified by the function since all historical data points are in use.

It’s important to note that while EMA provides more accurate and timely signals than 

SMA, it might also produce more false signals as it’s more responsive to short-term price 

fluctuations.

The EMA can be calculated by calling the ewm() method from a Pandas Series object, 

followed by extracting the average value via mean(). We can set the alpha argument 

in ewm() to directly control the importance of the current observation compared with 

historical ones. See Listing 5-13 for an illustration, where we set α = 0.1 to give more 

weightage to historical prices.

Listing 5-13.  Creating EMA series

alpha = 0.1

df2['EWM_'+str(alpha)] = df2['Adj Close'].ewm(alpha=alpha, 

adjust=False).mean()

df2.head()

           Adj Close  SMA-3      SMA-20 EWM_0.1

Date

2022-01-03 180.434296 NaN        NaN    180.434296

2022-01-04 178.144302 NaN        NaN    180.205296

2022-01-05 173.405685 177.328094 NaN    179.525335

2022-01-06 170.510956 174.020315 NaN    178.623897

2022-01-07 170.679489 171.532043 NaN    177.829456

We observe that there is no missing value in the EMA series. Indeed, the first entry 

will simply be the original price itself due to the design of the EMA weighting scheme.

As usual, let us verify the calculations to ensure our understanding is on the right 

track. The following code snippet manually calculates the second EMA value, which is 

the same as the one obtained using the ewm() function:

alpha=0.1

>>> alpha*df2['Adj Close'][1] + (1-alpha)*df2['Adj Close'][0]

180.73006591796877
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Let us continue to create another EMA series with α = 0.5. In other words, we assign 

an equal weightage to the current observation and historical ones:

alpha = 0.5

df2['EWM_'+str(alpha)]= df2['Adj Close'].ewm(alpha=alpha, 

adjust=False).mean()

df2.head()

           Adj Close  SMA-3      SMA-20 EWM_0.1    EWM_0.5

Date

2022-01-03 180.434296 NaN        NaN    180.434296 180.434296

2022-01-04 178.144302 NaN        NaN    180.205296 179.289299

2022-01-05 173.405685 177.328094 NaN    179.525335 176.347492

2022-01-06 170.510956 174.020315 NaN    178.623897 173.429224

2022-01-07 170.679489 171.532043 NaN    177.829456 172.054357

Let us put all these moving averages in a single chart. Here, the plot() function 

treats all four columns as four separate series to be plotted against the index column, as 

shown in Listing 5-14.

Listing 5-14.  Plotting all moving averages together

df2.plot(linewidth=3, figsize=(12,6))

plt.title('Daily adjusted closing price with SWA and EWM', fontsize=20)

plt.xlabel('Date', fontsize=16)

plt.ylabel('Price', fontsize=16)

Running these commands generates Figure 5-13. We note that EWM_0.1 (red 

line) is close to SMA-20 (green line), both of which give more weightage to historical 

observations. The same is true for the other two moving averages. For EMA, a small 

weighting factor α results in a high degree of smoothing, while a larger value leads to a 

quicker response to recent changes.
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Figure 5-13.  Visualizing the daily closing prices with both SMA and EMA of 
different configurations

Having looked at how to compute these moving averages, the next section shows 

how to use them as technical indicators to develop a trend-following strategy.

�Implementing the Trend-Following Strategy
The trend-following strategy that relies on moving averages works like this. There will 

be two moving averages: a short-term moving average and a long-term moving average. 

When the short-term moving average crosses above the long-term moving average, it 

signals a buy action, and the trend trader enters a long position on the asset. When the 

short-term moving average crosses below the long-term moving average, it signals a sell 

action, and the trend trader enters a short position on the asset. Thus, the strategy is 

based on the intersection of two moving averages: one short term (quick) and one long 

term (slow).

Note that this framework also applies to the case when there is only one moving 

average series. In this case, the trend trader would buy the asset when the current price 

is above the moving average and sell it if the current price is below the moving average. 

The key justification for such trading action is, when the price is above a moving average, 

an uptrend may be present, and vice versa. The crossover between two lines generates 

the trading signal.
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Other momentum-related technical indicators, such as the RSI and MACD, may also 

be used to signal entries or exits.

In the following section, we will implement a trend-following trading strategy using 

the long-term and short-term moving averages. Using this strategy, we are essentially 

searching for the trading signal at each time point. That is, we want to decide if we 

would buy, sell, or hold an asset at each time step. The signal is generated by a crossover 

between two moving averages. We assume no transaction cost will be incurred when 

performing a trading action, and the market is liquid (sufficient Apple stock in the 

market) and complete (no arbitrage opportunities).

Let us recall the main DataFrame we will work with. The following command prints 

out the summary information using the info() function:

>>> df2.info()

 <class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 251 entries, 2022-01-03 00:00:00-05:00 to 2022-12-30 

00:00:00-05:00

Data columns (total 5 columns):

 #   Column     Non-Null Count  Dtype

---  ------     --------------  -----

 0   Adj Close  251 non-null    float64

 1   SMA-3      249 non-null    float64

 2   SMA-20     232 non-null    float64

 3   EWM_0.1    251 non-null    float64

 4   EWM_0.5    251 non-null    float64

dtypes: float64(5)

memory usage: 19.9 KB

Now we will use SMA-3 and SMA-20 as the respective short-term and long-term 

moving averages, whose crossover will generate a trading signal. We leave it as an 

exercise to try both SMA with different window sizes and EMA with different weighting 

schemes.

Note that we can only use the information up to yesterday to make a trading decision 

for tomorrow. We cannot use today’s information since the closing price is not yet 

available in the middle of the day. To enforce this requirement, we can shift the moving 
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averages one day into the future, as shown in the following code snippet. This essentially 

says that the moving average for today is derived from historical information up to 

yesterday.

# Shift to the future by one day so that everyday uses the 

information up to

# yesterday to make a trading decision for tmr

df2['SMA-3'] = df2['SMA-3'].shift(1)

df2['SMA-20'] = df2['SMA-20'].shift(1)

Now let us implement the trading rule: buy if SMA-3 > SMA-20, and sell if SMA-3 < 

SMA-20. Such an if-else condition can be created using the np.where() function, as 

shown in Listing 5-15.

Listing 5-15.  Creating and identifying buy and sell signals

# identify buy signal

df2['signal'] = np.where(df2['SMA-3'] > df2['SMA-20'], 1, 0)

# identify sell signal

df2['signal'] = np.where(df2['SMA-3'] < df2['SMA-20'], -1, df2['signal'])

df2.dropna(inplace=True)

Here, a normal trading day would assume a value of either 1 or –1 in the signal 

column. When there is a missing value or other special cases, we set it to 0. We also use 

the dropna() function to ensure that the DataFrame is of good quality by dropping rows 

with any NA/missing value in it.

We can check the frequency distribution of the signal column as follows:

>>> df2['signal'].value_counts()

-1    135

 1     96

Name: signal, dtype: int64

The result shows that there are more declining days than inclining days, which 

confirms the downward trending price series shown earlier.
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Next, we introduce a baseline strategy called buy-and-hold, which simply means we 

hold one share of Apple stock until the end of the whole period. Also, we will use the log 

return instead of the raw return to facilitate the calculations. Therefore, instead of taking 

the division between consecutive stock prices to get 
S
S
t

t

+1 , we now take the difference  

log St + 1 −  log St to get log
S
S
t

t

+1 , which can then be exponentiated to convert to back 
S
S
t

t

+1 .

The following code snippet calculates the instantaneous logarithmic single-period 

return, where we first take the logarithm of the adjusted closing prices and then call the 

diff() function to obtain the differences between consecutive pairs of prices:

df2['log_return_buy_n_hold'] = np.log(df2['Adj Close']).diff()

Now comes the calculation of the single-period return for the trend-following 

strategy. Recall the signal column we created earlier. This column represents whether 

we go long (valued 1) or short (value –1) in a position for every single period. This also 

shows that the logarithmic return log
S
S
t

t

+1
 is positive if St + 1 > St and negative if St + 1 < St. 

This creates the following four scenarios when the asset moves from St to St + 1:

•	 When we long an asset and its logarithmic return is positive, the 

trend-following strategy reports a positive return, that is, 1 1∗ +log
S
S
t

t

.

•	 When we long an asset and its logarithmic return is negative, the 

trend-following strategy reports a negative return, that is, 1 1∗ +log
S
S
t

t

.

•	 When we short an asset and its logarithmic return is positive, the 

trend-following strategy reports a negative return, that is, − ∗ +1 1log
S
S
t

t

.

•	 When we short an asset and its logarithmic return is negative, the 

trend-following strategy reports a positive return, that is, − ∗ +1 1log
S
S
t

t

.

Summarizing these four scenarios, we can obtain the single-period logarithmic 

return for the trend-following strategy by multiplying signal with the log_return_

buy_n_hold (the single-period logarithmic return based on the buy-and-hold strategy), 

as shown in Listing 5-16.
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Listing 5-16.  Calculating the log return of the trend-following strategy

df2['log_return_trend_follow'] = df2['signal'] * df2['log_return_

buy_n_hold']

Compared with the buy-and-hold strategy, the key difference is the additional 

shorting actions generated by the trend-following strategy. That is, when the stock price 

drops, the buy-and-hold strategy will register a loss, while the trend-following strategy 

will make a profit if the trading signal is to go short. Creating a good trading signal thus 

makes all the difference.

Next, we create explicit trading actions. The signal column tells us whether we 

should go long or short in the given asset under the trend-following strategy. However, 

this does not mean we need to make a trade at every period. If the signal remains the 

same for two consecutive periods, we simply hold on to the position and remain seated. 

In other words, there is no trading action for this specific trading day. This applies in the 

case of two consecutive 1s or –1s in the signal column.

On the other hand, we will make an action when there is a sign switch in the trading 

signal, changing from 1 to –1 or from –1 to 1. The former means changing from longing a 

unit of stock to shorting it, while the latter means the reverse.

To create the trading actions, we can use the diff() method again on the signal 

column, as shown in the following:

df2['action'] = df2.signal.diff()

We can produce a frequency count of different trading actions using the value_

counts() function:

>>> df2['action'].value_counts()

0.0    216

 2.0      7

-2.0      7

Name: action, dtype: int64

The result shows that the majority of the trading days do not require action. For the 

14 days with a trading action, 7 days change the position from short to long, and another 

7 change from long to short.

Chapter 5  Trend-Following Strategy



171

We can visualize these trading actions as triangles on the graph with stock prices 

and SMAs. In Listing 5-17, we indicate a buy action via the green triangle facing upward 

when the short-term SMA crosses above the long-term SMA. On the other hand, we use 

a red triangle facing downward to indicate a sell action when the short-term SMA crosses 

below the long-term SMA.

Listing 5-17.  Visualizing trading actions

plt.rcParams['figure.figsize'] = 12, 6

plt.grid(True, alpha = .3)

plt.plot(df2['Adj Close'], label = 'Adj Close')

plt.plot(df2['SMA-3'], label = 'SMA-3')

plt.plot(df2['SMA-20'], label = 'SMA-20')

plt.plot(df2.loc[df2.action == 2].index, df2['SMA-3'][df2.action == 2], '^',

         color = 'g', markersize = 12)

plt.plot(df2[df2.action == -2].index, df2['SMA-20'][df2.action == -2], 'v',

         color = 'r', markersize = 12)

plt.legend(loc=1);

Running these commands generates Figure 5-14. Again, we denote the green 

triangles as acting from short to long and the red triangles as moving from long to short.

Figure 5-14.  Visualizing the trading actions, including going from short to long 
(green triangles) and long to short (red triangles)
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Let us analyze the cumulative returns of each period for both trading strategies. 

Specifically, we would like to obtain the final percentage return at the end of 2022 if we 

started with one unit of Apple stock at the beginning of 2022, comparing the two trading 

strategies.

Recall that we need to multiply the 1+R return at each period to carry out the 

compounding process in order to obtain the terminal return (after subtracting one). 

We also know that the 1+R return is the same as the division between two consecutive 

prices, that is, 1
1

1+ =+
+R S
St t
t

t
,

. Therefore, to calculate the terminal return, we first convert 

the returns from the logarithmic format to the usual percentage format using the np.

exp() function, then carry out the compounding by performing a cumulative product 

operation using the cumprod() method. This is achieved via Listing 5-18, where we leave 

out the last step of subtracting by one and report the 1+R return.

Listing 5-18.  Visualizing cumulative returns

plt.plot(np.exp(df2['log_return_buy_n_hold']).cumprod(), 

label='Buy-n-hold')

plt.plot(np.exp(df2['log_return_trend_follow']).cumprod(), label='Trend 

following')

plt.legend(loc=2)

plt.title("Cumulative return of different trading strategies")

plt.grid(True, alpha=.3)

Running these commands generates Figure 5-15, which shows that the trend-

following strategy clearly outperforms the buy-and-hold strategy. However, note that this 

is a simplified setting that does not take into account transaction cost and other market 

factors. More analyses and tests are needed to assess the performance of this trading 

strategy (also many others) in the real-world environment.
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Figure 5-15.  Comparing the cumulative return of buy-and-hold and trend-
following strategies for one share of Apple’s stock

Lastly, we compare the terminal returns of both strategies:

# terminal return of buy-n-hold

>>> np.exp(df2['log_return_buy_n_hold']).cumprod()[-1] -1

-0.25156586984649587

# terminal return of trend following

>>> np.exp(df2['log_return_trend_follow']).cumprod()[-1] -1

0.0711944903093773

It turns out that sticking to the buy-and-hold strategy would lose by 25%, while using 

the trend-following strategy generates a terminal return of 7%.

�Summary
In this chapter, we covered the basics of the popular trend-following strategy and its 

implementation in Python. We started with an exercise on working with log returns 

and then transitioned to different moving averages as commonly used technical 

indicators, including simple moving averages and exponential moving averages. Lastly, 
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we discussed how to generate trading signals and calculate the performance metrics 

using this strategy, which will serve as a good baseline strategy as we delve into other 

candidates later on.

�Exercises
•	 Explain why log returns are symmetric mathematically.

•	 How can we deal with a situation where the price point at a given day 

is missing when calculating its moving average?

•	 How does the value of the window size affect the smoothness of the 

SMA? What about the impact of α on the smoothness of EMA?

•	 Change the code to obtain a moving median instead of a moving 

average. Discuss the difference between the median and the mean. 

How about maximum and minimum over the same rolling window?

•	 Switch to EMA to derive the trading signals and discuss the results.

•	 Show mathematically why the log returns are additive over time 

and explain the significance of this property in the context of asset 

returns.

•	 Suppose there are multiple missing price points in your data, how 

would you modify the moving average calculation to handle these 

gaps? What are the potential issues with your approach?

•	 Experiment with different window sizes for SMA and different values 

of α for EMA. Discuss how these parameters affect the sensitivity of 

the moving averages to price changes. How would you choose an 

optimal value for these parameters?
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CHAPTER 6

Momentum Trading 
Strategy
Momentum trading is a strategy that makes use of the strength of price movements as a 

basis for opening positions, either longing or shorting a set of assets. It involves buying 

and/or selling a selected set of assets according to the recent strength of price trends, 

assuming that these trends will continue in the same direction if there is enough force 

behind a price move. When using momentum trading, traders intend to capitalize on 

the force or speed of price movements to determine investment positions. They would 

either initiate long or short positions in a curated selection of assets based on the recent 

vigor of price trends. Crucially, the key presumption underpinning this approach is that 

existing trends, given that their force is strong enough, will persist in the same direction.

When an asset displays an upward trend, registering higher prices, it invariably 

attracts more attention from a wider spectrum of traders and investors. The heightened 

attention garnered by the asset fuels its market price further. This momentum endures 

until a significant number of sellers enter and penetrate the market, supplying an 

abundance of the asset. Once enough sellers are in the market, the momentum changes 

its direction and forces an asset’s price to go lower. This is essentially the price dynamics 

between supply and demand. At this juncture, market participants may reassess the fair 

price of the asset, which may be perceived as overvalued due to the recent price surge.

In other words, as more sellers infiltrate the market, the momentum alters its course, 

pushing the asset’s price in a downward direction. This is essentially a representation of 

the classic supply and demand dynamics and the shift from an environment with more 

buyers than sellers to one where sellers outweigh buyers. Also, note that while price 

trends can persist for an extended period, they will inevitably reverse at some point. 

Thus, the ability to identify these inflection points and adjust the positions accordingly is 

also of equal importance.
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�Introducing Momentum Trading
Momentum traders seek to identify the main driver assets of the trend in a given 

direction, taking advantage of the expected price changes and anticipated price 

fluctuations, rather than focusing on predicting the peak of a trend. Instead of 

attempting to find the top and bottom of a trend, a momentum trader focuses on the top 

and bottom quantiles of the price move, which implies exploitation of market herding 

and the tendency toward following the majority that represents the most significant 

price movements.

This approach essentially exploits market herding behavior, a phenomenon in 

which traders tend to follow the majority of the market consensus. In periods of strong 

upward or downward trends, many traders and investors may decide to follow the 

crowd to long or short popular assets, thereby initiating or augmenting the existing 

momentum. Thus, momentum trading is a self-reinforcing mechanism to some extent: 

as more traders identify an emerging trend, they contribute to the strength of the trend 

by adding to the buying or selling force. This, in turn, attracts more market participants, 

which further strengthens the identified trend. This process continues until the market 

dynamics shift, either due to a change in underlying fundamentals or a change in market 

sentiment, causing the existing trend to stall or reverse. Such a cyclical nature of trends 

characterizes the momentum trading strategy, although timing the beginning and end 

of the momentum, namely, the entry and exit points, is extremely difficult. In fact, one 

would use different technical indicators to attempt this task.

�Diving Deeper into Momentum Trading
Momentum trading rests on the confluence of three integral elements: volume, volatility, 

and time frame.

•	 Volume: This signifies the quantity of an asset traded within a 

specified time frame. A high trading volume often indicates a strong 

interest in the asset and can be an indicator of the start of a new trend 

in the asset’s price movement. Conversely, a low volume could signal 

a lack of interest in the asset, potentially leading to a reversal in trend. 

Hence, volume plays a crucial role in confirming the strength and 

sustainability of a trend.
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•	 Volatility: Volatility represents the degree of variation in an asset’s 

price over a short period of time. A higher volatility corresponds to 

larger price swings, which can provide good trading opportunities 

for momentum traders, if such variation is in the profitable direction. 

However, variability is a double-edged sword, as it also increases the 

risk for significant losses. Therefore, understanding and managing 

volatility is a critical aspect of momentum trading.

•	 Time frame: The time frame represents the expected duration of the 

identified trend. Depending on the specific time frames, momentum 

traders may engage in intraday trading to open and close a position 

within a day (called day trading) or hold positions for several weeks 

or months (called position trading). This choice of time frame 

can affect the risk and return profile of a trade, as day trading is 

apparently more volatile than position trading.

These factors can be quantified and aggregated together via technical analysis when 

developing a momentum trading strategy. The process typically involves analyzing 

historical price data and trading volumes, followed by applying technical indicators to 

identify potential trading signals. Essentially, momentum trading requires identifying 

potential price movements before they occur and capitalizing on these trends to 

generate a return.

�Contrasting with the Trend-Following Strategy
The trend-following and momentum trading strategies, both grounded in the concept 

of momentum, aim to capture the sustained directional movement or the persistent 

performance of an asset. Both strategies are built upon the observation that asset prices 

can have a tendency to move in a particular direction over time, a phenomenon known 

as momentum. Despite their common underpinning, the application and focus of the 

two strategies differ significantly.

The momentum trading strategy, as we have discussed, is cross-sectional in nature. 

It involves comparing the momentum across various assets at a specific time point and 

investing in those that demonstrate the highest momentum. This comparative analysis 

occurs at a particular point in time and aims to compare the relative performance 

among multiple assets. Hence, momentum trading is often characterized as a type of 

relative momentum strategy.
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In contrast, the trend-following strategy utilizes time series momentum, focusing 

exclusively on an asset’s own historical performance over time. It analyzes the price 

pattern of a single asset over its own history, spanning numerous time points, to identify 

potential trading signals. Therefore, the trend-following strategy is an instance of an 

absolute momentum strategy. It emphasizes the historical trend of an individual asset 

and aims to capitalize on its continuation.

�Observing the Role of Lookback Windows
The application of lookback windows in trend-following and momentum trading 

strategies varies, depending on their unique operational requirements and objectives.

The trend-following strategy, as discussed in the previous chapter, employs two 

lookback windows. These two windows, one short term and one long term, calculate 

the respective moving averages as technical indicators. The intersection or crossover of 

these moving averages then produces a trading signal, indicating a shift in the trend’s 

direction and the right moment for action (for either buying or selling). Thus, the dual 

lookback windows in the trend-following strategy serve as the basis for decision-making, 

assisting traders in identifying potential shifts in market trends.

Conversely, the momentum trading strategy uses a singular, uniform lookback 

window to evaluate an array of assets. This window helps identify which assets have 

performed best over the defined lookback period. Subsequently, another uniform 

lookahead window is used to determine the holding period of a position once a trading 

decision is made. Essentially, the lookback window aids in selecting the assets to invest 

in based on their past performance, while the lookahead window provides a time frame 

for holding the investment, assuming that the asset’s momentum will continue during 

this period.

Therefore, both lookback and lookahead windows are essential in momentum 

trading, helping traders identify high-momentum assets and define the investment’s 

holding period, respectively. The strategic use of these windows provides a structured 

approach to navigating the ever-fluctuating market dynamics.

Let us elaborate on the difference. Figure 6-1 characterizes the selection of three 

stocks at regular trading intervals as indicated by the lookahead window. Each trading 

decision (indicated by the green box in the solid line) considers historical stock prices 

within the same lookback window. The trading decision could be buying the stock with 

the highest momentum (based on metrics such as the historical average return) and 
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selling the stock with the lowest momentum at a specific time point. We assess all three 

stocks and make a trading decision at regular intervals (the lookahead window) based 

on a rolling lookback window.

Figure 6-1.  Characterizing the momentum trading strategy for three stocks

The momentum trading strategy is particularly effective in equities, offering a 

systematic approach to compare and analyze similar assets. It performs a cross-sectional 

analysis across the equity universe (in this case, three stocks), evaluating and rank-

ordering the constituents based on their relative performances over a specified lookback 

period. This process enables traders to identify strong performers and potential laggards, 

using their recent momentum as a proxy for future performance.

In making a trading decision, the momentum strategy often embraces a two-pronged 

approach, establishing a portfolio with two legs. The first leg is the “long” leg, consisting 

of top-ranked assets projected to maintain their strong upward price momentum. 

Traders buy these stocks with an expectation of price appreciation, aiming to sell at a 

higher price in the future. The second leg is the “short” leg, made up of bottom-ranked 

assets showing signs of declining price momentum. Traders sell these stocks, often 

through short-selling, where they borrow the stock to sell in the market with the intent to 

buy it back at a lower price later. The idea is to profit from the anticipated price decline of 
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these assets. By going long on assets with strong positive momentum and short on assets 

with negative momentum, traders can potentially benefit from both rising and falling 

markets, provided the identified momentum persists over the holding period.

Note that momentum strategies, grounded in the principle of relative momentum, 

maintain their long and short positions irrespective of the broader market trends. 

These strategies function on the assumption that the strongest performers and 

underperformers will persist in their respective trajectories, thus maintaining their 

relative positions in the investment universe. In other words, in a bullish market 

environment, the stocks with the strongest upward momentum are expected to 

outperform the market. Meanwhile, during bearish phases, these same high-momentum 

stocks may fall in price, but they are still expected to perform better than other stocks 

that are falling more rapidly. Conversely, the bottom-ranked stocks, showing declining 

momentum, are expected to underperform the market. In a rising market, these stocks 

may increase in value, but at a slower pace than the market. Similarly, in a falling market, 

these stocks are anticipated to decline more rapidly than the broader market. Thus, 

irrespective of whether the market is bullish or bearish, momentum strategies rely on the 

persistence of relative performance.

�More on Trend Following
The trend-following strategy fundamentally differs from the momentum trading strategy 

in terms of its approach and trading frequency. Trend following is a time series–based 

strategy that employs moving averages over different lookback periods, one shorter and 

one longer, to generate the trading signals.

As depicted in Figure 6-2, the trend-following strategy calculates two moving 

averages at each point in time, leveraging a longer-term lookback window for one and a 

shorter-term lookback window for the other. A trading signal is produced when there’s 

a crossover, which corresponds to a change in the relative position of the two moving 

averages from one time point to the next. For instance, when the short-term moving 

average crosses above the long-term moving average, it is often viewed as a bullish 

signal, and a bearish signal when it crosses below.
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Figure 6-2.  Characterizing the trend-following strategy for a single stock

Contrary to the momentum trading strategy, which mandates regular trading based 

on a predefined lookahead window, the trend-following strategy operates without a set 

trading frequency. Rather, it’s driven entirely by the data at hand. Trading actions are 

informed by the moving averages’ interactions, leading to potentially less frequent but 

more strategically timed trades. Such a mechanism makes the trend-following strategy 

more flexible as it adapts to the market’s movements.

Note that in a trend-following strategy, the primary concern is whether an asset is on 

an upward or downward trend. When employing this strategy, traders do not focus on 

the comparative performance of different assets against each other, as in a momentum 

strategy. Rather, their interest lies in identifying and capitalizing on established 

price trends of individual assets. The underlying assumption for this strategy is that 

the identified asset prices that have been rising or falling steadily over a period will 

continue to move in the same direction. So, a trader would go long when an asset shows 

an upward trend and go short when it’s on a downward trend. The action is to “ride 

the wave” as long as the trend continues. The “trendiness” of the market completely 

determines the trading decisions of the strategy.
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In summary, while both strategies aim to exploit market momentum, the trend-

following strategy involves time series analysis that relies on the absolute momentum in 

historical prices of the same asset, and the momentum trading strategy involves cross-

sectional analysis that relies on the relative momentum across multiple assets. Thus, 

these two strategies are fundamentally different from each other.

The next section introduces implementing the momentum trading strategy 

using Python.

�Implementing the Momentum Trading Strategy
The Dow Jones Industrial Average (DJIA), often referred to simply as “the Dow,” is a 

popular equity index that comprises 30 major publicly owned companies based in the 

United States and covering diverse industries. The variety of sectors represented makes it 

a useful gauge for assessing the general trends and performance of the market. However, 

it is considered a relatively small pool size, as compared to other broader indices like the 

S&P 500, which comprises 500 of the largest publicly traded companies in the United 

States, making it a more accurate reflection of the market dynamics.

For the purpose of this section, we’ll employ a momentum trading strategy with the 

DJIA constituents as our reference universe. This will involve analyzing their respective 

price trends and performance relative to each other over a specified period in order 

to identify potential investment opportunities. Our strategy will seek to capitalize on 

the continuing momentum of outperforming stocks while shorting those with poor 

performance, with the expectation that these trends will persist over the near to medium 

term. In other words, we are going to make trading decisions by longing top performers 

and shorting bottom performers of the 30 constituent stocks.

To start, we need to obtain the ticker symbols of these 30 stocks.

�Obtaining DJI Stock Symbols
The Wikipedia page provides a list of these stocks at https://en.wikipedia.org/

wiki/Dow_Jones_Industrial_Average. Instead of manually copying and pasting these 

symbols to our coding console, we are going to leverage a web scraping package called 

Beautiful Soup, a widely used Python package for parsing HTML and XML documents. 

We will use this package to create a parse tree and extract data from the specific 

HTML page.
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First, as shown in Listing 6-1, we import the following packages, where the bs4 is the 

Beautiful Soup package, the requests package to send HTTP requests, and yfinance is 

used to download the financial data once the ticker symbols are obtained.

Listing 6-1.  Importing relevant packages

import pandas as pd

import requests

from bs4 import BeautifulSoup

import os

import numpy as np

import pandas as pd

import yfinance as yf

Next, we write a function called fetch_info() to complete the scraping task. As 

shown in Listing 6-2, we first assign the web link to the url variable and store the header 

details in the headers variable. The headers are necessary metadata upon visiting a 

website. We then send a GET request to obtain information from the specified web link 

via the requests.get() method and pull and parse the data out of the scraped HTML 

file using BeautifulSoup(), stored in the soup variable. We can then find the meat 

in the soup by passing the specific node name (table in this case) to the find_all() 

function, read the HTML data into a DataFrame format using the read_html() function 

from Pandas, and drop the unnecessary column (the Notes column) before returning 

the DataFrame object. Finally, if the scraping fails, the function will print out an error 

message via a try-except control statement.

Listing 6-2.  Fetching relevant information from the web page

def fetch_info():

    try:

        url = "https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average"

        headers = {

            �'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64; 

rv:101.0) Gecko/20100101 Firefox/101.0',

            'Accept': 'application/json',

            'Accept-Language': 'en-US,en;q=0.5',

        }
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        #  Send GET request

        response = requests.get(url, headers=headers)

        soup = BeautifulSoup(response.content, "html.parser")

        #  Get the symbols table

        tables = soup.find_all('table')

        #  #  Convert table to dataframe

        df = pd.read_html(str(tables))[1]

        #  Cleanup

        df.drop(columns=['Notes'], inplace=True)

        return df

    except:

        print('Error loading data')

        return None

Now let us call the function to store the result in dji_df and output the first five rows, 

as shown in the following:

# get DJI components (ticker symbols)

dji_df = fetch_info()

>>> dji_df.head()

   Company           Exchange  Symbol  Industry                Date added    Index weighting

0  3M                NYSE      MMM     Conglomerate            1976-08-09    2.41%

1  American Express  NYSE      AXP     Financial services      1982-08-30    3.02%

2  Amgen             NASDAQ    AMGN    Biopharmaceutical       2020-08-31    5.48%

3  Apple             NASDAQ    AAPL    Information technology  2015-03-19    2.84%

4  Boeing            NYSE      BA      Aerospace and defense   1987-03-12    3.36%

We can then take the Symbol column, extract the values, and convert it to a 

list format:

tickers = dji_df.Symbol.values.tolist()

With the DJI tickers available, we can now download the stock prices for these ticker 

symbols using the yfinance package.
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�Downloading Stock Prices
There are three input arguments to be specified to call the download() function: the 

ticker symbols, the start date, and the end date. In this case, we set the start date as 

2021-01-01 and the end date as 2022-09-01, as shown in Listing 6-3.

Listing 6-3.  Downloading the daily stock prices of DJI tickers

start_date = "2021-01-01"

end_date = "2022-09-01"

df = yf.download(tickers, start=start_date, end=end_date)

We will focus on the adjusted closing prices for later analysis:

# use the adjusted closing prices for follow-up analysis

df = df['Adj Close']

By now, we have stored the stock prices of the 30 DJI constituents, with each column 

representing one ticker and each row indicating a corresponding trading day. The index 

of the DataFrame follows the datetime format.

Next, we convert the daily stock prices to monthly returns.

�Calculating Monthly Returns
To transition from the raw daily stock prices to monthly returns, we need to go through a 

few steps. The first step is to convert the prices to daily percentage returns using the pct_

change() method. As introduced in the previous chapter, this function automatically 

calculates the simple percentage return R S S
St t

t t

t
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1  for all trading days. As this is a 

daily return, we need to roll it up to the monthly return by compounding all daily returns 

of the same month and using the terminal return as the monthly return. Breaking it 

down, we need to group all trading days by month and then calculate the terminal return 

for each month. Listing 6-4 chains together all these operations in one shot, with the 

resulting monthly returns stored in mth_return_df.

Listing 6-4.  Generating monthly returns from daily prices

mth_return_df = df.pct_change().resample("M").agg(lambda x: (x+1).prod()-1)
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Although chaining together relevant operations looks more concise, it is not 

the best way to learn these operations if this is the first time we encounter them. 

Let us decompose these operations. The first operation is to call the pct_change() 

method, which is a convenient function widely used in many contexts. Next comes 

the resample() function, which is a convenient method for frequency conversion and 

resampling of time series data. Let us use some dummy data to understand this function.

The following code snippet creates a Pandas Series object with nine integers ranging 

from zero to eight, which are indexed by nine one-minute timestamps:

# creating a series with 9 one minute timestamps

index = pd.date_range('1/1/2000', periods=9, freq='T')

series = pd.Series(range(9), index=index)

>>> series

2000-01-01 00:00:00    0

2000-01-01 00:01:00    1

2000-01-01 00:02:00    2

2000-01-01 00:03:00    3

2000-01-01 00:04:00    4

2000-01-01 00:05:00    5

2000-01-01 00:06:00    6

2000-01-01 00:07:00    7

2000-01-01 00:08:00    8

Freq: T, dtype: int64

We then aggregate the series into three-minute bins and sum the values of the 

timestamps falling into a bin, as shown in the following code snippet:

>>> series.resample('3T').sum()

2000-01-01 00:00:00     3

2000-01-01 00:03:00    12

2000-01-01 00:06:00    21

Freq: 3T, dtype: int64

As we can see from the result, the resample() function completes the aggregation 

operation by the specified interval, and the following method summarizes the data 

within the interval.
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Back to our running example, we downsample the raw daily returns into monthly 

returns, so each month is represented with only one data point instead of 30 (in a 

typical month). The aggregation works by cumulating all daily returns following the 

same procedure: converting to 1+R format, compounding, and then converting back to 

simple return.

The new thing here is the lambda function. We use the x symbol to represent a 

general input argument. In this case, it will be all the raw daily returns in a given month. 

Since this lambda function performs a customized operation, we use the agg() function 

to carry through the customized function, instead of using the built-in function such as 

sum() as before.

By now, we have converted the daily returns to monthly representations where every 

single monthly return represents the terminal return of the daily returns compounded 

within the month. Next, we calculate another metric using historical monthly returns to 

indicate the current month’s stock performance.

�Calculating the Six-Month Terminal Return
We know that making a trading decision based on the current month’s return would be 

flawed in two ways. First, we rely too much on the current month and ignore historical 

performances. Second, we run into the risk of data snooping. That is, to calculate the 

monthly return on a given day of the month, if it does not fall on the last day of the 

month, we would snoop all future daily returns within the same month in order to 

calculate the terminal return.

We focus on the first point and come back to the second point in a moment. 

Obviously, we need to find a way to incorporate historical monthly returns when 

generating trading signals in the current month. However, different from the moving 

averages used for stock prices, the historical average monthly return obtained using 

the same arithmetic mean essentially ignores the sequential compounding process. 

Therefore, we need to treat historical monthly returns as a sequential process and 

compound these returns (up to a specific lookback window) to obtain the terminal 

monthly return.

This terminal monthly return will then serve as the momentum indicator for 

stock selection and trading initiation. This involves choosing a lookback window with 

a specific size. Let us assume a window size of six. Now, to calculate the six-month 

terminal return for each month on a rolling basis, we can use the rolling() function, 
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which is the same function used to calculate moving averages. The only change is that, 

instead of taking the average using mean() after rolling the pointer backward by six 

months, we take the product of these 1+R monthly returns using np.prod in the apply() 

function to complete the compounding process, as shown in Listing 6-5.

Listing 6-5.  Calculating six-month cumulative returns

# obtain the historical cumulative returns of past 6 months as the terminal 

return of current month

past_cum_return_df = (mth_return_df+1).rolling(6).apply(np.prod) - 1

By now, we have calculated the six-month terminal monthly return as the cumulative 

return of the past six months, including the current month. This also explains why the 

first five months show empty values in the previous result and the cumulative monthly 

returns only start from the sixth month.

Next, we look at using these terminal returns to generate trading signals.

�Generating Trading Signals
We have fixed the lookback window to be six months into the past. The momentum 

trading strategy involves another lookahead window used to fix the trading horizon 

in the future. Specifically, suppose we form our trading strategy and make the trading 

decision in the current month. These new positions will last for a full month in the next 

month if the lookahead horizon is one. We can then measure the performance of these 

positions at the end of the next month. In this case, the size of the lookahead window is 

set to be one.

Also, we cannot use the monthly terminal return in the formation month to generate 

trading signals, as it uses future daily returns within the same month. When standing in 

the middle of the formation month, what we can use is the terminal monthly return of 

the last month, which is the end of the measurement period. The measurement period 

represents the collection of all historically observed data and thus avoids data snooping 

when limiting the usable data to this period only. Figure 6-3 illustrates the subtlety here.
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Figure 6-3.  Illustrating the measurement period, formation period, and 
evaluation period across the investment horizon

Since our data lasts until 2022-08-31, we will use 2022-07-31 as the trade formation 

period. To generate a trading strategy, we will use the terminal monthly return from the 

previous month indexed at 2022-06-30 as the end of the measurement period. We resort 

to the datetime package to encode these two dates, as shown in Listing 6-6.

Listing 6-6.  Identifying the measurement and formation periods

import datetime as dt

end_of_measurement_period = dt.datetime(2022,6,30)

formation_period = dt.datetime(2022,7,31)

These dates will then be used to slice the cumulative monthly return DataFrame 

stored in past_cum_return_df. In the following code snippet, we pass the end_of_

measurement_period variable to the .loc[] property of past_cum_return_df to perform 

label-based indexing at the row level. Since the result is Pandas Series indexed by the 

30 ticker symbols, we will use the reset_index() method to reset its index to zero-

based integers and bring the symbols as a column in the resulting DataFrame. The 

following code snippet shows the resulting cumulative terminal returns at the end of the 

measurement period:
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end_of_measurement_period_return_df = past_cum_return_df.loc[end_of_

measurement_period]

end_of_measurement_period_return_df = end_of_measurement_period_return_

df.reset_index()

>>> end_of_measurement_period_return_df.head()

      index      2022-06-30 00:00:00-04:00

0     AAPL      -0.227936

1     AMGN       0.099514

2     AXP       -0.144964

3     BA        -0.320882

4     CAT       -0.126977

These six-month terminal monthly returns of the 30 DJI constituents represent the 

relative momentum of each stock. We can observe the stock symbols and returns with 

the highest momentum in the positive and negative directions using the following code 

snippet:

# highest momentum in the positive direction

>>> end_of_measurement_period_return_df.loc[end_of_measurement_period_

return_df.iloc[:,1].idxmax()]

index                             CVX

2022-06-30 00:00:00-04:00    0.256955

Name: 7, dtype: object

# highest momentum in the negative direction

end_of_measurement_period_return_df.loc[end_of_measurement_period_return_

df.iloc[:,1].idxmin()]

index                             DIS

2022-06-30 00:00:00-04:00   -0.390535

Name: 8, dtype: object

Here, we used the methods idxmax() and idxmin() to return the index of the 

maximum and minimum values, respectively.

These two stocks would become the best choices if we were to long or short an asset. 

Instead of focusing on only one stock in each direction (long and short), we can enlarge 

the space and use a quantile approach for stock selection. For example, we can classify 
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all stocks into five groups (also referred to as quantiles or percentiles) based on their 

returns and form a trading strategy that longs the stocks in the top percentile and shorts 

those in the bottom percentile.

To obtain the quantile of each return, we can use the qcut() function from Pandas, 

which receives a Pandas Series and cuts it into a prespecified number of groups based 

on their quantiles, thus discretizing the continuous variables into a categorical, more 

specifically, and ordinal one. The following code snippet provides a short example:

>>> pd.qcut(series, 5, labels=False)

2000-01-01 00:00:00    0

2000-01-01 00:01:00    0

2000-01-01 00:02:00    1

2000-01-01 00:03:00    1

2000-01-01 00:04:00    2

2000-01-01 00:05:00    3

2000-01-01 00:06:00    3

2000-01-01 00:07:00    4

2000-01-01 00:08:00    4

Freq: T, dtype: int64

Thus, the qcut() function rank-orders the series into five groups based on their 

quantiles. We can now similarly rank-order the returns and store the result in a new 

column called rank, as shown in Listing 6-7.

Listing 6-7.  Rank-ordering the stocks based on cumulative terminal 

monthly returns

end_of_measurement_period_return_df['rank'] = pd.qcut(end_of_measurement_

period_return_df.iloc[:,1], 5, labels=False)

>>> end_of_measurement_period_return_df.head()

      index      2022-06-30 00:00:00-04:00      rank

0     AAPL      -0.227936                       1

1     AMGN       0.099514                       4

2     AXP       -0.144964                       2

3     BA        -0.320882                       0

4     CAT       -0.126977                       2
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We can now use this column to select the top and bottom performers. Specifically, 

we will long the stocks ranked four and short the stocks ranked zero. Let us observe the 

stock symbols in these two groups via Listing 6-8.

Listing 6-8.  Obtaining the stock tickers to long or short

long_stocks = end_of_measurement_period_return_df.loc[end_of_measurement_

period_return_df["rank"]==4,"index"].values

>>> long_stocks

array(['AMGN', 'CVX', 'IBM', 'KO', 'MRK', 'TRV'], dtype=object)

short_stocks = end_of_measurement_period_return_df.loc[end_of_measurement_

period_return_df["rank"]==0,"index"].values

>>> short_stocks

array(['BA', 'CRM', 'CSCO', 'DIS', 'HD', 'NKE'], dtype=object)

Having identified the group of stocks to be bought or sold, we will execute the trading 

actions and enter into these positions for a period of one month. Since the current 

period is 2022-07-31, we will evaluate the out-of-sample performance of the momentum 

strategy on 2022-08-31.

�Evaluating Out-of-Sample Performance
Let us first grab the monthly return indexed at 2022-08-31 from mth_return_df 

for the long and short positions, respectively. As shown in Listing 6-9, we use the 

relativedelta function from the dateutil package to shift formation_period by 

one month into the future, arriving at the evaluation period. This goes to the row-

level condition in the .loc[] property. For the column-level condition, we subset the 

columns to the stock symbols within the long positions using the isin() method. The 

result for the evaluation-period performance of the long position is stored in long_

return_df.
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Listing 6-9.  Obtaining the performance of stocks in a long position at the 

evaluation period

from dateutil.relativedelta import relativedelta

long_return_df = mth_return_df.loc[formation_period + 

  relativedelta(months=1), \ mth_return_df.columns.isin(long_stocks)]

>>> long_return_df

AMGN   -0.021474

CVX    -0.026156

IBM    -0.005517

KO     -0.038336

MRK    -0.044549

TRV     0.018526

Name: 2022-08-31 00:00:00-04:00, dtype: float64

The result shows that the majority of the top performers are decreasing in price, 

which is a direct reflection of market sentiment during that period of time. We can 

similarly obtain the evaluation-period performance for the bottom performances in the 

short position, as shown in Listing 6-10.

Listing 6-10.  Obtaining the performance of stocks in a short position at the 

evaluation period

short_return_df = mth_return_df.loc[formation_period + 

  relativedelta(months=1), \ mth_return_df.columns.isin(short_stocks)]

>>> short_return_df

BA      0.005900

CRM    -0.151614

CSCO   -0.014327

DIS     0.056362

HD     -0.035350

NKE    -0.073703

Name: 2022-08-31 00:00:00-04:00, dtype: float64
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Now we calculate the return of the evaluation period based on these two positions. 

We assume an equally weighted portfolio in both positions. Thus, the final return is 

the average of all member stocks in the respective position. Also, since we hold a short 

position for the bottom performers, we subtract the average return from the short 

position in these stocks while adding the average return from the long position.  

Listing 6-11 completes the calculation.

Listing 6-11.  Calculating the total profit

momentum_profit = long_return_df.mean() - short_return_df.mean()

>>> momentum_profit

0.015870799817079288

Therefore, the momentum trading strategy reports a final monthly return of 1.587%. 

Now let us compare with the buy-and-hold strategy.

�Comparing with the Buy-and-Hold Strategy
We assume a buy-and-hold strategy based on DJI as the benchmark. This means 

entering a long position of the index at the same beginning of the trading period on 

2021-01-01 and holding them all the way until 2022-09-01. We first download the data on 

this index by passing “^DJI” as the ticker symbol, as shown in the following code snippet:

df_dji = yf.download("^DJI", start=start_date, end=end_date)

Next, we follow the same approach to calculate the monthly terminal returns, as 

shown in Listing 6-12.

Listing 6-12.  Calculating the monthly terminal returns of the buy-and-hold 

strategy

buy_n_hold_df = df_dji['Adj Close'].pct_change().resample("M").agg(lambda 

x: (x+1).prod()-1)

>>> buy_n_hold_df.head()

Date

2021-01-31 00:00:00-05:00   -0.007983

2021-02-28 00:00:00-05:00    0.031677

2021-03-31 00:00:00-04:00    0.066247
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2021-04-30 00:00:00-04:00    0.027085

2021-05-31 00:00:00-04:00    0.019324

Freq: M, Name: Adj Close, dtype: float64

We can then access the monthly return during the evaluation period, as shown in the 

following code snippet:

>>> buy_n_hold_df.loc[formation_period + relativedelta(months=1),]

-0.04063613884907047

The buy-and-hold strategy thus reports a monthly return of –4.064% in the same 

evaluation period. Although the momentum trading strategy performs better, we are 

still far from claiming victory here. More robust backtesting on the out-of-sample 

performance across multiple periods is still needed.

�Summary
In this chapter, we looked at the momentum trading strategy and its implementation in 

Python. We started by comparing it with the trend-following strategy from the previous 

chapter, discussing their connections and differences in terms of time series and cross-

sectional analysis, as well as the different use of lookback and lookahead windows. Next, 

we covered its implementation using monthly returns, focusing on the process of signal 

generation and out-of-sample performance evaluation.

In the next chapter, we will learn a systematic way of assessing different trading 

strategies using backtesting.
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�Exercises
•	 Play around with the parameters of the momentum trading strategy 

(such as the window size) and assess the performance.

•	 Try implementing the momentum trading strategy on a different set 

of assets, such as commodities, forex, or cryptocurrencies. Discuss 

any differences or similarities you observe in the performance of the 

strategy.

•	 Try to create a hybrid strategy that combines both momentum 

trading and trend following. How does this hybrid strategy perform 

compared to the stand-alone strategies?

•	 Try to incorporate volatility measures, such as Bollinger Bands or 

standard deviation of returns, into the momentum trading strategy. 

How does this impact the performance?

•	 Implement the strategy using other momentum indicators such as 

the Relative Strength Index (RSI) or the Moving Average Convergence 

Divergence (MACD). Compare their performance with the basic 

momentum strategy.

•	 Incorporate transaction costs into the momentum trading strategy. 

How do these costs impact the overall profitability of the strategy?

•	 Perform backtesting of the momentum trading strategy over different 

market periods (bull market, bear market, high volatility period, etc.). 

How robust is the strategy across different market conditions?
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CHAPTER 7

Backtesting a Trading 
Strategy
As the name suggests, backtesting refers to the process of testing a trading strategy 

on relevant historical data before rolling it up to the live market. It gives an indication 

of the likely performance in different trading scenarios. In this chapter, we delve into 

the intricacies of backtesting a trading strategy, starting with an understanding of why 

backtesting is an important component in quantitative trading.

Note that while backtesting can offer insightful results, it is only as good as the 

quality of the data and the assumptions underpinning the trading strategy. For example, 

a trading strategy might work very well in a bull market, but it’s equally important to 

know how it performs during a bear market or during periods of high market volatility. 

By using backtesting, we can analyze the strategy’s robustness over different market 

phases, which provides a more holistic view of its performance. Therefore, a good 

practice is to choose multiple representative trading periods and record the backtesting 

performances so as to obtain a robust measure of the actual performance of a specific 

trading strategy.

�Introducing Backtesting
Backtesting allows us to simulate a trading strategy using historical data and analyze 

the risk and return before actually entering into a position. It refers to the process of 

testing a particular trading strategy backward using historical data in order to assess its 

performance on future data going forward. Such performance is also called the test set 

performance in the context of training a machine learning model, with the common 

constraint that the test set needs to be completely kept away when formulating a strategy 

or training a model. This period of historical data reserved for testing purposes allows us 

to assess the potential variability of the proposed trading strategy.
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Building on that, backtesting offers a way to measure the effectiveness of a trading 

strategy while keeping emotions and subjective bias at bay. It provides a scientific 

method to simulate the actual performance of a strategy, which then can be used to 

calculate various summary metrics that indicate the strategy’s potential profitability, 

risk, and stability over time. Example metrics include the total return, average return, 

volatility, maximum drawdown (to be covered shortly), and the Sharpe ratio.

When carrying out a backtesting procedure, one needs to avoid data snooping (i.e., 

peeking into the future) and observe the sequence of time. Even if a certain period of 

historical data is used to cross-validate a strategy, one needs to ensure that the cross-

validation periods fall outside or, more specifically, after the training period. In other 

words, the cross-validation period cannot exist in the middle of the training period, thus 

preserving the sequence of time as we move forward.

Retrospectively testing out the hypothetical performance of a trading strategy on 

historical data allows us to assess its variability over a set of aforementioned metrics. 

Since the same trading strategy may exhibit completely different behavior when 

backtested over various choices of investment horizons and assets, it is critical to 

overlay a comprehensive set of backtesting scenarios for the particular trading strategy 

before its adoption. It’s essential to conduct a thorough and varied backtesting process, 

as the performance of a trading strategy can greatly vary depending on the choice of 

investment horizon, the selection of assets, and the specific market conditions during 

the testing period.

For example, we can use backtesting on the trend-following strategy we covered 

earlier, where we use two moving averages to generate trading signals if there is a 

crossover. In this process, the input consists of two window sizes: one for the short 

window and one for the long window. The output is the resulting return, volatility, or 

other risk-adjusted return such as the Sharpe ratio. Any pair of window sizes for the 

moving averages has a corresponding performance metric, and we would change the 

input parameters in order to obtain the optional performance metric on the historical 

data. More specifically, we can create a range of potential values for each parameter—

for example, we could test short moving averages from 10 to 30 days and long moving 

averages from 50 to 200 days. For each combination of these parameters, we calculate 

the corresponding performance metric. The optimal parameters then maximize (or 

minimize, depending on the specific metric) this selected performance metric.
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�Caveats of Backtesting
Note that a good backtesting performance does not necessarily guarantee a good 

future return. This is due to the underlying assumption of backtesting: any strategy 

that did well in the past is likely to do well in the future period, and conversely, any 

strategy that performed poorly in the past is likely to perform poorly in the future. Since 

financial markets are complex adaptive systems that are influenced by a myriad of 

factors, including economic indicators, geopolitical events, and even shifts in investor 

sentiment, all these are constantly evolving and can deviate significantly from past 

patterns. In summary, past performance is not indicative of future results.

However, a well-conducted backtest that yields positive results gives assurance that 

the strategy is fundamentally sound and is likely to yield profits when implemented 

in reality. Backtesting can at least help us to weed out the strategies that do not prove 

themselves worthy. However, this assumption is likely to fail in the stock market, which 

typically highlights a low signal-to-noise ratio. Since financial markets keep evolving fast, 

the future may exhibit patterns not present in the historical data, making extrapolation a 

difficult task compared to interpolation.

Another issue with backtesting is the potential to overfit a strategy such that it 

performs well on the historical data used for testing but fails to generalize to new, 

unseen data. Overfitting occurs when a strategy is too complex and tailors itself to the 

idiosyncrasies and noise in the test data rather than identifying and exploiting the 

fundamental patterns that govern the data-generating process.

In addition, the backtesting period of the historical data needs to be representative 

and reflect a variety of market conditions. Excessively using the same dataset 

for backtesting is called data dredging, where the same dataset may produce an 

exceptionally good result purely by chance. If the backtest only includes a period of 

economic boom, for instance, the strategy might appear more successful than it would 

during a downturn or volatile market conditions. By assessing the trading strategy over 

a comprehensive and diverse period of historical data, we can avoid data dredging and 

better tell if the good performance, if any, is due to sound trading or merely a fluke.

Data dredging, or “p-hacking,” is a material concern in backtesting. It involves 

repeatedly running different backtests with slightly modified parameters on the same 

dataset until a desirable result is found. The danger here lies in the fact that the positive 

result might just be a product of chance rather than an indication of a genuinely effective 

strategy. This overfitting could lead to a strategy that performs exceptionally well on the 

test data but fails miserably on new, unseen data.
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On the other hand, the selection of the stocks used for backtesting also needs to 

be representative, including companies that eventually went bankrupt, were sold, or 

liquidated. Failing to do so produces the survivorship bias, where one cherry-picks 

a set of stocks and only looks at those that survived till today and ignores others that 

disappeared in the middle. By excluding companies that have failed or undergone 

significant structural changes, we could end up with an overly optimistic view of the 

strategy’s profitability and risk profile. This is because the stocks that have survived, in 

general, are likely to be those that performed better than average. Ignoring companies 

that went bankrupt or were delisted for any reason may skew the results, creating an 

illusion of a successful strategy when, in reality, the strategy may not perform as well in 

the real environment.

Moreover, by incorporating stocks that have underperformed or failed, we are in a 

better position to assess the risk of the strategy and prepare for worst-case scenarios. 

This can lead to more accurate risk and reward assessments and better inform the 

decision-making process when it comes to deploying the strategy. This strategy will 

also be more robust and can withstand various market conditions, including periods of 

economic downturn or industry-specific shocks.

Lastly, a backtest should also consider all trading costs, however insignificant, as 

these can add up over the course of the backtesting period and drastically affect the 

performance of a trading strategy’s profitability. These costs can include brokerage fees, 

bid-ask spreads, slippage (the difference between the expected price of a trade and the 

price at which the trade is executed), and in some cases, taxes and other regulatory fees. 

Overlooking these costs in backtesting can lead to an overly optimistic assessment of 

a strategy’s performance. For example, a high-frequency trading strategy might seem 

profitable when backtested without trading costs. However, in reality, such strategies 

involve a large number of trades and, therefore, high transaction costs, which can 

quickly erode any potential profits. Considering these costs during the backtesting stage 

will present a more accurate estimate of the net profitability of the strategy. Moreover, 

the impact of trading costs can vary greatly depending on the specifics of the trading 

strategy. Strategies that involve frequent trading, narrow profit margins, or large order 

sizes can be particularly sensitive to the assumptions made about trading costs in the 

backtesting process.

Before diving into the specifics of backtesting, let us introduce a popular risk 

measure called the maximum drawdown, or max drawdown.
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�Understanding Maximum Drawdown
Previously, we introduced the Sharpe ratio, which measures the excess return per unit 

of volatility. There are many other measures of risk, and this section covers the max 

drawdown due to its popular use in practice. In particular, the max drawdown measures 

the impact of the downside volatility, since the upside volatility brings positive returns 

and is a preferred behavior. In other words, we are more concerned with deviating from 

the mean on the downside instead of the upside. Therefore, when we use the term 

risk, we often highlight more on the downside movement that leads to a lower or even 

negative return.

Max drawdown is defined as the maximum loss in percentage from the previous high 

wealth to a subsequent low wealth. Here, wealth refers to the asset value and represents 

the amount of money we have at hand due to holding the asset. Since it tracks the 

maximum loss possible, the max drawdown measures a hypothetical loss if we were to 

buy the asset at its peak price and sell it at its bottom price. It measures the worst return 

from the peak to the trough that we could have experienced, if we are unlucky enough, 

over the investment period. It gives an indication of how bad the worst-case scenario 

could be, although it does not necessarily reflect the actual returns of a trading strategy.

Max drawdown provides a valuable perspective on the potential risks associated with 

an investment strategy and is particularly useful in highlighting the potential extent of 

negative performance. By considering the maximum percentage loss that an investment 

strategy would have incurred in the worst-case scenario, we gain an understanding of 

the potential “pain” or “risk” the investor might have to endure.

To calculate the max drawdown, we first need to obtain a series of the wealth index 

to indicate the amount of money we have at each unit of time, assuming a hypothetical 

buy-and-hold strategy (or other trading strategies of interest). It is a time series that 

records the value of the portfolio at each point in time, taking into account all trading 

activities, including the reinvestment of dividends, the effect of market returns, and 

adjustments made to the portfolio, such as buying or selling of assets. In other words, the 

wealth index tracks the evolution of an initial investment amount (say $1000) that was 

used to buy the asset at the beginning of the investment horizon.

Next, we obtain the prior peak wealth index at any point in time. This gives the 

highest portfolio value that one has experienced due to the particular trading strategy 

at any point in time since the initiation of the position. This essentially identifies the 

“highest highs” of the portfolio value. The distance between the prior peak and current 

wealth gives the drawdown (converted to percentages), which indicates the amount of 
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money we could have lost. This value is usually negative or zero and reflects the extent to 

which the current portfolio value has fallen from its most recent peak.

Lastly, the maximum distance then gives the max drawdown. This is the lowest 

(most negative) value of the drawdown, indicating the largest percentage loss from the 

peak to the trough. It signifies the worst loss the portfolio would have incurred over the 

backtest period if the asset is bought at the peak and sold at the lowest point thereafter.

Figure 7-1 illustrates the calculation process of max drawdown. We first obtain the 

raw price points of trading assets, which could typically be daily or monthly. These prices 

are converted to single-period returns, followed by compounding the sequential returns 

to obtain the wealth index. The single-period drawdown is then derived by calculating 

the percentage difference between the cumulative maximum wealth of each time point 

and the wealth value at the current time point. Finally, we report the maximum of these 

single-period drawdowns as the final return of the max drawdown.

Figure 7-1.  Illustrating the process of calculating the max drawdown

Again, the max drawdown is a risk measure that helps us understand the worst-case 

scenario of the trading strategy during the backtest period. Such a calculation process for 

the drawdown intuitively makes sense, since most people treat it as the money they have 

lost compared to the peak asset value they once owned in the past.

Figure 7-2 provides a sample wealth index curve and the corresponding single-

period drawdowns. Based on the cumulative wealth index curve in the blue line in the 

left panel, we can obtain the cumulative peak value in the green line, which overlaps 
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with the wealth index if the wealth continues to make new heights and stays flat if the 

wealth drops. We can thus form a new time series curve consisting of single-period 

drawdowns as the percentage difference between these two curves and return the lowest 

point as the max drawdown.

Figure 7-2.  Obtaining the max drawdown based on a sample wealth index curve

Here, the max drawdown does not mean we are going to suffer such a loss; it simply 

means the maximum loss we could have suffered following the particular trading 

strategy. The strategy may incur such a loss if we are extremely unlucky and happen to 

buy the asset at its peak price and sell it at its trough price. A strategy with a high max 

drawdown would indicate a higher risk level, as it shows that the strategy has historically 

resulted in substantial losses. On the other hand, a strategy with a low max drawdown 

would indicate lower risk, as it has not led to significant losses in the past.

A shrewd reader may immediately wonder if there is a risk-adjusted return metric 

based on drawdown risk. It turns out there is, and the measure is called the Calmar ratio, 

which is calculated as the ratio between the annualized return of the trailing 36 months 

and the max drawdown over the same trailing 36 months.

�The Downside of Drawdown Risk
Although the drawdown risk is a popular measure among practitioners, it is not 

robust and thus far from being a perfect measure of risk-adjusted return. For example, 

each single-period drawdown relies on two inputs: the current wealth value and the 

cumulative peak wealth value. The calculation then proceeds by taking the percentage 

difference between the two. However, when there is an outlier value in these two inputs, 

the resulting drawdown will be directly impacted. Its sensitivity to outliers, for instance, 
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can skew the risk measurement and present a distorted image of the potential loss. An 

unusually high or low value can inflate or deflate the drawdown, leading to misleading 

interpretations of the strategy’s riskiness. It is thus very sensitive to potential outliers in 

the dataset.

Another downside of using drawdown risk is its dependency on the frequency of 

the observations. For example, daily or weekly drawdowns exhibit a higher degree 

of volatility than monthly drawdowns and are thus more likely to generate a deep 

drawdown. However, when aggregating the data into monthly returns, such a deep 

drawdown may completely disappear or move to other locations. Such sensitivity to the 

granularity of the data further hurts the robustness of the drawdown measure.

It is also worth noting that max drawdown only provides a snapshot of the worst-case 

scenario observed in the past. It doesn’t consider other potential unfavorable situations 

that didn’t occur but could happen in the future.

Next, we look at calculating the max drawdown using Python.

�Calculating the Max Drawdown
In this section, we will focus on the process of calculating the max drawdown for the 

early period of 2023 for Google and Microsoft. These two stocks are picked due to 

their recent introduction of large-scale language models: ChatGPT, first introduced by 

Microsoft, and Bard, later by Google. Both led to a relatively big shock to the stock prices, 

resulting in a positive uplift for Microsoft and a negative impact for Google.

Let us first download the stock price data from 2023-01-01 to 2023-02-11 via 

Listing 7-1.

Listing 7-1.  Downloading the stock price data

import numpy as np

import pandas as pd

import yfinance as yf

import matplotlib.pyplot as plt

start_date = "2023-01-01"

end_date = "2023-02-11"

df = yf.download(['GOOG', 'MSFT'], start=start_date, end=end_date)

>>> df.head()
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As shown in Figure 7-3, the DataFrame has a multilayer column structure, where the 

first level indicates the type of stock price and the second layer indicates the stock ticker.

Figure 7-3.  Printing the first five rows of the downloaded stock price data

We will use the adjusted closing prices in the follow-up analysis:

df2 = df['Adj Close']

Note that the DataFrame is indexed by a list of dates in the datetime format, as 

shown in the following:

>>> df2.index

DatetimeIndex(['2023-01-03', '2023-01-04', '2023-01-05', '2023-01-06', 

'2023-01-09', '2023-01-10', '2023-01-11', '2023-01-12', '2023-01-13', 

'2023-01-17', '2023-01-18', '2023-01-19', '2023-01-20', '2023-01-23', 

'2023-01-24', '2023-01-25', '2023-01-26', '2023-01-27', '2023-01-30', 

'2023-01-31', '2023-02-01', '2023-02-02', '2023-02-03', '2023-02-06', 

'2023-02-07', '2023-02-08', '2023-02-09', '2023-02-10'], 

dtype='datetime64[ns]', name='Date', freq=None)

We can use these date indices to subset the DataFrame by the different granularity of 

time periods, such as selecting at the monthly level. As an example, the following code 

snippet slices the data in February 2023:

>>> df2.loc["2023-02"]

           GOOG       MSFT

Date

2023-02-01 101.430000 252.750000

2023-02-02 108.800003 264.600006

2023-02-03 105.220001 258.350006

2023-02-06 103.470001 256.769989
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2023-02-07 108.040001 267.559998

2023-02-08 100.000000 266.730011

2023-02-09 95.459999  263.619995

2023-02-10 94.860001  263.100006

The DataFrame we will work with contains 28 days of daily adjusted closing prices 

for both stocks, ranging from 2023-01-03 to 2023-02-10. We can check these details using 

the info() method:

>>> df2.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 28 entries, 2023-01-03 to 2023-02-10

Data columns (total 2 columns):

 #   Column  Non-Null Count  Dtype

---  ------  --------------  -----

 0   GOOG    28 non-null     float64

 1   MSFT    28 non-null     float64

dtypes: float64(2)

memory usage: 672.0 bytes

Let us visualize the price curves as line plots:

>>> df2.plot.line()

As shown in Figure 7-4, both stocks maintained an increasing trend during this 

period, although Google suffered a big hit in stock price near the end of the period.
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Figure 7-4.  Visualizing the stock prices as line plots

To better understand the stock returns, let us convert the raw stock prices to single-

period percentage returns using the pct_change() function:

returns_df = df2.pct_change()

>>> returns_df.head()

            GOOG      MSFT

Date

2023-01-03  NaN       NaN

2023-01-04 -0.011037 -0.043743

2023-01-05 -0.021869 -0.029638

2023-01-06  0.016019  0.011785

2023-01-09  0.007260  0.009736

Again, the first day shows an NA value since there is no prior stock price as the 

baseline to calculate the daily return.

The corresponding line plot for the daily returns follows in Figure 7-5.

>>> returns_df.plot.line()
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Figure 7-5.  Visualizing the stock returns

The figure suggests that the daily returns of both stocks are highly correlated, except 

for the last few days when Google showed a sharp dip in price. Such a dip will reflect 

itself in the max drawdown measure, as we will show later. Besides, we also observe a 

higher volatility for Google as compared to Microsoft.

Now let us construct the wealth index time series. We assume an initial amount of 

$1000 for each stock, based on which we will observe the daily evolution of the portfolio 

value, assuming a buy-and-hold strategy. Such a wealth process relies on the sequential 

compounding process using the cumprod() function based on 1+R returns, as shown in 

Listing 7-2.

Listing 7-2.  Constructing the wealth curve

initial_wealth = 1000

wealth_index_df = initial_wealth*(1+returns_df).cumprod()

>>> wealth_index_df.head()

           GOOG       MSFT

Date

2023-01-03 NaN        NaN

2023-01-04 988.963234 956.256801

2023-01-05 967.335558 927.915502

2023-01-06 982.831735 938.851285

2023-01-09 989.966623 947.992292
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We can override the initial entry as 1000 in order to plot the complete wealth index 

curve for both stocks. This essentially tracks the money we have at each time point after 

we invest $1000 in each stock on day 1, that is, 2023-01-03.

wealth_index_df.loc["2023-01-03"] = initial_wealth

>>> wealth_index_df.head()

           GOOG        MSFT

Date

2023-01-03 1000.000000 1000.000000

2023-01-04 988.963234  956.256801

2023-01-05 967.335558  927.915502

2023-01-06 982.831735  938.851285

2023-01-09 989.966623  947.992292

Now we plot the wealth curve for both stocks, as shown in Figure 7-6.

>>> wealth_index_df.plot.line()

Figure 7-6.  Visualizing the wealth curves

It appears that investing in Microsoft ends up with a higher portfolio value than in 

Google, despite the latter taking the lead in all of the previous trading days. As it turns 

out, one of the biggest drivers for the strong momentum behind Microsoft’s growth is 

its investment in the ChatGPT model and recent integration with its search engine Bing 

and Edge.
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With the wealth index ready, we can build a new series to indicate the cumulative 

peak wealth value for each trading day. This is achieved using the cummax() function 

shown in Listing 7-3.

Listing 7-3.  Constructing the cumulative maximum wealth

prior_peaks_df = wealth_index_df.cummax()

>>> prior_peaks_df.head()

           GOOG   MSFT

Date

2023-01-03 1000.0 1000.0

2023-01-04 1000.0 1000.0

2023-01-05 1000.0 1000.0

2023-01-06 1000.0 1000.0

2023-01-09 1000.0 1000.0

Let us plot them as line charts, as shown in Figure 7-7.

>>> prior_peaks_df.plot.line()

Figure 7-7.  Visualizing the cumulative maximum of the wealth curves

Now we are in a good position to calculate the daily drawdown as the percentage 

difference between the current wealth and the prior peak. This is shown in Listing 7-4.
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Listing 7-4.  Calculating the daily drawdown

drawdown_df = (wealth_index_df - prior_peaks_df) / prior_peaks_df

>>> drawdown_df.head()

            GOOG      MSFT

Date

2023-01-03  0.000000  0.000000

2023-01-04 -0.011037 -0.043743

2023-01-05 -0.032664 -0.072084

2023-01-06 -0.017168 -0.061149

2023-01-09 -0.010033 -0.052008

The corresponding line charts are shown in Figure 7-8.

>>> drawdown_df.plot.line()

Figure 7-8.  Visualizing the daily drawdown

The sharp dip in Google’s drawdown at the end of the series becomes more 

noticeable now, and we can probably say something about the reason behind the steep 

drop. It turns out that there was a factual error in the demo when Google introduced 

Bard as a response to the challenge from its rival, Microsoft’s ChatGPT. The error caused 

Google shares to tank by a drop of $100 billion in market value.
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Coming back to the max drawdown, we can now collect the minimum of these daily 

drawdowns as the final report of the max drawdown for this trading strategy, as shown 

in Listing 7-5. Note that we entered a long position in both stocks at the beginning of the 

investment period, so the trading strategy is simply buy-and-hold.

Listing 7-5.  Calculating the max drawdown

>>> drawdown_df.min()

GOOG   -0.128125

MSFT   -0.072084

dtype: float64

Here, we take the minimum of the daily drawdown as it is a negative value. In 

practice, we would often report it as a positive number. The result shows that Google has 

a much bigger max drawdown (again, expressed as a negative value and interpreted as 

the positive absolute value), more than double the max drawdown of Microsoft during 

the same trading period.

We can observe the date when the max drawdown occurs using the idxmin() 

function, which returns the date index of the minimum value across the whole column/

series, as shown in the following code snippet:

>>> drawdown_df.idxmin()

GOOG   2023-02-10

MSFT   2023-01-05

dtype: datetime64[ns]

We can also limit the range of the DataFrame by subsetting using a less granular date 

index in the loc() function. For example, the following code returns the max drawdown 

and the corresponding date for each stock in January 2023:

>>> drawdown_df.loc["2023-01"].min()

GOOG   -0.044264

MSFT   -0.072084

dtype: float64

>>> drawdown_df.loc["2023-01"].idxmin()

GOOG   2023-01-25

MSFT   2023-01-05

dtype: datetime64[ns]
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Till now, we have managed to calculate the max drawdown following the requisite 

steps. It turns out that a function would be extremely helpful when such steps become 

tedious and complex. Using a function to wrap the recipe as a black box allows us to 

focus on the big picture and not get bogged down by the inner workings each time we 

calculate the max drawdown.

We define a function called drawdown() to achieve this task, as shown in Listing 7-6.  

This function takes the daily returns in the form of a single Pandas Series as input, 

executes the aforementioned calculation steps, and returns the daily wealth index, prior 

peaks, and drawdowns in a DataFrame as the output.

Listing 7-6.  Defining a function to calculate the wealth index, prior peak, and 

drawdown

def drawdown(return_series: pd.Series):

    """

    Input: a time series of asset returns

    Output: a DataFrame that contains:

    - the wealth index

    - the prior peaks

    - percentage drawdowns

    """

    wealth_index_series = initial_wealth*(1+return_series).cumprod()

    prior_peaks_series = wealth_index_series.cummax()

    �drawdown_series = (wealth_index_series - prior_peaks_series) / prior_

peaks_series

    return pd.DataFrame({

        "Wealth index": wealth_index_series,

        "Prior peaks": prior_peaks_series,

        "Drawdown": drawdown_series

    })

Note that the calculation process remains the same. The only change is the 

compilation of the relevant information (wealth index, prior peaks, and drawdown) in 

one DataFrame. Also, we explicitly specified the input type to be a Pandas Series, as this 

saves the need to check the input type later on.

Now let us test this function by passing Google’s daily returns as the input series:
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>>> drawdown(returns_df["GOOG"]).head()

           Wealth index  Prior peaks  Drawdown

Date

2023-01-03 NaN           NaN          NaN

2023-01-04 988.963234    988.963234   0.000000

2023-01-05 967.335558    988.963234  -0.021869

2023-01-06 982.831735    988.963234  -0.006200

2023-01-09 989.966623    989.966623   0.000000

The following code snippet plots the wealth index and prior peaks as line charts:

>>> drawdown(returns_df["GOOG"])[['Wealth index', 'Prior peaks']].

plot.line()

Running the command generates Figure 7-9.

Figure 7-9.  Visualizing the wealth index and prior peaks as line charts

We can use the loc() function to subset for a specific month. For example, the 

following code returns the same curves for January 2023:

>>> drawdown(returns_df.loc["2023-01","GOOG"])[['Wealth index', 'Prior 

peaks']].plot.line()

Running the command generates Figure 7-10.
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Figure 7-10.  Visualizing the wealth index and prior peaks for January 2023

Similarly, we can obtain the max drawdown and the corresponding date for both 

stocks, as shown in the following code snippet:

>>> drawdown(returns_df["GOOG"])['Drawdown'].min()

-0.1281250188455857

>>> drawdown(returns_df["GOOG"])['Drawdown'].idxmin()

Timestamp('2023-02-10 00:00:00')

>>> drawdown(returns_df["MSFT"])['Drawdown'].min()

-0.035032299621028426

>>> drawdown(returns_df["MSFT"])['Drawdown'].idxmin()

Timestamp('2023-01-19 00:00:00')

The following code snippet returns the max drawdown for both stocks in 

January 2023:

>>> drawdown(returns_df.loc["2023-01","GOOG"])['Drawdown'].min()

-0.04426435893749917

>>> drawdown(returns_df.loc["2023-01","MSFT"])['Drawdown'].min()

-0.035032299621028426

In the next section, we will discuss the backtesting procedure using the trend-

following strategy.
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�Backtesting the Trend-Following Strategy
In this backtesting exercise, we are going to calculate four metrics as the performance 

indicator: the annualized return and volatility, the Sharpe ratio, and the max drawdown. 

Since the trend-following strategy works on one asset only, we are going to backtest 

Google’s stock price for the year 2022 based on its adjusted closing price.

First, let us download the dataset and store it in df_goog:

df_goog = yf.download(['GOOG'], start="2022-01-01", end="2023-01-01")

['Adj Close']

df_goog = pd.DataFrame(df_goog)

>>> df_goog.head()

           Adj Close

Date

2022-01-03 145.074493

2022-01-04 144.416504

2022-01-05 137.653503

2022-01-06 137.550995

2022-01-07 137.004501

Now we create two moving averages, a short curve with a span of 5 using the 

exponential moving average via the ewm() method and a long curve with a window 

size of 30 using the simple moving average via the rolling() method, as shown in 

Listing 7-7.

Listing 7-7.  Calculating the short and long moving averages

sma_span = 30

ema_span = 5

short_ma = 'ema'+str(ema_span)

long_ma ='sma'+str(sma_span)

df_goog[long_ma] = df_goog['Adj Close'].rolling(sma_span).mean()

df_goog[short_ma] = df_goog['Adj Close'].ewm(span=ema_span).mean()

>>> df_goog.head()

           Adj Close  sma30 ema5

Date

2022-01-03 145.074493 NaN   145.074493
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2022-01-04 144.416504 NaN   144.679700

2022-01-05 137.653503 NaN   141.351501

2022-01-06 137.550995 NaN   139.772829

2022-01-07 137.004501 NaN   138.710106

Note that the span is directly related to the α parameter we introduced earlier via the 

following relationship:

	
α =

+
2

1span 	

where span ≥ 1.

Since generating the trading signal requires that both moving averages are available 

at each time point, we remove the rows with any NA value in the DataFrame using the 

dropna() method, where we set inplace=True to change within the DataFrame directly:

df_goog.dropna(inplace=True)

>>> df_goog.head()

           Adj Close  sma30      ema5

Date

2022-02-14 135.300003 137.335750 137.064586

2022-02-15 136.425507 137.047450 136.851559

2022-02-16 137.487503 136.816483 137.063541

2022-02-17 132.308502 136.638317 135.478525

2022-02-18 130.467499 136.402200 133.808181

Now let us plot these two moving averages together with the original price curve via 

the following code snippet:

fig = plt.figure(figsize=(14,7))

plt.plot(df_goog.index, df_goog['Adj Close'], linewidth=1.5, label='Daily 

Adj Close')

plt.plot(df_goog.index, df_goog[long_ma], linewidth=2, label=long_ma)

plt.plot(df_goog.index, df_goog[short_ma], linewidth=2, label=short_ma)

plt.title("Trend following strategy")

plt.ylabel('Price($)')

plt.legend()

Running the command generates Figure 7-11.
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Figure 7-11.  Visualizing the moving averages together with the raw time series

As Figure 7-11 suggests, the short moving average (green curve) tracks the raw time 

series more closely, while the long moving average (orange curve) displays a smoother 

pattern due to a stronger averaging effect.

Now let us calculate the log returns of the buy-and-hold strategy, which assumes 

buying one share of Google stock and holding it till the end of the investment period. 

This is shown in Listing 7-8.

Listing 7-8.  Calculating the log returns of the buy-and-hold strategy

df_goog['log_return_buy_n_hold'] = np.log(df_goog['Adj Close'] / df_

goog['Adj Close'].shift(1))

An equivalent way of calculating the log returns is to convert the prices to 

logarithmic form and then take the difference, as shown in Listing 7-9.

Listing 7-9.  An equivalent way of calculating the log returns

df_goog['log_return_buy_n_hold'] = np.log(df_goog['Adj Close']).diff()

Next, we identify the trading signals for the trend-following strategy, starting by 

creating a signal column that indicates the intended position based on the magnitude of 

the two moving averages. This is shown in Listing 7-10.
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Listing 7-10.  Creating the signal column

# identify buy signal

df_goog['signal'] = np.where(df_goog[short_ma] > df_goog[long_ma], 1, 0)

# identify sell signal

df_goog['signal'] = np.where(df_goog[short_ma] < df_goog[long_ma], -1, df_

goog['signal'])

df_goog.dropna(inplace=True)

>>> df_goog.head()

           Adj Close  sma30      ema5        log_return_buy_n_hold  signal

Date

2022-02-15 136.425507 137.047450 136.851559  0.008284              -1

2022-02-16 137.487503 136.816483 137.063541  0.007754               1

2022-02-17 132.308502 136.638317 135.478525 -0.038397              -1

2022-02-18 130.467499 136.402200 133.808181 -0.014012              -1

2022-02-22 129.402496 136.148800 132.339619 -0.008196              -1

The periodic log returns for the trend-following strategy can be obtained by 

multiplying signal with log_return_buy_n_hold via Listing 7-11.

Listing 7-11.  Calculating the periodic log returns of the buy-and-hold strategy

df_goog['log_return_trend_follow'] = df_goog['signal'] * df_goog['log_

return_buy_n_hold']

The terminal return can be calculated using the cumprod() function or the prod() 

function, as shown in Listing 7-12. The first approach calculates the compounded 

periodic return and accesses the last period as the final return before converting to 

the simple return format. The second approach directly multiplies all intermediate 

percentage returns to get the final return as the last period, followed by conversion to a 

simple return.

Listing 7-12.  Calculating terminal returns of both strategies

# terminal return of buy-n-hold

>>> np.exp(df_goog['log_return_buy_n_hold']).cumprod()[-1] -1

-0.34419806832531474

# another way to calculate
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>>> np.exp(df_goog['log_return_buy_n_hold']).prod() – 1

-0.34419806832531474

# terminal return of trend following

>>> np.exp(df_goog['log_return_trend_follow']).cumprod()[-1] -1

0.3609149965748346

# another way to calculate

np.exp(df_goog['log_return_trend_follow']).prod() – 1

0.3609149965748346

Although the buy-and-hold strategy is obviously no match for the trend-following 

strategy, we will still calculate the aforementioned backtesting measures, namely, 

annualized return and volatility, Sharpe ratio, and the max drawdown.

Let us start with the annualized return. As shown in Listing 7-13, the annualized 

return is calculated by obtaining the terminal return in 1+R format, rescaling it to an 

annual basis, and finally converting it back to a simple return.

Listing 7-13.  Calculating the annualized return

# calculate annualized return of buy-n-hold

annualized_return_buy_n_hold = np.exp(df_goog['log_return_buy_n_hold']).

prod()**(252/df_goog.shape[0])-1

>>> annualized_return_buy_n_hold

-0.3818823804560594

# calculate annualized return of trend following

annualized_return_trend_follow = np.exp(df_goog['log_return_trend_

follow']).prod()**(252/df_goog.shape[0])-1

>>> annualized_return_trend_follow

0.4210313983829783

Note that we can also add up all the log returns and exponentiate the sum to get the 

same result:

>>> np.exp(df_goog['log_return_trend_follow'].sum())**(252/df_goog.

shape[0])-1

0.4210313983829783

Let us calculate the annualized volatility, as shown in Listing 7-14. Recall that the 

daily volatility scales up as a function of the square root of time.
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Listing 7-14.  Calculating the annualized volatility

# calculate annualized volatility of buy-n-hold

annualized_vol_buy_n_hold = (np.exp(df_goog['log_return_buy_n_hold'])-1).

std()*(252**0.5)

>>> annualized_vol_buy_n_hold

0.3896836224899977

# calculate annualized volatility of trend following

annualized_vol_trend_follow = (np.exp(df_goog['log_return_trend_

follow'])-1).std()*(252**0.5)

>>> annualized_vol_trend_follow

0.39285546408734645

Now we calculate the Sharpe ratio, assuming a risk-free interest rate of 3%. This is 

shown in Listing 7-15.

Listing 7-15.  Calculating the Sharpe ratio

riskfree_rate = 0.03

# calculate Sharpe ratio of buy-n-hold

sharpe_ratio_buy_n_hold = (annualized_return_buy_n_hold - riskfree_rate) / 

annualized_vol_buy_n_hold

>>> sharpe_ratio_buy_n_hold

-1.0569661045137495

# calculate Sharpe ratio of trend following

sharpe_ratio_trend_follow = (annualized_return_trend_follow - riskfree_

rate) / annualized_vol_trend_follow

>>> sharpe_ratio_trend_follow

0.9953569038205886

Lastly, we calculate the max drawdown of both strategies, as shown in Listing 7-16.

Listing 7-16.  Calculating the max drawdown

# max drawdown of buy-n-hold

max_drawdown_buy_n_hold = drawdown(np.exp(df_goog['log_return_buy_n_

hold'])-1)['Drawdown'].min()

>>> max_drawdown_buy_n_hold
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-0.41876535983781205

# max drawdown of trend following

max_drawdown_trend_follow = drawdown(np.exp(df_goog['log_return_trend_

follow'])-1)['Drawdown'].min()

>>> max_drawdown_trend_follow

-0.20685357874978227

Although these two strategies are quite disparate in terms of these measures in 

backtesting, it also shows the importance of demonstrating the superiority of a strategy 

among a set of common backtesting measures before its adoption. In the next chapter, 

we will discuss a feedback loop that optimizes the selection of trading parameters, such 

as the window size, in order to obtain the best trading performance given a specific 

trading strategy.

�Summary
In this chapter, we covered the process of backtesting a trading strategy. We started 

by introducing the concept of backtesting and its caveats. We then introduced the 

maximum drawdown, a commonly used performance measure on the downside risk 

of a particular trading strategy, followed by its calculation process. Lastly, we provided 

an example of how to backtest a trend-following strategy via multiple performance 

measures.

In the next chapter, we will introduce statistical arbitrage with hypothesis testing, 

with the pairs trading strategy as the working example.
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�Exercises
•	 Asset A loses 1% a month for 12 months, and asset B gains 1% per 

month for 12 months. Which is the more volatile asset?

•	 Drawdown is a measure of only downside risk and not upside risk. 

True or false?

•	 Assume the risk-free rate is never negative. The drawdown of an 

investment that returns the risk-free rate every month is zero. True 

or false?

•	 The drawdown computed from a daily return series is always greater 

than or equal to the drawdown computed from the corresponding 

monthly series. True or false?

•	 Write a class to calculate the annualized return, volatility, Sharpe 

ratio, and max drawdown of a momentum trading strategy.

•	 How does the frequency of data sampling affect the calculated max 

drawdown? What might be the implications of using daily data vs. 

monthly data?

•	 Assume you have calculated a Sharpe ratio of 1.5 for your trading 

strategy. If the risk-free rate increases, what would happen to the 

Sharpe ratio, all else being equal?

•	 If a strategy has a positive average return but a high max drawdown, 

what might this suggest about the risk of the strategy?
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CHAPTER 8

Statistical Arbitrage 
with Hypothesis Testing
Statistical arbitrage is a market-neutral trading strategy leveraging statistical methods 

to identify and exploit significant relationships between financial assets. Through 

hypothesis testing, it discerns pricing discrepancies within correlated asset pairs due 

to temporary market inefficiencies. By purchasing underpriced and selling overpriced 

assets, the strategy ensures profit as the market corrects these inefficiencies, regardless of 

overall market movements.

�Statistical Arbitrage
Statistical arbitrage refers to the use of statistical methods to identify statistically 

significant relationships underlying multiple financial assets and generate trading 

signals. There are two parts involved in this process: statistical analysis and arbitrage. 

In this context, statistical analysis mostly refers to hypothesis testing, which is a suite 

of statistical procedures that allows us to determine if a specific relationship among 

multiple financial instruments based on the observed data is statistically significant. On 

the other hand, arbitrage means making sure-win profits.

At its core, this strategy relies on mean reversion, which assumes that financial 

instruments that have deviated far from their historical relationship will eventually 

converge again. For instance, consider two highly correlated stocks, A and B. If, due to 

some short-term market factors, the price of A increases disproportionately compared to 

B, a statistical arbitrage strategy might involve short-selling A (which is now overpriced) 

and buying B (which is underpriced). As the prices of A and B revert to their historical 

correlation, the arbitrageur would close both positions—buy A to cover the short sell and 
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sell B to realize the gain. The net profit comes from the convergence of prices. Therefore, 

statistical arbitrage is essentially a market-neutral strategy, generating profits by taking 

advantage of temporary market inefficiencies.

Note that statistical arbitrage strategies should expect a relatively stable long-term 

equilibrium relationship between the two underlying assets for the strategy to work. 

They also operate on relatively small profit margins, necessitating high volumes of trades 

to generate substantial returns.

Delving deeper, the first step in the statistical arbitrage process is to identify pairs 

of trading instruments that exhibit a high degree of comovement. This can be achieved 

through statistical procedures such as correlation analysis or cointegration tests. 

For instance, consider stocks A and B, which typically move in sync with each other. 

Although perfect correlation is rare in financial markets, we can leverage historical price 

data to find stocks that are highly correlated, often within the same industry or sector.

However, this comovement doesn’t always mean equal price changes. Short-

term fluctuations driven by various factors like market sentiment, sudden news 

announcements, or unforeseen events like a pandemic can cause a temporary 

divergence in the price relationship. In the given example, if stock A increases by 10% 

and stock B only by 5%, it suggests a temporary mispricing where B is underpriced 

relative to A.

This brings us to the second step, which involves capitalizing on this mispricing 

through trading actions such as pairs trading. In the case of A and B, an investor could 

execute a long position on the underpriced stock B, expecting its price to increase and 

converge with the price of A.

It’s important to note that statistical arbitrage relies heavily on the premise that 

these pricing inefficiencies are temporary and that the price relationship will revert to 

its historical norm. Therefore, this strategy necessitates diligent monitoring and a robust 

risk management system to ensure timely entries and exits.

Figure 8-1 illustrates one way of performing statistical arbitrage. We assume a perfect 

correlation between stocks A and B, where the same percentage change is observed for 

periods 0, 1, and 2. However, stock A increased by 10% in period 3, while stock B only 

increased by 5%. Based on the principle of statistical arbitrage, we could long stock B, 

which is considered to be underpriced, or short stock A, which is considered overpriced. 

We could also do both at the same time.
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Figure 8-1.  Illustrating the concept of statistical arbitrage. After identifying a 
perfect correlation between stocks A and B using statistical techniques, as indicated 
by the prices in periods 0, 1, and 2, we would take advantage of market mispricing 
by longing stock B (which is underpriced) and/or shorting stock A (which is 
overpriced)

�Pairs Trading
Pairs trading is a market-neutral strategy that leverages statistical analysis to generate 

potential profits regardless of the overall market direction. The “pair” in pairs trading 

refers to simultaneously taking two positions: going long on one asset and short on 

another, with the key requirement being that these assets are highly correlated. The 

trading signal stems from the spread or price difference between these two assets.

An unusually large spread, in comparison to historical data, suggests a temporary 

divergence, and the anticipation is that this divergence will eventually correct itself, 

reverting to its mean or average value over time. Traders can capitalize on this mean-

reverting behavior, initiating trades when the spread is abnormally wide and closing 

them once the spread narrows and returns to its typical range.

The determination of what constitutes an “abnormal” or “normal” spread is crucial 

and forms the core parameters of the pairs trading strategy. This typically involves 

extensive backtesting, where historical price data is analyzed to identify consistent 

patterns in price divergence and convergence, which then informs the thresholds for 

trade entry and exit points. Pairs trading, while robust in its market-neutral stance, 

Chapter 8  Statistical Arbitrage with Hypothesis Testing



228

requires a keen understanding of the long-term equilibrium relationship between 

the paired assets and careful management of potential risks if the expected price 

convergence does not materialize.

In the strategy of pairs trading, asset selection is grounded in a statistical procedure 

called hypothesis testing, specifically, the cointegration test. This process uses historical 

price data to identify pairs of financial instruments that exhibit a high level of correlation. 

When two assets are highly correlated, they tend to move in a synchronized manner. 

This means that any price change in one asset is typically mirrored proportionally by the 

other, resulting in relatively stable spreads that do not deviate significantly from their 

historical average. However, there can be moments when this spread deviates markedly 

from its historical norm, suggesting temporary mispricing of the assets. This divergence 

indicates that the assets’ prices have drifted apart more than their usual correlation 

would predict.

Such deviations create a unique profit opportunity in pairs trading. Traders can 

capitalize on these large spreads by betting on their future contraction. Specifically, 

the strategy would be to go long on the underpriced asset and short on the overpriced 

one, with the anticipation that the spread will revert back to its historical average as the 

asset prices correct themselves. This reversion provides the opportunity to close both 

positions at a profit.

Figure 8-2 provides the overall workflow of implementing a pairs trading strategy. 

At first, we analyze a group of financial assets (such as stocks) and identify a pair that 

passes the cointegration test. This is a statistical test that determines if a group of assets 

is cointegrated, meaning their combination generates a stationary time series, despite 

each individual time series not exhibiting such stationarity. In other words, the historical 

differences, or spreads, of the two cointegrated assets form a stationary time series. 

We can thus monitor the current spread and check if it exceeds a reasonable range of 

historical spreads. Exceeding the normal range indicates a trading signal to enter two 

positions: long the underpriced asset and short the overpriced asset. We would then 

hold these positions until the current spread shrinks back to the normal range, upon 

which point we would exit the positions and lock in a profit before it shrinks even further 

(which results in a loss).
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Figure 8-2.  Overall workflow of implementing the pairs trading strategy

�Cointegration
Cointegration, a concept pivotal to hypothesis testing, posits two potential scenarios: 

the null hypothesis, which states that two or more non-stationary time series are not 

cointegrated, and the alternative hypothesis, which claims the opposite, that is, these 

time series are cointegrated if their linear combination generates a stationary time series 

(more on this later).

Let’s demystify some of the jargon here. A time series refers to a sequence of data 

points indexed (or listed or graphed) in time order, with each data point assigned a 

specific timestamp. This dataset can be analyzed through several summary statistics or 

statistical properties. These can include metrics like mean and variance computed over a 

certain time frame or window.

Moving this window across different periods, a stationary time series exhibits 

constancy in its mean and variance on average. This means that no matter when you 

observe it, its basic properties do not change. On the other hand, a non-stationary time 

series demonstrates a trend or a drift, signifying a changing mean and variance across 

varying time periods. These time series are dynamic, with their basic properties shifting 

over time, often due to factors like trends and seasonality.

Chapter 8  Statistical Arbitrage with Hypothesis Testing



230

Hence, the process of cointegration examines whether there is a long-term 

equilibrium relationship between non-stationary time series despite short-term 

fluctuations. Such long-term equilibrium manifests as a stationary time series as a linear 

combination of the two non-stationary time series.

Many traditional statistical methods, including ordinary least squares (OLS) 

regression, are based on the assumption that the variables under analysis—which are 

also time series data points—exhibit stationarity. This implies that their fundamental 

statistical characteristics remain consistent over time. However, when dealing with 

non-stationary variables, this stationarity assumption gets violated. As a result, different 

techniques are needed to perform the modeling. One common strategy is to difference 

the non-stationary variable (deriving a new time series by taking the difference in the 

observed values of two consecutive time points) to eliminate any observable trend or drift.

A non-stationary time series might possess a unit root, which signifies a root of one 

in its autoregressive (AR) polynomial. To put it differently, the value in the next time 

period is strongly impacted by the present period value. This dependency reflects a form 

of serial correlation, where values from previous periods exert influence on subsequent 

ones, thereby potentially leading to non-stationary behavior.

The unit root test, therefore, is a method to examine whether a time series is non-

stationary and possesses a unit root. Identifying and addressing the presence of a unit 

root is a critical step in the process of time series modeling, especially when the aim is to 

understand long-term trends and forecasts.

In essence, a cointegration test examines the assumption that, although individual 

time series may each have a unit root and hence be non-stationary, a linear combination 

of these time series might result in a stationary series. This forms the alternative 

hypothesis for the test.

To be precise, the alternative hypothesis states that the aggregate time series, derived 

from a linear combination of individual time series, achieves stationarity. Should this 

be the case, it would imply a persistent long-term relationship among these time series 

variables. Such long-term relationships will get obscured by temporary fluctuations in 

the market from time to time, due to factors such as mispricing. Hence, the cointegration 

test aids in revealing these hidden long-term relationships among time series variables.

When assets are determined to be cointegrated—meaning that the alternative 

hypothesis is upheld—they are fed into the trading signal generation phase of the pairs 

trading strategy. Here, we anticipate the long-term relationship between the two time 

series variables to prevail, regardless of short-term market turbulence.
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Therefore, cointegration serves as a valuable tool in statistical analysis, exposing 

the underlying long-term relationship between two non-stationary and seemingly 

unrelated time series. This long-term association, difficult to detect when these time 

series are analyzed independently, can be discovered by combining these individual 

non-stationary assets in a particular way. This combination is typically done using 

the Johansen test, yielding a new, combined time series that exhibits stationarity, 

characterized by a consistent mean and variance over different periods. Alternatively, 

the Engle-Granger test can be employed to generate a spread series from the residuals of 

a linear regression model between the two assets.

Figure 8-3 illustrates the process of cointegration and strategy formulation. The 

purpose of cointegration is to convert individual non-stationary time series data into 

a combined stationary series, which can be achieved via the Johansen test with a 

linear combination, the Engle-Granger test via a linear regression model, or other test 

procedures. We would then derive another series called the spread to indicate the extent 

of short-term fluctuation from the long-term equilibrium relationship. The spread is used 

to generate trading signals in the form of entry and exit points based on the extent of 

deviation at each time point, with the help of entry and exit thresholds defined in advance.

Figure 8-3.  Illustrating the process of cointegration using different tests and 
strategy formulation to generate trading signals

The next section covers a more in-depth discussion on stationarity.
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�Stationarity
Stock prices are time series data. A stationary time series is a time series where the 

statistical properties of the series, including the mean, variance, and covariance at 

different time points, are constant and do not change over time. A stationary time series 

is thus characterized by a lack of observable trends or cycles in the data.

Let us take the normal distribution as an example. A normal distribution y = f (x; μ, σ) 

is a probability density function that maps an input x to a probability output y, assuming 

a fixed set of parameters: the mean μ as the central tendency and standard deviation σ as 

the average deviation from the mean. The specific form of the probability distribution is 

as follows:
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A widely used normal distribution is the standard normal, specifying μ = 0 and σ = 1. 

The resulting probability density function is
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We can generate random samples following this specific form using the random.

normal() function from NumPy. In Listing 8-1, we define a function generate_normal_

sample() that generates a normally distributed random sample by passing in the input 

parameter μ and σ in a list.

Listing 8-1.  Generating normal samples

# generate random samples from normal distribution

def generate_normal_sample(params):

    """

    �input: params, including mean in params[0] and standard deviation in 

params[1]

    �output: a random sample from the normal distribution parameterized by 

the input
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    """

    mean = params[0]

    sd = params[1]

    return np.random.normal(mean, sd)

Now we generate a sample by specifying a standard normal distribution:

# generate sample from standard norml

>>> print(generate_normal_sample([0,1]))

0.09120471661981977

To see the impact on the samples generated from a non-stationary distribution, we 

will specify three different non-stationary distributions. Specifically, we will generate 100 

samples that follow a distribution with either an increasing mean or standard deviation. 

Listing 8-2 performs the random sampling for 100 rounds and compares them with the 

samples from the standard normal distribution.

Listing 8-2.  Generating samples from stationary and non-stationary normal 

distributions

# generate 100 random samples for both stationary and non-stationary 

distribution

T = 100

stationary_list, nonstationary_list1, nonstationary_list2 = [], [], []

for i in range(T):

    # generate a stationary sample and append to list

    stationary_list.append(generate_normal_sample([0,1]))

    �# generate a non-stationary sample with an increasing mean and 

append to list

    nonstationary_list1.append(generate_normal_sample([i,1]))

    �# # generate a non-stationary sample with an increasing mean and sd and 

append to list

    nonstationary_list2.append(generate_normal_sample([i,np.sqrt(i)]))

x = range(T)

# plot the lists as line plots with labels for each line

plt.plot(x, stationary_list, label='Stationary')
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plt.plot(x, nonstationary_list1, label='Non-stationary with 

increasing mean')

plt.plot(x, nonstationary_list2, label='Non-stationary with increasing mean 

and sd')

# set the axis labels

plt.xlabel('Sample index')

plt.ylabel('Sample value')

# add a legend

plt.legend()

# show the plot

plt.show()

Running the code generates Figure 8-4, where the impact of a changing mean 

and standard deviation becomes more pronounced as we increase the magnitude in 

later rounds.

Figure 8-4.  Generating normally distributed random samples from non-
stationary distributions with different parameter specifications

Note that we can use the augmented Dickey-Fuller (ADF) test to check if a series is a 

stationary. The function stationarity_test() defined in Listing 8-3 accepts two inputs: 

the time series to be tested for stationarity and the significant level used to compare with 

the p-value and determine the statistical significance. Note that the p-value is accessed 

as the second argument from the test result object using the adfuller() function. This is 

shown in Listing 8-3.

Chapter 8  Statistical Arbitrage with Hypothesis Testing



235

Listing 8-3.  Testing stationarity of a time series

# test for stationarity

def stationarity_test(x, threshold=0.05):

    """

    input:

      x: a list of scalar values

      threshold: significance level

    output: print out message on stationarity

    """

    pvalue = adfuller(x)[1]

    if pvalue < threshold:

        �return 'p-value is ' + str(pvalue) + '. The series is likely 

stationary.'

    else:

        �return 'p-value is ' + str(pvalue) + '. The series is likely non-

stationary.'

Let us apply this function to the previous time series data. The result shows that the 

ADF is able to differentiate if a time series is stationary (with fixed parameters) based on 

a preset significance level:

>>> print(stationarity_test(stationary_list))

>>> print(stationarity_test(nonstationary_list1))

>>> print(stationarity_test(nonstationary_list2))

p-value is 1.2718058919122438e-12. The series is likely stationary.

p-value is 0.9925665941220737. The series is likely non-stationary.

p-value is 0.9120355459829741. The series is likely non-stationary.

Let us look at a concrete example of how to test for cointegration between two stocks.
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�Test for Cointegration
This section provides an example of performing the cointegration test using the Engle-

Granger two-step method. Here’s a general overview of the steps involved:

•	 Estimate the coefficients of the linear regression model between 

one stock (as the dependent variable) and the other stock (as the 

independent variable) using ordinary least squares (OLS).

•	 Calculate the residuals from the linear regression model.

•	 Test the residuals for stationarity using a unit root test, such as the 

augmented Dickey-Fuller (ADF) test.

•	 If the residuals are stationary, the two stocks are cointegrated. If the 

residuals are non-stationary, the two stocks are not cointegrated.

Let us illustrate the procedure using two stocks: Google and Microsoft. Listing 8-4 

imports necessary packages and downloads the daily stock prices for the whole year of 

2022. We will use the adjusted closing price for the cointegration test.

Listing 8-4.  Importing packages and downloading stock data

import os

import random

import numpy as np

import yfinance as yf

import pandas as pd

from statsmodels.tsa.stattools import adfuller

from statsmodels.regression.linear_model import OLS

import statsmodels.api as sm

from matplotlib import pyplot as plt

%matplotlib inline

SEED = 8

random.seed(SEED)

np.random.seed(SEED)

# download data from yfinance

start_date  = "2022-01-01"
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end_date  = "2022-12-31"

stocks = ['GOOG','MSFT']

df = yf.download(stocks, start=start_date, end=end_date)['Adj Close']

>>> df.head()

           GOOG       MSFT

Date

2022-01-03 145.074493 330.813873

2022-01-04 144.416504 325.141357

2022-01-05 137.653503 312.659882

2022-01-06 137.550995 310.189301

2022-01-07 137.004501 310.347382

Now we dig into the linear regression model between these two stocks. We will treat 

Google stock as the (only) independent variable and Microsoft stock as the dependent 

variable to be predicted. The model assumes the following form:

	 y x= + +β β
0 1

 	

where β0 denotes the intercept and β1 is the slope of the linear line fitted between 

these two stocks. ϵ represents the random noise that is not modeled by the predictor x. 

Note that we are assuming a linear relationship between x and y, which is unlikely to 

be the case in a real-world environment. Another name for ϵ is the residual, which is 

interpreted as the (vertical) distance between the predicted value β0 + β1x and the target 

value y. That is, ϵ = y − (β0 + β1x).

Our focus would then shift to these residuals, with the intention of assessing if the 

residual time series would be stationary. Let us first obtain the residuals from the linear 

regression model.

In Listing 8-5, we assign the first stock as the target variable Y and the second stock 

as the predictor variable X. We then use the add_constant() function to add a column of 

ones to the X variable, which can also be considered as the bias trick to incorporate the 

intercept term β0. Next, we construct a linear regression model object using the OLS() 

function, perform learning by invoking the fit() function, and calculate the residuals 

as the difference between the target values and the predicted values, obtained via the 

predict() method.
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Listing 8-5.  Extracting residuals from OLS

# build linear regression model

# Extract prices for two stocks of interest

# target var: Y; predictor: X

Y = df[stocks[0]]

X = df[stocks[1]]

# estimate linear regression coefficients of stock1 on stock2

X_with_constant = sm.add_constant(X)

model = OLS(Y, X_with_constant).fit()

residuals = Y - model.predict()

The model object is essentially a collection of the model weights (also called 

parameters) and the architecture that governs how the data flow from the input to the 

output. Let us access the model weights:

# access model weights

>>> print(model.params)

const   -47.680218

MSFT      0.610303

dtype: float64

We have two parameters in the model: const corresponding to β0 and MSFT 

corresponding to β1.

Besides using the predict() method to obtain the predicted values, we can also 

construct the explicit expression for the predictions and calculate them manually. That 

is, we can calculate the predicted values y
i

N
{ }

=1
 as follows:

	 y x i Ni i
 = + ∈ …{ }β β

0 1
1, , , 	

The following code snippet implements this expression and calculates the model 

predictions manually. We also check if the manually calculated residuals are equal to the 

previous values using the equals() function:

# alternative approach

residuals2 = Y - (model.params['const'] + model.params[stocks[1]] * X)

# check if both residuals are the same

print(residuals.equals(residuals2))
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Lastly, we test the stationarity of the residual series, again using the augmented 

Dickey-Fuller (ADF) test. The test can be performed using the adfuller() function from 

the statsmodels package. There are two metrics that are relevant to every statistical 

test: the test statistic and the p-value. Both metrics convey the same information 

on the statistical significance of the underlying hypothesis, with the p-value being 

a standardized and, thus, more interpretable metric. A widely used threshold (also 

called the significance level) is 5% for the p-value. That is, if the resulting p-value from a 

statistical test is less than 5%, we can safely (up to a confidence level of 95%) reject the 

null hypothesis in favor of the alternative hypothesis. If the p-value is greater than 5%, we 

fail to reject the null hypothesis and conclude that the two stocks are not cointegrated.

The null hypothesis often represents the status quo. In the case of the cointegration 

testing using the Engle-Granger test, the null hypothesis is that the two stocks are not 

cointegrated. That is, the historical prices do not exhibit a linear relationship in the long 

run. The alternative hypothesis is that the two stocks are cointegrated, as exhibited by a 

linear relationship between the two and a stationary residual series.

Now let us carry out the ADF test and use the result to determine if these two stocks 

are cointegrated using a significance level of 5%. In Listing 8-6, we apply the adfuller() 

function to the prediction residuals and print out the test statistic and p-value. This is 

followed by an if-else statement to determine if we have enough confidence to reject the 

null hypothesis and claim that the two stocks are cointegrated.

Listing 8-6.  Testing stationarity of the residuals

# test stationarity of the residuals

adf_test = adfuller(residuals)

print(f"ADF test statistic: {adf_test[0]}")

print(f"p-value: {adf_test[1]}")

if adf_test[1] < 0.05:

    print("The two stocks are cointegrated.")

else:

    print("The two stocks are not cointegrated.")

ADF test statistic: -3.179800920038961

p-value: 0.021184058997635733

The two stocks are cointegrated.
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The result suggests that Google and Microsoft stocks are cointegrated due to a small 

p-value of 2%. Indeed, based on our previous analysis of calculating the max drawdown, 

Google and Microsoft stock prices generally tend to move together. However, with 

the introduction of ChatGPT in Bing search, the overall picture may start to change. 

Such cointegration (comovement) may gradually weaken as the tool gives everything 

for Microsoft to win (due to a small revenue from web search) and for Google to lose 

(majority revenue comes from web search).

Next, we touch upon another closely related but different statistical concept: 

correlation.

�Correlation and Cointegration
Both correlation and cointegration are important statistical measures used to analyze 

the relationship between two time series datasets. Correlation quantifies the degree 

of linear association between two time series. In essence, it reveals whether the two 

variables increase or decrease in tandem and the strength of this relationship. The 

correlation coefficient can vary between –1 and 1. A coefficient of 1 denotes a perfect 

positive linear relationship, –1 signifies a perfect negative linear relationship, while 0 

suggests the absence of any linear relationship.

In contrast, cointegration is concerned with the long-term equilibrium relationship 

between two potentially non-stationary time series. If two time series are cointegrated, 

it signifies that they share a common long-term trend, regardless of their short-term 

variations. Consequently, while the two time series may not exhibit short-term linear 

correlation, they can display a long-term stationary pattern when suitably combined. 

This enables analysts to uncover persistent relationships masked by transitory market 

volatility.

The following code snippet provides an example of two correlated time series that 

are not cointegrated. We first sample two series of 100 random values following normal 

distributions with a different mean and the same variance. This is followed up by a 

cumulative summation operation stored as a Pandas Series object. Finally, we plot both 

series as lines after combining them horizontally in a DataFrame and calling the plot() 

function:

np.random.seed(123)

X = np.random.normal(1, 1, 100)

Y = np.random.normal(2, 1, 100)
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X = pd.Series(np.cumsum(X), name='X')

Y = pd.Series(np.cumsum(Y), name='Y')

pd.concat([X, Y], axis=1).plot()s

Running the code generates Figure 8-5. Series Y has a higher drift than series X as 

designed and also exhibits a high degree of correlation (or comovement) across the 

whole history of 100 points.

Figure 8-5.  Illustrating the evolution of two series that are highly correlated but 
not cointegrated

Let us calculate the exact correlation coefficient and cointegration p-value. In 

the following code snippet, we call the corr() method to obtain the correlation of X 

with Y and use the coint() function from the statsmodels package to perform the 

cointegration test and retrieve the resulting p-value. The coint() function performs 

the augmented Engle-Granger two-step cointegration test, similar to how to manually 

carry out the two-step process earlier. The result shows that these two series are highly 

correlated but not cointegrated.

from statsmodels.tsa.stattools import coint

# calculate the correlation coefficeint

>>> print('Correlation: ' + str(X.corr(Y)))

# perform in cointegration test

score, pvalue, _ = coint(X,Y)

>>> print('Cointegration test p-value: ' + str(pvalue))

Correlation: 0.994833254077976

Cointegration test p-value: 0.17830098966789126
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In the next section, we dive deep into the implementation of the pairs trading 

strategy.

�Implementing the Pairs Trading Strategy
As a market-neutral trading strategy, pairs trading identifies two cointegrated stocks 

based on a specific statistical test procedure using historical data. It takes a long and 

a short position in these two stocks simultaneously. Therefore, no matter whether the 

market moves up or down for these two stocks, there is no impact on the pairs trading 

strategy, so long as their relative spread remains the same. Instead, the strategy monitors 

the spread between the two stocks, which should remain relatively constant over time, 

and makes a move in case of short-term price movements based on preset thresholds.

Let us first download the stock price data. We will focus on a few stock symbols of 

major tech giants: Google, Microsoft, Apple, Tesla, Meta, and Netflix. The following code 

snippet downloads the historical stock prices for the full year of 2022 and extracts the 

adjusted closing prices to the df variable:

# download data from yfinance

stocks = ['GOOG','MSFT','AAPL','TSLA','META','NFLX']

df = yf.download(stocks, start=start_date, end=end_date)['Adj Close']

Next, we analyze each unique pair of stocks and perform the cointegration test to 

look for those with a long-term equilibrium relationship.

�Identifying Cointegrated Pairs of Stocks
There are a total of six stocks in our search space, leading to a total of C

6

2
15= . Generating 

the list of unique pairs of stocks can be performed via the combinations() function from 

the itertools package, as shown in Listing 8-7.

Listing 8-7.  Generating all unique pairs of stocks

from itertools import combinations

# get all pairs of stocks

stock_pairs = list(combinations(df.columns, 2))
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>>> stock_pairs

[('AAPL', 'GOOG'),

 ('AAPL', 'META'),

 ('AAPL', 'MSFT'),

 ('AAPL', 'NFLX'),

 ('AAPL', 'TSLA'),

 ('GOOG', 'META'),

 ('GOOG', 'MSFT'),

 ('GOOG', 'NFLX'),

 ('GOOG', 'TSLA'),

 ('META', 'MSFT'),

 ('META', 'NFLX'),

 ('META', 'TSLA'),

 ('MSFT', 'NFLX'),

 ('MSFT', 'TSLA'),

 ('NFLX', 'TSLA')]

These 15 unique pairs of stocks are stored as tuples in a list. Each tuple will go 

through the cointegration test in the following section.

�Testing Pairwise Cointegration
In Listing 8-8, we loop through each pair of stocks and perform the Engle-Granger 

test using the coint() function. For each unique pair of stocks, we first extract the 

corresponding DataFrame via subsetting by column names and then perform the 

cointegration test using the two series to obtain the test score and p-value. We will then 

compare the p-value with a preset threshold and print out the result to assess if the test 

result is statistically significant.

Listing 8-8.  Performing a cointegration test for each unique pair of stocks

threshold = 0.1

# run Engle-Granger test for cointegration on each pair of stocks

for pair in stock_pairs:

    # subset df based on current pair of stocks

    df2 = df[list(pair)]
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    # perform test for the current pair of stocks

    score, pvalue, _ = coint(df2.values[:,0], df2.values[:,1])

    # check if the current pair of stocks is cointegrated

    if pvalue < threshold:

        print(pair, 'are cointegrated')

    else:

        print(pair, 'are not cointegrated')

Note that the threshold is set as 10% instead of 5% as before, since the test would 

show no cointegrated pair of stocks when setting the threshold as the latter. As it turns 

out, the coint() function is slightly different from our manual implementation of the 

test procedure earlier. For example, the order of the time series assumed by the coint() 

function may not be the same.

Running the code generates the following result:

('AAPL', 'GOOG') are not cointegrated

('AAPL', 'META') are not cointegrated

('AAPL', 'MSFT') are not cointegrated

('AAPL', 'NFLX') are not cointegrated

('AAPL', 'TSLA') are not cointegrated

('GOOG', 'META') are not cointegrated

('GOOG', 'MSFT') are cointegrated

('GOOG', 'NFLX') are not cointegrated

('GOOG', 'TSLA') are not cointegrated

('META', 'MSFT') are not cointegrated

('META', 'NFLX') are not cointegrated

('META', 'TSLA') are not cointegrated

('MSFT', 'NFLX') are not cointegrated

('MSFT', 'TSLA') are not cointegrated

('NFLX', 'TSLA') are not cointegrated

It turns out that only Google and Microsoft stock prices are cointegrated using the 

10% threshold on the significance level. These two stocks will be the focus of our pairs 

trading strategy in the following, starting by identifying the stationary spread between 

the two stocks.
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�Obtaining the Spread
As introduced earlier, the spread is a time series derived from the historical data of the 

two stocks in the pairs trading strategy. There are many ways to calculate the spread, 

and we will go with the one employed in the cointegration test procedure. Specifically, 

we define the spread as the residuals from the linear regression model between the two 

stocks. If they pass the cointegration test, we have confidence (up to 90% confidence 

level) that these two stocks, when linearly combined, generate a stationary time series in 

the spread.

Listing 8-9 generates the spread time series and visualizes it in a line plot. As before, 

we first extract the predictor X and target Y, apply the bias trick by adding a column of 

constant ones to X, run the linear regression model, and finally obtain the spread as the 

residual between the target and the prediction.

Listing 8-9.  Calculating the spread

# calculate the spread for GOOG and MSFT

Y = df["GOOG"]

X = df["MSFT"]

# estimate linear regression coefficients

X_with_constant = sm.add_constant(X)

model = OLS(Y, X_with_constant).fit()

# obtain the spread as the residuals

spread = Y - model.predict()

spread.plot(figsize=(12,6))

Running the code generates Figure 8-6. The spread now appears as white noise, that 

is, following a normally distributed Gaussian distribution. Since different stocks have 

different scales of spread, it would be recommended to standardize them into the same 

scalar for ease of comparison and strategy formulation. The next section covers the 

conversion process that turns the spread into z-scores.
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Figure 8-6.  Visualizing the spread as the residuals of the linear regression model

�Converting to Z-Scores
A z-score is a measure of how many standard deviations the daily spread is from 

its mean. It is a standardized score that we can use to compare across different 

distributions. Denote x as the original observation. The z-score is calculated as follows:

	
z x
=

− µ
σ 	

where μ and σ denote the mean and standard deviation of the time series, 

respectively.

Therefore, the magnitude of the z-score indicates how far away the current 

observation deviates from the mean in terms of the unit of standard deviations, and the 

sign of the z-score suggests whether the deviation is above (a positive z-score) or below 

(a negative z-score) the mean.

For example, assume a distribution with a mean of 10 and a standard deviation of 2. 

If an observation is valued at 8, the z-score for this observation would be 
10 8

2
1

−
= .  

In other words, this observation is one standard deviation away from the mean of the 

distribution.
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The z-score is often used to assess the statistical significance of observation in 

hypothesis testing. A z-score of greater than or equal to 1.96 (or smaller than or equal 

to –1.96) corresponds to a p-value of 0.05 or less, which is a common threshold for 

assessing the statistical significance.

In Listing 8-10, we visualize the probability density function (PDF) of a standard 

normal distribution with a mean of 0 and a standard deviation of 1. We first generate a 

list of equally spaced input values as the z-scores using the np.linspace() function and 

obtain the corresponding probabilities in the PDF of standard normal distribution using 

the norm.pdf() function with a location parameter of 0 (corresponding to the mean) and 

scale of 1 (corresponding to the standard deviation). We also shade the areas before –1.96 

and after 1.96, where a z-score of 1.96 corresponds to a 95% significance level in a statistical 

test. In other words, z-scores greater than or equal to 1.96 account for 5% of the total 

probability, and z-scores lower than or equal to –1.96 account for 5% as well.

Listing 8-10.  Calculating the z-score

# illustrate z score by generating a standard normal distribution with mu 0 

and sd 1

from scipy.stats import norm

# input: unbounded scalar, assumed to be in the range of [-5,-5] in this case

x = np.linspace(-5, 5, 100)

# output: probability between 0 and 1

y = norm.pdf(x, loc=0, scale=1)

# set up the plot

fig, ax = plt.subplots()

# plot the pdf of normal distribution

ax.plot(x, y)

# shade the area corresponding to a z-score of >=1.96 and <=-1.96

z_critical = 1.96

x_shade = np.linspace(z_critical, 5, 100)

y_shade = norm.pdf(x_shade, loc=0, scale=1)

ax.fill_between(x_shade, y_shade, color='red', alpha=0.3)

z_critical2 = -1.96

x_shade2 = np.linspace(-5, z_critical2, 100)

y_shade2 = norm.pdf(x_shade2, loc=0, scale=1)

ax.fill_between(x_shade2, y_shade2, color='red', alpha=0.3)
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# add labels and a title

ax.set_xlabel('Z-score')

ax.set_ylabel('Probability density')

# add a vertical line to indicate the z-score of 1.96 and -1.96

ax.axvline(x=z_critical, linestyle='--', color='red')

ax.axvline(x=z_critical2, linestyle='--', color='red')

# display the plot

plt.show()

Running the code generates Figure 8-7.

Figure 8-7.  Visualizing the probability density function of a standard normal 
distribution, with the 5% significance level shaded at both the left and right sides

In the context of hypothesis testing, the shaded area represents the probability 

of observing a z-score greater than 1.96 under the null hypothesis. Performing the 

statistical test would give us a z-score. If the z-score is above 1.96 or below –1.96 in a one-

sided test, we would reject the null hypothesis in favor of the alternative hypothesis at 

the 0.05 significance level, since the probability of observing the phenomenon under the 

null hypothesis would simply be too small.

In summary, we use the z-score as a standardized score to measure how many 

standard deviations an observation is from the mean of a distribution. It is used in 

hypothesis testing to determine the statistical significance of an observation, that is, the 

probability of an event happening under the null hypothesis. The significance level is 

often set at 0.05. We can use the z-score to calculate the probability of observing a value 

as extreme as the observation under the null hypothesis. Finally, we make a decision on 

whether to reject or fail to reject the null hypothesis.
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Now let us revisit the running example. Since stock prices are often volatile, we 

switch to the moving average approach to derive the running mean and standard 

deviation. That is, each daily spread would have a corresponding running mean and 

standard deviation based on the collection of spreads in the rolling window. In Listing 

8-11, we derive the running mean and standard deviation using a window size of ten and 

apply the transformation to derive the resulting z-scores as the standardized spread.

Listing 8-11.  Converting to z-scores based on moving averages

# convert to z score

# z-score is a measure of how many standard deviations the spread is from 

its mean

# derive mean and sd using a moving window

window_size = 10

spread_mean = spread.rolling(window=window_size).mean()

spread_std = spread.rolling(window=window_size).std()

zscore = (spread - spread_mean) / spread_std

zscore.plot(figsize=(12,6))

Running the code generates Figure 8-8, where the standardized spreads now look 

more normally distributed as white noise.

Figure 8-8.  Visualizing the z-scores after standardizing the spreads using the 
running mean and standard deviation
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Since we used a window size of ten, the first nine observations will appear as NA in 

the moving average series. Let us get rid of the initial NA values by first identifying the 

first valid index using the first_valid_index() function and then subsetting the z-score 

series, as shown in the following code:

# remove initial days with NA

first_valid_idx = zscore.first_valid_index()

zscore = zscore[first_valid_idx:]

>>> zscore

Date

2022-01-14    1.123748

2022-01-18    1.245480

2022-01-19    0.742031

2022-01-20    0.211878

2022-01-21    0.064889

                ...

2022-12-23    1.618937

2022-12-27    0.977235

2022-12-28    0.807607

2022-12-29   -0.230086

2022-12-30   -0.137035

Name: GOOG, Length: 242, dtype: float64

The next section formulates the trading strategy using the z-scores.

�Formulating the Trading Strategy
As introduced earlier, the pairs trading strategy utilizes the z-scores to generate trading 

signals in the face of short-term fluctuations in the spread, taking long and short 

positions in two cointegrated assets and profiting from the long-term mean reversion of 

the spread.

The trading signals are generated when the z-score obtained from the previous 

section crosses over a specific threshold. For example, we can long the first stock and 

short the second stock when the z-score is below –2, meaning that the spread is more 

negative than usual, and there is a good chance that the spread will revert back to its 

mean in the long run. Similarly, we can short the first stock and long the second stock 
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when the z-score is above 2, suggesting that the spread is more positive than usual and 

there is a good chance that the spread will go back to its mean. These constitute our 

entry signals.

On the other hand, when we are in an open position, the stock may move in an 

adverse direction in a very small amount of time. To protect our profit and stop the loss, 

we can place an exit signal that serves as a stop-loss order. For example, assume we 

entered a long position when the z-score was below –2 in the previous step. We can set 

up another threshold to exit the position when the z-score returns to a small value,  

say –1. Crossing this threshold indicates that the spread has reverted back to its mean.

The following list summarizes the formulation of trading signals for entering and 

exiting the long and short positions:

•	 Long entry: Enter a long position in the first stock when the z-score is 

below a preset negative threshold value (say –2).

•	 Long exit: Exit the long position in the first stock when the z-score 

crosses above another preset negative threshold value (say –1).

•	 Short entry: Enter a short position in the second stock when the 

z-score is above a preset positive threshold value (say 2).

•	 Short exit: Exit the short position in the second stock when the 

z-score crosses below another preset positive threshold value (say 1).

To manage these four types of signals in implementation, we could maintain a 

Pandas Series object for each stock, where each value is either 1 (for long), –1 (for short), 

or 0 (for exit position). To simplify the process, we also assume that the long and short 

positions for each stock are also entered and exited together. In other words, upon 

entering a long position for one stock, we would enter a short position in the other stock 

at the same time.

Figure 8-9 overlays these four trading signals in the previous z-score time series. The 

outer thresholds 2 and –2 represent entry signals for long and short positions, and the 

inner thresholds 1 and –1 represent the exit signals for existing positions. In between 

these two thresholds, we simply maintain the current position.
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Figure 8-9.  Illustrating the process of formulating trading signals based on preset 
entry and exit thresholds for the z-scores

In Listing 8-12, we first initialize the entry and exit thresholds, respectively. We 

create two Pandas Series objects (stock1_position and stock2_position) to store the 

daily positions for each stock. Based on the current z-score and present thresholds for 

entering and exiting long or short positions, we check the daily z-score in a loop and 

match it to one of the four cases for signal generation based on the following rule:

•	 Long stock 1 and short stock 2 if the z-score is below –2 and stock 1 

has no prior position.

•	 Short stock 1 and long stock 2 if the z-score is above 2 and stock 2 has 

no prior position.

•	 Exit the position in both stock 1 and stock 2 if the z-score is between  

–1 and 1.

•	 Maintain the position in both stock 1 and stock 2 for the rest of the 

cases, that is, the z-score is between –2 and –1 or between 1 and 2.

Listing 8-12.  Implementing pairs trading

# set the threshold values for entry and exit signals

entry_threshold = 2.0

exit_threshold = 1.0

# initialize the daily positions to be zeros

stock1_position = pd.Series(data=0, index=zscore.index)
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stock2_position = pd.Series(data=0, index=zscore.index)

# generate daily entry and exit signals for each stock

for i in range(1, len(zscore)):

    # zscore<-2 and no existing long position for stock 1

    if zscore[i] < -entry_threshold and stock1_position[i-1] == 0:

        stock1_position[i] = 1 # long stock 1

        stock2_position[i] = -1 # short stock 2

    # zscore>2 and no existing short position for stock 2

    elif zscore[i] > entry_threshold and stock2_position[i-1] == 0:

        stock1_position[i] = -1 # short stock 1

        stock2_position[i] = 1 # long stock 2

    # -1<zscore<1

    elif abs(zscore[i]) < exit_threshold:

        stock1_position[i] = 0 # exit existing position

        stock2_position[i] = 0

    # -2<zscore<-1 or 1<zscore<2

    else:

        �stock1_position[i] = stock1_position[i-1] # maintain existing 

position

        stock2_position[i] = stock2_position[i-1]

We can now calculate the overall profit of the pairs trading strategy. In Listing 8-13,  

we first obtain the daily percentage changes using the pct_change() function for 

each stock, starting from the index with a valid value. These daily returns will be 

adjusted according to the position we held from the previous trading day. In other 

words, multiplying the shifted positions with the daily returns gives the strategy’s daily 

returns for each stock, filling possible NA values with zero. Finally, we add up the daily 

returns from the two stocks, convert them to 1+R returns, and perform the sequential 

compounding procedure using the cumprod() function to obtain the wealth index.

Listing 8-13.  Calculating the cumulative return

# Calculate the returns of each stock

stock1_returns = (df["GOOG"][first_valid_idx:].pct_change() * stock1_

position.shift(1)).fillna(0)

stock2_returns = (df["MSFT"][first_valid_idx:].pct_change() * stock2_

position.shift(1)).fillna(0)
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# calculate the total returns of the strategy

total_returns = stock1_returns + stock2_returns

cumulative_returns = (1 + total_returns).cumprod()

# plot the cumulative returns

>>> cumulative_returns.plot()

Running the code generates Figure 8-10.

Figure 8-10.  Cumulative returns of the pairs trading strategy

The terminal return, extracted via the following code, shows that the pairs trading 

strategy delivers a total of 14.1% profit at the end of the trading year.

Again, this result is subject to more rigorous backtesting in terms of the selection of 

investment assets, trading periods, and evaluation metrics.

�Summary
In this chapter, we covered the concept of statistical arbitrage and hypothesis testing, as 

well as the implementation details based on the pairs trading strategy. We first walked 

through the overall process of developing a pairs trading strategy and introduced new 

concepts such as cointegration and stationarity. Next, we compared cointegration and 

correlation, both closely related but drastically different. Last, we introduced a case study 

on calculating the cumulative return using the pairs trading strategy.

In the next chapter, we will introduce Bayesian optimization, a principled way to 

search for optimal parameters of a trading strategy.
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�Exercises
•	 Evaluate the cointegration of selected stock pairs during bull and 

bear market periods separately. Do the results vary significantly? If 

so, discuss possible reasons.

•	 Implement rolling cointegration tests on a pair of time series data 

and observe how cointegration status (cointegrated or not) evolves 

over time.

•	 For a given pair of stocks, test the stationarity of the spread between 

them using the ADF test. If the spread is stationary, what does it 

imply for the pairs trading strategy?

•	 Given the time series data of spreads for a pair of stocks, perform a 

hypothesis test to check whether the mean of spreads is equal to zero.

•	 Calculate the z-scores of the spread for different lookback periods 

(e.g., 30, 60, and 90 days). How does changing the lookback period 

affect the distribution of z-scores and the performance of your pairs 

trading strategy?
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CHAPTER 9

Optimizing Trading 
Strategies with Bayesian 
Optimization
Financial trading employs numerous strategies in order to maximize returns. The 

effectiveness of these strategies can often hinge on the fine-tuning of the respective 

parameters, a task that can be both time-consuming and computationally expensive. 

Bayesian optimization comes into play as a highly efficient method for strategy 

optimization. It is a model-based optimization algorithm that uses the past evaluation 

results (in the form of a training set) to form a probabilistic surrogate model, which it 

exploits to determine the next point to evaluate using the so-called acquisition function. 

This approach is particularly useful in trading strategy optimization, where the objective 

function is often noisy, nonconvex, and expensive to evaluate.

In this chapter, we will explore the principles of Bayesian optimization and its use 

in trading strategy optimization. By the end of this chapter, readers will have a solid 

understanding of how Bayesian optimization can be used to fine-tune parameters and 

therefore enhance trading strategies, leading to potentially higher returns and more 

efficient use of computational resources.

�Optimizing Trading Strategies
We aim to maximize terminal profitability via a specific trading strategy, which often 

comes with a set of parameters. When properly located, the optimal set of parameters 

can generate the highest profit (if the goal is to maximize the terminal return) during the 

backtesting period. Since different testing periods likely exhibit different characteristics 

in terms of the asset price curve, a robust approach is to backtest a specific set of 
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parameters over different test periods that cover most representative scenarios. The 

optimal set of parameters thus consistently produces the highest terminal return over 

multiple backtesting periods.

The optimal set of parameters is the one that consistently produces the highest 

terminal return over multiple backtesting periods. This means that the strategy performs 

well not just in one specific market condition, but across a variety of typical scenarios. 

This approach helps to ensure that the strategy is robust and adaptable, capable of 

delivering strong returns regardless of market fluctuations.

However, manually fine-tuning a trading strategy by setting different parameter 

values is an extremely time-consuming process. On the one hand, the number of 

possible parameter values to test out may simply be too large. When there are too 

many alternative configurations to be tested, carrying out a grid search (search over 

each unique configuration) may look too prohibitive, especially when each parameter 

has multiple alternative values, and there are many such parameters. In particular, 

a continuous parameter will render such manual search infeasible due to infinitely 

many values. Yet, on the other hand, backtesting each specific set of parameters is 

not instantaneous. Instead, each round of execution may take very long, thus further 

exacerbating the challenge in the global search for the optimal strategy and making the 

process of manually fine-tuning a trading strategy a daunting task.

This is where automated optimization techniques, such as Bayesian optimization, 

come into play. These methods can efficiently navigate the search space (also referred 

to as the domain), intelligently choosing the next set of parameters to test based on 

previous results. This allows for more efficient sampling of the parameter space, saving 

both time and computational resources.

It turns out that there are many optimization techniques that aim at locating the 

optimal set of parameters for a specific trading strategy. Let us first understand the 

optimization problem that occurs upon searching for the optimal trading strategy.

�Parametric Trading Strategies
The parameters serve as the input variables to a specific trading strategy. A typical 

trading strategy has one or more parameters, each assuming a particular value within 

the prespecified range. Each parameter can vary within its defined ranges, allowing for a 

wide array of possible strategy configurations. Upon accepting these input parameters, 

the strategy will generate the resulting trading signals, from which the terminal return 
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over a specific backtesting period could be calculated as an indicator of the “goodness” 

of these parameters. The input parameters do not assume fixed values; instead, they are 

variables that can vary within predefined ranges.

Let us look at a concrete example. Recall the trend-following strategy covered earlier. 

This trading strategy relies on two moving averages to generate a trading signal: a short-

term moving average and a long-term moving average. We would enter into a long 

position if the short-term moving average crosses above the long-term moving average, 

after closing the existing short position, if any. Alternatively, we would enter into a short 

position if the short-term moving average crosses below the long-term moving average, 

after closing the existing long position, if any.

This strategy thus depends on two input parameters: the window lengths l1 and l2 

for the short-term and long-term moving averages, respectively. Each set of parameters 

would correspond to a number of performance metrics, such as the terminal return or 

the Sharpe ratio. Each set of parameters (l1 and l2) will generate a unique series of trading 

signals, which in turn will result in a specific terminal return or Sharpe ratio. These 

performance metrics serve as indicators of the “goodness” or effectiveness of the chosen 

parameters.

To proceed with the search for the optimal set of window length parameters, we 

would need a single-number metric to optimize over. Such scalar objective serves as 

the feedback signal on how good or bad the current set of input parameters is. This 

objective serves as a feedback signal, indicating the effectiveness of a given set of input 

parameters. For example, suppose we choose the Sharpe ratio as the objective to be 

maximized. This results in an objective function, where the output is the Sharpe ratio 

S over a specific backtesting period, the input parameters are window lengths l1 and l2, 

and we can represent the objective function as S = f (l1, l2). Here, f represents a black-box 

function, which means we do not have its explicit mathematical form or its derivative 

information. A black-box function is one where we do not have explicit knowledge of its 

mathematical form or its derivative information. This means that we can evaluate the 

function (i.e., we can determine the Sharpe ratio for a given set of parameters), but we 

don’t have a simple formula that allows us to directly calculate the optimal parameters. 

This makes global optimization extremely difficult since we know very little about the 

characteristics of this function while our goal is to find its global maximum point.

Such a lack of explicit knowledge about the function makes the optimization 

problem challenging. We are essentially searching for the global maximum of a function 

that we know very little about. However, this is precisely the type of problem that 

Bayesian optimization is designed to tackle.
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More formally, we could frame the question as this: for a given stock, locate the 

values of l1 and l2 in the range of [1,10] and [11,20] (note that we need to ensure l1 < l2) 

that maximizes the Sharpe ratio within the backtesting period of a whole year. Figure 9-1 

summarizes the characteristics of the optimization problem. Note that different trading 

strategies correspond to a different unknown black-box function f. Even if the strategy is 

the same, varying the backtesting period also yields a different function realization of the 

objective function f.

Figure 9-1.  Illustrating the optimization problem. The selected trading strategy 
manifests as an unknown function, and our goal is to search for the optimal set of 
window lengths that deliver the highest performance metric, the Sharpe ratio in 
this case

The next section provides more perspectives on the overall optimization process.

�More on Optimization
Optimization aims at locating the optimal value f ∗ = f (x∗) or its maximizer 

x fx
∗

∈= argmax   for all the input values x∈  in a maximization setting, which could also 

be a minimization problem. The procedure that carries out the optimization process 

is called the optimizer. There are multiple types of optimizers, with stochastic gradient 

descent (SGD) being the most popular optimizer in the space of deep learning. In the 

context of backtesting a trading strategy, we are mostly interested in optimizing the risk-

adjusted return, represented by the Sharpe ratio or other risk measures such as the max 

drawdown. Plus, we have the additional challenge that the inputs are not continuous 

values; instead, they are discrete such as window sizes or trading volumes.
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The optimizer takes a function f and figures out the desired optimum value f ∗ or its 

corresponding input parameter x ∗. Being an optimum value means that f (x ∗) is greater 

(or less, in the case of minimization) than any other values in the neighborhood. Here, 

f  ∗ may be either a local optimum or a global optimum. A local optimum means f (x ∗) is 

at the top of a mountain, and global optimum means the highest point of all mountains 

in the region. That is, in a maximization setting, we could take all the local maxima, 

compare each other, and report the maximum of them as the global maximum. Both 

are characterized by having a zero gradient at the point x ∗, yet the global optimum 

is often what we aim for. The optimizer needs a strategy to escape from these local 

optima and continue its search for the global optimum. There are various techniques 

to handle this issue, including using different initial values via the multistart procedure, 

applying random jumps in the parameter space, and using complex algorithms like 

simulated annealing or genetic algorithms that employ specific mechanisms to escape 

local optima.

In the context of developing a trading strategy, we are interested in the global 

maximizer (optimal input parameters) that gives the maximal Sharpe ratio. This is a 

complex task as there may be many sets of parameters that yield good results (local 

maxima), but we want to find the absolute best (global maximum).

Note that using the gradient information to identify an optimum represents a huge 

improvement in our understanding of optimization problems, as first proposed by Isaac 

Newton. Prior to his time, we would make the manual comparison for each unique pair, 

which is a combinatorial problem that requires the most time-consuming work. When 

the function form is available, such as y = x2, we could invoke the tool of calculus and 

solve for the point whose gradient is zero, that is, y′ = 2x = 0, giving x = 0. We could then 

calculate the second derivative or apply the sign chart method to ascertain if this is a 

maximum or minimum point.

The next section introduces more on the global optimization problem.

�Global Optimization
Optimization aims to locate the optimal set of parameters of interest across the whole 

search domain, often by carefully allocating limited resources. For example, when 

searching for the car key at home before leaving for work in two minutes, we would 

naturally start with the most promising place where we would usually put the key. If it 

is not there, think for a little while about the possible locations and go to the next most 

Chapter 9  Optimizing Trading Strategies with Bayesian Optimization



262

promising place. This process iterates until the key is found. In this example, the search 

policy is, in a way, behaving intelligently. It digests the available information on previous 

searches and proposes the following promising location, so as to use the limited 

resource wisely. The resource could be the limited number of trials we could run before 

a project deadline approaches tomorrow or the two-minute budget to search for the key 

in this case. The unknown function is the house itself, a binary value that reveals if the 

key is placed at the proposed location upon each sampling at the specific location.

This intelligent search policy represents a cornerstone concept in optimization, 

especially in the context of derivative-free optimization where the unknown function 

does not reveal any derivative information. Here, the policy needs to balance 

exploration, which probes the unknown function at various locations in the search 

domain, and exploitation, which focuses on promising areas where we have already 

identified a good candidate value. This trade-off is usually characterized by a learning 

curve showing the function value of the best-found solution over the number of function 

evaluations.

The key search example is considered an easy one since we are familiar with the 

environment in terms of its structural design. However, imagine locating an item in a 

totally new environment. The optimizer would need to account for the uncertainty due 

to unfamiliarity with the environment while determining the next sampling location via 

multiple sequential trials. When the sampling budget is limited, as is often the case in 

real-life searches in terms of time and resources, the optimizer needs to argue carefully 

on the utility of each candidate input parameter value.

This process is characterized by sequential decision-making under uncertainty, 

a problem that lies at the heart of the field of optimization. When faced with such 

a situation, optimizers need to develop an intelligent search policy that effectively 

manages the trade-off between exploration (searching new areas) and exploitation 

(capitalizing on known, promising locations). In the context of searching for an item 

in an unfamiliar environment, exploration involves searching in completely new areas 

where the item could potentially be located, while exploitation involves focusing the 

search around areas where clues or signs of the item have already been found. The 

challenge is to balance these two approaches, as focusing too much on exploration could 

lead to a waste of time and resources, while focusing too much on exploitation could 

result in missed opportunities.
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In the world of trading strategies, this situation amounts to a search in a high-

dimensional parameter space where each dimension represents a different aspect of the 

trading strategy. Exploration would involve trying out completely new sets of parameters, 

while exploitation would involve fine-tuning the most promising sets of parameters 

already discovered. The optimizer aims to effectively navigate this high-dimensional 

space and find the set of parameters that yields the best possible performance in terms 

of the Sharpe ratio or other preset metrics.

Let us formalize this sequential global optimization using mathematical terms. 

We are dealing with an unknown scalar-valued objective function f based on a specific 

domain  . In other words, the unknown subject of interest f is a function that maps a 

certain candidate parameter in   to a real number in ,  that is, f : → . We typically 

place no specific assumption about the nature of the domain   other than that it should 

be a bounded, compact, and convex set.

A bounded set   means that it has upper and lower limits, and all values of the 

parameters contained within   fall within these bounds. A compact set is one that is 

both bounded and closed, meaning that it includes its boundary. And a convex set is one 

in which, for any two points within the set, the set contains the whole line segment that 

joins them. These assumptions make our problem mathematically tractable and realistic 

in the real-world scenario.

Unless otherwise specified, we focus on the maximization setting instead of 

minimization since maximizing the objective function is equivalent to minimizing 

the negated objective, followed by another negation to recover the original maximum 

value. The optimization procedure thus aims at locating the global maximum f ∗ or its 

corresponding location x ∗ in a principled and systematic manner. Mathematically, we 

wish to locate f ∗ where

	
f f x f x

x

∗

∈

∗= ( ) = ( )max


	

Or equivalently, we are interested in its location x∗ where

	 x f x∗
∈= ( )argmax
x  	

The argmax operation is used in mathematics to denote the argument of the 

maximum or the set of points in the domain   that maximizes the function f. When used 

in this optimization problem, it means that we are looking for the specific values of the 

input parameters that yield the maximum value of the function.
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Again, note that f (x) is unknown and only indirectly observable through sampling, 

and   could be a set in a high-dimensional space. So, we are looking for the best 

parameters in a high-dimensional space that we can only explore one sample at a time. 

This is what makes the global optimization problem challenging in practice.

Figure 9-2 provides an example one-dimensional objective function with its global 

maximum f ∗ and its location x ∗ highlighted. The goal of global optimization is thus 

to systematically reason about a series of sampling decisions within the total search 

space  , so as to locate the global maximum as fast as possible, that is, sampling as few 

times as possible, instead of conducting random trials or grid search. Besides, when the 

optimizer makes a sequence of decisions about where in the parameter space to sample 

next, each decision is influenced by the results of previous samples (also referred to as 

the training set) and is aimed at improving the estimated optimum.

Figure 9-2.  An example objective function with the global maximum f ∗ and its 
location x∗. The goal of global optimization is to systematically reason about a 
series of sampling decisions so as to locate the global maximum as fast as possible

Note that this is a nonconvex function, as is often the case in real-life functions we 

are optimizing. A nonconvex function means that there are multiple local optima in the 

function. Thus, we could not resort to first-order gradient-based methods to reliably 

search for the global optimum, as we did for the convex function y = x2. Using the 

gradient-based method, such as solving for the solution that makes the gradient of the 

original function equal to zero, will likely converge to a local optimum. This is also one of 

the advantages of Bayesian optimization, introduced as a global optimization technique 

later, compared with other gradient-based optimization procedures for local search.

The next covers more on the objective function.
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�The Objective Function
The objective function governs how the quantity of interest is generated. The whole 

chapter would be finished if we knew its explicit expression, and the problem would be 

considered solved if we could access its underlying mathematical form. Unfortunately, 

many objective functions in real life are black boxes to us: the stock price of a given 

company the next day, the weather two days from now, or the exact time point when the 

interest rate starts to go down. Even though the objective function is a black box, we can 

still use optimization techniques to find the best possible solution given the available 

data and resources.

There are different types of objective functions. For example, some functions are 

wiggly shaped, while others are smooth; some are convex, while others are nonconvex. 

Many complex functions are almost impossible to be expressed using an explicit 

expression. For the specific type of objective functions that govern the performance of 

trading strategies, we summarize the following common attributes:

•	 We do not have access to the explicit expression of the objective 

function, making it a “black-box” function. This means we can only 

interact with the objective function by sampling at a specific location 

to perform a functional evaluation.

•	 The returned value by probing at a specific input parameter value is 

highly sensitive to the choice of backtesting period. In other words, 

it is often corrupted by noise and does not represent the exact true 

value of the objective function at that location. Due to the indirect 

evaluation of its actual value, we need to account for such noise 

embedded in the actual observations from the functional evaluation.

•	 Each functional evaluation is costly, thus ruling out the option for 

an exhaustive probing exercise. We need a sample-efficient method 

to minimize the number of evaluations of the trading strategy while 

trying to locate its global optimum. In other words, the optimizer 

needs to fully utilize the existing observations and systematically 

reason about the next sampling decision so that the limited resource 

is well spent on promising candidate parameter values.
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•	 We do not have access to its gradient. When the functional evaluation 

is relatively cheap, and the functional form is smooth, it would be 

very convenient to compute/estimate the gradient and optimize 

using the first-order procedure such as gradient descent. Access to 

the gradient is necessary for us to understand the adjacent curvature 

of a particular evaluation point. With gradient evaluations, the 

follow-up direction of travel is easier to determine.

The black-box function, such as the one that calculates the Sharpe ratio based on 

two window length parameters, is challenging to optimize for the preceding reasons. 

To further elaborate on the possible functional form of the objective, we list three 

representative examples in a minimization setting, as shown in Figure 9-3. On the left 

is a convex function with only one global minimum; this is considered easy for global 

optimization, since we could just set the derivative of the function to zero and solve 

for the optimal value of the input variable. In the middle is a nonconvex function with 

multiple local optima; it is difficult to ascertain if the current local optimum is also 

globally optimal. It is also difficult to identify whether this is a flat region vs. a local 

optimum for a function with a flat region full of saddle points, as shown on the right 

panel. Such nonconvexity makes it difficult to perform global optimization efficiently.

Figure 9-3.  Three possible functional forms. On the left is a convex function whose 
optimization is easy. In the middle is a nonconvex function with multiple local 
minima, and on the right is also a nonconvex function with a wide flat region full 
of saddle points. Optimization for the latter two cases takes a lot more work than 
for the first case
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Let us look at one example of hyperparameter tuning when training machine 

learning models. A machine learning model is a function that involves a set of 

parameters to be optimized given the input data. These parameters are automatically 

tuned via a specific optimization procedure, typically governed by a set of corresponding 

meta parameters called hyperparameters, which are fixed before the model training 

starts. For example, when training deep neural networks using the gradient descent 

algorithm, a learning rate that determines the step size of each parameter update needs 

to be manually selected in advance. If the learning rate is too large, the model may 

diverge and eventually fails to learn. If the learning rate is too small, the model may 

converge very slowly as the weights are updated by only a small margin in this iteration. 

See Figure 9-4 for a visual illustration of the two scenarios.

Figure 9-4.  Slow convergence due to a small learning rate on the left and 
divergence due to a large learning rate on the right

Choosing a reasonable learning rate as a preset hyperparameter thus plays a critical 

role in training a good machine learning model. Locating the best learning rate and 

other hyperparameters is an optimization problem that fits the purpose of Bayesian 

optimization (introduced later). In the case of hyperparameter tuning, evaluating each 

learning rate is a time-consuming exercise. The objective function would generally be 

the model’s final test set loss (in a minimization setting) upon model convergence. A 

model needs to be fully trained in order to do reasonably well on the training set, which 

typically involves hundreds of epochs of training to reach a stable convergence. Here, 

one epoch is a complete pass of the entire training dataset.
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The functional form of the test set loss or accuracy may also be highly nonconvex 

and multimodal for the hyperparameters. Upon convergence, it is not easy to know 

whether we are in a local optimum, a saddle point, or a global optimum. Besides, some 

hyperparameters may be discrete, such as the number of nodes and layers when training 

a deep neural network. We could not calculate its gradient in such a case since it requires 

continuous support in the domain.

The Bayesian optimization approach is designed to tackle all these challenges. It 

has been shown to deliver good performance in locating the best hyperparameters 

under a limited budget (i.e., the number of evaluations allowed). It is also widely and 

successfully used in other fields, such as chemical engineering.

�Bayesian Optimization
As the name suggests, Bayesian optimization is an area that studies optimization 

problems using the Bayesian approach. Optimization aims at locating the optimal 

objective value (i.e., a global maximum or minimum) of all possible values or the 

corresponding location of the optimum over the search domain, also called the 

environment. The search process starts at a specific initial location and follows a 

particular policy to iteratively guide the following sampling locations, collect new 

observations, and refresh the guiding search policy.

At its core, Bayesian optimization uses a probabilistic model (such as Gaussian 

processes) to represent the unknown function and a utility function (also called 

the acquisition function) to decide where to sample next. It iteratively updates the 

probabilistic model with new sample points and uses this updated model to select the 

next sampling location.

As shown in Figure 9-5, the overall optimization process consists of repeated 

interactions between the policy (the optimizer) and the environment (the unknown 

objective function). The policy is a mapping function that takes in a new input 

parameter (plus historical ones) and outputs the next parameter value to try out in a 

principled way. Here, we are constantly learning and improving the policy as the search 

continues. A good policy guides our search toward the global optimum faster than a bad 

one. In arguing which parameter value to try out, a good policy would spend the limited 

sampling budget on promising candidate values.
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Figure 9-5.  The overall Bayesian optimization process. The policy digests the 
historical observations and proposes a new sampling location. The environment 
governs how the (possibly noise-corrupted) observation at the newly proposed 
location is revealed to the policy. Our goal is to learn an efficient and effective 
policy that could navigate toward the global optimum as quickly as possible

On the other hand, the environment contains the unknown objective function to 

be learned by the policy within a specific boundary (maximum and minimum values of 

the parameter value). When probing the functional value as requested by the policy, the 

actual observation revealed by the environment to the policy is often corrupted by noise 

due to the choice of the backtesting period, making the learning even more challenging. 

Thus, Bayesian optimization, a specific approach for global optimization, would like 

to learn a policy that can help us efficiently and effectively navigate toward the global 

optimum of an unknown, noise-corrupted objective function as quickly as possible.

When deciding which parameter value to try next, most search strategies face the 

exploration and exploitation trade-off. Exploration means searching within an unknown 

and faraway area, and exploitation refers to searching within the neighborhood visited 

earlier in the hope of locating a better functional evaluation. Bayesian optimization also 

faces the same dilemma. Ideally, we would like to explore more at the initial phase to 

Chapter 9  Optimizing Trading Strategies with Bayesian Optimization



270

increase our understanding of the environment (the black-box function) and gradually 

shift toward the exploitation mode that taps into the existing knowledge and digs into 

known promising regions.

Bayesian optimization achieves such a trade-off via two components: a Gaussian 

process (GP) used to approximate the underlying black-box function and an acquisition 

function that encodes the exploration-exploitation trade-off into a scalar value as an 

indicator of the sampling utility across all candidates in the domain. Let us look at each 

component in detail in the following sections.

�Gaussian Process
As a widely used stochastic process (able to model an unknown black-box function and 

the corresponding uncertainties of modeling), the Gaussian process takes the finite-

dimensional probability distributions one step further into a continuous search domain 

that contains an infinite number of variables, where any finite set of points in the domain 

jointly forms a multivariate Gaussian distribution. It is a flexible framework to model 

a broad family of functions and quantify their uncertainties, thus being a powerful 

surrogate model used to approximate the true underlying function. Let us look at a few 

visual examples to see what it offers.

Figure 9-6 illustrates an example of a “flipped” prior probability distribution for a 

single random variable selected from the prior belief of the Gaussian process. Every 

single point represents a parameter value, although it is now modeled as a random 

variable and thus has randomness in its realizations. Specifically, each point follows a 

normal distribution. Plotting the mean (solid line) and 95% credible interval (dashed 

lines) of all these prior distributions gives us the prior process for the objective function 

regarding each location in the domain. The Gaussian process thus employs an infinite 

number of normally distributed random variables within a bounded range to model the 

underlying objective function and quantify the associated uncertainty via a probabilistic 

approach.
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Figure 9-6.  A sample prior belief of the Gaussian process represented by the 
mean and 95% credible interval for each location in the domain. Every objective 
value is modeled by a random variable that follows a normal prior predictive 
distribution. Collecting the distributions of all random variables and updating 
these distributions as more observations are collected could help us quantify the 
potential shape of the true underlying function and its probability

The prior process can thus serve as the surrogate data-generating process of the 

unknown black-box function, which can also be used to generate samples in the form 

of functions, an extension of sampling single points from a probability distribution. For 

example, if we were to repeatedly sample from the prior process, we would expect the 

majority (around 95%) of the samples to fall within the credible interval and a minority 

outside this range. Figure 9-7 illustrates three functions sampled from the prior process.
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Figure 9-7.  Three example functions sampled from the prior process, where the 
majority of the functions fall within the 95% credible interval

In a Gaussian process, the uncertainty on the objective value of each location (i.e., 

the parameter value of a trading strategy) is quantified using a credible interval. As we 

start to collect observations and assume a noise-free and exact observation model, the 

uncertainties at the collection locations will be resolved, leading to zero variance and 

direct interpolation at these locations. Besides, the variance increases as we move further 

away from the observations, which is a result of integrating the prior process (the prior 

belief about the unknown black-box function) with the information provided by the actual 

observations. Figure 9-8 illustrates the updated posterior process after collecting two 

observations. The posterior process with updated knowledge based on the observations 

will thus make a more accurate surrogate model and better estimate the objective function.

Figure 9-8.  Updated posterior process after incorporating two exact observations 
in the Gaussian process. The posterior mean interpolates through the observations, 
and the associated variance reduces as we move nearer the observations
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Mathematically, for a new sampling location x∗ ∈ , the corresponding functional 

evaluation f∗ following the Gaussian process would assume a conditional normal 

distribution:

	
p f D N fn∗ ∗ ∗ ∗ ∗( ) = ( ); , | ,x µ σ 2
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scalar observations. The closed form of the posterior mean and variance functions can 

be derived by invoking the multivariate Gaussian theorem, giving
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Therefore, we can obtain the posterior mean and variance at any arbitrary location 

based on the posterior Gaussian process model, serving as the surrogate model for the 

underlying function of the specific trading strategy.

Now let us look at the other critical component: the acquisition function.

�Acquisition Function
The tools from Bayesian inference and the incorporation of the Gaussian process provide 

principled reasoning on the underlying distribution of the objective function. However, 

we would still need to incorporate such probabilistic information in our decision-

making to search for the global maximum. We need to build a policy (by maximizing 

the acquisition function) that absorbs the most updated information on the objective 

function and recommends the following most promising sampling location in the face 

of uncertainties across the domain. The optimization policy guided by maximizing the 

acquisition function thus plays an essential role in connecting the Gaussian process 

to the eventual goal of Bayesian optimization. In particular, the posterior predictive 

distribution obtained from the updated Gaussian process provides an outlook on the 

objective value and the associated uncertainty for locations not explored yet, which 

could be used by the optimization policy to quantify the utility of any alternative location 

within the domain.

When converting the posterior knowledge about candidate locations, that is, 

posterior parameters such as the mean and the variance of the Gaussian distribution at 

each location, to a single scalar utility score, the acquisition function comes into play. 
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An acquisition function is a manually designed mechanism that evaluates the relative 

potential of each candidate location in the form of a scalar score, and the location 

with the maximum score will be used as the next sampling choice. It is a function that 

assesses how valuable a candidate’s location is when we acquire/sample it.

The acquisition function takes into account both the expected value and the 

uncertainty (variance) of the function at unexplored locations, as provided by the 

Gaussian process posterior distribution. In this context, exploration means sampling 

in regions of high uncertainty, while exploitation involves sampling where the function 

value is expected to be high.

The acquisition function is also cheap to evaluate as a side computation since we 

need to evaluate it at every candidate location and then locate the maximum utility 

score, posing another (inner) optimization problem. Figure 9-9 provides a sample curve 

of the acquisition function.

Figure 9-9.  Illustrating a sample acquisition function curve. The location that 
corresponds to the highest value of the acquisition function is the next location 
(parameter value of a trading strategy) to sample. Since there is no value added if 
we were to sample those locations already sampled earlier, the acquisition function 
thus reports zero at these locations

Many choices of acquisition functions have been proposed in the literature. Popular 

choices include the expected improvement (EI) and upper confidence bound (UCB). 

Still, it suffices, for now, to understand that it is a predesigned function that needs to 

balance two opposing forces: exploration and exploitation. Exploration encourages 

resolving the uncertainty across the domain by sampling at unfamiliar and distant 
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locations, since these areas may bear a big surprise due to high certainty. Exploitation 

recommends a greedy move at promising regions where we expect the observation 

value to be high. The exploration-exploitation trade-off is a common topic in many 

optimization settings.

Another distinguishing feature is the short-term (myopic) and long-term 

(nonmyopic) trade-offs. A short-term acquisition function only focuses on one step 

ahead and assumes this is the last chance to sample from the environment; thus, the 

recommendation is to maximize the immediate utility. A long-term acquisition function 

employs a multistep lookahead approach by simulating potential evolutions/paths in the 

future and making a final recommendation by maximizing the long-run utility.

There are many other emerging variations in the design of the acquisition function, 

such as adding safety constraints to the system under study. In any case, we would judge 

the quality of the policy using a specific acquisition function based on how close we 

are to the location of the global maximum upon exhausting our budget. The distance 

between the current and optimal locations is often called instant regret or simple regret. 

Alternatively, the cumulative regret (cumulative distances between historical locations 

and the optimum location) incurred throughout the sampling process can also be used.

Let us dive more into two popular acquisition functions: expected improvement (EI) 

and upper confidence bound (UCB).

�EI and UCB
Acquisition functions differ in multiple aspects, including the choice of the utility 

function, the number of lookahead steps, the level of risk aversion or preference, 

etc. Introducing risk appetite directly benefits from the posterior belief about the 

underlying objective function. In the case of GP regression as the surrogate model, the 

risk is quantified by the covariance function, with its credible interval expressing the 

uncertainty level about the objective’s possible values.

Regarding the utility of the collected observations, the expected improvement 

chooses the historical maximum of the observed value as the benchmark for comparison 

upon selecting an additional sampling location. It also implicitly assumes that only 

one more additional sampling is left before the optimization process terminates. The 

expected marginal gain in utility (i.e., the acquisition function) becomes the expected 

improvement in the maximal observation, calculated as the expected difference between 

the observed maximum and the new observation after the additional sampling at an 

arbitrary sampling location.
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Specifically, denote y1 : n = {y1, …, yn} as the set of collected observations at the 

corresponding locations x1 : n = {x1, …, xn}. Assuming the noise-free setting, the actual 

observations would be exact, that is, y1 : n = f1 : n. Given the collected dataset n n nx y={ }1 1: :
,

, the corresponding utility is u f fn n n( ) = { } = ∗
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:1
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maximum observed so far. Similarly, assume we obtain another observation yn + 1 = fn + 1 at 

a new location xn + 1, the resulting utility is u u x f f fn n n n n n + + + +
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. Taking the difference between these two gives the increase in utility due to the addition 

of another observation:
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which returns the marginal increment in the incumbent if f fn n+
∗≥1  and zero 

otherwise, as a result of observing fn + 1. Readers familiar with the activation function in 

neural networks would instantly connect this form with the ReLU (rectified linear unit) 

function, which keeps the positive signal and silences the negative one.

Due to randomness in yn + 1, we can introduce the expectation operator to integrate 

it out, giving us the expected marginal gain in utility, that is, the expected improvement 

acquisition function:
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Under the framework of GP regression, we can obtain a closed-form expression of 

the expected improvement acquisition function as follows:
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where fn
∗ is the best-observed value so far, and ϕ and Φ denote the probability and 

cumulative density function of a standard normal distribution at the tentative point xn + 1, 

respectively. μn + 1 and σn + 1 denote the posterior mean and standard deviation at xn + 1.

The closed-form EI consists of two components: exploitation (the first term) 

and exploration (the second term). Exploitation means continuing sampling the 

neighborhood of the observed region with a high posterior mean, and exploration 

Chapter 9  Optimizing Trading Strategies with Bayesian Optimization



277

encourages sampling an unvisited area where the posterior uncertainty is high. The 

expected improvement acquisition function thus implicitly balances off these two 

opposing forces.

On the other hand, the UCB acquisition function, as defined in the following, 

encodes such a trade-off explicitly:

	 α µ β σ
UCB

;xn n n n n+ + + +( ) = +
1 1 1 1
 	

where βn + 1 is a user-defined stagewise hyperparameter that controls the trade-off 

between the posterior mean and standard deviation. A low value of βn + 1 encourages 

exploitation, and a high value of βn + 1 leans more toward exploration.

Both acquisition functions will then be assessed globally in search of the maximizing 

location, which will serve as the next sampling choice. Let us summarize the full BO 

(Bayesian optimization) loop in the following section.

�The Full BO Loop
Bayesian optimization is an iterative process between the (uncontrolled) environment 

and the (controlled) policy. The policy involves two components supporting the 

sequential decision-making: a Gaussian process as the surrogate model to approximate 

the true underlying function (i.e., the environment), and an acquisition function to 

recommend the best sampling location. The environment receives the probing request 

at a specific location and responds by revealing a new observation that follows a 

particular observation model. The Gaussian process surrogate model then uses the new 

observation to obtain a posterior process in support of follow-up decision-making by the 

preset acquisition function. This process continues until the stopping criterion, such as 

exhausting a given budget, is met. Figure 9-10 illustrates this process.
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Figure 9-10.  The full Bayesian optimization loop featuring an iterative 
interaction between the unknown (black-box) environment and the decision-
making policy that consists of a Gaussian process for probabilistic evaluation 
and acquisition function for utility assessment of candidate locations in the 
environment

With the basic BO framework in mind, let us test it out by optimizing the window 

lengths of the pairs trading strategy.

�Optimizing the Pairs Trading Strategy
As introduced earlier, the pairs trading strategy characterizes two input arguments: the 

entry and exit thresholds. More specifically, we would like to apply the BO technique to 

search for the optimal entry and exit thresholds such that the black-box function reaches 

a maximum value. For simplicity, we only perform the Sharpe ratio calculation once over 

one backtesting period. A more robust approach to minimize the observation noise is 

to test it over multiple representative backtesting periods and report the average Sharpe 

ratio as a fair indication of the goodness of the given input parameters.

To begin with, we will first install two packages: the botorch package that performs 

BO based on PyTorch and the yfinance package to facilitate data downloading.

!pip install botorch

!pip install yfinance
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We also import a few supporting packages in the following, along with setting the 

random seed for reproducibility:

import os

import math

import torch

import random

import numpy as np

from matplotlib import pyplot as plt

import torch.nn as nn

import yfinance as yf

import pandas as pd

from statsmodels.tsa.stattools import adfuller

from statsmodels.regression.linear_model import OLS

import statsmodels.api as sm

%matplotlib inline

SEED = 1

random.seed(SEED)

np.random.seed(SEED)

torch.manual_seed(SEED)

The next section touches upon the performance of the pairs trading strategy as the 

black-box function.

�Trading Strategy Performance As the Black-Box Function
The trend-following strategy will govern the output of the black-box function. Previously, 

we have illustrated how to calculate the Sharpe ratio given a specific set of entry and 

exit parameters. Assuming the Sharpe ratio calculated over one backtesting period is 

sufficiently representative, we would like to modularize the whole process of mapping 

a set of input parameters to the output performance metric. In other words, we need to 

code a function (or a class) that spits out the Sharpe ratio for a given set of entry and exit 

thresholds.

To start with, we define a class called QTS_OPTIMIZER that inherits the nn.Module 

class. This will serve as the main horsepower for generating observations given any 

query points. In the __init__() method, we require three compulsory arguments: the 
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ticker pairs in ticker_pair, the starting date of the stock price in start_date, and the 

end date in end_date. We also set an optional argument riskfree_rate to control the 

risk-free interest rate used for Sharpe ratio calculation. This is shown in Listing 9-1.

Listing 9-1.  Defining the black-box function for Bayesian optimization

class QTS_OPTIMIZER(nn.Module):

    �def __init__(self, ticker_pair, start_date, end_date, riskfree_

rate=0.04):

        super(QTS_OPTIMIZER, self).__init__()

        self.ticker_pair = ticker_pair

        self.start_date = start_date

        self.end_date = end_date

        self.riskfree_rate = riskfree_rate

        self.stock = self.get_stock_data()

Upon instantiating this class, the __init__() function will get triggered, which also 

includes downloading the stock data for the selected ticker and date range. Listing 9-2 

has the definition of the get_stock_data() method, where we use the usual download() 

function to download the data and extract the adjusted closing price that considers 

dividends and splits.

Listing 9-2.  Defining the method to retrieve stock data

def get_stock_data(self):

        print("===== DOWNLOADING STOCK DATA =====")

        �df = yf.download(['GOOG'], start=self.start_date, end=self.end_

date)['Adj Close']

        print("===== DOWNLOAD COMPLETE =====")

        return pd.DataFrame(df)

Next, we introduce the forward() method, which gets triggered automatically upon 

calling the class object itself. This is where we implement the mechanism of the black-box 

function, which takes two parameters as the input and outputs the corresponding Sharpe 

ratio over the prespecified stock data and backtesting period. As shown in Listing 9-3,  

upon passing the entry and exit thresholds entry_threshold and exit_threshold, we 

estimate the linear regression coefficients, calculate the residuals, and obtain the z-scores. 
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We then create the position columns to represent the trading position determined by the 

daily entry and exit signals. Based on the daily returns, we could then calculate the joint 

returns and the resulting annualized return and volatility, followed by the Sharpe ratio as 

the final return of the forward() function.

Listing 9-3.  Defining the method to calculate the Sharpe ratio

    def forward(self, entry_threshold, exit_threshold, window_size=10):

        # add sma columns

        stock_df = self.stock.copy()

        # calculate the spread for GOOG and MSFT

        Y = stock_df[self.ticker_pair[0]]

        X = stock_df[self.ticker_pair[1]]

        # estimate linear regression coefficients

        X_with_constant = sm.add_constant(X)

        model = OLS(Y, X_with_constant).fit()

        # obtain the spread as the residuals

        spread = Y - model.predict()

        # calculate rolling mean and sd

        spread_mean = spread.rolling(window=window_size).mean()

        spread_std = spread.rolling(window=window_size).std()

        zscore = (spread - spread_mean) / spread_std

        # remove initial days with NA

        first_valid_idx = zscore.first_valid_index()

        zscore = zscore[first_valid_idx:]

        # initialize the daily positions to be zeros

        stock1_position = pd.Series(data=0, index=zscore.index)

        stock2_position = pd.Series(data=0, index=zscore.index)

        # generate daily entry and exit signals for each stock

        for i in range(1, len(zscore)):

            �# zscore<-entry_threshold and no existing long position 

for stock 1

            if zscore[i] < -entry_threshold and stock1_position[i-1] == 0:

                stock1_position[i] = 1 # long stock 1

                stock2_position[i] = -1 # short stock 2
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            �# zscore>entry_threshold and no existing short position 

for stock 2

            elif zscore[i] > entry_threshold and stock2_position[i-1] == 0:

                stock1_position[i] = -1 # short stock 1

                stock2_position[i] = 1 # long stock 2

            # -exit_threshold<zscore<exit_threshold

            elif abs(zscore[i]) < exit_threshold:

                stock1_position[i] = 0 # exit existing position

                stock2_position[i] = 0

            �# -entry_threshold<zscore<-exit_threshold or exit_

threshold<zscore<entry_threshold

            else:

                �stock1_position[i] = stock1_position[i-1] # maintain 

existing position

                stock2_position[i] = stock2_position[i-1]

        # Calculate the returns of each stock

        �stock1_returns = (Y[first_valid_idx:].pct_change() * stock1_

position.shift(1)).fillna(0)

        �stock2_returns = (X[first_valid_idx:].pct_change() * stock2_

position.shift(1)).fillna(0)

        # calculate the total returns of the strategy

        total_returns = stock1_returns + stock2_returns

        # calculate annualized return

        �annualized_return = (1 + total_returns).prod()**(252/Y[first_valid_

idx:].shape[0])-1

        # calculate annualized volatility

        annualized_vol = total_returns.std()*(252**0.5)

        if annualized_vol==0:

            annualized_vol = 100

        # calculate Sharpe ratio

        �sharpe_ratio = (annualized_return - self.riskfree_rate) / 

annualized_vol

        return sharpe_ratio
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Let us test the class out. The following code instantiates the class into the qts 

variable by passing the ticker symbol of Google and Microsoft with a date range of the 

start and end dates of 2022. Note the printed message after running this line, showing 

that the get_stock_data() function gets triggered during the process. Note that there 

is no mention of entry and exit signals at this stage; the initialization stage is meant to 

handle all preparatory work before the actual scoring in the forward() function.

>>> qts = QTS_OPTIMIZER(ticker_pair=["GOOG","MSFT"], start_

date="2022-01-01", end_date="2023-01-01")

===== DOWNLOADING STOCK DATA =====

[*********************100%***********************]  1 of 1 completed

===== DOWNLOAD COMPLETE =====

We can also print the first few rows of the object’s stock attribute as a sanity check:

>>> qts.stock.head()

           GOOG       MSFT

Date

2022-01-03 145.074493 330.813873

2022-01-04 144.416504 325.141388

2022-01-05 137.653503 312.659851

2022-01-06 137.550995 310.189270

2022-01-07 137.004501 310.347412

Let us test out the scoring function. In the following code snippet, we pass in 

different values of entry and exit thresholds and obtain the corresponding Sharpe ratio 

for the whole year of 2022:

>>> qts(entry_threshold=2, exit_threshold=1)

1.690533096171306

>>> qts(entry_threshold=1.5, exit_threshold=0.5)

1.8278364562046485

We see that different values of the thresholds correspond to different Sharpe ratios. 

Our task is to find the optimal set of entry and exit thresholds that correspond to the 

highest Sharpe ratio, as fast as possible. This is where Bayesian optimization comes in.
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�Generating Training Set for Bayesian Optimization
Most machine learning models require a training set to start with. The training set 

provides the correct input-output mapping relationship for the model to fine-tune 

its weights and, therefore, learn such a mapping relationship. This is the same for 

the Bayesian optimization model. Specifically, the training set helps update the prior 

distribution used by the Gaussian process, so that its governing hyperparameters 

get updated, which would then be used to obtain a more representative posterior 

distribution.

The following code snippet creates a few preparatory variables for later use, where 

device denotes the computing device (CPU or GPU) to run the calculations later, dtype 

specifies the data type of the PyTorch tensor, and x1_bound and x2_bound contain the 

lower and upper bounds for the short and long windows, respectively. Here, we specify 

the short window to vary from 1 to 10 and the long window from 11 to 20:

# generate initial training dataset for optimization

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

dtype = torch.double

x1_bound = [1,3]

x2_bound = [0,1]

Next, we define a function named generate_initial_data() to get a set of training 

data. As shown in Listing 9-4, this function takes a single input n to specify the number 

of observations in the training set. Inside the function, we first generate a set of random 

values using the torch.rand() function from Torch. After combining the set of entry and 

exit thresholds into a single variable train_x, we iterate through each row to apply the 

black-box scoring function qts() and obtain the corresponding Sharpe ratio, collectively 

stored in train_y. Besides returning train_x and train_y, we also report the highest 

score in best_observed_value, as we will maintain a list of cumulative maximum values 

to indicate the search quality. The current best value observed so far also represents the 

utility of the dataset collected till now, that is, the utility value of the dataset in helping us 

locate the optimum window lengths.
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Listing 9-4.  Generating initial training data

def generate_initial_data(n=10):

    # generate random initial locations

    �train_x1 = x1_bound[0] + (x1_bound[1] - x1_bound[0]) * torch.

rand(size=(n,1), device=device, dtype=dtype)

    train_x2 = torch.rand(size=(n,1), device=device, dtype=dtype)

    train_x = torch.cat((train_x1, train_x2), 1)

    �# obtain the exact value of the objective function and add output 

dimension

    train_y = []

    for i in range(len(train_x)):

        �train_y.append(qts(entry_threshold=train_x1[i], exit_

threshold=train_x2[i]))

    train_y = torch.Tensor(train_y, device=device).to(dtype).unsqueeze(-1)

    �# get the current best observed value, i.e., utility of the 

available dataset

    best_observed_value = train_y.max().item()

    return train_x, train_y, best_observed_value

Let us generate three samples in the training set as follows:

train_x, train_y, best_observed_value = generate_initial_data(n=3)

>>> print(train_x)

>>> print(train_y)

>>> print(best_observed_value)

tensor([[1.1221, 0.1771],

        [1.4491, 0.5561],

        [1.4685, 0.1094]], dtype=torch.float64)

tensor([[0.0550],

        [2.2504],

        [1.0004]], dtype=torch.float64)

2.250356674194336

Next, we implement the first component in BO: the Gaussian process model.
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�Implementing the Gaussian Process Model
As mentioned earlier, we can use this training set to optimize the hyperparameters of the 

Gaussian process (GP) model so that it’s more fine-tuned toward the data at hand. This 

is because a GP model is also governed by its own hyperparameters upon initialization, 

such as the length scale. Different GP models have different hyperparameters, and we 

will go with the default choice provided by BoTorch.

In Listing 9-5, we create a function called initialize_model() to initialize the GP 

model. We use the SingleTaskGP() class from botorch.models to instantiate a GP model 

based on the previous training data and then use the ExactMarginalLogLikelihood() 

function to obtain the exact marginal log-likelihood of the GP model.

Listing 9-5.  Initializing the GP model

# initialize GP model

from botorch.models import SingleTaskGP

from gpytorch.mlls import ExactMarginalLogLikelihood

def initialize_model(train_x, train_y):

    # create a single-task exact GP model instance

    # �use a GP prior with Matern kernel and constant mean function 

by default

    model = SingleTaskGP(train_X=train_x, train_Y=train_y)

    mll = ExactMarginalLogLikelihood(model.likelihood, model)

    return mll, model

Let us print out the values of the hyperparameters (including kernel parameters and 

noise variance) of the GP model before optimization:

mll, model = initialize_model(train_x, train_y)

>>> list(model.named_hyperparameters())

[('likelihood.noise_covar.raw_noise', Parameter containing:

  tensor([2.0000], dtype=torch.float64, requires_grad=True)),

 ('mean_module.raw_constant', Parameter containing:

  tensor(0., dtype=torch.float64, requires_grad=True)),

 ('covar_module.raw_outputscale', Parameter containing:

  tensor(0., dtype=torch.float64, requires_grad=True)),
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 ('covar_module.base_kernel.raw_lengthscale', Parameter containing:

  tensor([[0., 0.]], dtype=torch.float64, requires_grad=True))]

Optimizing the GP hyperparameters can be done by following the maximum log-

likelihood (MLL) approach, which is implemented in the fit_gpytorch_mll() function 

from botorch.fit. Listing 9-6 fits the GP hyperparameters and prints out their values.

Listing 9-6.  Optimizing GP hyperparameters

# optimize GP hyperparameters

from botorch.fit import fit_gpytorch_mll

# fit hyperparameters (kernel parameters and noise variance) of a 

GPyTorch model

fit_gpytorch_mll(mll.cpu());

mll = mll.to(train_x)

model = model.to(train_x)

>>> list(model.named_hyperparameters())

[('likelihood.noise_covar.raw_noise', Parameter containing:

  tensor([0.2238], dtype=torch.float64, requires_grad=True)),

 ('mean_module.raw_constant', Parameter containing:

  tensor(1.1789, dtype=torch.float64, requires_grad=True)),

 ('covar_module.raw_outputscale', Parameter containing:

  tensor(1.8917, dtype=torch.float64, requires_grad=True)),

 ('covar_module.base_kernel.raw_lengthscale', Parameter containing:

  tensor([[-0.8823, -0.9687]], dtype=torch.float64, requires_grad=True))]

The result shows a different set of hyperparameters after optimization. Note that we 

need to move the mll object to GPU to perform the optimization, after which it can be 

moved back to GPU (if available).

The optimized GP model can then be incorporated into the acquisition function to 

guide the following search process, as detailed in the next section.
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�Guiding the Sequential Search by Maximizing 
the Acquisition Function
We will use a few popular acquisition functions, including the expected improvement 

(EI), upper confidence bound (UCB), parallel expected improvement (qEI), and the 

parallel knowledge gradient (qKG). Instead of focusing on the derivation and reasoning 

of each choice, we will jump straight into their implementation and usage. Readers 

interested in a more in-depth discussion on different acquisition functions can refer to 

the book Bayesian Optimization: Theory and Practice Using Python.

To start with, we instantiate both acquisition functions via ExpectedImprovement(), 

qExpectedImprovement(), UpperConfidenceBound(), and qKnowledgeGradient() from 

botorch.acquisition. Note that different acquisition functions expect different input 

arguments. For example, other than the GP model instance from the previous section, 

EI requires the best-observed value so far, while UCB expects a beta parameter that 

adjusts the trade-off between exploitation and exploration. Such adjustment is implicitly 

handled in EI. This is shown in Listing 9-7.

Listing 9-7.  Defining and initializing the acquisition functions

# define acquisition function

from botorch.acquisition import ExpectedImprovement

from botorch.acquisition import qExpectedImprovement

from botorch.acquisition import UpperConfidenceBound

from botorch.acquisition.knowledge_gradient import qKnowledgeGradient

# call helper functions to generate initial training data and 

initialize model

train_x, train_y, best_observed_value = generate_initial_data(n=3)

train_x_ei = train_x

train_x_qei = train_x

train_x_ucb = train_x

train_x_qkg = train_x

train_y_ei = train_y

train_y_qei = train_y

train_y_ucb = train_y

train_y_qkg = train_y
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mll_ei, model_ei = initialize_model(train_x_ei, train_y_ei)

mll_qei, model_qei = initialize_model(train_x_qei, train_y_qei)

mll_ucb, model_ucb = initialize_model(train_x_ucb, train_y_ucb)

mll_qkg, model_qkg = initialize_model(train_x_qkg, train_y_qkg)

EI = ExpectedImprovement(model=model_ei, best_f=best_observed_value)

qEI = qExpectedImprovement(model=model_qei, best_f=best_observed_value)

beta = 0.8

UCB = UpperConfidenceBound(model=model_ucb, beta=beta)

num_fantasies = 64

qKG = qKnowledgeGradient(

    model=model_qkg,

    num_fantasies=num_fantasies,

    X_baseline=train_x,

    q=1

)

The acquisition function is used to generate the next parameter value to be sampled, 

which is located by maximizing the acquisition function at hand. The process of 

searching for the maximum value of the acquisition function within the search domain 

is handled by the optimize_acqf() function, which is provided by the botorch.

optim module. The new parameter value, along with the corresponding score from the 

unknown objective function, will be used as an additional training data point to support 

an updated version of the GP model and acquisition function in the next round.

Listing 9-8 provides the detailed implementation of passing an acquisition 

function and obtaining the next sampling decision and functional observation. Note 

the additional parameters required by the optimization procedure optimize_acqf(): 

bounds to define the search domain of each parameter, BATCH_SIZE to specify the 

number of samples to probe at each round (probing multiple points in parallel is 

possible), NUM_RESTARTS to control the number of initial conditions when optimization 

starts, and RAW_SAMPLES to indicate the number of initial samples to support heuristic-

based optimization over the acquisition function.

Chapter 9  Optimizing Trading Strategies with Bayesian Optimization



290

Listing 9-8.  Obtaining a new proposal by optimizing the acquisition function

# optimize and get new observation

from botorch.optim import optimize_acqf

# get search bounds

bounds = torch.tensor([[x1_bound[0], x2_bound[0]], [x1_bound[1], x2_

bound[1]]], device=device, dtype=dtype)

# parallel candidate locations generated in each iteration

BATCH_SIZE = 1

# number of starting points for multistart optimization

NUM_RESTARTS = 10

# number of samples for initialization

RAW_SAMPLES = 1024

def optimize_acqf_and_get_observation(acq_func):

    �"""Optimizes the acquisition function, and returns a new candidate and 

a noisy observation."""

    # optimize

    candidates, value = optimize_acqf(

        acq_function=acq_func,

        bounds=bounds,

        q=BATCH_SIZE,

        num_restarts=NUM_RESTARTS,

        raw_samples=RAW_SAMPLES,  # used for intialization heuristic

    )

    # observe new values

    new_x = candidates.detach()

    # sample output value

    �new_y = qts(entry_threshold=new_x.squeeze()[0].item(), exit_

threshold=new_x.squeeze()[1].item())

    # add output dimension

    new_y = torch.Tensor([new_y], device=device).to(dtype).unsqueeze(-1)

    # print("new fn value:", new_y)

    return new_x, new_y
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Let us test out this function with the qKG acquisition function:

>>> optimize_acqf_and_get_observation(qKG)

(tensor([[1.5470, 0.6003]], dtype=torch.float64),

 tensor([[2.2481]], dtype=torch.float64))

Before scaling up to multiple iterations, we will also test out the random search 

strategy, which selects a random window length for each moving series at each round. 

This serves as the baseline for comparison, since manual selection often amounts 

to a random search strategy in the initial phase. In the function update_random_

observations() shown in Listing 9-9, we pass a running list of best-observed function 

values, perform a random selection, observe the corresponding functional evaluation, 

compare it with the current running maximum, and then return the list of running 

maxima with the current maximum appended.

Listing 9-9.  Defining the random search strategy

def update_random_observations(best_random):

    """Simulates a random policy by drawing a new random points,

        �observing their values, and updating the current best candidate to 

the running list.

    """

    �new_x1 = x1_bound[0] + (x1_bound[1] - x1_bound[0]) * torch.

rand(size=(1,1), device=device, dtype=dtype)

    new_x2 = torch.rand(size=(1,1), device=device, dtype=dtype)

    new_x = torch.cat((new_x1, new_x2), 1)

    �new_y = qts(entry_threshold=new_x[0,0].item(), exit_

threshold=new_x[0,1].item())

    best_random.append(max(best_random[-1], new_y))

    return best_random

Now we perform the sequential search based on the aforementioned acquisition 

functions, along with the random search strategy.
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�Performing Sequential Search
These three search strategies have different search qualities in terms of the maximum 

Sharpe ratio found within the same sampling budget. To measure the effectiveness of the 

search strategy at each round, we use the cumulative maximum value returned by the 

black-box function, which is a nondecreasing function by design. A more effective search 

strategy would be able to identify a higher Sharpe ratio faster than alternative strategies 

under the same environment setting.

Listing 9-10 creates a few lists (best_observed_ei, best_observed_ucb, best_

observed_qei, best_observed_qkg, and best_random) to store the best-observed 

Sharpe ratios at each round. The same training set consisting of three samples is used 

to initialize the GP model (if any) of each search strategy using the initialize_model() 

function, with the resulting GP model instances stored in model_ei, model_qkg, 

model_qei, and model_ucb, respectively. For the random search strategy, we can simply 

simulate a random selection and update its running max without any explicit learning 

process.

Listing 9-10.  Performing the sequential search

# single trial

import time

N_ROUND = 20

verbose = True

beta = 0.8

best_random, best_observed_ei, best_observed_qei, best_observed_ucb, best_

observed_qkg  = [], [], [], [], []

best_random.append(best_observed_value)

best_observed_ei.append(best_observed_value)

best_observed_qei.append(best_observed_value)

best_observed_ucb.append(best_observed_value)

best_observed_qkg.append(best_observed_value)

# run N_ROUND rounds of BayesOpt after the initial random batch

for iteration in range(1, N_ROUND + 1):

    t0 = time.monotonic()

    # fit the models
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    fit_gpytorch_mll(mll_ei)

    fit_gpytorch_mll(mll_qei)

    fit_gpytorch_mll(mll_ucb)

    fit_gpytorch_mll(mll_qkg)

    # for best_f, we use the best observed exact values

    EI = ExpectedImprovement(model=model_ei, best_f=train_y_ei.max())

    qEI = qExpectedImprovement(model=model_qei,

                               best_f=train_y_ei.max(),

                               num_samples=1024

                               )

    UCB = UpperConfidenceBound(model=model_ucb, beta=beta)

    qKG = qKnowledgeGradient(

        model=model_qkg,

        num_fantasies=64,

        objective=None,

        X_baseline=train_x_qkg,

    )

    # optimize and get new observation

    new_x_ei, new_y_ei = optimize_acqf_and_get_observation(EI)

    new_x_qei, new_y_qei = optimize_acqf_and_get_observation(qEI)

    new_x_ucb, new_y_ucb = optimize_acqf_and_get_observation(UCB)

    new_x_qkg, new_y_qkg = optimize_acqf_and_get_observation(qKG)

    # update training points

    train_x_ei = torch.cat([train_x_ei, new_x_ei], dim=0)

    train_x_qei = torch.cat([train_x_qei, new_x_qei], dim=0)

    train_x_ucb = torch.cat([train_x_ucb, new_x_ucb], dim=0)

    train_x_qkg = torch.cat([train_x_qkg, new_x_qkg], dim=0)

    train_y_ei = torch.cat([train_y_ei, new_y_ei], dim=0)

    train_y_qei = torch.cat([train_y_qei, new_y_qei], dim=0)

    train_y_ucb = torch.cat([train_y_ucb, new_y_ucb], dim=0)

    train_y_qkg = torch.cat([train_y_qkg, new_y_qkg], dim=0)
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    # update progress

    best_random = update_random_observations(best_random)

    best_value_ei = max(best_observed_ei[-1], new_y_ei.item())

    best_value_qei = max(best_observed_qei[-1], new_y_qei.item())

    best_value_ucb = max(best_observed_ucb[-1], new_y_ucb.item())

    best_value_qkg = max(best_observed_qkg[-1], new_y_qkg.item())

    best_observed_ei.append(best_value_ei)

    best_observed_qei.append(best_value_qei)

    best_observed_ucb.append(best_value_ucb)

    best_observed_qkg.append(best_value_qkg)

    # �reinitialize the models so they are ready for fitting on next 

iteration

    mll_ei, model_ei = initialize_model(

        train_x_ei,

        train_y_ei

    )

    mll_qei, model_qei = initialize_model(

        train_x_qei,

        train_y_qei

    )

    mll_ucb, model_ucb = initialize_model(

        train_x_ucb,

        train_y_ucb

    )

    mll_qkg, model_qkg = initialize_model(

        train_x_qkg,

        train_y_qkg

    )

    t1 = time.monotonic()

Let us plot the search progress so far via the following code snippet:

iters = np.arange(N_ROUND + 1) * BATCH_SIZE

plt.plot(iters, best_random, label='random')

plt.plot(iters, best_observed_ei, label='EI')
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plt.plot(iters, best_observed_qei, label='qEI')

plt.plot(iters, best_observed_ucb, label='UCB')

plt.plot(iters, best_observed_qkg, label='qKG')

plt.legend()

plt.xlabel("Sampling iteration")

plt.ylabel("Sharpe ratio")

plt.show()

For each iteration, we fit the GP model to optimize its hyperparameters for each 

strategy, instantiate the acquisition function based on the updated GP model instance, 

optimize over the acquisition function, propose the next sampling point, obtain the 

corresponding function evaluation, append the new observation (parameter value and 

Sharpe ratio) to the training set, update the search progress by appending to running 

maximum Sharpe ratio, and finally reinitialize the GP for the next iteration.

Running the code generates Figure 9-11. The comparison demonstrates the benefits 

of adopting a principled model-based search strategy over random selections. UCB 

performs the best across all iterations, showing the advantage of a higher focus on 

early exploration embedded in this acquisition function. Other strategies pick up later 

and stay flat afterward. Both model-based strategies perform better than the random 

strategy.

Figure 9-11.  Cumulative maximum Sharpe ratio of all search strategies. The 
UCB policy performs the best as it is able to identify the highest Sharpe ratio in just 
one iteration. Other policies pick up later but lack exploration toward the later 
iterations. The random strategy performs the worst, showing the advantage of a 
principled search policy over random selection
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Let us repeat the experiments a number of times to assess the stability of the results, 

as shown in Listing 9-11.

Listing 9-11.  Assessing the stability of the results via repeated experiments

# multiple trials

# number of runs to assess std of different BO loops

N_TRIALS = 4

# indicator to print diagnostics

verbose = True

# number of steps in the outer BO loop

N_ROUND = 20

best_random_all, best_observed_ei_all, best_observed_qei_all, best_

observed_ucb_all, best_observed_qkg_all = [], [], [], [], []

# average over multiple trials

for trial in range(1, N_TRIALS + 1):

    �best_random, best_observed_ei, best_observed_qei, best_observed_ucb, 

best_observed_qkg  = [], [], [], [], []

    �# call helper functions to generate initial training data and 

initialize model

    train_x, train_y, best_observed_value = generate_initial_data(n=3)

    train_x_ei = train_x

    train_x_qei = train_x

    train_x_ucb = train_x

    train_x_qkg = train_x

    train_y_ei = train_y

    train_y_qei = train_y

    train_y_ucb = train_y

    train_y_qkg = train_y

    mll_ei, model_ei = initialize_model(train_x_ei, train_y_ei)

    mll_qei, model_qei = initialize_model(train_x_qei, train_y_qei)

    mll_ucb, model_ucb = initialize_model(train_x_ucb, train_y_ucb)

    mll_qkg, model_qkg = initialize_model(train_x_qkg, train_y_qkg)

    best_random.append(best_observed_value)
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    best_observed_ei.append(best_observed_value)

    best_observed_qei.append(best_observed_value)

    best_observed_ucb.append(best_observed_value)

    best_observed_qkg.append(best_observed_value)

    # run N_ROUND rounds of BayesOpt after the initial random batch

    for iteration in range(1, N_ROUND + 1):

        t0 = time.monotonic()

        # fit the models

        fit_gpytorch_mll(mll_ei)

        fit_gpytorch_mll(mll_qei)

        fit_gpytorch_mll(mll_ucb)

        fit_gpytorch_mll(mll_qkg)

        # for best_f, we use the best observed exact values

        EI = ExpectedImprovement(model=model_ei, best_f=train_y_ei.max())

        qEI = qExpectedImprovement(model=model_qei,

                                  best_f=train_y_ei.max(),

                                  num_samples=1024

                                  )

        UCB = UpperConfidenceBound(model=model_ucb, beta=beta)

        qKG = qKnowledgeGradient(

            model=model_qkg,

            num_fantasies=64,

            objective=None,

            X_baseline=train_x_qkg,

        )

        # optimize and get new observation

        new_x_ei, new_y_ei = optimize_acqf_and_get_observation(EI)

        new_x_qei, new_y_qei = optimize_acqf_and_get_observation(qEI)

        new_x_ucb, new_y_ucb = optimize_acqf_and_get_observation(UCB)

        new_x_qkg, new_y_qkg = optimize_acqf_and_get_observation(qKG)

        # update training points

        train_x_ei = torch.cat([train_x_ei, new_x_ei], dim=0)

        train_x_qei = torch.cat([train_x_qei, new_x_qei], dim=0)

        train_x_ucb = torch.cat([train_x_ucb, new_x_ucb], dim=0)
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        train_x_qkg = torch.cat([train_x_qkg, new_x_qkg], dim=0)

        train_y_ei = torch.cat([train_y_ei, new_y_ei], dim=0)

        train_y_qei = torch.cat([train_y_qei, new_y_qei], dim=0)

        train_y_ucb = torch.cat([train_y_ucb, new_y_ucb], dim=0)

        train_y_qkg = torch.cat([train_y_qkg, new_y_qkg], dim=0)

        # update progress

        best_random = update_random_observations(best_random)

        best_value_ei = max(best_observed_ei[-1], new_y_ei.item())

        best_value_qei = max(best_observed_qei[-1], new_y_qei.item())

        best_value_ucb = max(best_observed_ucb[-1], new_y_ucb.item())

        best_value_qkg = max(best_observed_qkg[-1], new_y_qkg.item())

        best_observed_ei.append(best_value_ei)

        best_observed_qei.append(best_value_qei)

        best_observed_ucb.append(best_value_ucb)

        best_observed_qkg.append(best_value_qkg)

        �# reinitialize the models so they are ready for fitting on next 

iteration

        mll_ei, model_ei = initialize_model(

            train_x_ei,

            train_y_ei

        )

        mll_qei, model_qei = initialize_model(

            train_x_qei,

            train_y_qei

        )

        mll_ucb, model_ucb = initialize_model(

            train_x_ucb,

            train_y_ucb

        )

        mll_qkg, model_qkg = initialize_model(

            train_x_qkg,

            train_y_qkg

        )
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        t1 = time.monotonic()

    best_observed_ei_all.append(best_observed_ei)

    best_observed_qei_all.append(best_observed_qei)

    best_observed_ucb_all.append(best_observed_ucb)

    best_observed_qkg_all.append(best_observed_qkg)

    best_random_all.append(best_random)

Running the code generates Figure 9-12, suggesting that BO-based search strategies 

consistently outperform the random search strategy.

Figure 9-12.  Assessing the stability of the results via repeated experiments

Finally, let us extract the mean and standard deviation of all experiments, as shown 

in Listing 9-12.

Listing 9-12.  Extracting the mean and standard deviation for all experiments

def extract_last_entry(x):

    tmp = []

    for i in range(4):

        tmp.append(x[i][-1])

    return tmp
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rst_df = pd.DataFrame({

    �"EI": [np.mean(extract_last_entry(best_observed_ei_all)), 

np.std(extract_last_entry(best_observed_ei_all))],

    �"qEI": [np.mean(extract_last_entry(best_observed_qei_all)), 

np.std(extract_last_entry(best_observed_qei_all))],

    �"UCB": [np.mean(extract_last_entry(best_observed_ucb_all)), 

np.std(extract_last_entry(best_observed_ucb_all))],

    �"qKG": [np.mean(extract_last_entry(best_observed_qkg_all)), 

np.std(extract_last_entry(best_observed_qkg_all))],

    �"random": [np.mean(extract_last_entry(best_random_all)), 

np.std(extract_last_entry(best_random_all))],

}, index=["mean", "std"])

>>> rst_df

           EI      qEI      UCB      qKG   random

mean 2.736916 2.734416 2.786065 2.706545 2.470426

std  0.116130 0.146371 0.106940 0.041464 0.247212

Since there are multiple choices of acquisition functions available in the BO 

community, we expect this approach to be enjoying greater popularity down the road. 

However, it should be noted that the superior performance in our running example may 

be a result of overfitting. Instead of selecting only one backtesting period, scoring a set of 

parameters over multiple representative backtesting periods is recommended in order 

to get a fairer assessment of the functional evaluation at the specific sampling location. 

In other words, we need to have a more robust observation model for the black-box 

function to minimize the risk of overfitting the current training dataset.

�Summary
In this chapter, we introduced the use of Bayesian optimization techniques to search 

for optimal parameters of a trading strategy. We started by illustrating the concept of 

optimizing trading strategies by tuning the corresponding governing parameters, a 

nontrivial task. By treating the performance measure as a black-box function of the 

tuning parameters, we introduced the Bayesian optimization framework, which uses 

Gaussian processes and acquisition functions (such as EI and UCB) to support the 
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search of optimal parameters in a sample-efficient manner. With the full BO loop in 

perspective, we went through a case study that optimizes the entry and exit thresholds of 

a pairs trading strategy to obtain an optimal Sharpe ratio.

In the final chapter, we will look at the use of machine learning models in the pairs 

trading strategy.

�Exercises
•	 How does Bayesian optimization approach the problem of 

hyperparameter tuning in trading strategies? What makes this 

approach particularly suitable for this task?

•	 Change the objective function to search for the parameters that 

minimize the maximum drawdown of the trend-following strategy.

•	 Bayesian optimization is based on a probabilistic model of the 

objective function, typically a Gaussian process (GP). How does this 

model assist in identifying areas of the search space to explore or 

exploit?

•	 Can you describe a scenario where a long-term (nonmyopic) 

acquisition function would be beneficial in the context of optimizing 

trading strategies? What about a scenario where a short-term 

(myopic) function might be preferable?

•	 Can you discuss how the incorporation of prior knowledge can be 

leveraged in the Bayesian optimization process for parameter tuning 

in trading strategies?

•	 How can Bayesian optimization handle noisy evaluations, a common 

occurrence in financial markets, during the optimization process of a 

trading strategy’s parameters?
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CHAPTER 10

Pairs Trading Using 
Machine Learning
Machine learning can be used in pairs trading in several ways to improve the 

effectiveness of trading strategies. Examples include pair selection, feature engineering, 

spread prediction, etc. In this final chapter, we are going to focus on spread prediction 

using different machine learning algorithms in order to generate trading signals.

�Machine Learning in Pairs Trading
As discussed in the previous chapter, pairs trading is a type of quantitative trading strategy 

that involves transacting two highly correlated/cointegrated assets at the same time and in 

the opposite direction. The financial instruments could be two stocks or two indices, based 

on which the relative price difference is used to derive the spread series and generate 

trading signals. The primary assumption behind pairs trading is that the price spread 

between two highly correlated or cointegrated assets should exhibit a mean reversion 

behavior over time. During this period, traders can profit by buying the underperforming 

asset and short-selling the overperforming asset in case of market mispricing due to 

temporary fluctuations. In other words, the two assets identified by the strategy should 

bear a long-term equilibrium relationship and move in tandem, while any deviation from 

this pattern is likely to be temporary and will eventually revert back to the mean.

In pairs trading, we start by identifying two assets that are highly correlated/

cointegrated and share a similar risk exposure. After taking a long position in one asset 

and a short position in the other when the z-score exceeds a predefined threshold, 

we would then hope to profit from the convergence of their spread. Specifically, as 

the spread between the two assets widens, we sell the overpriced asset and buy the 

underpriced asset. Similarly, as the spread narrows and the z-score drops below another 

predefined threshold, we will exit the positions and lock in the profits.
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Being a market-neutral strategy, pairs trading can be profitable in either bull, bear, or 

sideways markets. The success of the strategy depends on two factors: whether the pair 

of correlated/cointegrated assets with a similar risk profile can be identified and whether 

the spread between the two assets can be accurately predicted. For example, we used a 

moving average in the previous chapter to standardize the daily spread into a z-score. 

Such a moving average acts as the predicted spread, which is then used to compare with 

the actual spread of the day and derive the unit of deviation in terms of the standard 

deviation.

In addition, we also need to have proper risk management in place. When the spread 

continues to widen and moves in an adverse direction due to unexpected market events, 

the larger spread can lead to a significant loss. A stop-loss order is thus often placed to 

limit the potential loss of the strategy.

Figure 10-1 summarizes the three critical components of a pairs trading strategy. The 

second component will be the focus of the following sections, where we illustrate the use 

of machine learning techniques to predict the spread series.

Figure 10-1.  Summarizing the three components that determine the success of a 
pairs trading strategy

�Machine Learning Workflow
Machine learning models are predictive functions that generate predictions given a 

specific set of inputs. In this case, we intend to use a machine learning model in pairs 

trading to predict the spread between the two assets, which will then be used to identify 

profitable trading signals. Since the spread is a continuous quantity, we will explore 

regression models in this chapter, including support vector machine (SVM), random 

forest (RF), and neural network models. We will also augment the feature space, that 
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is, historical spread series, with additional features such as technical indicators. Once 

the spread is predicted, we can generate trading signals by taking a long position in the 

underperforming asset and a short position in the overperforming asset.

A machine learning model is a mathematical algorithm or a function that is trained 

on a training dataset and used to make predictions for the future unseen test dataset. 

Depending on the specific model class, the function can learn the underlying patterns 

and relationships from the given data, usually in the form of input-output pairs in the 

context of supervised learning. This process is called interpolation, where the model is 

expected to interpolate through the given data, subject to a certain degree of robustness 

against random noise in the dataset, as indicated by a relatively low training error.

Next, the trained model will be assessed using a new set of test data, a process called 

extrapolation, where the test data may be somewhat different from the training data. A 

model is expected to do well on the test set so that it gives confidence when we apply 

it to practical applications. The test set performance is also called the generalization 

performance, an indicator of how well the model generalizes to the test set data.

A typical machine learning model consists of two components: the parameters (or 

weights) serve as the building blocks of the model, and the model architecture specifies 

how the input data interact with the parameters to generate the output. Model training 

refers to the process of tuning these parameters such that the model produces a good 

performance on the test set and often a relatively good performance on the training set. 

During the training process, the machine learning algorithm adjusts the parameters 

of the model based on the input data to improve the accuracy of its predictions on the 

training data. Once the model is trained, it can be used to make predictions for the new 

data, which may not have been seen before.

If the model performs too well on the training set but not so well on the test set, 

then the model is considered as overfitting the training data. Since modern models 

are typically complex in architecture and large in the number of model parameters, 

overfitting is a common phenomenon in many training situations. Proper regularization 

techniques can be adopted to reduce the chance of overfitting.

Let us recall the graph on the overall model training process workflow displayed in 

Chapter 1, also shown in Figure 10-2 for ease of reference. We can apply regularization 

techniques to achieve a better generalization performance from these four components: 

the training data, the model, the cost measure, and the optimization procedure. Each 

component has a specific extent of regularization effect and can be combined together to 

achieve a good generalization performance for the specific training situation.
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Figure 10-2.  Example of a typical model training process. The workflow starts 
with the available training data and gradually tunes a model. The tuning process 
requires matching the model prediction to the target output, where the gap is 
measured by a particular cost measure and used as feedback for the next round 
of tuning. Each tuning produces a new model, and we want to look for one that 
minimizes the cost

In the following section, we will introduce the high-level principles of three different 

types of machine learning algorithms: support vector machine, random forest, and 

neural network.

�Support Vector Machine
Support vector machine (SVM) is a popular supervised learning algorithm, especially 

in the Kaggle community, for both classification and regression. In the context of 

classification, SVM works by mapping the input data from its original feature space into a 

high-dimensional feature space using a kernel function, and then finding the hyperplane 

that best separates the different classes of data. The hyperplane is chosen in order to 

maximize the margin between the classes. Seeking a boundary based on the principle of 

maximal margin often leads to a better generalization performance, thus reducing the 

risk of overfitting.
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Since we are interested in predicting the spread as a continuous outcome, making 

it a regression task, SVM instead finds the hyperplane that best separates the input 

data while minimizing the margin violations. In this case, our goal in the regression 

task is to fit a hyperplane as closely as possible to the actual data points by minimizing 

the sum of the squared errors (SSE) as the cost measure between the predicted output 

and the actual target values. Since minimizing SSE toward zero would easily lead to an 

overfitting model, the SVM model used in regression often assumes an ϵ-insensitive loss 

function, which allows the model to tolerate some error in its predictions, up to a certain 

threshold ϵ.

There are multiple technical terms here that serve more explanation. Let us start 

with the concept of the hyperplane. A hyperplane is a decision line used to predict 

the continuous output in the case of regression. The data points on either side of the 

hyperplane within a certain distance (specifically, within ϵ) are called support vectors. 

We can also use these support vectors to draw two decision boundaries around the 

hyperplane at a distance of ϵ.

Moving on, a kernel is a set of mathematical functions that take data as input 

and transform it into the required form, possibly in a different dimension. These 

are generally used for finding a hyperplane in the higher-dimensional space, which 

is considered easier to achieve linear separation than finding the same separating 

hyperplane in the original feature space. Using kernels in SVM provides a powerful and 

flexible tool for classification and regression tasks, allowing SVM to handle complex and 

even nonlinearly separable datasets.

Figure 10-3 helps illustrate these concepts. Given a set of training observations in the 

form of input-output pairs, the support vector regression model will build a hyperplane 

as the regression line to predict future test data. The hyperplane is surrounded by two 

decision boundaries, determined by a user-specified hyperparameter ϵ. Here, ϵ specifies 

the width of the ϵ-insensitive zone (or tolerance zone) around the regression line, where 

errors are not penalized. Not all the points are within the decision boundaries, and SVM 

is designed to minimize such margin violations by maximizing the number of points 

within the decision boundary upon estimating the hyperplane.
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Figure 10-3.  Illustrating the training mechanism of the support vector 
regression model

Note that ϵ controls the tolerance of the margin violation. It determines the trade-off 

between the model complexity and the predictive accuracy. A small value of ϵ will result 

in a complex model that closely fits the training data, but risks overfitting the training set 

and therefore generalizing poorly to the new data. On the other hand, a large value of ϵ 

will result in a simpler model with larger errors but potentially a better generalization 

performance.

As a user-specified hyperparameter, the choice of ϵ can be highly sensitive to the 

resulting predictive performance. A common approach is cross-validation, which 

involves partitioning the raw data into training and validation sets several times, each 

starting with a different random seed. The best ϵ is the one that reports the highest 

predictive performance on average.

We introduce the random forest model in the following section.

�Random Forest
Random forest is a type of ensemble model, which includes multiple simple models 

combined together to make the final prediction. It is a powerful and flexible model 

that can be used for both regression and classification tasks. As the name suggests, the 

algorithm constructs multiple decision trees and combines all trees in the forest to make 

a final prediction.
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The main differentiating factor about random forest compared with other models is 

how the raw training dataset is divided to support the training of each tree. Specifically, 

each tree is trained on a different subset of the data and a different subset of the features, 

a process known as bagging or bootstrap aggregation. By using random subsets of the 

data and features, the algorithm creates multiple independent submodels that have a 

low bias and high variance. The final prediction is then produced by taking the average 

of the predictions of all the individual trees, similar to collecting the views from multiple 

independent consultants and taking the average recommendation as the final decision.

Note that at each node of the tree, a random subset of features is considered to 

determine the best split, instead of considering all features. This process is called feature 

bagging. The randomness in feature selection ensures that the trees are decorrelated and 

reduces the chance of overfitting.

Random forests are widely used for their simplicity, versatility, and robustness. They 

can handle a mix of numerical and categorical features, require very little preprocessing 

of the data, and provide a built-in method for handling missing values. Furthermore, 

they offer measures of feature importance, which can provide insights into the 

underlying structure of the data.

Figure 10-4 illustrates the overall training process of the random forest model. 

We start by sampling from the original training set to obtain a total of B subsets. Each 

sampling randomly selects both observations and features, so that the resulting subsets 

appear to be independent of each other and uncorrelated in the feature space. We will 

then train a decision tree model for each subset, leading to B submodels. Upon assessing 

a new test data point, these B predictions will be aggregated together and averaged to 

produce the final prediction.

Chapter 10  Pairs Trading Using Machine Learning



310

Figure 10-4.  Illustrating the training mechanism of the random forest model

In the next section, we introduce the basic feed-forward neural network.

�Neural Network
A neural network consists of multiple interconnected nodes, also called neurons, 

stacked together in layers. Each neuron serves as a function that receives input from 

the neurons in the preceding layer, performs a nonlinear transformation on that input, 

and sends an output to the neurons in the next layer. In between these neurons are the 

weights, also called parameters of the neural network. Learning a neural network model 

essentially means tuning the weights so that the final prediction is accurate, and the 

model generalizes well to the test set.

A typical neural network consists of an input layer representing the input data 

and an output layer generating the output. It can also include any number of layers in 

between (called hidden layers). Each layer contains at least one neuron, interpreted as 

an extracted hidden feature. When it comes to the number of layers of a neural network, 

it refers to the hidden layer plus the output layer. For example, a perceptron is a single-

layer neural network, meaning it has only input and output layers and does not have any 

hidden layer in between.

Being the fundamental constituent of a neural network, a perceptron is a single 

neuron that completes two steps of mathematical operations: the weighted sum and 
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the nonlinear transformation. For a single observation with p dimensions x ∈ ℝp, the 

perceptron first calculates the weighted sum 
i

p

i iw x
=
∑

1

 between x and its corresponding 

weight vector w ∈ ℝp, which is (and should be) also p-dimensional. The weighted sum is 

often accompanied by one more term called intercept or bias, which acts as an additional 

parameter to exercise a global level shift to the weighted sum to fit the data better.

After adding an intercept/bias term b, the sum passes through an activation function 

which introduces a nonlinear transformation to the weighted sum. Note that the bias 

term is added by inserting a column of ones in the input data, which is the same bias 

trick as linear regression. Such nonlinear transformation, together with the number and 

width of layers, determines neural networks' flexibility, expressivity, and approximating 

power. Figure 10-5 summarizes the process flow of a perceptron.

Figure 10-5.  The process flowchart of a perceptron, which consists of a 
weighted sum operation followed by an activation function. A column of ones is 
automatically added to correspond to the bias term in the weight vector

The most popular choice of activation function is the rectified linear unit (ReLU), 

which acts as an on/off switch that fires the input signal as it is if its value is above a specific 

threshold and mutes it by outputting zero if it is below the threshold. In other words, the 

ReLU operation is an identity function if the input is positive; otherwise, the output is set as 

zero. Without such nonlinear activation, a multilayer neural network would simply become 

a series of linear functions stacked on top of each other, resulting in a linear model.

Figure 10-6 visualizes the ReLU function's shape and summarizes the characteristics 

of the perceptron operation discussed so far. Other than the architectural flexibility of 

a neural network model in terms of the number and width of its layers, another main 

added flexibility lies in the nonlinear operation. In fact, many exciting and meaningful 
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hidden features could be automatically extracted using ReLU as an activation function. 

For example, when training an image classifier using a special architecture called 

convolutional neural networks, low-level features in the initial hidden layers tend to 

resemble fundamental structural components such as lines or edges, while high-level 

features at later hidden layers start to learn structural patterns such as squares, circles, or 

even complex shapes like the wheels of a car. This is not possible if we are limited to the 

linear transformation of features and is considered an extremely difficult task if we were 

to engineer such informative features manually.

Figure 10-6.  Decomposing a single perceptron into a weighted sum and an 
activation function which is often ReLU. The ReLU operation passes through a 
signal if it is positive and mutes it if it is negative. Such nonlinearity also introduces 
great approximating power to the neural networks in addition to the flexibility in 
designing the number and width of layers

One of the reasons why ReLU (and its variants) remains the most popular activation 

function is its fast gradient computation. When the input is less than or equal to zero, the 

gradient (of a constant number) becomes zero, thus saving the need for backpropagation 

and parameter update. When the input is positive, the gradient (of the original input 

variable) is simply one, which gets backpropagated as it is.

Having reviewed these three model classes, let us switch to the implementation of 

pairs trading and compare their performances after using machine learning models to 

predict the daily spread.
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�Implementing the Pairs Trading Strategy Using 
Machine Learning
In this section, we will follow a similar recipe to develop a pairs trading strategy as in the 

previous chapter, with the only change being the calculation of the predicted spread. 

The previous chapter used a rolling window to derive the mean and standard deviation 

of the daily spread. In other words, the predicted spread is the average of a collection of 

historical spreads in the moving window, whose volatility is also used to standardize the 

difference between the actual spread and the predicted spread.

Let us start by importing the necessary packages. As shown in Listing 10-1, we will 

focus on the same pair of stocks (Google and Microsoft) and trading horizon (the full 

year of 2022).

Listing 10-1.  Downloading the stock data

import os

import random

import numpy as np

import yfinance as yf

import pandas as pd

from statsmodels.tsa.stattools import adfuller

from statsmodels.regression.linear_model import OLS

import statsmodels.api as sm

from matplotlib import pyplot as plt

%matplotlib inline

SEED = 8

random.seed(SEED)

np.random.seed(SEED)

# download data from yfinance

stocks = ['GOOG','MSFT']

start_date  = "2022-01-01"

end_date  = "2022-12-31"

df = yf.download(stocks, start=start_date, end=end_date)['Adj Close']

df.head()

           GOOG       MSFT
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Date

2022-01-03 145.074493 330.813873

2022-01-04 144.416504 325.141327

2022-01-05 137.653503 312.659882

2022-01-06 137.550995 310.189270

2022-01-07 137.004501 310.347412

For simplicity, we will define spread as the difference in the log price of the two 

stocks, which is calculated and visualized in Listing 10-2.

Listing 10-2.  Calculating the spread

# Calculate the spread between the two assets

spread = np.log(df[stocks[0]]) - np.log(df[stocks[1]])

plt.plot(spread, label='Spread using difference of log price')

plt.legend()

plt.show()

Running this code generates Figure 10-7.

Figure 10-7.  Visualizing the daily spread defined as the difference in the log price 
of both stocks

Next, we will perform feature engineering to boost the feature space.

Chapter 10  Pairs Trading Using Machine Learning



315

�Feature Engineering
Feature engineering is the process of selecting, transforming, and extracting relevant 

features from the raw data in order to boost the performance of a machine learning 

model. The quality and sometimes the quantity of the features are critical factors that 

influence the performance of a machine learning model. These additional engineered 

features may not necessarily make sense from an interpretability perspective, yet they 

will likely improve the predictive performance of the machine learning algorithm by 

offering a new knob for the model to tune with.

We have already encountered feature engineering in previous discussions, with 

the moving average being the most notable example. In this exercise, we will use five 

features to predict the spread series, including the daily returns for both stocks, the five-

day moving average of the spread series, and the 20-day moving standard deviation of 

daily returns. These are created in Listing 10-3.

Listing 10-3.  Generating additional features

# Define additional features

asset1_returns = np.log(df[stocks[0]]).diff()

asset2_returns = np.log(df[stocks[1]]).diff()

spread_ma5 = spread.rolling(5).mean()

asset1_volatility = asset1_returns.rolling(20).std()

asset2_volatility = asset2_returns.rolling(20).std()

Note that this is just one way to create additional features. In practice, we would 

create many more features to support algorithms such as SVM and random forest if 

the goal is to maximize the predictive accuracy. For neural networks, however, such 

feature engineering is helpful but not essential. Neural networks are powerful function 

approximators in that they can learn the correct feature extraction given a sufficiently 

complex architecture and enough training time.

We will then aggregate these features into a single DataFrame X, followed by filling 

NA values with zero. We also assign the spread series to y:

# Combine the features into a single DataFrame

X = pd.DataFrame({'Asset1Returns': asset1_returns,

                  'Asset2Returns': asset2_returns,

                  'SpreadMA5': spread_ma5,
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                  'Asset1Volatility': asset1_volatility,

                  'Asset2Volatility': asset2_volatility})

X = X.fillna(0)

y = spread

Let us also split the data into a training and a test set. We will adopt the common 

80-20 rule; that is, 80% of the data goes to the training set, and 20% goes to the test set. 

We will also observe the sequence of time, so the 80% training set does not peak in the 

future, as shown in Listing 10-4.

Listing 10-4.  Performing train-test split

# Split the data into training and test sets

train_size = int(len(spread) * 0.8)

train_X = X[:train_size]

test_X = X[train_size:]

train_y = y[:train_size]

test_y = y[train_size:]

With the training and test data ready, we can now move into the model training part, 

starting with SVM.

�Pairs Trading Using SVM
Since this is a regression task, we will use the SVR class from sklearn, specifying a linear 

kernel. After instantiating the model class, we use the fit() method to fit the model 

parameters to the training data and the predict() method to generate predictions for 

the test data. We will also check the root mean squared error (RMSE) for both training 

and test sets. Listing 10-5 completes the training and testing operations.

Listing 10-5.  Model training and testing using SVM

from sklearn.svm import SVR

from sklearn.metrics import mean_squared_error

svm_model = SVR(kernel='linear')

svm_model.fit(train_X, train_y)

train_pred = svm_model.predict(train_X)
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>>> print("training rmse: ", np.sqrt(mean_squared_error(train_y, 

train_pred)))

test_pred = svm_model.predict(test_X)

>>> print("test rmse: ", np.sqrt(mean_squared_error(test_y, test_pred)))

training rmse:  0.039616044798431914

test rmse:  0.12296547390274865

The RMSE measures the model’s predictive performance. However, we still need 

to plug the model into the trading strategy and evaluate the ultimate profitability in 

the pairs trading strategy. As the only change is on the predicted spread based on the 

specific machine learning model, we can define a function to score the model as an 

input parameter and output the terminal profit. The score_fn() function in Listing 10-6 

completes the scoring operation.

Listing 10-6.  Calculating cumulative return using pairs trading under a given 

predictive model

import torch

def score_fn(model, type="non_neural_net"):

    # Generate predicted spread using the SVM model

    if type == "non_neural_net":

        test_pred = model.predict(test_X)

    else:

        test_pred = model(torch.Tensor(test_X.values)).detach().numpy()

    # Calculate z-score of the actual and predicted spread

    zscore = (spread - test_pred.mean()) / test_pred.std()

    # set the threshold values for entry and exit signals

    entry_threshold = 2.0

    exit_threshold = 1.0

    # initialize the daily positions to be zeros

    stock1_position = pd.Series(data=0, index=zscore.index)

    stock2_position = pd.Series(data=0, index=zscore.index)

    # generate daily entry and exit signals for each stock

    for i in range(1, len(zscore)):

        # zscore<-2 and no existing long position for stock 1

        if zscore[i] < -entry_threshold and stock1_position[i-1] == 0:
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            stock1_position[i] = 1 # long stock 1

            stock2_position[i] = -1 # short stock 2

        # zscore>2 and no existing short position for stock 2

        elif zscore[i] > entry_threshold and stock2_position[i-1] == 0:

            stock1_position[i] = -1 # short stock 1

            stock2_position[i] = 1 # long stock 2

        # -1<zscore<1

        elif abs(zscore[i]) < exit_threshold:

            stock1_position[i] = 0 # exit existing position

            stock2_position[i] = 0

        # -2<zscore<-1 or 1<zscore<2

        else:

            stock1_position[i] = stock1_position[i-1] # maintain existing 

position

            stock2_position[i] = stock2_position[i-1]

    # Calculate the returns of each stock

    �stock1_returns = (np.exp(test_X['Asset1Returns']) * stock1_position.

shift(1)).fillna(0)

    �stock2_returns = (np.exp(test_X['Asset2Returns']) * stock2_position.

shift(1)).fillna(0)

    # calculate the total returns of the strategy

    total_returns = stock1_returns + stock2_returns

    cumulative_returns = (1 + total_returns).cumprod()

    return cumulative_returns[-1]

In this function, we add another input parameter to control if the model belongs to a 

neural network. This control is placed here to determine the specific prediction method 

to use. For standard sklearn algorithms such as SVM and random forest, we can call 

the predict() method of the model object to generate predictions for the given input 

data. However, when the model is a neural network trained using PyTorch, we need to 

first convert the input to a tensor object using torch.Tensor(), generate predictions 

by calling the model object itself (underlying, the forward() function within the model 

class is called), extracting the outputs without gradient information using the detach() 

method, and converting to a NumPy object using numpy().
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Next, we calculate the z-score using the mean and the standard deviation of the 

predicted spread series. We then use an entry threshold of two and an exit threshold of 

one to generate the trading signals based on the standardized z-scores. The rest of the 

calculations follow the same approach as in the previous chapter.

We can now use this function to obtain the terminal return for the pairs trading 

strategy using the SVM model:

>>> score_fn(svm_model)

1.143746922303926

Similarly, we can obtain the same measure using the random forest regressor.

�Pairs Trading Using Random Forest
To build a random forest model for regression, we can use the RandomForestRegressor 

class and specify two main parameters: n_estimators as the number of trees to be built 

in the random forest and random_state as the random seed for reproducibility.  

Listing 10-7 trains the random forest model and evaluates its performance in the training 

and test sets using RMSE.

Listing 10-7.  Model training and testing using random forest

# random forest

from sklearn.ensemble import RandomForestRegressor

# Create random forest regressor

rf_model = RandomForestRegressor(n_estimators=100, random_state=42)

# Train the model on the training and test set

rf_model.fit(train_X, train_y)

train_pred = rf_model.predict(train_X)

>>> print("training rmse: ", np.sqrt(mean_squared_error(train_y, 

train_pred)))

test_pred = rf_model.predict(test_X)

>>> print("test rmse: ", np.sqrt(mean_squared_error(test_y, test_pred)))

training rmse:  0.005741011378501151

test rmse:  0.07322761976891506
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The result shows that random forest can better fit the data with a lower training and 

test set RMSE compared with SVM.

We also calculate the terminal return as follows:

>>> score_fn(svm_model)

0.9489411965252148

The result reports a lower terminal return, despite a better predictive performance. 

This is also overfitting, in the sense that a more predictive model at the stage-one 

prediction task leads to a lower terminal return at the stage-two trading task. Combining 

these two tasks in a single stage is an interesting and active area of research.

We move to neural networks in the next section.

�Pairs Trading Using Neural Networks
Training a deep neural network requires specifying the four major components: input 

data, model architecture, objective function, and optimizer. We start with the input data 

by converting them into tensor objects using the torch.Tensor() function as follows:

# Convert data to PyTorch tensors

train_X_ts = torch.Tensor(train_X.values)

train_y_ts = torch.Tensor(train_y).view(-1, 1)

test_X_ts = torch.Tensor(test_X.values)

test_y_ts = torch.Tensor(test_y).view(-1, 1)

Note that we use the .values attribute to access the values from the DataFrame and 

the view() function to reshape the target into a column.

Next, we define the neural network model in Listing 10-8. Here, we slot the attributes 

to the initialization function, including one input linear layer, one hidden linear layer, 

and one output linear layer. The number of incoming neurons in the input layer (i.e., 

train_X.shape[1]) and the number of outgoing neurons in the output layer (i.e., 1) 

are determined by the specific problem at hand. The number of neurons in the middle 

layers is user defined and directly determines the model complexity. All these layers 

are chained together with a ReLU activation function in the middle via the forward() 

function. Also, note that it is unnecessary to apply ReLU to the last layer since the output 

will be a scalar value representing the predicted spread.
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Listing 10-8.  Defining the network architecture

# Define the neural network model

class Net(nn.Module):

    def __init__(self):

        super(Net, self).__init__()

        self.fc1 = nn.Linear(train_X.shape[1], 64)

        self.fc2 = nn.Linear(64, 32)

        self.fc3 = nn.Linear(32, 1)

        self.relu = nn.ReLU()

    def forward(self, x):

        x = self.fc1(x)

        x = self.relu(x)

        x = self.fc2(x)

        x = self.relu(x)

        x = self.fc3(x)

        return x

Now we instantiate a neural network model in nn_model and inspect the 

architectural information of the model using the summary() function, as shown in 

Listing 10-9.

Listing 10-9.  Checking network model summary

from torchsummary import summary

# Create an instance of the neural network model

nn_model = Net()

# print the summary of the customized neural network

>>> summary(nn_model, input_size=(1, train_X.shape[1]))

----------------------------------------------------------------

        Layer (type)               Output Shape         Param #

================================================================

            Linear-1                [-1, 1, 64]             384

              ReLU-2                [-1, 1, 64]               0

            Linear-3                [-1, 1, 32]           2,080

              ReLU-4                [-1, 1, 32]               0
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            Linear-5                 [-1, 1, 1]              33

================================================================

Total params: 2,497

Trainable params: 2,497

Non-trainable params: 0

----------------------------------------------------------------

Input size (MB): 0.00

Forward/backward pass size (MB): 0.00

Params size (MB): 0.01

Estimated Total Size (MB): 0.01

----------------------------------------------------------------

The result shows that the neural network contains a total of 2497 parameters over 

three linear layers. Note that the ReLU layer does not have any associated parameters as 

it involves deterministic mapping only.

Next, we define the loss function as the mean square error using MSELoss() and 

choose Adam as the optimizer over the network weights, with an initial learning rate 

of 0.001:

# Define the loss function and optimizer

criterion = nn.MSELoss()

optimizer = torch.optim.Adam(nn_model.parameters(), lr=0.001)

We now enter the iterative training loop to update the weights by minimizing the 

specified loss function, as shown in Listing 10-10.

Listing 10-10.  The full model training procedure

# Train the model

for epoch in range(100):

    optimizer.zero_grad()

    outputs = nn_model(train_X_ts)

    loss = criterion(outputs, train_y_ts)

    loss.backward()

    optimizer.step()

    # Print the loss for every 10 epochs

    if epoch % 10 == 0:

        print("Epoch {}, Loss: {:.4f}".format(epoch, loss.item()))
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Here, we iterate over the training set for a total of 100 epochs. In each epoch, we first 

clear the existing gradients in memory using the zero_grad() function of the optimizer. 

Next, we score the training set to obtain predicted targets in outputs, calculate the 

corresponding MSE loss, perform backward propagation to calculate the gradients using 

autograd functionality via the backward() method, and finally perform gradient descent 

update using the step() function.

Running the code generates the following results, where we see that the training loss 

continues to decrease as iteration proceeds:

Epoch 0, Loss: 0.4154

Epoch 10, Loss: 0.2246

Epoch 20, Loss: 0.0850

Epoch 30, Loss: 0.0093

Epoch 40, Loss: 0.0043

Epoch 50, Loss: 0.0051

Epoch 60, Loss: 0.0013

Epoch 70, Loss: 0.0016

Epoch 80, Loss: 0.0013

Epoch 90, Loss: 0.0012

We can also check the in-sample and out-of-sample RMSE as follows:

# evaluate the model on the training and testing set

train_pred = nn_model(train_X_ts).detach().numpy()

>>> print("training rmse: ", np.sqrt(mean_squared_error(train_y_ts, 

train_pred)))

test_pred = nn_model(test_X_ts).detach().numpy()

>>> print("test rmse: ", np.sqrt(mean_squared_error(test_y_ts, test_pred)))

training rmse:  0.033806544

test rmse:  0.08466047

The result shows that the neural network is less overfitting than the random 

forest model.

Now we obtain the terminal return of the pairs trading strategy based on the neural 

network model:

Chapter 10  Pairs Trading Using Machine Learning



324

>>> score_fn(nn_model, type="nn")

0.8999874304248494

Again, this result shows that an accurate machine learning model may not 

necessarily lead to a higher terminal return in the pairs trading strategy. Even if the 

machine learning model is predictive of future spreads, another layer of assumption 

imposed by the pairs trading strategy is that the temporary market fluctuations will ease 

down, and the two assets will revert back to the long-term equilibrium relationship. Such 

an assumption may not necessarily stand, along with the many unpredictable factors in 

the market.

�Summary
In this chapter, we introduced different machine learning algorithms used in predicting 

the spread, a key component when employing the pairs trading strategy. We started by 

introducing the overall framework when training any machine learning algorithm and 

then elaborated on three specific algorithms: support vector machine, random forest, 

and neural network. Lastly, we plugged these models into the strategy and found that a 

higher predictive performance by the machine learning model, a sign of overfitting, may 

lead to a lower performance score in terms of cumulative return. It is thus important not 

to overfit the machine learning models at the prediction stage and instead focus more 

on the final performance of the trading strategy at the decision stage, where the actual 

trading action is made.
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�Exercises
•	 How does the SVM model determine the optimal hyperplane for 

predicting the spread in a pairs trading strategy? What are the key 

parameters that need to be adjusted in an SVM?

•	 How does a random forest algorithm handle feature selection when 

predicting the spread in a pairs trading strategy? What are the 

implications of feature importance in this context?

•	 Explain how SVM, random forest, and neural networks approach 

the problem of overfitting in the context of predicting the spread in a 

pairs trading strategy.

•	 How can you handle nonlinear relationships between features in 

SVM, random forest, and neural networks when predicting the 

spread in a pairs trading strategy?

•	 How can the layers in a neural network be optimized to improve the 

prediction of the spread in a pairs trading strategy?
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Rectified linear unit (ReLU), 311
Relative Strength Index (RSI), 100, 

153, 154
Rerminal return, 153
resample() function, 186
return_df variable, 111
Returns analysis, 107, 110, 139

annualized returns calculation, 
124, 125

annualizing, 119, 120
description, 109
dummy returns, 110–113
multiperiod return, 117–119
1+R format, 114, 115
single-period returns 

calculation, 120–123
stock return with dividends, 117
terminal return, 115, 116
two-period terminal return 

calculation, 123, 124
Return values, 112
1+R format, 114, 115
1+R formatted DataFrame, 113
Risk-adjusted return, 107, 130, 131, 139, 

198, 203, 260
Risk analysis, 107

annualized returns calculation, 
137, 138

annualized volatility calculation, 137
column-wise arithmetic mean 

returns, 134–136
Sharpe ratio, 129–131
Sharpe ratio calculation, 139
stock price data, 132, 133

INDEX



335

variance and standard deviation, 
126, 127

volatility, 125, 127–129
Risk and return trade-off

diversification strategies, 108
factors, 108
individual asset, 108
low-return asset, 108
profit maximization, 109
stock market, 108
two-dimensional coordinate 

system, 108
Risk-free bond interest rate, 92
Risk-free interest rate, 92, 221
1+R method, 144
rolling() function, 158, 160
Root mean squared error (RMSE), 316
1+R return, 144
Rule-based approach, 3

S
Scalping, 18
shape() function, 28, 136
Sharpe ratio, 130, 131, 139
shift() function, 122
Short-term swings, 14
Simple moving average (SMA), 

154, 156–163
Singaporean investment, 37
Singapore Exchange (SGX), 16, 37
Single-period logarithmic return, 169
Single-period log returns, 148, 152
Single-period percentage return, 143
Single-period returns, 123, 147
Single-period volatility, 128, 129, 137
Size precedence, 40
Slippage, 6, 42, 43, 48, 49, 55, 200

SMA-3, 158
Speculators, 81, 82
S&P 500 E-Mini futures contract, 99
Spot market, 13
Stacked bar charts, 66, 67
Standard deviation, 126, 129
Standardization, 79, 110
Stationarity

adfuller() function, 234
distribution, 232, 233
mean and standard deviation, 234
random.normal() function, 232
stationarity_test(), 234
stock prices, 232
time series, 235

Statistical arbitrage, 225, 254
concept, 227
market movements, 225
mean reversion, 225
short-term fluctuations, 226
short-term market factors, 225
statistical methods, 225
steps, 226
stocks, 226

Statistical concept, 240
Statistical measures, 126, 127, 240
std() function, 112, 134, 136
Stock data, 19, 27, 32, 236, 313
Stock price data, 132, 133
Stock return with dividends, 117
Stocks, 8, 242–243, 313
Stop-entry order, 48
Stop-limit order, 41, 44, 49, 54
Stop-loss orders, 48
Stop orders, 41, 47, 48
summary() function, 321
Sum of the squared  

errors (SSE), 307
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Support vector machine (SVM), 304, 306
hyperplane, 307
input-output pairs, 307
mathematical functions, 307
support vectors, 307
user-specified hyperparameter, 308

Symmetry, 149, 150

T
tail() function, 28
Tangible and intangible factors, 15
Technical indicators, 101, 103

additional features, 154
Bollinger Bands, 100, 104, 155
DataFrame, 100
EMA, 173
integral, 154
MA, 154
MACD, 100, 104, 155
market analysis clarification, 154
mathematical calculations, 154
raw futures time series data, 101
RSI, 100, 104, 154
SMA, 173
volume-based indicators, 155

Terminal monthly return, 187–190
Terminal return, 115, 116, 144–146
Ticker() module, 21
Time precedence, 40, 41
Time series data, 155
today() function, 27
torch.Tensor() function, 320
Tradable assets, quantitative trading

annuities, 8
bonds, 8
cash and equivalents, 9
commodities, 9

currencies, 9
ETFs, 10
forward, 9
futures, 9
hedge funds, 10
mutual funds, 10
options, 9
REITs, 10
stocks, 8

Trade formation period, 189
Traders, 15
Trading agency, 38
Trading algorithm, 1, 19
Trading avenues, 14–15
Trading signals, 3, 250, 251
Trading steps

acquisition of information and 
quotes, 15

confirmation, clearance, and 
settlement, 15

execution of order, 15
routing of order, 15

Trading volume, 30, 31, 57, 176, 177, 260
Trailing stop orders, 41, 52, 53
Transactions, 6, 14, 15, 36, 39, 44, 46, 55, 

83, 84, 167, 172, 200
Trend following strategy, 153, 178, 

180–182, 259, 279
definition, 141
implementation (see Implementing 

trend-following strategy)
log return (see Logarithmic return)
lookback window, 180
risk management techniques, 141
technical indicators, 141  

See also Trend trading
Trend traders, 153, 166
Trend trading
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definition, 153
EMA, 163–166
fundamental principle, 153
moving average, 155, 156
SMA, 156–163
technical analysis tools, 153
technical indicators (see Technical 

indicators)
Two-period return, 118, 119
Typical model training process, 5, 306

U
Unit root test, 230, 236
Upper confidence  

bound (UCB), 274, 275, 277, 288, 
295, 300

V, W, X
value_counts() function, 170
Variance and standard deviation, 127
Volatility, 127–130, 177
Volume-weighted average price (VWAP), 7

Y
Yahoo! Finance, 21
yfinance library, 21
yfinance package, 21

Z
zero_grad() function, 323
Zero-sum game, 84
Z-score, 246–248, 250–252, 303, 304, 319
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