Trading Strategies
Using Python

Technical Analysis, Statistical Testing,
and Machine Learning

Peng Liu

Apress:

Quantitative Trading
Strategies Using Python

Technical Analysis, Statistical
Testing, and Machine Learning

Peng Liu

Apress®

Quantitative Trading Strategies Using Python: Technical Analysis, Statistical Testing,
and Machine Learning

Peng Liu
Singapore, Singapore

ISBN-13 (pbk): 978-1-4842-9674-5 ISBN-13 (electronic): 978-1-4842-9675-2
https://doi.org/10.1007/978-1-4842-9675-2

Copyright © 2023 by Peng Liu

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image by Ahmad Ardity on Pixabay (www.pixabay.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (github.com/apress). For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

Paper in this product is recyclable

https://doi.org/10.1007/978-1-4842-9675-2

Table of Contents

About the AULROFcccciiceimiiermnsn s ix
About the Technical REVIEWETccccessssmsmmsssnsmmssssmssnsmssnsssssssssssnsssssnsssssnsssssnssnnsns Xi
Chapter 1: Quantitative Trading: An Introduction.........cccusseemmmmmnnnnnmsssssssssnnsneemn. 1
Overview of Quantitative Tradingc.cuoeeererrinnnnesr e 2
Model Development WOrKflOW ... s s e ssesnens 4
Institutional Algorithmic Trading........cocveeeererrnsernesr e s 5
Being @ QUANT TrAUENccerererree s 7
Major Asset Classes and DeriVativeS..........cucccererernsernensnessrsse s s senns 8
Grouping Tradable ASSELSc.cueiererernserrssesese s e nr s 10
Common Trading AVenues and STEPSccccvrermrrenernsesesesess s s sessesenns 14
Market STrUCTUES........ccerrcerce e 15
Major Types of Buy-Side StOCK INVESIONSc.cceeverenereserinesinese s 16
MarKet MAKINGc.eoerreerrnesensenesese s sessse s s s se s ses e sesss e ssssessssssessssssenssssssssnsans 17
BTz {01 T SRS 18
Portfolio ReDAlANCINGccoeveiriirneree e e 18
Getting Started with Financial Data AnalySisc...ccuvrerrrenernsesnessnesessse s sessenens 19
SUMMANIZING STOCK PrICES ..cvvveeirccerincsinrcse e 19
Downloading StoCk Price Data.........c.ccevenmrrnsernsennnesessse s sesss e ssanes 21
Visualizing StoCK PriCe Data..........ccceerrerernnennninesssesssesessse e sesss s ssssese s sesssssssenens 29

E 1] 04 R 32
(] (01T TS 33
Chapter 2: Electronic Market..........ccciurnnsnmmnmmnsssnnnmmssssssssmsssssssssssssssssssssssssssssssnsnssss 35
Introducing EleCtronic Market..........cccooicriininnsnnrs s 35

o L= T 0] T (o T 36
Proprietary and Agency Trading..........cccvrernrnsniennnnennnnsesess s s sse e s sessesse s 38

TABLE OF CONTENTS

Order MatChing SYSTEMScccviererirrerere e s e se s sa e sa e e s e saesresa e e naesaens 39

1T T A 0] (o R 42

LI 0110 (0 TP 43
Limit Order BOOK........covurrieerererenisssssse e s ss s e s s 44
Display vS. NON-diSPIaY OFUEISevvererrererrrrerserersesessesessesssssssessessessssessessessssessessessssssesseses 47

£33 (0] 8 00 - O 47

L3 (0] R I 1) 00 O 49
a0 T T 00 50

L VLT T T3 (0] 0N 0 o [T 52
Market If TOUChEA OFdEr ..o s 53
Summarizing Major TYPES Of OFAEIS......ccvververierererrersereresessere s s ssesessessessesssssssessesees 54
More Order Types: Limit and Cancelationcccvvvvrrierenssensensesssensesesessssesessessssessessenes 55
PriCE IMPACToeee et e e s s e e 55
00 =T g TR 56
Working With LOB Data.........cccccrirenrerircscrnc s se s e st et se s e sanns 57
Understanding Label Distribution ... 59
Understanding Price-Volume Data ... sesse e s sessesnens 61
Visualizing Price MOVEMENT ... s 70
SUIMIMANY.....eeeeeeecee e e e e e e Re e e e s e e e e e Re e e R e e e e e e e Re e s Ee e nr e e e nnnneas 74
(] (01T 75
Chapter 3: Forward and Futures Contractscccusmmmmsssmmnmnssssssnmmssssssnmsssssssnnnns 77
Introducing Forward and Futures CONractscocuverevnsernsesenssessse s ssssesens 78
Parameters of @ FUtures CONtractcccvvvevniennesmnsse s 80
Hedging and SPeCUItioN..........covcvieirnenenese e 81
0bligations at MALUNILYccovereriesernse e e 82
Leverage in @ FUtUres CONTIacCtccccvvievenenmnnse s s s 83
ClEariNg HOUSEccveeerreeriserinseser e sr e se s nr e 84
T (0TI Ty (SRS 85
Pricing FOrward CONEraCt..........ccoveernenrnesnnse e 88
Pricing FULUFES CONTIACT.........cccvererrnesrnenesse s s 91
Contango and Backwardationc.ccccuvernenennsesnesssssess s e sss e s ssssesenns 94

iv

TABLE OF CONTENTS

Working with FUTUIES Datacccvvriinninnrsir e sae s 96
Adding Technical INAICALOrS........ccccvirreririrrie e 99

£ 111117 OO 104
(] (o1 105
Chapter 4: Understanding Risk and Returncccccmmiirnnnsssssssssnmnnnsssssssssssssnnnnns 107
Risk and Return Trade-0ff...........ccccorerrnnnnnnrrene s sessesenns 108
ANAIYZING RETUMNS......ccovicerererree s s s s e e e s sre e sensssnnsnens 109
Working with DumMmy RetUINS.........ccoverirermrnsesnssese s sesse s ssssesesssssssenens 110
The THR FOIMAL ..o s sr e e nne s 114
The Terminal RETUINcoveeereerercseresess s se e sse s e srs e sesssssnsnnens 115
Stock Return with DiVIdENSccveevrenerenernsessese s sennes 117
MURIPEriOt REIUMN......coeec e e e s e 117
ANNUANIZING RELUINS ...c.veeeereeceriee s s sr s e se s e seses e sesssnsnsnnens 119
Calculating Single-Period Returns from Price Data..........c.ccocvverrvnernsesnnennnnsesensesessssenennes 120
Calculating Two-Period Terminal REEUINcccvvererenmrnsesesesessse s ssssesenns 123
Calculating AnnUalized RELUINS........ccovererrenernseseresese s s se s ssanes 124
ANAIYZING RISK....ccvierrierinsiirrise s s p e r e na e nra s 125
Introducing Variance and Standard Deviation ..o 126
ANNUANIZING VOIALIHITYeceveeecerreeriresinee e e 127
Combining Risk and Return via the Sharpe Ratio...........ccoucvnrennnsninnsnnessssse s 129
Working with Stock Price Data.........c.cccccvvirnsennesinsse s s sessessssenens 132
Calculating the Mean, Variance, and Standard Deviationccccvvnirinnnsniniennsensenens 134
Calculating the Annualized VOIatility...........ccccvvvernrennennnsennesens e 137
Calculating the Annualized RELUINS........ccvvcernienrnesnnese s ssanes 137
Calculating the Sharpe Ratio........c.ccccuvererisnnsnnesns s ssanes 139

£ 11134 R 139
(] (0T 140

TABLE OF CONTENTS

Chapter 5: Trend-Following Strategy........cccsmssmmnmrmsssnnnssssssnnnssssssnnssssssssnssssssnnnnss 141
Working with Log RETUINS........ccoeii s 142
Analyzing Stock Prices Using Log RELUMNS........cccevrrcrnirrie s sesneens 150
Introducing Trend Trading........ccocvcrninnrn e s s 153
Understanding Technical INAiCAtOrs ... 154
Introducing MOVING AVEIAgEScccvvrerrerriniriesesse s s s s sss s saessssessessessssessesneses 155
Delving into Simple Moving AVEIagesccccvvrerininnnenesinsisse s ssssessesssssssessesnes 156
Delving into Exponential Moving AVEIages........cccurvnennninnnsesess s sessessesssssssessesses 163
Implementing the Trend-Following Strategy ..o 166

£ 1117 o S 173
EXBICISES.c.riveerrierrssesesresesse st se s se e e e e e e e e e e e AR e e e AR e 174
Chapter 6: Momentum Trading Strategy.......cccusesmsssnsssssnsssssnsssssnsssssnsssssnnssssnnssssns 175
Introducing Momentum TrAINgcocvvrrrieriernrrrrere s s sae e se s e naens 176
Diving Deeper into Momentum Tradingcccveerrevnneninieninnensersesesss s sessesseseesessessesses 176
Contrasting with the Trend-Following Strategyccevirvrrrvniennnnrrie e 177
Observing the Role of LOOKDACK WINAOWSc.ccovververiernninsenseressesessesessesessessessessssessessenes 178
More on Trend FOHOWINGcccevererinieriere st ses e see s s s s s e ssesaesss e s e ssesasssssessesnes 180
Implementing the Momentum Trading Strategy........ccvvvrrrerievnnnreriensserserese e seesesesnens 182
Obtaining DJI STOCK SYMDOIScovierererirserere s se e s sas e s snesssssssesae s 182
Downloading STOCK PriCES......ccvereririerierererserere s sessessesaesessessessessssessessesssssssessesasssssessesaes 185
Calculating Monthly REEUINScccvevierernrerseresesessese e ssssessessesssssssessesasssssessessesssssssessees 185
Calculating the Six-Month Terminal REIUIN........cccocvvririenrrrrere s snens 187
Generating Trading SigNalS........coivvrrrierernrrrerere s s s s ssesaesessesnees 188
Evaluating Out-of-Sample PerfOrmance.........c.ccvvevvrerrerernsensensesessssesessessssessessesssssssessesaes 192
Comparing with the Buy-and-Hold Strategy.........ccccvvrrrierrrniniennnensene s sessesessessssessessenes 194
31111117 OO 195
(] (01T 196

TABLE OF CONTENTS

Chapter 7: Backtesting a Trading Strategy........cccrmmsmmmnrmssssnnnmsssssnnssssssssssssssssnnnss 197
Introducing BaCKIEStiNG........ccceevvririnisnn s 197
Caveats 0f BACKIESTING.......cccoererrricrrc s 199
Understanding Maximum Drawdown ... ssessessssessesseens 201

The Downside of Drawdown RiSK...........ccveerrernererereree e 203
Calculating the Max DrawdOWN ..o s 204
Backtesting the Trend-Following STrategycccccvvrrnrerrenersssssesese s 216
BT 111 1T o SRS 222
(=] £ 1] RN 223
Chapter 8: Statistical Arbitrage with Hypothesis Testing......c.ccuusemnrnssnnnssssssnnnns 225
Y 1LY (L= Y) = Vo P 225
T CS R 1= Vo 1 oSSR 227
{01011 = 13O 229

LS L 10] 1 - 1 O 232

LTS O {01 00T (=T T 110 O 236
Correlation and CoiNtEgration.........c.ccveevevrrerieriereser s s sse e s e ssesne s 240
Implementing the Pairs Trading Strategy........cccoeerrrrrierriesrnsc s 242
Identifying Cointegrated Pairs 0f STOCKScccccvrevrecrrce e 242
Testing Pairwise Cointegration..........ccccccecrrcnniennc e 243
0btaining the SPread.........ccccecrrcerre e np s 245
CONVEItING 10 Z-SCOIES.....courererrecrirerire sttt sa e b e st ne s ae e npe s 246
Formulating the Trading Strategyccccvrierrrrrnc e 250

£ 1T T T 254
(] (o1 SR 255
Chapter 9: Optimizing Trading Strategies with Bayesian Optimization................ 257
Optimizing Trading Strate@gieS.......cccvurerinserrrrererise s sr s 257
Parametric Trading StratgieS........cuouurnrerrrrermrisernse s srenes 258

More on OptiMIZAtioNccvvrienierrrr 260
Global OptimIZationcccccvvrerrrr e ——— 261

The Objective FUNCHION ..o 265

vii

TABLE OF CONTENTS

Bayesian Optimization..........ccucvreriernirieriesnserere s s sessesse e ssessesaessssessessesaessssessesaes 268
GAUSSIAN PIOCESSccrvrviririiesessssssssse s s se s ss s ss e s snssssss s sesasssnsas 270
AcqUISITION FUNCTIONoceiiiiercie s n e s s 273
ELQNA UCB ..ottt 275
TRE FUII BO LOOP. .cruerverererersersesessessessesssssssessessessssessessesssssssessessesssssssessessesssnessessesssssssessesses 277
Optimizing the Pairs Trading Strategy........cccccvrvrrieirncrrr e 278
Trading Strategy Performance As the Black-Box FUNCtion............ccovcvreevreccnnccvnccnenneens 279
Generating Training Set for Bayesian Optimizationc.ccceoevirnvnrnriesnccrn e 284
Implementing the Gaussian Process Modelccccoevvnvnnenrncnnc s 286
Guiding the Sequential Search by Maximizing the Acquisition Function...........cccceevvevieruene 288
Performing Sequential SEArCh............ccovvirierrncrns e 292
£ 300
(] (o1 SR 301
Chapter 10: Pairs Trading Using Machine Learning.......cccusssessmssssssnnsssssssssssssssnnnss 303
Machine Learning in Pairs Trading........c.cccvvrerrinernsesnennnsse s ssssssssssssssssessssesenns 303
Machine Learning WOrkflOWccuvernsennennnnsesnse s ssssessssessssssessssesssssssssssessnses 304
SUPPOrt VECTOr MACKINEcovceerrcierierisessse e sr s s 306
Random FOrEST ..o e 308
NEUFAl NBIWOTK......ccvecererereirere e s 310
Implementing the Pairs Trading Strategy Using Machine Learningcccvevvnverierenensensenens 313
Feature ENGINEEIINGccveveierierererir s s ses s e s se s sse e sse s s e saessese s e saesaesssenaesnes 315
Pairs Trading USING SVIM........ccocvierirrririe s ses e saeses e ssessessssessesaessssssesaesasssssessesaes 316
Pairs Trading Using RaNdom FOFESt........c.covirveriernnensenenesessesese s sessessessssessessesesssssessesaes 319
Pairs Trading Using Neural NEtWOIKSccvcvveriernnenseneresensenese s sessessessssessessesassessessesaes 320

£ 1§14 7P 324
(] (0T 325
1T - 327

viil

About the Author

Peng Liu is an assistant professor of quantitative finance
(practice) at Singapore Management University and an
adjunct researcher at the National University of Singapore.
He holds a Ph.D. in statistics from the National University

of Singapore and has ten years of working experience as a
data scientist across the banking, technology, and hospitality
industries. Peng is the author of Bayesian Optimization
(Apress, 2023).

ix

About the Technical Reviewer

Sonal Raj is an engineer, mathematician, data scientist, and
Python evangelist from India, who has carved a niche in
the financial services domain. He is a Goldman Sachs and
D. E. Shaw alumnus who currently serves as Vice President
and Head of Data Management and Research for a leading
high-frequency trading firm.

Sonal holds dual masters in computer science and
business administration and is a former research fellow of

the Indian Institute of Science. He is a doctoral candidate in

data science at the Swiss School of Business Management,

Geneva. His areas of research range from image processing and real-time graph
computations to electronic trading algorithms. Sonal is the author of the titles The
Pythonic Way (BPB, 2021) and Neo4j High Performance (Packt, 2015). During his career,
Sonal has created low latency trading algorithms, trading strategies, market signal
models, and components of electronic trading systems. He is also a community speaker
and a Python and data science mentor to young minds in the field.

When not engrossed in reading fiction or playing symphonies, he spends far too
much time watching rockets lift off.

He is a loving son and husband and a custodian of his personal library.

xi

CHAPTER 1

Quantitative Trading:
An Introduction

Quantitative trading, also called algorithmic trading, refers to automated trading
activities that buy or sell particular instruments based on specific algorithms. Here, an
algorithm can be considered a model that transforms an input into an output. In this
case, the input includes sufficient data to make a proper trading decision, and the output
is the action of buying or selling an instrument. The quality of a trading decision thus
relies on the sufficiency of the input data and the suitability and robustness of the model.

Developing a successful quantitative trading strategy involves the collection and
processing of vast amounts of input data, such as historical price data, financial news,
and economic indicators. The data is passed as input to the model development process,
where the goal is to accurately forecast market trends, identify trading opportunities, and
manage potential risks, all of which are reflected in the resulting buy or sell signals.

A robust trading algorithm is often identified via the process of backtesting, which
involves simulating the algorithm’s performance using historical data. Simulating the
performance of the algorithm under different scenarios allows us to assess the strategy’s
potential effectiveness better, identify its limitations, and fine-tune the parameters
to optimize its results. However, one also needs to be aware of the potential risks of
overfitting and survivorship bias, which can lead to inflated metrics and potentially poor
test set performance.

In this chapter, we start by covering a few basic and important concepts related to
quantitative trading. We then switch to hands-on examples of working with financial
data using Python.

© Peng Liu 2023
P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_1

https://doi.org/10.1007/978-1-4842-9675-2_1

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Overview of Quantitative Trading

Quantitative trading refers to the use of mathematical models and algorithms to analyze
large datasets (structured or unstructured), identify consistent patterns, and generate
robust trading signals. The key components of quantitative trading include data
collection and preprocessing, feature engineering, model development, backtesting,
optimization, and execution. Quantitative strategies can vary greatly in complexity,
ranging from simple moving average crossovers to advanced machine learning
techniques, all of which are covered in later chapters of the book.

A good trading strategy could be as simple as buying low and selling high (i.e., long
a security) or selling high and buying low (i.e., short a security). The underlying trading
model can consume different types of input data. For example, the input data could
include structured features such as specific performance metrics of a particular stock
or unstructured news contents pertinent to the company of the stock. When the input
is financial news, the challenge is often concerned with converting unstructured textual
information to structured features in a consistent and principled manner. The input data
could also be raw financial ratios readily available from the balance sheet or derived
features such as firm-specific technical indicators.

We can categorize the input data into the following four general groups:

o Market states: Security-specific price movements such as tick data
that measures the minimum upward or downward movement in the
price of a security, or market-specific factors such as bid-ask spread
in limit-order books (LOB) in high-frequency trading. Besides the tick
size, other resolution parameters of a LOB include the lot size, which
specifies the smallest amount of a stock that can be traded.

o Financial news: Macroeconomic news, analyst reports, earnings
conference call transcripts, etc.

o Fundamentals: Overall economic or sector-specific conditions and
firm-specific metrics such as revenue, cash flow, earnings per share
(EPS), etc.

e Technicals: Derived technical indicators based on the raw price
series, including moving averages, stochastic indicators, etc.

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

More generally, quantitative trading can be defined as the process of order execution
based on trading signals generated using computer programs and algorithms. The
purpose is either to seek profits and achieve an abnormal rate of return that beats the
market (called alpha) or manage different types of risk.

In a nutshell, quantitative trading refers to an algorithm (also called a function or a
model) that digests any of these structured or unstructured data sources and outputs a
trading decision. The automatic trading strategies could be in the form of experience-
based rules based on technical analysis or data-driven machine learning models trained
based on historical data. Upon receiving the output as a trading signal, we would either
buy (also called long) an asset to open a position or sell (also called short) an asset to
close a position, make a profit, or stop a loss. Trading signals could occur intraday in a
high-frequency setting (also called day trading) or in a longer term (also called position
trading). Figure 1-1 illustrates this process.

Market states Financial news ‘ ‘ Fundamentals ‘ ‘ Technicals Input
N
‘ Algorithm/function/model ‘ Quantitative trading
N N
‘ Trading decision: buy/long or sell/short ‘ Output

Figure 1-1. Illustrating the overall quantitative trading process

The model used to generate trading signals could be either rule-based or trained
using data. The rule-based approach mainly relies on domain knowledge and requires
explicitly writing out the logic flow from input to output, similar to following a cooking
recipe. On the other hand, the data-driven approach involves training a model using
machine learning techniques and using the model as a black box for prediction and
inference. Let us review the overall model training process in a typical machine learning

workflow.

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Model Development Workflow

A typical model development workflow starts with some training data. The training
data consists of input-output pairs in supervised learning tasks where both input and
output data are given. Each input entry could contain multiple features that describe
the same observation from different perspectives. The corresponding output has the
true target, acting as the correct answer to guide the training process. Model training
aims to generate a mapping function, a model, that correctly maps a given input to the
corresponding output.

A trained model consists of two parts: parameters and architecture. Parameters
are the integral components of a model, and the architecture specifies how these
components interact with the input data to produce the final prediction output. This
predicted value is then compared with the ground truth target to make an error metric
jointly. Here, the error indicates the current cost on how close or far away it is between
the prediction and the actual value. Following a particular optimization procedure, the
training process adjusts the model parameters for a given architecture to reduce the
training cost. After changing the weights, the new error is calculated again, forming a
feedback loop. The whole model training process is depicted in Figure 1-2.

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Optimization refers to an algorithm responsible for
tweaking the model's parameters such that the
specified cost function is minimized. This tweak \\\
generates a new model, as represented by a new ~—
set of parameters or weights.

Input features - —»{ Prediction ’
Parameters = Architecture

\

Target label S \\
A model is a final product out of a training
\ process. It consisls of parameters and "
A\ architecture. Parameters are the tuning knobs Cost refers 1o the error or loss that
. of a radio machine, and architecture specifies quantifies the distance between model
We start with a set of training data, which how these knobs interact with received input prediction and target label. The training
consists of input-output pairs. Our goal is radio to output the desired channel. A complex process aims at building a model that
to build a model that takes a given input model often refers to many parameters and achieves zero error in training data, i.e.,
and produces a prediction, hoping it is possibly complex architecture that conirols the its predictions perfectly match the
close to the output label. flow of information. targets. However, this may lead to
overfitting.

Figure 1-2. Example of a typical model training process. The workflow starts
with the available training data and gradually tunes a model. The tuning process
requires matching the model prediction to the target output, where the gap is
measured by a particular cost function and used as feedback for the next round
of tuning. Each tuning produces a new model, and we want to look for one that
minimizes the cost

Now let us look at a specific type of algorithmic trading at large institutions:
institutional algorithmic trading.

Institutional Algorithmic Trading

Since the underlying decision model could be a black box, algorithmic trading is also
called automated trading, black-box trading, or robo-trading. It is used to generate and
execute orders in markets with electronic access. In the context of large institutions,
hedge funds, and trading desks, the trading volume is often quite large. In this case,
institutional algorithmic trading often seeks to break up large orders into smaller ones to
reduce the execution risk, which refers to the case when a large order cannot be fulfilled
in the market.

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Besides preserving anonymity in transactions, large institutions also use algorithmic
trading to minimize the price impact of a trade. This is because even if a large order is
executable, it is difficult to guarantee that the market price will not be impacted due to
the execution of the large order. Thus, the main objective of institutional algorithmic
trading is to control the market risk and the execution cost rather than gaining profits.

When executing a large order by an institutional investor, the demand for a large
amount of liquidity will typically affect the cost of the trade negatively. This is called
slippage, which refers to situations when a market participant receives a different
execution price than initially intended. This could happen for many instruments,
including stocks, bonds, currencies, and derivatives.

To execute these block trades anonymously without generating a noticeable impact
in the market, large institutions often involve dark pools to carry out these trades. Dark
pools are private exchanges that execute orders from institutional investors away from
the central stock exchanges, thus exhibiting little transparency in the transactional
process.

These large institutional orders, when split into small-sized orders, are also called
iceberg orders. By partially exposing the tip of an iceberg, the majority of the orders
could remain hidden and transition into visible orders afterward, thus minimizing
the disruption to the trading market as opposed to a single large order. These smaller
orders will then be executed electronically over minutes, hours, or days. To minimize the
impact of these orders, institutional investors would trade more at the market opens and
closes when the trading volume is relatively high and less during a slow period around
lunchtime.

Let us look at a simple example of generating a small subset of iceberg orders
from the original orders using Python. In Listing 1-1, we create a list of ten random
integers saved in total order to indicate all the orders to be executed by an
institutional investor. We can randomly sample two indexes and use them to access the
corresponding elements in total order and save in iceberg order, representing the
iceberg orders to be exposed to the market.

Listing 1-1. Generating iceberg orders

generate multiple random integers

total order = [random.randint(0, 10) for p in range(0, 10)]
>>> total order

(9, 6, 4, 3, 7, 6, 3, 0, 0, 6]

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

randomly sample two indexes to identify iceberg orders
iceberg order idx = random.sample(total order, 2)

>>> iceberg order idx

[0, 4]

retrieve iceberg orders
iceberg order = np.array(total order)[iceberg order idx]
iceberg order

array([9, 7])

The institutional algorithmic strategies generate optimal trading signals by analyzing
daily quotes and prices. For example, an institutional algorithmic strategy may suggest
entering a long position if the current stock price moves from below to above the volume-
weighted average price (VWAP) over a day, a technical indicator often used by short-term
traders. The institutional algorithmic strategies may also exploit arbitrage opportunities
or price spreads between correlated securities. Here, arbitrage means making positive
sure profits with zero investments. Arbitrage opportunities, if exist, would normally
disappear very fast as many hedge funds and investors are constantly looking for such
arbitrage opportunities.

The next section briefly introduces the role of a quant trader.

Being a Quant Trader

A quant trader is a specialized trader that uses mathematical models and quantitative
analysis to evaluate different financial products and identify trading opportunities to
buy or sell the best securities out of hundreds of thousands of candidates. Quant traders
make use of data-driven methods to make model-based trading decisions, seeking to
exploit temporary inefficiencies and underlying patterns in the market that may not be
easily discernible through traditional qualitative analysis.

The first attribute of an aspiring quant trader is familiarity with numbers and
mathematical models. As the majority of the time is spent on analyzing the data,
proposing, backtesting, and implementing trading strategies to either buy, sell, or hold
specific security, a quant trader needs to be comfortable with both mathematical models
and programming, which often requires an advanced degree in financial modeling or
related field. When a positive signal pops up, the quant trader needs to act swiftly using
self-developed programs to capitalize on the current trading opportunities.

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

The second attribute lies in soft skills such as handling high pressure with a good
temperament. This requires good emotional intelligence to neither assume too much
risk nor be overly risk averse. Knowing when to exit a position and stop loss is a critical
skill that requires discipline in daily trading activities.

The following section covers the major asset classes and various tradable
instruments.

Major Asset Classes and Derivatives

Multiple tradable financial instruments are used to raise capital in public and private
markets. Institutional and retail investors can enter into long or short positions involving
different single or combinations of assets, profit-seeking, or risk management (i.e.,
hedging).

Let us first get a glimpse of the many tradable assets. In the following list, we provide
a short definition of common assets used in the market:

o Stocks: Also called equity, a form of security representing
proportionate ownership of the issuing company. A unit of
stock is called a share, and the number of shares determines the
proportionate ownership and, thus, profit sharing of the stock
owner. The stock owner profits when the stock price increases or by
receiving dividends.

e Bonds: Fixed-income debt instruments representing a fixed-
duration loan from the investor/lender to the borrower (company or
government). A bond provides the owner with fixed-rate coupon or
variable interest payments, and the principal is paid to the owner at
the end date. It is a fixed-income asset due to the regular and stable
interest paid to the owner.

e Annuities: Insurance contracts from financial institutions that
provide a fixed-income stream to the contract owner in the future.
Investors mainly purchase annuities for retirement as they can
receive a guaranteed stream of payments in the future for a specified
period or the remainder of life.

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Cash and equivalents: Highly liquid short-term (less than 90 days)
investment securities with low risk and low return (usually less than
the inflation rate). The equivalents include bank accounts, near-term
instruments such as US Treasury bills, and money market funds.
These current assets can be easily accessed anytime and reflect the
firm'’s ability to pay the short-term debt.

Commodities: Basic goods used in commerce as raw inputs to
produce other goods or services. Common commodities, such as
gold, oil, and natural gas, can be traded in the spot (cash) market or
via derivatives such as futures and options.

Futures: Financial derivatives in the form of legal agreements that
oblige the futures contract buyer to buy or sell the underlying asset
at a prespecified price, amount, and time in the future. Futures are
often used to hedge against price movements of the underlying asset
and thus avoid losses due to unfavorable price changes in the future.
The price of a futures contract is settled daily, that is, marked to
market (MTM).

Forward: Similar to the futures contract. The difference is that a
forward contract is a private and customizable agreement traded
over the counter (OTC), which is a decentralized marketplace where
participants trade instruments directly without engaging a central
exchange or a broker. The price of a forward contract is settled at the
end of the agreement.

Options: Financial derivatives that offer the buyer of the options
contract the opportunity to buy (if it is a call option) or sell (if it is a
put option) the underlying asset on or before a specific expiration
(maturity) date and (strike) price. Options give the buyers the right,
not the obligation, to long or short an underlying asset. They can be
used for both hedging and speculation. Note that we focus on the
European option by default.

Currencies: International currencies and currency derivatives traded
via the (largest and most liquid) global electronic marketplace, also
called the foreign exchange market or forex. Forex allows investors to

CHAPTER 1

QUANTITATIVE TRADING: AN INTRODUCTION

exchange one currency for the equivalent value in another currency
at the current market rate. Traders also speculate on the direction
of currency values to profit from a favorable price movement of a
particular pair of currencies.

ETFs: Exchange-traded funds that refer to a type of pooled
investment security that are baskets of securities (stocks, bonds,
commodities, etc.) and are traded intraday like regular stocks.

REITs: Real estate investment trusts that refer to companies that own,
operate, or finance income-generating real estate. Investors in REITs
(liquid and publicly traded like stocks) can earn a steady income
stream from real estate investments without purchasing, managing,
or financing the actual properties themselves.

Mutual funds: A type of financial vehicle that consists of a portfolio
of stocks, bonds, or other securities. Mutual funds are managed

by professional money managers and allow individual investors

to access diversified and professionally managed portfolios at the
expense of annual fees. Mutual funds only can be purchased at the
end of each trading day based on a calculated price known as the net
asset value.

Hedge funds: Actively managed investment pools that aim at earning
above-average returns for investors via a wide range of (often risky)
trading strategies at the expense of higher fees than conventional
investment funds.

These tradable asset types can be grouped into different classes based on a particular

perspective. We introduce a few popular perspectives in the following section.

Grouping Tradable Assets

An asset class is a collection of investment instruments that exhibit similar fundamental

characteristics in terms of risk and return. There are four major asset classes: equities,

fixed-income instruments, cash and equivalents, and alternative investments, defined as

financial assets that do not fall into prior investment categories. Figure 1-3 illustrates the

four classes of investment securities.

10

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Common asset classes

m Fixed-income Cash and Alternative
Stocks instruments equivalents investment

Bonds Cash Commodities
Annuities Bank accounts Forex
U.S. Treasury bills REITs
money market Futures
funds Options
ETFs
Mutual funds
Hedge funds

Figure 1-3. Grouping common investment assets into four major classes

Alternatively, we can group tradable assets based on the type of maturity. Stocks,
currencies, and commodities are asset classes with no maturity, while fixed-income
instruments and derivatives have maturities. For vanilla security with a maturity date,
such as a futures contract, it is possible to compute its fair price based on the no-
arbitrage argument, a topic we will discuss in Chapter 3.

We can also group assets based on the linearity of the payoff function at maturity
for certain derivative instruments. For example, a futures contract allows the buyer/
seller to buy/sell the underlying asset at an agreed price at maturity. Let us assume the
underlying (stock) price at the maturity date is Sy and the agreed price is K. When a
buyer enters/longs a futures contract to buy the stock at price K, the buyer would make
a profit of S; — Kif S; > K (purchase the stock at a lower price) or suffer a loss of K — S,
if S; < K (purchase the stock at a higher price). A similar analysis applies to the case of
entering a short position in a futures contract. Both functions are linear with respect
to the underlying asset’s price upon exercise. See Figure 1-4 for an illustration of linear

payoff functions.

11

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Entering a long position in a (Entering a short position in a
. futures contract) L futures contract)
Payoff waoff
Sr—K
% " Sr K " St
K-St

Figure 1-4. Illustration of the linear payoff function of entering a long or short
position in a futures contract

Other derivative products with linear payoff functions include forwards and swaps.
These are easy to price since their prices are linear functions of the underlying asset. We
can price these instruments irrespective of the mathematical model for the underlying
price. In other words, we only require the underlying asset’s price, not the mathematical
model around the asset. These assets are thus subject to model-independent pricing.

Let us look at the nonlinear payoff function from an options contract. A call option
gives the buyer a choice to buy the underlying asset at the strike price K at the maturity
date Twhen the underlying asset price is S;, while a put option changes such choice
to selling the underlying asset at the strike price K. Under both situations, the buyer
can choose not to exercise the option and therefore gains no profit. Given that an
investor can either long or short a call or put option, there are four combinations when
participating in an options contract, as listed in the following:

e Long a call: Buy a call option to obtain the opportunity to buy the
underlying asset at a prespecified strike price upon maturity.

e Shorta call: Sell a call option to allow the buyer the opportunity to
buy the underlying asset at a prespecified strike price upon maturity.

12

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

e Long a put: Buy a put option to obtain the opportunity to sell the
underlying asset at a prespecified strike price upon maturity.

e Short a put: Sell a put option to allow the buyer the opportunity to
sell the underlying asset at a prespecified strike price upon maturity.

Figure 1-5 contains the payoff functions for the four different combinations, all of
which are nonlinear functions of the underlying asset price S;.

[Long a call option | Short a call option
Payoff Pa\{off
> > S
K ST K T
L Long a put option | Short a put option
P?yoff Payoff
K > ST K > ST

Figure 1-5. Four types of nonlinear payolff functions in an options contract

Note that tradable instruments within the same asset class exhibit similar
characteristics but will differ from one another in some aspects. The market behavior
will differ for tradable instruments that follow their respective price dynamics.

We can also group a tradable asset according to whether it belongs to the cash
market or the derivative market. The cash market, also called the spot market, is
a marketplace where trading instruments are exchanged at the point of sale, and

13

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

purchasers take immediate possession of the trading products. For example, the stock
exchange falls into the cash market since investors receive shares of stock almost
immediately in exchange for cash, thus settling the transactions on the spot.

On the other hand, the derivative market completes a transaction only at a
prespecified date in the future. Take the futures market, for example. A buyer who
pays for the right to receive a good only gets to expect the delivery at a prespecified
future date.

The next section introduces common trading avenues and steps.

Common Trading Avenues and Steps

As mentioned earlier, investors engage in trading activities for the purpose of profit-
making or risk management. When the purpose is to invest and make profits, the next
sequence of actions is to observe and analyze the market and act upon the trading
signals. For example, if investors use predictive methods to predict when the market
will go up or down, they can initiate trades to turn the market into profits and make
short, instant wins. Such activity is referred to as market timing, where an investor enters
or exits a position or rebalances a portfolio (moving money between assets) based on
predicted market movement in the near future. This is opposite to the buy-and-hold
strategy, where an investor purchases trading instruments and holds them for a long
period, irrespective of the market’s volatility (ups and downs).

When engaging in trading activity, it is important to understand the short-term
and long-term seasonality effect for a particular tradable asset. Take stock trading, for
example. Short-term swings in stock prices tend to occur when the market opens and
closes, falling under the regular trading hours of major stock exchanges and forming the
opening and closing prices of the particular day. In the longer term, trading activities at
the end of the year tend to be quieter than other periods of the particular year.

Trading activities can happen at one of the following four avenues:

e Regulated exchanges, such as the New York Stock Exchange (NYSE)
and NASDAQ

o Dark pools, private exchanges that are less regulated

e Brokered market, where transactions between the buyer and the
seller are performed via middlemen called brokers (or agents,

intermediaries)

14

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

e Over-the-counter (OTC) market, a decentralized market that allows
direct transactions between buyers and sellers

Let us look at the anatomy of a trade. There are four usual steps involved when
performing a trade:

e Acquisition of information and quotes: Before engaging in a trade, it
is important to access quality information about the asset and gain
transparency in many tangible and intangible factors such as supply
and demand, the risk attitude of investors, and the overall economic
and geopolitical environment. Information on the market structure,
liquidity, and information flow eventually determine the price
discovery of the tradable asset.

e Routing of order, such as selecting the broker(s) to handle the
trade(s) or deciding which market(s) to transmit and execute the
trade(s).

o Execution of order, matching and executing the trading orders
between buyers and sellers according to the rules of the
particular market.

o Confirmation, clearance, and settlement: This happens at the end of
executing a trading order. Clearance is the recording and comparison
of trade records, and settlement involves the actual delivery of the
security and its payment.

In the next section, we will look at different market structures.

Market Structures

Before 2010, open outcry was a popular way to communicate trade orders in trading
pits (floor). Traders would tap into temporary information asymmetry and use verbal
communication and hand signals to perform trading activities at stock, option, and
futures exchanges. Traders would arrange their trades face to face on the exchange’s
trading floor, cry out bids and offers to offer liquidity, and listen for bids and offers to
take liquidity. The open outcry rule is that traders must announce their bids and offers
so that other traders may react to them, avoiding whispering among a small group of
traders. They must also publicly announce that they accept bids (assets sold) or offers

15

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

(assets taken) of particular trades. The largest pit was the US long-term treasury bond
futures market, with over 500 floor traders under the Chicago Board of Trade (CBOT), a
major market maker that later merged into the CMT Group.

As technology advanced, the trading markets moved from physical to electronic,
shaping a fully automated exchange. First proposed by Fischer Black in 1971, the fully
automated exchange was also called program trading, which encompasses a wide range
of portfolio trading strategies.

The trading rules and systems together define a trading market’s market structure.
One type of market is called the call market, where trades are allowed only when the
market is called. The other type of market is the continuous market, where trades
are allowed anytime during regular trading hours. Big exchanges such as NYSE, LSE
(London Stock Exchange), and SGX (Singapore Exchange) allow a hybrid mode of
market structure.

The market structure can also be categorized based on the nature of pricing among
the tradable assets. When the prices are determined based on the bid (buy) and ask (sell)
quotations from market makers or dealers, it is called a quote-driven or price-driven
market. The trades are determined by dealers and market makers who participate in
every trade and match orders from their inventory. Typical assets in a quote-driven
market include bonds, currencies, and commodities.

On the other hand, when the trades are based on the buyers’ and sellers’
requirements, it is called an order-driven market where the bid and ask prices, along
with the number of shares desired, are put on display. Typical assets in an order-driven
market include stock markets, futures exchanges, and electronic communications
networks (ECNs). There are two basic types of orders: market orders, based on the asset’s
market price, and limit orders, where the assets are only traded based on the preset
limit price.

Let us look at a few major types of buy-side stock investors.

Major Types of Buy-Side Stock Investors

Buy-side investors include institutional (account for the majority) and retail investors.
Here, buy-side activities include purchasing stocks, bonds, or other financial securities
based on the specific requirements and strategies of the institution’s or client’s portfolio.
The buy side is a segment of financial markets made up of investing institutions and
retail investors that purchase financial products for money-management purposes.

16

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Typical buy-side institutional investors include
e Mutual fund
o Passive exchange-traded fund (ETF)
e Pension fund
e Sovereign wealth fund
e Hedge fund
o Insurance company
e Bank
e Corporate nominee
Typical buy-side retail investors include
e Start-up investor
o Family business
e Household/individual

The next section introduces the concept of market making.

Market Making

Market maker refers to a firm or an individual that actively quotes the two-sided markets
(buy side and sell side) of a particular security. The market maker provides bids,
meaning the particular price of the security along with the quantity it is willing to buy. It
also provides offers (asks), meaning the price of the security and the quantity it is willing
to sell. Naturally, the asking price is supposed to be higher than the bid price, so that the
market maker can make a profit based on the spread of the two quote prices.

Market makers post quotes and stand ready to trade, thereby providing immediacy
and liquidity to the market. By quoting bid and ask prices, market makers make the
assets more liquid for potential buyers and short sellers.

A market maker also takes a significant risk of holding the assets because a security’s
value may decline between its purchase and sale to another buyer. They need capital to
finance their inventories. The capital available to them thus limits their ability to offer
liquidity. Because market making is very risky, investors generally dislike investing in

17

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

market-making operations. Market-making firms with significant external financing
typically have excellent risk management systems that prevent their dealers from
generating large losses.

The next section introduces the concept of scalping.

Scalping

Scalping is a type of trading that makes small and fast profits by quickly (typically no
more than a few minutes in large positions) and continuously acquiring and unwinding
their positions. Traders that engage in scalping are referred to as scalpers.

When engaged in scalping, a trader requires a live feed of quotes in order to move
fast. The trader, also called the day trader, must follow a strict exit strategy because one
large loss could eliminate the many small gains the trader worked to accumulate.

Active traders such as day traders are strong believers in market timing, a key
component of actively managed investment strategies. For example, if traders can
predict when the market will go up and down, they can make trades to turn that market
move into a profit. Obviously, this is a difficult and strenuous task as one needs to watch
the market continuously, from daily to even hourly, as compared to long-term position
traders that invest for the long run.

The next section introduces the concept of portfolio rebalancing.

Portfolio Rebalancing

As time goes on, a portfolio’s current asset allocation will drift away from an investor’s
original target asset allocation. If left unadjusted, the portfolio will either become too
risky or too conservative. Such rebalancing is completed by changing the position of one
or more assets in the portfolio, either buying or selling, with the goal of maximizing the
portfolio return or hedging another financial instrument.

Asset allocations in a portfolio can change as market performance alters the values of
the assets due to price changes. Rebalancing involves periodically buying or selling the
assets in a portfolio to regain and maintain that original, desired level of asset allocation
defined by an investor’s risk and reward profile.

There are several reasons why a portfolio may deviate from its target allocation
over time, such as due to market fluctuations, additional cash injection or withdrawal,
and changes in risk tolerance. We can perform portfolio rebalancing using either a

18

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

time-based rebalancing approach (e.g., quarterly or annually) or a threshold-based
rebalancing approach, which occurs when the allocation of an asset class deviates from
the target by a predefined percentage.

In the world of quantitative trading, Python has emerged as a powerful tool
for formulating and implementing trading algorithms. Part of the reason is its
comprehensive open source libraries and strong community support. In the next
section, we will discuss the practical aspect of financial data analysis and start by
acquiring and summarizing the stock data using Python.

Getting Started with Financial Data Analysis

Financial data analysis is the process of processing and analyzing financial data to
support decision-making in various financial applications, such as investing, trading,
risk management, and corporate finance. It involves the use of advanced analytical
techniques and models to identify the underlying patterns, trends, and relationships in
the data, which will be used to support more informed financial decisions.

The interval of stock data can be different, such as by minute, hour, or day. Since
time is continuous, we need a measure to summarize the profile of the stock price
data within the interval. Let us start by introducing one of the most popular ways to

summarize stock data.

Summarizing Stock Prices

The most common type of summary for stock data is the daily OHLC prices (open, high,
low, close). An OHLC chart is a bar chart that shows open, high, low, and closing prices
for each period, often daily. They present a day’s four major data points, with the closing
price considered the most important indicator by many traders.

The OHLC chart, similar to the candlestick chart shown in Figure 1-6, is useful
because it can show increasing or decreasing momentum. When the open and closing
prices have a big gap in between, it shows a strong momentum for an increase or
decrease in the day. When the open and closing prices are close, it shows indecision or a
weak momentum. The high and low prices show the full price range and can be used to
assess the volatility.

19

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Figure 1-6 shows two candlestick charts, both summarizing the price movements
over a specified period, for example, daily. The color represents emotions for the stock
price movement, with an up candle shaded green and a down candle shaded red,
although these colors can be altered in the specific trading platform. A collection of
candlestick charts can be used to determine the direction of the market movement. Each
candlestick chart consists of four main points: open, high, low, and close, following the
sequence of time in the period. The open and close points determine the real body of
the candlestick. The green color represents a bullish candlestick, that is, the stock price
closes above where it opens. Similarly, the red color represents a bearish candlestick,
that is, the stock price closes below where it opens.

A bullish candlestick A bearish candlestick
High > « High
Close > . Open
Real body
Open - « Close
Low > “ Low

Figure 1-6. Illustrating the bullish candlestick in green and bearish
candlestick in red

Let us examine the bullish candle in the green of a trading day. When the market
starts, the stock assumes an opening price and starts to move. Across the day, the stock
will experience the highest price point (high) and the lowest price point (low), where
the gap in between indicates the momentum of the movement. We know for a fact that
the high will always be higher than the low, as long as there is movement. When the
market closes, the stock registers a close. Figure 1-7 depicts a sample movement path
summarized by the green candlestick.

20

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Price
High

Close

Open

Low

>

Time

Figure 1-7. A sample path of stock price movement represented by the green
candlestick chart. When the market starts, the stock assumes an opening price and
starts to move. It will experience the highest price point (high) and the lowest price
point (low), where the gap in between indicates the momentum of the movement.
When the market closes, the stock registers a close

Next, we will switch gears and start working on the actual stock price data using
Python. We will download the data from Yahoo! Finance and introduce different ways to
graph the data.

Downloading Stock Price Data

Yahoo! Finance is a common source where we can get market data. To download the
stock price data, we can use the yfinance library, a popular open source (and free)
library, to access the financial data available on Yahoo! Finance. It is relatively quick to
set up and offers a high level of granularity in the data (covering daily or even
per-minute data).

To start with, we need to install the yfinance package via the pip command in the
Jupyter notebook environment and import it:

I'pip install yfinance
import yfinance as yf

Next, we can use the Ticker () module from the yfinance package to observe the
profile information of a specific stock. The following code snippet obtains the ticker
information on Microsoft and prints it out via the info attribute:

21

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

use the Ticker module to access ticker data
msft = yf.Ticker("MSFT")

get stock info

>>> msft.info

{'zip': '98052-6399",
‘sector': 'Technology',
"fullTimeEmployees': 221000,
"longBusinessSummary': 'Microsoft Corporation develops, licenses, and
supports software, services, devices, and solutions worldwide. The
company operates in three segments: Productivity and Business Processes,
Intelligent Cloud, and More Personal Computing. The Productivity and
Business Processes segment offers Office, Exchange, SharePoint, Microsoft
Teams, Office 365 Security and Compliance, Microsoft Viva, and Skype for
Business; Skype, Outlook.com, OneDrive, and LinkedIn; and Dynamics 365, a
set of cloud-based and on-premises business solutions for organizations and
enterprise divisions. The Intelligent Cloud segment licenses SQL, Windows
Servers, Visual Studio, System Center, and related Client Access Licenses;
GitHub that provides a collaboration platform and code hosting service
for developers; Nuance provides healthcare and enterprise AI solutions;
and Azure, a cloud platform. It also offers enterprise support, Microsoft
consulting, and nuance professional services to assist customers in
developing, deploying, and managing Microsoft server and desktop solutions;
and training and certification on Microsoft products. The More Personal
Computing segment provides Windows original equipment manufacturer (OEM)
licensing and other non-volume licensing of the Windows operating system;
Windows Commercial, such as volume licensing of the Windows operating
system, Windows cloud services, and other Windows commercial offerings;
patent licensing; and Windows Internet of Things. It also offers Surface,
PC accessories, PCs, tablets, gaming and entertainment consoles, and
other devices; Gaming, including Xbox hardware, and Xbox content and
services; video games and third-party video game royalties; and Search,
including Bing and Microsoft advertising. The company sells its products
through OEMs, distributors, and resellers; and directly through digital
marketplaces, online stores, and retail stores. Microsoft Corporation was
founded in 1975 and is headquartered in Redmond, Washington.',

22

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

‘city': 'Redmond’,

'phone’: '425 882 8080',
‘state': 'WA',

‘country': 'United States’,
"companyOfficers': [],
'website': "https://www.microsoft.com',
‘maxAge': 1,

'address1': 'One Microsoft Way',
‘fax': '425 706 7329',
‘industry': 'Software-Infrastructure',
‘ebitdaMargins': 0.48672,
"profitMargins’: 0.34366,
‘grossMargins': 0.6826,
‘operatingCashflow': 87693000704,
'revenueGrowth': 0.106,
‘operatingMargins': 0.41691002,
'ebitda’: 98841001984,
'targetLowPrice': 234,
‘recommendationKey': ‘buy’,
‘grossProfits': 135620000000,
"freeCashflow': 46155874304,
'targetMedianPrice': 290,
'currentPrice': 238.73,
"earningsGrowth': -0.133,
"currentRatio': 1.84,
'returnOnAssets': 0.15223,
"numberOfAnalystOpinions': 45,
"targetMeanPrice': 296.91,
"debtToEquity': 44.442,
‘returnOnEquity': 0.42875,
'targetHighPrice': 411,
"totalCash': 107244003328,
"totalDebt': 77136003072,
"totalRevenue': 203074994176,
"totalCashPerShare': 14.387,

23

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

'‘financialCurrency': 'USD',
'revenuePerShare': 27.142,
'quickRatio': 1.585,
'recommendationMean': 1.8,
‘exchange': 'NMS’,

‘shortName': 'Microsoft Corporation’,
‘longName': 'Microsoft Corporation’,
‘exchangeTimezoneName': 'America/New_York',
"exchangeTimezoneShortName': 'EST',
'isEsgPopulated': False,
'gmtOffSetMilliseconds': '-18000000',
'quoteType': 'EQUITY',

‘symbol': 'MSFT',

'‘messageBoardId': 'finmb_21835',
'market’': 'us market',
‘annualHoldingsTurnover': None,
"enterpriseToRevenue': 8.615,
'beta3Year': None,
"enterpriseToEbitda': 17.7,
'52WeekChange’: -0.30287635,
‘morningStarRiskRating': None,
'‘forwardEps': 11.18,
'revenueQuarterlyGrowth': None,
"'sharesOutstanding': 7454470144,
"fundInceptionDate': None,
"annualReportExpenseRatio': None,
"totalAssets': None,

'bookValue': 23.276,

'sharesShort': 40445360,
'sharesPercentSharesOut': 0.0054,
‘fundFamily': None,
'lastFiscalYearEnd': 1656547200,
"heldPercentInstitutions': 0.72300005,
"netIncomeToCommon': 69788999680,
"trailingEps': 9.29,

24

CHAPTER 1

'lastDividendValue': 0.68,
'SandP52WeekChange': -0.19752294,
"priceToBook': 10.256488,
"heldPercentInsiders': 0.00059,
"nextFiscalYearEnd': 1719705600,
'yield': None,
"'mostRecentQuarter': 1664496000,
'shortRatio': 1.38,
'sharesShortPreviousMonthDate': 1667174400,
'floatShares': 7447764118,

'beta’: 0.933189,
"enterpriseValue': 1749498331136,
"priceHint': 2,
"threeYearAverageReturn': None,
'lastSplitDate': 1045526400,
'‘lastSplitFactor': '2:1',
‘legalType': None,
'lastDividendDate': 1668556800,
‘morningStarOverallRating': None,
‘earningsQuarterlyGrowth': -0.144,
'priceToSalesTrailingi2Months': 8.763292,
"dateShortInterest': 1669766400,
'pegRatio’: 1.92,

'ytdReturn': None,

'forwardPE': 21.353308,
'lastCapGain': None,
'shortPercentOfFloat': 0.0054,
'sharesShortPriorMonth': 36909448,
‘impliedSharesOutstanding': 0,
'category': None,
'fiveYearAverageReturn': None,
'previousClose': 238.19,
‘regularMarketOpen': 236.11,
'twoHundredDayAverage': 261.927,
"trailingAnnualDividendYield': 0.010663755,

QUANTITATIVE TRADING: AN INTRODUCTION

25

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

"payoutRatio’: 0.26700002,
"volume24Hr': None,
'regularMarketDayHigh': 238.87,
"navPrice': None,
‘averageDailyVolume10Day': 35831410,
‘regularMarketPreviousClose': 238.19,
'‘fiftyDayAverage': 240.6454,
"trailingAnnualDividendRate': 2.54,
‘open': 236.11,

"toCurrency': None,
"averageVolume10days': 35831410,
‘expireDate’: None,

‘algorithm': None,
'dividendRate': 2.72,
"exDividendDate': 1676419200,
‘circulatingSupply': None,
'startDate’: None,
‘regularMarketDaylLow': 233.9428,
‘currency': 'USD',

"trailingPE': 25.697523,
‘regularMarketVolume': 21206982,
'lastMarket': None,

"'maxSupply': None,
‘openInterest': None,
‘marketCap': 1779605569536,
'volumeAllCurrencies': None,
'strikePrice': None,
"‘averageVolume': 30495014,
"daylLow': 233.9428,

‘ask': 238.45,

'askSize': 800,

"volume': 21206982,
‘fiftyTwolWeekHigh': 344.3,
'fromCurrency': None,
'fiveYearAvgDividendYield': 1.17,

26

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

‘fiftyTwolWeekLow': 213.43,
'bid': 238.2,

"tradeable’: False,
'dividendYield': 0.0114,
'bidSize': 1000,

"dayHigh': 238.87,
‘coinMarketCapLink': None,
‘regularMarketPrice': 238.73,
'preMarketPrice’: None,

‘logo url': "https://logo.clearbit.com/microsoft.com’,
"trailingPegRatio': 2.1113}

The result shows a long list of information about Microsoft, useful for our initial
analysis of a particular stock. Note that all this information is structured in the form of a
dictionary, making it easy for us to access a specific piece of information. For example,
the following code snippet prints the market cap of the stock:

access a specific attribute from the dictionary
>>> msft.info["marketCap"]
1779605569536

Such structured information, also considered metadata in this context, comes in
handy when we analyze multiple tickers together.

Now let us focus on the actual stock data of Microsoft. In Listing 1-2, we download
the stock price data of Microsoft from the beginning of 2022 till the current date. Here,
the current date is determined automatically by the today () function from the datetime
package, which means we will obtain a different (bigger) result every time we run the
code on a future date. We also specify the format of the date to be “YYYY-mm-dd,” an
important practice to unify the date format.

Listing 1-2. Downloading stock price data

download daily stock price data by passing in specified ticker and
date range

from datetime import datetime

today date = datetime.today().strftime('%Y-%m-%d")

print(today date)

data = yf.download("MSFT", start="2022-01-01", end=today date)

27

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

We can examine the first few rows by calling the head() function of the DataFrame.

The resulting table contains price-related information such as open, high, low, close,

and adjustment close prices, along with the daily trading volume:

view the first few rows.
>>> data.head()

Open High Low Close Adj
Date

2022-01-03 335.350006 338.000000 329.779999 334.750000 331.
2022-01-04 334.829987 335.200012 326.119995 329.010010 325.
2022-01-05 325.859985 326.070007 315.980011 316.380005 313.
2022-01-06 313.149994 318.700012 311.489990 313.880005 310.
2022-01-07 314.149994 316.500000 310.089996 314.040009 311.

We can also view the last few rows using the tail() function:

>>> data.tail()
Open High Low Close Adj
Date

2022-12-30 238.210007 239.960007 236.660004 239.820007 239.
2023-01-03 243.080002 245.750000 237.399994 239.580002 239.
2023-01-04 232.279999 232.869995 225.960007 229.100006 229.
2023-01-05 227.199997 227.550003 221.759995 222.309998 222.
2023-01-06 223.000000 225.759995 219.350006 224.929993 224.

Close

642456
955750
442993
966217
124725

Close

820007
580002
100006
309998
929993

Volume

28865100
32674300
40054300
39646100
32720000

Volume

21930800
25740000
50623400
39585600
43597700

It is also a good habit to check the dimension of the DataFrame using the shape()

function:

check data dimension/size
>>> data.shape
(254, 6)

The following section will look at visualizing the time series data via

interactive charts.

28

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Visualizing Stock Price Data

The plotly package is an interactive graphing library that supports exploratory and
expository visualizations. Let us demonstrate its use via a few examples, focusing on the
stock’s closing price for now.

First, let us visualize the closing price as a time series plot. As the name suggests,
a time series is a sequence of data with a timestamp in each data point. Thus, when
plotted on a graph, the horizontal axis indicates the time that flows from left to right,
and the vertical axis represents the quantity of interest, that is, the daily closing price.
Also, since each timestamp corresponds to one stand-alone point on the graph, we will
connect all neighboring points via straight lines to form the final time series plot and
show the trending patterns.

Listing 1-3 completes this task. Here, we pass the index of the DataFrame to indicate
the dates on the x-axis (passed to the x argument) and the closing pricing on the y-axis
(passed to the y argument) and specify the presentation mode to be in lines.

Listing 1-3. Plotting the daily closing price

plot closing price as a time series chart
import plotly.graph objects as go

fig = go.Figure(data=go.Scatter(x=data.index,y=data['Close’],
mode="lines"))
fig.show()

Running the code produces Figure 1-8. Note that the graph is interactive; by hovering
over each point, the corresponding date and closing price come forward.

300 I"\\\- j’ ‘lll N f‘ W .,h.-'-'/v \Il\
! ’ ¥ \ A lr \V'L N !I /JI Y \
B ' \JI WIII JrJ_ 5 ™~ \-‘|I
Mep SETNC R A N\
l‘.' ‘L.-’“ \ WW/ \ ‘/f\ J{ A ’]II\ n
" \ “ . A A P M/ \a
240 \xw.-,\/ k v’,\‘l !l.‘l\ !
W \ "HI

220 ll"/

Mar 2022 May 2022 i 2022 Sep 2022 Nov 2022

Figure 1-8. Interactive time series plot of the daily closing price of Microsoft

29

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

We can also enrich the graph by overlaying the trading volume information, as
shown in Listing 1-4.

Listing 1-4. Overlaying trading volume in the daily closing price chart

overlay the trading volume
from plotly.subplots import make subplots

fig2 = make subplots(specs=[[{"secondary y": True}]])

fig2.add trace(go.Scatter(x=data.index,y=data['Close'],name="Price"),
secondary y=False)

fig2.add trace(go.Bar(x=data.index,y=data['Volume'],name="Volume"),
secondary y=True)

fig2.show()

Running the code generates Figure 1-9. Note that the trading volume assumes a
secondary y-axis on the right, by setting secondary_y=True.

340

oM = Price
2 W volume
-l Volure,
m 70M
300 L S
| 6OM
|
S0M
M.;r w022

L e

Figure 1-9. Visualizing the daily closing price and trading volume of Microsoft

80
260
240
20

Based on this graph, a few bars stand out, making it difficult to see the line chart.
Let us change it by controlling the magnitude of the secondary y-axis. Specifically, we
can enlarge the total magnitude of the right y-axis to make these bars appear shorter, as
shown in Listing 1-5.

Listing 1-5. Rescaling the y-axis

rescale volume
fig2.update_yaxes(range=[0,500000000],secondary y=True)
fig2.update yaxes(visible=True, secondary y=True)

fig2

30

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Running the code generates Figure 1-10. Now the bars appear shorter given a bigger
range (0 to 500M) of the y-axis on the right.

140 S00M

1 LP\'\\ ('1 i j{\/\ 400M
300 ./ L ||I i fr_lll' -\
¥ L_'r \ \ § g '\ 300M
280 | \‘I\JII -"Lj\l “AII L’"\ ;\(“"'l \a
\, - .\
ni ’\HUJ 1l'\ v Ihv{%jk‘ \VﬂLL NA
0 ¥ PNy

N
! A \:\ | .

20 o o fis |y - : : \f L
THLLTT |||. 0 0 o O TN I rrrmirrmm™m
Mar 2022 May 2022 Mt 2022 Sep 2022 Nov 2022

lih,,
Figure 1-10. Controlling the magnitude of the daily trading volume as bars

Lastly, let us plot all the price points via candlestick charts. This requires us to pass
in all the price-related information in the DataFrame. The Candlestick() function can
help us achieve this, as shown in Listing 1-6.

Listing 1-6. Plotting the candlestick chart

switch to candlestick chart

fig3 = make subplots(specs=[[{"secondary y": True}]])

fig3.add trace(go.Candlestick(x=data.index,
open=data['Open'],
high=data['High'],
low=data['Low'],
close=data['Close'],

))
fig3

Running the code generates Figure 1-11. Each bar represents one day’s summary
points (open, high, low, and close), with the green color indicating an increase in price
and red indicating a decrease in price at the end of the trading day.

31

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

fl e
- g ”
280 { I‘" lﬁﬁ* ;‘rl'l
h q l*h 1" "1 .

260 fmf |* ;‘I\u |’1q|[' ‘*"'\ h
20 = Yowyitr M f"'"""r.l" "'h
220 q Hﬂ'f'

|]x4*"""'""""f"-.-f"ﬁ-"-A-.--t..»,‘__,..._.bg_J,___,_.,_’__ﬁ,w-""---.__.___.“ ‘___m‘_h_‘[

—— e T

Figure 1-11. Visualizing all daily price points of Microsoft as candlestick charts

Notice the sliding window at the bottom. We can use it to zoom in a specific range, as
shown in Figure 1-12. The dates along the x-axis are automatically adjusted as we zoom
in. Also, note that these bars come in groups of five. This is no incidence—there are five

trading days in a week.

240
120
300
280

s —— == S ==:-l-=
D B e - = - o

2apv=
20

Mov 39 Dec Dec 5 Dec 8 Dec 11 Dec 14 Dec 17 Dee 20 Dec 23
022

T s e e i

Figure 1-12. Zooming in a specific range

Summary

In this chapter, we covered the basics of quantitative trading, covering topics such as
institutional algorithmic trading, major asset classes, derivatives such as options, market
structures, buy-side investors, market making, scalping, and portfolio rebalancing. We
then delved into exploratory data analysis of the stock data, starting with summarizing
the periodic data points using candlestick charts. We also reviewed the practical side of
things, covering data retrieval, analysis, and visualization via interactive charts. These
will serve as the building blocks as we develop different trading strategies later on.

32

CHAPTER 1 QUANTITATIVE TRADING: AN INTRODUCTION

Exercises

o List a few financial instruments and describe the risk and reward
profile.

o Canamodel get exposed to the test set data during training?

o A modelis considered better if it does better than another model on
the training set, correct?

o For daily stock price data, can we aggregate it as weekly data? How
about hourly?

o What is the payoff function for the issuer of a European call option?
Put option? How is it connected to the payoff function of the buyer?

e Suppose you purchase a futures contract that requires you to sell a
particular commodity one month later for a price of $10,000. What
is your payoff when the price of the commodity grows to $12,000?
Drops to $7000?

e What about the payoff for the buyer in both cases?

e How do the results change if we switch to an options contract with
the same strike price and delivery date?

e Draw a sample stock price curve of a red candlestick.

o Download the stock price data of Apple, plot it as both a line and a
candlestick chart, and analyze its trend.

e Calculate the YTD (year-to-date) average stock price of Apple.

33

CHAPTER 2

Electronic Market

In this chapter, we delve into the world of electronic markets, which have revolutionized
the way financial instruments are traded. With the rapid advancements in technology
and the widespread adoption of the Internet, electronic markets have largely replaced
traditional, floor-based trading venues, ushering in an era of speed, efficiency, and
accessibility for market participants around the globe.

Electronic markets facilitate the buying and selling of financial instruments,
such as stocks, bonds, currencies, and commodities (covered in Chapter 1), through
computerized systems and networks. They have played a critical role in democratizing
access to financial markets, enabling a broader range of participants, including retail
investors, institutional investors, and high-frequency traders, to engage in trading
activities with ease and transparency. At the heart of electronic markets lies the trading
mechanism, which governs how buy and sell orders are matched, executed, and settled.

Furthermore, electronic markets offer a variety of order types that cater to the diverse
needs and objectives of traders. These order types can be used to achieve specific goals,
such as minimizing market impact, ensuring a desired level of execution, or managing
risk. In this chapter, we will examine the most common types of orders, including market
orders, limit orders, stop orders, and their various iterations.

As we progress through this chapter, readers will gain a comprehensive
understanding of the inner workings of electronic markets, the trading mechanisms that
drive them, and the wide array of order types available to market participants.

Introducing Electronic Market

The electronic market operates on the basis of a discrete price grid where prices are
arranged linearly according to the price magnitude. Every market has a minimum tick
size. One tick is the minimum price difference between any two adjacent prices on
the price grid of a trading instrument in a market. The price movements of different

35
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_2

https://doi.org/10.1007/978-1-4842-9675-2_2

CHAPTER 2 ELECTRONIC MARKET

trading instruments could vary a lot, and we use their respective tick sizes to represent
the minimum amount they can move up or down on an exchange. Stocks generally
trade in one-cent tick size increments, currencies in pips (percentage in point or price
interest point), and rates in basis points (bps). When the price grid is such that prices are
arranged from the smallest price to the largest price, it is called the price ladder.

The price ladder plays a crucial role in electronic markets by providing a visual
representation of the order book, which contains a list of all pending buy and sell orders
for a specific trading instrument. The order book is continuously updated in real time,
reflecting the dynamic nature of the market as new orders are placed, modified, or
canceled. Each rung of the price ladder corresponds to a specific price level, with buy
orders (or bids) listed on one side and sell orders (or asks) on the other. The highest bid
and the lowest ask are referred to as the best bid and best ask, respectively, and the gap
between them is known as the bid-ask spread.

Market participants can use the information provided by the price ladder and order
book to gain valuable insights into a particular trading instrument’s supply and demand
dynamics. This data can help traders identify potential trading opportunities, assess
liquidity, and gauge the depth of the market at various price levels. For instance, large
clusters of orders at specific price points may indicate significant support or resistance
levels, while a thinning order book might suggest a lack of liquidity and increased price
volatility. By carefully analyzing the price ladder and order book, traders can make
more informed decisions and develop strategies that take advantage of the prevailing
market conditions. Additionally, understanding the role of tick sizes in the price grid is
crucial for traders when placing orders, managing risk, and executing trades, as even
small changes in tick sizes can have a substantial impact on the potential profit or loss of
a trade.

Electronic Order

The rise of electronic trading has brought about significant improvements in the
efficiency, speed, and accessibility of financial markets. Transactions that once

took minutes or hours to complete can now be executed in milliseconds or even
microseconds, thanks to the power of high-speed networks and advanced computer
algorithms. As a result, market participants can take advantage of fleeting trading
opportunities, react more swiftly to market news, and benefit from tighter bid-ask
spreads, which translate into lower transaction costs.

36

CHAPTER 2 ELECTRONIC MARKET

Moreover, electronic trading has democratized access to global financial markets,
allowing individual investors to trade alongside institutional players such as hedge
funds, banks, and proprietary trading firms. Through user-friendly online trading
platforms, retail investors can access a vast array of financial instruments, from stocks
and bonds to currencies and derivatives, and participate in various markets around
the world. These platforms provide a wealth of market data, research tools, and risk
management features, empowering investors to make more informed decisions
and execute their trading strategies with precision and ease. At the same time, the
increased transparency and availability of market data have fostered a more competitive
landscape, driving innovation in trading strategies, algorithms, and financial products.

Orders are short messages to the exchange through the broker. An order is a set
of instructions the trader gives to the exchange. It must contain at least the following

instructions:
o Contract/security (or contracts/securities) to trade
e Buy or sell or cancel or modify
o Size: How many shares or contracts to trade

From an investor’s perspective, making a trade via a computer system is simple and
easy. However, the complex process behind the scenes sits on top of an impressive array
of technology. What was once associated with shouting traders and wild hand gestures
in open outcry markets has now become more closely associated with computerized
trading strategies.

When you place an order to trade a financial instrument, the complex technology
enables your brokerage to interact with all the securities exchanges looking to execute
the trade. Those exchanges simultaneously interact with all the brokerages to facilitate
trading activities.

For example, the Singapore Exchange (SGX), a Singaporean investment holding
company, acts through its central depository (CDP) as a central counterparty to all
matched trades (mainly securities) executed on the SGX ST Trading Engine, as well as
privately negotiated married trades that are reported to the clearing house for clearing
on the trade date. Being a central counterparty (CCP), CDP assumes the role of the seller
to the buying clearing member and buyer to the selling clearing member. CDP, therefore,
takes the buyer’s credit risks and assumes the seller’s delivery risks. This interposing
of CDP as the CCP eliminates settlement uncertainty for market participants. SGX

37

CHAPTER 2 ELECTRONIC MARKET

provides a centralized order-driven market with automated order routing, supported
by decentralized computer networks. There are no designated market makers (liquidity
providers), and member firms act as brokers or principals for clearing and settlement.

Proprietary and Agency Trading

In the world of finance, the distinction between proprietary and agency trading plays
a crucial role in determining the objectives and motivations behind trading activities.
While both types of trading involve the execution of orders in financial markets, they

serve different purposes and are subject to different regulations and risk profiles.

Proprietary trading allows financial institutions to generate profits by leveraging their
own capital and expertise in market analysis, risk management, and trading strategies.
Prop traders often engage in various strategies such as arbitrage, market making, and
statistical arbitrage, seeking opportunities to capitalize on market inefficiencies and
price discrepancies. However, proprietary trading carries a higher degree of risk due to
the full responsibility for potential losses. As a result, proprietary trading desks are often
subject to strict risk management controls and regulatory oversight, particularly in the
wake of the 2008 financial crisis.

On the other hand, agency trading focuses on providing execution services for
clients, prioritizing the best execution of client orders, and ensuring that clients’ interests
are aligned with the broker’s actions. The primary goal of agency trading is to achieve
the most favorable terms for the client while minimizing the impact of the trade on the
market. Brokers engaged in agency trading earn income through commissions and fees,
rather than by taking positions in the market. Since agency traders do not assume market
risk on behalf of their clients, they are subject to different regulatory and compliance
requirements than proprietary traders.

A broker or trading agency can execute trading orders for their clients or their own
agency. The main difference between agency and proprietary trading is the trading
client, that is, for whom the trade is executed, and whose investment portfolio is changed
as aresult of trading. Agency trading is any type of trade that a broker executes for their
clients/investors who are charged a brokerage fee. Proprietary trading, also known as
prop trading, refers to when an agency or broker executes trades for the benefit of its
own institution. The orders submitted by traders for their own accounts/institutions are
called proprietary orders. Since most traders cannot access the markets directly, most
orders are agency orders, which a broker presents to the market.

38

CHAPTER 2 ELECTRONIC MARKET

Agency orders can be held or not held. Held orders are those when the broker has
an obligation to a client to fill the order. Market-not-held orders are institutional orders
where the trader hires a broker-dealer to execute the order. Working on an order means a
broker-dealer takes some time to fill the order.

Understanding the differences between proprietary and agency trading is essential
for market participants to navigate the complex world of financial markets. While
proprietary trading focuses on generating profits through active market participation,
agency trading emphasizes the execution of client orders in the best possible manner,
ensuring that the interests of clients are at the forefront of the broker’s actions.

Order Matching Systems

A securities exchange needs to pair one or more unsolicited buy orders to one or more
sell orders to make trades. This process is called matching the trading orders. When
an investor wants to purchase a specific amount of stock, and another wants to sell the
same quantity at the same price, the orders from both sides match, and a transaction
takes place. The process of pairing these orders is called order matching, whereby
exchanges identify buy orders, or bids, with corresponding sell orders, or asks, to pair
and execute both orders.

This order matching process has become almost entirely automated, using rule-
based systems to execute the pair of trades if certain conditions are satisfied. Most
exchanges, some brokerages, and almost all electronic communication networks use
rule-based order matching systems. These trading rules arrange trades from the orders
of specific sizes that traders submit to them, not requiring face-to-face negotiation. Note
that these systems follow particular order precedence rules.

Order precedence rules are a set of guidelines that dictate the priority in which
orders are matched and executed in the market. These rules aim to ensure a fair and
efficient order matching process by determining which orders take precedence over
others in the queue. There are three primary order precedence rules followed by most
trading systems: price, time, and size.

e Price precedence: Orders with better prices are given priority over
orders with worse prices. In the case of buy orders, higher bids have
precedence, while for sell orders, lower asks are prioritized. This rule
ensures that market participants who are willing to buy at higher
prices or sell at lower prices get their orders executed first.

39

CHAPTER 2 ELECTRONIC MARKET

o Time precedence: If two or more orders have the same price, the
order that was placed earlier takes precedence. This rule, also known
as the “first-come, first-served” principle, rewards traders who
submit their orders earlier, ensuring that they are not disadvantaged
by others submitting orders at the same price later.

e Size precedence: In some markets, when multiple orders have the
same price and time priority, the order with the larger size may
be given precedence. This rule encourages market participants to
place larger orders, which can contribute to enhanced liquidity in
the market.

There are three common types of orders that an electronic exchange sees: limit
orders, market orders, and cancelation orders. Limit orders must include information
such as the limit price, order size, and trade direction (buy or sell). Market orders must
include the order size and trade direction. A cancelation order cancels a standing limit
order entirely or reduces its order size.

Note that some exchanges, such as the London Stock Exchange and the NYSE Group,
support functionality to allow traders to specify whether their limit orders are to be
displayed or not on the limit order book (LOB). This is called lit (displayed) or unlit (not
displayed). In that case, the limit order must have at least the following:

o Limit price

e Order size

e Trade direction

o Display or non-display

o Ifdisplayed, the size to be displayed

Several common order precedence rules are considered for execution. For the
order type precedence, market orders always rank above limit orders. For the price
precedence, a more competitive price rule is. The display precedence takes the form
of lit or unlit preference, and the time precedence observes the time of arrival for
the orders.

The rule used by most exchanges is the price/display/time precedence rule to
determine the priority of execution. Specifically, the highest bids and lowest offers
always execute before lower bids and higher offers. Among equally priced orders,

40

CHAPTER 2 ELECTRONIC MARKET

displayed orders always get executed before non-displayed orders. Among displayed and
non-displayed orders at the same price level, the time of arrival determines an order’s
priority.

The price/display/time precedence rule ensures a fair and efficient trading
environment by prioritizing orders based on their competitiveness, visibility, and time
of submission. By adhering to this rule, electronic exchanges can maintain a transparent
and orderly market, encouraging market participants to submit competitive orders and
enhancing liquidity.

In addition to the common order types and precedence rules discussed earlier, many
electronic exchanges also offer a variety of advanced order types and conditional orders
designed to cater to the diverse needs of traders. These may include

e Stop orders: These are orders that are triggered once a specific price
level is reached. Stop orders can be used to limit losses, protect
profits, or enter a position once a particular price level is breached.
They can be further classified into stop-market and stop-limit orders.

o Icebergorders: These are large orders that are divided into smaller
parts, with only a portion of the order visible on the order book at any
given time. Once the visible portion is executed, the next portion is
revealed. This helps to minimize the market impact of large orders
and can prevent information leakage.

o Trailing stop orders: These orders allow traders to set a stop price
that trails the market price by a specific distance. As the market price
moves in a favorable direction, the stop price adjusts accordingly,
helping to protect gains while giving the position room to run.

By offering a diverse range of order types and adhering to well-defined precedence
rules, electronic exchanges can provide market participants with a flexible and
efficient trading environment. This enables traders to effectively manage risk, optimize
execution, and tailor their trading strategies to the unique characteristics of the financial
instruments they trade.

41

CHAPTER 2 ELECTRONIC MARKET

Market Order

The market order is the most common transaction type in the stock markets. It is an
instruction by an investor to a broker to buy or sell stock shares, bonds, or other assets
at the best available price in the current financial market. This means a market order
instructs the broker to buy or sell a security immediately at the current price. Since there
will be plenty of willing buyers and sellers for large-cap stocks, futures, or ETFs, market
orders are best used for buying or selling these financial instruments with high liquidity.

Since the market order is an instruction to trade a given quantity at the best price
possible, the priority of the market-order trader is to execute the order immediately with
no specific price limit. Thus, the main risk is the uncertainty of the ultimate execution
price. Once submitted, the market order cannot be canceled since it has already been
executed.

Note that the electronic market orders don’t wait. Upon receipt of a market order,
the exchange will match it against the standing limit orders immediately until it is
completely filled. Such immediacy characterizes market orders compared to limit orders
(introduced in the following section). This means that when filling a market order, the
order matching system will buy at the (ideally) lowest ask price or sell at the highest bid
price, thus ending up paying the bid/ask spread.

Given the nature of market orders, they are particularly suitable for situations
where the primary goal is to execute a trade quickly, rather than achieving a specific
target price. This makes market orders especially useful in fast-moving or volatile
market conditions, where getting in or out of a position promptly is crucial. However,
the urgency of market orders also exposes investors to the risk of price slippage, which
occurs when the actual execution price differs from the expected price due to rapid
market fluctuations.

It is important for investors to understand that market orders offer no price
protection, meaning that the execution price may be significantly different from the
current market price, especially for illiquid or thinly traded instruments. In such cases,
limit orders may be a more appropriate choice, as they allow investors to specify a
maximum purchase price or a minimum sale price for their orders, providing some level
of price control. However, limit orders come with the trade-off of potentially not being
executed if the specified price is not met.

42

CHAPTER 2 ELECTRONIC MARKET

Limit Order

A limit order, which instructs the broker to buy or sell at the best price available only if
the price is no worse than the price limit specified by the investor, is the main alternative
to the market order for most individual investors. It is preferable when buying or selling a
less frequently traded or highly volatile asset.

During regular hours, limit orders are arranged according to the exchange’s limit
price and time of receipt. When a buy market order arrives, first in the queue limit order
selling at the lowest ask price gets matched first. When a sell market order arrives, first
in the queue limit orders bidding at the highest bid price gets executed first. If the order
is not executable, the order will be a standing offer and placed in a file called a limit
order book.

A buy limit order is an order to purchase a financial instrument at or below a
specified price, allowing traders to control how much they would pay for the instrument.
In other words, the investor is guaranteed to pay that price or less by using a limit order
to make a purchase.

Although the price is guaranteed, the order being filled is not guaranteed to be
executed in time. After all, a buy limit order will only be executed if the asking price is at
or below the specified limit price. If the asset does not reach the specified price or moves
too quickly through the price, the order is not filled and will be stacked into the limit
order book, causing the investor to miss out on the trading opportunity. That is, by using
a buy limit order, the investor is guaranteed to pay the buy limit order price or better but
is not guaranteed to have the order filled.

The same reasoning applies to the sell limit order, where the investor will sell the
financial instrument at or above a specified selling price. A sell limit order allows traders
to set a minimum selling price for their financial instruments. In this case, the investor
is guaranteed to receive the specified price or a better price for the sale, but there is no
guarantee that the order will be executed. A sell limit order will only be filled if the bid
price is at or above the specified limit price. If the asset does not reach the specified price
or moves too quickly through the price, the order is not filled and will be stored in the
limit order book, potentially causing the investor to miss out on the trading opportunity.

Limit orders offer more control over the execution price than market orders and can
be particularly useful when trading illiquid or volatile assets, where price slippage is
more likely. However, they also come with the risk that the order may not be executed if
the specified price is not reached, potentially resulting in missed trading opportunities.

43

CHAPTER 2 ELECTRONIC MARKET

To maximize the chances of a limit order being executed, traders should carefully
monitor market conditions and adjust their limit prices accordingly. They may also
consider using other advanced order types, such as stop-limit orders or trailing stop-
limit orders, which combine the features of limit orders with additional conditions,
providing even greater control over the execution price and risk management.

Limit Order Book

Note that a limit order book likely contains multiple bids and asks for the same
instrument. These two types of trading directions, that is, bid and ask, represent the
demand and supply side of the market. These limit orders are shelved on the book
because they are not executable at the moment, for a reason. That reason is the bid/ask
spread, defined as the price difference between the best bid and the best offer/ask of a
LOB for a given instrument.

The best bid represents the limit order with the highest price the underlying investor
from the demand side is willing to pay for the specific asset, and the best offer/ask is the
lowest price some other investor from the supply side is willing to sell out the specific
asset. When this gap is negative, the bordering trades will be automatically filled,
creating a new spread based on the new best bid and offer. Popular large-cap stocks
will have little or no spread, as you can almost always find another party who is willing
to make the trade. The spread becomes wider for those less popular instruments. This
means you should be careful when entering a position for these less frequently traded
assets, as it will be challenging to exit the position later on.

The bid/ask spread plays a critical role in trading as it directly relates to the cost
of trading and the liquidity of the trading market for the specific asset. A small spread
indicates a highly liquid market where multiple buyers and sellers are involved. This leads
to lower transaction costs and faster order execution. On the other hand, a big spread
suggests a less liquid market. In this case, fewer market participants are interested in
trading the asset, leading to potentially higher transaction costs and slower order execution.

Market makers provide liquidity by continuously quoting both bid and ask prices for
a particular asset, thus playing an essential role in maintaining a healthy bid/ask spread
and providing sufficient liquidity to the market. These market participants stand ready to
buy or sell the asset at their quoted prices, ensuring that there is always a counterparty
available for traders looking to execute their orders. As a result, the presence of active
market makers can, and are incentivized to, help reduce the bid/ask spread and improve
overall market efficiency.

44

CHAPTER 2 ELECTRONIC MARKET

Figure 2-1 illustrates the limit order book for a particular asset. There are multiple
price points (along with their sizes/volumes) for the demand from the buy side and the
supply from the sell side. We take the lowest ask price of the upper box as the best offer
and the highest bid price of the lower box as the best bid. The difference between the two
gives the bid/ask spread. A bigger gap corresponds to lower liquidity. A market maker
would be incentivized to reduce the gap by providing more liquidity to the market,
making the trades of this asset more executable.

Limit order book of a specific asset

Ask price 1 | (Volume for ask price level 1)
Supply side Ask price 2 | (Volume for ask price level 2)

A

S Best offer/ask
Bid-ask spread

/—'ﬁ “ Best bid

Demand side
Bid price 2 | (Volume for bid price level 2)

Bid price 1 | (Volume for bid price level 1)

, PR

Figure 2-1. Illustrating the limit order book that consolidates all standing limit
orders (prices and quantities) from the buy side and the sell side. A market maker
is incentivized to reduce the gap by providing more liquidity to the market, serving
as the liquidity provider, and making the trades of this asset more executable

We can also look at the marketability of buy and sell orders at different ranges. As
shown in Figure 2-2, we divide the limit order book into five different regions: above the
best offer, at the best offer, between the best bid and best offer, at the best bid, and below
the best bid. For a buy order, it will be (easily) marketable if the price is at regions 1 and 2,

45

CHAPTER 2 ELECTRONIC MARKET

since those eager to sell the asset (at the bottom part of the top box) would love to see a
buyer with an expected or even higher bid. We call the buy order in the market if it lives
within region 3, a situation in flux. Region 4 is borderline and is called at the market,
representing the best bid of all the buyers in the limit order book. When the price of the
buy order drops to region 5, there is no marginal competitiveness, and the order will
simply be buried among the rest of the buy orders, leaving it behind the market. The
same reasoning applies to the marketability of sell orders as well.

‘ Marketability of buy orders ‘ Limit order book Marketability of sell orders

1 Above the best offer

Ask price 1
1 Ask price2 |1 2
Marketable . . Behind the market At the best offer
3 Between best bid and
best offer
Marketable . E /2) 3 : At the market
4 .
In the market - 3]|— In the market At the best bid
At the market = NOAE Marketable 5 Below the best bid
Behind the market — 5 Bid price2 |5 - Marketable
Bid price 1

Figure 2-2. Analyzing the marketability of buy and sell orders within different
regions of the limit order book

It is important for traders and investors to understand the marketability of buy and
sell orders in these different regions so as to optimize their order execution strategies.
By strategically placing orders in the appropriate regions, traders can increase the
likelihood of their orders being executed at the desired price levels, thus minimizing
transaction costs and better managing trading risks. Furthermore, by monitoring the
market dynamics and the depth of the limit order book (the number of levels of buy and
sell limit orders available in the order book at a given point in time), traders can gain
valuable insights into the market dynamics of the asset.

46

CHAPTER 2 ELECTRONIC MARKET

Display vs. Non-display Orders

A display order is a visible order, and a non-display order is a hidden one that is not
displayed on the limit order book. The former is much more heavily regulated than
the latter.

Avisible order is prohibited from crossing the market. For example, if an offer is
already on one exchange, another exchange cannot post a bid for the same price or
higher, thus creating a locked market. These regulations ensure a stable bid/ask spread
for a particular asset. On the other hand, hidden orders have no such regulation.

Hidden, or non-display, orders offer traders a degree of anonymity by concealing
their intentions and visibility from other market participants. This is particularly useful
for large institutional investors who want to avoid revealing their large positions and
prevent other traders from front-running or anticipating their trades. While hidden
orders provide anonymity, they usually have lower execution priority compared to
visible orders at the same price level. This means that when equally priced orders are
matched, visible orders are executed first, followed by hidden orders based on their time
of arrival.

The choice between using display and non-display orders depends on specific
trading objectives and market conditions. Display orders are suitable for traders who
prioritize execution speed and are willing to reveal their intentions to the market.
Non-display orders, on the other hand, are more appropriate for traders who prioritize
discretion and want to minimize the resulting market impact. However, they may have to
accept the trade-off of lower execution priority and increased time to fill the order.

Stop Order

By default, a stop order is a market order conditioned on a preset stop price. A stop
order becomes a market order as soon as the current market price reaches or crosses the
preset stop price.

A stop order is always executed in the direction that the asset price is moving,
assuming that such movement will continue in its original direction. For instance, if the
market for a particular asset is moving downward, the stop order will be to sell at a preset
price below the current market price. This is called a stop-loss order, which is placed to
limit potential losses when the investor is in an open position of the asset. The stop-loss
order will take the investor out of the open position at a preset level if the market moves
against the existing position.

47

CHAPTER 2 ELECTRONIC MARKET

Stop-loss orders are essential, especially when one cannot actively keep an eye on
the market. It’s thus recommended to always have a stop-loss order in place for any
existing position in order to gain protection from a sudden drop in price due to adverse
market news. We can also call it a sell-stop order, which is always placed below the
current market price and is typically used to limit a loss or protect a profit on a long stock
position.

Alternatively, if the price is moving upward, the stop order will be to buy once the
security reaches a preset price above the current market price. This is called a stop-entry
order, or buy-stop order, which can be used to enter the market in the direction the
market is moving. A buy-stop order is always placed above the current market price.

Therefore, before entering a position, we can use a stop-entry (buy-stop) order to
long an asset if the market price exceeds the preset stop price, and use a sell-stop order
to short an asset if the market price drops below the preset stop price. If we are already
in a long (or short) position, we can use a sell-stop (or buy-stop) order to limit the loss of
the position in case the market price drops (or rises).

Also, note that stop orders can be subject to slippage, that is, the difference between
the expected execution price and the actual execution price. Since stop orders are
triggered and converted into market orders once the preset stop price is reached, there
is a possibility that the order may be executed at a worse price than initially anticipated,
especially in fast-moving or illiquid markets. As a result, slippage can lead to a larger loss
or a smaller profit than originally expected.

Let us look at one example. Say you observe that a particular stock has been moving
in a sideways range (a fairly stable range without forming any distinct trends over some
period of time) between $20 and $30, and you believe it will ultimately break out the
upper limit and move higher. You would like to employ breakout trading, which means
you will take a position within the early stage of an upward-moving trend. In this case,
you could place a stop-entry order above the current upper limit of $30. The price of the
stop-entry order can be set as $30.25 to allow for a margin of error. Placing the stop-
entry order gets you into the market once the sideways range is broken to the upside.
Also, now that you're long in the position, if you're a disciplined trader, you'll want
to immediately establish a regular stop-loss sell order to limit your losses in case the
upward trend is false.

When placing a stop order, we have (unknowingly) entered into the world of
algorithmic trading. Here, the logic of algorithmic trading is simple: if the market
price reaches or crosses the stop price, issue a market order; else, keep checking the
market price.

48

CHAPTER 2 ELECTRONIC MARKET

Stop-Limit Order

A stop-limit order is similar to a stop order in that a stop price will activate the order.
However, unlike the stop order, which is submitted as a market order when elected, the
stop-limit order is submitted as a limit order. A stop-limit order combines the features of
a stop order and a limit order, providing more control over the execution price while still
allowing for the possibility of protecting against significant losses or locking in profits.
Specifically, when the market price reaches the preset stop price, the stop-limit order
becomes a limit order that will be executed at the specified limit price or better. This
ensures that the order will not be executed at a price worse than the limit price, thus
mitigating the risk associated with market orders.

A stop-limit order is a conditional trade that combines the features of a stop order
with those of a limit order and is used to mitigate risk. So a stop-limit order is a limit
order contingent on a preset stop price and a limit price. A stop-limit order eliminates
the price risk associated with a stop order where the execution price cannot be
guaranteed. However, it exposes the investor to the risk that the order may never fill even
if the stop price is reached. A stop-limit order gives traders precise control over when the
order should be filled, but the order is not guaranteed to be executed. Traders often use
stop-limit orders to lock in profits or limit downside losses, although they could “miss
the market” altogether, resulting in missed opportunities if the asset’s price moves in the
desired direction but doesn’t satisfy the limit price condition.

In summary, stop-limit orders offer a balance between limiting the execution price
and stopping potential loss due to significant adverse market movements. However, they
come with the risk of not being executed if the limit price is not met, potentially causing
traders to miss out on potential profits or fail to limit their losses effectively.

Let us look at an example algorithm behind the stop-limit order. Suppose research
shows that the slippage is usually three ticks. Regarding the algorithmic rule for a buy-
stop-limit order, if the market price reaches or crosses the stop price, the system would
issue a limit order of a limit price three ticks above the stop price. Otherwise, it will keep
checking the market price. Regarding the algorithmic rule for a sell-stop-limit order, if
the market price reaches or crosses the stop price, the system would issue a limit order
of a limit price three ticks below the stop price. Otherwise, it will keep checking the
market price.

49

CHAPTER 2 ELECTRONIC MARKET

Pegged Order

A pegged order is a type of order that allows the limit price to be dynamic, adjusting
automatically based on a reference price. This can be particularly useful in spread
trading or other trading strategies that require staying in sync with the market’s best bid,
best offer, or mid-price.

The price in a limit order is fixed and static; we can only issue a new order to have
anew limit price. However, there are situations when we would like the limit price to
be dynamic. For example, suppose a trading strategy must trade at an offset of the best
bid or best ask. But these two quotes fluctuate, and you want your limit order prices to
change in sync with them. Pegged orders allow you to do just that.

Placing a pegged order requires specifying the reference price to track, along with an
optional differential offset. The differential offset can be a positive or negative multiple of
the tick size that represents the minimum price movement for the particular asset. The
trading system will then manage the pegged order by automatically modifying its price on
the order book as the reference price moves, maintaining the desired price relationship.

A pegged order is a limit order with a dynamic limit price. It allows traders to keep
their orders in line with the changing market conditions without having to monitor and
adjust their orders manually and constantly. This can be particularly beneficial in fast-
moving markets or when trading strategies require maintaining specific price relationships
with the best bid, best offer, or mid-price. However, it’s essential to understand that pegged
orders still carry the risk of not being executed if the market moves unfavorably, and the
dynamic limit price never reaches a level at which the order can be filled.

The pegged order is often used in spread trading, which involves the simultaneous
buying and selling of related securities as a unit, designed to profit from a change in the
spread (price difference) between the two securities. Here, spread trading is a strategy
that takes advantage of the price difference, or spread, between two related securities.
In this strategy, a trader simultaneously buys one security and sells another security to
profit from changes in the spread between the two. The objective is to capitalize on the
temporary mispricing or changing price relationship between the securities rather than
betting on the direction of the individual securities themselves.

So how does a pegged order work? When entering a pegged order, you must specify
areference price they wish to track, which could be the best bid, best offer, or mid-
price. Best bid and best offer pegs may track at a differential offset, which is specified
as a multiple of the whole tick size. This means that the trading system will manage the

50

CHAPTER 2 ELECTRONIC MARKET

pegged order by automatically modifying the pegged order’s price on the order book as
the reference price moves.

Let us look at an example of pegged order. Suppose your strategy requires you to
buy a limit order to be filled at three ticks lower than the current best bid and a sell
limit order to be filled at two ticks higher than the current best offer. When the bid price
changes, the pegged order becomes a composite order comprising

e A cancelation order of total order size (one buy limit order and one
sell limit order)

e A new buy limit order with a limit price pegged at the new best bid
less an offset of three ticks, and a new sell limit order with a limit
price pegged at the new best ask plus an offset of two ticks

Let’s say the current best bid is $100, and the best offer is $101. According to this
strategy, we will place a buy limit order at $100 - (3 ticks) and a sell limit order at $101 +
(2 ticks). Assuming each tick is $0.01, the buy limit order will be placed at $99.97, and the
sell limit order will be placed at $101.02.

Now, if the best bid changes to $100.50 and the best offer changes to $101.50, the
pegged orders will automatically adjust to the new reference prices. Specifically, the buy
limit order will now be placed at $100.50 - (3 ticks) = $100.47, and the sell limit order will
be placed at $101.50 + (2 ticks) = $101.52.

The pseudocode for the algorithm behind a pegged buy order with an offset of x is as
follows:

1. Ifthe bid price increases to B,
a. Cancel the current limit order
b. Submit a buy limit order at a price of B, — x
2. Else
a. Ifthe bid price decreases to B_
i. If the current limit order is not filled
1. Cancel the current limit order
2. Submit a buy limit order at a price of B_ — x
ii. Else
1. Keep checking whether the bid price has changed

51

CHAPTER 2 ELECTRONIC MARKET

When the bid price changes, the algorithm checks if the change is an increase or a
decrease. If the bid price increases, the current limit order is canceled, and a new buy
limit order is submitted at the new bid price minus the offset x. If the bid price decreases,
the algorithm first checks if the current limit order has been filled or not. If the current
limit order is not filled, the order is canceled, and a new buy limit order is submitted at
the new bid price minus the offset x. If the order is filled, no further action is needed. The
algorithm will continue monitoring the bid price for changes and adjust the buy limit
order accordingly.

Pay attention to the inner if condition in the else statement. Here, we check if the
current limit order is filled. Since there is a price drop, we would execute the limit order if
it drops to the limit price of the buy limit order.

We can similarly write out the pseudocode for the algorithm behind a pegged sell
order with an offset of x as follows:

1. Ifthe ask price decreases to A_
a. Cancel the current limit order
b. Submit a sell limit order at a price of A_ + x
2. Else
a. If the ask price increases to A,
i. If the current limit order is not filled
1. Cancel the current limit order
2. Submit a sell limit order at a price of A_ + x
ii. Else

1. Keep checking whether the bid price has changed

Trailing Stop Order

Suppose you have a winning position and want to make it run. And you want to protect
your gain. This can be achieved with a stop order. But stop order is static. If the run
continues, you want to raise the stop order automatically in tandem.

So trailing stop order is invented for this purpose. A trailing (sell) stop order sets the
initial stop price at a fixed amount below the market price. As the market price rises, the
stop price rises by the trailing amount. But if the stock price falls, the stop price remains

52

CHAPTER 2 ELECTRONIC MARKET

unchanged. When the stop price is hit, a market order is submitted. Reverse this for a
buy trailing stop order. This strategy may allow a trader to limit the maximum possible
loss without limiting possible gain.

A trailing stop order is a useful tool for managing positions in a dynamic market. It
allows investors to secure gains and limit losses by automatically adjusting the stop price
as the market moves in a favorable direction. This flexibility is particularly beneficial
when a position is experiencing significant price fluctuations, as it helps protect profits
without limiting potential upside.

Therefore, a trailing stop is a modification of a typical stop order that can be set at
a defined percentage or dollar amount away from a security’s current market price. An
investor places a trailing stop loss below the current market price for a long position and
a trailing stop above the current market price for a short position. It is designed to lock in
profits or limit losses as a trade moves favorably.

Note that the trailing stops only move if the price moves favorably. Once it moves to
lock in a profit or reduce a loss, it does not move back in the other direction. The trailing
stop order is thus a dynamically changing stop order.

Market If Touched Order

A market if touched (MIT) is an order to buy (sell) below (above) the market. This order
is held in the system until the trigger price is touched and is then submitted as a market
order if and when a specified price level is reached. It is a conditional order that becomes
a market order when a security reaches a specified price. When using a buy MIT order,

a broker will wait until the security reaches the specified level before purchasing the
asset. Correspondingly, a sell MIT order will trigger a market sell order when the security
reaches a specified sell price.

Note that MIT orders are typically used to buy when the price falls or sell when the
price rises. This is in contrast to stop orders and limit orders. For example, a buy MIT
order looks for the price of an asset to fall, while a buy-stop order activates when the
market value of the security increases past a specified level. On the other hand, the buy
limit order only activates when the market value of the security reaches the limit price.

Take an asset whose current price is $288.7, for example. There is a large buy limit
order size of $287.9. You want to buy at $288.0 and be among the first to buy. With an
MIT, you can send a market order to buy when touched.

53

CHAPTER 2 ELECTRONIC MARKET

Summarizing Major Types of Orders

Table 2-1 summarizes the major types of orders, including market order, limit order, stop
order, stop-limit order, pegged order, trailing stop order, and market if touched order.

Table 2-1. Major types of orders

Order Type Attributes Note

Market order Trading direction and volume Buy or sell immediately at the current best price
by matching against standing limit orders; no price
limit; uncertainty in the execution price; pay for the
bid-ask spread

Limit order Limit price, trading direction, Guaranteed to buy/sell an asset at the specified limit
and volume price or better for a buy/sell limit order; execution
not guaranteed; order is shelved into the LOB if not
executable; different marketability

Stop order Stop price, trading direction, Market order with a stop price; executed in the
and volume direction of asset price movement; applicable for
both entering a position and already in a position

Stop-limit Stop price, limit price, trading A limit order is contingent on a preset stop price and
order direction, and volume a limit price; execution is not guaranteed

Pegged order Reference price, offset, A limit order with a dynamic limit price; consists
trading direction, and volume of a cancelation order and a new limit order when
reference price changes

Trailing stop Trailing amount, trading Dynamic stop order; trailing stops only move if the

order direction, and volume price moves favorably

Market if Trigger price, trading A market order to buy (sell) below (above) the

touched order direction, and volume market; buy when the price falls or sell when the
price rises

54

CHAPTER 2 ELECTRONIC MARKET

More Order Types: Limit and Cancelation

There exist some other order types. For example, fill or kill (FOK) is a conditional type

of order used in securities trading that instructs a brokerage to execute a transaction
immediately and completely (the fill part) or not at all (the kill part). With FOK, the limit
order is either completely filled at a specified or better price or completely canceled. It
combines an all-or-none (AON) specification indicating it must be filled entirely; if not,
it will be canceled. FOK orders are often used when a trader wants to ensure that a large
order is executed quickly and fully without partial fills. This type of order is more suitable
for large orders or illiquid markets, where a trader wants to avoid the risk of moving the
market price.

Similarly, fill and kill (FAK) is a limit order that is executed against any existing orders
at the stated limit price or better, up to the volume of the order. Any residual volume
from this order is then immediately canceled. FAK orders are useful when a trader wants
to take advantage of short-term market opportunities without leaving an open order
on the books. FAK orders provide a balance between getting an immediate fill for the
desired quantity, but without the all-or-none restriction of an FOK order.

Both FOK and FAK orders can be useful in specific trading scenarios, depending on
the trader’s objectives and market conditions. These conditional order types offer greater
control over trade executions and can help traders manage risk and capture market
opportunities more effectively.

In addition, in high-frequency trading (HFT), an “immediate or cancel” (IOC) order
is a type of order that must be executed as soon as it is placed in the market. The unfilled
portion is immediately canceled when the order cannot be fully executed.

Price Impact

It is important to note the potential price impact of large market orders, which tend to
move prices. And the reason is the lack of sufficient liquidity for large orders to fill at

the best price. Large market orders can have a significant impact on prices, especially
when there is insufficient liquidity at the best price level. This phenomenon is known as
price slippage, which occurs when the actual execution price of an order differs from the
expected price due to insufficient liquidity.

55

CHAPTER 2 ELECTRONIC MARKET

For example, suppose that a 10K-share market buy order arrives, and the best offer
is $100 for 5K shares. Half the order will fill at $100, but the next 5K shares will have to fill
at the next price in the book, say at $100.02 (where we assume there are also 5K shares
offered). The volume-weighted average price for the order will be $100.01, which is
larger than $100.00. Thus, the price might move further following the trade.

To mitigate the impact of large market orders on prices, traders can consider using
alternative order types or strategies, such as using limit orders to control the price at
which their orders get executed or iceberg orders that divide large orders into smaller
parts, thus reducing the visibility of the order’s total size.

Order Flow

In trading, order flow is an important concept. It is the overall trade direction at any
given period of time. Ex post, order flow can be inferred from the trade direction. For
example, a trade is said to be buyer initiated if the trade took place at the ask price or
higher. In this case, the buyer is willing to absorb the bid/ask spread and pay a higher
price. The trade sign is +1.

Conversely, a trade is seller initiated if the trade occurred at the bid price or lower.
In this case, the seller is willing to absorb the bid/ask spread and sell for a low price. The
trade sign is -1.

In essence, the order flow suggests the net direction of the market. When there were
more buy (sell) market orders (MO) than sell (buy) MO, the market direction would
typically be up (down). Many papers in the literature have provided ample evidence of
this intuitive observation. It is also well known among traders. By analyzing the order
flow, traders can identify buying and selling pressure and anticipate potential price
movements. The concept of order flow is based on the premise that the net direction of
market orders can provide insights into market trends and potential price changes.

A positive net order flow, where there are more buy market orders than sell market
orders, generally indicates a bullish market with upward price movement. Conversely, a
negative net order flow, where there are more sell market orders than buy market orders,
signals a bearish market with a downward price movement. This correlation between
order flow and market direction is well documented in academic literature and widely
recognized by traders.

56

CHAPTER 2 ELECTRONIC MARKET

So how do we measure the direction of market order flows? One way is to use the
net trade sign: the total number of buyer-initiated trades less the total number of seller-
initiated trades. We can also use the net trade volume sign: the aggregate size of buyer-
initiated trades less the aggregate size of seller-initiated trades.

That being said, if we can forecast the direction of order flow ex ante, the trade
direction in the future can be anticipated. In other words, a positive order flow suggests
the market is likely to go up, while a negative order flow suggests the market is likely to
go down.

Therefore, we can use some models to forecast the order flow on the fly. A simple
model is to generate a trading signal if the forecasted order flow for the next period
exceeds some threshold. This threshold can be determined via backtesting (to be
covered in a later chapter).

In the following section, we will look at a sample limit order book data and develop
familiarity with both concepts and implementation.

Working with LOB Data

The LOB data mainly consists of limit prices and associated trading volume at each price
level. Due to the vast disparity in different trading platforms, compiling all LOB data for a
specific asset is difficult. Fortunately, we begin to see a coordinated effort in the research
community in compiling and sharing such data with open access.
One example is a recent paper in 2020 titled “Benchmark Dataset for Mid-Price
Forecasting of Limit Order Book Data with Machine Learning Methods,” where
the authors share the first publicly available benchmark dataset of high-frequency
limit order markets for mid-price prediction. The paper extracted normalized data
representations of time series data for five stocks from the NASDAQ Nordic stock market
for a time period of ten consecutive days, leading to a dataset of around four million time
series samples in total and covering a complete market-wide history of ten trading days.
The dataset shared by the paper is available at https://etsin.fairdata.fi/
dataset/73eb48d7-4dbc-4a10-a52a-da745b47a649. We have downloaded a sample
file named “Train Dst NoAuction DecPre CF 7.txt” and placed it in the data folder.
Listing 2-1 imports a few packages for data processing and visualization, followed by
loading the dataset into df.

57

https://etsin.fairdata.fi/dataset/73eb48d7-4dbc-4a10-a52a-da745b47a649
https://etsin.fairdata.fi/dataset/73eb48d7-4dbc-4a10-a52a-da745b47a649

CHAPTER 2 ELECTRONIC MARKET

Listing 2-1. Loading the LOB dataset

import numpy as np

import pandas as pd

import plotly.express as px

from plotly.subplots import make_subplots
import plotly.graph objects as go

df = np.loadtxt('data/Train Dst NoAuction DecPre CF 7.txt")
We can access the dimensions of the sample dataset via the shape attribute:

>>> df.shape
(149, 254750)

In this dataset, the rows indicate features such as asset price and volume, and the
columns indicate timestamps. Typically, we would use the rows to indicate observation-
level data per timestamp and use the columns to represent features or attributes. We
would need to transpose the dataset.

Also, based on the documentation on the dataset, the first 40 rows carry 10 levels of
bid and ask from the order book, along with the volume of each particular price point.
We have a total of 40 entries per timestamp since each side (buy and sell) contains 10
price levels, and each level includes two points: price and volume. In other words, the
limit order book in a single time snapshot shows up as an array of 40 elements.

The following code prints out price-volume data of ten price levels for the sell and
the buy sides at the first timestamp:

>>> df[:40,0]

array([0.2615 , 0.00353, 0.2606 , 0.00326, 0.2618 , 0.002 , 0.2604 ,
0.00682, 0.2619 , 0.00164, 0.2602 , 0.00786, 0.262 , 0.00532,
0.26 , 0.00893, 0.2621 , 0.00151, 0.2599 , 0.00159, 0.2623 ,
0.00837, 0.2595 , 0.001 , 0.2625 , 0.0015 , 0.2593 , 0.00143,
0.2626 , 0.00787, 0.2591 , 0.00134, 0.2629 , 0.00146, 0.2588 ,
0.00123, 0.2633 , 0.00311, 0.2579 , 0.00128])

Since each level consists of a price-volume pair for both sides (buy and sell), we
know that for the first four entries, 0.2615 indicates the ask price, 0.00353 as the volume
at that ask price level, 0.2606 as the buy price, and 0.00326 as the volume at that buy
price level. Every two entries constitute a price-volume pair, and every price level

58

CHAPTER 2 ELECTRONIC MARKET

corresponds to two consecutive pairs. We have a total of 10 price levels, corresponding
to 20 price-volume pairs, including 10 for the buy side and 10 for the sell side. Also, we
know that price levels on the sell side should always be higher than on the buy side, and
a quick check verifies this.

Let us extract the price-volume pairs across all timestamps. Remember to transpose
the dataset, which is achieved by accessing the . T attribute. The final result is then
converted into a Pandas DataFrame format for better processing later. Remember to
print a few rows of the transformed dataset in df2 for a sanity check:

df2 = pd.DataFrame(df[:40, :].T)

Understanding Label Distribution

The dataset comes with target labels that assume one of the following three values: up,
down, or stationary movements. This label is used to describe the direction of movement
of the mid-price for the limit order book. This label is further differentiated by different
windows of lookahead in order to analyze the lagging effect further. Specifically,

we would look at the direction of movement after 10, 20, 30, 50, and 100 events
(timestamps).

Information on the target labels is contained between rows 145 and 149 of the
original DataFrame. In Listing 2-2, we define a function to plot the distribution of the
three movements as bar plots (histograms) for each lookahead window, repeated across
all five windows. These five subplots are arranged together in one row and five columns
via the make_subplots() function.

Listing 2-2. Plotting the label distribution of the mid-point movement
labels = ["Up", "Stationary", "Down"]

def printdistribution(dataset):
fig = make subplots(rows=1, cols=5,
subplot_titles=("k=10", "k=20", "k=30", "k=50",
"k=100"))

fig.add trace(
go.Histogram(x=dataset[144,:], histnorm="'percent'),
row=1, col=1

59

CHAPTER 2

fig.

fig.

fig.

fig.

fig.

)

fig.
fig.
fig.
fig.

ELECTRONIC MARKET

add_trace(
go.Histogram(x=dataset[145,:], histnorm="'percent'),
row=1, col=2

add_trace(
go.Histogram(x=dataset[146,:], histnorm="'percent'),
row=1, col=3

add_trace(
go.Histogram(x=dataset[147,:], histnorm="'percent'),
row=1, col=4

add_trace(
go.Histogram(x=dataset[148,:], histnorm="'percent'),
row=1, col=5,

update layout(

title="Label distribution of mid-point movement",
width=700,

height=300,

showlegend=False

update xaxes(ticktext=labels, tickvals=[1, 2, 3], tickangle = -45)
update yaxes(visible=False, showticklabels=False)
layout.yaxis.title.text = 'percent’

show()

>>> printdistribution(df)

Running the code generates Figure 2-3. The plot suggests an increasingly obvious

trend for upward and downward movements as the lookahead window gets large.

60

CHAPTER 2 ELECTRONIC MARKET

Label distribution of mid-point movement

k=100
— "
|
|
S 72993) S . .
N &7 P
o0 ° Qo ‘bo s 00 <0 Q
® ® s ® ®

Figure 2-3. Histogram of three types of movement across different lookahead
windows in the limit order book

Understanding Price-Volume Data

We stored the price-volume data in the df2 variable earlier. This DataFrame has 40
columns, corresponding to 10 price levels for each side, with a unique price-volume
pair at each price level. For example, the first four columns belong to the level 1 price.
Within the first four columns, the first is the level 1 ask price, the second is the level 1 ask
volume, the third is the level 1 bid price, and the fourth is the level 1 bid volume. This
pattern repeats across all 10 price levels, thus forming a total of 40 columns. Each row is
a snapshot at a particular timestamp, and together these 40 columns form that snapshot.
Let us get the dimension of df2:

>>> df2.shape
(254750, 40)

Now we would like to dissect this DataFrame and allocate each component to a
separate DataFrame. In Listing 2-3, we subset the DataFrame based on the sequence
of columns for each component, resulting in four DataFrames: dfAskPrices,
dfAskVolumes, dfBidPrices, and dfBidVolumes. Subsetting the DataFrame is completed
by calling the loc() function and supplying the corresponding row and column indexes.

61

CHAPTER 2 ELECTRONIC MARKET

Listing 2-3. Extracting the bid/ask prices and volumes

dfAskPrices = df2.loc[:, range(0,40,4)]
dfAskVolumes = df2.loc[:, range(1,40,4)]
dfBidPrices = df2.loc[:, range(2,40,4)]
dfBidVolumes = df2.loc[:, range(3,40,4)]

One thing to note is that the ask and bid prices do not follow the same sequence
order. Printing out the first row of dfAskPrices and dfBidPrices helps us verify this:

>>> dfAskPrices.loc[0,:]

0 0.2615
4 0.2618
8 0.2619
12 0.2620
16 0.2621
20 0.2623
24 0.2625
28 0.2626
32 0.2629
36 0.2633
Name: 0, dtype: float64

>>> dfBidPrices.loc(0,:]

2 0.2606
6 0.2604
10 0.2602
14 0.2600
18 0.2599
22 0.2595
26 0.2593
30 0.2591
34 0.2588
38 0.2579
Name: 0, dtype: float64

62

CHAPTER 2 ELECTRONIC MARKET

The results show that the ask prices follow an increasing sequence, while the bid
prices follow a decreasing sequence. Since we often work with price data that follow an
increasing sequence in analyses such as plotting, we need to reverse the order of the
bid prices. The order could be reversed by rearranging the sequence of columns in the
DataFrame. The current sequence of the columns is

>>> dfBidPrices.columns
Int64Index([2, 6, 10, 14, 18, 22, 26, 30, 34, 38], dtype='"int64")

We can reverse the ordering by the [: :-1] command:

>>> dfBidPrices.columns[::-1]
Int64Index([38, 34, 30, 26, 22, 18, 14, 10, 6, 2], dtype="int64")

Now let us reverse both bid prices and volumes, where we passed the reversed
column names to the respective DataFrames based on column selection:

dfBidPrices = dfBidPrices[dfBidPrices.columns[::-1]]
dfBidVolumes = dfBidVolumes[dfBidVolumes.columns[::-1]]

Examining the first row of dfBidPrices shows an increasing price trend now:

>>> dfBidPrices.loc([0,:]

38 0.2579
34 0.2588
30 0.2591
26 0.2593
22 0.2595
18 0.2599
14 0.2600
10 0.2602
6 0.2604
2 0.2606

Name: 0, dtype: float64

Note that the index for each entry still stays the same. We may need to reset the index
depending on the specific follow-up process.

63

CHAPTER 2 ELECTRONIC MARKET

Since the price increases from the bottom (buy side) to the top (sell side) in a limit
order book, we can join the price tables from both sides to show the continuum. There
are multiple ways to join two tables, and we choose outer join to avoid missing any entry.
Listing 2-4 joins the price and volume tables from both sides, followed by renaming the
columns.

Listing 2-4. Concatenating bid and ask tables

Concatenate Bid and Ask together to form complete orderbook picture
dfPrices = dfBidPrices.join(dfAskPrices, how="outer")
dfVolumnes = dfBidVolumes.join(dfAskVolumes, how="outer")

#Rename columns starting from 1->20
dfPrices.columns = range(1, 21)
dfVolumnes.columns = range(1, 21)

We can print out the first row of dfPrices to check the prices across all levels at the
first timestamp:

>>> dfPrices.loc[o0,:]
0.2579
.2588
.2591
.2593
.2595
.2599
.2600
.2602
.2604
.2606
.2615
.2618
.2619
.2620
.2621
.2623
.2625
.2626

OW 60N O U1 B W N B

I O N = O = =
~ ou b wN R O
O O O O OO 0O O O O O O O O O O O

=
o)

(o]
=

CHAPTER 2 ELECTRONIC MARKET

19 0.2629
20 0.2633
Name: 0, dtype: float64

The result shows that all prices are in increasing order. Since the first ten columns
show the buy-side prices and the last ten columns belong to the sell-side prices, the best
bid price would be the highest price at the buy side, that is, 0.2606, while the best ask
price (best offer) would be the lowest price at the sell side, that is, 0.2615. The difference
between the two price points gives us the bid/ask spread for the current snapshot, and
its movement across different snapshots indicates market dynamics.

We can plot these prices as time series, where each price curve represents the
evolution of price for the specific particular of a buy or sell trading side. As a matter of
fact, these curves should not intersect with each other; otherwise, they would have been
transacted and jointly removed from that price level. Listing 2-5 plots the 20 price curves
for the first 50 timestamps.

Listing 2-5. Visualizing sample price curves
fig = go.Figure()

for i in dfPrices.columns:
fig.add _trace(go.Scatter(y=dfPrices[:50][i]))

fig.update layout(
title="10 price levels of each side of the orderbook',
xaxis title="Time snapshot index",
yaxis_title="Price levels",
height=500,
showlegend=False,

)
>>> fig.show()

Running the code generates Figure 2-4. Note the big gap in the middle; this is the
bid/ask spread of the limit order book. The figure also tells us something about market
dynamics. For example, at time step 20, we observe a sudden jump in ask prices, which
may be caused by a certain event in the market, causing the sellers to raise the prices as
awhole.

65

CHAPTER 2 ELECTRONIC MARKET

10 price levels of each side of the orderbook

0.266

- S
0.2622 7
o,

Price levels

0 10 20 30 40

Time snapshot index

Figure 2-4. Visualizing the 10 price curves for both sides for the first 50 time
snapshots. Each curve represents the price evolution at a particular price level and
will not intersect with each other. The big gap in the middle presents the bid/ask
spread of the limit order book

Note that the graph is interactive, offering the usual set of flexible controls (such as
zooming, highlighting via selection, and additional data upon hovering) based on the
plotly library.

We can also plot the volume data as stacked bar charts. The following code snippet
retrieves the first 5 snapshots of volume data and plots the 20 levels of volumes as
stack bars:

px.bar(dfVolumnes.head(5).transpose(), orientation="h")

Running this code generates Figure 2-5.

66

CHAPTER 2 ELECTRONIC MARKET

variable
a

EEEER
oW N e

index

=
1] 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

value

Figure 2-5. Plotting the first 5 snapshots of volume as bar charts across all 20
price levels

Let us plot the volume at each price level for a particular time snapshot. We can use
the iloc() function to access a particular portion based on the positional index. For
example, the following code prints out the first row of dfPrices:

>>> dfPrices.iloc[0]
0.2579
.2588
.2591
.2593
.2595
.2599
.2600
.2602
.2604
.2606
.2615
.2618
.2619
.2620
.2621
.2623
.2625
.2626
.2629
.2633
Name: 0, dtype: float64

OW 60N O U1 B W N B

=
o

L O O N = N = =N
© O ~N oUW N R
O O O O O OO 0O O O O O O O O o O O O

N
o

67

CHAPTER 2 ELECTRONIC MARKET

We can plot the volume data of a particular timestamp as bars. As shown in
Listing 2-6, we use list comprehension to format the prices to four decimal places
before passing them to the y argument in the go.Bar () function.

Listing 2-6. Visualizing the volume data

colors

['lightslategrey',] * 10

colors = colors + ['crimson',] * 10

fig = go.Figure()
timestamp = 0

fig.add trace(go.Bar(
y= ['price-"+'{:.4f}" .format(x) for x in dfPrices.iloc[timestamp].
tolist()],
x=dfVolumnes.iloc[timestamp].tolist(),
orientation='h"',
marker color=colors

))

fig.update layout(
title="Volume of 10 price levels of each side of the orderbook',
xaxis_title="Volume",
yaxis title="Price levels",

template="plotly dark’

)
fig.show()

Running the code generates Figure 2-6.

68

CHAPTER 2 ELECTRONIC MARKET

Volume of 10 price levels of each side of the orderbook

e ——————————
price-0. 2629 S ———— -
—_— .~7 7. oo 8
price-0.2625 S — (0.00787, price-0.2626)
—eee

price-0.262 | e —
price-0.26 1 9 S ——
PTG =). 2 (6 | 5 —
price-0.260
price-0.260

price-0.2595 S——
price-0.259 | n———

price-0.25 79 n——
0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

Price levels

Volume

Figure 2-6. Volume data of 20 price levels (10 for the sell side and 10 for the buy
side) for a particular snapshot in time

We can also combine the previous two charts together, as shown in Listing 2-7.

Listing 2-7. Combining multiple charts together
fig = make subplots(rows=1, cols=2)

for i in dfPrices.columns:
fig.add_trace(go.Scatter(y=dfPrices.head(20)[i]), row=1, col=1)

timestamp = 0

fig.add trace(go.Bar(
y= ['price-'+'{:.4f}".format(x) for x in dfPrices.iloc[timestamp].
tolist()],
x= dfVolumnes.iloc[timestamp].tolist(),
orientation="h",
marker color=colors
), row=1, col=2)

fig.update layout(
title="10 price levels of each side of the orderbook for multiple time
points, bar size represents volume',
xaxis title="Time snapshot",
yaxis_title="Price levels",
template="plotly dark'

)
fig.show()

69

CHAPTER 2 ELECTRONIC MARKET

Running the code generates Figure 2-7.

10 price levels of each side of the orderbook for muiltiple time points, bar size represents volume

price-0,2629 s) —— trace 0
0.264 \/_\ price-0.2625"] S —
N/ X NN price-0.2621 m—

g ' 10.00532, price-0.2620) e 2
3 price-0,2619 = price-0.2620) : i
5 0.262 = : .
Price-0, 2615 s — .
g price-0.2604 e :
o 0.26: price-0.2600 6
= ———— price-0.2595 m—— 7
price-0.259 1 m— — trace :
0259 price-0.2579 me— —— trace
o 5 10 15 0 0.002 0.004 0.006 0.008
Time snapshot

Figure 2-7. Combining the price and volume data for each price level

Visualizing Price Movement

The price at each price level may move across different timestamps as a reflection of
market dynamics. Visualizing the whole times series of the price index may be too
granular at first glance, since there are too many observations, given the nature of the
ultra high-frequency data. Instead, we can pick a fixed-size window to plot the price at a
particular period within the window and then move the window forward in time to show
the change in price. The rolling window can then be used to generate an animation of
prices moving up and down.

Listing 2-8 achieves the desired plotting effect. Here, we set the window length to
100 and choose the second price level for visualization. The animation is essentially a
collection of frames changing from one to another. Thus, we supply the corresponding
sequence of data for each frame in the animation.

Listing 2-8. Animating the price movement

widthOfTime = 100
pricelevel = 1

fig = go.Figure(
data=[go.Scatter(x=dfPrices.index[:widthOfTime].tolist(),
y=dfPrices[:widthOfTime][priceLevel].tolist(),
name="frame",
mode="1lines",
line=dict(width=2, color="blue")),
]J

70

CHAPTER 2 ELECTRONIC MARKET

layout=go.Layout(width=1000, height=400,

xaxis=dict(range=[0, 100], autorange=False,
zeroline=False),
yaxis=dict(range=[0, 1], autorange=False,

zeroline=False),

title="10 price levels of each side of the orderbook",

xaxis_title="Time snapshot index",
yaxis title="Price levels",
template="plotly dark',
hovermode="closest",
updatemenus=[dict(type="buttons",
showactive=True,
x=0.01,
xanchor="1left",
y=1.15,
yanchor="top",
font={"color":'blue'},
buttons=[dict(label="Play",
method="animate",

args=[None])])1),

frames=[go.Frame(
data=[go.Scatter(
x=dfPrices.iloc[k:k+widthOfTime].index.tolist(),
y=dfPrices.iloc[k:k+widthOfTime][priceLevel].tolist(),
mode="1lines",
line=dict(color="blue", width=2))
]) for k in range(widthOfTime, 1000)]

)
fig.show()

Running the code generates Figure 2-8. We can click the Play button to start
animating the line chart, which will change shape as we move forward.

71

CHAPTER 2 ELECTRONIC MARKET

10 price levels of each side of the orderbook

0.2605

0.26 (58, 0.26)

0.2595

0.259

Price levels

0.2585

0.258
1] 10 20 30 40 50 60 70 80 90

Time snapshot index

Figure 2-8. Animating the price changes of a selected price level via a rolling
window of 100 timestamps

In addition, we can also plot the animation of change in the volume across all the
price levels, as shown in Listing 2-9. The change in volume also indicates the market
dynamics in terms of supply and demand, although less so direct than the price itself.

Listing 2-9. Animating the volume movement
timeStampStart = 100

fig = go.Figure(
data=[go.Bar(y= ['price-'+'{:.4f}".format(x) for x in
dfPrices[:timeStampStart].values[0].tolist()],
x=dfVolumnes[:timeStampStart].values[0].tolist(),
orientation="h",
name="priceBar",
marker_color=colors),
1,
layout=go.Layout(width=800, height=450,
title="Volume of 10 buy, sell price levels of an
orderbook",
xaxis title="Volume",
yaxis_title="Price levels",
template="plotly dark',
hovermode="closest",
updatemenus=[dict(type="buttons",

72

CHAPTER 2 ELECTRONIC MARKET

showactive=True,

x=0.01,

xanchor="1left",

y=1.15,

yanchor="top",

font={"color":'blue'},

buttons=[dict(label="Play",
method="animate",

args=[None])])]),
frames=[go.Frame(

data=[go.Bar(y= ['price-'+'{:.4f}"'.format(x) for x in dfPrices.

iloc[k].values.tolist()],
x=dfVolumnes.iloc[k].values.tolist(),
orientation="h",
marker color=colors)],
layout=go.Layout(width=800, height=450,
title="Volume of 10 buy, sell price levels of an
orderbook [Snapshot=" + str(k) +"]",
xaxis_title="Volume",
yaxis title="Price levels",
template="plotly dark',
hovermode="closest")) for k in
range(timeStampStart, 500)]

)
fig.show()

Running the code generates Figure 2-9.

73

CHAPTER 2 ELECTRONIC MARKET

Volume of 10 buy, sell price levels of an orderbook

price-0.2629 _

price-0.2625 I
price-0.2621 B

price-0.2619
———

price-0.2615 NG
f—]

Price levels

price-0.2604

price-0.2600
I

price-0.2595 I
[

price-0.2591 I

EE——
price-0.2579 I
0 0.002 0.004 0.006 0.008

Volume

Figure 2-9. Visualizing the change in the volume across all the price levels

Summary

In this chapter, we covered the basics of the electronic market and the different types
of electronic orders, including market order, stop order, limit order, and other forms of
dynamic order (e.g., pegging, trailing stop, market if touched, limit, and cancelation). We
discussed the mechanism of the order matching system and order flow.

In the second section, we looked at real LOB data and discussed different ways
to visualize the price and volume data, such as their movement across time. Working
with the actual data by first plotting them out and performing some initial analysis is a
common and important first step in the whole pipeline of devising and implementing

trading strategies.

74

CHAPTER 2 ELECTRONIC MARKET

Exercises

e Write a function in Python to illustrate the algorithm of a pegged
buy order and sell order. (Hint: Start by defining your own input and
output.)

e What's the difference between the market if touched order (MIT) and
the stop order?

e How to calculate mid-price in a limit order book? Implement the
logic in code. (Hint: Start by defining your own input and output.)

e Describe how a buy trailing stop order works.

e Should the trailing stop-loss order be placed above or below the
current market price for an investor in a long position? A short
position?

75

CHAPTER 3

Forward and Futures
Contracts

In financial markets, forward and futures contracts serve as popular financial
instruments for hedging risk (preventing or reducing potential loss) and speculation
(seeking abnormal and risky profits). These contracts offer market participants the
opportunity to mitigate or enlarge the impact of price fluctuations on their positions.
The use of forward and futures contracts has grown exponentially over the years, as
market participants increasingly recognize their potential benefits in risk management
and portfolio diversification. As such, understanding the mechanics, advantages, and
limitations of these contracts is essential in the dynamic financial markets.

Forward and futures contracts find their roots in the age-old practice of producers
and consumers entering into agreements to exchange goods at a future date for a
predetermined price. Today, these contracts become popular financial vehicles traded
on a much larger scale, encompassing a wide variety of underlying assets, including
commodities, currencies, interest rates, and equity indices. Forwards are typically traded
over the counter (OTC) and customized to the specific needs of the counterparties on
both sides. Futures contracts are standardized products traded on regulated exchanges,
just like stocks. Futures and forward contracts differ in liquidity, counterparty risk, and
transparency.

In this chapter, we delve deeper into the world of forward and futures contracts,
exploring their unique characteristics, similarities, and differences. We will discuss
the process of entering and settling these contracts, their role in managing risk, and
the strategies employed by market participants to capitalize on anticipated price
movements.

77
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_3

https://doi.org/10.1007/978-1-4842-9675-2_3

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Introducing Forward and Futures Contracts

Forward and futures contracts are very similar in nature. Both obligate the buyer

(or seller) to buy (or sell) a predetermined quantity of an underlying asset at a
predetermined delivery date and price. Since the price is fixed in advance, market
participants can rely on this investment vehicle to better manage their operational
activities. For example, a farmer produces wheat and sells the wheat to a food
manufacturing company. The wheat price changes every year, causing unexpected
fluctuations on both sides of the trade. By entering a forward contract, both sides lock in
the trading price and quantity, thus eliminating future uncertainty in the wheat price.

Let us look at the buy side and the sell side when entering a given forward/futures
contract. On the buy side, the buyer of the forward/futures contract takes on the
obligation to purchase and receive the underlying asset at the time point when the
forward/futures contract expires. On the sell side, the seller of the forward/futures
contract is obliged to provide and deliver the underlying asset to the buyer at the
expiration date.

Both are derivative products because they depend on another underlying asset:
grain, livestock, energy, currencies, or even securities. It obliges the buyer to purchase
the underlying asset (or the seller to sell that asset) at a predetermined future price
and date.

Note that counterparty risk often constitutes the biggest risk in a forward contract.
A forward contract can only be rolled forward based on the consent of both parties.
Without such consent, the forward contract cannot be exercised afterward; it can only be
settled between the two parties at the prespecified date.

Futures contracts are more standardized products when compared to forward
contracts. Forwards, which are similar agreements that lock in a future price at the
current time, are traded OTC and have customizable terms between the counterparties.
On the other hand, futures contracts come with the same terms for all counterparties,
thus making futures contracts highly standardized and tradable products. In other
words, we can choose to use the contract even before its expiry. For example, we can
further buy or sell the contract at any time point before the expiry date, which essentially
transfers the contract to another counterparty in the futures market.

Specifically, while forward contracts are tailor-made for the specific needs of the
counterparties, a futures contract is a standardized and regulated financial product (in
small increments) that allows the investor to buy or sell a particular commodity asset

78

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

or financial security at a predetermined price and at a specified time in the future over
an exchange. It is a fixed-price deal in the future. Futures contracts have standardized
features such as contract size, expiration dates, and settlement procedures. This
standardization makes futures contracts more accessible and liquid, as they can be easily
traded on exchanges. Since the future price for the commodity or security of interest is
fixed, there is no risk due to potential fluctuations in the future price. Investors thus often
use futures to hedge the risk of big changes in price.

Futures contracts are traded through centralized futures exchanges, which serve as
the middleman and eliminate the counterparty risk, that is, one party does not fulfill the
obligation required by the futures contract. The counterparty risk exists in the forward
contract, which is considered a customized OTC trading instrument and is traded
directly between two parties.

In addition, another key difference between forward and futures contracts is the
manner in which they are settled. Forward contracts are typically settled through
physical delivery of the underlying asset upon expiry, whereas futures contracts can be
settled either through physical delivery or cash settlement (more on this later).

Moreover, the role of margin accounts in futures trading is another distinguishing
factor between forward and futures contracts. Futures exchanges require both parties to
maintain a margin account to cover potential price fluctuations in the underlying asset.
This ensures that the parties have sufficient funds to cover their obligations, thereby
mitigating the risk of default. In contrast, forward contracts do not involve margin
accounts, leaving the parties more exposed to counterparty risk.

In summary, forward and futures contracts are financial instruments that enable
market participants to manage risk and speculate on the future prices of underlying
assets. Although both instruments share some similarities, they also have key
differences in terms of standardization, trading venues, settlement procedures, and risk
management. The futures exchange profits by maintaining a spread between the quoted
prices from the buyer and the seller of the futures contract. Since the futures contracts
are standardized, the futures exchange can add a small margin to them before exposing
them to potential buyers while maintaining a lower price for those who short the futures
contract. Again, as a measure of protection, the futures exchange also requires both sides
of the trade to open and maintain a margin account in case the price of the underlying
asset moves against the exchange, such as a drop in price.

79

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Parameters of a Futures Contract

A standardized futures contract features the following four parameters:
e Lotsize
e Contractvalue
e Margin
o Expiration date

Let us look at these parameters in detail. The lot size of a futures contract
specifies the quantity of the underlying asset that an investor will have to trade upon
entering a futures position. The quantity to be traded in the futures contract must
be a predetermined multiple of the minimum quantity. The lot size determines the
predefined quantity of the underlying asset to form a single futures contract. This lot size
ensures that futures contracts are standardized and easily tradable on exchanges. Take
the futures contract of Apple’s shares, for example. Say the lot size for Apple’s future is
100. Therefore, any futures contract would come in a multiple of 100 shares.

The contract value specifies the total monetary value of the futures contract in terms
of the underlying asset, calculated by multiplying the lot size by the current market price
of the underlying asset. This value represents the notional exposure of the investor’s
position in the contract. Suppose Apple stock is trading at $125 per share. Thus, the
total contractual value of Apple’s futures contract will be equal to $12,500 ($125 x 100),
assuming the futures contract obligates the investor to purchase one lot (100 shares) of
Apple’s stock. The contract value is the product of the lot size and the asset price.

Margin is the amount of deposit from the investor to enter a futures contract
position, consisting of an initial margin and a maintenance margin. The initial margin is
the initial amount of deposit to open the margin account, and the maintenance margin
is the minimum amount required by the futures exchange in order to maintain the
futures position and keep it open. Therefore, we do not need the entire contract value
to get into a futures position. All we need to do is to deposit the required initial margin
of the contract value with the broker to sign the futures contract. The margin is blocked
upon entering a futures contract and released upon exiting it. These margins thus help to
mitigate counterparty risk and ensure that both parties can fulfill their obligations under
the contract.

80

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

The expiration date is the date of delivery/settlement for the futures contract, via
either physical delivery or cash settlement. Each futures contract is time-bound and
ceases to exist after the expiration date. A futures investor needs to close or roll over the
futures position on or before the expiration date to avoid settlement.

Understanding these parameters is crucial for investors who wish to trade futures
contracts, as they determine the contract’s structure, risk profile, and potential return on
investment. By carefully considering the lot size, contract value, margin requirements,
and expiration date, investors can tailor their futures positions to align with their specific
financial goals and risk tolerance.

Hedging and Speculation

There are two purposes when engaging in a futures contract. The first purpose is
speculation, as a futures contract allows the investor to speculate on the direction of
movement for the underlying asset. The second purpose is hedging, so as to help prevent
losses from unfavorable price changes. This constitutes the two types of participants in
the market: hedgers and speculators.

Hedging is a common practice for producers and manufacturers who wish to ensure
a stable production process by locking the price of products or raw materials in the
future. By entering a futures contract to guarantee the price at which the commodity is
sold or purchased, hedgers ensure that they transact the commodity at a satisfactory
price, thus hedging against any changes in the market.

Hedgers are typically involved in the production, processing, or consumption of the
underlying asset, and they use futures contracts to manage their exposure to fluctuations
in the asset’s price. By locking in a predetermined price for the asset, they can reduce
the risk of unexpected price changes impacting their operations or profitability. For
example, an airline company might hedge against rising fuel prices by entering into
a futures contract to buy oil at a specific price in the future. This ensures that the
company’s fuel costs remain predictable, regardless of market volatility.

Speculators, in contrast, are primarily interested in profiting from price fluctuations
in the underlying asset. Since many commodity prices tend to move in predictable
ways, many speculators (traders and fund managers) aim to make a profit by trading
futures, even if they do not have a direct interest in the underlying commodity. They do
not typically have a direct stake in the production, processing, or consumption of the

81

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

asset. Instead, they trade futures contracts to capitalize on their market predictions and
generate profits. Speculators use futures to bet on the price movement of the underlying
asset. This provides liquidity to the futures market, as their trading activity helps to create
a market for hedgers to enter and exit positions. By taking on the risk of price changes,
speculators can earn a return on their investment if their predictions are accurate.

Obligations at Maturity

There are two types of settlement upon expiration of a futures (and options) contract:
physical delivery and cash settlement. Such derivative contracts will either be physically
delivered or cash-settled.

The first type is the physical delivery of the underlying asset. A deliverable futures
contract stipulates that the buyer in the long position of the futures contract will pay
the agreed-upon price to the seller, who in turn will deliver the underlying asset to the
buyer on the predetermined date (settlement date of the futures contract). This process
is called delivery, where the actual underlying asset needs to be delivered upon the
specified delivery date, rather than being traded out with offsetting contracts.

For example, a buyer enters a one-year crude oil futures contract with an opposing
seller at a price of $60. We know that one futures contract corresponds to 1000 barrels of
crude oil. This means the buyer is obligated to purchase 1000 barrels of crude oil from
the seller, regardless of the commodity’s spot price on the settlement date. If the spot
price of the crude oil on the agreed settlement date one year later is below $58, the long
contract holder loses a total of ($60 - $58) x $1000 = $2000, and the short position holder
gains $2000. Conversely, if the spot price rises to $65 per barrel, the long position holder
gains ($65 - $60) x $1000 = $5000, and the short position holder loses $5000.

The second type is cash settlement. When a futures contract is cash-settled, the net
cash position of the contract on the expiry date is transferred between the buyer and
the seller. It permits the buyer and seller to pay the net cash value of the position on the
delivery date.

Take the previous case, for example. When the spot price of the crude oil drops to
$58, the long position holder will lose $2000, which happens by debiting $2000 from the
buyer’s account and crediting this amount to the seller’s account. On the other hand,
when the spot price rises to $65, the account of the long position holder will be credited
$5000, which comes from debiting the account of the short position holder.

82

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

It is important to understand that the majority of futures contracts are not held
until maturity, and most participants in the futures market do not actually take
or make delivery of the underlying asset. Instead, they are traded out before the
settlement date. Traders and investors often choose to close their positions before the
contract’s expiration date to avoid the obligations associated with physical delivery or
cash settlement. This can be achieved by entering into an offsetting transaction that
effectively cancels out the original position. For example, a trader with a long position in
a futures contract can sell an identical contract to offset the position, while a trader with
a short position can buy an identical contract to close the position.

The process of closing out a futures position before maturity is a common practice in
the market, as it allows participants to lock in gains or limit losses without having to deal
with the actual delivery or cash settlement of the underlying asset. This flexibility is one
of the key features of futures trading, as it enables market participants to manage their
risk exposure and capitalize on market opportunities efficiently.

In conclusion, while futures contracts carry obligations at maturity in the form of
physical delivery or cash settlement, most participants in the futures market choose to
close their positions before the expiration date. By engaging in offsetting transactions,
traders and investors can effectively manage their risk exposure and profit from price
movements in the underlying asset without having to deal with the logistics of taking or
making the delivery.

Leverage in a Futures Contract

As we already know, we only need to deposit a certain margin in the margin account to
enter a futures contract. This means that high leverage can be used in the futures market.
The higher the leverage, the higher the risk, and the higher the potential profit.

Let us continue with the previous example. Say we enter a futures contract on
Apple’s stock that allows us to buy 100 shares at $125 per share, with an initial margin of
$1000. The total contract value is $125 x 100 = $12,500. If the stock price goes up to $140,
the contract value becomes $140 x 100 = $14,000, with the additional $1,500 amount
credited to our margin account due to daily settlement. We made a profit of $1,000 by
blocking an initial deposit of $1,000.

Suppose now the price of Apple’s stock goes down to $110. The total contract value
becomes $110 x 100 = $11,000, registering a loss of $1500. We would get a margin call to
deposit another ($1000 - $1500 + $1500) = $1000 to bring it back to the amount required
by the initial margin.

83

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Leverage is a double-edged sword in the futures market, as it can amplify both gains
and losses. It allows investors and traders to control a larger contract value with a smaller
amount of capital through the use of margin. While leverage can significantly increase
potential profits, it can also lead to substantial losses if the market moves against the
trader’s position.

When utilizing leverage, it is crucial for market participants to employ proper
risk management strategies to protect their capital. This may involve using stop-loss
orders to limit potential losses or closely monitoring the position to ensure the margin
requirements are met. Clearly, this is a zero-sum game. Money moves from the losers to
the winners on a daily basis. The profit made by the buyer is equivalent to the loss made
by the seller and vice versa.

Clearing House

Farmers who sell futures contracts do not sell directly to the buyers. Rather, they sell
to the clearing house of the futures exchange. As a designated intermediary between
a buyer and seller in the financial market, the clearing house validates and finalizes
each transaction, ensuring that both the buyer and the seller honor their contractual
obligations. The clearing house thus guarantees that all of the traders in the futures
market will honor their obligations, thus avoiding potential counterparty risk.

The clearing house serves this role by adopting the buyer’s position to every seller
and the seller’s position to every buyer. Every trader in the futures market has obligations
only to the clearing house. The clearing house takes no active position in the market, but
interposes itself between all parties to every transaction. As the middleman, the clearing
house provides the security and efficiency integral to financial market stability. So as far
as the farmers are concerned, they can sell their goods to the clearing house at the price
of the futures contract when the contract expires.

The clearing house will then match and confirm the details of the trades executed
on the exchange, including the contract size, price, and expiration date, ensuring that all
parties have accurate and consistent information. Order matching and confirmation is
thus one of the main roles of a clearing house.

The clearing house of the futures market also has a margin requirement, which is a
sum of the deposit that serves as the minimum maintenance margin for the (clearing)
member of the exchange. All members of an exchange are required to clear their trades
through the clearing house at the end of each trading session and satisfy the margin

84

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

requirement to cover the corresponding minimum balance requirement. Otherwise,
the member will receive a margin call to top up the remaining balance when the margin
account runs low due to fluctuation in asset price. Clearing houses thus collect and
monitor margin requirements from their members, ensuring that all participants have
sufficient collateral to cover potential losses. This helps to maintain the financial stability
of the market and reduces the likelihood of default.

Figure 3-1 illustrates the clearing house as a middle party between the buyer and

the seller.
Funds Funds
Buyer Clearing house Seller
- -~ Goods \ J Goods <.

N 4

Figure 3-1. Illustrating the role of the clearing house as an intermediary between
buyers and sellers in a futures market

Mark-to-Market

Mark-to-market involves updating the price of a futures contract to reflect its current
market value rather than the book value, so as to ensure that margin requirements are
being met. If the current market value of the futures contract causes the margin account
to fall below its required level, the trader will receive a margin call from the exchange to
top up the remaining balance.

Mark-to-market is a process of pricing futures contracts at the end of every trading
day. Made to accounts with open futures positions, the cash adjustment in mark-to-
market reflects the day’s profit or loss, based on the settlement price of the product,
and is determined by the exchange. Since mark-to-market adjustments affect the cash
balance in a futures account, the margin requirement for the account is being assessed
on a daily basis to continue holding an open position.

Let us look at a mark-to-market example and understand the daily change in the
price of the futures contract due to fluctuating prices in the underlying asset. First,
note the two counterparties on either side of a futures contract, that is, a long position
trader and a short position trader. The long trader goes bullish as the underlying asset is
expected to increase in price, while the trader shorting the contract is considered bearish
due to the expected drop in the price of the underlying asset.

85

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

The futures contract may go up or down in value at the end of the trading day. When
its price goes up, the long margin account increases in value due to mark-to-market, with
the daily gain credit to the margin account of the long position trader. Correspondingly,
the short position trader on the opposing side will suffer a loss of an equal amount,
which is debited from the margin account.

Similarly, when the price of the futures contract goes down, the long margin account
decreases in value due to mark-to-market, with the daily loss debited from the margin
account of the long position trader. This amount will be credited to the margin account
of the short position trader, who will realize a gain of an equal amount.

By updating the price of a futures contract to reflect its current market value, the
exchange can monitor the risk exposure of traders in real time. This helps to ensure
that margin requirements are being met and that traders have enough funds to cover
their positions, which essentially reduces risk exposure to the traders. This also allows
traders to accurately assess their profit or loss and make informed decisions about their
positions.

Figure 3-2 illustrates the two types of traders with an open position in the same
futures contract and their respective profit and loss due to mark-to-market.

~\

{ Mark-to-market

S/

Long position holder Short position holder

(bullish) (bearish)
. N .
(Profit from daily When market goes up 4 Suffer loss from daily)
settlement settlement
Profit credited to the Money moves Loss debited from the
\ margin account < y, N margin account)
0\ e) . ™~
Suffer loss from daily When market goes down Profit from daily
settlement settlement
Loss debited from the Money moves Profit credited to the
\ margin account Y, \; margin account)

Figure 3-2. lllustrating the mark-to-market process and the resulting effect on the
margin account of long and short position traders for the same futures contract

86

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

To better understand the daily dynamics for traders of different positions as a result
of the daily mark-to-market exercise by the exchange, let us look at a concrete example.
As shown in Figure 3-3, we plot the daily amount of the margin account for both the long
and short position holders. The initial amount in the margin account is $100 for both
traders. Given the increase in asset value on day 1, a $5 increase in the margin account
of the long position holder is realized ($100 + $5 = $105), while a $5 decrease for the
short position holder enters ($100 - $5 = $95). On day 2, the net change is -$20 for the
long position margin account, bringing it from $105 to $85, lower than the minimum
requirement (called maintenance margin) of $90. The long position trader then gets a
margin call from the exchange and tops up $15 to increase their margin account to $100,
based on the required initial amount. The short position trader benefits a total of $20,
ending with an end-of-day amount of $115 in their margin account.

Mark-to-market in terms of profit/loss due to daily settlement ‘

Amount in margin account

105 ! Margin call triggered as margin .
Long position holder s
: 100 \ g0 A account falls below
(bullish) £ : :
N maintenance margin (90)
- 85
0 1 2 T
Gain/loss of long-position
Amount in margin account margin account
115
e Day 1 5
Short position holder 100 [~ Day 2 -20
(bearish) 95
0 1 2 T

Figure 3-3. An example of daily changes in the margin account of long and short
position traders due to mark-to-market

Note that the margin account changes the balance daily due to gain/loss from mark-
to-market exercise. Although the final settlement price at the delivery date could be
different from the intended price upon entering the futures position, the traders on both
sides would still end up transacting at an effective price equal to the initially intended
price, thus hedging the risk of price fluctuations.

87

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Now let us look at how to price this derivative product, starting with its similar twin:
forward contract.

Pricing Forward Contract

A forward contract is a customizable contract between two parties to buy or sell an asset
at a specified price on a future date. Different from the futures contract, whose price is
settled on a daily basis until the end of the contract, a forward contract is only settled at
the end of the agreement and is traded over the counter. Therefore, it is easier to price.
The price of a forward contract is the predetermined delivery price for the
underlying asset decided by the buyer and the seller. This is the price to be paid ata
predetermined date in the future and is determined by the following formula:

FZ) — SoerT

where F, is the price of the forward contract at the current time point ¢ = 0, and
S, is the price of the underlying asset at £ = 0. r is the risk-free bond interest rate, the
theoretical rate of return of an investment with zero risk. T'is the duration from the
current time point ¢ = 0 to the expiration date ¢ = T. More generally, we can write the
price of the forward contract as follows:

F — Ser(Tft)

t t

Here, multiplying the exponential constant simply means increasing the price of
the forward contract, depending on the baseline interest rate r and the duration T — ¢in
a continuously compounding scheme. In other words, suppose we deposit $1000 in a
bank, which promises a continuously compounded interest rate of r. We can thus expect
to see the total value of the deposit grow to 1000e” at the end of year 1, 1000¢* at the end
of year 2, etc. This is a common way of compounding in finance and accounting.

Now let us look at how this formula comes into shape. The reasoning follows the
no-arbitrage argument, which says there is no arbitrage opportunity to make any riskless
profit, no matter how the price of the underlying asset changes. Suppose we enter into
a long forward contract that obligates us to buy the asset S at time T for a price of F. We
are living at the current time point £, where the spot price of the asset is S,, and the future
price of the asset will be S;. The nature of the agreement fixes the action for us at the
delivery date; thus, we need to pay an amount of F; to purchase the asset valued at S;. In
other words, our net profit/loss (P&L) at time T'is —F; + S;, where the negative sign means
cash outflow. Note that this happens in the future at time 7 and not yet for now at time .

88

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

However, there is a risk involved upon entering this contract. Since the asset price
fluctuates in the future, the asset price may drop a lot due to unforeseen circumstances
in the future, leading to a very negative P&L upon delivery. Although the opposite could
also be true and the final P&L could be very positive, this still poses a potential risk,
especially for market participants such as farmers and manufacturers mentioned earlier.

To hedge this risk, we could short one unit of this asset at time ¢, since we know
that a short position makes a profit if the asset price drops. A short position in the
underlying asset profits us from losses in the future due to a decrease in the future asset
price. It is one unit of the underlying asset because we can use the exact one unit of the
asset bought based on the forward agreement to close the initial short position in the
underlying asset, that is, return the asset back to where we borrowed it from.

Now we look at the process in more detail. Upon entering the short position of one
unit of the underlying asset at time ¢, we obtain a cash inflow of §,, as shorting means
selling an asset and buying it back later. This means that we will have a cash outflow of Sy
at the delivery date to pay back the asset and close the short position.

Note that the cash S, at time t will not sit idle. Instead, we will invest the cash, such as
depositing t in the bank to enjoy a risk-free interest rate. The money will grow to S,e’" -9
upon reaching the delivery date, with an investment period of T — ¢. This investment will
be used to cover the short position in the underlying asset.

Figure 3-4 summarizes the positions in different products and the total portfolio
value with the evolution of time. Here, we have three different products in our portfolio:
a forward contract, an asset (e.g., one share of stock), and cash. These three constitute
our portfolio, and we start with zero value in the portfolio at time . To see this, we
observe that the forward position is zero at time ¢ since we only make the transaction
upon reaching the delivery date. The stock position gives —S; since we are shorting the
stock, and the cash position gives S, the income generated by shorting the stock. Adding
up the value of these three positions gives zero value for the portfolio at time . The net

cash flow at time tis zero.

89

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

s

.

Pricing a forward contract using the no-arbitrage argument
] _[Buy one unit of asset valued
Forward) 0 | 'L —F+5r | atS; fora price of F
Stock [" =S, ‘ —‘ —Sr Asset price changes across time
Cash ‘ 1S5 ‘ »[.S'te"(T":) Receives risk-free interest rate
' @

@ » Evolution of time

t T

L

Summing up to form the portfolio No-arbitrage

Portfolio ‘ f 0 — “F+5,e™T0 | > | p=gerao .

Figure 3-4. Pricing the forward contract in a long position using the no-arbitrage
argument. The stock and cash positions also constitute a replicating portfolio

that offsets the randomness in the payoff function of the forward contract at the
delivery date

As time passes by, the value of each position will evolve. Specifically, the forward
position becomes —F + S; since we would buy one asset valued at S; for a price of F. Our
stock position becomes —S; due to change in the stock price, and cash position becomes
S,eT-0,

Now, using the no-arbitrage argument, we would end up with zero value in our
portfolio since we started with zero value. Adding the value of the three positions at time T
gives the total portfolio value of —F + S,¢"~9. And by equating it to zero, we have F= S,e"~9,
thus completing the pricing of the forward contract using the no-arbitrage argument.

This is the formula for the price of a forward contract. It demonstrates that the
forward price is determined by the current price of the underlying asset, the risk-free
interest rate, and the time until the contract expires. By using this formula, both parties
in a forward contract can agree on a fair price that eliminates arbitrage opportunities
and reflects the true value of the underlying asset.

It is interesting to note that the stock and cash positions jointly constitute a
replicating portfolio that offsets the randomness in the payoff function of the forward
contract at the delivery date. This means that no matter what the price of the forward

90

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

contract will be in the future, we will always be able to use another replicating portfolio
to deliver the same payoff, as if we were in a position of the forward contract. This is
called pricing by replication.

Let us see what happens if the price of the forward is not equal to the stock price with
a continuously compounded interest rate. We can argue about arbitrage opportunities
based on the riskless profit from the buy-low-sell-high principle. When F> S,e""~9, we
can borrow an amount of S, and use the money to short a forward contract that allows
us to sell one unit of the underlying asset at price F. Upon reaching the delivery date,
we receive a total of F by selling the asset, pay back the borrowed money with interest
S,eT-9, and earn a net profit of F — S, =9, This is arbitrage, where we made a riskless
profit by taking advantage of the price difference at the future time T.

Similarly, when F < S,e"" -9, the forward contract is cheaper, and the asset is more
expensive. In that case, we again exercise the buy-low-sell-high principle by longing a
forward contract at time ¢ that allows us to buy one unit of the underlying asset at price
Fand time T. We will also short one unit of the underlying asset at time ¢ to gain a total
amount of S, which further grows to S~ upon reaching the delivery date. When the
contract expires, we will close the short position in the underlying asset by purchasing
one unit of the asset for a price of F. We get to keep the remaining balance S,e""~% — F,
thus also establishing the arbitrage argument and ensuring a riskless profit.

Note that the futures price is equal to the spot price of the underlying asset at the
current time ¢. To see this, simply set T =t and we have F=Se*~9=§,.

In a nutshell, the future net cash flow predetermined or fixed in advance (today)
must equal today’s net cash flow to annihilate arbitrage opportunities. The no-arbitrage
argument gives a fair price for the forward contract.

Pricing Futures Contract

The futures contract is priced in a similar way as the forward contract but involves a few
more factors. Ultimately, the futures contract price is set by the supply and demand in
the market. When a seller and a buyer agree on an equilibrium price for transacting a
futures contract, that price is the futures contract price.

Say we would like to price the futures contract at the next month (front month). Also,
assume that we enter a short position in the futures contract, obliged to sell one unit of
the underlying asset at the expiration date. The extra factors to consider here are the cost
and benefit of holding the asset until expiration.

91

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

For the cost of carrying the asset until the delivery date, we need to add it to the price
of the futures contract since it poses an actual cost we need to factor in from entering the
position all the way to the delivery date. For example, if we short a futures contract to sell
1000 barrels of oil at time T, we would borrow money to purchase 1000 barrels of oil from
the spot market at time ¢ so that we can fulfill the obligation at time T. Doing so requires
storing these 1000 barrels of oil, which incurs a storage cost to be added to the price of
the futures contract.

For the benefit of carrying the asset until the delivery date, we need to minus it from
the futures contract price. This is called the convenience yield, where the party holding
the underlying asset gains benefits through the course until the delivery date. Such
a situation usually happens when holding the actual asset is preferred. For example,
holding stocks may generate dividends payment, holding currencies may generate
profits due to differences in the interest rate, and holding commodities is preferred when
the market is in short supply of such commodities.

Building on top of the spot price with interest compounding, the fair price of the
futures contract can be calculated via the following formula:

Fair price = spot price with compounded interest + cost of storage - convenience yield
due to holding the asset

When the interest, cost, and convenience yield are all annually compounded, the fair
price of the forward contract can be calculated via the following formula:

F=St(1+r+s—c)T7t

where S, is the spot price of the underlying asset, r is the risk-free bond interest rate,

s is the storage cost in percentage and compounded annually, and c is the convenience
yield also in percentage and compounded annually. We raise it to the power of the
duration T — t to show the compounding effect in this period.

This formula shows that the futures contract price considers several factors: the
spot price of the underlying asset, the risk-free interest rate, the storage cost, and the
convenience yield. These components help market participants to determine a fair price
for the futures contract, reflecting the true value of the underlying asset while accounting
for the costs and benefits of holding the asset until the delivery date.

The futures contract price is essential for both buyers and sellers, as it determines
their potential profits or losses when they enter into a futures contract. By understanding
how the futures contract price is calculated, market participants can make informed
decisions about whether to enter into a futures contract and at what price.

92

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

It’s also important to note that the fair price of the futures contract is a theoretical
value. In reality, the actual futures contract price in the market is influenced by supply
and demand dynamics, which can cause the market price to deviate from the fair price.
Market participants need to continuously monitor the futures market, paying attention
to the changes in the underlying asset’s spot price, interest rates, storage costs, and
convenience yields, in order to adapt the strategies and make informed decisions about
the futures contract positions.

Let us look at an example. Suppose the current spot price is S, = $80, the interest rate
is r = 2%, the storage cost is s = 1%, the convenience yield is ¢ = 0.5%, and the position in
the futures contract is three months. Since the compounding is done on an annual basis,

we need to convert the duration to a yearly term, making 7" — ¢ = % =0.25. Therefore, the

fair price of the futures contract can be calculated as

F =80(1+0.02+0.01-0.005)"* =$80.5

Figure 3-5 summarizes the process of calculating the fair price of a futures contract.

\' Calculating the fair price of a futures contract

' Annually compounded ' Annually compounded
interest rate convenience yield

| Duration on a

[The fair price of a = \ iy O T ;
| futures contract F _‘St(l R i 2 S._ C) yearly basis

The spot price of the ' ' Annually compounded ‘
underlying asset _ storage cost

Figure 3-5. Calculating the fair price of a futures contract with an annually
compounded interest rate, storage cost, and convenience yield

93

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Contango and Backwardation

There are a few extra terms often used in the futures world. These terms are listed as
follows, where the contango is sort of the opposite of backwardation:

o Contango: The futures contract price is higher than the current spot
price of the underlying asset.

o Normal contango: The futures contract price is higher than the
expected spot price of the underlying asset.

o Backwardation: The futures contract price is lower than the current
spot price of the underlying asset.

e Normal backwardation: The futures contract price is lower than the
expected spot price of the underlying asset.

A close look into these terms helps us better understand the price dynamics of
the futures contract. Let us start with contango. When we say the market for a specific
futures contract is in contango, what this means is that we have an upward-sloping
futures price curve. Here, the futures price curve specifies the (increasing) price of a
futures contract with different delivery dates, at the current time snapshot. A futures
contract with a longer duration is more expensive than another with a shorter duration.
In addition, when we say the market is in normal contango, this means that the futures
price is higher than the (theoretical) expected spot price. Different price points along the
futures price curve correspond to different paths of price movements across time, with
the final settlement price of the futures contract converging with the spot price at the
same (future) delivery date.

The existence of contango or backwardation can have various underlying reasons.
For instance, storage costs, seasonality, market expectations, and macroeconomic
factors can all contribute to the formation of these pricing patterns in the futures market.

Contango is commonly observed in commodities markets where there are costs
associated with holding and storing the underlying assets, such as oil or grain. These
costs are factored into the futures contract price, causing it to be higher than the current
spot price. Contango can also arise when market participants expect the underlying
asset’s price to rise in the future, causing them to bid up the price of longer-dated futures
contracts.

94

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Backwardation, on the other hand, can occur when market participants believe that
the underlying asset’s price will decline in the future. This could be due to a forecasted
decrease in demand or an anticipated increase in supply. In such cases, market
participants might be more willing to sell futures contracts at a lower price than the
current spot price, as they expect the spot price to drop in the future.

Figure 3-6 provides an example to help put these statements in perspective. Here,
we have two futures contracts with one and two months before the delivery date,
respectively. A market in contango means an upward-trending price curve for the futures
contracts as the duration gets longer, as shown on the left panel of the figure. As the asset
price starts to move across time, as shown by the curve starting with the orange dot,
the futures contract price will gradually approach the spot price. Eventually, the futures
price will be equal to the spot price when the delivery date is the current date.

Price dynamics of future contracts in contango

Price curve in contango at
current time snapshot

Price Price
s N Futures price converges to spot price

upon reaching the delivery rate

. .. WL/_

> L + [Evolution of spot price
0 1 2 0 1 2 of the underlying asset

Price movements over time

Figure 3-6. Illustrating the price dynamics of the futures contract in contango.
The left panel shows the price curve at the current time point, where a futures
contract with a longer delivery date is more expensive. The right panel shows the
price evolution of the asset and futures contract with different delivery dates, each
converging to the spot price upon reaching the respective delivery date

Correspondingly, a market in backwardation displays the opposite behavior, as
shown in Figure 3-7.

95

CHAPTER 3 FORWARD AND FUTURES CONTRACTS
Price dynamics of future contracts in backwardation |

Price curve in backwardation at

5 Price movements over time
current time snapshot

Price Price ' Evolution of spot price

t t /\ of the underlying asset

t :;ﬁf/ :
@
3 , Futures price converges to spot price

_upon reaching the delivery rate

. »

0 1 2 0 1 2

Figure 3-7. Illustrating the price dynamics of the futures contract in
backwardation

Working with Futures Data

We can retrieve futures data using the yfinance package. In Listing 3-1, we download
futures data on platinum for the year 2022. Note that the symbol is “PL=F" After
downloading the dataset, we rewrite the index to the datetime format so that it facilitates
plotting, as shown in Listing 3-1.

Listing 3-1. Downloading futures data

For data manipulation
import pandas as pd

To fetch financial data
import yfinance as yf

For visualisation

import matplotlib.pyplot as plt
plt.style.use('seaborn-darkgrid")
Zmatplotlib inline

Download the platinum prices
futures_data = yf.download("PL=F", start="2022-01-01", end="2022-12-31")

Set the index to a datetime type
futures_data.index = pd.to datetime(futures data.index)

96

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Let us plot the closing price via Listing 3-2. Note the use of the fontsize argument in
adjusting the font size in the figure.

Listing 3-2. Visualizing the futures data

Plot the close price
plt.figure(figsize=(15, 7))
futures_data['Adj Close'].plot()

Set labels and sizes of the title and axis
plt.title('Platinum Futures Data', fontsize=16)
plt.xlabel('Year', fontsize=15)
plt.ylabel('Price ($)', fontsize=15)
plt.xticks(fontsize=15)

plt.yticks(fontsize=15)

plt.legend(['Close'], prop={'size': 15})

Show the plot
plt.show()

Running this command generates Figure 3-8.

Platinum Futures Data

1150 —— Close

o o> o
,LQ'?:I‘ .LQ?:L .p'l’}’ Aol

Figure 3-8. Visualizing the closing price of platinum futures data in 2022

97

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

We can also download multiple futures contracts in one shot. In Listing 3-3, we
download the futures data for gold and copper, using the “GC=F” and “HG=F” symbols,
respectively, followed by formatting the index and printing the last five rows.

Listing 3-3. Downloading multiple futures

Fetch gold and copper futures prices
futures_data = yf.download(["GC=F","HG=F"], start="2022-01-01",
end="2022-12-31", group by= 'tickers")

Set the index to a datetime type
futures_data.index = pd.to datetime(futures data.index)

Display the last five rows
futures data.tail()

Note that the DataFrame has two levels of columns, with the first level specifying the
symbol name and the second one showing the different price points.

Similarly, we can plot the closing price of the two sets of futures data, as shown in
Listing 3-4.

Listing 3-4. Visualizing multiple futures time series

Set the figure size
ax = plt.figure(figsize=(15, 7))

Plot both futures close prices

ax = futures data['GC=F']['Close'].plot(label="Gold Futures")
ax2 = futures data['HG=F']['Close'].plot(secondary y=True,
color="g"', ax=ax, label='Copper Futures')

Set the title and axis labels and sizes
plt.title('Gold and Copper Futures Data', fontsize=16)
ax.set _xlabel('Year-Month', fontsize=15)
ax.set_ylabel('Gold Price ($)', fontsize=15)
ax2.set_ylabel('Copper Price ($)', fontsize=15)
ax.tick params(axis='both', labelsize=15)

ax2.tick params(axis='y', labelsize=15)

hi, 11 = ax.get legend handles labels()

98

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

h2, 12 = ax2.get legend handles labels()
ax.legend(h1+h2, 11+12, loc=2, prop={'size': 15})

Show the plot
plt.show()

Running this command generates Figure 3-9.

Gold and Copper Futures Data

—— Gold Futures
2000 —— Copper Futuresj{fight)

1900
4.25

4.00
1800

Gold Price ($)
Copper Price ($)

o
-
wu

1700

o o> o3 I\ [Ad o>
,10'}} 1@1?- S ,10'.»1 L ,l@,’i ,101,'5
Year-Maonth

Figure 3-9. Visualizing the closing price of gold and copper futures data in 2022

Adding Technical Indicators

In this section, we will look at the popular S&P 500 E-Mini futures contract and discuss
how to add common technical indicators to aid technical analysis. The S&P 500 E-Mini
futures contract is a financial derivative product that tracks the performance of the S&P
500 index, which represents the 500 largest publicly traded companies in the United
States. The E-Mini futures contract is a smaller version of the standard S&P 500 futures
contract, making it more accessible and affordable for individual traders and investors.

Let us fetch the daily futures data for this specific contract using the symbol “ES=F"
for the full year of 2022, as shown in Listing 3-5.

Listing 3-5. Downloading S&P 500 E-Mini futures data

futures_symbol = "ES=F"
futures _data = yf.download(futures symbol, start="2022-01-01",
end="2022-04-01", interval="1d")

99

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Now let us calculate a few technical indicators using the ta library. In this example,
we will calculate the Relative Strength Index (RSI), Bollinger Bands, and MACD (Moving
Average Convergence Divergence). The following list briefly describes these popular
technical indicators:

Relative Strength Index (RSI): RSI is a momentum oscillator that
measures the speed and change of price movements. The RSI
oscillates between 0 and 100, and traders often consider an asset
overbought when the RSI is above 70 and oversold when it’s
below 30.

Bollinger Bands: Bollinger Bands are a volatility indicator that
measures the standard deviation of price changes. The indicator
consists of three lines: the middle line (a simple moving average)
and two outer lines (upper and lower bands) plotted at a specified
number of standard deviations away from the moving average.
When the bands widen, it indicates increased volatility, and when
they narrow, it signifies decreased volatility. Prices often move
between the upper and lower bands.

Moving Average Convergence Divergence (MACD): MACD is a
momentum indicator that shows the relationship between two
moving averages of an asset’s price. It consists of two lines: the MACD
line (difference between short-term and long-term moving averages)
and the signal line (a moving average of the MACD line). When the
MACD line crosses above the signal line, it may suggest a bullish
signal (buy), and when it crosses below the signal line, it may indicate
a bearish signal (sell). Additionally, when the MACD line is above
zero, it suggests an upward momentum, while below zero indicates a
downward momentum.

Listing 3-6 calculates these technical indicators and concatenates them to the
DataFrame.

100

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Listing 3-6. Calculating common technical indicators

Calculate RSI
futures_data["RSI"] = ta.momentum.RSIIndicator(futures data["Close"]).rsi()

Calculate Bollinger Bands

bbands = ta.volatility.BollingerBands(futures data["Close"])
futures_data["BB_upper"] = bbands.bollinger hband()
futures_data["BB_lower"] = bbands.bollinger lband()

Calculate MACD

macd = ta.trend.MACD(futures data["Close"])
futures_data["MACD"] = macd.macd()

futures_data["MACD_signal"] = macd.macd signal()

Now we can plot the raw futures time series data together with the technical
indicators to facilitate analysis, as shown in Listing 3-7.

Listing 3-7. Visualizing futures data and technical indicators

Create subplots for each indicator
fig, axes = plt.subplots(4, 1, figsize=(10, 15), sharex=True)

Plot closing price

axes[0].plot(futures data.index, futures data["Close"], label="Close")
axes[0].set _title("S&P 500 E-Mini Futures - Closing Price")
axes[0].grid()

Plot RSI
axes[1].plot(futures data.index, futures data["RSI"], label="RSI",
color="g")

axes[1].axhline(30, linestyle="--", color="r", alpha=0.5)
axes[1].axhline(70, linestyle="--", color="r", alpha=0.5)
axes[1].set title("Relative Strength Index (RSI)")
axes[1].grid()

101

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Plot Bollinger Bands
axes[2].plot(futures data.index, futures data["Close"], label="Close")
axes[2].plot(futures data.index, futures data["BB upper"], label="Upper

Bollinger Band", linestyle="--", color="r")

axes[2].plot(futures data.index, futures data["BB lower"], label="Lower
Bollinger Band", linestyle="--", color="r")

axes[2].set title("Bollinger Bands")

axes[2].grid()

Plot MACD

axes[3].plot(futures data.index, futures data["MACD"], label="MACD",
color="b")

axes[3].plot(futures_data.index, futures data["MACD signal"], label="Signal
Line", linestyle="--"
axes[3].axhline(0, linestyle="--", color="k", alpha=0.5)
axes[3].set_title("Moving Average Convergence Divergence (MACD)")
axes[3].grid()

, color="1")

Running the code generates Figure 3-10.

102

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

S&P 500 E-Mini Futures - Closing Price

4700

Relative Strength Index (RSI)

Bollinger Bands

Moving Average Convergence Divergence (MACD)

-80
2022-01-01 2022-01-15 2022-02-01 2022-02-15 2022-03-01 2022-03-15 2022-04-01

Figure 3-10. Visualizing futures data and technical indicators

103

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

We can plot a few things here. In the plotted RSI chart, we can observe periods when
the RSI crossed below 30, which might signal potentially oversold conditions. Traders
may use these signals to consider entering or exiting positions. In the plotted chart on
Bollinger Bands, we can see periods when the price touched or crossed the bands, which
may indicate potential trend reversals or support and resistance levels. In the MACD
chart, we can observe periods when the MACD line crossed the signal line, which may
signal potential entry or exit points for traders.

Summary

In this chapter, we delved into the world of options and futures contracts.

Forward contracts are customized, private agreements between two parties and are
traded over the counter (OTC). They are only settled at the end of the agreement and are
priced based on the spot price of the underlying asset, the risk-free interest rate, and the
time to expiration. However, forward contracts come with potential counterparty risk as
there is no clearing house to guarantee the fulfillment of the contractual obligations.

Futures contracts, on the other hand, are standardized contracts traded on regulated
exchanges. They are marked to market daily, meaning that the price of the contract is
adjusted to reflect its current market value, ensuring that margin requirements are met.
The clearing house of the futures exchange serves as an intermediary between buyers
and sellers, mitigating counterparty risk and ensuring the stability of the market.

We also covered the pricing of both types of contracts. For example, the pricing of
futures contracts is influenced by factors such as the spot price of the underlying asset,
the risk-free interest rate, storage costs, and convenience yield. In addition, futures
markets can exhibit contango, where futures prices are higher than the spot price, or
backwardation, where futures prices are lower than the spot price.

104

CHAPTER 3 FORWARD AND FUTURES CONTRACTS

Exercises

e Afarmer sells agricultural products, and a manufacturer purchases
raw materials for production. In both cases, what position should
they take in a futures contract in order to hedge against adverse price
changes in the future?

¢ A wheat farmer takes a short position in ten wheat futures contracts
on day 1, each valued at $4.5 and representing 5000 bushels. If the
price of the futures contracts increases to $4.55 on day 2, what is the
change in the farmer’s margin account?

e Suppose we enter into a short forward position. What is the risk
due to the fluctuating asset price in the future? How can we hedge
the risk?

o Assume we could buy a barrel of oil for $80 today, and the current
futures price is $85 for delivery three months from today. One futures
contract can buy 1000 barrels of oil. How can you arbitrage in this
situation? What is the profit? Assume a zero risk-free interest rate.

e Apply the same no-arbitrage argument to value a forward contract in
a short position.

o Write a function to calculate the fair price of a futures contract given
the spot price of the asset, risk-free interest rate, rate of storage
cost, convenience yield, and delivery date. Allow for both annual
compounding and continuous compounding.

o Explain the source of riskless profit when a forward contract is
overpriced or underpriced than its theoretical no-arbitrage value.

105

CHAPTER 4

Understanding Risk
and Return

Any financial asset is characterized by its risk and return. Return means the financial
reward it brings, such as the percentage increase in the asset value. We hope to maximize
the percentage return of the asset as much as possible. However, a higher reward often
comes with higher risk, where risk refers to the volatility of such return. That is, an

asset displays high oscillations in its historical returns, making its future outlook more
uncertain than, say, a stable product with little deviation from the expected gain, such as
the bond. As an investor, the goal of making profits boils down to maximizing the return
and, at the same time, minimizing the risk.

Return is a measure of the financial gain or loss of an investment over a specific
period. It can be calculated as a percentage of the initial investment, taking into account
factors such as capital appreciation, dividends, and interest payments. Returns can be
either realized (already received) or unrealized (expected to be received in the future).
There are various ways to measure returns, including absolute return, annualized return,
and risk-adjusted return.

Risk is the variability or uncertainty in the returns of an investment. It represents
the potential for losses due to factors such as market fluctuations, economic conditions,
and company-specific events. There are several types of risk, including market risk,
credit risk, liquidity risk, and operational risk, among others. In general, investments
with higher risk tend to offer higher potential returns to compensate for the increased
uncertainty.

107
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_4

https://doi.org/10.1007/978-1-4842-9675-2_4

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Risk and Return Trade-Off

With the risk and return trade-off, a low-return asset is associated with low risk, and a
high-return asset comes with a high risk. This is true for most financial instruments in
the market. For example, the bond, as a fixed-income asset, is often considered a riskless
asset that delivers a low return and comes with virtually no risk. The stock market offers a
higher return but often displays higher volatility due to the uncertain and unpredictable
future. Under such a trade-off, an investor can only gain a higher return and make more
profits if they are willing to accept more risk, that is, a higher probability of losses.

The appropriate risk-return trade-off depends on various factors, including an
investor’s risk tolerance profile, years to retirement, and the potential to replace lost
funds. The trade-off also depends on the time horizon for a given position. For example,
position traders typically hold onto a position for a long period of time, which provides
the trader with the potential to recover from the risks of bear markets and participate
in bull markets, hoping for an increase in the asset value over the long term. On the
other hand, swing traders or even day traders enter a position for a short time, seeking
profits by speculating on the movement of the asset’s price changes. The same equities
(e.g., stocks) have a higher risk proposition when an investor can only invest in a short
time frame.

It is important to note that each individual asset has its own risk and return profile,
and a group of assets can form a portfolio with new risk and return characteristics.

At the portfolio level, the risk-return trade-off assesses the concentration or diversity
of holdings and whether the portfolio mix presents an excessive risk or a lower-than-
desired potential for returns. Therefore, the risk-return trade-off applies to both
individual assets and a portfolio of assets.

However, a diversified portfolio generally reduces the risks presented by individual
investment positions. Diversification across various asset classes, industries, and
geographies can help mitigate the impact of poor-performing assets on overall returns,
providing a more balanced approach to risk management. A better understanding of the
risk-return trade-off, along with different diversification strategies, allows us to tailor the
portfolios to achieve the desired financial objectives and, at the same time, effectively
manage the inherent risks associated with investing.

Let us draw a two-dimensional coordinate system to characterize the risk and
return. We would often put risk on the horizontal axis and return on the vertical axis. As
shown in Figure 4-1, the lower-left quadrant has low risk and low return. Representative
products include fixed-income instruments such as bonds and treasury bills. Moving

108

CHAPTER 4 UNDERSTANDING RISK AND RETURN

to the upper-right quadrant, we have products associated with high risk and return.
Examples include stocks and derivative products. The other two quadrants are less
frequent. For example, it is not so often to see financial instruments with a low risk and
high return. Companies could experience an urgent need for funds and thus issue bonds
with a higher return, but getting into such a situation itself implies an increased default
risk already. On the other hand, it is very unlikely to see products with a low return but
high risk, since this goes against the profit maximization nature of trading.

Return
Low risk . High risk
High return High return
Less frequent E.g., Stocks, derivatives

Low risk i

Low return ; High risk

E.g., fixed-income ; Low return
products i Even more unlikely

Risk

Figure 4-1. Illustrating the four quadrants of risk and return profile

In the following section, we will start by understanding the fundamentals of returns
as a performance measure of financial assets. Understanding returns is crucial for us to
evaluate the success of different investments and make informed decisions in managing
portfolios.

Analyzing Returns

The return is the first and foremost metric most investors would look at for a specific
investment vehicle. It represents the change in value of a financial asset over a specified
period. It can be expressed in absolute terms (e.g., the dollar amount gained or lost) or as
a percentage of the initial investment value. As a crucial metric on the performance of an
asset or portfolio, the return allows us to compare across different investments.

109

CHAPTER 4 UNDERSTANDING RISK AND RETURN

When measured in percentage terms, the range could range from (theoretically)
negative infinity to positive infinity. Suppose the asset price changes from S,_, to S,. The
change in price is S; — S;_;, which could be positive or negative. Considering the price
of an asset changes across different time points, and also the fact that multiple assets
have multiple price levels, it is difficult to assess whether the price change S, — S,_, is big
or small. To standardize the price changes and make it easier for comparison, a more
widely used measure is percentage return R, defined as

R - S-S,
St—l

This equation essentially measures the change in asset price in proportion to the
previous-period asset price, that is, the baseline. It allows us to transition from prices
to returns. This percentage change in asset price thus allows us to assess and compare
different assets. By calculating the percentage return R, we can effectively transition
from focusing on the raw price changes to the proportional changes in asset prices. This
transition allows us to evaluate the performance of different investments relative to a
baseline, which is the previous-period asset price. This standardization is particularly
useful when evaluating investments with different price levels or those that experience
different magnitudes of price fluctuations.

Note that we may also write the return as R,_, , to emphasize the fact that the return
measures the relative change in prices between period t — 1 and &

Rt—l,t = S ; S

t-1

Let us analyze some dummy return data to make these calculations tangible.

Working with Dummy Returns

In Listing 4-1, we first create two five-element (or five-period) lists representing

the returns of two different assets, stored in asset_returni and asset_returnz,
respectively. The returns are constructed such that their mean returns are the same. We
can verify the equality using the == operator.

110

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Listing 4-1. Simulating two asset returns

asset _returni = [0.05, 0.3, -0.1, 0.35, 0.2]

asset return2 = [0.5, -0.2, 0.3, 0.5, -0.3]

>>> print(np.mean(asset returni))

>>> print(np.mean(asset_return2))

>>> print(np.mean(asset returni) == np.mean(asset return2))
0.16

0.16

True

Next, let us combine these two lists in a Pandas DataFrame for easy manipulation.
This is achieved by wrapping the two lists in a dictionary and passing it to the pd.
DataFrame() function:

return_df = pd.DataFrame({"Asset1":asset returni, "Asset2":asset return2})
>>> return_df

Printing out the return_df variable generates the following, where the two lists now
appear as the two columns in the DataFrame:

Asset1 Asset2

0 0.05 0.5
1 0.30 -0.2
2 -0.10 0.3
3 0.35 0.5
4 0.20 -0.3

To facilitate visual analysis, let us plot the two return series in a bar chart using the
.plot.bar() method:

>>> return_df.plot.bar()

Running this command generates Figure 4-2. The figure suggests that despite having
the same mean return, these two assets clearly have different risk profiles. Specifically,
asset 2 (orange bars) is more volatile than asset 1 (blue bars).

111

CHAPTER 4 UNDERSTANDING RISK AND RETURN

05 . Assetl
04 m— Asset2
03

02

01 I

00 I .

T T T T
(=] - ™~ Ll -

Figure 4-2. Visualizing the returns as bar charts

Again, this notion of higher volatility will be more concrete when we introduce its
precise definition later. For now, we can simply call the std() function to calculate the
standard deviation (another name for volatility) of the two columns:

>>> return df.std()
Asset1 0.185068
Asset?2 0.384708
dtype: float64

Note that the std() is applied column-wise. Similarly, we can call the mean()
function to calculate the mean value of each column:

>>> return_df.mean()
Asset1 0.16
Asset2 0.16
dtype: float64

The result aligns with our previous calculations using np.mean(). This example
shows that merely looking at the average return of an asset is not enough. In fact, it could
be misleading if we just report the average return of an asset without its volatility.

To see the difference, assume we have an initial investment of $100 in both assets.

To calculate the running asset value at each period in a sequential manner, we first add
one to the percentage return values, forming the 1+R format. Take asset 1, for example.

112

CHAPTER 4 UNDERSTANDING RISK AND RETURN

As shown in the following, after running the following code snippet, we can use 1.05
to calculate the asset value after the first period as $100 x 1.05, the asset value after the
second period as $100 x 1.05 x 1.30, and so on:

>>> return df + 1
Asset1l Asset2

0 1.05 1.5
1 1.30 0.8
2 0.90 1.3
3 1.35 1.5
4 1.20 0.7

Instead of multiplying these percentage returns cumulatively, a convenient function
called cumprod() does the work for us. Therefore, we can obtain the period-wise
asset value by applying this function on the previous 1+R formatted DataFrame and
multiplying by $100, as shown in the following code snippet:

init_investment = 100

cum value = (return df + 1).cumprod()*100
>>> cum_value

Asset1 Asset2

105.0000 150.0

136.5000 120.0

122.8500 156.0

165.8475 234.0

199.0170 163.8

H w N B O

We can similarly plot the evolution of asset values as a line chart:
>>> cum_value.plot.line()

Running this command generates Figure 4-3. Although asset 2 looks more profitable
in most of the periods, it actually ends with a lower return in the last period. Thus, a key
takeaway from this chart is that two assets with equal average returns may end up with a
totally different terminal return.

113

CHAPTER 4 UNDERSTANDING RISK AND RETURN

240

— Assetl
220 Asset2

200

180

160

wo{

120 /\

100 L, ; : : : : . ; ;
00 05 10 15 20 25 30 35 40

Figure 4-3. Visualizing the evolution of asset values

The 1+R Format

Recall that to calculate the return R;_, ; from the period ¢ — 1 to ¢, we need asset prices S;_,
and S, in both periods. With simple manipulation, we can express the return as follows:

S

t

I+R_ , =
-1
This is the so-called 1+R format, where we use 1 + R,_, , to denote the percentage of
current-period asset price S, over previous-period asset price S,_;. We can then easily
calculate the return R,_, , after obtaining the 1+Rreturn 1 + R, _,

S
Rt—l,t =S_t_1

t-1

One reason why we use this format is the convenience in the calculation. Since
the prices are arranged along a column from start to end, we can simply shift the price
column upward by one row to obtain the next-period price and then calculate the ratio

t

(i.e., 1 + R,_,) in a separate column. We could then subtract one to obtain R,_, , for
1—-1
each period.

Figure 4-4 illustrates the benefits of using the 1+R formatted return. The extra step
involved is to create a shifted column by moving the price column upward by one
unit. Calculating the 1+R formatted return is straightforward and fast, as this is a direct
division between two columns that are performed simultaneously across all the rows.
This avoids a for loop. We will then minus one to recover the same return.

114

CHAPTER 4 UNDERSTANDING RISK AND RETURN

The return is defined as the The calculation process is tedious as
percentage change in asset price . it involves differencing and division
Sp = S¢-1
VR i ——

Se—1 ' Easy to calculate by shifting the price

j . column and taking the division
| The 1+R formatted return |

1
St
g N R SRR
i 2) S s 0 s s 5

0

1 s R S,
! 1 51 Sl > -
2 S, . 5y S, Sz

R St 1 2 52 53 sl

t-1t =% 3 s

4 Siq . 3 S3 NA 2 Sz 53 53

5
Recover the same return 3 §3 NA NA

Figure 4-4. Illustrating the calculation process of return using the 1+R format that
gives a more convenient way to calculate the return

Also, note that the last row in the shifted column is NA, which is due to the fact that
there is no more future price available at the last time point. This also makes the 1+R
return column NA. We will demonstrate the calculation process in code later. For now, it
is good to digest and accept the 1+R formatted return as an equivalent way of describing

asset returns.

The Terminal Return

Terminal return refers to the return at the last time period as compared to the initial
return, that is, R, ;. Suppose we have price data from period =0 to ¢ = T. To calculate the
terminal return R, ;at period 7, we can take the initial price S, and terminal price Sy, take
the ratio, and subtract one, giving

S
Ryr= -1
SO
This approach essentially ignores the intermediate returns and only considers the
initial and terminal asset prices. By focusing solely on the initial and terminal asset
prices, this metric offers a simplified view of the investment’s growth or decline over
time, disregarding intermediate fluctuations. This can be particularly useful when

115

CHAPTER 4 UNDERSTANDING RISK AND RETURN

assessing the long-term performance of an investment or comparing the growth of
different assets over an extended period. However, note that the terminal return does
not provide insights into the volatility or risk associated with the investment, as it only
considers the initial and terminal asset prices.

There is another way to calculate this value. Instead of focusing only on the
initial and terminal prices, we view the whole price evolution process as sequential,
changing from one price point to another. Therefore, the terminal return at period T
(or an arbitrary period ¢) is the result of multiplying all previous 1+R formatted returns,
followed by a subtraction of one. Mathematically, we have

Ry; =(1+Ry,)(1+R,)...(1+ R, ;) -1

Plugging in the definition of 1+R formatted return gives the following:
_S5iS Sr
o SO S] “.ST—I

which is nothing more than the initial equation we presented, after canceling like
terms. By doing so, we acknowledge the compound effect of each period’s return on the
overall investment performance. This approach is more comprehensive, as it takes into
account all price changes during the investment period.

Figure 4-5 illustrates the calculation process of the terminal return.

e St _ i [Calculating the terminal return using
W% | theinitial and terminal asset price
Ror = (1 + R0,1)(1 " Ri,z.) (1 + RT—1,T) -1 .]l Switching to the 1+R approach
R ﬁi St -1 . Recover the previous equation after plugging ‘
A 8 TSy ~ in the definition of 1+R formatted return

Figure 4-5. Calculating the terminal return via different approaches

116

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Stock Return with Dividends

Note that dividends also need to be considered when calculating the asset return.
This means that we own the stock at its current price and also enjoy the dividends it
brings. The previous definition of return is called the price return, which only considers
the price movements of the stock. Adding dividends together with the current stock
price is referred to as the total return, which is more realistic. When analyzing stock
performance, the total return is almost always used. The difference between the total
return and the price return gives the dividends.
The total return of a stock is calculated as follows:
_ S, +D,_, 1= S,+D,_, S,
s S

t-1 t-1

In this equation, the total return is denoted by R, _, , which is the return from time
t—1totimet. S;and S, _, represent the stock prices at time f and time ¢ — 1, respectively.
D,_, ;represents the dividend paid out during the period from ¢ — 1 to t.

The total return provides a more comprehensive assessment of an investment’s
performance by incorporating both capital appreciation (i.e., the increase in the stock’s
price) and dividend income. It is particularly relevant for income-oriented investors,
who are focused on maximizing their returns through a combination of capital gains and
dividends.

To calculate the total return of a stock, the formula takes into account the stock price
at the beginning of the period, the stock price at the end of the period, and any dividends
paid out during the period. By dividing the sum of the stock price at the end of the period
and the dividends by the stock price at the beginning of the period, and then subtracting
one, we obtain the total return as a percentage.

Multiperiod Return

The terminal return can also be considered as the multiperiod return, or the return
over a combined period of time. Since the evolution process is sequential, we need to
compound the returns in each period, sequentially. When we have the 1+R formatted
returns, it is easy to calculate the multiperiod return by multiplying/compounding the
intermediate 1+R returns followed by a subtraction of one.

117

CHAPTER 4 UNDERSTANDING RISK AND RETURN

The multiperiod return is a measure of an investment’s performance over a
series of consecutive periods. Recall that the terminal return can be calculated via
Ry, 7= +Ry1)(1 +Ry5)...(1+Ry_1 1) — 1. When we calculate the two-period return R, . ,,

the formula becomes

Rt,t+2 = (1 + Rt,t+1)(1 + Rt+1,t+2) -1

This method allows us to calculate the overall return over the two periods
while considering the compounding effect of each period’s return on the next. The
compounded return is thus easy to calculate using the 1+R formatted returns for both
periods. Figure 4-6 illustrates the process of compounding the two-period return.

t t+1 t+ 2
) /TN -
(St) { St+1) " St+2)
i Mo ol i
1Reev1 [1Rees1 [
The cumulative two-] (Adjusting by subtracting one
period return g 4R tt42 x to get percentage return

\ Retsz = (1 4+ Repe1)(1 4 Reygpez) — 1 /

4
|

[Compounding single-period returns ‘

Figure 4-6. Calculating the two-period return by compounding the two single-
period returns in 1+R format, followed by an adjustment of subtraction by one

Similarly, for an n-period return, the formula can be generalized as

Rt,t+n = (1 + Rt,t+1)(1 + Rt+l,t+2) : (1 + R1+n—1,t+n) -1

118

CHAPTER 4 UNDERSTANDING RISK AND RETURN

By multiplying the 1+R formatted returns for all n periods and then subtracting one,
we can determine the compounded return over the entire n-period investment horizon.

Let us look at a simple example. Suppose we invest in an asset for two periods, where
the first-period return is 10%, and the second-period return is -2%. To calculate the
compounded return, our first step is to convert both single-period returns to the 1+R
format, giving 1.1 and 0.98, respectively. We would then multiply these two numbers and
subtract by one:

(1+0.1)(1-0.02) -1~ 0.078 =7.8%

Note that we should not calculate the two-period terminal return as (10% - 2%) = 8%,
which ignores the compounding effect. Working through the calculations sequentially
by multiplying the 1+R returns in each period ensures we obtain the correct result. These
multiplications give the terminal return in the 1+R format, and we subtract by one to get
the return itself.

Annualizing Returns

Once we know how to calculate the terminal return of any asset, the next question is
comparing assets with different periods of time. For example, some returns are daily,
while other returns are monthly, quarterly, or yearly. The answer is annualization, where
we annualize the returns to the same time scale of a year for a fair comparison.

Annualizing returns is a crucial step in comparing the performance of assets with
different investment horizons. By converting returns to an annualized basis, we can
more easily evaluate and compare the performance of various assets on a standardized
time scale. This process helps to level the playing field and facilitate informed
decision-making.

The overall process for annualizing returns is as follows:

o Calculate the 1+R formatted return for the given period.

o Raise the 1+R formatted return to the power of the number of periods

peryear.

o Subtract one to convert the result from the 1+R format back to the
return itself.

119

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Let us look at an example. Suppose we have an asset that generates a monthly return
of 1%. To calculate the annualized return, we need to enlarge the time horizon to a
year. However, simply multiplying 12 by 1% is incorrect. To proceed with the sequential
compounding process, we would construct the 1+R formatted return (1 + 0.01) for each
month, multiply across all 12 months to reach (1 + 0.01)*?, and finally subtract by one
to give (1 + 0.01)"? — 1 ~ 12.68%, which is higher than 12%. Calculating the annualized
return thus involves deriving the 1+R formatted return, multiplying these returns by the
number of periods per year, and subtracting by one to convert from 1+R to R.

This calculation shows that the annualized return is 12.68%, which is higher
than simply multiplying the 1% monthly return by 12. This difference is due to the
compounding effect, which is an essential factor to consider when annualizing returns.

Calculating Single-Period Returns from Price Data

We often start with the price data of an asset, and there is a process to calculate the
returns. This section will demonstrate how to achieve this.

The following command creates a list of three price points, which will be used to
calculate different returns similar to the previous two-period return example:

prices = [0.1, 0.2, -0.05]

The first-period return can be calculated based on the first two price points. We
would first obtain the 1+R formatted return and then subtract by one to switch to the
normal return:

>>> prices[1]/prices[0] - 1
1.0

Similarly, we can calculate the second-period normal return as follows:

>>> prices[2]/prices[1] - 1
-1.25

When the list gets large, it would be inconvenient to calculate these single-period
returns by hand. A more convenient approach is to borrow the idea of shifting the
prices. Shifting can be done via proper indexing in a list. For example, the following code
snippet subsets the last two and first two prices, respectively:

120

CHAPTER 4 UNDERSTANDING RISK AND RETURN

>>> print(prices[1:])
[0.2, -0.05]

>>> print(prices[:-1])
[0.1, 0.2]

Now we can do division for the corresponding elements in one shot. However, we
need to convert both lists to NumPy arrays in order for the element-wise multiplication
to work:

>>> print(np.array(prices[1:])/np.array(prices[:-1])-1)
[1. -1.25]

Another approach is to rely on the Pandas ecosystem, which implements a lot of
NumPy calculations under the hood. Let us convert the list to a Pandas DataFrame by
converting a dictionary, the same technique used earlier:

prices df = pd.DataFrame({"price":prices})
>>> prices df

price

0 0.10
1 0.20
2 -0.05

A common method to subset a Pandas DataFrame is via the iloc() method, which
returns the elements based on the positional indexes at both row and column levels. The
following code snippet selects the last two and first two elements, respectively:

>>> prices df.iloc[1:]

price

1 0.20

2 -0.05

>>> prices_df.iloc[:-1]
price

0 0.1

1 0.2

121

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Pay attention to the indexes in the first column here. These are the default row-
level indexes assigned upon creating the Pandas DataFrame, and these indexes remain
unchanged even after the subsetting operation. Having misaligned indexes could easily
lead to problems when trying to combine two DataFrames. In this case, we would end up
with an unwanted result when we divide these two DataFrames:

>>> prices df.iloc[1:]/prices df.iloc[:-1]

price

0 NaN
1 1.0
2 NaN

The reason behind this seemingly irregular behavior is that both DataFrames are
trying to locate the corresponding element with the same index. When the counterparty
cannot be found, a NaN value shows up.

To correct this, we can extract the value attribute only from these DataFrames. We
only need to do this for one DataFrame as the other will be converted to the format of the
value automatically. The following code snippet shows the way to go, where the result is
the same as before:

>>> prices df.iloc[1:].values/prices df.iloc[:-1] - 1

price

0 1.00

1 -1.25

>>> prices df.iloc[1:]/prices df.iloc[:-1].values - 1
price

1 1.00

2 -1.25

Let us stay with the shifting operation a bit longer. It turns out that there is a function
with the same name. For example, to shift the prices downward by one unit, we can pass
one to the shift() function of the Pandas DataFrame object as follows:

>>> prices_df.shift(1)
price
NaN
0.1
0.2

122

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Notice that the first element is filled with NaN since there is no value before the first
price. We can then divide the original DataFrame by the shifted DataFrame to obtain
the sequence of single-period 1+R formatted returns and subtract by one to get the
normal return:

>>> prices df/prices df.shift(1) - 1

price
0 NaN
1 1.00
2 -1.25

Finally, we have one more utility function that helps us perform these calculations
in one shot. The function is pct_change(), which calculates the percentage change
between two consecutive values in the DataFrame:

returns_df = prices_df.pct change()
>>> returns_df

price
0 NaN
1 1.00
2 -1.25

Again, the first entry is NaN as there is no prior price point.
Next, we move on to calculating the cumulative two-period terminal return.

Calculating Two-Period Terminal Return

The terminal return comes from compounding the previous single-period returns. In
the case of a single-period horizon, the terminal return is the same as the single-period
return. In the following example, we are calculating the two-period terminal return
using a simple DataFrame (returns_df) containing single-period returns. The process
involves the following steps:

o Convert the single-period returns to the 1+R format by adding one.
o Calculate the product of the 1+R formatted returns.

e Subtract one to convert the result back to the terminal return.

123

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Specifically, to calculate the two-period terminal return, we first obtain the 1+R
formatted single-period returns:

>>> returns df + 1

price
0 NaN
1 2.00
2 -0.25

We then call the prod() function from NumPy to multiply all elements in an array,
ignoring the NaN value. This gets us the 1+R formatted terminal return, from which we
subtract one to convert to the normal terminal return:

>>> np.prod(returns df + 1) - 1
price -1.5
dtype: float64

There is also a corresponding Pandas way, which gives the same result:

>>> (returns_df+1).prod() - 1
price -1.5
dtype: float64

Calculating Annualized Returns

We consider three scenarios where the return frequencies are different, including a daily
return of 0.0001, a monthly return of 0.01, and a quarterly return of 0.05. The calculation
process is the same as calculating the multiperiod terminal return at a yearly mark:

e Convert the normal return to the 1+R format for each period.

e Raise the 1+R formatted return to the power of the number of periods
in ayear.

e Subtract one to convert the result back to the normal return.

For the daily return, we assume a total of 252 trading days in a year, which is a
typical assumption when working with daily prices. We follow the same recipe here:
convert normal return to 1+R return for every single period, compound/multiply these
single periods until reaching a year, and minus one to convert back to the normal
terminal return:

124

CHAPTER 4 UNDERSTANDING RISK AND RETURN

r = 0.0001
>>> (141)**252-10
0.025518911987694626

For the monthly return, since there are 12 months in a year, we would compound it
12 times:

r = 0.01
>>> (1+r)**12-1
0.12682503013196977

And lastly, there are four quarters in a year, so we compound it four times:

r = 0.05
>>> (1+41)**4-1
0.21550625000000023

Now we switch to analyzing risk in the following section.

Analyzing Risk

The risk of an asset is related to volatility, which is of equal or higher importance than
the reward. Volatility is a crucial metric in assessing the risk of an investment, as it
represents the level of uncertainty or fluctuations in the asset’s returns. A higher volatility
implies a higher risk, as the asset’s price can experience more significant ups and downs.
To quantify the risk associated with an investment, we must understand the concept of
volatility and how to calculate it.

Recall the returns of two assets in Figure 4-3. Despite having the same average
reward, asset 2 is more volatile than asset 1. Asset 2 deviates from the mean more often
and more significantly than asset 1. Volatility thus measures the degree of deviation from
the mean. We will formalize the notion of volatility in this section.

Before looking at volatility, let us first introduce the concept of variance and standard
deviation.

125

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Introducing Variance and Standard Deviation

Variance and standard deviation are two widely used statistical measures that describe
the spread of the data around its mean value. Suppose we have a total of N returns {R,. }Zl
We know the mean return R, is calculated by averaging all returns:

— Zi]ilRi

N

RP

Here, the mean return R, describes the central tendency of the returns for the asset
or portfolio. That is, on average, the return is Rp. It is also called the arithmetic mean of
the returns.

Now comes the measure of the deviation from the mean. For any return R, its
distance with R is R; — Rp. However, this distance may be positive or negative. Since we
have a total of N returns and, therefore, N distances, aggregating these N distances by
summing them up does not seem to be a good idea, as positive and negative distances
will cancel out each other. Instead of directly summing up these distances, the variance
measure says that we can square the distances first and then take the average of these
squared distances. Mathematically, the variance of the returns is expressed as follows:

2 _ Zi](Ri ~-R,)2

(o I

Here, R; — Ry also means to de-mean the original return R;, that is, subtract the
mean return R, from the original return R;. This gives deviation from the mean. Also, by
squaring these deviations, the problem of canceling out positive and negative terms no
longer exists; all de-meaned returns end up being positive or zero. Finally, we take the
average of the squared deviations as the variance of the return series. A visual inspection
of Figure 4-3 also suggests that asset 2 has a higher variance than asset 1.

Although variance summarizes the average degree of deviation from the mean
return, its unit is the squared distance from the average return, making it difficult to
interpret the unit. In practice, we would often take the square root of the variance and
bring it back to the same scale as the return. The result is called standard deviation,
where the deviation is now standardized and comparable.

Zil(Ri B RP)2

N

o, =

126

CHAPTER 4 UNDERSTANDING RISK AND RETURN

This is also our measure of volatility. It measures how large the prices swing around
the mean price and serves as a direct measure of the dispersion of returns. The higher
the volatility, the higher the deviations from the mean return. Figure 4-7 summarizes the
definitions of common statistical measures such as the mean, variance (both population
and sample), and standard deviation, also called volatility in the financial context.

‘ Mean return - N R
_(arithmetic mean) | Rp = N

~

‘/ Variance ., XL (Ri—Rp)?
. (population) Op = N
‘(Variance \ 52 = >N (R; —Rp)?
L (sample) P N-1

s =

‘ Standard deviation |
(volatility)) op =

Z?LJ_(RE - RPDZ
N

Figure 4-7. Summarizing the common statistical measures, including the mean,
variance (population and sample), and standard deviation (also called volatility)

In summary, variance and standard deviation are essential statistical measures for
understanding the risk associated with an investment. They describe the dispersion or
spread of returns around their mean value, which helps estimate the potential volatility
of an asset or portfolio. These statistical measures also play an important role in
assessing the risk tolerance in a portfolio allocation.

Annualizing Volatility

Similar to return, the volatility also needs to be annualized to warrant a fair comparison.
Without annualizing the volatility, it is difficult to compare the volatility of monthly data
with that of daily data.

The formula for annualizing the volatility relies on the fact that the volatility
increases with the square root of the time period T. The annualized return ¢, ; can be
calculated as

Opr = \/?O_P

127

CHAPTER 4 UNDERSTANDING RISK AND RETURN

where op is our single-period volatility, which can be daily, monthly, or quarterly.
This expression relies on the assumption that the returns are normally distributed and
independent of each other. We are only going to build intuition on this formula instead
of delving into the technical details.

The time period T'is the full time period. Therefore, daily returns give T = 252,
monthly returns give T =12, and quarterly returns give T = 4. We would simply multiply
the square root of this time period with the original single-period volatility to obtain the
annualized volatility.

To recap, we can follow these steps to calculate the annualized volatility:

e Calculate the single-period volatility (s,) for the given data (daily,
monthly, or quarterly returns).

e Determine the number of periods per year (T). For daily returns,
T = 252 (trading days in a year); for monthly returns, T = 12; and for
quarterly returns, T = 4.

e Multiply the single-period volatility (cp) by the square root of the
number of periods per year (T) to obtain the annualized volatility;
thatis, o, = JTo .

Keep in mind that the assumption of normally distributed and independent returns
is critical for this method to hold true. Annualizing volatility using this method allows us
to compare the volatility of assets with different return frequencies on a common scale,
making it easier to evaluate and manage the risks associated with different investments.

When the single-period volatility o, is fixed, our annualized return o, will grow
as T'increases. Such growth in o, ris a nonlinear function of T'due to the square root
operation. As the time period T increases, the annualized volatility will also increase, but
at a decreasing rate because of the square root function. This means that when the daily
return and monthly return have the same single-period volatility, the daily return will
have a higher annualized volatility. This makes intuitive sense as it captures short-term
fluctuations that are smoothed out when using longer time frames like monthly data,
and we expect to see more variations in the daily data compared to the monthly data.

We can also view the formula from another perspective. Squaring both sides gives us
the annualized variance on both sides, as shown in the following:

2 _ 2
Opr =To,

128

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Now the annualized variance o, , grows linearly with the time T. Figure 4-8
illustrates the subtlety here.

Annualizing volatility { Annualizing variance J
opr = VTop 013,7' = Tafg
Op,r Op,r
/ -
T T
Nonlinear relationship Linear relationship

Figure 4-8. Comparing the differences when annualizing volatility and variance.
When given a fixed single-period volatility or variance, the annualized volatility
grows nonlinearly with time, while the annualized variance grows linearly

with time

Let us look at a simple example. Suppose the standard deviation of a stock’s daily
return series is 0.1%. The annualized volatility can be calculated as

0.001%+/252 ~1.59%

Combining Risk and Return via the Sharpe Ratio

Now we have two measures for a particular asset: return and risk; both can be
annualized. One asset may display a low return and a low risk, while another asset may
deliver a higher return but comes with a higher risk as well. We would like to combine
these two measures and create a single risk-adjusted return.

R
One way is to divide the average return R, by the volatility o5, giving —=. However, the

P
average return R, gives no information on the overall market conditions. We are unsure if

a higher ratio of R is due to the portfolio itself or the booming market. It would be good
O-P

to account for the overall market benchmark in the numerator. This is where the Sharpe
ratio comes in.

129

CHAPTER 4 UNDERSTANDING RISK AND RETURN

The Sharpe ratio is a measure that is calculated by dividing the portfolio’s excess
return by its volatility to assess risk-adjusted performance. Here, excess return means the
return that is above an industry benchmark, typically using the risk-free rate of return
such as the Treasury bill or bond. With this standardized measure, we can now compare
different assets or portfolios while taking into account the overall market conditions. We
will then choose the assets or portfolio with a higher Sharpe ratio.

Mathematically, the Sharpe ratio is defined as follows:

R,—R,

Sy

Sharpe ratio =

where R, is the average return of the portfolio, R;is the risk-free rate, and o, is the
volatility of the portfolio. A higher Sharpe ratio indicates that the investment generates
higher returns for the same level of risk compared to other investments or the overall
market. When comparing different investments, an investment with a higher Sharpe
ratio is considered to be more attractive because it offers a better risk-adjusted return. By
incorporating the risk-free rate, the Sharpe ratio provides a more accurate assessment of
an investment’s performance relative to the overall market conditions.

Let us look at one example. Suppose we have two portfolios whose returns and
volatilities are (5%, 20%) and (10%, 50%). Clearly, portfolio 2 is more profitable and also

more volatile than portfolio 1. Such volatility will discount the attractiveness of portfolio 2.
To compare these two portfolios using a single metric, we calculate Ry as follows:

GP
09 252102
0.2 0.5

Thus, portfolio 1 is more attractive using the risk-adjusted measure. Now suppose
the risk-free interest rate in the market is 3%. Now we focus on the excess return of both
portfolios and compare them using the Sharpe ratio:

0.05-0.03 < 0.1-0.03
0.2

0.1 =0.14

Now portfolio 2 has become more attractive. This is because portfolio 2 did provide
a better return than portfolio 1 after considering the market benchmark. Listing 4-2
demonstrates the comparison in this example.

130

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Listing 4-2. Calculating the Sharpe ratio

pl_ret = 0.05
pl vol = 0.2
p2_ret = 0.1
p2_vol = 0.5

risk free rate = 0.03

>>> p1_ret / p1_vol

0.25

>>> p2_ret / p2_vol

0.2

>>> (p1_ret - risk free rate) / p1_vol
0.1

>>> (p2_ret - risk free rate) / p2_vol
0.14

Figure 4-9 summarizes the different measures of the risk-adjusted return.

\ Calculating the risk-adjust return

Return over risk Sharpe ratio Considers the risk-free rate that
represents the market benchmark
RP RP " Rf . The numerator is also

called the excess return

Figure 4-9. Different risk-adjusted returns. Subtracting the risk-free rate from the

(annualized) return gives the excess return, which considers the market benchmark
performance

Let us work with some real data to calculate the aforementioned metrics in the next
section.

131

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Working with Stock Price Data

In this section, we will download the year-to-date stock price data for Apple (AAPL)
and Google (GOOG). In Listing 4-3, we specify the starting date to be “2023-01-01,” with
the default end date automatically determined by the system’s current date, which is
January 20, 2023, at the time of writing.

Listing 4-3. Downloading stock data using yfinance

import yfinance as yf
prices df = yf.download(["AAPL","GO0OG"], start="2023-01-01")
>>> prices_df.head()

Running the code generates Figure 4-10. Note the multilevel columns here. There are
two levels of columns, with the first level indicating the price type and the second one
denoting the ticker symbol. Also, the index of the DataFrame follows a datetime format.

Adj Close
AAPL GO0G
Date
2023-01-03 00:00:00-05:00 125.070000 B895.699887 125.070000 9.699997 91.550003 .168998 B85.019997 130.279989 B89.830002 112117500 20738500

2023-01-04 00:00:00-05:00 6.364 .7 9 . 70999¢ 91.239958 5.0 2 00003 126.889999 91.010002 89113600 27046500

2023-01-05 00:00:00-05:00 5.019997 . 7 B6.769997 97 B88.209999 ’ 599 : 3136100

2023-01-06 00:00:00-05:00 120.618995

2023-01-09 00:00:00-05:00 130.149994 B88.800003 88.800003 133.410004 S0.830002 9.889999 BB.SB0002 130.470001 B89.195000 707

Figure 4-10. Printing the first few rows of daily stock prices for Apple and Google

Next, we would like to focus on the daily adjusted closing price of the two stocks,
indexed by date instead of datetime. Listing 4-4 completes these two tasks.

Listing 4-4. Indexing by date and selecting the daily adjusted closing price

convert datetime index to date format
prices df.index = prices_df.index.date
keep the adjust close

prices df = prices df['Adj Close']

132

CHAPTER 4 UNDERSTANDING RISK AND RETURN

>>> prices_df.head()

AAPL G00G
2023-01-03 125.070000 89.699997
2023-01-04 126.360001 88.709999
2023-01-05 125.019997 86.769997
2023-01-06 129.619995 88.160004
2023-01-09 130.149994 88.800003

Here, we accessed the date attribute of the index and assigned it to the index
attribute of the DataFrame. We would then calculate the 1+R formatted returns using the
pct_change() utility function:

returns_df = prices_df.pct_change()
>>> returns _df.head()

AAPL GO0G
2023-01-03 NaN NaN
2023-01-04 0.010314 -0.011037
2023-01-05 -0.010605 -0.021869
2023-01-06 0.036794 0.016019
2023-01-09 0.004089 0.007260

Again, the first row is empty since there is no data point before it. We can remove this
row using the dropna() function:

returns_df = returns_df.dropna()
>>> returns_df.head()

AAPL GO0G
2023-01-04 0.010314 -0.011037
2023-01-05 -0.010605 -0.021869
2023-01-06 0.036794 0.016019
2023-01-09 0.004089 0.007260
2023-01-10 0.004456 0.004955

All rows with any NA value in a cell are removed.
Next, we calculate the mean, variance, and standard deviation of the return series for
both stocks.

133

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Calculating the Mean, Variance, and Standard Deviation

The column-wise arithmetic mean returns can be obtained by calling the mean()
method of the returns DataFrame:

>>> returns_df.mean()
AAPL 0.007228

GO0G 0.004295
dtype: float64

It seems Apple is having a better start than Google at the beginning of the year.
To calculate the standard deviation or volatility of the returns, we can use the std()
function. However, to see the column-wise operation in action, we explicitly specify
axis=0 in the input argument, which says that the standard deviation should be taken
along the columns:

>>> returns df.std(axis=0)
AAPL 0.012995

GO0G 0.016086

dtype: float64

Google’s stock prices were more volatile than Apple’s in the first few days. Now let us
try setting axis=1:

>>> returns df.std(axis=1)

2023-01-04 0.015097
2023-01-05 0.007965
2023-01-06 0.014690
2023-01-09 0.002242
2023-01-10 0.000352
2023-01-11 0.009001
2023-01-12 0.002259
2023-01-13 0.000308
2023-01-17 0.011068
2023-01-18 0.000882
2023-01-19 0.016097

dtype: float64

134

CHAPTER 4 UNDERSTANDING RISK AND RETURN

The result shows the daily standard deviation calculated for the two stocks
combined.

Now we show how to calculate the volatility manually by going through the exact
steps described earlier. Our first step is to de-mean the daily returns and obtain the
deviations from the (arithmetic) mean:

deviations df = returns df - returns_df.mean()
>>> deviations df.head()
AAPL G00G

2023-01-04 0.003086 -0.015332

2023-01-05 -0.017833 -0.026164

2023-01-06 0.029566 0.011724

2023-01-09 -0.003139 0.002964

2023-01-10 -0.002772 0.000660

The next step is to square these deviations so that they would not cancel each other
when summing together. Squaring is the same as raising the element to the power of
two, using the double asterisk notation:

squared_deviations_df = deviations_df**2
>>> squared_deviations_df.head()
AAPL GOOG
2023-01-04 0.000010 2.350688e-04
2023-01-05 0.000318 6.845668e-04
2023-01-06 0.000874 1.374582e-04
2023-01-09 0.000010 8.787273e-06
2023-01-10 0.000008 4.352158e-07

In the third step, we average these daily squared deviations using the mean()
function:

variance = squared deviations_df.mean()
>>> variance

AAPL 0.000154

G00G 0.000235

dtype: float64

135

CHAPTER 4 UNDERSTANDING RISK AND RETURN
The last step is to take the square root of the variance to obtain the volatility:

volatility = np.sqrt(variance)
>>> volatility

AAPL 0.012390

GOOG 0.015337

dtype: float64

Notice that the result is different from the one obtained using the std() function!
The cause for the difference is that the std() function calculates the sample standard
deviation, which divides N — 1 in the denominator as opposed to N in our manual
calculations.

To correct this, let us revisit step three and divide the sum of squared deviations by
N — 1 this time. In Listing 4-5, we first get the number of rows N using the first dimension
(row dimension) of the shape() function, then plug in the calculation based on the
formula of variance.

Listing 4-5. Calculating the sample variance

num_rows = squared deviations df.shape[0]

variance2 = squared deviations df.sum() / (num rows-1)
>>> variance2

AAPL 0.000169

GO0G 0.000259

dtype: float64

Taking the square root now gives the same result as using the std() function:

volatility2 = np.sqrt(variance2)
>>> volatility2

AAPL 0.012995

G00G 0.016086

dtype: float64

Now we have the single-period volatility that measures the daily spread of the returns
around its mean, the next section calculates the annualized volatility.

136

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Calculating the Annualized Volatility

Following the formula for annualizing the single-period volatility to annual volatility, we
can calculate the annualized volatility as follows, where the total length of time in a year
is T=252:

annualized vol = returns df.std()*np.sqrt(252)
>>> annualized_vol

AAPL 0.206289

G00G 0.255356

dtype: float64

We can also calculate the square root of 252 by raising it to the power of 0.5, which
returns the same result:

annualized vol = returns df.std()*(252**0.5)
>>> annualized vol

AAPL 0.206289

GOOG 0.255356

dtype: float64

The next section looks at annualizing the returns.

Calculating the Annualized Returns

A note to pay attention to here is that returns follow a sequential compounding process.
This means that once we have the single-period average return, we need to compound
it by the corresponding frequency to reach a year’s length. And, to calculate the single-
period average return, we take the geometric mean of the returns. The geometric mean
is a better choice than the arithmetic mean in this context because it takes into account
the effects of sequential compounding.

Specifically, we first calculate the geometric mean of the returns as follows. Note that
the geometric mean aligns with the sequential compounding nature when analyzing the
cumulative return of an asset:

137

CHAPTER 4 UNDERSTANDING RISK AND RETURN

returns_per day = (returns_df+1).prod()**(1/returns_df.shape[0]) - 1
>>> returns_per day

AAPL 0.007153

GO0G 0.004178

dtype: float64

Let us decompose the sequence of operations here. First, we construct the 1+R
returns in (returns_df+1) for each day, then perform sequential compounding using
the prod() function to obtain the cumulative terminal return in 1+R format. Before
subtracting one, we raise it to the power of 1/N, where N is the number of rows in the
DataFrame. This gives the geometric mean of the returns in 1+R format. We do not use
the arithmetic mean here.

Now comes the annualization part. As shown in Listing 4-6, we assume a fixed daily
return as the geometric mean and roll it forward by a year, corresponding to 252 trading
days. Again, convert between 1+R return and the normal return.

Listing 4-6. Annualizing the daily return

annualized return = (returns per day+1)**252-1
>>> annualized_return

AAPL 5.025830

G00G 1.859802

dtype: float64

It seems Apple is doing quite well compared with Google for the first few days.
There is another way to calculate the annualized return, a faster way:

annualized return = (returns_df+1).prod()**(252/returns_df.shape[0])-1
>>> annualized return

AAPL 5.025830

G00G 1.859802

dtype: float64

The key change here is that we raise the terminal return to the power of 252/N. This
is standardization, bringing the daily scale to the yearly scale.

138

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Calculating the Sharpe Ratio

Finally, let us compute the Sharpe ratio for both stocks. We assume a risk-free interest
rate of 3%, calculate the excess return by subtracting it from the annualized return,
and divide it by the annualized volatility to obtain the Sharpe ratio. This is shown in
Listing 4-7.

Listing 4-7. Calculating the Sharpe ratio

riskfree rate = 0.03

excess_return = annualized return - riskfree rate
sharpe_ratio = excess_return/annualized vol

>>> sharpe_ratio

AAPL 24.217681

GO0G 7.165694

dtype: float64

Thus, the Sharpe ratio as a risk-adjusted return is much higher for Apple than Google
for the first few days.

Summary

In this chapter, we explored the two key characteristics of any financial asset: risk and
return. Return refers to the financial reward an asset brings, while risk represents the
volatility or uncertainty of that return. As investors, our goal is to maximize return while
minimizing risk.

We introduced different ways to represent and calculate the returns, including the
simple return, terminal return, multiperiod return, and the 1+R formatted return. It is
important to understand the connections among these forms of return when translating
one form to the other.

We then highlighted the risk-return trade-off, where low-return assets are typically
associated with low risk and high-return assets with high risk. To better compare the
risk and return for different investment vehicles, we introduced the annualized return
and volatility, as well as a risk-adjusted return metric called the Sharpe ratio. We also
provided examples illustrating the importance of considering both risk and return when
comparing investment products.

139

CHAPTER 4 UNDERSTANDING RISK AND RETURN

Exercises

140

How many inputs do we need to calculate a single-period return?
What is the return if the asset price changes from $5 to $6?

Is the total return of a popular stock typically higher or lower than its
price return?

Calculate the three-period return that consists of 10%, -5%, and 6%.

If we buy an asset that rises by 10% on day one and drops by 10% on
day two, is our return positive, negative, or zero?

Calculate the annualized return for an asset with a quarterly (three
months) return of 2%.

Download the YTD stock data for Apple and Tesla and calculate the
daily cumulative returns using the daily closing price. Plot the returns
as line charts.

Both annualized volatility and variance grow linearly with time,
correct?

Suppose the monthly volatility is 5%. Calculate the annualized
volatility.

The annualized volatility is always greater than the monthly volatility.
True or false?

The risk-free rate is the return on an investment that carries a low
risk. True or false?

If the risk-free rate goes up and the volatility of the portfolio remains
unchanged, will the Sharpe ratio increase or decrease?

Obtain monthly return data based on the median daily price
per month of Apple stock in the first half of 2022. Calculate the
annualized return and volatility based on the monthly returns.

CHAPTER 5

Trend-Following Strategy

Trend following is a popular investment strategy used in all types of markets, including
stocks, bonds, commodities, currencies, and even cryptocurrencies. As its name
suggests, this strategy is based on the assumption that prices tend to move in a particular
direction (or “trend”) over time, thus offering opportunities to capitalize on these
movements. At its core, trend following involves analyzing historical price data to
identify potential trends. The strategy then recommends taking positions that align with
these trends with the expectation that they will continue. For example, if the price of

an asset has been steadily rising, a trend follower would typically take a long position,
expecting the upward trend to continue. Conversely, if the price has been consistently
falling, the trend follower might take a short position, betting that the price will continue
to drop.

However, like any trading strategy, trend following is not foolproof. Trends can
reverse suddenly due to unexpected market events or changes in market sentiment,
leading to potential losses. Therefore, trend-following strategies typically include
overlaying risk management techniques, such as setting up stop-loss orders, to limit
potential losses when the trend reverses.

Trend-following strategies use a variety of technical indicators to identify and
confirm trends, such as moving averages, trend lines, and momentum indicators. This
chapter introduces the working mechanism of the trend-following strategies using
moving averages and then shows its implementation in Python.

Since we will be working with log returns mostly, let us start by going through an
example of its calculation process.

141
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_5

https://doi.org/10.1007/978-1-4842-9675-2_5

CHAPTER5 TREND-FOLLOWING STRATEGY

Working with Log Returns

Let us build a further understanding of the logarithmic return (or log return) as we will
use it to calculate the stock returns when assessing the trend-following strategy. We start
with the Excel table in Figure 5-1, where we are given a set of dummy stock prices and
are asked to answer questions from Q1 to Q9. We detail the questions and answers in the
following.

Daily stock prices
Q2 Q3 Q5 Q7

Day Price [returnl|return2|return3 return4
100
108
100
98
106

Nk w NP

Q4 Qe Q38

Figure 5-1. Daily dummy stock prices

Let us go through each of these nine questions.

Q1: Why do we use percentage return?

Answer: Percentage return provides the same scale of comparison. For example,
when we have the price data of another stock (stock B) in the range of 1-10, comparing
it with the stock price data (stock A) given by the Excel table is difficult when using
absolute terms. A $5 increase means more for stock A than stock B. By converting them
to the relative percentage terms, we can put both stocks on the scale ruler and measure
their performance. Thus, using percentage returns, we can accurately compare the
performance of these two stocks despite their difference in price levels.

Percentage returns are also useful for comparing the performance of an investment
to a benchmark or standard, such as a market index (like the S&P 500 or the Dow Jones
Industrial Average). This helps investors to assess how well an investment or a portfolio
is performing relative to the broader market or a sector of the market.

Q2: Calculate single-period percentage return the original way (based on the
definition of return).

142

CHAPTER5 TREND-FOLLOWING STRATEGY

Answer: The single-period percentage return, also known as the simple return or the
holding period return, reflects the percentage change in the value of an investment from
one period to the next. It is calculated as

where R, ,,, is the single-period percentage return from time period £ to ¢ + 1, and
S;and S, are asset prices at the end of period f and ¢ + 1, respectively. The numerator
of the formula, S;,, — S, calculates the change in the price of the asset from time ¢ to
t+ 1. The denominator, S, is the price at the beginning of the period, which serves
as the baseline for measuring the relative change. Dividing the price change by the
starting price gives the relative change in price, expressed as a percentage, which is the
simple return.

Applying the same formula to all cells in column return1 except for day 1 generates
the result in Figure 5-2.

s - fx =(B5-B4)/B4

A B ©
1 Daily stock prices
2 Q2
3 Day Price |returnl
4 1| (100
5 2| (108 8.00%)
6 3| 100| -7.41%
7 4 98| -2.00%
8 5/ 106/ 8.16%

Figure 5-2. Calculating the simple returns based on the definition of
percentage return

Q3: Calculate the same returns using the 1+R way.

Answer: The 1+R approach to calculating returns is slightly different from the
original method but essentially delivers the same result. This approach emphasizes
the growth factor of the asset’s price from one period to the next, making it easier to
understand and interpret. The 1+R approach says that we rewrite the return as

S+
Rt,t+1 = L;_l -1

t

143

CHAPTER5 TREND-FOLLOWING STRATEGY

S
This requires two steps: first, calculate the ratio g,—ﬂ to obtain the so-called 1+R

t
return. This ratio reflects the growth factor of the asset’s price from the beginning of the

period to the end. If this ratio is greater than one, it indicates that the asset’s price has
increased over the period. If it’s less than one, it indicates a decrease in the asset’s price.
If the ratio equals one, it means the asset’s price hasn’t changed.

Next, we would subtract one from the 1+R return to convert it to the simple return.

. A .
This step transforms the growth factor - into the actual percentage return. Subtracting
t
one essentially removes the initial investment from the calculation, leaving only

the gained or lost amount relative to the initial investment, which is the return. See
Figure 5-3 for an illustration, where the daily returns are the same as in the previous

approach.

05 v fx =B5/Ba-1

A B C D
1 Daily stock prices
2 Q2 Q3
3 Day Price |returnl |return2
4 1 (100
5 2| (108) 8.00%| 8.00%
6 3| 100| -7.41%| -7.41%
7 4 98| -2.00%| -2.00%
8 5/ 106/ 8.16% 8.16%

Figure 5-3. Calculating the simple returns based on the 1+R approach

This 1+R method is often used because it is more intuitive. The growth factor —*-

4
easily shows how much the initial investment has grown (or shrunk), and subtracting

one gives the net growth in percentage terms, which is the simple return. This method is
especially useful when dealing with multiple time periods, as growth factors can simply
be multiplied together to calculate the cumulative growth factor over several periods.

Q4: What is the terminal return from day 1 to day 5 without compounding?

Answer: The terminal return is the total return on an investment over a given period
of time. It’s a measure of the total gain or loss experienced by an investment from the
start of the investment period to the end, without considering any compounding effect
over the period.

144

CHAPTER5 TREND-FOLLOWING STRATEGY

To calculate the terminal return without involving the compounding process, we
S-S S i .
——1 == —1], where the second formula first calculates the ratio

1 1
of the asset’s price on day 5 to its price on day 1 (which reflects the overall growth factor)

would resortto R, 5 =

and then subtracts one to convert the growth factor into a terminal return. See Figure 5-4
for an illustration.

A1l - fx =p8fBa1

A B &
1 Daily stock prices
2 Q2
3 Day Price |returnl
4 1| (100!
5 2| 108| 8.00%
6 3 100| -7.41%
7 4 98| -2.00%
8 5| [106] 8.16%
9

10 Q4 Q6 Q8

Figure 5-4. Calculating the terminal return without compounding

Q5: What is the terminal return from day 1 to day 5 with compounding? Is it equal to
the result in Q4?

Answer: Compounding returns is an important concept in finance. It reflects the fact
that not only your initial investment earns a return but also the returns from previous
periods. This leads to exponential growth over time, given a positive return rate.

We will fill in the “return3” column, where each cell is a product between the 1+R
return of the current period and the cumulative 1+R return of the previous period, offset
by one. For the first period (from day 1 to day 2), the “return3” value would be just the
“1 + R” return for this period. See Figure 5-5 for an illustration.

145

CHAPTER5 TREND-FOLLOWING STRATEGY

EE = fr ={14DB)*(1+E7}1

A B E D E

Daily stock prices

Q2 Q3 Qs '
Day Price |[returnl return2 |return3
100
108| 8.00% 8.00%| 8.00%
100 -7.41% -7.41%| 0.00%
98| -2.00%| -2.00%|(-2.00%)
106| 8.16%|(8.16%| 6.00%

1
2
3
4
5
6
7
8

Unih WN-

Figure 5-5. Calculating the terminal return using compounding

As it turns out, the terminal return is 6%, which is the same as previously calculated.

Q6: Sum up the single-period returns in Q3. Is it equal to the result in Q4?

Answer: The result shows that it is different from 6%. In general, adding up single-
period returns can lead to incorrect conclusions about the overall return on investment.
The sum of the single-period returns is not equal to the terminal return (from Q4)
because this approach overlooks the effect of compounding. In other words, by simply
summing up single-period returns, we are effectively treating each period’s return as
if it was independent and earned on the initial investment amount, disregarding the
fact that the investment grows with each period due to the returns earned in the prior
periods. This is why we see a difference between the summed single-period returns and
the terminal return calculated through the correct method that takes into account the
compounding effect.

The principle of compounding acknowledges that returns accumulate over time,
meaning the returns earned in one period are reinvested and can generate further
returns in subsequent periods. So, while the sum of single-period returns might provide
arough estimate of the total return, it is not a correct measure, especially when the time
span is long, or the return rate is high. Instead, the appropriate way to calculate the total
return over multiple periods is to use the concept of compound returns, which considers
both the initial investment and the reinvestment of returns. It is thus important to
follow the sequential compounding process when calculating the terminal return. See
Figure 5-6 for an illustration.

146

B11

A

S =SUM{DS-DE)

B

Daily stock prices

Q2

CHAPTER 5

Q3

Day

Price

returnl

return2

100

108

8.00%|| 8.00%

100

-7.41%||-7.41%

98

-2.00%|| -2.00%

1
2
3
4
5
6
7
8

U Wk

106

8.16%|| 8.16%

9
10 Q4

Q

6 Qs
6.76%

11| 6.00%[6.76%|

Figure 5-6. Summing up all single-period returns

Q7: Calculate the log return for each period.

TREND-FOLLOWING STRATEGY

Answer: The logarithmic return, or continuously compounded return, is another
method of calculating returns that can simplify various calculations in finance. This
method uses the natural logarithm (log) to express the rate of return, which is derived

from the relative changes in price.

To calculate the log return for each period, we can use the formula:

log_return =In Si

t

Here, S;., and S, represent the asset price at the future time ¢ + 1 and the current time
t, respectively, and In denotes the natural logarithm. See Figure 5-7 for an illustration.

F5 - fr =umi1eD8)

A B

Daily stock prices

Q2

Q3

Qs Q7

Day Price

returnl

return2

return3 |returnd

100

108

8.00%

(8.00%) 8.00%| 7.70%

100

-7.41%

-7.41%

0.00%| -7.70%

98

-2.00%

-2.00%

-2.00%| -2.02%

Vi wmMNie

1
2
3
E
5
6
7
8 106

8.16%

8.16%

6.00%| 7.85%

Figure 5-7. Calculating the log returns of each period

147

CHAPTER5 TREND-FOLLOWING STRATEGY

For instance, if we have the price data in a sequence, we can compute the log return
for each period using this formula. Note that the log return is a good approximation
for small returns, and it also has some desirable mathematical properties, such as time
additivity, which means that the log return over multiple periods is simply the sum of the
log returns over each individual period.

Also, note that we need to ensure that the denominator (S, in this case) is not zero
to avoid division by zero error. This can be handled by adding a small constant to the
denominator when implementing the calculation in programs.

Q8: Calculate the terminal return using the log returns. Is it equal to Q4?

Answer: The terminal return using log returns can be calculated by summing all the
single-period log returns, then exponentiating the result to reverse the log operation, and
finally subtracting one to convert back to the simple return format. This is because log
returns are time additive, meaning that the total log return over a given period is simply
the sum of the log returns over the subperiods.

In other words, if you have calculated log returns over several periods (say daily),
you can get the total (terminal) log return over these periods simply by summing up all
these daily log returns. This property simplifies the calculation of terminal returns over
multiple periods, making it very convenient, especially for large datasets.

The result shows that it is equal to the one obtained in Q4. See Figure 5-8 for an
illustration.

c11 - Jx =EXP{SUM(FS.FE}}-1

A B C D E F
Daily stock prices

Q2 Q3 Qs Q7

Day Price [returnl |return2 |return3 |returnd4
100
108| 8.00%| 8.00% 8.00%|| 7.70%
100| -7.41%| -7.41% 0.00%||-7.70%
98| -2.00%| -2.00% -2.00%||-2.02%
106| 8.16%| 8.16%| 6.00%|| 7.85%,

alwin =

i)
2
3
4
5
6
7
8
9

10 Q4 Q6 Q8

11| 6.00% 6.76% 6.00%_!

Figure 5-8. Calculating the terminal return using log returns

148

CHAPTER5 TREND-FOLLOWING STRATEGY

Q9: Discuss the advantages of using log returns.

Answer: As mentioned, the use of logarithmic returns, or “log returns,” has several

advantages, as detailed in the following:

Ease of calculation and analysis: Log returns simplify mathematical
calculations and statistical analyses. This simplification is particularly
noticeable when dealing with compounded returns over multiple
periods. Because logarithms convert multiplication and division
operations into addition and subtraction, the compounded return (or
“total return”) over multiple periods can be calculated as the simple
sum of the log returns over those periods.

Symmetry: Log returns also exhibit a desirable symmetry property.

If a price doubles and then halves, or halves and then doubles, the
total log return over the two periods is zero, reflecting the fact that the
price is unchanged over the two periods. This symmetry property,
which is not possessed by simple returns, often simplifies analyses
and improves the interpretability of results.

Suppose a stock price S, changes to S,, ; and then changes back to S,
the resulting log returns will be symmetric around zero. For example,
when the stock price changes from 100 on day 1 to 108 on day 2

and then back to 100 on day 3, the resulting log returns are 7.7% on
day 2 and -7.7% on day 3. A simple mathematical analysis would
immediately make sense of this:

St
S

t+1

Normality: In addition, financial models often assume that returns
are normally distributed. However, it’s been observed that simple
returns have skewness and excess kurtosis, implying that they
deviate from normality. On the other hand, log returns tend to have
properties closer to normality which makes them a better fit for these
financial models.

149

CHAPTER5 TREND-FOLLOWING STRATEGY

e Continuously compounded returns: Log returns also represent
continuously compounded returns. This property makes log returns
the preferred choice in certain financial applications, especially
those involving options and other derivatives, where continuous
compounding is commonly used.

In summary, using log returns simplifies mathematical computations and statistical
analyses, enables symmetry and normality, and represents continuously compounded
returns. These properties make log returns highly valuable in financial analysis and
modeling.

Let us look at a concrete example to understand the calculations using log returns.

Analyzing Stock Prices Using Log Returns

We first download Google’s stock price data for the first few days of 2023, as shown in
Listing 5-1.

Listing 5-1. Downloading Google’s stock price

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import yfinance as yf
symbol = 'GOOG'
df = yf.download(symbol, start="2023-01-01", end="2023-01-08")
>>> df

Open High Low Close Adj Close Volume
Date
2023-01-03 89.830002 91.550003 89.019997 89.699997 89.699997 20738500
2023-01-04 91.010002 91.239998 87.800003 88.709999 88.709999 27046500
2023-01-05 88.070000 88.209999 86.559998 86.769997 86.769997 23136100
2023-01-06 87.360001 88.470001 85.570000 88.160004 88.160004 26612600

We can use the pct_change() method to calculate the single-period percentage
returns, as shown in Listing 5-2.

150

CHAPTER5 TREND-FOLLOWING STRATEGY

Listing 5-2. Calculating the single-period percentage returns

single-period percentage returns
returns = df.Close.pct _change()

>>> returns

Date

2023-01-03 00:00:00-05:00 NaN
2023-01-04 00:00:00-05:00 -0.011037
2023-01-05 00:00:00-05:00 -0.021869
2023-01-06 00:00:00-05:00 0.016019
Name: Close, dtype: float64

Here, the first-period return is NaN as there is no prior stock price available.

Let us calculate the terminal return using the original approach by taking the first
and last closing prices as the inputs (based on the definition given earlier), as shown in
Listing 5-3.

Listing 5-3. Calculating the terminal return using the original approach by definition

terminal return

terminal return = df.Close[-1]/df.Close[0] - 1
>>> terminal_return

-0.01716826464354737

We can also calculate the same value by compounding the (1+R) returns based on
the .cumprod() function, as shown in Listing 5-4.

Listing 5-4. Calculating the same cumulative terminal return by compounding
1+R formatted returns

cumulative returns
cum_returns = (1+returns).cumprod() - 1
>>> cum_returns
Date
2023-01-03 00:00:00-05:00 NaN
2023-01-04 00:00:00-05:00 -0.011037
2023-01-05 00:00:00-05:00 -0.032664
2023-01-06 00:00:00-05:00 -0.017168
Name: Close, dtype: float64
151

CHAPTER 5 TREND-FOLLOWING STRATEGY
The equality operator on both terminal returns evaluates to True:

check equality on terminal return
>>> cum_returns.values[-1] == terminal return
True

Now we calculate the same using log returns, starting by obtaining the single-period
log returns in Listing 5-5.

Listing 5-5. Calculating the log returns

log returns (1+R format)

log returns = np.log(1+returns)

>>> log returns

Date

2023-01-03 00:00:00-05:00 NaN
2023-01-04 00:00:00-05:00 -0.011098
2023-01-05 00:00:00-05:00 -0.022112
2023-01-06 00:00:00-05:00 0.015892
Name: Close, dtype: float64

We can add all log returns from previous periods together to get the cumulative log
returns, convert back to the original scale via exponentiation, and, lastly, offset by one to
convert from 1+R to the simple return format, as shown in Listing 5-6.

Listing 5-6. Calculating the cumulative returns using log returns

get cumulative returns using log returns
cum_return2 = np.exp(log returns.cumsum()) - 1
>>> cum_return2

Date

2023-01-03 00:00:00-05:00 NaN
2023-01-04 00:00:00-05:00 -0.011037
2023-01-05 00:00:00-05:00 -0.032664
2023-01-06 00:00:00-05:00 -0.017168

Name: Close, dtype: float64

152

CHAPTER5 TREND-FOLLOWING STRATEGY

Again, we verify the value of the last entry and verify that it is the same as the
previous terminal return:

check equality on terminal return
>>> cum_return2.values[-1] == terminal return
True

The next section introduces the trend-following strategy.

Introducing Trend Trading

Trend trading, also known as trend following, is a strategy that attempts to harness the
momentum of an existing trend in a financial market. It operates on the premise that
securities tend to move in a relatively sustained direction over time, either upward
(bullish) or downward (bearish). It is a proactive trading strategy that seeks to capitalize
on the sustained directional momentum of an asset’s price.

The fundamental principle behind trend trading is that a market’s momentum, or the
rate of acceleration of the asset’s price, often continues in one direction for a period of
time. This is where the two key concepts, trend and momentum, come into play. The trend
represents the direction in which an asset’s price is moving, while momentum indicates
the strength or speed of this movement over a certain period. It refers to the capacity for
the asset’s price trend to sustain itself going forward. A strong momentum can continue in
an upward or downward trend, which can be confirmed by a set of technical indicators.

Trend traders leverage technical analysis tools to identify potential buying and
selling opportunities. They carefully analyze price charts and use various technical
indicators, such as moving averages, MACD (Moving Average Convergence Divergence),
and the Relative Strength Index (RSI), among others, to identify and confirm an asset’s
trend direction and momentum. These technical indicators provide signals that help
traders to make educated decisions about when to enter and exit trades.

In an uptrend, a trend trader will enter a long position, meaning they buy the asset with
the expectation that its price will continue to rise. Conversely, in a downtrend, a trend trader
will enter a short position, meaning they sell the asset (or sell short) with the expectation
that its price will continue to fall. The trend-following strategy aims to take advantage of
these significant movements in price and to profit from both rising and falling markets based
on the forward-looking uptrends with new highs or anticipated downtrends with new lows.

Let us start with the technical indicators which are used to generate trading signals.

153

CHAPTER5 TREND-FOLLOWING STRATEGY

Understanding Technical Indicators

Technical indicators are mathematical calculations based on historical price (high,

low, open, close, etc.) or volume and can be used to determine entry and exit points for
trades. They are integral to many trading strategies and systems, providing key insights
into market behavior. They can be considered as additional features derived from

the raw asset data, a practice of feature engineering in machine learning. This makes
technical indicators highly security dependent: what can be a good technical indicator
for a particular security might not hold the case for the other. Selecting the right features
makes all the difference.

Note that these technical indicators appear as additional features for each
observation in the dataset. This means that more columns are added to the price-volume
table we worked with earlier, with each column representing a separate technical
indicator for the specific asset and time.

When looking at the raw price data, overlaying a set of technical indicators would
help clarify the market analysis for traders. For example, technical indicators help
confirm if the market is following a trend or in a range-bound situation, oscillating
within a price range.

Technical indicators are integral to many trading strategies and systems, providing
key insights into market behavior. As you've described, they are tools derived from
mathematical calculations on historical price and volume data, designed to predict
future price trends or patterns.

Some of the most commonly used technical indicators include

e Moving averages (MA): Moving averages smooth out price data by
creating a constantly updated average price. The two most common
types are the simple moving average (SMA) and the exponential
moving average (EMA). They can help identify whether a security is
in an uptrend or downtrend. More on this later.

o Relative Strength Index (RSI): The RSI measures the speed and
change of price movements, typically on a scale of 0 to 100. A high
RSI (generally above 70) may indicate that the asset is overbought
and due for a price correction, while a low RSI (generally below 30)
could suggest that the asset is oversold and might rebound.

154

CHAPTER5 TREND-FOLLOWING STRATEGY

o Moving Average Convergence Divergence (MACD): This indicator is
a trend-following momentum indicator that shows the relationship
between two moving averages of a security’s price. The MACD is
calculated by subtracting the 26-day EMA from the 12-day EMA.

» Bollinger Bands: These bands are plotted two standard deviations
away from a simple moving average. They help identify whether an
asset is overbought or oversold and can signal the end of a trend.

e Volume-based indicators: These include indicators such as the on-
balance volume (OBV), which uses volume flow to predict changes in
stock price.

Each of these indicators provides a unique perspective on potential market
movements. A combination of these indicators is often used to create a robust trading
strategy.

Also, note that these indicators don’t predict future prices with absolute certainty.
Instead, they help traders identify potential trading opportunities based on statistical
probabilities. Each indicator works best under specific market conditions and may not
be universally applicable across different asset classes, markets, and trading horizons.

The following section provides more introduction to moving averages.

Introducing Moving Averages

Moving average, also called rolling average, is the mean or average of the specified data
field (e.g., daily closing price) for a given set of consecutive periods. As new data becomes
available, the mean of the data is computed by dropping the oldest value and adding the
latest one. It is rolling along with the data, hence the name “moving average.” It provides
a way of smoothing out the price data of a financial asset to identify trends more clearly.

When calculating moving averages of stock prices, it works similarly to moving a
fixed-size window along the time horizon, where each window reports a single number
as the average of all price points within the window. And when that window does not
have full price points for the initial periods, an NA value is often reported.

When working with time series data such as daily stock price, the averaging effect
can also be considered as smoothening the time series, reducing short-term fluctuations
and temporary variations in the data.

155

CHAPTER5 TREND-FOLLOWING STRATEGY

There are different types of moving averages, with the simple moving average and
the exponential moving average being the most popular ones. The simple moving
average is straightforward to calculate; we simply take the average of all the price points
in the current fixed-size window, assuming an equal weightage for all the price points in
this window.

The exponential moving average, or exponentially weighted moving average
(EWMA), decreases the weightage for older price points. It's more complex to calculate
than the SMA, as it involves a smoothing factor that needs to be computed. But the basic
idea is the same: it’s an average of the closing prices over a certain period.

The choice between using a simple or exponential moving average depends on the
trader’s preference and the specific trading strategy. In general, EMAs react more quickly
to recent price changes than SMAs, making them more preferred by short-term traders
or those trading volatile markets.

Moving averages can be used to identify support and resistance levels. The support
level is typically a price level or zone that a stock or a market has had difficulty falling
below over a specific period. The resistance level is the opposite of the support level.

It’s a price level or zone that a stock or a market has trouble moving above. Prices often
bounce off these levels, making them useful for identifying potential trade entry and
exit points.

In addition, when two moving averages (e.g., 50-day and 200-day) cross each other,
it may signal a change in trend. A bullish signal is given when the shorter MA crosses
above the longer MA, and a bearish signal is given when the shorter MA crosses below
the longer MA. These crossover points become potential trading signals.

The following section focuses more on the simple moving averages.

Delving into Simple Moving Averages

The simple moving average SMA, at time ¢ is defined as follows:

S)+...+SH+S,

M

t—(M-1

SMA, =

In other words, to calculate SMA,, we would take M historical price points, including
the current period, and then take the average of these M price points. Essentially, it
involves adding up the prices of the security for the last M periods (days, hours, etc.) and
then dividing by M. This provides a single output point, the SMA at time t. As new price

156

CHAPTER5 TREND-FOLLOWING STRATEGY

data becomes available, the oldest data point is dropped, and the newest data point is
included in the calculation. This “rolling” or “moving” calculation continues as new
price data is added.

The SMA is often used in trend analysis as it smoothens out short-term fluctuations
and provides a clearer picture of the overall trend. It is the unweighted mean of the
previous M price points. Here, the choice of M (the number of periods) is crucial because
it affects the sensitivity and reliability of the SMA. A smaller M will be more responsive
to price changes but may also yield more false signals. A larger M will provide a slower,
more reliable SMA, but it might be slower in signaling changes in trends.

Let us look at how to calculate SMA. We first download Apple’s stock price data for
2022, as shown in Listing 5-7.

Listing 5-7. Downloading Apple’s stock price data

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import yfinance as yf
symbol = "AAPL'
df = yf.download(symbol, start="2022-01-01", end="2023-01-01")
df.index = pd.to datetime(df.index)
>>> df.head()

Open High Low Close Adj Close Volume
Date
2022-01-03 177.830002 182.880005 177.710007 182.009995 180.434296 104487900
2022-01-04 182.630005 182.940002 179.119995 179.699997 178.144302 99310400
2022-01-05 179.610001 180.169998 174.639999 174.919998 173.405685 94537600
2022-01-06 172.699997 175.300003 171.639999 172.000000 170.510956 96904000
2022-01-07 172.889999 174.139999 171.029999 172.169998 170.679489 86709100

Note that we have an index named Date which now assumes a datetime format to
facilitate plotting.

Listing 5-8 generates a plot on the daily adjusted closing price. We will later overlay
its SMA on the same plot.

157

CHAPTER5 TREND-FOLLOWING STRATEGY

Listing 5-8. Plotting the daily adjusted closing price

plot the adj closing price
plt.figure(figsize=(15, 7))

df['Adj Close'].plot()

set labels and sizes of the title and axis
plt.title('Daily adjusted closing price of Apple', fontsize=16)
plt.xlabel('Time', fontsize=15)
plt.ylabel('Price ($)', fontsize=15)
plt.xticks(fontsize=15)
plt.yticks(fontsize=15)
plt.legend(['Close'], prop={'size': 15})

show the plot

>>> plt.show()

Running the commands generates Figure 5-9, suggesting a download trend overall.

Daily adjusted closing price of Apple

180 "] J\' —— Close
/
170 Lm\ ﬁkﬂﬂ f \
\W \|

| | | ’ N
= ’ “u mi a kjﬂa

o M
140 “L,f"‘l \ ﬂ/ VPILHV H ‘l M\

\ | \i
\ A
130 % %

Price ($)

—
w0
o
E— —
-

—
=
5
-H‘\:—

<

-

iﬁﬁ

o o2
i v -

10
Figure 5-9. Visualizing the daily closing price of Apple in 2022

Now we create an SMA series with a window size of three. We can create the rolling
window using the rolling () method for a Pandas Series, followed by the mean()
method to extract the average value from the window (a collection of price points).
Listing 5-9 creates a new SMA column called SMA-3 and subsets to keep only two
columns: the adjusted closing price and the SMA column.

158

CHAPTER 5 TREND-FOLLOWING STRATEGY
Listing 5-9. Creating simple moving averages

window = 3
SMA1 = "SMA-"+str(window)
df[SMA1] = df['Adj Close'].rolling(window).mean()
colnames = ["Adj Close",SMA1]
df2 = df[colnames]
>>> df2.head()

Adj Close SMA-3
Date
2022-01-03 180.434296 NaN
2022-01-04 178.144302 NaN
2022-01-05 173.405685 177.328094
2022-01-06 170.510956 174.020315
2022-01-07 170.679489 171.532043

Let us pause for a moment and look at how this column is generated. We see that
the first two rows in the SMA column are missing. This makes sense as both of them are
unable to get a full three-period moving window to calculate the average. In other words,
we cannot calculate the average when there is an empty value in the window unless
additional treatment is applied here, such as ignoring the empty value while calculating
the average.

We note that the third entry of the SMA column is 177.844493. Let us verify through
manual calculation. The following command takes the first three entries of the adjusted
closing price column and calculates the average, which reports the same value:

>>> np.mean(df['Adj Close'][:3])
177.84449259440103

which verifies the calculation. Figure 5-10 summarizes the process of calculating
SMA in our running example.

159

CHAPTER5 TREND-FOLLOWING STRATEGY

Calculating the simple moving average

Se—(m— e S S i ;
it A Gl | Created using .rolling{window_size).mean()

M

SMA, =

Adj Close

Date / -
Empty due to incomplete values

2022-01-03 00:00:00-05:00 180.959747 NaN | in the rolling window
2022-01-04 00:00:00-05:00 178.663086 NaN

180.959747+178.663086+173.910645
3

2022-01-05 00:00:00-05:00 173.910645 177.844493 [EESENET S EVVVLE!

2022-01-06 00:00:00-05:00 171.007523 174.527084

2022-01-07 00:00:00-05:00 171.176529 172.031565

Figure 5-10. Illustrating the process of calculating simple moving averages

Note that we can configure the min_periods argument in the rolling() function to
control the behavior at the initial windows with incomplete data. For example, by setting
min_periods=1, the previous code will report the average value based on the available
data in the window. See the following code snippet for a comparison:

df['New SMA'] = df['Adj Close'].rolling(window, min_periods=1).mean()
>>> df[colnames + ['New SMA']].head()

Adj Close SMA-3 New_SMA
Date
2022-01-03 180.434296 NaN 180.434296
2022-01-04 178.144302 NaN 179.289299

2022-01-05 173.405685 177.328094 177.328094
2022-01-06 170.510956 174.020315 174.020315
2022-01-07 170.679489 171.532043 171.532043

Note that the only difference is in the first two entries, where we have an incomplete
set of values in the rolling window.

Next, we plot the three-period SMA alongside the original daily adjusted closing
price series, as shown in Listing 5-10.

160

CHAPTER5 TREND-FOLLOWING STRATEGY
Listing 5-10. Plotting the closing price and its SMA

colors for the line plot

colors = ['blue', 'red']

line plot for original price and SMA
df2.plot(color=colors, linewidth=3, figsize=(12,6))
modify ticks size

plt.xticks(fontsize=13)

plt.yticks(fontsize=13)

plt.legend(labels = colnames, fontsize=13)

title and labels

plt.title('Daily adjusted closing price and its SWA', fontsize=20)
plt.xlabel('Date', fontsize=16)

plt.ylabel('Price', fontsize=16)

Running these commands generates Figure 5-11. Note that the three-period SMA
curve in red looks less volatile than the original price series in blue. Also, the three-
period SMA curve starts from the third entry.

Daily adjusted closing price and its SWA

= Adj Close
— SMA-3

o e o2 ! o? A o>
g 11 ig g L i >
70 70 70 70 70 70 70
Date

Figure 5-11. Visualizing the original price and three-period SMA

161

CHAPTER5 TREND-FOLLOWING STRATEGY

Now let us add another SMA with a longer period. In Listing 5-11, we add a 20-period
SMA as an additional column to df2.

Listing 5-11. Creating 20-period SMA

window = 20

SMA2 = "SMA-"+str(window)

df2["SMA-"+SMA2] = df2['Adj Close'].rolling(window).mean()
colnames = ["Adj Close",SMA1,SMA2]

Next, we overlay the 20-period SMA on the previous graph, as shown in Listing 5-12.

Listing 5-12. Plotting the closing price and two SMAs

colors for the line plot

colors = ['blue', 'red', 'green']

line plot for original price and SMA
df2.plot(color=colors, linewidth=3, figsize=(12,6))
modify ticks size

plt.xticks(fontsize=13)

plt.yticks(fontsize=13)

plt.legend(labels = colnames, fontsize=13)

title and labels

plt.title('Daily adjusted closing price and its SWA', fontsize=20)
plt.xlabel('Date’, fontsize=16)

plt.ylabel('Price', fontsize=16)

Running these commands generates Figure 5-12, which shows that the 20-period
SMA is smoother than the 3-period SMA due to a larger window size.

162

CHAPTER5 TREND-FOLLOWING STRATEGY

Daily adjusted closing price and its SWA

180 4 = Adj Close
— SMA-3

— SMA-20

i1 o Az

Lo L D A

'1“11 '10"‘1 10"'1 ':»."’f51
Date

o
41
10

o
2L
20

o
L
10

Figure 5-12. Visualizing the daily prices together with 3-period and
20-period SMAs

The next section focuses on the exponential moving averages (EMA).

Delving into Exponential Moving Averages

The exponential moving average (EMA), also known as an exponentially weighted
moving average (EWMA), is another type of moving average that places a higher weight
and significance on the most recent data points. This is a key difference compared to the
simple moving average, which gives equal weight to all data points within the period.
The exponential moving average (EMA) is a widely used method to reduce the noise
in the data and identify long-term trends. Each EMA entry is a weighted combination
of historical prices and the current price. The weight of each price point decreases
progressively over time, giving greater weight to recent data points. It is calculated using
the following formula:

Sy, 1=0
aS, +(1-a)EWMA, _,, >0

=12

EWMA, = {

where a is the smoothing factor which ranges between zero and one. The smoothing
factor a determines the weight given to the most recent price relative to the existing
EMA. A higher « emphasizes recent prices more strongly.

163

CHAPTER5 TREND-FOLLOWING STRATEGY

As for the first EWMA value at time ¢ = 0, a default choice is to set EWMA, = S,.
Therefore, EMA assumes that recent data is more relevant than old data. Such an
assumption has its merit since EMA can react faster to changes and is thus more sensitive
to recent movements as compared to the simple moving average. This also means there is
no window size to be specified by the function since all historical data points are in use.

It's important to note that while EMA provides more accurate and timely signals than
SMA, it might also produce more false signals as it’s more responsive to short-term price
fluctuations.

The EMA can be calculated by calling the ewm() method from a Pandas Series object,
followed by extracting the average value via mean(). We can set the alpha argument
in ewn() to directly control the importance of the current observation compared with
historical ones. See Listing 5-13 for an illustration, where we set a = 0.1 to give more
weightage to historical prices.

Listing 5-13. Creating EMA series

alpha = 0.1
df2["EWM_'+str(alpha)] = df2['Adj Close'].ewm(alpha=alpha,
adjust=False).mean()

df2.head()

Adj Close SMA-3 SMA-20 EWM 0.1
Date
2022-01-03 180.434296 NaN NaN 180.434296
2022-01-04 178.144302 NaN NaN 180.205296

2022-01-05 173.405685 177.328094 NaN 179.525335
2022-01-06 170.510956 174.020315 NaN 178.623897
2022-01-07 170.679489 171.532043 NaN 177.829456

We observe that there is no missing value in the EMA series. Indeed, the first entry
will simply be the original price itself due to the design of the EMA weighting scheme.

As usual, let us verify the calculations to ensure our understanding is on the right
track. The following code snippet manually calculates the second EMA value, which is
the same as the one obtained using the ewn() function:

alpha=0.1
>>> alpha*df2['Adj Close'][1] + (1-alpha)*df2['Adj Close'][0]
180.73006591796877

164

CHAPTER5 TREND-FOLLOWING STRATEGY

Let us continue to create another EMA series with o = 0.5. In other words, we assign
an equal weightage to the current observation and historical ones:

alpha = 0.5
df2["EWM_'+str(alpha)]= df2['Adj Close'].ewm(alpha=alpha,
adjust=False).mean()

df2.head()

Adj Close SMA-3 SMA-20 EWM 0.1 EWM 0.5
Date
2022-01-03 180.434296 NaN NaN 180.434296 180.434296
2022-01-04 178.144302 NaN NaN 180.205296 179.289299

2022-01-05 173.405685 177.328094 NaN 179.525335 176.347492
2022-01-06 170.510956 174.020315 NaN 178.623897 173.429224
2022-01-07 170.679489 171.532043 NaN 177.829456 172.054357

Let us put all these moving averages in a single chart. Here, the plot() function
treats all four columns as four separate series to be plotted against the index column, as
shown in Listing 5-14.

Listing 5-14. Plotting all moving averages together

df2.plot(linewidth=3, figsize=(12,6))

plt.title('Daily adjusted closing price with SWA and EWM', fontsize=20)
plt.xlabel('Date’, fontsize=16)

plt.ylabel('Price', fontsize=16)

Running these commands generates Figure 5-13. We note that EWM 0.1 (red
line) is close to SMA-20 (green line), both of which give more weightage to historical
observations. The same is true for the other two moving averages. For EMA, a small
weighting factor a results in a high degree of smoothing, while a larger value leads to a
quicker response to recent changes.

165

CHAPTER5 TREND-FOLLOWING STRATEGY

Daily adjusted closing price with SWA and EWM

180 — Ad] Close
— SMA-3
— SMA-20
— EWM_0.1
— EWM_05

170

130

1@.-“ ﬁ-fn“" _p-a.-“ "&11.9’3 ﬂﬂ.-\\ ,Le-p-“\'

Figure 5-13. Visualizing the daily closing prices with both SMA and EMA of
different configurations

Having looked at how to compute these moving averages, the next section shows
how to use them as technical indicators to develop a trend-following strategy.

Implementing the Trend-Following Strategy

The trend-following strategy that relies on moving averages works like this. There will
be two moving averages: a short-term moving average and a long-term moving average.
When the short-term moving average crosses above the long-term moving average, it
signals a buy action, and the trend trader enters a long position on the asset. When the
short-term moving average crosses below the long-term moving average, it signals a sell
action, and the trend trader enters a short position on the asset. Thus, the strategy is
based on the intersection of two moving averages: one short term (quick) and one long
term (slow).

Note that this framework also applies to the case when there is only one moving
average series. In this case, the trend trader would buy the asset when the current price
is above the moving average and sell it if the current price is below the moving average.
The key justification for such trading action is, when the price is above a moving average,
an uptrend may be present, and vice versa. The crossover between two lines generates
the trading signal.

166

CHAPTER5 TREND-FOLLOWING STRATEGY

Other momentum-related technical indicators, such as the RSI and MACD, may also
be used to signal entries or exits.

In the following section, we will implement a trend-following trading strategy using
the long-term and short-term moving averages. Using this strategy, we are essentially
searching for the trading signal at each time point. That is, we want to decide if we
would buyj, sell, or hold an asset at each time step. The signal is generated by a crossover
between two moving averages. We assume no transaction cost will be incurred when
performing a trading action, and the market is liquid (sufficient Apple stock in the
market) and complete (no arbitrage opportunities).

Let us recall the main DataFrame we will work with. The following command prints
out the summary information using the info() function:

>>> df2.info()
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 251 entries, 2022-01-03 00:00:00-05:00 to 2022-12-30
00:00:00-05:00
Data columns (total 5 columns):
Column Non-Null Count Dtype
0 Adj Close 251 non-null float64
1 SMA-3 249 non-null float64
2 SMA-20 232 non-null float64
3 EWMO.1 251 non-null float64
4 EWM 0.5 251 non-null float64
dtypes: float64(5)
memory usage: 19.9 KB

Now we will use SMA-3 and SMA-20 as the respective short-term and long-term
moving averages, whose crossover will generate a trading signal. We leave it as an
exercise to try both SMA with different window sizes and EMA with different weighting
schemes.

Note that we can only use the information up to yesterday to make a trading decision
for tomorrow. We cannot use today’s information since the closing price is not yet
available in the middle of the day. To enforce this requirement, we can shift the moving

167

CHAPTER5 TREND-FOLLOWING STRATEGY

averages one day into the future, as shown in the following code snippet. This essentially
says that the moving average for today is derived from historical information up to
yesterday.

Shift to the future by one day so that everyday uses the
information up to

yesterday to make a trading decision for tmr
df2['SMA-3'] = df2['SMA-3'].shift(1)

df2['SMA-20"'] = df2['SMA-20"'].shift(1)

Now let us implement the trading rule: buy if SMA-3 > SMA-20, and sell if SMA-3 <
SMA-20. Such an if-else condition can be created using the np.where() function, as
shown in Listing 5-15.

Listing 5-15. Creating and identifying buy and sell signals

identify buy signal

df2['signal'] = np.where(df2['SMA-3'] > df2['SMA-20'], 1, 0)

identify sell signal

df2['signal'] = np.where(df2['SMA-3'] < df2['SMA-20'], -1, df2['signal'])
df2.dropna(inplace=True)

Here, a normal trading day would assume a value of either 1 or -1 in the signal
column. When there is a missing value or other special cases, we set it to 0. We also use
the dropna() function to ensure that the DataFrame is of good quality by dropping rows
with any NA/missing value in it.

We can check the frequency distribution of the signal column as follows:

>>> df2['signal'].value_counts()
-1 135

1 96
Name: signal, dtype: int64

The result shows that there are more declining days than inclining days, which
confirms the downward trending price series shown earlier.

168

CHAPTER5 TREND-FOLLOWING STRATEGY

Next, we introduce a baseline strategy called buy-and-hold, which simply means we
hold one share of Apple stock until the end of the whole period. Also, we will use the log
return instead of the raw return to facilitate the calculations. Therefore, instead of taking

o . . N .
the division between consecutive stock prices to get ;' , we now take the difference
t

1+1

log S;., — log S, to getlog 5:9 , which can then be exponentiated to convert to back h
The following code snippet calculates the instantaneous logarithmic single-period

return, where we first take the logarithm of the adjusted closing prices and then call the
diff() function to obtain the differences between consecutive pairs of prices:

df2['log return buy n hold'] = np.log(df2['Adj Close']).diff()

Now comes the calculation of the single-period return for the trend-following
strategy. Recall the signal column we created earlier. This column represents whether
we go long (valued 1) or short (value -1) in a position for every single period. This also

1+1
shows that the logarithmic return log g ispositiveif S,,, > S, and negative if S, , < S,.
t

This creates the following four scenarios when the asset moves from S, to S;, ;:

* When we long an asset and its logarithmic return is positive, the

. . . S,
trend-following strategy reports a positive return, that is, 1 *log é—”
t
e When we long an asset and its logarithmic return is negative, the

. . . S
trend-following strategy reports a negative return, that is, 1 * log é—”
t
e When we short an asset and its logarithmic return is positive, the

. . . S
trend-following strategy reports a negative return, that is, —1*log é—“
t

e When we short an asset and its logarithmic return is negative, the

. . . S
trend-following strategy reports a positive return, that is, —1* logg—”.
t

Summarizing these four scenarios, we can obtain the single-period logarithmic
return for the trend-following strategy by multiplying signal with the log return_
buy n_hold (the single-period logarithmic return based on the buy-and-hold strategy),
as shown in Listing 5-16.

169

CHAPTER5 TREND-FOLLOWING STRATEGY

Listing 5-16. Calculating the log return of the trend-following strategy

df2['log return_trend follow'] = df2['signal'] * df2['log return_
buy n _hold"']

Compared with the buy-and-hold strategy, the key difference is the additional
shorting actions generated by the trend-following strategy. That is, when the stock price
drops, the buy-and-hold strategy will register a loss, while the trend-following strategy
will make a profit if the trading signal is to go short. Creating a good trading signal thus
makes all the difference.

Next, we create explicit trading actions. The signal column tells us whether we
should go long or short in the given asset under the trend-following strategy. However,
this does not mean we need to make a trade at every period. If the signal remains the
same for two consecutive periods, we simply hold on to the position and remain seated.
In other words, there is no trading action for this specific trading day. This applies in the
case of two consecutive 1s or -1s in the signal column.

On the other hand, we will make an action when there is a sign switch in the trading
signal, changing from 1 to -1 or from -1 to 1. The former means changing from longing a
unit of stock to shorting it, while the latter means the reverse.

To create the trading actions, we can use the diff() method again on the signal
column, as shown in the following:

df2['action'] = df2.signal.diff()

We can produce a frequency count of different trading actions using the value
counts () function:

>>> df2["action'].value counts()

0.0 216
2.0 7
-2.0 7

Name: action, dtype: int64

The result shows that the majority of the trading days do not require action. For the
14 days with a trading action, 7 days change the position from short to long, and another
7 change from long to short.

170

CHAPTER5 TREND-FOLLOWING STRATEGY

We can visualize these trading actions as triangles on the graph with stock prices
and SMAs. In Listing 5-17, we indicate a buy action via the green triangle facing upward
when the short-term SMA crosses above the long-term SMA. On the other hand, we use
ared triangle facing downward to indicate a sell action when the short-term SMA crosses
below the long-term SMA.

Listing 5-17. Visualizing trading actions

plt.rcParams['figure.figsize'] = 12, 6

plt.grid(True, alpha = .3)

plt.plot(df2['Adj Close'], label = 'Adj Close")

plt.plot(df2['SMA-3"], label = 'SMA-3')

plt.plot(df2['SMA-20'], label = 'SMA-20")

plt.plot(df2.loc[df2.action == 2].index, df2['SMA-3'][df2.action == 2], '*',
color = 'g', markersize = 12)

plt.plot(df2[df2.action == -2].index, df2['SMA-20'][df2.action == -2], 'v',
color = 'r', markersize = 12)

plt.legend(loc=1);

Running these commands generates Figure 5-14. Again, we denote the green
triangles as acting from short to long and the red triangles as moving from long to short.

180
— Adj Close
—— 5SMA-3

—— SMA-20

170 4

160

150 A

140 4

130 4

2022-03 2022-05 2022-07 2022-09 2022-11 2023-01

Figure 5-14. Visualizing the trading actions, including going from short to long
(green triangles) and long to short (red triangles)

171

CHAPTER5 TREND-FOLLOWING STRATEGY

Let us analyze the cumulative returns of each period for both trading strategies.
Specifically, we would like to obtain the final percentage return at the end of 2022 if we
started with one unit of Apple stock at the beginning of 2022, comparing the two trading
strategies.

Recall that we need to multiply the 1+R return at each period to carry out the
compounding process in order to obtain the terminal return (after subtracting one).

We also know that the 1+R return is the same as the division between two consecutive

. . S . .
prices, thatis, 1+ R, , = é—“ Therefore, to calculate the terminal return, we first convert

1+l T
t

the returns from the logarithmic format to the usual percentage format using the np.
exp() function, then carry out the compounding by performing a cumulative product
operation using the cumprod() method. This is achieved via Listing 5-18, where we leave
out the last step of subtracting by one and report the 1+R return.

Listing 5-18. Visualizing cumulative returns

plt.plot(np.exp(df2['log return buy n hold']).cumprod(),
label="Buy-n-hold")
plt.plot(np.exp(df2['log return trend follow']).cumprod(), label='Trend
following")

plt.legend(loc=2)

plt.title("Cumulative return of different trading strategies")
plt.grid(True, alpha=.3)

Running these commands generates Figure 5-15, which shows that the trend-
following strategy clearly outperforms the buy-and-hold strategy. However, note that this
is a simplified setting that does not take into account transaction cost and other market
factors. More analyses and tests are needed to assess the performance of this trading
strategy (also many others) in the real-world environment.

172

CHAPTER5 TREND-FOLLOWING STRATEGY

Cumulative return of different trading strategies

—— Buy-n-hold

—— Trend following |'L"\, [JV". N
1.3 "M
|
|

[V W

12

1.1 4

1.0 4

0.9 4

0.8 1

0.7 -

2022-02 2022-03 2022-04 2022-05 2022-06 2022-07 2022-08 2022-09 2022-10 2022-11 2022-12 2023-01

Figure 5-15. Comparing the cumulative return of buy-and-hold and trend-
following strategies for one share of Apple’s stock

Lastly, we compare the terminal returns of both strategies:

terminal return of buy-n-hold

>>> np.exp(df2['log return buy n hold']).cumprod()[-1] -1
-0.25156586984649587

terminal return of trend following

>>> np.exp(df2['log return trend follow']).cumprod()[-1] -1
0.0711944903093773

It turns out that sticking to the buy-and-hold strategy would lose by 25%, while using
the trend-following strategy generates a terminal return of 7%.

Summary

In this chapter, we covered the basics of the popular trend-following strategy and its
implementation in Python. We started with an exercise on working with log returns
and then transitioned to different moving averages as commonly used technical
indicators, including simple moving averages and exponential moving averages. Lastly,

173

CHAPTER5 TREND-FOLLOWING STRATEGY

we discussed how to generate trading signals and calculate the performance metrics

using this strategy, which will serve as a good baseline strategy as we delve into other

candidates later on.

Exercises

174

Explain why log returns are symmetric mathematically.

How can we deal with a situation where the price point at a given day
is missing when calculating its moving average?

How does the value of the window size affect the smoothness of the
SMA? What about the impact of @ on the smoothness of EMA?

Change the code to obtain a moving median instead of a moving
average. Discuss the difference between the median and the mean.

How about maximum and minimum over the same rolling window?
Switch to EMA to derive the trading signals and discuss the results.

Show mathematically why the log returns are additive over time
and explain the significance of this property in the context of asset
returns.

Suppose there are multiple missing price points in your data, how
would you modify the moving average calculation to handle these
gaps? What are the potential issues with your approach?

Experiment with different window sizes for SMA and different values
of a for EMA. Discuss how these parameters affect the sensitivity of
the moving averages to price changes. How would you choose an
optimal value for these parameters?

CHAPTER 6

Momentum Trading
Strategy

Momentum trading is a strategy that makes use of the strength of price movements as a
basis for opening positions, either longing or shorting a set of assets. It involves buying
and/or selling a selected set of assets according to the recent strength of price trends,
assuming that these trends will continue in the same direction if there is enough force
behind a price move. When using momentum trading, traders intend to capitalize on
the force or speed of price movements to determine investment positions. They would
either initiate long or short positions in a curated selection of assets based on the recent
vigor of price trends. Crucially, the key presumption underpinning this approach is that
existing trends, given that their force is strong enough, will persist in the same direction.

When an asset displays an upward trend, registering higher prices, it invariably
attracts more attention from a wider spectrum of traders and investors. The heightened
attention garnered by the asset fuels its market price further. This momentum endures
until a significant number of sellers enter and penetrate the market, supplying an
abundance of the asset. Once enough sellers are in the market, the momentum changes
its direction and forces an asset’s price to go lower. This is essentially the price dynamics
between supply and demand. At this juncture, market participants may reassess the fair
price of the asset, which may be perceived as overvalued due to the recent price surge.

In other words, as more sellers infiltrate the market, the momentum alters its course,
pushing the asset’s price in a downward direction. This is essentially a representation of
the classic supply and demand dynamics and the shift from an environment with more
buyers than sellers to one where sellers outweigh buyers. Also, note that while price
trends can persist for an extended period, they will inevitably reverse at some point.
Thus, the ability to identify these inflection points and adjust the positions accordingly is
also of equal importance.

175
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_6

https://doi.org/10.1007/978-1-4842-9675-2_6

CHAPTER6 MOMENTUM TRADING STRATEGY

Introducing Momentum Trading

Momentum traders seek to identify the main driver assets of the trend in a given
direction, taking advantage of the expected price changes and anticipated price
fluctuations, rather than focusing on predicting the peak of a trend. Instead of
attempting to find the top and bottom of a trend, a momentum trader focuses on the top
and bottom quantiles of the price move, which implies exploitation of market herding
and the tendency toward following the majority that represents the most significant
price movements.

This approach essentially exploits market herding behavior, a phenomenon in
which traders tend to follow the majority of the market consensus. In periods of strong
upward or downward trends, many traders and investors may decide to follow the
crowd to long or short popular assets, thereby initiating or augmenting the existing
momentum. Thus, momentum trading is a self-reinforcing mechanism to some extent:
as more traders identify an emerging trend, they contribute to the strength of the trend
by adding to the buying or selling force. This, in turn, attracts more market participants,
which further strengthens the identified trend. This process continues until the market
dynamics shift, either due to a change in underlying fundamentals or a change in market
sentiment, causing the existing trend to stall or reverse. Such a cyclical nature of trends
characterizes the momentum trading strategy, although timing the beginning and end
of the momentum, namely, the entry and exit points, is extremely difficult. In fact, one
would use different technical indicators to attempt this task.

Diving Deeper into Momentum Trading

Momentum trading rests on the confluence of three integral elements: volume, volatility,
and time frame.

e Volume: This signifies the quantity of an asset traded within a
specified time frame. A high trading volume often indicates a strong
interest in the asset and can be an indicator of the start of a new trend
in the asset’s price movement. Conversely, a low volume could signal
alack of interest in the asset, potentially leading to a reversal in trend.
Hence, volume plays a crucial role in confirming the strength and
sustainability of a trend.

176

CHAPTER6 MOMENTUM TRADING STRATEGY

o Volatility: Volatility represents the degree of variation in an asset’s
price over a short period of time. A higher volatility corresponds to
larger price swings, which can provide good trading opportunities
for momentum traders, if such variation is in the profitable direction.
However, variability is a double-edged sword, as it also increases the
risk for significant losses. Therefore, understanding and managing
volatility is a critical aspect of momentum trading.

e Time frame: The time frame represents the expected duration of the
identified trend. Depending on the specific time frames, momentum
traders may engage in intraday trading to open and close a position
within a day (called day trading) or hold positions for several weeks
or months (called position trading). This choice of time frame
can affect the risk and return profile of a trade, as day trading is
apparently more volatile than position trading.

These factors can be quantified and aggregated together via technical analysis when
developing a momentum trading strategy. The process typically involves analyzing
historical price data and trading volumes, followed by applying technical indicators to
identify potential trading signals. Essentially, momentum trading requires identifying
potential price movements before they occur and capitalizing on these trends to
generate a return.

Contrasting with the Trend-Following Strategy

The trend-following and momentum trading strategies, both grounded in the concept
of momentum, aim to capture the sustained directional movement or the persistent
performance of an asset. Both strategies are built upon the observation that asset prices
can have a tendency to move in a particular direction over time, a phenomenon known
as momentum. Despite their common underpinning, the application and focus of the
two strategies differ significantly.

The momentum trading strategy, as we have discussed, is cross-sectional in nature.
It involves comparing the momentum across various assets at a specific time point and
investing in those that demonstrate the highest momentum. This comparative analysis
occurs at a particular point in time and aims to compare the relative performance
among multiple assets. Hence, momentum trading is often characterized as a type of
relative momentum strategy.

177

CHAPTER6 MOMENTUM TRADING STRATEGY

In contrast, the trend-following strategy utilizes time series momentum, focusing
exclusively on an asset’s own historical performance over time. It analyzes the price
pattern of a single asset over its own history, spanning numerous time points, to identify
potential trading signals. Therefore, the trend-following strategy is an instance of an
absolute momentum strategy. It emphasizes the historical trend of an individual asset
and aims to capitalize on its continuation.

Observing the Role of Lookback Windows

The application of lookback windows in trend-following and momentum trading
strategies varies, depending on their unique operational requirements and objectives.

The trend-following strategy, as discussed in the previous chapter, employs two
lookback windows. These two windows, one short term and one long term, calculate
the respective moving averages as technical indicators. The intersection or crossover of
these moving averages then produces a trading signal, indicating a shift in the trend’s
direction and the right moment for action (for either buying or selling). Thus, the dual
lookback windows in the trend-following strategy serve as the basis for decision-making,
assisting traders in identifying potential shifts in market trends.

Conversely, the momentum trading strategy uses a singular, uniform lookback
window to evaluate an array of assets. This window helps identify which assets have
performed best over the defined lookback period. Subsequently, another uniform
lookahead window is used to determine the holding period of a position once a trading
decision is made. Essentially, the lookback window aids in selecting the assets to invest
in based on their past performance, while the lookahead window provides a time frame
for holding the investment, assuming that the asset’s momentum will continue during
this period.

Therefore, both lookback and lookahead windows are essential in momentum
trading, helping traders identify high-momentum assets and define the investment’s
holding period, respectively. The strategic use of these windows provides a structured
approach to navigating the ever-fluctuating market dynamics.

Let us elaborate on the difference. Figure 6-1 characterizes the selection of three
stocks at regular trading intervals as indicated by the lookahead window. Each trading
decision (indicated by the green box in the solid line) considers historical stock prices
within the same lookback window. The trading decision could be buying the stock with
the highest momentum (based on metrics such as the historical average return) and

178

CHAPTER6 MOMENTUM TRADING STRATEGY

selling the stock with the lowest momentum at a specific time point. We assess all three
stocks and make a trading decision at regular intervals (the lookahead window) based
on a rolling lookback window.

One uniform lookback window to ‘ Another uniform lookahead window to
assess the momentum for all assets determine the holding period for all assets

r

-) >

Pri‘ce
Stock A /y
Stock B —/_/\C'_/ —_
Stock C .
{ A trading decision is [T.h.e next trading
made at this time point decision is made here

o

» Time

assets at the same snapshot in a cross-sectional manner

The momentum trading strategy that assess multiple
and selects the assets with the biggest momentum

Figure 6-1. Characterizing the momentum trading strategy for three stocks

The momentum trading strategy is particularly effective in equities, offering a
systematic approach to compare and analyze similar assets. It performs a cross-sectional
analysis across the equity universe (in this case, three stocks), evaluating and rank-
ordering the constituents based on their relative performances over a specified lookback
period. This process enables traders to identify strong performers and potential laggards,
using their recent momentum as a proxy for future performance.

In making a trading decision, the momentum strategy often embraces a two-pronged
approach, establishing a portfolio with two legs. The first leg is the “long” leg, consisting
of top-ranked assets projected to maintain their strong upward price momentum.
Traders buy these stocks with an expectation of price appreciation, aiming to sell at a
higher price in the future. The second leg is the “short” leg, made up of bottom-ranked
assets showing signs of declining price momentum. Traders sell these stocks, often
through short-selling, where they borrow the stock to sell in the market with the intent to
buy it back at a lower price later. The idea is to profit from the anticipated price decline of

179

CHAPTER6 MOMENTUM TRADING STRATEGY

these assets. By going long on assets with strong positive momentum and short on assets
with negative momentum, traders can potentially benefit from both rising and falling
markets, provided the identified momentum persists over the holding period.

Note that momentum strategies, grounded in the principle of relative momentum,
maintain their long and short positions irrespective of the broader market trends.
These strategies function on the assumption that the strongest performers and
underperformers will persist in their respective trajectories, thus maintaining their
relative positions in the investment universe. In other words, in a bullish market
environment, the stocks with the strongest upward momentum are expected to
outperform the market. Meanwhile, during bearish phases, these same high-momentum
stocks may fall in price, but they are still expected to perform better than other stocks
that are falling more rapidly. Conversely, the bottom-ranked stocks, showing declining
momentum, are expected to underperform the market. In a rising market, these stocks
may increase in value, but at a slower pace than the market. Similarly, in a falling market,
these stocks are anticipated to decline more rapidly than the broader market. Thus,
irrespective of whether the market is bullish or bearish, momentum strategies rely on the
persistence of relative performance.

More on Trend Following

The trend-following strategy fundamentally differs from the momentum trading strategy
in terms of its approach and trading frequency. Trend following is a time series-based
strategy that employs moving averages over different lookback periods, one shorter and
one longer, to generate the trading signals.

As depicted in Figure 6-2, the trend-following strategy calculates two moving
averages at each point in time, leveraging a longer-term lookback window for one and a
shorter-term lookback window for the other. A trading signal is produced when there’s
a crossover, which corresponds to a change in the relative position of the two moving
averages from one time point to the next. For instance, when the short-term moving
average crosses above the long-term moving average, it is often viewed as a bullish
signal, and a bearish signal when it crosses below.

180

CHAPTER6 MOMENTUM TRADING STRATEGY

The longer lookback window that
generates another moving average price)

¥

-
The trend-following strategy generates a

< trading signal if there is a crossover
between the two moving averages

Stock A /\/

- ‘ The trading interval is not fixed
L and purely data-driven

Price
A

» Time

The shorter lookback window that
generates one moving average price

Figure 6-2. Characterizing the trend-following strategy for a single stock

Contrary to the momentum trading strategy, which mandates regular trading based
on a predefined lookahead window, the trend-following strategy operates without a set
trading frequency. Rather, it’s driven entirely by the data at hand. Trading actions are
informed by the moving averages’ interactions, leading to potentially less frequent but
more strategically timed trades. Such a mechanism makes the trend-following strategy
more flexible as it adapts to the market’s movements.

Note that in a trend-following strategy, the primary concern is whether an asset is on
an upward or downward trend. When employing this strategy, traders do not focus on
the comparative performance of different assets against each other, as in a momentum
strategy. Rather, their interest lies in identifying and capitalizing on established
price trends of individual assets. The underlying assumption for this strategy is that
the identified asset prices that have been rising or falling steadily over a period will
continue to move in the same direction. So, a trader would go long when an asset shows
an upward trend and go short when it’s on a downward trend. The action is to “ride
the wave” as long as the trend continues. The “trendiness” of the market completely
determines the trading decisions of the strategy.

181

CHAPTER6 MOMENTUM TRADING STRATEGY

In summary, while both strategies aim to exploit market momentum, the trend-
following strategy involves time series analysis that relies on the absolute momentum in
historical prices of the same asset, and the momentum trading strategy involves cross-
sectional analysis that relies on the relative momentum across multiple assets. Thus,
these two strategies are fundamentally different from each other.

The next section introduces implementing the momentum trading strategy
using Python.

Implementing the Momentum Trading Strategy

The Dow Jones Industrial Average (DJIA), often referred to simply as “the Dow,” is a
popular equity index that comprises 30 major publicly owned companies based in the
United States and covering diverse industries. The variety of sectors represented makes it
a useful gauge for assessing the general trends and performance of the market. However,
itis considered a relatively small pool size, as compared to other broader indices like the
S&P 500, which comprises 500 of the largest publicly traded companies in the United
States, making it a more accurate reflection of the market dynamics.

For the purpose of this section, we’ll employ a momentum trading strategy with the
DJIA constituents as our reference universe. This will involve analyzing their respective
price trends and performance relative to each other over a specified period in order
to identify potential investment opportunities. Our strategy will seek to capitalize on
the continuing momentum of outperforming stocks while shorting those with poor
performance, with the expectation that these trends will persist over the near to medium
term. In other words, we are going to make trading decisions by longing top performers
and shorting bottom performers of the 30 constituent stocks.

To start, we need to obtain the ticker symbols of these 30 stocks.

Obtaining DJI Stock Symbols

The Wikipedia page provides a list of these stocks at https://en.wikipedia.org/
wiki/Dow Jones Industrial Average. Instead of manually copying and pasting these
symbols to our coding console, we are going to leverage a web scraping package called
Beautiful Soup, a widely used Python package for parsing HTML and XML documents.
We will use this package to create a parse tree and extract data from the specific

HTML page.

182

https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average
https://en.wikipedia.org/wiki/Dow_Jones_Industrial_Average

CHAPTER6 MOMENTUM TRADING STRATEGY

First, as shown in Listing 6-1, we import the following packages, where the bs4 is the
Beautiful Soup package, the requests package to send HTTP requests, and yfinance is
used to download the financial data once the ticker symbols are obtained.

Listing 6-1. Importing relevant packages

import pandas as pd

import requests

from bs4 import BeautifulSoup
import os

import numpy as np

import pandas as pd

import yfinance as yf

Next, we write a function called fetch_info() to complete the scraping task. As
shown in Listing 6-2, we first assign the web link to the url variable and store the header
details in the headers variable. The headers are necessary metadata upon visiting a
website. We then send a GET request to obtain information from the specified web link
via the requests.get() method and pull and parse the data out of the scraped HTML
file using BeautifulSoup(), stored in the soup variable. We can then find the meat
in the soup by passing the specific node name (table in this case) to the find_all()
function, read the HTML data into a DataFrame format using the read_html1() function
from Pandas, and drop the unnecessary column (the Notes column) before returning
the DataFrame object. Finally, if the scraping fails, the function will print out an error
message via a try-except control statement.

Listing 6-2. Fetching relevant information from the web page

def fetch _info():
try:

url = "https://en.wikipedia.org/wiki/Dow_Jones Industrial Average"

headers = {
'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64;
1v:101.0) Gecko/20100101 Firefox/101.0',
"Accept’': 'application/json',
'Accept-Language': 'en-US,en;g=0.5",

183

CHAPTER6 MOMENTUM TRADING STRATEGY

Send GET request
response = requests.get(url, headers=headers)
soup = BeautifulSoup(response.content, "html.parser")
Get the symbols table
tables = soup.find all('table')
Convert table to dataframe
df = pd.read html(str(tables))[1]
Cleanup
df.drop(columns=['Notes'], inplace=True)
return df
except:
print('Error loading data"')
return None

Now let us call the function to store the resultin dji_df and output the first five rows,
as shown in the following:

get DII components (ticker symbols)
dji_df = fetch_info()
>>> dji_df.head()

Company Exchange Symbol Industry Date added Index weighting

0 3M NYSE MMM Conglomerate 1976-08-09 2.41%
1 American Express NYSE AXP Financial services 1982-08-30 3.02%
2 Amgen NASDAQ AMGN Biopharmaceutical 2020-08-31 5.48%
3 Apple NASDAQ AAPL Information technology 2015-03-19 2.84%
4 Boeing NYSE BA Aerospace and defense 1987-03-12 3.36%

We can then take the Symbol column, extract the values, and convert it to a
list format:

tickers = dji_df.Symbol.values.tolist()

With the DJI tickers available, we can now download the stock prices for these ticker
symbols using the yfinance package.

184

CHAPTER6 MOMENTUM TRADING STRATEGY

Downloading Stock Prices

There are three input arguments to be specified to call the download() function: the
ticker symbols, the start date, and the end date. In this case, we set the start date as
2021-01-01 and the end date as 2022-09-01, as shown in Listing 6-3.

Listing 6-3. Downloading the daily stock prices of DJI tickers

start _date = "2021-01-01"
end_date = "2022-09-01"
df = yf.download(tickers, start=start date, end=end date)

We will focus on the adjusted closing prices for later analysis:

use the adjusted closing prices for follow-up analysis
df = df['Adj Close']

By now, we have stored the stock prices of the 30 DJI constituents, with each column
representing one ticker and each row indicating a corresponding trading day. The index
of the DataFrame follows the datetime format.

Next, we convert the daily stock prices to monthly returns.

Calculating Monthly Returns

To transition from the raw daily stock prices to monthly returns, we need to go through a
few steps. The first step is to convert the prices to daily percentage returns using the pct_
change () method. As introduced in the previous chapter, this function automatically

S.-S
calculates the simple percentage return R, ,,, = —“*—- for all trading days. As this is a

1+l T
t

daily return, we need to roll it up to the monthly return by compounding all daily returns
of the same month and using the terminal return as the monthly return. Breaking it
down, we need to group all trading days by month and then calculate the terminal return
for each month. Listing 6-4 chains together all these operations in one shot, with the
resulting monthly returns stored in mth_return df.

Listing 6-4. Generating monthly returns from daily prices

mth _return df = df.pct_change().resample("M").agg(lambda x: (x+1).prod()-1)

185

CHAPTER6 MOMENTUM TRADING STRATEGY

Although chaining together relevant operations looks more concise, it is not
the best way to learn these operations if this is the first time we encounter them.
Let us decompose these operations. The first operation is to call the pct_change()
method, which is a convenient function widely used in many contexts. Next comes
the resample() function, which is a convenient method for frequency conversion and
resampling of time series data. Let us use some dummy data to understand this function.
The following code snippet creates a Pandas Series object with nine integers ranging
from zero to eight, which are indexed by nine one-minute timestamps:

creating a series with 9 one minute timestamps

index = pd.date_range('1/1/2000', periods=9, freq='T')
series = pd.Series(range(9), index=index)

>>> series

2000-01-01 00:00:00
2000-01-01 00:01:00
2000-01-01 00:02:00
2000-01-01 00:03:00
2000-01-01 00:04:00
2000-01-01 00:05:00
2000-01-01 00:06:00
2000-01-01 00:07:00
2000-01-01 00:08:00
Freq: T, dtype: int64

0O N OV B W N RO

We then aggregate the series into three-minute bins and sum the values of the
timestamps falling into a bin, as shown in the following code snippet:

>>> series.resample('3T").sum()
2000-01-01 00:00:00 3
2000-01-01 00:03:00 12
2000-01-01 00:06:00 21

Freq: 3T, dtype: int64

As we can see from the result, the resample() function completes the aggregation
operation by the specified interval, and the following method summarizes the data

within the interval.

186

CHAPTER6 MOMENTUM TRADING STRATEGY

Back to our running example, we downsample the raw daily returns into monthly
returns, so each month is represented with only one data point instead of 30 (in a
typical month). The aggregation works by cumulating all daily returns following the
same procedure: converting to 1+R format, compounding, and then converting back to
simple return.

The new thing here is the lambda function. We use the x symbol to represent a
general input argument. In this case, it will be all the raw daily returns in a given month.
Since this lambda function performs a customized operation, we use the agg() function
to carry through the customized function, instead of using the built-in function such as
sum() as before.

By now, we have converted the daily returns to monthly representations where every
single monthly return represents the terminal return of the daily returns compounded
within the month. Next, we calculate another metric using historical monthly returns to
indicate the current month’s stock performance.

Calculating the Six-Month Terminal Return

We know that making a trading decision based on the current month’s return would be
flawed in two ways. First, we rely too much on the current month and ignore historical
performances. Second, we run into the risk of data snooping. That is, to calculate the
monthly return on a given day of the month, if it does not fall on the last day of the
month, we would snoop all future daily returns within the same month in order to
calculate the terminal return.

We focus on the first point and come back to the second point in a moment.
Obviously, we need to find a way to incorporate historical monthly returns when
generating trading signals in the current month. However, different from the moving
averages used for stock prices, the historical average monthly return obtained using
the same arithmetic mean essentially ignores the sequential compounding process.
Therefore, we need to treat historical monthly returns as a sequential process and
compound these returns (up to a specific lookback window) to obtain the terminal
monthly return.

This terminal monthly return will then serve as the momentum indicator for
stock selection and trading initiation. This involves choosing a lookback window with
a specific size. Let us assume a window size of six. Now, to calculate the six-month

terminal return for each month on a rolling basis, we can use the rolling() function,

187

CHAPTER6 MOMENTUM TRADING STRATEGY

which is the same function used to calculate moving averages. The only change is that,
instead of taking the average using mean () after rolling the pointer backward by six
months, we take the product of these 1+R monthly returns using np.prod in the apply()
function to complete the compounding process, as shown in Listing 6-5.

Listing 6-5. Calculating six-month cumulative returns

obtain the historical cumulative returns of past 6 months as the terminal
return of current month
past_cum_return df = (mth_return df+1).rolling(6).apply(np.prod) - 1

By now, we have calculated the six-month terminal monthly return as the cumulative
return of the past six months, including the current month. This also explains why the
first five months show empty values in the previous result and the cumulative monthly
returns only start from the sixth month.

Next, we look at using these terminal returns to generate trading signals.

Generating Trading Signals

We have fixed the lookback window to be six months into the past. The momentum
trading strategy involves another lookahead window used to fix the trading horizon

in the future. Specifically, suppose we form our trading strategy and make the trading
decision in the current month. These new positions will last for a full month in the next
month if the lookahead horizon is one. We can then measure the performance of these
positions at the end of the next month. In this case, the size of the lookahead window is
set to be one.

Also, we cannot use the monthly terminal return in the formation month to generate
trading signals, as it uses future daily returns within the same month. When standing in
the middle of the formation month, what we can use is the terminal monthly return of
the last month, which is the end of the measurement period. The measurement period
represents the collection of all historically observed data and thus avoids data snooping
when limiting the usable data to this period only. Figure 6-3 illustrates the subtlety here.

188

CHAPTER6 MOMENTUM TRADING STRATEGY

Trade formation period

Historical measurement period with Performance period with one
6 months of lookback window month of lookahead window
! . .
2 ! : : ' . : ' * time

Each tick marks the Current time point |
end of month , — ;
‘ 6-month terminal monthly return

used to generate the trading signal |

Figure 6-3. lllustrating the measurement period, formation period, and
evaluation period across the investment horizon

Since our data lasts until 2022-08-31, we will use 2022-07-31 as the trade formation
period. To generate a trading strategy, we will use the terminal monthly return from the
previous month indexed at 2022-06-30 as the end of the measurement period. We resort
to the datetime package to encode these two dates, as shown in Listing 6-6.

Listing 6-6. 1dentifying the measurement and formation periods
import datetime as dt

end of measurement period = dt.datetime(2022,6,30)
formation period = dt.datetime(2022,7,31)

These dates will then be used to slice the cumulative monthly return DataFrame
stored in past_cum_return_df. In the following code snippet, we pass the end_of
measurement period variable to the .loc[] property of past_cum return_ df to perform
label-based indexing at the row level. Since the result is Pandas Series indexed by the
30 ticker symbols, we will use the reset_index() method to reset its index to zero-
based integers and bring the symbols as a column in the resulting DataFrame. The
following code snippet shows the resulting cumulative terminal returns at the end of the

measurement period:

189

CHAPTER6 MOMENTUM TRADING STRATEGY

end_of measurement period return df = past cum return df.loc[end of

measurement period]

end_of measurement period return df
df.reset_index()

>>> end_of measurement period return_df.head()

end_of_measurement_period_return_

index 2022-06-30 00:00:00-04:00
0 AAPL -0.227936
1 AMGN 0.099514
2 AXP -0.144964
3 BA -0.320882
4 CAT -0.126977

These six-month terminal monthly returns of the 30 DJI constituents represent the
relative momentum of each stock. We can observe the stock symbols and returns with
the highest momentum in the positive and negative directions using the following code
snippet:

highest momentum in the positive direction

>>> end_of measurement period return df.loc[end of measurement period
return df.iloc[:,1].idxmax()]

index CvX

2022-06-30 00:00:00-04:00 0.256955

Name: 7, dtype: object

highest momentum in the negative direction

end of measurement period return df.loc[end of measurement period return
df.iloc[:,1].idxmin()]

index DIS

2022-06-30 00:00:00-04:00 -0.390535

Name: 8, dtype: object

Here, we used the methods idxmax () and idxmin() to return the index of the
maximum and minimum values, respectively.

These two stocks would become the best choices if we were to long or short an asset.
Instead of focusing on only one stock in each direction (long and short), we can enlarge
the space and use a quantile approach for stock selection. For example, we can classify

190

CHAPTER6 MOMENTUM TRADING STRATEGY

all stocks into five groups (also referred to as quantiles or percentiles) based on their
returns and form a trading strategy that longs the stocks in the top percentile and shorts
those in the bottom percentile.

To obtain the quantile of each return, we can use the qcut () function from Pandas,
which receives a Pandas Series and cuts it into a prespecified number of groups based
on their quantiles, thus discretizing the continuous variables into a categorical, more
specifically, and ordinal one. The following code snippet provides a short example:

>>> pd.qcut(series, 5, labels=False)
2000-01-01 00:00:00 0

2000-01-01 00:01:00
2000-01-01 00:02:00
2000-01-01 00:03:00
2000-01-01 00:04:00
2000-01-01 00:05:00
2000-01-01 00:06:00
2000-01-01 00:07:00
2000-01-01 00:08:00
Freq: T, dtype: int64

A A W W N P PR O

Thus, the qcut() function rank-orders the series into five groups based on their
quantiles. We can now similarly rank-order the returns and store the result in a new
column called rank, as shown in Listing 6-7.

Listing 6-7. Rank-ordering the stocks based on cumulative terminal
monthly returns

end of measurement period return df['rank'] = pd.qcut(end of measurement
period return df.iloc[:,1], 5, labels=False)
>>> end_of measurement period return df.head()

index 2022-06-30 00:00:00-04:00 rank
0 AAPL -0.227936 1
1 AMGN 0.099514 4
2 AXP -0.144964 2
3 BA -0.320882 0
4 CAT -0.126977 2

191

CHAPTER6 MOMENTUM TRADING STRATEGY

We can now use this column to select the top and bottom performers. Specifically,
we will long the stocks ranked four and short the stocks ranked zero. Let us observe the
stock symbols in these two groups via Listing 6-8.

Listing 6-8. Obtaining the stock tickers to long or short

long stocks = end of measurement period return df.loc[end of measurement
period return df["rank"]==4,"index"].values

>>> long_stocks

array(['AMGN', 'CvX', 'IBM', 'KO', 'MRK', 'TRV'], dtype=object)

short stocks = end of measurement period return df.loc[end of measurement
period return df["rank"]==0,"index"].values

>>> short_stocks

array(['BA', '"CRM', 'CSCO', 'DIS', 'HD', 'NKE'], dtype=object)

Having identified the group of stocks to be bought or sold, we will execute the trading
actions and enter into these positions for a period of one month. Since the current
period is 2022-07-31, we will evaluate the out-of-sample performance of the momentum
strategy on 2022-08-31.

Evaluating Out-of-Sample Performance

Let us first grab the monthly return indexed at 2022-08-31 from mth_return df

for the long and short positions, respectively. As shown in Listing 6-9, we use the
relativedelta function from the dateutil package to shift formation period by
one month into the future, arriving at the evaluation period. This goes to the row-
level condition in the . loc[] property. For the column-level condition, we subset the
columns to the stock symbols within the long positions using the isin() method. The
result for the evaluation-period performance of the long position is stored in long_
return_df.

192

CHAPTER6 MOMENTUM TRADING STRATEGY

Listing 6-9. Obtaining the performance of stocks in a long position at the
evaluation period

from dateutil.relativedelta import relativedelta

long_return df = mth_return df.loc[formation period +
relativedelta(months=1), \ mth_return_df.columns.isin(long_stocks)]

>>> long return_df

AMGN -0.021474

CvX -0.026156

IBM -0.005517

KO -0.038336

MRK -0.044549

TRV 0.018526

Name: 2022-08-31 00:00:00-04:00, dtype: float64

The result shows that the majority of the top performers are decreasing in price,
which is a direct reflection of market sentiment during that period of time. We can
similarly obtain the evaluation-period performance for the bottom performances in the
short position, as shown in Listing 6-10.

Listing 6-10. Obtaining the performance of stocks in a short position at the
evaluation period

short _return df = mth _return df.loc[formation period +
relativedelta(months=1), \ mth_return df.columns.isin(short stocks)]

>>> short_return_df

BA 0.005900

CRM -0.151614

CSCO -0.014327

DIS 0.056362

HD -0.035350

NKE -0.073703

Name: 2022-08-31 00:00:00-04:00, dtype: float64

193

CHAPTER6 MOMENTUM TRADING STRATEGY

Now we calculate the return of the evaluation period based on these two positions.
We assume an equally weighted portfolio in both positions. Thus, the final return is
the average of all member stocks in the respective position. Also, since we hold a short
position for the bottom performers, we subtract the average return from the short
position in these stocks while adding the average return from the long position.
Listing 6-11 completes the calculation.

Listing 6-11. Calculating the total profit

momentum profit = long return df.mean() - short return_ df.mean()
>>> momentum_profit
0.015870799817079288

Therefore, the momentum trading strategy reports a final monthly return of 1.587%.
Now let us compare with the buy-and-hold strategy.

Comparing with the Buy-and-Hold Strategy

We assume a buy-and-hold strategy based on DJI as the benchmark. This means
entering a long position of the index at the same beginning of the trading period on
2021-01-01 and holding them all the way until 2022-09-01. We first download the data on
this index by passing “ADJI” as the ticker symbol, as shown in the following code snippet:

df dji = yf.download("~DJI", start=start date, end=end date)

Next, we follow the same approach to calculate the monthly terminal returns, as
shown in Listing 6-12.

Listing 6-12. Calculating the monthly terminal returns of the buy-and-hold
strategy

buy n_hold df = df dji['Adj Close'].pct change().resample("M").agg(lambda
x: (x+1).prod()-1)

>>> buy_n_hold df.head()

Date

2021-01-31 00:00:00-05:00 -0.007983

2021-02-28 00:00:00-05:00 0.031677

2021-03-31 00:00:00-04:00 0.066247

194

CHAPTER6 MOMENTUM TRADING STRATEGY

2021-04-30 00:00:00-04:00 0.027085
2021-05-31 00:00:00-04:00 0.019324
Freq: M, Name: Adj Close, dtype: float64

We can then access the monthly return during the evaluation period, as shown in the
following code snippet:

>>> buy n_hold df.loc[formation period + relativedelta(months=1),]
-0.04063613884907047

The buy-and-hold strategy thus reports a monthly return of -4.064% in the same
evaluation period. Although the momentum trading strategy performs better, we are
still far from claiming victory here. More robust backtesting on the out-of-sample
performance across multiple periods is still needed.

Summary

In this chapter, we looked at the momentum trading strategy and its implementation in
Python. We started by comparing it with the trend-following strategy from the previous
chapter, discussing their connections and differences in terms of time series and cross-
sectional analysis, as well as the different use of lookback and lookahead windows. Next,
we covered its implementation using monthly returns, focusing on the process of signal
generation and out-of-sample performance evaluation.

In the next chapter, we will learn a systematic way of assessing different trading
strategies using backtesting.

195

CHAPTER6 MOMENTUM TRADING STRATEGY

Exercises

196

Play around with the parameters of the momentum trading strategy
(such as the window size) and assess the performance.

Try implementing the momentum trading strategy on a different set
of assets, such as commodities, forex, or cryptocurrencies. Discuss
any differences or similarities you observe in the performance of the
strategy.

Try to create a hybrid strategy that combines both momentum
trading and trend following. How does this hybrid strategy perform
compared to the stand-alone strategies?

Try to incorporate volatility measures, such as Bollinger Bands or
standard deviation of returns, into the momentum trading strategy.
How does this impact the performance?

Implement the strategy using other momentum indicators such as
the Relative Strength Index (RSI) or the Moving Average Convergence
Divergence (MACD). Compare their performance with the basic
momentum strategy.

Incorporate transaction costs into the momentum trading strategy.
How do these costs impact the overall profitability of the strategy?

Perform backtesting of the momentum trading strategy over different
market periods (bull market, bear market, high volatility period, etc.).
How robust is the strategy across different market conditions?

CHAPTER 7

Backtesting a Trading
Strategy

As the name suggests, backtesting refers to the process of testing a trading strategy

on relevant historical data before rolling it up to the live market. It gives an indication
of the likely performance in different trading scenarios. In this chapter, we delve into
the intricacies of backtesting a trading strategy, starting with an understanding of why
backtesting is an important component in quantitative trading.

Note that while backtesting can offer insightful results, it is only as good as the
quality of the data and the assumptions underpinning the trading strategy. For example,
a trading strategy might work very well in a bull market, but it’s equally important to
know how it performs during a bear market or during periods of high market volatility.
By using backtesting, we can analyze the strategy’s robustness over different market
phases, which provides a more holistic view of its performance. Therefore, a good
practice is to choose multiple representative trading periods and record the backtesting
performances so as to obtain a robust measure of the actual performance of a specific
trading strategy.

Introducing Backtesting

Backtesting allows us to simulate a trading strategy using historical data and analyze

the risk and return before actually entering into a position. It refers to the process of
testing a particular trading strategy backward using historical data in order to assess its
performance on future data going forward. Such performance is also called the test set
performance in the context of training a machine learning model, with the common
constraint that the test set needs to be completely kept away when formulating a strategy
or training a model. This period of historical data reserved for testing purposes allows us
to assess the potential variability of the proposed trading strategy.

197
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_7

https://doi.org/10.1007/978-1-4842-9675-2_7

CHAPTER 7 BACKTESTING A TRADING STRATEGY

Building on that, backtesting offers a way to measure the effectiveness of a trading
strategy while keeping emotions and subjective bias at bay. It provides a scientific
method to simulate the actual performance of a strategy, which then can be used to
calculate various summary metrics that indicate the strategy’s potential profitability,
risk, and stability over time. Example metrics include the total return, average return,
volatility, maximum drawdown (to be covered shortly), and the Sharpe ratio.

When carrying out a backtesting procedure, one needs to avoid data snooping (i.e.,
peeking into the future) and observe the sequence of time. Even if a certain period of
historical data is used to cross-validate a strategy, one needs to ensure that the cross-
validation periods fall outside or, more specifically, after the training period. In other
words, the cross-validation period cannot exist in the middle of the training period, thus
preserving the sequence of time as we move forward.

Retrospectively testing out the hypothetical performance of a trading strategy on
historical data allows us to assess its variability over a set of aforementioned metrics.
Since the same trading strategy may exhibit completely different behavior when
backtested over various choices of investment horizons and assets, it is critical to
overlay a comprehensive set of backtesting scenarios for the particular trading strategy
before its adoption. It’s essential to conduct a thorough and varied backtesting process,
as the performance of a trading strategy can greatly vary depending on the choice of
investment horizon, the selection of assets, and the specific market conditions during
the testing period.

For example, we can use backtesting on the trend-following strategy we covered
earlier, where we use two moving averages to generate trading signals if there is a
crossover. In this process, the input consists of two window sizes: one for the short
window and one for the long window. The output is the resulting return, volatility, or
other risk-adjusted return such as the Sharpe ratio. Any pair of window sizes for the
moving averages has a corresponding performance metric, and we would change the
input parameters in order to obtain the optional performance metric on the historical
data. More specifically, we can create a range of potential values for each parameter—
for example, we could test short moving averages from 10 to 30 days and long moving
averages from 50 to 200 days. For each combination of these parameters, we calculate
the corresponding performance metric. The optimal parameters then maximize (or
minimize, depending on the specific metric) this selected performance metric.

198

CHAPTER 7 BACKTESTING A TRADING STRATEGY

Caveats of Backtesting

Note that a good backtesting performance does not necessarily guarantee a good
future return. This is due to the underlying assumption of backtesting: any strategy

that did well in the past is likely to do well in the future period, and conversely, any
strategy that performed poorly in the past is likely to perform poorly in the future. Since
financial markets are complex adaptive systems that are influenced by a myriad of
factors, including economic indicators, geopolitical events, and even shifts in investor
sentiment, all these are constantly evolving and can deviate significantly from past
patterns. In summary, past performance is not indicative of future results.

However, a well-conducted backtest that yields positive results gives assurance that
the strategy is fundamentally sound and is likely to yield profits when implemented
in reality. Backtesting can at least help us to weed out the strategies that do not prove
themselves worthy. However, this assumption is likely to fail in the stock market, which
typically highlights a low signal-to-noise ratio. Since financial markets keep evolving fast,
the future may exhibit patterns not present in the historical data, making extrapolation a
difficult task compared to interpolation.

Another issue with backtesting is the potential to overfit a strategy such that it
performs well on the historical data used for testing but fails to generalize to new,
unseen data. Overfitting occurs when a strategy is too complex and tailors itself to the
idiosyncrasies and noise in the test data rather than identifying and exploiting the
fundamental patterns that govern the data-generating process.

In addition, the backtesting period of the historical data needs to be representative
and reflect a variety of market conditions. Excessively using the same dataset
for backtesting is called data dredging, where the same dataset may produce an
exceptionally good result purely by chance. If the backtest only includes a period of
economic boom, for instance, the strategy might appear more successful than it would
during a downturn or volatile market conditions. By assessing the trading strategy over
a comprehensive and diverse period of historical data, we can avoid data dredging and
better tell if the good performance, if any, is due to sound trading or merely a fluke.

Data dredging, or “p-hacking,” is a material concern in backtesting. It involves
repeatedly running different backtests with slightly modified parameters on the same
dataset until a desirable result is found. The danger here lies in the fact that the positive
result might just be a product of chance rather than an indication of a genuinely effective
strategy. This overfitting could lead to a strategy that performs exceptionally well on the
test data but fails miserably on new, unseen data.

199

CHAPTER 7 BACKTESTING A TRADING STRATEGY

On the other hand, the selection of the stocks used for backtesting also needs to
be representative, including companies that eventually went bankrupt, were sold, or
liquidated. Failing to do so produces the survivorship bias, where one cherry-picks
a set of stocks and only looks at those that survived till today and ignores others that
disappeared in the middle. By excluding companies that have failed or undergone
significant structural changes, we could end up with an overly optimistic view of the
strategy’s profitability and risk profile. This is because the stocks that have survived, in
general, are likely to be those that performed better than average. Ignoring companies
that went bankrupt or were delisted for any reason may skew the results, creating an
illusion of a successful strategy when, in reality, the strategy may not perform as well in
the real environment.

Moreover, by incorporating stocks that have underperformed or failed, we are in a
better position to assess the risk of the strategy and prepare for worst-case scenarios.
This can lead to more accurate risk and reward assessments and better inform the
decision-making process when it comes to deploying the strategy. This strategy will
also be more robust and can withstand various market conditions, including periods of
economic downturn or industry-specific shocks.

Lastly, a backtest should also consider all trading costs, however insignificant, as
these can add up over the course of the backtesting period and drastically affect the
performance of a trading strategy’s profitability. These costs can include brokerage fees,
bid-ask spreads, slippage (the difference between the expected price of a trade and the
price at which the trade is executed), and in some cases, taxes and other regulatory fees.
Overlooking these costs in backtesting can lead to an overly optimistic assessment of
a strategy’s performance. For example, a high-frequency trading strategy might seem
profitable when backtested without trading costs. However, in reality, such strategies
involve a large number of trades and, therefore, high transaction costs, which can
quickly erode any potential profits. Considering these costs during the backtesting stage
will present a more accurate estimate of the net profitability of the strategy. Moreover,
the impact of trading costs can vary greatly depending on the specifics of the trading
strategy. Strategies that involve frequent trading, narrow profit margins, or large order
sizes can be particularly sensitive to the assumptions made about trading costs in the
backtesting process.

Before diving into the specifics of backtesting, let us introduce a popular risk

measure called the maximum drawdown, or max drawdown.

200

CHAPTER 7 BACKTESTING A TRADING STRATEGY

Understanding Maximum Drawdown

Previously, we introduced the Sharpe ratio, which measures the excess return per unit
of volatility. There are many other measures of risk, and this section covers the max
drawdown due to its popular use in practice. In particular, the max drawdown measures
the impact of the downside volatility, since the upside volatility brings positive returns
and is a preferred behavior. In other words, we are more concerned with deviating from
the mean on the downside instead of the upside. Therefore, when we use the term

risk, we often highlight more on the downside movement that leads to a lower or even
negative return.

Max drawdown is defined as the maximum loss in percentage from the previous high
wealth to a subsequent low wealth. Here, wealth refers to the asset value and represents
the amount of money we have at hand due to holding the asset. Since it tracks the
maximum loss possible, the max drawdown measures a hypothetical loss if we were to
buy the asset at its peak price and sell it at its bottom price. It measures the worst return
from the peak to the trough that we could have experienced, if we are unlucky enough,
over the investment period. It gives an indication of how bad the worst-case scenario
could be, although it does not necessarily reflect the actual returns of a trading strategy.

Max drawdown provides a valuable perspective on the potential risks associated with
an investment strategy and is particularly useful in highlighting the potential extent of
negative performance. By considering the maximum percentage loss that an investment
strategy would have incurred in the worst-case scenario, we gain an understanding of
the potential “pain” or “risk” the investor might have to endure.

To calculate the max drawdown, we first need to obtain a series of the wealth index
to indicate the amount of money we have at each unit of time, assuming a hypothetical
buy-and-hold strategy (or other trading strategies of interest). It is a time series that
records the value of the portfolio at each point in time, taking into account all trading
activities, including the reinvestment of dividends, the effect of market returns, and
adjustments made to the portfolio, such as buying or selling of assets. In other words, the
wealth index tracks the evolution of an initial investment amount (say $1000) that was
used to buy the asset at the beginning of the investment horizon.

Next, we obtain the prior peak wealth index at any point in time. This gives the
highest portfolio value that one has experienced due to the particular trading strategy
at any point in time since the initiation of the position. This essentially identifies the
“highest highs” of the portfolio value. The distance between the prior peak and current
wealth gives the drawdown (converted to percentages), which indicates the amount of

201

CHAPTER 7 BACKTESTING A TRADING STRATEGY

money we could have lost. This value is usually negative or zero and reflects the extent to
which the current portfolio value has fallen from its most recent peak.

Lastly, the maximum distance then gives the max drawdown. This is the lowest
(most negative) value of the drawdown, indicating the largest percentage loss from the
peak to the trough. It signifies the worst loss the portfolio would have incurred over the
backtest period if the asset is bought at the peak and sold at the lowest point thereafter.

Figure 7-1 illustrates the calculation process of max drawdown. We first obtain the
raw price points of trading assets, which could typically be daily or monthly. These prices
are converted to single-period returns, followed by compounding the sequential returns
to obtain the wealth index. The single-period drawdown is then derived by calculating
the percentage difference between the cumulative maximum wealth of each time point
and the wealth value at the current time point. Finally, we report the maximum of these
single-period drawdowns as the final return of the max drawdown.

Raw time series of asset price 1 B Daily or monthly price points

4

Daily/monthly returns

g

1 . The returns are generated after
adopting a specific trading strategy

(Wealth . This represents the evolution of the
ealth index portfolio value over time
P
Calculated as the percentage distance
Drawdown] between the prior peak value and the
] current value
N
(Returns the maximum drawdown out of all
Max drawdown) daily/monthly drawdowns

Figure 7-1. Illustrating the process of calculating the max drawdown

Again, the max drawdown is a risk measure that helps us understand the worst-case
scenario of the trading strategy during the backtest period. Such a calculation process for
the drawdown intuitively makes sense, since most people treat it as the money they have
lost compared to the peak asset value they once owned in the past.

Figure 7-2 provides a sample wealth index curve and the corresponding single-
period drawdowns. Based on the cumulative wealth index curve in the blue line in the
left panel, we can obtain the cumulative peak value in the green line, which overlaps

202

CHAPTER 7 BACKTESTING A TRADING STRATEGY

with the wealth index if the wealth continues to make new heights and stays flat if the
wealth drops. We can thus form a new time series curve consisting of single-period
drawdowns as the percentage difference between these two curves and return the lowest

point as the max drawdown.

Wealth y Drawdown

A

Cumulative peak p -
: | Each point is a single-period drawdown
Cumulative max overlaps with .

| the wealth index in these regions
) 0 o —

Cumulative wealth index Max drawdown

* Time *Time

Figure 7-2. Obtaining the max drawdown based on a sample wealth index curve

Here, the max drawdown does not mean we are going to suffer such a loss; it simply
means the maximum loss we could have suffered following the particular trading
strategy. The strategy may incur such a loss if we are extremely unlucky and happen to
buy the asset at its peak price and sell it at its trough price. A strategy with a high max
drawdown would indicate a higher risk level, as it shows that the strategy has historically
resulted in substantial losses. On the other hand, a strategy with a low max drawdown
would indicate lower risk, as it has not led to significant losses in the past.

A shrewd reader may immediately wonder if there is a risk-adjusted return metric
based on drawdown risk. It turns out there is, and the measure is called the Calmar ratio,
which is calculated as the ratio between the annualized return of the trailing 36 months
and the max drawdown over the same trailing 36 months.

The Downside of Drawdown Risk

Although the drawdown risk is a popular measure among practitioners, it is not

robust and thus far from being a perfect measure of risk-adjusted return. For example,
each single-period drawdown relies on two inputs: the current wealth value and the
cumulative peak wealth value. The calculation then proceeds by taking the percentage
difference between the two. However, when there is an outlier value in these two inputs,
the resulting drawdown will be directly impacted. Its sensitivity to outliers, for instance,

203

CHAPTER 7 BACKTESTING A TRADING STRATEGY

can skew the risk measurement and present a distorted image of the potential loss. An
unusually high or low value can inflate or deflate the drawdown, leading to misleading
interpretations of the strategy’s riskiness. It is thus very sensitive to potential outliers in
the dataset.

Another downside of using drawdown risk is its dependency on the frequency of
the observations. For example, daily or weekly drawdowns exhibit a higher degree
of volatility than monthly drawdowns and are thus more likely to generate a deep
drawdown. However, when aggregating the data into monthly returns, such a deep
drawdown may completely disappear or move to other locations. Such sensitivity to the
granularity of the data further hurts the robustness of the drawdown measure.

It is also worth noting that max drawdown only provides a snapshot of the worst-case
scenario observed in the past. It doesn’t consider other potential unfavorable situations
that didn’t occur but could happen in the future.

Next, we look at calculating the max drawdown using Python.

Calculating the Max Drawdown

In this section, we will focus on the process of calculating the max drawdown for the
early period of 2023 for Google and Microsoft. These two stocks are picked due to
their recent introduction of large-scale language models: ChatGPT, first introduced by
Microsoft, and Bard, later by Google. Both led to a relatively big shock to the stock prices,
resulting in a positive uplift for Microsoft and a negative impact for Google.

Let us first download the stock price data from 2023-01-01 to 2023-02-11 via
Listing 7-1.

Listing 7-1. Downloading the stock price data

import numpy as np

import pandas as pd

import yfinance as yf

import matplotlib.pyplot as plt
start date = "2023-01-01"

end date = "2023-02-11"

df = yf.download(['GOOG', 'MSFT'], start=start date, end=end date)
>>> df.head()

204

CHAPTER 7 BACKTESTING A TRADING STRATEGY

As shown in Figure 7-3, the DataFrame has a multilayer column structure, where the
first level indicates the type of stock price and the second layer indicates the stock ticker.

Adj Close

Date

2023-01-03 0 609997 239 0002 80609997 230.580002 01.550003 245.750000 89.019997 237.399004

2023-01-04 887 229100006 B88.709999 229.100006 91230998 232.868995 87800003 225960007 91.01C

2023-01-05 3.7698 998 86.769997 222.309998 B88.209999 221.759995 88.070000 23136100

2023-01-06 8 300(29993 B88.160004 224.929993 B88.470001 5 8557 219.350006 87.360001

2023-01-09 B88.800003 227.119995 88800003 227.119995 00.830002 23 226.410004

Figure 7-3. Printing the first five rows of the downloaded stock price data

We will use the adjusted closing prices in the follow-up analysis:
df2 = df['Adj Close']

Note that the DataFrame is indexed by a list of dates in the datetime format, as
shown in the following:

>>> df2.index

DatetimeIndex(['2023-01-03", '2023-01-04', '2023-01-05', '2023-01-06",
'2023-01-09', '2023-01-10', '2023-01-11', '2023-01-12', '2023-01-13",
'2023-01-17', '2023-01-18', '2023-01-19', '2023-01-20', '2023-01-23',
'2023-01-24", '2023-01-25"', '2023-01-26', '2023-01-27', '2023-01-30',
'2023-01-31", '2023-02-01', '2023-02-02', '2023-02-03', '2023-02-06",
'2023-02-07", '2023-02-08', '2023-02-09', '2023-02-10'],
dtype="datetime64[ns]', name='Date', freg=None)

We can use these date indices to subset the DataFrame by the different granularity of
time periods, such as selecting at the monthly level. As an example, the following code
snippet slices the data in February 2023:

>>> df2.loc["2023-02"]

G00G MSFT
Date
2023-02-01 101.430000 252.750000
2023-02-02 108.800003 264.600006
2023-02-03 105.220001 258.350006
2023-02-06 103.470001 256.769989

205

CHAPTER 7 BACKTESTING A TRADING STRATEGY

2023-02-07 108.040001 267.559998
2023-02-08 100.000000 266.730011
2023-02-09 95.459999 263.619995
2023-02-10 94.860001 263.100006

The DataFrame we will work with contains 28 days of daily adjusted closing prices
for both stocks, ranging from 2023-01-03 to 2023-02-10. We can check these details using
the info() method:

>>> df2.info()

<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 28 entries, 2023-01-03 to 2023-02-10
Data columns (total 2 columns):

Column Non-Null Count Dtype

0 GOOG 28 non-null float64
1 MSFT 28 non-null float64
dtypes: float64(2)
memory usage: 672.0 bytes

Let us visualize the price curves as line plots:
>>> df2.plot.line()

As shown in Figure 7-4, both stocks maintained an increasing trend during this
period, although Google suffered a big hit in stock price near the end of the period.

206

CHAPTER 7 BACKTESTING A TRADING STRATEGY

275 4
250
225

200 1
e G
175 MSFT

150 1
125 1

100 1 _Hf___J_____‘#/—~ﬁafa—=~f/““““\H

Date

Figure 7-4. Visualizing the stock prices as line plots

To better understand the stock returns, let us convert the raw stock prices to single-
period percentage returns using the pct_change() function:

returns_df = df2.pct_change()
>>> returns_df.head()

GO0G MSFT
Date
2023-01-03 NaN NaN
2023-01-04 -0.011037 -0.043743
2023-01-05 -0.021869 -0.029638
2023-01-06 0.016019 0.011785
2023-01-09 0.007260 0.009736

Again, the first day shows an NA value since there is no prior stock price as the
baseline to calculate the daily return.
The corresponding line plot for the daily returns follows in Figure 7-5.

>>> returns_df.plot.line()

207

CHAPTER 7 BACKTESTING A TRADING STRATEGY

008

— GOOG
0.06 1 MSFT
004 . !

’ ')

002 1 \j\ . S
0.00 \/\ J ' _

| /
-0.02 '
-0.04 1
-0.06 1
-0.08 : : = ’ ; x — :

§ g oAl oAl oAk —ah oo oD L
A0 A0V L0V, o 3,0*%9\13.0\1,@ 4OV, o
.@1 'ldl .@1 -IQ'L .[Q'l, .}'Q'l .1()'1- .1{31 -LQ'L -‘L()'L
Date

Figure 7-5. Visualizing the stock returns

The figure suggests that the daily returns of both stocks are highly correlated, except
for the last few days when Google showed a sharp dip in price. Such a dip will reflect
itself in the max drawdown measure, as we will show later. Besides, we also observe a
higher volatility for Google as compared to Microsoft.

Now let us construct the wealth index time series. We assume an initial amount of
$1000 for each stock, based on which we will observe the daily evolution of the portfolio
value, assuming a buy-and-hold strategy. Such a wealth process relies on the sequential
compounding process using the cumprod() function based on 1+R returns, as shown in
Listing 7-2.

Listing 7-2. Constructing the wealth curve

initial wealth = 1000
wealth index df = initial wealth*(1+returns_df).cumprod()
>>> wealth_index_df.head()
GOOG MSFT
Date
2023-01-03 NaN NaN
2023-01-04 988.963234 956.256801
2023-01-05 967.335558 927.915502
2023-01-06 982.831735 938.851285
2023-01-09 989.966623 947.992292

208

CHAPTER 7 BACKTESTING A TRADING STRATEGY

We can override the initial entry as 1000 in order to plot the complete wealth index
curve for both stocks. This essentially tracks the money we have at each time point after
we invest $1000 in each stock on day 1, that is, 2023-01-03.

wealth index df.loc["2023-01-03"] = initial wealth
>>> wealth _index_df.head()
GO0G MSFT
Date
2023-01-03 1000.000000 1000.000000
2023-01-04 988.963234 956.256801
2023-01-05 967.335558 927.915502
2023-01-06 982.831735 938.851285
2023-01-09 989.966623 947.992292

Now we plot the wealth curve for both stocks, as shown in Figure 7-6.

>>> wealth index df.plot.line()

1200 1

1150

1100 A1

1050 1

1000 1

950 4

Vo] A\ 1"
N o o
L 1

Date

Figure 7-6. Visualizing the wealth curves

It appears that investing in Microsoft ends up with a higher portfolio value than in
Google, despite the latter taking the lead in all of the previous trading days. As it turns
out, one of the biggest drivers for the strong momentum behind Microsoft’s growth is
its investment in the ChatGPT model and recent integration with its search engine Bing
and Edge.

209

CHAPTER 7 BACKTESTING A TRADING STRATEGY

With the wealth index ready, we can build a new series to indicate the cumulative
peak wealth value for each trading day. This is achieved using the cummax () function
shown in Listing 7-3.

Listing 7-3. Constructing the cumulative maximum wealth

prior peaks df = wealth index_df.cummax()
>>> prior peaks df.head()
GOOG MSFT

Date

2023-01-03 1000.0 1000.0

2023-01-04 1000.0 1000.0

2023-01-05 1000.0 1000.0

2023-01-06 1000.0 1000.0

2023-01-09 1000.0 1000.0

Let us plot them as line charts, as shown in Figure 7-7.

>>> prior_peaks df.plot.line()

1200 1

1150 1

1100

1050 1

1000 1

3 2
> @° > a°
» »

oo a° ol
1,,&:\ > oY 1.5_0\
» » »

Date

Figure 7-7. Visualizing the cumulative maximum of the wealth curves

Now we are in a good position to calculate the daily drawdown as the percentage
difference between the current wealth and the prior peak. This is shown in Listing 7-4.

210

CHAPTER 7 BACKTESTING A TRADING STRATEGY
Listing 7-4. Calculating the daily drawdown

drawdown_df = (wealth _index df - prior peaks df) / prior peaks df
>>> drawdown_df.head()
GOOG MSFT
Date
2023-01-03 0.000000 0.000000
2023-01-04 -0.011037 -0.043743
2023-01-05 -0.032664 -0.072084
2023-01-06 -0.017168 -0.061149
2023-01-09 -0.010033 -0.052008

The corresponding line charts are shown in Figure 7-8.

>>> drawdown_df.plot.line()

-0.02

-0.04

=006

-0.08

-0.10

—— GOOG
=012 MSFT

o a° ab o o
S o o ﬁ_o\"‘ > ot o o
® P P » °

Date

Figure 7-8. Visualizing the daily drawdown

The sharp dip in Google’s drawdown at the end of the series becomes more
noticeable now, and we can probably say something about the reason behind the steep
drop. It turns out that there was a factual error in the demo when Google introduced
Bard as a response to the challenge from its rival, Microsoft’s ChatGPT. The error caused
Google shares to tank by a drop of $100 billion in market value.

211

CHAPTER 7 BACKTESTING A TRADING STRATEGY

Coming back to the max drawdown, we can now collect the minimum of these daily
drawdowns as the final report of the max drawdown for this trading strategy, as shown
in Listing 7-5. Note that we entered a long position in both stocks at the beginning of the
investment period, so the trading strategy is simply buy-and-hold.

Listing 7-5. Calculating the max drawdown

>>> drawdown_df.min()
G00G -0.128125

MSFT -0.072084
dtype: float64

Here, we take the minimum of the daily drawdown as it is a negative value. In
practice, we would often report it as a positive number. The result shows that Google has
a much bigger max drawdown (again, expressed as a negative value and interpreted as
the positive absolute value), more than double the max drawdown of Microsoft during
the same trading period.

We can observe the date when the max drawdown occurs using the idxmin()
function, which returns the date index of the minimum value across the whole column/
series, as shown in the following code snippet:

>>> drawdown_df.idxmin()
GO0G 2023-02-10

MSFT 2023-01-05

dtype: datetime64[ns]

We can also limit the range of the DataFrame by subsetting using a less granular date
index in the loc() function. For example, the following code returns the max drawdown
and the corresponding date for each stock in January 2023:

>>> drawdown_df.loc["2023-01"].min()
GOOG -0.044264

MSFT -0.072084

dtype: float64

>>> drawdown_df.loc["2023-01"].idxmin()
GO0G 2023-01-25

MSFT 2023-01-05

dtype: datetime64[ns]

212

CHAPTER 7 BACKTESTING A TRADING STRATEGY

Till now, we have managed to calculate the max drawdown following the requisite
steps. It turns out that a function would be extremely helpful when such steps become
tedious and complex. Using a function to wrap the recipe as a black box allows us to
focus on the big picture and not get bogged down by the inner workings each time we
calculate the max drawdown.

We define a function called drawdown () to achieve this task, as shown in Listing 7-6.
This function takes the daily returns in the form of a single Pandas Series as input,
executes the aforementioned calculation steps, and returns the daily wealth index, prior
peaks, and drawdowns in a DataFrame as the output.

Listing 7-6. Defining a function to calculate the wealth index, prior peak, and
drawdown

def drawdown(return series: pd.Series):
Input: a time series of asset returns
Output: a DataFrame that contains:
- the wealth index
- the prior peaks
- percentage drawdowns
wealth index series = initial wealth*(1+return_series).cumprod()
prior peaks series = wealth_index_ series.cummax()
drawdown_series = (wealth index series - prior peaks series) / prior
peaks series
return pd.DataFrame({
"Wealth index": wealth index series,
"Prior peaks": prior peaks series,
"Drawdown": drawdown_series

1)

Note that the calculation process remains the same. The only change is the
compilation of the relevant information (wealth index, prior peaks, and drawdown) in
one DataFrame. Also, we explicitly specified the input type to be a Pandas Series, as this
saves the need to check the input type later on.

Now let us test this function by passing Google’s daily returns as the input series:

213

CHAPTER 7 BACKTESTING A TRADING STRATEGY

>>> drawdown(returns df["GO0G"]).head()

Wealth index Prior peaks Drawdown
Date
2023-01-03 NaN NaN NaN
2023-01-04 988.963234 988.963234 0.000000
2023-01-05 967.335558 988.963234 -0.021869
2023-01-06 982.831735 988.963234 -0.006200
2023-01-09 989.966623 989.966623 0.000000

The following code snippet plots the wealth index and prior peaks as line charts:

>>> drawdown(returns df["GOOG"])[['Wealth index', 'Prior peaks']].
plot.line()

Running the command generates Figure 7-9.

1200 { — Wealth index
Prior peaks

1150 A

1100 A

1050
1000 ?j\j
A
A2 (W (W (Y (20 1910\ 10‘7 o

s 1017’ o e i e o
Date

Figure 7-9. Visualizing the wealth index and prior peaks as line charts

We can use the loc() function to subset for a specific month. For example, the
following code returns the same curves for January 2023:

>>> drawdown(returns_df.loc["2023-01","GO0G"])[['Wealth index', 'Prior
peaks']].plot.line()

Running the command generates Figure 7-10.

214

CHAPTER 7 BACKTESTING A TRADING STRATEGY

1120 { — Wealth index \ =
Prior peaks

1100 4

1080 1 |f

1060 1

1040 1

1020 1

1000 1

980 1

960 T T T T T T T T
oY o o o o o o oo

U L A

Date

Figure 7-10. Visualizing the wealth index and prior peaks for January 2023

Similarly, we can obtain the max drawdown and the corresponding date for both
stocks, as shown in the following code snippet:

>>> drawdown(returns df["GO0G"])['Drawdown’].min()
-0.1281250188455857

>>> drawdown(returns df["G00G"])['Drawdown'].idxmin()
Timestamp('2023-02-10 00:00:00")

>>> drawdown(returns df["MSFT"])['Drawdown’].min()
-0.035032299621028426

>>> drawdown(returns df["MSFT"])['Drawdown'].idxmin()
Timestamp('2023-01-19 00:00:00")

The following code snippet returns the max drawdown for both stocks in
January 2023:

>>> drawdown(returns_df.loc["2023-01","GO0G"])['Drawdown"'].min()
-0.04426435893749917
>>> drawdown(returns df.loc["2023-01","MSFT"])['Drawdown'].min()
-0.035032299621028426

In the next section, we will discuss the backtesting procedure using the trend-
following strategy.

215

CHAPTER 7 BACKTESTING A TRADING STRATEGY

Backtesting the Trend-Following Strategy

In this backtesting exercise, we are going to calculate four metrics as the performance
indicator: the annualized return and volatility, the Sharpe ratio, and the max drawdown.
Since the trend-following strategy works on one asset only, we are going to backtest
Google’s stock price for the year 2022 based on its adjusted closing price.

First, let us download the dataset and store it in df_goog:

df goog = yf.download(['GO0G'], start="2022-01-01", end="2023-01-01")
['Adj Close']
df goog = pd.DataFrame(df goog)
>>> df _goog.head()

Adj Close
Date
2022-01-03 145.074493
2022-01-04 144.416504
2022-01-05 137.653503
2022-01-06 137.550995
2022-01-07 137.004501

Now we create two moving averages, a short curve with a span of 5 using the
exponential moving average via the ewm() method and a long curve with a window
size of 30 using the simple moving average via the ro11ing() method, as shown in
Listing 7-7.

Listing 7-7. Calculating the short and long moving averages

sma_span = 30
ema_span = 5
short ma = 'ema'+str(ema_span)

long ma ="sma'+str(sma_span)
df goog[long ma] = df goog['Adj Close'].rolling(sma_span).mean()
df goog[short ma] = df goog['Adj Close'].ewm(span=ema_span).mean()
>>> df_goog.head()

Adj Close sma30 ema5
Date
2022-01-03 145.074493 NaN 145.074493

216

CHAPTER 7 BACKTESTING A TRADING STRATEGY

2022-01-04 144.416504 NaN 144.679700
2022-01-05 137.653503 NaN 141.351501
2022-01-06 137.550995 NaN 139.772829
2022-01-07 137.004501 NaN 138.710106

Note that the span is directly related to the @ parameter we introduced earlier via the
following relationship:
2
o=
span +1

where span > 1.

Since generating the trading signal requires that both moving averages are available
at each time point, we remove the rows with any NA value in the DataFrame using the
dropna() method, where we set inplace=True to change within the DataFrame directly:

df goog.dropna(inplace=True)
>>> df goog.head()

Adj Close sma30 emas
Date
2022-02-14 135.300003 137.335750 137.064586
2022-02-15 136.425507 137.047450 136.851559
2022-02-16 137.487503 136.816483 137.063541
2022-02-17 132.308502 136.638317 135.478525
2022-02-18 130.467499 136.402200 133.808181

Now let us plot these two moving averages together with the original price curve via
the following code snippet:

fig = plt.figure(figsize=(14,7))

plt.plot(df_goog.index, df goog['Adj Close'], linewidth=1.5, label='Daily
Adj Close')

plt.plot(df goog.index, df goog[long ma], linewidth=2, label=long ma)
plt.plot(df goog.index, df goog[short ma], linewidth=2, label=short ma)
plt.title("Trend following strategy")

plt.ylabel('Price($)")

plt.legend()

Running the command generates Figure 7-11.

217

CHAPTER 7 BACKTESTING A TRADING STRATEGY

Trend following strategy

- Daily Ad) Close
—— sma3l
— ema5

140

130

100

202202 202203 2022.04 202205 202206 202207 202208 2022-09 202210 202211 202212 2023-01

Figure 7-11. Visualizing the moving averages together with the raw time series

As Figure 7-11 suggests, the short moving average (green curve) tracks the raw time
series more closely, while the long moving average (orange curve) displays a smoother
pattern due to a stronger averaging effect.

Now let us calculate the log returns of the buy-and-hold strategy, which assumes
buying one share of Google stock and holding it till the end of the investment period.
This is shown in Listing 7-8.

Listing 7-8. Calculating the log returns of the buy-and-hold strategy

df goog['log return buy n hold'] = np.log(df goog['Adj Close'] / df_
goog['Adj Close'].shift(1))

An equivalent way of calculating the log returns is to convert the prices to
logarithmic form and then take the difference, as shown in Listing 7-9.

Listing 7-9. An equivalent way of calculating the log returns
df goog['log return buy n hold'] = np.log(df goog['Adj Close']).diff()

Next, we identify the trading signals for the trend-following strategy, starting by
creating a signal column that indicates the intended position based on the magnitude of
the two moving averages. This is shown in Listing 7-10.

218

CHAPTER 7 BACKTESTING A TRADING STRATEGY
Listing 7-10. Creating the signal column

identify buy signal

df goog['signal'] = np.where(df goog[short ma] > df goog[long ma], 1, 0)

identify sell signal

df goog['signal'] = np.where(df goog[short ma] < df goog[long ma], -1, df_
goog|['signal'])

df_goog.dropna(inplace=True)

>>> df _goog.head()

Adj Close sma30 emas log_return_buy n_hold signal
Date
2022-02-15 136.425507 137.047450 136.851559 0.008284 -1
2022-02-16 137.487503 136.816483 137.063541 0.007754 1
2022-02-17 132.308502 136.638317 135.478525 -0.038397 -1
2022-02-18 130.467499 136.402200 133.808181 -0.014012 -1
2022-02-22 129.402496 136.148800 132.339619 -0.008196 -1

The periodic log returns for the trend-following strategy can be obtained by
multiplying signal with log_return buy n hold via Listing 7-11.

Listing 7-11. Calculating the periodic log returns of the buy-and-hold strategy

df goog['log return trend follow'] = df goog['signal'] * df goog['log
return_buy n _hold']

The terminal return can be calculated using the cumprod() function or the prod()
function, as shown in Listing 7-12. The first approach calculates the compounded
periodic return and accesses the last period as the final return before converting to
the simple return format. The second approach directly multiplies all intermediate
percentage returns to get the final return as the last period, followed by conversion to a
simple return.

Listing 7-12. Calculating terminal returns of both strategies

terminal return of buy-n-hold

>>> np.exp(df_goog['log return buy n hold']).cumprod()[-1] -1
-0.34419806832531474

another way to calculate

219

CHAPTER 7 BACKTESTING A TRADING STRATEGY

>>> np.exp(df_goog['log return buy n hold']).prod() - 1
-0.34419806832531474

terminal return of trend following

>>> np.exp(df_goog['log return trend follow']).cumprod()[-1] -1
0.3609149965748346

another way to calculate

np.exp(df goog['log return trend follow']).prod() - 1
0.3609149965748346

Although the buy-and-hold strategy is obviously no match for the trend-following
strategy, we will still calculate the aforementioned backtesting measures, namely,
annualized return and volatility, Sharpe ratio, and the max drawdown.

Let us start with the annualized return. As shown in Listing 7-13, the annualized
return is calculated by obtaining the terminal return in 1+R format, rescaling it to an
annual basis, and finally converting it back to a simple return.

Listing 7-13. Calculating the annualized return

calculate annualized return of buy-n-hold
annualized return buy n hold = np.exp(df goog['log return buy n hold']).
prod()**(252/df_goog.shape[0])-1

>>> annualized_return_buy n_hold

-0.3818823804560594

calculate annualized return of trend following
annualized return trend follow = np.exp(df goog['log return trend_
follow']).prod()**(252/df goog.shape[0])-1

>>> annualized return_trend follow

0.4210313983829783

Note that we can also add up all the log returns and exponentiate the sum to get the
same result:

>>> np.exp(df_goog['log_return_trend follow'].sum())**(252/df_goog.
shape[0])-1
0.4210313983829783

Let us calculate the annualized volatility, as shown in Listing 7-14. Recall that the
daily volatility scales up as a function of the square root of time.

220

CHAPTER 7 BACKTESTING A TRADING STRATEGY
Listing 7-14. Calculating the annualized volatility

calculate annualized volatility of buy-n-hold
annualized vol buy n_hold = (np.exp(df_goog['log return buy n hold'])-1).
std()*(252**0.5)

>>> annualized vol buy n_hold

0.3896836224899977

calculate annualized volatility of trend following
annualized vol trend follow = (np.exp(df goog['log return trend
follow'])-1).std()*(252**0.5)

>>> annualized vol trend follow

0.39285546408734645

Now we calculate the Sharpe ratio, assuming a risk-free interest rate of 3%. This is
shown in Listing 7-15.

Listing 7-15. Calculating the Sharpe ratio

riskfree rate = 0.03

calculate Sharpe ratio of buy-n-hold

sharpe ratio buy n hold = (annualized return buy n hold - riskfree rate) /
annualized vol buy n hold

>>> sharpe_ratio_buy n_hold

-1.0569661045137495

calculate Sharpe ratio of trend following

sharpe ratio trend follow = (annualized return trend follow - riskfree
rate) / annualized vol trend follow

>>> sharpe_ratio_trend follow

0.9953569038205886

Lastly, we calculate the max drawdown of both strategies, as shown in Listing 7-16.

Listing 7-16. Calculating the max drawdown

max drawdown of buy-n-hold

max_drawdown_buy n_hold = drawdown(np.exp(df goog['log return buy n_
hold'])-1)['Drawdown’'].min()

>>> max_drawdown_buy n_hold

221

CHAPTER 7 BACKTESTING A TRADING STRATEGY

-0.41876535983781205

max drawdown of trend following

max_drawdown_trend follow = drawdown(np.exp(df goog['log return trend
follow'])-1)['Drawdown'].min()

>>> max_drawdown_trend follow

-0.20685357874978227

Although these two strategies are quite disparate in terms of these measures in
backtesting, it also shows the importance of demonstrating the superiority of a strategy
among a set of common backtesting measures before its adoption. In the next chapter,
we will discuss a feedback loop that optimizes the selection of trading parameters, such
as the window size, in order to obtain the best trading performance given a specific
trading strategy.

Summary

In this chapter, we covered the process of backtesting a trading strategy. We started
by introducing the concept of backtesting and its caveats. We then introduced the
maximum drawdown, a commonly used performance measure on the downside risk
of a particular trading strategy, followed by its calculation process. Lastly, we provided
an example of how to backtest a trend-following strategy via multiple performance
measures.

In the next chapter, we will introduce statistical arbitrage with hypothesis testing,
with the pairs trading strategy as the working example.

222

CHAPTER 7 BACKTESTING A TRADING STRATEGY

Exercises

o Asset Aloses 1% a month for 12 months, and asset B gains 1% per
month for 12 months. Which is the more volatile asset?

e Drawdown is a measure of only downside risk and not upside risk.
True or false?

o Assume the risk-free rate is never negative. The drawdown of an
investment that returns the risk-free rate every month is zero. True
or false?

e The drawdown computed from a daily return series is always greater
than or equal to the drawdown computed from the corresponding
monthly series. True or false?

e Write a class to calculate the annualized return, volatility, Sharpe
ratio, and max drawdown of a momentum trading strategy.

e How does the frequency of data sampling affect the calculated max
drawdown? What might be the implications of using daily data vs.
monthly data?

e Assume you have calculated a Sharpe ratio of 1.5 for your trading
strategy. If the risk-free rate increases, what would happen to the
Sharpe ratio, all else being equal?

o Ifastrategy has a positive average return but a high max drawdown,
what might this suggest about the risk of the strategy?

223

CHAPTER 8

Statistical Arbitrage
with Hypothesis Testing

Statistical arbitrage is a market-neutral trading strategy leveraging statistical methods

to identify and exploit significant relationships between financial assets. Through
hypothesis testing, it discerns pricing discrepancies within correlated asset pairs due

to temporary market inefficiencies. By purchasing underpriced and selling overpriced
assets, the strategy ensures profit as the market corrects these inefficiencies, regardless of

overall market movements.

Statistical Arbitrage

Statistical arbitrage refers to the use of statistical methods to identify statistically
significant relationships underlying multiple financial assets and generate trading
signals. There are two parts involved in this process: statistical analysis and arbitrage.
In this context, statistical analysis mostly refers to hypothesis testing, which is a suite

of statistical procedures that allows us to determine if a specific relationship among
multiple financial instruments based on the observed data is statistically significant. On
the other hand, arbitrage means making sure-win profits.

At its core, this strategy relies on mean reversion, which assumes that financial
instruments that have deviated far from their historical relationship will eventually
converge again. For instance, consider two highly correlated stocks, A and B. If, due to
some short-term market factors, the price of A increases disproportionately compared to
B, a statistical arbitrage strategy might involve short-selling A (which is now overpriced)
and buying B (which is underpriced). As the prices of A and B revert to their historical
correlation, the arbitrageur would close both positions—buy A to cover the short sell and

225
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_8

https://doi.org/10.1007/978-1-4842-9675-2_8

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

sell B to realize the gain. The net profit comes from the convergence of prices. Therefore,
statistical arbitrage is essentially a market-neutral strategy, generating profits by taking
advantage of temporary market inefficiencies.

Note that statistical arbitrage strategies should expect a relatively stable long-term
equilibrium relationship between the two underlying assets for the strategy to work.
They also operate on relatively small profit margins, necessitating high volumes of trades
to generate substantial returns.

Delving deeper, the first step in the statistical arbitrage process is to identify pairs
of trading instruments that exhibit a high degree of comovement. This can be achieved
through statistical procedures such as correlation analysis or cointegration tests.

For instance, consider stocks A and B, which typically move in sync with each other.
Although perfect correlation is rare in financial markets, we can leverage historical price
data to find stocks that are highly correlated, often within the same industry or sector.

However, this comovement doesn’t always mean equal price changes. Short-
term fluctuations driven by various factors like market sentiment, sudden news
announcements, or unforeseen events like a pandemic can cause a temporary
divergence in the price relationship. In the given example, if stock A increases by 10%
and stock B only by 5%, it suggests a temporary mispricing where B is underpriced
relative to A.

This brings us to the second step, which involves capitalizing on this mispricing
through trading actions such as pairs trading. In the case of A and B, an investor could
execute a long position on the underpriced stock B, expecting its price to increase and
converge with the price of A.

It's important to note that statistical arbitrage relies heavily on the premise that
these pricing inefficiencies are temporary and that the price relationship will revert to
its historical norm. Therefore, this strategy necessitates diligent monitoring and a robust
risk management system to ensure timely entries and exits.

Figure 8-1 illustrates one way of performing statistical arbitrage. We assume a perfect
correlation between stocks A and B, where the same percentage change is observed for
periods 0, 1, and 2. However, stock A increased by 10% in period 3, while stock B only
increased by 5%. Based on the principle of statistical arbitrage, we could long stock B,
which is considered to be underpriced, or short stock A, which is considered overpriced.
We could also do both at the same time.

226

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

' Perfect correlation between stocks A
and B in periods 0, 1 and 2

Stock A increased by 10% in period 3

i +
P while stock B increased by 5% only

Stock B

We could take advantage of this
Stock A arbitrage opportunity by longing stock B
or shorting stock A in period 3

-

0 1 2 3 t

Figure 8-1. lllustrating the concept of statistical arbitrage. After identifying a
perfect correlation between stocks A and B using statistical techniques, as indicated
by the prices in periods 0, 1, and 2, we would take advantage of market mispricing
by longing stock B (which is underpriced) and/or shorting stock A (which is
overpriced)

Pairs Trading

Pairs trading is a market-neutral strategy that leverages statistical analysis to generate
potential profits regardless of the overall market direction. The “pair” in pairs trading
refers to simultaneously taking two positions: going long on one asset and short on
another, with the key requirement being that these assets are highly correlated. The
trading signal stems from the spread or price difference between these two assets.

An unusually large spread, in comparison to historical data, suggests a temporary
divergence, and the anticipation is that this divergence will eventually correct itself,
reverting to its mean or average value over time. Traders can capitalize on this mean-
reverting behavior, initiating trades when the spread is abnormally wide and closing
them once the spread narrows and returns to its typical range.

The determination of what constitutes an “abnormal” or “normal” spread is crucial
and forms the core parameters of the pairs trading strategy. This typically involves
extensive backtesting, where historical price data is analyzed to identify consistent
patterns in price divergence and convergence, which then informs the thresholds for
trade entry and exit points. Pairs trading, while robust in its market-neutral stance,

227

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

requires a keen understanding of the long-term equilibrium relationship between
the paired assets and careful management of potential risks if the expected price
convergence does not materialize.

In the strategy of pairs trading, asset selection is grounded in a statistical procedure
called hypothesis testing, specifically, the cointegration test. This process uses historical
price data to identify pairs of financial instruments that exhibit a high level of correlation.
When two assets are highly correlated, they tend to move in a synchronized manner.
This means that any price change in one asset is typically mirrored proportionally by the
other, resulting in relatively stable spreads that do not deviate significantly from their
historical average. However, there can be moments when this spread deviates markedly
from its historical norm, suggesting temporary mispricing of the assets. This divergence
indicates that the assets’ prices have drifted apart more than their usual correlation
would predict.

Such deviations create a unique profit opportunity in pairs trading. Traders can
capitalize on these large spreads by betting on their future contraction. Specifically,
the strategy would be to go long on the underpriced asset and short on the overpriced
one, with the anticipation that the spread will revert back to its historical average as the
asset prices correct themselves. This reversion provides the opportunity to close both
positions at a profit.

Figure 8-2 provides the overall workflow of implementing a pairs trading strategy.

At first, we analyze a group of financial assets (such as stocks) and identify a pair that
passes the cointegration test. This is a statistical test that determines if a group of assets
is cointegrated, meaning their combination generates a stationary time series, despite
each individual time series not exhibiting such stationarity. In other words, the historical
differences, or spreads, of the two cointegrated assets form a stationary time series.

We can thus monitor the current spread and check if it exceeds a reasonable range of
historical spreads. Exceeding the normal range indicates a trading signal to enter two
positions: long the underpriced asset and short the overpriced asset. We would then
hold these positions until the current spread shrinks back to the normal range, upon
which point we would exit the positions and lock in a profit before it shrinks even further
(which results in a loss).

228

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

. Select a pair of stocks Obtain a normal range of
Stock A that passes the _ historical spread for the pair
Stock B cointegration test stockA | of cointegrated assets Historical

StockC | StockB | " spread

Compare current spread with
historical spreads to assess if the [
former exceeds a normal range

\ —— S e
Trading signal to | | Trading signal to Current

exit a position enter a position spread

If short-term fluctuation occurs
due to market fluctuations,
buy the underperforming asset
while short-selling the
overperforming asset

the positions and lock in a profit.
Figure 8-2. Overall workflow of implementing the pairs trading strategy

Cointegration

Cointegration, a concept pivotal to hypothesis testing, posits two potential scenarios:
the null hypothesis, which states that two or more non-stationary time series are not
cointegrated, and the alternative hypothesis, which claims the opposite, that is, these
time series are cointegrated if their linear combination generates a stationary time series
(more on this later).

Let’s demystify some of the jargon here. A time series refers to a sequence of data
points indexed (or listed or graphed) in time order, with each data point assigned a
specific timestamp. This dataset can be analyzed through several summary statistics or
statistical properties. These can include metrics like mean and variance computed over a
certain time frame or window.

Moving this window across different periods, a stationary time series exhibits
constancy in its mean and variance on average. This means that no matter when you
observe it, its basic properties do not change. On the other hand, a non-stationary time
series demonstrates a trend or a drift, signifying a changing mean and variance across
varying time periods. These time series are dynamic, with their basic properties shifting
over time, often due to factors like trends and seasonality.

229

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Hence, the process of cointegration examines whether there is a long-term
equilibrium relationship between non-stationary time series despite short-term
fluctuations. Such long-term equilibrium manifests as a stationary time series as a linear
combination of the two non-stationary time series.

Many traditional statistical methods, including ordinary least squares (OLS)
regression, are based on the assumption that the variables under analysis—which are
also time series data points—exhibit stationarity. This implies that their fundamental
statistical characteristics remain consistent over time. However, when dealing with
non-stationary variables, this stationarity assumption gets violated. As a result, different
techniques are needed to perform the modeling. One common strategy is to difference
the non-stationary variable (deriving a new time series by taking the difference in the
observed values of two consecutive time points) to eliminate any observable trend or drift.

A non-stationary time series might possess a unit root, which signifies a root of one
in its autoregressive (AR) polynomial. To put it differently, the value in the next time
period is strongly impacted by the present period value. This dependency reflects a form
of serial correlation, where values from previous periods exert influence on subsequent
ones, thereby potentially leading to non-stationary behavior.

The unit root test, therefore, is a method to examine whether a time series is non-
stationary and possesses a unit root. Identifying and addressing the presence of a unit
root is a critical step in the process of time series modeling, especially when the aim is to
understand long-term trends and forecasts.

In essence, a cointegration test examines the assumption that, although individual
time series may each have a unit root and hence be non-stationary, a linear combination
of these time series might result in a stationary series. This forms the alternative
hypothesis for the test.

To be precise, the alternative hypothesis states that the aggregate time series, derived
from a linear combination of individual time series, achieves stationarity. Should this
be the case, it would imply a persistent long-term relationship among these time series
variables. Such long-term relationships will get obscured by temporary fluctuations in
the market from time to time, due to factors such as mispricing. Hence, the cointegration
test aids in revealing these hidden long-term relationships among time series variables.

When assets are determined to be cointegrated—meaning that the alternative
hypothesis is upheld—they are fed into the trading signal generation phase of the pairs
trading strategy. Here, we anticipate the long-term relationship between the two time
series variables to prevail, regardless of short-term market turbulence.

230

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Therefore, cointegration serves as a valuable tool in statistical analysis, exposing
the underlying long-term relationship between two non-stationary and seemingly
unrelated time series. This long-term association, difficult to detect when these time
series are analyzed independently, can be discovered by combining these individual
non-stationary assets in a particular way. This combination is typically done using
the Johansen test, yielding a new, combined time series that exhibits stationarity,
characterized by a consistent mean and variance over different periods. Alternatively,
the Engle-Granger test can be employed to generate a spread series from the residuals of
a linear regression model between the two assets.

Figure 8-3 illustrates the process of cointegration and strategy formulation. The
purpose of cointegration is to convert individual non-stationary time series data into
a combined stationary series, which can be achieved via the Johansen test with a
linear combination, the Engle-Granger test via a linear regression model, or other test
procedures. We would then derive another series called the spread to indicate the extent
of short-term fluctuation from the long-term equilibrium relationship. The spread is used
to generate trading signals in the form of entry and exit points based on the extent of
deviation at each time point, with the help of entry and exit thresholds defined in advance.

Non-stationary Stationary time Entry and exit points
time series data , series data
Johansen test via a
linear combination of | . Compare short-term
the two assets fluctuation with long-
Stock A | - term equilibrium
relationship Trading
Spread g
P signals
StockB | "

Engle-Granger test via a
linear regression model
between the two assets

;

‘ Cointegration ‘ Strategy formulation

Figure 8-3. Illustrating the process of cointegration using different tests and
strategy formulation to generate trading signals

The next section covers a more in-depth discussion on stationarity.

231

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Stationarity

Stock prices are time series data. A stationary time series is a time series where the
statistical properties of the series, including the mean, variance, and covariance at
different time points, are constant and do not change over time. A stationary time series
is thus characterized by a lack of observable trends or cycles in the data.

Let us take the normal distribution as an example. A normal distribution y = f(x; u, 0)
is a probability density function that maps an input x to a probability output y, assuming
a fixed set of parameters: the mean y as the central tendency and standard deviation ¢ as
the average deviation from the mean. The specific form of the probability distribution is
as follows:

A widely used normal distribution is the standard normal, specifying x =0and o = 1.
The resulting probability density function is

y=f(xm,0)=\/;—7r

We can generate random samples following this specific form using the random.
normal() function from NumPy. In Listing 8-1, we define a function generate normal_
sample() that generates a normally distributed random sample by passing in the input
parameter y and o in a list.

Listing 8-1. Generating normal samples

generate random samples from normal distribution
def generate normal sample(params):

input: params, including mean in params[0] and standard deviation in
params[1]

output: a random sample from the normal distribution parameterized by
the input

232

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

mean = params[O0]
sd = params[1]
return np.random.normal(mean, sd)

Now we generate a sample by specifying a standard normal distribution:

generate sample from standard norml
>>> print(generate normal sample([0,1]))
0.09120471661981977

To see the impact on the samples generated from a non-stationary distribution, we
will specify three different non-stationary distributions. Specifically, we will generate 100
samples that follow a distribution with either an increasing mean or standard deviation.
Listing 8-2 performs the random sampling for 100 rounds and compares them with the
samples from the standard normal distribution.

Listing 8-2. Generating samples from stationary and non-stationary normal
distributions

generate 100 random samples for both stationary and non-stationary
distribution

T = 100

stationary list, nonstationary listi, nonstationary list2 = [], [], []

for i in range(T):
generate a stationary sample and append to list
stationary list.append(generate normal sample([0,1]))
generate a non-stationary sample with an increasing mean and
append to list
nonstationary listi.append(generate normal sample([i,1]))
generate a non-stationary sample with an increasing mean and sd and
append to list
nonstationary list2.append(generate normal sample([i,np.sqrt(i)]))

x = range(T)
plot the lists as line plots with labels for each line
plt.plot(x, stationary list, label='Stationary')

233

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

plt.plot(x, nonstationary list1, label='Non-stationary with

increasing mean")

plt.plot(x, nonstationary 1ist2, label='Non-stationary with increasing mean
and sd")

set the axis labels
plt.xlabel('Sample index")
plt.ylabel('Sample value')
add a legend
plt.legend()

show the plot

plt.show()

Running the code generates Figure 8-4, where the impact of a changing mean
and standard deviation becomes more pronounced as we increase the magnitude in

later rounds.
100 { —— Stationary
Non-stationary with increasing mean ~Y
i —— Non-stationary with increasing mean and sd
Y
® 607
>
¥
L] 40 1
v

0 20 40) 80 100
Sample index

Figure 8-4. Generating normally distributed random samples from non-
stationary distributions with different parameter specifications

Note that we can use the augmented Dickey-Fuller (ADF) test to check if a series is a
stationary. The function stationarity test() defined in Listing 8-3 accepts two inputs:
the time series to be tested for stationarity and the significant level used to compare with
the p-value and determine the statistical significance. Note that the p-value is accessed
as the second argument from the test result object using the adfuller () function. This is
shown in Listing 8-3.

234

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Listing 8-3. Testing stationarity of a time series

test for stationarity
def stationarity test(x, threshold=0.05):
input:
x: a list of scalar values
threshold: significance level
output: print out message on stationarity
pvalue = adfuller(x)[1]
if pvalue < threshold:
return 'p-value is ' + str(pvalue) +
stationary.'
else:
return 'p-value is ' + str(pvalue) +

stationary.'

". The series is likely

". The series is likely non-

Let us apply this function to the previous time series data. The result shows that the

ADF is able to differentiate if a time series is stationary (with fixed parameters) based on

a preset significance level:

>>> print(stationarity test(stationary list))

>>> print(stationarity test(nonstationary list1))
>>> print(stationarity test(nonstationary list2))
p-value is 1.2718058919122438e-12. The series is likely stationary.
p-value is 0.9925665941220737. The series is likely non-stationary.
p-value is 0.9120355459829741. The series is likely non-stationary.

Let us look at a concrete example of how to test for cointegration between two stocks.

235

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Test for Cointegration

This section provides an example of performing the cointegration test using the Engle-
Granger two-step method. Here’s a general overview of the steps involved:

o Estimate the coefficients of the linear regression model between
one stock (as the dependent variable) and the other stock (as the
independent variable) using ordinary least squares (OLS).

o Calculate the residuals from the linear regression model.

o Test the residuals for stationarity using a unit root test, such as the
augmented Dickey-Fuller (ADF) test.

o Iftheresiduals are stationary, the two stocks are cointegrated. If the
residuals are non-stationary, the two stocks are not cointegrated.

Let us illustrate the procedure using two stocks: Google and Microsoft. Listing 8-4
imports necessary packages and downloads the daily stock prices for the whole year of
2022. We will use the adjusted closing price for the cointegration test.

Listing 8-4. Importing packages and downloading stock data

import os

import random

import numpy as np

import yfinance as yf

import pandas as pd

from statsmodels.tsa.stattools import adfuller

from statsmodels.regression.linear model import OLS
import statsmodels.api as sm

from matplotlib import pyplot as plt

Zmatplotlib inline

SEED = 8
random.seed(SEED)
np.random.seed(SEED)

download data from yfinance
start date = "2022-01-01"

236

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

end date = "2022-12-31"
stocks = ['GOOG', '"MSFT']
df = yf.download(stocks, start=start date, end=end date)['Adj Close']
>>> df.head()

G00G MSFT
Date
2022-01-03 145.074493 330.813873
2022-01-04 144.416504 325.141357
2022-01-05 137.653503 312.659882
2022-01-06 137.550995 310.189301
2022-01-07 137.004501 310.347382

Now we dig into the linear regression model between these two stocks. We will treat
Google stock as the (only) independent variable and Microsoft stock as the dependent
variable to be predicted. The model assumes the following form:

y=PB,+Bx+e

where f, denotes the intercept and f, is the slope of the linear line fitted between
these two stocks. e represents the random noise that is not modeled by the predictor x.
Note that we are assuming a linear relationship between x and y, which is unlikely to
be the case in a real-world environment. Another name for ¢ is the residual, which is
interpreted as the (vertical) distance between the predicted value f, + f,x and the target
value y. Thatis, e =y — (f, + f1x).

Our focus would then shift to these residuals, with the intention of assessing if the
residual time series would be stationary. Let us first obtain the residuals from the linear
regression model.

In Listing 8-5, we assign the first stock as the target variable Y and the second stock
as the predictor variable X. We then use the add_constant () function to add a column of
ones to the X variable, which can also be considered as the bias trick to incorporate the
intercept term f,. Next, we construct a linear regression model object using the OLS()
function, perform learning by invoking the fit() function, and calculate the residuals
as the difference between the target values and the predicted values, obtained via the
predict() method.

237

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Listing 8-5. Extracting residuals from OLS

build linear regression model

Extract prices for two stocks of interest
target var: Y; predictor: X

df[stocks[0]]
df[stocks[1]]

XX < HF H H=

estimate linear regression coefficients of stockl on stock2
X with constant = sm.add constant(X)

model = OLS(Y, X with constant).fit()

residuals = Y - model.predict()

The model object is essentially a collection of the model weights (also called
parameters) and the architecture that governs how the data flow from the input to the
output. Let us access the model weights:

access model weights
>>> print(model.params)
const -47.680218
MSFT 0.610303
dtype: float64

We have two parameters in the model: const corresponding to 5, and MSFT
corresponding to ;.

Besides using the predict() method to obtain the predicted values, we can also
construct the explicit expression for the predictions and calculate them manually. That
is, we can calculate the predicted values {}}N as follows:

i=1

=p, + Bx;, le{ N}

The following code snippet implements this expression and calculates the model
predictions manually. We also check if the manually calculated residuals are equal to the
previous values using the equals () function:

alternative approach

residuals2 = Y - (model.params['const'] + model.params[stocks[1]] * X)
check if both residuals are the same
print(residuals.equals(residuals2))

238

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Lastly, we test the stationarity of the residual series, again using the augmented
Dickey-Fuller (ADF) test. The test can be performed using the adfuller() function from
the statsmodels package. There are two metrics that are relevant to every statistical
test: the test statistic and the p-value. Both metrics convey the same information
on the statistical significance of the underlying hypothesis, with the p-value being
a standardized and, thus, more interpretable metric. A widely used threshold (also
called the significance level) is 5% for the p-value. That is, if the resulting p-value from a
statistical test is less than 5%, we can safely (up to a confidence level of 95%) reject the
null hypothesis in favor of the alternative hypothesis. If the p-value is greater than 5%, we
fail to reject the null hypothesis and conclude that the two stocks are not cointegrated.

The null hypothesis often represents the status quo. In the case of the cointegration
testing using the Engle-Granger test, the null hypothesis is that the two stocks are not
cointegrated. That is, the historical prices do not exhibit a linear relationship in the long
run. The alternative hypothesis is that the two stocks are cointegrated, as exhibited by a
linear relationship between the two and a stationary residual series.

Now let us carry out the ADF test and use the result to determine if these two stocks
are cointegrated using a significance level of 5%. In Listing 8-6, we apply the adfuller()
function to the prediction residuals and print out the test statistic and p-value. This is
followed by an if-else statement to determine if we have enough confidence to reject the
null hypothesis and claim that the two stocks are cointegrated.

Listing 8-6. Testing stationarity of the residuals

test stationarity of the residuals

adf test = adfuller(residuals)

print(f"ADF test statistic: {adf test[0]}")
print(f"p-value: {adf test[1]}")

if adf test[1] < 0.05:

print("The two stocks are cointegrated.")
else:

print("The two stocks are not cointegrated.")
ADF test statistic: -3.179800920038961
p-value: 0.021184058997635733
The two stocks are cointegrated.

239

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

The result suggests that Google and Microsoft stocks are cointegrated due to a small
p-value of 2%. Indeed, based on our previous analysis of calculating the max drawdown,
Google and Microsoft stock prices generally tend to move together. However, with
the introduction of ChatGPT in Bing search, the overall picture may start to change.
Such cointegration (comovement) may gradually weaken as the tool gives everything
for Microsoft to win (due to a small revenue from web search) and for Google to lose
(majority revenue comes from web search).

Next, we touch upon another closely related but different statistical concept:
correlation.

Correlation and Cointegration

Both correlation and cointegration are important statistical measures used to analyze
the relationship between two time series datasets. Correlation quantifies the degree
of linear association between two time series. In essence, it reveals whether the two
variables increase or decrease in tandem and the strength of this relationship. The
correlation coefficient can vary between -1 and 1. A coefficient of 1 denotes a perfect
positive linear relationship, -1 signifies a perfect negative linear relationship, while 0
suggests the absence of any linear relationship.

In contrast, cointegration is concerned with the long-term equilibrium relationship
between two potentially non-stationary time series. If two time series are cointegrated,
it signifies that they share a common long-term trend, regardless of their short-term
variations. Consequently, while the two time series may not exhibit short-term linear
correlation, they can display a long-term stationary pattern when suitably combined.
This enables analysts to uncover persistent relationships masked by transitory market
volatility.

The following code snippet provides an example of two correlated time series that
are not cointegrated. We first sample two series of 100 random values following normal
distributions with a different mean and the same variance. This is followed up by a
cumulative summation operation stored as a Pandas Series object. Finally, we plot both
series as lines after combining them horizontally in a DataFrame and calling the plot()
function:

np.random.seed(123)
X = np.random.normal(1, 1, 100)
Y = np.random.normal(2, 1, 100)

240

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

X
Y

pd.Series(np.cumsum(X), name='X")
pd.Series(np.cumsum(Y), name="Y")

pd.concat([X, Y], axis=1).plot()s

Running the code generates Figure 8-5. Series Y has a higher drift than series X as
designed and also exhibits a high degree of correlation (or comovement) across the
whole history of 100 points.

w0 {__ P
ol g _/FJ,
150 g

125 A

100

75 1

T T T T T

0 20 40 680 80 100

Figure 8-5. lllustrating the evolution of two series that are highly correlated but
not cointegrated

Let us calculate the exact correlation coefficient and cointegration p-value. In
the following code snippet, we call the corr () method to obtain the correlation of X
with Y and use the coint() function from the statsmodels package to perform the
cointegration test and retrieve the resulting p-value. The coint() function performs
the augmented Engle-Granger two-step cointegration test, similar to how to manually
carry out the two-step process earlier. The result shows that these two series are highly
correlated but not cointegrated.

from statsmodels.tsa.stattools import coint

calculate the correlation coefficeint

>>> print('Correlation: ' + str(X.corr(Y)))

perform in cointegration test

score, pvalue, = coint(X,Y)

>>> print('Cointegration test p-value: ' + str(pvalue))
Correlation: 0.994833254077976

Cointegration test p-value: 0.17830098966789126

241

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

In the next section, we dive deep into the implementation of the pairs trading
strategy.

Implementing the Pairs Trading Strategy

As a market-neutral trading strategy, pairs trading identifies two cointegrated stocks
based on a specific statistical test procedure using historical data. It takes a long and
a short position in these two stocks simultaneously. Therefore, no matter whether the
market moves up or down for these two stocks, there is no impact on the pairs trading
strategy, so long as their relative spread remains the same. Instead, the strategy monitors
the spread between the two stocks, which should remain relatively constant over time,
and makes a move in case of short-term price movements based on preset thresholds.
Let us first download the stock price data. We will focus on a few stock symbols of
major tech giants: Google, Microsoft, Apple, Tesla, Meta, and Netflix. The following code
snippet downloads the historical stock prices for the full year of 2022 and extracts the
adjusted closing prices to the df variable:

download data from yfinance
stocks = ['GOOG','MSFT','AAPL', 'TSLA', 'META', 'NFLX']
df = yf.download(stocks, start=start date, end=end date)['Adj Close']

Next, we analyze each unique pair of stocks and perform the cointegration test to
look for those with a long-term equilibrium relationship.

Identifying Cointegrated Pairs of Stocks

There are a total of six stocks in our search space, leading to a total of C; =15. Generating
the list of unique pairs of stocks can be performed via the combinations() function from
the itertools package, as shown in Listing 8-7.

Listing 8-7. Generating all unique pairs of stocks
from itertools import combinations

get all pairs of stocks
stock pairs = list(combinations(df.columns, 2))

242

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

>>> stock pairs
[("AAPL', 'GOOG"),
('AAPL', 'META'),
('AAPL', 'MSFT'),
('AAPL', 'NFLX'),
('AAPL', 'TSLA'"),
('GOOG", 'META'),
('GOOG", 'MSFT'),
('GOOG', 'NFLX'),
('G00G', 'TSLA"),
('META', 'MSFT'),
('META', 'NFLX'),
('META', 'TSLA'),
('"MSFT', 'NFLX'),
('"MSFT', 'TSLA'),
('NFLX', 'TSLA")]

These 15 unique pairs of stocks are stored as tuples in a list. Each tuple will go
through the cointegration test in the following section.

Testing Pairwise Cointegration

In Listing 8-8, we loop through each pair of stocks and perform the Engle-Granger

test using the coint () function. For each unique pair of stocks, we first extract the
corresponding DataFrame via subsetting by column names and then perform the
cointegration test using the two series to obtain the test score and p-value. We will then
compare the p-value with a preset threshold and print out the result to assess if the test
result is statistically significant.

Listing 8-8. Performing a cointegration test for each unique pair of stocks

threshold = 0.1
run Engle-Granger test for cointegration on each pair of stocks
for pair in stock pairs:

subset df based on current pair of stocks
df2 = df[list(pair)]

243

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

perform test for the current pair of stocks
score, pvalue, = coint(df2.values[:,0], df2.values[:,1])
check if the current pair of stocks is cointegrated
if pvalue < threshold:
print(pair, 'are cointegrated')
else:
print(pair, 'are not cointegrated')

Note that the threshold is set as 10% instead of 5% as before, since the test would
show no cointegrated pair of stocks when setting the threshold as the latter. As it turns
out, the coint() function is slightly different from our manual implementation of the
test procedure earlier. For example, the order of the time series assumed by the coint ()
function may not be the same.

Running the code generates the following result:

('AAPL', 'GOOG') are not cointegrated
('AAPL', 'META') are not cointegrated
('AAPL', 'MSFT') are not cointegrated
('AAPL', 'NFLX') are not cointegrated
('AAPL', 'TSLA') are not cointegrated
('GOOG", 'META') are not cointegrated
('GOOG', 'MSFT') are cointegrated

('GOOG", 'NFLX') are not cointegrated
('GOOG", 'TSLA') are not cointegrated
('META', 'MSFT') are not cointegrated
('META", 'NFLX') are not cointegrated
('META", 'TSLA') are not cointegrated
('MSFT', 'NFLX') are not cointegrated
('MSFT", 'TSLA') are not cointegrated
('NFLX", 'TSLA') are not cointegrated

It turns out that only Google and Microsoft stock prices are cointegrated using the
10% threshold on the significance level. These two stocks will be the focus of our pairs
trading strategy in the following, starting by identifying the stationary spread between
the two stocks.

244

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Obtaining the Spread

As introduced earlier, the spread is a time series derived from the historical data of the
two stocks in the pairs trading strategy. There are many ways to calculate the spread,
and we will go with the one employed in the cointegration test procedure. Specifically,
we define the spread as the residuals from the linear regression model between the two
stocks. If they pass the cointegration test, we have confidence (up to 90% confidence
level) that these two stocks, when linearly combined, generate a stationary time series in
the spread.

Listing 8-9 generates the spread time series and visualizes it in a line plot. As before,
we first extract the predictor X and target Y, apply the bias trick by adding a column of
constant ones to X, run the linear regression model, and finally obtain the spread as the
residual between the target and the prediction.

Listing 8-9. Calculating the spread

calculate the spread for GOOG and MSFT
Y = df["G00G"]

X = df["MSFT"]

estimate linear regression coefficients
X with _constant = sm.add_constant(X)
model = OLS(Y, X with constant).fit()

obtain the spread as the residuals
spread = Y - model.predict()
spread.plot(figsize=(12,6))

Running the code generates Figure 8-6. The spread now appears as white noise, that
is, following a normally distributed Gaussian distribution. Since different stocks have
different scales of spread, it would be recommended to standardize them into the same
scalar for ease of comparison and strategy formulation. The next section covers the
conversion process that turns the spread into z-scores.

245

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

10

=10 1

=
ﬁf"“ ¥ Y

Date

Figure 8-6. Visualizing the spread as the residuals of the linear regression model

Converting to Z-Scores

A z-score is a measure of how many standard deviations the daily spread is from
its mean. It is a standardized score that we can use to compare across different
distributions. Denote x as the original observation. The z-score is calculated as follows:

where yx and o denote the mean and standard deviation of the time series,
respectively.

Therefore, the magnitude of the z-score indicates how far away the current
observation deviates from the mean in terms of the unit of standard deviations, and the
sign of the z-score suggests whether the deviation is above (a positive z-score) or below
(a negative z-score) the mean.

For example, assume a distribution with a mean of 10 and a standard deviation of 2.

10-8

If an observation is valued at 8, the z-score for this observation would be 1.

In other words, this observation is one standard deviation away from the mean of the
distribution.

246

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

The z-score is often used to assess the statistical significance of observation in
hypothesis testing. A z-score of greater than or equal to 1.96 (or smaller than or equal
to -1.96) corresponds to a p-value of 0.05 or less, which is a common threshold for
assessing the statistical significance.

In Listing 8-10, we visualize the probability density function (PDF) of a standard
normal distribution with a mean of 0 and a standard deviation of 1. We first generate a
list of equally spaced input values as the z-scores using the np. linspace() function and
obtain the corresponding probabilities in the PDF of standard normal distribution using
the norm. pdf () function with a location parameter of 0 (corresponding to the mean) and
scale of 1 (corresponding to the standard deviation). We also shade the areas before -1.96
and after 1.96, where a z-score of 1.96 corresponds to a 95% significance level in a statistical
test. In other words, z-scores greater than or equal to 1.96 account for 5% of the total
probability, and z-scores lower than or equal to -1.96 account for 5% as well.

Listing 8-10. Calculating the z-score

illustrate z score by generating a standard normal distribution with mu 0
and sd 1

from scipy.stats import norm

input: unbounded scalar, assumed to be in the range of [-5,-5] in this case
x = np.linspace(-5, 5, 100)

output: probability between 0 and 1

y = norm.pdf(x, loc=0, scale=1)

set up the plot

fig, ax = plt.subplots()

plot the pdf of normal distribution

ax.plot(x, y)

shade the area corresponding to a z-score of >=1.96 and <=-1.96
z_critical = 1.96

x_shade = np.linspace(z_critical, 5, 100)

y_shade = norm.pdf(x_shade, loc=0, scale=1)

ax.fill between(x_shade, y shade, color='red', alpha=0.3)

z critical2z = -1.96

x_shade2 = np.linspace(-5, z_critical2, 100)

y_shade2 = norm.pdf(x_shade2, loc=0, scale=1)

ax.fill between(x shade2, y shade2, color="red', alpha=0.3)

247

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

add labels and a title

ax.set xlabel('Z-score')

ax.set_ylabel('Probability density')

add a vertical line to indicate the z-score of 1.96 and -1.96

ax.axvline(x=z_critical, linestyle='--', color="red")

ax.axvline(x=z_critical2, linestyle='--', color="red")
display the plot
plt.show()

Running the code generates Figure 8-7.

0.40 1
0.35 1
0.30 1
0.25 1
0.20 1
0.15 1

Probability density

0.10 1
0.05 1
0.00 1

Z-score

Figure 8-7. Visualizing the probability density function of a standard normal
distribution, with the 5% significance level shaded at both the left and right sides

In the context of hypothesis testing, the shaded area represents the probability
of observing a z-score greater than 1.96 under the null hypothesis. Performing the
statistical test would give us a z-score. If the z-score is above 1.96 or below -1.96 in a one-
sided test, we would reject the null hypothesis in favor of the alternative hypothesis at
the 0.05 significance level, since the probability of observing the phenomenon under the
null hypothesis would simply be too small.

In summary, we use the z-score as a standardized score to measure how many
standard deviations an observation is from the mean of a distribution. It is used in
hypothesis testing to determine the statistical significance of an observation, that is, the
probability of an event happening under the null hypothesis. The significance level is
often set at 0.05. We can use the z-score to calculate the probability of observing a value
as extreme as the observation under the null hypothesis. Finally, we make a decision on
whether to reject or fail to reject the null hypothesis.

248

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Now let us revisit the running example. Since stock prices are often volatile, we
switch to the moving average approach to derive the running mean and standard
deviation. That is, each daily spread would have a corresponding running mean and
standard deviation based on the collection of spreads in the rolling window. In Listing
8-11, we derive the running mean and standard deviation using a window size of ten and
apply the transformation to derive the resulting z-scores as the standardized spread.

Listing 8-11. Converting to z-scores based on moving averages

convert to z score

z-score is a measure of how many standard deviations the spread is from
its mean

derive mean and sd using a moving window

window_size = 10

spread_mean = spread.rolling(window=window_size).mean()

spread_std = spread.rolling(window=window_size).std()

zscore = (spread - spread mean) / spread std

zscore.plot(figsize=(12,6))

Running the code generates Figure 8-8, where the standardized spreads now look
more normally distributed as white noise.

N)) 1] B 8% N
,&1‘1‘0 ﬂﬁ.ﬁ -p,ﬂ_n ‘&,ﬂ_n 101.1,0 "537'1'.\— ~9_!:,’,()
Date

Figure 8-8. Visualizing the z-scores after standardizing the spreads using the
running mean and standard deviation

249

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Since we used a window size of ten, the first nine observations will appear as NA in
the moving average series. Let us get rid of the initial NA values by first identifying the
first valid index using the first valid index() function and then subsetting the z-score
series, as shown in the following code:

remove initial days with NA
first valid idx = zscore.first valid index()
zscore = zscore[first valid idx:]

>>> zscore
Date

2022-01-14 1.123748
2022-01-18 1.245480
2022-01-19 0.742031
2022-01-20 0.211878
2022-01-21 0.064889

2022-12-23 1.618937
2022-12-27 0.977235
2022-12-28 0.807607
2022-12-29 -0.230086
2022-12-30 -0.137035
Name: GOOG, Length: 242, dtype: float64

The next section formulates the trading strategy using the z-scores.

Formulating the Trading Strategy

As introduced earlier, the pairs trading strategy utilizes the z-scores to generate trading
signals in the face of short-term fluctuations in the spread, taking long and short
positions in two cointegrated assets and profiting from the long-term mean reversion of
the spread.

The trading signals are generated when the z-score obtained from the previous
section crosses over a specific threshold. For example, we can long the first stock and
short the second stock when the z-score is below -2, meaning that the spread is more
negative than usual, and there is a good chance that the spread will revert back to its
mean in the long run. Similarly, we can short the first stock and long the second stock

250

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

when the z-score is above 2, suggesting that the spread is more positive than usual and
there is a good chance that the spread will go back to its mean. These constitute our
entry signals.

On the other hand, when we are in an open position, the stock may move in an
adverse direction in a very small amount of time. To protect our profit and stop the loss,
we can place an exit signal that serves as a stop-loss order. For example, assume we
entered a long position when the z-score was below -2 in the previous step. We can set
up another threshold to exit the position when the z-score returns to a small value,
say -1. Crossing this threshold indicates that the spread has reverted back to its mean.

The following list summarizes the formulation of trading signals for entering and
exiting the long and short positions:

o Long entry: Enter a long position in the first stock when the z-score is
below a preset negative threshold value (say -2).

» Long exit: Exit the long position in the first stock when the z-score
crosses above another preset negative threshold value (say -1).

o Shortentry: Enter a short position in the second stock when the
z-score is above a preset positive threshold value (say 2).

e Short exit: Exit the short position in the second stock when the
z-score crosses below another preset positive threshold value (say 1).

To manage these four types of signals in implementation, we could maintain a
Pandas Series object for each stock, where each value is either 1 (for long), -1 (for short),
or 0 (for exit position). To simplify the process, we also assume that the long and short
positions for each stock are also entered and exited together. In other words, upon
entering a long position for one stock, we would enter a short position in the other stock
at the same time.

Figure 8-9 overlays these four trading signals in the previous z-score time series. The
outer thresholds 2 and -2 represent entry signals for long and short positions, and the
inner thresholds 1 and -1 represent the exit signals for existing positions. In between
these two thresholds, we simply maintain the current position.

251

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

- If z-score>2, short stock 1 and long stock 2
‘ ‘ || i ﬂ A | (\
LA ||\ ||, |,| ’ I'{1 .I L | 'll < | Maintain current position if 1<z-score<2
1 Al [i l | .
1 T T |
I| | | (i] | * L I (N |
|] \ I A | s)
4 {1 h |- III | ' } '. | |‘ I\ || } H «| If -1<z-score<1, exit positions in both stocks
l‘” ‘[| | ['“' I| ||"|I‘Iq||
J ol A U
EARERE I |
lf I i| u i Iy ,| | <| Maintain current position if -2<z-score<-1
' | | | | - g
2 f 1
! L < Ifz-score<-2, long stock 1 and short stock 2
‘@Jn\ & W ~,n‘3'$ 1:\"J.c.'- -p't";q ﬁ_'lx\ 191_.,;‘

Date

Figure 8-9. Illustrating the process of formulating trading signals based on preset
entry and exit thresholds for the z-scores

In Listing 8-12, we first initialize the entry and exit thresholds, respectively. We
create two Pandas Series objects (stock1 positionand stock2 position) to store the
daily positions for each stock. Based on the current z-score and present thresholds for
entering and exiting long or short positions, we check the daily z-score in a loop and
match it to one of the four cases for signal generation based on the following rule:

o Longstock 1 and short stock 2 if the z-score is below -2 and stock 1
has no prior position.

e Shortstock 1 and long stock 2 if the z-score is above 2 and stock 2 has
no prior position.
o Exit the position in both stock 1 and stock 2 if the z-score is between

-land]l1.

e Maintain the position in both stock 1 and stock 2 for the rest of the
cases, that is, the z-score is between -2 and -1 or between 1 and 2.

Listing 8-12. Implementing pairs trading

set the threshold values for entry and exit signals
entry_threshold = 2.0

exit threshold = 1.0

initialize the daily positions to be zeros

stockl position = pd.Series(data=0, index=zscore.index)

252

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

stock2 position = pd.Series(data=0, index=zscore.index)
generate daily entry and exit signals for each stock
for i in range(1, len(zscore)):
zscore<-2 and no existing long position for stock 1
if zscore[i] < -entry threshold and stockl position[i-1] == O:
stockl position[i] = 1 # long stock 1
stock2 position[i] = -1 # short stock 2
zscore>2 and no existing short position for stock 2
elif zscore[i] > entry threshold and stock2 position[i-1] == O:
stockl position[i] = -1 # short stock 1
stock2 _position[i] = 1 # long stock 2
-1<zscore<1
elif abs(zscore[i]) < exit threshold:
stockl position[i] = 0 # exit existing position
stock2 position[i] = 0
-2<zscore<-1 or 1<zscore<2
else:
stock1l position[i]

stockl position[i-1] # maintain existing
position

stock2 position[i] = stock2 position[i-1]

We can now calculate the overall profit of the pairs trading strategy. In Listing 8-13,
we first obtain the daily percentage changes using the pct_change() function for
each stock, starting from the index with a valid value. These daily returns will be
adjusted according to the position we held from the previous trading day. In other
words, multiplying the shifted positions with the daily returns gives the strategy’s daily
returns for each stock, filling possible NA values with zero. Finally, we add up the daily
returns from the two stocks, convert them to 1+R returns, and perform the sequential
compounding procedure using the cumprod() function to obtain the wealth index.

Listing 8-13. Calculating the cumulative return

Calculate the returns of each stock

stockl returns = (df["GOOG"][first valid idx:].pct change() * stock1_
position.shift(1)).fillna(0)

stock2_returns = (df["MSFT"][first valid idx:].pct _change() * stock2_
position.shift(1)).fillna(0)

253

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

calculate the total returns of the strategy
total returns = stockl returns + stock2 returns
cumulative returns = (1 + total returns).cumprod()
plot the cumulative returns

>>> cumulative returns.plot()

Running the code generates Figure 8-10.

1175

1100

1075

1050

1025

Figure 8-10. Cumulative returns of the pairs trading strategy

The terminal return, extracted via the following code, shows that the pairs trading
strategy delivers a total of 14.1% profit at the end of the trading year.
Again, this result is subject to more rigorous backtesting in terms of the selection of

investment assets, trading periods, and evaluation metrics.

Summary

In this chapter, we covered the concept of statistical arbitrage and hypothesis testing, as
well as the implementation details based on the pairs trading strategy. We first walked
through the overall process of developing a pairs trading strategy and introduced new
concepts such as cointegration and stationarity. Next, we compared cointegration and
correlation, both closely related but drastically different. Last, we introduced a case study
on calculating the cumulative return using the pairs trading strategy.

In the next chapter, we will introduce Bayesian optimization, a principled way to
search for optimal parameters of a trading strategy.

254

CHAPTER 8 STATISTICAL ARBITRAGE WITH HYPOTHESIS TESTING

Exercises

o Evaluate the cointegration of selected stock pairs during bull and
bear market periods separately. Do the results vary significantly? If
so, discuss possible reasons.

o Implement rolling cointegration tests on a pair of time series data
and observe how cointegration status (cointegrated or not) evolves
over time.

o For a given pair of stocks, test the stationarity of the spread between
them using the ADF test. If the spread is stationary, what does it
imply for the pairs trading strategy?

o Given the time series data of spreads for a pair of stocks, perform a
hypothesis test to check whether the mean of spreads is equal to zero.

e Calculate the z-scores of the spread for different lookback periods
(e.g., 30, 60, and 90 days). How does changing the lookback period
affect the distribution of z-scores and the performance of your pairs
trading strategy?

255

CHAPTER 9

Optimizing Trading
Strategies with Bayesian
Optimization

Financial trading employs numerous strategies in order to maximize returns. The
effectiveness of these strategies can often hinge on the fine-tuning of the respective
parameters, a task that can be both time-consuming and computationally expensive.
Bayesian optimization comes into play as a highly efficient method for strategy
optimization. It is a model-based optimization algorithm that uses the past evaluation
results (in the form of a training set) to form a probabilistic surrogate model, which it
exploits to determine the next point to evaluate using the so-called acquisition function.
This approach is particularly useful in trading strategy optimization, where the objective
function is often noisy, nonconvex, and expensive to evaluate.

In this chapter, we will explore the principles of Bayesian optimization and its use
in trading strategy optimization. By the end of this chapter, readers will have a solid
understanding of how Bayesian optimization can be used to fine-tune parameters and
therefore enhance trading strategies, leading to potentially higher returns and more
efficient use of computational resources.

Optimizing Trading Strategies

We aim to maximize terminal profitability via a specific trading strategy, which often
comes with a set of parameters. When properly located, the optimal set of parameters
can generate the highest profit (if the goal is to maximize the terminal return) during the
backtesting period. Since different testing periods likely exhibit different characteristics
in terms of the asset price curve, a robust approach is to backtest a specific set of

257
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_9

https://doi.org/10.1007/978-1-4842-9675-2_9

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

parameters over different test periods that cover most representative scenarios. The
optimal set of parameters thus consistently produces the highest terminal return over
multiple backtesting periods.

The optimal set of parameters is the one that consistently produces the highest
terminal return over multiple backtesting periods. This means that the strategy performs
well not just in one specific market condition, but across a variety of typical scenarios.
This approach helps to ensure that the strategy is robust and adaptable, capable of
delivering strong returns regardless of market fluctuations.

However, manually fine-tuning a trading strategy by setting different parameter
values is an extremely time-consuming process. On the one hand, the number of
possible parameter values to test out may simply be too large. When there are too
many alternative configurations to be tested, carrying out a grid search (search over
each unique configuration) may look too prohibitive, especially when each parameter
has multiple alternative values, and there are many such parameters. In particular,

a continuous parameter will render such manual search infeasible due to infinitely
many values. Yet, on the other hand, backtesting each specific set of parameters is

not instantaneous. Instead, each round of execution may take very long, thus further
exacerbating the challenge in the global search for the optimal strategy and making the
process of manually fine-tuning a trading strategy a daunting task.

This is where automated optimization techniques, such as Bayesian optimization,
come into play. These methods can efficiently navigate the search space (also referred
to as the domain), intelligently choosing the next set of parameters to test based on
previous results. This allows for more efficient sampling of the parameter space, saving
both time and computational resources.

It turns out that there are many optimization techniques that aim at locating the
optimal set of parameters for a specific trading strategy. Let us first understand the
optimization problem that occurs upon searching for the optimal trading strategy.

Parametric Trading Strategies

The parameters serve as the input variables to a specific trading strategy. A typical
trading strategy has one or more parameters, each assuming a particular value within
the prespecified range. Each parameter can vary within its defined ranges, allowing for a
wide array of possible strategy configurations. Upon accepting these input parameters,
the strategy will generate the resulting trading signals, from which the terminal return

258

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

over a specific backtesting period could be calculated as an indicator of the “goodness”
of these parameters. The input parameters do not assume fixed values; instead, they are
variables that can vary within predefined ranges.

Let us look at a concrete example. Recall the trend-following strategy covered earlier.
This trading strategy relies on two moving averages to generate a trading signal: a short-
term moving average and a long-term moving average. We would enter into a long
position if the short-term moving average crosses above the long-term moving average,
after closing the existing short position, if any. Alternatively, we would enter into a short
position if the short-term moving average crosses below the long-term moving average,
after closing the existing long position, if any.

This strategy thus depends on two input parameters: the window lengths /, and /,
for the short-term and long-term moving averages, respectively. Each set of parameters
would correspond to a number of performance metrics, such as the terminal return or
the Sharpe ratio. Each set of parameters (/; and /,) will generate a unique series of trading
signals, which in turn will result in a specific terminal return or Sharpe ratio. These
performance metrics serve as indicators of the “goodness” or effectiveness of the chosen
parameters.

To proceed with the search for the optimal set of window length parameters, we
would need a single-number metric to optimize over. Such scalar objective serves as
the feedback signal on how good or bad the current set of input parameters is. This
objective serves as a feedback signal, indicating the effectiveness of a given set of input
parameters. For example, suppose we choose the Sharpe ratio as the objective to be
maximized. This results in an objective function, where the output is the Sharpe ratio
S over a specific backtesting period, the input parameters are window lengths /; and [,,
and we can represent the objective function as S = f(1,, ,). Here, frepresents a black-box
function, which means we do not have its explicit mathematical form or its derivative
information. A black-box function is one where we do not have explicit knowledge of its
mathematical form or its derivative information. This means that we can evaluate the
function (i.e., we can determine the Sharpe ratio for a given set of parameters), but we
don’t have a simple formula that allows us to directly calculate the optimal parameters.
This makes global optimization extremely difficult since we know very little about the
characteristics of this function while our goal is to find its global maximum point.

Such a lack of explicit knowledge about the function makes the optimization
problem challenging. We are essentially searching for the global maximum of a function
that we know very little about. However, this is precisely the type of problem that
Bayesian optimization is designed to tackle.

259

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

More formally, we could frame the question as this: for a given stock, locate the
values of /; and [, in the range of [1,10] and [11,20] (note that we need to ensure /, < [,)
that maximizes the Sharpe ratio within the backtesting period of a whole year. Figure 9-1
summarizes the characteristics of the optimization problem. Note that different trading
strategies correspond to a different unknown black-box function f. Even if the strategy is
the same, varying the backtesting period also yields a different function realization of the
objective function f.

Black box function that take input parameters and returns the scalar
performance metric (Sharpe ratio) of a given trading strategy

¥

Window length [, S

f = Sharpe ratio S
Window length [, > "
- . ¥
Input parameters that are integer- Explicit functional form or gradient | The goal is to ﬁgure out the set
valued in the trend-following information is unavailable, and each of input parameters that
strategy, satisfying [; < [, | | evaluation may be time-consuming achieve the higher Sharpe ratio

Figure 9-1. Illustrating the optimization problem. The selected trading strategy
manifests as an unknown function, and our goal is to search for the optimal set of
window lengths that deliver the highest performance metric, the Sharpe ratio in
this case

The next section provides more perspectives on the overall optimization process.

More on Optimization

Optimization aims at locating the optimal value f* = f(x*) or its maximizer

x" =argmax _, f for all the input values x € X’ in a maximization setting, which could also
be a minimization problem. The procedure that carries out the optimization process

is called the optimizer. There are multiple types of optimizers, with stochastic gradient
descent (SGD) being the most popular optimizer in the space of deep learning. In the
context of backtesting a trading strategy, we are mostly interested in optimizing the risk-
adjusted return, represented by the Sharpe ratio or other risk measures such as the max
drawdown. Plus, we have the additional challenge that the inputs are not continuous
values; instead, they are discrete such as window sizes or trading volumes.

260

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

The optimizer takes a function fand figures out the desired optimum value f* or its
corresponding input parameter x*. Being an optimum value means that f(x*) is greater
(or less, in the case of minimization) than any other values in the neighborhood. Here,
f*may be either a local optimum or a global optimum. A local optimum means f(x*) is
at the top of a mountain, and global optimum means the highest point of all mountains
in the region. That is, in a maximization setting, we could take all the local maxima,
compare each other, and report the maximum of them as the global maximum. Both
are characterized by having a zero gradient at the point x*, yet the global optimum
is often what we aim for. The optimizer needs a strategy to escape from these local
optima and continue its search for the global optimum. There are various techniques
to handle this issue, including using different initial values via the multistart procedure,
applying random jumps in the parameter space, and using complex algorithms like
simulated annealing or genetic algorithms that employ specific mechanisms to escape
local optima.

In the context of developing a trading strategy, we are interested in the global
maximizer (optimal input parameters) that gives the maximal Sharpe ratio. This is a
complex task as there may be many sets of parameters that yield good results (local
maxima), but we want to find the absolute best (global maximum).

Note that using the gradient information to identify an optimum represents a huge
improvement in our understanding of optimization problems, as first proposed by Isaac
Newton. Prior to his time, we would make the manual comparison for each unique pair,
which is a combinatorial problem that requires the most time-consuming work. When
the function form is available, such as y = x?, we could invoke the tool of calculus and
solve for the point whose gradient is zero, that is, y = 2x = 0, giving x = 0. We could then
calculate the second derivative or apply the sign chart method to ascertain if this is a
maximum or minimum point.

The next section introduces more on the global optimization problem.

Global Optimization

Optimization aims to locate the optimal set of parameters of interest across the whole
search domain, often by carefully allocating limited resources. For example, when
searching for the car key at home before leaving for work in two minutes, we would
naturally start with the most promising place where we would usually put the key. If it
is not there, think for a little while about the possible locations and go to the next most

261

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

promising place. This process iterates until the key is found. In this example, the search
policy is, in a way, behaving intelligently. It digests the available information on previous
searches and proposes the following promising location, so as to use the limited
resource wisely. The resource could be the limited number of trials we could run before
a project deadline approaches tomorrow or the two-minute budget to search for the key
in this case. The unknown function is the house itself, a binary value that reveals if the
key is placed at the proposed location upon each sampling at the specific location.

This intelligent search policy represents a cornerstone concept in optimization,
especially in the context of derivative-free optimization where the unknown function
does not reveal any derivative information. Here, the policy needs to balance
exploration, which probes the unknown function at various locations in the search
domain, and exploitation, which focuses on promising areas where we have already
identified a good candidate value. This trade-off is usually characterized by a learning
curve showing the function value of the best-found solution over the number of function
evaluations.

The key search example is considered an easy one since we are familiar with the
environment in terms of its structural design. However, imagine locating an item in a
totally new environment. The optimizer would need to account for the uncertainty due
to unfamiliarity with the environment while determining the next sampling location via
multiple sequential trials. When the sampling budget is limited, as is often the case in
real-life searches in terms of time and resources, the optimizer needs to argue carefully
on the utility of each candidate input parameter value.

This process is characterized by sequential decision-making under uncertainty,

a problem that lies at the heart of the field of optimization. When faced with such

a situation, optimizers need to develop an intelligent search policy that effectively
manages the trade-off between exploration (searching new areas) and exploitation
(capitalizing on known, promising locations). In the context of searching for an item

in an unfamiliar environment, exploration involves searching in completely new areas
where the item could potentially be located, while exploitation involves focusing the
search around areas where clues or signs of the item have already been found. The
challenge is to balance these two approaches, as focusing too much on exploration could
lead to a waste of time and resources, while focusing too much on exploitation could
result in missed opportunities.

262

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

In the world of trading strategies, this situation amounts to a search in a high-
dimensional parameter space where each dimension represents a different aspect of the
trading strategy. Exploration would involve trying out completely new sets of parameters,
while exploitation would involve fine-tuning the most promising sets of parameters
already discovered. The optimizer aims to effectively navigate this high-dimensional
space and find the set of parameters that yields the best possible performance in terms
of the Sharpe ratio or other preset metrics.

Let us formalize this sequential global optimization using mathematical terms.

We are dealing with an unknown scalar-valued objective function fbased on a specific
domain &X'. In other words, the unknown subject of interest fis a function that maps a
certain candidate parameter in X' to areal number in R, thatis, f: X - R. We typically
place no specific assumption about the nature of the domain X" other than that it should
be a bounded, compact, and convex set.

A bounded set X means that it has upper and lower limits, and all values of the
parameters contained within X fall within these bounds. A compact set is one that is
both bounded and closed, meaning that it includes its boundary. And a convex set is one
in which, for any two points within the set, the set contains the whole line segment that
joins them. These assumptions make our problem mathematically tractable and realistic
in the real-world scenario.

Unless otherwise specified, we focus on the maximization setting instead of
minimization since maximizing the objective function is equivalent to minimizing
the negated objective, followed by another negation to recover the original maximum
value. The optimization procedure thus aims at locating the global maximum f* or its
corresponding location x* in a principled and systematic manner. Mathematically, we
wish to locate f* where

f"zmaxf(x)zf(x")

xeX
Or equivalently, we are interested in its location x* where
x" =argmax_, f(x)

The argmax operation is used in mathematics to denote the argument of the
maximum or the set of points in the domain X that maximizes the function f. When used
in this optimization problem, it means that we are looking for the specific values of the
input parameters that yield the maximum value of the function.

263

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Again, note that f(x) is unknown and only indirectly observable through sampling,
and & could be a set in a high-dimensional space. So, we are looking for the best
parameters in a high-dimensional space that we can only explore one sample at a time.
This is what makes the global optimization problem challenging in practice.

Figure 9-2 provides an example one-dimensional objective function with its global
maximum f* and its location x* highlighted. The goal of global optimization is thus
to systematically reason about a series of sampling decisions within the total search
space X, so as to locate the global maximum as fast as possible, that is, sampling as few
times as possible, instead of conducting random trials or grid search. Besides, when the
optimizer makes a sequence of decisions about where in the parameter space to sample
next, each decision is influenced by the results of previous samples (also referred to as
the training set) and is aimed at improving the estimated optimum.

f

e fr=maxf(x)=f(x*)
The global xXEX
| maximum
, [Location of the
_global maximum
x" = argmaxyex f (x)
o
| The total search space - X

Figure 9-2. An example objective function with the global maximum f* and its
location x*. The goal of global optimization is to systematically reason about a
series of sampling decisions so as to locate the global maximum as fast as possible

Note that this is a nonconvex function, as is often the case in real-life functions we
are optimizing. A nonconvex function means that there are multiple local optima in the
function. Thus, we could not resort to first-order gradient-based methods to reliably
search for the global optimum, as we did for the convex function y = x*. Using the
gradient-based method, such as solving for the solution that makes the gradient of the
original function equal to zero, will likely converge to a local optimum. This is also one of
the advantages of Bayesian optimization, introduced as a global optimization technique
later, compared with other gradient-based optimization procedures for local search.

The next covers more on the objective function.

264

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

The Objective Function

The objective function governs how the quantity of interest is generated. The whole
chapter would be finished if we knew its explicit expression, and the problem would be
considered solved if we could access its underlying mathematical form. Unfortunately,
many objective functions in real life are black boxes to us: the stock price of a given
company the next day, the weather two days from now, or the exact time point when the
interest rate starts to go down. Even though the objective function is a black box, we can
still use optimization techniques to find the best possible solution given the available
data and resources.

There are different types of objective functions. For example, some functions are
wiggly shaped, while others are smooth; some are convex, while others are nonconvex.
Many complex functions are almost impossible to be expressed using an explicit
expression. For the specific type of objective functions that govern the performance of
trading strategies, we summarize the following common attributes:

e We do not have access to the explicit expression of the objective
function, making it a “black-box” function. This means we can only
interact with the objective function by sampling at a specific location
to perform a functional evaluation.

e Thereturned value by probing at a specific input parameter value is
highly sensitive to the choice of backtesting period. In other words,
itis often corrupted by noise and does not represent the exact true
value of the objective function at that location. Due to the indirect
evaluation of its actual value, we need to account for such noise
embedded in the actual observations from the functional evaluation.

o Each functional evaluation is costly, thus ruling out the option for
an exhaustive probing exercise. We need a sample-efficient method
to minimize the number of evaluations of the trading strategy while
trying to locate its global optimum. In other words, the optimizer
needs to fully utilize the existing observations and systematically
reason about the next sampling decision so that the limited resource
is well spent on promising candidate parameter values.

265

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

e We do not have access to its gradient. When the functional evaluation
is relatively cheap, and the functional form is smooth, it would be
very convenient to compute/estimate the gradient and optimize
using the first-order procedure such as gradient descent. Access to
the gradient is necessary for us to understand the adjacent curvature
of a particular evaluation point. With gradient evaluations, the

follow-up direction of travel is easier to determine.

The black-box function, such as the one that calculates the Sharpe ratio based on
two window length parameters, is challenging to optimize for the preceding reasons.
To further elaborate on the possible functional form of the objective, we list three
representative examples in a minimization setting, as shown in Figure 9-3. On the left
is a convex function with only one global minimum; this is considered easy for global
optimization, since we could just set the derivative of the function to zero and solve
for the optimal value of the input variable. In the middle is a nonconvex function with
multiple local optima; it is difficult to ascertain if the current local optimum is also
globally optimal. It is also difficult to identify whether this is a flat region vs. a local
optimum for a function with a flat region full of saddle points, as shown on the right
panel. Such nonconvexity makes it difficult to perform global optimization efficiently.

s \ 'd o~ '\
Convex function with a ‘ Non-convex function with l Non-convex function with a
._unique global minimum multiple local minima flat region consisting of
A many saddle points

T

l|l." | I\\. ~
‘ / | \\\ /
/!

i

/1 \ /
f 4 / \ 'f T ."lf
\ / / \ ! / |
\ / / \ | |
\ / \ [\ { [|
\\ / I'l l|,'l \ I\ |l-'l |
\ / \ \
/ \ [/ / o Y I"f g L4 /
\\ Y / \ ; *'f{\'u / -"l; \ \ /f “\ ' -~
AN (A [\w \ [
W/ \/ |j|l \/ '\.-'ll
. _— |
Wi x £

Figure 9-3. Three possible functional forms. On the left is a convex function whose
optimization is easy. In the middle is a nonconvex function with multiple local
minima, and on the right is also a nonconvex function with a wide flat region full
of saddle points. Optimization for the latter two cases takes a lot more work than
for the first case

266

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Let us look at one example of hyperparameter tuning when training machine
learning models. A machine learning model is a function that involves a set of
parameters to be optimized given the input data. These parameters are automatically
tuned via a specific optimization procedure, typically governed by a set of corresponding
meta parameters called hyperparameters, which are fixed before the model training
starts. For example, when training deep neural networks using the gradient descent
algorithm, a learning rate that determines the step size of each parameter update needs
to be manually selected in advance. If the learning rate is too large, the model may
diverge and eventually fails to learn. If the learning rate is too small, the model may
converge very slowly as the weights are updated by only a small margin in this iteration.
See Figure 9-4 for a visual illustration of the two scenarios.

Is N Is 3
A small learning rate that leads to A large learning rate that leads to
L slow convergence | divergence

‘ f |
\ A /
\ / \ /
\ \ /

\ /
\ _ e r’
\ — /
\ — /

/ -

y \\ H.‘_‘:‘%‘ /’
/ <

L >

€T £

Figure 9-4. Slow convergence due to a small learning rate on the left and
divergence due to a large learning rate on the right

Choosing a reasonable learning rate as a preset hyperparameter thus plays a critical
role in training a good machine learning model. Locating the best learning rate and
other hyperparameters is an optimization problem that fits the purpose of Bayesian
optimization (introduced later). In the case of hyperparameter tuning, evaluating each
learning rate is a time-consuming exercise. The objective function would generally be
the model’s final test set loss (in a minimization setting) upon model convergence. A
model needs to be fully trained in order to do reasonably well on the training set, which
typically involves hundreds of epochs of training to reach a stable convergence. Here,
one epoch is a complete pass of the entire training dataset.

267

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

The functional form of the test set loss or accuracy may also be highly nonconvex
and multimodal for the hyperparameters. Upon convergence, it is not easy to know
whether we are in a local optimum, a saddle point, or a global optimum. Besides, some
hyperparameters may be discrete, such as the number of nodes and layers when training
a deep neural network. We could not calculate its gradient in such a case since it requires
continuous support in the domain.

The Bayesian optimization approach is designed to tackle all these challenges. It
has been shown to deliver good performance in locating the best hyperparameters
under a limited budget (i.e., the number of evaluations allowed). It is also widely and
successfully used in other fields, such as chemical engineering.

Bayesian Optimization

As the name suggests, Bayesian optimization is an area that studies optimization
problems using the Bayesian approach. Optimization aims at locating the optimal
objective value (i.e., a global maximum or minimum) of all possible values or the
corresponding location of the optimum over the search domain, also called the
environment. The search process starts at a specific initial location and follows a
particular policy to iteratively guide the following sampling locations, collect new
observations, and refresh the guiding search policy.

At its core, Bayesian optimization uses a probabilistic model (such as Gaussian
processes) to represent the unknown function and a utility function (also called
the acquisition function) to decide where to sample next. It iteratively updates the
probabilistic model with new sample points and uses this updated model to select the
next sampling location.

As shown in Figure 9-5, the overall optimization process consists of repeated
interactions between the policy (the optimizer) and the environment (the unknown
objective function). The policy is a mapping function that takes in a new input
parameter (plus historical ones) and outputs the next parameter value to try out in a
principled way. Here, we are constantly learning and improving the policy as the search
continues. A good policy guides our search toward the global optimum faster than a bad
one. In arguing which parameter value to try out, a good policy would spend the limited
sampling budget on promising candidate values.

268

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

" Contains the unknown real objective
. function, often noise corrupted

J

v
][Environment |~
.
//f/ ‘\\\
Sampling location // \:, Observation

N S

; - . /
fProposed recommendation | ‘\{ Policy };/ The actual observation
on where to sample next revealed due to the sampling
|_within the environment) ' _action at the proposed location

' The guiding principle that determines A
the sampling decision based on the

(_historically collected observations)

Figure 9-5. The overall Bayesian optimization process. The policy digests the
historical observations and proposes a new sampling location. The environment
governs how the (possibly noise-corrupted) observation at the newly proposed
location is revealed to the policy. Our goal is to learn an efficient and effective
policy that could navigate toward the global optimum as quickly as possible

On the other hand, the environment contains the unknown objective function to
be learned by the policy within a specific boundary (maximum and minimum values of
the parameter value). When probing the functional value as requested by the policy, the
actual observation revealed by the environment to the policy is often corrupted by noise
due to the choice of the backtesting period, making the learning even more challenging.
Thus, Bayesian optimization, a specific approach for global optimization, would like
to learn a policy that can help us efficiently and effectively navigate toward the global
optimum of an unknown, noise-corrupted objective function as quickly as possible.

When deciding which parameter value to try next, most search strategies face the
exploration and exploitation trade-off. Exploration means searching within an unknown
and faraway area, and exploitation refers to searching within the neighborhood visited
earlier in the hope of locating a better functional evaluation. Bayesian optimization also
faces the same dilemma. Ideally, we would like to explore more at the initial phase to

269

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

increase our understanding of the environment (the black-box function) and gradually
shift toward the exploitation mode that taps into the existing knowledge and digs into
known promising regions.

Bayesian optimization achieves such a trade-off via two components: a Gaussian
process (GP) used to approximate the underlying black-box function and an acquisition
function that encodes the exploration-exploitation trade-off into a scalar value as an
indicator of the sampling utility across all candidates in the domain. Let us look at each
component in detail in the following sections.

Gaussian Process

As a widely used stochastic process (able to model an unknown black-box function and
the corresponding uncertainties of modeling), the Gaussian process takes the finite-
dimensional probability distributions one step further into a continuous search domain
that contains an infinite number of variables, where any finite set of points in the domain
jointly forms a multivariate Gaussian distribution. It is a flexible framework to model

a broad family of functions and quantify their uncertainties, thus being a powerful
surrogate model used to approximate the true underlying function. Let us look at a few
visual examples to see what it offers.

Figure 9-6 illustrates an example of a “flipped” prior probability distribution for a
single random variable selected from the prior belief of the Gaussian process. Every
single point represents a parameter value, although it is now modeled as a random
variable and thus has randomness in its realizations. Specifically, each point follows a
normal distribution. Plotting the mean (solid line) and 95% credible interval (dashed
lines) of all these prior distributions gives us the prior process for the objective function
regarding each location in the domain. The Gaussian process thus employs an infinite
number of normally distributed random variables within a bounded range to model the
underlying objective function and quantify the associated uncertainty via a probabilistic
approach.

270

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

The prior predictive distribution for the
selected random variable

The 95% credible interval of

f " The mean of the [the Gaussian process J

Gaussian process =

______ R Sy SR S T
! P y
", v‘/ = ,I
v 2 |
— .
~ 2 L I|

o e e . e

| >
| >

This location is the
condition we place over

Figure 9-6. A sample prior belief of the Gaussian process represented by the
mean and 95% credible interval for each location in the domain. Every objective
value is modeled by a random variable that follows a normal prior predictive
distribution. Collecting the distributions of all random variables and updating
these distributions as more observations are collected could help us quantify the
potential shape of the true underlying function and its probability

The prior process can thus serve as the surrogate data-generating process of the
unknown black-box function, which can also be used to generate samples in the form
of functions, an extension of sampling single points from a probability distribution. For
example, if we were to repeatedly sample from the prior process, we would expect the
majority (around 95%) of the samples to fall within the credible interval and a minority
outside this range. Figure 9-7 illustrates three functions sampled from the prior process.

271

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

fﬂ

Figure 9-7. Three example functions sampled from the prior process, where the
majority of the functions fall within the 95% credible interval

In a Gaussian process, the uncertainty on the objective value of each location (i.e.,
the parameter value of a trading strategy) is quantified using a credible interval. As we
start to collect observations and assume a noise-free and exact observation model, the
uncertainties at the collection locations will be resolved, leading to zero variance and
direct interpolation at these locations. Besides, the variance increases as we move further
away from the observations, which is a result of integrating the prior process (the prior
belief about the unknown black-box function) with the information provided by the actual
observations. Figure 9-8 illustrates the updated posterior process after collecting two
observations. The posterior process with updated knowledge based on the observations
will thus make a more accurate surrogate model and better estimate the objective function.

f A (The mean of the Exact observations 95% credible interval of
posterior process which the posterior the posterior process
' mean passes through T
- ' ,f‘,l_‘\"‘\‘\ —— .I
- - P N . ~—- o _

—

Figure 9-8. Updated posterior process after incorporating two exact observations
in the Gaussian process. The posterior mean interpolates through the observations,
and the associated variance reduces as we move nearer the observations

272

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Mathematically, for a new sampling location x, € X, the corresponding functional
evaluation f, following the Gaussian process would assume a conditional normal
distribution:

p(£:%..D,)=N(flu.,0?)

where D, = {(xf,i'l.)}21 contains the historical observed in pairs of sampling locations and
scalar observations. The closed form of the posterior mean and variance functions can
be derived by invoking the multivariate Gaussian theorem, giving

/"l* = k(xlzn’ X*)K(Xlzn’ Xl:n)_l fl:n

ol =k(x,,x.)-k(x,,,x,)K(x xljn)flk(xlzn,x*)

Iin> 1n>

Therefore, we can obtain the posterior mean and variance at any arbitrary location
based on the posterior Gaussian process model, serving as the surrogate model for the
underlying function of the specific trading strategy.

Now let us look at the other critical component: the acquisition function.

Acquisition Function

The tools from Bayesian inference and the incorporation of the Gaussian process provide
principled reasoning on the underlying distribution of the objective function. However,
we would still need to incorporate such probabilistic information in our decision-
making to search for the global maximum. We need to build a policy (by maximizing
the acquisition function) that absorbs the most updated information on the objective
function and recommends the following most promising sampling location in the face
of uncertainties across the domain. The optimization policy guided by maximizing the
acquisition function thus plays an essential role in connecting the Gaussian process
to the eventual goal of Bayesian optimization. In particular, the posterior predictive
distribution obtained from the updated Gaussian process provides an outlook on the
objective value and the associated uncertainty for locations not explored yet, which
could be used by the optimization policy to quantify the utility of any alternative location
within the domain.

When converting the posterior knowledge about candidate locations, that is,
posterior parameters such as the mean and the variance of the Gaussian distribution at
each location, to a single scalar utility score, the acquisition function comes into play.

273

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

An acquisition function is a manually designed mechanism that evaluates the relative
potential of each candidate location in the form of a scalar score, and the location
with the maximum score will be used as the next sampling choice. It is a function that
assesses how valuable a candidate’s location is when we acquire/sample it.

The acquisition function takes into account both the expected value and the
uncertainty (variance) of the function at unexplored locations, as provided by the
Gaussian process posterior distribution. In this context, exploration means sampling
in regions of high uncertainty, while exploitation involves sampling where the function
value is expected to be high.

The acquisition function is also cheap to evaluate as a side computation since we
need to evaluate it at every candidate location and then locate the maximum utility
score, posing another (inner) optimization problem. Figure 9-9 provides a sample curve
of the acquisition function.

Acquisition function

The maximizer of the acquisition function
becomes the next sampling point

) N\

A

. These values are zero as they are historical observations. .
That is, there is no additional information gained by
sampling locations already sampled before.

Figure 9-9. lllustrating a sample acquisition function curve. The location that
corresponds to the highest value of the acquisition function is the next location
(parameter value of a trading strategy) to sample. Since there is no value added if
we were to sample those locations already sampled earlier, the acquisition function
thus reports zero at these locations

Many choices of acquisition functions have been proposed in the literature. Popular
choices include the expected improvement (EI) and upper confidence bound (UCB).
Still, it suffices, for now, to understand that it is a predesigned function that needs to
balance two opposing forces: exploration and exploitation. Exploration encourages
resolving the uncertainty across the domain by sampling at unfamiliar and distant

274

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

locations, since these areas may bear a big surprise due to high certainty. Exploitation
recommends a greedy move at promising regions where we expect the observation
value to be high. The exploration-exploitation trade-off is a common topic in many
optimization settings.

Another distinguishing feature is the short-term (myopic) and long-term
(nonmyopic) trade-offs. A short-term acquisition function only focuses on one step
ahead and assumes this is the last chance to sample from the environment; thus, the
recommendation is to maximize the immediate utility. A long-term acquisition function
employs a multistep lookahead approach by simulating potential evolutions/paths in the
future and making a final recommendation by maximizing the long-run utility.

There are many other emerging variations in the design of the acquisition function,
such as adding safety constraints to the system under study. In any case, we would judge
the quality of the policy using a specific acquisition function based on how close we
are to the location of the global maximum upon exhausting our budget. The distance
between the current and optimal locations is often called instant regret or simple regret.
Alternatively, the cumulative regret (cumulative distances between historical locations
and the optimum location) incurred throughout the sampling process can also be used.

Let us dive more into two popular acquisition functions: expected improvement (EI)
and upper confidence bound (UCB).

El and UCB

Acquisition functions differ in multiple aspects, including the choice of the utility
function, the number of lookahead steps, the level of risk aversion or preference,

etc. Introducing risk appetite directly benefits from the posterior belief about the
underlying objective function. In the case of GP regression as the surrogate model, the
risk is quantified by the covariance function, with its credible interval expressing the
uncertainty level about the objective’s possible values.

Regarding the utility of the collected observations, the expected improvement
chooses the historical maximum of the observed value as the benchmark for comparison
upon selecting an additional sampling location. It also implicitly assumes that only
one more additional sampling is left before the optimization process terminates. The
expected marginal gain in utility (i.e., the acquisition function) becomes the expected
improvement in the maximal observation, calculated as the expected difference between
the observed maximum and the new observation after the additional sampling at an
arbitrary sampling location.

275

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Specifically, denote y, ., = {1, ..., ¥,.} as the set of collected observations at the
corresponding locations x; ., = {x,, ..., X,,}. Assuming the noise-free setting, the actual
observations would be exact, that s, y;., = f;. .. Given the collected dataset D, = {xlzn’ yl:n}
, the corresponding utility isu (D,) =max { f,,,} = f;’, where /" is the incumbent
maximum observed so far. Similarly, assume we obtain another observation y, ., =, at
anew location x,,, ;, the resulting utility is # (D,,H)=u (Dn Y {xn+1 s fn }) = max {fm > fn}

. Taking the difference between these two gives the increase in utility due to the addition
of another observation:

u(D,.,)-u(D,)=max{f,,. f; |- f; =max{f,,, - f,.0}

which returns the marginal increment in the incumbent if f, , > /" and zero
otherwise, as a result of observing f, , . Readers familiar with the activation function in
neural networks would instantly connect this form with the ReLU (rectified linear unit)
function, which keeps the positive signal and silences the negative one.

Due to randomness in y,, ;, we can introduce the expectation operator to integrate
it out, giving us the expected marginal gain in utility, that is, the expected improvement
acquisition function:

O (xn+1 D,) = E[” (Dn+1) - “(Dn)|xn+l’Dn:|
= [max{f,., = 17,0} p(£y, D,)ty

Under the framework of GP regression, we can obtain a closed-form expression of
the expected improvement acquisition function as follows:

ey (%,05D,) = (10 = 1)@(u] ro. 6 [MJ

O O
where £ is the best-observed value so far, and ¢ and @ denote the probability and
cumulative density function of a standard normal distribution at the tentative point x,,, ;,
respectively. u,,, and o, , ; denote the posterior mean and standard deviation at x,, . ;.
The closed-form EI consists of two components: exploitation (the first term)
and exploration (the second term). Exploitation means continuing sampling the
neighborhood of the observed region with a high posterior mean, and exploration

276

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

encourages sampling an unvisited area where the posterior uncertainty is high. The
expected improvement acquisition function thus implicitly balances off these two
opposing forces.

On the other hand, the UCB acquisition function, as defined in the following,
encodes such a trade-off explicitly:

Ayce (xn+l;Dn) =yt B0

where f,, 1 is a user-defined stagewise hyperparameter that controls the trade-off
between the posterior mean and standard deviation. A low value of 3, , encourages
exploitation, and a high value of f3, . , leans more toward exploration.

Both acquisition functions will then be assessed globally in search of the maximizing
location, which will serve as the next sampling choice. Let us summarize the full BO
(Bayesian optimization) loop in the following section.

The Full BO Loop

Bayesian optimization is an iterative process between the (uncontrolled) environment
and the (controlled) policy. The policy involves two components supporting the
sequential decision-making: a Gaussian process as the surrogate model to approximate
the true underlying function (i.e., the environment), and an acquisition function to
recommend the best sampling location. The environment receives the probing request
at a specific location and responds by revealing a new observation that follows a
particular observation model. The Gaussian process surrogate model then uses the new
observation to obtain a posterior process in support of follow-up decision-making by the
preset acquisition function. This process continues until the stopping criterion, such as
exhausting a given budget, is met. Figure 9-10 illustrates this process.

277

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

(" The observations are generated by assuming

s .
The recommended SamDHUQ a specific observation model, i.e., a probability
location has a maximum utility based distribution conditioned by the true objective
on the acquisition function J_value and corrupted by random noise

s ~

\ Policy - %

\ {Acquisition | Gaussian
7 function) | process

Provides a probabilistic belief in the form of the \‘
posterior predictive distribution for decision making |

Figure 9-10. The full Bayesian optimization loop featuring an iterative
interaction between the unknown (black-box) environment and the decision-
making policy that consists of a Gaussian process for probabilistic evaluation
and acquisition function for utility assessment of candidate locations in the
environment

With the basic BO framework in mind, let us test it out by optimizing the window
lengths of the pairs trading strategy.

Optimizing the Pairs Trading Strategy

As introduced earlier, the pairs trading strategy characterizes two input arguments: the
entry and exit thresholds. More specifically, we would like to apply the BO technique to
search for the optimal entry and exit thresholds such that the black-box function reaches
a maximum value. For simplicity, we only perform the Sharpe ratio calculation once over
one backtesting period. A more robust approach to minimize the observation noise is
to test it over multiple representative backtesting periods and report the average Sharpe
ratio as a fair indication of the goodness of the given input parameters.

To begin with, we will first install two packages: the botorch package that performs
BO based on PyTorch and the yfinance package to facilitate data downloading.

I'pip install botorch
Ipip install yfinance

278

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

We also import a few supporting packages in the following, along with setting the
random seed for reproducibility:

import os

import math

import torch

import random

import numpy as np

from matplotlib import pyplot as plt

import torch.nn as nn

import yfinance as yf

import pandas as pd

from statsmodels.tsa.stattools import adfuller
from statsmodels.regression.linear model import OLS
import statsmodels.api as sm

%matplotlib inline

SEED = 1
random.seed(SEED)
np.random.seed(SEED)
torch.manual seed(SEED)

The next section touches upon the performance of the pairs trading strategy as the
black-box function.

Trading Strategy Performance As the Black-Box Function

The trend-following strategy will govern the output of the black-box function. Previously,
we have illustrated how to calculate the Sharpe ratio given a specific set of entry and
exit parameters. Assuming the Sharpe ratio calculated over one backtesting period is
sufficiently representative, we would like to modularize the whole process of mapping
a set of input parameters to the output performance metric. In other words, we need to
code a function (or a class) that spits out the Sharpe ratio for a given set of entry and exit
thresholds.

To start with, we define a class called QTS _OPTIMIZER that inherits the nn.Module
class. This will serve as the main horsepower for generating observations given any
query points. Inthe __init () method, we require three compulsory arguments: the

279

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

ticker pairs in ticker pair, the starting date of the stock price in start_date, and the
end date in end_date. We also set an optional argument riskfree rate to control the
risk-free interest rate used for Sharpe ratio calculation. This is shown in Listing 9-1.

Listing 9-1. Defining the black-box function for Bayesian optimization

class QTS OPTIMIZER(nn.Module):
def init (self, ticker pair, start date, end date, riskfree
rate=0.04):
super(QTS_OPTIMIZER, self). init ()
self.ticker pair = ticker pair
self.start _date = start date
self.end date = end_date
self.riskfree rate = riskfree rate
self.stock = self.get stock data()

Upon instantiating this class, the __init () function will get triggered, which also
includes downloading the stock data for the selected ticker and date range. Listing 9-2
has the definition of the get_stock data() method, where we use the usual download()
function to download the data and extract the adjusted closing price that considers
dividends and splits.

Listing 9-2. Defining the method to retrieve stock data

def get stock data(self):
print("===== DOWNLOADING STOCK DATA =====")
df = yf.download(['GOOG'], start=self.start date, end=self.end_
date)['Adj Close']
print("===== DOWNLOAD COMPLETE =====")

return pd.DataFrame(df)

Next, we introduce the forward() method, which gets triggered automatically upon
calling the class object itself. This is where we implement the mechanism of the black-box
function, which takes two parameters as the input and outputs the corresponding Sharpe
ratio over the prespecified stock data and backtesting period. As shown in Listing 9-3,
upon passing the entry and exit thresholds entry threshold and exit_threshold, we
estimate the linear regression coefficients, calculate the residuals, and obtain the z-scores.

280

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

We then create the position columns to represent the trading position determined by the
daily entry and exit signals. Based on the daily returns, we could then calculate the joint
returns and the resulting annualized return and volatility, followed by the Sharpe ratio as
the final return of the forward() function.

Listing 9-3. Defining the method to calculate the Sharpe ratio

def forward(self, entry threshold, exit threshold, window size=10):
add sma columns
stock_df = self.stock.copy()
calculate the spread for GOOG and MSFT
Y = stock df[self.ticker pair[0]]
X = stock df[self.ticker pair[1]]
estimate linear regression coefficients
X with _constant = sm.add_constant(X)
model = OLS(Y, X with constant).fit()
obtain the spread as the residuals
spread = Y - model.predict()
calculate rolling mean and sd
spread_mean = spread.rolling(window=window_size).mean()
spread_std = spread.rolling(window=window_size).std()
zscore = (spread - spread mean) / spread_std
remove initial days with NA
first valid idx = zscore.first valid index()
zscore = zscore[first valid idx:]
initialize the daily positions to be zeros
stockl position = pd.Series(data=0, index=zscore.index)
stock2 position = pd.Series(data=0, index=zscore.index)
generate daily entry and exit signals for each stock
for i in range(1, len(zscore)):
zscore<-entry threshold and no existing long position
for stock 1
if zscore[i] < -entry threshold and stockl position[i-1] == 0:
stockl position[i] = 1 # long stock 1
stock2 position[i] = -1 # short stock 2

281

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

zscore>entry threshold and no existing short position

for stock 2

elif zscore[i] > entry threshold and stock2 position[i-1] =
stockl position[i] = -1 # short stock 1
stock2 _position[i] = 1 # long stock 2

-exit_threshold<zscore<exit_threshold

0:

elif abs(zscore[i]) < exit threshold:
stockl position[i] = 0 # exit existing position
stock2_position[i] = 0
-entry threshold<zscore<-exit_threshold or exit_
threshold<zscore<entry threshold
else:
stockl position[i] = stocki position[i-1] # maintain
existing position
stock2_position[i] = stock2 position[i-1]
Calculate the returns of each stock
stockl returns = (Y[first valid idx:].pct _change() * stocki_
position.shift(1)).fillna(0)
stock2_returns = (X[first valid idx:].pct _change() * stock2_
position.shift(1)).fillna(0)
calculate the total returns of the strategy
total _returns = stockl returns + stock2_returns
calculate annualized return
annualized return = (1 + total returns).prod()**(252/Y[first valid
idx:].shape[0])-1
calculate annualized volatility
annualized vol = total returns.std()*(252**0.5)
if annualized vol==0:
annualized vol = 100
calculate Sharpe ratio
sharpe ratio = (annualized return - self.riskfree rate) /
annualized vol

return sharpe ratio

282

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Let us test the class out. The following code instantiates the class into the qts
variable by passing the ticker symbol of Google and Microsoft with a date range of the
start and end dates of 2022. Note the printed message after running this line, showing
that the get_stock data() function gets triggered during the process. Note that there
is no mention of entry and exit signals at this stage; the initialization stage is meant to
handle all preparatory work before the actual scoring in the forward() function.

>>> qts = QTS_OPTIMIZER(ticker pair=["GOOG","MSFT"], start_
date="2022-01-01", end_date="2023-01-01")

===== DOWNLOADING STOCK DATA =====
[*********************100%***********************] 1 0of 1 Completed

===== DOWNLOAD COMPLETE =====
We can also print the first few rows of the object’s stock attribute as a sanity check:

>>> qts.stock.head()
GO0G MSFT

Date

2022-01-03 145.074493 330.813873
2022-01-04 144.416504 325.141388
2022-01-05 137.653503 312.659851
2022-01-06 137.550995 310.189270
2022-01-07 137.004501 310.347412

Let us test out the scoring function. In the following code snippet, we pass in
different values of entry and exit thresholds and obtain the corresponding Sharpe ratio
for the whole year of 2022:

>>> qts(entry threshold=2, exit threshold=1)
1.690533096171306

>>> qts(entry threshold=1.5, exit threshold=0.5)
1.8278364562046485

We see that different values of the thresholds correspond to different Sharpe ratios.
Our task is to find the optimal set of entry and exit thresholds that correspond to the
highest Sharpe ratio, as fast as possible. This is where Bayesian optimization comes in.

283

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Generating Training Set for Bayesian Optimization

Most machine learning models require a training set to start with. The training set
provides the correct input-output mapping relationship for the model to fine-tune
its weights and, therefore, learn such a mapping relationship. This is the same for
the Bayesian optimization model. Specifically, the training set helps update the prior
distribution used by the Gaussian process, so that its governing hyperparameters

get updated, which would then be used to obtain a more representative posterior
distribution.

The following code snippet creates a few preparatory variables for later use, where
device denotes the computing device (CPU or GPU) to run the calculations later, dtype
specifies the data type of the PyTorch tensor, and x1_bound and x2_bound contain the
lower and upper bounds for the short and long windows, respectively. Here, we specify
the short window to vary from 1 to 10 and the long window from 11 to 20:

generate initial training dataset for optimization

device = torch.device("cuda" if torch.cuda.is available() else "cpu")
dtype = torch.double

x1 bound = [1,3]

x2_bound = [0,1]

Next, we define a function named generate _initial data() to geta set of training
data. As shown in Listing 9-4, this function takes a single input n to specify the number
of observations in the training set. Inside the function, we first generate a set of random
values using the torch.rand() function from Torch. After combining the set of entry and
exit thresholds into a single variable train_x, we iterate through each row to apply the
black-box scoring function qts () and obtain the corresponding Sharpe ratio, collectively
stored in train_y. Besides returning train_x and train_y, we also report the highest
score in best_observed value, as we will maintain a list of cumulative maximum values
to indicate the search quality. The current best value observed so far also represents the
utility of the dataset collected till now, that is, the utility value of the dataset in helping us
locate the optimum window lengths.

284

CHAPTER 9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION
Listing 9-4. Generating initial training data

def generate initial data(n=10):
generate random initial locations
train x1 = x1_bound[0] + (x1_bound[1] - x1 _bound[0]) * torch.
rand(size=(n,1), device=device, dtype=dtype)
train x2 = torch.rand(size=(n,1), device=device, dtype=dtype)
train x = torch.cat((train x1, train x2), 1)
obtain the exact value of the objective function and add output
dimension
train y = []
for i in range(len(train x)):
train_y.append(qts(entry threshold=train x1[i], exit_
threshold=train x2[i]))
train y = torch.Tensor(train y, device=device).to(dtype).unsqueeze(-1)
get the current best observed value, i.e., utility of the
available dataset
best observed value = train_y.max().item()
return train_x, train_y, best observed value

Let us generate three samples in the training set as follows:

train x, train_y, best observed value = generate initial data(n=3)
>>> print(train x)
>>> print(train_y)
>>> print(best observed value)
tensor([[1.1221, 0.1771],

[1.4491, 0.5561],

[1.4685, 0.1094]], dtype=torch.float64)
tensor([[0.0550],

[2.2504],

[1.0004]], dtype=torch.float64)
2.250356674194336

Next, we implement the first component in BO: the Gaussian process model.

285

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Implementing the Gaussian Process Model

As mentioned earlier, we can use this training set to optimize the hyperparameters of the
Gaussian process (GP) model so that it’s more fine-tuned toward the data at hand. This
is because a GP model is also governed by its own hyperparameters upon initialization,
such as the length scale. Different GP models have different hyperparameters, and we
will go with the default choice provided by BoTorch.

In Listing 9-5, we create a function called initialize model() to initialize the GP
model. We use the SingleTaskGP () class from botorch.models to instantiate a GP model
based on the previous training data and then use the ExactMarginallLoglikelihood()
function to obtain the exact marginal log-likelihood of the GP model.

Listing 9-5. Initializing the GP model

initialize GP model
from botorch.models import SingleTaskGP
from gpytorch.mlls import ExactMarginalloglikelihood

def initialize model(train x, train y):
create a single-task exact GP model instance
use a GP prior with Matern kernel and constant mean function
by default
model = SingleTaskGP(train X=train x, train Y=train y)
mll = ExactMarginalloglikelihood(model.likelihood, model)

return mll, model

Let us print out the values of the hyperparameters (including kernel parameters and
noise variance) of the GP model before optimization:

mll, model = initialize model(train x, train_y)

>>> list(model.named_hyperparameters())

[('likelihood.noise covar.raw noise', Parameter containing:
tensor([2.0000], dtype=torch.float64, requires grad=True)),
('mean_module.raw_constant', Parameter containing:
tensor(0., dtype=torch.float64, requires grad=True)),
('covar_module.raw outputscale', Parameter containing:
tensor(0., dtype=torch.float64, requires grad=True)),

286

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

('covar_module.base kernel.raw lengthscale', Parameter containing:
tensor([[0., 0.]], dtype=torch.float64, requires grad=True))]

Optimizing the GP hyperparameters can be done by following the maximum log-
likelihood (MLL) approach, which is implemented in the fit _gpytorch ml1() function
from botorch.fit. Listing 9-6 fits the GP hyperparameters and prints out their values.

Listing 9-6. Optimizing GP hyperparameters

optimize GP hyperparameters

from botorch.fit import fit gpytorch mll

fit hyperparameters (kernel parameters and noise variance) of a

GPyTorch model

fit gpytorch mll(mll.cpu());

mll = mll.to(train x)

model = model.to(train x)

>>> list(model.named_hyperparameters())

[('likelihood.noise covar.raw noise', Parameter containing:
tensor([0.2238], dtype=torch.float64, requires grad=True)),
('mean_module.raw_constant', Parameter containing:
tensor(1.1789, dtype=torch.float64, requires grad=True)),
('covar_module.raw_outputscale', Parameter containing:
tensor(1.8917, dtype=torch.float64, requires grad=True)),
('covar_module.base kernel.raw lengthscale', Parameter containing:
tensor([[-0.8823, -0.9687]], dtype=torch.float64, requires grad=True))]

The result shows a different set of hyperparameters after optimization. Note that we
need to move the m11 object to GPU to perform the optimization, after which it can be
moved back to GPU (if available).

The optimized GP model can then be incorporated into the acquisition function to
guide the following search process, as detailed in the next section.

287

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Guiding the Sequential Search by Maximizing
the Acquisition Function

We will use a few popular acquisition functions, including the expected improvement
(EI), upper confidence bound (UCB), parallel expected improvement (qEI), and the
parallel knowledge gradient (qQKG). Instead of focusing on the derivation and reasoning
of each choice, we will jump straight into their implementation and usage. Readers
interested in a more in-depth discussion on different acquisition functions can refer to
the book Bayesian Optimization: Theory and Practice Using Python.

To start with, we instantiate both acquisition functions via ExpectedImprovement(),
qExpectedImprovement(), UpperConfidenceBound(), and gknowledgeGradient() from
botorch.acquisition. Note that different acquisition functions expect different input
arguments. For example, other than the GP model instance from the previous section,
Elrequires the best-observed value so far, while UCB expects a beta parameter that
adjusts the trade-off between exploitation and exploration. Such adjustment is implicitly
handled in EI. This is shown in Listing 9-7.

Listing 9-7. Defining and initializing the acquisition functions

define acquisition function

from botorch.acquisition import ExpectedImprovement

from botorch.acquisition import gExpectedImprovement

from botorch.acquisition import UpperConfidenceBound

from botorch.acquisition.knowledge gradient import gqKnowledgeGradient

call helper functions to generate initial training data and
initialize model

train x, train_ y, best observed value = generate initial data(n=3)
train x_ei = train x

train x gei = train x

train x_ucb = train x

train_x_gkg = train_x

train y ei = train y

train y gei = train y

train_y ucb = train y

train_y gkg = train_y

288

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

mll ei, model ei = initialize model(train x ei, train y ei)

mll gei, model gei = initialize model(train x gei, train y gei)
mll ucb, model ucb = initialize model(train x ucb, train_y ucb)
mll gkg, model gkg = initialize model(train x gkg, train_y gkg)

EI = ExpectedImprovement(model=model ei, best f=best observed value)
qEI = gExpectedImprovement(model=model gei, best f=best observed value)
beta = 0.8
UCB = UpperConfidenceBound(model=model ucb, beta=beta)
num_fantasies = 64
gKG = gKnowledgeGradient(

model=model qkg,

num_fantasies=num_fantasies,

X_baseline=train x,

q=1

The acquisition function is used to generate the next parameter value to be sampled,
which is located by maximizing the acquisition function at hand. The process of
searching for the maximum value of the acquisition function within the search domain
is handled by the optimize acqf() function, which is provided by the botorch.
optimmodule. The new parameter value, along with the corresponding score from the
unknown objective function, will be used as an additional training data point to support
an updated version of the GP model and acquisition function in the next round.

Listing 9-8 provides the detailed implementation of passing an acquisition
function and obtaining the next sampling decision and functional observation. Note
the additional parameters required by the optimization procedure optimize acqf():
bounds to define the search domain of each parameter, BATCH_SIZE to specify the
number of samples to probe at each round (probing multiple points in parallel is
possible), NUM_RESTARTS to control the number of initial conditions when optimization
starts, and RAW_SAMPLES to indicate the number of initial samples to support heuristic-
based optimization over the acquisition function.

289

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION
Listing 9-8. Obtaining a new proposal by optimizing the acquisition function

optimize and get new observation
from botorch.optim import optimize acqf

get search bounds

bounds = torch.tensor([[x1_bound[0], x2 bound[0]], [x1 bound[1], x2_
bound[1]]], device=device, dtype=dtype)

parallel candidate locations generated in each iteration

BATCH SIZE =1

number of starting points for multistart optimization

NUM_RESTARTS = 10

number of samples for initialization

RAW_SAMPLES = 1024

def optimize acqf and get observation(acq_func):
"""Optimizes the acquisition function, and returns a new candidate and
a noisy observation."""
optimize
candidates, value = optimize acqf(
acq_function=acq_func,
bounds=bounds,
q=BATCH_SIZE,
num_restarts=NUM RESTARTS,
raw_samples=RAW_SAMPLES, # used for intialization heuristic
)
observe new values
new x = candidates.detach()
sample output value
new y = qts(entry threshold=new x.squeeze()[0].item(), exit
threshold=new x.squeeze()[1].item())
add output dimension
new y = torch.Tensor([new y], device=device).to(dtype).unsqueeze(-1)
print("new fn value:", new_y)

return new_x, new_y

290

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION
Let us test out this function with the gKG acquisition function:

>>> optimize acqf and get observation(gKG)
(tensor([[1.5470, 0.6003]], dtype=torch.float64),
tensor([[2.2481]], dtype=torch.float64))

Before scaling up to multiple iterations, we will also test out the random search
strategy, which selects a random window length for each moving series at each round
This serves as the baseline for comparison, since manual selection often amounts
to arandom search strategy in the initial phase. In the function update_random_
observations() shown in Listing 9-9, we pass a running list of best-observed function
values, perform a random selection, observe the corresponding functional evaluation,
compare it with the current running maximum, and then return the list of running

maxima with the current maximum appended.

Listing 9-9. Defining the random search strategy

def update random observations(best random):

"""Simulates a random policy by drawing a new random points,
observing their values, and updating the current best candidate to
the running list.

new x1 = x1_bound[0] + (x1_bound[1] - x1 bound[0]) * torch.

rand(size=(1,1), device=device, dtype=dtype)

new x2 = torch.rand(size=(1,1), device=device, dtype=dtype)

new x = torch.cat((new x1, new x2), 1)

new y = qts(entry threshold=new x[0,0].item(), exit
threshold=new x[0,1].item())

best random.append(max(best _random[-1], new y))
return best random

Now we perform the sequential search based on the aforementioned acquisition
functions, along with the random search strategy.

291

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Performing Sequential Search

These three search strategies have different search qualities in terms of the maximum
Sharpe ratio found within the same sampling budget. To measure the effectiveness of the
search strategy at each round, we use the cumulative maximum value returned by the
black-box function, which is a nondecreasing function by design. A more effective search
strategy would be able to identify a higher Sharpe ratio faster than alternative strategies
under the same environment setting.

Listing 9-10 creates a few lists (best_observed ei, best observed ucb, best
observed gei, best observed gkg, and best_random) to store the best-observed
Sharpe ratios at each round. The same training set consisting of three samples is used
to initialize the GP model (if any) of each search strategy using the initialize model()
function, with the resulting GP model instances stored in model_ei, model gkg,
model gei, and model ucb, respectively. For the random search strategy, we can simply
simulate a random selection and update its running max without any explicit learning
process.

Listing 9-10. Performing the sequential search

single trial
import time

N_ROUND = 20
verbose = True
beta = 0.8

best _random, best observed ei, best observed gei, best observed ucb, best
observed_gkg = (1, 01, (1, (1, []

best_random.append(best observed value)

best observed ei.append(best observed value)
best observed gei.append(best observed value)
best observed ucb.append(best observed value)
best observed gkg.append(best observed value)

run N_ROUND rounds of BayesOpt after the initial random batch
for iteration in range(1, N_ROUND + 1):

t0 = time.monotonic()

fit the models

292

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

fit gpytorch mll(mll ei)
fit _gpytorch mll(mll gei)
fit_gpytorch ml1(mll ucb)
fit gpytorch mll(mll gkg)

for best f, we use the best observed exact values
EI = ExpectedImprovement(model=model ei, best f=train y ei.max())
gEI = gExpectedImprovement(model=model gei,
best f=train y ei.max(),
num_samples=1024
)
UCB = UpperConfidenceBound(model=model ucb, beta=beta)
gKG = gKnowledgeGradient(
model=model gkg,
num_fantasies=64,
objective=None,
X_baseline=train_x_gkg,

)

optimize and get new observation

new x ei, new_ y ei = optimize acqf_and_get observation(EI)
new X _gei, new y gei = optimize acqf and get observation(qEI)
new x_ucb, new_y ucb = optimize acqf_and get observation(UCB)
new _x_gkg, new_y gkg = optimize acqf_and_get observation(qKG)

update training points

train _x_ei = torch.cat([train_x_ei, new x_ei], dim=0)
train x_gei = torch.cat([train x gei, new x gei], dim=0)
train_x_ucb
train_x_gkg

torch.cat([train x ucb, new x ucb], dim=0)
torch.cat([train_x_gkg, new x_gkg], dim=0)

train y ei = torch.cat([train y ei, new y ei], dim=0)

train y gei = torch.cat([train y gei, new y gei], dim=0)
train_ y ucb = torch.cat([train_y ucb, new_ y ucb], dim=0)
train y gkg = torch.cat([train_y gkg, new_y gkg], dim=0)

293

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

update progress

best random = update_random observations(best random)

best value ei = max(best observed ei[-1], new y ei.item())
max(best observed qei[-1], new_y gei.item())
max(best _observed ucb[-1], new y ucb.item())
max(best_observed gkg[-1], new_y gkg.item())

best value gei

best value ucb
best value gkg

best observed ei.append(best value ei)

best observed gei.append(best value gei)
best observed ucb.append(best value ucb)
best observed gkg.append(best value gkg)

reinitialize the models so they are ready for fitting on next
iteration
mll ei, model ei = initialize model(
train_x_ei,
train y ei

)

mll gei, model gei

initialize model(
train_x_gei,
train y gei

)

mll ucb, model ucb = initialize model(

train x_ucb,
train_y ucb

)

mll gkg, model gkg = initialize model(
train_x_gkg,
train_y qkg

)

t1 = time.monotonic()
Let us plot the search progress so far via the following code snippet:

iters = np.arange(N_ROUND + 1) * BATCH_SIZE
plt.plot(iters, best random, label='random')
plt.plot(iters, best observed ei, label="EI")

294

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

plt.plot(iters, best observed gei, label='qEI'")
plt.plot(iters, best observed ucb, label="UCB")
plt.plot(iters, best observed gkg, label='qKG")
plt.legend()

plt.xlabel("Sampling iteration")
plt.ylabel("Sharpe ratio")

plt.show()

For each iteration, we fit the GP model to optimize its hyperparameters for each
strategy, instantiate the acquisition function based on the updated GP model instance,
optimize over the acquisition function, propose the next sampling point, obtain the
corresponding function evaluation, append the new observation (parameter value and
Sharpe ratio) to the training set, update the search progress by appending to running
maximum Sharpe ratio, and finally reinitialize the GP for the next iteration.

Running the code generates Figure 9-11. The comparison demonstrates the benefits
of adopting a principled model-based search strategy over random selections. UCB
performs the best across all iterations, showing the advantage of a higher focus on
early exploration embedded in this acquisition function. Other strategies pick up later
and stay flat afterward. Both model-based strategies perform better than the random

strategy.
30 4
28 1 / '
: [
B 261
g /
5
i
Y244 ! — random
El
— gEl
224 — uCB
— (KG

T T T

00 25 50 75 100 125 150 175 200
Sampling iteration

Figure 9-11. Cumulative maximum Sharpe ratio of all search strategies. The
UCB policy performs the best as it is able to identify the highest Sharpe ratio in just
one iteration. Other policies pick up later but lack exploration toward the later
iterations. The random strategy performs the worst, showing the advantage of a
principled search policy over random selection

295

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

Let us repeat the experiments a number of times to assess the stability of the results,
as shown in Listing 9-11.

Listing 9-11. Assessing the stability of the results via repeated experiments

multiple trials

number of runs to assess std of different BO loops

N _TRIALS = 4

indicator to print diagnostics

verbose = True

number of steps in the outer BO loop

N_ROUND = 20

best random all, best observed ei all, best observed gei all, best_
observed ucb all, best observed gkg all = [], [], [1, [], []

average over multiple trials
for trial in range(1, N_TRIALS + 1):

best random, best observed ei, best observed gei, best observed ucb,
best_observed gkg =[], [], [1, [1, []

call helper functions to generate initial training data and
initialize model

train x, train_y, best observed value = generate initial data(n=3)
train x_ei = train x

train x gei = train x

train x ucb = train x

train x_gkg = train x
train y ei = trainy

train y gei = train y
train_y ucb = train y
train_y qkg = train_y

mll ei, model ei = initialize model(train x ei, train y ei)

mll gei, model gei = initialize model(train x gei, train y gei)
mll ucb, model ucb = initialize model(train x ucb, train_y ucb)
mll gkg, model gkg = initialize model(train x gkg, train_y gkg)

best random.append(best observed value)

296

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

best observed ei.append(best observed value)
best observed gei.append(best observed value)
best observed ucb.append(best observed value)
best observed gkg.append(best observed value)

run N_ROUND rounds of BayesOpt after the initial random batch
for iteration in range(1, N_ROUND + 1):

t0 = time.monotonic()

fit the models

fit_gpytorch mll(mll ei)

fit_gpytorch mll(mll gei)

fit gpytorch ml1(mll ucb)

fit_gpytorch ml1(mll gkg)

for best f, we use the best observed exact values
EI = ExpectedImprovement(model=model ei, best f=train y ei.max())
qEI = gExpectedImprovement(model=model gei,
best f=train y ei.max(),
num_samples=1024
)
UpperConfidenceBound(model=model ucb, beta=beta)
gKnowledgeGradient (
model=model qkg,
num_fantasies=64,

ucB
qKG

objective=None,
X_baseline=train_x_gkg,

)

optimize and get new observation

new x _ei, new y ei = optimize acqf and get observation(EI)
new x_gei, new y gei = optimize acqf_and get observation(qEI)
new_x_ucb, new_y ucb = optimize acqf_and get observation(UCB)
new x_gkg, new y gkg = optimize acqf and get observation(qKG)

update training points

train x_ei = torch.cat([train x ei, new x ei], dim=0)
train x _gei = torch.cat([train x gei, new x gei], dim=0)
train x ucb = torch.cat([train x ucb, new x ucb], dim=0)

297

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

298

train x_gkg = torch.cat([train x gkg, new x gkg], dim=0)
train y ei = torch.cat([train y ei, new y ei], dim=0)

train_y gei = torch.cat([train_y gei, new_y gei], dim=0)
train y ucb = torch.cat([train_y ucb, new_ y ucb], dim=0)
train y gkg = torch.cat([train_y gkg, new_y gkg], dim=0)

update progress

best random = update random observations(best random)

best value ei = max(best observed ei[-1], new y ei.item())
best value gei = max(best observed gei[-1], new y gei.item())
best value ucb = max(best observed ucb[-1], new y ucb.item())
best value gkg = max(best observed gkg[-1], new y gkg.item())

best observed ei.append(best value ei)

best observed gei.append(best value gei)
best observed ucb.append(best value ucb)
best observed gkg.append(best value gkg)

reinitialize the models so they are ready for fitting on next
iteration
mll ei, model ei = initialize model(

train_x_ei,

train y ei

)

mll gei, model gei

initialize model(
train x gei,
train_y gei

)

mll ucb, model ucb = initialize model(

train_x_ucb,
train_y ucb

)

mll gkg, model gkg
train_x_qgkg,

initialize model(

train_y gkg

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION
t1 = time.monotonic()

best observed ei all.append(best observed ei)
best observed gei all.append(best observed gei)
best observed ucb all.append(best observed ucb)
best observed gkg all.append(best observed gkg)
best random all.append(best random)

Running the code generates Figure 9-12, suggesting that BO-based search strategies
consistently outperform the random search strategy.

io

o)

Sharpe ratio

-
wm

—+— random

—— gfl
—+ e
—— oKG

05

00 25 50 75 100 125 150 175 200
Sampling iteration

Figure 9-12. Assessing the stability of the results via repeated experiments

Finally, let us extract the mean and standard deviation of all experiments, as shown
in Listing 9-12.

Listing 9-12. Extracting the mean and standard deviation for all experiments

def extract last entry(x):

tmp = []
for i in range(4):

tmp.append(x[i][-1])
return tmp

299

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

rst_df = pd.DataFrame({
"EI": [np.mean(extract last entry(best observed ei all)),
np.std(extract last entry(best observed ei all))],
"gqEI": [np.mean(extract last entry(best observed gei all)),
np.std(extract last entry(best observed gei all))],
"UCB": [np.mean(extract last entry(best observed ucb all)),
np.std(extract last entry(best observed ucb all))],
"gKG": [np.mean(extract last entry(best observed gkg all)),
np.std(extract last entry(best observed gkg all))],
"random": [np.mean(extract last entry(best random all)),
np.std(extract last entry(best random all))],

}, index=["mean", "std"])

>>> rst df

EI qEI UCB gkG random
mean 2.736916 2.734416 2.786065 2.706545 2.470426
std 0.116130 0.146371 0.106940 0.041464 0.247212

Since there are multiple choices of acquisition functions available in the BO
community, we expect this approach to be enjoying greater popularity down the road.
However, it should be noted that the superior performance in our running example may
be a result of overfitting. Instead of selecting only one backtesting period, scoring a set of
parameters over multiple representative backtesting periods is recommended in order
to get a fairer assessment of the functional evaluation at the specific sampling location.
In other words, we need to have a more robust observation model for the black-box
function to minimize the risk of overfitting the current training dataset.

Summary

In this chapter, we introduced the use of Bayesian optimization techniques to search
for optimal parameters of a trading strategy. We started by illustrating the concept of
optimizing trading strategies by tuning the corresponding governing parameters, a
nontrivial task. By treating the performance measure as a black-box function of the
tuning parameters, we introduced the Bayesian optimization framework, which uses

Gaussian processes and acquisition functions (such as EI and UCB) to support the

300

CHAPTER9 OPTIMIZING TRADING STRATEGIES WITH BAYESIAN OPTIMIZATION

search of optimal parameters in a sample-efficient manner. With the full BO loop in
perspective, we went through a case study that optimizes the entry and exit thresholds of
a pairs trading strategy to obtain an optimal Sharpe ratio.

In the final chapter, we will look at the use of machine learning models in the pairs
trading strategy.

Exercises

o How does Bayesian optimization approach the problem of
hyperparameter tuning in trading strategies? What makes this
approach particularly suitable for this task?

o Change the objective function to search for the parameters that
minimize the maximum drawdown of the trend-following strategy.

o Bayesian optimization is based on a probabilistic model of the
objective function, typically a Gaussian process (GP). How does this
model assist in identifying areas of the search space to explore or
exploit?

e Canyou describe a scenario where a long-term (nonmyopic)
acquisition function would be beneficial in the context of optimizing
trading strategies? What about a scenario where a short-term
(myopic) function might be preferable?

e Can you discuss how the incorporation of prior knowledge can be
leveraged in the Bayesian optimization process for parameter tuning
in trading strategies?

e How can Bayesian optimization handle noisy evaluations, a common
occurrence in financial markets, during the optimization process of a

trading strategy’s parameters?

301

CHAPTER 10

Pairs Trading Using
Machine Learning

Machine learning can be used in pairs trading in several ways to improve the
effectiveness of trading strategies. Examples include pair selection, feature engineering,
spread prediction, etc. In this final chapter, we are going to focus on spread prediction
using different machine learning algorithms in order to generate trading signals.

Machine Learning in Pairs Trading

As discussed in the previous chapter, pairs trading is a type of quantitative trading strategy
that involves transacting two highly correlated/cointegrated assets at the same time and in
the opposite direction. The financial instruments could be two stocks or two indices, based
on which the relative price difference is used to derive the spread series and generate
trading signals. The primary assumption behind pairs trading is that the price spread
between two highly correlated or cointegrated assets should exhibit a mean reversion
behavior over time. During this period, traders can profit by buying the underperforming
asset and short-selling the overperforming asset in case of market mispricing due to
temporary fluctuations. In other words, the two assets identified by the strategy should
bear a long-term equilibrium relationship and move in tandem, while any deviation from
this pattern is likely to be temporary and will eventually revert back to the mean.

In pairs trading, we start by identifying two assets that are highly correlated/
cointegrated and share a similar risk exposure. After taking a long position in one asset
and a short position in the other when the z-score exceeds a predefined threshold,
we would then hope to profit from the convergence of their spread. Specifically, as
the spread between the two assets widens, we sell the overpriced asset and buy the
underpriced asset. Similarly, as the spread narrows and the z-score drops below another
predefined threshold, we will exit the positions and lock in the profits.

303
© Peng Liu 2023

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2_10

https://doi.org/10.1007/978-1-4842-9675-2_10

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Being a market-neutral strategy, pairs trading can be profitable in either bull, bear, or
sideways markets. The success of the strategy depends on two factors: whether the pair
of correlated/cointegrated assets with a similar risk profile can be identified and whether
the spread between the two assets can be accurately predicted. For example, we used a
moving average in the previous chapter to standardize the daily spread into a z-score.
Such a moving average acts as the predicted spread, which is then used to compare with
the actual spread of the day and derive the unit of deviation in terms of the standard
deviation.

In addition, we also need to have proper risk management in place. When the spread
continues to widen and moves in an adverse direction due to unexpected market events,
the larger spread can lead to a significant loss. A stop-loss order is thus often placed to
limit the potential loss of the strategy.

Figure 10-1 summarizes the three critical components of a pairs trading strategy. The
second component will be the focus of the following sections, where we illustrate the use
of machine learning techniques to predict the spread series.

Pairs trading strategy

- ki % -

Quality of selected o Proper risk
: Predictive accuracy of :
correlated/cointegrated : management via stop-
: spread series
pair of assets loss order

Figure 10-1. Summarizing the three components that determine the success of a
pairs trading strategy

Machine Learning Workflow

Machine learning models are predictive functions that generate predictions given a
specific set of inputs. In this case, we intend to use a machine learning model in pairs
trading to predict the spread between the two assets, which will then be used to identify
profitable trading signals. Since the spread is a continuous quantity, we will explore
regression models in this chapter, including support vector machine (SVM), random
forest (RF), and neural network models. We will also augment the feature space, that

304

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

is, historical spread series, with additional features such as technical indicators. Once
the spread is predicted, we can generate trading signals by taking a long position in the
underperforming asset and a short position in the overperforming asset.

A machine learning model is a mathematical algorithm or a function that is trained
on a training dataset and used to make predictions for the future unseen test dataset.
Depending on the specific model class, the function can learn the underlying patterns
and relationships from the given data, usually in the form of input-output pairs in the
context of supervised learning. This process is called interpolation, where the model is
expected to interpolate through the given data, subject to a certain degree of robustness
against random noise in the dataset, as indicated by a relatively low training error.

Next, the trained model will be assessed using a new set of test data, a process called
extrapolation, where the test data may be somewhat different from the training data. A
model is expected to do well on the test set so that it gives confidence when we apply
it to practical applications. The test set performance is also called the generalization
performance, an indicator of how well the model generalizes to the test set data.

A typical machine learning model consists of two components: the parameters (or
weights) serve as the building blocks of the model, and the model architecture specifies
how the input data interact with the parameters to generate the output. Model training
refers to the process of tuning these parameters such that the model produces a good
performance on the test set and often a relatively good performance on the training set.
During the training process, the machine learning algorithm adjusts the parameters
of the model based on the input data to improve the accuracy of its predictions on the
training data. Once the model is trained, it can be used to make predictions for the new
data, which may not have been seen before.

If the model performs too well on the training set but not so well on the test set,
then the model is considered as overfitting the training data. Since modern models
are typically complex in architecture and large in the number of model parameters,
overfitting is a common phenomenon in many training situations. Proper regularization
techniques can be adopted to reduce the chance of overfitting.

Let us recall the graph on the overall model training process workflow displayed in
Chapter 1, also shown in Figure 10-2 for ease of reference. We can apply regularization
techniques to achieve a better generalization performance from these four components:
the training data, the model, the cost measure, and the optimization procedure. Each
component has a specific extent of regularization effect and can be combined together to
achieve a good generalization performance for the specific training situation.

305

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Optimization refers to an algorithm responsible for
tweaking the model's p such that the

specified cost function is minimized. This tweak ~
generates a new model, as represented by a new ~—
set of parameters or weights.
Input features - 4>{ Prediction l

Parameters = Architecture

Target label S

X
N

LY

\

\

\

We start with a set of training data, which
consists of input-output pairs. Our goal is
to build a model that takes a given input
and produces a prediction, hoping it is
close to the output label.

A model is a final product out of a training
process. It consists of parameters and
architecture, Parameters are the tuning knobs
of a radio machine, and architecture specifies
how these knobs interact with received input
radio to output the desired channel. A complex
model often refers to many parameters and
possibly complex architecture that confrols the
flow of information.

Cost refers 1o the error or loss that
quantifies the distance between model
prediction and target label. The training
process aims at building a model that
achieves zero error in training data, i.e.,
its predictions perfectly match the
targets. However, this may lead to

overfitting.

Figure 10-2. Example of a typical model training process. The workflow starts
with the available training data and gradually tunes a model. The tuning process
requires matching the model prediction to the target output, where the gap is
measured by a particular cost measure and used as feedback for the next round
of tuning. Each tuning produces a new model, and we want to look for one that
minimizes the cost

In the following section, we will introduce the high-level principles of three different
types of machine learning algorithms: support vector machine, random forest, and
neural network.

Support Vector Machine

Support vector machine (SVM) is a popular supervised learning algorithm, especially

in the Kaggle community, for both classification and regression. In the context of
classification, SVM works by mapping the input data from its original feature space into a
high-dimensional feature space using a kernel function, and then finding the hyperplane
that best separates the different classes of data. The hyperplane is chosen in order to
maximize the margin between the classes. Seeking a boundary based on the principle of
maximal margin often leads to a better generalization performance, thus reducing the
risk of overfitting.

306

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Since we are interested in predicting the spread as a continuous outcome, making
it a regression task, SVM instead finds the hyperplane that best separates the input
data while minimizing the margin violations. In this case, our goal in the regression
task is to fit a hyperplane as closely as possible to the actual data points by minimizing
the sum of the squared errors (SSE) as the cost measure between the predicted output
and the actual target values. Since minimizing SSE toward zero would easily lead to an
overfitting model, the SVM model used in regression often assumes an e-insensitive loss
function, which allows the model to tolerate some error in its predictions, up to a certain
threshold e.

There are multiple technical terms here that serve more explanation. Let us start
with the concept of the hyperplane. A hyperplane is a decision line used to predict
the continuous output in the case of regression. The data points on either side of the
hyperplane within a certain distance (specifically, within ¢) are called support vectors.
We can also use these support vectors to draw two decision boundaries around the
hyperplane at a distance of €.

Moving on, a kernel is a set of mathematical functions that take data as input
and transform it into the required form, possibly in a different dimension. These
are generally used for finding a hyperplane in the higher-dimensional space, which
is considered easier to achieve linear separation than finding the same separating
hyperplane in the original feature space. Using kernels in SVM provides a powerful and
flexible tool for classification and regression tasks, allowing SVM to handle complex and
even nonlinearly separable datasets.

Figure 10-3 helps illustrate these concepts. Given a set of training observations in the
form of input-output pairs, the support vector regression model will build a hyperplane
as the regression line to predict future test data. The hyperplane is surrounded by two
decision boundaries, determined by a user-specified hyperparameter ¢. Here, ¢ specifies
the width of the e¢-insensitive zone (or tolerance zone) around the regression line, where
errors are not penalized. Not all the points are within the decision boundaries, and SVM
is designed to minimize such margin violations by maximizing the number of points
within the decision boundary upon estimating the hyperplane.

307

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

y e Y
R /'/ Two decision boundaries based on
In between is the tolerance zone) pd) support vectors and used to
eents the ce zone // e surround the decision hyperplane
where the model tolerates errors in - ® N /
\ the predictions up to €) A)
- S @ v { The tolerance error term € ‘
// o /./ e ’
s W 7 o - -
A /,/ Not all points are within the decision
4 /,/' boundaries. This point is a margin
e | violation which SVM seeks to minimize

=X

The hyperplane as the decision line to ‘
predict target values in this region

Figure 10-3. Illustrating the training mechanism of the support vector
regression model

Note that ¢ controls the tolerance of the margin violation. It determines the trade-off
between the model complexity and the predictive accuracy. A small value of e will result
in a complex model that closely fits the training data, but risks overfitting the training set
and therefore generalizing poorly to the new data. On the other hand, a large value of
will result in a simpler model with larger errors but potentially a better generalization
performance.

As a user-specified hyperparameter, the choice of ¢ can be highly sensitive to the
resulting predictive performance. A common approach is cross-validation, which
involves partitioning the raw data into training and validation sets several times, each
starting with a different random seed. The best ¢ is the one that reports the highest
predictive performance on average.

We introduce the random forest model in the following section.

Random Forest

Random forest is a type of ensemble model, which includes multiple simple models
combined together to make the final prediction. It is a powerful and flexible model

that can be used for both regression and classification tasks. As the name suggests, the
algorithm constructs multiple decision trees and combines all trees in the forest to make
a final prediction.

308

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

The main differentiating factor about random forest compared with other models is
how the raw training dataset is divided to support the training of each tree. Specifically,
each tree is trained on a different subset of the data and a different subset of the features,
a process known as bagging or bootstrap aggregation. By using random subsets of the
data and features, the algorithm creates multiple independent submodels that have a
low bias and high variance. The final prediction is then produced by taking the average
of the predictions of all the individual trees, similar to collecting the views from multiple
independent consultants and taking the average recommendation as the final decision.

Note that at each node of the tree, a random subset of features is considered to
determine the best split, instead of considering all features. This process is called feature
bagging. The randomness in feature selection ensures that the trees are decorrelated and
reduces the chance of overfitting.

Random forests are widely used for their simplicity, versatility, and robustness. They
can handle a mix of numerical and categorical features, require very little preprocessing
of the data, and provide a built-in method for handling missing values. Furthermore,
they offer measures of feature importance, which can provide insights into the
underlying structure of the data.

Figure 10-4 illustrates the overall training process of the random forest model.

We start by sampling from the original training set to obtain a total of B subsets. Each
sampling randomly selects both observations and features, so that the resulting subsets
appear to be independent of each other and uncorrelated in the feature space. We will
then train a decision tree model for each subset, leading to B submodels. Upon assessing
a new test data point, these B predictions will be aggregated together and averaged to
produce the final prediction.

309

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Original training set

" L 4
A i \ s

Training subset 1 Training subset 2 [N N Training subset B |

y N / .

A 4 A 4 s 4
Y

Decision tree 1 Decision tree 2 [X N) Decision tree B |

a¥y

-

Average as the final prediction
LN A

Figure 10-4. Illustrating the training mechanism of the random forest model

In the next section, we introduce the basic feed-forward neural network.

Neural Network

A neural network consists of multiple interconnected nodes, also called neurons,
stacked together in layers. Each neuron serves as a function that receives input from
the neurons in the preceding layer, performs a nonlinear transformation on that input,
and sends an output to the neurons in the next layer. In between these neurons are the
weights, also called parameters of the neural network. Learning a neural network model
essentially means tuning the weights so that the final prediction is accurate, and the
model generalizes well to the test set.

A typical neural network consists of an input layer representing the input data
and an output layer generating the output. It can also include any number of layers in
between (called hidden layers). Each layer contains at least one neuron, interpreted as
an extracted hidden feature. When it comes to the number of layers of a neural network,
it refers to the hidden layer plus the output layer. For example, a perceptron is a single-
layer neural network, meaning it has only input and output layers and does not have any
hidden layer in between.

Being the fundamental constituent of a neural network, a perceptron is a single
neuron that completes two steps of mathematical operations: the weighted sum and

310

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

the nonlinear transformation. For a single observation with p dimensions x € R?, the

P
perceptron first calculates the weighted sum Zwl.xi between x and its corresponding
i=l1
weight vector w € RP, which is (and should be) also p-dimensional. The weighted sum is

often accompanied by one more term called intercept or bias, which acts as an additional
parameter to exercise a global level shift to the weighted sum to fit the data better.

After adding an intercept/bias term b, the sum passes through an activation function
which introduces a nonlinear transformation to the weighted sum. Note that the bias
term is added by inserting a column of ones in the input data, which is the same bias
trick as linear regression. Such nonlinear transformation, together with the number and
width of layers, determines neural networks' flexibility, expressivity, and approximating
power. Figure 10-5 summarizes the process flow of a perceptron.

/ :\.jd_ W1
TN T
y, '\ X2 'L_WZ) |,>/ \"'._ — e \
Input <~/ ™ z | - ¢ > Output ‘
: wp,.~ '_,(
."f’__-'\\‘ - i . i . - \\) /\
._r X :r"
‘\,__?/ b .~
—~_ .~ [Weighted | ‘/ Activation |
Constant | 1 /f" | sum function

Figure 10-5. The process flowchart of a perceptron, which consists of a
weighted sum operation followed by an activation function. A column of ones is
automatically added to correspond to the bias term in the weight vector

The most popular choice of activation function is the rectified linear unit (ReLU),
which acts as an on/off switch that fires the input signal as it is if its value is above a specific
threshold and mutes it by outputting zero if it is below the threshold. In other words, the
ReLU operation is an identity function if the input is positive; otherwise, the output is set as
zero. Without such nonlinear activation, a multilayer neural network would simply become
a series of linear functions stacked on top of each other, resulting in a linear model.

Figure 10-6 visualizes the ReLU function's shape and summarizes the characteristics
of the perceptron operation discussed so far. Other than the architectural flexibility of
a neural network model in terms of the number and width of its layers, another main
added flexibility lies in the nonlinear operation. In fact, many exciting and meaningful

311

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

hidden features could be automatically extracted using ReLU as an activation function.
For example, when training an image classifier using a special architecture called
convolutional neural networks, low-level features in the initial hidden layers tend to
resemble fundamental structural components such as lines or edges, while high-level
features at later hidden layers start to learn structural patterns such as squares, circles, or
even complex shapes like the wheels of a car. This is not possible if we are limited to the
linear transformation of features and is considered an extremely difficult task if we were

to engineer such informative features manually.

- consists of (N g Aciation
. S e o e . |
l‘. Single p/eTrceptron l —> L Welghtﬁd sum J 1 | functioér}\(ReLU))
. 0 ifz<0
f(x) = ¢(wx + b) WX $(x) = {w T
-
Nonlinearity is introduced via the activation =5
function, which adds more flexibility to the - o |
approximating power of a neural network besides | v]
k. controlling the number and width of layers n as0 { /

Figure 10-6. Decomposing a single perceptron into a weighted sum and an
activation function which is often ReLU. The ReLU operation passes through a
signal if it is positive and mutes it if it is negative. Such nonlinearity also introduces
great approximating power to the neural networks in addition to the flexibility in
designing the number and width of layers

One of the reasons why ReLU (and its variants) remains the most popular activation
function is its fast gradient computation. When the input is less than or equal to zero, the
gradient (of a constant number) becomes zero, thus saving the need for backpropagation
and parameter update. When the input is positive, the gradient (of the original input
variable) is simply one, which gets backpropagated as it is.

Having reviewed these three model classes, let us switch to the implementation of
pairs trading and compare their performances after using machine learning models to
predict the daily spread.

312

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Implementing the Pairs Trading Strategy Using
Machine Learning

In this section, we will follow a similar recipe to develop a pairs trading strategy as in the
previous chapter, with the only change being the calculation of the predicted spread.
The previous chapter used a rolling window to derive the mean and standard deviation
of the daily spread. In other words, the predicted spread is the average of a collection of
historical spreads in the moving window, whose volatility is also used to standardize the
difference between the actual spread and the predicted spread.

Let us start by importing the necessary packages. As shown in Listing 10-1, we will
focus on the same pair of stocks (Google and Microsoft) and trading horizon (the full
year of 2022).

Listing 10-1. Downloading the stock data

import os

import random

import numpy as np

import yfinance as yf

import pandas as pd

from statsmodels.tsa.stattools import adfuller

from statsmodels.regression.linear model import OLS
import statsmodels.api as sm

from matplotlib import pyplot as plt

Zmatplotlib inline

SEED = 8
random.seed(SEED)
np.random.seed(SEED)

download data from yfinance
stocks = ['GOOG', "MSFT']
start date = "2022-01-01"
end date = "2022-12-31"
df = yf.download(stocks, start=start date, end=end date)['Adj Close']
df.head()
GO0G MSFT

313

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Date

2022-01-03 145.074493 330.813873
2022-01-04 144.416504 325.141327
2022-01-05 137.653503 312.659882
2022-01-06 137.550995 310.189270
2022-01-07 137.004501 310.347412

For simplicity, we will define spread as the difference in the log price of the two
stocks, which is calculated and visualized in Listing 10-2.

Listing 10-2. Calculating the spread

Calculate the spread between the two assets
spread = np.log(df[stocks[0]]) - np.log(df[stocks[1]])

plt.plot(spread, label='Spread using difference of log price')
plt.legend()
plt.show()

Running this code generates Figure 10-7.

—— Spread using difference of log price

-0.85 1

-0.90 A1

-0.95 1

-1.00 1

2022-01 2022-03 2022-05 2022-07 2022-09 2022-11 2023-01

Figure 10-7. Visualizing the daily spread defined as the difference in the log price
of both stocks

Next, we will perform feature engineering to boost the feature space.

314

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Feature Engineering

Feature engineering is the process of selecting, transforming, and extracting relevant
features from the raw data in order to boost the performance of a machine learning
model. The quality and sometimes the quantity of the features are critical factors that
influence the performance of a machine learning model. These additional engineered
features may not necessarily make sense from an interpretability perspective, yet they
will likely improve the predictive performance of the machine learning algorithm by
offering a new knob for the model to tune with.

We have already encountered feature engineering in previous discussions, with
the moving average being the most notable example. In this exercise, we will use five
features to predict the spread series, including the daily returns for both stocks, the five-
day moving average of the spread series, and the 20-day moving standard deviation of
daily returns. These are created in Listing 10-3.

Listing 10-3. Generating additional features

Define additional features

asset1 returns = np.log(df[stocks[0]]).diff()

asset2 returns = np.log(df[stocks[1]]).diff()

spread ma5 = spread.rolling(5).mean()

asset1 volatility = assetl returns.rolling(20).std()
asset2_returns.rolling(20).std()

asset2 volatility

Note that this is just one way to create additional features. In practice, we would
create many more features to support algorithms such as SVM and random forest if
the goal is to maximize the predictive accuracy. For neural networks, however, such
feature engineering is helpful but not essential. Neural networks are powerful function
approximators in that they can learn the correct feature extraction given a sufficiently
complex architecture and enough training time.

We will then aggregate these features into a single DataFrame X, followed by filling
NA values with zero. We also assign the spread series to y:

Combine the features into a single DataFrame

X = pd.DataFrame({'AssetiReturns': assetl returns,
"Asset2Returns': asset2 returns,
'SpreadMA5': spread mas,

315

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

'AssetiVolatility': asseti_volatility,
"Asset2Volatility': asset2 volatility})

X.fillna(0)
spread

Let us also split the data into a training and a test set. We will adopt the common
80-20 rule; that is, 80% of the data goes to the training set, and 20% goes to the test set.
We will also observe the sequence of time, so the 80% training set does not peak in the
future, as shown in Listing 10-4.

Listing 10-4. Performing train-test split

Split the data into training and test sets
train_size = int(len(spread) * 0.8)

train X = X[:train_size]

test X = X[
train y = y[:train_size]
test y = y[train size:]

train size:]

With the training and test data ready, we can now move into the model training part,
starting with SVM.

Pairs Trading Using SVM

Since this is a regression task, we will use the SVR class from sklearn, specifying a linear
kernel. After instantiating the model class, we use the fit() method to fit the model
parameters to the training data and the predict() method to generate predictions for
the test data. We will also check the root mean squared error (RMSE) for both training
and test sets. Listing 10-5 completes the training and testing operations.

Listing 10-5. Model training and testing using SVM

from sklearn.svm import SVR
from sklearn.metrics import mean squared error

svm_model = SVR(kernel="linear")
svm_model.fit(train X, train_y)
train pred = svm model.predict(train X)

316

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

>>> print("training rmse: ", np.sqrt(mean_squared error(train_y,

train pred)))

test pred = svm model.predict(test X)

>>> print("test rmse: ", np.sqrt(mean_squared error(test y, test pred)))
training rmse: 0.039616044798431914

test rmse: 0.12296547390274865

The RMSE measures the model’s predictive performance. However, we still need
to plug the model into the trading strategy and evaluate the ultimate profitability in
the pairs trading strategy. As the only change is on the predicted spread based on the
specific machine learning model, we can define a function to score the model as an
input parameter and output the terminal profit. The score_fn() function in Listing 10-6
completes the scoring operation.

Listing 10-6. Calculating cumulative return using pairs trading under a given
predictive model

import torch

def score fn(model, type="non neural net"):
Cenerate predicted spread using the SVM model
if type == "non_neural net":
test pred = model.predict(test X)
else:
test _pred = model(torch.Tensor(test X.values)).detach().numpy()
Calculate z-score of the actual and predicted spread
zscore = (spread - test pred.mean()) / test pred.std()
set the threshold values for entry and exit signals
entry threshold = 2.0
exit_threshold = 1.0
initialize the daily positions to be zeros
stockl position = pd.Series(data=0, index=zscore.index)
stock2 position = pd.Series(data=0, index=zscore.index)
generate daily entry and exit signals for each stock
for i in range(1, len(zscore)):
zscore<-2 and no existing long position for stock 1
if zscore[i] < -entry threshold and stocki position[i-1] == 0:

317

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

stock1l position[i]

1 # long stock 1
stock2 position[i] = -1 # short stock 2
zscore>2 and no existing short position for stock 2
elif zscore[i] > entry threshold and stock2 position[i-1] == 0:
stockl position[i] = -1 # short stock 1
stock2 position[i] = 1 # long stock 2
-1<zscore<1
elif abs(zscore[i]) < exit threshold:
stockl position[i] = 0 # exit existing position

stock2_position[i] = 0
-2<zscore<-1 or 1<zscore<2
else:
stockl_position[i] = stocki position[i-1] # maintain existing
position
stock2 position[i]

stock2 position[i-1]

Calculate the returns of each stock

stockl returns = (np.exp(test X['AssetiReturns']) * stocki position.
shift(1)).fillna(0)

stock2_returns = (np.exp(test X['Asset2Returns']) * stock2 position.
shift(1)).fillna(0)

calculate the total returns of the strategy

total returns = stockl returns + stock2 returns

cumulative returns = (1 + total returns).cumprod()

return cumulative returns[-1]

In this function, we add another input parameter to control if the model belongs to a
neural network. This control is placed here to determine the specific prediction method
to use. For standard sklearn algorithms such as SVM and random forest, we can call
the predict() method of the model object to generate predictions for the given input
data. However, when the model is a neural network trained using PyTorch, we need to
first convert the input to a tensor object using torch.Tensor (), generate predictions
by calling the model object itself (underlying, the forward() function within the model
class is called), extracting the outputs without gradient information using the detach()
method, and converting to a NumPy object using numpy ().

318

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Next, we calculate the z-score using the mean and the standard deviation of the
predicted spread series. We then use an entry threshold of two and an exit threshold of
one to generate the trading signals based on the standardized z-scores. The rest of the
calculations follow the same approach as in the previous chapter.

We can now use this function to obtain the terminal return for the pairs trading
strategy using the SVM model:

>>> score_fn(svm model)
1.143746922303926

Similarly, we can obtain the same measure using the random forest regressor.

Pairs Trading Using Random Forest

To build a random forest model for regression, we can use the RandomForestRegressor
class and specify two main parameters: n_estimators as the number of trees to be built
in the random forest and random_state as the random seed for reproducibility.

Listing 10-7 trains the random forest model and evaluates its performance in the training
and test sets using RMSE.

Listing 10-7. Model training and testing using random forest

random forest
from sklearn.ensemble import RandomForestRegressor

Create random forest regressor
rf model = RandomForestRegressor(n_estimators=100, random_state=42)

Train the model on the training and test set
rf model.fit(train X, train y)

train _pred = rf model.predict(train X)

>>> print("training rmse: "
train _pred)))

test pred = rf model.predict(test X)

>>> print("test rmse: ", np.sqrt(mean_squared error(test y, test pred)))
training rmse: 0.005741011378501151

test rmse: 0.07322761976891506

, np.sqrt(mean_squared error(train y,

319

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

The result shows that random forest can better fit the data with a lower training and
test set RMSE compared with SVM.
We also calculate the terminal return as follows:

>>> score_fn(svm model)
0.9489411965252148

The result reports a lower terminal return, despite a better predictive performance.
This is also overfitting, in the sense that a more predictive model at the stage-one
prediction task leads to a lower terminal return at the stage-two trading task. Combining
these two tasks in a single stage is an interesting and active area of research.

We move to neural networks in the next section.

Pairs Trading Using Neural Networks

Training a deep neural network requires specifying the four major components: input
data, model architecture, objective function, and optimizer. We start with the input data
by converting them into tensor objects using the torch.Tensor () function as follows:

Convert data to PyTorch tensors

train X ts = torch.Tensor(train X.values)
train_y ts = torch.Tensor(train_ y).view(-1, 1)
test X ts = torch.Tensor(test X.values)
test y ts = torch.Tensor(test y).view(-1, 1)

Note that we use the .values attribute to access the values from the DataFrame and
the view() function to reshape the target into a column.

Next, we define the neural network model in Listing 10-8. Here, we slot the attributes
to the initialization function, including one input linear layer, one hidden linear layer,
and one output linear layer. The number of incoming neurons in the input layer (i.e.,
train X.shape[1]) and the number of outgoing neurons in the output layer (i.e., 1)
are determined by the specific problem at hand. The number of neurons in the middle
layers is user defined and directly determines the model complexity. All these layers
are chained together with a ReLU activation function in the middle via the forward()
function. Also, note that it is unnecessary to apply ReLU to the last layer since the output
will be a scalar value representing the predicted spread.

320

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING
Listing 10-8. Defining the network architecture

Define the neural network model
class Net(nn.Module):
def init (self):

super(Net, self). init ()
self.fcl = nn.Linear(train X.shape[1], 64)
self.fc2 = nn.Linear(64, 32)
self.fc3 = nn.Linear(32, 1)
self.relu = nn.ReLU()

def forward(self, x):

x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.relu(x)
x = self.fc3(x)
return x

Now we instantiate a neural network model in nn_model and inspect the
architectural information of the model using the summary () function, as shown in
Listing 10-9.

Listing 10-9. Checking network model summary

from torchsummary import summary

Create an instance of the neural network model
nn_model = Net()

print the summary of the customized neural network
>>> summary(nn_model, input_size=(1, train X.shape[1]))

Layer (type) Output Shape Param #
Linear-1 [-1, 1, 64] 384
RelLU-2 [-1, 1, 64] 0
Linear-3 [-1, 1, 32] 2,080
RelLU-4 [-1, 1, 32] 0

321

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Total params: 2,497

Trainable params: 2,497

Non-trainable params: 0

Input size (MB): 0.00
Forward/backward pass size (MB): 0.00
Params size (MB): 0.01

Estimated Total Size (MB): 0.01

The result shows that the neural network contains a total of 2497 parameters over
three linear layers. Note that the ReLU layer does not have any associated parameters as
it involves deterministic mapping only.

Next, we define the loss function as the mean square error using MSELoss () and
choose Adam as the optimizer over the network weights, with an initial learning rate
of 0.001:

Define the loss function and optimizer
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(nn_model.parameters(), lr=0.001)

We now enter the iterative training loop to update the weights by minimizing the
specified loss function, as shown in Listing 10-10.

Listing 10-10. The full model training procedure

Train the model
for epoch in range(100):
optimizer.zero grad()
outputs = nn_model(train X ts)
loss = criterion(outputs, train y ts)
loss.backward()
optimizer.step()

Print the loss for every 10 epochs
if epoch % 10 == 0:
print("Epoch {}, Loss: {:.4f}".format(epoch, loss.item()))
322

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Here, we iterate over the training set for a total of 100 epochs. In each epoch, we first
clear the existing gradients in memory using the zero_grad() function of the optimizer.
Next, we score the training set to obtain predicted targets in outputs, calculate the
corresponding MSE loss, perform backward propagation to calculate the gradients using
autograd functionality via the backward() method, and finally perform gradient descent
update using the step() function.

Running the code generates the following results, where we see that the training loss
continues to decrease as iteration proceeds:

Epoch 0, Loss: 0.4154

Epoch 10, Loss: 0.2246
Epoch 20, Loss: 0.0850
Epoch 30, Loss: 0.0093
Epoch 40, Loss: 0.0043
Epoch 50, Loss: 0.0051
Epoch 60, Loss: 0.0013
Epoch 70, Loss: 0.0016
Epoch 80, Loss: 0.0013
Epoch 90, Loss: 0.0012

We can also check the in-sample and out-of-sample RMSE as follows:

evaluate the model on the training and testing set

train _pred = nn_model(train X ts).detach().numpy()

>>> print("training rmse: ", np.sqrt(mean_squared error(train y ts,

train pred)))

test pred = nn_model(test X ts).detach().numpy()

>>> print("test rmse: ", np.sqrt(mean_squared error(test y ts, test pred)))
training rmse: 0.033806544

test rmse: 0.08466047

The result shows that the neural network is less overfitting than the random
forest model.

Now we obtain the terminal return of the pairs trading strategy based on the neural
network model:

323

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

>>> score_fn(nn_model, type="nn"
0.8999874304248494

Again, this result shows that an accurate machine learning model may not
necessarily lead to a higher terminal return in the pairs trading strategy. Even if the
machine learning model is predictive of future spreads, another layer of assumption
imposed by the pairs trading strategy is that the temporary market fluctuations will ease
down, and the two assets will revert back to the long-term equilibrium relationship. Such
an assumption may not necessarily stand, along with the many unpredictable factors in
the market.

Summary

In this chapter, we introduced different machine learning algorithms used in predicting
the spread, a key component when employing the pairs trading strategy. We started by
introducing the overall framework when training any machine learning algorithm and
then elaborated on three specific algorithms: support vector machine, random forest,
and neural network. Lastly, we plugged these models into the strategy and found that a
higher predictive performance by the machine learning model, a sign of overfitting, may
lead to a lower performance score in terms of cumulative return. It is thus important not
to overfit the machine learning models at the prediction stage and instead focus more
on the final performance of the trading strategy at the decision stage, where the actual
trading action is made.

324

CHAPTER 10 PAIRS TRADING USING MACHINE LEARNING

Exercises

e How does the SVM model determine the optimal hyperplane for
predicting the spread in a pairs trading strategy? What are the key
parameters that need to be adjusted in an SVM?

e How does a random forest algorithm handle feature selection when
predicting the spread in a pairs trading strategy? What are the
implications of feature importance in this context?

o Explain how SVM, random forest, and neural networks approach
the problem of overfitting in the context of predicting the spread in a
pairs trading strategy.

e How can you handle nonlinear relationships between features in
SVM, random forest, and neural networks when predicting the
spread in a pairs trading strategy?

e How can the layers in a neural network be optimized to improve the
prediction of the spread in a pairs trading strategy?

325

Index

A

Acquisition function, 257, 274, 275, 288,
289, 300
best-observed value, 276
closed-form EI, 276
decision-making, 273
defining and initializing, 288
randomness, 276
trade-off between, 277
UCB, 277
Actively managed investment pools, 10
Active traders, 18
add_constant() function, 237
Advanced order types, 44
Agency orders, 38, 39
Agency trading, 38-39
agg() function, 187
All-or-none (AON), 55
alpha argument, 164
Annualized variance, 128, 129
Annualizing returns, 119, 120
Annualizing volatility, 128, 129
Annuities, 8
apply() function, 188
Arbitrage, 7, 38, 226
Arithmetic mean, 126
Asset classes, 10, 11, 32
Asset price curve, 257
asset_returnl, 110
asset_return2, 110
Augmented Dickey-Fuller (ADF) test,
234-236, 239

© Peng Liu 2023

Automated optimization techniques, 258
Automated trading, 3, 5

B

Backtesting, 197, 222, 254, 258
historical data, 199
market phases, 197
maximum drawdown/max
drawdown, 200
optimistic assessment, 200
parameters, 198
performance, 198, 199
performance indicator, 216
procedure, 198
profits, 199
risk and reward assessments, 200
test set performance, 197
trend-following strategy, 198
backward() method, 323
Backwardation, 94-96, 104
Bayesian optimization, 259, 268, 277, 278
black-box function, 280
environment, 269
parameter, 269
policy, 268
Big exchanges, 16
Black-box function, 259, 266, 271, 279,
292, 300
Bollinger Bands, 100, 104, 155
Bonds, 8, 10, 16, 35, 42, 108
botorch.optim module, 289

327

P. Liu, Quantitative Trading Strategies Using Python, https://doi.org/10.1007/978-1-4842-9675-2

https://doi.org/10.1007/978-1-4842-9675-2

INDEX

Buy-and-hold strategy, 14, 169, 170, 172,

173, 194, 195, 218, 220
Buy-side institutional investors, 17
Buy-side prices, 65
Buy-side retail investors, 17

C

Call market, 16
Candlestick() function, 31
Candlestick charts, 20, 31, 32
Cash settlement, 82, 83
Central depository (CDP), 37
Centralized order-driven market, 38
ChatGPT model, 209
Chicago Board of Trade (CBOT), 16
Clearance, 15
Clearing house, 84, 85
coint() function, 241, 243, 244
Cointegration, 229
correlation, 240
equilibrium, 240
statsmodels package, 241
time series, 240
hypothesis, 230
non-stationary time series, 230
process, 230
statistical analysis, 231
statistical characteristics, 230

traditional statistical methods, 230

Compounded return, 118, 119, 147,
149, 150

Compounding returns, 145

Contango, 94, 95, 104

Continuously compounded returns,
147, 150

Continuous market, 16

Convenience yield, 92, 93, 104

328

cummax() function, 210
.cumprod() function, 151
cumprod() function, 113, 172, 253

D

Daily drawdowns, 212

Dark pools, 6, 14

DataFrames, 61, 63, 122, 123, 205

Data-generating process, 199, 271

datetime format, 96

Day trader, 18, 108

Delivery, 82, 83, 88, 92, 94

Derivative market, 13, 14

df2 variable, 61

dfBidPrices, 63

dfPrices, 64

diff() function, 169, 170

Display orders, 47

DJI Stock Symbols, 182-184

Dow Jones Industrial Average (DJIA), 182
momentum trading, 182

download() function, 185

drawdown(), 213

dropna() function, 133, 168, 217

E

Earnings per share (EPS), 2
Electronic communications networks
(ECNs), 16
Electronic markets
buying and selling financial
instruments, 35
discrete price grid, 35
discrete price ladder, 36
display vs. non-display order, 47
electronic order, 36-38, 104

limit order, 43, 44
limit order book, 44-46
market order, 42
market participants, 36
MIT, 53
order flow, 56, 57
order matching systems, 39-41
order types, 35
pegged order, 50-52
price impact, 55, 56
proprietary and agency trading, 38, 39
revolution, 35
stop-limit order, 49
stop order, 47, 48
trailing stop order, 52, 53
E-Mini futures contract, 99
equals() function, 238
Evaluation-period performance, 193
ewm() method, 164, 216
ExactMarginalLogLikelihood()
function, 286
Exchange-traded funds (ETFs), 10, 42
Execution risk, 5
Expected improvement (EI), 274-276, 288
Exploratory data analysis, 32
Exponentially weighted moving average
(EWMA), 156, 163, 164
Exponential moving average (EMA), 154,
155, 163-167
Exponentiation, 152

F

FAK orders, 55

Feature engineering, 315
SVM and random forest, 315
training and test data, 316
DataFrame X, 315

INDEX

Fill and kill (FAK), 55
Fill or kill (FOK), 55
Financial assets, 10, 107, 109, 139, 155,
225,228
Financial data analysis
definition, 19
downloading stock price data, 21-28
summarizing stock prices, 19-21
visualizing stock price data, 29-32
Financial derivatives, 9, 99
Financial instrument, 35, 37,
41-43,79, 225
Financial market stability, 84
Financial trading, 257
First-order gradient-based methods, 264
First-period return, 120, 151
Flexible controls, 66
FOK orders, 55
Forward and futures contracts
age-old practice, 77
derivative products, 78
financial instruments, 79
futures trading, 79
key difference, 79
market participants opportunities, 77
predetermined quantity, 78
purchase and receive obligation, 78
Forward contract
arbitrage opportunities, 91
buy-low-sell-high principle, 91
counterparty risk, 78
current time point, 88
definition, 88
exponential constant, 88
formula, 90
net cash flow, 91
no-arbitrage argument, 88, 90
portfolio, 89

329

INDEX

Forward contract (cont.)
predetermined delivery price, 88
private agreements, 104
risk-free interest rate, 89
stock and cash positions, 90
trading price and quantity, 78
unforeseen circumstances, 89

Futures contract
clearing house, 84, 85
hedging and speculation, 81, 82
leverage, 83, 84
mark-to-market, 85-87
obligations at maturity, 82, 83
parameters, 80, 81
pricing, 91-93
standardized features, 80
standardized contracts, 104

Futures data
closing price, 98
downloading, 96
fontsize argument, 97
“GC=F" and “HG=F” symbols, 98
technical indicators, 99-104
visualizing, 97, 99
yfinance package, 96

Futures trading, 79, 83

G

Gaussian distribution, 245, 270, 273
Gaussian process (GP) model,
270-272, 286
generate_initial_data(), 284
get_stock_data() function, 283
go.Bar() function, 68
Group tradable assets
derivative products, 12
maturity, 11

330

nonlinear payoff function, 12, 13
payoff function linearity, 11

H

head() function, 28

Hedge funds, 5, 7, 10, 17, 37
Hedgers, 81, 82

Hedging, 8, 9, 18, 77, 81-82, 87
Hidden/non-display orders, 47
High-frequency trading (HFT), 55
Hyperparameter tuning, 267
Hypothesis testing, 225-254

,J,K

Iceberg orders, 6, 41, 56
idxmin() function, 212

iloc() function, 67

iloc() method, 121

Immediate or cancel (IOC), 55

Implementing trend-following strategy

buy-and-hold, 169, 170
cumulative returns analysis, 172
framework, 166
long-term moving average, 166
momentum-related technical
indicators, 167

1+Rreturn, 172
short-term moving average, 166
signal column, 169, 170
sign switch, 170
single-period return, 169
SMA-3 and SMA-20, 167
trading actions, 171
trading rule, 168
transaction cost, 167

info() function, 167, 206

initialize_model(), 286
Input data groups
financial news, 2
fundamentals, 2
market states, 2
technicals, 2
Institutional algorithmic trading, 5-7, 32
Interpolation, 199, 272, 305

L

Label distribution, 59, 60
Leverage, 83, 84
Limit order, 43, 44
Limit order book (LOB), 2, 40, 44-46
Linear regression model, 231, 237
LOB data, 74
data folder, 57
features, 58
label distribution, 59, 60
limit prices, 57
normalized data representations, 57
price-volume data, 58, 61-68
price-volume pair, 58
visualizing price movement, 70-72
loc() function, 212, 214
Logarithmic returns
advantages, 149, 150
compounding returns, 145
dummy stock prices, 142
mathematical computations, 150
natural logarithm, 147, 148
percentage return, 142, 143
1+R approach, 143, 144
sequential compounding process, 146
single-period returns, 146
stock price analysis, 150-153
stock returns calculation, 142

INDEX

terminal return, 144, 145, 148
Lookback windows application, 178-180

Machine learning, 284, 303, 304, 324
components, 305
market-neutral strategy, 304
pairs trading, 303

calculation, 313

stocks, 314

trading horizon, 313
trained model, 305
training process workflow, 305
training situation, 305
types, 306

make_subplots() function, 59

Marked to market (MTM), 9

Market if touched (MIT), 53

Market maker, 16, 17, 45

Market-neutral trading strategy, 242

Market-not-held orders, 39

Market orders, 16, 40, 42, 47, 48, 54-57

Market participants, 6, 35-37, 39-41, 89,

92,93, 95

Market timing, 14, 18

Mark-to-market
definition, 85
exchange, 87
final settlement price, 87
fluctuating prices, 85
long margin account, 86, 87
minimum requirement, 87
price updation, 85
profit and loss, 86
traders risk exposure, 86

Maximum drawdown
buy-and-hold strategy, 208

331

INDEX

Maximum drawdown (cont.) Moving Average Convergence Divergence
calculating, 204 (MACD), 100, 153, 155
calculation process, 202 Moving averages (MA), 154-156
daily returns, 208 Multiperiod return, 117-119, 139
DataFrame, 205, 206 Mutual funds, 10
distance, 202
line charts, 211 N

performance, 201

risk-adjusted return metric, 203
risk measure, 202

stock price data, 204

NaN value, 122, 124
NASDAQ Nordic stock market, 57
Neural network, 310, 321

stock returns, 207 fundamental constituent, 310
stocks, 215 input data and an output layer, 310
trading strategy, 203 linear regression, 311
volatility, 201 parameters, 310
wealth index curve, 202, 209 ReLU function, 311

Maximum log-likelihood (MLL) New York Stock Exchange (NYSE),

approach, 287 14, 16, 40
mean() method, 134, 158 No-arbitrage argument, 11, 88, 91

Mean square error, 322 Nonconvex function, 264, 266

Model development workflow, 4, 5 Non-display orders, 47

Model training process, 3-5, 306 Normal contango, 94

Momentum trading, 175, 178, 179, 181, Normal contango, 94
194, 195 Normality, 149, 150

n-period investment horizon, 119
np.exp() function, 172

np.mean() function, 112

Null hypothesis, 229, 239, 248

asset’s price, 175
characterizes, 176
current month, 188
elements
time frame, 177
volatility, 177

volume, 176 0
measurement period, 189 Objective functions, 259, 265
monthly returns, 187 OHLC prices, 19
principle, 180 OHLC chart, 19
terminal return, 188 On-balance volume (OBV), 155
traders, 176, 179 One-dimensional objective function, 264
traders and investors, 175 Online trading platforms, 37
and trend-following, 177 Optimization, 260

332

argmax operation, 263
decision-making, 262
derivative-free, 262
global, 263
optimizer, 260
parameters, 261
procedure, 263
time and resources, 262
trading strategy, 261
Order-driven market, 16
Order flow, 56, 57, 104
Order matchings systems
definition, 39
conditional orders, 41
electronic exchanges, 41
exchanges, 40
non-displayed orders, 41
order precedence rules, 39, 40
order types, 40
price/display/time precedence rule, 41
rule-based systems, 39
Order precedence rules
types
price precedence, 39
size precedence, 40
time precedence, 40
Order types, 35, 40, 41, 54, 55
Ordinary least squares (OLS), 230, 236
Over-the-counter (OTC), 9, 15, 104

P

Pairs trading, 227, 312
assets, 227
asset selection, 228
components, 304
implementation, 228, 229
mean-reverting behavior, 227

INDEX

neural network, 320
SVM
fit() method, 316
predict() method, 316
score_fn() function, 317
sklearn algorithms, 318
torch.Tensor(), 318
strategy, 250, 253
view() function, 320
traders, 228
Pandas DataFrame, 59, 121, 122
pct_change() function, 123, 133, 150,
185, 253
pd.DataFrame() function, 111
Pegged order
algorithm, 51, 52
best bid, 51
composite order, 51
definition, 50
differential offset, 50
dynamic limit price, 50
limit order, 50
reference price, 50
securities, 50
Percentage change, 110, 123, 143, 226
Percentage returns, 142, 143
p-hacking, 199
Physical delivery, 79, 81-83
plot() function, 165, 240
plotly package, 29
Potential trading opportunities, 155
predict() method, 237
Price impact, 55, 56
Price ladder, 36
Price movement visualization, 70
Price precedence, 39, 40
Price return, 117
Price slippage, 42, 43, 55

333

INDEX

Principle of compounding, 146
prod() function, 124, 219
Program trading, 16
Proprietary orders, 38
Proprietary trading, 37-39

Q

gcut() function, 191
Quantitative trading
algorithm, 3
avenues and steps, 14, 15
buy-side investors, 16, 17
common assets (see Tradable assets,
quantitative trading)
data collection and processing, 1
definition, 1, 2
grouping tradable assets, 10-14
institutional algorithmic trading, 5-7
market making, 17, 18
market structures, 15, 16
model development workflow, 4, 5
order execution, 3
portfolio rebalancing, 18, 19
process, 3
quant trader, 7, 8
scalping, 18
structured features, 2
Quant trader, 7, 8
Quote-driven/price-driven market, 16

R

Random forest, 308, 319
bagging or bootstrap aggregation, 309
factor, 309
features, 309
training process, 309

334

Random forest regressor, 319
Real estate investment trusts (REITs), 10
Rebalances a portfolio, 14
Rebalancing, 18
Rectified linear unit (ReLU), 311
Relative Strength Index (RSI), 100,
153, 154
Rerminal return, 153
resample() function, 186
return_df variable, 111
Returns analysis, 107, 110, 139
annualized returns calculation,
124, 125
annualizing, 119, 120
description, 109
dummy returns, 110-113
multiperiod return, 117-119
1+R format, 114, 115
single-period returns
calculation, 120-123
stock return with dividends, 117
terminal return, 115, 116
two-period terminal return
calculation, 123, 124
Return values, 112
1+R format, 114, 115
1+R formatted DataFrame, 113
Risk-adjusted return, 107, 130, 131, 139,
198, 203, 260
Risk analysis, 107
annualized returns calculation,
137,138
annualized volatility calculation, 137
column-wise arithmetic mean
returns, 134-136
Sharpe ratio, 129-131
Sharpe ratio calculation, 139
stock price data, 132, 133

variance and standard deviation,
126, 127
volatility, 125, 127-129
Risk and return trade-off
diversification strategies, 108
factors, 108
individual asset, 108
low-return asset, 108
profit maximization, 109
stock market, 108
two-dimensional coordinate
system, 108
Risk-free bond interest rate, 92
Risk-free interest rate, 92, 221
1+R method, 144
rolling() function, 158, 160
Root mean squared error (RMSE), 316
1+R return, 144
Rule-based approach, 3

S
Scalping, 18
shape() function, 28, 136
Sharpe ratio, 130, 131, 139
shift() function, 122
Short-term swings, 14
Simple moving average (SMA),

154, 156-163
Singaporean investment, 37
Singapore Exchange (SGX), 16, 37
Single-period logarithmic return, 169
Single-period log returns, 148, 152
Single-period percentage return, 143
Single-period returns, 123, 147
Single-period volatility, 128, 129, 137
Size precedence, 40
Slippage, 6, 42, 43, 48, 49, 55, 200

SMA-3, 158
Speculators, 81, 82
S&P 500 E-Mini futures contract, 99
Spot market, 13
Stacked bar charts, 66, 67
Standard deviation, 126, 129
Standardization, 79, 110
Stationarity
adfuller() function, 234
distribution, 232, 233
mean and standard deviation, 234
random.normal() function, 232
stationarity_test(), 234
stock prices, 232
time series, 235
Statistical arbitrage, 225, 254
concept, 227
market movements, 225
mean reversion, 225
short-term fluctuations, 226
short-term market factors, 225
statistical methods, 225
steps, 226
stocks, 226
Statistical concept, 240
Statistical measures, 126, 127, 240
std() function, 112, 134, 136
Stock data, 19, 27, 32, 236, 313
Stock price data, 132, 133
Stock return with dividends, 117
Stocks, 8, 242-243, 313
Stop-entry order, 48
Stop-limit order, 41, 44, 49, 54
Stop-loss orders, 48
Stop orders, 41, 47, 48
summary() function, 321
Sum of the squared
errors (SSE), 307

INDEX

335

INDEX

Support vector machine (SVM), 304, 306
hyperplane, 307
input-output pairs, 307
mathematical functions, 307
support vectors, 307
user-specified hyperparameter, 308
Symmetry, 149, 150

T

tail() function, 28
Tangible and intangible factors, 15
Technical indicators, 101, 103
additional features, 154
Bollinger Bands, 100, 104, 155
DataFrame, 100
EMA, 173
integral, 154
MA, 154
MACD, 100, 104, 155
market analysis clarification, 154
mathematical calculations, 154
raw futures time series data, 101
RSI, 100, 104, 154
SMA, 173
volume-based indicators, 155
Terminal monthly return, 187-190
Terminal return, 115, 116, 144-146
Ticker() module, 21
Time precedence, 40, 41
Time series data, 155
today() function, 27
torch.Tensor() function, 320
Tradable assets, quantitative trading
annuities, 8
bonds, 8
cash and equivalents, 9
commodities, 9

336

currencies, 9
ETFs, 10
forward, 9
futures, 9
hedge funds, 10
mutual funds, 10
options, 9
REITs, 10
stocks, 8
Trade formation period, 189
Traders, 15
Trading agency, 38
Trading algorithm, 1, 19
Trading avenues, 14-15
Trading signals, 3, 250, 251
Trading steps
acquisition of information and
quotes, 15
confirmation, clearance, and
settlement, 15
execution of order, 15
routing of order, 15
Trading volume, 30, 31, 57, 176, 177, 260
Trailing stop orders, 41, 52, 53
Transactions, 6, 14, 15, 36, 39, 44, 46, 55,
83, 84, 167,172, 200
Trend following strategy, 153, 178,
180-182, 259, 279
definition, 141
implementation (see Implementing
trend-following strategy)
log return (see Logarithmic return)
lookback window, 180
risk management techniques, 141
technical indicators, 141
See also Trend trading
Trend traders, 153, 166
Trend trading

definition, 153
EMA, 163-166
fundamental principle, 153
moving average, 155, 156
SMA, 156-163
technical analysis tools, 153
technical indicators (see Technical
indicators)
Two-period return, 118, 119
Typical model training process, 5, 306

U

Unit root test, 230, 236

Upper confidence
bound (UCB), 274, 275, 277, 288,
295, 300

INDEX

V, W, X

value_counts() function, 170

Variance and standard deviation, 127
Volatility, 127-130, 177

Volume-weighted average price (VWAP), 7

Y

Yahoo! Finance, 21
yfinance library, 21
yfinance package, 21

Y4

zero_grad() function, 323
Zero-sum game, 84
Z-score, 246-248, 250-252, 303, 304, 319

337

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Quantitative Trading: An Introduction
	Overview of Quantitative Trading
	Model Development Workflow
	Institutional Algorithmic Trading
	Being a Quant Trader
	Major Asset Classes and Derivatives
	Grouping Tradable Assets
	Common Trading Avenues and Steps
	Market Structures
	Major Types of Buy-Side Stock Investors
	Market Making
	Scalping
	Portfolio Rebalancing

	Getting Started with Financial Data Analysis
	Summarizing Stock Prices
	Downloading Stock Price Data
	Visualizing Stock Price Data

	Summary
	Exercises

	Chapter 2: Electronic Market
	Introducing Electronic Market
	Electronic Order
	Proprietary and Agency Trading
	Order Matching Systems
	Market Order
	Limit Order
	Limit Order Book
	Display vs. Non-display Orders
	Stop Order
	Stop-Limit Order
	Pegged Order
	Trailing Stop Order
	Market If Touched Order
	Summarizing Major Types of Orders
	More Order Types: Limit and Cancelation
	Price Impact
	Order Flow

	Working with LOB Data
	Understanding Label Distribution
	Understanding Price-Volume Data
	Visualizing Price Movement

	Summary
	Exercises

	Chapter 3: Forward and Futures Contracts
	Introducing Forward and Futures Contracts
	Parameters of a Futures Contract
	Hedging and Speculation
	Obligations at Maturity
	Leverage in a Futures Contract
	Clearing House
	Mark-to-Market
	Pricing Forward Contract
	Pricing Futures Contract
	Contango and Backwardation

	Working with Futures Data
	Adding Technical Indicators

	Summary
	Exercises

	Chapter 4: Understanding Risk and Return
	Risk and Return Trade-Off
	Analyzing Returns
	Working with Dummy Returns
	The 1+R Format
	The Terminal Return
	Stock Return with Dividends
	Multiperiod Return
	Annualizing Returns
	Calculating Single-Period Returns from Price Data
	Calculating Two-Period Terminal Return
	Calculating Annualized Returns

	Analyzing Risk
	Introducing Variance and Standard Deviation
	Annualizing Volatility
	Combining Risk and Return via the Sharpe Ratio
	Working with Stock Price Data
	Calculating the Mean, Variance, and Standard Deviation
	Calculating the Annualized Volatility
	Calculating the Annualized Returns
	Calculating the Sharpe Ratio

	Summary
	Exercises

	Chapter 5: Trend-Following Strategy
	Working with Log Returns
	Analyzing Stock Prices Using Log Returns

	Introducing Trend Trading
	Understanding Technical Indicators
	Introducing Moving Averages
	Delving into Simple Moving Averages
	Delving into Exponential Moving Averages
	Implementing the Trend-Following Strategy

	Summary
	Exercises

	Chapter 6: Momentum Trading Strategy
	Introducing Momentum Trading
	Diving Deeper into Momentum Trading
	Contrasting with the Trend-Following Strategy
	Observing the Role of Lookback Windows
	More on Trend Following

	Implementing the Momentum Trading Strategy
	Obtaining DJI Stock Symbols
	Downloading Stock Prices
	Calculating Monthly Returns
	Calculating the Six-Month Terminal Return
	Generating Trading Signals
	Evaluating Out-of-Sample Performance
	Comparing with the Buy-and-Hold Strategy

	Summary
	Exercises

	Chapter 7: Backtesting a Trading Strategy
	Introducing Backtesting
	Caveats of Backtesting
	Understanding Maximum Drawdown
	The Downside of Drawdown Risk

	Calculating the Max Drawdown
	Backtesting the Trend-Following Strategy
	Summary
	Exercises

	Chapter 8: Statistical Arbitrage with Hypothesis Testing
	Statistical Arbitrage
	Pairs Trading
	Cointegration
	Stationarity
	Test for Cointegration
	Correlation and Cointegration

	Implementing the Pairs Trading Strategy
	Identifying Cointegrated Pairs of Stocks
	Testing Pairwise Cointegration
	Obtaining the Spread
	Converting to Z-Scores
	Formulating the Trading Strategy

	Summary
	Exercises

	Chapter 9: Optimizing Trading Strategies with Bayesian Optimization
	Optimizing Trading Strategies
	Parametric Trading Strategies
	More on Optimization
	Global Optimization
	The Objective Function
	Bayesian Optimization
	Gaussian Process
	Acquisition Function
	EI and UCB
	The Full BO Loop

	Optimizing the Pairs Trading Strategy
	Trading Strategy Performance As the Black-Box Function
	Generating Training Set for Bayesian Optimization
	Implementing the Gaussian Process Model
	Guiding the Sequential Search by Maximizing the Acquisition Function
	Performing Sequential Search

	Summary
	Exercises

	Chapter 10: Pairs Trading Using Machine Learning
	Machine Learning in Pairs Trading
	Machine Learning Workflow
	Support Vector Machine
	Random Forest
	Neural Network

	Implementing the Pairs Trading Strategy Using Machine Learning
	Feature Engineering
	Pairs Trading Using SVM
	Pairs Trading Using Random Forest
	Pairs Trading Using Neural Networks

	Summary
	Exercises

	Index

