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1.1.2 Python Integrates Well with Data Analysis, Visualisation and GUI Toolkits

Another compelling argument for the use of Python by quantitative analysts is the ease with
which Python integrates with visualisation software such as GNUPlot2 making it possible
for the analyst to construct personalised ‘Matlab-like’3 enivronments. Furthermore, quantita-
tive analysts generally have neither the interest or time to invest in producing graphical user
interfaces (GUIs). They can be nonetheless important. Python provides Tk-based4 GUI tools
making it straightforward to wrap programs into GUIs. Readers interested in learning more
about how Python can be integrated with GUI building, data analysis and visualisation soft-
ware are particularly recommended to consult Hans Peter Langtangen’s Python Scripting for
Computational Science [14].

1.1.3 Python ‘Plays Well with Others’

A variety of techniques exist to extend Python from the C and C++ programming languages.
Conversely, a Python interpreter is easily embedded in C and C++ programs. In the world
of financia engineering, C/C++ prevails and large bodies of this code exist in most financia
institutions. The ability for new programs to be written in Python that can interoperate with
these code investments is a huge victory for the analyst and the institutions considering its use.

1.2 COMMONMISCONCEPTIONS ABOUT PYTHON
There are a number of ill-informed arguments oft encountered that, when made, impede the
propogation or acceptance of Python programming in finance The most common include ‘it is
not fast enough’, ‘it does not engender a clear structure to your code’ and (the most incorrect
proposition) ‘it has no type checking’. In fact, for most applications Python is ‘fast enough’
and those parts of the application that are computationally intensive can be implemented in
fast ‘traditional’ programming languages like C or C++, bringing the best of both worlds.
As for the argument that Python does not engender a clear structure to code, this is hard
to understand. Python supports encapsulation at the function, class and namespace levels as
well as any of the modern object-oriented or multiparadigm programming languages. Now,
what about Python having no type checking? This is simply wrong. Python is dynamically
typed, that is to say, type checking is performed at run-time but type checking does happen!
Furthermore, the absence of explicit type declarations in the code is one of the keys to why
a Python program can be so much more succinct and faster to produce than languages with
static type checking. Staying with the topic of Python’s type system, it is interesting to note
that Python’s dynamic type system implicitly supports generic programming. Consider an
example taken from the ppf.math5 module
def solve tridiagonal system(N, a, b, c, r):
...
return result

2 GNUPlot is a cross platform function plotting utility. See http://www.gnuplot.info for details.
3 Matlab is a numerical computing environment and programming language popular in both industry and academia.

See http://www.mathworks.com/ for details.
4 Tk is an open-source, cross-platform graphical user interface toolkit. See http://www.tcl.tk for details.
5 Look ahead to the section ‘Roadmap for this book’ for an explanation of PPF.
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Here N is the dimension of an N × N linear system, a, b, c are the subdiagonal, diagonal,
and superdiagonal of the system respectively, and r the right hand side. The point to be made
is that the function will work with any types that are consistent with being Indexable (i.e.
satisfy an Indexable concept in the C++0x6 sense of the word). This admits the use of the
function with Python lists, NumPy7 arrays or some other user-define array type . . . generic
programming!

1.3 ROADMAP FOR THIS BOOK
Chapter-by-chapter this book gradually presents a practical body of working code referred to
as PPF or the ppf package, that implements a minimal but extensible Python-based financia
engineering system.

Chapter 2 looks at the overall topology of the ppf package, its dependencies and how to
build, install and test it (newcomers to Python may be served by looking ahead to Appendix
A where a quick tutorial on Python basics is offered).

Chapter 3 considers the topic of implementing Python extension modules in C++ with an
emphasis on fostering interoperability with existing C++ financia engineering systems and, in
particular, how certain functionality present in ppf in fact is underlied by C++ in this fashion.

Chapter 4 lays the groundwork for later chapters (concerned with pricing using techniques
from numerical analysis) in that it presents those mathematical algorithms and tools that arise
over and over again in computational quantitative analysis, including:

(1) (pseudo) random number generation;
(2) estimation of the standard normal cumulative distribution function;
(3) a variety of interpolation schemes;
(4) root-findin algorithms;
(5) various operations for linear algebra;
(6) generalised linear least-squares data fitting
(7) stable calculation techniques for computing quadratic and cubic roots; and
(8) calculation of the expectation of a function of a random variable.

Chapter 5 looks at how the ppf represents common market information such as discount-
factor functions and volatility surfaces.

Chapter 6 is entirely concerned with looking at the data structures used in the ppf for
representing financia structures: ‘fl ws’, ‘legs’, ‘exercise opportunities’, ‘trades’ and the like.

Chapter 7 details the concepts and classes that govern the interactions between the trade
representations and pricing models in the ppf package.

Chapter 8 offers an implementation of a fully functional Hull–White model in Python,
where the characteristic features of the model are assembled from (in as much as is possible)
functionally orthogonal components.

Chapter 9 present two general numerical pricing frameworks invariant over pricing models:
one lattice based, the other Monte-Carlo based.

6 The next version of the C++ standard, expected to be completed in 2009.
7 The fundamental package for scientifi computing with Python. SciPy (as indeed PPF) depends on NumPy. See

http://numpy.scipy.org for details.
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Chapter 10 applies the pricing frameworks and the Hull–White model developed in the
preceding chapters to pricing financia structures, specificall , Bermudan swaptions and target
redemption notes.

Chapter 11, while keeping things tractable, introduces the idea of and practical techniques
for C++/Python ‘Hybrid Systems’ against the backdrop of existing derivative security pricing
and risk management systems in C++.

Chapter 12 gives concrete examples of implementing COM servers in Python and utilising
the functionality so exposed in the context of Microsoft Excel.

In the appendices section, Appendix A offers newcomers to Python a brief tutorial. Appendix
B provides a primer for the use of the C++ Boost.Python library for fostering interoperability
between C++ and Python. Appendix C covers the mathematics of the Hull–White model and
Appendix D the mathematics of a simple regression scheme for determining the early exercise
premium of a callable structure when pricing using Monte-Carlo techniques.
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market/
math/
model/
hull white/

lattice/
monte carlo/

pricer/
payoffs/

test/
utility/

Here is a brief summary of the nature and main roles of each of the ppf sub-packages:

com COM servers wrapping ppf market, trade and pricing functionality (see
Chapter 12).

core Types and functions relating to the representation of financia quantities such
as fl ws and LIBOR rates.

date time Date and time manipulation and computations.
market Types and functions for the representation of common curves and surfaces

that arise in financia programming such as discount factor curves and
volatility surfaces.

math General mathematical algorithms.
model Code specifi to implementing numerical pricing models.
pricer Types and functions for the purpose of valuing financia structures.
text The ppf unit test suite.
utility Utilities of a less numerical, general nature such as algorithms for searching

and sorting.

2.2 UNIT TESTING
Code in the ppf library employs two approaches to testing: interactive Python session testing
using the doctest module and formalised unit testing using the PyUnit module. Both of
these testing frameworks are part of the Python standard libraries.

2.2.1 doctest

The way that the doctest module works is to search a module for pieces of text that
look like interactive Python sessions, and then to execute those sessions to verify that they
work as expected. In this way ppf modules come with a form of tutorial-like executable
documentation:

C:\Python25\lib\site-packages\ppf\core>python black scholes.py -v
python black scholes.py -v
Trying:

print black scholes(S=42., K=40., r=0.1, sig= 0.2, T=0.5, CP=CALL)
Expecting:

4.75942193531
ok
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Trying:
print black scholes(S=42., K=40., r=0.1, sig= 0.2, T=0.5, CP=PUT)

Expecting:
0.808598915338

ok
2 items had no tests:

main
main . test

1 items passed all tests:
2 tests in main .black scholes

2 tests in 3 items.
2 passed and 0 failed.
Test passed.

2.2.2 PyUnit

A full suite of unit tests for all modules in the ppf package is provided in the ppf.test
sub-package. The tests can be run module-by-module or, to execute all tests in one go, a driver
‘test all.py’ is provided:

C:\Python25\Lib\site-packages\ppf\test>python test all.py --verbose
python test all.py --verbose
test call (test core.black scholes tests) ... ok
test put (test core.black scholes tests) ... ok
test (test core.libor rate tests) ... ok

.

.

.
test upper bound (test utility.bound tests) ... ok
test equal range (test utility.bound tests) ... ok
test bound (test utility.bound tests) ... ok
test bound ci (test utility.bound tests) ... ok

--------------------------------------------------------------------
Ran 51 tests in 25.375s

OK

2.3 BUILDING AND INSTALLING PPF
In this section we look at what it takes to build and install the ppf package.

2.3.1 Prerequisites and Dependencies

ppf is composed of a mixture of pure Python modules underlied by some supporting extension
modules implemented in standard C++. Accordingly, to build and installppf requires a modern
C++ compiler. The C++ extension modules have some library dependencies of their own,
notably the Boost C++ libraries and the Blitz++ C++ library. Instructions for downloading
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and installing the Boost C++ libraries can be found at http://www.boost.org and
instructions for Blitz++ can be found at http://www.oonumerics.org. Naturally, an
installation of Python is also required. On Windows, the authors favour the freely available
ActiveState Python distribution, see http://www.activestate.com for download and
installation details. Also required on the Python side for ppf is an installation of the NumPy
package, see http://www.scipy.org for download and installation details.

2.3.2 Building the C++ Extension Modules

The ppf C++ extension modules are most conveniently built using the Boost.Build system1 a
copy of which is included with the ppf sources. Also provided with the ppf sources for the
convenience of Windows users is a pre-built executable ‘bjam.exe’. Although these notes will
become a little Windows-centric at this point, the basic principles will hold for *NIX users also.
On Windows, theppf package has been successfully built and tested with the Microsoft Visual
Studio C++ compiler versions 7.1, 8.0 (express edition), 9.0 (express edition), mingw/gcc-
3.4.5,2 mingw/gcc-4.3.0 with Python versions 2.4 and 2.5, Boost versions 1.33.1, 1.34.0,
1.35, 1.36, 1.37 and Blitz++ version 0.9. The ppf package has also been built and tested on
the popular Linux-based operating system, Ubuntu-8.04.1 with Boost version 1.36.0, Blitz++
version 0.9 and gcc-4.2.3.

In the remainder of this section, without loss of generality, we will assume a Windows
operating system, Blitz++ version 0.9, the ActiveState distribution of Python version 2.5 and
Boost version 1.36.

Build Instructions

• Prerequisites
- Copy c:/path/to/ppf/ext/bjam.exe to somewhere in your %PATH%
- Install
o Blitz++-0.9
o Boost-1.36
o ActiveState Python 2.5
o NumPy for Python 2.5 (version 1.0.4 or 1.1.0)

- Edit as appropriate for your site
o c:/path/to/ppf/ext/build/user-config.jam
o c:/path/to/ppf/ext/build/site-config.jam

• Build
- c:/path/to/ppf>cd ext&&bjam [debug|release]
This will create:
o c:/path/to/ppf/ppf/math/ppf math.pyd and
o c:/path/to/ppf/ppf/date time/ppf date time.pyd

1 See http://www.boost.org/doc/tools/build/index.html.
2 Minimalist GNU for Windows – see http://www.mingw.org.
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2.3.3 Installing the PPF Package

Assuming the steps of the previous section have been performed, installation of the ppf
package which relies on the standard Python Distutils package is very simple.

• Install
- c:/path/to/ppf>python setup.py install

which will copy the ppf package to the standard Python installation location
(c:/python25/lib/site-packages/ppf).

2.3.4 Testing a PPF Installation

The easiest way to verify a ppf installation is to run the ppf unit test suite.

• Test
- c:/python25/lib/site-packages/ppf/test>python test all.py --
verbose
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In ‘register date.cpp’ we instantiate Boost.Python class objects describing the C++ types
and functions we intend to use from Python:

void register date()
{
using namespace boost::python;
namespace bg = boost::gregorian;
namespace bd = boost::date time;

// types and functions ...

class <bg::date>(
"date"
,"A date type based on the gregorian calendar"
, init<>("Default construct not a date time"))

.def(init<bg::date const&>())

.def(init
<

bg::greg year
, bg::greg month
, bg::greg day
>((arg("y"), arg("m"), arg("d"))

, "Main constructor with year, month, day "))
.def("year", &bg::date::year)
.def("month", &bg::date::month)
.def("day", &bg::date::day)

// ...

;

class <std::vector<bg::date> >(
"date vec"

, "vector (C++ std::vector<date> ) of date")
.def(vector indexing suite<std::vector<bg::date> >())
;

// more types and functions ...
}

Once exposed in this fashion, the types so define in the ppf date time module are
imported into the ppf subpackage ppf.date time by means of import statements in the
module’s ‘ init .py’:

from ppf date time import *

3.1.1 Examples

IMM Dates

As an example of what we have achieved, let’s see how, in Python, we can compute so-called
IMM (international money market) dates for a given year, i.e. the 3rd Wednesday of March,
June, September, and December in the year. The ppf.date time package provides the
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module nth imm of year in which is define class nth imm of year. The work-
horse of the class implementation is the Boost.Date Time function nth kday of month:
from ppf date time import \

weekdays \
, months of year \
, nth kday of month \
, year based generator

class nth imm of year(year based generator):
’’’Calculate the nth IMM date for a given year

’’’
first = months of year.Mar
second = months of year.Jun
third = months of year.Sep
fourth = months of year.Dec

def init (self, which):
year based generator. init (self)
self. month = which

def get date(self, year):
return nth kday of month(

nth kday of month.third
, weekdays.Wednesday
, self. month).get date(year)

def to string(self):
pass

Exercising the class nth imm of year functionality in an interactive Python session
goes like this:
>>> from ppf.date time import *
>>> imm = nth imm of year
>>> imm dates = []
>>> imm dates.append(imm(imm.first).get date(2005))
>>> imm dates.append(imm(imm.second).get date(2005))
>>> imm dates.append(imm(imm.third).get date(2005))
>>> imm dates.append(imm(imm.fourth).get date(2005))
>>> for t in imm dates:
... print t
2005-Mar-16
2005-Jun-15
2005-Sep-21
2005-Dec-21

With class nth imm of year some useful questions regarding IMM dates can now
be answered elegantly and easily. For example, what is the IMM date immediately preceding
a given date? This is answered in the ppf.date time.first imm before module:

from ppf date time import \
weekdays \
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, months of year \
, nth kday of month \
, year based generator

from nth imm of year import *

def first imm before(start):
’’’Find the IMM date immediately preceding the given date.
’’’
imm = nth imm of year
first imm of year = imm(imm.first).get date(start.year())
imm date = None
if start <= first imm of year:

imm date = imm(imm.fourth).get date(start.year() - 1)
else:
for imm no in reversed([imm.first, imm.second, imm.third,

imm.fourth]):
imm date = imm(imm no).get date(start.year())
if imm date < start:

break

return imm date

In an interactive Python session:

>>> from ppf.date time import *
>>> print first imm before(date(2007, Jun, 27))
2007-Jun-20

The ppf.date time package also contains the symmetric first imm after function.

Holidays, Rolls and Year Fractions

Other common activities in financia modelling include determining if a date is a business
day, ‘rolling’ a date to a business day and the computation of elapsed time between two dates
according to common market conventions.

The ppf.date time.shift convention module shows an easy way to emulate
C++ enum types:

class shift convention:
none \

, following \
, modified following \
, preceding \
, modified preceding = range(5)

This idiom is employed again in the ppf.date time.day count basis module:

class day count basis:
basis 30360 \

, basis act 360 \
, basis act 365 \
, basis act act = range(4)
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The ppf.date time.is business daymodule provides the means to answer the ques-
tion of whether or not a given date is a business day:
from ppf date time import weekdays

def is business day(t, financial centres=None):
’’’ Test whether the given date is a business day.

In this version, only weekends are considered
holidays.

’’’
Saturday, Sunday = weekdays.Saturday, weekdays.Sunday
return t.day of week().as number() != Saturday \

and t.day of week().as number() != Sunday

The ppf.date time.shift module provides functionality to ‘shift’ a date according to
the common market shift conventions:
from ppf date time import *
from is business day import *
from shift convention import *

def shift(t, method, holiday centres=None):
d = date(t)
if not is business day(d):
if method == shift convention.following:

while not is business day(d, holiday centres):
d = d + days(1)

elif method == shift convention.modified following:
while not is business day(d, holiday centres):
d = d + days(1)

if d.month().as number() != t.month().as number():
d = date(t)
while not is business day(d, holiday centres):

d = d - days(1)
elif method == shift convention.preceding:
while not is business day(d, holiday centres):

d = d - days(1)
elif method == shift convention.modified preceding:

while not is business day(d, holiday centres):
d = d - days(1)

if d.month().as number() != t.month().as number():
while not is business day(d, holiday centres):

d = d + days(1)
else: raise RuntimeError, "Unsupported method"

return d

The ppf.date time.year fraction module provides functionality to compute year
fractions:

from ppf date time \
import date, gregorian calendar base

from day count basis import *
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is leap year = gregorian calendar base.is leap year

def year fraction(start, until, basis):
’’’Compute accruals
’’’
result = 0
if basis == day count basis.basis act 360:

result = (until - start).days()/360.0
elif basis == day count basis.basis act 365:

result = (until - start).days()/365.0
elif basis == day count basis.basis act act:
if start.year() != until.year():
start of to year = date(until.year(), 1, 1)
end of start year = date(start.year(), 12, 31)
result = (end of start year - start).days()/ \

(365.0, 366.0)[is leap year(start.year())] \
+ (int(until.year()) - int(start.year()) - 1) + \

(until - start of to year).days()/ \
(365.0, 366.0)[is leap year(until.year())]

else:
result = (until - start).days()/ \

(365.0, 366.0)[is leap year(util.year())]
elif basis == day count basis.basis 30360:

d1, d2 = start.day(), until.day()
if d1 == 31:

d1 -= 1
if d2 == 31:

d2 -= 1
result = (int(d2) - int(d1)) + \

30.0*(int(until.month()) - int(start.month())) + \
360.0*(int(until.year()) - int(start.year()))

result = result / 360.0
else:
raise RuntimeError, "Unsupported basis"

return result

In the following interactive session, the year fraction between two dates is computed under a
variety of different day count basis conventions:

>>> from ppf.date time import *
>>> add months = month functor
>>> Nov = months of year.Nov
>>> begin = date(2004, Nov, 21)
>>> until = begin + add months(6).get offset(begin)
>>> year fraction(begin, until, day count basis.basis 30360)
0.5
>>> year fraction(begin, until, day count basis.basis act 365)
0.49589041095890413
>>> year fraction(begin, until, day count basis.basis act act)
0.49285126132195523
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3.2 BOOST.MULTIARRAY AND SPECIAL FUNCTIONS
The use of multidimensional arrays in quantitative analysis programs is ubiquitous. Python,
or rather the Python libraries provide a variety of types that serve for their representa-
tion. Like the date types of the previous section, however, we prefer to emphasise in-
teroperability with C++ and so, to this end, might favour reflectio of C++ array types
into Python. The ppf package exposes the Boost.MultiArray multidimensional array types
boost::multi array<double,N> forN= 1, 2, 3 to Python. To achieve this, advantage
was taken of a C++ template meta-program that facilitates reflectio of the arrays, the code
for which is present in the source code accompanying this book (see ‘ext/boost/multi array/
multi array hpp’).

The array types are housed in the ppf math module implemented in the C++ Python
extension ‘ppf math.pyd’ and imported into the namespace of the ppf.math subpackage.
Usage of the array types is natural and intuitive. Here is an example taken from the ppf.math
unit tests:

class solve upper diagonal system tests(unittest.TestCase):
def test(self):

# Solve upper diagonal system of linear equations ax = b
# where
#
# a = 3x3
# [ 1.75 1.5 -2.5
# 0 -0.5 0.65
# 0 0 0.25 ]
#
# and b = [0.5, -1.0, 3.5].

a = ppf.math.array2d([3,3])
a[0, 0], a[0, 1], a[0, 2] = (1.75, 1.5, -2.5)
a[1, 0], a[1, 1], a[1, 2] = (0.0, -0.5, 0.65)
a[2, 0], a[2, 1], a[2, 2] = (0.0, 0.0, 0.25)
b = ppf.math.array1d([3])
b[0] = 0.5
b[1] = -1.0
b[2] = 3.5

# Expected solution vector is x = [2.97142857 20.2 14.0].

x = ppf.math.solve upper diagonal system(a, b)
assert len(x) == 3 and math.fabs(x[0] - 2.971428571) < 1.0e-6 \

and math.fabs(x[1] - 20.2) < 1.0e-6 and math.fabs(x[2] -
14.0) < 1.0e-6

In addition to the multi-array types, the module ppf math also exposes some useful utility
functions implemented in C++. In the fil ‘ppf/math/limits hpp’ are the following template
function definitions

#if !defined(LIMITS 5DDE828B 9989 44F5 9728 47AA72323D96 INCLUDED)
# define LIMITS 5DDE828B 9989 44F5 9728 47AA72323D96 INCLUDED
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# if defined( MSC VER) && ( MSC VER >= 1020)
# pragma once
# endif // defined( MSC VER) && ( MSC VER >= 1020)

# include <boost/config.hpp>

# include <limits>

namespace ppf { namespace math {

template <class T>

T epsilon()
{
return std::numeric limits<T>::epsilon();

}

template <class T>

T min BOOST PREVENT MACRO SUBSTITUTION ()
{
return (std::numeric limits<T>::min)();

}

template <class T>

T max BOOST PREVENT MACRO SUBSTITUTION ()
{
return (std::numeric limits<T>::max)();

}

}} // namespace ppf::math

#endif//!defined(LIMITS 5DDE828B 9989 44F5 9728 47AA72323D96 INCLUDED)

In ‘ext/lib/math/src/register special functions.cpp’, instantiations of these templates are ex-
posed to Python:

#include <boost/python/def.hpp>

#include <ppf/math/limits.hpp>

namespace ppf { namespace math {

void register special functions()
{
using namespace boost::python;

def("epsilon", epsilon<double>);
def("min flt", min BOOST PREVENT MACRO SUBSTITUTION <double>);
def("max flt", max BOOST PREVENT MACRO SUBSTITUTION <double>);

}

}} // namespace ppf::math
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An example of the use of the epsilon function is again provided by a ppf.math unit
test:

class bisect tests(unittest.TestCase):
def test1(self):
tol = 5*ppf.math.epsilon()
left, right, num its = \

ppf.math.bisect(lambda x: x*x + 2.0*x - 1.0
, -3, -2
, lambda x, y: math.fabs(x-y) < tol, 100)

Further examples of the use of these special functions can be found in the next chapter.

3.3 NUMPY ARRAYS
Despite the efforts of the preceding section regarding reflectio of C++ Boost.MultiArray
types into Python, in practice, when working in Python, the authors have found the facilities
of NumPy arrays to be far more convenient (NumPy was mentioned briefl in section 1.2).
Specificall , their notational conveniences and the large body of functionality provided by the
NumPy library motivates their use in Python beyond the argument of C++ interoperability.
Indeed, when working in C++, a library dedicated to scientifi manipulation of arrays such as
Blitz++2 wins the authors’ favour for such work over ‘lower-level’ container types like native
C arrays or Boost.MultiArray types. But now to the crux of the matter. If we haven’t made this
point earlier then we’ll make it for the firs time now. One of the great strengths of Python is
the ability to drop into C or C++ code ‘when performance counts’. That is, the ability to factor
out that characteristic operation that must be done as efficientl as possible and pull it down
into a compiled component is essential. Now, in the fiel of numerical programming, doesn’t
that characteristic operation almost always involve operating on arrays of data?

So, can we have it all? Can we have the convenience of NumPy in Python combined with
the convenience and efficien y of Blitz++ in C++ where the data is shared between these array
types? The short answer is ‘yes we can’, as we will demonstrate in the next subsection.

3.3.1 Accessing Array Data in C++

This subsection is concerned with the topic of accessing a NumPy array’s data in C++. To do
this, we need to work with the Python C API and we’ll also take advantage of Boost.Python
where we can. The approach is fairly idiomatic and can be more or less wrapped up in a
set of reasonably small utility functions. Let’s begin with this most simple of functions from
‘ppf/util/python/detail/decref.hpp’:

#if !defined(DECREF 4A1F1D9D CE18 4CA1 AF52 DA1C51847FB4 INCLUDED)
# define DECREF 4A1F1D9D CE18 4CA1 AF52 DA1C51847FB4 INCLUDED

# if defined( MSC VER) && ( MSC VER >= 1020)
# pragma once
# endif // defined( MSC VER) && ( MSC VER >= 1020)

2 Blitz++ is a C++ class library for scientifi computing which provides performance on par with Fortran 77/90.
See http://www.oonumerics.org/blitz for details.
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# include <boost/python/detail/wrap python.hpp>

namespace ppf { namespace util { namespace python {

namespace detail
{
//Py DECREF() is a macro which makes it unsuitable
//for use with bind constructs in scope guards.
template <class T>
inline void decref(T* obj)
{
Py DECREF(obj);

}
}

}}} // namespace ppf::util::python

#endif // !defined(DECREF 4A1F1D9D CE18 4CA1 AF52 DA1C51847FB4 INCLUDED)

The motivation for this function will become apparent in a moment but, briefl , Python objects
in the Python C – API are reference counted, and the manipulation of the reference counts
(although automatic in Python) must be carried out manually in C++. As the comment in the
code above indicates, the facility for decrementing the reference count of a Python object is
actually a macro and so we need a wrapper for it should we wish to take advantage of ‘scope
guard’3 techniques.

Here is the code from ‘ppf/util/python/detail/object as array hpp’ that wraps up the business
of getting us from a Python C API PyObject* to a NumPy PyArrayObject*:

#if !defined(OBJECT AS ARRAY 0067910E F5F1 4BD6 9565 3BF98B4A12C1
INCLUDED)

# define OBJECT AS ARRAY 0067910E F5F1 4BD6 9565 3BF98B4A12C1 INCLUDED

# if defined( MSC VER) && ( MSC VER >= 1020)
# pragma once
# endif // defined( MSC VER) && ( MSC VER >= 1020)

#include <ppf/util/python/detail/decref.hpp>

#include <boost/python/errors.hpp>
#include <boost/shared ptr.hpp>
#include <boost/bind.hpp>

namespace ppf { namespace util { namespace python {

namespace detail
{

template <int = 0>

3 See “Generic: Change the way you write exception-safe code – forever” by Andrei Alexandrescu and Petru
Marginean, available online at http://www.ddj.com/cpp/184403758.
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struct object as array impl
{
static boost::shared ptr<PyArrayObject> get(
PyObject* input, int type, int min dim, int max dim)

{
if(PyArray Check(input))
{
if(!PyArray ISCARRAY(reinterpret cast<PyArrayObject*>(input)))
{
PyErr SetString(PyExc TypeError, "not a C array");

boost::python::throw error already set();
}

return boost::shared ptr<PyArrayObject>(
reinterpret cast<PyArrayObject*>(

boost::python::expect non null(
PyArray ContiguousFromObject(

input, type, min dim, max dim))
)

, boost::bind(
::ppf::util::python::detail::decref<PyArrayObject>, 1)

);
}
else
{
PyErr SetString(PyExc TypeError, "not an array");

boost::python::throw error already set();
}

return boost::shared ptr<PyArrayObject>();
}

};

typedef object as array impl <> object as array impl;

inline boost::shared ptr<PyArrayObject>
object as array(

PyObject* input, int type, int min dim, int max dim)
{
return object as array impl::get(input, type, min dim, max dim);

}

}}}} // namespace ppf::util::python::detail

#endif // !defined(OBJECT AS ARRAY 0067910E F5F1 4BD6 9565 3BF98B4A12C1
INCLUDED)

Note that this code lives in the ppf::util::python::detail namespace and is not
tied to any particular ppf C++ Python extension module.



22 Financial Modelling in Python

To explain this code, let’s work top-down rather than bottom-up and look to the last function
of the fil first
inline boost::shared ptr<PyArrayObject>
object as array(
PyObject* input, int type, int min dim, int max dim)

{
return object as array impl::get(input, type, min dim, max dim);

}

The firs thing to note is the return type, that is a boost::shared ptr
<PyArrayObject>. The reason to return one of these over a raw PyArrayObject*
is to do with the use of Py DECREF as alluded to above. The long and the short of it is that
should the attempt to get an array from a PyObject* succeed, by the time the resultant array
is going out of scope it must have Py DECREF called on it to avoid a resource leak. This
should happen even in the event of a C++ exception. As we will see, the wrapping of the array
up in the shared ptr means that this will be automated for us.

We can give a quick explanation of the arguments: input is the incoming PyObject*
which we hope is an array; the type is the expected element type, for ppf purposes this
is always the constant PyArray DOUBLE; the arguments min dim and max dim are the
expected minimum dimension (guarantee no smaller than) and maximum dimension of the
array (guarantee no larger than). If max dim is set to zero, the check on the array will have
no upper bound with respect to dimensions.

The body of this inline function delegates to a static function get of class type
object as array impl. The type object as array impl is in fact a type-
def for a specifi instantiation of a template class template <int> class ob-
ject as array impl . That is really nothing to stop and concern ourselves with too
much; it’s a fairly often observed C++ ‘trick’ that enables us to present this functionality from
a C++ header fil without the need to provide clients of the functionality compiled library
code as well.

So, with the interface function covered, let’s have a quick review of the implementation
details of the get function:
static boost::shared ptr<PyArrayObject> get(
PyObject* input, int type, int min dim, int max dim)

{
if(PyArray Check(input))
{
if(!PyArray ISCARRAY(reinterpret cast<PyArrayObject*>(input)))
{
PyErr SetString(PyExc TypeError, "not a C array");

boost::python::throw error already set();
}

return boost::shared ptr<PyArrayObject>(
reinterpret cast<PyArrayObject*>(

boost::python::expect non null(
PyArray ContiguousFromObject(

input, type, min dim, max dim))
)
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, boost::bind(
::ppf::util::python::detail::decref<PyArrayObject>, 1)

);
}
else
{
PyErr SetString(PyExc TypeError, "not an array");

boost::python::throw error already set();
}

return boost::shared ptr<PyArrayObject>();
}

Well, it’s fairly easy to see that – bar a few wrinkles, we’ll discuss in a moment – it’s
for the most part fairly standard Python C API style programming. In short, the incoming
input is checked to ensure that it’s an array and, if it is, then it is a standard C style
array (row major). In the event that it fails to meet these conditions, the error is indicated
to Python and a quick exit is made by calling the Boost.Python function throw error
already set(). If the object has been determined to be an array, the crucical call is made
to the NumPy API function PyArray ContiguousFromObject which, for our purpose,
checks that the array has the requested element data type and dimensionality. The use of
the Boost.Python expect non null is the means by which, we detect if those conditions
have been met (the result of PyArray ContiguousFromObject will be non-null or 0 if
they have not); the Python error indicator is set and an implicit call to boost::python::
throw error already set() will occur on failure. The non-null array object is cast to
the required type and installed into a boost shared pointer with a custom deleter built from a
boost::bind to the ppf::util::python::detail::decref function.

3.3.2 Examples

The ‘ppf math.pyd’ C++ Python extension module exports some (trivial) examples of ma-
nipulating NumPy arrays from C++. The code for these examples can be found in the
source fil ‘lib/math/src/register numpy.cpp’. The examples all live in the C++ namespace
ppf::math::numpy::examples. They are available through the ppf.math.
numpy examples module by the names sum array, trace, assign zero and
make array. The code to register the functions in the ‘ppf math.py’ module reads:
void register numpy()
{
using namespace boost::python;

def("numpy sum array", numpy::examples::sum array);
def("numpy trace", numpy::examples::trace);
def("numpy assign zero", numpy::examples::assign zero);
def("numpy make array", numpy::examples::make array);

import array();//this is a required NumPy API function call
}
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Sum the Elements of an Array

The firs example simply sums the elements of the incoming array.

double sum array(PyObject* input)
{
boost::shared ptr<PyArrayObject> obj = ::ppf::util::python

::detail::object as array(input, PyArray DOUBLE, 0, 0);

// compute size of array
int n = 1;
if(obj->nd > 0)
for(int i = 0; i < obj->nd; ++i)
n *= obj->dimensions[i];

double* array = reinterpret cast<double*>(obj->data);

return std::accumulate(array, array + n, 0.);
}

In Python:

>>> import numpy
>>> from ppf.math.numpy examples import *
>>> a = numpy.array([1., 2., 3., 4.])
>>> print sum array(a)
10.0

Compute the Trace of an Array

The next function computes the trace of a two-dimensional array sum (of the main diagonal
elements).

double trace(PyObject* input)
{
boost::shared ptr<PyArrayObject> obj = ::ppf::util::python

::detail::object as array(input, PyArray DOUBLE, 2, 2);

int n = obj->dimensions[0];
if(n > obj->dimensions[1]) n = obj->dimensions[1];

double sum = 0.;
for(int i = 0; i < n; ++i)
sum += *reinterpret cast<double*>(
obj->data + i*obj->strides[0] + i*obj->strides[1]);

return sum;
}

Continuing the above example interpreter session:

>>> a = numpy.zeros((3, 4))
>>> for i in range(3):
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... a[i, i] = 1

...
>>> a[2, 3] = 1
>>> print a
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 1.]]
>>> print trace(a)
3.0

Assign an Array’s Contents to Zero

This function does more than just compute something from an array define in Python. It
shares the underlying data with a Blitz++ array in C++ and affects the source array by setting
all of its elements to zero.

void assign zero(PyObject* input)
{
boost::shared ptr<PyArrayObject> obj = ::ppf::util::python

::detail::object as array(input, PyArray DOUBLE, 2, 2);

blitz::Array<double, 2> array(
reinterpret cast<double*>(obj->data)

, blitz::shape(obj->dimensions[0], obj->dimensions[1])
, blitz::neverDeleteData);

array = 0;
}

Continuing in the interpreter:

>>> print a
[[ 1. 0. 0. 0.]
[ 0. 1. 0. 0.]
[ 0. 0. 1. 1.]]
>>> assign zero(a)
>>> print a
[[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]
[ 0. 0. 0. 0.]]

Create a New NumPy Array in C++ and Return it to Python

This code creates a new one-dimensional array of extent n, where n is provided by the caller
and assigns it the values 0, . . . , n − 1.

PyObject* make array(int n)
{
int dimensions[1]; dimensions[0] = n;
PyArrayObject* result =
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reinterpret cast<PyArrayObject*>(
boost::python::expect non null(
PyArray FromDims(1, dimensions, PyArray DOUBLE)));

double* buffer = reinterpret cast<double*>(result->data);
for(int i = 1; i < n; ++i) buffer[i] = i;

return PyArray Return(result);
}

Back to the interpreter for one last time:

>>> a = make array(6)
>>> print a
[ 0. 1. 2. 3. 4. 5.]
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for o, a in opts:
if o in ("-h", "--help"):

help()
sys.exit()

if o in ("-v", "--version"):
print "‘%s’, Version 0.0.0" % sys.argv[0]
sys.exit()

print gauss()
print lognormal variate()

4.2 N(.)
In the ppf.math.special functions module, N is a function that approximates the
standard normal cumulative distribution function,N(.), as used in the celebrated Black–Scholes
option-pricing equation.

import math

def N(x):
a = 0.3535533905933
b1 = -1.2655122300000
b2 = 1.0000236800000
b3 = 0.3740919600000
b4 = 0.0967841800000
b5 = -0.1862880600000
b6 = 0.2788680700000
b7 = -1.1352039800000
b8 = 1.4885158700000
b9 = -0.8221522300000
b10 = 0.1708727700000

t, term, result = 0, 0, 0

if(x > 0):
if (x > 10): result = 1.0
else:
t = 1/(1 + a*x)
term = b9 + t*b10
term = b8 + t*term
term = b7 + t*term
term = b6 + t*term
term = b5 + t*term
term = b4 + t*term
term = b3 + t*term
term = b2 + t*term
term = b1 + t*term
term = term + -0.5*(x*x)

result = 1.0 - 0.5*t*math.exp(term)
else:
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if(x < -10): result = 0.0
else:
t = 1/(1 - a*x)
term = b9 + t*b10
term = b8 + t*term
term = b7 + t*term
term = b6 + t*term
term = b5 + t*term
term = b4 + t*term
term = b3 + t*term
term = b2 + t*term
term = b1 + t*term
term = term + -0.5*(x*x)

result = 0.5*t*math.exp(term)

return result

4.3 INTERPOLATION
Interpolation is the process of estimating the values of a function y(x) for arguments between
x0, . . . , xn at which the values y0, . . . , yn are known. To elegantly implement interpolation
schemes in a single dimension, it is helpful to firs defin some utility functions for searching
an ordered sequence of numbers. The ppf.utility.bound module define a family of
such functions in the spirit of the C++ STL2 functions of the same names.

import operator

def lower bound(x, values, cmp=operator.lt):
"""Find the first position in values
where x could be inserted without violating
the ordering.
"""
first, count = 0, len(values)
while count > 0:
half = count/2
middle = first + half
if cmp(values[middle], x):

first = middle + 1
count = count - half - 1

else: count = half

return first

def upper bound(x, values, cmp=operator.lt):
"""Find the last position in values
where x could be inserted without changing
the ordering.

2 The C++ STL (Standard Template Library) is a generic library of class templates and algorithms.
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"""
first, count = 0, len(values)
while count > 0:
half = count/2
middle = first + half
if cmp(x, values[middle]):
count = half

else:
first = middle + 1
count = count - half - 1

return first

def equal range(x, values, cmp=operator.lt):
"""Find the largest subrange in which
x could be inserted in any place without
changing the ordering.

"""
return (lower bound(x, values, cmp), upper bound(x, values, cmp))

def bound(x, values, cmp=operator.lt):
"""Raise if x is outside of the domain
else find indices, i, j such that values[i] <= x <= values[j].

"""
count = len(values)
left, right = equal range(x, values, cmp)
if left == count:
raise RuntimeError, "%f lies right of the domain" % x

elif right == 0:
raise RuntimeError, "%f lies left of the domain" % x

if right == count: right -= 1
if left == right: left -= 1

return (left, right)

The classic user case for the bound function in the context of interpolation is to fin an index
j such that, given an ordered sequence of real numbers, x1, . . . , xN , xj−1 ≤ x ≤ xj:

def test bound(self):
bound = ppf.utility.bound
values = [1, 2, 3]
i, j = bound(1.5, values)
assert i == j -1 and values[i] <= 1.5 <= values[j]
i, j = bound(2.0, [1, 2, 3])
assert i == j -1 and values[i] <= 2.0 <= values[j]
self.assertRaises(RuntimeError, bound, 4, values)

The parameterisation of the bound algorithm by the user provided less-than predicate ad-
mits other interesting uses. The following unit test shows bound in conjunction with case-
insensitive string comparison:
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def test bound ci(self):
bound = ppf.utility.bound
values = [‘ape’, ‘Apple’, ‘caNada’]
i, j = bound(‘bananana’, values

, lambda x, y: x.lower() < y.lower())
assert i == j -1 and values[i].lower() <= ‘banana’ <=
values[j].lower()

With the function bound at our disposal, implementing a variety of interpolation schemes
becomes easy. First, the ppf.math.interpolation module define a base class for
interpolators:

import math
import ppf.utility
import linear algebra

class interpolation base:
def init (self, abscissae, ordinates):
if not sorted(abscissae) or \

len(abscissae) != len(ordinates):
raise RuntimeError, \

‘abscissae/ordinates length mismatch’
self.N = len(abscissae)
self.abscissae, self.ordinates = abscissae, ordinates

def locate(self, x):
i, j = ppf.utility.bound(x, self.abscissae)
x lo, x hi = self.abscissae[i], self.abscissae[j]
y lo, y hi = self.ordinates[i], self.ordinates[j]

return (i, j, x lo, x hi, y lo, y hi)

This base class essentially wraps up the business of locating the points in a sequence that will
participate in the interpolation by virtue of the bound function. With this utility in hand, we
move on to a variety of interpolation schemes.

4.3.1 Linear Interpolation

In this scheme, if xi−1 ≤ x < xi we estimate y(x) by

y =
(
x − xi−1

xi − xi−1

)
(yi − yi−1) + yi−1. (4.1)

If we defin the quantity R by R = x−xi−1
xi−xi−1

, then in terms of R we fin

y = R (yi − yi−1) + yi−1. (4.2)

So, saying this in Python code yields

class linear(interpolation base):
def init (self, abscissae, ordinates):
interpolation base. init (self, abscissae, ordinates)
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def call (self, x):
i, j, x lo, x hi, y lo, y hi = \

interpolation base.locate(self, x)
R = 1.0 - (x hi - x)/(x hi - x lo)

return R*(y hi - y lo) + y lo

4.3.2 Loglinear Interpolation

In this scheme, we estimate y(x) by

y = eln(yi−1)+(ln(yi )−ln(yi−1))R . (4.3)

In Python:

class loglinear(interpolation base):
def init (self, abscissae, ordinates):

interpolation base. init (self, abscissae, ordinates)

def call (self, x):
i, j, x lo, x hi, y lo, y hi = \

interpolation base.locate(self, x)
ln ylo, ln yhi = math.log(y lo), math.log(y hi)
R = 1.0 - (x hi - x)/(x hi - x lo)

return math.exp(ln ylo+(ln yhi - ln ylo)*R)

4.3.3 Linear on Zero Interpolation

In this scheme, we estimate y(x) in the following way. First, if i − 1 = 0 then

y = y
(

x−x0
xi−xi−1

)
i (4.4)

otherwise

y = e−(zi−1+R(zi−zi−1))(x−x0) (4.5)

with

zi = −ln(yi )
xi − x0

. (4.6)

Putting the above into Python code we get

class linear on zero(interpolation base):
def init (self, abscissae, ordinates):

interpolation base. init (self, abscissae, ordinates)

def call (self, x):
x 0 = self.abscissae[0]
i, j, x lo, x hi, y lo, y hi = \

interpolation base.locate(self, x)
dx = (x hi - x lo)
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R, R = (1.0 - ((x hi - x)/dx)), (x - x 0)/dx
y = 0
if i == 0:
y = math.pow(y hi, R )

else:
r, r lo, r hi = x - x 0, x lo - x 0, x hi - x 0
z lo, z hi = -math.log(y lo)/r lo, -math.log(y hi)/r hi
y = math.exp(-(z lo + R*(z hi - z lo))*r)

return y

4.3.4 Cubic Spline Interpolation

Another popular interpolation method, popular because the curves it produces are particularly
smooth, is to let the fittin function be a piecewise union of cubic polynomials. That is, we
defin a polynomial Pi on each interval [ai−1, ai] such that the endpoints of the polynomial
pass through the ordinates yi and that the firs and second derivatives of the cubic match with
the next cubic along, i.e.:

Pi (xi ) = yi
Pi−1(xi ) = yi

d
dx
Pi (xi−1) = d

dx
Pi−1(xi )

d2

dx2 Pi (xi−1) = d2

dx2 Pi−1(xi )

for all i. By imposing conditions on the values of the derivative at the very endpoints of the
function x0 and xN−1 there are sufficientl many conditions for the coefficient of all the cubics
to be determined uniquely by solving a linear system of equations. The exact form of this
linear system varies from one source to another. We use the form found in [20].

Given x, let i be such that ai−1 < x < ai. Then our formulation says that our cubic for this
i-th segment is

p(x) = ci−1 ∗ (ai − x)3

6hi

+ ci (x − ai−1)3

6hi (ai − ai−1)

+
(
yi−1 − ci−1h2

i
6

) (
ai − x
hi

)

+
(
yi − ci h2

i
6

)(
x − ai−1

hi

)
(4.7)

where c is a set of vectors linearly dependent on the ordinates yi that we will determine and hi
is the width of the segment ( = ai − ai−1). c is determined by the linear system of equations
Ac= b where A is square tridiagonal matrix whose values are dependent only on the segment
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widths hi and each b is a linear combination of the yi. More specificall

b0 = dle f t

bi = 6
hi + hi+1

(
yi+1 − yi
hi+1

− yi − yi−1

hi

)

bn = dright (4.8)

where dleft and dright are constants dependent only on the choice of the value of the derivatives
at the endpoints of the curve.3 Implementation of this scheme in Python requires a little more
effort than the earlier cases:

class cubic spline(interpolation base):
def init (self, abscissae, ordinates, a 0 = 0.5, d 0=0, b n=0.5,

d n=0):
interpolation base. init (self, abscissae, ordinates)
xs, ys, N = self.abscissae, self.ordinates, self.N
b = [d 0]+(N - 1)*[0]
A sub, A dia, A sup = N*[0], [2.0] + (N - 1)*[0], [a 0] +

(N - 1)*[0]
for i in range(1, N - 1):
H, h = xs[i + 1]- xs[i], xs[i] - xs[i - 1]
b[i] = (6./(h + H))*(((ys[i + 1] - ys[i])/H) -

((ys[i] - ys[i - 1])/h))
a i = H/(h + H)
b i = 1.0 - a i
A dia[i], A sup[i], A sub[i] = 2., a i, b i

A sub[N - 1], A dia[N - 1], b[N - 1] = b n, 2.0, d n
self.C = linear algebra.solve tridiagonal system(N, A sub, A dia,

A sup, b)

def call (self, x):
xs, ys, C = self.abscissae, self.ordinates, self.C
i, j, , , , = interpolation base.locate(self, x)
h i = xs[j] - xs[i]
x low = xs[j] - x
x low3 = math.pow(x low, 3)
x high = x - xs[i]
x high3 = math.pow(x high, 3)
hi sqrd 6 = h i*h i/6.0

return C[i]*x low3/(6.0*h i)+C[j]*x high3/(6.0*h i)+\
(ys[i]-C[i]*hi sqrd 6)*x low/h i+(ys[j]-
C[j]*hi sqrd 6)*x high/h i

3 In the case of the so-called natural spline, we set the derivatives at the endpoints to be zero, and have dleft =
dright = 0.0.
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4.4 ROOT FINDING
We will present two schemes in this section for findin the roots of a function y = f (x) with
f : R �→ R.

4.4.1 Bisection Method

The bisection method is a classiscal root-findin routine that does not require derivative infor-
mation. The ppf.math.root finding module provides the following implementation
derived from the Boost.Math Toolkit library:

import math
from special functions import sign, max flt

def bisect(f, min, max, tol, max its):
"""Bisection method
"""

fmin, fmax = f(min), f(max)
if fmin == 0: return (min, min, 0)
if fmax == 0: return (max, max, 0)
if min >= max: raise RuntimeError, "Arguments in wrong order"
if fmin*fmax >= 0: raise RuntimeError, "Root not bracketed"

count = max its
if count < 3:
count = 0

else: count -= 3

while count and tol(min, max) == 0:
mid = (min + max)/2.
fmid = f(mid)
if mid == max or mid ==min:

break
if fmid == 0:
min = max = mid
break

elif sign(fmid)*sign(fmin) < 0:
max, fmax = mid, fmid

else:
min, fmin = mid, fmid

--count

max its -= count

return (min, max, max its)

The quadratic y(x) = x2 + 2x −1 has roots

−1 −
√

2 = −2.4142135623730950488016887242097
−1 +

√
2 = +0.4142135623730950488016887242097.
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In the example interactive session, we fin those roots by bisection:

>>> bisect(lambda x: x*x + 2*x - 1, -3, -2,
... lambda x, y: math.fabs(x-y) < 0.000001, 10)
(-2.4142141342163086, -2.4142131805419922, 3)

>>> bisect(lambda x: x*x + 2*x - 1, 0, 1,
... lambda x, y: math.fabs(x-y) < 0.000001, 10)
(0.41421318054199219, 0.41421413421630859, 3)

4.4.2 Newton–Raphson Method

Newton–Raphson is a root-findin routine using derivatives with a faster rate of convergence
than bisection. The ppf.math.root finding module offers an implementation again
derived from a Boost.Math Toolkit implementation:

def newton raphson(f, guess, min, max, digits, max its):
"""Newton-Raphson method

"""

def handle zero derivative(f, last f0, f0, delta,
result, guess, min, max):

if last f0 == 0:
# must be first iteration
if result == min: guess = max
else: guess = min
last f0, = f(guess)
delta = guess - result

if sign(last f0)*sign(f0) < 0:
# we’ve crossed over so move in opposite
# direction to last step
if delta < 0:
delta = (result - min)/2.0

else:
delta = (result - max)/2.0

else:
# move in same direction of last step
if delta < 0:
delta = (result - max)/2.0

else:
delta = (result - min)/2.0

return (last f0, delta, result, guess)

f0, f1, last f0, result = 0.0, 0.0, 0.0, guess
factor = math.ldexp(1.0, 1 - digits)
delta, delta1, delta2 = 1.0, max flt(), max flt()
count = max its
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while True:
last f0 = f0
delta2 = delta1
delta1 = delta
f0, f1 = f(result)
if f0 == 0:
break

if f1 == 0:
last f0, delta, result, guess = \

handle zero derivative( \
f, last f0, f0, delta, result, guess, min, max)

else:
delta = f0/f1

if math.fabs(delta*2.0) > math.fabs(delta2):
# last two steps haven’t converged, try bisection
delta = ((result - max)/2.0, (result - min)/2.0)[delta > 0]

guess = result
result -= delta
if result <= min:
delta = 0.5*(guess - min)
result = guess - delta
if result == min or result == max:
break

elif result >= max:
delta = 0.5*(guess - max)
result = guess - delta
if result == min or result == max: break

# update brackets
if delta > 0:
max = guess

else:
min = guess

count -= 1

if count != 0 and \
math.fabs(result*factor) < math.fabs(delta):

continue
else:
break

max its -= count

return (result, max its)

We apply it in the following interactive session to once again compute a root of the polynomial
from the preceding section:

>>> newton raphson(lambda x: (x*x+2*x-1,2*x+2),-3,-3,-2,22,100)
(-2.4142135623730949, 5)
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4.5 LINEAR ALGEBRA
The Python NumPy package contains a module that covers most of what is required from
linear algebra from a financia engineering perspective. For the most part, this section provides
some examples of its use for problems common in financia engineering. This section just
touches on the capabilities of NumPy for linear algebra. The interested reader is referred to the
NumPy documentation for further detail. Readers with an interest in the development of linear
algebra routines in Python are encouraged to consult Jaan Kiusalaas’s Numerical Methods in
Engineering with Python [12].

4.5.1 Matrix Multiplication

The ordinary matrix product.

>>> from numpy import *
>>> from numpy.linalg import inv
>>> A = array([ [1, 3, 2], [1, 0, 0], [2, 1, 1]])
>>> M = matrix(A)
>>> print M*M
[[8 5 4]
[1 3 2]
[5 7 5]]

Note the use of the matrix construction function in the example above. It is this that gives the
interpretation of the operation as a matrix product. Multiplying two arrays, on the other hand,
gives the product element-wise, e.g.

>>> print A*A
[[1 9 4]
[1 0 0]
[4 1 1]]

Matrix multiplication can be performed on arrays by use of the dot function, as illustrated
below.

>>> print dot(A, A)
[[8 5 4]
[1 3 2]
[5 7 5]]

4.5.2 Matrix Inversion

Find the inverse of a square non-singular matrix.

>>> from numpy import *
>>> from numpy.linalg import inv
>>> A = array([ [1, 3, 2], [1, 0, 0], [2, 1, 1]])
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>>> print A
[[1 3 2]
[1 0 0]
[2 1 1]]
>>> A inv = inv(A)
>>> print A inv
[[ 0. 1. 0.]
[ 1. 3. -2.]
[-1. -5. 3.]]
>>> print dot(A inv, A)
[[ 1. 0. 0.]
[ 0. 1. 0.]
[ 0. 0. 1.]]

4.5.3 Matrix Pseudo-Inverse

Find the pseudo-inverse of a matrix.

>>> from numpy import *
>>> from numpy.linalg import inv
>>> A = array([ [1, 3, 2], [1, 0, 0 ] ])
>>> b = array([1, 3])
>>> x = dot(pinv(A), b)
>>> print x
[ 3. -0.46153846 -0.30769231]

4.5.4 Solving Linear Systems

Solve the linear system Ax = B.

>>> from numpy import *
>>> from numpy.linalg import solve
>>> A = array([ [1, 3, 2], [1, 0, 0], [2, 1, 1]])
>>> b = array([4, 5, 6])
>>> print solve(A, b)
[ 5. 7. -11.]

4.5.5 Solving Tridiagonal Systems

Efficientl solve the linear system Ax = b where A is tridiagonal. This implementation is
from the ppf.math.linear algebra module.

def solve tridiagonal system(N, a, b, c, r):
"""Efficiently solve a tridiagonal system.

For example if,

x + y = 3
y + z = 5
y + 2z = 8
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then,

A = 3x3
[ 1 1 0

0 1 1
0 1 2 ]

and r = [ 3, 5, 8 ] for which the expected
result is x = [1, 2, 3].

>>> a, b, c = [None, 0, 1], [1, 1, 2], [1, 1, None]
>>> r =[3, 5, 8]
>>> print solve tridiagonal system(3, a, b, c, r)
[ 1. 2. 3.]

"""
u, gam = numpy.zeros(N), numpy.zeros(N)
bet = b[0]
if bet == 0.0:
raise RuntimeError, "Solve diagonal system error"

u[0] = r[0]/bet
for j in range(1, N):
gam[j] = c[j - 1]/bet
bet = b[j]- a[j]*gam[j]
if bet == 0.0:
raise RuntimeError, "Solve diagonal system error"

u[j] = (r[j] - a[j]*u[j - 1])/bet
for j in range(N - 2, -1, -1):
u[j] -= gam[j + 1]*u[j + 1]

return u

4.5.6 Solving Upper Diagonal Systems

Efficientl solve the linear system Ax = b where A is upper diagonal. The implementation
shown below is from the ppf.math.linear algebra module.

def solve upper diagonal system(a, b):
"""Efficiently solve an upper diagonal system.

For example, if

A = 3 x 3
[ 1.75 1.5 -2.5

0 -0.5 0.65
0 0 0.25 ]

and

b = [ 0.5 -1 3.5],
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the expected result is x = [2.97142857 20.2 14].

>>> from numpy import *
>>> A = matrix(array(
... [[1.75, 1.5, -2.5],
... [0.0, -0.5, 0.65],
... [0.0, 0.0, 0.25]], float))
>>> A
matrix([[ 1.75, 1.5 , -2.5 ],

[ 0. , -0.5 , 0.65],
[ 0. , 0. , 0.25]])

>>> b = array([0.5, -1.0, 3.5])
>>> b
array([ 0.5, -1. , 3.5])
>>> x = solve upper diagonal system(A, b)
>>> x = matrix(x).transpose() # column vector
>>> x
matrix([[ 2.97142857],

[ 20.2 ],
[ 14. ]])

>>> A*x #matrix vector product
matrix([[ 0.5],

[-1. ],
[ 3.5]])

"""
if len(a.shape) <> 2:
raise RuntimeError, "Expected ’a’ to be a matrix"

if a.shape[0] <> a.shape[1]:
raise RuntimeError, "Expected ’a’ to be a square matrix"

if len(b.shape) <> 1:
raise RuntimeError, "Expected ’b’ to be a column vector"

if b.shape[0] <> a.shape[0]:
raise RuntimeError, "Expected ’b’ to be a column vector"

N = a.shape[0]
for i in range(N):
if a[i, i] == 0.0:
raise RuntimeError, "Singular upper diagonal matrix"

for j in range(0, i):
if a[i, j] <> 0.0: raise RuntimeError, "Matrix not upper"
"diagonal"

x = numpy.zeros(N)
for i in range(N-1, -1, -1):
tmp = 0.0
for j in range(i+1, N):
tmp += a[i, j]*x[j]

x[i] = (b[i]-tmp)/a[i, i]

return x
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4.5.7 Singular Value Decomposition

We show how to calculate the singular value decomposition of an M × N matrix A, with
M ≥ N, into the product of a M × N orthogonal matrix U, an N × N diagonal matrix W
with positive or zero elements (the singular values), and the transpose of an N × N orthogonal
matrix V. The actual implementation of the singular value decomposition algorithm is from
numpy.linalg.svd and the following code snippet illustrates a sample call to svd.

>>> from numpy import *
>>> from numpy.linalg import svd
>>> A = transpose(array([[1., 3., 5.],[2., 4., 6.]]))
>>> print A
[[ 1. 2.]
[ 3. 4.]
[ 5. 6.]]
>>> U, sig, V = svd(A)
>>> print U
[[-0.2298477 0.88346102 0.40824829]
[-0.52474482 0.24078249 -0.81649658]
[-0.81964194 -0.40189603 0.40824829]]
>>> print sig
[ 9.52551809 0.51430058]
>>> print V
[[-0.61962948 -0.78489445]
[-0.78489445 0.61962948]]
>>> n = 2
>>> W=numpy.zeros((n+1,n))
>>> W[:n, :n] = diag(sig)
>>> print W
[[ 9.52551809 0. ]
[ 0. 0.51430058]
[ 0. 0. ]]
>>> dot(U, dot(W, V))
array([[ 1., 2.],

[ 3., 4.],
[ 5., 6.]])

Given a singular value decomposition of a matrix A = UWV, we can easily solve the
matrix equation Ax = b using back substitution. The following implementation is from the
ppf.math.linear algebra module.

def singular value decomposition back substitution(u, w, v, b):
"""Solve an upper diagonal system using svd.

For example, if

A = 3 x 3
[ 1.75 1.5 -2.5

0 -0.5 0.65
0 0 0.25 ]

and

b = [ 0.5 -1 3.5],



Basic Mathematical Tools 43

the expected result is x = [2.97142857 20.2 14].
>>> from numpy import *
>>> from numpy.linalg import svd
>>> A = matrix(array(
... [[1.75, 1.5, -2.5],
... [0.0, -0.5, 0.65],
... [0.0, 0.0, 0.25]], float))
>>> A
matrix([[ 1.75, 1.5 , -2.5 ],

[ 0. , -0.5 , 0.65],
[ 0. , 0. , 0.25]])

>>> b = array([0.5, -1.0, 3.5])
>>> b
array([ 0.5, -1. , 3.5])
>>> u, w, v = svd(A)
>>> x = singular value decomposition back substitution(u, w, v, b)
>>> x = matrix(x).transpose() # column vector
>>> x
matrix([[ 2.97142857],

[ 20.2 ],
[ 14. ]])

"""

if len(u.shape) <> 2:
raise RuntimeError, "Expected ’u’ to be a matrix"

if len(w.shape) <> 1:
raise RuntimeError, "Expected ’w’ to be a column vector"

if len(v.shape) <> 2:
raise RuntimeError, "Expected ’v’ to be a matrix"

if len(b.shape) <> 1:
raise RuntimeError, "Expected ’b’ to be a column vector"

m = u.shape[0]
n = u.shape[1]

if w.shape[0] <> n:
raise RuntimeError, "’w’ column vector has incorrect size"

if b.shape[0] <> m:
raise RuntimeError, "’b’ column vector has incorrect size"

if v.shape[0] <> n or v.shape[1] <> n:
raise RuntimeError, "’v’ matrix has incorrect size"

tmp = numpy.zeros(n)
for j in range(n):
s = 0.0
if w[j] <> 0:

for i in range(m):
s += u[i, j]*b[i]

s /= w[j]
tmp[j] = s

x = numpy.zeros(n)
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for j in range(n):
s = 0.0
for jj in range(n):
s += v[jj, j]*tmp[jj]

x[j] = s
return x

4.6 GENERALISED LINEAR LEAST SQUARES
Generalised linear least squares is a method for fittin a set of data points (xi, yi)i = 1, ,N to a
linear combination of basis functions. The general form of this kind of model is

y(x) =
M∑
k=1

ak fk(x) (4.9)

where f 1(x), . . . , f M(x) are the basis functions. The central idea behind the method is to fin
the fittin coefficient a1, . . . , aM by minimising the merit function

χ2 =
N∑
i=1

[
yi − ∑M

k=1 ak fk(xi )
σi

]2

. (4.10)

The σ i represent the measurement error, or equivalently the standard deviation, of the ith data
point. In [5] it is shown that the solution of the above equation can be calculated by solving
the normal equations

M∑
j=1

αk j a j = βk (4.11)

where

αk j =
N∑
i=1

f j (xi ) fk(xi )
σ 2
i

(4.12)

and

βk =
N∑
i=1

yi fk(xi )
σ 2
i

. (4.13)

The normal equations can be solved using LU decomposition and backsubstitution but the solu-
tion is susceptible to roundoff error. It is common practice to use singular value decomposition
to solve this problem, and this is the route we have taken.

The implementation of the generalised linear least squares algorithm can be found in the
ppf.math.generalised least squares module and the details of the implementa-
tion are shown below.

def generalised least squares fit(y, x, sig, fit fos):
tol = 1.0e-13

if len(y.shape) <> 1:
raise RuntimeError, "Expected ‘y’ to be a column vector"
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if len(x.shape) <> 2:
raise RuntimeError, "Expected ‘x’ to be a matrix"

if len(sig.shape) <> 1:
raise RuntimeError, "Expected ‘sig’ to be a column vector"

ndata = x.shape[0]
ma = len(fit fos)

if sig.shape[0] <> ndata:
raise RuntimeError, "’sig’ column vector has incorrect size"

if y.shape[0] <> ndata:
raise RuntimeError, "’y’ column vector has incorrect size"

a = numpy.zeros(ma)

if ndata == 0:
return a
else:
b = numpy.zeros(ndata)
cu = numpy.zeros([ndata, ma])

for i in range(ndata):
xi = x[i, :]
tmp = 1.0/sig[i]
for j in range(ma):
cu[i, j] = fit fos[j](xi)*tmp

b[i] = y[i]*tmp

u, w, v = numpy.linalg.svd(cu, 0)
wmax = numpy.max(w)
threshold = tol*wmax
for j in range(ma):
if w[j] < threshold:
w[j] = 0.0

a = singular value decomposition back substitution(u, w, v, b)
return a

In an interpreter session, the generalised least squares algorithm can be invoked as follows.

>>> class linear fo:
... def call (self, x):
... return x[0]
>>> class quadratic fo:
... def call (self, x):
... return x[0]*x[0]
>>> generator = random.Random(1234)
>>> ndata = 100
>>> sig = numpy.zeros(ndata)
>>> sig.fill(1.0)
>>> y = numpy.zeros(ndata)
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>>> x = numpy.zeros([ndata, 1])
>>> a = 0.25
>>> b = -0.1
>>> for i in range(ndata):
... v = generator.gauss(0, 1.0)
... x[i, 0] = v
... y[i] = a*v+b*v*v
>>> fit fos = []
>>> fit fos.append(linear fo())
>>> fit fos.append(quadratic fo())
>>> coeffs = generalised least squares fit(y, x, sig, fit fos)
>>> coeffs
array([ 0.25, -0.1 ])

4.7 QUADRATIC AND CUBIC ROOTS
It is not uncommon in financ to want to fin the real roots of either a quadratic or cubic
equation. The module ppf.math.quadratic roots provides an implementation for
findin the real roots of a quadratic. The real roots of the quadratic equation

ax2 + bx + c = 0, a, b, c ∈ R (4.14)

exist provided b2 − 4ac ≥ 0 and are given by the expression

r± = − b
2a

±
√
b2 − 4ac

2a
. (4.15)

For numerical stability reasons one shouldn’t use the above equation to determine the real
roots. Instead it is better to calculate the roots via the relations below

q = −1
2

(
b + sgn(b)

√
b2 − 4ac

)
(4.16)

r+ = q
a

(4.17)

r− = c
q

(4.18)

and this is precisely the way the real roots are calculated in the ppf.math.quadratic
roots module, as can been seen below.

import math
def quadratic roots(a, b, c, xl, xh):
# find roots
roots = []
d = b*b-4*a*c
if d > 0:
r1 = 0
r2 = 0
if a <> 0:
sgn = 1
if b < 0: sgn = -1
q = -0.5*(b+sgn*math.sqrt(d))
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r1 = q/a
r2 = r1
if q <> 0: r2 = c/q

else:
r1 = -c/b
r2 = r1

# order roots
if r1 > r2:
tmp = r1
r1 = r2
r2 = tmp

if r1 >= xl and r1 <= xh:
roots.append(r1)

if r2 <> r1 and r2 >= xl and r2 <= xh:
roots.append(r2)

else:
if a <> 0:
r1 = -b/(2*a)
if r1 >= xl and r1 <= xh:
roots.append(r1)

return roots

The real roots of the cubic equation

ax3 + bx2 + cx + d = 0, a, b, c, d ∈ R (4.19)

are marginally more difficul to compute. The module ppf.math.cubic roots contains
an implementation of the cubic roots algorithm. If a �= 0 we proceed as follows. First we set
b, c and d to b

a , ca and d
a respectively. Then we compute the variables q and r define below

q := a2 − 3b
9

(4.20)

r := 2a3 − 9ab + 27
54

(4.21)

For the case when r2 ≤ q3 the three real roots are given by

r1 = −2
√
q cos

(
θ

3

)
− a

3
(4.22)

r2 = −2
√
q cos

(
θ + 2π

3

)
− a

3
(4.23)

r3 = −2
√
q cos

(
θ − 2π

3

)
− a

3
(4.24)

with

θ := arccos
(
r√q

)
(4.25)
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Otherwise there is only one real root, given by

r = A + B
3

(4.26)

with

A = −sgn(r )
(

sgn(r )r +
√
r2 − q3

) 1
3 (4.27)

B = q
A

(4.28)

Naturally, if a is zero, then we fall back on the quadratic roots algorithm already described.
The implementation is summarised below.

import math
from quadratic roots import *

def cubic roots(a, b, c, d, xl, xh):
if a <> 0:
roots = []
aa = a
a = b/aa
b = c/aa
c = d/aa
q = (a*a-3*b)/9.0
r = (2*a*a*a-9.0*a*b+27.0*c)/54.0
q3 = q*q*q
diff = r*r-q3
if diff <= 0:
ratio = r/math.sqrt(q3)
theta = math.acos(ratio)
qr = -2.0*math.sqrt(q)
a over 3 = a/3.0
r1 = qr*math.cos(theta/3.0)-a over 3
r2 = qr*math.cos((theta+2.0*math.pi)/3.0)-a over 3
r3 = qr*math.cos((theta-2.0*math.pi)/3.0)-a over 3
rs = [r1, r2, r3]
rs.sort()
[r1, r2, r3] = rs
if r1 >= xl and r1 <= xh:
roots.append(r1)

if r2 <> r1 and r2 >= xl and r2 <= xh:
roots.append(r2)

if r3 <> r1 and r3 <> r2 and r3 >= xl and r3 <= xh:
roots.append(r3)

else:
biga = 0
if r > 0:
biga = -math.pow(r+math.sqrt(diff), 1.0/3.0)

else:
biga = math.pow(-r+math.sqrt(diff), 1.0/3.0)

bigb = 0.0
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if biga <> 0: bigb = q/biga
r1 = (biga+bigb)-a/3.0
if r1 >= xl and r1 <= xh:
roots.append(r1)

return roots
else:
return quadratic roots(b, c, d, xl, xh)

Finally, note that in the actual implementations we only return the real roots, quadratic or
cubic, if they lie in the range [xl, xh]. Moreover we always sort the real roots. The reason for
doing this will become clear in the next section when we apply the above algorithms in the
context of integrating a polynomial.

4.8 INTEGRATION
In financ we often need to calculate the expectation of some function f : R

n �→ R of a
number of random variables X : � �→ R

n . Throughout this section we will only consider
financia payoffs that can be written in terms of a single random variable X : � �→ R and
belong to the space C3(R), that is the space of continuous three-times differentiable functions
on R. But the following can be extended to higher dimensions with more effort.

4.8.1 Piecewise Constant Polynomial Fitting

Let X denote a random variable on R which we sample on a uniform lattice {x1, x2, . . . , xN}
with spacing �. The corresponding values of the function f on the uniform lattice are denoted
by {f 1, f 2, . . . , f N}. Similarly the first second and third derivatives of f at any node of the
lattice xi are denoted by f i

′ , f i
′ ′ and f i

′ ′ ′ respectively. Our aim is to fi the function f piecewise
on each interval [xi, xi+1] to the following cubic polynomial

f (x) = ai + bi x + ci x2 + di x3, for x ∈ [xi , xi+1] (4.29)

Taking the derivatives of the cubic polynomial we derive the following upper diagonal matrix
equation

⎛
⎜⎜⎝

1 xi x2
i x3

i
0 1 2xi 3x2

i
0 0 2 6xi
0 0 0 6

⎞
⎟⎟⎠

⎛
⎜⎜⎝
ai
bi
ci
di

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

fi
f ′
i
f ′′
i
f ′′′
i

⎞
⎟⎟⎠ (4.30)

It remains to derive expressions for the derivatives. If we wish the fitte polynomial to be exact
when the function f happens to be a cubic, then we have to be careful how we calculate the
derivatives numerically. One choice is given as

f
′
i =

1
6 ( fi−2 − fi+2) + 4

3 ( fi+1 − fi−1)
2�

(4.31)

f
′′
i = ( fi+1 − 2 fi + fi−1)

�2 (4.32)

f
′′′
i = ( fi+2 − 2 fi+1 + 2 fi−1 − fi−2)

2�3 (4.33)
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Note that the form of the derivatives means that we either have to introduce ghost grids points
at {x−1, x0} and {xN+1, xN+2}, or we only perform the fi on the sublattice {x2, x3, . . . , xN−3,
xN−2}. The following implementation from the ppf.math.piecewise polynomial
fitting module performs the fittin on the sublattice and the solution of the upper
diagonal system of linear equations is carried out by the solve upper diagonal
system function to be found in the ppf.math.linear algebra module.

def piecewise cubic fit(x, y):

if len(x.shape) <> len(y.shape) and len(x.shape) <> 1:
raise RuntimeError, "Mismatching ‘x’ and ‘y’ vectors"

if x.shape[0] <> y.shape[0]:
raise RuntimeError, "Mismatching ’x’ and ’y’ vectors"

N = x.shape[0]
if N < 4:
raise RuntimeError, "Need at least 4 points"

# assume uniform spacing
one sixth = 1.0/6.0
four thirds = 4.0/3.0
dx inv = 1.0/(x[1]-x[0])
dx inv2 = dx inv*dx inv
dx inv3 = dx inv2*dx inv
coeffs = numpy.zeros((4, N - 4))

a = numpy.zeros((4, 4))
b = numpy.zeros(4)

for i in range(2, N-2):
# value
b[0] = y[i]
# first derivative
b[1] = (one sixth*(-y[i+2]+y[i-2])+four thirds*(y[i+1]-y

[i-1]))*0.5*dx inv
# second derivative
b[2] = (y[i+1]-2.0*y[i]+y[i-1])*dx inv2
# third derivative
b[3] = (y[i+2]-2.0*(y[i+1]-y[i-1])-y[i-2])*0.5*dx inv3

# fit matrix
xi = x[i]
xi2 = xi*xi
xi3 = xi2*xi
a[0][0] = 1.0
a[0][1] = xi
a[0][2] = xi2
a[0][3] = xi3
a[1][1] = 1.0
a[1][2] = 2.0*xi
a[1][3] = 3.0*xi2
a[2][2] = 2.0
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a[2][3] = 6.0*xi
a[3][3] = 6.0

tmp = solve upper diagonal system(a, b)
for j in range(0, 4):
coeffs[j, i-2] = tmp[j]

return coeffs

4.8.2 Piecewise Polynomial Integration

Every random variable induces a distribution on R
n . In this section we assume that the

distribution induced by the random variable X is normal. In the case of the normal distribution,
the distribution is fully specifie by two parameters: the mean µ and the volatility σ . Suppose
we have a polynomial representation of our function f on the interval [xl, xh], then the
expectation of f restricted to this interval is given by

∫ xh

xl
f (x)n(x)dx =

m∑
j=0

c j
∫ xh

xl
x j n(x)dx (4.34)

=
m∑
j=0

c j
(∫ xr

−∞
x jn(x)dx −

∫ xl

−∞
x jn(x)dx

)
(4.35)

=
m∑
j=0

c j
(
Mj (xr ) − Mj (xl)

)
(4.36)

with Mj(y) := ∫
−∞yxjn(x)dx and n(x) denotes the normal probability distribution function.

The partial moments can be easily computed via the following recursion relationship:

M0(y) =: N (y) (4.37)
M1(y) = −σ 2n(y) + µM0(y) (4.38)
Mm(y) = σ 2 (−ym−1n(y) + (m − 1)Mm−2

) + µMm−1 (4.39)

with

n(y) = 1√
2πσ

exp
(

− 1
2

(
x − µ

σ

)2 )
(4.40)

N (y) = 1√
2πσ

∫ y

0
exp

(
− 1

2

(
x − µ

σ

)2 )
dx (4.41)

The ppf.math.normal distribution module contains an implementation of the
integration of a piecewise polynomial function in a random variable with normal distribution.
The method integral on the normal distribution class carries out the integration.

class normal distribution:
def init (self, mean=0.0, vol=1.0):
self.mean = mean
self.vol = vol
if vol < 0.0:
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raise RuntimeError, ’negative volatility’
if vol <> 0.0:
self.vol inv = 1.0/vol

else:
self.vol inv = 1.0;

self.unit norm = 1.0/math.sqrt(2.0*math.pi)

def unit pdf(self, x):
return math.exp(-0.5*x*x)*self.unit norm

def pdf(self, x):
y = x*self.vol inv
return self.unit pdf(y)*self.vol inv

def unit cdf(self, x):
return N(x)

def cdf(self, x):
y = (x-self.mean)*self.vol inv
return self.unit cdf(y)

def moments(self, n, x):
ys = (n)*[0.0]
ys[0] = self.cdf(x)
if n > 1:
vol2 = self.vol*self.vol
pdfx = self.pdf(x)
ys[1] = -vol2*pdfx+self.mean*ys[0]
xn = x
for i in range(2, n):

ys[i] = vol2*(-xn*pdfx+(i-1)*ys[i-2])+self.mean*ys[i-1]
xn = xn*x

return ys

def integral(self, cs, xl, xh, yls = None, yhs = None):
if xl > xh:
raise RuntimeError, \

"lower bound greater than upper bound of integration" \
"domain"

n = len(cs)
if yls == None:
yls = self.moments(n, xl)

else:
if len(yls) <> n:

raise RuntimeError, \
"number of moments doesn’t match number of" \
"coefficients"

if yhs == None:
yhs = self.moments(n, xh)

else:
if len(yhs) <> n:
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raise RuntimeError, \
"number of moments doesn’t match number of" \
"coefficients"

sum = 0.0
for i in range(n):
sum += cs[i]*(yhs[i]-yls[i])

return sum

def state(self, stddev, n):
if n < 2:
raise RuntimeError, ’number of points must be greater than one’

s = numpy.zeros(n)
dx = 2*stddev/(n-1)
for i in range(n):

s[i] = self.mean+self.vol*(-stddev+i*dx)
return s

Now suppose we wish to calculate
∫ xh
xl max( f (x), 0)n(x)dx . We can rewrite this integral

as
∫ xh
xl f (x)1 f (x)>0n(x)dx . In other words the original integral is a specialisation of the more

general integral
∫ xh
xl f (x)1g(x)>0n(x)dx . To calculate the more general integral we need to fin

the critical point x* at which g(x*) = 0. Assuming we have a piecewise polynomial representa-
tion of g, then the algorithm for findin the critical root is trivial. All we need to do is delegate
to the cubic roots function in the module ppf.math.cubic roots to see if there are
any real roots in the interval. The method bounds on the normal distribution class
determines the corresponding subintervals from the roots.

class normal distribution:
def bounds (self, cs, xl, xh):
# cubic coefficients
n = len(cs)
a = 0
b = 0
c = 0
d = 0
if n >= 1:
d = cs[0]

if n >= 2:
c = cs[1]

if n >= 3:
b = cs[2]

if n == 4:
a = cs[3]

if n > 4:
raise RuntimeError, ’can only handle up to cubics’

# roots
roots = cubic roots(a, b, c, d, xl, xh)
bounds = []
# calculate bounds
xprev = xl
for root in roots:
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xcurr = root
xmid = 0.5*(xprev+xcurr)
if d+xmid*(c+xmid*(b+xmid*a)) > 0:
bounds.append([xprev, xcurr])

xprev = xcurr
xcurr = xh
xmid = 0.5*(xprev+xcurr)
if d+xmid*(c+xmid*(b+xmid*a)) > 0:
bounds.append([xprev, xcurr])

return bounds

Note that if there are real roots, then we loop through each of the roots and only add a
subinterval if the function at the mid-point is positive. The actual integration then reduces to
a loop over the bounds and is implemented in the method integral indicator.

class normal distribution:
def integral indicator(self, cs, indicator, xl, xh, yls = None,

yhs = None):
‘‘‘
>>> mean = 0.05
>>> vol = 0.1
>>> f = normal distribution(mean, vol)
>>> yls = f.moments(4, -1)
>>> yhs = f.moments(4, 10000)
>>> cs = [0.0,0.0,1.0,1.0]
>>> print f.integral indicator(cs, cs, -10000, 10000)
0.014125
>>> print cs[2]*(yhs[2]-yls[2])+cs[3]*(yhs[3]-yls[3])
0.014125
‘‘‘
if xl > xh:
raise RuntimeError, \

"lower bound greater than upper bound of integration" \
"domain"

bounds = self. bounds (indicator, xl, xh)
sum = 0
for bound in bounds:

xll = bound[0]
xrr = bound[1]
yll = None
yrr = None
if xll == xl:
yll = yls

if xrr == xh:
yrr = yhs

sum += self.integral(cs, xll, xrr, yll, yrr)
return sum

We will discover later that it is often useful to regrid a piecewise polynomial representation onto
another grid. The regridding algorithm is simple. Suppose we have a piecewise polynomial
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representation of f on the grid {x2, x3, . . . , xN−3, xN−2} and wish to regrid the function
onto the grid {y1, y2, . . . , yN−1, yN}. Then all we have to do is loop through each of the
yi’s and determine the closest interval [xj, xj+1] using the equal range function from
the ppf.utility.bound module. Once we have the closest interval we reconstruct the
function at yi by using the polynomial representation corresponding to the closest interval.
The regrid method on the normal distribution class is an implementation of the
regridding algorithm.

class normal distribution:
def regrid(self, xs, cs, regrid xs):
m = len(xs)
n = len(regrid xs)
# regrid function
regrid fs = numpy.zeros(n)
for i in range(n):
x = regrid xs[i]
# bound
left, right = ppf.utility.equal range(x, xs)
if right == m: right -= 1
if left == right: left -= 1
idx = left
# saturate
if idx < 2: idx = 2
if idx > m-3: idx = m-3
csi = cs[:, idx-2]
regrid fs[i] = csi[0]+x*(csi[1]+x*(csi[2]+x*csi[3]))

return regrid fs

For completeness we also provide the method integral max on the nor-
mal distribution class. As expected, the calculation of the integral is performed by
the integral indicator.

class normal distribution:
def integral max(self, cs, xl, xh, yls = None, yhs = None):
’’’
>>> mean = 0.05
>>> vol = 0.1
>>> f = normal distribution(mean, vol)
>>> yls = f.moments(4, -1)
>>> yhs = f.moments(4, 10000)
>>> cs = [0.0,0.0,1.0,1.0]
>>> print f.integral max(cs, -10000, 10000)
0.014125
>>> print cs[2]*(yhs[2]-yls[2])+cs[3]*(yhs[3]-yls[3])
0.014125
’’’
if xl > xh:
raise RuntimeError, \

‘lower bound greater than upper bound of integration domain’

return self.integral indicator(cs, cs, xl, xh, yls, yhs)
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For reasons of optimum speed, we allow the client of the normal distribution to
supply precomputed moments at the integral bounds. By default, if the moments are not
supplied, then the moments get calculated on the fl .

We conclude the section with a few sample calls onto the methods of the normal distribution
class. First, we check that if the initial grid used in the fittin is identical to the regridding grid,
then the regridded function should be the same as the original function. The following code
snippet confirm this.

>>> mean = 0.05
>>> vol = 0.1
>>> f = normal distribution(mean, vol)
>>> xs = f.state(4.5, 10)
>>> cs = numpy.zeros((4,6))
>>> for i in range(6): cs[:, i] = 1.0, 0.0, 1.0, 0.0
>>> regrid fs = f.regrid(xs, cs, xs)
>>> for i in range(2, 8): print "%f, %f" % (regrid fs[i]\

, cs[0,i-2]+xs[i]*(cs[1,i-2]+xs[i]*(cs[2,i-2]+xs[i]*
cs[3,i-2])))

1.040000, 1.040000
1.010000, 1.010000
1.000000, 1.000000
1.010000, 1.010000
1.040000, 1.040000
1.090000, 1.090000

The next code snippet checks various limits of the integral method. First we check that
the expectation of 1 is also 1. Second we check that the expectation of a normal variable X
with mean 0.05 is equal to the mean. Finally we check the expectation of the square of the
normal variable with mean 0.05 and volatility 0.1 is equal to the sum of the mean and the
volatility squared.

>>> mean = 0.05
>>> vol = 0.1
>>> f = normal distribution(mean, vol)
>>> cs = [1.0]
>>> print f.integral(cs, -10000, 10000)
1.0
>>> cs = [0.0,1.0]
>>> print f.integral(cs, -10000, 10000)
0.05
>>> cs = [0.0,0.0,1.0]
>>> print f.integral(cs, -10000, 10000)
0.0125

The fina code snippet verifie that the expectation of max(X2 + X3, 0) is equivalent to∫
−1

∞ (x2 + x3)n(x)dx.

>>> mean = 0.05
>>> vol = 0.1
>>> f = normal distribution(mean, vol)
>>> yls = f.moments(4, -1)
>>> yhs = f.moments(4, 10000)
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>>> cs = [0.0,0.0,1.0,1.0]
>>> print f.integral max(cs, -10000, 10000)
0.014125
>>> print cs[2]*(yhs[2]-yls[2])+cs[3]*(yhs[3]-yls[3])
0.014125

4.8.3 Semi-analytic Conditional Expectations

In the previous subsection we discussed how we can calculate the integral of a function of a
normally distributed random variable by fittin the function piecewise to a polynomial. In this
subsection we discuss how to use this integration scheme to compute conditional expectations.
Throughout this section we denote the function of the one-dimensional Brownian motion4 XT
by yT := f (XT ) and the filtratio at time t by Ft . A full mathematical definitio of Brownian
motion can be found in [16] but for the purposes of what follows all we need to know is that
XT − Xt is independent of Xt for t < T and is normally distributed with zero mean and
variance T − t. The aim of this subsection is to explain how to compute the following
conditional expectations:

yt := E[yT |Ft ] (4.42)
y+
t := E[max(yT , 0)|Ft ] (4.43)

Because the increments of a Brownian motion are independent of each other, the above
conditional expectations can be written as

yt (x) = E[ f (x + XT − Xt )|xt = x] (4.44)
y+
t (x) = E[max( f (x + XT − Xt ), 0)|xt = x] (4.45)

We donote the discrete grid of states for the Brownian motion increment XT − Xt by xtT . If
we fi the function f on the discrete grid of XT , denoted by xT , then x + xtT for Xt = x will
generally lie outside the domain of the discrete grid xT . Therefore we are forced to regrid the
function f . Fortunately we already know how to do this if the function f is fitte piecewise to
a polynomial. In summary, the conditional expectations at Xt = x are calculated in three steps:
(a) given the piecewise polynomial fi of f on XT regrid the function onto the grid x+ xtT ; (b) fi
the regridded f to a piecewise polynomial on the grid xtT ; and (c) use the integration schemes
of the previous subsection to calculate the integrals. Obviously in a standard application of the
algorithm, the steps are repeated for a discrete grid of Xt, denoted xt.

The code for computing the conditional expectations can be found in the module
ppf.math.semi analytic domain integrator and is detailed below. The actual
implementation of the conditional integrals is done by the private method rollback . To
make this possible we are forced to pass through the regridder and integrator functions. In the
case of the rollback method the integrator is simply the integral member function of
the distribution class represented by ftT, and in the case of the rollback max method the
integrator is the integral max member function of ftT.

class semi analytic domain integrator:

def create cached moments(self, x, f):

4 In 1828 the Scottish botanist Robert Brown observed that pollen grains suspended in liquid performed an irregular
motion – Brownian motion.
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n = x.shape[0]
self. ys = numpy.zeros([n, 4])
self. ys[2] = f.moments(4, x[2]) # cubic
for j in range(2, n-2):
self. ys[j+1] = f.moments(4, x[j+1]) # cubic

def rollback (self, t, T, xt, xT, xtT, yT, regridder, integrator):
if len(xt.shape) <> len(xT.shape) or \

len(xT.shape) <> len(yT.shape) or \
len(xt.shape) <> 1 or len(xtT.shape) <> 1:

raise RuntimeError, ’expected one dimensional arrays’

nt = xt.shape[0]
nT = xT.shape[0]
ntT = xtT.shape[0]

if nt <> nT or ntT <> nT:
raise RuntimeError, ’expected array to be of same size’

if yT.shape[0] <> nT:
raise RuntimeError, \

‘array yT has different number of points to xT’

yt = numpy.zeros(nt)
cT = piecewise cubic fit(xT, yT)
for i in range(nt):
# regrid
regrid xT = numpy.zeros(nT)
xti = xt[i]
for j in range(nT):
regrid xT[j] = xti+xtT[j]

regrid yT = regridder(xT, cT, regrid xT)
# polynomial fit
cs = piecewise cubic fit(xtT, regrid yT)
# perform expectation
sum = 0
xl = xtT[2]
for j in range(2, nT-2): # somehow this should be

enscapsulated
xh = xtT[j+1]
sum = sum + integrator(cs[:, j-2], xl, xh, self. ys[j],

self. ys[j+1])
xl = xh

yt[i] = sum
if t == 0.0:
for j in range(1, nt):
yt[j] = yt[0]

break

return yt
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def rollback(self, t, T, xt, xT, xtT, ftT, yT):
# create cache of moments
self. create cached moments(xtT, ftT)

return self. rollback (t, T, xt, xT, xtT, yT, ftT.regrid,
ftT.integral)

def rollback max(self, t, T, xt, xT, xtT, ftT, yT):
# create cache of moments
self. create cached moments(xtT, ftT)

return self. rollback (t, T, xt, xT, xtT, yT, ftT.regrid,
ftT.integral max)

Note that we precompute the moments in the function create cached moments() prior
to performing the rollback. Doing this improves the efficien y of the algorithm dramatically
because otherwise we keep computing (unnecessarily) the moments nt times. Typically
nt≈ 41, so you can see why we make such a huge computational saving by precomputing
the moments.

A number of tests have been written for the semi-analytic domain integrator. The tests can
be found in the module ppf.test.test math with each separate test represented by a
method of the class integrator tests. The firs test checks that we can perform the
conditional expectation of the following classical exponential martingale correctly5:

yT = exp
(

σ XT − 1
2
σ 2T

)
(4.46)

with σ ∈ R
+. Because we know yT is a martingale the following identity must hold.

E[yT |Ft ] = exp
(

σ Xt − 1
2
σ 2t

)
(4.47)

The snippet of code below gives the details of the test just described.

def lognormal martingale test(self):
integrator = ppf.math.semi analytic domain integrator()
nt = 31
nT = 31
ntT = 31
t = 0.5
T = 1.0
mut = 0.0
muT = 0.0
vol = 0.2
volt = vol*math.sqrt(t)
volT = vol*math.sqrt(T)
ft = ppf.math.normal distribution(mut, volt)
fT = ppf.math.normal distribution(muT, volT)
xt = ft.state(5.5, nt)
xT = fT.state(5.5, nT)

5 A martingale Mt is a random variable satisfying the properties: E[|Mt |] > ∞ for all t and E[Mt |Ft ] = Ms for
s ≤ t .
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meantT = muT-mut
voltT = math.sqrt(volT*volT-volt*volt)
ftT = ppf.math.normal distribution(meantT, voltT)
xtT = ftT.state(5.5, ntT)
yT = numpy.zeros(nT)
for i in range(nT):
yT[i] = math.exp(xT[i]-0.5*volT*volT) # lognormal martingale

yt = integrator.rollback(t, T, xt, xT, xtT, ftT, yT)
assert math.fabs(yt[15] - 0.990050) < 1.0e-6

The second test verifie that the tower law holds, i.e.

E[yT |Fs] = E[E[yT |Ft ]Fs] for s ≤ t ≤ T . (4.48)

The following code snippet provides the details of the tower law test.

def tower law test(self):
integrator = ppf.math.semi analytic domain integrator()
nt = 31
nT = 31
ntT = 31
t = 0.5
T = 1.0
mut = 0.0
muT = 0.0
vol = 0.2
volt = vol*math.sqrt(t)
volT = vol*math.sqrt(T)
ft = ppf.math.normal distribution(mut, volt)
fT = ppf.math.normal distribution(muT, volT)
xt = ft.state(5.5, nt)
xT = fT.state(5.5, nT)
meantT = muT-mut
voltT = math.sqrt(volT*volT-volt*volt)
ftT = ppf.math.normal distribution(meantT, voltT)
xtT = ftT.state(5.5, ntT)
yT = numpy.zeros(nT)
for i in range(nT):
yT[i] = math.exp(xT[i]-0.5*volT*volT) # lognormal martingale

yt = integrator.rollback(t, T, xt, xT, xtT, ftT, yT)
ns = 31
s = 0
mus = 0.0
vols = 0.0
fs = ppf.math.normal distribution(mus, vols)
xs = fs.state(5.5, ns)
meansT = muT-mus
volsT = math.sqrt(volT*volT-vols*vols)
fsT = ppf.math.normal distribution(meansT, volsT)
xsT = fsT.state(5.5, ntT)
ys = integrator.rollback(s, T, xs, xT, xsT, fsT, yT)
meanst = mut-mus
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volst = math.sqrt(volt*volt-vols*vols)
fst = ppf.math.normal distribution(meanst, volst)
xst = fst.state(5.5, ntT)
ys1 = integrator.rollback(s, t, xs, xt, xst, fst, yt)
for i in range(ns):
assert math.fabs(ys[i]-ys1[i]) < 1.0e-6

Lastly, the third test verifie that the value of the at-the-money option price satisfie the relation

E[max(yT − 1, 0)] = 2N (d1) − 1 (4.49)

with N(x) the cumulative distribution function of the normal distribution with zero mean and
volatility σ and

d1 = σ
√
T

2
(4.50)

The code snippet below provides the details of the at-the-money option test.

def atm option test(self):
integrator = ppf.math.semi analytic domain integrator()
nT = 31
t = 0.5
T = 1.0
mut = 0.0
muT = 0.0
vol = 0.2
volt = vol*math.sqrt(t)
volT = vol*math.sqrt(T)
fT = ppf.math.normal distribution(muT, volT)
xT = fT.state(5.5, nT)
yT = numpy.zeros(nT)
for i in range(nT):
yT[i] = math.exp(xT[i]-0.5*volT*volT) # lognormal martingale

ns = 31
nsT = 31
s = 0
mus = 0.0
vols = 0.0
fs = ppf.math.normal distribution(mus, vols)
xs = fs.state(5.5, ns)
meansT = muT-mus
volsT = math.sqrt(volT*volT-vols*vols)
fsT = ppf.math.normal distribution(meansT, volsT)
xsT = fsT.state(5.5, nsT)
for i in range(nT):
yT[i] -= 1.0 # strike 1.0

ys = integrator.rollback max(s, T, xs, xT, xsT, fsT, yT)
d1 = 0.5*volT
for i in range(ns):
assert math.fabs(ys[i] - (2.0*fsT.unit cdf(d1)-1.0)) < 1.0e-4
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0.522045776761
0.496585303791
0.472366552741
0.449328964117
0.427414931949
0.406569659741
0.386741023455
0.367879441171
0.349937749111

5.2 SURFACES
A surface is the common name ascribed to a model of a multivariabled function. In the interest
of brevity, we restrict our attention to modelling functions in just two variables f = f (x, y).
The ppf.market.surfacemodule offers the class surface for their representation,
which is associated with the commonly encountered bilinear–interpolation scheme that relies
on the ppf.utility.bound function (refer to section 4.3):

import ppf.utility

class surface:
def init (self, first axis, second axis, values):

self. first axis = first axis
self. second axis = second axis
self. values = values

def call (self, x, y):
i1, i2 = ppf.utility.bound(x, self. first axis)
j1, j2 = ppf.utility.bound(y, self. second axis)
f = self. values
x1 = self. first axis[i1]
x2 = self. first axis[i2]
y1 = self. second axis[j1]
y2 = self. second axis[j2]
r = (x2 - x1)*(y2 - y1)
return (f[i1, j1]/r)*(x2 - x)*(y2 - y) + \

(f[i2, j1]/r)*(x - x1)*(y2 - y) + \
(f[i1, j2]/r)*(x2 - x)*(y - y1) + \
(f[i2, j2]/r)*(x - x1)*(y - y1)

The ppf.test.test market module provides us with an example of using instances of
this type for surface representation, in this case an expiry-tenor volatility surface:

class surface tests(unittest.TestCase):
def test(self):
from ppf.date time import date
from ppf.date time import months
from ppf.date time import Feb, Apr, Jul, Oct, Jan
from numpy import zeros

expiries = [
date(2006, Feb, 11)
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, date(2006, Apr, 11)
, date(2006, Jul, 11)
, date(2006, Oct, 11)
, date(2007, Jan, 11)
, date(2008, Jan, 11)
, date(2009, Jan, 11)
, date(2010, Jan, 11)
, date(2011, Jan, 11)
, date(2012, Jan, 11)
, date(2013, Jan, 11) ]

tenors = [ months(12), months(24), months(36) ]

vols = zeros((len(expiries), len(tenors)))
# expiry, tenor surface 1y 2y 3y
vols[ 0, 0], vols[ 0, 1], vols[ 0, 2] = 200.00, 76.25, 64.00 # 1m
vols[ 1, 0], vols[ 1, 1], vols[ 1, 2] = 98.50, 84.75, 69.00 # 3m
vols[ 2, 0], vols[ 2, 1], vols[ 2, 2] = 98.00, 81.75, 68.00 # 6m
vols[ 3, 0], vols[ 3, 1], vols[ 3, 2] = 101.25, 82.25, 69.25 # 9m
vols[ 4, 0], vols[ 4, 1], vols[ 4, 2] = 106.00, 82.00, 69.25 # 1y
vols[ 5, 0], vols[ 5, 1], vols[ 5, 2] = 78.75, 73.25, 61.25 # 2y
vols[ 6, 0], vols[ 6, 1], vols[ 6, 2] = 66.25, 59.00, 50.00 # 3y
vols[ 7, 0], vols[ 7, 1], vols[ 7, 2] = 55.25, 47.75, 41.75 # 4y
vols[ 8, 0], vols[ 8, 1], vols[ 8, 2] = 44.75, 40.25, 35.50 # 5y
vols[ 9, 0], vols[ 9, 1], vols[ 9, 2] = 32.00, 30.50, 28.25 # 6y
vols[10, 0], vols[10, 1], vols[10, 2] = 26.50, 24.25, 24.25 # 7y

base = date(2006, Jan, 11);
sig = ppf.market.surface(

[int(t - base)/365.0 for t in expiries]
, [m.number of months().as number() for m in tenors]
, vols)

tol=1.0e-8
for i in range(len(expiries)):
expiry = expiries[i]
t = int(expiry - base)/365.0
for j in range(len(tenors)):
tenor = tenors[j]
T = tenor.number of months().as number()
assert math.fabs(sig(t, T) - vols[i, j]) <= tol

5.3 ENVIRONMENT
For the purposes of pricing it is often convenient to aggregrate all the different pieces of
market data (e.g. curves and surfaces) into a single container. The class environment from
ppf.market.environment provides us with a simple container for all the bits of market
data. In addition, the class is also the single point of access to the market data for the pricing
models. As well as containing surfaces and curves, the environment contains constants. An
example of a constant could be the speed of mean reversion used in the Hull–White model to
control terminal correlation.
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An environment is constructed with a pricing date and pieces of market data are added to it
using the add methods. Each piece of data is stored against a unique key which is later used
to retrieve the data via the retrieve methods. Typically in a fully productionised pricing
framework, there would be another level of indirection to insulate clients of the libraries from
the internal representation of the market data keys. Or, more specificall , one would write
environment factories taking in a dictionary of market data against the physical names and
map the physical names to the market data keys.

import ppf.date time

class environment:
def init (self, pd = ppf.date time.date(2008, 01, 01)):

self.pd = pd
self.curves = {}
self.surfaces = {}
self.constants = {}

def pricing date(self):
return self.pd

def relative date(self, d):
ret = ppf.date time.days.days(d-self.pd)
if ret < 0:
raise RuntimeError, ’date before pricing date’

return ret

def add curve(self, key, curve):
if self.curves.has key(key):
del self.curves[key]

self.curves[key] = curve

def add surface(self, key, surface):
if self.surfaces.has key(key):
del self.surfaces[key]

self.surfaces[key] = surface

def add constant(self, key, constant):
if self.constants.has key(key):
del self.constants[key]

self.constants[key] = constant

def has curve(self, key):
return self.curves.has key(key)

def has surface(self, key):
return self.surfaces.has key(key)

def has constant(self, key):
return self.constants.has key(key)

def retrieve curve(self, key):
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if not self.has curve(key):
raise RuntimeError, ’unable to find curve’

return self.curves[key]

def retrieve surface(self, key):
if not self.has surface(key):

raise RuntimeError, ’unable to find surface’
return self.surfaces[key]

def retrieve constant(self, key):
if not self.has constant(key):

raise RuntimeError, ’unable to find constant’
return self.constants[key]

Later chapters will make use of instances of class environment constantly. An ex-
ample from the ppf.test.test hull white module should suffic to give an idea of
its usage for now:

class fill tests(unittest.TestCase):
def test numeraire rebased bond(self):
env = ppf.market.environment()
times = numpy.linspace(0, 2, 5)
factors = numpy.array([math.exp(-0.05*t) for t in times])
env.add curve("zc.disc.eur"

, ppf.market.curve(times, factors, ppf.math.interpolation.
loglinear))

expiries, tenors = [0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0], [0, 90]
env.add surface("ve.term.eur.hw"

, ppf.market.surface(expiries, tenors, numpy.zeros
((8, 2))))

env.add constant("cv.mr.eur.hw", 0.0)
r = ppf.model.hull white.requestor()
s = ppf.model.hull white.lattice.state(11, 3.5)
sx = s.fill("eur", 0.25, r, env)
f = ppf.model.hull white.fill(2.0)
PtT = f.numeraire rebased bond(0.25, 1.5, "eur", env, r, sx)
exp = \

[1.02531512052
,1.02531512052
,1.02531512052
,1.02531512052
,1.02531512052
,1.02531512052
,1.02531512052
,1.02531512052
,1.02531512052
,1.02531512052
,1.02531512052]

assert seq close(exp, PtT)
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, last important date
, fix
, spread):

self. attributes = attributes
self. flow id = flow id
self. reset id = reset id
self. reset ccy = reset ccy
self. reset date = reset date
self. last important date = last important date
self. fix = fix
self. spread = spread

def flow id(self): return self. flow id
def reset id(self): return self. reset id
def reset currency(self): return self. reset ccy
def reset date(self): return self. reset date
def last important date(self): return self. last important date
def spread(self): return self. spread
def fix(self) : return self. fix
def attributes(self) : return self. attributes

Associated with every observable is a fl w id, a reset id, a reset currency, a reset date, a last
important date, a fixin and a spread. The fl w id refers to the index of the fl w in a sequence
of fl ws that is associated with the observable. The reset id refers to the index of the observable
in the collection of observables associated with the referenced fl w. The reset currency can
be a traded currency such as USD for an interest rate observable, or a pair of currencies such
as GBPUSD for a foreign exchange observable, or the currency associated with an equity
index such as EUR for DAX. The reset date represents the date of observation. If the date
of observation is in the past, then the observable will require a fixing In the event that the
fixin is missing, a runtime exception will be raised in the ppf pricing framework. The last
important date is typically equal to the reset date, but for some observables, such as swap rates,
it represents the last important date required to be known in order to calculate its value. It is
not uncommon for a financia transaction to be dependent on the value of an observable plus
or minus a spread, which explains the presence of the last parameter in the constructor. The
firs parameter of the constructor, attributes, is for future extension: In section 6.1.2 we
will encounter a concrete use case for the attributes parameter.

In the following two subsections we present two examples of market observables.

6.1.1 LIBOR

In the world of interest rate trading, one frequently observed quantity on which a payoff
may depend is the LIBOR2 rate. The class libor in module ppf.core.libor rate
offers an implementation of the LIBOR observable. The libor rate constructor takes in
the properties common to all observables plus the projection start and end date together with
the projection basis. The projection period, define by the difference between the projection
end date and start date, determines the period over which the LIBOR rate is to apply. As an
example, for GBP LIBOR the projection period is six months. Furthermore, there is usually a

2 London Interbank Offer Rate – a daily reference rate on which banks in the London money market offer to lend
each other unsecured funds.
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lag between the date on which the rate is set and the beginning of the projection period. Once
again, as an example, for GBP LIBOR the lag is two business days.

from ppf.date time import year fraction
from fixing import *
from observable import *

class libor rate(observable):
def init (self

, attributes
, flow id
, reset id
, reset date
, reset currency
, proj start date
, proj end date
, proj basis
, fix
, spread=None):

observable. init (self
, attributes
, flow id
, reset id
, reset currency
, reset date
, proj end date
, fix
, spread)

self. proj start date = proj start date
self. proj end date = proj end date
self. proj basis = proj basis

def proj start date(self): return self. proj start date
def proj end date(self): return self. proj end date
def proj basis(self): return self. proj basis

def year fraction(self):
return year fraction(self. proj start date

, self. proj end date
, self. proj basis)

def str (self):
s = "%d, " % self.flow id()
s += "%d, " % self.reset id()
s += "%s, " % self.reset currency()
s += "[%s, %s], " % (self. proj start date, self. proj end date)
s += "%s, " % day count basis strings[self. proj basis]
fix = self.fix()
if fix.is fixed():

s += "%f, " % fix.value()
spread = self.spread()
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if spread <> None:
s += "%f, " % spread

return s

For completeness the libor rate class provides a method forward for determining the
value of the LIBOR rate at a particular point in time.

class libor rate(observable):
def forward(self, t, curve):
fix = self.fix()
if fix.is fixed():
return fix.value()

start = self. proj start date
until = self. proj end date
Ts, Te = (int(start - t)/365.0, int(until - t)/365.0)
Ps, Pe = (curve(Ts), curve(Te))
dcf = year fraction(start, until, self. proj basis)
forward = (Ps/Pe-1.0)/dcf

return forward

In practice, it is frequently necessary to generate collections of LIBOR observables.
Accordingly the ppf.core.generate observables module offers the function
generate libor observables() for this purpose.

def generate libor observables(
start

, end
, roll period = 6
, roll duration = ppf.date time.months
, reset period = 6
, reset duration = ppf.date time.months
, tenor period = 6
, tenor duration = ppf.date time.months
, reset currency = "USD"
, reset basis = ppf.date time.basis act 360
, reset holiday centres = None
, reset shift method = ppf.date time.modified following
, reset lag = 0
, *arguments
, **keywords):
from ppf.date time import days
shift = ppf.date time.shift

if reset lag > 0:
raise RuntimeError, "index lag expected less or equal to zero"

day, flow id, all observables = 0, 0, []
while day < end:

roll start = start + roll duration(flow id*roll period)
roll end = start + roll duration((flow id+1)*roll period)
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reset id = 0
proj roll = roll start
observables = []
while proj roll < roll end:

proj start = shift(
proj roll

, reset shift method, reset holiday centres)
proj end = shift(

proj roll+tenor duration(tenor period)
, reset shift method, reset holiday centres)

reset date = shift(
proj start+days(reset lag)

, reset shift method, reset holiday centres)
observables.append(

libor rate(None, flow id, reset id, reset date
, reset currency, proj start, proj end
, reset basis, fixing(False)))

reset id += 1
proj roll = roll start+reset duration(reset id*reset

period)
day = roll end
all observables.append(observables)
flow id += 1

return all observables

Here is an example of generate libor observables() in use.

>>> observables = generate libor observables(
... start = date(2007, Jun, 29)
... , end = date(2012, Jun, 29)
... , roll period = 6
... , roll duration = ppf.date time.months
... , reset period = 3
... , reset duration = ppf.date time.months
... , tenor period = 3
... , tenor duration = ppf.date time.months
... , reset currency = "JPY"
... , reset basis = basis act 360
... , reset shift method = shift convention.modified following)
>>> for obs per flow in observables:
... for obs in obs per flow:
... print obs
0, 0, JPY, [2007-Jun-29, 2007-Sep-28], basis act 360,
0, 1, JPY, [2007-Sep-28, 2007-Dec-31], basis act 360,
1, 0, JPY, [2007-Dec-31, 2008-Mar-31], basis act 360,
1, 1, JPY, [2008-Mar-31, 2008-Jun-30], basis act 360,
2, 0, JPY, [2008-Jun-30, 2008-Sep-29], basis act 360,
2, 1, JPY, [2008-Sep-29, 2008-Dec-29], basis act 360,
3, 0, JPY, [2008-Dec-29, 2009-Mar-30], basis act 360,
3, 1, JPY, [2009-Mar-30, 2009-Jun-29], basis act 360,
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4, 0, JPY, [2009-Jun-29, 2009-Sep-29], basis act 360,
4, 1, JPY, [2009-Sep-29, 2009-Dec-29], basis act 360,
5, 0, JPY, [2009-Dec-29, 2010-Mar-29], basis act 360,
5, 1, JPY, [2010-Mar-29, 2010-Jun-29], basis act 360,
6, 0, JPY, [2010-Jun-29, 2010-Sep-29], basis act 360,
6, 1, JPY, [2010-Sep-29, 2010-Dec-29], basis act 360,
7, 0, JPY, [2010-Dec-29, 2011-Mar-29], basis act 360,
7, 1, JPY, [2011-Mar-29, 2011-Jun-29], basis act 360,
8, 0, JPY, [2011-Jun-29, 2011-Sep-29], basis act 360,
8, 1, JPY, [2011-Sep-29, 2011-Dec-29], basis act 360,
9, 0, JPY, [2011-Dec-29, 2012-Mar-29], basis act 360,
9, 1, JPY, [2012-Mar-29, 2012-Jun-29], basis act 360,

The sample invocation above has generated a sequence of LIBOR rate observables. The
sequence has been generated such that there are two observables per fl w, each with a projection
period of three months and reset date equal to the projection start date.

6.1.2 Swap Rate

Like the LIBOR rate of section 6.1.1, another commonly observed quantity in interest rate
structures is the swap rate. To calculate the value of the swap rate we need to have a de-
scription of the two legs making up the swap. The fi ed leg is simply a collection of fl ws
paying a fi ed coupon at regular intervals. Similarly the funding leg is a collection of fl ws
paying LIBOR at regular intervals. We will properly defin flow in section 6.2 but, for now,
we simply assume the existence of a class flow and function generate flows().
The class swap rate in module ppf.core.swap rate provides an implementation of
the swap rate. The constructor signature is identical to that of the libor rate constructor.
The attributes constructor parameter is expected to be a Python dictionary and is used to
store information relating to the fi ed and funding legs making up the swap. The constructor
invokes the generate() method which uses the information contained in that dictionary
together with the projection start and end dates to generate the underlying legs of the swap.

from fixing import *
from observable import *
from generate flows import *
from generate observables import *

class swap rate(observable):
def init (self

, attributes
, flow id
, reset id
, reset date
, reset ccy
, proj start date
, proj end date
, fix
, spread=None):

observable. init (self
, attributes
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, flow id
, reset id
, reset ccy
, reset date
, proj end date
, fix
, spread)

self. proj start date = proj start date
self. proj end date = proj end date
self. generate()

def proj start date(self): return self. proj start date
def proj end date(self): return self. proj end date
def fixed pay basis(self) : return self. fixed pay basis
def float pay basis(self) : return self. float pay basis
def proj basis(self): return self. proj basis
def fixed flows(self): return self. fixed flows
def float flows(self): return self. float flows

def generate(self):
start = self. proj start date
until = self. proj end date
attributes = self.attributes()

fixed period = attributes["fixed-pay-period"]
fixed period duration = attributes["fixed-pay-period-duration"]
fixed pay basis = attributes["fixed-pay-basis"]
fixed pay holiday centres = attributes["fixed-pay-holiday-"

"centres"]
fixed shift convention = attributes["fixed-shift-convention"]
float period = attributes["float-pay-period"]
float period duration = attributes["float-pay-period-duration"]
float pay basis = attributes["float-pay-basis"]
float pay holiday centres = attributes["float-pay-holiday-"

"centres"]
float shift convention = attributes["float-shift-convention"]

libor basis = attributes["index-basis"]
libor holiday centres = attributes["index-holiday-centres"]
libor shift convention = attributes["index-shift-convention"]

self. fixed flows = \
generate flows(start

, until
, period = fixed period
, duration = fixed period duration
, pay shift method = fixed shift convention
, pay currency = self.reset currency()
, pay basis = fixed pay basis
, pay holiday centres = fixed pay holiday centres
, accrual shift method = fixed shift convention
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, accrual holiday centres = \
fixed pay holiday centres)

libor observables = \
generate libor observables(

start
, until
, roll period = float period
, roll duration = float period duration
, reset period = float period
, reset duration = float period duration
, tenor period = float period
, tenor duration = float period duration
, reset currency = self.reset currency()
, reset basis = libor basis
, reset holiday centres = libor holiday centres
, reset shift method = libor shift convention)

self. float flows = \
generate flows(start

, until
, period = float period
, duration = float period duration
, pay shift method = float shift convention
, pay currency = self.reset currency()
, pay basis = float pay basis
, pay holiday centres = float pay holiday centres
, accrual shift method = float shift convention
, accrual holiday centres = \

float pay holiday centres
, observables = libor observables)

def str (self):
s = "%d, " % self.flow id()
s += "%d, " % self.reset id()
s += "%s, " % self.reset currency()
s += "[%s, %s], " % (self. proj start date, self. proj end date)
return s

Once again for completeness the swap rate class provides a method forward for deter-
mining the value of the swap rate at a particular point in time.

class swap rate(observable):
def forward(self, t, curve):
fund pv = 0
for f in self. float flows:
obs = f.observables()[0]
proj start, proj end, reset accrual dcf = \

(obs.proj start date(), obs.proj end date(),
obs.year fraction())

dfs, dfe = \
curve(int(proj start - t)/365.0), curve(int(proj end
- t)/365.0)
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libor = (dfs/dfe - 1.0)/reset accrual dcf
pay date, accrual dcf = (f.pay date(), f.year fraction())
dfp = curve(int(pay date - t)/365.0)
fund pv += dfp*libor*accrual dcf

fixed pv = 0
for f in self. fixed flows:

pay date, accrual dcf = (f.pay date(), f.year fraction())
dfp = curve(int(pay date - t)/365.0)
fixed pv += dfp*accrual dcf

return fund pv/fixed pv

Like the generate libor observables() function of section 6.1.1, a function for
generating a sequence of swap rate observables, generate swap observables(), can
be found in the ppf.core.generate observables module.

def generate swap observables(
start

, end
, attributes
, spread = 0
, roll period = 6
, roll duration = ppf.date time.months
, tenor period = 10
, tenor duration = ppf.date time.years
, reset currency = "USD"
, reset basis = ppf.date time.basis act 360
, reset holiday centres = None
, reset shift method = ppf.date time.modified following
, reset lag = 0
, *arguments
, **keywords):
from ppf.date time import days
shift = ppf.date time.shift

if reset lag > 0:
raise RuntimeError, "index lag expected less or equal to zero"

day, flow id, all observables = 0, 0, []
while day < end:

roll start = start + roll duration(flow id*roll period)
roll end = start + roll duration((flow id+1)*roll period)
reset id = 0
proj roll = roll start
proj start = \
shift(

proj roll
, reset shift method
, reset holiday centres
)
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proj end = \
shift(

proj roll+tenor duration(tenor period)
, reset shift method, reset holiday centres
)

reset date = \
shift(

proj start+days(reset lag)
, reset shift method, reset holiday centres
)

all observables.append(
swap rate(

attributes
, flow id
, reset id
, reset date
, reset currency
, proj start
, proj end
, fixing(False)
, spread) )

flow id += 1; reset id += 1; day = roll end

return all observables

The following is an example session demonstrating the generation of a sequence of swap rate
observables.

>>> props = {}
>>> props["fixed-pay-period"] = 1
>>> props["fixed-pay-period-duration"] = years
>>> props["fixed-pay-basis"] = basis act 360
>>> props["fixed-pay-holiday-centres"] = None
>>> props["fixed-shift-convention"] = modified following
>>> props["float-pay-period"] = 6
>>> props["float-pay-period-duration"] = months
>>> props["float-pay-basis"] = basis act 365
>>> props["float-pay-holiday-centres"] = None
>>> props["float-shift-convention"] = modified following
>>> props["index-basis"] = basis act 365
>>> props["index-holiday-centres"] = None
>>> props["index-shift-convention"] = modified following
>>> observables = generate swap observables(
... start = date(2007, Jun, 29)
... , end = date(2017, Jun, 29)
... , attributes = props
... , roll period = 1
... , roll duration = years
... , tenor period = 10
... , tenor duration = years)
>>> for o in observables: print o
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0, 0, USD, [2007-Jun-29, 2017-Jun-29],
1, 0, USD, [2008-Jun-30, 2018-Jun-29],
2, 0, USD, [2009-Jun-29, 2019-Jun-28],
3, 0, USD, [2010-Jun-29, 2020-Jun-29],
4, 0, USD, [2011-Jun-29, 2021-Jun-29],
5, 0, USD, [2012-Jun-29, 2022-Jun-29],
6, 0, USD, [2013-Jun-28, 2023-Jun-29],
7, 0, USD, [2014-Jun-30, 2024-Jun-28],
8, 0, USD, [2015-Jun-29, 2025-Jun-30],
9, 0, USD, [2016-Jun-29, 2026-Jun-29],

6.2 FLOWS
A fl w describes a cash fl w to be made at some point in time. The actual value of the cash fl w
will depend on a number of things. Firstly, it will depend on the principal or notional of the
financia contract. Secondly, it depends on the currency in which the payment is made. Thirdly,
the payment is typically accrued over a period of time determined by the accrual start date
and the accrual end date. The actual formula for calculating the accrued amount is controlled
by the accrual basis. Fourthly, the date on which the payment is made will affect its overall
value. Lastly, the payment will depend in some way on the value of market observables. For
simplicity we treat known coupons, such as those on a coupon-bearing bond, as observables.
In other words, a fl w will always have at least one observable.

The class flow models the characteristics of a fl w and can be found in the
ppf.core.flow module. As well as accessors to the underlying properties of the fl w,
a method is also provided for calculating the accrual period as a year fraction.

from ppf.date time import year fraction

class flow:
def init (self

, notional
, pay currency
, accrual start date
, accrual end date
, accrual basis
, pay date
, observables = None):

self. notional = notional
self. pay currency = pay currency
self. accrual start date = accrual start date
self. accrual end date = accrual end date
self. accrual basis = accrual basis
self. pay date = pay date
self. observables = observables

def notional(self): return self. notional
def pay currency(self): return self. pay currency
def accrual start date(self): return self. accrual start date
def accrual end date(self): return self. accrual end date
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def pay date(self): return self. pay date
def observables(self): return self. observables
def set observables(self, observables): self. observables = \
observables

def year fraction(self):
return year fraction(

self. accrual start date
, self. accrual end date
, self. accrual basis)

def str (self):
s = "%f, " % self. notional
s += "%s, " % self. pay currency
s += "[%s, %s], " % (self. accrual start date

,self. accrual end date)
s += "%s, " % day count basis strings[self. accrual basis]
s += "%s, " % self. pay date
if self. observables <> None:
for observable in self. observables:
s += observable. str ()

return s

Analogous to the generate libor observables() function of section 6.1.1 and the
generate swap observables() of section 6.1.2, theppf.core.generate flows
module provides the function generate flows() from which a fl w collection can be
generated from a high-level description.

import ppf.date time
from flow import *

def generate flows(
start

, end
, period = 6
, duration = ppf.date time.months
, notional = 10000000
, accrual basis = ppf.date time.basis act 360
, pay currency = "USD"
, pay shift method =

ppf.date time.shift convention.modified following
, pay holiday centres = None
, accrual shift method =

ppf.date time.shift convention.modified following
, accrual holiday centres = None
, observables = None
, *arguments
, **keywords):

i, day = 0, start
flows = []
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shift = ppf.date time.shift
while day < end:

roll start = start + duration(i*period)
roll end = start + duration((i + 1)*period)
accrual start = shift(

roll start
, accrual shift method, accrual holiday centres)

accrual end = shift(
roll end

, accrual shift method, accrual holiday centres)
pay = shift(

roll end
, pay shift method, pay holiday centres)

flows.append(
flow(notional

, pay currency
, accrual start
, accrual end
, accrual basis
, pay)

)
day = roll end
i += 1

if observables <> None:
if len(observables) <> len(flows):

raise RuntimeError, "too few or too many observables"
for i in range(len(flows)):
f = flows[i]
obs = observables[i]
f.set observables(obs)

return flows

Here is an example of the generate flows() function in action:

>>> flows = generate flows(
... start = date(2007, Jun, 29)
... , end = date(2017, Jun, 29)
... , period = 6
... , duration = ppf.date time.months
... , notional = 1000000
... , accrual basis = basis 30360
... , pay currency = "JPY"
... , pay shift method = shift convention.modified following)
>>> for f in flows:
... print f
1000000.000000, JPY, [2007-Jun-29, 2007-Dec-31], basis 30360, 2007-
Dec-31,
1000000.000000, JPY, [2007-Dec-31, 2008-Jun-30], basis 30360, 2008-
Jun-30,
1000000.000000, JPY, [2008-Jun-30, 2008-Dec-29], basis 30360, 2008-
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Dec-29,
1000000.000000, JPY, [2008-Dec-29, 2009-Jun-29], basis 30360, 2009-
Jun-29,
1000000.000000, JPY, [2009-Jun-29, 2009-Dec-29], basis 30360, 2009-
Dec-29,
1000000.000000, JPY, [2009-Dec-29, 2010-Jun-29], basis 30360, 2010-
Jun-29,
1000000.000000, JPY, [2010-Jun-29, 2010-Dec-29], basis 30360, 2010-
Dec-29,
1000000.000000, JPY, [2010-Dec-29, 2011-Jun-29], basis 30360, 2011-
Jun-29,
1000000.000000, JPY, [2011-Jun-29, 2011-Dec-29], basis 30360, 2011-
Dec-29,
1000000.000000, JPY, [2011-Dec-29, 2012-Jun-29], basis 30360, 2012-
Jun-29,
1000000.000000, JPY, [2012-Jun-29, 2012-Dec-31], basis 30360, 2012-
Dec-31,
1000000.000000, JPY, [2012-Dec-31, 2013-Jun-28], basis 30360, 2013-
Jun-28,
1000000.000000, JPY, [2013-Jun-28, 2013-Dec-30], basis 30360, 2013-
Dec-30,
1000000.000000, JPY, [2013-Dec-30, 2014-Jun-30], basis 30360, 2014-
Jun-30,
1000000.000000, JPY, [2014-Jun-30, 2014-Dec-29], basis 30360, 2014-
Dec-29,
1000000.000000, JPY, [2014-Dec-29, 2015-Jun-29], basis 30360, 2015-
Jun-29,
1000000.000000, JPY, [2015-Jun-29, 2015-Dec-29], basis 30360, 2015-
Dec-29,
1000000.000000, JPY, [2015-Dec-29, 2016-Jun-29], basis 30360, 2016-
Jun-29,
1000000.000000, JPY, [2016-Jun-29, 2016-Dec-29], basis 30360, 2016-
Dec-29,
1000000.000000, JPY, [2016-Dec-29, 2017-Jun-29], basis 30360, 2017-
Jun-29,

6.3 ADJUVANTS
A financia payoff can depend on constants that vary over time, such as a gearing or barrier
level. The class adjuvant table in module ppf.core.adjuvant table provides a
simple structure for storing these time-dependent constants. The class is constructed by taking
a list of keys, or equivalently variable names, the dates on which they apply, and the values.
Access to a particular constant at a specifi time is provided via the function call operator.

class adjuvant table:
def init (self, keys, dates, values):

if len(values.shape) <> 2:
raise RuntimeError, "expected 2d array of values"

if len(keys) <> values.shape[0] or len(dates) <>
values.shape[1]:
raise RuntimeError, "incorrect size of values array"
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self. table = {}
i = 0
for key in keys:
elem = {}
j = 0
for dt in dates:
elem[dt.julian day()] = values[i][j]
j += 1

self. table[key] = elem
i += 1

def call (self, key, dt):
if self. table.has key(key):

elem = self. table.get(key)
if elem.has key(dt.julian day()):
return elem.get(dt.julian day())

else:
raise RuntimeError, \
"unable to find date in adjuvant table"+" dt = "+str(dt)

else:
raise RuntimeError, "unable to find key in adjuvant table"

def str (self):
return self. table. str ()

A high-level generator for adjuvant tables is provided in the ppf.core.generate
adjuvant table module.

def generate adjuvant table(
keys

, tenors
, values
, start date
, roll period = 6
, roll duration = ppf.date time.months
, holiday centres = None
, shift method = ppf.date time.shift convention.modified following
, *arguments
, **keywords):
if len(values.shape) <> 2:
raise RuntimeError, "expected 2d array of values"

if len(keys) <> values.shape[0] or len(tenors) <> values.shape[1]:
raise RuntimeError, "incorrect size of values array"

from ppf.date time import days
shift = ppf.date time.shift

day = 0
dates = []
indices = []
cnt = 0
start = start date
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for tenor in tenors:
end = start date+roll duration(tenor)
if end < day:
raise RuntimeError, "tenors are not monotonically increasing"

i = 0
while day < end:
roll start = start+roll duration(i*roll period)
roll end = start+roll duration((i+1)*roll period)
pay = shift(roll end, shift method, holiday centres)
day = pay
dates.append(day)
indices.append(cnt)
i += 1

cnt += 1
start = end

import numpy
all values = numpy.zeros((len(keys), len(dates)))
for i in range(len(keys)):
for j in range(len(dates)):
idx = indices[j]
all values[i][j] = values[i][idx]

return adjuvant table(keys, dates, all values)

A sample invocation of the generate adjuvant table() function is shown below:

>>> from ppf.date time import *
>>> from numpy import *
>>> adjuvants = generate adjuvant table(
... keys = ["spread","coupon"]
... , tenors = [12,24,36]
... , values = array([[0.005, 0.006, 0.007], [0.05, 0.06, 0.07]])
... , start date = date(2008, May, 1)
... , roll period = 6
... , shift method = shift convention.modified following)
>>> print adjuvants
{’coupon’: {2455137: 0.06, 2455683: 0.07, 2454953: 0.05,
2455502: 0.07, 2454772: 0.05, 2455318: 0.06},
’spread’: {2455137: 0.006, 2455683: 0.007,
2454953: 0.005, 2455502: 0.007,
2454772: 0.005, 2455318: 0.006}}

6.4 LEGS
In essence, a leg is simply a collection of fl ws. However, we also need to know whether the
cash fl ws they represent are to be paid or received. The module ppf.core.pay recieve
encapsulates this concept:

PAY, RECEIVE = (-1, 1)

Furthermore, a leg will also depend on the Python class representing the actual payoff and
the adjuvant table referenced in the payoff. Examples of concrete payoffs will be discussed
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in the forthcoming chapters. The class leg from module ppf.core.leg provides an
implementation of the leg.

class leg:
def init (self

, flows
, pay or receive
, adjuvant table = None
, payoff = None):

self. flows = flows
self. pay or receive = pay or receive
self. adjuvant table = adjuvant table
self. payoff = payoff

def flows(self):
return self. flows

def pay receive(self):
return self. pay or receive

def has adjuvant table(self):
return self. adjuvant table <> None

def has payoff(self):
return self. payoff <> None

def adjuvant table(self):
if self. adjuvant table == None:

raise RuntimeError, "Null adjuvant table"
return self. adjuvant table

def payoff(self):
if self. payoff == None:

raise RuntimeError, "Null payoff"
return self. payoff

6.5 EXERCISES
Many financia structures have exercise decisions embedded in them. An exercise decision or
opportunity is the right to exercise into or cancel a stream of cash fl ws at some point in time.
Typically the writer of the option will require some notificatio of exercise and so an exercise
decision is most generally associated with two dates: a notificatio date and an exercise date.
It may also be written into the contract that the holder of the option must pay a fee upon
exercise. These three data elements are bundled up into the class exercise in the module
ppf.core.exercise.

class exercise:
def init (self

, notification date
, exercise date
, fee = None
, fee ccy = None):
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self. notification date = notification date
self. exercise date = exercise date
self. fee = fee
self. fee ccy = fee ccy
if fee <> None and fee ccy == None:
raise RuntimeError, "non-zero fee with no currency"

def notification date(self): return self. notification date
def exercise date(self): return self. exercise date
def fee(self): return self. fee
def fee currency(self): return self. fee ccy

def str (self):
s = "%s, " % self. notification date
s += "%s, " % self. exercise date
if self. fee <> None:
s += "%f, " % self. fee
s += "%s, " % self. fee ccy

return s

Exercise opportunities generally offer the holder the right to do one of two things: enter into a
contract or cancel an existing contract. This classificatio of exercise opportunities is captured
in the ppf.core.exercise type module.

class exercise type:
callable, cancellable = (1, -1)

Like fl ws, exercise opportunities frequently come in collections. In a pattern that is no
doubt familiar by now, the ppf.core.generate exercise table module offers the
function generate exercise table() presented below.

import ppf.date time
from exercise import *

def generate exercise table(
start

, end
, period = 6
, duration = ppf.date time.months
, shift method = ppf.date time.modified following
, basis = ppf.date time.basis act 360
, holiday centres = None
, fee = None
, fee currency = None
, *arguments
, **keywords):
i, day, exercises = 0, 0, []
shift = ppf.date time.shift
while day < end:
roll start = start + duration(i*period)
roll end = start + duration((i+1)*period)
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exercise date = shift(
roll start

, shift method, holiday centres)
# assume no notification lag
exercises.append(

exercise(exercise date, exercise date, fee, fee currency))
day = exercise date
i += 1

return exercises

Below is an example of the usage of generate exercise table():

>>> ex sched = generate exercise table(
... start = date(2007, Jun, 29)
... , end = date(2017, Jun, 29)
... , duration = months
... , period = 6
... , fee = 1000000
... , fee currency = "EUR"
... , shift method = shift convention.modified following)
>>> for ex in ex sched: print ex
2007-Jun-29, 2007-Jun-29, 1000000.000000, EUR,
2007-Dec-31, 2007-Dec-31, 1000000.000000, EUR,
2008-Jun-30, 2008-Jun-30, 1000000.000000, EUR,
2008-Dec-29, 2008-Dec-29, 1000000.000000, EUR,
2009-Jun-29, 2009-Jun-29, 1000000.000000, EUR,
2009-Dec-29, 2009-Dec-29, 1000000.000000, EUR,
2010-Jun-29, 2010-Jun-29, 1000000.000000, EUR,
2010-Dec-29, 2010-Dec-29, 1000000.000000, EUR,
2011-Jun-29, 2011-Jun-29, 1000000.000000, EUR,
2011-Dec-29, 2011-Dec-29, 1000000.000000, EUR,
2012-Jun-29, 2012-Jun-29, 1000000.000000, EUR,
2012-Dec-31, 2012-Dec-31, 1000000.000000, EUR,
2013-Jun-28, 2013-Jun-28, 1000000.000000, EUR,
2013-Dec-30, 2013-Dec-30, 1000000.000000, EUR,
2014-Jun-30, 2014-Jun-30, 1000000.000000, EUR,
2014-Dec-29, 2014-Dec-29, 1000000.000000, EUR,
2015-Jun-29, 2015-Jun-29, 1000000.000000, EUR,
2015-Dec-29, 2015-Dec-29, 1000000.000000, EUR,
2016-Jun-29, 2016-Jun-29, 1000000.000000, EUR,
2016-Dec-29, 2016-Dec-29, 1000000.000000, EUR,
2017-Jun-29, 2017-Jun-29, 1000000.000000, EUR,

6.6 TRADES
A trade is built from a collection of legs and possibly a schedule of exercise decisions. The
class trade in module ppf.core.trade encapsulates the concept of a trade.

class trade:
def init (self, legs, exercise info=None):
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self. legs = legs
self. exercise info = exercise info

def legs(self):
return self. legs

def exercise type(self):
if not self. exercise info:
raise RuntimeError, "missing exercise information"

return self. exercise info[1]

def exercise schedule(self):
if not self. exercise info:
raise RuntimeError, "missing exercise information"

return self. exercise info[0]

def has exercise schedule(self):
return self. exercise schedule != None

The following snippet shows a simple example of how to assemble a trade:

>>> #semi-annual flows
>>> flows = generate flows(
... start = date(2007, Jun, 29)
... , end = date(2017, Jun, 29)
... , duration = ppf.date time.months
... , period = 6
... , shift method = shift convention.modified following
... , basis = "ACT/360")
>>> pay leg = leg(flows, PAY)
>>> receive leg = leg(flows, RECEIVE)
>>> #1y nc
>>> ex sched = generate exercise table(
... start = date(2008, Jun, 29)
... , end = date(2016, Jun, 29)
... , period = 1
... , duration = ppf.date time.years
... , shift method = shift convention.modified following)
>>> structure = trade([pay leg, receive leg], [ex sched, \

exercise type.callable])
>>> print ("callable", "cancellable")[structure.exercise type()
== -1]
callable

6.7 TRADE UTILITIES
It is not uncommon to perform standard operations on the trade representation. For example,
the writer of a pricing model may wish to insist upon the trade being single currency, or that
the trade doesn’t contain any exercise stubs. The module ppf.core.trade utils is the
repository for such standard operations. The final important date function, detailed
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below, determines the last important date of a trade. The last important date is determined by
looping through the legs of a trade and for each fl w in the leg keeping count of the most
distant date in the future, be it the fl w pay date or the last important date of the observables
attached to the fl w. The end result is the most distant date in the future contained in the trade
representation.

def final important date(trd):
final date = date(1900, Jan, 1)
for l in trd.legs():
for f in l.flows():
candidate date = f.pay date()
observables = f.observables()
if not observables:
raise RuntimeError, "Missing observables"

for o in observables:
if o.last important date() > candidate date:

candidate date = o.last important date()
if candidate date > final date:
final date = candidate date

return final date

Here is a demonstration of the final important date() function:

>>> libor observables = generate libor observables(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , roll period = 6
... , roll duration = ppf.date time.months
... , reset period = 3
... , reset duration = ppf.date time.months
... , reset currency = "JPY"
... , reset basis = basis act 360
... , reset shift method = shift convention.modified following)
>>> coupon observables = generate fixed coupon observables(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , roll period = 6
... , reset currency = "JPY"
... , coupon shift method = shift convention.modified following
... , coupon rate = 0.045)
>>> #semi-annual flows
>>> pay flows = generate flows(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , duration = ppf.date time.months
... , period = 6
... , shift method = shift convention.modified following
... , basis = "30/360"
... , observables = coupon observables)
>>> rcv flows = generate flows(
... start = date(2007, Jun, 29)
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... , end = date(2009, Jun, 29)

... , duration = ppf.date time.months

... , period = 6

... , shift method = shift convention.modified following

... , basis = "A/360"

... , observables = libor observables)
>>> pay leg = leg(pay flows, PAY)
>>> receive leg = leg(rcv flows, RECEIVE)
>>> #1y nc
>>> ex sched = generate exercise table(
... start = date(2008, Jun, 29)
... , end = date(2009, Jun, 29)
... , period = 1
... , duration = ppf.date time.years
... , shift method = shift convention.modified following)
>>> structure = trade((pay leg, receive leg), (ex sched, \

exercise type.callable))
>>> print final important date(structure)
2009-Sep-30

The enforce single currency function harvests all the currencies contained in the
trade representation, whether they be pay currencies or observable currencies, and then enforces
that the number of unique currencies must be 1.

def enforce single currency(trd):
ccys = []
for l in trd.legs():
for f in l.flows():
pay ccy = f.pay currency()
observables = f.observables()
if not observables:
raise RuntimeError, "Missing observables"

for o in observables:
reset ccy = o.reset currency()
if ccys.count(reset ccy) == 0:
ccys.append(reset ccy)

if ccys.count(pay ccy) == 0:
ccys.append(pay ccy)

if len(ccys) <> 1:
raise RuntimeError, "expected one currency"

return ccys[0]

Lastly, the enforce no exercise stubs function asserts that the exercise dates, if
there are any, must fall within the union of accrual start dates.

def enforce no exercise stubs(trd):
accrual start dates = []
for l in trd.legs():
for f in l.flows():
accrual start dates.append(f.accrual start date())

if trd.has exercise schedule():
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exercises = trd.exercise schedule()
for exercise in exercises:
notification date = exercise.notification date()
if accrual start dates.count(notification date) == 0:
raise RuntimeError, "exercise stub encountered"

All these utility functions will be used at various stages in the forthcoming chapters.
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def str (self) :
s = "payment [%s, %s, %s, %s], " % \

(self. pay rcv, self. leg id, self. reset id,
str(self. flow))

return s

class exercise event:
def init (

self
, exercise opportunity
, exercise type):

self. exercise opportunity \
, self. exercise type = exercise opportunity, exercise type
def exercise type(self) : return self. exercise type
def exercise opportunity(self) : return self. exercise opportunity
def pay currency(self) :
return self. exercise opportunity.fee currency()

def str (self) :
s = "exercise [%s, %s], " % \

(self. exercise type, str(self. exercise opportunity))
return s

def is pay event(event): return isinstance(event, pay event)
def is exercise event(event): return isinstance(event, exercise event)

7.2 TIMELINE
Now that we have a clear understanding of an event, we move on to the timeline. Any
financia payoff can be interpreted as a sequence of cash fl ws and exercise decisions with
potentially more than one cash fl w occurring at any one point in time. The purpose of
the class timeline from the ppf.core.timeline module is to transform the trade
representation into a sequence of events. The actual transformation occurs in the constructor
of the timeline. We begin by harvesting the observables from the trade to create instances of
the pay event and follow on by harvesting the exercises from the trade to create instances
of the exercise event. Once constructed, an instance of the timeline can be queried for a
list of the times on which either a cash fl w occurs or an exercise decision is made, and for a
list of events occurring at a particular time.

from types import *
from trade import *
from leg import *
from flow import *
from exercise import *
from event import *

class timeline:
def add event (self, t, event):

if not self. events.has key(t.julian day()):
self. events[t.julian day()] = []

self. events.get(t.julian day()).append(event)
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def init (self, trade, pricing date):
self. events = {}

# add events from legs
leg id = 0
for l in trade.legs():
pay rcv = l.pay receive()
for f in \
[f for f in l.flows()
if f.pay date() >= pricing date]:
observables = f.observables()
if not observables:
raise RuntimeError, "Missing observables"

for o in observables:
self. add event (

o.reset date()
, pay event(f, pay rcv, leg id, o.reset id()))

leg id += 1

# add events from exercise schedule
if trade.has exercise schedule():

ex type = trade.exercise type()
for ex in \
[ex for ex in trade.exercise schedule()
if ex.notification date() > pricing date]:

self. add event (
ex.notification date()

, exercise event(ex, ex type))

def times(self):
return sorted(self. events.keys())

def events(self, t):
return self. events[t]

def str (self):
s = "events: \n"
times = sorted(self. events.keys())
for t in times:
s += "\"%s\", " % t
events = self. events[t]
for event in events: s += str(event)
s += ’\n’

return s

Construction of a timeline from a financia structure proceeds as per the following example:

>>> from ppf.date time import *
>>> from pay receive import *
>>> from generate flows import *
>>> from generate observables import *
>>> from generate exercise table import *
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>>> from exercise type import *
>>> from leg import *
>>> from trade import *
>>> libor observables = generate libor observables(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , roll period = 6
... , roll duration = ppf.date time.months
... , reset period = 3
... , reset duration = ppf.date time.months
... , reset currency = "JPY"
... , reset basis = basis act 360
... , reset shift method = shift convention.modified following)
>>> coupon observables = generate fixed coupon observables(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , roll period = 6
... , reset currency = "JPY"
... , coupon shift method = shift convention.modified following
... , coupon rate = 0.045)
>>> #semi-annual flows
>>> pay flows = generate flows(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , duration = ppf.date time.months
... , period = 6
... , shift method = shift convention.modified following
... , basis = "30/360"
... , observables = coupon observables)
>>> rcv flows = generate flows(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , duration = ppf.date time.months
... , period = 6
... , shift method = shift convention.modified following
... , basis = "A/360"
... , observables = libor observables)
>>> pay leg = leg(pay flows, PAY)
>>> receive leg = leg(rcv flows, RECEIVE)
>>> #1y nc
>>> ex sched = generate exercise table(
... start = date(2008, Jun, 29)
... , end = date(2009, Jun, 29)
... , period = 1
... , duration = ppf.date time.years
... , shift method = shift convention.modified following)
>>> structure = trade((pay leg, receive leg), (ex sched,

exercise type.callable))
>>> pricing date = date(2007, Jan, 29)
>>> tline = timeline(structure, pricing date)
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7.3 CONTROLLER
As already discussed in the introduction, the controller provides the main glue between the
trade representation (or more correctly its transformation into events) and the pricing models.
Essentially the controller is constructed from the trade, the model and the market environment.
The fina argument of the constructor is used to control how historical discount factors are
treated and we defer further discussion on this point to later chapters. The main job of the
controller is to maintain a dictionary of variables whose values will be updated and retrieved
by the pricing models. The controller is also the conduit for the pricing models to evaluate
the payoffs in the trade representation. The payoffs are evaluated by firs setting the event
followed by an invocation of the function call operator. The following excerpt from the
ppf.core.controller module illustrates the essential details of the controller class.

class controller:
def init (self, trade, model, env, historic df):
self. trade = trade
self. model = model
self. env = env
self. historical df = historical df
self. symbol table = {}
self. event = None

def get trade(self):
return self. trade

def get model(self):
return self. model

def get environment(self):
return self. env

def get event(self):
return self. event

def set event(self, event):
self. event = event

def insert symbol(self, name, at):
self. symbol table[name] = \
(at, self. model.state().create variable())

def update symbol(self, name, symbol, at):
self. symbol table[name] = (at, symbol)

def retrieve symbol(self, name):
if not self. symbol table.has key(name):

raise RuntimeError, "name not found in symbol table"
return self. symbol table.get(name)[1]

def retrieve symbol update time(self, name):
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if not self. symbol table.has key(name):
raise RuntimeError, "name not found in symbol table"

return self. symbol table.get(name)[0]

In the body of the call method we retrieve the leg corresponding to the event from the
trade, the payoff from the leg and determine whether the leg is pay or receive. The payoff is
then evaluated by calling the function call operator on the payoff class, passing in the controller
as an argument.

class controller:
def call (self, t):

leg = self. trade.legs()[self. event.leg id()]
payoff = leg.payoff()
pay rcv = leg.pay receive()
return pay rcv*payoff(t, self)

In the following chapters we will provide concrete examples of payoff classes. For the time
being all we insist upon is that the payoff class provides an implementation of the function
call operator with the correct signature.

In later chapters, we will return to the controller to add more methods. In contrast to
strongly typed programming languages such as C++, the addition of more methods on the
controller doesn’t create an (compile/link dependency) implementation bottleneck. If a call
onto a controller method results in invoking a call on a method of a particular model that
hasn’t been implemented, all we get is a runtime error. To achieve this kind of fl xibility in
C++ requires more effort but can be reasonably dealt with by interface based programming
paradigms such as one find in COM.1

1 COM (Component Object Model) is explained in Chapter 12.
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8.1.1 Requestor

Every model is dependent on market information; for example, market rates or asset spot
prices. This primary information is normally fed into the calibration routine for the model. The
purpose of the calibration is to ensure that the model prices back the liquid market instruments
that the trader would buy or sell on a regular basis to mitigate the risks of being long or short
a more complex financia instrument. By saying pricing back, we simply mean that the model
price of a market instrument matches the market price within an acceptable tolerance, usually
a small fraction of the market bid–offer spread. The output of the calibration is a set of model
parameters or variables, termed secondary information, that normally completely specifie
the model. Furnished with these model parameters we can then go on to price the complex
financia instrument in question. As we have already mentioned in the introductory section,
there are typically a number of approaches to pricing; however they all have one thing in
common in that they will require certain transformations of the model parameters during the
process of pricing. The requestor component encapsulates the need for a model pricer to gain
access to both primary and secondary information: in essence a model pricer makes ‘requests’
of the model for this information.

In the case of the Hull–White model there are only a few pieces of information required:
a discount factor, a local volatility and a term volatility. In the language of Appendix C, the
term volatility is simply

√∫ t
0 C2(s)ds and the local volatility is φ(t) − φ(T ). Note that, taken

together with the relevant discount factors, any zero coupon bond can be written in terms of
the local volatility and the term volatility. What we actually store in the environment for the
term volatility is the following

√√√√
∫ t

0 C2(s)ds∫ t
0 exp(2λs)ds

. (8.1)

The reason for this is that the above variable is more natural to use when calibrating
the model to market prices. The requestor for the Hull–White model can be found in the
ppf.model.hull white.requestor module as detailed below:

class requestor:
def discount factor(self, t, ccy, env):

key = "zc.disc."+ccy
curve = env.retrieve curve(key)
return curve(t)

def term vol(self, t, ccy, env):
key = "ve.term."+ccy+".hw"
surf = env.retrieve surface(key)
term var = surf(t, 0)
key = "cv.mr."+ccy+".hw"
mr = env.retrieve constant(key)
if mr <> 0:
term var *= (math.exp(2.0*mr*t)-1.0)/(2.0*mr)

else:
term var *= t

return math.sqrt(term var)
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def local vol(self, t, T, ccy, env):
assert t <= T
key = "cv.mr."+ccy+".hw"
mr = env.retrieve constant(key)
return math.exp(-mr*t)-math.exp(-mr*T)

The requestor class uses the class environment implemented in the
ppf.market.environment module. The purpose of this class is to provide access to
market data objects such as yield curves, volatility surfaces, correlation surfaces, etc. Refer to
section 5.3 for the details. The following code snippets illustrate how to construct a requestor
and make a request for a discount factor and a term volatility:

>>> import math
>>> import ppf.market
>>> from ppf.math.interpolation import loglinear
>>> times = [0.0, 0.5, 1.0, 1.5, 2.0]
>>> factors = [math.exp(-0.05*t) for t in times]
>>> c = ppf.market.curve(times, factors, loglinear)
>>> env = ppf.market.environment()
>>> key = "zc.disc.eur"
>>> env.add curve(key, c)
>>> r = requestor()
>>> t = 1.5
>>> print r.discount factor(t, "eur", env)
0.927743486329

>>> import math
>>> import ppf.market
>>> from numpy import zeros
>>> expiries = [0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0]
>>> tenors = [0, 90]
>>> values = zeros((8, 2))
>>> values.fill(0.04)
>>> surf = ppf.market.surface(expiries, tenors, values)
>>> env = ppf.market.environment()
>>> key = "ve.term.eur.hw"
>>> env.add surface(key, surf)
>>> key = "cv.mr.eur.hw"
>>> env.add constant(key, 0.0)
>>> r = requestor()
>>> t = 0.25
>>> print r.term vol(t, "eur", env)
0.1

8.1.2 State

When pricing a financia instrument we frequently need to know about the state of the world –
the world being both define and modelled by the chosen model. For example, when pricing a
target redemption note in a Monte-Carlo framework under the Hull–White model in the spot
measure, we need to know at every simulation time t the current state of the short rate r (t).
A similar requirement arises when pricing a Bermudan on a lattice in the terminal measure:
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in this case we need to know at every exercise time the current state of the stochastic variable∫ t
0 C(s)dW (s). The state component encapsulates the need for both Monte-Carlo and lattice

pricers to have knowledge of the state of the world at various points in time. An implementation
of a state component suitable for lattice pricing in the Hull–White model can be found in the
ppf.model.hull white.lattice.state module and the details are shown below.

class state:
def init (self, ccy, n = 31, stddev = 5.5):

self. ccy = ccy
self. n = n
self. stddev = stddev

def fill(self, t, req, env):
term vol = req.term vol(t, self. ccy, env)
f = normal distribution(0, term vol)

return f.state(self. stddev, self. n)

def incremental vol(self, t, T, req, env):
term volt = req.term vol(t, self. ccy, env)
term volT = req.term vol(T, self. ccy, env)
term vartT = term volT*term volT-term volt*term volt
if term vartT < 0:
raise RuntimeError,\
"incremental variance is negative"+" t = "+str(t)+ \
" T = "+str(T)

term voltT = math.sqrt(term vartT)
return term voltT

def incremental fill(self, t, T, req, env):
term voltT = self. incremental vol(t, T, req, env)
f = normal distribution(0, term voltT)
return f.state(self. stddev, self. n)

def incremental distribution(self, t, T, req, env):
term voltT = self. incremental vol(t, T, req, env)
return normal distribution(0, term voltT)

def create variable(self):
var = numpy.zeros(self. n)
return var

Note that we also use the state component for both the creation of variables and the
construction of the underlying distribution of the current state of the world. An example
invocation of the state component is given below.

>>> import math
>>> import numpy
>>> import ppf.market
>>> from ppf.math.normal distribution import *
>>> expiries = [0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0]
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>>> tenors = [0, 90]
>>> from numpy import zeros
>>> values = zeros((8, 2))
>>> values.fill(0.04)
>>> surf = ppf.market.surface(expiries, tenors, values)
>>> env = ppf.market.environment()
>>> key = "ve.term.eur.hw"
>>> env.add surface(key, surf)
>>> key = "cv.mr.eur.hw"
>>> env.add constant(key, 0.01)
>>> r = ppf.model.hull white.requestor()
>>> s = state("eur", 11, 3.5)
>>> x = s.fill(1.25, r, env)
>>> for i in range(11): print x[i]
-0.787540762658
-0.630032610127
-0.472524457595
-0.315016305063
-0.157508152532
0.0
0.157508152532
0.315016305063
0.472524457595
0.630032610127
0.787540762658

Although it is common among practitioners to write the Monte-Carlo version of their Hull–
White model in the spot measure, for the sake of brevity our implementation is in the terminal
measure. The implementation of a state component suitable for Monte-Carlo pricing shown be-
low has been taken from the module ppf.model.hull white.monte carlo.state.

class state:
def init (self, num sims):

self. num sims = num sims
self. variates = numpy.zeros((num sims))

def num sims(self):
return self. num sims

def fill(self, t, req, env):
return self. variates

def set variates(self, variates):
if len(variates.shape) <> 1:
raise RuntimeError, ’expected a 1d array of variates’

if variates.shape[0] <> self. num sims:
raise RuntimeError, ’mismatched number of simulations’

self. variates = variates

def get variates(self):
return self. variates
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def create variable(self):
var = numpy.zeros(self. num sims)
return var

Note that both the lattice state class and the Monte-Carlo state class have an implementation
of the fill method as this enables us to use the same payoff classes in both the lattice pricers
and Monte-Carlo pricers.

8.1.3 Filler

Another important requirement of any model is to provide values for market indices such as
LIBOR rates, swap rates, equity forwards, inflatio rates, etc. In other words values for the
variables we usually choose to directly model. It is the job of the fille component to perform
this function. Obviously to be able to carry out this function the fille component needs to have
knowledge of both the market and the state of the world. Therefore, although it is our stated aim
to provide functionally orthogonal components, certain components have to depend on more
fundamental or core components. Both authors firml believe that this isn’t a limitation of the
design but a natural consequence of any attempt to break up what we mean by a model into
separate functional components. Indeed, both authors have extensive experience of applying
the design to a broad spectrum of pricing problems and have generally found the framework
to be extremely fl xible and conducive to fast model implementation. An implementation of
a fil component suitable for lattice pricing in the Hull–White model can be found in the
ppf.model.hull white.fill module and the details are shown below.

class fill:
def init (self, terminal T):

self. terminal T = terminal T

def numeraire rebased bond(self, t, T, ccy, env, requestor, state):
if t > T:
raise RuntimeError, ’time beyond maturity of bond’

if T > self. terminal T:
raise RuntimeError, \
’bond maturity after terminal measure bond
maturity’

if len(state.shape) <>1:
raise RuntimeError, ’expected one dimensional arrays’

dfTN = 1.0
dfT = requestor.discount factor(T, ccy, env)
gt = requestor.term vol(t, ccy, env)
phiTTN = requestor.local vol(T, self. terminal T, ccy, env)
scale = dfT/dfTN*math.exp(-0.5*gt*gt*phiTTN*phiTTN)
n = state.shape[0]
ret = numpy.zeros(n)
for i in range(n):

x = state[i]
ret[i] = scale*math.exp(phiTTN*x)

return ret

def numeraire(self, t, ccy, env, requestor, state):
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if t > self. terminal T:
raise RuntimeError, \
’time beyond terminal measure bond maturity’

ptt = self.numeraire rebased bond(t, t, ccy, env, requestor,
state)

n = state.shape[0]
ret = numpy.zeros(n)
ret.fill(1.0)
ret = ret/ptt
return ret

def libor(self, t, libor obs, env, requestor, state):
if len(state.shape) <>1:
raise RuntimeError, ’expected one dimensional array’

n = state.shape[0]
fix = libor obs.fix()
if fix.is fixed():
ret = numpy.zeros(n)
for i in range(n):

ret[i] = fix.value()
return ret

proj start date = libor obs.proj start date()
proj end date = libor obs.proj end date()
dcf = libor obs.year fraction()
dfs = self.numeraire rebased bond(t, \

env.relative date(proj start date)/365.0,\
libor obs.reset currency(),\

env, requestor, state)
dfe = self.numeraire rebased bond(t, \

env.relative date(proj end date)/365.0,\
libor obs.reset currency(),\
env, requestor, state)

ret = numpy.zeros(n)
for i in range(n):

ret[i] = (dfs[i]/dfe[i]-1.0)/dcf
return ret

def swap(self, t, swap obs, env, requestor, state):
if len(state.shape) <> 1:
raise RuntimeError, ’expected one dimensional array’

n = state.shape[0]
fix = swap obs.fix()
if fix.is fixed():
ret = numpy.zeros(n)
for i in range(n):

ret[i] = fix.value()
return ret

fixed flows = swap obs.fixed flows()
fixed pv = numpy.zeros(n)
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for f in fixed flows:
pay date, dcf = \

(f.pay date(), f.year fraction())
dfp = self.numeraire rebased bond(t, pay date,\

swap obs.reset currency(), env,\
requestor, state)

for i in range(n):
fixed pv[i] += dcf*dfp[i]

float flows = swap obs.float flows()
float pv = numpy.zeros(n)
for f in float flows:

obs = f.observables()[0]
proj start, proj end, reset dcf = \

(obs.proj start date(), obs.proj end date(), obs.
year fraction())

dfs = self.numeraire rebased bond(t, proj start,\
swap obs.reset currency(), env,\
requestor, state)

dfe = self.numeraire rebased bond(t, proj end,\
swap obs.reset currency(), env,\
requestor, state)

pay date, dcf = \
(f.pay date(), f.year fraction())

dfp = self.numeraire rebased bond(t, pay date,\
swap obs.reset currency(), env,\
requestor, state)

for i in range(n):
float pv[i] += (dfs[i]/dfe[i]-1.0)/reset dcf*dcf*dfp[i]

ret = numpy.zeros(n)
for i in range(n):

ret[i] = float pv[i]/fixed pv[i]
return ret

For completeness we also provide sample snippets for using the fille component to get a
numeraire-rebased bond (i.e. P(t, T )/P(t, TN )) and a LIBOR rate.

>>> from ppf.math.interpolation import loglinear
>>> times = [0.0, 0.5, 1.0, 1.5, 2.0]
>>> factors = [math.exp(-0.05*t) for t in times]
>>> c = ppf.market.curve(times, factors, loglinear)
>>> expiries = [0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0]
>>> tenors = [0, 90]
>>> values = numpy.zeros((8, 2))
>>> surf = ppf.market.surface(expiries, tenors, values)
>>> env = ppf.market.environment()
>>> key = "zc.disc.eur"
>>> env.add curve(key, c)
>>> key = "ve.term.eur.hw"
>>> env.add surface(key, surf)
>>> key = "cv.mr.eur.hw"
>>> env.add constant(key, 0.0)
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>>> r = ppf.model.hull white.requestor()
>>> s = ppf.model.hull white.state("eur", 11, 3.5)
>>> sx = s.fill(0.25, r, env)
>>> f = fill(2.0)
>>> PtT = f.numeraire rebased bond(0.25, 1.5, "eur", env, r, sx)
>>> for i in range(11): print PtT[i]
1.02531512052
1.02531512052
1.02531512052
1.02531512052
1.02531512052
1.02531512052
1.02531512052
1.02531512052
1.02531512052
1.02531512052
1.02531512052

>>> from ppf.math.interpolation import loglinear
>>> times = [0.0, 0.5, 1.0, 1.5, 2.0]
>>> factors = [math.exp(-0.05*t) for t in times]
>>> c = ppf.market.curve(times, factors, loglinear)
>>> expiries = [0.1, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0]
>>> tenors = [0, 90]
>>> values = numpy.zeros((8, 2))
>>> surf = ppf.market.surface(expiries, tenors, values)
>>> from ppf.date time import *
>>> pd = date(2008, 01, 01)
>>> env = ppf.market.environment(pd)
>>> key = "zc.disc.eur"
>>> env.add curve(key, c)
>>> key = "ve.term.eur.hw"
>>> env.add surface(key, surf)
>>> key = "cv.mr.eur.hw"
>>> env.add constant(key, 0.0)
>>> rd = date(2008, 07, 01)
>>> libor obs = ppf.core.libor rate(None, 0, 0, rd, "eur",\

rd, shift(rd+months(6), modified following),\
basis act 360, ppf.core.fixing(False))

>>> r = ppf.model.hull white.requestor()
>>> s = ppf.model.hull white.state("eur", 11, 3.5)
>>> sx = s.fill(0.25, r, env)
>>> f = fill(2.0)
>>> libortT = f.libor(0.25, libor obs, env, r, sx)
>>> for i in range(11): print libortT[i]
0.0499418283138
0.0499418283138
0.0499418283138
0.0499418283138
0.0499418283138
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0.0499418283138
0.0499418283138
0.0499418283138
0.0499418283138
0.0499418283138
0.0499418283138

8.1.4 Rollback

As discussed at the beginning of this section, there are two main numerical techniques com-
monly used in the pricing of financia instruments: namely lattice methods and Monte-Carlo
methods. In this section we concentrate on the component required for pricing financia instru-
ments using a lattice method. In any lattice method we constantly need to perform expectations
of the form E

P[N−1
t Vt |Fs] where Vt is the price of the financia instrument at t , Nt is the nu-

meraire in the measure P and Fs is the filtratio at s < t . In laymen’s terms the expectation is
just saying fin the expected value of the discounted value of the financia instrument at time t
given the information about the market at an earlier term s. It is common among practitioners
to call this operation either a ‘rollback’ or ‘drag’. We also need to calculate expectations of the
form E

P[max
(
N−1
t Vt , 0

) |Fs] and this type of operation is commonly called a ‘rollback max’
or ‘drag max’. So the purpose of the rollback component is to enscapsulate the calculation of
these expectations. The rollback component for the Hull–White model is implemented in the
ppf.model.hull white.lattice.rollback module as shown below.

class rollback:
def init (self, ccy):

self. ccy = ccy
self. integrator = semi analytic domain integrator()

def rollback(self, t, T, state, req, env, yT):
xt = state.fill(t, req, env)
xT = state.fill(T, req, env)
xtT = state.incremental fill(t, T, req, env)
ftT = state.incremental distribution(t, T, req, env)
return self. integrator.rollback(t, T, xt, xT, xtT, ftT, yT)

def rollback max(self, t, T, state, req, env, yT):
xt = state.fill(t, req, env)
xT = state.fill(T, req, env)
xtT = state.incremental fill(t, T, req, env)
ftT = state.incremental distribution(t, T, req, env)
return self. integrator.rollback max(t, T, xt, xT, xtT, ftT, yT)

To perform the actual expectation, the rollback component delegates to the semi-analytic
domain space integrator implemented in the ppf.math.semi analytic domain
integrator module. The following snippet illustrates a sample usage of the rollback
component.

>>> import math
>>> from ppf.math import semi analytic domain integrator
>>> from ppf.math.interpolation import loglinear
>>> times = [0.0, 0.5, 1.0, 1.5, 2.0]
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>>> factors = [math.exp(-0.05*t) for t in times]
>>> import ppf.market
>>> c = ppf.market.curve(times, factors, loglinear)
>>> from numpy import zeros
>>> expiries = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0]
>>> tenors = [0, 90]
>>> values = zeros((8, 2))
>>> values.fill(0.04)
>>> surf = ppf.market.surface(expiries, tenors, values)
>>> env = ppf.market.environment()
>>> key = "zc.disc.eur"
>>> env.add curve(key, c)
>>> key = "ve.term.eur.hw"
>>> env.add surface(key, surf)
>>> key = "cv.mr.eur.hw"
>>> env.add constant(key, 0.01)
>>> r = ppf.model.hull white.requestor()
>>> s = ppf.model.hull white.lattice.state(21, 3.5)
>>> sx = s.fill("eur", 1.0, r, env)
>>> f = ppf.model.hull white.fill(2.0)
>>> PtT = f.numeraire rebased bond(1.0, 1.5, "eur", env, r, sx)
>>> roll = rollback("eur")
>>> yt = roll.rollback(0.5, 1.0, s, r, env, PtT)
>>> y0 = roll.rollback(0.0, 0.5, s, r, env, yt)
>>> for i in range(21): print y0[i]
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448
0.922022844448

Further unit tests are provided in the moduleppf.test.test hull white. Each separate
test is represented by a method on the class rollback tests. For example the firs method
on the class istest discounted libor rollback and checks that the discounted value
of the LIBOR at some future date is equal to the forward value today as calculated off the
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discount curve. Note that the LIBOR rates in the Hull–White model are only martingales if
the pay date for the LIBOR rate matches the projection end date.

def test discounted libor rollback(self):
from ppf.date time \

import date, shift, modified following, basis act 360, months
pd = date(2008, 01, 01)
env = ppf.market.environment(pd)
times = numpy.linspace(0, 6, 10)
factors = numpy.array([math.exp(-0.05*t) for t in times])
env.add curve("zc.disc.eur"

, ppf.market.curve(times, factors, ppf.math.interpolation.
loglinear))

expiries, tenors = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0], \
[0, 90]

values = numpy.zeros((9, 2))
values.fill(0.001)
env.add surface("ve.term.eur.hw"

, ppf.market.surface(expiries, tenors, values))
env.add constant("cv.mr.eur.hw", 0.01)
r = ppf.model.hull white.requestor()
s = ppf.model.hull white.lattice.state("eur", 41, 4.5)
f = ppf.model.hull white.fill(5.0)
rd = date(2011, 01, 01)
libor obs = \
ppf.core.libor rate( \

None #attributes
, 0 #flow-id
, 0 #reset-id
, rd #reset-date
, "eur"#reset-currency
, rd #proj-start-date
, shift(rd + months(6), modified following)#proj-end-date
, basis act 360#proj-basis
, ppf.core.fixing(False))# fixing (and no spread)

t = env.relative date(libor obs.proj start date())/365.0
T = env.relative date(libor obs.proj end date())/365.0
sx = s.fill(t, r, env)
libort = f.libor(t, libor obs, env, r, sx)
ptT = f.numeraire rebased bond(t, T, "eur", env, r, sx)
pv = libort*ptT*libor obs.year fraction()
roll = ppf.model.hull white.lattice.rollback("eur")
intermediate pv = roll.rollback(0.5*t, t, s, r, env, pv)
actual = \

roll.rollback(0.0, 0.5*t, s, r, env, intermediate pv).mean()
expected = \

r.discount factor(t, "eur", env)-r.discount factor (T, "eur", env)
assert seq close([expected],[actual],1.0e-6)

The next method on the class test bond option verifie that the price for a bond option
computed numerically matches the analytic price. Note that because the numeraire-rebased
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zero coupon bond is a lognormal martingale, the price of a bond option is simply given by the
famous Black–Scholes option pricing formula.

def test bond option(self):
from ppf.date time \

import date, shift, modified following, basis act 360, months
pd = date(2008, 01, 01)
env = ppf.market.environment(pd)
times = numpy.linspace(0, 6, 10)
factors = numpy.array([math.exp(-0.05*t) for t in times])
env.add curve("zc.disc.eur"

, ppf.market.curve(times, factors, ppf.math.interpolation.
loglinear))

expiries, tenors = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 6.0], \
[0, 90]

values = numpy.zeros((9, 2))
values.fill(0.001)
env.add surface("ve.term.eur.hw"

, ppf.market.surface(expiries, tenors, values))
env.add constant("cv.mr.eur.hw", 0.01)
r = ppf.model.hull white.requestor()
s = ppf.model.hull white.lattice.state("eur", 41, 4.5)
f = ppf.model.hull white.fill(5.0)
t = 3.0
T = 4.0
terminal T = 5.0
sx = s.fill(t, r, env)
ptT = f.numeraire rebased bond(t, T, "eur", env, r, sx)
k = 0.9
pv = ptT-k
roll = ppf.model.hull white.lattice.rollback("eur")
actual = roll.rollback max(0.0, t, s, r, env, pv).mean()
volt = r.term vol(t, "eur", env)* \

r.local vol(T, terminal T, "eur", env)
F = r.discount factor(T, "eur", env)
d1 = math.log(F/k)/volt+0.5*volt
d2 = d1-volt
expected = F*ppf.math.N(d1)-k*ppf.math.N(d2)
assert seq close([expected],[actual],1.0e-5)

The last method test constant checks that the conditional expectation of a constant is
equal to the constant.

def test constant(self):
from ppf.date time \

import date, shift, modified following, basis act 360, months
pd = date(2008, 01, 01)
env = ppf.market.environment(pd)
times = numpy.linspace(0, 6, 10)
factors = numpy.array([math.exp(-0.05*t) for t in times])
env.add curve("zc.disc.eur"

, ppf.market.curve( \
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times, factors, ppf.math.interpolation.loglinear))
expiries, tenors = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, \

6.0], [0, 90]
values = numpy.zeros((9, 2))
values.fill(0.001)
env.add surface("ve.term.eur.hw"

, ppf.market.surface(expiries, tenors, values))
env.add constant("cv.mr.eur.hw", 0.01)
r = ppf.model.hull white.requestor()
s = ppf.model.hull white.lattice.state("eur", 41, 5.5)
f = ppf.model.hull white.fill(5.0)
t = 3.0
T = 4.0
terminal T = 5.0
sx = s.fill(t, r, env)
yT = numpy.zeros(41)
yT.fill(1)
roll = ppf.model.hull white.lattice.rollback("eur")
yt = roll.rollback(t, T, s, r, env, yT)
assert seq close(yt, yT, 1.0e-5)

8.1.5 Evolve

In this subsection we discuss the component required for pricing financia instruments using
Monte-Carlo methods. We call this component the evolve. Essentially the evolve component
has the responsibility of evolving forwards in time any stochastic variables needed by the
model to carry out the functionality provided by the fil component. As already mentioned, in
the interest of brevity we stay in the terminal measure. In particular this means that we can
re-use the fil component already discussed for the Monte-Carlo model.

In the terminal measure there is only one state variable that needs to be evolved: namely,∫ t
0 C(s)dW (s). In a typical application, the evolve step will be peformed on a discrete set of

contiguous times. In other words, suppose we have the discrete times {T1, T2, . . . , Ti } with the
time today denoted by T0, then the simulation of

∫ Ti
0 C(s)dW (s) is carried out as the discrete

sum shown below
∫ Ti

0
C(s)dW (s) =

i∑
k=0

√∫ Tk+1

Tk
C2(s)dsZK (8.2)

with Z1, Z2, . . . independent, identical distributed normal variates with distribution N (0, 1).
The evolve component of the Hull–White model is implemented in the ppf.model.

hull white.monte carlo.evolve module as shown below.

class evolve:
def init (self, ccy, seed = 1234, antithetic = True):

self. ccy = ccy
self. seed = seed
self. antithetic = antithetic

def evolve(self, t, T, state, req, env):
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if t > T:
raise RuntimeError, ’attempting to evolve backwards’

if t == T:
return

variates = state.get variates()
num sims = variates.shape[0]
if self. antithetic:

raise RuntimeError, \
’expected number of simulations to be even with’ \
’antithetic’

num sims /= 2
volt = req.term vol(t, self. ccy, env)
volT = req.term vol(T, self. ccy, env)
vartT = volT*volT-volt*volt
if vartT < 0:
raise RuntimeError, ’negative incremental variance’

voltT = math.sqrt(vartT)
generator = random.Random(self. seed)
for i in range(num sims):
z = generator.gauss(0, 1.0)
variates[i] = variates[i]+voltT*z
if self. antithetic:

variates[num sims+i] = variates[num sims+i]-voltT*z
state.set variates(variates)
self. seed = self. seed+1

The evolve component is constructed by passing in the currency, the start seed for the random
generator and a boolean to control whether we wish to have antithetic variates. We delegate to a
random number generator in the Python random module to generate the normal variates. The
generated variates are then pushed into the state component. The evolve method provides
the functionality necessary to carry out the evolve step. Provided t is not equal to T, then
every time the evolve method is called, the underlying seed for the random generator is
incremented by 1. This ensures that the variates for each evolve step are as independent as
possible.

In more complicated models it is normal to fi the discretisation of the time axis over which
the model is evolved and then use a combination of interpolation and/or a Brownian bridge
to fil in the gaps when we come to request the state of the world at times other than the
discretisation times. There are many reasons for wanting to fi the discretisation of the time
axis but the main reason is that many stochastic differential equations do not have analytic
solutions, which means that the equations have to be discretised (e.g. using the Euler’s scheme)
in order to solve them. Naturally any discretisation scheme is approximate and the writer of
the model will want to control the discretisation error by fixin the size of the evolution
step. The authors have found that the aforementioned abstractions of the model into core
components works extremely well, even for sophisticated models like the Libor Market Model
with stochastic volatility, which requires a non-trivial discretisation scheme in order to evolve
the state variables of the model forwards in time. The following snippet illustrates a typical
application of the evolve component.

>>> import ppf.market
>>> from numpy import zeros
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>>> expiries = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0]
>>> tenors = [0, 90]
>>> values = zeros((8, 2))
>>> values.fill(0.001)
>>> surf = ppf.market.surface(expiries, tenors, values)
>>> env = ppf.market.environment()
>>> key = "ve.term.eur.hw"
>>> env.add surface(key, surf)
>>> key = "cv.mr.eur.hw"
>>> env.add constant(key, 0.01)
>>> r = ppf.model.hull white.requestor()
>>> s = ppf.model.hull white.monte carlo.state(10000)
>>> e = evolve("eur")
>>> e.evolve(0.0,0.5,s,r,env)

Once again unit tests are provided in the module ppf.test.test hull white. The
firs method test mean and variance on the class evolve tests verifie that the
state of the world after two evolve steps, each of half a year, has the expected distribution.

def test mean and variance(self):
from ppf.date time \

import date, shift, modified following, basis act 360, months
pd = date(2008, 01, 01)
env = ppf.market.environment(pd)
times = numpy.linspace(0, 6, 10)
factors = numpy.array([math.exp(-0.05*t) for t in times])
env.add curve("zc.disc.eur"

, ppf.market.curve(times, factors, ppf.math.interpolation.
loglinear))

expiries, tenors = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, \
6.0], [0, 90]

values = numpy.zeros((9, 2))
values.fill(0.01)
env.add surface("ve.term.eur.hw"

, ppf.market.surface(expiries, tenors, values))
env.add constant("cv.mr.eur.hw", 0.01)
r = ppf.model.hull white.requestor()
s = ppf.model.hull white.monte carlo.state(10000)
e = ppf.model.hull white.monte carlo.evolve("eur")
e.evolve(0.0,0.5,s,r,env)
e.evolve(0.5,1.0,s,r,env)
variates = s.get variates()
mean = variates.sum()/10000
assert(math.fabs(mean) < 1.0e-4)
tmp = variates*variates
variance = tmp.sum()/10000
vol = r.term vol(1.0,"eur",env)
assert(math.fabs(variance-vol*vol) < 1.0e-4)

The second method test bond confirm that the expected value of a numeraire-rebased zero
coupon bond after a single evolve step matches the value today.
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def test bond(self):
from ppf.date time \

import date, shift, modified following, basis act 360, months
pd = date(2008, 01, 01)
env = ppf.market.environment(pd)
times = numpy.linspace(0, 6, 10)
factors = numpy.array([math.exp(-0.05*t) for t in times])
env.add curve("zc.disc.eur"

, ppf.market.curve(times, factors, ppf.math.interpolation.
loglinear))

expiries, tenors = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, \
6.0], [0, 90]

values = numpy.zeros((9, 2))
values.fill(0.001)
env.add surface("ve.term.eur.hw"

, ppf.market.surface(expiries, tenors, values))
env.add constant("cv.mr.eur.hw", 0.01)
r = ppf.model.hull white.requestor()
s = ppf.model.hull white.monte carlo.state(10000)
e = ppf.model.hull white.monte carlo.evolve("eur")
e.evolve(0.0,3.0,s,r,env)
f = ppf.model.hull white.fill(5.0)
t = 3.0
T = 4.0
sx = s.fill(t, r, env)
ptT = f.numeraire rebased bond(t, T, "eur", env, r, sx)
actual = ptT.mean()
expected = r.discount factor(T, "eur", env)
assert(math.fabs(actual-expected) < 1.0e-3)

8.1.6 Exercise

To price callable structures using Monte-Carlo methods we need to be able to estimate the
exercise boundary, or equivalently, the probability of exercise. The exercise boundary is
expressed as a function (to be estimated) of variables, such as a LIBOR rate or a swap
rate; the variables are usually referred to as explanatory variables. The exercise compo-
nent encapsulates the need to be able to calculate explanatory variables as part of any al-
gorithm for estimating the exercise boundary. We have implemented an exercise component
suitable for single currency callable LIBOR exotics such as Bermudans, inverse floater
and cap floaters The exercise component of the Hull–White model can be found in the
ppf.model.hull white.monte carlo.cle exercise module and is illustrated
below. The constructor of the exercise component takes in a leg and the component supplies
two methods: the num explanatory variables method for determining the number of
explanatory variables; and the function call operator whose job it is to calculate the explanatory
variables at a particular point in time. In the body of the function call operator we firs harvest
the remaining active fl ws and subsequently use them to build both the LIBOR rate and the
swap rate. The explanatory variables are then returned to the client.
class cle exercise:

def init (self, l):
self. leg = l
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def num explanatory variables(self):
return 2

def call (self, t, fill, state, requestor, env):
# harvest active flows
all flows = self. leg.flows()
flows = []
for flow in all flows:

accrual start days = env.relative date(
flow.accrual start date())

if accrual start days >= t*365.0:
flows.append(flow)

if len(flows) < 1:
raise RuntimeError, "no active flows remaining"

# explanatory variables
num sims = state.shape[0]
evs = numpy.zeros((num sims, self.num explanatory variables()))
pv01 = numpy.zeros(num sims)
notl exchange = numpy.zeros(num sims)
cnt = 0
for flow in flows:
Ts = env.relative date(flow.accrual start date())/365.0
Te = env.relative date(flow.accrual end date())/365.0
Tp = env.relative date(flow.pay date())/365.0
dfp = fill.numeraire rebased bond(t, Tp, flow.pay currency()\

, env, requestor, state)
pv01 += flow.year fraction()*dfp
if cnt == 0:
dfs = fill.numeraire rebased bond(t, Ts, flow.pay currency()\

, env, requestor, state)
notl exchange = dfs
dfe = fill.numeraire rebased bond(t, Te, flow.pay currency()\

, env, requestor, state)
evs[:, 0] = (dfs/dfe-1.0)/flow.year fraction()

elif cnt == len(flows)-1:
notl exchange -= fill.numeraire rebased bond(t, Te,

flow.pay currency(), env,
requestor, state)

cnt = cnt+1

evs[:, 1] = notl exchange/pv01

return evs

Note that the above component is model independent and therefore could be re-used for other
models.

Unit tests for the exercise component are provided in the module ppf.test.test
hull white. The method test explanatory variables on the class exer-
cise tests checks that the computed explanatory variables, the LIBOR and swap rates,
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match the corresponding rates taken from the yield curve for the case when the Hull–White
volatilities are all zero.

def test explanatory variables(self):
from ppf.math.interpolation import loglinear
times = [0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0]
factors = [math.exp(-0.05*t) for t in times]
c = ppf.market.curve(times, factors, loglinear)
expiries = [0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0]
tenors = [0, 90]
values = numpy.zeros((8, 2))
surf = ppf.market.surface(expiries, tenors, values)
from ppf.date time \

import date, shift convention, modified following,
basis act 360, months

pd = date(2008, 01, 01)
env = ppf.market.environment(pd)
key = "zc.disc.eur"
env.add curve(key, c)
key = "ve.term.eur.hw"
env.add surface(key, surf)
key = "cv.mr.eur.hw"
env.add constant(key, 0.0)
r = ppf.model.hull white.requestor()
s = ppf.model.hull white.monte carlo.state(10)
sx = s.fill(0.25, r, env)
f = ppf.model.hull white.fill(3.0)
flows = ppf.core.generate flows(

start = date(2008, 01, 01)
, end = date(2010, 01, 01)
, duration = months
, period = 6
, shift method = shift convention.modified following
, basis = "ACT/360"
, pay currency = "EUR")

lg = ppf.core.leg(flows, ppf.core.PAY)
ex = ppf.model.hull white.monte carlo.cle exercise(lg)
t = env.relative date(flows[1].accrual start date())/365.0
T = env.relative date(flows[1].accrual end date())/365.0
ret = ex(t, f, sx, r, env)
dft = c(t)
dfT = c(T)
expected libor = (dft/dfT-1.0)/flows[1].year fraction()
pv01 = 0.0
for fl in flows[1:]:
T = env.relative date(fl.pay date())/365.0
dfT = c(T)
pv01 += fl.year fraction()*dfT

T = env.relative date(flows[-1].accrual end date())/365.0
dfT = c(T)
expected swap = (dft-dfT)/pv01
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expected libors = numpy.zeros(10)
expected libors.fill(expected libor)
expected swaps = numpy.zeros(10)
expected swaps.fill(expected swap)
actual libors = ret[:, 0]
actual swaps = ret[:, 1]

assert seq close(actual libors, expected libors)
assert seq close(actual swaps, expected swaps)

8.2 THE MODEL AND MODEL FACTORIES
The model class brings all the components from the preceding sections together into one place.
The module ppf.model.model is illustrated below. A model is constructed by passing the
components into the constructor. An exception is thrown if both the evolve component and
the rollback component are null or both the evolve and rollback components are non-null.
Accessor methods to the contained components are also provided.
class model:
def init (self, requestor, state, fill, rollback = None,

evolve = None\ , exercise = None):
self. requestor = requestor
self. state = state
self. fill = fill
self. rollback = rollback
self. evolve = evolve
self. exercise = exercise
# check that either the evolve or rollback policy isn’t None
if self. rollback == None and self. evolve == None:
raise RuntimeError, \
"either the ’rollback’ or ’evolve’ must be defined"

if self. rollback <> None and self. evolve <> None:
raise RuntimeError, \
"either the ’rollback’ or ’evolve’ must be defined"

# check that the exercise policy can only be bound with the
evolve

if self. exercise <> None and self. rollback <> None:
raise RuntimeError, \
"the ’exercise’ cannot be bound to the ’rollback’"

def requestor(self):
return self. requestor

def state(self):
return self. state

def fill(self):
return self. fill

def rollback(self):
if self. rollback == None:
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raise RuntimeError, "’rollback’ component is undefined"
return self. rollback

def evolve(self):
if self. evolve == None:

raise RuntimeError, "’evolve’ component is undefined"
return self. evolve

def exercise(self):
if self. exercise == None:

raise RuntimeError, "’exercise’ component is undefined"
return self. exercise

The fina missing components in the model framework are classes for managing the con-
struction of all the model components. Such classes are commonly referred to as factory
classes. An example of a factory class for the Hull–White lattice model can be found in the
module ppf.model.model factories as shown below. The factory supports the func-
tion call operator with a signature consisting of the trade, the environment and optional model
arguments. The model arguments is simply a Python dictionary. Stepping through the imple-
mentation we see that we firs of all ensure that the financia instrument is single currency.
The next step is to determine the last important date of the trade: this will typically be either
the fina payment date or the fina important date of the last observable. This date will be in-
terpreted as the terminal measure bond maturity in the constructor of the fil component. If the
model arguments are non-null, then the num states and the num std dev are retrieved
from the dictionary, otherwise default values are provided. Finally all the components for a
Hull–White lattice model are constructed and passed into the constructor of the model, which
is then returned to the client.

class hull white lattice model factory:
def call (self, trd, env, model args = None):
ccy = ppf.core.enforce single currency(trd)
terminal T = env.relative date(ppf.core.final important date(trd))/

365.0
n = 31
if model args <> None and model args.has key("num states"):

n = model args["num states"]
std dev = 4.5
if model args <> None and model args.has key("num std dev"):

std dev = model args["num std dev"]
s = lattice.state(ccy, n, std dev)
rb = lattice.rollback(ccy)
f = fill(terminal T)
r = requestor()
return model(r, s, f, rb)

From the Python command line, a Hull–White model can be created using the above factory
as follows:

>>> pd = date(2008, 05, 01)
>>> from ppf.market import environment
>>> env = environment(pd)
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>>> from ppf.date time import *
>>> from pay receive import *
>>> from generate flows import *
>>> from generate observables import *
>>> from generate exercise table import *
>>> from exercise type import *
>>> from leg import *
>>> from trade import *
>>> libor observables = generate libor observables(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , roll period = 6
... , roll duration = ppf.date time.months
... , reset period = 3
... , reset duration = ppf.date time.months
... , reset currency = "JPY"
... , reset basis = basis act 360
... , reset shift method = shift convention.modified following)
>>> coupon observables = generate fixed coupon observables(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , roll period = 6
... , reset currency = "JPY"
... , coupon shift method = shift convention.modified following
... , coupon rate = 0.045)
>>> #semi-annual flows
>>> pay flows = generate flows(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , duration = ppf.date time.months
... , period = 6
... , shift method = shift convention.modified following
... , basis = "30/360"
... , pay currency = "JPY"
... , observables = coupon observables)
>>> rcv flows = generate flows(
... start = date(2007, Jun, 29)
... , end = date(2009, Jun, 29)
... , duration = ppf.date time.months
... , period = 6
... , shift method = shift convention.modified following
... , basis = "A/360"
... , pay currency = "JPY"
... , observables = libor observables)
>>> pay leg = leg(pay flows, PAY)
>>> receive leg = leg(rcv flows, RECEIVE)
>>> #1y nc
>>> ex sched = generate exercise table(
... start = date(2008, Jun, 29)
... , end = date(2009, Jun, 29)
... , period = 1
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... , duration = ppf.date time.years

... , shift method = shift convention.modified following)
>>> structure = trade((pay leg, receive leg), (ex sched,

exercise type.callable))
>>> factory = hull white lattice model factory()
>>> hwmodel = factory(structure, env)

The corresponding factory for the Hull–White Monte-Carlo model is shown below. The
details are almost identical to the factory for the Hull–White lattice model. The main differences
are that the model argument dictionary is used to control the values of the number of simulations
and start seed, and instead of a rollback component being constructed we construct an evolve
component. We finis off by constructing an exercise component for the case when the trade
is callable.

class hull white monte carlo model factory:
def call (self, trd, env, model args = None):
ccy = ppf.core.enforce single currency(trd)
terminal T = env.relative date(ppf.core.final important date(trd))/

365.0
num sims = 1000
if model args <> None and model args.has key("num sims"):

num sims = model args["num sims"]
seed = 1234
if model args <> None and model args.has key("seed"):

seed = model args["seed"]
s = monte carlo.state(num sims)
ev = monte carlo.evolve(ccy, seed)
f = fill(terminal T)
r = requestor()
ex = None
id = 0
if model args <> None and \
model args.has key("explanatory variables leg id"):
id = model args["explanatory variables leg id"]

if trd.has exercise schedule():
ex = monte carlo.cle exercise(trd.legs()[id])

return model(r, s, f, None, ev, ex)

8.3 CONCLUDING REMARKS
By splitting the concept of a model into functionally orthogonal pieces we have been able
to design an extremely fl xible framework within which it is easy to develop new models.
In particular, the design promotes code re-use. The idea of breaking complex concepts into
simpler more fundamental orthogonal pieces is not new in programming. What we have done
is nothing more than composition in the language of C++. More recently a number of authors
have developed the idea further. One example, from [1], is the concept of policies. A policy
define a class interface or class template interface with the emphasis firml on behaviour or
functionality. The core theme of [1] is the idea of bringing together many different policies
to produce a functionally richer interface. The inspiration for the design developed in this
chapter has come from the idea of policy-based programming.



122 Financial Modelling in Python

The design pattern for the model can be transferred over to C++ and indeed in any business
application the bulk of the core code would be in C++ for reasons of efficien y. At this point, the
developer has two choices: either to use a mix of composition and class inheritance hierarchies
or a policy-based design. Both authors have found the latter to be a better choice because
the advantage of compile-time checking easily outweighs the marginal increase in compile-
time overhead. As this book is about the application of Python to financia programming, the
emphasis has been on Python rather than C++. However the techniques required to carry out
the migration are discussed in Chapter 11.
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of exercise decision dates, evaluating equation (9.1) on each exercise decision date until we
reach T0, the pricing date. Next we denote the union of the cash-fl w payment dates by t1 <

t2 < . . . < tN and the value of the cash fl w payments at ti by V cf
ti . Then the price of the

underlying swap at Ti is given by the summation

V swap
Ti = NTi

N∑
k=n(Ti )

E[N−1
tk V

cf
tk |FTi ] (9.3)

with Ti ≤ tk∀k ≥ n(Ti ). The conditional expectations, in the equations above, are calculated
on the lattice of the pricing model. Note that the price of the cancellable trade is simply the
price of the underlying swap plus the price of the callable on the reverse of the underlying
swap (i.e. with the pay and receive legs swapped around).

Now that we understand how to price the trades we need to set about writing a pricer to price
them. Fortunately we already have all the fundamental building blocks to hand. Before we
discuss the implementation of the pricer in detail, we must firs return to the controller and add
a few more methods. The following code excerpt from ppf.core.controller contains
the new methods. When pricing we need to maintain the state of various symbols required in
the calculation, for example a symbol for the value of the underlying. We also need to know
when the symbol was last updated – this is necessary during arithmetic operations on the values
of two symbols, such as addition. Before carrying out the arithmetic operation we must firs
ensure that the two symbols are synchronised, that is they were last updated at the same time. If
one of the symbols was last updated at a later time (recall we iterate backwards in time), then we
need to rollback, or equivalently perform a conditional expectation on, the value of the symbol
to the time of the other symbol. The method retrieve symbols to rollback() on
the controller queries the symbol table for all symbols with a last update time later than
the specifie time at. The remaining two methods, rollback() and rollback max(),
rollback a symbol or the maximum of two symbols from timeT to timet. The actual calculation
of the conditional expecations is carried out by the rollback component of the model stored in
the controller.

class controller:
def retrieve symbols to rollback(self, at):

symbols = []
for symbol in self. symbol table:
pair = self. symbol table.get(symbol)
if pair[0] > at:
symbols.append(symbol)

return symbols

def rollback(self, T, t, symbol):
requestor = self. model.requestor()
state = self. model.state()
return self. model.rollback().rollback(t, T, state

, requestor, self. env, symbol)

def rollback max(self, T, t, symbol one, symbol two):
requestor = self. model.requestor()
state = self. model.state()
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res1 = self. model.rollback().rollback(t, T, state
, requestor, self. env, symbol one)

res2 = self. model.rollback().rollback max(t, T, state
, requestor, self. env, symbol two-symbol one)

return res1+res2

The following excerpt from ppf.pricer.lattice pricer illustrates the details of
the lattice pricer. The pricer is constructed by passing in the trade, the model, the market
environment and an optional object called a symbol table listener. In the body of the constructor
itself we check that the trade contains no stubs and then construct the timeline from the trade
and the pricing date.

class lattice pricer:
def init (self, trade, model, env, symbol table listener = None):
self. trade = trade
self. model = model
self. env = env
self. symbol table listener = symbol table listener
# check no stubs
trade utils.enforce no exercise stubs(trade)
# create timeline
self. timeline = timeline(trade, env.pricing date())

def symbol listener (self, t, symbol, value):
if self. symbol table listener:

self. symbol table listener(t, symbol, value, self. model,
self. env)

The main method of the pricing framework is the function call operator: it is this method that
performs the actual pricing. We will step through this method line by line highlighting the
main features. The firs thing we do is construct a controller – recall that this is the class that
provides the conduit between the pricing framework and the pricing model. We then retrieve
the dates on which conditional expectations need to be calculated. We do this by calling the
times method on the timeline: on each of these times a collection of events will have been
registered during the construction of the timeline. We conclude the set up, phase of the pricing
by injecting the symbols ‘underlying’, ‘berm’, ‘leg0’, ‘leg1’, . . . into the symbol table of the
controller. Each of these symbols has an initial value of zero.

class lattice pricer:
def call (self):
# create controller
ctr = controller(self. trade, self. model, self. env)
times = self. timeline.times()
from = self. env.relative date(times[-1])/365.0
# initialise symbols
ctr.insert symbol("underlying", from )
ctr.insert symbol("berm", from )
cnt = 0
for l in self. trade.legs():

symbol = "leg"+str(cnt)
ctr.insert symbol(symbol, from )
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cnt += 1
.
.
.

We now come to the main loop. Here we iterate backwards through the list of times from
the timeline, maintaining two time variables from and to . The variable from denotes the
current time, as a year fraction, at which the events are to be evaluated, and to denotes either
the next time (in the timeline) or the pricing date, again as a year fraction. At each time we
again query the timeline for the collection of events registered at the current time. Once we
have the list of events we iterate through them in the order they were registered. The event to
be evaluated is passed into the controller via the set event method. If the event is a pay
event, i.e. a cash fl w, we delegate to the function call operator of the controller to perform
the actual evaluation. After evaluating the pay event, the corresponding symbol for the present
value of the leg is retrieved from the symbol table and its value is incremented by the current
value of the event. On completion of the evaluation, the value of the corresponding leg symbol
is updated in the symbol table. If the event represents an exercise decision, then we compute
the underlying by retrieving the values of the leg symbols and adding them together. The value
of the callable, denoted by berm, is then computed via an invocation of the rollback max
method on the controller. Finally the underlying is also rolled back using the rollback
method on the controller and both the value of the underlying and that of the callable are
updated in the symbol table. Note that the underlying is multiplied by the exercise type of
the trade prior to performing the calculation of the Bermudan. This way we can evaluate both
callable and cancellable instruments within a uniform framework.

class lattice pricer:
def call (self):

.

.

.
# reverse iterate through the timeline
for i in range(len(times)-1,-1,-1):

time = times[i]
to = 0
if i <> 0:
to = self. env.relative date(times[i-1])/365.0

events = self. timeline.events(time)
for event in events:
# set event on controller
ctr.set event(event)
# evaluate
if is pay event(event):
# evaluate payoff
cpn = ctr(from )
# rollback symbol
symbol = "leg"+str(event.leg id())
leg pv = ctr.retrieve symbol(symbol)
leg pv += cpn
self. symbol listener (from , symbol, leg pv)
ctr.update symbol(symbol, leg pv, to )
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else:
# evaluate underlying
underlying = ctr.retrieve symbol("underlying")
underlying *= 0 # not pretty
cnt = 0
for l in self. trade.legs():

underlying += ctr.retrieve symbol("leg"+str(cnt))
cnt += 1

self. symbol listener (from , "underlying"\
, self. trade.exercise type()*underlying)

# rollback berm
berm = ctr.retrieve symbol("berm")
self. symbol listener (from , "berm", berm)
berm = ctr.rollback max(from , to , berm\
, self. trade.exercise type()*underlying)

# rollback underlying
underlying = ctr.rollback(from , to , underlying)
# update symbols
ctr.update symbol("underlying", underlying, to )
ctr.update symbol("berm", berm, to )

.

.

.

After all the events at a particular time have been evaluated we have to retrieve all the
symbols in the symbol table that haven’t yet been rolled back to to and roll them back.
The computation of the symbols requiring a roll back operation is carried out by the re-
trieve symbols to rollback method of the controller. The fina phase of the pricer
is the calculation of the present value of the trade. The only complication here is to decide
whether the trade has an exercise schedule and, if so, whether the exercise type is callable or
cancellable. In the case of the exercise type being cancellable, the present value is the sum
of the mean of the callable value and the mean of the underlying value, otherwise the present
value is simply the mean of the callable value. If the trade has no exercise schedule, then the
present value is just the mean of the underlying value. Note that the mean is calculated using
the mean method on the NumPy array.

class lattice pricer:
def call (self):
.
.
.

# rollback any symbols in symbol table not already
# rolled back
symbols = ctr.retrieve symbols to rollback(to )
for symbol in symbols:
from = ctr.retrieve symbol update time(symbol)
value = ctr.retrieve symbol(symbol)
value = ctr.rollback(from , to , value)
ctr.update symbol(symbol, value, to )

from = to
# calculate pv
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underlying = ctr.retrieve symbol("underlying")
underlying *= 0
cnt = 0
for l in self. trade.legs():
underlying += ctr.retrieve symbol("leg"+str(cnt))
cnt += 1

ctr.update symbol("underlying", underlying, to )
pv = 0
if self. trade.has exercise schedule():
if self. trade.exercise type() == exercise type.callable:

pv = ctr.retrieve symbol("berm").mean()
else:
pv = ctr.retrieve symbol("underlying").mean() \

+ ctr.retrieve symbol("berm").mean()
else:
pv = ctr.retrieve symbol("underlying").mean()

return pv

It needs to be emphasised that in the above pricing framework there is theoretically no
restriction on the dimensionality of the model. Everything will fl w through just as well for a
multidimensional model, albeit more slowly, as it would do for a one-dimensional model. The
only assumption being made on the underlying numerical container is that it has the arithmetic
operators overloaded and a mean operator.

To conclude this section, we note that sometimes it is useful for diagnostics purposes
to be able to listen to the symbols at various stages of the calculation. The optional
symbol table listener argument in the constructor provides this functionality. A con-
crete example, provided in the test module ppf.test.test lattice pricer, is given
below:

class european symbol table listener:
def init (self):
self. symbols = []

def call (self, t, symbol, value, model, env):
if symbol == "underlying":
requestor = model.requestor()
state = model.state()
self. symbols.append(
model.rollback().rollback max(
0.0, t, state, requestor, env, value).mean())

def retrieve symbols(self):
return self. symbols

The purpose of the above listener is to store the European option prices at various
stages of the pricing. The listened symbols can then be retrieved via an invocation of the
retrieve symbols method on the listener.

9.2 A MONTE-CARLO PRICING FRAMEWORK
Our aim in this section is to develop a Monte-Carlo pricing framework similar in spirit to the
lattice-pricing framework already developed. Suppose Y is a random variable, the core idea
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behind Monte-Carlo pricing is to simulate the value of Y many times and approximate the
expectation of Y by the following discrete sum

E[Y ] ≈
n∑
i=1

wi Yi (9.4)

where Yi denotes the i th simulation (or draw) of the value of Y and wi denotes the associated
weight. In most applications the weights are uniform and set to 1/n. By Kolmogorov’s strong
law of large numbers, as n → ∞ the above approximation becomes exact.

It should come as no surprise that we need to add a method onto the controller. The new
method is called evolve and is detailed below. The implementation is simple, with the actual
evolve operation being delegated to the evolve component on the model.

def evolve(self, t, T):
requestor = self. model.requestor()
state = self. model.state()
self. model.evolve().evolve(t, T, state, requestor, self. env)

In the next two subsections we develop the pricing framework for pricing both non-callable
and callable structures, beginning with non-callable structures.

9.2.1 Pricing Non-callable Trades

The implementation of the Monte-Carlo pricer is in the ppf.pricer.monte
carlo pricer module. To simplify the exposition we only concentrate on those pieces
of code from the module needed for pricing non-callable trades. Like the lattice pricer, the
Monte-Carlo pricer is constructed by passing in the trade, the model, the environment and an
optional symbol table listener.

class monte carlo pricer:
def init (self, trade, model, env, symbol table listener = None):
self. trade = trade
self. model = model
self. env = env
self. symbol table listener = symbol table listener
# check no stubs
trade utils.enforce no exercise stubs(trade)
# create timeline
self. timeline = timeline(trade, env.pricing date())

def symbol listener (self, t, symbol, value):
if self. symbol table listener:

self. symbol table listener(t, symbol, value, self. model,
self. env)

The actual pricing is carried out by the function call operator. Again we step through the
implementation of the function call operator line by line. We start by creating the controller.
Then we query the timeline for the list of times on which events have been registered. After
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initialising the berm, underlying, leg0, leg1, . . . variables to zero and the time from
to zero, we come to the main loop.

class monte carlo pricer:
def call (self, symbol value pairs to add = None):

# create controller
ctr = controller(self. trade, self. model, self. env)
times = self. timeline.times()
from = 0.0
# initialise symbols
ctr.insert symbol("underlying", from )
ctr.insert symbol("berm", from )
# add extra symbols
if symbol value pairs to add:
for symbol value pair in symbol value pairs to add:

symbol, value = symbol value pair
ctr.insert symbol(symbol, value)

cnt = 0
for l in self. trade.legs():

symbol = "leg"+str(cnt)
ctr.insert symbol(symbol, from )
cnt += 1

.

.

.

In the main loop we iterate forwards in time through the list of times. At each time we invoke
the evolve operator on the controller to evolve from time from to time to all state
variables, required by the model to calculate the payoff, forwards in time. At each time we
loop through the events registered at that time and invoke the function call operator on the
controller to calcluate the payoff. The corresponding leg variable is retrieved from the symbol
table, incremented by the value of the cash fl w and pushed back into the symbol table. At
the end of the events loop we update the time from to to . The calculation of the present
value (pv) returned by the function call operator is exactly the same as for the lattice pricer
and needs no further comment.

class monte carlo pricer:
def call (self, symbol value pairs to add = None):

.

.

.
# forward iterate through the timeline
for time in times:
to = self. env.relative date(time)/365.0
# evolve
ctr.evolve(from , to )
events = self. timeline.events(time)
for event in events:
# set event on controller
ctr.set event(event)
# evaluate
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if is pay event(event):
# evaluate payoff
cpn = ctr(from )
symbol = "leg"+str(event.leg id())
leg pv = ctr.retrieve symbol(symbol)
leg pv += cpn
self. symbol listener (to , symbol, leg pv)
ctr.update symbol(symbol, leg pv, to )

else:
raise RuntimeError, ’callables not yet implemented’

from = to
# calculate pv
pv = 0
if self. trade.has exercise schedule():

if self. trade.exercise type() == exercise type.callable:
pv = ctr.retrieve symbol("berm").mean()

else:
pv = ctr.retrieve symbol("underlying").mean()\

+ctr.retrieve symbol("berm").mean()
else:
cnt = 0
for l in self. trade.legs():

leg pv = ctr.retrieve symbol("leg"+str(cnt))
pv += leg pv.mean()
cnt += 1

return pv

Before moving on to the pricing of callable structures, we note that the signature of the
function call operator for the Monte-Carlo pricer differs from that of the lattice pricer. The
function call operator now takes an optional list of tuples representing symbol-value pairs that
need to be inserted into the symbol table prior to the evaluation taking place. The reason for
this addition is down to the strongly path-dependent nature of the type of payoffs evaluated by
the Monte-Carlo pricing framework. The strongly path-dependent nature implies the existence
of variables whose history influence the payoff and such variables need to be initialised to
some starting values.

9.2.2 Pricing Callable Trades

The pricing of callable structures entails findin the optimal exercise rule by solving an optimal
stopping time problem. Once the optimal stopping time rule has been discovered, the pricing
of a structure simply involves the computation of the expected discounted payoff, subject to
the stopping time rule. Let V (t) denote the discounted payoff from exercise at time t and T
be the class of stopping times with values in [0, T ], where T is the last exercise time. The
problem then becomes to fin the optimal expected discounted payoff

supτ∈TE[V (t)]. (9.5)

There exist many algorithms for estimating the optimal stopping time. However, all algorithms
of practical use result in either low-bias estimators or high-bias estimators. A low-bias estimator
gives a price for the callable that is bounded above by the true price. In a similar fashion,
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a high-bias estimator gives a price for the callable that is bounded below by the true price
(see [9] for further details). We have implemented a low-bias estimator in terms of the pickup
value. The pickup value at a given exercise time is just the difference between the immediate
exercise value and the value of holding on to the option. Further details on the exact algorithm
for estimating the stopping time can be found in Appendix D but, broadly speaking, at each
exercise time we approximate the pickup value as a linear sum of functions of an arbitrary
number of explanatory variables and estimate the coefficient in the sum using generalised
least squares. The choice of a linear sum of functions for the approximation is standard, but
other forms have been mooted in the literature – see [11] for an example applied to the pricing
of Bermudan swaptions.

The implementation of our low-bias estimator is taken from the ppf.math.exercise
regressions module. Stepping through the code, we begin by definin a number of
functors to represent the constant function, the linear function and the quadratic function. Next
we defin a wrapper class for all the functions used in the approximation of the pickup value.
The class is called n quadratic fo and the constructor takes in the number of explanatory
variables and builds up a list of function objects. For example, if we have two explanatory
variables X and Y , then the function call operator of n quadratic fo simply mimics the
function

f (X, Y ) = α1 + α2X + α3X2 + α4XY + α5Y + α6Y 2. (9.6)

The fina class, fitted fo, is simply an adaptor of the class n quadratic fo with the
purpose of providing a function call operator with a single argument.

class unit fo:
def call (self, x):

return 1.0
class linear fo:
def init (self, i):

self. i = i
def call (self, x):
return x[self. i]

class quadratic fo:
def init (self, i, j):
self. i = i
self. j = j

def call (self, x):
return x[self. i]*x[self. j]

class n quadratic fo:
def init (self,num expl vars):

self. fos = []
self. fos.append(unit fo())
for i in range(num expl vars):

self. fos.append(linear fo(i))
for j in range(i, num expl vars):

self. fos.append(quadratic fo(i, j))
self. n = len(self. fos)

def call (self, alphas, x):
y = 0.0
for i in range(self. n):
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y += alphas[i]*self. fos[i](x)
return y

def fit fos(self):
return self. fos

class fitted fo:
def init (self, alphas, fo):
self. alphas = alphas
self. fo = fo

def call (self, x):
return self. fo(self. alphas, x)

The actual fittin of the approximate sum to the pickup value is carried out by the free
function fit which, in turn, delegates to the generalised least squares algorithm imple-
mented in ppf.math.generalised least square. The free function takes in the
explanatory variables x and the values to be fitte y and returns an instance of the class
fitted fo.

def fit(x, y):
if len(x.shape) <> 2:
raise RuntimeError, "Expected ’x’ to be 2d array"

if len(y.shape) <> 1:
raise RuntimeError, "Expected ’y’ to be 1d array"

num obs = x.shape[0]
num expl vars = x.shape[1]
if num obs <> y.shape[0]:
raise RuntimeError, "’y’ array has wrong size"

fo = n quadratic fo(num expl vars)
sig = numpy.zeros(num obs)
sig.fill(1.0)
alphas = generalised least squares fit(y, x, sig, fo.fit fos())
return fitted fo(alphas, fo)

Given a fitte function, we need to be able to evaluate it. The free function evaluate
regression, taking in the explanatory variables x and the fitte function fo, does this for
us.

def evaluate regression(x, fo):
if len(x.shape) <> 2:
raise RuntimeError, "Expected ’x’ to be a 2d array"

num obs = x.shape[0]
y = numpy.zeros(num obs)
for i in range(num obs):
y[i] = fo(x[i, :])

return y

Finally, the actual implementation of the pickup regression algorithm is provided in the
free function pickup value regression and follows closely the mathematics in
Appendix D.

# max for numpy arrays
max = numpy.vectorize(lambda x, y: (x, y) [x < y])
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def pickup value regression(ies, ns, vs):
if len(ies.shape) <> 2:
raise RuntimeError, "Expected ’immediate exercise" \

"values’ to be a 2d array"
if len(ns.shape) <> 2:
raise RuntimeError, "Expected ’numeraires’ to be a 2d array"

if len(vs.shape) <> 3:
raise RuntimeError, "Expected ’explanatory" \
"variables’ to be a 3d array"

num times = ies.shape[0]
num obs = ies.shape[1]
num expl vars = vs.shape[2]

if ns.shape[0] <> num times or ns.shape[1] <> num obs:
raise RuntimeError, "’numeraires’ array has wrong size"

if vs.shape[0] <> num times or vs.shape[1] <> num obs:
raise RuntimeError, \
"’explanatory variables’ array has wrong size"

fitted fos = []
zero = numpy.zeros(num obs)
H = numpy.zeros(num obs) # holding value
for i in range(num times-1,-1,-1):

x = vs[i, :, :]
n = ns[i, :]
pv = n*(ies[i, :]-H) # reinflate by numeraire
fit fo = fit(x, pv)
temp = evaluate regression(x, fit fo) # pickup value regression
fitted fos.insert(0, fit fo)
H += max (temp/n, zero) # deflate by numeraire

return fitted fos

Armed with the pickup value regressions we can defin a stopping time rule, the details
of which are in Appendix D. The class below from the module ppf.pricer.monte
carlo helper manages the life cycle of the stopping time rule. In the constructor we
initialise the indicator on all paths to minus 1, where minus 1 means don’t exercise.

class exercise helper:
def init (self, num sims):

self. num sims = num sims
self. last cfs = numpy.zeros((num sims))
self. indicator = numpy.zeros((num sims))
self. indicator.fill(-1)

In the update indicator method we update the value of the indicator to the current
exercise time, represented by at, on all paths where the pickup value from the regression is
positive.

class exercise helper:
def update indicator(self, at, vs, fo):
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regression value = evaluate regression(vs, fo)
for i in range(self. num sims):

if self. indicator[i] < 0:
if regression value[i] > 0:

self. indicator[i] = at
else:
self. indicator[i] = -1

The class also provides an implementation of the max operator. At each exercise time, at,
the max operator does nothing more than check to see if we have exercised on or before the
exercise time. On those paths where this is true we return the previous holding value, hv, plus
the intermediate cash fl ws between the current exercise time and the previous exercise time;
otherwise we return the holding value.

class exercise helper:
def max(self, at, cfs, hv):
res = numpy.zeros((self. num sims))
for i in range(self. num sims):

value = 0.0
if self. indicator[i] > 0 and self. indicator[i] <= at + 0.01:
# cash flow(s) between exercise dates
value = cfs[i]-self. last cfs[i]

res[i] = hv[i]+value
self. last cfs = cfs.copy() # deep copy
return res

Because we move forwards in time when pricing using Monte-Carlo, the handling of the cash
fl ws is a bit tricky. We begin by initialising the cash fl ws to the sum of all cash fl ws paying
on or before the firs exercise date. This can be done by invoking the set last cfsmethod.

class exercise helper:
def set last cfs(self, cfs):
self. last cfs = cfs.copy() # deep copy

Then at the end of every call to max we update the values of the cash fl ws to the new sum
of all cash fl ws paying on or before the next exercise date(or the end of the trade). Note that
since we need to maintain a copy of the value of cash fl ws we have to use the copy method
of NumPy arrays, otherwise we would just get a reference.

In extending the Monte-Carlo pricing to handle callable instruments we have had to add
two more methods to the controller class. The methods are illustrated below. The firs method,
numeraire, delegates to the fil component of the model to calculate the numeraire at a
specifie time t. Similarly, the second method, explanatory variables, delegates to
the exercise component of the model to calculate the explanatory variables at a specifie time
t. One thing to note is the use of the pay currency method on the event. This method
either returns the pay currency for a fl w event or the fee currency for an exercise event.

def numeraire(self, t):
if t < 0:
raise RuntimeError, \
"attempting to call numeraire in the past"

fill = self. model.fill()
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requestor = self. model.requestor()
state = self. model.state().fill(t, requestor, self. env)
return fill.numeraire(t, self. event.pay currency(), self. env\

, requestor, state)

def explanatory variables(self, t):
if t < 0:
raise RuntimeError, \
"attempting to call ’explanatory variables’ in the past"

fill = self. model.fill()
requestor = self. model.requestor()
state = self. model.state().fill(t, requestor, self. env)
exercise = self. model.exercise()
return exercise(t, fill, state, requestor, self. env)

The full unedited version of the Monte-Carlo pricer is in the ppf.pricer.monte
carlo pricermodule. For pricing callable structures you need two instances of the model:
one for use in the exercise boundary estimation; and the other for pricing. Both instances will
have different seeds for the random number generator(s) to prevent any foresight bias, (see
[6] for more details). Furthermore, the estimation of the exercise boundary is usually carried
out using fewer paths than the actual pricing, so the models will normally have a different
number of simulations. As a consequence of the need for two models, the constructor of the
Monte-Carlo pricer has been altered to take in an optional second model used in the estimation
of the exercise boundary.

class monte carlo pricer:
def init (self, trade, model, env, symbol table listener = None\

, regression model = None):
self. trade = trade
self. model = model
self. env = env
self. symbol table listener = symbol table listener
self. regression model = regression model
self. fitted fos = None
self. exercise helper = None
# check no stubs
trade utils.enforce no exercise stubs(trade)
# create timeline
self. timeline = timeline(trade, env.pricing date())
# check regression model present if callable
if self. trade.has exercise schedule() \
and self. regression model == None:
raise RuntimeError, \
"exercise schedule present but no ’regression model’"

def symbol listener (self, t, symbol, value):
if self. symbol table listener:
self. symbol table listener(t, symbol, value, self. model,
self. env)
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The main new block of code is in the exercise boundary regression method. This
method only gets called if a second model is present. If the method is called, then we begin
by constructing the controller, initialising some symbols in the symbol table and inserting the
symbols contained in symbol value pairs to add into the symbol table.

class monte carlo pricer:
def exercise boundary regression(self, symbol value pairs to add):
num expl vars = \
self. regression model.exercise().num explanatory variables()

num sims = self. regression model.state().num sims()
num exercises = self. timeline.number of exercises()
# create controller
ctr = controller(self. trade, self. regression model, self. env,

1.0)
times = self. timeline.times()
from = 0.0
# initialise symbols
ctr.insert symbol("underlying", from )
# add extra symbols
if symbol value pairs to add:

for symbol value pair in symbol value pairs to add:
symbol, value = symbol value pair
ctr.insert symbol(symbol, value)

cnt = 0
for l in self. trade.legs():

symbol = "leg"+str(cnt)
ctr.insert symbol(symbol, from )
cnt += 1

.

.

.

Then we evolve along the timeline calculating the cash fl ws on the way; storing at each
exercise time the sum of the cash fl ws up to that time, the numeraire and explanatory variables.

class monte carlo pricer:
def exercise boundary regression(self, symbol value pairs to add):
.
.
.
# forward iterate through the timeline
vs = numpy.zeros([num exercises, num sims, num expl vars])
ies = numpy.zeros([num exercises, num sims])
# for fees - ignored for present
ns = numpy.zeros([num exercises, num sims])
normalisation = 1.0/self. trade.legs()[0].flows()[0].notional()
ex cnt = 0
for time in times:
to = self. env.relative date(time)/365.0
# evolve
ctr.evolve(from , to )
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events = self. timeline.events(time)
# evaluate explanatory variables and immediate exercise values
for event in events:
# set event on controller
ctr.set event(event)
# evaluate
if is exercise event(event):
# evaluate underlying
underlying = ies[ex cnt, :]
cnt = 0
for l in self. trade.legs():

underlying += ctr.retrieve symbol("leg"+str(cnt))
cnt += 1

underlying *= self. trade.exercise type()
underlying *= normalisation
# evaluate explanatory variables and numeraire
ns[ex cnt, :] = ctr.numeraire(to )
vs[ex cnt, :] = ctr.explanatory variables(to )
ex cnt += 1

# evaluate cash flows
for event in events:
# set event on controller
ctr.set event(event)
# evaluate
if is pay event(event):
# evaluate payoff
cpn = ctr(to )
symbol = "leg"+str(event.leg id())
leg pv = ctr.retrieve symbol(symbol)
leg pv += cpn
self. symbol listener (to , symbol, leg pv)
ctr.update symbol(symbol, leg pv, to )

from = to
.
.
.

Once we have all of this information we compute the immediate exercise values by subtracting
from the total sum of all cash fl ws each of the stored sum of cash fl ws in turn. The regression
is then carried out via an invocation of the free function pickup value regression. The
method ends with the creation of an instance of the exercise helper class, which will be
used in the actual pricing of the callable structure.

class monte carlo pricer:
def exercise boundary regression(self, symbol value pairs to add):

.

.

.
# final immediate exercise value
underlying = ctr.retrieve symbol("underlying")
cnt = 0
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for l in self. trade.legs():
underlying += ctr.retrieve symbol("leg"+str(cnt))
cnt += 1

underlying *= self. trade.exercise type()
underlying *= normalisation
# subtract immediate exercise values from final
for i in range(num exercises):

ies[i, :]=underlying-ies[i, :]
# perform regression
self. fitted fos = pickup value regression(ies, ns, vs)
# create helper class for dealing with exercise indicator -
# note number of simulations
self. exercise helper = \
exercise helper(self. model.state().num sims())

The function call operator hasn’t had to change too much from the non-callable version.
The main differences are the careful order in which we handle the different event types and
the subsequent calls onto the instance of the exercise helper class to determine whether
to exercise or not. Again we will step through the code highlighting the main features of
interest. Just like before, we begin by constructing the controller, initialising some symbols in
the symbol table and inserting the symbols contained in symbol value pairs to add
into the symbol table.

def call (self, symbol value pairs to add = None):
# do regression if required
if self. regression model:

self. exercise boundary regression(symbol value pairs to add)
# create controller
ctr = controller(self. trade, self. model, self. env, 1.0)
times = self. timeline.times()
from = 0.0
# initialise symbols
ctr.insert symbol("underlying", from )
ctr.insert symbol("berm", from )
# add extra symbols
if symbol value pairs to add:
for symbol value pair in symbol value pairs to add:
symbol, value = symbol value pair
ctr.insert symbol(symbol, value)

cnt = 0
for l in self. trade.legs():

symbol = "leg"+str(cnt)
ctr.insert symbol(symbol, from )
cnt += 1

.

.

.

Next we evolve through the timeline calculating the cash fl ws on the way. The difference
now is that we have to initialise the instance of the exercise helper class with the sum
of cash fl ws paid on or before the firs exercise time. Consequently we have split what was a
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single loop over all events at a particular time on the timeline into three separate loops. In the
firs loop we check for the firs exercise event.

def call (self, symbol value pairs to add = None):
.
.
.
# forward iterate through the timeline
ex cnt = 0
for time in times:
to = self. env.relative date(time)/365.0
# evolve
ctr.evolve(from , to )
events = self. timeline.events(time)
# set initial immediate exercise value
# - sum of all flows before exercise date
for event in events:
if is exercise event(event):

# evaluate underlying
underlying = ctr.retrieve symbol("underlying")
underlying *= 0
cnt = 0
for l in self. trade.legs():

underlying += ctr.retrieve symbol("leg"+str(cnt))
cnt += 1

if ex cnt == 0:
self. exercise helper.set last cfs(\
self. trade.exercise type()*underlying)

self. symbol listener (to , "underlying", underlying)
.
.
.

In the second loop we calculate the cash fl ws as before:

def call (self, symbol value pairs to add = None):
.
.
.
# evaluate cash flows
for event in events:
# set event on controller
ctr.set event(event)
# evaluate
if is pay event(event):

# evaluate payoff
cpn = ctr(to )
symbol = "leg"+str(event.leg id())
leg pv = ctr.retrieve symbol(symbol)
leg pv += cpn
self. symbol listener (to , symbol, leg pv)
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ctr.update symbol(symbol, leg pv, to )
.
.
.

and in the fina loop we check to see if we have exercised or not by calling the
update indicator method of the instance of the exercise helper class. The max
method is also invoked in the fina loop, thereby updating the callable value with the cash
fl ws paid between the current exercise time and the previous exercise time.

def call (self, symbol value pairs to add = None):
.
.
.
# evaluate exercise using regression
for event in events:
# set event on controller
ctr.set event(event)
# evaluate
if is exercise event(event):

# evaluate underlying
underlying = ctr.retrieve symbol("underlying")
underlying *= 0
cnt = 0
for l in self. trade.legs():
underlying += ctr.retrieve symbol("leg"+str(cnt))
cnt += 1

# explanatory variables and numeraire
ns = ctr.numeraire(to ) # for fees but not used at present
vs = ctr.explanatory variables(to )
# evaluate regression
self. exercise helper.update indicator(
to , vs, self. fitted fos[ex cnt])
berm = ctr.retrieve symbol("berm")
berm = self. exercise helper.max(
to , self. trade.exercise type()*underlying, berm)
# update symbols
ctr.update symbol("underlying", underlying, to )
ctr.update symbol("berm", berm, to )
ex cnt = ex cnt+1

from = to
.
.
.

At the end of the loop over the timeline we have to call the max operator of the
exercise helper class once more to ensure that the fina cash fl ws paying after the
last exercise time are added to the callable value, the symbol berm, on those paths that have
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exercised before the end of the trade.

def call (self, symbol value pairs to add = None):
.
.
.
# calculate pv
underlying = ctr.retrieve symbol("underlying")
underlying *= 0
cnt = 0
for l in self. trade.legs():
underlying += ctr.retrieve symbol("leg"+str(cnt))
cnt += 1

self. symbol listener (to , "underlying", underlying)
ctr.update symbol("underlying", underlying, to )
if self. regression model:
berm = ctr.retrieve symbol("berm")
berm = self. exercise helper.max(to , \

self. trade.exercise type()*underlying, berm)
ctr.update symbol("berm", berm, to )

pv = 0
if self. trade.has exercise schedule():
if self. trade.exercise type() == exercise type.callable:

pv = ctr.retrieve symbol("berm").mean()
else:
pv = ctr.retrieve symbol("underlying").mean() \

+ctr.retrieve symbol("berm").mean()
else:
pv = ctr.retrieve symbol("underlying").mean()

return pv

The above pricing framework is generic and makes few assumptions on either the model or
the underlying numerical container. One obvious caveat to this is that the pricing framework
doesn’t handle stubs, the treatment of which is beyond the scope of this book. As a fina
comment, the inclusion of fees into the framework is left as an exercise for the reader.

9.3 CONCLUDING REMARKS
In this chapter we have developed two pricing frameworks: a lattice pricing framework for
pricing non-path-dependent callable structures; and a Monte-Carlo pricing framework for
pricing both non-callable and callable path-dependent structures. Throughout the exposition
we have only concentrated on the pricing and not the risk. By risk we mean the greeks. It is
well known in financia mathematics that any poor treatment of discontinuties in the payoff
is amplifie in the greeks, usually to such an extent that the noise in the greeks renders them
of no practical use. Consequently, many papers have been published on this topic by both
academics and practitioners.

When discussing the integrator used in the lattice pricing framework to perform the condi-
tional expectations, we took great care in the way we dealt with discontinuities. It is possible to
extend the semi-analytic lattice integrator to multidimensions provided we introduce a way of
splitting the lattice into portions with the function being continuous on each portion. Typically
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the way this is achieved is by introducing an algebra on indicator functions. The management
of these indicators is quite complicated. An alternative, and perhaps simpler, approach is to
use PDE techniques. As in the semi-analyic lattice integrator case, we would still need to
provide a mechanism whereby the payoff could be parsed for information about where po-
tential discontinuities may occur, but once we have the information we can refin the PDE
mesh around the discontinuities. For more information on the application of PDE techniques
to financ consult [4] and [13].

Similarly discontinuities must be treated carefully when pricing using Monte-Carlo. Many
algorithms have been proposed: pathwise derivatives and likelihood ratio methods to name a
few. A form of likelihood ratio method, called a partial proxy scheme, suitable for use with the
Libor Market Model, can be found in [7]. In [8] the authors apply the partial proxy scheme to
target redemption notes and demonstrate that the scheme produces extremely accurate greeks.
An application of the pathwise derivatives method for computing delta is demonstrated in [17]
together with the so-called sausage Monte-Carlo method for smoothing the greeks.
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the fill method on the state component. Finally we are in a position to compute the value
of the fi ed coupon payment. The second from last line of the implementation is the code
representation of the above formula.

class fixed leg payoff:
def call (self, t, controller):
event = controller.get event()
flow = event.flow()
id = event.reset id()
obs = flow.observables()[id]
model = controller.get model()
env = controller.get environment()
fixed rate = obs.coupon rate()
requestor = model.requestor()
state = model.state().fill(t, requestor, env)
cpn = fixed rate*flow.notional()*flow.year fraction()\
*controller.pay df(t, state)

return cpn

Note that we delegate to the controller for the actual calculation of the zero coupon bond.
The implementation of the pay df method on the controller class is given below:

def pay df(self, t, state):
if t < 0:
historical df = self. model.state().create variable()
historical df = self. historical df
return historical df

else:
flow = self. event.flow()
fill = self. model.fill()
requestor = self. model.requestor()
T = self. env.relative date(flow.pay date())/365.0
return fill.numeraire rebased bond(t, T, flow.pay currency()\

, self. env, requestor, state)
endif

In a pattern that should be familiar, the fil component of the model is called upon to perform
the calculation of the numeraire-rebased zero coupon bond. It should also be noted that the
implementation returns a value for discount factors in the past; the value being determined
by the historical df argument passed in at construction time of the controller. For most
applications the historical discount factor will be set to zero but in the next section we give an
example where it has a value of one.

In a similar fashion the payoff class contained in the module ppf.pricer.payoffs.
float leg payoff encapsulate the funding leg coupon. Let t denote the setting time of
the LIBOR rate, then using no-arbitrage arguments one can show that the value of the LIBOR
rate at time t with projection period (Ts, Te) is given by

LtTsTe =
(
PtTs
PtTe

− 1
)

/δ
′

(10.3)
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where δ
′ denotes the projection period year fraction. The discounted value of the funding

coupon payment is then
Vt
PtTN

= E
TN

[
LtTsTe × δ × 1

PTTN
|Ft

]
(10.4)

with the same interpretation for the symbols as before. Once again, because LtTsTe is known
at time t , the conditional expectation reduces to the following equation

Vt
PtTN

= LtTsTe × δ × PtT
PtTN

. (10.5)

The details of the implementation are essentially the same as for the fi ed leg coupon. The
second from last line of the implementation represents the above formula in code form. Note
that we use the adjuvant table to store the spread – an exception will be raised if the symbol
is not found in the symbol table.

class float leg payoff:
def call (self, t, controller):
event = controller.get event()
flow = event.flow()
id = event.reset id()
obs = flow.observables()[id]
model = controller.get model()
env = controller.get environment()
adjuvant table = controller.get adjuvant table()
# lookup ’spread’ in adjuvant table at flow pay date
spread = adjuvant table("spread"+str(id), flow.pay date())
requestor = model.requestor()
state = model.state().fill(t, requestor, env)
cpn = flow.notional()*flow.year fraction()* \

(controller.libor (t, state) +spread)*controller.pay df(t,
state)

return cpn

We delegate to the controller to determine both the LIBOR rate and the zero coupon bond.
The code excerpt below details the implementation of the libor method on the controller.
Most of the implementation should be self-explanatory but one point to highlight is the
treatment of LIBOR fixing in the past: if there is no fixin an exception will be raised,
otherwise the value of the fixin is returned.

def libor(self, t, state):
flow = self. event.flow()
id = self. event.reset id()
obs = flow.observables()[id]
if t < 0:
fix = obs.fix()
if fix.is fixed():
fixing = self. model.state().create variable()
fixing = fix.value()
return fixing

else:
raise RuntimeError, ’libor in the past with no fixing’
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endif
else:
fill = self. model.fill()
requestor = self. model.requestor()
return fill.libor(t, obs, self. env, requestor, state)

endif

For completeness we also provide the implementation of theget adjuvant tablemethod
on the controller which is invoked in the script for the floatin leg payoff.

def get adjuvant table(self):
leg = self. trade.legs()[self. event.leg id()]
adjuvant table = None
if leg.has adjuvant table():
adjuvant table = leg.adjuvant table()

return adjuvant table

Before proceeding on to the actual pricing of the Bermudan swaption we need to once
again emphasise that the above payoffs are completely generic. By generic we mean they are
not model specific The only constraints imposed on the model are that it understands how
to interpret zero coupon bonds and LIBOR rates. The actual dimensionality of the model is
completely irrevelant from the perspective of the payoffs – provided that the numerical con-
tainers returned by the methods on the fil component have overloaded arithmetic operations,
everything will fl w through.

With the definitio of the underlying coupon payments making up the swap out of the way,
we now turn our attention to the pricing of the Bermudan swaption. In section 9.1 we discussed
a generic framework for pricing ‘vanilla’ callable LIBOR exotics. Since a Bermudan swaption
belongs to this class of financia instruments, we can employ the framework to compute the
price. In the module ppf.test.test lattice pricer we have written a number of
unit tests to verify both the pricing framework and all the model components. The firs test
class verifie that the pricing framework prices back the underlying swap to market, where
by market we mean the market as define by the curve in the market environment. The two
functions below calculate the market price of both the fi ed coupon leg and the funding leg,
and should be self-explanatory.

def fixed leg pv(leg, env):
pv = 0.0
for f in leg.flows():
obs = f.observables()[0]
key = "zc.disc."+f.pay currency()
curve = env.retrieve curve(key)
T = env.relative date(f.pay date())/365.0
dfT = curve(T)
pv += obs.coupon rate()*f.notional()*f.year fraction()*dfT

return pv*leg.pay receive()

def funding leg pv(leg, env):
pv = 0.0
for f in leg.flows():
obs = f.observables()[0]
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key = "zc.disc."+f.pay currency()
curve = env.retrieve curve(key)
T = env.relative date(f.pay date())/365.0
dfT = curve(T)
pv += obs.forward(env.pricing date(), curve)\

*f.notional()*f.year fraction()*dfT
return pv*leg.pay receive()

The actual unit test for the underlying swap is detailed below. The functions
create fixed leg and create funding leg create the fi ed and funding legs

respectively. create environment creates a test market environment suitable for the
Hull–White model. The lattice pricer is created in the function create pricer. The price
from the lattice pricer is compared with the market price and an assert is made to ensure that
the prices (divided by the notional) are within a basis point (i.e. 10−4).

class swap tests(unittest.TestCase):
def test value(self):
fixed leg = create fixed leg()
funding leg = create funding leg()
env = create environment()
swap = ppf.core.trade((fixed leg, funding leg))
pricer = create pricer(swap, env)
actual = pricer()
expected = fixed leg pv(fixed leg, env)+ \

funding leg pv(funding leg, env)
assert seq close([actual/10000000], [expected/10000000], 1.0e-4)

In the create pricer function we use the Hull–White lattice model factory to create
the Hull–White pricer. Note that the model arguments dictionary is set so that the number of
states equals 41 and the number of standard deviations equals 5.5.

def create pricer(trade, env, listener = None):
model args = {"num states": 41, "num std dev": 5.5}
factory = ppf.model.hull white lattice model factory()
model = factory(trade, env, model args)
pricer = ppf.pricer.rollback pricer(trade, model, env, listener)
return pricer

There are two unit tests for the Bermudan swaption. The firs unit test checks that the value
of the Bermudan swaption is at least as large in magnitude as the most valuable European
swaption. To perform this test we use a symbol table listener to store the European swaption
prices. The code for the unit test is shown below. Again we use functions define in the module
to create both the legs and the exercise schedule. The values of the European swaption prices
are retrieved by invoking the retrieve symbol method on the listener after the pricing of
the berm has been completed.

class bermudan tests(unittest.TestCase):
def test value(self):
fixed leg = create fixed leg()
funding leg = create funding leg()
ex sch = create exercise schedule()
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env = create environment()
berm = ppf.core.trade((fixed leg, funding leg)\
, (ex sch, ppf.core.exercise type.callable))

listener = european symbol table listener()
pricer = create pricer(berm, env, listener)
actual = pricer()
europeans = listener.retrieve symbols()
for european in europeans:
assert(actual >= european)

The second unit test verifie that both deeply-out-of-the-money Bermudans price back to
zero and deeply-in-the-money Bermudans have the same value as the underlying swap. The
code excerpt for the moneyness tests is given below. The moneyness of the underlying swap
is controlled by changing the coupon on the fi ed leg from large positive (deeply-out-of-the-
money) to large negative (deeply-in-the-money).

class moneyness tests(unittest.TestCase):
def deep in the money test(self):

fixed leg = create fixed leg(-1.0)
funding leg = create funding leg()
ex sch = create exercise schedule()
env = create environment()
berm = ppf.core.trade((fixed leg, funding leg)\
, (ex sch, ppf.core.exercise type.callable))

pricer = create pricer(berm, env)
actual = pricer()
expected = fixed leg pv(fixed leg, env)+ funding leg pv

(funding leg, env)
assert seq close([actual/10000000], [expected/10000000], 1.0e-4)

def deep out the money test(self):
fixed leg = create fixed leg(1.0)
funding leg = create funding leg()
ex sch = create exercise schedule()
env = create environment()
berm = ppf.core.trade((fixed leg, funding leg)\
, (ex sch, ppf.core.exercise type.callable))

pricer = create pricer(berm, env)
actual = pricer()
expected = 0.0
assert seq close([actual/10000000], [expected/10000000], 1.0e-4)

For completeness we also provide test cases for the Bermudan pricing using the Monte-Carlo
pricing framework developed in section 9.2. The test cases are to be found in the ppf.test.
test monte carlo pricermodule. In the create callable pricer function two
models are created using the Hull–White Monte-Carlo factory. One model is used for the re-
gression and the other for the actual pricing. Note that the seeds are different and we have to pro-
vide an extra model argument, explanatory variables leg id, so that the exercise
component of the model knows which leg to use in the calculation of the explanatory variables.

def create callable pricer(trade, env, listener = None):
regression model args = {"num sims": 3000, "seed": 12345,
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"explanatory variables leg id": 0}
factory = ppf.model.hull white monte carlo model factory()
regression model = factory(trade, env, regression model args)
model args = {"num sims": 6000, "seed": 1234

, "explanatory variables leg id": 0}
model = factory(trade, env, model args)
pricer = ppf.pricer.monte carlo pricer(trade, model, env,

listener, regression model)
return pricer

Three unit tests are provided. The two moneyness tests are identical to those for the lattice
pricer and will not be mentioned further. The remaining test shown below checks that the value
of the Bermudan swaption is bounded below by the most valuable European swaption price.
The values of the European swaptions are calculated in the ‘for’ loop, from trades with only a
single exercise date.

class bermudan tests(unittest.TestCase):
def test value(self):
fixed leg = create fixed leg()
funding leg = create funding leg()
ex sch = create exercise schedule()
env = create environment()
berm = ppf.core.trade((fixed leg, funding leg)\

, (ex sch, ppf.core.exercise type.callable))
pricer = create callable pricer(berm, env)
actual = pricer()
europeans = []
for exercise in ex sch:

european ex sch = create exercise schedule(\
exercise.exercise date(), exercise.exercise date())

european = ppf.core.trade((fixed leg, funding leg)\
, (european ex sch, ppf.core.exercise type.callable))

pricer = create callable pricer(european, env)
europeans.append(pricer())

for european in europeans:
print actual, european
assert(actual >= european)

Note that the number of exercises created in the exercise schedule is controlled by passing
in both the start and end dates, as can be seen in the code snippet below.

def create exercise schedule(sd = ppf.date time.date(2007, 06, 29)\
, ed = ppf.date time.date(2009, 06, 29)):

from ppf.date time \
import date, shift convention, modified following,
basis act 360, months

sched = ppf.core.generate exercise table(
start = sd
, end = ed
, period = 1
, duration = ppf.date time.years
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, shift method = shift convention.modified following
, fee currency = "USD")

return sched

10.2 PRICING A TARN
In this section we illustrate how we can use the components to price a Target Redemption
Note, commonly referred to as a TARN. We will use the code developed in section 9.2 to do
the actual pricing. So what is a TARN? A TARN is a swap consisting of a funding leg paying
LIBOR plus a spread in exchange for an exotic coupon leg receiving a coupon of the form

ct = max
(
f, c + g × LtTsTe

)
(10.6)

with f the floo , c a fi ed coupon amount, g the leverage and LtTsTe the LIBOR rate for the
period (Ts, Te) observed at t ∈ {T1, T2, . . . , Tn}, a discrete set of times. The whole contract
knocks out if the total accrued coupon reaches a predefine target. Typically if the swap hasn’t
triggered before it ends, then the holder of the TARN receives a guaranteed accrued amount
called the redemption floo . In addition, if the swap triggers, then the holder receives an accrued
amount no greater than the redemption cap. In most TARN structures both the redemption
floo and redemption cap are equal to the target.

Before moving on to discuss the payoff classes for the TARN, it is helpful to firs look at
the mathematical form of the exotic coupon in more detail. The exotic coupon, denoted by Ct
in the formulae below, can be split into two parts. The firs part can be expressed as

Ct = (
1 − 1∑

t−1≥target
) {
1∑

t≥target

×
(

δct − max

(∑
t

−redemption cap, 0

))

+ (
1 − 1∑

t≥target
)
δct

}
(10.7)

with 1A representing the probability of an event A; the accrued coupon, denoted by
∑

t , is
computed via the relation ∑

t
=

∑
t−1

+δ ct . (10.8)

with
∑

t = 0 for t = 0; and δ represents the accrual year fraction for the coupon period. The
second part of the exotic coupon payoff represents what is paid in the event that the target is
never reached, and in mathematical terms is equal to

Ctn = Ctn + (
1 − 1Ctn≥target

)

× max

(
redemption floo −

∑
tn

, 0

)
(10.9)

with tn denoting the reset date on the fina fl w.
The tarn coupon leg payoff class from the module ppf.pricer.payoffs.

tarn coupon leg payoff represents the exotic coupon leg of the TARN. At the beginning
of the module we have implemented a simple pointwise min and max operator for NumPy
arrays, denoted by min and max respectively, using the lambda statement of Python. The
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max operator is used in the calculation of the coupon, whereas we invoke the min when
updating the variable representing whether the contract has been triggered.

# max for numpy arrays
max = numpy.vectorise(lambda x, y: (x, y)[x < y])
# min for numpy arrays
min = numpy.vectorise(lambda x, y: (x, y)[x > y])

Stepping through the implementation of the function call operator, we see that a number of
variables used in the computation of the coupon payoff are retrieved from the adjuvant table
associated with the leg: the state of the target indicator, i.e. whether the target has
been reached or not, and the accrued coupon. If the writer of the TARN pricer has not
populated the symbol tables with these symbols, then a runtime exception will be raised. It
should be easy to see that the actual implementation of the exotic coupon in the code excerpt
below follows the above equations faithfully and consequently requires only a few comments.
Firstly, the is last flow function from the module ppf.core.trade utils is used
to determine if we have reached the last fl w of the trade; and, secondly, we note that both the
state of the target indicator and the accrued coupon are updated prior to returning
control back to the client.

class tarn coupon leg payoff:
def call (self, t, controller):
event = controller.get event()
flow = event.flow()
id = event.reset id()
obs = flow.observables()[id]
model = controller.get model()
env = controller.get environment()
adjuvant table = controller.get adjuvant table()
# lookup ‘floor’, ‘fixed rate’, ‘leverage’, ‘target’,
# ‘redemption floor’ and ‘redemption cap’
floor = adjuvant table("floor"+str(id), flow.pay date())
fixed rate = adjuvant table("fixed rate"+str(id), flow.pay date())
leverage = adjuvant table("leverage"+str(id), flow.pay date())
target = adjuvant table("target"+str(id), flow.pay date())
redemption floor = adjuvant table("redemption floor"+str(id),

flow.pay date())
redemption cap = adjuvant table("redemption cap"+str(id),

flow.pay date())
requestor = model.requestor()
state = model.state().fill(t, requestor, env)
cpn = flow.year fraction()*max (floor \

, fixed rate+leverage*controller.libor(t, state))
# retrieve symbol representing target indicator
indicator = controller.retrieve symbol("target indicator")
# retrieve symbol representing accrued coupon
accrued cpn = controller.retrieve symbol("accrued coupon")
accrued cpn += cpn
# actual coupon assuming a redemption cap and a redemption floor
# potentially different from the target
actual cpn = model.state().create variable()
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local indicator = accrued cpn >= target
actual cpn = (1-indicator)*local indicator\
*(cpn-max (accrued cpn-redemption cap,0.0)) \
+(1-indicator)*(1-local indicator)*cpn

leg id = event.leg id()
if is last flow(controller.get trade().legs()[leg id], flow):

actual cpn += (1-local indicator)*max (redemption floor-
accrued cpn, 0.0)

actual cpn *= flow.notional()*controller.pay df(t, state)

# update indicator - probability of triggering
# addition of logicals is equivalent of ‘or’
indicator = min (indicator+local indicator, 1)
# update symbols
at = env.relative date(flow.pay date())/365.0
controller.update symbol("accrued coupon", accrued cpn, at)
controller.update symbol("target indicator", indicator, at)

return actual cpn

Similarly the payoff class from module ppf.pricer.payoffs.tarn funding
leg payoff illustrated below encapsulates the funding leg of the TARN. The only compli-
cation is that the funding payment is still due immediately after the trigger is breached. The
simplest way to ensure that this happens is to put the funding leg before the exotic coupon leg
when definin the trade representing the TARN. We will see shortly that this is the case for all
the test cases written for the TARN.

class tarn funding leg payoff:
def call (self, t, controller):

event = controller.get event()
flow = event.flow()
id = event.reset id()
obs = flow.observables()[id]
model = controller.get model()
env = controller.get environment()
adjuvant table = controller.get adjuvant table()
# lookup ’spread’ in adjuvant table at flow pay date
spread = adjuvant table("spread"+str(id), flow.pay date())
requestor = model.requestor()
state = model.state().fill(t, requestor, env)
cpn = flow.notional()*flow.year fraction()*( \
controller.libor (t, state) +spread)* \
controller.pay df(t, state)

# retrieve symbol representing target indicator
indicator = controller.retrieve symbol("target indicator")
return cpn*(1-indicator)

Once again it cannot be overstated that the above two payoffs are generic and would work
for any model provided that the required components have been implemented.

In the module ppf.test.test monte carlo pricer we have written a number of
tests for the pricing of the TARN. The firs test verifie that the two legs cancel each other
out if the target is never reached and the exotic coupon just pays LIBOR. The functions
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create tarn coupon leg and create tarn funding leg create the exotic
coupon and funding legs respectively of the TARN. The function create environment
creates a test market environment suitable for the Hull–White model. The Monte-Carlo pricer
is created in the function create pricer. A list of symbol value pairs is built for the sym-
bols accrued coupon and target indicator and then passed through to the function
call operator of the pricer. The price from the Monte-Carlo pricer is compared with the market
price and an assert is made to ensure that the prices (divided by the notional) are within a basis
point (i.e. 10−4).

class tarn tests(unittest.TestCase):
def no trigger limit test(self):
floor = -100
fixed rate = 0.0
leverage = 1.0
target = 10000
redemption floor = -100
redemption cap = -100
coupon leg = create tarn coupon leg(floor, fixed rate, leverage\
, target, redemption floor, redemption cap)
funding leg = create tarn funding leg()
env = create environment()
tarn = ppf.core.trade((funding leg, coupon leg)) # note the

# ordering
pricer = create pricer(tarn, env)
symbol value pairs to add = []
symbol value pairs to add.append(
("accrued coupon", numpy.zeros(5000)))

symbol value pairs to add.append(
("target indicator", numpy.zeros(5000)))

actual = pricer(symbol value pairs to add)
assert seq close([actual/10000000], [0.0], 1.0e-4)

In the create pricer function we use the Hull–White Monte-Carlo model factory
to create the Hull–White pricer. Note that the model arguments dictionary is set so that the
number of simulation equals 5000 and the seed for the variate generator equals 1234.

def create pricer(trade, env, listener = None):
model args = {"num sims": 5000, "seed": 1234}
factory = ppf.model.hull white monte carlo model factory()
model = factory(trade, env, model args)
pricer = ppf.pricer.monte carlo pricer(trade, model, env, listener)
return pricer

The next test checks that if the target is set so that the target will be reached after the firs
fl w, then the result should be equal to a simple swaplet. The code snippet below details the
test case. To guarantee the target being reached after the firs fl w, the target is set to zero,
and, unlike in the previous test case, the exotic coupon leg now pays a fi ed coupon rate of 5%.

class tarn tests(unittest.TestCase):
def trigger after first flow test(self):
floor = -100
fixed rate = 0.05
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leverage = 0.0
target = 0.0
redemption floor = -100
redemption cap = 100
coupon leg = create tarn coupon leg(floor, fixed rate, leverage\
, target, redemption floor, redemption cap)
funding leg = create tarn funding leg()
env = create environment()
tarn = ppf.core.trade((funding leg, coupon leg)) # note the

# ordering
pricer = create pricer(tarn, env)
symbol value pairs to add = []
symbol value pairs to add.append(
("accrued coupon", numpy.zeros(5000)))

symbol value pairs to add.append(
("target indicator", numpy.zeros(5000)))

actual = pricer(symbol value pairs to add)
expected = exotic first flow pv(coupon leg, env)\
+ funding first flow pv(funding leg, env)

assert seq close([actual/10000000], [expected/10000000], 1.0e-4)

Note that we have used the functions exotic first flow pv and funding first
flow pv from the same module to compute the present value of the swaplet.

The last test case shown below checks that an out-of-the-money TARN swap becomes more
out-of-the-money as the target is increased.

class tarn tests(unittest.TestCase):
def monotonic with target test(self):

floor = -100
fixed rate = 0.025
leverage = 2.0
redemption floor = -100
redemption cap = 100
prev = 1 # out-of-the-money
targets = [0.075, 0.1, 0.125, 0.15, 0.175, 0.2]
for target in targets:
coupon leg = create tarn coupon leg(floor, fixed rate, leverage\
, target, redemption floor, redemption cap)
funding leg = create tarn funding leg()
env = create environment()
tarn = ppf.core.trade((funding leg, coupon leg)) # note the

# ordering
pricer = create pricer(tarn, env)
symbol value pairs to add = []
symbol value pairs to add.append(
("accrued coupon", numpy.zeros(5000)))

symbol value pairs to add.append(
("target indicator", numpy.zeros(5000)))

curr = pricer(symbol value pairs to add)
assert(curr < prev)
prev = curr
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Before finishin this section one fina point needs to be made. Some path-dependent trades
may involve path variables dependent on the pay discount factor and, for seasoned trades, the
path variables still need to be calculated even though they are in the past. For this reason,
the instances of the controller classes in the Monte-Carlo pricing framework set the
historical df to unit.

10.3 CONCLUDING REMARKS
We have successfully applied the pricing frameworks developed in Chapter 9 to the pricing
of both Bermudan swaptions and target redemption notes. In any real business application
the main body of code would be in C++, which would then call out to Python to perform
the evaluation of the payoff. For efficien y reasons, you would not wish to do this for every
Monte-Carlo path because the cost of crossing the C++/Python boundary is too punitive –
indeed you would have to cross the boundary for every simulation (or, equivalently, path). If
instead you pass the current state of the world at a particular time, then you only cross the
boundary as many times as there are fl ws (for each leg). Moreover, by passing the state of the
world through gives the writer of the Python payoff the opportunity to employ parallelisation
techniques when performing arithmetic operations within the payoff class. The authors have
found, even in a system entirely implemented in C++, that it is approximately 40% faster to
pass the state of the world through to the payoff functionals than calling the functionals once
for each simulation – in this case the cost of the function call alone becomes punitive. The
remaining question then is: should the memory be allocated on the C++ or Python side. There
is no clear answer to this question but in any case Chapters 3 and 11 cover the necessary
techniques for doing either approach.

During our treatment of the TARN payoff we were forced to carry out tricky indicator logic
to handle the ‘if-else’ clauses. It would be much better if the Python ‘if’ statement understood
NumPy arrays, i.e. if we could write if m array > 0 . . . . Indeed, if we were to write
everything in C++, including our own payoff language interpreter, then this is almost certainly
the approach we would adopt. To get this to work in Python would require hacking into the
Python interpreter, which is well beyond the scope of this book.
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year based generator();
˜year based generator();

// public member functions
virtual date type get date(year type) const;
virtual std::string to string() const;

};

In the ppf date time.pyd source fil ‘register date more.cpp’, can be found
the following code describing the instantiation of this class template over
class boost::gregorian::date to Python:

namespace ppf { namespace date time {

struct year based generator wrap
: boost::date time::

year based generator<boost::gregorian::date>
, boost::python::wrapper<

boost::date time::
year based generator<boost::gregorian::date> >

{
boost::gregorian::date
get date(boost::gregorian::date::year type y) const

{
return this->get override("get date")(y);

}

std::string to string() const
{
return this->get override("to string")();

}
};

void register date more()
{
using namespace boost::python;
namespace bg = boost::gregorian;
namespace bd = boost::date time;

// ...

class <year based generator wrap
, boost::noncopyable>("year based generator")

.def("get date", pure virtual(&bd::year based generator<bg::date>:
:get date))
.def("to string", pure virtual(&bd::year based generator<bg::date>
::to string))
;

// ...
}

}} // namespace ppf::date time
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11.2 EXERCISING nth imm of year FROM C++
We turn our attention now to ‘embedding’ a Python interpreter in a C++ program. We have
seen how to call C++ code from Python. Here we aim to do the reverse: call Python code
from C++. To do this we use a mix of Python C API routines together with helper types and
functions in the Boost.Python library:

#include <boost/detail/lightweight test.hpp>
#include <boost/python.hpp>
#include <boost/date time/gregorian/gregorian.hpp>

int main()
{
namespace bd = boost::date time;
namespace bg = boost::gregorian;
namespace python = boost::python;
typedef bd::year based generator<bg::date> ybd t;

Py Initialise();

try
{
//extract the ppf.date time.nth imm of year class
//object
python::object main module = python::import(" main ");
python::object global(main module.attr(" dict "));
python::object result =
python::exec("from ppf.date time import *\n", global, global);

python::object nth imm of year class = global["nth imm of year"];

//use the class object to create instances of
//nth imm of year
python::object first imm = nth imm of year class(bg::Mar);
python::object second imm = nth imm of year class(bg::Jun);
python::object third imm = nth imm of year class(bg::Sep);
python::object fourth imm = nth imm of year class(bg::Dec);

//get references to boost date time year based generators
//from the newly created objects
ybd t& first imm = python::extract<ybd t&>(first imm );
ybd t& second imm = python::extract<ybd t&>(second imm );
ybd t& third imm = python::extract<ybd t&>(third imm );
ybd t& fourth imm = python::extract<ybd t&>(fourth imm );

//check imm dates for 2005
BOOST TEST(first imm.get date (2005) == bg::date(2005,
bg::Mar, 16));
BOOST TEST(second imm.get date (2005) == bg::date(2005,
bg::Jun, 15));
BOOST TEST(third imm.get date (2005) == bg::date(2005,
bg::Sep, 21));
BOOST TEST(fourth imm.get date (2005) == bg::date(2005,
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bg::Dec, 21));
}
catch(python::error already set const&)
{
PyErr Print();

}
catch(std::runtime error const& e)
{
std::cerr << e.what() << std::endl;

}
catch(...)
{
std::cerr << "unexpected exception" << std::endl;

}

return boost::report errors();
}

The significan steps in the above program are as follows: first the Python interpreter is
initialised with the call to the Python C API function Py Initialise(). Among other
things, this has the effect of creating the fundamental ’’ main ’’ module. The following
statements

python::object main module = python::import(" main ");
python::object global(main module.attr(" dict "));

import the main module and obtain a reference to its namespace. With these the context
for executing Python code has been obtained and we execute

python::object result =
python::exec("from ppf.date time import *\n", global, global);

to cause Python to import all types and functions in the ppf.date time module into the
global namespace. In particular, we are interested in the nth imm of year class object
which we retrieve with

python::object nth imm of year class = global["nth imm of year"];

With the class object at our disposal, we use it to produce nth imm of year class instances

python::object first imm = nth imm of year class(bg::Mar);
python::object second imm = nth imm of year class(bg::Jun);
python::object third imm = nth imm of year class(bg::Sep);
python::object fourth imm = nth imm of year class(bg::Dec);

This is the point at which things get interesting. Since nth imm of year IS A year
based generator<date> we can manipulate them through a year based
generator<date> reference or pointer

ybd t& first imm = python::extract<ybd t&>(first imm );
ybd t& second imm = python::extract<ybd t&>(second imm );
ybd t& third imm = python::extract<ybd t&>(third imm );
ybd t& fourth imm = python::extract<ybd t&>(fourth imm );
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Finally, invoking the virtual function get date on these references calls out to Python for
the implementation

BOOST TEST(first imm.get date (2005) == bg::date(2005,
bg::Mar, 16));
BOOST TEST(second imm.get date (2005) == bg::date(2005,
bg::Jun, 15));
BOOST TEST(third imm.get date (2005) == bg::date(2005,
bg::Sep, 21));
BOOST TEST(fourth imm.get date (2005) == bg::date(2005,
bg::Dec, 21));

The net effect is that this shows how we can implement classes in Python and have them
behave as first-clas C++ types in C++, a very powerful technique indeed!
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the work that relates to COM specificall (argument conversions between the Win32 VARI-
ANT data-type and native Python data-types for example). The class BlackScholes
COM component exposes one function, OptionPrice, which is a wrapper around the
ppf.core.black scholes function. The intention of publishing the OptionPrice
function in the BlackScholes interface is expressed by adding the name of the function
to the class static data member public methods . Although not shown here, additional
functions that the class may have, unless added to this list, will not form part of the COM
interface offered by the class. In COM, class IDs(CLSID) are 128-bit globally unique identi-
fier (GUID) associated with COM objects. The reg clsid class data member assigns to
our class BlackScholes the value ‘14B40B3E-DC9A-4E07-A512-F65DA07BDC09’.
These CLSIDs should never be copied. Instead they can and should be generated for each new
COM component developed in the following way:

>>> import pythoncom
>>> print str(pythoncom.CreateGuid())
{1C8D8011-01D9-492A-974B-7B5CE3F3DF43}

In addition to naming COM objects by their CLSIDs, COM allows for text-based
aliases called programmatic IDs or ProgIDs. These are usually in the form library-
name.classname.version. Our class BlackScholes is assigned the ProgID given by
the value of the reg progid class variable, that is, ‘ppf.black scholes’.

If run from the command line, the main function takes care of registering the
BlackScholes component with COM (Figure 12.1). We’ll skip the details of precisely
what that involves and ultimately means, but, in short, a collection of values are written to the
Windows registry based on the information provided by the class data members just covered
that enables operating system calls at runtime to discover our BlackScholes class and
allow instances of them to be created in the calling process (COM (late-bound automation)
clients – we’ll get on to examples below).

Before we present an automation client that exercises the functionality provided by our
BlackScholes component, we will quickly cover the definitio of the OptionPrice
function. As noted earlier, it’s a simple wrapper around the ppf.core.black scholes
function. One important responsibility of the wrapper is to trap any Python exceptions that
may result from the call to the ppf.core.black scholes function and translate them
intowin32.com.server.exception.COMException exception objects. The Python
COM framework takes charge of phrasing such exceptions in terms that the calling environment
(automation clients,) can deal with. This is important since such environments will in general
know nothing about how to deal with raw Python exceptions (in fact, the code

raise COMException(
desc="ppf error : \""+str(e)+"\"", scode=0x80040201)

is creating a COMException with a custom error code).

Figure 12.1 Registering the PPF Black–Scholes COM server.
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Figure 12.2 Invoking the PPF Black–Scholes function from VBScript.

12.1.1 VBS client

COM is all about getting objects in different languages talking to each other. We’ll put that
to the test now by implementing a client of the BlackScholes server from the preceding
section in Microsoft VBScript that is intended to be executed under the Microsoft Windows
Scripting Host environment offered by the command line interpreter cscript.exe. The
code can be found in the ‘example’ directory of the code accompanying the book in the fil
‘test black scholes.vbs’.

On Error Resume Next

Dim Pricer : Set Pricer = CreateObject("ppf.black scholes")
Dim spot: spot = 42.
Dim strike: strike = 40.
Dim r: r = 0.1
Dim sig: sig = 0.2
Dim T: T= 0.5
Dim european call: european call = 1

Dim price : price = \
Pricer.OptionPrice(spot, strike, r, sig, T, european call)

If Err.Number <> 0 Then
WScript.Echo "Automation error : " & vbCr & Err.Number &

" (" & Hex(Err.Number) & ")" & vbCr & Err.Description
Err.Clear

Else
WScript.Echo price

End If

Set Pricer = Nothing

Figure 12.2 shows the result of executing the client script.

12.1.2 VBA Client

The following Microsoft Excel VBA code implements a Black–Scholes client suitable for use
in Microsoft Excel. Figure 12.3 shows an example session exercising the client on an Excel
worksheet.

Public Function PPF BlackScholes(
Spot As Double,
Strike As Double,
Rate As Double,
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Figure 12.3 Invoking the PPF Black–Scholes function from Microsoft Excel.

Vol As Double,
T As Double,
CallPut As Double) As Variant
On Error Resume Next
Dim Pricer As Object
Set Pricer = CreateObject("ppf.black scholes")
PPF BlackScholes = Pricer.OptionPrice(
Spot, Strike, Rate, Vol, T, CallPut)
If Err.Number <> 0 Then
PPF BlackScholes = "#err: " & Err.Description
Err.Clear

End If
Set Pricer = Nothing

End Function

12.2 NUMERICAL PRICINGWITH PPF IN EXCEL
Armed with the understanding of the basic principles of publishing Python COM components
from the preceding section, we now consider how we can assemble such components into a
broader example to provide numerical pricing capabilities using PPF in Excel. Specificall ,
our goal will be to enable Bermudan swaption pricing on a Hull–White lattice.

12.2.1 Common Utilities

Before going on, we will find in implementing the COM servers for this example, some
code that is common among all the servers that it is helpful to factor out (to aid clarity and
reduce unnecessary code repetition). The simple utilities presented here all reside in the the
ppf.com.utils module.

Date Conversion

The to ppf date function converts a Win32 COM date into a ppf.date time.date
representation. It is frequently used at the boundary between the COM servers and ‘pure’ ppf
Python:

def to ppf date(t):
import ppf.date time
return ppf.date time.date(t.year, t.month, t.day)
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COM Class Registration

Although no great saving as stated, the register com class function does abstract away
the details of COM server registration and provides a convenient hook for associating other
actions at the time of COM class registration in the future.

def register com class(classobj):
import win32com.server.register
win32com.server.register.UseCommandLine(classobj)

COM Exceptions

A simple function abstracting away the details of raising win32.server.exception.
COMExceptions.

def raise com exception(e):
from win32com.server.exception import COMException
raise COMException(
desc="ppf error : \""+str(e)+"\"", scode=0x80040201)

Symbol Retrieval

We will see an application for the following function in the next section. It is a function
that works as follows: given the name of a module (‘module’), the name of a class ob-
ject(‘server’), the name of a symbol (‘tag’) and the name of a dictionary (‘what’), the func-
tion attempts to retrieve the value associated with the key ‘tag’ from the dictionary module.
server. what, raising an exception in the event that the operation cannot be fulfilled

def retrieve(module, server, tag, what):
exec("from %s import %s "% (module, server))
table=eval(server+". "+what)
if not table.has key(tag):
raise RuntimeError, "\""+tag+"\" not found"

return table[tag]

12.2.2 Market Server

The firs step in numerical pricing is a need to construct the market data environment in which
to price. In this section we introduce the class MarketServer COM component, the
code for which resides in the ppf.com.market server module. The responsibility of
this component is to wrap the services provided by the ppf.market.enviromentmodule
(the ppf.market package was covered in Chapter 5) using the code:

import ppf.market import utils

class MarketServer(object):
reg progid = "ppf.market"
reg clsid = "{CAFAEEDF-E876-4DD6-9B6F-7038EDA25BCD}"
public methods = \
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[
"CreateEnvironment"

, "AddCurve"
, "AddSurface"
, "AddConstant"

]
environments = {}

retrieve = staticmethod(
lambda tag, which :
utils.retrieve(’market server’, ’MarketServer’, tag, which))

def CreateEnvironment(self, tag, t):
try:
MarketServer. environments[tag] = \

ppf.market.environment(utils.to ppf date(t))
return tag

except RuntimeError, e: utils.raise com exception(e)

def AddCurve(self, tag, name, curve, interp):
try:
import ppf.math.interpolation
interp = eval("ppf.math.interpolation."+interp)
times, factors = [x[1] for x in curve[1:]],[x[2] for x in

curve[1:]]
MarketServer.retrieve(tag, ’environments’).add curve(

str(name), ppf.market.curve(times, factors, interp))
except RuntimeError, e: utils.raise com exception(e)

def AddConstant(self, tag, name, value):
try:
MarketServer.retrieve(tag, ’environments’).add constant(

str(name), value)
except RuntimeError, e: utils.raise com exception(e)

def AddSurface(self, tag, name, expiries, tenors, values):
try:
import numpy
exp, ten = expiries[1:], tenors[1:]
surface = [x[1:] for x in values[1:]]
MarketServer.retrieve(tag,’environments’).add surface(

str(name),
ppf.market.surface(exp, ten, numpy.array-(surface)))

except RuntimeError, e: utils.raise com exception(e)

if name == " main ": utils.register com class(MarketServer)

To begin our explanation of the above code, note the existence of the class ‘static’ member
environments. This data member will be used to contain class environment in-

stances (from the ppf.market.environment module), each of which will be associated
with a user provided ‘name’. Access to the environments member is given by the class
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static method retrieve implemented easily using the ppf.com.utils.retrieve
function, the Python built in staticmethod function and partial function application
achieved with a λ expression (isn’t Python wonderfully expressive?). The retrievemethod
is not part of the COM interface of class MarketServer, it is there for interaction
between the servers, on the Python side. The use of a class static data member to hold the
environments makes the design of class MarketServer an example of a ‘mono-state’
pattern; all instances share the same state and are therefore equivalent. Excepting the re-
trieve function, the remaining methods of class MarketServer satisfy its COM
interface.

CreateEnvironment

The CreateEnvironment method takes a user-supplied name for an environment, a
COM date (the pricing date for the market), creates an empty class environment
instance, stores it in the environments dictionary for later retrieval and simply re-
turns the user provided name for the environment to indicate success. Should the opera-
tion fail for any reason, the Python exception is caught and a COM exception raised by
means of the ppf.com.utils.raise com exception function. This exception han-
dling idiom at the Python/COM boundary (explained in section 12.1) will be the same
for every COM interface method and we will refrain from remarking on it again going
forward.

AddCurve

The AddCurve function ‘injects’ a user-supplied curve into the named market environment.
We will look at this function in a little more detail:

def AddCurve(self, tag, name, curve, interp):
try:
import ppf.math.interpolation
interp = eval("ppf.math.interpolation."+interp)
times, factors = [x[1] for x in curve[1:]],[x[2] for x in

curve[1:]]
MarketServer.retrieve(tag, ’environments’).add curve(

str(name), ppf.market.curve(times, factors, interp))
except RuntimeError, e: utils.raise com exception(e)

The tag parameter indicates the name of the environment in which the curve is to be stored.
The interp parameter is a ppf.math.interpolation class name: one of linear,
loglinear, linear on zero, linear on variance or cubic spline. The as-
signment

interp = eval("ppf.math.interpolation."+interp)

attempts to retrieve the ppf.math.interpolation module class object corresponding
to the given string.

The statement,

times, factors = [x[1] for x in curve[1:]],[x[2] for x in
curve[1:]]
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might at firs seem a little cryptic. From the COM client’s perspective, the curve is provided
as a two-column array. As we will see later, VBA code to construct the curve would read
something like:

Dim V As Variant
Dim N As Integer: N = Curve.Rows.Count
ReDim V(N, 2)
Dim I As Integer
For I = 1 To N
V(I, 1) = Curve(I, 1).Value
V(I, 2) = Curve(I, 2).Value

Next I

On the server side, however, what arrives in Python from the PythonCOM framework will
actually be a 3-column array, something similar to the following example:

((None, None, None),
(None, 0.0, 1.0),
(None, 0.5, 0.97530991202833262),
(None, 1.0, 0.95122942450071402),
(None, 1.5, 0.92774348632855286),
(None, 2.0, 0.90483741803595952),
(None, 3.0, 0.86070797642505781),
(None, 4.0, 0.81873075307798182),
(None, 5.0, 0.77880078307140488),
(None, 6.0, 0.74081822068171788),
(None, 7.0, 0.70468808971871344),
(None, 8.0, 0.67032004603563933),
(None, 9.0, 0.63762815162177333),
(None, 10.0, 0.60653065971263342),
(None, 11.0, 0.57694981038048665))

In order to get the required data out of the incoming curve it is necessary to ‘skip’ the firs
row, and the firs column.

Assuming the preceding operations all succeed,

MarketServer.retrieve(tag, ’environments’).add curve(
str(name), ppf.market.curve(times, factors, interp))

retrieves the named environment from the MarketServer class object by means of its static
retrieve function, a new ppf.market.curve instance is created and is installed into
the environment. One slight but important detail should be mentioned; the presence of invoking
the built-in str function on the name argument in the call to the class environment
add curve function. The reason for this is that the name argument is a Unicode string,
whereasppf traffic in regular ASCII strings. Invokingstr handles the necessary ‘narrowing’
conversion.

AddConstant

The explanation of AddCurve above was necessarily lengthy; a great deal of de-
tail was covered. The AddConstant function which injects a named constant into
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a given enviroment,

def AddConstant(self, tag, name, value):
try:
MarketServer.retrieve(tag, ’environments’).add constant(

str(name), value)
except RuntimeError, e: utils.raise com exception(e)

should now be readily understandable.

AddSurface

The AddSurface function uses all the tricks uncovered in the explanation of the AddCurve
method (see subsection 12.2.2):

def AddSurface(self, tag, name, expiries, tenors, values):
try:
import numpy
exp, ten = expiries[1:], tenors[1:]
surface = [x[1:] for x in values[1:]]
MarketServer.retrieve(tag,’environments’).add surface(

str(name),
ppf.market.surface(exp, ten, numpy.array-(surface)))

except RuntimeError, e: utils.raise com exception(e)

In this function, exp is an array of M expiries (in years), tenors an array of N tenors (in
days) and surface the surface data as an M × N array. Figure 12.4 shows how the data for
the surface might be arranged in an Excel worksheet.

Figure 12.4 Adding a surface to a market environment.
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Market VBA Client

The foregoing section detailed the workings of the COM object known by the ProgID
‘ppf.market’. What remains is client code on the Excel VBA side to exercise its function-
ality.

It seems fair to assume that readers with interest in this chapter are familiar with Excel and
Excel VBA, so we will make little comment on the example VBA code presented here.

PPF CreateMarketEnvironment This function calls out to the class Market-
Server CreateEnvironment method to construct and register an empty
ppf.market.environment.environment instance.

Public Function
PPF CreateMarketEnvironment(

Tag As String
, T As Date) As String

’Create a ppf market data environment
’
On Error Resume Next
Dim MarketServer As Object
Set MarketServer = CreateObject("ppf.market")
PPF CreateMarketEnvironment =
MarketServer.CreateEnvironment- (Tag, T)

If Err.Number <> 0 Then
PPF CreateMarketEnvironment = "#err: " & Err.Description

End If
Set MarketServer = Nothing

End Function

PPF AddCurve

This function calls out to the class MarketServer AddCurve method to register a
user-define curve in a previously constructed environment.

Public Function
PPF AddCurve(

Market As String
, Name As String
, Curve As Variant
, Interp As String) As Variant
’Add a curve to a ppf market data environment
’
On Error Resume Next
Dim MarketServer As Object
Dim N As Integer: N = Curve.Rows.Count
If Curve.Columns.Count <> 2 Then
PPF AddCurve = "#err: invalid argument"
Exit Function

End If
Dim V As Variant
ReDim V(N, 2)
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Dim I As Integer
For I = 1 To N
V(I, 1) = Curve(I, 1).Value
V(I, 2) = Curve(I, 2).Value

Next I
Set MarketServer = CreateObject("ppf.market")
Call MarketServer.AddCurve(Market, Name, V, Interp)
If Err.Number <> 0 Then
PPF AddCurve = "#err: " & Err.Description

Else
PPF AddCurve = True

End If
Set MarketServer = Nothing

End Function

PPF AddConstant

This function calls out to the class MarketServer AddConstant method to register
a user constant in a previously constructed environment.

Public Function
PPF AddConstant(

Market As String
, Name As String
, Value As Double) As Variant
’Add a constant to a ppf market data environment
’
On Error Resume Next
Dim MarketServer As Object
Set MarketServer = CreateObject("ppf.market")
Call MarketServer.AddConstant(Market, Name, Value)
If Err.Number <> 0 Then
PPF AddConstant = "#err: " & Err.Description

Else
PPF AddConstant = True

End If
Set MarketServer = Nothing

End Function

PPF AddSurface

This function calls out to the class MarketServer AddSurface method to register a
user-define surface in a previously constructed environment.

Public Function
PPF AddSurface(

Market As String
, Name As String
, Expiries As Variant
, Tenors As Variant
, Surface As Variant)
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’Add a surface to a ppf market data environment
’
On Error Resume Next
Dim NumExp As Integer: NumExp = Expiries.Rows.Count
Dim NumTen As Integer: NumTen = Tenors.Columns.Count
If Surface.Rows.Count <> NumExp Or

Surface.Columns.Count <> NumTen Then
PPF AddSurface = "#err: invalid argument"

End If
Dim Exp As Variant
ReDim Exp(NumExp)
Dim I, J As Integer
For I = 1 To NumExp
Exp(I) = Expiries(I).Value

Next I
Dim Ten As Variant
ReDim Ten(NumTen)
For I = 1 To NumTen
Ten(I) = Tenors(1, I).Value

Next I
Dim Values As Variant
ReDim Values(NumExp, NumTen)
For I = 1 To NumExp
For J = 1 To NumTen

Values(I, J) = Surface(I, J).Value
Next J

Next I
Dim MarketServer As Object
Set MarketServer = CreateObject("ppf.market")
Call MarketServer.AddSurface(Market, Name, Exp, Ten, Values)
If Err.Number <> 0 Then
PPF AddSurface = "#err : " & Err.Description

Else
PPF AddSurface = True

End If
Set MarketServer = Nothing

End Function

12.2.3 Trade Server

Having constructed a market, the next step in numerical pricing is to describe the trade
to be priced. This section outlines the class TradeServer COM component. The
code in this section can be found in the ppf.com.trade server module. Instances
of this type wrap the services offered up by the ppf.core module, specificall those re-
lating to the ppf trade data model (this functionality was explained in Chapter 6). The
code is:

import ppf.core
import ppf.pricer.payoffs
import ppf.date time
import utils
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class TradeServer(object):
reg progid = "ppf.trade"
reg clsid = "{E33DA322-B011-4FE9-8AB9-87A964EDD046}"
public methods = \
[

"GenerateFixedCouponObservables"
, "GenerateLiborObservables"

, "GenerateFlows"
, "GenerateAdjuvantTable"

, "GenerateExerciseSchedule"
, "CreateLeg"

, "CreateTrade"
]
observables = {}
flows = {}
adjuvants = {}
legs = {}
exercises = {}
trades = {

retrieve = staticmethod(
lambda tag, which :
utils.retrieve(’trade server’, ’TradeServer’, tag, which))

def GenerateFixedCouponObservables(
self
, tag
, start
, end
, roll period
, roll duration
, reset currency
, coupon shift method
, coupon rate):

try:
observables = \
ppf.core.generate fixed coupon observables(

start=utils.to ppf date(start)
, end=utils.to ppf date(end)
, roll period=roll period
, roll duration=eval("ppf.date time."+roll duration)
, reset currency=reset currency
, coupon shift method=

eval( \
"ppf.date time.shift convention."+coupon shift method)

, coupon rate=coupon rate)
TradeServer. observables[tag] = observables
return tag

except RuntimeError, e: utils.raise com exception(e)

def GenerateLiborObservables(
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self
, tag
, start
, end
, roll period
, roll duration
, reset period
, reset duration
, reset currency
, reset basis
, reset shift method):

try:
observables = \
ppf.core.generate libor observables(

start=utils.to ppf date(start)
, end=utils.to ppf date(end)
, roll period=roll period
, roll duration = eval("ppf.date time."+roll duration)
, reset period = reset period
, reset duration = eval("ppf.date time."+reset duration)
, tenor period = reset period
, tenor duration = eval("ppf.date time."+reset duration)
, reset currency=reset currency
, reset basis = eval("ppf.date time."+reset basis)
, reset shift method=eval( \

"ppf.date time.shift convention."+reset shift method)
, reset lag = 0)

TradeServer. observables[tag] = observables
return tag

except RuntimeError, e: utils.raise com exception(e)

def GenerateFlows(
self
, tag
, start
, end
, period
, duration
, pay currency
, pay shift method
, accrual basis
, observables):

try:
flows = ppf.core.generate flows(

start=utils.to ppf date(start)
, end=utils.to ppf date(end)
, duration=eval("ppf.date time."+duration)
, period=period
, pay shift method=eval(\

"ppf.date time.shift convention."+pay shift method)
, pay currency=pay currency
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, accrual basis=eval("ppf.date time."+accrual basis)
, observables=TradeServer.retrieve(observables,
’observables’))

TradeServer. flows[tag] = flows
return tag

except RuntimeError, e: utils.raise com exception(e)

def GenerateAdjuvantTable(
self
, tag
, items
, tens
, vals
, start
, roll period
, roll duration
, shift method):

try:
import numpy
adjuvants = \

ppf.core.generate adjuvant table(
items[1:]

, [int(t) for t in tens[1:]]
, numpy.array([x[1:len(vals[0])] for x in vals[1:]])
, utils.to ppf date(start)
, rol period=roll period
, roll duration=eval("ppf.date time."+roll duration)
, shift method=eval(\

"ppf.date time.shift convention."
+shift method))

TradeServer. adjuvants[tag] = adjuvants
return tag

except RuntimeError, e: utils.raise com exception(e)

def GenerateExerciseSchedule(
self
, tag
, start
, end
, period
, duration
, shift method):

try:
sched = \
ppf.core.generate exercise table(

start = utils.to ppf date(start)
, end = utils.to ppf date(end)
, period = period
, duration = eval("ppf.date time."+duration)
, shift method = eval("ppf.date time.shift convention."

+shift method))
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TradeServer. exercises[tag] = sched
return tag

except RuntimeError, e:
utils.raise com exception(e)

def CreateLeg(
self
, tag
, flows
, pay or receive
, adjuvant table
, payoff):
try:
adjuvants = None
if adjuvant table:

adjuvants = TradeServer.retrieve(adjuvant table, ’adjuvants’)
leg = \

ppf.core.leg(
TradeServer.retrieve(flows, ’flows’)
, eval("ppf.core."+pay or receive)
, adjuvants
, eval("ppf.pricer.payoffs."+payoff)())

TradeServer. legs[tag] = leg
return tag

except RuntimeError, e: utils.raise com exception(e)

def CreateTrade(
self
, tag
, legs
, exercise sched
, exercise type):
try:
tl = [TradeServer.retrieve(l, ’legs’) for l in legs[1:]]
if exercise sched:

exercises = TradeServer.retrieve(exercise sched, ’exercises’)
if not exercise type:

raise RuntimeError, "missing exercise type"
call cancel = eval("ppf.core.exercise type."+exercise type)
trade = ppf.core.trade(tl, (exercises, call cancel))

else:
trade = ppf.core.trade(tl, None)

TradeServer. trades[tag] = trade
return tag

except RuntimeError, e: utils.raise com exception(e)

if name == " main ": utils.register com class(TradeServer)

Subsection 12.2.2 covers the details of what needs to be known to ‘technically’ understand
the above code, so this section need not be as detailed from that perspective.
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As is the case for class MarketServer, the class TradeServer implementation
follows a ‘mono-state’ idiom. Unlike, class MarketServer, however, class Trade-
Server maintains multiple dictionaries in its class object state

observables = {} #observable collections
flows = {} #flow collections
adjuvants = {} #adjuvant tables
legs = {} #trade legs
exercises = {} #exercise schedules
trades = {} #trades

As for class MarketServer, class TradeServer offers a static method for inter-
module retrieval of data from these dictionaries.

As for the COM interface, GenerateFixedCouponObservables rolls out strips
of fi ed coupons, whereas GenerateLiborCouponObservables rolls out strips of
LIBORs (it’s left as an exercise to the reader to write the function that rolls out strips of swap
rate observables). GenerateFlows rolls out fl ws with observable collections folded in.
GenerateAdjuvantTable and GenerateExerciseSchedule provide the means
of constructing adjuvant tables (refer to section 6.3) and exercise schedules respectively.
Finally,CreateLeg assembles a fl w collection, a user-provided payoff string and potentially
an adjuvant table into a trade leg (the payoff string needs to map to a class name in the
ppf.pricer.payoffs module such as, fixed leg payoff, float leg payoff
for example). Finally, legs and perhaps an associated exercise schedule can be aggregated
into trades with the CreateTrade method. Figure12.5 shows how the data for describing a
Bermudan swaption might be laid out in an Excel worksheet.

Trade VBA Client

The following shows example client code for interfacing to the ‘ppf.trade’ COM object.

Figure 12.5 Creating a Bermudan swaption.
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PPF GenerateFixedCouponObservables This function calls out to the class Trade-
Server GenerateFixedCouponObservables method to create and register observ-
ables to underly a fi ed trade leg.

Public Function
PPF GenerateFixedCouponObservables(

Tag As String
, Begin As Date
, Finish As Date
, Period As Integer
, Duration As String
, Ccy As String
, Shift As String
, Rate As Double) As String
’Generate a ppf fixed coupon observable sequence
’
On Error Resume Next
Dim TradeServer As Object
Set TradeServer = CreateObject("ppf.trade")
PPF GenerateFixedCouponObservables =

TradeServer.GenerateFixedCouponObservables(
Tag

, Begin
, Finish
, Period
, Duration
, Ccy
, Shift
, Rate)

If Err.Number <> 0 Then
PPF GenerateFixedCouponObservables = "#err : " & Err.Description

End If
Set TradeServer = Nothing

End Function

PPF GenerateLiborObservables This function calls out to the class TradeServer
GenerateLiborObservables method to create and register the observables to underly
a funding trade leg.

Public Function
PPF GenerateLiborObservables(

Tag As String
, Begin As Date
, Finish As Date
, RollPeriod As Integer
, RollDuration As String
, ResetPeriod As Integer
, ResetDuration As String
, ResetCcy As String
, ResetBasis As String
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, ResetShift As String) As String
’Generate a ppf libor observable sequence
’
On Error Resume Next
Dim TradeServer As Object
Set TradeServer = CreateObject("ppf.trade")
PPF GenerateLiborObservables =
TradeServer.GenerateLiborObservables(

Tag
, Begin
, Finish
, RollPeriod
, RollDuration
, ResetPeriod
, ResetDuration
, ResetCcy
, ResetBasis
, ResetShift)

If Err.Number <> 0 Then
PPF GenerateLiborObservables = "#err : " & Err.Description

End If
Set TradeServer = Nothing

End Function

PPF GenerateAdjuvantTable This function calls out to the class TradeServer
GenerateAdjuvantTable method to build and register an adjuvant table.

Public Function
PPF GenerateAdjuvantTable(

Tag As String
, Items As Variant
, Tenors As Variant
, Values As Variant
, Start As Date
, RollPeriod As Integer
, RollDuration As String
, ShiftConv As String) As String
’Generate a ppf adjuvant table
’
On Error Resume Next
Dim TradeServer As Object
Set TradeServer = CreateObject("ppf.trade")
Dim K As Integer
K = Items.Rows.Count
If Items.Columns.Count <> 1 Then
PPF GenerateAdjuvantTable = "#err : " & "invalid argument"
Exit Function
End If
Dim Keys As Variant
ReDim Keys(K)
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Dim I, J As Integer
For I = 1 To K
Keys(I) = Items(I).Value

Next I
Dim M, N As Integer
M = Values.Rows.Count
N = Values.Columns.Count
If M <> K Then
PPF GenerateAdjuvantTable = "#err : " & "invalid argument"
Exit Function
End If
Dim Vals As Variant
ReDim Vals(M, N)
For I = 1 To M
For J = 1 To N

Vals(I, J) = Values(I, J).Value
Next J

Next I
If Tenors.Rows.Count > 1 Or Tenors.Columns.Count <> N Then
PPF GenerateAdjuvantTable = "#err : " & "invalid argument"
Exit Function
End If
Dim Tens As Variant
ReDim Tens(N)
For J = 1 To N
Tens(J) = Tenors(J).Value

Next J
PPF GenerateAdjuvantTable =

TradeServer.GenerateAdjuvantTable(
Tag

, Keys
, Tens
, Vals
, Start
, RollPeriod
, RollDuration
, ShiftConv)

If Err.Number <> 0 Then
PPF GenerateAdjuvantTable = "#err : " & Err.Description

End If
Set TradeServer = Nothing

End Function

PPF GenerateFlows This function calls out to the class TradeServer Generate-
Flows method to create and register a fl w collection.

Public Function
PPF GenerateFlows(

Tag As String
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, Begin As Date
, Finish As Date
, Period As Integer
, Duration As String
, Ccy As String
, Shift As String
, Basis As String
, Observables As String) As String
’Generate a ppf flow sequence
’
On Error Resume Next
Dim TradeServer As Object
Set TradeServer = CreateObject("ppf.trade")
PPF GenerateFlows =
TradeServer.GenerateFlows(

Tag
, Begin
, Finish
, Period
, Duration
, Ccy
, Shift
, Basis
, Observables)

If Err.Number <> 0 Then
PPF GenerateFlows = "#err : " & Err.Description

End If
Set TradeServer = Nothing

End Function

PPF GenerateExerciseSchedule This function calls out to the class Trade-
Server GenerateExerciseSchedule method to create and register an exercise
schedule.

Public Function
PPF GenerateExerciseSchedule(

Tag As String
, Begin As Date
, Finish As Date
, Period As Integer
, Duration As String
, Shift As String) As String
’Generate a ppf exercise schedule
’
On Error Resume Next
Dim TradeServer As Object
Set TradeServer = CreateObject("ppf.trade")
PPF GenerateExerciseSchedule =
TradeServer.GenerateExerciseSchedule(

Tag
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, Begin
, Finish
, Period
, Duration
, Shift)

If Err.Number <> 0 Then
PPF GenerateExerciseSchedule = "#err : " & Err.Description

End If
Set TradeServer = Nothing

End Function

PPF CreateLeg This function calls out to the class TradeServer CreateLeg func-
tion to create and register a trade leg.

Public Function
PPF CreateLeg(

Tag As String
, Flows As String
, PayOrReceive As String
, AdjuvantTable As Variant
, Payoff As String) As String
’Create a ppf trade leg
’
On Error Resume Next
Dim TradeServer As Object
Set TradeServer = CreateObject("ppf.trade")
If IsMissing(AdjuvantTable) Then
PPF CreateLeg =
TradeServer.CreateLeg(

Tag
, Flows
, PayOrReceive
, Nothing
, Payoff)

Else
PPF CreateLeg =
TradeServer.CreateLeg(

Tag
, Flows
, PayOrReceive
, CStr(AdjuvantTable)
, Payoff)

End If
If Err.Number <> 0 Then
PPF CreateLeg = "#err : " & Err.Description

End If
Set TradeServer = Nothing

End Function
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PPF CreateTrade This function calls out to the class TradeServer CreateTrade
method to create and register a trade.

Public Function
PPF CreateTrade(

Tag As String
, Leg1 As String
, Leg2 As String
, ExerciseSched As Variant
, ExerciseType As Variant) As String
’Create a ppf trade
’
On Error Resume Next
Dim TradeServer As Object
Set TradeServer = CreateObject("ppf.trade")
Dim Legs(2) As String
Legs(1) = Leg1: Legs(2) = Leg2
If IsMissing(ExerciseSched) Then
PPF CreateTrade =

TradeServer.CreateTrade(
Tag

, Legs
, Nothing
, Nothing)

Else
PPF CreateTrade =

TradeServer.CreateTrade(
Tag

, Legs
, CStr(ExerciseSched)
, CStr(ExerciseType))

End If
If Err.Number <> 0 Then
PPF CreateTrade = "#err : " & Err.Description

End If
Set TradeServer = Nothing

End Function

12.2.4 Pricer Server

We are very close to achieving the goal as stated in the opening to this section, that is, pricing
Bermudans on a Hull–White lattice from Excel.

The last component to consider is the class PricerServer, the code for which can
be found in the ppf.com.pricer server module:

import ppf.model
import ppf.pricer
import utils

class PricerServer(object):
reg progid = "ppf.pricer"
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reg clsid = "{08632905-0B63-45B5-B388-30C73CAE611C}"
public methods = \
[

"CreateHullWhiteLatticePricer"
, "InvokePricer"

]
pricers = {}

retrieve = staticmethod(
lambda tag, which :
utils.retrieve(’pricer server’, ’PricerServer’, tag, which))

def CreateHullWhiteLatticePricer(
self
, tag
, trade id
, env id
, num states
, num std dev):

try:
from trade server import TradeServer
from market server import MarketServer
trade = TradeServer.retrieve(trade id, ’trades’)
env = MarketServer.retrieve(env id, ’environments’)
model args = {"num states": num states, "num std dev":
num std dev}
factory = ppf.model.hull white lattice model factory()
model = factory(trade, env, model args)
pricer = ppf.pricer.lattice pricer(trade, model, env, None)
PricerServer. pricers[tag] = pricer
return tag

except RuntimeError, e: ppf.com.utils.raise com exception(e)

def InvokePricer(self, tag):
try:
return PricerServer.retrieve(tag, ’pricers’). call ()

except RuntimeError, e: utils.raise com exception(e)

if name == " main ": utils.register com class(PricerServer)

The explanations provided by the earlier sections should make the above code self-explanatory
rendering further comment unnecessary. Figure 12.6 shows an example session pricing a
Bermudan in an Excel session.

Pricer VBA Client

Here is the example client code for interfacing to the ‘ppf.pricer’ COM object.

PPF HullWhiteLatticePrice The function for obtaining the price of a trade via the
Hull–White model on a lattice.
Public Function
PPF HullWhiteLatticePrice(
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Figure 12.6 Pricing a berm.

Tag As String
, trade As String
, Env As String
, NumStates As Integer
, NumStdDevs As Double) As Variant
’Price trade on a Hull-White lattice
’
On Error Resume Next
Dim PricerServer As Object
Set PricerServer = CreateObject("ppf.pricer")
PPF HullWhiteLatticePrice =
PricerServer.InvokePricer(

PricerServer.CreateHullWhiteLatticePricer(
Tag

, trade
, Env
, NumStates
, NumStdDevs))

If Err.Number <> 0 Then
PPF HullWhiteLatticePrice = "#err : " & Err.Description

End If
Set PricerServer = Nothing

End Function
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the existence of a fil ‘hello world.py’ (file containing Python script by convention have a
‘.py’ suffix) we might execute it like so:

c:\Documents and Settings\PythonUser>python hello world.py

A.2 BASIC PYTHON
A.2.1 Simple Expressions

The Python interpreter can be used like a calculator to evaluate numerical expressions:

>>> 1 + 2 + 3
6

Number valued expressions in Python are of integer or floatin point type:

>>> 22/7
3
>>> 22/7.0
3.1428571428571428
>>>

String literal expressions are values too:

>>> "Hello world!"
’Hello world!’
>>> "Goodbye cruel" + "world."
’Goodbye cruel world.’
>>>

In the last example, we made use of the string concatenation operator ‘+’ to concatenate two
string literal expressions into one.

The value of an expression can be associated with a variable using the assignment operator
denoted ‘=’:

>>> x = 1 + 2 + 3

Doing so means the evaluation of the named expression can be referred to again later:

>>> print x - 6
0

Assigning a new expression to an existing variable causes the expression the variable was
associated with to be discarded and the variable to become associated with the new expression
instead:

>>> bar = "baz"
>>> print bar
baz
>>> bar = 42
>>> print bar
42
>>>
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Comments are indicated by a ‘#’ and are ignored by the interpreter:

>>> #this is a comment!
...
>>>

A.2.2 Built-in Data Types

We have seen that natively Python supports integers, floatin point values and character
strings. Python also natively provides incredibly useful heterogeneous container types. The
firs of these is the tuple. A tuple is a fi ed collection of values and can be constructed using
parentheses like this:

>>> t = (1, 2, "foo")
>>> print t
(1, 2, ’foo’)
>>>

Naturally, tuples can contain values of any type including tuples:

>>> s = (t, t, (t,))
>>> print s
((1, 2, ’foo’), (1, 2, ’foo’), ((1, 2, ’foo’),))
>>>

The value at the ith position of a tuple can be retrieved like this:

>>> print t[0]
1
>>> print t[1]
2
>>> print t[2]
foo
>>> print t[3] #uh-oh...
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: tuple index out of range
>>>

Tuples can be used to assign to multiple values very concisely:

>>> x,y,z=t
>>> print "%d,%d,%s" %(x, y, z)
1,2,foo

Tuples are immutable which means a tuple value may not be modified

>>> t[0]=10
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: ’tuple’ object does not support item assignment
>>>
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In fact, integers, floats strings and tuples are all immutable types.
When a mutable sequence is needed, Python steps in with its list type. Lists are created

using square brackets like this:

>>> l = [1, 1.0, "one"]
>>> print l
[1, 1.0, ’one’]
>>>

Lists contain values of any type (built-in or user-defined including of course, tuples and lists.

>>> m = [l, t]
>>> print m
[[1, 1.0, ’one’], (1, 2, ’foo’)]
>>>

Lists as mentioned are a mutable type:

>>> l[0], l[1], l[2] = (2, 2.0, ’two’)
>>> print l
[2, 2.0, ’two’]
>>>

Be careful! Because lists are not immutable one needs to be mindful of side-effects resulting
from aliasing:

>>> ll = l
>>> ll[0] = 3
>>> print l
[3, 2.0, ’two’]
>>>

Do you see what’s happened there? The value referred to by l was modifie through an
alias ll.

Now, Python has very powerful constructs for creating lists termed list comprehensions:

>>> u = [i for i in range(10)]
>>> print u
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> v = [i*i for i in u]
>>> print v
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> print [x for x in v if x > 25]
[36, 49, 64, 81]

List comprehensions are very much worth findin out about as early as possible.
Data structures commonly known as associative arrays in other programming languages are

termed dictionaries in Python. They are arrays accessed by keys where each key is associated
with a value. An empty dictionary is denoted ‘{}’:

>>> d = {}
>>> print d
{}
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A non-empty dictionary can be created by passing a sequence of key-value pairs like this:

>>> d = {"1":1, "2":2, "3":3}
>>> print d
{’1’: 1, ’3’: 3, ’2’: 2}

Naturally, dictionary values may be of any type, including lists and tuples:

>>> d["list"] = l
>>> d["tuple"] = t
>>> print d
{’1’: 1, ’3’: 3, ’2’: 2, ’list’: [1, 1.0, ’one’],
’tuple’: (1, 2, ’foo’)}

Any immutable type will serve for a dictionary key including tuples (as long as the values of
the tuple are themselves all immutable):

>>> m = {(1, 2, 3):"a tuple"}
>>> print m
{(1, 2, 3): ’a tuple’}
>>>

As previously noted, lists are not immutable:

>>> m = {[1, 2, 3]:"a list"}
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: list objects are unhashable
>>>

A.2.3 Control Flow Statements

Let’s start with simple iteration using the Python for statement:

>>> for i in range(10):
... print i
...
0
1
2
3
4
5
6
7
8
9
>>>

Encountered earlier in this piece but not described is the function range. Maybe it’s better
to delegate explanation to the doc-string for range like this:

>>> help(range)
Help on built-in function range in module builtin :
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range(...)
range([start,] stop[, step]) -> list of integers

Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1]; start (!) defaults
to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) returns [0, 1, 2, 3]. The end point is
omitted!
These are exactly the valid indices for a list of 4 elements.

>>>

Now returning to our understanding of the for statement example above:

>>> for i in range(10):
... print i
...

Note how the print i is indented relative to the preceding line (for i in ...). This is
significant That is, white space is significan in Python and its use indicates where different
parts of statements begin and end much like the use of ‘{’ and ‘}’ in C/C++. To illustrate
further, here’s a more involved snippet:
>>> for i in range(0, 2):
... print i
... for j in range(0, 10):
... print " %d" % (j)
... print
...
0
0
1
2
3
4
5
6
7
8
9
1
0
1
2
3
4
5
6
7
8
9
>>>
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Dropping back a level of indentation in line 5 of the above indicated that the print statement
written there was not part of the inner loop body (the inner for statement had reached its
conclusion).
for statements are more general than just the ability to iterate through a sequence of

integers:

>>> print l
[3, 2.0, ’two’]
>>> for obj in l:
... print obj
...
3
2.0
two
>>>

More general iterations can be performed with the while statement:

>>> i = 0
>>> while i < 10:
... print i
... i += 1
...
0
1
2
3
4
5
6
7
8
9
>>>

Conditional statements are used to choose one branch of code or another depending on the
value of an expression:

>>> i = 0
>>> while(i < 10):
... i += 1
... if i % 2:
... print "%d is idd" % i
... else:
... print "%d is even" % i
...
1 is odd
2 is even
3 is odd
4 is even
5 is odd
6 is even
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7 is odd
8 is even
9 is odd
10 is even
>>>

A.2.4 Functions

The most basic unit of software in Python is the function. A function is a portion of code within
a larger program which performs a specifi task or computation relatively independently of
the rest of the program.

Functions in Python are define using the def statement and, as seen earlier, indentation
determines where they begin and end:

>>> def square(x):
... return x*x
...
>>> def cube(x):
... return x*square(x)
...
>>> print square(4)
16
>>> print cube(4)
64
>>>

When a function by its nature has multiple return values, a tuple can be used to aggregate
them:

>>> def square and cube(x):
... return (square(x), cube(x))
...
>>> print square and cube(4)
(16, 64)
>>>

Where mutable data-types are involved, beware of the potential for side-effects:

>>> def foo(l):
... l[0] = 12
...
>>> l = [1, 2, 3]
>>> foo(l)
>>> print l
[12, 2, 3]
>>>

In general, it’s probably good advice to avoid programming in this fashion. Explicit is better
than implicit:

>>> def foo(l):
... m = l[:] # use slicing to make a (deep) copy of l
... m[0] = 12
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... return m

...
>>> l = [1, 2, 3]
>>> m = foo(l)
>>> print l
[1, 2, 3]
>>> print m
[12, 2, 3]
>>>

A.2.5 Classes

There’s not much you can’t do with the built-in Python types (primitives, tuples, lists and
dictionaries). Programs, though, are typically written once and read again many, many times.
The programmer should strive hard to convey the meaning of the program to the human reader
as much as he/she possibly can. Tuples, lists and dictionaries by themselves do little to aid
semantic comprehension of the data elements of a program and that realisation has inspired
grouping of related data elements into user-definabl aggregate structures from at least as far
back in time as Pascal’s user-define record data-type. Python permits the programmer to
defin his/her own types together with operations (in Python terminology – methods,) that
operate on instances of these class types.

The most simple class in Python can be written like this:

>>> class empty(object):
... pass
...
>>> e=empty()

This isn’t a very rich type but it is a type nonetheless. Here’s another user-define class that
is a bit more interesting:

>>> class person(object):
... def init (self, age, name):
... self.age = age
... self.name = name
...
>>> p = person(25, "John Doe")
>>> print p.age
25
>>> print p.name
John Doe
>>>
>>> print type(p)
< class ’ main .person’>

The benefit of improved semantic comprehensibility via the abstraction of the above person
p over the representation (25, "John Doe") can be augmented even further with class
methods:

>>> class person(object):
... def init (self, age, name):
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... self.age = age

... self.name = name

... def birth year(self, current year):

... return current year - (self.age + 1)

...
>>> p = person(25, "John Doe")
>>> print p.birth year(2008)
1982

Classes can be used to model IS A relationships (inheritance):

>>> class employee(person):
... def init (self, age, name, salary):
... person. init (self, age, name)
... self.salary = salary
... def earns(self):
... return self.salary
...
>>> e = employee(25, "John Doe", 15000)
>>> print e.birth year(2008)
1982
>>> print e.earns()
15000
>>>

Notice how the methods of the person class are inherited by the employee class. That is,
an employee can be substituted for wherever the context calls for a person. Note that any
method in a base class can be overriden in a derived class:

>>> class manager(employee):
... def init (self, name, age, salary):
... employee. init (self, name, age, salary)
... def earns(self):
... raise RuntimeError, "This operation is restricted"
...
>>> m = manager(25, "John Doe", 20000)
>>> print m.age
25
>>> print m.name
John Doe
>>> print m.birth year(2008)
1982
>>> print m.earns()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 5, in earns

RuntimeError: This information is restricted
>>>
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Unlike C++ with its notion of private, protected and public access mechanisms,
everything in a class is publicly accessible and due to Python’s dynamic nature the definitio
of a class can even be changed during execution of the script(!):

>>> def salary(mgr):
... return mgr.salary
...
>>> print salary(m)
20000
>>> manager.earns = salary
>>> print m.earns()
20000
>>>

Programming with classes is ubiquitous in Python and this section just covers the basics.
The newcomer to Python is recommended to take the time to become more familiar with them
early on.

A.2.6 Modules and Packages

A module is a lexical unit of Python code stored in a fil on disk. Let us suppose the existence
of a fil ‘complex.py’ with contents something like the following:

class complex(object):
def init (self, re, im):
self.re, self.im = (re, im)

def real part(self):
return self.re

def imag part(self):
return self.im

def str (self):
return "%f + %fi" % (self.re, self.im)

def add (self, other):
return complex(self.re + other.re, self.im + other.im)

# ...

def conjugate(x):
return complex(x.real part(), -x.imag part())

# ...

We can use the Python import directive to bring all of the type declarations and function
definition define in ‘complex.py’ into the current scope like this:

>>> from complex import *
>>> i = complex(0, 1)
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>>> print i
0.000000 + 1.000000i
>>> print conjugate(i)
0.000000 + -1.000000i
>>> print i + conjugate(i)
0.000000 + 0.000000i
>>>

We can import symbols into the current scope more selectively using different syntactic
forms of the import directive:

>>> from sys import path # sys is a built-in module
>>> import pprint # so is pprint
>>> pprint.pprint(path)
[’’,
’C:\\WINDOWS\\system32\\python25.zip’,
’C:\\Python25\\DLLs’,
’C:\\Python25\\lib’,
’C:\\Python25\\lib\\plat-win’,
’C:\\Python25\\lib\\lib-tk’,
’C:\\Python25’,
’C:\\Python25\\lib\\site-packages’,
’C:\\Python25\\lib\\site-packages\\win32’,
’C:\\Python25\\lib\\site-packages\\win32\\lib’,
’C:\\Python25\\lib\\site-packages\\Pythonwin’]
>>>

Notice that the last form of the import directive required that we prefi our invocation of the
pprint function with the name of the module in which it resides (i.e module pprint).

A more extensive library for complex numbers would offer different representations. Imag-
ine now a directory called ‘complex’ with two files ‘cartesian.py’ and ‘polar.py’. The contents
of ‘cartesian.py’ define the class complex as before:

class complex(object):
def init (self, re, im):

self.re, self.im = (re, im)

def real part(self):
return self.re

def imag part(self):
return self.im

def str (self):
return ""%f + %fi" % (self.re, self.im)

def add (self, other):
return complex(self.re + other.re, self.im + other.im)

# ...

def conjugate(x):
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return complex(x.real part(), -x.imag part())

# ...

The contents of ‘polar.py’ define a different representation for class complex:

class complex(object):
def init (self, a, theta):

self.a = a
self.theta = theta

def str (self):
return "%fe ˆi (%f)" % (self.a, self.theta)

# ...

We create a third fil in the ‘complex’ directory, ‘ init .py’:

import cartesian
import polar

def polar to cartesian(z):
import math
x = z.a*math.cos(z.theta)
y = z.a*math.sin(z.theta)
return cartesian.complex(x, y)

Complex is now a Python package. The following snippet exercises the package and demon-
strates yet another form of the import directive:

C:\Documents and Settings\PythonUser>python -i
>>> import math # math is a built-in module
>>> import complex
>>> from complex import cartesian as rectangular
>>> from complex import polar as polar
>>> i = rectangular.complex(0, 1)
>>> print i
0.000000 + 1.000000i
>>> i = polar.complex(1, math.pi/2)
>>> print i
1.000000eˆi(1.570796)
>>> print complex.polar to cartesian(i)
0.000000 + 1.000000i
>>>

Naturally, packages can contain modules and subpackages which in turn can contain further
modules and subpackages.

A.3 CONCLUSION
This has been a whistle-stop tour of the Python language. The basics have been presented
and much detail overlooked. It is very much hoped that this has been enough to whet the
reader’s appetite for Python programming and we strongly encourage the reader to seek out
more detailed references for Python programming.





208 Financial Modelling in Python

std::string greet() { return msg; }
std::string msg;

};

The Boost.Python wrapper for the above class is

BOOST PYTHON MODULE(hello ext)
{
using namespace boost::python;
class <World>(‘‘World’’, init<std: :string>())

.def(‘‘greet’’, &World::greet)

.def(‘‘set’’, &World::set)
;

}

The init<std::string>() exposes the constructor. Additional constructors can be
exposed by passing more init<...> to the def() member function. For example, sup-
pose World has another constructor taking two doubles, the wrapping code would look
like

class <World>(‘‘World’’, init<std::string>())
.def(init<double, double>())
.def(‘‘greet’’, &World::greet)
.def(‘‘set’’, &World::set)

;

If our C++ class, world had no explicit constructors, that is if its definitio were to read

struct World
{
void set(std::string other) { msg = other; }
std::string greet() { return msg; }
std::string msg;

};

the compiler would synthesise an implicit default constructor. In such a case, Boost.Python can
expose the default constructor by default, implying that the wrapping code could be written,

class <World>(‘‘World’’)
.def(‘‘greet’’, &World::greet)
.def(‘‘set’’, &World::set)

;

then in the Python interpreter, it could be exercised like this:

>>> planet = hello ext.World()

Abstract classes without any constructors can be exposed by using the no init instead, as
seen in the example below:

class <Abstract>(‘‘Abstract’’, no init)
;
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In C++ we usually avoid public access to data members because it breaks the idea of
encapsulation: with access only possible via the accessor methods set and get. Python, on
the other hand, allows class attribute access by default. We replicate this behaviour for wrapped
C++ classes by using the add property method of the class class in Boost.Python. To
illustrate this, suppose we wish to wrap the following C++ class

struct Num
{
Num();
float get() const;
void set(float value);

};

then the Boost.Python wrapping code looks like

class <Num>(‘‘Num’’)
.add property(‘‘rovalue’’, &Num::get)
.add property(‘‘value’’, &Num::get, &Num::set)

;

and in Python:

>>> x = Num()
>>> x.value = 3.14
>>> x.value, x.rovalue
(3.14, 3.14)
>>> x.rovalue = 2.17 # error!

Before leaving this section we need to consider constructors with default arguments. To deal
with default arguments in constructors, Boost.Python has provides the (tag) type optional.
A simple example should suffic to explain the semantics. Consider the C++ class:

struct X
{
X(int a, char b = ’D’, std::string c = ‘‘constructor’’,

double d = 0.0);
};

To add this constructor to Boost.Python, we simply write:

.def(init<int, optional<char, std::string, double> >())

B.3 INHERITANCE
It is also possible to wrap class hierarchies, related by inheritance, using Boost.Python. Con-
sider the trivial inheritance structure:

struct Base { virtual Base(); };
struct Derived : Base {};
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together with a set of C++ functions operating on instances of Base and Derived:

void b(Base*);
void d(Derived*);
Base* factory { return new Derived; }

The wrapping code for both the Base and Derived is

class <Base>(‘‘Base’’)
/**/
;

and

class <Derived, bases<Base> >(‘‘Derived’’)
/**/
;

where we have used bases<..> to indicate that Derived is derived from Base. The
corresponding wrapping code for the C++ free functions looks like

def(‘‘b’’, b);
def(‘‘d’’, d);
def(‘‘factory’’, factory,
return value policy<manage new object>());

The return value policy<manage new object> construct informs Python to hold
the instance of the new Python Base object until the Python object is destroyed.

Both pure virtual and virtual functions with default implementations can be handled by
Boost.Python. However, this is one of the rare instances where we have to write some extra
C++ code to achieve this. Let’s start with pure virtual functions. Suppose we have the following
base class:

struct Base
{
virtual Base() {}
virtual int f() = 0;
};

What we need to do is write a little wrapper class that derives from Base and unintrusively
hooks into the virtual functions so that a Python override can be called. The code for the
wrapper class is shown below:

struct BaseWrap : Base, wrapper<Base>
{
int f()
{
return this->get override(‘‘f’’)();

}
};
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Note that we inherit from both Base and wrapper<Base>. The wrapper template class
facilitates the job of wrapping classes that are meant to be overridden in Python. Finally, to
expose Base we write:

class <BaseWrap, boost::noncopyable>(‘‘Base’’)
.def(‘‘f’’, pure virtual(&Base::f))

;

Next we consider virtual functions with default implementations. In this instance, the Base
class may look like

struct Base
{
virtual Base() {}
virtual int f() { return 0; }

};

Again we need to introduce a C++ class to help us:

struct BaseWrap : Base, wrapper<Base>
{
int f()
{
if (override f = this->get override(‘‘f’’))

return this->get override(‘‘f’’)();
return Base::f();

}
int default f() { return this->Base::f(); }

};

Just as before, the above class also implements f, but now we have to check if f has been
overriden. The corresponding Boost.Python wrapper code is:

class <BaseWrap, boost::noncopyable>(‘‘Base’’)
.def(‘‘f’’, &Base::f, &BaseWrap::default f)

;

Note that we expose both&Base::f and&BaseWrap::default f because Boost.Python
needs to know about both the dispatch function f and its default implementation default f.
In Python, we can now do the following:

>>> base = Base()
>>> class Derived(Base):
... def f(self):
... return 42
...
>>> derived = Derived()
>>> base.f()
0
>>> derived.f()
42
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B.4 PYTHON OPERATORS
Boost.Python makes it extremely easy to wrap C++ operator-powered classes. A simple
example should suffice Consider the class:

class Vector{ /*...*/};

Vector operator+(Vector const&, float);
Vector operator+(float, Vector const&);
Vector operator-(Vector const&, float);
Vector operator-(float, Vector const&);
Vector& operator+=(Vector&, float);
Vector& operator-=(Vector&, float);
bool operator<(Vector const&, Vector const&);

The class and operators can be mapped to Python by writing:

class <Vector>(‘‘Vector’’)
.def(self + float() )
.def(float() + self )
.def(self - float() )
.def(float() - self )
.def(self += float())
.def(self -= float())
.def(self < self)

;

B.5 FUNCTIONS
In C++ it is common to come across functions with arguments and return types that are pointers
or references. The problem with such primitive types is that we don’t know the owner of the
pointer or referenced object. Although most C++ programmers now use smart pointers with
clear ownership semantics, nevertheless there exists a lot of older C++ code with raw pointers.
So Boost.Python has to be able to deal with them. The main issue to solve is the problem of
dangling pointers and references. Let’s consider the following simple C++ function:

X& f(Y& y, Z* z)
{
y.z = z;
return y.x;

}

The above function binds the lifetime of the function’s return type to the lifetime of y,
because f returns a reference to a member of the y object. If we were to naively wrap
this using Boost.Python, then deleting y will invalidate the reference to X. In other words
we have a dangling reference. To get round these problems, Boost.Python has the con-
cept of call policies. In our example, we can use return internal reference and
with custodian and ward as follows:

def(‘‘f’’, f,
return internal reference<1,

with custodian and ward<1, 2> >();
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The 1 in return internal reference<1 informs Boost.Python that the firs argu-
ment of f, in this case Y& y, is the owner of the returned reference. Similarly the 1, 2
in with custodian and ward<1, 2> informs Boost.Python that the lifetime of the
second argument of f, in this case Z* z, is tied to the lifetime of the firs argument Y& y.

It is common in C++ to overload both functions and member functions. Consider the
following C++ class:

struct X
{
bool f(int a);
bool f(int a, double b);
int f(int a, int b, int c);

};

To wrap the overloaded member functions into Python we need to introduce some member
function pointer variables:

bool (X::*fx1)(int) = &X::f;
bool (X::*fx2)(int, double) = &X::f;
int (X::*fx3)(int, int, int) = &X::f;

With the member function pointer variables defined the Boost.Python wrapping code is simply

.def(‘‘f’’, fx1)

.def(‘‘f’’, fx2)

.def(‘‘f’’, fx3)

We have seen in the above example how Boost.Python wraps function pointers. Many
functions in C++ have default arguments, but C++ function pointers hold no information
about default arguments. Therefore we have to write thin wrappers so that the default argument
information is not lost. Consider the C++ function:

int f(int, double = 3.14, char const* = ‘‘hello’’);

then we have to write the thin wrappers:

int f1(int x) { f(x); }
int f2(int x, double y) { f(x, y); }

The Boost.Python wrapping code then looks like:

def(‘‘f’’, f); // all arguments
def(‘‘f’’, f2); // two arguments
def(‘‘f’’, f3); // one argument

Fortunately Boost.Python has a macro for automatically creating the wrappers for us. For
example

BOOST PYTHON FUNCTION OVERLOADS(f overloads, f, 1, 3)

The macro creates a class f overloads that can be passed on to def(...). The third and
fourth arguments denote the minimum and maximum arguments respectively. The def(...)
function will automatically add all the variants for us:

def(‘‘f’’, f, f overloads());
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Similarly for member function overloads, we can use the BOOST PYTHON MEMBER
FUNCTION OVERLOADS macro. Suppose we had the C++ class:

struct X
{
bool f(int a, int b = 0, double = 3.14);

};

then we would write:

BOOST PYTHON MEMBER FUNCTION OVERLOADS(X overloads, X, 1, 3)

and the generated class X overloads can be used as an argument to .def(...):

.def(‘‘f’’, &X::f, X overloads());

B.6 ENUMS
Boost.Python has a clever way of wrapping C++ enums. Python has no enum type, so
Boost.Python exposes them as an int. Consider the following example:

enum choice { red, blue };

the Boost.Python enum <T> construct can be used to expose to Python:

enum <choice>(‘‘choice’’)
.value(‘‘red’’, red)
.value(‘‘blue’’, blue)
;

The new enum type is created in the current scope, which will usually be the current module.
The created Python class is derived from the Python int type and the values can be accessed
in Python as follows:

>>> my module.choice.red
m module.choice.red

where my module is the name of the module in which the enum is declared.

B.7 EMBEDDING
We have seen how to use Boost.Python to call C++ code from Python. In this section we are
going to discuss how to call Python code from C++. The firs step is to embed the Python
interpreter into the C++ code. To do this, we simply #include<boost/python.hpp>
and call Py Initialize() to start the interpreter and create the main module. Note
that at the time of writing you must not call Py Finalize() to stop the interpreter. This
may change in future versions of Boost.Python. Although objects in Python are automatically
reference-counted, the Python C API requires reference counting to be handled manually. So
Boost.Python provides the handle and object class templates to automate the process.
The handle template class is beyond the scope of this short primer.
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The object class template wraps PyObject* and Boost.Python comes with a set of
derived object types corresponding to Python’s: list, dict, tuple, str and long .
Wherever appropriate, the methods of a particular Python type have been duplicated in the
corresponding derived object type. For example, dict has a keys() method, str has a
upper method, etc., and make tuple is provided for declaring tuples:

tuple t = make tuple(123, ‘‘Hello, World’’, 0.0);

Just as for Python’s types, the constructors for the corresponding derived object types make
copies. Consider the following example from the Python command line:

>>> l = [1, 2, 3]
>>> m = list(l) # new list
>>> m[0] = 4
>>> print l
[1, 2, 3]
>>> print m
[4, 2, 3]

Calling the list constructor makes a new list. Correspondingly the constructors of the
derived object types make copies:

dict d(x.attr(‘‘ dict ’’)); // copies x. dict

Sometimes we need to get C++ values out of object instances. We can do this by using the
extract<T> template functions. For example:

double l = extract<double>(o.attr(‘‘length’’));
dict d = extract<dict>(x.attr(‘‘ dict ’’));

Note that the dictionary d is in fact a reference to X. dict , hence writing

d[‘‘whatever’’] = 3;

modifie x. dict .
To run Python code from C++, Boost.Python provides three related functions:

object eval(str expression
, object globals = object()
, object locals = object());

object exec(str code
, object globals = object()
, object locals = object());

object exec file(str filename
, object globals = object()
, object locals = object());

eval evalulates a given expression, exec executes the given code, and exec file executes
the code contained in a file All functions return the results as an object. The globals and
locals parameters are Python dictionaries containing the globals and locals of the context in
which the code is to be executed. It is almost always sufficien to use the namespace dictionary
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of the main module for both parameters. To do this we firs use the import function of
Boost.Python to import the main module:

object import(str name);

and then get the namespace of main as follows:

object main module = import(‘‘ main ’’);
object main namespace = main module.attr(’’ dict ’’);

Now that we have the namespace we can execute a Python script, for example:

object ignored = exec(‘‘result = 5**2’’, main namespace);
int five squared = extract<int>(main namespace[‘‘result’’]);

B.8 CONCLUSION
The purpose of this primer has been to introduce the reader to some of the tools provided by
Boost.Python. The primer is by no means exhaustive. Indeed Boost.Python offers many more
features to help the C++ programmer to seamlessly expose C++ classes to Python and embed
Python into C++.
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Note that, as expected, the stochastic discount factor is a Q-martingale, in fact it is an expo-
nential martingale, whereas the zero coupon bond price is not a Q-martingale because, as can
be seen below, its SDE has a non-zero drift.

dP(t, T ) = P(t, T ) (r (t)dt + (φ(t) − φ(T ))C(t)dW (t)) . (C.11)

For non path-dependent pricing problems it is normally convenient to work in the so-called
forward Q

T -measure. In this measure the numeraire at time t is simply P(t, T) and Girsanov’s
theorem implies that W̄ (t), as define below, is a Q

T -Brownian motion

dW̄ (t) = dW (t) + (φ(T ) − φ(t))C(t)dt. (C.12)

Substitution of equation (C.12) into equation (C.10) yields

P(t, T ′)
P(t, T )

= P(0, T ′ )
P(0, T )

exp
(

−
(
φ(T

′
) − φ(T )

) ∫ t

0
C(s)dW̄ (s)

−1
2
(
φ(T

′
) − φ(T )

)2
∫ t

0
C(s)2ds

)
, ∀t ≤ T

′ ≤ T . (C.13)

In other words, the numeraire-rebased zero coupon bond in the forward Q
T -measure is a Q

T -
martingale. This to be expected in complete markets, where all numeraire-rebased tradables
are martingales. Indeed, let V(t) denote the value at t of any tradable, then by the martingale
property we have

V (s) = P(s, T )EQ
T
[
V (t)
P(t, T )

|Fs

]
, ∀s ≤ t. (C.14)

For an excellent introduction to financia calculus covering everything from measures, filtra
tions to martingales and arbitrage-free pricing, please consult [2].
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pickup value using the relation below:

PKVN−2(TN−2, ω) = IEVN−2(TN−2)

−BTN−2

∑N

m=N−1
E

[
B−1
Tm (Gm(Tm, ω))+

]
(D.9)

Again we approximate PKVN−2(TN−2, ω) by GN−2(TN−2, ω) and perform a regression to
obtain αk(TN−2) ∀k. The above steps are then repeated until we have reached T1.
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