&

TRADING FOR PROFITS

nual ietums

Nu‘r'b!rn*rnl:nm:_ =,
o -

MAX DRAWTIOWT

-log

STOCK ClLOSING PRICE

— Oose

1
m‘ MV
0 100 20 mn 200 w0 W

STRATEGY D

- /J\M

. FOR

 TRADING
ON

 TECHNICALS

STRATEGY
DEVELOPMENT

A STEP TOWARDS.
SYSTEMATIC TF RADIN(

BUILD YOUR OW
TRADING STRATEGIES

ANJANA GUPTA

PYTHON FOR TRADING
ON TECHNICAL

A step towards systematic trading.

Anjana Gupta

CONTENTS

Title Page

Python for Trading on Technical-
Basics of Python

Fetching historical data

Pyhton codes for Technical Indicators -

TECHNICAL ANALYSIS LIBRARY (TA-LIB) IN PYTHON FOR
BACKTESTING

Installing Ta-Lib Python Library
Download Past data for reuse

Data Visualisation in Python

Technical Analysis with Python Library Ta_Lib
1. Overlap Studies

1.1 Simple Moving Average (SMA

1.2. Exponential Moving Average (EMA)

1.3. Bollinger Bands

2. Momentum Indicators

2.1. Rate of Change (ROC)

2.2. Commodity Channel Index (CCI)

2.3. Relative Strength Index (RSI)

2.4. Moving Average Convergence/Divergence (MACD)
2.5. Balance of Power (BOP)

2.6. Stochastic
2.7. Stochastic Relative Strength Index -

3. Volume Indicators

3.1. Chaikin A/D Oscillator

3.2. On Balance Volume (OBV)
4. Volatility Indicators

4.1 Average True Range (ATR)
5. Pattern Recognition

Trading Setups

Github Link

Cost of Trade

About Authors / Acknowledgments
Books By This Author

Books By This Author

Disclaimer

This book is educational in nature. Various Derivative
contracts traded in Indian market and data used in various
examples are for illustrative and educational purpose only.
Example/ data used may or may not be based on
Historical/factual data. We are not rendering legal/professional
services or any kind of advice for trading. Past performance or
data or example discussed here does not guarantee of future
results. We disclaim any liability/loss/risk resulting directly or
indirectly from use or application of any content of this book.

PYTHON FOR TRADING
ON TECHNICAL-

Technical analysis today has its origins in the theories first proposed by
Charles Dow in eighteenth century. Dow published his ideas in series of
editorials he wrote for wall street Journal. Dow Theory is all about trends. A
trend is really nothing more than a somewhat uniform change in price levels
over time. For an Uptrend prices start low and through a series of advances
and pullbacks move to a higher level. For a down trend prices start high and
through a series of advances and pullbacks move to a lower level.

Dow Theory says that the market has three trends. Index/Stock/Commodity is
in upper trend when they made higher top and higher lows. It means lows
will be higher than previous low and high will be higher than previous high.
Index/Stock/Commodity is in lower trend when they made lower top and
lower lows as explained in following picture. Third is range bound when
stock is neither in up-trend nor in down-trend.

DOWM
TREND

UFP TREND

Dow Theory also says that each trend has three phases. Accumulation phase
when informed investor buy the stock, public participation phase when prices
begin to advance rapidly and distribution phase when informed investor who
accumulated stocks on lower prices begin to distribute before anyone else
start selling. Dow Theory also says that volume/open interest must confirm
the trend. Increase in volume/ open interest with rise in prices will confirm
the uptrend and increase in volume / open interest with drop in prices will
confirm the downtrend.

So Technical analysis is all about trend — buying stock when uptrend begins,
ride the trend, and sell when trend ends a high price. A trend follower buys
when the price trend is up and sells when the price trend is down. He believes
that, if the trend is up then it will continue to go up. If everything works as
expected, the trend follower makes money. The trend is always a matter of
time interval. In a long run a stock may be in up-trend but in short run the
same may be in down trend.

data.Close.plot(figsize={i@, &), grid=True)

chwesSubplot:ixlabel="Date"»

A
BREAKOUT *|"U
1 ; \Y / F Diorwriirand I|
Rangeboswnd W : ¥."N J.{ . 1]
a LVl - i
M 'FI" 1 ﬁn.' 1.! P J,.'-"'I-. [™ I‘;‘ .
II""I'r ii [l LA 1 | el ' i/ Ny Al
Fi i ln‘ 1T ML W I
I A "I’)}f \:\]
M A)
F‘:‘i"il":iir.:g fﬂ"" .'.‘-._ .-ﬁ*'h" |

N JE I
ol gl

_I-'h -~
[PL -

s
_{.:,z" UP-TREMD

I have taken Mahindra & Mahindra (M&M) prices from year April 2009 to
January 2021 in the above chart to explain technical terminology. As we can
see in above chart stock was in uptrend from 2009 to 2011 when prices goes
up by 500% from 80 to 400. I have drawn a trend line (trend line is simple a
straight line that connects a series of security prices either tops or bottoms).
Price of 400 was working as resistance in year 2011 and 2012 and the same

was working as support in 2013 and 2014. (Support is the price level at which
there is adequate demand for a security to stop its downward price movement
and Resistance is a price level at which there is significant supply of stock to
stop its upward price movement). Usually a resistance work as support when
prices break resistance as we have seen above. From year 2015 to 2018 this
stock was range bound. We have seen first false breakout in prices in year
2017 when stock beaked all time high. Again we have seen a successful
breakout in 2018 and prices goes up from 750 to 1000. In the year 2019 and
2020 the stock was in downtrend. Again a new uptrend started in January
2021. Now we have to see that prices will remain range bound or this uptrend
will continue.

Hundreds of technical indicators developed for identification of trend. We
can divide these indicators in two categories —

1. Lagging indicators — These indicators gives buy/sell signal after
price moves.

2. Leading indicators — These indicators give signals before price
change.

Chart patterns help us in identification of trend as we have learned in above
example. Technicians also have developed many chart patterns for
identification of reversal of trend. Some of these discussed below-

Head and Shoulder pattern —

When a price are in uptrend and fails to create a higher high than prices
create head and shoulder pattern as shown in following chart. This is an
indication of reversal of uptrend and beginning of down trend when neckline
is broken as shown in following chart —

Head “H -
.rl "1"_,"1..,.

Left Shoulder i lj'l-H‘l J'"I‘i'-"r .'Il‘ RightShoulder
X M y ¥ ‘;\1

¥ 11‘.-!‘""1. A p . ."‘r’w

.‘ I1 'I"Hh ’ "' ; IIL‘ r-l"I 'LI"!' Iluul'r*‘\ M f‘ l"'l_,,,
it - bt ,

Breakdown L/ "

\ "'»..1

The same pattern we can observe in prices chart of many stocks when there is
reversal in down trend and breakout in the prices above neckline.

i'l /
Wy -'\ _ o e
[] Breakout I li ; I .-. . l-ll-
! LI 1P [T .l
[\,' "
i .I i ::.'::"__‘_ 'Fi
Bligr? Ly r“.
I#I 1-. ' h W
| " * l"'.,ll |.lt R'E'ht'shclu’_‘lj:r
“ II' It
Left Shoulder h W fiead

Round Top and Round bottoms —

Round top and round bottoms trend reversal pattern is illustrated in the
following charts when prices are gradually coming down or going up against

p
reakout / r
B

ﬁl..] *..li'll--'-u | I;‘-,_!,J'- .ﬁ-l
R Y L W T
1 | II‘I"H" 'l Iy |I ‘+;:: 1] Litay Py | Sy

Rounding Battom

Rounding Top ‘_‘\H\\

g
| ;j'l _! I*44*~-l ¥
__H' ! I+ 1y

ff,ff” N | A
l ; . reakdown i "
IT' Breakd II.I.I

Double top and Double bottom-

As shown in the following example when price in trend fails to create higher
highs in case of uptrend or lower lows in case of down trend they reverse
from the previous high/low.

FirstTop

h‘\\il * Second Top ‘\.\‘
| 1 rir
‘I_ r*l;l,*| 'II " 'ﬁ I
l"" ; +TTTR
I ' l*.," Bt L :' w
wosso” g,

\I'aa-.

1| 4.
| I 'T‘”" |11 Rp—
.ml' GAPDD‘L";’}I Il
~ L | l|l|"l
|I-l|ll Tl

[l
‘ﬂ 1' |..i

| b First Bottorm

Iﬂ

Gaps-

In a uptrend when current period low price is higher than previous period
high price (Gap up opening) indicates continuation a uptrend and in case of
down trend when a day high price are lower than previous day low price
(Gap down opening) is an indication of further down trend. Some technical
analyst believes that price comes back once to fill the gap.

Identifying and benefitting from chart patterns constitutes a major part of
technical analysis. Different traders use different charts in order to achieve
better results in the market. Acquainting yourself with these chart patterns
can help you identify better trading opportunities more quickly.

In this book we will work on systematic trading. We will try to develop
technical based trading systems that are consistently profitable in various
market conditions. When we talk about systematic trading it means all
decisions of buy and sell will be taken by system not by intuition of
individual. System will generate buy and sell signal. We will also check that
these systems are profitable on past data or not. So we are trying to develop

systems for trading. Trading is all about making money. Algorithmic trading
is all about developing quantitative rules that give you profit. In this book we
are going to take some simple ideas and turn them into successful trading
strategies. If you can’t turn an idea into profitable returns, then you are
wasting your time. Trading is really all about making money. With the help
of this book you will be able to develop, modify and backtest your own idea
on past data to develop your own profitable strategy. You ideas should be
based on common sense and than pyhton can help you to get your ideas
tested using historical data to be sure they actually work.

Algo trading is quantified rules to apply on trading. A very simple example is
a stock trading above 20 days moving average bought and below 20 days
moving average sold. Any strategies that can be quantified can be traded
through algos. Benefit of quantified strategy is you can back test on past data.
You can check the outcomes on historical data and this give you conviction
to trade inspite of draw downs of any strategy. Any strategy that cannot be
quantified can’t be traded through algos.

This book is divided in 5 parts —

1. First we will learn basics of Python. Python has emerged as one of
the most popular languages for programmers in financial trading,
due to its ease of availability, user-friendliness, and the presence of
sufficient scientific libraries. Python serves as an excellent choice
for automated trading. That’s why I believe that every trader must
have basic knowledge of Python. It’s available absolutely free of
cost for individuals.

2. Second we will learn how download past data. We need past data
for back-testing of our strategies. We will learn to fetch EOD, One
minute and real-time data free of cost available through various
sources.

3. We will learn to develop python codes for backtesting the
performance of Technical based indicators on past data. We will
be able to compute return, number of trades generated by any
strategy, maximum drawdown, maximum return in a single trade,

maximum loss in a single trade etc on past data.

We will learn to install technical analysis library (TA-LIB) for
backtesting. Today this library has become one of the most famous
libraries for technical analysis of stocks and other financial
securities. Ta-lib includes more than 150 indicators such as ADX,
MACD, RSI and Bollinger Bands and candlestick pattern
recognition etc.

At last we will learn to develop a Technical based trading system
using combination of various technical indicators.

BASICS OF PYTHON

Whatever a trader does must be based on past data analysis and back tested
results. For past data analysis you can download data in excel from exchange
websites, but download and analysis of data thru excel could be very time
consuming and tedious task. Here Python can help you a lot. What python
does it in seconds the same on excel could take days. Most of the machine
learning packages are into python, so when you will go to next level of
trading / or in automated trading this basic knowledge discussed in this book
will help. This book is an attempt to explain the functions of Python which
are useful for traders.

Installation of Python Jupyter Notebook on Laptop

First get python installed on your system/laptop. You can download anaconda
installer from following link.

https://www.anaconda.com/distribution/

Go to the bottom of the page and dwonload installer as per you operating
system -

Windows i MacOS & Linux O

B4-Bit Graphical Installer (457 MB) b4-Bit Graphical Installer (435 MB) B4-Bit (xB6) Installer (529 MB)

12-Bit Graphical Installer (403 MB] B4=Eit Command Line Installer (428 ME] B4=Eit (PowerB and Powerd) Installer (279
ME]

Run the installer —

https://www.anaconda.com/distribution/

i B
O Anaconda3 2020.11 (64-bit) Setup =

Welcome to Anaconda3 2020.11
(64-bit) Setup

Setup will guide you through the installation of Anaconda3
2020. 11 {64-bit).

It is recommended that you dose all other applications
before starting Setup. This will make it possible to update
relevant system files without having to reboot your
computer.

Click Mext to continue,

(") ANACONDA.

LNext} J[Cancel]

- o

Installation of anaconda is like installation of any other program on your
system. After installation Go to all program menu of your system/laptop,
when you will search all programs you will find one folder with the name of
Anaconda. Click on Anaconda, there will be many options, click on Jupyter
Notebook. Jupyter notebook will look like this —

3 < -

2 O (@ localhostEa tree i 8

Click on new > Python 3 than a new notebook will open, will look line this —

jupyter Untitled12 Last Checipeint aminute ago {unssved changes I"

Hallo

I have given print command in 1* cell. You can write and execute commands
in second highlighted green cell. Get familiar with the Jupyter Notebook
interface. Now Jupyter Notebook is your playground. Jupyter Notebook is an
interactive document. You need to write commands in predefined format and
on execution of commands you get results of your commands. It’s easy; you
can learn basics of python thru any video available on Google. Good thing
with python is that past data of exchanges and tools are already available.
Most of the professional traders use python or c++ for development and
back-testing of strategies. You need not to learn complete programming
language. You can analyze data in the way you want for that you need to
learn some basics like how to write program and how this software will help
in past data analysis for any strategy.

Google Colab (Python Jupyter note book)-

You can run python codes on Google Colab also. Colab is a Python
development environment that runs in the browser using Google Cloud. One
can use Google colab to run python codes or you may download anaconda on
your laptop and you can use Jupyter notebook to run codes. One can open
Google colab in any browser. Open Google Colab, click on file and open new
notebook.

=y

€} ipco intreduction to colab and python.ipynb
2 sl A _F ¥

| ive oot Gl 1i dq | &

ntreduction to Colab and Python

Let’s start with some basic of Python than we will learn how to fetch past
data in python and back testing of some strategies on past data.

First you need to understand that you need to give commands in predefined
format, it is called coding. Programming languages understand commands
that are also in predefined format. Initially you will make lots of mistake in
coding and gradually you will learn how to write program code.

Open a new Jupyter note book. Type following in a cell (code written in blue
color is python code. Statement written after ‘#’ is explanation in English, it’s
not a part of code, it is just to explain you the code) —

a=100 # here you assigned value of 100 to a variable ‘a’

b=a/2 # here you assigned value of 50 (‘a’ divide by 2) to variable
‘b)

c=a+b # here you assigned value of 150 (value of a + value of b) to
variable ‘c’

d=(a*3)-b # here you assigned value of 250 [(a X 3)-b] to
variable ‘d’

print (a,b,c,d) # here you are giving print command to print values

of ‘a’, ’b’, ’c’ and ‘d’

Than you can click on ‘run’ button or press ‘Shift’ and ‘Enter’ buttons on
your laptop. You will get the results of your command. Jupyter notebook will
print the value of ‘a’, ‘b’, ‘c’ and ‘d’ as per your command. Python makes
use of simple syntax which looks like written English.

5 JUD})’tEr Untitled2 Last Checkpoint: a few seconds age (unsaved changes)

B + |3 @A B 4 4+ MHRun B | C W code roBE

In [1]: | =188
b=a/2
c=a+b
d=(a*3)-b
print (a,b,c.d

laa 58.9 158.8 256.8

Be creative, do various experiment with codes in notebook. This will help
you to learn more about programming.

Second you need to understand modules in python. If you want to use
mathematical functions in Jupyter sheet than you need to import math
module.

In [1]: import math
math.pi

[1]: 3.141592653589793

For option trader one of the basic module required is NumPy. It is used for
Scientific Computing. In cell 2 T have imported module numpy. In cell 4 I
have given command to find minimum value out of 3, 6, and 9. We are using
Np.min() command from numpy module. You will check out of command is

3. So program itself found he minimum value out of 3 values. In 5% cell I
have given command to find maximum value. Result of command 5 is 8. So
we are giving commands in predefined format and software is giving output
of that command.

=)
B

import numpy as np

I
=]
o

np.min([3,6,9])

M i -
ST AT B ad

In [5]: |np.max([2,4,8]

Math, NumPy are the Built-in modules, these modules are available by
default in Python. But there are many other publicly available module which
you may want to use for example backtrader. Backtrader is used for back
testing. To install a module following command is used in python —

Ipip install <module name>

Third and the most important thing a trader need is past data. Various options
are available to get past data. One can download data from yahoo finance.

Exchange wise modules are also available like nsepy module is used to get
the past data for contracts traded on National Stock Exchange, India. You can
install these modules thru following commands —

Ipip install yfinance

Ipip install nsepy

R

Forth you need to understand data in tabular format in python. Tabular format
comprising of row and columns like Excel spread sheet, in python this is
called ‘dataframe’. You can perform anything in a particular row and column
thru commands in python. Trader can fetch past data through many sources
like yfinance in tabular format, we will learn this in next chapter. You can
also import and export csv/excel files in python. You can perform various
functions on a table in python like you do on ‘Excel’. Some basic functions
required for past data analysis and strategy backtesting are discussed below -

Following command will be used for import of data of a file saved on your
laptop —

Table = pd.read_csv('filename.csv')

Following command will be used to save data in a file on your laptop (export
data) —

filename.to_csv("giveanyname.csv", index=True, encoding="utf8")

Codes to create table (DataFrame) in Python itself by typing values-
import pandas as pd

data = {'Stocks': ['Reliance’, 'Infosys', "TCS'],

"Price': [1200, 700, 2500]}
Table = pd.DataFrame(data, columns = ['Stocks', 'Price'])

print (Table)

In [1]: import pandas as pd

data - {'Stocks': ['Reliance’, 'Infosys", "TCS'],
‘Price”: [1280,700,2500]}

Table = pd.DataFrame(data, columns = ["Stocks’, "Price’])
print (Table)

Stocks Price
@ Reliance 1288

1 Infosys Tee
2 TCS 258@

In [1:|]

Add new column in Table with following command —
Table['Quantity'] =0

In [2]: | Table["Quantity'] =6

print (Table)

Stocks Price Quantity

8 Reliance 1288 5]
1 Infosys 788 =]
2 TCS 2568 8

Check columns with following command —
Table.columns

Inspect the columns
Table.columns

Index(['Stocks"', 'Price’, '"Quantity'], dtype="object')

Select last 2 values of column ‘Price’ in new variable ‘last’ with following
command —

last = Table['Price'][-2:]

Select only the Llast 2 observations of “Price’
last = Table['Price’][-2:]
print (last)

i | 78
2 25688
Mame: Price, dtype: intéd

Select maximum and minimum value in a table from following commands —
Table.column.max()
Table.column.min()

Table.Price.min()

768

Table.Price.max()

25eg

You can insert value in any cell thru following command —
Table.loc[0, 'Quantity'] = 10 #this command will insert value ‘10’ in 1* row
of column ‘Quantity’

Table.loc[®, "Quantity'] = 1@
Table.loc[1, "Quantity'] = 2@
Table.loc[2, "Quantity’'] = 3@

print (Table)

Stocks Price Quantity

8 Reliance 1286 18
1 Infosys 788 28
2 TS 25a8 38

You can also perform various mathematical/statistical functions between

columns —
Table['Amount']=Table['Price']*Table['Quantity']

Table["Amount’]=Table['Price’']|*Table["Quantity’]

print (Table)

Stocks Price Quantity Amount
8 Reliance 1288 18 12068
1 Infosys 788 28 14008
2 TCS 2588 38 75808

Following command can be used for cumulative sum of any column —
Table['Total'] = Table['Amount'].cumsum()

Table["'Total'] = Table[‘Amount'].cumsum()
print (Table)

Stocks Price Quantity Amount Total

€ Reliance 1288 18 12688 126868
1 Infosys 788 28 14688 26848
2 TCS 2568 38 7LBBe 18l1eas

Following command could be used to delete columns —
Table.drop(["Total", "Amount"], axis = 1, inplace = True)

Table.drop(["Total”, "Amount"], axis = 1, inplace = True)

print (Table)

Stocks Price Quantity
8 Reliance 1286 18
1 Infosys 768 28
2 TCS 2588 36

Now let’s learn some other functions of Python that we are going to use in
coming chapters —

Object Oriented Programming (OOP) - The concept of OOP in Python
focuses on creating reusable code. You can create your own function in
Python. In the following example you have created a new function
‘my_function’ which multiply ‘Price’ and ‘Quantity’ of any table. So you can
perform a single command or set of commands in your function and you need
not to write these codes again and again. That is why it is called object
oriented programming.

def my_function(df):

try:

return (df['Price']*df['Quantity'])
except:

return np.NaN

Table['Amount'] = Table.apply(my_function, axis=1)
print (Table)

det my function(df):
try:
return (df['Price’]*®df['Quantity’])
except:
return np.NaN

Table["Amount’] = Table.apply(my function, axis=1)
print (Table)

Stocks Price Quantity Amount

8 PReliance 1266 18 12066
1 Infosys a6 28 14668
2 TCS 25@a 38 J5oGe

Lambda - you can create your own function through lambda. Here x and y
are the parameters and x+y is the operation performed. So when you will use
xyz in your code you will get addition of 2 values as result.

xyz = lambda x,y: x+y

xyz (3,6)

xyz = lambda x,y: x+y
Xyz (3,6)

g

For —

For loop is used to get numbers/values in a sequence. Loop continues until
we reach the last item in the sequence. The body of for loop is separated from
the rest of the code using indentation. Following example will explain the use
of for loop.

Val — [‘a’, (bJ, (C’, ‘d’, ‘e’]
for x in val:

print (Xx)

You will get the following output —

wal = [At bt et tdl et
for x in wval:
print (x)

M CL ™ oW

Range - To loop through a set of code a specified number of times we can
can use a ‘range’ function. Let me explain how these loops works. Jupyter
note book will print the value of ‘x’ 4 times if you will write following code
x=1
for x in range (1, 5):
print (x)

x=l
for x in range (1, 5):
print (x)

B WM

The range() function defaults to increment the sequence by 1, however it is
possible to specify the increment value by adding a third parameter:

for x in range (1, 15, 2):
print (x)

In [6]: | for x in range (1, 15, 2):
print (x)

W

[T N
[Ty

In[]:

As you can observe from above command value of x printed with
incremental value of 2.

If Statement

The If: elif: else: statement is used in Python for decision making. Program
codes evaluate the test expression and will execute statement only if the test
expression is true. If test expression is false the statement is not executed.
Python uses the colon (:) and indentation/whitespace to group statements.

Use following python codes with different numbers to understand ‘If
Statement’

num = float(input("Enter a number: "))
if num < 0:
print("Negative number")
elif num == 0:
print("Zero")
else:
print("Positive number")

num = float{input(“"Enter a number: "))
if num < @:
print("Negative number™)
elif num == @:
print("Zero")
else:
print{"Positive number")

Enter a number: @
Zero

Break and continue
In Python, break and continue statements can alter the flow of a normal loop.

for x in range (1, 15, 2):
if x == 7: break

print (x)
for x in range (1, 15, 2):
if x == 7: break
print (x)

AW =

for x in range (1, 15, 2):
if x < 7: continue
print (x)

for x in range (1, 15, 2):
if x < 7: continue
print (x)

[T« |
Iy

Indentation

A logical block of statements such as the ones that make up a function should
all have the same indentation, if one of the lines in a group has a different
indentation; it is flagged as a syntax error.

Code checking on compilation
Python check codes on run time only. Any error will not come to your notice
until that line runs.

Help for Python
The help() & dir() function pulls up documentation strings for various
modules, functions, and methods.

In [1]: | help (len)
Help on built-in function len in module builtins:

len{obj, /)
Return the number of items in a container.

In [2]: |dir (len)

=]
=
i+
ol

[cealds s
' class: ',
' delattr ',
4 L i

Python datetime

Python has a module named datetime to work with dates and times. You can
fetch today’s date with following commands —

Import datetime as date

datetime.date.today()

import datetime as date

print (datetime.date.today())

2821-el1-84

print (datetime.datetime.now())

2821-81-84 11:08:88.9225773

Following command can be used to get date in datetime format.
a_date = datetime.date(2021, 1, 3)

You can fetch month (%m), date (%d) or year (%y) with strftime command —
m_date = a_date.strftime("%m")

g _date = datetime.date(2821, 1, 3)
print (a_date)

2821-81-e3

m_date = a_date.strftime("%m")
print (m_date)

21

Following command can be used to increase or reduce number of days from
date.
+-datetime.timedelta(days=1)

To get 4 days prior date from the date store in variable ‘a_date’ following
command will be used —
p_date = a_date - datetime.timedelta(days=4)

To get the 4 days after todays date the following command will be used —
n_date = datetime.date.today() + datetime.timedelta(days=4)

p date = a_date - datetime.timedelta(days=4)
print (p_date)

2626-12-38
n_date = datetime.date.today() + datetime.timedelta(days=4)
print (n_date)

2621-81-88

The Python Tutorial

I explained the required python basics for a trader. Trader objective is to
make money not to be an expert python programmer. Basic Python
explained, rest you will learn with the codes written for fetching historical
data and backtesting of strategies on past data in this book. If you want to
learn more about basic please refer tutorials available on Python website
python.org, link given below-

https://docs.python.org/3/tutorial/index.html

Free resources

If you do not understand programming then I will suggest you to learn some
basics of python first. You can enroll for free basic course on Python through
following link -

https://quantra.quantinsti.com/course/python-trading-basic

https://docs.python.org/3/tutorial/index.html
https://quantra.quantinsti.com/course/python-trading-basic
https://quantra.quantinsti.com/course/python-trading-basic

FETCHING HISTORICAL
DATA

Data is one of the most important resources of the 21st century. Historical
market data is essential for strategy development and backtesting.
Professional data vendors sometimes are not an economically viable option
for retail investors. Fortunately free market data sources available. I will
discuss few of them in this chapter.

Daily Historical Data through yfinance

Historical data can be fetched from yfinance. First you need to install
required libraries. Following codes could be used to fetch past data.

Ipip install yfinance

from datetime import datetime

import pandas as pd

import matplotlib.pyplot as plt

import numpy as np

import yfinance as yf

data = yf.download('HDFC.NS', start="2009-01-01", end="2019-01-31")

Above commands will fetch 3 years historical data of scrip HDFC trading on
NSE in variable data. You can check details of data store in variable ‘data’
with print command.

print (data)
You will get the following output —

print (data)

Open High Low Close Adj Close Y
Date
2017-81-82 1272.000000 1272.00800@ 1213.699951 1217.999976 1145.718750
2817-81-83 1218.699951 1222.599076 1288.588808 1214.008800 1142.808537
2el7-8l1-84 1215.888840 1224.50@088 1197.258008 1212.8099976 1141.811963
2017-91-85 1215.609951 1220.400024 1205.899976 1217.199951 1145.812866
2817-81-86 1219.000008 1232.0000808 1218.808080490 1222.349976 1158.6608767

2019-81-24 1960.0@0000 1976.00000@ 1942.156@24 1971.899976 1895.751465
2019-81-25 1964.480824 1993.000000 1963.0949051 1977.808049 1982.195435
2019-81-28 19785.690951 1932.199951 1938.699976 1946.900024 1872.476685
2019-81-29 1943.699951 1949.900024 1893.3800490 1922.3e2249 1848.817€17
2019-01-30 1924.599576 1929.300049 18659.500000 1885.8e20049 1813.712158

You can check the last 3 year price movement through charts also with the
help of following commands-

Data.Close.plot()

data.Close.plot()

<AxesSubplot:xlabel="Date'>

2000 4

1500 4

1600 4

1400 4

1200 4

'ft'.'l"ﬁﬂh ,@-@ﬁh ,ﬁn@-“ﬂ _&-ga:-"*ﬁ ,@ﬁm‘

o L0h gt AP
PN P P

S
Date

Following command can be used to download and save data in csv file /Excel
on your laptop.

data.to_csv("HDFC.csv", index=True, encoding="utf8")

A B C D E F G

1 Date Open High Low Close Adj Close Volume

2 02f01/2017 1272 1272 1213.7 12171 1145.719 2369360
3 03/01/2017 1218.7 12226 1200.5 1214 1142.801 3203369
4 | 04/01/2017 1215.8 1224.5 1197.25 12121 1141.012 2805972
5 | 05/01/2017 1215.7 1220.4 1205.1 1217.2 1145.813 3339784
6 | 06/01/2017 1219 1232 1218.8 122235 1150.661 2774461
7 | 09/01/2017 1225 1229 1212.60 122355 1151.79) 2016528
8 10/01/2017 1225 122795 1213.05 1217.25 1145.86 2669824
9 | 11/01/2017 1224.7 1233 1218.2 1230.05 1157.909 1353730
10 12f01/2017 1234 124295 1217.6 1221.1 1149484 1477334
11 |13/01/2017 1224.95 125061 1222.15 1247.5 1174.335 2131709
12 16/01/2017 1245.1 1264 1240.25 1256.9 1183.184 1694061
13 | 17/01/2017 1258.35 1261 1234.95 1245.8 1172.735 1185487
14 | 18/01/2017 1246.3 1260.95 1245.65 1249.05 1175.795 1491317
15 | 19/01/2017 1251.7 1251.7 1232.9 1242.4 1169.535 1599732
16 | 20/01/2017 1236.15 1245 1230.6 1237.3 1164.734 1408933

17 23/01/2017 1234.7 1262 1232 1259.75 1185.867 2265524

In the same way you can fetch historical data of other exchanges and
other scrip.

Per Minutes historical data through yfinance-

You can also download 1 minute historical data of last 10 days from
yfinance. Following codes will be used to get 1 minute data —

minu_data = yf.download("HDFC.NS', start="2021-01-01", end="2021-01-
02", interval="1m")

Following is the screen shot —

minu_data = yf.download(HDFC.NS', start="2021-81-21", end="2821-01-82", interval="1m")

[:-F'lli':l-'I'*:lr:ir!"\ltttiuiklﬂﬁx'\l*-lﬂr*xi*'\l”V"l’"'i’a'**] 1 U'F 1 {OITIDlE'tE'd

print (minu_data)

Opan High Low Close \
Datetime
2821-81-81 89:15:88+85:38 2553.649982 2554.5000680 2542.1600698 2544.000000
2021-81-81 ©9:16:00+485:30 2545.000008 2553.300840 2543.040051 2551.8000060
2921-81-21 ©9:17:00+85:30 2551.10@898 2553.900808 2540.445051 2558.800082
2821-81-81 ©9:18:88+85:20 2558.800840 2553.880808 2540.8999@2 2552.199951
2921-81-81 89:19:88+85:38 2552.858840 2552.649982 2548.200808 2549.2560608

2821-81-281 15:25:08+05:30 2067.250000 256B.000008 2565.558849 2567.149042
2821-81-81 15:26:88+85:38 2567.149982 2667.558849 2565.600098 2566.000880
20821-81-81 15:27:80+485:30 2566.000008 2560.088000 2565.949951 2568.699951

2821-91-21 15:28:09+85:30 2568.500000 2560.000000 2567.0508429 2568.500000
2821-81-81 15:29:88+85:38 2568.600008 2568.5688880 2561.350898 2565.000880

Intraday chart can also be plotted to check price movement —

minu_data.Close.plot()

<AxesSubplot:xlabel="Datetime’ >

2590

2580

2570

2560

25350

10:00 11:00 12:00 13:00 14:00 15:00
Datetime

Live Data through yfinance

You need to install package yahoo_fin to get Live stock quotes using web
scraping tools. The following code gets the real-time stock price during
market hours.

Ipip install requests_html

Ipip install yahoo_fin

from yahoo_fin import stock_info

from datetime import time

now = datetime.now()

price = stock_info.get_live_price("HDFC.NS")
print(now, '"HDFC Price:', price)

'pip install reguests html

'pip install yahoo fin

from yahoo fin import stock info

from datetime import time

now = datetime.now()

price = stock info.get live price("HDFC.NS")
print{now, 'HDFC Price:', price)}

2021-81-84 13:24:12.268348 HDFC.N5: 2568.39098234375

Historical Data through QUANDL

Quandl is a platform that provides its users with economic, financial and
alternative datasets. According to Quandl, their user amount is over 400,000
people, which ranges from the world’s top hedge funds to investment banks
and various asset managers. Quandl want to inspire customers to make new
discoveries and incorporate them into trading strategies. They believe there
are new and better ways to understand the complex information that creates
markets and market movement. They believe that data, and alternative data in
particular, is going to become the primary driver of active investment
performance over the next decade.

Quandl offers both free and premium products. The Quandl API is free to use

and grants access to all free datasets. Quandl users only pay to access
Quandl’s premium data products. In this book we will use free data available
on quandl.

Quandl is really easy to use and is beginner-friendly. All you need
to do is to go to their website (https://www.quandl.com/) and
register for an account. After that you’ll get your API key that
allows you to fetch data from quandl.

The best thing with Quandl is that data is free, transparent, easy to find and
cleaned.

First you need to create account with Quandl and you will get API Key. After
that you need to install Quandl library with following command —

Ipip install quandl

Following codes can help you to fetch historical data. In the following
example I am fetching WTI Crude oil prices of CME —

import quandl
start = datetime(2020, 1, 1)
end = datetime(2020, 12, 31)
df = quandl.get('CHRIS/CME_CL1', start_date=start, end_date=end, qopts=
{'columns': ['Settle']}, authtoken='insert you key that you get on registration
with quandl’)
plt.figure(figsize=(20,10))
plt.plot(df.Settle)
¢ import quandl
start = datetime(2@za, 1, 1)
end = datetime(2628, 12, 31)
df quandl.get{ CHRIS/CME CL1', start_date=start, end_date-end, gopts={ columns’: ["Settle’]}, authtoken

plt.figure(figsize=(12,6))
plt.plot{df.settla)

You will get the following output —

https://www.quandl.com/

[wmatplotlib.lines Line2D &t axd2025283]

Further you can learn from Quandl website itself about how to fetch data in
python —

https://www.quandl.com/tools/python

https://www.quandl.com/tools/python

PYHTON CODES FOR
TECHNICAL INDICATORS

We understood the trends. In this chapter we will understand technical
indicators used to predict the trends. There is no perfect method to predict the
trend but we will use numbers to uncover the correct direction on prices. As
we have seen false breakout in previous chapter the same we may face while
trading with numbers. A false prediction will result into loss. At end of the
day we have to check sum of total profit earned in successful trade and loss in
false trade.

We also need to consider drawdown’s because if you will lose 20% of capital
in false move then you need to earn 25% return to reach on same level. For
example you started with Rs 100/-. You lost 20% in false move and now you
have Rs 80/-. You need to earn 25% of Rs 80 you have to reach on same
level of Rs 100/-. So drawdown’s in any strategy should as much lower as
possible. That’s why we can use options spread to minimize our losses. To
learn options and why options are better then future please read my book
“Systematic Options Trading: Option Greeks, Strategies & Backtesting in

Python™.

We can use following indicators to predict the trend.

1. Moving Average

Moving average is one of the most popular indicators to predict the trend.
The 200-day moving average seems to have become a benchmark for

deciding that a particular stock/index is going up or down. If the price of the

https://www.amazon.in/Option-Greeks-Strategies-Backtesting-Python-ebook/dp/B089GQM3QD/ref=sr_1_3?crid=GO3W0JPTI9HX&dchild=1&keywords=option+greeks%2C+strategies+%26+backtesting+in+python&qid=1612958473&sprefix=option+greeks+s%2Caps%2C354&sr=8-3

stock is above the 200-day moving average, then the long term trend is up. If

the price of the stock is below the 200-day moving average, then the long
term trend is down. Let’s understand how to compute moving average. First

we need to understand mean value or average price.

Mean is average of all numbers. Mean value is sum of all numbers divided by
count of all numbers.

For example a stock has given a return of 5%, 8%, 15%, 2% and 10% in last
5 years. What is average return?

Average return = (5+8+15+2+10) /5=8

So mean value is 8, you can say stock has given a average return of 8% in
last 5 years.

Let’s compute mean value in Google Sheet. In the following example we are
computing moving average of data of HDFC we fetched in Google sheet. We
are computing 20 days moving average of close price of S.No. 1 to 20 in cell
D28 as shown in following screenshot. Again 20 days moving average of
close price of S.No. 2 to 21 in cell D29 and so on.

D28 = average(C9: C28)
D29 = average(C10: C29)

So 20-days moving average is simply the average price over the past 20 days.
Each moving average value is computed using most recent days used in the
calculation. Moving average is series of average of different subsets of the
full data set. The average is taken over for a specific period of time for
example 30minuts, 30 days, 50 days etc.

L IR ™ F % 4 MT R = -

A4l 10 - =

SAVERAGE(b |

B c o r : . .
Symbal NSE-HDEC - :""I':“' iRt
Attribute close tiribute choe

Star Date 1R2020
No. of Days | E 100
interwal daily

Seam Diate 1020
Mo of Days | E 100
inerval daily

d| & an|

L] % Mo Date Closa Mowving Average

5Mo Date Close Moving Average

1 uanEe 3 4] 9 117272000 24664
13 120005 2454 355 I 20 UZUR0H 2404.25 2443.38
14 1212020 2455 45, » 00N 2415 244082
18 1590050 MIEE IR RT3 T 2414 243560
18 12V2008 MIE4 Ll 23 22020 22578 2432 48
1T 1242020 2450751 32 24 2000 229075 242472
18 127200 TS B 3 25 BA2020 2585 241M
19 1202020 24315 3 2§ HEO020 239165 2418 .47
20 1292020 2404 2.; B2 NEE00 0 243645 241737
21 13020 2415 3% 28 WF2020 240565 41457

¥ 29 IN0R02 24143 241062

AN 2414

Following commands can be used to compute moving average (rolling
average) in a Jupyter note book. We have taken a window of 20 days.

data[‘Moving_average’] = data[‘Close’].rolling(window=20,
min_periods=1,center=False).mean()

You can check the output of above using following command.
data.tail(20)

You will get the following output of above commands. We have moving
average of last 20 trading days in last column.

P £ Untitled.ipynb
File Edit View Insert Runime Tools Help Allchanges saved

+ Code + Text

) data - yF.download("HOFC WS, start-"3020-81-817, end-"1828-18-38")

Q dataf "Woving_average'] = data['Clese’].rolling{windows28, min_periodse=l, centersFalse).mean(})
data.tail{za)
'3
E" {....H,..q....“......,....lwxun.up--H-qau---H-nJ 1aof 1 completed
(] Open High Low Close Adj Close Volume Moving_average

Date
2020-10-01 1755000000 1799.84%9T76 1750000000 1790650024 1790.650024 3TDEDOE 1732 094505
2020-10-08 1TE4.000000 1816500000 1TTHE99951 1TBS.0995TE 1THS.0999TS 4056793 1TE2 BE4596
2020-10-06 1603 150024 1543 652351 15803150024 1924 400024 1534 400024 16325262 1740029995
2020-1007 1943000000 1954345976 1908 849976 1943750000 1845 750000 7037932 1748 602496
2020-10-08 1952 500000 1988 449951 1938 500000 1949250000 1549 260000 4585488 1758 027496
2020-10-08 1945000000 2029849976 1938000000 1957650024 1957.650024 1084E210 1767 03TS00
20201012 1965000000 15995 949951 1942 300049 1963400024 1565 400024 3631357 17 rE 800000
2020-10-13 1962 000000 1986 650024 1930 550049 1943 400024 1543400024 3351025 17ET 170001

You can plot the chart of Close price and moving average we have computed
with the following command -

data[['Close’, 'Moving_average']l].plot()

You will get following output.

ataf["Close', v ing average']).plot()
dataf ! plot()
C+ <matplotllib_axes. subplots.AxesSubplot at @x7felfdcadoba:
n . Clos=
2l J "-"'-1., Mouing average
| kY
|
i g
|
00 [
- 1 | A
|I L el M
LA [oead
50 F"\I '_1__, # b d
"l '|"J |)
1600 1 III La| ',II
L N (“‘- LU
-‘,1.-‘ -:.-P" -_:l.i-" «:_*;Iv"" -‘;::-" -:.-'Iv' -\:.-Iv -‘;..-' o -‘,!- .1

In the above chart blue line is close price and orange line is last 20 days
moving average. From January 2020 to April 2020 the stock was trading
below 20 days moving average, it means stock was in down trend. Moving
average crossover is used to generate buy or sell signals. If short period
moving average line is above the long period moving average then it’s a buy
signal (Uptrend) and if short period line is below the long period line it is sell
signal (Down-trend). This works in trending market but in rage bound market
this strategy may give losses. In range bound market mean reversal strategy
will give you profit. One more point to note that the long period moving
average will be smoother but longer is later in telling you that the trend has
changed direction. You also need to keep in mind that if period will be
shorter then number of trades will be higher that will result into more cost
especially when cost of trading is high.

Trading on Moving average crossover -

Which moving average use for trading is a very subjective decision and it

may depend on contract you are trading. Let’s backtest the returns given by
moving average crossovers on past data. I have written following codes in
which one can define stock, years, short moving averages and long moving
averages to get returns. With the help of following code I am computing
return given by Reliance Industries during the year 2020 on moving average
crossovers of 10 days and 30 days.

Download necessary libraries
Ipip install yfinance

from datetime import datetime
import pandas as pd

import matplotlib.pyplot as plt
import numpy as np

import yfinance as yf

Fetch Historical Data
Stock = "RELIANCE.NS"
data = yf.download(Stock, start="2020-01-01", end="2020-12-31")

A separate table created with close price values
T = pd.DataFrame({"Close": data["Close"]})
Short and Long moving averages defined

SMA=10

LMA=30

Compute Moving averages of last 10 days and 30 days closing prices
T['Short_average'] = T['Close'].rolling(window=SMA, min_periods=1,
center=False).mean()

T['Long_average'] = T['Close'].rolling(window=LMA, min_periods=1,

center=False).mean()
T['positions_long'] = np.nan
for x in range (len(T)):
if T.Short_average[x] > T.Long_average[x]:
T['positions_long'][x] = 1
if T.Short_average[x] <= T.Long_average[x]:
T['positions_long'][x] = 0
T.positions_long = T.positions_long.fillna(method="ffill")

T['price_difference']= T.Close - T.Close.shift(1)
T['pnllong'] = T.positions_long.shift(1) * T.price_difference
T['cumpnl_long'] = T.pnllong.cumsum()

print(T)

Download file ‘T’ in csv format to check computations
T.to_csv("MA_T.csv", index=True, encoding="utf8")

Screenshot of file “T” downloaded is given below -

A B C D E F G H
1 Date Close Short_average Long average positions_long price difference pnllong cumpnl_long
60 25/03/2020| 1072.087646 991.1895203 1242.979458 0 137.5461426 0 -31.61071777
61 26/03/2020| 1056.188354 991.5065125 1230.215448 0 -15.89929199 0 -51.61071777
62 27/03/2020| 1055.593994 987.5737354) 1216.852118 0 -0.594360352 0 -5L.61071777
63 | 30/02/2020(1020.774109 989.0349365 1202.200937 0 -34.81988525 0 -51.61071777
64 31/03/2020| 1103.29187 999.5106323 1189.856344 0 82.51776123 0 -5L.61071777
65 01/04,/2020| 1070.304565 1010.600513 1176.720854 0 -32.98730469 0 -5L.61071777
66 | 03/04/2020| 1067.332764 1026.425507 1163.844576 0 -2.971801758 0 -51.61071777
67 07/04/2020| 1194.77478 1045.063837 1154.014425 0 127.4420166 0 -5..61071777
68 08/04,/2020| 1180.955688 1075.584528 1144.313049 0 -13.8190918 0 -5L61071777
69 | 09/04/2020| 1208.494529 1102.97384 1136.883472 0 27.53854043 0 -51.61071777
70 13/04/2020| 1177.983887 1113.569464 1129.379602 0 -30.5107421% 0 -5L.61071777
71 15/04,/2020| 1139.052856 1121.855914 1121.383728 1 -38.93103027 0 -5..61071777
72 16/04/2020| 1157.082031 1132.004718 1114.178691 1 18.0291748 18.0291748 -33.58154257
73 |17/04/2020(1212.506592 1151177966 1110.723112 1 3542456055 55.42456055 21.84301758
74 20/04/2020| 1232.120728 1164.060852 1108.23409 1 19.61413574 19.61413574 4145715332
75 21/04/2020| 1225.731323 1179.503528 1104850448 1 -6.383404297 -6.383404237 35.06774302
76 22/04/2020| 1350.795776 1207949829 1105.639632 1 1250644531 125.0644531 160.1322021
77 23/04/2020| 1358.027222 1224.275073) 1107.6125938 1 7.231445313) 7.231443313 167.3636475
78 24/04/2020| 1403.634336 1246.548338 1112.433565 1 45.66711426 45.66711426 213.0307617
79 27/04/2020| 1416.324707 1267.331946 1122.854785 1 1263037109 12.63037109 225.6611328
B0 25/04/2020| 1414.739624 1291.00752| 1131.922168 1 -1.585083008 -1.385033008 224.0760458
Bl 29/04/2020| 1413.550903 131B.457324 1143.939917 1 -1.188720703 -1.188720703 222.B873251
82 30/04/2020| 1452.234253 1347.972546 1155.85035 1 38.68334961 38.68334961 261.5706787
83 04/05,/2020| 1421.723511 1363.894238 1169.70228 1 =30.51074219 -30.51074219 231.0599265

Kindly observe the above output. In short average column we have computed
last 10 days moving average and in a Long average column we have
computed last 30 days moving average. In column ‘positions_long’ we have
generated buy signal when short moving average is trading above long
moving average. This field of ‘cumpnl_long’ is giving us the per share return
given by this strategy.

We also need to check drawdown in any strategy. Following python codes

can be used to compute the drawdown.

Calculate the max drawdown in the past window days for each day
T['rolling_max'] = T['cumpnl_long'].rolling(250, min_periods=1).max()
T['daily_drawdown'] = T['cumpnl_long']-T['rolling_max']

Calculate the maximum daily drawdown

T['max_daily_drawdown'] = T['daily_drawdown'].rolling(250,
min_periods=1).min()

plot the return and drawdown of strategy

fig, axs = plt.subplots(2,figsize=(15,8))

axs[0].plot(T['cumpnl_long'])

axs[1].plot(T['max_daily_drawdown'])

Output of the above codes is given below. Total profit of the strategy is
approximately 700 per share in the year 2020. Maximum drawdown of the
strategy was approximately 100.

9 .
&l |_|I_ I I|

o 100 200] a0 500 00 00

o0

We can do further analysis of strategy performance like total number of trade
count, maximum profit in a trade, maximum loss in a trade etc. Following
code can be used for computation —

T['Trade'] = T['positions_long'].diff()

T1 = T.where((T.Trade != 0))

T1 =T1.dropna()

T1.drop(["Short_average", "Long_average", "positions_long",

"price_difference",
"max_daily_drawdown"], axis = 1, inplace = True)
T1['Trade_Return'] = (T1['cumpnl_long'].diff()/T1['Close'])*100
print ("Number of Trade count”, round(len(T1)/2))
print (T1)

Output of the above code is given below —

Number of Trade count

16

33

46

61

77

191
229
245
255
28E5
306
322
249
37e
379
428
464
531
el
653
665
7al
7a7

Date
2818-81-15
2818-82-19
2818-82-28
2818-p4-83
2818-84-25
2818-16-18
2818-12-8B6
2618-12-31
2819-81-14
2819-82-26
2819-84-81
2819-84-25
2819-86-80
2819-87-85
2819-67-18
2819-8%-27
2819-11-27
2828-83-83
2e2e-p4-21
2828-83-31
2e2e-8%-16
2e2a-11-86
2e2e-11-17

t44.
Les.
LE6.
L76.
L88.
78e.
668.
658.
7al.
742,
FL5.
728.
735.
718.
792,
782.
695.
747,
633.
928.

l1ge1
1112
1123

"pnllong",

12

Close
575812
875886
2909988
224976
174933
458812
SoBaad
asgalz
apbaz4a
LoBaas
g8e9376
CA4%988
CO0a76
aaoass
Jobalz
2oBalz
750886
aaRass
208812
Lo%av6
758080
. 7 SBaaD
.696951

cumpnl long

0.aeeaas
.209083
. 200083
.224075
2244975
129, 580880
129 . SeBaag
119.958812
119.958@812
166 .540083
166 .540083
134 .e8baa0
134 . 260080
116 . 48824
116 . 488824
185 .9e0824
185 .980824
157 .158824
157 .156824
4532 540088
452 . C4008E
563.5499388
563 .5499383

LA

2
2

(Ve U N]

Trade

i
= I
b=
=i 18
3.
o I
1.
= I
.
= I
| L=
=ils
1.
g [
1.
=
i 8
= I
b=
=i 18
3.
o I
1.

mm oD ®S DD D EO®D DD DD 00D DS @

"rolling_max",

"daily_drawdown",

Trade Return

=

[T
s LY o T e w o T s T LS R W R W I o R = T (s I v R

Nal

.478958
.Bogaoe
.2819a65
.Boecoe
171187
.Boeaoe
.449273
.Boeaoe
.46881e
.Boeaoe
.644223
.Boecoe
.451258
.Boeaoe
.342368
.Boeaoe
.BBB776
.Boeaoe
.811326
.Boecoe
.975286
.Boeaoe

As you can observe in above output, total numbers of trade in above strategy
are 12. If you will observe the ‘Trade_Return’ you will find highest return in
a single trade is 31.81% and maximum loss in a trade is -3.64%. One more
thing you can observe that moving average strategy is giving small losses and
big profits.

Above python code can be used to compute returns given by any stock of any
exchange for a given moving average crossover. We can create loops also to
compute return of multiple stocks on multiple moving averages that we will
learn later on.

Back-testing multiple Moving average crossover -

Which moving averages to take for trading is a very subjective decision.
However with the help of Python we can backtest return given by stock on
various moving averages in various periods. I have written following codes in
which one can define stock, years, short moving averages and long moving
averages to get returns. With the help of following code I am computing
yearly return given by Reliance Industries during the year 2016 to 2020 on
different combinations of moving average crossovers from 1 to 35. Trader is
buying when short moving average is crossing long moving average from
downside and selling when short moving average is crossing long moving
average from upside.

If you will observe the following code you will notice that I have used 3 ‘for’
loops. 1st ‘for’ loop for years, 2nd ‘for’ loop for short moving average and
3rd for loop for long moving average. Pivot Table created with values of
‘cumpnl_long’. This field of ‘cumpnl_long’ is giving us the per share return
given by stock when we are having long position if short moving average is
above long moving average

Python Code -

Ipip install yfinance
from datetime import datetime
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import yfinance as yf
T3 = pd.DataFrame({"Close": data["Close"]})
T3["Year'] = T3.index.year
T2 = pd.DataFrame({"cumpnl_long":['0'], "SMA":['0'], "LMA":['0'], "Year":
['07})
for z in range (2016, 2021, 1):
T = T3.where(T3.Year == z)
T = T.dropna()
for a in range(1,35,2):
for b in range(a,35,2):
SMA=a
LMA=b

Compute Long and short Moving averages

T['Short_average'] = T['Close'].rolling(window=SMA, min_periods=1,
center=False).mean()

T['Long_average'] = T['Close'].rolling(window=LMA, min_periods=1,
center=False).mean()

T['positions_long'] = np.nan

for x in range (len(T)):

if T.Short_average[x] > T.Long_average[x]:
T['positions_long'][x] = 1
if T.Short_average[x] <= T.Long_average[x]:
T['positions_long'][x] = 0

T.positions_long = T.positions_long.fillna(method="tfill")

T['price_difference']= T.Close - T.Close.shift(1)

T['pnllong'] = T.positions_long.shift(1) * T.price_difference

T['cumpnl_long'] = T.pnllong.cumsum()

T1 = T[['cumpnl_long']].tail(1)

T1['SMA'] = SMA

T1[LMA']l = LMA

T1['Year'| =z

T2 = T2.append(T1)
#Create pivot table
Pivot_Tablel = pd.pivot_table(T2, values ='cumpnl_long', index =['SMA,
'LMA'], columns =["Year'], aggfunc = np.sum)
#Export pivot table
Pivot_Tablel.to_csv("PV_T.csv", index=True, encoding="utf8")
from google.colab import files
files.download('PV_T.csv")

You will get the following output in Excel downloaded-

A B C D E F G

1 |SMA LMA 2016 2017 2018 2019 2020
2 1 1 0 0 0 0 0
2 1 3 -55.6749 432.5246 3824998 240.9002 323.2694
4 1 3 -5.02502 353.75 367.45 361.8004 326.29%4
5 1 7 4.825043 330.9499 7770001 405.7504 A457.6096
B 1 9 -33.35 306.6999 101.8 283.0004 576.5597
7 1 11 -66.425 282.8 150.35 250.05 B655.0596
8 1 13 -30.65 268.5501 180.8399 249.35 066.8998
9 1 15 -39.2751 242325 292.8499 262.9 B621.6495
10 1 17 -14.8251 253.3749 250.3498 237.9 717.7498
11 1 19 -2.85007 267.6249 182.6497 227.45 665.7499
12 1 21 9.499969 270.274% 87.14978 189.05 525.4999
13 1 23 -0.19998 220.7999 105.1998 162.82999 5532.9
14 1 25 -5.69938 243.65 100.4498 146.7993 545.3002
15 1 27 -19.2249 251.1249 104.6498 205 6727498
16 1 29 -15.35 255.075 134.8498 263.2999 817.04338
17 1 31 -10.125 278.725 102.5997 279.9501 768.9497
18 1 33 -10.825 259.375 97.59973 206.7002 7V50.74590
19 3 3 0 0 0 0 0
20 3 6.925018 225.6251 123.6001 327.4501 677.3296
21 3 7 B.60989 195.8499 59.04987 108.4 692.5497
22 3 9 7.649841 229.225 74 207.19%8 732.9935
23 3 11 1.875 185.325 -5.85004 265.95 701.4995
24 3 13 23.09985 173.6751 9 193.45 915.7939
25 3 15 75.875 185.375 9B8.14978 245,05 73E.6499

oAbkl PV T <%0

In the above output of excel you will observe moving average crossover of 1
day and 5 days is giving consistent return year on year (SMA denotes short
moving average and LMA denotes long moving average). So technically you
can say Reliance is buy if trading above 5 days moving average. But this will
result into many trades and cost is associated with every trade. If you will
observe moving average cross over of 1 day and 29 days is also giving
consistent return. It means if Reliance is trading 30 days moving average its a
buy.

One more thing you will notice that in year 2020 all the moving averages has
given very good return because prices were trending in year 2020. We have
seen rollercoaster ride in year 2020 from Nifty 12000 to 8000 and again back
to 12000. In trending market moving average crossover gives good return
however in range bound market mean reversal strategies gives good return.

As we have computed return for Reliance, in the same way you can compute
moving average return given by any stock on past data for any combination
of moving averages.

2. Relative Strength Index(RSI)

The relative strength index is a momentum oscillator commonly used to
predict when a company is oversold or overbought. The RSI will then be a
value between 0 and 100. It is widely accepted that when the RSI is 30 or
below, the stock is oversold and when it is 70 or above, the stock is
overbought.

The calculation process is given below:

1. Observe the last 14 closing prices of a stock.

2. Determine whether the current day’s closing price is higher or lower

than the previous day.

3. [If the price has increased from previous day price, we note down the
difference in the “Gain” column and if it’s a loss, then we note it

down in the “Loss” column.

4. Calculate the average of “Gain” column and “Loss” column over the

last 14 days.
5. Compute the relative strength (RS): (AvgGain/AvgLoss)
6. Compute the relative strength index (RSI): (100-100/ (1 + RS))

Python code for computation of RSI on simple moving average is given
below-

Download necessary libraries
from datetime import datetime
import pandas as pd

import matplotlib.pyplot as plt
import numpy as np

import yfinance as yf

Fetch Historical Data

Stock = "RELIANCE.NS"

data = yf.download(Stock, start="2020-01-01", end="2020-12-31")
Get just the close in file 'T1'

T1 = pd.DataFrame({"close": data["Close"]})

Window length for moving average

window_length = 14

Get the difference in price from previous step

T1['delta’] = T1['close'].diff()

Make the positive gains (up) and negative gains (down) Series
T1['up'] = T1['delta']

T1['down'] = T1['delta']

for x in range (len(T1)):
if T1.up[x] <O0:
T1l.up[x] =0
if T1.down[x] > O:
T1.down[x] =0

Calculate the SMA

T1['roll_up'] = T1['up'].rolling(window_length).mean()
T1['roll_down'] = T1['down'].abs().rolling(window_length).mean()
Calculate the RSI based on SMA

T1['RS'] = T1['roll_up'] / T1['roll_down']

T1['RSI'] = 100.0 - (100.0 / (1.0 + T1['RS']))

print (T1)

Download file ‘T1’ in csv format to check computations
T1.to_csv("RSI_T.csv", index=True, encoding="utf8")

Screenshot of file “T1’ downloaded is given below -

=R = R R = R R - R L R S R

R R R Pt |t | [|
GIRBRRBEBIERQEGRERIES

As

A
Date
01/01/2020
02/01/2020
03/01/2020
06/01/2020
07/01/2020
08/01/2020
09/01/2020
10/01/2020
13/01/2020
14/01/2020
15/01/2020
16/01/2020
17/01/2020
20/01/2020
21/01/2020
22/01/2020
23/01/2020

| 24/01/2020
| 27/01/2020

28/01/2020
29/01/2020
30/01/2020
31/01/2020
03/02/2020

discussed earlier that when the RSI is 30 or below, the stock is

B
close

1495.425
1520.884
1522.716
1487.401
1510.284
1498.942
1533.464
1533.118
1529.205
1515.039
1509.541
1523.459
1566.154
1517961
1513497
1518.952
1512513
1507.263
1492 404

1457.93
1465.954
1430.193
1398.395

1372.49

C
delta

25.45862
1.832642
-35.3153
22.88313
-11.3425
34.52271
-0.34668
-3.91254
-14.1658
-5.49792
13.91809
42.69531
-48.1931
1.5354
-0.5448
-6.43396
-5.25024
-14.8591
-34.4733
8.023926
-35.761
-31.7986
-25.9045

D E
up down

25.45862 0
1.832642 0
0| -35.2152
22.88313 0
0 -11.3425
34.52271 0
0 -0.34668

0 -3.91234

0 -14.1658

0 -5.49792
13.91809 0
42.69531 0
0 -48.1931

1.5354 0

0 -0.5448

0 -6.43836

0 -5.25024

0 -14.8591

0 -34.4733
8.023926 0
0| -35.761

0 -31.7936

0 -25.9045

F
roll_up

10.20323
8.384809
8.253906
8.253906
6.619393
6.619393
4.726624
4.726624
4.726624
4.726624

G

roll_down RS

8.483869
8.522784

8.98271
6.835205
7.896572
9.548767
9.548767
12.07836

14.0702
14.90868

1.202663
0.983811
0.915866
1.207558
0.835262

0.09322
0.434938

0.39133
0.335932
0.217038

so trader will buy the stock and when it is 70 or above, the
overbought so trader will sell the stock. The RSI can give false signals too.

RSl

54.60052
49.59198
47.85589
54.70108
45.600738
40.94092
33.11029
28.12632
25.14586
24.07206

oversold
stock is

The fundamental property of RSI which states that a level above 70 is
overbought can be proved wrong in a strong bull market where the company
is progressing rapidly and posting good returns to its shareholders in this
scenario the RSI can stay above 70 for a long time, which can be disastrous
for short sellers. It is a similar case for a bear market where the RSI can stay
below 30 and not rise above that level for an extended period of time. Now
you have data and tools so you can make your own observations/strategies.

In the following example when 21 days RSI is trading above 70 is an
indication that there is up trend in the stock and when 21 days RSI is trading

below 30 there is down trend in the stock. So in following program code I am
buying Reliance when RSI is above 70 and squaring off position when it’s
going below 50. I am selling when RSI is going below 30 and position is
covered when coming back to 50.

Python Codes for computation of profit and loss with RSI:

T1['positions_long'] = np.nan
for x in range (len(T1)):
if T1.RSI[x] > 70:
T1['positions_long'][x] = 1
if T1.RSI[x] <= 50:
T1['positions_long'][x] = 0
T1.positions_long = T1.positions_long.fillna(method="tfill")
T1['positions_short'] = np.nan
for x in range (len(T1)):
if T1.RSI[x] < 30:
T1['positions_short'][x] = -1
if T1.RSI[x] >= 50:
T1['positions_short'][x] =0
T1.positions_short = T1.positions_short.fillna(method="ffill")
T1['positions'] = T'1.positions_long + T1.positions_short
T1['price_difference']= T1.close - T1.close.shift(1)
T1['pnl'] = T1.positions.shift(1) * T1.price_difference
T1['cumpnl'] = T1.pnl.cuamsum()
Calculate the max drawdown in the past window days for each day
T1['rolling_max'] = T1['cumpnl'].rolling(250, min_periods=1).max()
T1['daily_drawdown'] = T1['cumpnl']-T1[rolling_max']
Calculate the minimum (negative) daily drawdown
T1['max_daily_drawdown'] = T1['daily_drawdown'].rolling(250,
min_periods=1).min()
fig, axs = plt.subplots(2,figsize=(15,8))
axs[0].plot(T1['cumpnl'])
axs[1].plot(T1['max_daily_drawdown'])

Output of above Python Codes:

--m\‘ n'l II\"" A -

02003 2020.05 2020.07 02009 22011 w2101

=100 1

150 1
=3k 1 Ij

2003 22005 22007 2009 22011 00101

As we can observe in above output return given by strategy is 1000/- per
share whereas the maximum drawdown was 200/-.

Python Codes for further analysis of strategy:

T1['Trade'] = T1['positions'].diff()

T2 = T1.where((T1.Trade != 0))

T2 = T2.dropna()

T2.drop(["delta", "up", "down", "roll_up", '"roll_down", "RS",
"positions_long", "positions_short", "positions", "price_difference", "pnl",
"rolling_max", "daily_drawdown", "max_daily_drawdown"], axis = 1,
inplace = True)

T2['Trade_Return'] = (T2['cumpnl'].diff()/T2['close'])*100

print ("Number of Trade count"”, round(len(T2)/2))

print (T2)

Output of above Python Codes:

Ti['Trade'] = T1[' positions’].diff()

T2 = Tl.where((T1l.Trade != 8})

T2 = T2.dropna()

T2.drop{["delta™, "up”, "down", “roll up”, "roll down", "RS", "positions_
T2['Trade_Return'] = (T2[" 'cumpnl’].diff()/T2[close']}*1686

print ("Number of Trade count™, round{len(T2)/2)}

print (T2)

Mumber of Trade count 7

close RSI cumpnl Trade Trade Return
Date
2028-81-36 1438.193237 23.126328 @.0ee06e -1.8 MalM
2028-82-17 1484.369263 51.239518 -34.176082% 1.8 -2.333839
2026-83-82 1383.701382 29.839665 -34.17682% -1.8 a.88868aa8
2028-84-91 16878.3845565 51.858382 199.316791 1.8 21.814588
2020-84-16 1157.882831 72.6@0669 199.3167091 1.4 g.eaeean
2826-85-19 1483.%90024 49,332481 451.128734 -1.8 17.873376
2028-86-04 1579.3000849 74, 335518 451.128734 1.8 g.eaeean
2020-88-13 2122.0568649 47 .305739 093 378734 -1.6 25.553128
2026-89-16 2314 .0e600e 73.080076 003 _378734 1.8 a.e8a80aa8
2026-89-36 2234 .35@0808 37.399173 913.7258R2 -1.6 -3.564791
2028-18-26 2820.8099076 27.152387 913.728882 -1.8 @ .8886aa8
2028-11-23 1958.699951 56.967119 902.128986 1.8 4.819871
28208-12-11 2065.388049 7@,.34862°9 992.128986 1.4 g.eaeean
2028-12-21 1939.699951 46.671833 926.025889 -1.8 -3.487749

As we can observe in above output maximum profit in a trade was 25.55%
and maximum loss as -3.56%. Total 7 trades generated by this strategy in
year 2020.

There are hundreds of indicators used in Technical Analysis for prediction of
price movement. We should use combination of different indicators which
will give us a holistic view of the market and help us extract maximum
information from the price action of a particular asset. So a trading setup
includes many indicators. We will discuss one trading setup at end of this
book to get directional view of the stock.

Writing python codes for each indicator is going to be a Herculean task. So
we will use Technical Analysis libraries of Python for computation of these
indicators. This will save lots of energy and time. One of the most popular
libraries in python for technical analysis is TA-LIB. We will use this to make
our job easy. Our objective is to make money not to understand how to write
codes. So we will remain focused on development of profitable trading
setups.

TECHNICAL ANALYSIS
LIBRARY (TA-LIB) IN
PYTHON FOR
BACKTESTING

If we work on developing a technical indicators code from scratch it will
require huge amount of efforts and difficulty. Best thing in python is that we
can use the work done by others. Mario Fortier started TA-LIB library in
Python as a hobby. Today this library has become one of the most famous
libraries for technical analysis of stocks and other financial securities. Ta-lib
includes 150+ indicators such as ADX, MACD, RSI and Bollinger Bands and
candlestick pattern recognition.

INSTALLING TA-LIB
PYTHON LIBRARY

Ta-lib installation is different from other python libraries as it is not available
to install directly using pip install.

First, we need to visit the following link and download the whl file of Ta-Lib
according to our windows version.

https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib

Following commands can be used to check your windows and version.

import platform
import sys

I'python -V
print(platform.platform())
print (sys.version)

Python 3.8.5Windows-7-6.1.7688-5P8
3.8.5 (default, Sep 3 2020, 21:29:08) [MSC v.1916 64 bit (AMD64)]

One should note that you should download the file keeping your Python
version and Windows architecture (32 bit or 64 bit) in mind. Since I have the
python version 3.8 installed and 64 bit Windows 7 system, I will download
the file, “TA_Lib-0.4.19-cp38-cp38-win_amd64.whl”. As you might have
guessed “cp38” implies Python version 3.8 and “win_amd64” implies
Windows 64 bit operating system.

https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib
https://www.lfd.uci.edu/~gohlke/pythonlibs/#ta-lib

e # Ifd.uci.edu/~gohlke/pythonlibs/#ta-lib

TA-Lib: a wrapper for the TA-LIB Technical Analysis Library.
TA Lib-0.419-cp39-cp39-win_amd64 whi

TA Lib-0.4.19-cp38-cp39-win32 whi

A_Lib-0.4.19-cp38-cp38-win_amd64 v

TA TLib-0.4.19-cp38-cp38-win32 whi

TA _Lib-0.4.19-cp37-cp37m-win_amd64 whi

TA Lib-0.4.19-cp37-cp3Tm-win32 whi

TA 1ib-0.4.19-cp36-cp3bm-win_amd64 whi

By default, the "whl" file gets downloaded in the "Downloads" folder of your
system user. You need to copy this file from downloads and paste it to parent
folder “<user name of parent folder>". As shown in following screen shot,

my laptop User name is ‘Cloud9’ so “whi” file got downloaded in folder
Cloud9 > Downloads.

I just copied the “whi” file from downloads and pasted it to parent folder

‘Cloud9’.
: g » Cloudd » Downloads »

GO

Organize » Include in library - Share with - Burn Mew folder
i Favorites M

Bl Desktop || TA_Lib-0.4.19-cp38-cp38-win_amdid.whi

& Downloads &3] pair trading setup (2)

| Recent Places 5] pair trading setup (1)

@] pair trading setup

4 Libraries = Irng_1608630034007

3 Docurmnents |=| Img_1608631100703

After that, we can install it using pip install as given below.

Ipip install TA_Lib-0.4.19-cp38-cp38-win_amd64.whl

'pip install TA Lib-28.4.19-cp38-cp38-win_ amd6d.whl

Processing c:\usershcloud9\ta_lib-8.4.19-cp38-cp38-win_amdsd.whl

Installing collected packages: TA-Lib
Successfully installed TA-Lib-8.4.19

DOWNLOAD PAST DATA
FOR REUSE

Now without writing long complicated codes we can start using Python
library Ta_Lib for technical based trading and backtesting.

One more thing you should note that you should download data on your
laptop inspite of fetching again and again same data from yfinance. You can
use downloaded files for various experiments. In the coming chapters we will
also use past data file saved on system. We can use following codes to fetch
historical data of stock from yfinance and to save it on laptop/system for
reuse —

Python codes-

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

import yfinance as yf

Fetch historical data

data = yf.download('INFY.NS', start="2018-01-01", end="2020-12-31")
Download file ‘data’ in csv format on Laptop/system to reuse Infosys data
data.to_csv("Infy-His-data2018-20.csv", index=True, encoding="utf8'")
#Print data

data.head()

Fetch historical data
data = yf.download(' INFY.NS', start="2818-81-81", end="2828-12-31")

s i

Download file ‘data’ in csv format to reuse infosys data

data.to _csv(" Infy-His-data2@18-28.cs5v", index=True, encoding="utfl’)

data.head()
[J:tr-&i\. !!!!! EE R R tx!alaax xxxxx R Rk R R #-:#J:x] 1 D.F J_ CDr'nplEtEd
Open High Low Close AdjClose Volume
Date

20180101 518840076 522.250000 S515.000000 516775024 474472505 5431340
2018-M-02 518625000 521.000000 511.500000 514.84%076 472705130 6112248
2M8-1-03 514.250000 515700988 500290088 510.649054 408543833 0346552
2018-01-04 510500000 510500000 504.720082 S07T.700012 466140472 2947614
2M8-01-05 507649934 513.200012 S503.000000 S06.000000 464579559 11025976

In the following example I have selected randomly 10 stocks to download
past data of last 3 years from yfinance and saved it on my laptop so that I can
use them again and again without increasing load on yfinance.

import yfinance as yf

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt

Stock = ['RELIANCE.NS', 'HDFCBANK.NS', 'SBIN.NS', 'ONGC.NS',
'BHEL.NS', ' NESTLEIND.NS', INFY.NS']
data = yf.download(Stock, start="2018-01-01", end="2020-12-31")

close = data['Close']

close.to_csv("Daily_Close", index=True, encoding="utf8")
Daily_Close = pd.read_csv('Daily_Close'")
Daily_Close.head()

#you will get the following output

Daily Close = pd.read_csv({'Daily_Close")

Daily _Close.head()

Date BHEL.NS HDFCBAMK.MS INFY.NS§ MNESTLEIND.NS ONGC.NS RELIANCE.NS SBIN.NS
0 2018-01-01 95150002 927 250000 516.775024 7863.200185 192350006 G00. 750000 207.100006
1 20M8-01-02 98.199007 036174988 514 840976 TBE3 549805 196.850006 911.150024 303250000
& 20130103 98.550003 926.325012 510649994 7660100093 193 449997 914790938 302.550000
3 2018-01-04 100.750000 929950012 507.700012 7869 250000 199 500000 920.2999838 308.500000
4 20130105 102.345003 931.799988 506000000 7856, 750000 195.449997 0923.250000 306350006
close.describe()
#you will get the following output
close.describe()
BHEL.NS HDFCBANK.NS INFY.NS MNESTLEINDNS ONGC.NS RELIANCE.NS SBIN.NS
count 737.000000 737.000000 737_0D0D0ODD T737.000000 737.000000 T37.000000 737.000000
mean 57491113 1006.338256 T47.930190 126909377806 133.155202 1370113082 268.875441
std 21413306 128.339688 151.021617 3169692485 40419717 372413590 51.380974
min 19850000 T67.700012 506.000000 5060640002 G0.000000 £32.700012 150.850000
25% 37.000003 1001.000000 658950012 10220.293805 80 849003 1104750000 242 600006
50% 62450001 1066 650024 T719.700012 11623.000000 4142.200003 1278.000000 275.100006
T5% 73.000003 1201840976 T81.7DD012 16048 500000 167100006 1533900024 306.350006
max 104.550003 1441 83000459 1253.0500459 187326859219 210.850006 2324 550048 372.380084

Same way you can also save volume data for future use.

Volume = data['Volume']
Volume.to_csv("Daily_Volume", index=True, encoding="utf8")

DATA VISUALISATION IN
PYTHON

Through Data visualization we try to understand data by placing it in a visual
context so that patterns, trends and correlations that might not otherwise be
detected can be exposed.

We will use Plotly Python library in python program code. Plotly is a python
library which helps in data visualisation in an interactive manner. You can
zoom in our zoom out at any data point to get clearer picture. For that first
you need to install Plotly through command -

Ipip install plotly.

Ipip install plotly

Collecting plotly
Downloading plotly-4.14.3-py2.py3-none-any.whl (13.2 MB)
Collecting retrying»=1.3.3
Downloading retrying-1.3.3.tar.gz (18 kB)
Requirement already satisfied: six in c:‘wsershcloud9\anaconda3\lib\site.
Building wheels for collected packages: retrying
Building wheel for retrying (setup.py): started
Building wheel for retrying {(setup.py): finished with status 'done’
Created wheel for retrying: filename=retrying-1.3.3-py3-none-any.whl =
a3249f7fcbl53addf8docefatie
Stored in directory: c:lwsersi\cloud9\appdatatlocalipipicachel\wheelsh\c4’
=14}
Successfully built retrying
Installing collected packages: retrying, plotly
successftully installed plotly-4.14.3 retrying-1.3.3

TECHNICAL ANALYSIS
WITH PYTHON LIBRARY
TA_LIB

1. OVERLAP STUDIES

1.1 SIMPLE MOVING
AVERAGE (SMA)

A simple moving average (SMA) calculates the average of a selected range of
closing prices, by the number of periods in that range. Short term moving
averages are more sensitive to price. When price declines short term average
declines much faster than long term average. As decline continues short term
average will decline further below long term average.

1. If short period moving average line is above the long period
moving average then it’s a buy signal and if short period line is
below the long period line it is sell signal.

2. Short period Moving averages give early signal of entry and exit as
compare to long period moving average.

3. Moving Average works in trending market but in rage bound
market this strategy may give losses.

Python codes for computation of Moving averages are given below. We are
not downloading data from yfinance. We are using files saved on out laptop
in the following python codes.

past data uploaded from file saved on system
Daily_Close = pd.read_csv('Daily_Close")
Daily_Close.head()

Seperate table 'Infy' created with Infosys data

Infy = pd.DataFrame({"Date": Daily_Close["Date"], "Close":
Daily_Close["INFY.NS"]})
Infy.head()

Computation of simple moving average using python library TA-LIB
Infy['MA'] = ta.SMA(Infy['Close'],30)
Infy[['Close',)'MA']].plot(figsize=(18,6))

plt.show()

-.F--[._] 15.ﬁIf[l J'-'
nfy[[‘Close”,'ma’]].pl t[Fiﬂl =1

We have computed moving average. With the help of following codes we can
compute profit and loss generated by strategy on past data if trader bought
Infosys share when stock was trading above 30 days moving average (bought
when close price crossed average prices from downside to upside) and sold
when price went below 30 days moving average.

Calculate trades and profits generated by strategy
Infy['positions_long'] = np.nan
for x in range (len(Infy)):
if Infy.Close[x] > Infy. MA[X]:
Infy['positions_long'][x] = 1
if Infy.Close[x] <= Infy.MA[X]:
Infy['positions_long'][x] =
Infy.positions_long = Infy.positions_long.fillna(method="ffill")
Infy['price_difference']= Infy.Close - Infy.Close.shift(1)
Infy['pnllong'] = Infy.positions_long.shift(1) * Infy.price_difference
Infy['cumpnl_long'] = Infy.pnllong.cumsum()
Calculate the max drawdown in the past window days for each day
Infy['rolling_max'] = Infy['cumpnl_long'].rolling(250, min_periods=1).max()
Infy['daily_drawdown'] = Infy['cumpnl_long']-Infy['rolling_max']
Calculate the minimum (negative) daily drawdown
Infy['max_daily_drawdown'] = Infy['daily_drawdown'].rolling(250,
min_periods=1).min()

Plot Cumulative retruns and maximum drawdown of strategy
fig, axs = plt.subplots(2,figsize=(15,8))
axs[0].plot(Infy['cumpnl_long'])
axs[1].plot(Infy['max_daily_drawdown'])

You will get the following output. As we can observe in following chart, first
chart of cumulative profit and loss showing profit of approximately Rs 450/-
per share generated by strategy and second chart of maximum daily

drawdown is Rs 175/- per share.

500
W
i

400 { W |

¥V
300 4 pua [i

N
00 |
ah n
3 L™ | i il
100 -».-M 1 | " o, W
M ey A M) iy M\
My o
0 Lyt -1 A
Il'..lh 200 30 4L'-'.| 500 L] K
(1] -
-5 g -
L
-5 4 L Y
T—
=75 4] %
"
100 1 ‘-_.__I
125 o]
150
-175 | -
P
0 190 200 30 404 500 600 00

With the help of following codes we can further analyse the strategy to check
total numbers of trade and return on each trade generated by strategy in last 3

years from 2018 to 2021 (as we are taking 3 years data for backtesitng) -

Number of Trade count 34

25 1

20 1

10 4
) ‘ ‘

| r— N
0 II IIII lIIIII II |I|l - - -II

LOSLL L L L L L L L L L LA
PR i EEaL 1 CICHED FaE CHCHE

IF3E01

As we can observe from the above chart total 34 trades generated by strategy,
22 trades resulted into loss and 12 trades given profit. One can download files
‘Infy’ or “T2’ for further analysis of trade.

Download file ‘Infy’ in csv format to check computations
Infy.to_csv("Infy.csv", index=True, encoding="utf8")

1.2. EXPONENTIAL
MOVING AVERAGE (EMA)

An exponential moving average (EMA) is a type of moving average (MA)
that places a greater weight and significance on the most recent data
points.

Computation of exponential moving average using ‘“TA-LIB’
Infy['[EMA'] = ta.EMA(Infy['Close'],20)

Infy[['Close',)MA', 'EMA']].plot(figsize=(18,6))

plt.show()

We can use the same code for computation of return generated by
Exponential Moving Average as we used for moving averages-

Calculate trades and profits generated by strategy
Infy['positions_long'] = np.nan
for x in range (len(Infy)):
if Infy.Close[x] > Infy. EMA[x]:
Infy['positions_long'][x] = 1

if Infy.Close[x] <= Infy. EMA[X]:
Infy['positions_long'][x] = 0

Infy.positions_long = Infy.positions_long.fillna(method="ffill")
Infy['price_difference']= Infy.Close - Infy.Close.shift(1)
Infy['pnllong'] = Infy.positions_long.shift(1) * Infy.price_difference
Infy['cumpnl_long'] = Infy.pnllong.cumsum()
Calculate the max drawdown in the past window days for each day
Infy['rolling_max'] = Infy['cumpnl_long'].rolling(250,
min_periods=1).max()
Infy['daily_drawdown'] = Infy['cumpnl_long']-Infy['rolling_max']
Calculate the minimum (negative) daily drawdown
Infy['max_daily_drawdown'] = Infy['daily_drawdown'].rolling(250,
min_periods=1).min()
Plot Cumulative retruns and maximum drawdown of strategy
fig, axs = plt.subplots(2,figsize=(15,8))
axs[0].plot(Infy['cumpnl_long'])
axs[1].plot(Infy['max_daily_drawdown'])

[<«matplotlib.lines.Line2D at @xbEe2438>]

300 4

%i.
oo | | IJL.!#I.J
|
100 4 r\L& |"T
th“u_ u " |f'
LR L M -
k"/m"_'—.rw"ﬁ# M 5 s ?J
100 4 e ._,1|""‘""H k*LW.u
o 100 00 0 a0 500 w00 a0
$ |
L
50 1 "
I'|
100 4 L, :
=150 1]_I_
L
200 - —, [
o 100 00 300 200 500 &0 00

Calculate number of trades and return of each trade

Infy['Trade'] = Infy['positions_long'].diff()

T2 = Infy.where((Infy.Trade != 0))

T2 =T2.dropna()

T2.drop(["positions_long", "price_difference"”, "pnllong", "rolling_max",

"daily_drawdown", "max_daily_drawdown"], axis = 1, inplace = True)
T2['Trade_Return'] = (T2['cumpnl_long'].diff()/T2['Close'])*100

print ("Number of Trade count”, round(len(T2)/2))

Plot trade retruns

fig = plt.figure()

ax = fig.add_axes([0,0,1,1])

ax.bar(T2['Date'], T2['Trade_Return'])

plt.show()

Mumber of Trade count 52

20 4

151

| | I I ||
T T T Tt

1.3. BOLLINGER BANDS

Bollinger Bands are a type of statistical chart characterizing the prices and
volatility over time of a financial instrument or commodity. Bollinger
Bands are envelopes plotted at a standard deviation level above and below
a simple moving average of the price. Because the distance of the bands is
based on standard deviation, they adjust to volatility swings in the
underlying price. Bollinger Bands use 2 parameters, Period and Standard
Deviations. The default values are 20 for period, and 2 for standard
deviations, although you may customize the combinations.

Statistically 68% values should remain within the range of +- one standard
deviation from the mean value, so if price is touching upper band or lower
band than they should come back to mean value but mean value is also
moving up or down with the prices that’s why in range bound market price
reverse to mean value will be true but in case of trending market this will
not be true. In a trending market price touching upper band or a lower
band may be a breakout upside or downside respectively.

You can observe in following chart when price is touching the upper band
the stock is in uptrend and when price is touching the lower band stock is
in down trend. How to use the Bollinger band for trading will depend on
the instrument and price behavior of that instrument.

Following codes will be used for computation of Bollinger band with TA-
LIB -

upper, middle, lower = BBANDS(Close Price, Time Period, Number of
Standard Deviation from Mean, Moving Average Type)

In the following example we are taking time period of 20 days for
computation of simple moving average and 2 standard deviation upside
and 2 standard deviation downside for computation of bands.

Computation of bollinder bands using ‘TA-LIB’
stock['up_band'], stock['mid_band'], stock['low_band'] =

ta.BBANDS(stock['Close'], timeperiod =20,
nbdevup=2,nbdevdn=2,matype=0)

stock[['Close','up_band','mid_band','low_band']].plot(figsize= (18,6),
grid=True)
plt.show()
stock[‘up_band’), stock] mid_band'], stock[lew band®] = ta.BEAMDS{stock['Clase’], timeperdod =28, nbdevups2,nbdevdns2,natypes8)
stock[[‘Close”, 'up_band”’, "mid_band’,'low band']].plot(figsize=- (18,8}, grid=True)
plt. show()
1200 it Nl i
- I ."'J':. Jol -" a u_,‘_.
0 _."‘|'I 4
|
00 ,.,.r,‘;::z_'-,nk o f
I-'-"_'"."“ ,,-'.LI} s | ¥ ar
5 i 1:’&._,%“ oy "t ol o 1 N o
ey i, Y ¥ 1 rr
S o "\ﬂa.:'?‘-'-'-' h

We can use the following codes for computation of return generated by
Bollinger Bands. There is slight difference in python codes we used for
moving averages because in case of moving averages we were taking only
buy side trades, however in case of Bollinger band we buying when stock
price is going below lower band and we are selling when stock price is are
going above upper band in the hope that price will come back to average
prices. So Bollinger band is a mean reversal strategy. Python codes are given
below-

Generate trade signals and compute profit loss on trades
stock['positions_long'] = np.nan
for x in range (len(stock)):
if stock.Close[x] < stock.low_band[x]:
stock['positions_long'][x] = 1
if stock.Close[x] >= stock.mid_band[x]:
stock['positions_long'][x] = 0
stock.positions_long = stock.positions_long.fillna(method="ffill")
stock['positions_short'] = np.nan
for x in range (len(stock)):
if stock.Close[x] > stock.up_band[x]:

stock['positions_short'][x] = -1
if stock.Close[x] <= stock.mid_band[x]:

stock['positions_short'][x] = 0
stock.positions_short = stock.positions_short.fillna(method="ffill")
stock['positions'] = stock.positions_long + stock.positions_short
stock['price_difference']= stock.Close - stock.Close.shift(1)
stock['pnl'] = stock.positions.shift(1) * stock.price_difference
stock['cumpnl'] = stock.pnl.cumsum()
Calculate the max drawdown in the past window days for each day
stock['rolling_max'] = stock['cumpnl'].rolling(250, min_periods=1).max()
stock['daily_drawdown'] = stock['cumpnl']-stock['rolling_max']
Calculate the minimum (negative) daily drawdown
stock['max_daily_drawdown'] = stock['daily_drawdown'].rolling(250,
min_periods=1).min()
Plot cumulative profit loss and maximum drawdown
fig, axs = plt.subplots(2,figsize=(15,8))
axs[0].plot(stock['cumpnl'])
axs[1].plot(stock['max_daily_drawdown'])

[<matplotlib.lines.Line2D at @w93EF228>]

00 | | N
_‘II' [il h
00 { | | | |
" i | W
100 1 II'-“-\. ~W\M41
. \
04 -.l_h'nfﬂ'*\l Ly I_'I P II| I_ﬂl
M
T N8
100 1 i , .
0 100 00 00 a00 500 600 00
o4 =,
—_qu -
-100 { T " |
|
=20 1
1—"“__
300 4 |
I|
400 1 A
0 100 00 100 200 500 B0 00

As you can observe in above output Trading Infosys with 20 days moving
average and 2 standard deviation generated a negative returns and maximum
drawdown was more than total returns generated by strategy.

We can do further analysis for computation of return generated by each trade

with the help of following codes-

Calculate number of trades and return of each trade

stock['Trade'] = stock['positions'].diff()

T2 = stock.where((stock.Trade != 0))

T2 =T2.dropna()

T2.drop(["positions_long", "positions_short", "positions",
"price_difference", "pnl", "rolling_max", "daily_drawdown",
"max_daily_drawdown"], axis = 1, inplace = True)

T2['Trade_Return'] = (T2['cumpnl'].diff()/T2['Close'])*100

print ("Number of Trade count”, round(len(T2)/2))

Plot trade retruns

fig = plt.figure()

ax = fig.add_axes([0,0,1,1])
ax.bar(T2['Date'], T2['Trade_Return'])
plt.show()

Mumber of Trade count 25

10 4

y I| Al

Total 25 trades generated by strategy from year 2018 to 2020. As you can

observe in above chart in initial days most of the trades resulted into profit

of approx 3% to 10% in each trade when stock was range bound but when

stock started trending strategy started generating losses.

We are using same data for computation of signals and returns generated
by various technical indicators. If you will compare the charts of Moving
Averages and Bollinger Band you will find that Bollinger bands are giving
return when stocks are range bound and Moving Averages are giving

return when stocks are trending.

As discussed earlier we can use ploty python library for better
visualization. In the following graph I am using ploty library to view

interactive chart of Bollinger band —

import plotly.express as px

fig = px.line(stock[['Close','up_band','mid_band','low_band']])
fig.show()

valua

Benefit with plotly is that you can zoom in or zoom out chart at any data

point. For example I can zoom in to check the clear graph from 500 to 600

data points (Index Values/trading days) of the above chart of Bollinger
band. Screen shot of this zoomed in chart is given below. I also have
marked 2 circles in the follOwing chart. In the present strategy we are used
in above example for trading is buying on point, as marked by circle 1,
when stock price going below lower band. So strategy bought stock
approx Rs 750 when price went below lower band and sold when prices
came back to mean value of 650. This single trade resulted into a loss of
more than 10% because prices price were trending and fall down sharply
before coming back to the mean value. So we can fine-tune our strategy by
buying a stock when is coming back from lower band, as marked by circle
2, inspite of buying when it’s going below lower band. Program code of
this strategy is given in the last chapter of this book when we are using

combination of two are more indicators to generate buy sell signals.

So one can say the key benefit of learning Python is that you can adjust
your strategy in way you want. You need not to depend on standard

software’s where you do not know how they are computing things.

&00

2. MOMENTUM
INDICATORS

Traders may use momentum indicators to:

« Identify the direction of a trend.

« Find divergences between the price and the momentum indicator
in order to identify a potential trend reversal or trend continuation
setup.

« Take advantage of overbought and oversold conditions.

2.1. RATE OF CHANGE
(ROC)

The Price Rate of Change (ROC) is a momentum-based technical
indicator that measures the change in price between the current price
and the price a certain number of periods ago.

ROC above zero is sign of uptrend and below zero is the sign of down
trend. A sharp increasing in value indicates increasing momentum.
This signal is generally not used for trading purposes, but rather to
simply alert traders that a trend change may be underway if ROC is
going negative to positive territory (indication of reversal of down
trend to uptrend) or positive to negative territory (Indication of reversal
of uptrend to down trend).

Rate of change = ((Current price/Previous Price)-1)*100
Python codes:-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

Daily_Close = pd.read_csv('Daily_Close")

Infy = pd.DataFrame({"Date": Daily_Close["Date"], "Close":
Daily_Close["INFY.NS"]})

Infy['ROC'] = ta.ROC(Infy['Close'],20)

Infy[['Close', 'ROC']].plot(grid=True, secondary_y='"ROC', figsize=
(14,6))

Infy["ROC"] = ta.ROC{Infy[Close’],28)
Infy[['Close’, "ROC']].plot{grid-True, secondary y-"ROC', figslze-(14,6))

chxesSubplot: s

— (lose

1200 ROC {right)

1100

1000

“00

a0

oo

00

00

0 100 00 300 a0 530 50 700

As you can observe in above chart closing price plotted against primary
axes of right side and ROC of 20 days is plotted against secondary axes
on left side.

2.2. COMMODITY
CHANNEL INDEX (CCI)

The CCI is designed to detect beginning and ending market trends. The
range of 100 to -100 is the normal trading range. When the CCI is
above +100, this means the price is well above the average price as
measured by the indicator. When the indicator is below -100, the price
is well below the average price. CCI values outside of this range
indicate overbought or oversold conditions.

When a stock is in overbought zone you can sell it and when stock is
in oversold zone you can buy it in expectation of reversal in prices.
However a Momentum indicator can remain in a overbought zone for a
long time in bull run and in oversold zone for a long time in a bear
run.

You can also look for price divergence in momentum indicators. If
prices are making new high but momentum indicator is not making
new high then it’s a sign of correction in prices. The same is true in
case of CCI if the price is making new highs, and the CCI is not, then a
price correction is likely.

The formula for CCI is

CCI = Typical Price — MA / 0.015 X Mean Deviation
Typical Price = High + Low + Close / 3

Python codes-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np

import yfinance as yf

data = yf.download('INFY.NS', start="2018-01-01", end="2020-12-
31")

Download file ‘data’ in csv format to reuse infosys data in other
indicators

data.to_csv("Infy-His-data2018-20.csv", index=True, encoding="utf8")
Computation of CCI

data['CCI'l = ta.CCI(data['High'], data[Low'], data['Close'],
timeperiod=14)

Plot CCI and Close price in a graph

data[['Close', 'CCI']].plot(grid=True, secondary_y='CCI', figsize=
(14,6))

plt.axhline(100, color="red', linestyle="--")
plt.axhline(-100, color="red', linestyle="--")

plt.xlabel('"Time")
plt.legend(['CCI', '+-100'])
plt.show()
120y === #1060 hI“ T | | W ¥ -mj
1100 | | i H i -I . 3 s ,I| i b Ill| 'In,lhl:lll-
wae '_L'"T_r l|-|"|i"-ll'r-_:"-'r“"“- R T- M "--—!P I ‘ L""--""“ -""-!"I-#"&:' :-.-nﬁ-'": 14'-' i
! - 1 [1]' /! |

. '.,é‘cH---i-- SRR B AN B | EESEISERRSSS

: W
y |

B0 -------1-—-- r--—l-—----—-----|--|i--v-r----;--:--rll;--—r)/l |
4 ’ "J.- N.-_ | ; I i
00 W/NTLL\:I’JIL/-' '\“‘_,- "-_r‘uu'”u‘l' ‘ ILIM | I JJ ¥ 'J.v" ' =200

600 NJ"‘U‘ Il n|I 100
[Pt \
500 ¥
400
> 2] M] f "
o 27 e o J@&ﬁ“ ‘ﬁ@n @qs:. ol ﬂf,.u g e "55"""5}

Da

As above chart is not much clear, we can use Python Plotly library for
interactive charts with the help of following codes.

import plotly.graph_objects as go
from plotly.subplots import make_subplots
Create figure with secondary y-axis

fig = make_subplots(specs=[[{"secondary_y": True}]])
Add traces
fig.add_trace(go.Scatter(y=data['Close']),secondary_y=False,)

fig.add_trace(go.Scatter(y=data['CCI']),secondary_y=True,)
fig.show()

Year 2019 zoomed in the chart created with the help of above code for
better clarity in following screenshot. Redline in the following chart is
CCI and blue line are closing price of stock. One can observe that
prices were range bound from 700 to 800. When CCI was above 100
stock came down and when CCI was below -100 stock recovered.

2.3. RELATIVE STRENGTH
INDEX (RSI)

The relative strength index is a technical indicator used in the analysis of
financial markets. It is intended to chart the current and historical strength
or weakness of a stock or market based on the closing prices of a recent
trading period.

RS = Average of x days up close / Average of x days down close
RSI =100 - (100 / 1+RS)

RSI is plotted on scale of 0 to 100. RSI value above 70 is considered as
overbought and RSI value below 30 is considered as oversold. Some
traders take crossing back above 30 line as a confirmation that trend has
turned up and crossing back under 70 line as a confirmation of down trend
to sell.

Python codes for RSI-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

#Import Data from file saved on system earlier
Infy = pd.read_csv('Infy-His-data2018-20.csv")
Compute 21 days RSI in colum 'RSI' in Table 'Infy’
Infy['RSI'] = ta.RSI(Infy['Close'],21)

#print Chart

fig, axs = plt.subplots(2,figsize=(15,8))
axs[0].plot(Infy['Close'])
axs[1].plot(Infy['RSI'])

plt.axhline(70, color="red', linestyle="--")

plt.axhline(50, color='green’, linestyle="'--")
plt.axhline(30, color="red’, linestyle="--")

<matplotlib.lines.Line2D at @xb&ceddd>

1200 f
1100 A
10040 ||‘T
e
900 ¥
Ay
B0 - - [Y
200 A " I/uw Ay, e | ’W"v--nﬂl
_f‘r‘" \ J

600 i 2 B \ *

500

80

4 B
o
11:
-
. 4
T:r-='
c":_
— |
LJI
=_ !
& |
—
1-
o,
-
=
——

&

Limitation with RSI is that in a bull market RSI main remain above 70 or
in a bear market RSI main remain below 30 for a long period of time so
buying when oversold or selling when overbought can give you losses.
You can also observe in above chart when 21 days RSI was above 50
stock was in uptrend and when RSI was below 50 stock was in downtrend.

As we discussed earlier also you can also look for price divergence in
momentum indicators. RSI indicator can also be used to predict a
divergence in the trend before the price trend actually reverses.
Divergence can usually be spotted if the price line is moving higher but
the RSI indicator slumps due to the fact that the relative strength of the
asset weakens when compared to the previous periods’ growth. This is an
indication that prices will go down. The same is true when the closing
price has been bearish for a while but the RSI starts posting higher values,
it means that the prices will pick up.

2.4. MOVING AVERAGE
CONVERGENCE/DIVERGENCE
(MACD)

MACD is based on the point spread difference between two exponential
moving averages of the closing price. The MACD indicator is created by
subtracting a longer-term exponential moving average from a shorter-term
exponential moving average. Usually we take 26 days slower moving
average and 12 days faster moving average. This difference is further
smoothed by and even faster exponential moving average (usually 9
periods) which is called signal line. MACDs rely on three exponential
moving averages instead or one or two.

MACD generally rises if shorter-term trends are gaining strength and
generally declines if shorter-term trends are losing strength. Buy shares
when MACD line crosses the signal line upwards (it is considered bullish
signal) on the other hand sell shares when MACD line crosses the signal
line downwards (it is considered bearish signal). When MACD is
extremely high it indicates top has been made and when MACD is
extremely low it indicates bottom has been made.

Following command can be used for computation of MACD in TA-Lib-
macd, macdsignal, macdhist = MACD(close, fastperiod=12,
slowperiod=26, signalperiod=9)

Ptyhon Codes-

#Import Necessary Libraries
import talib as ta
import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

#Import data from file saved on system

Infy = pd.read_csv('Infy-His-data2018-20.csv")

Compute MACD

Infy['macd'], Infy['macdsignal’], Infy['macdhist'] = ta. MACD(Infy['Close'],
fastperiod=12, slowperiod=26, signalperiod=9)

#Plot Chart

fig1, ax = plt.subplots(2, figsize=(15,8))
ax[0].plot(Infy['Close'])

ax[1].plot(Infy['macd'])

ax[1].plot(Infy['macdsignal'])
ax[1].plot(Infy['macdhist'], color="red', linestyle="--")
plt.axhline(0, color='green’, linestyle="--")
plt.suptitle('Infosys Close Prices and MACD(12,26,9)")

plt.show()
Infosys Close Prices and MACD{12,26,9)
JP
1x00
1100 _,'M-.,,h"'
1 H]
ﬂﬂwﬁl
500
L el o
e PR A -
- =" W, oA [t | -
: e 2 3
L] |}\\.-"""’w
o 100 00 Wi 400 500 800 700
o Iﬂ'
I 4
0 | Ly ,III \
4\ '
- P H“L..I i A u!.w I'W«\.J'J
e i Ly L r
a —"‘-" it a—’-qﬁ-:\% "BJ*H-\. E_!-‘[%,r\ fw \:‘l/f /—k):—,'-—,r—:\:'-'u#--*;--rr-‘f—‘:-p-uh'-----
b/ o ¥
el ¥/
||r fi
40 Y {\
|
—i&0 Y
o 160 200 0 200 w00 600 700

In the following code we are computing return generated by buy and hold
strategy on past 3 years data of Infosys. We are buying Infosys when
MACD line crossing MACD Signal line upwards and holding position

until MACD line crossing MACD Signal line downwards —

Calculate trades and profits generated by strategy Buying Infosys when
MACD is crosses MACDSignal line upwards and hold position until it
crosses downwards

Infy['positions_long'] = np.nan
for x in range (len(Infy)):
if Infy.macd[x] > Infy.macdsignal[x]:
Infy['positions_long'][x] = 1
if Infy.macd[x] <= Infy.macdsignal[x]:
Infy['positions_long'][x] = 0

Infy.positions_long = Infy.positions_long.fillna(method="ffill")
Infy['price_difference']= Infy.Close - Infy.Close.shift(1)
Infy['pnllong'] = Infy.positions_long.shift(1) * Infy.price_difference
Infy['cumpnl_long'] = Infy.pnllong.cumsum()

Calculate the max drawdown in the past window days for each day
Infy['rolling_max'] = Infy['cumpnl_long'].rolling(250,
min_periods=1).max()

Infy['daily_drawdown'] = Infy['cumpnl_long']-Infy['rolling_max']

Calculate the minimum (negative) daily drawdown
Infy['max_daily_drawdown'] = Infy['daily_drawdown'].rolling(250,
min_periods=1).min()

Plot Cumulative retruns and maximum drawdown of strategy

fig, axs = plt.subplots(2,figsize=(15,8))

axs[0].plot(Infy['cumpnl_long'])

axs[1].plot(Infy['max_daily_drawdown'])

[«matplotlib.lines.Line2D at BxcfB928@:]

400

300 {

Iy
200 rr

10

i s T
T T .ﬂ,_}mdﬂ e e _T; I_J
0 100 200 W00 a0 500 800 0
(1] ﬂ—l
20
a0 LL___H_________ﬁ_______ﬁq
-0
]
0
-100
0 190 200 w0 a0 500 &0 ma

As we can observe in above charts, strategy generated a profit of
approximately Rs 400/- per share and maximum drawdown was Rs 100/-
per share. With the help of following codes we are computing total trades
and return from each trade-

Calculate number of trades and return of each trade

Infy['Trade'] = Infy['positions_long'].diff()

T2 = Infy.where((Infy.Trade != 0))

T2 = T2.dropna()

T2.drop(["positions_long", "price_difference"”, "pnllong", "rolling_max",
"daily_drawdown", "max_daily_drawdown"], axis = 1, inplace = True)
T2['Trade_Return'] = (T2['cumpnl_long'].diff()/T2['Close'])*100

print ("Number of Trade count"”, round(len(T2)/2))

Plot trade retruns

fig = plt.figure()

ax = fig.add_axes([0,0,1,1])

ax.bar(T2['Date'], T2['Trade_Return'])

plt.show()

Number of Trade count 26

20 4

-
rTTTT T TT TT T T T T T T T T T T TT TTTrTT
3 244 £ O AL R R K] UG T T CRENCE (]

2 A e A O e 3 IE AT PR O AT R 1 O P P B R T T % ¥ 7

As we can observe in above charts, total 26 trades generated by strategy
and return from each trade was approximately -5% to 20%.

2.5. BALANCE OF POWER
(BOP)

Balance of Power (BOP) is an oscillator that measures the strength of
buying and selling pressure. The Balance of Power indicator measures the
market strength of buyers against sellers by assessing the ability of each
side to drive prices to an extreme level.

Balance of Power = (Close price — Open price) / (High price — Low price)

Balance of Power could be used to generate trading signals on the
crossovers with its center line. A simple trading system based on the
Balance of Power indicator would suggest:

« buy when BOP crosses above zero line - becomes positive;
« sell when BOP crosses below zero line - becomes negative.

The resulting value can be smoothed by a moving average. The level or
center line in BOP represents a stock’s accumulation above or below its
zero line. When the indicator is in positive territory, the bulls are in
charge; and sellers dominate when the indicator is negative. A reading
near the zero line indicates a balance between the two and can mean a
trend reversal.

Python Codes-

#Download necessary libraries

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

#Import data from file saved on system

Infy = pd.read_csv('Infy-His-data2018-20.csv")

#Calculate Balance of Power

Infy['BoP'] = ta.BOP(Infy['Open'], Infy['High'], Infy['Low'], Infy['Close'])
BOP value smoothed by a 9 days moving average

Infy['BoP_MA'] = ta.SMA(Infy['BoP'],9)

#Plot BoP

fig1, ax = plt.subplots(2, figsize=(15,8))

ax[0].plot(Infy['Close'])

ax[1].plot(Infy['BoP_MA'])

plt.axhline(0, color='green’, linestyle="--")

plt.suptitle('Infosys Close Prices and Balance of Power Technical
Indicator’)

plt.show()
1200
1100
1000
00
a0
800
500
o 100 00 300 400 500 600 o

04

oz

il ﬂ i Hﬂﬁfi

2.6. STOCHASTIC

It is based on observation that as prices increases, closing prices tend
to be closer to the upper end of price range. Same in case of downtrend
the closing prices tend to be closer to the lower end of price range.

%K = (C-L)/ (H-L) X 100

%K = Stochastic

C = Latest Close Price

L = Low price during last N Periods
H = High price during last N prriods

%D = 3 days simple moving average of %K

The TA-Lib Stochastic function returns two lines slowk and slowd
which can then be used to generate the buy/sell indicators. A crossover
signal occurs when the two lines cross in the overbought region
(commonly above 80) or oversold region (commonly below 20). When
a slowk line crosses below the slowd line in the overbought region it is
considered a sell indicator. Conversely, when an increasing slowk line
crosses above the slowd line in the oversold region it is considered a
buy indicator.

Python codes-

#Download necessary libraries

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

#Import data from file saved on system

Infy = pd.read_csv('Infy-His-data2018-20.csv")

#Compute ‘slowk’ and ‘slowd’ values

Infy['slowk'], Infy['slowd'] = ta.STOCH(Infy['High'], Infy['Low'],
Infy['Close'], fastk_period=5, slowk_period=3, slowk_matype=0,
slowd_period=3, slowd_matype=0)

#Plot Values

fig1, ax = plt.subplots(2, figsize=(15,8))

ax[0].plot(Infy['Close'])

ax[1].plot(Infy['slowk'])

ax[1].plot(Infy['slowd'])

plt.axhline(20, color="red’, linestyle="--")

plt.axhline(80, color="red’, linestyle="--")

plt.suptitle('Stochastic')

plt.show()

1200
1100
1000

o900

BOO

e

B00

500 . , , .

] 100 00 400 500 00 b

0 100 P 00 00 500 &0 00

#Generate Buy and sell signals

Infy['Signal_Sell'l = ((Infy['slowk’] < Infy['slowd]) &
(Infy['slowk'].shift(1) > Infy['slowd'].shift(1))) & (Infy['slowd'] > 80)
Infy['Signal_Buy'] = ((Infy['slowk'] > Infy['slowd]) &

(Infy['slowk'].shift(1) < Infy['slowd'].shift(1))) & (Infy['slowd'] < 20)
Infy.tail()

Infy["Signal_sell"] = {(Infy["slowk'] ¢ Infy["slowd’]) & {Infy[' slowk'].shift(1) > Infy[slowd"1.shift(1))) & (Infy['slowd"] > &
Infy['Signal Buy'] = ({Infy[slowk'] > Infy['slowd']} & (Infy[slowk®].shift(1) < Infy[slowd"].shift(1))} & (Infy[slowd’] < 28]
Infy.tail()

+ .

Date Qpe=n High Liow Close Ad|Close Volume sloswi slowsd Signal_Sel Signal_Buy
T3 030-42-23 1235000000 1255840076 1230530049 1253040050 12930850040 150TEILS TT 908418 Ti0S3S21 False False
T30 030-12-28 1249900024 1249900024 1226000000 1236040040 1236050040 TIIISES SD.518461 BYN44516 Fake Falsa

TH 030-12-28 1235480051 1243000000 1235000000 1240300040 12400300040 460TOS1 25264073 84235552 Falee Falsa
T35 2020-12-28 1235000000 1254 448851 1235000000 1250300043 1250300048 68TEI05 E3650215 86.150918 Tnae Falsa
T35 2030-12-30 1253000000 1Z53.30004% 1238150024 1266.800043 1246.500048 51BMEB0 TE.53B0T1 B2.411 Fake Falss

2.7. STOCHASTIC
RELATIVE STRENGTH
INDEX -

The stochastic RSI is a technical indicator used to measure the strength
and weakness of the relative strength indicator (RSI) over a set period
of time.

Stochastic RSI = RSI — min[RSI] / max[RSI] — min[RSI]
RSI = Current Relative Strength Index

min[RIS] = Lowest RSI reading over last N period
max[RSI] = Highest RSI reading over last N period

Stochastic RSI ranges between zero and 100. Reading above 80 is
considered as overbought and reading below 20 is considered as
oversold. A reading of zero means the RSI is at its lowest level in 14
periods (or whatever lookback period is chosen). A reading of 1 (or
100) means the RSI is at the highest level in the last 14 periods.

One downside to using the Stochastic RSI is that it tends to be quite
volatile, rapidly moving from high to low. Smoothing with 10 days
simple moving average may help in this regard.

RSI is more useful when stock is trending whereas Stochastic RSI is
more useful in sideways.

Python codes-

#Download necessary libraries
import talib as ta

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

#Import data from file saved on system

Infy = pd.read_csv('Infy-His-data2018-20.csv")

#Compute ‘fastk’ and ‘fastd’ values

Infy['fastk'], Infy['fastd'] = ta.STOCHRSI(Infy['Close'],
timeperiod=14, fastk_period=>5, fastd_period=3, fastd_matype=0)
#Plot Values

fig1, ax = plt.subplots(2, figsize=(15,8))

ax[0].plot(Infy['Close'])

ax[1].plot(Infy['fastk'])

ax[1].plot(Infy['fastd'])

plt.axhline(20, color="red’, linestyle="--")

plt.axhline(80, color="red’, linestyle="--")

plt.suptitle('Stochastic RSI")

plt.show()

3. VOLUME
INDICATORS

Volume is one piece of information that is often neglected by many
market players, especially the beginners. However, learning to
interpret volume brings many advantages and could be of tremendous
help when it comes to analyzing the markets. Volume plays a very
integral role in technical analysis as it helps us to confirm trends and
patterns. When institutional investors buy or sell, they obviously do
not transact in small chunks. Rise in volume with rise in price confirm
the uptrend and rise in volume with fall in price confirm the
downtrend.

3.1. CHAIKIN A/D
OSCILLATOR

Chaikin Accumulation Distribution Line is a volume-based indicator
designed to measure the cumulative flow of money into and out of a
security. The Chaikin Oscillator is the difference between the 3-day
and 10-day EMAs of the Accumulation Distribution Line. A
momentum change is the first step to a trend change. Anticipating
trend changes in the Accumulation Distribution Line can help chartists
anticipate trend changes in the underlying security.

Money Flow Multiplier = [(Close - Low) - (High - Close)] /(High -
Low)

Money Flow Volume = Money Flow Multiplier x Volume for the
Period

ADL = Previous ADL + Current Period's Money Flow Volume
Chaikin Oscillator = (3-day EMA of ADL) - (10-day EMA of ADL)

A move into positive territory indicates that the Accumulation
Distribution Line is rising and buying pressure prevails. A move into
negative territory indicates that the Accumulation Distribution Line is
falling and selling pressure prevails.

Python code-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np

#Import data from file saved on system
Infy = pd.read_csv('Infy-His-data2018-20.csv")
#Compute Chaikin A/D Oscillator

Infy[C_A/D_Osc'] = ta.ADOSC(Infy['High'l, Infy[Low,

Infy['Close'], Infy['Volume'], fastperiod=6, slowperiod=20)
#Plot Graph

fig1, ax = plt.subplots(2, figsize=(15,8))
ax[0].plot(Infy['Close'])

ax[1].plot(Infy['C_A/D_Osc'])

plt.axhline(0, color="red', linestyle="--")

plt.show()

s
Mw Aol]LM P'|1 W,W“"f
JM"\-\..'-W (]
M 'I |
| m el % ol N H‘x 1 'r
™ W A Y flany |
i 1 .|r“:d+ -m_:u‘: rhbl"h\: ﬂ..l}...h}.UI .fll- .Lll.....F I1- X Tl'.-\\ lllp.h.lr!l...hj
U"'H'J('Hu \ Jlﬁ I HI \ NV
W
I
#Plot Graph with plotly

import plotly.graph_objects as go
from plotly.subplots import make_subplots
Create figure with secondary y-axis
fig = make_subplots(specs=[[{"secondary_y": True}]])
Add traces
fig.add_trace(
go.Scatter(y=Infy['Close']),
secondary_y=False,

)
fig.add_trace(

go.Scatter(y=Infy['C_A/D_Osc']),
secondary_y=True,

)
fig.show()

a4 aEE s B |

Lo i

20 —— traca O

1700 —— frace 1
1100 1004
1000
00 !
800 |
—10M

700 | L

|

]

600

=

—-20M

500
a 100 200 300 400 00 GO0 TO0

3.2. ON BALANCE
VOLUME (OBV)

On Balance Volume (OBV) measures buying and selling pressure as a
cumulative indicator that adds volume on up days and subtracts volume
on down days. When the security closes higher than the previous close,
all of the day’s volume is considered up-volume. When the security
closes lower than the previous close, all of the day’s volume is considered
down-volume.

If the OBV is rising, accumulation may be taking place, a warning of an
upward breakout. If the OBV is falling, distribution may be taking place,
a warning of a downward breakout. When both price and OBV are
making higher peaks the upward trend is likely to continue. When both
price and OBV are making lower peaks the downward trend is likely to
continue.

When price continues to make higher peaks and OBV fails to make
higher peaks, the upward trend is likely to stall or fail. This is called a
negative divergence. When price continues to make lower troughs and
OBV f{ails to make lower troughs, the downward trend is likely to stall or
fail. This is called a positive divergence.

Let’s take an example to understand-

Day |Price |Volume |OBV

1 100 100 100
101 150 250

3 100 120 130

Day 1 — OBV 100
If today’s close is equal to yesterday’s close then:

OBV = Yesterday’s OBV
Day 2 — OBV 250

If today's close is greater than yesterday's close then:

OBV (250) = Yesterday’s OBV (100) + Today’s Volume (150)
Day 3—- OBV 130

If today’s close is less than yesterday’s close then:

OBV (130) = Yesterday’s OBV (250) — Today’s Volume (120)

Python Code-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

#Import data from file saved on system

Infy = pd.read_csv('Infy-His-data2018-20.csv")
#Compute OBV

Infy['OBV'] = ta.OBV(Infy['Close'], Infy["Volume'])
#Plot close price and OBV

fig1, ax = plt.subplots(2, figsize=(15,8))
ax[0].plot(Infy['Close'])
ax[1].plot(Infy['OBV'])

plt.show()

led

TEEEEEE

ma

o2

oo

4. VOLATILITY
INDICATORS

4.1 AVERAGE TRUE
RANGE (ATR)

Average True Range or ATR is a measurement of volatility. It measures
the average of true price ranges over time. If system is giving me a ATR
number of $1.75 for XYZ stock based on 15 days parameter, then it means
that the stock moved an average of $1.75 per day over the past 15 days.
The indicator does not indicate the price direction; rather it is used
primarily to measure volatility.

High ATR values often occur at market bottoms or at market tops
following a panic sell-off or aggressive buying. Low ATR values are often
found during extended sideways movements or consolidation periods.

Python Code-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt

from datetime import datetime

import numpy as np

#Import data from file saved on system

Infy = pd.read_csv('Infy-His-data2018-20.csv")
#Compute ATR

Infy['/ATR'] = ta.ATR(Infy['High'], Infy['Low'], Infy['Close'],
timeperiod=14)

#Plot Close price and ATR

fig1, ax = plt.subplots(2, figsize=(15,8))
ax[0].plot(Infy['Close'])
ax[1].plot(Infy['ATR'])

plt.show()

=

YRR EE

&4

& 4

35 4

3

5 4

20 4

1% 4

5. PATTERN
RECOGNITION

In a candle chart there are several horizontal bars or candles that form the
chart. Each candle has three parts Upper Shadow, Body and Lower
Shadow. In a bar the high, low, open and close prices are plotted. The
body is colored either Red or Green. Bar will be green if close price is
higher than open price and Bar will be red if close price is lower than open
price.

Vertical line connects high and low prices.

High
Upper
Shadow
Open
Boday
Close
Lower
Shadow
Low -

More than 50 candlestick patterns can be identified with the help of TA-
Lib. TA-Lib creates individual column for each pattern. While 0
corresponds to no pattern, positive values represent bullish patterns and
negative values represent bearish patterns. Some of the patterns explained
in this chapter, for more pattern you can refer TA-Lib.

5.1. Marubozu — Marubozu as a candlestick with no upper and lower

shadow. The red candle represents, selling on every price point, the
bearish marubozu. The blue represents, buying on every price point,
the bullish marubozu.

One can identify Marubozu pattern with the help of following codes.
Python Codes-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np

#Import data from file saved on system
Infy = pd.read_csv('Infy-His-data2018-20.csv")
#Compute Marubozu
Infy['Marubozu'] = ta.CDLMARUBOZU(Infy['Open’], Infy['High'],
Infy['Low'], Infy['Close'])
#Plot Marubozu Signals with candle chart
from plotly.subplots import make_subplots
import plotly.graph_objects as go
fig = make_subplots(rows=2, cols=1)
fig.append._trace(go.Candlestick(x=Infy['Date'], = open=Infy['Open'],
high=Infy['High'], low=Infy['"Low'], close=Infy['Close'],
), row=1, col=1)
fig.append_trace(go.Scatter(
x=Infy['Date'],
y=Infy['Marubozu'],
), row=2, col=1)
fig.update_layout(height=800, width=1000, title_text="Marubozu")
fig.update_layout(xaxis_rangeslider_visible=False)
fig.show()

Jan 2018 Jul 20418 Jan 2019 Jul 201%

an 2018 Jud 20018 Jan 20159 Jul 2019 Jan 2020 Jul 2020

If you will observe the above output you will find that chart is plotted
with 2 sub-plots. In first subplot we have can Infosys price with candle
chart and in second subplot we have Marubozu signals. As you can

observe second Marubozu signal was generated on 17" December
2018. Value is -100 that is why this is a sell signal. In the first plot we
can zoom in to get a clear view of candle pattern and price direction

after signal. View of 1* subplot after zoom in is given below-

Marubozu

="

700

o _
a50 'ﬂ“ ‘nnh |l L'!H 0

5.2. Morning Star -The morning star candlestick pattern is considered a
sign of hope in a bleak market downtrend. It is a three-stick pattern:
one short-bodied candle between a long red and a long green.
Traditionally, the ‘star’ will have no overlap with the longer bodies, as
the market gaps both on open and close. It signals that the selling
pressure of the first day is subsiding, and a bull market is on the
horizon.

Python Codes-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np

#Import data from file saved on system
Infy = pd.read_csv('Infy-His-data2018-20.csv')

#Generate Signals
Infy['Morning Star'] = ta.CDLMORNINGSTAR(Infy['Open'],
Infy['High'], Infy['Low'], Infy['Close'], penetration=0)
#Plot Signal and price with candle chart
from plotly.subplots import make_subplots
import plotly.graph_objects as go
fig = make_subplots(rows=2, cols=1)
fig.append_trace(go.Candlestick(x=Infy['Date'], = open=Infy['Open'],
high=Infy['High'], low=Infy['Low'], close=Infy['Close'],
), row=1, col=1)
fig.append_trace(go.Scatter(
x=Infy['Date'],
y=Infy['Morning Star'],
), row=2, col=1)
fig.update_layout(height=800, width=1000, title_text="Morning Star")
fig.update_layout(xaxis_rangeslider_visible=False)
fig.show()

5.3. Evening Star - The evening star is a three-candlestick pattern that is
the equivalent of the bullish morning star. It is formed of a short candle
sandwiched between a long green candle and a large red candlestick.

It indicates the reversal of an uptrend, and is particularly strong when
the third candlestick erases the gains of the first candle.

Python Codes-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np

#Import data from file saved on system
Infy = pd.read_csv('Infy-His-data2018-20.csv")

#Generate Signals
Infy['Evening Star'] = ta.CDLEVENINGSTAR(Infy['Open'],

Infy['High'], Infy['Low'], Infy['Close'], penetration=0)
#Plot Signal and price with candle chart
from plotly.subplots import make_subplots
import plotly.graph_objects as go
fig = make_subplots(rows=2, cols=1)
fig.append_trace(go.Candlestick(x=Infy['Date'], = open=Infy['Open'],
high=Infy['High'],low=Infy['Low'], close=Infy['Close'],
), row=1, col=1)
fig.append_trace(go.Scatter(
x=Infy['Date'],
y=Infy['Evening Star'],
), row=2, col=1)
fig.update_layout(height=800, width=1000, title_text="Evening Star")
fig.update_layout(xaxis_rangeslider_visible=False)
fig.show()

1200

000 f
1 N
800 M.-f"}u

A P Ay
1","

- 'r"'-‘""M'l' > ,/
e p ™

Jul 2018 Jan 2015 Jul 2023 Jul 2620

wl 2018 Jan 2013 Jul 2043 Jan 2020

5.4. Hammer - This is a candle with a short body and a long lower wick. It
is usually located at the bottom of a downward trend. It indicates that
despite selling pressures, a strong buying surge pushed the prices up.

Python Codes-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np

#Import data from file saved on system
Infy = pd.read_csv('Infy-His-data2018-20.csv")

#Generate Signals
Infy['Hammer'] = ta.CDLHAMMER(Infy['Open'], Infy['High'],
Infy['Low'], Infy['Close'])
#Plot Signal and price with candle chart
from plotly.subplots import make_subplots
import plotly.graph_objects as go
fig = make_subplots(rows=2, cols=1)
fig.append_trace(go.Candlestick(x=Infy['Date'], open=Infy['Open'],
high=Infy['High'], low=Infy['"Low'], close=Infy['Close'],
), row=1, col=1)
fig.append_trace(go.Scatter(
x=Infy['Date'],
y=Infy['Hammer'],
), row=2, col=1)
fig.update_layout(height=800, width=1000, title_text="Hammer")
fig.update_layout(xaxis_rangeslider_visible=False)
fig.show()

5.5. Inverted hammer - A similarly bullish pattern is the inverted hammer.
The only difference being that the upper wick is long, while the lower
wick is short.

Python Codes-

import talib as ta
import pandas as pd

import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np

#Import data from file saved on system
Infy = pd.read_csv('Infy-His-data2018-20.csv")

#Generate Signals
Infy['Inv_Hammer'] = ta.CDLINVERTEDHAMMER(Infy['Open'],
Infy['High'], Infy['Low'], Infy['Close'])
#Plot Signal and price with candle chart
from plotly.subplots import make_subplots
import plotly.graph_objects as go
fig = make_subplots(rows=2, cols=1)
fig.append_trace(go.Candlestick(x=Infy['Date'],
open=Infy['Open'], high=Infy['High'],
low=Infy['Low'], close=Infy['Close'],
), row=1, col=1)
fig.append_trace(go.Scatter(
x=Infy['Date'],
y=Infy['Hammer'],
), row=2, col=1)
fig.update_layout(height=800, width=1000, title_text="Hammer")
fig.update_layout(xaxis_rangeslider_visible=False)
fig.show()

B trace 0

= trace 1

TRADING SETUPS

You can develop your own trading system based on your own idea. Technical
Analysis is a science once can tech you technical indicators, its merits,
demerits. However use of these indicators for prediction of trend/prices is an
art. There could be thousands of permutations and combinations of these
technical indicators for prediction of buy or sell signals. Our objective is
develop a mechanical system of trading that is giving good return on past
data and expected to perform in future based on assumptions that past price
behavior and pattern will continue in future. Let’s try to develop of profitable
system. First you need to have a basic idea, what exactly you want to do.
Then you need to identify technical tools which you want to use for execution
of your idea. Back-test these technical tools on past data. Apply in trading if
you are satisfied with results.

Basic Idea — I want to ride the trend, so my objective is to find stocks which
are in uptrend and buying when momentum starts.

Strategy and Analysis — It is assumed that if a stock is trading above 200
moving average is in long term uptrend. So I am selecting a stock only when
they are in long term uptrend. One can use the Oscillator to discover short-
term overbought or oversold conditions. So I am using RSI to predict short
term trend. I will use 21 days RSI for generating buy and sell signal. So my
strategy is to buy stock that is trading above 200 days moving average when
21 days RSI is above 50% and sell when its below 50%.

Strategy — Buy a stock in a long term uptrend based on short term
buying signal.

1. Stock must be trading above 200 days moving average.

2. Buy when 21 days RSI is above 70% and cover your long
position if RSI goes below 50%.

Coding and Analysis for back testing — In the following code we are
computing returns generated by 8 different stocks from different sectors to
check the performance of strategy.

Python Codes-

import talib as ta

import pandas as pd

import matplotlib.pyplot as plt
from datetime import datetime
import numpy as np

import yfinance as yf

Stock = [RELIANCE.NS', 'HDFC.NS', 'SBIN.NS', 'LT.NS',
"TATAMOTORS.NS, 'ICICIBANK.NS', 'NESTLEIND.NS/,
INFY.NS']

data = yf.download(Stock, start="2010-01-01", end="2021-02-28")
close = data['Close']

close.to_csv("Daily_Close", index=True, encoding="utf8")
Daily_Close = pd.read_csv('Daily_Close")

Stocks = ['RELIANCE.NS', 'HDFC.NS', 'SBIN.NS', 'LT.NS',
"TATAMOTORS.NS, 'ICICIBANK.NS', 'NESTLEIND.NS/,
INFY.NS']

import warnings
warnings.filterwarnings("ignore")
Table = pd.DataFrame({"Stock":['0'], "Close":0, "Total Profit":0,
"Percent_Return":0, "Max_Drawdown":0, "Number_Trades":0,
"Max_Return":0, "Min_Return":0})
Tablel = pd.DataFrame({"Stock":['0'], "Close":0, "Total Profit":0,
"Percent_Return":0, "Max_Drawdown":0, "Number_Trades":0,
"Max_Return":0, "Min_Return":0})
for y in range (len(Stocks)):

#Get Historical data

Infy = pd.DataFrame({"Date": Daily_Close["Date"], "Close":

Daily_Close[Stocks[y]]})
#Compute Moving Average & RSI
Infy['MA'] = ta.SMA(Infy['Close'],200)
Infy['RSI'] = ta.RSI(Infy['Close'],21)
#Generate Buy & Sell Signals
Infy['MA_long'] = np.nan
for x in range (len(Infy)):
if Infy.Close[x] > Infy. MA[X]:
Infy['MA_long'][x] = 1
if Infy.Close[x] <= Infy.MA[X]:
Infy['MA_long'][x] =0
Infy.MA_long = Infy.MA_long.fillna(method="ffill")
Infy['RSI_long'] = np.nan
for x in range (len(Infy)):
if Infy.RSI[x] > 50:
Infy['RSI_long'][x] = 1
if Infy.RSI[x] <= 50:
Infy['RSI_long'][x] = 0
Infy.RSI_long = Infy.RSI_long.fillna(method="ffill")
Infy['positions_long'] = Infy.MA_long * Infy.RSI_long
Infy['price_difference']= Infy.Close - Infy.Close.shift(1)
Infy['pnllong'] = Infy.positions_long.shift(1) *
Infy.price_difference
Infy['cumpnl_long'] = Infy.pnllong.cumsum()
Calculate the max drawdown in the past window days for each
day
Infy['rolling_max'] = Infy['cumpnl_long'].rolling(250,
min_periods=1).max()
Infy['daily_drawdown'] = Infy['cumpnl_long']-Infy['rolling_max']
Calculate the minimum (negative) daily drawdown
Infy['max_daily_drawdown'] = Infy['daily_drawdown'].rolling(250,
min_periods=1).min()
Calculate number of trades and return of each trade
Infy['Trade'] = Infy['positions_long'].diff()
T2 = Infy.where((Infy.Trade != 0))
T2 = T2.dropna()

T2['Trade_Return'] = (T2['cumpnl_long'].diff()/T2['Close'])*100
Table['Stock'] = Stocks[y]

Table['Close'] = Infy.Close.iloc[-1]

Table['Total Profit'] = Infy.cumpnl_long.iloc[-1]
Table['Percent_Return'] = (Table['Total Profit']/Table['Close'])*100
Table['Max_Drawdown'] = Infy.max_daily_drawdown.min()
Table['Number_Trades'] = round(len(T2)/2)

Table['Max_Return'] = T2.Trade_Return.max()
Table['Min_Return'] = T2.Trade_Return.min()

Table1= Tablel.append(Table)

print (Tablel)
We will get the following output —
4 B c D] E F G [W |
1 Stock Close Total Profit [Percent_Return [Max_Drawdown |Number_Trades |Max_Return |Min_Return
2 0 0 0 0]] o o 0
3 D|RELIAMCE.NS 2085.80 1295.73 62.12 -224.90 107.00 37.92 -4.74
4 0|HDFC.MNS 253940 309.60 12.19 -443.65 10:0.00 21.59 -15.09
5 | O[SBIN.NS 390.15 182,03 45,66 -30.00 70.00 32.22 -5.73
6 | O|LT.NS 1442.50 | 495.69 34,36 -337.55 79.00 35.38 -7.1%
7 O|TATAMOTORS.NS | 322.95 317.36 98.27 -100.28 76.00 30.43 -8.13
& | D[ICICIBANK.NS 597.75 135.46 22.66 -98.25 95.00 25.95 -4,94
9 D|MNESTLEIND.NS 1610160 ©6621.00 41.12 -3629.80 82.00 26.99 -6.15
10 | O|INFY.N5S 1253.30 294.27 23.48 -188.80 24.00 39.62 -27.00

As we can observe in the output this strategy is giving 12% to 98% return in
various stocks with an average 75 to 100 trades per stock. Maximum return in
a single trade is given in column ‘H’ and maximum loss in a single trade is
given in column ‘I’.

As I have taken 2 indicators Moving average and RSI for development of this
strategy in the above example, in the same way you can take 2 or more
indicators for back-testing.

GITHUB LINK

You can download pythoncode used in this book from follwing link -

https://github.com/OptionsnPython/Python-for-Trading-on-Technical

https://github.com/OptionsnPython/Python-for-Trading-on-Technical

COST OF TRADE

One more important factor to consider is the cost of Trade also. Apart from
the cost of fund we have many other expenses also. For example in India we
have Security Transaction Tax (STT) that is Rs 1000/- per crore on sell side
(We can take it Rs 500/- per crore both side — buy and sell), we have stamp
duty that is Rs 100 per crore of turnover on both side, Exchange Transaction
charges of Rs 200 per Crore, SEBI Fee of Rs 15/- per crore, GST of 18% on
Exchange Transaction Charges. So on a round trip transaction cost is approx
.0002%. So I am taking 0.0001% on each side. (I have taken trading cost of
Future, However buying selling shares in cash equity segment will be 10
times more costly because we have Security Transaction Tax of Rs 10,000
per crore on both side, so its Rs 20,000 per crore on round trip. This cost of
trade can make any good strategy unprofitable. So if you don’t trade
derivatives in India and only buy to take delivery of shares in you demat than
better you select a strategy with minimum number of trades to bring down
cost of trade)

In the following example I am taking various moving averages for
computation of profit generated by strategy. I am creating 2 loops, first loop
for different moving average period (20 to 200) and second loop for different
RSI period (14 and 21). I am also computing cost of Trade in last column.

Python Codes —
Daily_Close = pd.read_csv('Daily_Close')
Stocks = ['RELIANCE.NS', 'HDFC.NS', 'SBIN.NS', 'LT.NS',
"TATAMOTORS.NS', TCICIBANK.NS, 'NESTLEIND.NS',
TINFY.NS']

import warnings
warnings.filterwarnings("ignore")

Table = pd.DataFrame({"MA":0, "RSI":0, "Stock":['0'], "Close":0,
"Total Profit":0, "Percent_Return":0, "Max_Drawdown":0,
"Number_Trades":0, "Max_Return":0, "Min_Return":0,
"Trade_Cost":0})
Tablel = pd.DataFrame({"MA":0, "RSI":0, "Stock":['0"], "Close":0,
"Total Profit":0, "Percent_Return":0, "Max_Drawdown":0,
"Number_Trades":0, "Max_Return":0, "Min_Return":0,
"Trade_Cost":0})
for a in range (20, 220, 20):
for b in range (14, 28, 7):
for y in range (len(Stocks)):
#Get Historical data
Infy = pd.DataFrame({"Date": Daily_Close["Date"],
"Close": Daily_Close[Stocks[y]]})
#Compute Moving Average & RSI
Infy['MA'] = ta.SMA(Infy['Close'],a)
Infy['RSI'] = ta.RSI(Infy['Close'],b)
#Generate Buy & Sell Signals
Infy['MA_long'] = np.nan
for x in range (len(Infy)):
if Infy.Close[x] > Infy. MA[X]:
Infy['MA_long'][x] = 1
if Infy.Close[x] <= Infy.MA[X]:
Infy['MA_long'][x] =0
Infy.MA_long = Infy.MA_long.fillna(method="ffill")
Infy['RSI_long'] = np.nan
for x in range (len(Infy)):
if Infy.RSI[x] > 50:
Infy['RSI_long'][x] = 1
if Infy.RSI[x] <= 50:
Infy['RSI_long'][x] = 0
Infy.RSI_long = Infy.RSI_long.fillna(method="ffill")
Infy['positions_long'] = Infy.MA_long * Infy.RSI_long
Infy['price_difference']= Infy.Close - Infy.Close.shift(1)
Infy['pnllong'] = Infy.positions_long.shift(1) *
Infy.price_difference

Infy['cumpnl_long'] = Infy.pnllong.cumsum()
Calculate the max drawdown in the past window days for

each day

Infy['rolling_max'] = Infy['cumpnl_long'].rolling(250,
min_periods=1).max()

Infy['daily_drawdown'] = Infy['cumpnl_long']-

Infy['rolling_max']
Calculate the minimum (negative) daily drawdown
Infy['max_daily_drawdown'] =
Infy['daily_drawdown'].rolling(250, min_periods=1).min()
Calculate number of trades and return of each trade
Infy['Trade'] = Infy['positions_long'].diff()
T2 = Infy.where((Infy.Trade != 0))
T2 =T2.dropna()
T2['Trade_Return'] =
(T2['cumpnl_long'].diff()/T2['Close'])*100
T2['Cost_of Trade'] = T2['Close']*0.0001
Table[MA'] = a
Table['RSI'] =b
Table['Stock'] = Stocks[y]
Table['Close'] = Infy.Close.iloc[-1]
Table['Total Profit'] = Infy.cumpnl_long.iloc[-1]
Table['Percent_Return'] = (Table['Total
Profit']/Table['Close'])*100
Table['Max_Drawdown'] = Infy.max_daily_drawdown.min()
Table['Number_Trades'] = round(len(T2)/2)
Table['Max_Return'] = T2.Trade_Return.max()
Table['Min_Return'] = T2.Trade_Return.min()
Table['Trade_Cost'] = T2.Cost_of_Trade.sum()
Table1= Tablel.append(Table)
Tablel.to_csv("Tablel.csv", index=True, encoding="utf8")

Output of the above program —

1
139
L
141
142
143
144
145

L5T
158
153
L&D
161
162

A B

c D

A RSl Stock

0 180
o 180
0 180
0 180
0 180
o 180
0 180
0 180
o 200
o 200
o 200
o 200
0 200
o 200
o 200
o 200
o 200
o 200
o 200
o 200
o 200
o 200
o 200
o 200

21 RELIAMNCE.NS
21 HDFC.NS

21 SBIMN.NS

21 LT.NS

21 TATAMOTORS. NS |

21 ICICIBAMNK.NE

21 MESTLEIND.NS
21 INFY.NS

14 RELIAMCE.NS

14 HDFC.NS

14 SBIM.NS

14 LT.NS

14 TATAMOTORS. NS
14 ICICIBAMNK.NE

14 MESTLEIND.NS

14 INFY.MN5

21 RELIAMNCE.NS

21 HDFC.NS

21 5BIMN.NS

21 LT.NS

21 TATAMOTORS. NS
21 ICICIBAMEK.NE

21 MESTLEIND.MNS
21 INFY.N5

20B85.80
2539.40
3130.15
1442.50
12295
S397.75
16101.60
1253.30
20B5.80
2539.40
390,15
1442.50
312255
S97.75
16101.60
1253.30
20B5.80
2539.40
39015
1442.50
32155
S97.75
16101.60
1253.30

F
Total Profit
1128.42
300,40
193.08
534.36
295.71
166.83
T199.90
22746
12B7.67
237,30
152.31
TBO.16
185.40
134.82
6571.50
168.12
1295.73
309.60
182.03
4595.69
317.36
135.46
G621.00
294.27

(] H | 1 K L
Percent_Retumn Max_Drawdown Mumber Trades Max Return Min_ Return Trade Cost
54.10 -272.50 115.00 37.92 -4.74 16.83
11.83 -443.65 10200 21.59 -15.09 573
45.49 -89.20 TF4.00 33.14 -5.73 3.93
37.04 -338.75 80.00 35.38 -7.19 16.84
91.56 -134.41 TE.D0 3294 -10.82 5.01
27.91 -98.25 92.00 25.95 -6.30 4.95
44.72 -3137.60 80.00 26.99 -6.15 114.41
1E.15 -230.30 88.00 .62 -27.00 5.59
61.73 -301.55 119,00 34.97 -4.37 19.22
E.95 -473.00 126,00 iR -9.95 12.99
35.04 -TL. 70 B5.00 3299 -6.29 4.70
54.08 -267.90 84.00 28.E2 -3.87 17.99
5741 -130.43 98.00 25.04 -6.78 B.65
22.56 -103.00 10E.00 2743 -6.24 6.14
40.81 -3202.30 11200 30.05 -5.43 171.04
13.41 -165.75 115.00 19.43 -27.00 12.9%
62.12 -224.90 107.00 37.92 -4.74 15.76
1219 -443.65 100u00 21.59 -15.09 15.46
46.656 -90.00 T0.00 3212 -5.73 3.77
34.36 -337.55 79.00 35.38 -7.19 16.60
9B.27 -100.28 76.00 2043 -B.13 4.90
22.66 -3B.25 95.00 25.95 -4.94 3.16
41.12 -3629.80 B2.00 26.99 -6.15 119.92
23.48 -1E8.80 B4.00 39.62 9.23

-27.00

In the above output B column is Moving Average column and C column is
RSI period taken for computation of Retruns. In the last column we have total
cost of trade.

You can develop you’re your own strategy in python with different
combinations of technical indicators computed with different time periods. I
always feel Options spreads are always better than trading future. For
example buying in-the-money option along with selling out-of-money option
with equal time value will have a benefit of limited risk and lower margins as
compare to buying necked future. You can learn option strategies and back
testing in python in my next book ‘Option Greeks, Strategies & backtesting
in Python’. Happy Trading.

ABOUT AUTHORS/
ACKNOWLEDGMENTS

Anjana Gupta, I am author of this book. I am having master degree in science
and management. I am having more than 10 years of experience. Special
thanks to Puneet Kanwar, who was instrumental in the completion and
editing of this book. Puneet Kanwar is having an experience of 15 years in
Indian capital market. He has worked with BSE Limited, formally known as
Bombay Stock Exchange, for 6 years. He has also worked with prestigious
broking house, Edelweiss prior to BSE. In 2017 Puneet resigned from BSE
for his own venture. Currently he is a successful option trader and arbitrager.

For feedback / suggestions / query / doubt you can write to me at
optionsnpython@gmail.com.

Happy learning. Anjana Gupta

BOOKS BY THIS AUTHOR

Option Greeks, Strategies & Backtesting In Python

Books By This Author Option Greeks, Strategies & Backtesting in Python is
divided into three parts -

1. First part cover option Greeks - Delta, Gamma, Theta, Vega, Delta hedging
& Gamma Scalping, implied volatility with the example of past closing
prices (Basics of Future and options explaind).

2. Second part covers option trading strategies with examples and
computation of returns of a strategy on past data. (You will get an idea how
professional traders think)

3. Third part covers Python for traders. After reading this book a novice
trader will also be able to use python from installation of Anaconda on his
laptop & extracting past data to back-testing and development of his own
Option strategies.

Many program codes and their results also explained for back-testing of
strategies likes ratios, butterfly etc.

https://www.amazon.in/Option-Greeks-Strategies-Backtesting-Python-ebook/dp/B089GQM3QD/ref=sr_1_3?crid=3G80N7JAWPGIT&dchild=1&keywords=option+greeks&qid=1608108984&sprefix=option+greek%2Caps%2C416&sr=8-3

BOOKS BY THIS AUTHOR

Trading Pairs With Python : Advance Statistical

Tools For Trading & Backtesting A Strategy In
Python

This is a comprehensive guide on pair trading. Concepts are explained from
very basic so that any trader who does not understand statistics can
understand and learn. Trading with the help of statistical tools explained in
detail.

Models are developed in Google spread sheet and Python for back testing and
finding opportunities.

This book will cover following —
1.Basics of Python so that a non-programmer can understand Python for
backtesting on past data.

2.Fetching Historical data in Google Spreadsheet (Excel) and Python through
various free data sources —

a.Daily data in Google Spreadsheet and Python

b.Per minute historical data in Python

c.Live data in Google spreadsheet and Python

3.Basics of statistics and use in trading. Trading with advance statistical
tools.

4.Pair trading concepts, development of pair trading models and backtesting
of models for getting results on past data.

https://www.amazon.in/Trading-Pairs-Advance-Statistical-Python-ebook/dp/B08QS47RTR/ref=sr_1_6?dchild=1&keywords=trading+pairs&qid=1608402442&sr=8-6

5.Machine learning tools for pair trading.

This book is written for individuals and traders. With help of this book
individual trader, investor can understand statistical tools of pair trading and
machine learning for pair trading.

	Title Page
	Contents
	Python for Trading on Technical-
	Basics of Python
	Fetching historical data
	Pyhton codes for Technical Indicators -
	TECHNICAL ANALYSIS LIBRARY (TA-LIB) IN PYTHON FOR BACKTESTING
	Installing Ta-Lib Python Library
	Download Past data for reuse
	Data Visualisation in Python
	Technical Analysis with Python Library Ta_Lib
	1. Overlap Studies
	1.1 Simple Moving Average (SMA)
	1.2. Exponential Moving Average (EMA)
	1.3. Bollinger Bands
	2. Momentum Indicators
	2.1. Rate of Change (ROC)
	2.2. Commodity Channel Index (CCI)
	2.3. Relative Strength Index (RSI)
	2.4. Moving Average Convergence/Divergence (MACD)
	2.5. Balance of Power (BOP)
	2.6. Stochastic
	2.7. Stochastic Relative Strength Index -
	3. Volume Indicators
	3.1. Chaikin A/D Oscillator
	3.2. On Balance Volume (OBV)
	4. Volatility Indicators
	4.1 Average True Range (ATR)
	5. Pattern Recognition
	Trading Setups
	Github Link
	Cost of Trade
	About Authors / Acknowledgments
	Books By This Author
	Books By This Author

