

Python for Teenagers
Learn to Program like a Superhero!

Second Edition

James R. Payne

Python for Teenagers: Learn to Program like a Superhero!, Second Edition

ISBN-13 (pbk): 978-1-4842-9987-6		 ISBN-13 (electronic): 978-1-4842-9988-3
https://doi.org/10.1007/978-1-4842-9988-3

Copyright © 2024 by James R. Payne

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: James Markham
Editorial Assistant: Gryffin Winkler

Cover designed by eStudioCalamar

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub (github.com/apress). For more detailed information, please visit https://www.apress.
com/gp/services/source-code.

Paper in this product is recyclable

James R. Payne
Gainesville, GA, USA

https://doi.org/10.1007/978-1-4842-9988-3

To my wife Whitney Payne, for always believing and pretending not to
notice when I yell at the computer.

To my parents, Ronnie and Sharon Payne, and my brother, also Ronnie
Payne, who all mysteriously have “ron” in their name and who always

told me I could become whatever I wanted in life, even when I told
them I wanted to be Batman.

To Dorjan Williams, who, years ago, helped me create a universe of
ridiculous comic book characters. To Eric Miller, who helps me solve

problems big and small, including slaying a dragon in my backyard, so
that I can focus – sometimes – on getting work done. Nicholas Rini

introduced me to both programming and comic books, and without
him, this book would not exist. Nanci Packard and Wendy White
provided inspiration with their use of words so big they couldn’t

possibly fit in a book. Thanks to members of the old Dev Shed crew:
Jennifer Ruggieri – who got me the job that got me the book (more than

once) – Charles Fagundes, and Keith Lee, for coding help and
reminding me (frequently) that my cup overfloweth. Jose Escalante,
I thank you here because you were the only one that could see John

Cena. Enrique Stone… you know what you did.

Jacquelyn Jurian, for reminding me to write by making me
remind you to write.

A special thanks to Sophie “the Bulldog” Payne for letting me use her
likeness in this book and always being such a good helper in the

kitchen. You will always be missed.

I would be remiss if I failed to thank the mad titan, Thanos, who
helped me accomplish so much with just a snap of his fingers. Mister T

pitied this fool, while Richard C. helped me “hit ’em with the Hein!”
And lastly, thank you to a handful of the writers that inspire me: A. Lee

Martinez, Neil Gaiman, Frank Miller, Alan Moore, Jim Starlin, and
Stephen King – can’t you guys write any faster?

v

Table of Contents

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

Chapter 1: �Introduction to Computer Programming and Python������������������������������� 1

Programming Language Overview��� 2

Python Overview�� 2

How Does Python Differ from Other Programming Languages?�� 3

The Benefits of Python��� 3

Examples of Python in the Wild�� 5

Your First Python Program��� 6

Installing Python�� 7

Installing Python on Windows��� 7

Installing Python on Other Operating Systems�� 16

In This Episode!�� 16

Chapter 2: �It All Adds Up��� 19

Operator Precedence��� 20

Data Types: Know Your Enemy��� 23

Converting Number Data Types�� 27

What Are Variables?��� 29

Superhero Generator 3000��� 32

In This Episode!�� 36

https://doi.org/10.1007/978-1-4842-9988-3_1
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_1#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_2
https://doi.org/10.1007/978-1-4842-9988-3_2#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_2#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_2#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_2#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_2#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_2#Sec6

vi

Chapter 3: �Stringing Things Along��� 39

Leave Your Comments at the Door��� 39

Block Commenting��� 41

Inline Commenting��� 42

Other Uses for Commenting��� 42

Texting – Without Your Phone�� 43

Working with Strings and Variables�� 45

Longer Strings�� 47

Strings on Multiple Lines�� 48

Formatting Strings�� 48

Introducing a New Weapon to Your Arsenal: Lists�� 51

Changing Lists�� 54

Other List Methods��� 56

In This Episode!�� 58

Chapter 4: �Making Decisions��� 61

Making Decisions��� 62

Conditional Statements�� 63

Behold – The If Statement!��� 64

Boolean Logic and Comparison Operators��� 67

Else Statements��� 69

Else-If Statements�� 70

Logical Operators��� 73

Nesting – Not Just for the Birds��� 76

In This Episode!�� 79

Chapter 5: �Loops and Logic��� 81

What Are Loops?�� 81

Limiting Loops�� 85

For Loops�� 87

More Fun with For Loops�� 91

Break, Continue, and Pass Statements��� 92

In This Episode!�� 95

Table of Contents

https://doi.org/10.1007/978-1-4842-9988-3_3
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec11
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec12
https://doi.org/10.1007/978-1-4842-9988-3_3#Sec13
https://doi.org/10.1007/978-1-4842-9988-3_4
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_4#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_5
https://doi.org/10.1007/978-1-4842-9988-3_5#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_5#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_5#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_5#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_5#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_5#Sec6

vii

Chapter 6: �Using What We’ve Learned��� 99

Creating Your First Real Program��� 99

Importing Modules��� 100

Creating Our Variables�� 101

Defining Our Lists��� 102

Introductory Text and Accepting Input from the User��� 102

Creating Suspense!�� 103

Randomizing Superhero Names��� 105

A Quick Check-In�� 107

Randomizing the Superpowers�� 109

Finishing Our Program�� 112

The SuperheroGenerator3000 Code – Completed!��� 114

Chapter 7: �Saving Time with Functions, Modules, and Built-Ins��������������������������� 121

Defining Modules��� 122

Built-Ins�� 122

Packages�� 126

Creating Your Own Module��� 127

Common Built-In Functions��� 130

String Functions��� 131

Practice Your New Functions��� 135

String Function Examples��� 136

Number Function Examples��� 137

In This Episode!�� 137

Chapter 8: �Using Classes and Objects��� 139

What Is OOP?��� 139

What Are Classes (And Will I Be Graded?)�� 140

What Are Objects�� 141

Creating Our First Class�� 141

Creating Our First Object�� 142

Improving the Superhero Generator 3000!��� 144

Table of Contents

https://doi.org/10.1007/978-1-4842-9988-3_6
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_6#Sec11
https://doi.org/10.1007/978-1-4842-9988-3_7
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_7#Sec11
https://doi.org/10.1007/978-1-4842-9988-3_8
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec6

viii

Inheritance, Subclasses, and More!�� 152

Adding the Bells and Whistles�� 159

The New and Improved Superhero Generator 3000 Code!��� 163

In This Episode!�� 168

Chapter 9: �Introducing Other Data Structures��� 171

More Data Structures��� 172

What Are Tuples?�� 173

The Tuple Functions�� 177

More Fun with Tuples��� 179

Tuple Examples�� 183

Working with Dictionaries�� 185

Dictionary Methods�� 187

More Fun with Dictionaries�� 188

Other Dictionary Methods��� 191

Example Dictionary Code�� 193

In This Episode!�� 194

Chapter 10: �Python Files��� 197

Working with Files in Python��� 198

File Types�� 200

Creating a Text File in Python Code�� 201

Reading Files in Python�� 203

A Warning About Reading and Writing to Files��� 206

Appending to Files�� 207

Working with Directories�� 209

Bonus Round!��� 213

FunWithFiles.py Code��� 214

WorkingWithDirectories.py��� 216

In This Episode!�� 217

Table of Contents

https://doi.org/10.1007/978-1-4842-9988-3_8#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_8#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_9
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_9#Sec11
https://doi.org/10.1007/978-1-4842-9988-3_10
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec11
https://doi.org/10.1007/978-1-4842-9988-3_10#Sec12

ix

Chapter 11: �Python for Gaming��� 219

Python for Gaming��� 220

Types of Games You Can Code in Python�� 221

Pygame Introduction�� 221

Installing Pygame��� 222

Setting Up the Pygame Bare Bones for a Game��� 223

Adding to Our Game Skeleton�� 224

Adding Images and Sprites in Pygame��� 226

Adding Text to Our Pygame Game Window��� 231

Drawing Shapes in Pygame�� 235

Adding More Events�� 238

In This Episode��� 248

Chapter 12: �Animating Games��� 251

Creating Animations in Pygame��� 251

Collision Detection: Bouncing Off the Walls��� 258

Collision Detection: Detecting the Window Boundaries��� 259

Colliding Two Objects��� 263

In This Episode!�� 269

Chapter 13: �Error Handling�� 271

Finding Errors�� 272

Types of Errors��� 276

Syntax Errors�� 276

Logical Errors��� 277

Exceptions�� 279

The Try Except Else Block��� 281

Using Finally��� 282

Creating Custom Exceptions�� 283

Logging�� 285

Table of Contents

https://doi.org/10.1007/978-1-4842-9988-3_11
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_11#Sec11
https://doi.org/10.1007/978-1-4842-9988-3_12
https://doi.org/10.1007/978-1-4842-9988-3_12#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_12#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_12#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_12#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_12#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_13
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec9

x

Debugging Tools in Python��� 288

One Final Tip for Handling Errors��� 289

In This Episode!�� 290

Chapter 14: �Python Career�� 293

Working with Python�� 295

Career Paths for Python��� 295

Beta Tester�� 296

Code Debugger/Bug Locator�� 296

Data Scientists��� 297

Software Developer/Software Engineer��� 297

Video Game Programmer��� 297

Mobile Development��� 298

Web Development and Web Applications��� 299

System Administration��� 299

Research, Teaching, and More�� 299

Common Python Interview Questions�� 300

Can You Tell Me Some of the Key Features of Python?��� 300

What Is the Difference Between a Tuple and a List�� 301

What Is Inheritance?��� 301

How Do You Generate Random Values in Python?�� 301

How Do You Create a List, Tuple, and Dictionary in Python?��� 302

What Is the Difference Between a Local Variable and a Global Variable?���������������������������������� 302

What Are the Different Data Types Python Offers?��� 302

What Is a GUI? What Python Library Is Best for GUI Development?�������������������������������������� 302

How Do You Open a File in Python?�� 303

How Would You List the Functions of a Module?�� 303

Other Python Interview Questions�� 303

Best Programming Practices��� 304

Follow Style Guides�� 304

If It’s Broken, Fix It (Now, Not Later)��� 305

Table of Contents

https://doi.org/10.1007/978-1-4842-9988-3_13#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec11
https://doi.org/10.1007/978-1-4842-9988-3_13#Sec12
https://doi.org/10.1007/978-1-4842-9988-3_14
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec1
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec2
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec3
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec4
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec5
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec6
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec7
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec8
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec9
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec10
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec11
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec12
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec13
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec14
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec15
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec16
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec17
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec18
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec19
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec20
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec21
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec22
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec23
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec24
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec25
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec26

xi

Documentation Is Everything�� 305

Use Code Repositories and Packages�� 306

Test Often��� 306

Choose a Side: Indentation or Spaces�� 307

Classes Are Great, But Not Everything Needs to Be One�� 307

The Future of Python�� 308

Python Terms��� 309

Index�� 313

Table of Contents

https://doi.org/10.1007/978-1-4842-9988-3_14#Sec27
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec28
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec29
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec30
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec31
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec32
https://doi.org/10.1007/978-1-4842-9988-3_14#Sec33

xiii

About the Author

James R. Payne was introduced to programming when he

was just ten years old. He started off hacking text-based

games like Lemonade Stand to gain an advantage while

playing and soon started creating his own text-based role-

playing games in the style of Dungeons & Dragons and

inspired by his favorite comic books. The enjoyment of those

early days stuck with him, and he continues to be drawn back

into the programming world throughout his career. 

Payne is the former Editor-in-Chief/Community Manager

of Developer Shed, an online publication and community

consisting of 14 websites and forums dedicated to

programming, web development, and Internet marketing. He is presently the editor

for the developer sites at TechnologyAdvice. He’s written over a thousand articles

on coding and marketing, covering virtually every language and platform available.

His first book, Beginning Python (Wrox Press), was published in 2010. In addition, he

has published over 3000 articles covering topics ranging from gaming to aerospace/

aeronautics, and he also writes adult horror and young adult fantasy books.

Payne decided to write this book to pass on his love of development in the hopes that it

would inspire future generations to code.

xv

About the Technical Reviewer

Andrea Gavana has been programming Python for more

than 20 years, dabbling with other languages since the

late 1990s. He graduated from university with a master’s

degree in chemical engineering, and he is now a Master

Development Planning Architect working for TotalEnergies

in Copenhagen, Denmark. 

Andrea enjoys programming at work and for fun, and he has

been involved in multiple open source projects, all Python

based. One of his favorite hobbies is Python coding, but he is

also fond of cycling, swimming, and cozy dinners with family

and friends. This is his third book as a technical reviewer.

xvii

Acknowledgments

This book wouldn’t have been possible without Todd Green, who reached out to me to

write a book and listened to my ideas and, thankfully, chose the one I wanted to write

the most.

Celestin Suresh reached back out to me and had me write this second version, for

which I am eternally grateful.

James Markham and Andrea Gavana found all of my errors and proved to me that,

even at this old age, I still have a lot to learn. Who knew – an old dog can learn new tricks.

Thank you to the entire editorial team at Apress, who were a pleasure to work

with and helped me do what I love to do most: write. And make up stupid comic book

characters.

xix

Introduction

�Who This Book Is For
This book is intended for teenagers looking to program in Python. While that technically

means anyone aged 13 through 18, the truth of the matter is anyone of any age can (and

should, if I do say so myself!) pick up this book if they want to learn either (a) how to

program in Python, (b) how to program as a beginner, or (c) add Python to their current

skill set.

Above all, if you are holding this book in your hand, intrepid adventurer, then this

book is for you. The future is dependent on young heroes like yourself, eager to learn

the art of coding and go out into the world and safeguard it from nefarious hackers,

dubiously programmed applications, and the rise of artificially intelligent robots!

So, whether you are in sixth grade or in college, this book will grant you with

superpowers galore. Sure, you won’t be able to see through walls or lift cars over your

head once you finish this book. However, you will be able to speak the language of

computers and create some pretty cool programs.

And what could be better than that?

�What You Will Learn in This Book
Chapter 1 provides an overview of programming and Python and then shows you how

to install Python and a Python IDLE, which will allow you to create your own Python

programs and test your code.

In Chapter 2, we will discuss mathematical functions (things like division, addition,

and multiplication) and learn about the different data types used by Python. We will

also begin to build the foundation of a fun superhero generator app – “Superhero

Generator 3000”!

Chapter 3 delves into how to work with text – also known as strings. We take a look

at the different types of storage Python offers as well. We wrap things up by looking at

common string functions and build another section of our Superhero Generator 3000

application.

https://doi.org/10.1007/978-1-4842-9988-3_1
https://doi.org/10.1007/978-1-4842-9988-3_2
https://doi.org/10.1007/978-1-4842-9988-3_3

xx

Sometimes a program will need to take a certain action depending upon feedback

from a user or from other influences. This is known as decision-making and is the topic

of Chapter 4.

Programming logic and loops – known as iterations, where code can “loop” or repeat

itself based on certain conditions – are covered in Chapter 5.

Chapter 6 is a refresher course of what you have learned up until this point. We will

use all the knowledge we’ve acquired to finish building the first complete version of

Superhero Generator 3000. By the end, you will be able to randomly create heroes with

unique superpowers, names, and battle statistics!

In Chapter 7, we begin to learn more advanced techniques. To be a real coder, you

must learn efficiency and reduce mistakes in your code. That is where modules and

built-in functions come into play. Learn what they are and why they will make your life a

whole lot easier in this exciting chapter!

Chapter 8 looks at even more advanced topics: specifically, we will cover the basics

of object-oriented programming (OOP) and cover objects and classes and define a thing

called polymorphism.

To switch things up a little bit, Chapter 9 will look at some different types of data

structures, including tuples and dictionaries.

Chapter 10 brings us up to speed on how to create – and work with – files inside of

directories.

One of my personal favorite chapters is Chapter 11, which covers a topic that is

near and dear to my heart: Python for Gaming. We will stroll through the world of video

games and learn how to work with video game elements, including sound, animation,

and more!

Learning how to create games that interact with a user’s actions and making images

move within a game are truly what make games enjoyable. Chapter 12 continues the

topic of gaming and focuses specifically on game animation.

In Chapter 13 – don’t worry, in this case 13 is lucky, for you at least! – we move into

areas of Python we have not yet discussed that do not fit in their own chapter. This

includes how to debug – or find broken code. We also look at advanced modules and

other topics.

Finally, we sum everything up in Chapter 14 and cover a wide range of topics,

including how to find work as a Python programmer, common interview questions, the

future of Python, and career paths, and answer some of the frequently asked questions

(FAQs) about our favorite programming language.

Introduction

https://doi.org/10.1007/978-1-4842-9988-3_4
https://doi.org/10.1007/978-1-4842-9988-3_5
https://doi.org/10.1007/978-1-4842-9988-3_6
https://doi.org/10.1007/978-1-4842-9988-3_7
https://doi.org/10.1007/978-1-4842-9988-3_8
https://doi.org/10.1007/978-1-4842-9988-3_9
https://doi.org/10.1007/978-1-4842-9988-3_10
https://doi.org/10.1007/978-1-4842-9988-3_11
https://doi.org/10.1007/978-1-4842-9988-3_12
https://doi.org/10.1007/978-1-4842-9988-3_13
https://doi.org/10.1007/978-1-4842-9988-3_14

xxi

So now that we know what we will learn, let’s put on our cape and superhero outfits

and get ready to leap tall buildings – of knowledge.

�Why I Started Programming
I started programming a long, long time ago – back before the Internet or cell phones

existed and when wild dinosaurs roamed the earth. Back then, computers didn’t have

images on them like they do today. Everything was text-based – even most of our games –

the horror! While we did have some computer games with animation and graphics, they

were 8-bit and not cinematic like the ones of today.

I was fortunate enough to share a computer with my older brother. I’m pretty certain

my parents didn’t know what a computer was used for, but must have thought: “This

future-device will surely make my children Men… of… the… Future… future… future…

future…” (just pretend the word is echoing).

And to some degree, they were correct: if they hadn’t purchased my brother and

me a computer, who knows what I would be doing with my life right now? Certainly not

writing this book and helping you to program like a hero!

But having a giant paperweight made of jumbled electronics – back then we called

it an Apple IIe – wasn’t enough to entice me to use it all that much. After all, I happened

to own a Nintendo Entertainment System (NES) as well, and it had an amazing slew of

games that I still – embarrassingly – play to this day.

What really got me into computers was this: I had a friend, Nicholas Rini, who knew

all about programming computers. He showed me one day how to “hack” into the code

of a few of our favorite text-based games to give ourselves an advantage. It was akin

to creating your very own cheat code in a video game. In particular, we played a game

called Lemonade Stand, which was exactly the same as standing outside your house and

selling homemade Lemonade, only you never made real money and you didn’t get a

sunburn.

In the game, you started out with a couple of dollars – barely enough to make any

real profit. However, once we looked at the code running the game, we figured out that

we could start out with however much money we wanted if we just changed a few words

around. Soon enough, I was the world’s first millionaire Lemonade Stand mogul.

I was hooked.

Introduction

xxii

From there, it was not a far stretch to conceive that we could actually create our

own video games, and that is exactly what we did. From complex role-playing games

(RPG) based off of our favorite comic books and Dungeons & Dragons to programs that

would ask our friends a series of questions and then make fun of them based off of their

answers – shenanigans!

While all of that seemed silly at the time, looking back on it I now know that it helped

set the foundation for my love of programming and, to a degree, writing (though I began

writing much earlier than that). Without that summer of programming fun, I would

never have had the wonderful experiences, friends, jobs, and writing opportunities that

have come my way ever since.

And, mostly, I would never have had the fun of programming either.

That is what I am hoping to pass on to you, dear reader: a lifetime love of

programming and opportunities all based off of one thing – the fun and joy of writing

computer programs and writing code.

Sure, programming applications can be a pain in the butt. You will find yourself

banging your head against a keyboard on many nights and yelling at the computer

screen for hours only to find that your program isn’t working because you forgot a

parenthesis () somewhere.

But – once you find that mistake that you or another programmer made – there isn’t

quite anything like that triumphant moment when you realize that you – YOU – are the

greatest coder of all time!

�Programming Dos and Don’ts
When reading this book, you may find yourself feeling the urge to skip ahead a little or

might want to skip an exercise or two. As in all things in life, this piece of advice holds

true in learning to program as well: if you cheat, you are only cheating yourself.

To help keep you on the straight and narrow, here are some dos and don’ts for

reading this book and for learning how to program, in general:

Do read the book straight through. While you might be okay to skip a chapter or an

exercise here or there, keep in mind that this book is all about building a foundation

of not just coding language, but coding practices, theory, and an understanding of

programming principles that you can take with you that apply to other languages as well.

Introduction

xxiii

Don’t copy and paste code from this book or any other source (assuming you have a

digital copy). Instead, take the time to type in the code so that you can begin to get a feel

for writing code and, perhaps, commit some of the code to memory through repetition.

Do experiment with code. One of the best ways, I’ve found, to learn how to truly

code is to experiment. If you come across an example in the book, feel free to change the

parameters some and see what happens. The worst that can happen is that you can fail.

The best? That you learn something new!

Don’t be afraid to Google other tutorials and how-tos on Python. This book is

supposed to build a beginner’s foundation, but it does not teach you everything there is

to know – that’s what the sequel is for! If you do decide to look up comparative examples,

be certain to look at the date of the article and the version of Python. If the version does

not match the version we are using in this book (Python 3), odds are your code will not

work, and you will find yourself very confused.

Do document your code. We have not covered this topic – yet – but for now, know

that documentation means to leave little comments in blocks, or sections, of your code

that lets you (or another coder in the future) know what you intended to do with a certain

section of code. While Python is a very readable language, the way every programmer

codes is different, and what might be apparent to you is not always apparent to others.

Also, if you have to review your own code at a later date, it will make it easier for you to

remember what, exactly, you were trying to do at 4 a.m. 10 years ago!

Do plan out your code. That is, write down how you want your overall program to

work and then break that down into little sections. Then, take those little sections and

map out what you need to code for each part. This way you will have a roadmap to follow

and won’t just be coding by the seat of your pants.

Finally, do test your code frequently and save your work often. When we

programmers are in the thick of things, we like to carry on, plugging away, for hours at a

time. However, if we don’t stop to test our code and save our files, we risk losing hours of

work and, worse, creating a program with problems that are difficult to trace.

Introduction

1
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_1

CHAPTER 1

Introduction to Computer
Programming and Python
Computer programming – commonly referred to as “coding” by the cool kids – is the

art of creating applications or software. These programs allow us to do everything from

solving simple math problems and watching our favorite TikTok videos (I can’t get

enough of skydiving bulldogs) to destroying hordes of rampant aliens in our favorite

video games and even launching a real-life spaceship into outer space.

I call computer programming an “art” because it is. Anytime you create something,

you are indulging in an art form. Sure, computer code, the words we type into a shell to

create our programs (more on this later!), may not be pretty to look at for the common

person on the street – your code will never see the inside of an art exhibit most likely –

but when a part of your program does what you created it to, there is almost nothing

more magical.

Well, maybe those skydiving bulldogs.

A computer program can come in many shapes and sizes. In addition to an

application that runs on your desktop system or a game that plays on your go-to video

game console, programs also take the form of mobile apps on a cell phone. You can even

find pieces of software that operate things like refrigerators, your mom’s minivan, and

even something as simple as a toaster oven.

And robots. Armies of robots.

But more on that later.

For now, know that a computer program is a set of code, created in a programming

language, that tells a device to carry out a set of instructions.

https://doi.org/10.1007/978-1-4842-9988-3_1#DOI

2

�Programming Language Overview
As mentioned, a computer program is written using a programming language. Just like

the real language you, I, and the rest of the world speak every day, computer languages

come in all shapes and sizes. While most of them make sense to the trained eye, a

newcomer to code would sound like a crazy person spouting gibberish if they tried to

use it in everyday conversation. That dialogue might look something like this:

Normal person: Hello, how are you?

Programmer (you): Print I am fine! Input, how are you?

Fortunately for all involved, computers are fluent in programming languages

(thanks, in part, to our friend the compiler – but more on this later!) and can easily

understand the most complex of sentences you type in.

For the purpose of this book, we will stick to one of the most versatile, yet easy-to-

learn, languages, Python. While the name sounds frightening, keep in mind, it could

be worse: it could be called Cobra. In truth, the language was not named after a reptile

at all, but, instead, an old television comedy from Britain called Monty Python and the

Flying Circus.

Here’s your first assignment: Go ask your parents about that show. See you in a

few hours!

Oh, you are back. Great. Did what they said make any sense? Probably not. But that’s

okay; you don’t need to understand the complexities of British comedy to learn how to

program using this book. All you need is a desire to learn, a computer, and the pages in

front of you.

�Python Overview
Python is what is known as a high-level, dynamic, interpreted, object-oriented

programming language. While all of that may sound a bit intimidating, never fear! By

the end of this book, you will be able to impress your friends with sentences much more

daunting than the one above! All that statement really means is that Python is not a

basic machine-level language, and as such, it needs an “interpreter” to “compile” it to

machine language so that the computer can understand what it is you are trying to tell it.

This interpreter takes your code and converts it – or compiles it – into a series of 1s

and 0s that a computer can plainly understand. All of that happens in the background, so

don’t worry if you do not quite understand it just yet.

Chapter 1 Introduction to Computer Programming and Python

3

Python is a relatively new programming language that was created in the late 1980s –

back when your dad had a big funny mustache and your mom listened to bands with

names like Wham! and Poison.

The man that created the language was a computer genius named Guido Van

Rossum, who was bestowed with the fancy, nonsensical title, Benevolent Dictator for

Life. Like technology, programming languages evolve as well, and Python is no different.

It has gone through several versions over the years and is currently known as Python 3.

More specifically, the latest release is 3.11.4, with 3.12 in beta (or test mode).

The numbers following the decimal – the 11.4 – represent updates to the

programming language. Prior to 3.11.4, there was version 3.11.3, and so on.

�How Does Python Differ from Other
Programming Languages?
Python differs from other programming languages in a number of different – yet

important – ways. For starters, Python is typically easier to learn and use than languages

in the same class, such as Java and C++. Programs created in Python also take less time

to create, as it requires less code (in general). This is due, in part, to Python’s data types –

a term we will cover in great detail in an upcoming chapter.

Python is also extremely versatile. While it may not be the primary choice, Python

can be used for applications in virtually every arena, including gaming, desktop software,

mobile apps, and even virtual reality. It is also a must for network programming and an

essential tool in a computer security toolbox.

�The Benefits of Python
Python is currently the most-used programming language in the world today and is the

fastest growing as well. And with good reason. Below are just a few ways in which Python

can benefit a programmer:

•	 Increased productivity: By some reports, Python can increase a

programmer’s productivity – how much work they can accomplish

in a given time – by as much as ten times! It literally is faster than a

speeding bullet!

Chapter 1 Introduction to Computer Programming and Python

4

•	 Extensibility: One great advantage of Python is the fact that it has a

very extensive library or, well, libraries. A library is a set of existing

code you can add-in to your program. These libraries cover things

that are common features of a program and save you from having

to write the code over and over again yourself. For example, instead

of having to write a section of code to perform a complicated

mathematical equation, you can simply use a library and save

yourself a huge headache.

•	 Python is easy to read: One tough part of being a programmer is the

fact that, sometimes, your code does not work. When that happens,

you might find yourself re-reading your code – or worse, someone

else’s – to try and figure out why your program is not behaving as it

should. Fortunately, Python is easy to read, and most of the language

makes sense at a glimpse. This makes finding issues a lot easier than

more complicated languages.

•	 Portability: Python runs on many platforms and systems, meaning

your programs can reach a wider audience.

•	 Internet of Things (IoT): The Internet of Things may sound like a

magical world full of digital beasts, and in some ways, it is. The IoT

consists of smart objects – light switches, doorknobs, toaster ovens,

appliances – that you find in your everyday home. These household

appliances are controllable by voice commands and mobile devices,

making them more interactive than their primitive predecessors. I

mean sure, your mom and dad yelled at the dishwasher all the time –

but did it ever listen? Now, thanks to the IoT and languages like

Python, it can! You still have to put your dishes inside of it, but still!

•	 Python frameworks: Frameworks are like skeletons for a program –

they allow you to quickly set up the basics for certain types of

applications without needing to code common elements that

usually exist in the type of software you are developing. This saves

programmers time and reduces the number of errors that can occur

when you have to manually code. Python is supported by a large

number of frameworks that can make launching a new program very

rapid indeed!

Chapter 1 Introduction to Computer Programming and Python

5

•	 Python is fun: Python is a fun language to learn; as stated, not only

is it easy to get started, but the Python community hosts many fun

events and challenges. For example, many people write their Python

code in poetry form, and there are numerous Python “challenges”

released every year to help test a coder’s skills.

•	 Python is flexible: Because Python has so many uses and is used by

so many companies around the world, finding a job after learning

Python is easier than with other languages. In addition, if you do

not like a given field, you can always use your Python skills to try a

different path. For example, if you find that coding applications is

boring, you could switch to network administration or work at an IT

security firm.

And those are just a few of the benefits and advantages that Python offers.

�Examples of Python in the Wild
While it is impossible to say just how many companies around the world use Python,

there are a number of interesting businesses that rely on the language. Below is just a

smattering of them:

•	 Wayne Enterprises (Batman’s Alter Ego’s corporation): Well, we don’t

really know that, but wouldn’t that be cool!

•	 Google: The search engine giant and one day ruler of the galaxy,

Google, has been using Python since its inception, partially because

developers can build programs so quickly with it and also because

the code is easy to maintain.

•	 Facebook and Instagram: While Python is not the only language used at

these two social media platforms, it is one of their most important ones.

Facebook uses Python, in part, thanks to its extensive libraries. Instagram,

meanwhile, is a firm supporter of one of Python’s main web frameworks –

Django. We cover web frameworks in great detail later in this book.

•	 Netflix: If you are a fan of streaming movies, then you are no stranger

to Netflix. The company uses Python primarily for its data-analysis

capabilities and for security purposes – among other areas.

Chapter 1 Introduction to Computer Programming and Python

6

•	 Video games: Battlefield 2 and Civilization 4 are just two video games

that both rely on Python. Interestingly enough, Civilization uses

Python for, among other things, its artificial intelligence (AI) scripts.

•	 Government agencies and institutions: Government agencies and

institutions including NASA, The National Weather Service, and the

CIA all use Python – though how it is used is Top Secret! Meet us in the

garage with a briefcase full of money, and we’ll tell you all about it!

�Your First Python Program
By now, you are probably wondering what Python code looks like. Well, fear not! I

am going to show you a sample snippet. Later, after we install Python and an IDLE

(integrated development environment) on your computer, you can try and execute – or

run – the code to see it in action. For now, though, I thought it would be a good idea to

just give you a taste before delving any further into the language.

Traditionally, when a programmer writes their first ever line of code, they create a

program called, “Hello, World,” as a metaphorical way to introduce themselves to the

world. However, as budding superheroes – or villains (no judgment here) – we need

something a little flashier.

Behold, your first Python program!

print("Look up in the sky! Is it a bird? Is it a plane?")

print("Dun dun dun dun dun dun dun dun dun dun dun dun dun dun dun dun")

print("No you dummy. That's just some guy flying around in his pajamas. Now

get back to work!")

If you were to run this code, the result would be:

Look up in the sky! Is it a bird? Is it a plane?

Dun dun dun dun dun dun dun dun dun dun dun dun dun dun dun dun

No you dummy. That's some guy flying around in his pajamas. Now get back

to work!

Chapter 1 Introduction to Computer Programming and Python

7

Let’s examine the code a little more closely. The part that says print() is known

as a function, whose job it is to tell the computer to – in this case – print something to

the user’s screen. The text in between the opening and closing parentheses () is the

parameter that we are providing the function. The characters in between the quotation

marks “ ” are known as a string.

Don’t worry if this doesn’t make all the sense in the world just yet – we go over this

topic in great detail in the next chapter. For now, just know that this is what Python code

looks like. Odds are, you were able to tell exactly what this program would do before I

told you; that is just one of the things that make Python so great – its readability!

�Installing Python
In this section, we are going to learn how to install Python on the various operating

systems. An operating system is a piece of software that lets you interact with a computer.

You are probably familiar with the more popular ones, such as Microsoft Windows (if you

own a PC) and macOS if you own an Apple computer. The version of Python you install

will vary depending upon which one of these your computer uses. In addition, we will

learn how to install Python on Linux and Ubuntu systems as well.

�Installing Python on Windows
To begin, open up a web browser, and navigate to the official Python website and its

download page: www.python.org/downloads/ (Figure 1-1).

Figure 1-1.  Python.org website

Chapter 1 Introduction to Computer Programming and Python

http://www.python.org/downloads/

8

The current version of Python is 3.11.4; by the time you read this book, it may be

higher than that. Whatever the case, click the “Download Python” button under the

Download the Latest Version for Windows header. Optionally, you could scroll down and

download previous versions (just make sure they are version 3.X or higher, as there are

incompatibility issues between versions 2.X and 3.X); however, for the purposes of this

book, it is always best to use version 3.11.4 or later.

Depending upon your system settings, an image may appear asking if you would like

to save the file. If so, click “Save File,” and save it to your Desktop or somewhere easily

remembered.

Navigate to your Desktop or Downloads folder (or the location where you saved the

file), and double-click it. It should appear similar to the image in Figure 1-2.

Figure 1-2.  Python .EXE install file icon

Chapter 1 Introduction to Computer Programming and Python

9

The installer will launch and will ask you whether you wish to “Install Now” or

“Customize Installation.” For ease, we are going to allow the installer to “Install Now.”

Before you click that button, however, make sure that “Use admin privileges when

installing py.exe” and “Add python.exe to PATH” are both checked. Then click the

“Install Now” option (Figure 1-3).

Figure 1-3.  Python install setup screen

Chapter 1 Introduction to Computer Programming and Python

10

You may get a pop-up from Windows asking for permission to continue the

installation. If so, allow the program to continue. A new pop-up will appear, showing you

the Setup Progress (Figure 1-4).

Figure 1-4.  Python installation progress screen

Chapter 1 Introduction to Computer Programming and Python

11

Once Setup is complete, you will see a screen like the one below. Click the “Close”

button to complete installation (Figure 1-5).

Figure 1-5.  Python install setup successful window

You should now have Python installed on your computer. You can find it in your

“Start” menu, labeled Python 3.11 (or whichever version you installed).

When you launch Python, the first thing you see is the shell, which is a piece of the

development environment where you can write a line of code, test code, run code, and

create Python files. Figure 1-6 shows an example of how the Python Shell will appear

once launched.

Chapter 1 Introduction to Computer Programming and Python

12

Figure 1-6.  The Python Shell

At the top of this shell window, you can see the current version of Python and some

other information. You will also see three greater-than symbols or arrows (>>>). These

are known as the command prompt, and it is here that you will type in your instructions

to Python.

Ready to dive in? Let’s type in some simple code and see what happens! Enter the

following into the prompt:

print("Look up in the sky! Is it a bird? Is it a plane?")

When you finish, press Enter and you should see a result that looks like the following

(Figure 1-7).

Figure 1-7.  Example code written in the Python Shell

Chapter 1 Introduction to Computer Programming and Python

13

If not, re-check your code and make sure you spelled everything properly and

remembered to insert your parentheses () and quotation marks “ ” .

Since we are working directly in the shell, our code gets executed – or run – in real

time. In this instance, it ran a single line of code, which told the computer to print a line

of text to the screen.

In the real world, we want to create actual Python files so that we can save our

programs for later use and to help us save us from re-writing thousands of lines of code

each time we want to run our program.

Fortunately, Python IDLE – Python’s version of an IDE or integrated development

environment – lets us create Python files, that is, files that end in the extension .py,

quite easily.

To open IDLE, go back to your start menu and type in “IDLE.” This will open the

IDLE Shell.

Now, to create a new Python file to add your code into, all you have to do is click File,

then New File (see Figures 1-9, 1-10, and 1-11).

Figure 1-9.  A newly created .py file

Figure 1-8.  Example of Python IDLE

Chapter 1 Introduction to Computer Programming and Python

14

A new window will pop up. This is where you can write your code and save it for later.

That being said, let’s enter in the example code we just used. Then click File, then Save.

Next click File, then Save.

Enter in the name of the file and click the Save button to finish creating the file. For

the purposes of this book, let’s keep things simple and name our file Example1.py.

Figure 1-10.  Example code written in a .py file

Figure 1-11.  Save dialogue box showing the Python directory

Chapter 1 Introduction to Computer Programming and Python

15

There you have it – you created your very first real-world Python program. To run this

program, click Run and then choose Run Module. Your program will now execute in the

Python Shell (Figure 1-12)!

Figure 1-12.  Result of the .py file run in the Python Shell

Now, let’s wrap things up: remember the original first program we wrote at the

beginning of this chapter? Let’s enter that into our Example1.py file, and click Save once

you are finished. Here is the code again:

print("Look up in the sky! Is it a bird? Is it a plane?")

print("Dun dun dun dun dun dun dun dun dun dun dun dun dun dun dun dun")

print("No you dummy. That's just some guy flying around in his pajamas. Now

get back to work!")

Chapter 1 Introduction to Computer Programming and Python

16

Once you have saved the file, click Run and choose Run Module to see the full code

in action (Figure 1-13)!

Figure 1-13.  Another example of a .py file running in the Python Shell

�Installing Python on Other Operating Systems
This book uses Python installed on a Windows-based computer; while the code inside

will work on any computer, the actual installation of Python will vary based off of your

operating system.

To install Python on macOS, open a web browser and navigate to www.python.

org/downloads/macos/. Choose the “Latest Python 3 Release” link, and follow the

instructions and prompts to complete the Setup and Installation process.

To install Python on Unix/Linux systems, open a browser and go to www.python.

org/downloads/source. Click the link for the “Latest Python 3 Release,” and follow the

instructions to complete the Setup and Installation process.

�In This Episode!
We certainly covered a lot in this chapter, but it is nothing compared to what we will

unmask in the chapter to come! Here is a brief list – a summary if you will – of the things

we covered thus far (hey, we are programming heroes now, we have to speak the lingo

as well!):

Chapter 1 Introduction to Computer Programming and Python

http://www.python.org/downloads/macos/
http://www.python.org/downloads/macos/
http://www.python.org/downloads/source
http://www.python.org/downloads/source

17

•	 Python is a programming language that lets you program computers,

mobile devices, video games, artificial intelligence systems, the

Internet of Things (IoT) devices, web-based applications, and even

virtual reality/augmented reality (VR/AR).

•	 A program or application is a group of code that lets you give a

computer or device a set of instructions to carry out.

•	 Programmers that know Python can pursue careers in programming,

network administration, IT security, video game development,

mobile application creation, forensic computer science, and more.

•	 Python works across multiple platforms, including Windows PCs,

Mac computers, mobile devices, Unix/Linux-driven computers,

and more.

•	 Python can be used to prevent hacking via a set of skills and modules

known as “ethical hacking” tools.

•	 IDLE stands for integrated development environment; it is where we

create our Python code and files.

•	 Files created by Python end in the file extension “.py”.

•	 The current – as of this writing – version of Python is 3.11.4. If you are

reading this book, be sure to use this version or later.

•	 The print() function lets you print text to a user’s screen. For

example, print("Hello Wall!") would print the text: Hello Wall! to

the computer screen.

•	 Many organizations and companies around the globe use Python,

including Facebook, Google, Snapchat, NASA, the CIA, and more!

•	 Python is the most-used – and fastest-growing – computer

programming language in the world.

Chapter 1 Introduction to Computer Programming and Python

19
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_2

CHAPTER 2

It All Adds Up
Now that we are all suited up in our metaphorical capes and superhero outfits (i.e.,

we have installed Python and learned how to use the IDLE); it is time to put our new

superpowers to the test! Our first villain? Perhaps one of the most nefarious, vile,

contemptuous beasts of all time; a criminal of the school system, running rampant and

threatening to destroy – or bore – every student in its path. The villain’s name?

Math.

I know, not the most exciting of topics. At least, not at first glance. However, the truth

of the matter is math, and, more importantly, mathematical functions, are the bread

and butter of the programming world. Without math, we wouldn’t be able to do any of

the nifty things that computers and mobile devices allow us to do. There would be no

computer games, no spaceships in outer space, no robots of the future to help us clean

our filthy rooms.

Without math, we would truly be a civilization lost.

The purpose of this chapter, therefore, will be how to deal with math and

create simple or complex mathematical equations using some of Python’s built-in

mathematical functions.

Similar to the print( ) function we learned back in Chapter 1, the math functions

we are about to discuss will let us perform pre-built actions on data without having

to code common elements of an application. So, for example, instead of writing a lot

code explaining to the computer what addition is and how to actually add numbers

(remember, a computer can only do what we tell it; it can’t think for itself – not yet

anyway!), which would require thousands of lines of code were we to do it from scratch,

all we have to do is type something simple, such as

1+1

Go ahead – type that into the Python Shell. When you do, it should dutifully return

the answer: 2.

https://doi.org/10.1007/978-1-4842-9988-3_2#DOI
https://doi.org/10.1007/978-1-4842-9988-3_1

20

Like the math you learned in school, Python was built to inherently understand basic

mathematical functions. If you see this: 8/2, your brain knows that this equation involves

division. If you see a + symbol, it is obviously addition, and a - means subtraction.

Python understands these symbols as well and will perform math based upon them. Try

typing this into the Python shell:

2+2-1

Python will return 3 in this instance, showcasing that it can understand the common

mathematical operators. An operator, in Python, includes the following: +, -, and / – to

name but a few.

How about multiplication? Type this in:

2x2

What happened there? The program did not return 4 as we would have expected.

Instead, it returned a SyntaxError: invalid syntax exception. SyntaxErrors mean that

something is wrong in the Syntax – the written text – that you input into the shell or the

Python file that prevents the program from running properly.

In other words, Python does not understand you.

Here, the solution is simple: in programming, the operator for multiplication is not

an “x” – instead, it is an asterisk (*). To fix our SyntaxError, all we have to do is replace the

wrong multiplication operator with the correct one, like so:

2*2

Now if you type that in, it will return the expected response – the number 4.

�Operator Precedence
One of the evil villain Math’s superpowers is to confuse us with concepts that seem too

difficult to grasp. Never fear! With our superhero calculating powers, not even Math’s

most complex riddles can stump us.

Not that it won’t try, mind you!

When performing calculations in Python, we always have to be aware of a thing called

operator precedence. This is just fancy speak for the order in which Python performs

mathematical problems. Certain operators have a higher precedence – meaning they go first

in line – than other operators. As you can imagine, this can be confusing to a programmer,

and even the most seasoned veterans can make mistakes when entering calculations.

Chapter 2 It All Adds Up

21

To give you a clearer picture of how operator precedence works, here is a list of

operators in Python, sorted by precedence or who gets to go first in an equation. Note:

some of these operators may be unfamiliar to you – don’t worry too much about that

right now; we will cover them in great detail throughout this book.

•	 ** (Exponentiation)

•	 *, / (Multiplication and division)

•	 +, - (Addition and subtraction)

•	 in, not in, is, is not, <, <=, >, >=, !=, == (These are known as

comparisons, which allow you to compare one value to another)

•	 not x

•	 and

•	 or

•	 if-else

To keep things simple, let’s work with the basic operators: *, /, +, and -

(multiplication, division, addition, and subtraction). Type the following into your shell:

10+10 * 20

In this equation, we are asking what the value of 10 plus 10 is when multiplied by 20.

Normally, we would expect that the answer would be 400, because the first value – 10

plus 10 – should equal 20. Then, we would multiply that answer (20) by 20, resulting in

400. However, when we enter the code in the shell, we get a surprising result, as shown in

Figure 2-1.

Figure 2-1.  Example of operator precedence

Chapter 2 It All Adds Up

22

Your first thought may be: is Python bad at math? How did it come up with the

answer: 210? This occurs because of operator precedence. Remember from our list of

operator precedence, multiplication goes first in line, ahead of addition. Therefore,

Python evaluates the multiplication first, then does the math. In this instance, Python

views our equation this way: 20 * 10 + 10.

I know what you are thinking: my head hurts.

This may seem confusing at first glance, but fortunately, there is a simple solution.

We can force Python to use an order of evaluation – the order in which to perform

calculations – by using parentheses. This has two effects: first, it ensures Python

performs the calculation we want and doesn’t confuse our precedence. Second,

it lets other programmers know what you really intended with your equation, at a

simple glance.

Let’s try it out. Type the following into your shell:

(10+10) * 20

As you can see in Figure 2-2, now we get the result we want. By placing (10+10) inside

of parentheses, we are telling Python – and other coders – that we intended for that part

of the equation to be performed first (see Figure 2-2).

Figure 2-2.  Example of operator precedence using parentheses to force order

Chapter 2 It All Adds Up

23

To make matters a little more complicated, we can also do something known as

nesting. This means that you place parentheses inside of other parentheses, to further

dictate what order calculations should be performed. In a case such as this, the

innermost parentheses are evaluated first, then the outer, then the rest of the equations.

Consider this:

((10+5) * 10) / 2

If you were to type that equation into Python, it would perform the order of

evaluation in the following manner:

•	 10 + 5 equals 15

•	 15 * 10 equals 150

•	 150 / 2 equals 75

However, if we did not use parentheses, Python would read it this way:

10 + 5 * 10 / 2

Or

•	 10 / 2 equals 5

•	 5 * 5 equals 25

•	 25 + 10 equals 35

This is, again, because Python performs multiplication and division before addition

and subtraction when looking at operator precedence.

So, to avoid any confusion, always use parentheses when performing anything other

than simple mathematics.

�Data Types: Know Your Enemy
Super villains come in all shapes and sizes. You have your evil scientist, bent on

destroying the world with death rays and genetically modified gorillas; there are the evil

green ones, rippling with muscle and full of rage because, well, for no real good reason

at all. Then there are the ones that laugh all the time even though no one has told a

single joke.

Chapter 2 It All Adds Up

24

There are thousands of types of villains, and as a fledgling superhero, you can

bet it gets hard to keep them all in order. Is Mr. Mindblower a super smarty, or is he a

misunderstood villain who just can’t get his act together? What about the mysterious

Stephen King Kong – half-gorilla, half-horror writer – what the heck is he? And how does

he write so many books with those big gorilla knuckles?

It’s enough to make you lose your mind.

Or is that Mr. Mindblower at work again?

Fortunately, there is a way to keep all of these villains organized. It’s called

archetypes.

In Python, we have a similar issue. There are all sorts of data floating around. We

have numbers and text for starters. To make matters worse, we have different types of

numbers. You have regular numbers, you have numbers with decimals, and you have

numbers that represent things like time or money. There are even numbers that behave

the same way that words behave.

Fortunately, in Python there is a thing known as data types. These are ways to define

or classify what type of data you are entering into your programs. While it might seem

that this should be common sense – and sometimes it is – the truth is, Python only

knows what you tell it to know. The same goes for all computer languages. In fact, all

computer languages have data types, just like Python, so the concept of data types is

something you can bring with you as you learn other languages.

There are several forms of data types that we will be discussing in this book, but for

this chapter, we are going to concentrate on one specific set: numbers.

In general, Python recognizes numbers as numbers, but, as you can imagine, not all

numbers are created equal. To keep things simple, for now, know that any number you

see that is a whole number or that does not have a decimal point in it is called an integer.

Integers include numbers like 0, 2, 5, 10, 100, 1000, 1032, and so on.

Try out the following code:

print(122)

Chapter 2 It All Adds Up

25

Your result should look like this (see Figure 2-3):

Figure 2-3.  Printing an integer

As we saw earlier, integers are for more than just printing to the user’s screen – we

can do calculations, as you know. Let’s try the following:

print(5/2)

Something interesting happens when this code runs, as shown in Figure 2-4:

Figure 2-4.  Performing math inside of a print( ) function

Chapter 2 It All Adds Up

26

The number returned does not fit into the criteria of an integer, despite the fact that

we performed math on two integers. Whenever a number has a decimal, it is no longer

considered an integer data type; it is, instead, a float or floating-point number.

Just as we can perform equations on integers, so, too, can we perform them on floats.

We show an example of this in Figure 2-5.

Figure 2-5.  A float data type

When a float is added to another float, the result is another float. This holds true even

if the number seems like it should be a whole number or integer. For example, if I asked

for the result of 2.5 + 2.5, you would probably answer: 5. Let’s see what Python has to say

about that:

As you can see from Figure 2-6, Python did something we may not have expected: it

returned 5.0 – a float.

Figure 2-6.  Performing math on two floats

While this is an appropriate result, we may find ourselves in a situation where we

need to change the data type of our numbers. For example, we may have a program

where we do not want to show decimal points or want to round up our numbers. In this

case, one option would be to convert our numbers.

Chapter 2 It All Adds Up

27

Before we learn about that, however, let’s try one more thing. What happens when

we perform math on an integer and a float? Try the following (see Figure 2-7):

print(5 - 2.5)

Your result should be the following.

Anytime you perform math on an integer and a float, the result will always be a float.

�Converting Number Data Types
In this section, the first thing we are going to learn how to do is convert an integer into

a float. In our previous example, we used a simple method to convert our integer into a

float: division. Another way that we can achieve the same effect is to use one of Python’s

built-in functions known as float().

Using float() is very simple – all you have to do is place the integer you want to

convert inside of the parentheses ( ). Let’s give it a go!

float(12)

If you type that into the Python Shell, you will get the following result.

As Figure 2-8 shows, your result should be 12.0 (instead of just regular 12 with no

decimal point).

Figure 2-7.  The result of a float subtracted from an integer

Figure 2-8.  Converting an integer into a float

Chapter 2 It All Adds Up

28

To do the reverse – convert a float into an integer – we use another of Python’s super-

duper handy built-in functions. Behold, int()!

The function int() works the same as float(). Just type in the number you wish to

convert in between the parentheses, and Python does the rest. Try it out:

int(12.0)

This will return:

As shown in Figure 2-9, we took a floating-point number – 12.0 – and converted it to

an integer, 12, by removing the decimal point.

What happens if we have a float that does not end in .0 though? Let’s find out with a

simple test. Type this into your Python Shell:

int(12.6)

When you press enter, you will get the result: 12. Why not 13? When you convert a

float to an integer, Python removes everything after the decimal point and ignores it. If

you wanted to round up (or round down), you would need to use a different function,

which we will cover later in this book.

There are many data types that we can convert to other data types, and we will be

covering the rest of them throughout this book. For now, however, give yourself a round

of applause – you’ve added two new superpowers to your arsenal: the int() and float()

functions!

Figure 2-9.  Converting a float into an integer

Chapter 2 It All Adds Up

29

�What Are Variables?
So far, we have learned some basic math operators and functions that we can use to

convert data types from one to the other. However, for us to have any real power, we need

to learn about a secret weapon known as the variable.

There are several easy ways to think of variables that will make them easier to

understand. One way is to think of them as a box that you store something in. In our

case, the thing that we store in them is data. That data can be numbers, it can be text, it

can be a monetary value, the name of your dog, a paragraph of text, or the security code

to your secret lair.

Variables serve many functions in Python, as well as other programming languages.

One of the greatest uses of variables is to store information so that we do not have to

continuously type it over and over again. For example, you might have a long list of

numbers that you use frequently. Instead of typing that long list out every time you need

it, you could just store it in a variable and call upon the variable instead.

To use a variable, all you do is give it a name and then define its value. For example:

a = 8675309

This code creates the variable name – “a” – and then assigns it a value, which, in this

case, is 8675309.

Of course, storing data is one thing; using that data is another. Let’s go ahead and

create a simple program that will give two variables some data and then print it out to

the user’s screen. Remember how to create a new Python file from our first program

example? In the Python Shell, click File, then New File. A new window will pop up. Enter

the following code into the new window:

a = 500

b = 250

print(a)

print(b)

Next, click File, then Save. Give the file the name VariableTest.py. To see the code in

action, click Run, then Run Module.

The code will run in the Python Shell, as shown in Figure 2-10:

Chapter 2 It All Adds Up

30

Figure 2-10.  Printing the values of two variables

So, as you can see, we assigned the variable “a” the value of 500 and then assigned

variable “b” the value of 250. Then, using the print function, we printed out the values of

both variables. Now for some real fun!

Printing out the value of variables is pretty boring, let’s be fair. However, printing

is not the only thing that we can do with our variables. Let’s modify the code of

VariableTest.py. Add the following code to the file, so that it looks like this:

a = 500

b = 250

print(a)

print(b)

print(a+b)

Save the file and then run it again to see the result, which should match Figure 2-11.

Figure 2-11.  Showing the results of adding – and printing – two variables

Chapter 2 It All Adds Up

31

Here, we created our two variables and gave them a value, just as before. We also

printed them out. However, this time we also performed some math on them and

printed out the result. The code in the line: print(a +b) tells Python to print whatever is

inside of the print( ) function’s parentheses( ) – in this case, we are saying to print the

equation (a) + (b), which is 750.

Note that this does not change the value of the data in variable “a” or “b” – it simply

performs math using them. To change the data inside of a variable, we have a few

different options. Let’s create a new file and name it VariableChange.py. Enter this code

into it:

a=500

b=250

a=a+b

print(a)

Run the code to see the result (shown in Figure 2-12):

Figure 2-12.  Assigning the result of two variables to a variable

So what happened here? First, we named and defined the values of variables “a” and

“b.” Then we added the values of the two variables together and reassigned the value

of variable “a” to match the result of that equation. Then, we printed out variable “a” to

show the new value, which was 750.

When we type in a=, we told Python to change the value of “a” to whatever came after

the equal (=) sign. Next Python added “a” and “b” together and assigned that value back

to “a.” The equal sign (=) is known as the assignment operator.

We can also create a whole new variable if we did not want to change the value of

variable “a.” Let’s modify the code in VariableChange.py so that it matches the following:

a=500

b=250

c=a+b

print(c)

Chapter 2 It All Adds Up

32

This time, instead of changing the value of “a,” we simply created a new variable “c”

and gave it the value of “a” + “b,” then printed out the contents of “c.”

�Superhero Generator 3000
Now that we have some code experience under our belt, let’s use it to build the basis of

a program that we are going to create by the end of this book. The program is going to be

a superhero generator that lets users create heroes (or villains) complete with statistics,

random names, and randomly generated powers and statistics.

Some of the following code will add text to our program, which we will be covering

in greater detail in Chapter 3. For now, we will be using this text as labels only, so you

should have no trouble understanding the code.

Every hero has certain physical and mental attributes. If you have played role-playing

games – or RPGs – before, then you are familiar with this concept. If not, no worries! Just

look around at the people near you and observe them. Your Phys Ed coach, for example,

may have muscles and be in really good shape. This would mean he has more strength

and endurance than, say, your science teacher.

On the flip side, your science teacher is probably smarter and wiser than your

P.E. coach, meaning that he has more intelligence and wisdom. Let’s start with these

attributes as our first four stats – or statistics. We can always add more later.

To determine the value of each, we need to assign a range of low to high. We can use

a range of 0–20 for now, with 0 being low and 20 being high. So, if we were discussing

strength, then 0 would be extremely weak and 20 would be Hercules. An average,

therefore, would be 10.

Likewise, for intelligence, we could say 0 would be a doorknob (hence the phrase

“dumb as a doorknob”), and 20 would be Albert Einstein. Anyone falling in the 10 range

would be considered of average intelligence.

Now, we could allow players to set their own attribute scores, but then, we know

that everyone would just set them to 20 and be the strongest, smartest person alive. And

while that does define you and I perfectly, other mere mortals just don’t measure up to

those high standards.

Instead, what we would want to do is assign the values to their attributes randomly.

Python is capable of creating random numbers fairly easily using a function called – you

guessed it – random().

Chapter 2 It All Adds Up

https://doi.org/10.1007/978-1-4842-9988-3_3

33

Using random() is a bit different than other functions. To use it, we first have to

import it into Python. We do this with a simple line of code:

import random

The random() function works like other functions, in that you can assign parameters

to its parentheses. Create a new Python file called RandomGenerator.py, and type in the

following code:

import random

strength = random.randint(1,20)

print(strength)

In this code, we first import the random( ) module, then create a variable named

“strength.” One important thing to note about variables. There is a thing called naming

conventions in the programming world. What that means is that there are certain “rules”

you should follow when naming things. With a variable, you always want to name them

something that will let you or a future programmer know what type of data is being held

in the variable. Naming a variable “a,” for instance, does not give us much information.

Naming it “strength” tells us exactly what the data inside is for.

If your variable name has more than one word in it, always keep them as one word

and simply capitalize the first letter of the second word. For example, if our variable were

“Hero Strength,” we would name it heroStrength. If it were “Hero Strength Stats,” we

would use heroStrengthStats.

A second rule of thumb is to always keep it as short and simple as possible.

Remember, variables are used to save time typing code, so long names defeat the

purpose.

Back to the code….

After creating our variable “strength,” we want to assign a value to it. The next part of

the code calls upon the random( ) module and uses an attribute called randint. Randint

is a part of random( ) and tells Python not just to create a random number but to create

a random integer. The value that we place in parentheses is the range of the random

number. Remember, we want our stats to range between 1 and 20, so therefore, the value

that we input was (1,20).

Try running the code from RandomGenerator.py several times. You should get a

random number each time:

Chapter 2 It All Adds Up

34

Now that we have our random number generator working and understand how to

use it, let’s add some more stats:

import random

strength = random.randint(1,20)

intelligence = random.randint(1,20)

endurance = random.randint(1,20)

wisdom = random.randint(1,20)

Next, we need to print these values to the screen to test them. For that, we are going

to use some text as labels, then print the value of each variable after its respective label.

Add this code after your variables:

print("Your character's statistics are:")

print("Strength:", strength)

print("Intelligence", intelligence)

print("Endurance", endurance)

print("Wisdom", wisdom)

Here we encounter a different use of the print( ) function. Before, we were using

print( ) to print numbers and variables. However, now we are using a new data type,

known as the string. A string is simply text. It can contain any letter, special character (!, @,

#, $, %, ^, &, *, -, +, =, etc.), and any number. However, for it to be considered text, it must

be placed between quotation marks “ ” . If not, Python will interpret it as something else.

Don’t worry too much about this right now – we go over it in great detail in Chapter 3.

For now, let’s examine one line of code:

print("Your character's statistics are:")

This code literally tells the computer to print “Your character’s statistics are:” to

the screen.

The next instruction is a little different:

print("Strength:", strength)

This print( ) function does two things. First, it says print the text between the

parentheses: “Strength:”. Then, we add a comma (,), which tells Python there are further

instructions for the print( ) function. Next, we include the name of the variable whose

Chapter 2 It All Adds Up

https://doi.org/10.1007/978-1-4842-9988-3_3

35

contents we want to print – in this case, the variable strength. Note that the variable is not

in quotation marks. If it were, it would only print the word “strength” vs. the contents of

the variable named strength.

So now, your RandomGenerator.py file should look like this:

import random

strength = random.randint(1,20)

intelligence = random.randint(1,20)

endurance = random.randint(1,20)

wisdom = random.randint(1,20)

print("Your character's statistics are:")

print("Strength:", strength)

print("Intelligence", intelligence)

print("Endurance", endurance)

print("Wisdom", wisdom)

Let’s run the code a few times. Keep in mind that our program creates randomly

generated numbers, so the results will vary each time we execute the code. Figure 2-13

shows a sample of what it should look like:

Figure 2-13.  Generating random statistics

Congratulations, you just created the beginning part of the Superhero Generator

3000 application!

Chapter 2 It All Adds Up

36

�In This Episode!
We covered a lot of ground in this exciting episode. You started out as a young sidekick,

but your powers are steadily growing! Soon you’ll transform from Wonder Boy to…

Wonder Man? I don’t know – we’ll work on the name. All that really matters is that you

have made your first steps onto the path of coding like a superhero.

What perils lie ahead? Next chapter, we will look at working with text and continue to

build upon our Superhero Generator 3000 application. We will also begin to document

and comment on our work, a programming practice that is mandatory if you ever hope

to be one of the greats!

Before we can move forward though, let’s look at what we learned in this installment:

•	 Data types: Data types exist in all programming languages and help

define the sort of data a program is handling. Integer – or int – is a

data type for whole numbers, while float is the data type for floating,

point numbers, or numbers with decimals.

•	 Operator precedence: Certain operators take precedence over – or go

before – other operators when equations are performed.

•	 Operators: Common operators include + (addition), - (subtraction), *

(multiplication), and / (division).

•	 Assignment operator: The equal sign (=) is known as an assignment

operator, allowing you to assign a value to a variable.

•	 Order of operation: The order that mathematical operations are

performed is known as order of operation. We can control which

math is performed in an equation first by encapsulating sections in

parentheses. For example, (1+1) * 10 ensures that 1+1 is performed

prior to the multiplication, despite the fact that multiplication has

operator precedence over addition.

•	 Converting data types: int( ) and float( ) allow us to convert a floating-

point number to an integer and an integer to a floating-point number,

respectively.

Chapter 2 It All Adds Up

37

•	 Variables: Variables are storage units for data. You can also think of

them as labels that point to the location of data, but it may be easier

to think of them as a box that can contain a piece of information. We

create variables by naming them and assigning value to them with

the assignment operator. For example, a = 12.

•	 Naming conventions: Naming conventions are loose rules that help

make coding easier – for you and any future programmers reading

your code. Think of them as a “best practice.” When naming a

variable, for instance, always use lowercase letters for the first word

and capital for any words following. Be sure to group multiple words

into one word. For example, socialSecurity is good. Social Security is

bad and will result in a SyntaxError. Also, try to name variables with

short names that describe what the data in them is used for.

•	 random( ) and randint( ): random( ) is a module that lets you generate

random numbers. You must import it into your program using

the code: import random. To randomly generate an integer with

a given range of numbers, type random.randint(1,20) or random.

randint(5,100) if you wanted to generate numbers randomly from 1 to

20 or 5 to 100, respectively. If you wanted to generate numbers from 0

to 20, you must specify that in code, such as random.randint(0,20).

Chapter 2 It All Adds Up

39
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_3

CHAPTER 3

Stringing Things Along
Welcome back intrepid hero! One thing you should know about superheroes and

villains (especially villains) – they tend to blather on. Thankfully, this chapter is all about

increasing your abilities and granting you the new superpower to handle all things text

and text-related!

We will learn the basics of handling and manipulating text, including common

text functions and details about the text data type. We will also cover formatting text

and converting text to different data types. Finally, we will cover the importance of

good documentation and how to comment on your code to save you – and future

programmers – a lot of headaches.

So, slip into you bright green tights and pop on that Day-Glo orange mask. Clean the

ketchup stain off your Wonder Boy (or Girl) logo, and get your fingers nice and limber.

Prepare to code!

�Leave Your Comments at the Door
Before we delve any further into the language of programming, it is important to cover a

topic that we have alluded to, yet avoided, thus far. Just like proper naming conventions,

the art of commenting – or documenting – your code is one of those best practices that a

good coder always, well, practices. It’s sort of like ironing your cape before you leave the

house. Sure, you can skip it, but then you risk your arch-nemesis making fun of you.

There are several reasons to comment on your code. First of all, programmers often

have to look back through their code at a date later than when they first programmed

it. This can be days, weeks, months, and even years. Looking back through thousands

of lines of code can be taxing, especially if you have to identify what each section does.

If you have your sections labeled and sporting a brief description, it becomes easier to

navigate and find problem areas or sections that you may need to update later on down

the line.

https://doi.org/10.1007/978-1-4842-9988-3_3#DOI

40

Another reason you should practice documenting your code is that other

programmers will likely need to review it at some point in time. These programmers

could be your boss, your co-workers, or a coder in the future who needs to make changes

to something you wrote before they were even hired.

Finally, there are times where you will reuse code from one program in another one –

we call this efficiency (so long as your company allows you to do this of course!). In these

instances, finding the code snippet you are looking for will be much faster if you have

commented/documented your work.

There are many different ways that programmers leave comments – every person

has their own style. Some companies may require that you document your code in a very

specific, formatted style, while others leave it up to you.

One other thing: while a comment is written in your code, the interpreter or compiler

implicitly ignores them. This means that they do not affect your code at all – unless you

enter them using the wrong syntax.

To comment, you use the hashtag or # symbol. Anything appearing after the # on the

rest of that line is considered a comment. Here is an example of a comment:

This block of code randomly calculates a hero's stats.

If you run that code, nothing will happen, again, because Python ignores comments.

They are not there for computer consumption, only for humans and sub-humans (a.k.a.

programmers).

Let’s look at how commenting looks next to code. Remember our RandomGenerator.

py file from the last chapter? Open it up and add the following text to it:

import random

This block of code randomly calculates a hero's status.

strength = random.randint(1,20)

intelligence = random.randint(1,20)

endurance = random.randint(1,20)

wisdom = random.randint(1,20)

print("Your character's statistics are:")

print("Strength:", strength)

print("Intelligence", intelligence)

print("Endurance", endurance)

print("Wisdom", wisdom)

Chapter 3 Stringing Things Along

41

As you can see, this makes it easier to see what, exactly, that section of code is for. We

could add another comment at the end of the code snippet to make it even clearer:

import random

This block of code randomly calculates a hero's status.

strength = random.randint(1,20)

intelligence = random.randint(1,20)

endurance = random.randint(1,20)

wisdom = random.randint(1,20)

End random calculation code

print("Your character's statistics are:")

print("Strength:", strength)

print("Intelligence", intelligence)

print("Endurance", endurance)

print("Wisdom", wisdom)

The idea here is to notate the end and start point of each section of code that does

something different. As you can imagine, it can get easy to get carried away with this sort

of documentation, but it does have its benefits. How much or how often you comment is

up to you, but as a rule, it is better to document than not.

�Block Commenting
In addition to regular commenting, there is also a form of commenting known as block

commenting. This type of comment is used when you need more than a single line to

explain a section of code. It can also be used if you need to document things like the date

you wrote the code, who wrote it, and so forth. Look at the following code demonstrating

block commenting:

Importing the random function

import random

This code was written by James Payne

To be published in Python for Teenagers by Apress Books

This block of code randomly calculates a hero's status.

strength = random.randint(1,20)

intelligence = random.randint(1,20)

endurance = random.randint(1,20)

Chapter 3 Stringing Things Along

42

wisdom = random.randint(1,20)

End of random number generator code

#Prints out player statistics

print("Your character's statistics are:")

print("Strength:", strength)

print("Intelligence", intelligence)

print("Endurance", endurance)

print("Wisdom", wisdom)

As you can see, to block comment, all you need to do is add a hash symbol (#) to the

beginning of each line that you are going to leave a comment on.

�Inline Commenting
Another way to comment is known as inline commenting. This means that you leave

a comment on the same line as your code. They are not as common as other forms of

commenting, but they can be useful if you need to document what a specific line of code

does. For instance, in our RandomGenerator.py file, we start off by importing random.

While that line of code should be obvious to a programmer looking at your code, we

could leave an inline comment to explain it.

Here is how that would look:

import random # Importing the random module

As a rule, try to avoid using inline commenting except in situations where you feel

you need to explain what a single line of code does.

�Other Uses for Commenting
One final use for leaving comments in your code: to find errors. While this may sound

unconventional, it is actually pretty practical. Sometimes your code may be giving you

errors, and you might need to narrow down which portion of the code is the culprit.

Instead of wholesale deleting sections of Python, you can always just comment out

sections. Remember, when Python sees the # symbol, it ignores any characters following

it on that line.

Chapter 3 Stringing Things Along

43

If we were to comment out the following code, it would run differently than before:

import random

strength = random.randint(1,20)

intelligence = random.randint(1,20)

endurance = random.randint(1,20)

wisdom = random.randint(1,20)

print("Your character's statistics are:")

print("Strength:", strength)

print("Intelligence", intelligence)

print("Endurance", endurance)

print("Wisdom", wisdom)

With this code, we would not see the character’s strength or intelligence print to the

screen since we commented out that part of the code. Instead, only the endurance and

wisdom would show.

To return the program back to its normal state, we would simply remove the #

symbols. Feel free to add comments to your code and comment out sections of your

code to see what effect it has on your program.

�Texting – Without Your Phone
Now that we understand the importance of – and how to make – comments to document

our code, we can move on to working with our next data type, strings.

The string data type consists of any character you can type, so long as it is contained

within quotation marks “ ” . In essence, it is any letter, number, or special symbol. It can

be a single letter, a sentence, or a mixture of letters, numbers, and special symbols.

Let’s create a new file called LearningText.py. Add the following text to it:

This is how you print text

print("Holy smokes, it's the Grill Master!")

You could also choose to write the code using single quotes if you prefer:

This is how you print text

print('Holy smokes, it's the Grill Master!')

Chapter 3 Stringing Things Along

44

If you run the second version of the code, however, you will get an Invalid

SyntaxError. Can you figure out why this occurs? Let’s examine the code a little more

closely. We know that the print( ) function will print anything contained between

quotation marks. While our sentence ends and begins with a single quote, if you look

closely, you will see a third quotation mark – in the word “it’s.”

When we use single quotes in a print function, we have to be careful, because Python

cannot differentiate between a quote and an apostrophe being used in a contraction. When

it sees the first quotation before the word Holy, it begins the parameter. Then, when it

encounters the apostrophe in the word it’s, the interpreter gets confused and sees it as the

closing quotation. Finally, it encounters a third single quotation and throws an error.

There are several ways to avoid this type of issue. The first is to, as a rule, always use

double quotation marks. Second, in cases where you need or want to use single quotes,

an escape can solve your problem.

An escape key is essentially a backslash (\) character that tells Python to treat a single

quote as a regular character. To use it, you simply add it before the character you want

Python to treat as plain text. Here is how you would code it:

This is how you print text

print('Holy smokes, it\'s the Grill Master!') # Notice the use of the

escape key

Now if you run the code, you will get the result shown in Figure 3-1:

Figure 3-1.  Using escape keys to format print statements

For simplicity’s sake, let’s revert back to using double quotation marks in the code for

now. Go ahead and make that change – I’ll be here waiting.

Finished? Great. Let’s add a few more lines of text:

This is how you print text

print("Holy smokes, it's the Grill Master!")

print("His sizzling meats are too good to resist!")

print("Quick Wonder Boy! Get some Wonder Bread and make me a sandwich!")

print("To quote a genius: 'Man Cannot Live On Bread and Water Alone!'")

Chapter 3 Stringing Things Along

45

The purpose of this code is twofold. First, it shows you how to print several lines of

text. Second, it showcases an instance of when you might interchangeably use double

quotes and single quotes. When using proper grammar, you must use single quotes

when using a quote from a person.

In this instance, the single quote does not need to be escaped. This is because we

started our print( ) function with a double quote. It is only when we start it with a single

quote that we need to worry about escaping another single quote that is not intended to

end the function.

�Working with Strings and Variables
Just as we do with numbers, strings can be stored in variables. The method is similar to

storing a number, only slightly different:

name = "Grillmaster"

print(name)

We first create the variable, which we called, “name,” and then added some text to it.

Note that, unlike we did with a number, we surrounded our value with quotation marks.

This signifies that we are adding a string to our variable. Next, we print our variable to

the user’s screen using the print( ) function.

Here is where things get interesting. Create a new file and try out the following code:

age = "42"

graduation = 27

print(age + graduation)

If you were to try and run this code, you would get an error message. Why? The

reason is simple: when we declared our variable named “age,” we assigned the value “42”

to it. However, since we enclosed the value in quotations, Python interpreted that data

as a string data type. The “graduation” variable, meanwhile, was assigned a number data

type. When we tried to perform math on the two variables, it would not work, because

you cannot perform math on a string.

Chapter 3 Stringing Things Along

46

Interestingly enough, you can use certain math operators on strings. In Python – and

other languages – there is a thing known as concatenation. Concatenation occurs when

you add one string to another, or join them together. We do this using the addition (+)

operator – or joining operator when using on strings. Here it is in code:

print("Wonder" + "Boy")

When you test that bit of code, your result will be:

WonderBoy

The same thing happens if you use the + operator on two variables that contain

strings:

firstName = "Wonder"

lastName = "Boy"

print(firstName + lastName)

The result?

WonderBoy

An important note: if you want to add two strings together, you may want to consider

using a space in between. This can be achieved by simply adding a space at the end of

the first string you are joining:

print("Wonder " + "Boy")

or by adding a space before the second string you are joining:

print("Wonder" + " Boy")

Of course, there is nothing to stop you from inserting a third string that contains a

blank space:

print("Wonder" + " " + "Boy")

This works because even a blank space is considered a string or character in

Python’s eyes.

Another math operator that you can use on strings is the multiplication (*) operator –

or, as it is referred to when working with text, the string replication operator. Try typing

this code into the Python Shell:

print("WonderBoy" * 20)

Chapter 3 Stringing Things Along

47

This results in what is shown in Figure 3-2:

Figure 3-2.  Example results of string replication

You would get a similar result if you created a file with this code, performing string

repetition on a variable containing a string, as seen in Figure 3-3:

sidekick="WonderBoy"

print("You ruined the Grill Master's barbeque!")

print("The crowd is chanting your name!")

print(sidekick *20)

Figure 3-3.  Performing string replication on a variable

�Longer Strings
Strings would not be very powerful if they were limited to single characters or a single

word. As mentioned previously, strings can consist of entire sentences, and we declare

them in a variable the same way we would a single word:

joke = "Why did Spiderman get in trouble with Aunt May?"

punchline = "He was spending too much time on the web."

print(joke)

print(punchline)

Chapter 3 Stringing Things Along

48

�Strings on Multiple Lines
Sometimes you may find that you wish to print text in a particular way or structure it as

you would a poem or song lyrics. In that case, you could create a multi-line string. To do

this, all you need to do is use three double quotes (" " ") or three single quotes (' ' '). Here

is a sample of how that would look in code. Feel free to create a new file and test it for

yourself. You should see the same result that is showcased in Figure 3-4:

print("""My name is Grill Master

and I have an appetite

For destruction

That is well done!""")

Figure 3-4.  Creating multi-line string print statements

The same result could be achieved using three single quotes as well:

print('''My name is Grill Master

and I have an appetite

For destruction

That is well done!''')

�Formatting Strings
While using multiple line strings can help you format your text and strings, there are

other – arguably better – methods you can use as well. Perhaps you want to impress a girl

or boy by inviting them to the Sidekick Appreciation Ball with a fancy invitation or are

hard at work on the lyrics to your new theme song. Either way, without the proper string

formatters, your text will be bland and uninspiring.

And uninspiring is the last thing a hero should be.

Chapter 3 Stringing Things Along

49

Earlier we discussed the escape character (\). We learned how to use it to have

Python treat an apostrophe as just that, vs. the end of a print( ) function. In truth, there

are several different escape characters, each capable of formatting text in a particular

way. They are as follows:

•	 \ Allows you to create a new line in multi-line strings

•	 \\ Used to format a backslash

•	 \n Creates a line break

•	 \t Creates a tab or indentation

•	 \’ or \” Used for single or double quotes

To better understand the use of the escape characters listed in our table, let us take

a peek at “\n” or the line-break escape. This escape character allows us to create a new

line whenever we insert it into some text.

Create a new Python file and name it WonderBoyTheme.py. Enter this code into

the file:

print("My name is\nWonder Boy\nAnd it is a wonder\nThat I can fit in these

tights!")

At first glance this code looks very jumbled and confused. When we run the program,

however, we can see exactly how \n works (Figure 3-5).

Figure 3-5.  Formatting strings in a single print( ) function

Normally when we view this line of code, we would expect everything inside of

the print( ) function to print out on a single line. However, the \n escape forces a line

break each time Python encounters it and instead formats our text so that it appears on

separate lines.

Chapter 3 Stringing Things Along

50

The \t escape works in a similar method, except that it does not create a new

line; instead, it makes an indent or tab in the text. Let’s add some more text to our

WonderBoyTheme.py file:

print("My name is\nWonder Boy\nAnd it is a wonder\nThat I can fit in these

tights!")

print("There trunks are \ttight")

print("tight \ttight \ttight \tso very tight!")

If you run this code, it would return the results shown in Figure 3-6.

Figure 3-6.  More example of using the escape character

Spiderman only wished he had a theme song like that!

Notice in the example figure how the words “tight tight tight so very tight” are all

indented with a tabbed space? That is all thanks to \t.

Finally, let’s revisit the \" and \' escape characters. As noted prior, sometimes you

may want to use quotations as part of the actual text that you print to the screen, which

causes an issue because Python can’t differentiate what you intend the quotations to be

used for unless you tell it.

To let Python know you want to use your quotation marks in the grammatical sense

vs. the programmatic sense, you simply escape them. Let’s add some more text to our

WonderBoyTheme.py file. Make sure yours matches mine:

print("My name is\nWonder Boy\nAnd it is a wonder\nThat I can fit in these

tights!")

print("There trunks are \ttight")

print("tight \ttight \ttight \tso very tight!")

print("\n")

print("And when the people see me they all shout and agree:")

print("\"Boy, those tights are too tight for he!\"")

Chapter 3 Stringing Things Along

51

Run this program and take a look at the result, as seen in Figure 3-7.

Figure 3-7.  Using the escape \t to create tab indents

Pay particular attention to this portion of the code:

print("\"Boy, those tights are too tight for he!\"")

The first double quote (”) tells Python that anything following it is to be printed to

the screen. Then, Python encounters the backslash (\) and knows to treat the character

following it as regular text. Then, Python encounters another backslash (\) and once

more treats the character following it as simple text. Finally, it comes across the final

double quotation and, since there is no escape character or backslash preceding it,

knows that you are intending for it to signify the end of the text you wish to print.

Note that this code would work the same exact way if we were to replace all of the

double quotes with single quotes (’).

�Introducing a New Weapon to Your Arsenal: Lists
Let’s face it – fighting crime is tough business. A superhero (or sidekick… let’s slow down

there rookie!) sometimes needs to rely on something more than bravery, theme songs,

and their inherent superpowers. Every hero worth their tights has some sort of super

weapon or gadget they can fall back on when all else fails. To that end, we need to start

equipping you with some more tools for your futility belt (it’s similar to Batman’s utility

belt, only, well, you bought yours at the flea market).

One of our first gadgets will be lists. Just as a variable is a data structure, so, too, are

lists. However, unlike variables, lists can contain more than one piece of data. Whereas

a variable can be thought of as a label or a box, lists are more like a closet filled with a

bunch of boxes.

Chapter 3 Stringing Things Along

52

We can fill lists with the same data types that we can store in variables, including

strings, numbers, integers, floating-point numbers, and so forth. To assign values to a

list, we place our values between two square brackets [] and separate them with

commas (,).

Let’s create a list:

superPowers = ['flight', 'cool cape', '20/20 vision', 'Coding Skillz']

In this code, we created a list named superPowers and assigned it four separate

pieces of information – in this case, the string values: flight, cool cape, 20/20 vision, and

Coding Skillz.

If we wanted to print this list, all we have to do is use our handy-dandy print( ) function:

print(superPowers)

When we print this list, something interesting happens – instead of printing just the

contents of the list as we would expect, it prints the entire structure (see Figure 3-8):

Figure 3-8.  Printing a list

Remember, a list is a group of items, stored individually. Each item in our list

corresponds to what is known as an index number. All lists start at index number 0 and

continue in sequence after that. So, therefore, in our list, “flight” would be located at 0,

“cool cape” at 1, “20/20 vision” at 2, and so forth.

If we wanted to just print the item located at index number 3, for instance, we could

do so like this:

superPowers = ['flight', 'cool cape', '20/20 vision', 'Coding Skillz']

print(superPowers[3])

This would result in Coding Skillz printing to the screen, because it is located

in the third position of our list (remember, lists start at position 0). To get a better

understanding, let’s print out each item in our list individually:

superPowers = ['flight', 'cool cape', '20/20 vision', 'Coding Skillz']

print(superPowers[0])

print(superPowers[1])

Chapter 3 Stringing Things Along

53

print(superPowers[2])

print(superPowers[3])

Figure 3-9 shows us the results.

Figure 3-9.  Printing the values in a list

Alternatively, you could also code the print( ) function on one line like so:

superPowers = ['flight', 'cool cape', '20/20 vision', 'Coding Skillz']

print(superPowers[0], superPowers[1], superPowers[2],superPowers[3])

And achieve the same result.

Let’s create a file and name it ListExample.py. Add the following code to it and then

run the program (results shown in Figure 3-10):

superPowers = ['flight', 'cool cape', '20/20 vision', 'Coding Skillz']

print(superPowers[0], "is located at Index 0")

print(superPowers[1], "is located at Index 1")

print(superPowers[2], "is located at Index 2")

print(superPowers[3], "is located at Index 3")

Figure 3-10.  Another method to print the values in a list

In this example, we append or add some text to the end of our print( ) function.

Notice that we separate the first print parameter with a comma and then define the

second part of our print( ) function. We could also use this method if we wanted to print

some text prior to the value(s) in our list:

print("The item located at index 0 is", superPowers[0])

Chapter 3 Stringing Things Along

54

This would give us: The item located at index 0 is flight.

Finally, there is an easy, more efficient way to print out all of the items in our lists.

Let’s create another file and call it PowersWeaknesses.py. Add the following code to it:

superPowers = ['flight', 'cool cape', '20/20 vision', 'Coding Skillz']

superWeaknesses = ['bologna', 'lactose intolerance', 'social settings',

'tight trunks']

print("Behold our fledgling hero/sidekick, \"Wonder Boy!")

print("His super powers include:", *superPowers)

print("And his weaknesses are:", *superWeaknesses)

Using the list name with a * symbol in front tells Python to use the entire list. For

instance, if you type: print(*superPowers), the program would print out every item in

the superPowers list. The result of our previous code is shown in Figure 3-11.

Figure 3-11.  Printing the entire contents of a list

�Changing Lists
Lists, like variables, can change. We can add things to them, remove them, rearrange

them, and so forth. For instance, in our PowersandWeaknesses.py file, we have a list

of super weaknesses, one of which is the dreaded “lactose intolerance” (the inability

to drink dairy products or eat ice cream – oh no!). Fortunately for you, there is a way to

eliminate that particular weakness: they have medication that can help you digest the

enzymes in milk. So now you can stuff your face with ice cream bars again – hooray!

Having that knowledge in hand, we might want to delete that particular weakness

from our superWeaknesses list. To achieve this, we would use the del statement.

superWeaknesses = ['bologna', 'lactose intolerance', 'social settings',

'tight trunks']

del superWeaknesses[1]

print(*superWeaknesses)

Chapter 3 Stringing Things Along

55

This would remove the item located at index 1 – in our case, “lactose intolerance.”

When we print the contents of superWeaknesses out, we would now see bologna, social

settings, and tight trunks.

We could also use the remove method to delete a value from our list. Instead of

telling Python the position of the item, we simply supply it with the value:

superWeaknesses = ['bologna', 'lactose intolerance', 'social settings',

'tight trunks']

superWeaknesses.remove('lactose intolerance')

This would give us the same result as using the del statement.

In addition to deleting items from a list, we can also add them. There are a few

methods to do so. The first is to use the append statement. This method appends – or

adds – the item to the end of the list:

superWeaknesses = ['bologna', 'lactose intolerance', 'social settings',

'tight trunks']

del superWeaknesses[1]

superWeaknesses.append('Taco Meat')

print(*superWeaknesses)

In this example, we first create our superWeaknesses list and then use the del

statement to remove the item at position 1, as we did before (keeping in mind that lists

start at position or index 0). Then we discover that we have a new enemy – the stomach

cramping “Taco Meat” – and so we use the append statement to add it to our list. When

we print the results, we get:

bologna social settings tight trunks Taco Meat

Additionally, we can insert an item into our list. The insert method works a little

differently than append. It allows us to add our item at any position within the list, where

append just places it at the very end. Here is how it looks in use:

superWeaknesses = ['bologna', 'lactose intolerance', 'social settings',

'tight trunks']

del superWeaknesses[1]

superWeaknesses.insert(1,'Taco Meat')

print(*superWeaknesses)

Chapter 3 Stringing Things Along

56

The insert method uses two arguments or parameters. The first tells Python where

to place the item you are adding in the list – that is, what index position you would like

it to be in. The second argument tells Python what value you want to add to the list.

Running the preceding code prints out:

bologna Taco Meat social settings tight trunks

�Other List Methods
In total, there are eleven – count them, 11 – list methods. Each one allows you to perform

some bit of wizardry on the data stored in a list. While we have reviewed a good number

of them, space does not permit us to cover all of them in this chapter. Below, however,

you can find a table of the different list methods and what they are used for. Feel free to

try them out on your own as an exercise.

•	 list.pop( ): The pop method lets you return – or print – a value from

a list and remove it afterward. This lets you confirm that you are

removing the correct item. Example:

print(superWeaknesses.pop(1))

print(*superWeaknesses)

•	 list.reverse( ): It is possible to sort the items in a list. One way to do so

is by using the reverse method. This will change the order of your

items, moving the first item to the end and the last item to the front,

and so forth, essentially reversing their order. Example:

superWeaknesses.reverse()

print(*superWeaknesses)

•	 list.sort: Another way to change the order of items is by using the

sort method. This method simply sorts the items in your list in

alphabetical order. Example:

superWeaknesses.sort()

print(*superWeaknesses)

•	 list.count( ): This method is used to count the number of times a

given value appears in a list. For instance, you may wish to know how

Chapter 3 Stringing Things Along

57

many sidekicks have a weakness for “Taco Meat.” We could figure this

out using count. Example:

print(superWeaknesses.count('Taco Meat')

•	 This will return the number of times “Taco Meat” appears in our list.

In this case, just once.

•	 list.extend( ): The use of this method is pretty straightforward. It

is used to combine one list into another. For example, if you have

a table called moreSuperWeaknesses that listed even more things

that can defeat our heroes, you could combine it with our old list,

superWeaknesses. That way you would only have one list to contend

with. Example:

superWeaknesses.extend(moreSuperWeaknesses)

•	 list.copy( ): There are times you may want to copy a list and have

a duplicate on hand. Maybe this is for testing purposes, or if you

have similarly named data, it would be faster to edit the text than to

re-write it. Whatever the case, you can copy a list by using the copy

method. Example:

superWeaknesses2 = superWeaknesses.copy()

Note: list.copy is only available in versions of Python 3.3 and

greater. Using an earlier version of Python will result in an

AttributeError.

•	 list.index( ): Oftentimes we need to know where a specific item is

within our lists so that we can call upon it as needed. Instead of

looking back through your code, you can use the index method to

find a value’s location in a list. Example:

print(superWeaknesses.index('Taco Meat'))

•	 Would return the number 3, because “Taco Meat” is in position 3 in

our list. (Note: if you have been experimenting with these methods –

particularly with the sorting methods – “Taco Meat” may be in a

different position for you).

Chapter 3 Stringing Things Along

58

•	 list.clear( ): The last method we will cover is the clear method. We

have saved this one for last because if you practice using it, it will do

exactly what it sounds like it would do: clear your list of any data.

Sometimes it might be necessary to erase all of the data in a list – that

is what this method is used for. Example:

superWeaknesses.clear()

�In This Episode!
We covered a ton of ground in this exciting episode. By now, your powers are growing

by – dare I say it – leaps and bounds! Soon enough you will be up and running in your

own superhero car – the Wonder Boat maybe, or, better yet, the Wonder Car!

That is, if you have your Learner’s Permit. If not, it’s back to the Wonder Cycle or

Wonder Skates for you.

Let’s recap what we learned in this chapter, shall we?

•	 Comments allow us to document our code for future reference – by

us or another programmer.

•	 We create comments by using a hash or # and a blank space. Any text

after this is ignored by Python.

•	 We can leave an inline comment after a specific line of code if we feel

it needs further clarification. Use this sparingly.

•	 Commenting out code helps us to locate errors without deleting

existing code. We simply uncomment the code once we are certain it

is not the problem.

•	 Escape characters let you print special characters that would

normally not be treated as text. They also allow you to format your

strings.

•	 Escape characters include \t, \n, \’ , \” , and \\.

•	 Strings are a data type that can consist of letters, numbers, or

symbols.

•	 You can add one or more strings together – called concatenation –

using the + symbol.

Chapter 3 Stringing Things Along

59

•	 You can replicate strings – create multiple copies of them – using the

* symbol.

•	 Lists are storage units that act like a closet full of boxes; you can store

many items in them vs. just one (in the case of a variable). You define

them in this manner: superPowers = [‘flight’ , ‘20/20 vision’] and

so forth.

•	 Lists contain items – pieces of data – that are indexed. The items

begin at index 0 and carry on sequentially.

•	 You can print lists several ways, including print(superPowers[1]) –

for a single value – or print(*superPowers), if you wish to print the

entire list.

•	 The del statement lets you delete an item from a list.

•	 There are 11 list methods, including insert(), append(), pop(),

reverse(), sort(), count(), extend(), copy(), index(),

clear(), and remove().

Chapter 3 Stringing Things Along

61
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_4

CHAPTER 4

Making Decisions
When it comes to fighting crime and dealing with villainous villainy (trademark

pending!), we superheroes often find ourselves facing forks in the road: should we save

the helpless damsel being thrown off the side of the building, or do we let her plunge to

the ground so that we can nab the bad guy? Do we wash our cape today, or can we go

one more day without it smelling too funky?

At the end of the day, the majority of fighting crime – and programming for that

matter – comes down to one thing: making decisions.

You have probably heard the statement, “Every action has a reaction.” Well, that is

especially true in programming. Think about it: every time you engage a computer, you

are forcing it to make a decision. When you move your mouse, when you press a key,

when you bang your head against the screen for an hour straight because your code

won’t work (okay, maybe not this last one) – all of these require the computer to interpret

what you want and, hopefully, perform an action.

Here is an easy example: if you press the letter “a” or the letter “k,” the computer must

know what to do for either scenario. If you are using a word processing application, this

particular scenario is simple – print one of those two letters to the screen.

More often than not, however, when we discuss decision-making in relation to

computer programming, we mean it more in the context of a multiple-answer pop quiz.

The program will present the user several options – Choose A, B, or C, for example, and

then react according to which option is chosen.

To truly understand one of the most powerful functions in all of programming, let’s

put on our superhero masks, summon our super brains, and dig into our next developing

superpower: decision-making.

https://doi.org/10.1007/978-1-4842-9988-3_4#DOI

62

�Making Decisions
Imagine your life as a computer program. It’s lunch time and a fledgling sidekick/soon-

to-be hero needs lunch to ensure their muscles grow. Before you is a set of items: two

slices of bread, two jars of peanut butter, and three jars of jelly. Let’s put that into a list so

we can see it better!

•	 Bread (two slices)

•	 Crunchy peanut butter

•	 Creamy peanut butter

•	 Apple jelly

•	 Grape jelly

•	 Strawberry jam

As you can see, decisions must be made before you can eat your lunch. We have the

bread figured out, but what type of peanut butter will we use? How about the jelly?

This sort of scenario is known as decision-making or, better yet, a conditional

statement. That is, how will we/the program react if certain conditions are met? To look

at this in a programmatic way, let’s turn to something called pseudocode.

No, pseudocode is not some old Phil Collins song your parents used to jam out to

back in the 1980s. It is a method of planning out code using language that sounds like

code but that is not. If we were to apply our sandwich scenario to pseudocode, it would

look something like this:

if making sandwich, get bread

Then choose peanut butter type;

if peanutButterType = "Creamy"

print "That's gross. Don't be gross."

else print "Crunchy is the correct choice! You win deliciousness!"

Next choose jelly type;

If jellyType = "Grape"

print "You really aren't good at this are you?"

else if jellyType = "Strawberry Jam"

print "Sure, if you want to ruin your peanut butter, go ahead."

Chapter 4 Making Decisions

63

else print "Apple Jelly is the only Jelly! The golden nectar of the Gods!

You are so wise!"

Next put peanut butter and jelly on bread, smash together, leave the crusts

on, and eat.

If you put that code into Python, you will get a ton of errors, because remember, it

isn’t working code. It’s pseudo, which means fake or mock. We use pseudocode to lay out

our programs sometimes prior to real coding so that we can map out important sections.

This helps us with our programming logic and allows us to avoid errors in our coding. It

can be like a set of directions your friend wrote down detailing how to get to the comic

book store. It may not be pretty (though some pseudocode is beautiful, full of charts and

graphs), but it gives you the idea of where you need to go.

�Conditional Statements
In the most basic of terms, conditional statements are snippets of code that determine

whether a piece of code will run or not – depending upon whether the condition is met

or not. From a programming standpoint, conditional statements could be used in simple

examples, such as these:

•	 If user chooses to be a superhero, enter him/her into the “hero”

category; otherwise, enter them into the villain slot.

•	 If a superhero gained their superpowers by touching toxic waste,

classify them as “mutated.” If not, classify them as “inherited

superpowers.”

•	 If a superhero has a tragic background, make their personality type

“Dark and Brooding.” Otherwise, make their personality “Quick-

Witted and Funny.”

These are the most basic uses of conditional statements. In the real world, there

could be multiple conditions that must be met for a certain portion of a program to

execute (or not). We will get into the more advanced types soon enough, but for now,

let’s look at the most basic conditional statement of them all: the If statement.

Chapter 4 Making Decisions

64

�Behold – The If Statement!
The previous examples are all part of what is known as an if statement. If statements

basically state that if something occurs, do this. The implication, also, is that if that

something does not occur, the program will do something else – which could mean the

program does nothing at all.

To make matters more clear, let’s try out a little code. Create a new Python file called

ConditionalStataments.py and enter in this code:

superHeroType="Dark and Brooding"

print("Let's see what sort of hero we have here...")

if superHeroType=="Dark and Brooding":

 print("Ah, it says here you are 'Dark and Brooding'.")

 print("I bet you had a tragic event in your past!")

 print("Your voice sounds pretty rough by the way...")

 print("Here, have a cough drop. Or two.")

There are several things to note in this code. For starters, we created a string variable

called superHeroType and filled it with some text. The text in this variable is what we will

be testing our If statement against.

After printing some text, we begin our if statement with the line:

if superHeroType=="Dark and Brooding":

When the interpreter sees this line of code, it enters the conditional statement and

checks to see if it is TRUE or FALSE. If the condition is met – meaning the result is true –

the program runs the remainder of the code that is indented (and therefore part of) – the

if statement.

In this case, the condition is met: the text in superHeroType is equal to “Dark and

Brooding,” so the program prints out the print() functions that are part of the if

statement. Since that is the case, the program results in the following (see Figure 4-1).

Figure 4-1.  Working with conditional statements

Chapter 4 Making Decisions

65

One other thing to note: the == sign is known as a comparison operator. In this

instance, it means that the value being compared must equal exactly what is in the

preceding quotation marks (“ ”). We use the == symbol when evaluating text and

numbers.

But what happens if our conditional is not met? What if the value of superHeroType

does not equal “Dark and Brooding”? To find out, all we have to do is edit our code to

change its value and run the program again:

superHeroType="Quick-Witted and Funny"

print("Let's see what sort of hero we have here...")

if superHeroType=="Dark and Brooding":

 print("Ah, it says here you are 'Dark and Brooding'.")

 print("I bet you had a tragic event in your past!")

 print("Your voice sounds pretty rough by the way...")

 print("Here, have a cough drop. Or two.")

Now when we run our code, all that gets returned is the opening print() function

(see Figure 4-2).

Why does this happen? Because we changed the value in our superHeroType

variable, when Python encounters our if statement, it checks the conditional and finds

that it is not met and returns false. Since the condition is not met, Python skips the

remainder of the if statement block and moves on to the next part of the program.

Since there is no next part of the program, Python exits and the program ends.

We could, of course, create multiple if statements in our program. If we did, Python

would evaluate each of those statements and execute the block of code, so long as the

condition is met. Let’s open up our ConditionalStatements.py file and modify the code

so it matches the following:

superHeroType="Quick-Witted and Funny"

print("Let's see what sort of hero we have here...")

if superHeroType=="Dark and Brooding":

Figure 4-2.  Results of an if statement that is not triggered

Chapter 4 Making Decisions

66

 print("Ah, it says here you are 'Dark and Brooding'.")

 print("I bet you had a tragic event in your past!")

 print("Your voice sounds pretty rough by the way...")

 print("Here, have a cough drop. Or two.")

if superHeroType=="Too Polite":

 print("It says here that you are 'Too Polite'")

 print("How are you ever going to catch that criminal if you keep

holding the door?")

 print("Don't say sorry to him - he's the villain!")

if superHeroType=="Quick-Witted and Funny":

 print("Oh boy. I can tell by all the puns that you are the Quick-Witted

and Funny Type.")

 print("I have a joke for you:")

 print("What has 8 fingers, two thumbs, and isn't funny?")

 print("You!")

With this modified code, we are adding not one but three total conditional if

statements to our program. The program begins by printing out some text, and then it

encounters the first if statement, which checks to see if the value of superHeroType is

equal to “Dark and Brooding.” Since it isn’t, our program ignores the rest of the indented

code for that block.

Whenever we have a block of code with indented text, Python knows that the

indented code belongs to that specific group of code. Once it runs out of indented code,

it knows that the particular block is over and it moves on to the next set.

Don’t get hung up too much on code indentation yet – we will cover it in greater

detail soon. For now, just know that blocks of code have a hierarchy – that is, a structured

order – that relies on indentation (typically four spaces or a tab press) to denote which

part of the code belongs to which section.

Next, Python runs into our second if statement and again checks the criteria: does

superHeroType equal “Too Polite”? Again, it doesn’t, so the interpreter moves on to the

next block of code, which happens to be our third if statement.

In this third if statement, we check to see if the value of superHeroType is equal to

“Quick-Witted and Funny.” This time, the result is true, and so the interpreter executes

the indented print() functions that are part of that block of code. The result can be seen

in Figure 4-3.

Chapter 4 Making Decisions

67

Figure 4-3.  Example of an if statement that evaluates as True

�Boolean Logic and Comparison Operators
Before we delve further into conditional statements, there are some funny words that we

need to define. Not only are these funny words fun to say over and over to your friends

and family, but they are also yet another handy tool in your futility belt.

The first word is Boolean. Go ahead, say it out loud and get the giggles out of your

system. Then, run around the house a few times, and see how many times you can work

the word – Boolean – into your conversations. I’ll wait here.

Booleans are another data type, and as you may have surmised from our earlier

explanation of the ConditionalStatements.py code, this particular data type can have

one of two different values: true and false.

When we work with conditional statements like if, we are ultimately asking if a

certain condition is true or false. No matter how we may word those conditions or

criteria, at the end of the day, the answer can only be one of those two choices.

Of course, we can’t just play a game of Truth or Dare with the computer, so Python

(and other programming languages) uses something known as comparison operators to

help us compare data and figure out if the end result is true or false.

We already discussed one of the comparison operators – the equal to operator ==.

In addition to this, there are five other comparison operators available to us. They are as

follows:

•	 == Used to see if a value is equal to another value

•	 != Used to see if a value is NOT EQUAL to another value

•	 < Used to determine if a value is less than another value

•	 > Used to determine if a value is greater than another value

•	 <= Used for less than OR equal to another value

•	 >= Used for greater than OR equal to another value

Chapter 4 Making Decisions

68

So far we have worked with strings for our conditional statement examples. To

better understand our new tools, the comparison operators, let’s switch to working with

numbers instead. To begin, create a new file named MathIsHard.py. Enter the following

code into it:

wonderBoyAllowance = 10

newCape = 20

print("That new cape sure is shiny. I wonder if you can afford it...")

if wonderBoyAllowance > newCape:

 print("Congrats! You have enough to buy that new cape!")

if wonderBoyAllowance < newCape:

 print("Looks like you'll have to keep wearing that towel as a cape...")

 print("Maybe if you ask nicely Wonder Dad will give you a raise...")

Let’s examine this code a little more closely, shall we? We begin by creating two

variables: wonderBoyAllowance and newCape. We then print some text that says, “That

new cape sure is shiny. I wonder if you can afford it....”

To find out if Wonder Boy can, indeed, afford that new cape, we have to compare the

value in wonderBoyAllowance (which represents your allowance) to the value of newCape

(which represents the cost of that shiny new cape).

Our first if statement looks to see if wonderBoyAllowance is > (or greater than)

newCape. If so, it would print out the text, “Congrats! You have enough to buy that new

cape!” However, since the allowance is not greater than the cost of the new cape, the

program skips to the next if statement to see if its value is true.

When the second if statement is evaluated, the program notes that the value of your

allowance is less than the cost of the new cape. Since that condition is met and returns a

value of true, it proceeds to execute the rest of the if statement, resulting in the following

(see Figure 4-4).

Figure 4-4.  Evaluating multiple if statements

Chapter 4 Making Decisions

69

To see how Boolean logic really works, create a new Python file and name it

BooleanExamples.py. Enter this code:

Creating two variables with different values

a=10

b=20

Compare values using the different Comparison Operators

print("Is the value of a EQUAL to b? ", a == b)

print("Is the value of a NOT EQUAL to b? ", a != b)

print("Is the value of a GREATER than b? ", a > b)

print("Is the value of a LESS than b? ", a < b)

print("Is the value of a GREATER THAN or EQUAL to b? ", a >= b)

print("Is the value of a LESS THAN or EQUAL to b? ", a <= b)

Running this program will show you which comparisons are true and which are

false. A value of true means the comparison is correct, while false means that it is not.

�Else Statements
Now that we understand the if statement and comparison operators, we can move on to

another type of conditional statement: else. So far, we have used conditional statements

that execute a set of code only if a given condition is met. What happens, however, if

we want to have one outcome if the result is true and another if it is false? While we

could, technically, achieve this result using multiple if statements, there is a better, more

efficient way to write your program. Let’s edit the code of our MathIsHard.py file and

change it so that it matches the following:

WonderBoyAllowance = 10

NewCape = 20

print("That new cape sure is shiny. I wonder if you can afford it...")

if WonderBoyAllowance > NewCape:

 print("Congrats! You have enough to buy that new cape!")

else:

 print("Looks like you'll have to keep wearing that towel as a cape...")

 print("Maybe if you ask nicely Wonder Dad will give you a raise...")

Chapter 4 Making Decisions

70

In this version, we have replaced our second if statement with an else statement.

The else statement only gets triggered if the if statement’s condition is not met.

Basically, what you are saying to the program is, “If this happens, do this, otherwise,

do that.”

The result of this program is the same as it was earlier; however, now there is less

code involved, and since there is no second if statement, Python doesn’t need to perform

another comparison. This saves on computing power and processing. While that might

not seem like a big deal here, you can imagine how much it could save in a program with

tens of thousands of lines of code and hundreds of if statements.

One more thing to note: when using an else statement, Python will always execute

either your if block or your else block; your program will never end without going down

one of those two paths.

But what would happen if you needed to have more than an if and else option?

What if there were three choices? Or four? Or four bazillion? For that, you would need

something a little stronger than a measly if and else statement.

Are you ready to upgrade those powers once more? If so (get it – a pun!), prepare to

learn – the else-if!

�Else-If Statements
I know what you are thinking – else-if is not a real phrase. In fact, it is probably the

name of a farmer that spends his days milking cows and wiping the sweat from his tired

forehead – call him Uncle Elseif!

Well, I hate to break the news to you, but else-if is a real phrase and it is a real

member of the conditional statement family. It is highly versatile, efficient, and will be

one of your best friends as a coder. With it, you can create any number of conditional

scenarios vs. the regular one or two you get with a boring mix of regular if/else

statements.

As usual, the best way to learn this new power is to suit up and try it out. So, with that

in mind, create a brand new file called UncleElseIf.py and pop in this code:

Create our variables representing our allowance and the cost of a

new cape

wonderBoyAllowance = 20

newCape = 20

print("That new cape sure is shiny. I wonder if you can afford it...")

Chapter 4 Making Decisions

71

if wonderBoyAllowance > newCape:

 print("Congrats! You have enough to buy that new cape!")

 print("And it looks like you have some money left over.")

 print("How about getting a hair cut? You hair is covering your mask!")

elif wonderBoyAllowance == newCape:

 print("You have exactly enough money to purchase the cape!")

 print("No change for you!")

 print("Eh...and no tip for me I see...")

else:

 print("Looks like you'll have to keep wearing that towel as a cape...")

 print("Maybe if you ask nicely Wonder Dad will give you a raise...")

This code may look familiar, because it is – it is a modified version of our

MathIsHard.py file. For starters, we changed the value of wonderBoyAllowance to 20

(congrats on the raise!); you will understand why in a few moments. Next, we do our

introductory print() statement, followed by our first if block. This first if checks to see

if our allowance is greater than the cost of the new cape. Since that comparison returns a

false, the program skips the print() functions and moves on to the next block.

Now hold on a second! This next block is not an if or an else at all. In fact, it doesn’t

even say else-if – what gives? Well, the guru who created Python decided to make the

else-if statement using a hybrid of else and if in the language, hence, elif.

When the interpreter sees elif, it once more evaluates the comparison – in this case,

it checks to see if our allowance is exactly the same as the cost of the new cape. Since it

is – both variables hold the value 20 – the rest of the else-if executes and the indented

print() functions do their magic.

Since the else-if evaluated as true, the program knows there is no need to look any

further and exits out of this particular block of code. And since there is no code after our

if/else/else-if block, the program ends.

Here is where things get interesting. Even though we refer to the if, else, and else-

if as their own blocks, in reality, they are all part of the same block. Think about it: you

can’t have an else-if without the else and the if, right? Well, you could, but then your

program might not function in the way you intended!

As stated, else-if statements allow us to create any number of options. Let’s add a

few more elif to our code and examine the results. Modify the text of UncleElseIf.py

so that it matches the following:

Chapter 4 Making Decisions

72

Create our variables representing our allowance and the cost of a

new cape

wonderBoyAllowance = 20

newCape = 20

print("That new cape sure is shiny. I wonder if you can afford it...")

Check to see if allowance is greater than the cost of the new cape

if wonderBoyAllowance > newCape:

 print("Congrats! You have enough to buy that new cape!")

 print("And it looks like you have some money left over.")

 print("How about getting a hair cut? You hair is covering your mask!")

Check to see if allowance is the same exact price as the new cape

elif wonderBoyAllowance == newCape:

 print("You have exactly enough money to purchase the cape!")

 print("No change for you!")

 print("Eh...and no tip for me I see...")

Check to see if allowance is zero dollars

elif wonderBoyAllowance == 0:

 print("Oh boy, you are broke!")

 print("Maybe it's time to hang up the cape and grab an apron!")

 print("Time to become...Bag Boy!")

If all other conditions fail, this else will trigger

else:

 print("Looks like you'll have to keep wearing that towel as a cape...")

 print("Maybe if you ask nicely Wonder Dad will give you a raise...")

In this version of the code, we’ve added comments (#) to each section to make our

snippets of code clearer. We also added a second elif to our conditional block; it checks

to see if the value of wonderBoyAllowance is 0 and, if so, prints out some text suggesting

you get a new job.

In theory, we could add as many elif as we wanted to this conditional block, so long

as we meet the condition that needed to be met. For instance, we could check the value

of wonderBoyAllowance in increments of 1 until we reached 20. Here is an example of

how that would look:

Create our variables representing our allowance and the cost of a

new cape

wonderBoyAllowance = 20

Chapter 4 Making Decisions

73

newCape = 20

print("That new cape sure is shiny. I wonder if you can afford it...")

if wonderBoyAllowance == 0:

 print("Nope. You need 20 more dollars.")

elif wonderBoyAllowance == 1:

 print("Nope. You need 19 more dollars.")

elif wonderBoyAllowance == 2:

 print("Nope. You need 18 more dollars.")

elif wonderBoyAllowance == 3:

 print("Nope. You need 17 more dollars.")

elif wonderBoyAllowance == 4:

 print("Nope. You need 16 more dollars.")

elif wonderBoyAllowance == 5:

 print("Nope. You need 15 more dollars.")

Keep adding elif until you reach 19

Then use an else for if the value equals 20 or higher

else:

 print("Looks like you have just enough!")

In this code sample we added 5 elseif to cover the first 5 dollars of your allowance.

I could have added 19 total elseif, but that would take up several pages in this book.

Instead, feel free to fill in the blanks yourself and test out the program. Alternate the

value of wonderBoyAllowance or newCape a few times so that you can see how the results

change based on the value in the variables that we are testing our conditions against.

�Logical Operators
As powerful as the elif statement is, there is one more ability you need to learn to truly

become the Master of Conditional Statements...atements...atements...(is there an echo in

here?). And that ability is known as logical operators.

So far we have covered a number of different operator types – including comparison

operators earlier in this chapter. There are only three logical operators, but they will give

a whole new level of power to your programs.

Chapter 4 Making Decisions

74

Like comparison operators, logical operators have one purpose: to help you compare

values to one another. Also like comparison operators, logical operators seek a Boolean

answer: true or false. They are primarily used to determine if two or more comparisons

are true or false. Unlike our other operators, logical operators are not made up of special

characters or symbols, but, instead, actual words that are self-explanatory: and, not, or.

The first of these – and – is probably the easiest to grasp. It simply looks at the

statement and tries to determine if “this AND that” are both true. If both are, it evaluates

as true; if one or more conditions are not met, it evaluates as false.

Let’s examine it a little closer in code. Create a new file called

LogicalOperatorsExample.py and enter in the following code snippet:

Create a few variables to evaluate

wonderBoyAllowance = 20

newCape = 20

oldCape = 'smelly'

Check to see if allowance is equal to the cost of a new cape AND

that the old cape is "smelly"

if wonderBoyAllowance >= newCape and oldCape == 'smelly':

 print("Wow...you can afford to buy a new cape!")

 print("And your old cape IS really stinky!")

 print("Why not treat yourself to a new cape?")

If the if fails, this else statement will trigger

else:

 print("Sorry kid, it just isn't time for a new cape yet.")

Before Wonder Boy can purchase a new cape, two conditions must be met. First, he

has to have the 20 bucks to cover the cost. Second, his old cape has to be smelly – it’s the

only way he can justify spending his life savings on a new cape!

After setting up our variables that are to be evaluated, we pop in an if statement to

check if wonderBoyAllowance is greater than or equal (>=) to the value of newCape. In this

instance, it is equal, so the interpreter moves on and sees the and operator and knows

that the next part of the evaluation must also be true in order for the entire if statement

to evaluate as true. It checks that the value of oldCape is equal to “smelly” – which it is! –

and since both conditionals are true, it proceeds to print out the rest of the if statement.

Had either of the conditions not been true, the else statement would have been

triggered instead.

Chapter 4 Making Decisions

75

Here is the result (Figure 4-5).

Figure 4-5.  Using else statements and the “and” logical operator

Next up in our logical operators list is or. When used for conditional statements, an

or operator requires that at least one condition evaluates as true – the other condition(s)

can be false, but so long as one is true, the whole statement evaluates as true.

Here is an example of an or operator at work:

Variables to check

wonderBoyAllowance = 20

newCape = 20

newShoes = 50

Checks if you can afford a new cape OR if you can afford new shoes

if wonderBoyAllowance >= newCape or wonderBoyAllowance >= newShoes:

 print("Looks like you can either afford a new cape or new shoes.")

 print("That's good, because one of them are really stinky!")

If both of the conditionals fail, the else below triggers

If even one of the conditionals are true, the else does not trigger

else:

 print("That's a shame, because one of them is really stanky!")

This example program is designed to check whether or not one or both conditions

are true. If both are true, great – our print() functions still trigger. If only one condition

is true – still great; our print() functions will trigger. Remember: an or operator only

requires one conditional to be true.

Only if neither condition is met would the program trigger the else statement.

Keen observers may notice a small problem with those programs – while we know

that Wonder Boy can afford a pair of shoes or a new cape, we don’t know which one he

will choose. Further, we don’t know if he can afford both together; we only checked to

see if he could afford either one.

There are several ways that we could remedy this problem and expand our program.

We could add a few more if statements to figure things out. However, now would probably

be a good time to discuss something called nesting. And no – it has nothing to do with birds!

Chapter 4 Making Decisions

76

�Nesting – Not Just for the Birds
Sometimes checking if one conditional (or two) is true in a given block is not enough. For

example, we may wish to check if a second or third (or fourth, etc.) condition is met if the

first evaluates as true. Consider our code that determines if Wonder Boy can purchase a

new cape and shoes or not. We know that Wonder Boy can purchase either one of those

items, but we do not know if he has enough money to purchase both. We also don’t know

which one he needs more – the cape or the shoes.

We can programmatically answer some of these questions – meaning, we can use

our program to unlock the answers. When we check multiple statements within one if,

we call this nesting.

By now you have noticed how code gets indented automatically when we use

our if statements; after we insert a colon (:) and press the enter key, the development

environment skips a line and then indents four spaces. This tells us, as programmers,

visually, that the indented code is part of the if statement above it. It also tells the

interpreter the same thing. This is known as code hierarchy, which states (1) execute this

code before that code and (2) this indented code belongs to the code above it.

To better understand how nesting works, let’s re-work our previous example:

Variables to check

wonderBoyAllowance = 20

newCape = 20

newShoes = 50

Checks if you can afford a new cape

if wonderBoyAllowance >= newCape:

 print("You can afford a new cape.")

 print("But how about new shoes?")

When the if check to see if you can afford the new cape passes it

does this

 if wonderBoyAllowance >= newShoes:

 print("Looks like you can afford new shoes as well.")

 print("That's good, because the old ones are really stinky!")

 print("But can you afford both together?")

#If you cannot afford the shoes, but can afford the cape, it does this

 else:

 print("You can only afford the new cape, sorry.")

Chapter 4 Making Decisions

77

If both of the conditionals fail, the else below triggers

If even one of the conditionals are true, this else does not trigger

else:

 print("That's a shame, because one of them is really stanky!")

The first thing to note in the updated example is the indentation of our if statements.

The first if checks to see whether Wonder Boy can afford the new cape. Since he can

(meaning wonderBoyAllowance is greater than or equal to newCape), the program moves

on to the indented – or nested – if statement. Once more, the program checks to see

whether the condition of the nested if statement is true (whether wonderBoyAllowance is

equal to or greater than newShoes). If so, it would execute the indented print() functions.

Notice how even the print() functions under our nested if statement get indented
as well.

In this case, our nested if statement does not evaluate to true, so the nested else

statement – the one that is indented – triggers.

Only when the original if statement returns a false would the else statement at the

bottom trigger. The result of this program?

 You can afford a new cape.

But how about new shoes?

You can only afford the new cape, sorry.

What would happen if you had more than two if statements? When that occurs, you

must use elif for each additional if statement. Let’s use a simple math example to truly

illustrate the power of nested if statements. Create a new file named SuperHeroQuiz.py

and type in this code:

Variable representing Wonder Boy's Test Score

wonderBoyScore = 100

Introduction text

print("Congratulations on finishing your Superhero Quiz Intelligence/

Reasoning Test.")

print("Or, S.Q.U.I.R.T. for short.")

print("Let's see if you passed or failed your exam!")

Chapter 4 Making Decisions

78

print("A passing grade means you are licensed to be a Sidekick!")

Comparison block to see if Wonder Boy passed his S.Q.U.I.R.T. Exam

if wonderBoyScore > 60:

 print("Here are your results: ")

 if wonderBoyScore > 60 and wonderBoyScore < 70:

 print("Well, you passed by the skin of your teeth!")

 elif wonderBoyScore >= 70 and wonderBoyScore < 80:

 print("You passed...average isn't so bad. I'm sure you'll make up

for it with heart.")

 elif wonderBoyScore >= 80 and wonderBoyScore < 90:

 print("Wow, not bad at all! You are a regular B+ Plus player!")

 elif wonderBoyScore >= 90:

 print("Look at you! Top of your class. Yer a regular little

S.Q.U.I.R.T. if I ever saw one!")

else:

print("Nice try fella, but I'm sorry you didn't pass.")

 print("I hear the Burger Blitz needs a security guard - you are a

shoo-in!")

In this scenario, Wonder Boy is not yet a full-fledged sidekick. In order to become

one, he/you must pass the S.Q.U.I.R.T. Exam. Only a score of greater than 60 indicates a

passing grade.

In addition to figuring out if Wonder Boy has passed the exam, we want to give

him a little feedback on his test score. For every 10-point range, we created an if/elif

statement that will print out some text based on where the score falls.

In the event that Wonder Boy does not pass the exam (he scores 60 or below), all of

the nested if/elif statements will be skipped, and the else statement will be triggered

instead.

An important note: in the event that the first if statement conditional is not met,

none of the other conditionals will be evaluated; instead, the program will skip to the

else statement automatically. When the program runs into the first if statement, it

checks the value of wonderBoyScore and asks whether it is greater than 60. If it were not,

the program would end and execute the else statement.

However, since wonderBoyScore is greater than 60, the program goes to the next

if/elif statement to evaluate it. It continues this process until it finds a condition that

evaluates to true.

Chapter 4 Making Decisions

79

The program results in:

Congratulations on finishing your Superhero Quiz Intelligence/

Reasoning Test.

Or, S.Q.U.I.R.T. for short.

Let's see if you passed or failed your exam!

A passing grade means you are licensed to be a Sidekick!

Here are your results:

Look at you! Top of your class. Yer a regular little S.Q.U.I.R.T. if I

ever saw one!

Feel free to change the value of wonderBoyScore a few times and re-run the program

to see how the results change.

�In This Episode!
This exciting episode was jam-packed with action. Of all of the chapters so far, I would

venture to say that this one elevated your powers the most! There was a lot to cram

into one episode (sort of like how you cram all that jelly into your PB&J and hope it

doesn’t spill on your shirt), but with your super brain, keen insight, and ability to read

corny superhero jokes, I am certain that you will have absorbed all of the information

contained within this tomb thus far.

Will you use it for good, or evil? Only time will tell!

Here is a recap that you can share with your parents when they ask what it is that is

so fascinating about that wonderful book – written by that amazing author James Payne –

and why you can’t stop reading it!

•	 Decision-making is the process by which a program must decide to

take one path or another, based on certain defined criteria.

•	 Pseudocode is a made-up language used to describe sections

of a program; it is a shorthand for laying out programs to better

understand the layout and different parts your program will need.

•	 Conditional statements allow your program to proceed down one

branch of your program or another if certain conditions are met/not

met. They include the if, else, and elif statements.

Chapter 4 Making Decisions

80

•	 If statements allow you to create decisions in your program. For

instance, you can have a program execute a snippet of code if “x”

happens.

Example:

if 10 < 20:

 print("Yes, 10 is less than 20")

•	 Else statements enhance if statements by adding an else clause.

For instance, you can have a program execute a snippet of code

if “x” happens, or else you can have it execute a different code

block if “x” doesn’t happen.

Example:

if 10 < 20:

 print("Yes, 10 is less than 20")

else:

 print("Maths are hard! Numbers bad for brain!")

•	 Else-if/elif statements are used for adding additional if conditionals

to your code.

Example:

if 10 < 20:

 print("Yes, 10 is less than 20")

elif 10 == 20:

 print("10 shouldn't be equal to 20, but if you say!")

else:

 print("In our backwards world, 10 is greater than 20!")

•	 Comparison operators allow you to compare values. They are as

follows: equal to (==), not equal to (!=), less than (<), greater than (>),

less than or equal to (<=), and greater than or equal to (>=).

•	 Logical operators allow you to check for multiple conditions. They

are and, not, or.

Chapter 4 Making Decisions

81
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_5

CHAPTER 5

Loops and Logic
Sometimes fighting crime can make you feel like you are running around in circles. Day

in and day out you seem to have to tackle the same struggles: a bank robber here, a cat

stuck in a tree over there, an evil genius trying to take over the universe. It is almost as if

you are stuck in some sort of…loop.

While being stuck in a proverbial Groundhog Day – a day that repeats itself over and

over and an excellent flick starring Bill Murray (ask your parents) – is a bad thing, using

loops in your computer programs can be a great thing. One of the prime purposes of

computer programs is to repeat repetitive tasks day in and day out. One of the methods

we use to enslave our programs and have them perform these tedious tasks is known

as a loop.

Loops, as you may have guessed by now, cause a snippet of code to repeat over and

over again while a certain condition is true. Just like conditional statements (covered in

Chapter 4), loops require a condition to be met – or not met – in order to execute or not

execute, depending upon the programmer’s needs.

There are several types of loops, and we will be covering each type in this very

adventurous chapter. So, ready yourself young hero – as we prepare to get loopy!

�What Are Loops?
As programmers, one of our overall goals is to write code efficiently. Everything we do

should center around providing a good user experience, decreasing processor resources,

and creating programs with the least amount of code possible. One way we can achieve

this is through the use of loops, of which there are two types in Python. As stated in the

introduction to this chapter, loops are magical creatures that allow us to repeat a section

of code any number of times, so long as a condition that we define is met.

https://doi.org/10.1007/978-1-4842-9988-3_5#DOI
https://doi.org/10.1007/978-1-4842-9988-3_4

82

One example of how a loop would work in programming is if you created an

application where someone had to guess the number you were thinking. The code would

keep asking the user to guess a number until they guessed right, at which point the loop

would exit and the rest of the program would execute.

As always, let’s head into the Ominous Room of Danger! and test out some new code.

To begin, create a file named SinisterLoop.py, and add the following code:

Create an empty variable. We will store data in it later.

numberGuess = ''

create a while loop that continues until the user enters the number 42

while numberGuess != '42':

 print("Sinister Loop stands before you!")

 �print("I'll only let you capture me if you can guess the number in my

brain!")

 print("Enter a number between 0 and 4 gajillion:")

 �numberGuess = input() # Stores the number the user types into

numberGuess

print("Sinister Loop screams in agony!")

print("How did you guess the number in his head was " + numberGuess + "?")

In the scenario of this code snippet, the evil Sinister Loop confronts our hero,

Wonder Boy, and forces him to guess the malevolent number residing in the villain’s

mind. If Wonder Boy succeeds, Sinister Loop will allow you to capture him. If not? Well,

if not, then he will keep asking you to enter a number over and over again. Fun, right?

We learned several new things in this code example. We start off by doing something

we have not done thus far – we created a blank (or empty) variable named numberGuess.

We leave this variable blank because we are going to have the user fill it with data

later on.

Next, we create a block of code known as a while loop. The line

while numberGuess != '42':

tells the program to run while the value of variable numberGuess is not equal – or

!= – to “42.” We then print a few lines of text and finally request that the user enters in a

number. The actual line that stores the number is in the code:

numberGuess = input()

Chapter 5 Loops and Logic

83

The input( ) function is similar to the print( ) function, except that it accepts input

or data from the user. This input is collected through keystrokes on the user’s keyboard.

These keystrokes get stored in the variable to the left of the assignment operator (=) – in

this case, numberGuess.

Go ahead and run the code and type in different numbers several times before finally

typing in the number 42, to see the program in action.

All finished fooling around? Good. A quick note: in this example, we used the not

equal to (!=) operator for our while criteria. You may be asking yourself why we did not

use an equal to or == operator instead. The reason is because we want the program to

loop – or iterate – while something is not true. If we used an == instead and asked the

program to loop while the value equaled 42, we would have created a serious looping

logic error.

This is where loops can become dangerous. If we told the program to loop while

the variable value equaled 42, the program never would have executed our loop at all.

Why? Because we were telling it to loop while numberGuess was equal to 42. However,

remember: we never set the value of numberGuess. Therefore, when Python goes to

check if the value is 42, it determines it is not and exits out of the loop, because it will

only loop if the value is 42!

If you think that is tricky, consider this: what would have happened if we set the

value of numberGuess to 42 and kept the while loop condition at ==42?

In that scenario, the program would loop forever. Why? Because we are telling it

“while the value of numberGuess is 42, loop through this code.” This is what is known

as the dreaded infinite loop, and it is the bane of every programmer’s existence. For fun,

let’s create a new file called InfiniteLoop.py and enter in the following code:

Note  When you run this program, an infinite loop will occur. To exit out of it, you
will have to close your IDLE window and restart the IDLE.

Create a variable with the value of 42.

numberGuess = 42

print("Sinister Loop stands before you!")

print("Behold my infinite loop!")

create a while loop that continues while the value of numberGuess is 42.

while numberGuess == 42:

 print("Loop!")

Chapter 5 Loops and Logic

84

Run the code to see what happens. Congrats – you created your first infinite loop!

Now, never do that again!

Let’s try something a little different. Instead of using a number for our value, let’s

use text instead. Create another new file named WonderBoyPassword.py and type in

this code:

create a variable to hold Wonder Boy's password

password = ''

print("Welcome to Optimal Dad's Vault of Gadgets!")

while password != "wonderboyiscool2023":

 print("Please enter your password to access some fun tech!")

 password = input()

print("You entered the correct password!")

print("Please take whatever gadgets you need!")

print("Don't touch the Doom Canon though - that belongs to Optimal Dad!")

This code operates much as you would expect it to. Just like our example using the

number '42', this program creates an empty variable and prints out some introductory

text. Then we create a while loop that is set to run until the value of password is not equal

to “wonderboyiscool2018.” Once the user inputs that specific value, the program exits

the loop and moves on to the other print statements.

However, there is a slight difference here. Since we are working with text and not

number data types, the value that is input must equal exactly the same as the condition.

That is to say, password must contain the exact text “wonderboyiscool2018.” Capitalized

letters must be capital and lowercase letters must be lowercased.

Why is that? Without getting into too much boring detail, know that every character

in your program has a specific value assigned to it. Remember, the computer does not

see text, but, instead, a series of 1s and 0s that are translated into machine language.

Because of this, computers see “H” and “h” as two separate things.

Run the program and try typing “WonderBoyIsCool2018” or

“WONDERBOYISCOOL2018” when prompted and observe what happens.

As you can see, the program continues the while loop and keeps asking for a

password. Only when you enter “wonderboyiscool2018” will the program exit the loop.

Coding loops with this type of “loop logic” is perfectly normal. In fact, when it comes

to passwords or secure information, this is exactly the way the program should behave.

But what if you did not care about capitalization? What if you wanted the input to work

no matter how it was capitalized?

Chapter 5 Loops and Logic

85

There are a few ways you can achieve this. One of them involves converting the text

to lowercase letters. To do this, you would use a new string function called str.lower( ).

Change the code of WonderBoyPassword.py so it matches the following:

create a variable to hold Wonder Boy's password

password = ''

print("Welcome to Optimal Dad's Vault of Gadgets!")

while password != "wonderboyiscool2018":

 print("Please enter your password to access some fun tech!")

 password = input()

 password = password.lower()

print("You entered the correct password: ", password)

print("Please take whatever gadgets you need!")

print("Don't touch the Doom Canon though - that belongs to Optimal Dad!")

In this code, we added a new line to our previous snippet:

password = password.lower()

This line of code takes the data inside of the variable password and converts it to

lowercase. This way, when the loop checks to see if the password is correct, it does not

need to worry if the user typed any of the letters in capital or not.

Note T o make all of a string lowercase, you use str.lower().

For example: password.lower()

To make a string uppercase, you use str.upper().

For example: password.upper()

�Limiting Loops
While we can allow our loops to execute indefinitely, oftentimes we want to limit the

number of times they run. For example, in our WonderBoyPassword.py code, we allow

the user to guess the password as many times as they like; the program only exits once

the correct password is given. However, that may not be the best way to write such a

program.

Chapter 5 Loops and Logic

86

When dealing with passwords – or when you need to limit the number of times a

loop executes – you can create a conditional that causes the loop to break if a given

criterion is met.

To see break in use, edit the code in WonderBoyPassword.py so that it matches the

following:

create a variable to hold Wonder Boy's password

password = ''

passwordAttempt = 0

print("Welcome to Optimal Dad's Vault of Gadgets!")

while password != "wonderboyiscool2018":

 print("Please enter your password to access some fun tech!")

 password = input()

 password = (password.lower())

 passwordAttempt = passwordAttempt + 1

 if password == "wonderboyiscool2018":

 print("You entered the correct password: ", password)

 print("Please take whatever gadgets you need!")

 �print("Don't touch the Doom Canon though - that belongs to

Optimal Dad!")

 elif passwordAttempt == 3:

 print("Sorry, you are out of attempts!")

 break

In this version of WonderBoyPassword.py, we added several new lines of code.

For starters, we defined a new variable named passwordAttempt and gave it the value

of 0. This variable will be used to track the number of attempts made at guessing the

password. Each time a user guesses incorrectly, the loop repeats itself, and thanks to

this code:

passwordAttempt = passwordAttempt + 1

adds 1 to the value of passwordAttempt. We then added two if statements. The first

prints out some text if the user guesses the correct password. The elif statement triggers

once the value of passwordAttempt is equal to 3 (after three attempts). Once triggered,

it prints out some apologetic text and then uses the break statement to exit out of the

while loop.

Chapter 5 Loops and Logic

87

Try out the code a few times, being sure to improperly guess the password at least

three times and guess it accurately at least once.

�For Loops
Another way to make sure a loop only iterates a certain number of times is by using

the for loop. This type of loop is typically used when you know how many times you

want to repeat a snippet of code. A popular method to introduce the for loop is to create

a program that counts through a list of numbers – such as 1–10. However, we are no

ordinary programmers – we are superheroes who happen to code. Therefore, we need a

special type of program. Behold vile villains! The Count10.py example!

print("Sinister Loop, I know you are in there!")

print("If you don't come out of the cafeteria freezer by the time I count

to 10...")

print("You won't get any of that delicious stop-sign shaped pizza!")

for x in range(1,11):

 print(x)

print("I warned you! Now all the pizza belongs to Wonder Boy!")

The important part of this code occurs here:

for x in range(1,11):

 print(x)

The for begins the loop. The 'x' is a variable (you can name this variable any way

you like; traditionally programmers name it ‘i’ or ‘x’) that will hold the value of the

number of iterations. In fact, when used this way, it is known as an iterating variable.

Next, we use the range function to tell the loop the sequence to use. A sequence can be

made up of a number range or using text (more on this below).

The numbers in parentheses following range are the start and stop parameters

of the function. For our example, we want to count to 10, so we put the start at 1 and

the stop at 11. We choose to use 11 here, even though we want the range to stop at 10,

because range stops at the number before our end point. We could have the start at 0

and the stop at 10, or the start at 12 and the stop at 1,000,000 if we wanted to give Sinister

Loop a long time to come out of that freezer (but then, he would probably freeze to

death!).

Chapter 5 Loops and Logic

88

Finally, we print(x) to print out the number of times the iteration occurs. Once “10”

is reached, the program breaks from the for loop and skips to the next part of the code,

which happens to be a final print statement.

If you run the program, you get the result:

Sinister Loop, I know you are in there!

If you don't come out of the cafeteria freezer by the time I count to 10...

You won't get any of that delicious stop-sign shaped pizza!

1

2

3

4

5

6

7

8

9

10

I warned you! Now all the pizza belongs to Wonder Boy!

If we wanted to jazz the code up a little, we could add some text to the print

statement that is part of the for loop, like so:

print("Sinister Loop, I know you are in there!")

print("If you don't come out of the cafeteria freezer by the time I count

to 10...")

print("You won't get any of that delicious stop-sign shaped pizza!")

for x in range(1,11):

 print(x, "Mississippii")

print("I warned you! Now all the pizza belongs to Wonder Boy!")

All we did here was change:

 print(x)

to

 print(x, "Mississippii")

Chapter 5 Loops and Logic

89

This gives us a new result of:

Sinister Loop, I know you are in there!

If you don't come out of the cafeteria freezer by the time I count to 10...

You won't get any of that delicious stop-sign shaped pizza!

1 Mississippii

2 Mississippii

3 Mississippii

4 Mississippii

5 Mississippii

6 Mississippii

7 Mississippii

8 Mississippii

9 Mississippii

10 Mississippii

I warned you! Now all the pizza belongs to Wonder Boy!

All we did here was add the word “Mississippii” to our print out of the iteration loop.

In addition to counting up, range has the ability to count down as well. To achieve

this, we need to use something called step. Step is an optional parameter of range()

and is used to “step” numbers up or down. For example, if we wanted to count down

from 10 to 1, we would write a for loop that looked like this:

for x in range(10,0, -1):

print(x)

The -1 part of the loop is the step and basically tells the program to subtract one

each time. If you ran this code, it would result in:

10

9

8

7

Chapter 5 Loops and Logic

90

6

5

4

3

2

1

If we made the step -2, the countdown would “step” down by subtracting 2

each time.

for x in range (10,1, -2):

print(x)

Then the result would be:

10

8

6

4

2

If we wanted to count up in increments of 2, we don’t need to add the + symbol – we

just add the step as 2, like so:

for x in range(1,10,2):

 print(x)

This would produce:

1

3

5

7

9

Chapter 5 Loops and Logic

91

�More Fun with For Loops
Of course, printing out numbers is not the only thing we use for loops to achieve. As

stated, any time we know the number of times we want to loop through code, a for loop

is our best bet.

For example, maybe we want to be annoying and print the same text to the screen a

whole bunch of times. Our friend the for loop can help with that!

for x in range(1,10):

 print("Wonder")

print("Boy!")

This little code snippet will print out the text “Wonder” nine times before exiting the

loop and ending with “Boy!” If you were to put some cool theme music behind that, you

would be all set for your own television series!

Another way we can use for loops is to iterate through lists. Let’s say we had a list of

nefarious villains, and we want to print out their names. We could use code similar to

this to do so:

nefariousVillains = ['Sinister Loop', 'The Pun-isher', 'Jack Hammer',

'Frost Bite', 'The Sequin Dream']

print("Here is a list of today's villains, brought to you by:")

print("Heroic Construction Company. You destroy the city, we make it

almost, sort of new.")

print("Villains Most Vile:")

for villains in nefariousVillains:

 print(villains)

Here, we create a list (we originally discussed lists back in Chapter 3 as you will

recall). We then populated the list with various villains. Next, we printed out some text

and then made our for loop:

for villains in nefariousVillains:

 print(villains)

This time, the for begins by creating a variable name villains, whose job it will be

to hold the values (temporarily) of each value in our list. Since we have not set a range,

the loop will execute one time for each value in the nefariousVillains list. Each time

through it will assign a different value to the villains variable. For example, the first

Chapter 5 Loops and Logic

https://doi.org/10.1007/978-1-4842-9988-3_3

92

time through the loop, 'Sinister Loop' gets passed to villains then printed. Then

the loop continues a second time and passes 'The Pun-isher' to villains, which once

again prints. This continues until the loop runs through all of the values in the list. The

final value in villains will be 'The Sequin Dream'. Its value will remain that until you

change the data.

If we were to run this code, the result would be:

Here is a list of today's villains, brought to you by:

Heroic Construction Company. You destroy the city, we make it almost,

sort of new.

Villains Most Vile:

Sinister Loop

The Pun-isher

Jack Hammer

Frost Bite

The Sequin Dream

�Break, Continue, and Pass Statements
Although loops are used to iterate through portions of code, sometimes we may find that

we need a way to end the loop early, skip a section of a loop, or handle some data that

is not specifically part of our loop(s). There are three statements, in particular, that can

help us in these endeavors: break, continue, and pass.

We learn about break earlier; with this statement, we can exit out of our loops early,

provided certain conditions occur. For instance, in our WonderBoyPassword.py program,

we used break to exit the program after three attempts at entering the password were

made. Since we covered this statement earlier, let’s move onto the continue statement.

The continue statement lets you skip part of a loop without actually breaking

completely out of it, like the break statement. Consider this: what if you had a program

that counted down from ten, but at the halfway mark you wanted to print some text; you

could achieve this with continue.

Let’s create a new file called DoomsdayClock.py. In this program, Sinister Loop has

begun a countdown timer that will signal your…well, doom. However, villains are always

so long-winded, so don’t be surprised if he has something to say at some point during

the countdown!

Chapter 5 Loops and Logic

93

Enter this code into your file:

print("The nefarious Sinister Loop stands before you, greedily rubbing his

hands together!")

print("He has his hand on a lever and has a large grin on his face.")

print("Sinister Loop opens his mouth and says:")

print("'You are doomed now Wonder Boy!'")

print("'You have ten seconds to live! Listen as I count down the time!'")

for x in range(10,0,-1):

 print(x, "Mississippii!")

When x is equal to 5, print some text, then continue with the count down.

 if x==5:

 print("'Any last words, Wonder Boy?!?'")

 continue

print("You wait for your inevitable doom as the count reaches 0...")

print("But nothing happens!")

print("Sinister Loop screams, 'Foiled Again!'")

Run the example and observe the result – it should look like this:

The nefarious Sinister Loop stands before you, greedily rubbing his hands

together!

He has his hand on a lever and has a large grin on his face.

Sinister Loop opens his mouth and says:

'You are doomed now Wonder Boy!'

'You have ten seconds to live! Listen as I count down the time!'

10 Mississippii!

9 Mississippii!

8 Mississippii!

7 Mississippii!

6 Mississippii!

5 Mississippii!

'Any last words, Wonder Boy?!?'

4 Mississippii!

3 Mississippii!

2 Mississippii!

1 Mississippii!

Chapter 5 Loops and Logic

94

You wait for your inevitable doom as the count reaches 0...

But nothing happens!

Sinister Loop screams, 'Foiled Again!'

This code works like our other for loops, with a small exception. Once the program hits

our if statement, it checks to see if 'x' is equal to 5. Since we set the range to count down

from 10 to 1 by increments of -1, we know that 'x' will equal 5 around the sixth time the

code repeats. When it does, our condition is met and we print out the text, “Any last words

Wonder Boy?!?”  effectively pausing the loop for a moment (in reality, we are skipping an

iteration so that we can print some text), before re-entering the loop once more.

After the continue statement, the program finishes its normal loop cycle and then

exits out of the program normally.

So far, we have looked at how to exit out of a loop if a certain condition applies

or how to skip an iteration through a loop (using break and continue, respectively).

The next statement we learn won’t seem nearly as useful, but, in truth, it does serve a

purpose in the grand scheme of things.

The pass statement is particularly useful when working with things called classes –

a subject we will broach in Chapter 8. In terms of loops, however, the pass statement is

primarily used as a placeholder. It is a great tool when you are planning out a section of

code but are not entirely certain what your criteria will be.

For example, in our DoomsdayClock.py program, we placed an if statement within

our loop to execute some text once our variable held the number 5. However, what if we

were not sure what we wanted that text to or where in the countdown we wanted to have

the text print? Maybe we were waiting for feedback from a colleague and would have to

come back to that section of code.

The pass statement would let us place our conditional without defining what, exactly

would happen if it was met, without having to worry about getting errors because we did

not complete the code. That way, later, when we figured out what we wanted to happen

in that section of the loop, we could fill in the rest of the code later.

Here is how the pass statement would look if we inserted it into our DoomsdayClock.

py program:

print("The nefarious Sinister Loop stands before you, greedily rubbing his

hands together!")

print("He has his hand on a lever and has a large grin on his face.")

print("Sinister Loop opens his mouth and says:")

Chapter 5 Loops and Logic

https://doi.org/10.1007/978-1-4842-9988-3_8

95

print("'You are doomed now Wonder Boy!'")

print("'You have ten seconds to live! Listen as I count down the time!'")

for x in range(10,0,-1):

 print(x, "Mississippii!")

When x is equal to 5, print some text, then continue with the count down.

 if x==5:

 pass

print("You wait for your inevitable doom as the count reaches 0...")

print("But nothing happens!")

print("Sinister Loop screams, 'Foiled Again!'")

If you run this code, you will see that nothing occurs when the if statement is

reached – the program just runs normally. However, if you were to remove pass from the

statement, you would receive an error, because Python is expecting more code to finish

the if statement. Try it out and see for yourself!

�In This Episode!
We covered quite a bit in this chapter, and I would not blame you one bit if you were

feeling a little…loopy (insert cricket sounds here). While this chapter may have been the

most difficult to grasp thus far, the good news is, once you have mastered using loops,

you really do have just about every tool you need to create some decent real-world

programs.

Sure, you may not be able to walk into an office and get a high-paying gig as the

World’s Greatest Programmer – WGP for short – but hey, you are still a teenager; you

are already far ahead of the curve of future competition. Plus, let’s not forget, there are a

whole nine other chapters left!

At this point in the book, you should feel comfortable dabbling on your own and

creating your own code snippets and mini-programs. Like anything in life, practice

makes perfect, so be sure to put your new superpowers to the test often. The more you

code, the better you will understand programming.

Speaking of, in the next chapter, we will be putting everything we have learned

so far to good use, as we create our first full-fledged program! It is going to be called

Superhero Generator 3000, and it will incorporate loops, variables, if-else statements,

string and math functions, and so much more; invite your friends and you will be the life

of the party!

Chapter 5 Loops and Logic

96

As for this current chapter, let’s recap what we learned in this quick In This Episode

reference sheet!

•	 Loops allow you to repeat – also known as iterate – through portions

of code if given conditions are met/not met.

•	 For loops can be used to iterate while a condition is not met or by

using the range function. For example:

for x in range(1,10):

 print("Wonder Boy is here!")

•	 Range( ) is a function that allows you to iterate through a loop a

certain number of times. It has three parameters and is defined in the

following manner:

range(1, 10, 1)

The first number is the starting point. The second number is the end point.

The third number – which is optional – is known as the step and controls the

increment in which range( ) counts. For example, using 2 for the step would

increase the numbers by 2 each iteration through the loop.

•	 While loops repeat so long as a condition or criteria is met or

evaluates as Boolean true. For example:

 salary = 0

while salary < 10:

 print("I owe, I owe, so off to work I go.")

 salary = salary +1

Infinite loops are naughty and to be avoided most of the time.

They occur when you have a flaw in your loop programming logic

or make a mistake typically. They are loops that never end and go

on forever – like a bad algebra lesson. Here is an example (don’t

try this at home kids!):

x = 0

while x == 0:

print:("You down with L-O-O-P?")

print("Yeah, you know me!")

Chapter 5 Loops and Logic

97

Since the variable x is equal to 0, and the criteria say to loop while

x is equal to 0, this loop will go on forever.

•	 Str.lower( ) is a function that converts a string to lowercase. For

example:

name = "Wonder Boy"

print(name.lower())

Would print “wonder boy” in all lowercase letters.

•	 Str.upper( ) works the same as str.lower( ), except it changes all letters

in a string to uppercase. Example:

name = "wonder boy"

print(name.upper())

•	 The break statement forces a loop to exit – or break – out of its

iteration if a certain condition is met, and you want it to end the

loop early.

•	 The continue statement lets you skip an iteration in a loop without

exiting the loop entirely.

•	 The pass statement is a sort of placeholder that lets you create loops

without defining certain conditions within them until later. This way

you can create the loop structure and decide what your criteria will

be later on without receiving errors when you test your code.

Chapter 5 Loops and Logic

99
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_6

CHAPTER 6

Using What We’ve
Learned
You’ve come a long way thus far. You started off being bitten by a radioactive

programmer when you made the unfortunate mistake of trying to grab his

microwaveable pizza bites. From there, your powers began to blossom, and you proved

yourself a worthy sidekick. But now it is time to truly test your knowledge and your l33t

cod3r skillz. Are you up for the challenge?

In this chapter, we are going to recap everything you have learned so far and put it

to use creating your very own full-length program. In addition, you will learn a few more

new tricks, and, by the end of this chapter, you will have graduated from faithful sidekick

to full-blown hero status.

You’ll still be Wonder Boy, but at least you won’t have to shine Amazing Dad’s shoes

any longer!

�Creating Your First Real Program
Before we begin to create our first fully functional application – which we will be naming

the Superhero Generator 3000 – we have to first understand what, exactly, we want the

program to do. The basic concept is simple enough: we want an app that will randomly

generate a superhero character for us – no big deal, right?

That is a start, but clearly, we need more details than that. For instance, what

constitutes a hero? Do they have any attributes? Any superpowers? How about a name?

The answer to all of that is yes.

As good, heroic programmers, we always want to plan out any programs that we

create. We need to know the purpose of the program, how it will function, and any

details that will help keep us on track as we code and build it.

https://doi.org/10.1007/978-1-4842-9988-3_6#DOI

100

For example, we know that in this program, we are going to need the following:

•	 Superhero first name (randomly generated)

•	 Superhero last name (randomly generated)

•	 Code to join the Superhero first name/last name into a single string

•	 Code to randomly generate a set of statistics or STATS within a

given range.

•	 A random power generator

In addition, we will need variables to hold all of our STATS data; our first, last, and

combined names; and our superpowers. We also need a data structure – in this case

lists – to hold the values for our names and superpowers, from which we will randomly

select names/powers to give to our hero.

Sound complicated? Don’t worry – it is not. We will be walking through each section

of the program, step-by-step with refreshers for everything we have already covered.

That said, let’s put on our capes and masks and start the first part of the Superhero

Generator 3000!

�Importing Modules
To begin with, our program will rely on two modules – pieces of pre-existing code

designed to perform a common task that we can use to save time and reduce human

error. The first of these is random, which we have worked with already. To refresh your

memory, random can be used to randomly generate numbers. It can also allow you to

randomly choose a value (or values) from a list – among other things. We use it for both

purposes in our program.

The second module we import is known as time and is something we have not

covered thus far. One of its primary functions is that it allows us to create a “pause” in

our program’s execution. There can be many reasons why you wish to delay a portion of

code from executing. For our purposes, we are using time to build suspense and make it

appear that our program is calculating something complicated.

Chapter 6 Using What We’ve Learned

101

Let’s create a new file called SuperheroGenerator3000.py and add the following

code to it:

Importing the random module to use for randomizing numbers and

strings later

import random

Importing the time module to create a delay

import time

�Creating Our Variables
As noted previously, this program will rely on quite a few variables and lists to store

data. To hold our STATS (or statistical) data, we are going to use variables for our storage

needs. By now, you should be familiar with their use and how to define them. That being

said, let’s add this code to our SuperheroGenerator3000.py file, just below where we

imported the time and random modules:

brains = 0

braun = 0

stamina = 0

wisdom = 0

power = 0

constitution = 0

dexterity = 0

speed = 0

answer = ' '

The first set of variables will be used to hold stats such as how intelligent your

character is, how strong they are, and so forth. Notice that the initial values are all set

to 0. Later in the application, we will be using random to change these values. For now,

however, we have to assign them a value, so 0 it is!

You may notice that we have a variable sitting outside of the group of stats, called

answer. Once the program runs, it will ask the user a question to continue – we will be

using the answer string variable to hold the user’s response. For now, we assign it with

no value; the user’s input will fill it in later.

Chapter 6 Using What We’ve Learned

102

�Defining Our Lists
Lists are used to hold more than one piece of data. The SuperheroGenerator3000.py app

relies on three lists: one will hold a list of possible superpowers – named superPowers –

while the other two will hold lists of possible first and last names.

Later in the program, we will be using random to choose values from these lists to

give our hero a name and superpower. For now, we need to create the lists and assign

them with some values.

For now, use the values that I provide. However, after you have tested the program
several times, feel free to add your own wacky name combinations and superhero
powers to these lists – be creative and have fun!

Here is the code for the lists – add it to your file beneath the list of variables:

Creating a list of possible super powers

superPowers = ['Flying', 'Super Strength', 'Telepathy', 'Super Speed', 'Can

Eat a Lot of Hot Dogs', 'Good At Skipping Rope']

Creating lists of possible first and last names

superFirstName = ['Wonder','Whatta','Rabid','Incredible', 'Astonishing',

'Decent', 'Stupendous', 'Above-average', 'That Guy', 'Improbably']

superLastName = ['Boy', 'Man', 'Dingo', 'Beefcake', 'Girl', 'Woman', 'Guy',

'Hero', 'Max', 'Dream', 'Macho Man','Stallion']

Now that we have our data structures in place, it is time to move on to the next

portion of our code.

�Introductory Text and Accepting Input from the User
The next section of our code is designed to greet the user and accept some input from

them. As we learned in Chapter 5, we can accept input from the user by using the input()

function. Add the following code to your file, right underneath your newly created lists:

Introductory text

print("Are you ready to create a super hero with the Super Hero

Generator 3000?")

Ask the user a question and prompt them for an answer

Chapter 6 Using What We’ve Learned

https://doi.org/10.1007/978-1-4842-9988-3_5

103

input() 'listens' to what they type on their keyboard

We then use upper() to change the users answer to all uppercase letters

print("Enter Y/N:")

answer = input()

answer = answer.upper())

To make life easier, after we accept input from the user, we convert their answer

to all uppercase letters. Why do we do this? To keep us from having to check for both

lowercase and uppercase combinations when they answer. If we did not convert the

text to all uppercase, we would have to check for “yes,” “Yes,” “yEs,” “yeS,” and so on. It is

much easier – and more efficient – to convert the string and check for a simple “YES” (or

in this instance, a “Y”).

We check the user’s answer by using a while loop that repeats while the value of

answer is not equal to “YES.” Once the condition is met and the loop exits, the program

continues, and the fun really begins!

Add the while loop to your code, right beneath the introductory text and input()

section:

While loop to check for the answer "Y"

This loop will continue while the value of answer IS NOT "Y"

Only when the user types "Y" will the loop exit and the program continue

while answer != "Y":

 print("I'm sorry, but you have to choose Y to continue!")

 print("Choose Y/N:")

 answer = input()

 answer = answer.upper())

print("Great, let's get started!")

�Creating Suspense!
Just as in real writing, sometimes in our computer programming, we want to add

suspense or pause dramatically to make the user think that something really cool is

happening. Or we may wish to pause a program intermittently to give the user time to

read the text on the screen instead of having it scroll by too quickly.

Whatever the case, we can achieve this dramatic effect by using a new module that

you have not learned yet: time( ).

Chapter 6 Using What We’ve Learned

104

While we will be using time( ) in our code, we will not be covering the function in its

entirety just yet – for now we only want to use one aspect of this handy new tool and that

is by taking advantage of its sleep function.

Like any other method, the time.time( ) function accepts parameters – six common

ones and a few others that are not so commonly used. Sleep creates a pause in your

program, measured in seconds, and looks like this in us:

time.sleep(3)

The number in parentheses is the number of seconds you want to pause. We could

type that and be done with it, but – as stated – we want some dramatic flair! So instead of

using time.sleep( ) on its own, we want to print some ellipses (…) to the user’s screen to

simulate some wait time as well. It just looks cooler!

To do this, we are going to place our time( ) function in a for loop that repeats three

times. Each time through the loop, our program will print to the user’s screen.

Add this code to your .py file:

print("Randomizing name...")

Creating suspense using the time() function

for i in range(3):

 print("...........")

 time.sleep(3)

print("(I bet you can't stand the suspense!)")

print("")

Theoretically, if we were to run our program at this point, we would see the following

output on the screen:

Are you ready to create a super hero with the Super Hero Generator 3000?

Enter Y/N:

y

Great, let's get started!

Randomizing name...

...........

...........

...........

(I bet you can't stand the suspense!)

Chapter 6 Using What We’ve Learned

105

When the time() function kicks in, each of the “.........” lines takes exactly three

seconds to print, creating our “dramatic pause.”

Now that we have our introductory text, understand how to pause or create a

hesitation in our programs, and have our initial variables/lists in place – as well as our

modules imported – it is time to get to the meat of the application!

In this next section, we will create the portion of our code that randomizes all of

the different parts of our generated superheroes. For that, we rely on the good old

random() module.

�Randomizing Superhero Names
There are five things that every superhero needs:

•	 Cool outfit

•	 Superpowers

•	 Innocuous source of income that allows them to never be seen

working a day job

•	 Tissues to wipe away the tears from all those lonely microwave

dinners (superheroes don’t have time to date!)

•	 And, of course, an awesome name

The next step in the SuperheroGenerator3000 code is to program the name

generation section. Earlier, you may recall, we created two lists full of superhero first and

last names. As a reminder, here are those lists:

superFirstName = ['Wonder','Whatta','Rabid','Incredible', 'Astonishing',

'Decent', 'Stupendous', 'Above-average', 'That Guy', 'Improbably']

superLastName = ['Boy', 'Man', 'Dingo', 'Beefcake', 'Girl', 'Woman', 'Guy',

'Hero', 'Max', 'Dream', 'Macho Man','Stallion']

The idea behind our name generation portion of code is that we want to pull one

name from each of these two lists and combine them into one, creating our hero’s name.

There are many ways we could achieve this, but for our purposes, we want to randomly

select the two values – that way every time the program is run, it creates a unique

combination of names.

Chapter 6 Using What We’ve Learned

106

Let’s look at the code we use to achieve this effect before we delve any deeper.

Add the following code to your SuperheroGenerator3000.py file, right below the

time() code:

Randomizing Super Hero Name

We do this by choosing one name from each of our two name lists

And adding it to the variable superName

superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

print("Your Super Hero Name is:")

print(superName)

This section of code is pretty simple to understand. We start it off by creating a

variable named superName, whose job will be to hold the combined first and last names

of our hero (which we get from the lists superFirstName and superLastName).

Next, we use random( ) – and specifically random.choice – to randomly choose a

value from our list superFirstName and a value from superLastName.

The part of the code line that reads

+ " " +

may seem confusing; its purpose is simple, however. In this instance, the + symbol is

used to concatenate – or add – our two strings together. Since we want a space in between

the first and last names, we also have to add – or concatenate – a space by adding " "

in between. Otherwise, we could have just written random.choice(superFirstName) +

random.choice(superLastName).

Finally, we finish this part of our program by printing out the value of the newly

created superName by using: print(superName).

Now if we were to run our program, it would result in something like:

Are you ready to create a super hero with the Super Hero Generator 3000?

Enter Y/N:

y

Great, let's get started!

Randomizing name...

...........

...........

Chapter 6 Using What We’ve Learned

107

...........

(I bet you can't stand the suspense!)

Your Super Hero Name is:

Improbably Max

Or

Are you ready to create a super hero with the Super Hero Generator 3000?

Enter Y/N:

y

Great, let's get started!

Randomizing name...

...........

...........

...........

(I bet you can't stand the suspense!)

Your Super Hero Name is:

Stupendous Hero

Note S ince the values are randomly generated, your superhero name will likely
appear different than the example I’ve provided.

�A Quick Check-In
Before we go any further, let’s check to see that your code matches mine at this point

in the game. If you have been following along and placing your code in the right order,

your program should look like the following. If not, no worries – just modify your code to

match mine and re-read the sections to figure out what went wrong!

Here is how your code should presently look:

Importing the random module to use for randomizing numbers and

strings later

import random

Importing the time module to create a delay

Chapter 6 Using What We’ve Learned

108

import time

Creating - or initializing - our variables that will hold character stats

brains = 0

braun = 0

stamina = 0

wisdom = 0

power = 0

constitution = 0

dexterity = 0

speed = 0

answer = ''

Creating a list of possible super powers

superPowers = ['Flying', 'Super Strength', 'Telepathy', 'Super Speed',

'Can Eat a Lot of Hot Dogs', 'Good At Skipping Rope']

Creating lists of possible first and last names

superFirstName = ['Wonder','Whatta','Rabid','Incredible', 'Astonishing',

'Decent', 'Stupendous', 'Above-average', 'That Guy', 'Improbably']

superLastName = ['Boy', 'Man', 'Dingo', 'Beefcake', 'Girl', 'Woman', 'Guy',

'Hero', 'Max', 'Dream', 'Macho Man','Stallion']

Introductory text

print("Are you ready to create a super hero with the Super Hero

Generator 3000?")

Ask the user a question and prompt them for an answer

input() 'listens' to what they type on their keyboard

We then use upper() to change the users answer to all uppercase letters

print("Enter Y/N:")

answer = input()

answer = (answer.upper())

While loop to check for the answer "Y"

This loop will continue while the value of answer IS NOT "Y"

Only when the user types "Y" will the loop exit and the program continue

while answer != "Y":

 print("I'm sorry, but you have to choose Y to continue!")

 print("Choose Y/N:")

 answer = input()

Chapter 6 Using What We’ve Learned

109

 answer = answer.upper()

print("Great, let's get started!")

print("Randomizing name...")

Creating suspense using the time() function

for i in range(3):

 print("...........")

 time.sleep(3)

print("(I bet you can't stand the suspense!)")

print("")

Randomizing Super Hero Name

We do this by choosing one name from each of our two name lists

And adding it to the variable superName

superName = random.choice(superFirstName)+ " " +random.choice(superLastName)

print("Your Super Hero Name is:")

print(superName)

�Randomizing the Superpowers
Now comes the fun part – randomly generating our hero’s superpowers! After all, he

wouldn’t be all that super if he couldn’t shoot laser beams out of his nose or grow a full

beard in less than a day, now, would he?

As with our superFirstName and superLastName lists, you will recall that we already

created a list to hold superpowers, aptly named superPowers. It is from this list that we

will be choosing what power our superhero has in his arsenal.

Note A fter we complete the program in its entirety and you have tested it several
times, feel free to add your own mix of superpowers to the superPowers list –
have fun and be as creative as possible!

Add the following code to your SuperheroGenerator3000.py file, placing it directly

beneath the portion of code that randomly generated your hero’s name:

print("")

print("Now it's time to see what super power you have!)")

print("(generating super hero power...)")

Chapter 6 Using What We’ve Learned

110

Creating dramatic effect again

for i in range(2):

 print("...........")

 time.sleep(3)

print("(nah...you wouldn't like THAT one...)")

for i in range(2):

 print("...........")

 time.sleep(3)

print("(almost there....)")

Randomly choosing a super power from the superPowers list

and assigning it to the variable power

power = random.choice(superPowers)

Printing out the variable power and some text

print("Your new power is:")

print(power)

print("")

As you can see, this code starts out by printing some text to the user’s screen,

informing them that the hero’s superpower is about to be generated. After this, we use

time.sleep() not once, but twice, to create more dramatic effect and slow the program

down. This time, we only print two lines of “.......” each time through our for loop –

each of which lasts for three seconds.

The next portion of the code

power = random.choice(superPowers)

creates a new variable named power and then assigns it a random value from the

superPowers list. Finally, the section of code finishes up by printing out the value of

power so the user can see what superpower was chosen.

If we were to run the program at this point, in theory, we would receive results that

are similar to:

Are you ready to create a super hero with the Super Hero Generator 3000?

Enter Y/N:

y

Great, let's get started!

Randomizing name...

Chapter 6 Using What We’ve Learned

111

...........

...........

...........

(I bet you can't stand the suspense!)

Your Super Hero Name is:

Astonishing Dingo

Now it's time to see what super power you have!)

(generating super hero power...)

...........

...........

(nah...you wouldn't like THAT one...)

...........

...........

(almost there....)

Your new power is:

Flying

Or

Are you ready to create a super hero with the Super Hero Generator 3000?

Enter Y/N:

y

Great, let's get started!

Randomizing name...

...........

...........

...........

(I bet you can't stand the suspense!)

Your Super Hero Name is:

Astonishing Stallion

Now it's time to see what super power you have!)

(generating super hero power...)

...........

...........

(nah...you wouldn't like THAT one...)

Chapter 6 Using What We’ve Learned

112

...........

...........

(almost there....)

Your new power is:

Can Eat a Lot of Hot Dogs

Remember, your results may differ, as the superpowers and superhero names are

generated randomly.

�Finishing Our Program
We are almost finished creating your first, full-fledged program! In the words of the

incomparable Stan Lee – Excelsior!

The final part of our application will randomly generate our hero’s statistics. You may

recall that at the beginning of our code, we created seven variables (brains, braun,

stamina, wisdom, constitution, dexterity, and speed) and assigned them each a

value of 0.

In the following code, we will now assign each of these seven variables that represent

the hero’s stats with a random integer value, ranging from 1 to 20. We do this using the

random.randint() function, which we discussed in Chapter 2.

Add the following to your SuperheroGenerator3000.py file:

print("Last but not least, let's generate your stats!")

print("Will you be super smart? Super strong? Super Good Looking?")

print("Time to find out!")

Creating dramatic effect and slowing the program down again

for i in range(3):

 print("...........")

 time.sleep(3)

Randomly filling each of the below variables with a new value

The new values will range from 1-20

brains = random.randint(1,20)

braun = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

constitution = random.randint(1,20)

Chapter 6 Using What We’ve Learned

https://doi.org/10.1007/978-1-4842-9988-3_2

113

dexterity = random.randint(1,20)

speed = random.randint(1,20)

Printing out the statistics

print("Your new stats are:")

print("")

print("Brains: ", brains)

print("Braun: ", braun)

print("Stamina: ", stamina)

print("Wisdom: ", wisdom)

print("Constitution: ", constitution)

print("Dexterity: ", dexterity)

print("Speed: ", speed)

print("")

Printing out a full summary of the generated super hero

This includes the hero's name, super power, and stats

print("Here is a summary of your new Super Hero!")

print("Thanks for using the Super Hero Generator 3000!")

print("Tell all your friends!")

print("")

print("Character Summary:")

print("")

print("")

print("Super Hero Name: ", superName)

print("Super Power: ", power)

print("")

print("Brains: ", brains)

print("Braun: ", braun)

print("Stamina: ", stamina)

print("Wisdom: ", wisdom)

print("Constitution: ", constitution)

print("Dexterity: ", dexterity)

print("Speed: ", speed)

Chapter 6 Using What We’ve Learned

114

If we examine this part of the new code

brains = random.randint(1,20)

braun = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

constitution = random.randint(1,20)

dexterity = random.randint(1,20)

speed = random.randint(1,20)

we can see how easy it is to randomly assign a random integer value to our variables.

The numbers in parentheses represent the lowest value of the allowable range and the

highest number allowed; the number will always be between 1 and 20.

�The SuperheroGenerator3000 Code – Completed!
Now it is time to bask in the glory of our first completed program! Pat yourself on the

back, and run and tell all of your friends what a great teacher I am and how this book is

the best thing since sliced cheese! Who am I kidding – cheese is just as awesome in giant

chunk form!

The last thing we need to do is make sure that your code matches exactly what is in

this book. Once we do that, you are free to run the program over and over, change the

values of the lists, and invite all of your friends and teachers over to generate their own

superheroes!

Here is the code of SuperheroGenerator3000.py in its entirety – compare your code

and make sure it matches:

Importing the random module to use for randomizing numbers and

strings later

import random

Importing the time module to create a delay

import time

Creating - or initializing - our variables that will hold character stats

brains = 0

braun = 0

stamina = 0

wisdom = 0

Chapter 6 Using What We’ve Learned

115

power = 0

constitution = 0

dexterity = 0

speed = 0

answer = ''

Creating a list of possible super powers

superPowers = ['Flying', 'Super Strength', 'Telepathy', 'Super Speed', 'Can

Eat a Lot of Hot Dogs', 'Good At Skipping Rope']

Creating lists of possible first and last names

superFirstName = ['Wonder','Whatta','Rabid','Incredible', 'Astonishing',

'Decent', 'Stupendous', 'Above-average', 'That Guy', 'Improbably']

superLastName = ['Boy', 'Man', 'Dingo', 'Beefcake', 'Girl', 'Woman', 'Guy',

'Hero', 'Max', 'Dream', 'Macho Man','Stallion']

Introductory text

print("Are you ready to create a super hero with the Super Hero

Generator 3000?")

Ask the user a question and prompt them for an answer

input() 'listens' to what they type on their keyboard

We then use upper() to change the users answer to all uppercase letters

print("Enter Y/N:")

answer = input()

answer = answer.upper()

While loop to check for the answer "Y"

This loop will continue while the value of answer IS NOT "Y"

Only when the user types "Y" will the loop exit and the program continue

while answer != "Y":

 print("I'm sorry, but you have to choose Y to continue!")

 print("Choose Y/N:")

 answer = input()

 answer = answer.upper()

print("Great, let's get started!")

print("Randomizing name...")

Creating suspense using the time() function

for i in range(3):

 print("...........")

Chapter 6 Using What We’ve Learned

116

 time.sleep(3)

print("(I bet you can't stand the suspense!)")

print("")

Randomizing Super Hero Name

We do this by choosing one name from each of our two name lists

And adding it to the variable superName

superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

print("Your Super Hero Name is:")

print(superName)

print("")

print("Now it's time to see what super power you have!)")

print("(generating super hero power...)")

Creating dramatic effect again

for i in range(2):

 print("...........")

 time.sleep(3)

print("(nah...you wouldn't like THAT one...)")

for i in range(2):

 print("...........")

 time.sleep(3)

print("(almost there....)")

Randomly choosing a super power from the superPowers list

and assigning it to the variable power

power = random.choice(superPowers)

Printing out the variable power and some text

print("Your new power is:")

print(power)

print("")

print("Last but not least, let's generate your stats!")

print("Will you be super smart? Super strong? Super Good Looking?")

print("Time to find out!")

Creating dramatic effect and slowing the program down again

for i in range(3):

 print("...........")

Chapter 6 Using What We’ve Learned

117

 time.sleep(3)

Randomly filling each of the below variables with a new value

The new values will range from 1-20

brains = random.randint(1,20)

braun = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

constitution = random.randint(1,20)

dexterity = random.randint(1,20)

speed = random.randint(1,20)

Printing out the statistics

print("Your new stats are:")

print("")

print("Brains: ", brains)

print("Braun: ", braun)

print("Stamina: ", stamina)

print("Wisdom: ", wisdom)

print("Constitution: ", constitution)

print("Dexterity: ", dexterity)

print("Speed: ", speed)

print("")

Printing out a full summary of the generated super hero

This includes the hero's name, super power, and stats

print("Here is a summary of your new Super Hero!")

print("Thanks for using the Super Hero Generator 3000!")

print("Tell all your friends!")

print("")

print("Character Summary:")

print("")

print("")

print("Super Hero Name: ", superName)

print("Super Power: ", power)

print("")

print("Brains: ", brains)

print("Braun: ", braun)

Chapter 6 Using What We’ve Learned

118

print("Stamina: ", stamina)

print("Wisdom: ", wisdom)

print("Constitution: ", constitution)

print("Dexterity: ", dexterity)

print("Speed: ", speed)

When you run this program, you should see a result similar to the following, keeping

in mind that the superhero’s name, superpowers, and stats will be different, as they are

all randomly generated – I know, I sound like a broken record!

Possible outcome:

Are you ready to create a super hero with the Super Hero Generator 3000?

Enter Y/N:

y

Great, let's get started!

Randomizing name...

...........

...........

...........

(I bet you can't stand the suspense!)

Your Super Hero Name is:

Wonder Man

Now it's time to see what super power you have!)

(generating super hero power...)

...........

...........

(nah...you wouldn't like THAT one...)

...........

...........

(almost there....)

Your new power is:

Good At Skipping Rope

Last but not least, let's generate your stats!

Will you be super smart? Super strong? Super Good Looking?

Time to find out!

...........

Chapter 6 Using What We’ve Learned

119

...........

...........

Your new stats are:

Brains: 8

Braun: 13

Stamina: 5

Wisdom: 15

Constitution: 20

Dexterity: 11

Speed: 9

Here is a summary of your new Super Hero!

Thanks for using the Super Hero Generator 3000!

Tell all your friends!

Character Summary:

Super Hero Name: Wonder Man

Super Power: Good At Skipping Rope

Brains: 8

Braun: 13

Stamina: 5

Wisdom: 15

Constitution: 20

Dexterity: 11

Speed: 9

Chapter 6 Using What We’ve Learned

121
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_7

CHAPTER 7

Saving Time with
Functions, Modules,
and Built-Ins
Now that we have officially created our first ever, full-blown Python application (back in

Chapter 6 if you are skipping around!), it is time to begin learning how to truly harness

our programming powers and become the best programm we can be.

Throughout this book so far, we have touched upon the importance of being as

efficient with our code as possible. Not only does coding efficiently increase the amount

of work we can accomplish throughout the day, it also has several other benefits. First, it

helps ensure that our programs use as little memory and processing power as possible,

and second, it helps reduce the amount of errors in our code. The latter is achieved

because, naturally, the less we type, the fewer chances there are of typing something

wrong or making a programming logic or syntax error.

Part of working efficiently involves reusing tested and proven snippets of code over

and over again as we create new programs. These pieces of code are often written to

perform common tasks and can range from a few simple lines of code to thousands of

lines. The key point, however, is that we know that they work, and instead of typing all of

that code over and over again, we can simply save them in their own little file and import

them into our programs as needed, saving us tons of time and mistakes.

When used this way, these snippets of code are referred to as modules. Simply put, a

module is a file containing code. That’s it.

We have used several modules throughout this book thus far, including time and

random. In this chapter, we will not only learn how to create our own modules but will

also look at some of the more popular and most commonly used modules that Python

has to offer. After all, the wide array of tried-and-true Python modules that are built-in

https://doi.org/10.1007/978-1-4842-9988-3_7#DOI
https://doi.org/10.1007/978-1-4842-9988-3_6

122

to Python – and the ones created by the large Python community – are one of the things

that make Python such a powerful and important programming language to begin with!

So put down those delicious corn-flavored potato chips and wipe that cheese dust

from your fingers (be certain not to get any on that new fancy cape!), and prepare to

extend your programming powers even further, as we delve into the ultimate weapon of

any superhero coder – modules!

�Defining Modules
Now that we know what a module is, you may find yourself wondering what, exactly, a

module can contain. Working off of our previous definition, a module can contain any

code at all. It might have a set of functions, be a script to write a bunch of text to the

user’s screen, contain a list of variables, or even be a few lines of code that import other

modules into your program.

So long as it is a Python file (.py) and contains code, it is a module.

There are technically three types of modules in Python. They are

•	 Built-ins

•	 Packages

•	 Self-defined/custom-created

�Built-Ins
Built-ins refer to modules and functions that are already a standard part of the Python

library. These modules come pre-installed when you perform an install of Python. They

include helpful functions such as datetime (which lets you work with date and time data

types), random (used to randomly generate numbers), and socketserver (for creating

network server frameworks).

You will be familiar with a few of the built-ins already, as we have used them in

examples throughout this book. There are quite a few built-in modules that come

standard with Python. To view a complete list, you can visit https://docs.python.

org/3.11/py-modindex.html. Note, however, that this list changes with each version, so

be sure to check the version of Python you are working with when visiting the Python.org

website.

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

https://docs.python.org/3.11/py-modindex.html
https://docs.python.org/3.11/py-modindex.html

123

Of course, an easier way to see a list of built-in Python modules is to simply use the

following bit of code:

Print a list of Python Built-in Modules

print(help("modules"))

When you run this code, Python prints out a list of all of the built-in modules you

currently have installed, similar to this:

Please wait a moment while I gather a list of all available modules…

BooleanExamples _testmultiphase gettext reprlib

BooleanLogic _thread glob rlcompleter

ConditionalStatements _threading_local grep rpc

Count10 _tkinter gzip rstrip

DoomsdayClock _tracemalloc hashlib run

Example1 _warnings heapq runpy

InfiniteLoop _weakref help runscript

LearningText _weakrefset help_about sched

ListExample _winapi history scrolledlist

LogicalOperatorsExample abc hmac search

MathIsHard aifc html searchbase

MultipleElifs antigravity http searchengine

OrExample argparse hyperparser secrets

PowersWeaknesses array idle select

RandomGenerator ast idle_test selectors

...

Of course, seeing a list of built-ins is great, but it would be better still to know what

they actually do, without having to log onto the Internet and Google them. Fortunately,

Python has two built-ins that help with that as well!

The first is .__doc__ – also known as a docstring or documentation string. Every

module you encounter should have a docstring as part of its definition that basically

serves that “document” what the function or module is used for. To read a module’s

documentation, we can call this docstring in the following manner:

First we must import the module

import time

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

124

Then we can print out its documentation

print (time.__doc__)

The name of the module whose documentation you wish to view goes before the

.__doc__ command.

If you were to put that code in a file and run it, your result would look like the

following:

This module provides various functions to manipulate time values.

There are two standard representations of time. One is the number

of seconds since the Epoch, in UTC (a.k.a. GMT). It may be an integer

or a floating point number (to represent fractions of seconds).

The Epoch is system-defined; on Unix, it is generally January 1st, 1970.

The actual value can be retrieved by calling gmtime(0).

The other representation is a tuple of 9 integers giving local time.

The tuple items are:

 year (including century, e.g. 1998)

 month (1-12)

 day (1-31)

 hours (0-23)

 minutes (0-59)

 seconds (0-59)

 weekday (0-6, Monday is 0)

 Julian day (day in the year, 1-366)

 DST (Daylight Savings Time) flag (-1, 0 or 1)

If the DST flag is 0, the time is given in the regular time zone;

if it is 1, the time is given in the DST time zone;

if it is -1, mktime() should guess based on the date and time.

Another option exists to see documentation – and in fact, you may wish to use both

options, as the documentation for the two commands can be different. For example, if

you enter this code

First we must import the module

import time

Then we can print out its documentation using our second method

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

125

help(time)

and run it, you will get a different, more wordy response than you did when you used

.__doc__:

Help on built-in module time:

NAME

 �time - This module provides various functions to manipulate

time values.

DESCRIPTION

 There are two standard representations of time. One is the number

 of seconds since the Epoch, in UTC (a.k.a. GMT). It may be an integer

 or a floating point number (to represent fractions of seconds).

 �The Epoch is system-defined; on Unix, it is generally January

1st, 1970.

 The actual value can be retrieved by calling gmtime(0).

 The other representation is a tuple of 9 integers giving local time.

 The tuple items are:

 year (including century, e.g. 1998)

 month (1-12)

 day (1-31)

 hours (0-23)

 minutes (0-59)

 seconds (0-59)

 weekday (0-6, Monday is 0)

 Julian day (day in the year, 1-366)

 DST (Daylight Savings Time) flag (-1, 0 or 1)

 If the DST flag is 0, the time is given in the regular time zone;

 if it is 1, the time is given in the DST time zone;

 if it is -1, mktime() should guess based on the date and time.

This result is actually just a tiny fraction of the entire document that will print.

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

126

To see the difference, try using both at the same time. Enter this code into a new

Python file named printDocumentation.py and run it, examining the results to see the

differences:

First we must import the module whose documentation we wish to view

import time

Printing documentation using .__doc__ or docstring

print (time.__doc__)

Creating a dividing line so that we can see where the next set of

Documentation begins.

 print("Here is what using HELP looks like...")

 print("######################################")

Printing documentation using help()

help(time)

The result of this code is too large to include in this book, but feel free to run

the program for yourself to see all of the documentation. Make sure to note which

documentation belongs to which method we used to read the docstring.

�Packages
Before you can import a module, you have to first install it – that is, if it did not come pre-

packed in your Python installation. One method we can use to install a package that does

not come standard (or that is developed by the community) is to use a built-in function

known as pip. pip comes installed automatically in most current versions of Python, so

unless you are using a legacy version of the language, then you should be all set.

pip is an installer program that comes bundled with Python versions 3.4 and up.

To use the program, you must launch your command line window (you can do so by

accessing Start, then run, then typing CMD). From there, you can see a list of possible

pip commands by simply typing “pip” in the command prompt.

For now, you only need to understand one simple pip command: install. Before we

use it however, we always want to check to see if we have the package we want to install

already installed.

To do that, we head back over to IDLE and type in:

import <nameofmodule>

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

127

For example, if we wanted to see if we had the time module installed, we would type:

import time

If we receive an error, we know that that particular module is not installed already.

To fix this, we head back over to our command line – or CMD – and install the

module. For our example, let’s use the Pygame package, which is a popular package that

helps in video game development (a topic we cover in a later chapter).

At the command prompt, simply enter:

python -m pip install Pygame

After a few seconds, the command line will begin the process of downloading and

installing the package. Once finished, you will see a message similar to Figure 7-1.

Figure 7-1.  Congratulations! You have now installed your first Python package

�Creating Your Own Module
Using pre-existing built-in modules and packages is a great way to make your programs

more efficient and less prone to errors. Another tool you can use to save you time

and lots of keyboard head-banging (a lot of that occurs when you are looking for

programming errors late in the night or listening to Metallica) is to create your very own

modules that you can use over and over again.

The first part of creating our module is to create a function that we can call or

reference from within another program. For this exercise, we will need two Python files.

We will start by creating the actual module that will be used by our main program.

Create a file called ourFirstModule.py and enter in the following code:

Define your function using def

def firstFunction():

 print("This is our first function!")

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

128

Save the file and try to run it. While you can see that the program does indeed

execute, nothing really seems to happen. This is because we have only defined what our

function is going to do, but we have not invoked it, called it, or told it to do anything yet.

To actually use this function, we have to call it from another file.

Create another file named testingModule.py and enter in the following code:

We first have to import our module

We import our module by using the name of the file, minus the .py

extension

import ourFirstModule

Now we call the function to use it

ourFirstModule.firstFunction()

When you run this file, you should see the following result:

This is our first function!

Congratulations, you have created your first module and successfully called it from

within another program!

Of course, modules can have more than one function within them, so let’s

add a few more functions and practice calling them in our file. Open back up your

ourFirstModule.py file and edit the code so it looks like this:

Define your function

def firstFunction():

 print("This is our first function!")

Define a second function

def secondFunction():

 print("Look, a second function!")

Define a variable

a = 2+3

Next, we need to edit our testingModule.py file to make use of our newly defined

functions and variables. Modify the code so it resembles the following:

We first have to import our module

We import our module by using the name of the file, minus the .py extension

import ourFirstModule

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

129

Now we call the function to use it

ourFirstModule.firstFunction()

Calling our second function

ourFirstModule.secondFunction()

Calling and printing a variable within our module

print("The value of a is: ",ourFirstModule.a)

In addition to calling not one, but two functions, this code also prints out the value

of our variable named a. We achieve this using the code print(ourFirstModule.a). The

part ourFirstModule references the ourFirstModule.py file and tells Python where to

pull the function from, while the .a tells it what variable to print. If our variable were

named lastName, for example, it would look like this instead: print(ourFirstModule.

lastName).

Finally, as with any code that we create, we always want to be sure to document

our work. Earlier, we used .__doc__ and help() to print out the documentation for

modules. Now, we will use multi-line commenting (or three sets of ") to create our own

documentation.

Open up your ourFirstModule.py file and modify the code for the first function –

firstFunction() – by adding the following comments to it:

Define your function

def firstFunction():

 """ This is the documentation - or docstring - for firstFunction()

We can put examples of use here or just document what the function is for

That way future programmers - or ourselves later on - can read the

"helpfile" for our firstFunction and know what it was intended for

 """

print("This is our first function!")

Everything between the first indented set of """ and the closing set of """ is

considered a comment or documentation, as discussed in a previous chapter.

Now, open up your testingModule.py file, and let’s add the following code to it, in

order to print out the documentation:

print the helpfile for firstFunction()

help(ourFirstModule)

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

130

You can place this code anywhere in the file, but I chose to place it directly beneath

the print( ) function that prints out firstFunction.

Run the program and you should see the following results:

This is our first function!

Help on module ourFirstModule:

NAME

 �ourFirstModule - # Define your function

FUNCTIONS

 firstFunction()

 This is the documentation - or docstring - for firstFunction()

We can put examples of use here or just document what the function is for

 That way future programmers - or ourselves later on - can read the

 "helpfile" for our firstFunction and know what it was intended for

 secondFunction()

DATA

 a = 5

Look, a second function!

The value of a is: 5

�Common Built-In Functions
Python has many great built-in functions, and we have covered a great many in this

book so far. But just like items in a trusty utility belt, you can never have too many tools

on hand. Sure, a can of shark repellent might seem ridiculous, but wait till you get into

a battle with Guy-That-Can-Hold-His-Breath-and-Oh-Yeah-Also-Speak-To-Sharks Man.

Now how silly do you think shark repellent is?

There are nearly 70 built-in functions, most of which you will use in your life as a

programmer. For now, we are going to discuss a few of the more common ones that we

have skipped thus far. We will tackle them by category, beginning with string functions.

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

131

�String Functions
String functions, as you can probably guess, are functions that work on strings. We have

already covered a few, including str.upper() and str.lower(), which convert strings to

upper- and lowercase, respectively.

In addition to actually making a string uppercase or lowercase, you can also perform

a check to see what case a string’s content actually is. For example, maybe you want

to know whether a user has typed in all capital letters. To check, you could use the

following code:

Create a string of all uppercase letters

testString = "I AM YELLING!"

print("Is the user yelling?")

Check to see if the value of testString consists of all uppercase letters

print(testString.isupper())

In this case, we use the string function known as str.isupper( ) to check that the string

contains uppercase letters. If you were to run the this code, you would get a boolean

response (True or False):

Is the user yelling?

True

Note that if any character at all in the string is lowercase, it would return a False value

instead, as the function is checking to see if the entire string contains uppercase letters.

If we wanted to check to see if the case was lower, we would use the string function

str.islower( ), like so:

Create a string of all uppercase letters

testString = "I AM YELLING!"

print("Is the user yelling?")

Check to see if the value of testString consists of all uppercase letters

print(testString.islower())

Which, of course – in this instance – would return a False.

There are times when we might want to check what type of characters the user typed

in. For example, if the user was filling out a form and we wanted to know their first and

last name, we would not want them to input a numeric value – not unless they were

robots, aliens, or a cool rapper mind you.

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

132

To check if a string only contains letters (and no numbers), you would use str.

isalpha():

Create a string to check if the variable only contains letters

firstName = "James8"

Check to see if the value of firstName contains any numbers

print("Does your name contain any letters?")

if firstName.isalpha() == False:

 print("What are you, a robot?")

Since the value of the string firstName does not just contain letters (it has a number

in it), then the if returns a False value, causing the print() function to print out its text:

Does your name contain any numbers?

What are you, a robot?

If firstName only contained alphabetic characters (A–Z and a–z), the if would have

returned True, and nothing would have printed.

We can also check if the values are only numeric or contain just numbers. For

example, maybe we want to make sure someone is not entering letters into a social

security or phone number field. To check for number-only values in a string, we use the

function str.isnumeric():

Create a string to check if the variable only contains numbers

userIQ = "2000"

Check to see if the value if userIQ contains only numbers and no letters

if userIQ.isnumeric() == False:

 print("Numbers only please!")

else:

 print("Congrats, you know the difference between a number and a letter!")

Again, we check to see if the result of the evaluation of whether userIQ contains only

numbers is True or False. Since userIQ only contains numbers – and no letters – the

result is True, and we get the result:

Congrats, you know the difference between a number and a letter!

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

133

We can also check to see if our strings contain only spaces – also known as

whitespaces. To do that, we use the function str.isspace():

Check to see if the value of UserIQ contains all spaces or whitespace

characters

if userIQ.isspace() == True:

 print("Please enter a value other than a bunch of spaces you boob!")

Since userIQ does not contain all spaces, nothing happens. If it were full of only

spaces, Python would have executed the print( ) function we defined.

Another useful string function we can use is len(), which lets us count the number

of characters in a string. You may be asking yourself, “Why in the world would I want

to do that?” The answer is simple: you may want to limit the number of characters in a

variable, such as a password, or make sure it has enough characters.

Or, maybe, you have OCD (obsessive-compulsive disorder) like me, and feel the need

to count everything. I consider it one of my many, many superpowers….

To count the number of characters in a string, you could use code similar to this:

Create a variable to count the number of characters it holds using len()

testPassword = "MyPasswordIsPassword!"

print(len(testPassword))

When you run this code, you will get the result:

21

�Number Functions

Now that we have learned a few new string functions, let’s move on to working with

numbers. We previously examined several functions that helped us work with numbers,

as well as operators that let us perform nifty mathematical equations without hurting our

brains (too much, anyway).

To make our brains ever more gooder at numbers (don’t tell your English teacher I

wrote that!), let us take a gander at some more functions that will up our programming

skills and make us look like proverbial rocket scientists.

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

134

Sometimes when we work with numbers, we will be asked to tell our bosses which

number is higher than all of the other ones. To find out which number is the max in a

series of numbers, we use max().

Create a list containing a group of numbers

studentGrades = [100, 90, 80, 70, 60, 50, 0]

Use max() to find the highest number in the studentGrades list

print("What is the highest grade in the studentGrades list?")

print:("Answer :")

print(max(studentGrades))

If we were to run this code, it would result in:

What is the highest grade in the studentGrades list?

100

Because 100 is the highest value in our list studentGrades. If we wanted to find out

the minimum value of a list of numbers, we would use min( ):

Create a list containing a group of numbers

studentGrades = [100, 90, 80, 70, 60, 50, 0]

Use max() to find the highest number in the studentGrades list

print("What is the highest grade in the studentGrades list?")

print:("Answer :")

print(max(studentGrades))

Use min() to find the lowest number in the studentGrades list

print("What is the lowest grade in the studentGrades list?")

print:("Answer :")

print(min(studentGrades))

Once run, this code outputs:

What is the highest grade in the studentGrades list?

100

What is the lowest grade in the studentGrades list?

0

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

135

We could also use min() and max() without creating a list. To use them as stand-

alones, you would type:

print(min(100, 90, 80, 70, 60, 50, 0))

print(max(100, 90, 80, 70, 60, 50, 0))

Note  You can also use min( ) and max( ) on strings – for example, using min
on the alphabet, listed from a to z, would return “a,” while using max( ) would
return “z.”

Another common practice is to sum up all of the numbers in a given list. Maybe you

need to calculate your company’s total payroll or hours worked. To do so, you use the

sum() function. Let’s sum it up with the following code:

Create another list containing more numbers, representing payroll

totalPayroll = [500, 600, 200, 400, 1000]

Use sum() to calculate the sum of the numbers in a list

print("How much did we pay employees this week?")

print("The total payroll was: ")

print(sum(totalPayroll))

The output of this example would be:

How much did we pay employees this week?

The total payroll was:

2700

�Practice Your New Functions
We have added a lot of new functions to your superhero programming utility belt. Now is

the time to practice what you learned to sharpen your skills. In the following you will find

a list of new string functions we learned and a list of new number/math functions we

toyed around with in this chapter.

Feel free to input this code on your own and figure out new and exciting ways to use

these simple, yet powerful, functions.

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

136

�String Function Examples
Create a string of all uppercase letters

testString = "I am YELLING!"

Create a string to check if the variable only contains letters

firstName = "James8"

Create a string to check if the variable only contains numbers

userIQ = "2000"

Create a variable to count the number of characters it holds using len()

testPassword = "MyPasswordIsPassword!"

A series of functions are tested below

print("Is the user yelling?")

Check to see if the value of testString consists of all uppercase letters

print(testString.isupper())

Check to see if the value of firstName contains any numbers

print("Does your name contain any numbers?")

if firstName.isalpha() == False:

 print("What are you, a robot?")

Check to see if the value if userIQ contains only numbers and no letters

if userIQ.isnumeric() == False:

 print("Numbers only please!")

else:

 �print("Congrats, you know the difference between a number and a

letter!")

Check to see if the value of UserIQ contains all spaces or whitespace

characters

if userIQ.isspace() == True:

 print("Please enter a value other than a bunch of spaces you boob!")

Count the number of characters in a password

print("Let's see how many characters are in testPassword!")

print("I count: ")

print(len(testPassword))

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

137

�Number Function Examples
Create a list containing a group of numbers

studentGrades = [100, 90, 80, 70, 60, 50, 0]

Create another list containing more numbers, representing payroll

totalPayroll = [500, 600, 200, 400, 1000]

Use max() to find the highest number in the studentGrades list

print("What is the highest grade in the studentGrades list?")

print:("Answer :")

print(max(studentGrades))

Use min() to find the lowest number in the studentGrades list

print("What is the lowest grade in the studentGrades list?")

print:("Answer :")

print(min(studentGrades))

Use min() and max() without defining a list

print(min(100, 90, 80, 70, 60, 50, 0))

print(max(100, 90, 80, 70, 60, 50, 0))

Use sum() to calculate the sum of the numbers in a list

print("How much did we pay employees this week?")

print("The total payroll was: ")

print(sum(totalPayroll))

�In This Episode!
This episode was spectacular! It was amazing! It was astonishing! It was spider…well, let’s

just say it was incredible and leave it at that (hey, those big comic book companies don’t

own those words!).

You really took a great leap forward in your programming powers this chapter,

learning how to create your very own modules and functions. You topped that off by

learning a few more built-in functions and even gained the ability to use one of Python’s

most powerful components – community-created packages.

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

138

We covered a lot, so, as always, here is a summary of some of the great things we

added to your superpower kit in this chapter!

•	 There are three types of modules: built-ins, packages, and

custom-created.

•	 Built-ins come pre-installed in Python, packages are created by third-

party suppliers/the Python community, and custom-created are the

ones you create yourself.

•	 help( ) and .__doc__ help print a module’s documentation or

help file:

•	 Example: help(time) and print(time.__doc__)

•	 help(“modules”) lists all of the available modules your Python install

currently has to offer.

•	 import imports the module into your program.

•	 Example: import time

You can install a package using pip on the command line:

python -m pip install <name of module>

def is used to define a function.

Example:

def firstFunction():

 print("Hello!")

•	 str.upper( ) and str.lower( ) convert a string to upper- and lowercase,

respectively.

•	 str.isalpha, str.isnumeric, and str.isspace( ) all check to see if the

correct data type is being used.

•	 len( ) counts the number of characters in a string.

•	 min( ) and max( ) find the minimum and maximum value in a list of

numbers or string values.

•	 sum( ) calculates the sum of values contained within a list.

Chapter 7 Saving Time with Functions, Modules, and Built-Ins

139
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_8

CHAPTER 8

Using Classes and Objects
Up to this point, we have covered some pretty standard programming language features

and practices. This chapter will continue this tradition; however, the subject matter may

be a little tougher to grasp at first glance. Don’t worry though – you have come this far,

and we have watched you morph from stumbling sidekick to full-on, beastly hero.

Your parents would be proud – or they would be – if they had survived the attack of

the Ooze People from Planet Gorgon. Moving on….

This chapter will focus on a concept known as OOP – or object-oriented programming.

You will be learning about things called classes and objects, constructors,

superclasses, subclasses, and a powerful tool known as inheritance. We will then use

these new, powerful concepts and methods to make a version of the program we created

back in Chapter 6.

That’s right – just when you thought we couldn’t improve upon the good ole’

Superhero Generator 3000, yours truly pulled the rug out from under you and blew your

mind! I hope you are wearing a helmet because I’m not cleaning up all those brains!

�What Is OOP?
Truth be told, Python is, in fact, an object-oriented programming language. Not

everyone uses it as such, and not everyone is a fan of – or truly grasps – the true

power of OOP.

Some would argue that writing in an OOP manner makes Python, well, less Python;

that is, they feel that using the methods, classes, and objects that are at the core of object-

oriented programming makes Python less readable and user-friendly.

There may be some merit to that argument, but overall, what a programmer loses

in readability, they make up for in efficiency, error reduction, and, frankly, good

programming habits. Besides, if you follow the practice of good code documentation

(as we have discussed time and again), your code will be very readable, as you will

clearly state your intention in every section of your program.

https://doi.org/10.1007/978-1-4842-9988-3_8#DOI
https://doi.org/10.1007/978-1-4842-9988-3_6

140

Object-oriented programming (OOP) is all about creating reusable code. Remember

how we discussed the benefits of function and modules? Those same rules apply to

using OOP practices. It is perfect for more complicated or long programs, as it lets you

reuse snippets of code and keep everything in a nice, tight, easily accessible bundle.

Up until this point, we have mostly relied on something known as procedural

programming. Procedural code is essentially lines of code that appear – and are mostly

used – in sequential order. In this chapter, we will change all of that!

The core concept of OOP programming – a concept that exists in many other

programming languages by the way – involves things known as classes and objects.

�What Are Classes (And Will I Be Graded?)
Don’t worry – I know the word “class” frightens you and reminds you of long lectures

on the joys of mathematics or the telling of riveting tales of the economic systems of the

early Etruscan peoples. In Python, classes are much more interesting; however, though,

in truth, there is much joy to be found in a nice slice of pi.

Crickets

But I digress.

A class can best be described as the DNA for an object; better yet, you can think of

it as a blueprint of an object or even as a template. Think of a class in this way: if you

were going to build a car, you wouldn’t just randomly hammer some metal and rubber

tires together and hope for the best. If you did, your car would not get too far or look

that great!

Instead, you would create a blueprint – or a class – that would contain certain details

or features that you would want your car to have. Further – since us hero programmers

are all about efficiency – we would want to create a blueprint (class) that we could

use when we constructed any car. That way, when we went to make another model of

vehicle, we wouldn’t have to draw up plans all over again.

If we created a class for a car, for instance, we might want to say that every car has

four tires, a windshield, doors, an engine, and so forth. These would all be common

things that every car would have. The color, paint, number of doors, size of tires, and so

forth might differ, but those basic features would exist on every car.

So, to summarize, a class is basically a blueprint that lets us create multiple objects

that all have the same basic features. Instead of having to code or define those features

each time we create a new object, we simply call an instance of our class and blammo –

all of the work is already done.

Chapter 8 Using Classes and Objects

141

If this concept doesn’t fully click in your brain just yet, don’t worry – it will start to be

crystal clear when we begin to use it in actual code. For now, just be aware of the basic

concept:

Classes. Are. Blueprints.

�What Are Objects
If classes are the blueprints, then objects are, well, the objects we create from them! In

programming terms, when we create an object, we are creating an instance of the class.

Objects can be used to represent a whole slew of things in a program. As stated, you

could use them to create a vehicle, for example. Or they could represent a dog breed or a

type of employee.

Of course, this is a superhero programming book, so what better way to introduce

the concept of classes and objects – and how to use them – than to create our own

blueprint (class) of a superhero (object)?

�Creating Our First Class
Creating a class is a relatively simple thing to do. It is, in fact, very similar to creating a

function. When we create a class – as is the case with functions – it is known as defining a

class. We do so using the class keyword:

class Superhero():

...(write some code)

....(more code here)

This example shows how to create a class named Superhero. Note the naming

convention for classes is to capitalize the first letter of the beginning word. If there are two

or more words in the name, you would capitalize the first letter of each word. For instance,

if you wanted to create a class to represent an “American Superhero,” you would use:

class AmericanSuperhero():

 ...(write some code)

 ...(write some more code)

Of course, these classes do not technically do anything. For them to be useful and

perform their function, we need to add code to them that tells them what to do or that

helps define the objects that we will be creating from them.

Chapter 8 Using Classes and Objects

142

When we add a function to a class, the function is known as a method. Methods must

be indented beneath the class that they belong to.

class Superhero():

 def fly(self):

 print("Look at me, I'm so fly!")

This code creates a class named Superhero with a method named fly, which prints

out the text “Look at me, I’m so fly!”

When we define a method, we do so using def, followed by the name of the method.

Methods contain arguments, encapsulated in parentheses. Every method of a class

must contain the self argument at the very least; they can contain any number of other

arguments as well (more on this soon!).

self is used to reference the instance of the object you create. Again, this will make

more sense as we actually create our classes and put them to work.

Also note that the code beneath the method definition must be indented in relation

to the method it belongs to as well.

We can place any number of methods within a single class and can add all sorts of

code to them as well, including variables and so forth.

For instance, if we wanted to add two methods to our Superhero class – one that

lets him fly, the other that lets him eat a lot of hot dogs – we could just define our class

this way:

class Superhero():

 def fly(self):

 print("Look at me, I'm so fly!")

 def hotDog(self):

 print("I sure do like hot dogs!")

If we were to run this code, nothing would happen, as all we are doing is defining our

Superhero class. To actually use the class, we have to create an instance – or an object –

of the class.

�Creating Our First Object
Now that we have a basic blueprint of a superhero created via our Superhero class, we

can create our first hero, or, more aptly put, our first hero object.

Chapter 8 Using Classes and Objects

143

In order to create an object (or an instance of a class), we must initialize – or create –

a copy of the class, similar to creating a variable and giving it a value:

HotDogMan = Superhero()

Creating an object is just that simple. Now, the object HotDogMan has all of the

traits of our Superhero class. The instance/object of the Superhero class gets stored in

HotDogMan, including all of the attributes and methods that we defined when we created

the class.

To see this in action, we can call the two methods that we defined in the Superhero

class, which are now part of the HotDogMan object. To call means to execute or run part

of some code:

HotDogMan.fly()

HotDogMan.hotDog()

The first line of this code tells Python to access the HotDogMan object and look for a

method named fly, then, once found, execute it. The second line does the same thing,

only it looks for the method hotDog and runs that portion of code.

To better understand everything we have covered so far, let’s create a new file

named SampleClassandObject.py and add the following code to it (Note: this code is

specifically the code we have discussed so far in this chapter, collected into one file):

class Superhero():

 def fly(self):

 print("Look at me, I'm so fly!")

 def hotDog(self):

 print("I sure do like hot dogs!")

HotDogMan = Superhero()

HotDogMan.fly()

HotDogMan.hotDog()

When we run this code, we get the following result:

Look at me, I'm so fly!

I sure do like hot dogs!

Chapter 8 Using Classes and Objects

144

This is all well and good, but, in reality, these examples do not show the true power

that classes and objects – and object-oriented programming – have to offer. Now that we

understand the basic concept of classes and objects, let’s use them in a more practical

and real-world manner.

�Improving the Superhero Generator 3000!
If you recall back in Chapter 6, we created a program that randomly generated a

superhero. Specifically, we randomly generated a superhero name, a power, and some

statistics. To do so, we had the user run the program and answer a few simple questions

before displaying the results.

We created that program in a very sequential order; that is, the code we wrote was

read by the Python interpreter – and any programmers who view it – line by line. While

the program performed (flawlessly, I might add!), what would happen if we wanted to

create a second, or thousandth, superhero? To do that, in the program’s current state, the

user would have to run the program over and over again.

Not very efficient.

We could have always created a loop to continue the superhero choosing process if

the user requested more than one hero or we could have just kept adding more code to

allow for more superheroes, but, again, we want to create as few lines of code as possible

to make our programs run better and reduce the possibility of errors.

Think of it this way: our old Superhero Generator 3000 program was a system that

hand-built each and every superhero. If we used classes and objects instead, we would

have a high-tech factory that could print out superheroes by the thousands and without

having to worry as much about human error. Additionally, it would save tons of time

because we wouldn’t have to write so much code.

With all of this in mind, let’s take a stab at recreating the Superhero Generator 3000,

this time making use of classes and objects.

If you will recall, in our original version of the program, each hero had a set of

statistics that defined their physical and mental characteristics. These included

•	 Brains: How smart the hero is

•	 Braun: How strong the hero is

•	 Stamina: How much energy the hero has

Chapter 8 Using Classes and Objects

https://doi.org/10.1007/978-1-4842-9988-3_6

145

•	 Wisdom: How wise they are and how much real-life experience

they have

•	 Constitution: How well their body can recover from injury and resist

illnesses

•	 Dexterity: How acrobatic and nimble our hero is

•	 Speed: How fast the hero is

We can assign each of these attributes to a Superhero class, and that way, when we

create an object from that class, any and all heroes we make will have the same set of

statistics. We do this, because we know that every hero should have at least some brains,

braun, dexterity, and so forth – these are all common traits of a standard hero and,

therefore, will be part of our hero blueprint or template.

Let’s create a new file named SuperheroClass.py and add the following code to it:

Import the random module so we can randomly generate numbers

import random

Create a Superhero class that will act as a template for any heroes

we create

class Superhero():

 # Initializing our class and setting its attributes

 def __init__(self):

 self.superName = " "

 self.power = " "

 self.braun = braun

 self.brains = brains

 self.stamina = stamina

 self.wisdom = wisdom

 self.constitution = constitution

 self.dexterity = dexterity

 self.speed = speed

Adding random values to each stat using the random() module

braun = random.randint(1,20)

brains = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

Chapter 8 Using Classes and Objects

146

constitution = random.randint(1,20)

dexterity = random.randint(1,20)

speed = random.randint(1,20)

In this code, we are introduced to a new method, known as the constructor method.

We use it to initialize any new data that belongs to the class. The constructor method is

also called the __init__ method and is always the first method we create in a class when

we need to add data to any variables up front.

If we have parameters, we place them in the parentheses of the __init__ method.

Here, we set each self reference equal to each parameter. For example:

self.brains = brains

sets self.brains equal to brains. That way, later in the program when we create our

objects, we can refer to the different parameters – which, in this case, represent our hero

stats – and use them in our program.

Next, in this case, we want to create hero templates and we want each hero stat to be

randomized, so we use the random( ) module on each parameter that will represent our

hero stat. For example:

braun = random.randint(1,20)

adds a random value to braun, ranging from 1 to 20.

Again, classes, objects, and methods can be a difficult subject to grasp for a beginner,

so be patient and be sure to follow along the code, even if things do not make 100% sense

right off the bat; sometimes you need to see the code in action to fully grasp what it is

intended to do.

Now that we have set up our initial Superhero class and decided what the template

for any superheroes that we create are going to look like, let’s go ahead and try to create

an instance of the class (again, also known as creating an object). Then, we will print out

the stats of our hero. Add the following code to your SuperheroClass.py file:

Import the random module so we can randomly generate numbers

import random

Create a Superhero class that will act as a template for any heroes we create

class Superhero():

 # Initializing our class and setting its attributes

 def __init__(self):

 self.superName = ""

Chapter 8 Using Classes and Objects

147

 self.power = ""

 self.braun = braun

 self.brains = brains

 self.stamina = stamina

 self.wisdom = wisdom

 self.constitution = constitution

 self.dexterity = dexterity

 self.speed = speed

Adding random values to each stat using the random() function

braun = random.randint(1,20)

brains = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

constitution = random.randint(1,20)

dexterity = random.randint(1,20)

speed = random.randint(1,20)

print("Please enter your super hero name: ")

Creating the Superhero object

hero = Superhero()

Assigning a value to superName using the user's input

hero.superName = input('>')

We print out the result of the created object, including its parameters

print("Your name is %s." % (hero.superName))

print("Your new stats are:")

print("")

print("Brains: ", hero.brains)

print("Braun: ", hero.braun)

print("Stamina: ", hero.stamina)

print("Wisdom: ", hero.wisdom)

print("Constitution: ", hero.constitution)

print("Dexterity: ", hero.dexterity)

print("Speed ", hero.speed)

print("")

Chapter 8 Using Classes and Objects

148

In this version of our program, we ask the user to enter their own name for the

superhero vs. randomly generating one as we did in our original Superhero Generator

3000 program. Don’t fret – we will randomize that value soon enough. For now, we

want to keep things simple, as we let the user enter their own name, using the input()

function. The input() function’s value is placed in the hero object’s superName

parameter. This is all achieved in the line:

hero.superName = input('>')

You may have noticed that we used input() a little different here than before. The

'>' in the parentheses simply places a > prompt on the user’s screen so they know where

to type.

Next, we printed out the randomly generated values of each parameter of the hero

object using, for example, line’s like this:

print("Brains: ", hero.brains)

Then, hero.brains portion of that line tells Python to print the value stored in the

hero objects brains parameter – similar to the way a variable works.

If you run that program, you will get a result like this – keeping in mind your values

will be different because they are randomly generated:

Please enter your superhero name:

>SuperPowerAwesomeManofAction

Your name is SuperPowerAwesomeManofAction.

Your new stats are:

Brains: 10

Braun: 10

Stamina: 5

Wisdom: 17

Constitution: 1

Dexterity: 19

Speed 15

Chapter 8 Using Classes and Objects

149

Perfect so far! Now, let’s add the code to randomly generate the hero’s name and

superpower. For this part, we are going to add the lines:

Creating a list of possible super powers

superPowers = ['Flying', 'Super Strength', 'Telepathy', 'Super Speed', 'Can

Eat a Lot of Hot Dogs', 'Good At Skipping Rope']

Randomly choosing a super power from the superPowers list

and assigning it to the variable power

power = random.choice(superPowers)

Creating lists of possible first and last names

superFirstName = ['Wonder','Whatta','Rabid','Incredible', 'Astonishing',

'Decent', 'Stupendous', 'Above-average', 'That Guy', 'Improbably']

superLastName = ['Boy', 'Man', 'Dingo', 'Beefcake', 'Girl', 'Woman', 'Guy',

'Hero', 'Max', 'Dream', 'Macho Man','Stallion']

Randomizing Super Hero Name

We do this by choosing one name from each of our two name lists

And adding it to the variable superName

superName = random.choice(superFirstName)+ " " +random.choice(superLastName)

Right below where we defined our superhero stats. Since we are now randomly

generating the superhero’s name, we no longer need to ask the user for their input, so we

remove the lines:

print("Please enter your super hero name: ")

as well as

Assigning a value to superName using the user's input

hero.superName = input('>')

We no longer need those, since we are now randomly generating our superName

based off of the superFirstName and superLastName lists, just as we did in the original

version of our program.

So now, all together, your code should match the following; if it does not, review this

section again and change your code to match mine:

Import the random module so we can randomly generate numbers

import random

Create a Superhero class that will act as a template for any heroes we create

Chapter 8 Using Classes and Objects

150

class Superhero():

 # Initializing our class and setting its attributes

 def __init__(self):

 self.superName = superName

 self.power = power

 self.braun = braun

 self.brains = brains

 self.stamina = stamina

 self.wisdom = wisdom

 self.constitution = constitution

 self.dexterity = dexterity

 self.speed = speed

Adding random values to each stat using the random() function

braun = random.randint(1,20)

brains = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

constitution = random.randint(1,20)

dexterity = random.randint(1,20)

speed = random.randint(1,20)

Creating a list of possible super powers

superPowers = ['Flying', 'Super Strength', 'Telepathy', 'Super Speed', 'Can

Eat a Lot of Hot Dogs', 'Good At Skipping Rope']

Randomly choosing a super power from the superPowers list

and assigning it to the variable power

power = random.choice(superPowers)

Creating lists of possible first and last names

superFirstName = ['Wonder','Whatta','Rabid','Incredible', 'Astonishing',

'Decent', 'Stupendous', 'Above-average', 'That Guy', 'Improbably']

superLastName = ['Boy', 'Man', 'Dingo', 'Beefcake', 'Girl', 'Woman', 'Guy',

'Hero', 'Max', 'Dream', 'Macho Man','Stallion']

Randomizing Super Hero Name

We do this by choosing one name from each of our two name lists

And adding it to the variable superName

Chapter 8 Using Classes and Objects

151

superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

Creating the Superhero object

hero = Superhero()

Assigning a value to superName using the user's input

hero.superName = input('>')

We print out the result of the created object, including its parameters

print("Your name is %s." % (hero.superName))

print("Your super power is: ", power)

print("Your new stats are:")

print("")

print("Brains: ", hero.brains)

print("Braun: ", hero.braun)

print("Stamina: ", hero.stamina)

print("Wisdom: ", hero.wisdom)

print("Constitution: ", hero.constitution)

print("Dexterity: ", hero.dexterity)

print("Speed ", hero.speed)

print("")

If you run this program now, you will get the following result (again, your value will

be different as they are randomly generated):

Please enter your super hero name:

Your name is Incredible Dream.

Your super power is: Good At Skipping Rope

Your new stats are:

Brains: 1

Braun: 1

Stamina: 5

Wisdom: 11

Constitution: 6

Dexterity: 9

Speed 13

Chapter 8 Using Classes and Objects

152

So now, at this point, our program works almost the same as the original version of

the Superhero Generator 3000, only there are fewer lines of code and fewer chances for

an error to occur. Some of the prompts are different also – for instance, we have not yet

asked the user if they want to create a hero, and we have not inserted our dramatic pause

effects while the values are being generated. However, the bare bones are in place, and in

this next section, we will add in some of the old bells and whistles, as well as some new,

really cool features that showcase the true power of classes and objects!

�Inheritance, Subclasses, and More!
One of the great things about classes is that you can use them to create other classes and,

by way of a thing called inheritance, pass their attributes along to the newly recreated

class, without having to use a bunch of lengthy code. It’s similar to how your parents

pass their genetic code down to you, only in Python, we get to say what exactly a class

inherits.

When we create a class based off of another class, we call this newly created class a

subclass. By default, these subclasses inherit the methods and parameters of the class

they are created from – which, by the way, are known as parent classes or superclasses.

As with all things code, sometimes it is best to demonstrate how this idea works

through an actual program.

So far, the Superhero Generator 3000 only lets us create regular old superheroes.

However, as you well know, not all heroes are created equally. For instance, Superman

is technically just an alien from another planet that can see through clothes and eats

sunlight (like a buff plant) to get strong. Batman, meanwhile, has no powers at all;

or rather, his superpowers consist of having boat loads of money, an awesome car,

and a butler with some far-fetched computer programming skills. I mean, really? My

parents can’t figure out how to text, and here Alfred is, using the world’s most powerful

supercomputer.

But I digress.

To make our program a little more realistic, we are going to introduce a new attribute

to our superheroes: superhero type. For each type that we create, we are going to give

them a bonus of some sort. For now, let’s focus on creating two subclasses to represent

our new “types” of heroes. One will be for superheroes that are robots and the other for

superheroes that are mutated.

Chapter 8 Using Classes and Objects

153

Here is how that would look in code:

Creating a subclass of Superhero named Mutate

Mutate heroes will get a +10 bonus to their speed score.

class Mutate(Superhero):

 def __init__(self):

 Superhero.__init__(self)

 print("You created a Mutate!")

 self.speed = self.speed + 10

 �self.superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

Creating a subclass of Superhero named Robot

Robot heroes will get a + 10 bonus to their braun score.

class Robot(Superhero):

 def __init__(self):

 Superhero.__init__(self)

 print("You created a robot!")

 self.braun = self.braun + 10

 �self.superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

Here, we have created two new classes, which are both actually subclasses of our

Superhero class. The way we achieve this is by putting the name of the parent class in the

parentheses of the newly created class. For example, class Mutate(Superhero) tells the

Python interpreter to create a class that is a child or subclass of Superhero and inherit its

methods and parameters.

We then initialize our new subclass using def __init__(self) and re-initialize our

Superhero class using Superhero.__init__(self), since we will be creating new objects

based off of, technically, both the class and subclass.

Finally, we want to give our heroes a bonus based off of which type of hero they are.

The mutate character will receive a bonus to speed, as shown in this line of code:

self.speed = self.speed + 10

While robots will get a bonus to braun, via this line of code:

self.braun = self.braun + 10

Chapter 8 Using Classes and Objects

154

All other hero stats will remain the same, as they were generated in the Superhero

class originally; if we wanted to modify their values again, we would have to do so

explicitly in our newly created subclasses.

Now that we have created two new classes, we need to actually create an instance/

object based off of them to see them in action. The code to create an object based off of

a subclass is the same as it is to create one based off of any class; if we wanted to create a

new mutate hero and a new robot hero, we would do so using these lines of code:

hero2 = Robot()

hero3 = Mutate()

Let’s create some code to print out the stats of a regular superhero, a robot, and

a mutate:

Creating the Superhero object

hero = Superhero()

We print out the result of the created object, including its parameters

print("Your name is %s." % (hero.superName))

print("Your super power is: ", hero.power)

print("Your new stats are:")

print("")

print("Brains: ", hero.brains)

print("Braun: ", hero.braun)

print("Stamina: ", hero.stamina)

print("Wisdom: ", hero.wisdom)

print("Constitution: ", hero.constitution)

print("Dexterity: ", hero.dexterity)

print("Speed ", hero.speed)

print("")

Creating a Mutate object

hero2 = Mutate()

print("Your name is %s." % (hero2.superName))

print("Your super power is: ", hero2.power)

print("Your new stats are:")

print("")

print("Brains: ", hero2.brains)

print("Braun: ", hero2.braun)

Chapter 8 Using Classes and Objects

155

print("Stamina: ", hero2.stamina)

print("Wisdom: ", hero2.wisdom)

print("Constitution: ", hero2.constitution)

print("Dexterity: ", hero2.dexterity)

print("Speed ", hero2.speed)

print("")

Create a Robot character

hero3 = Robot()

print("Your name is %s." % (hero3.superName))

print("Your super power is: ", hero3.power)

print("Your new stats are:")

print("")

print("Brains: ", hero3.brains)

print("Braun: ", hero3.braun)

print("Stamina: ", hero3.stamina)

print("Wisdom: ", hero3.wisdom)

print("Constitution: ", hero3.constitution)

print("Dexterity: ", hero3.dexterity)

print("Speed ", hero3.speed)

print("")

If you were to add all of this new code to your file (we will in a moment) and run it,

your results would be similar to this:

Your name is Above-average Boy.

Your super power is: Flying

Your new stats are:

Brains: 16

Braun: 4

Stamina: 4

Wisdom: 18

Constitution: 16

Dexterity: 12

Speed 2

You created a Mutate!

Your name is Above-average Boy.

Chapter 8 Using Classes and Objects

156

Your super power is: Flying

Your new stats are:

Brains: 16

Braun: 4

Stamina: 4

Wisdom: 18

Constitution: 16

Dexterity: 12

Speed 12

You created a robot!

Your name is Above-average Boy.

Your super power is: Flying

Your new stats are:

Brains: 16

Braun: 14

Stamina: 4

Wisdom: 18

Constitution: 16

Dexterity: 12

Speed 2

Notice how the regular superhero has a speed of 2, as does the robot. Yet the mutate

has a speed of 12. Likewise, both our regular heroes and our mutate have a braun of 4,

while our robot has a braun of 14 – just as intended.

At this point if you add in the new code, your SuperheroClass.py file should

resemble this – if it does not, please take the time to make sure it does:

Import the random module so we can randomly generate numbers

import random

Create a Superhero class that will act as a template for any heroes

we create

class Superhero():

 # Initializing our class and setting its attributes

 def __init__(self):

 self.superName = superName

 self.power = power

Chapter 8 Using Classes and Objects

157

 self.braun = braun

 self.brains = brains

 self.stamina = stamina

 self.wisdom = wisdom

 self.constitution = constitution

 self.dexterity = dexterity

 self.speed = speed

Adding random values to each stat using the random() function

braun = random.randint(1,20)

brains = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

constitution = random.randint(1,20)

dexterity = random.randint(1,20)

speed = random.randint(1,20)

Creating a list of possible super powers

superPowers = ['Flying', 'Super Strength', 'Telepathy', 'Super Speed',

'Can Eat a Lot of Hot Dogs', 'Good At Skipping Rope']

Randomly choosing a super power from the superPowers list

and assigning it to the variable power

power = random.choice(superPowers)

Creating lists of possible first and last names

superFirstName = ['Wonder','Whatta','Rabid','Incredible', 'Astonishing',

'Decent', 'Stupendous', 'Above-average', 'That Guy', 'Improbably']

superLastName = ['Boy', 'Man', 'Dingo', 'Beefcake', 'Girl', 'Woman', 'Guy',

'Hero', 'Max', 'Dream', 'Macho Man','Stallion']

Randomizing Super Hero Name

We do this by choosing one name from each of our two name lists

And adding it to the variable superName

superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

Creating a subclass of Superhero named Mutate

Mutate heroes will get a +10 bonus to their speed score.

class Mutate(Superhero):

 def __init__(self):

Chapter 8 Using Classes and Objects

158

 Superhero.__init__(self)

 print("You created a Mutate!")

 self.speed = self.speed + 10

 self.superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

Creating a subclass of Superhero named Robot

Robot heroes will get a + 10 bonus to their braun score.

class Robot(Superhero):

 def __init__(self):

 Superhero.__init__(self)

 print("You created a robot!")

 self.braun = self.braun + 10

 self.superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

Creating the Superhero object

hero = Superhero()

We print out the result of the created object, including its parameters

print("Your name is %s." % (hero.superName))

print("Your super power is: ", hero.power)

print("Your new stats are:")

print("")

print("Brains: ", hero.brains)

print("Braun: ", hero.braun)

print("Stamina: ", hero.stamina)

print("Wisdom: ", hero.wisdom)

print("Constitution: ", hero.constitution)

print("Dexterity: ", hero.dexterity)

print("Speed ", hero.speed)

print("")

Creating a Mutate object

hero2 = Mutate()

print("Your name is %s." % (hero2.superName))

print("Your super power is: ", hero2.power)

print("Your new stats are:")

print("")

Chapter 8 Using Classes and Objects

159

print("Brains: ", hero2.brains)

print("Braun: ", hero2.braun)

print("Stamina: ", hero2.stamina)

print("Wisdom: ", hero2.wisdom)

print("Constitution: ", hero2.constitution)

print("Dexterity: ", hero2.dexterity)

print("Speed ", hero2.speed)

print("")

Create a Robot character

hero3 = Robot()

print("Your name is %s." % (hero3.superName))

print("Your super power is: ", hero3.power)

print("Your new stats are:")

print("")

print("Brains: ", hero3.brains)

print("Braun: ", hero3.braun)

print("Stamina: ", hero3.stamina)

print("Wisdom: ", hero3.wisdom)

print("Constitution: ", hero3.constitution)

print("Dexterity: ", hero3.dexterity)

print("Speed ", hero3.speed)

print("")

�Adding the Bells and Whistles
The last thing we need to do now is add some bells and whistles to our program.

Remember, the goal of this chapter was to learn how to use object-oriented

programming to remake our Superhero Generator 3000 program with those principles;

our original version had some dramatic pauses and asked the user some questions.

Here, we are going to add all of these features back into our program and give them a

choice to choose a hero type.

We will be using principles we have learned throughout this book so far, including

if-elif-else statements, the random(), input(), and time() modules and, of course,

the OOP principles from this very chapter.

Chapter 8 Using Classes and Objects

160

As an exercise, rather than re-walk you through every step of the code, I will highlight

some of the main features of the code we are going to add now and then input the

program in its entirety for you to peruse and code on your own.

For starters, we want to provide the users a choice, as we did in our original

program – mainly, we are asking if they want to use the Superhero Generator 3000. If

they choose “Y”, the program continues; if not, the loop continues asking them if they

want to continue:

Introductory text

print("Are you ready to create a super hero with the Super Hero

Generator 3000?")

Ask the user a question and prompt them for an answer

input() 'listens' to what they type on their keyboard

We then use upper() to change the users answer to all uppercase letters

print("Enter Y/N:")

answer = input()

answer = answer.upper())

While loop to check for the answer "Y"

This loop will continue while the value of answer IS NOT "Y"

Only when the user types "Y" will the loop exit and the program continue

while answer != "Y":

 print("I'm sorry, but you have to choose Y to continue!")

 print("Choose Y/N:")

 answer = input()

 answer = (answer.upper())

print("Great, let's get started!")

Again, this is code from the original version of our program that we have simply

added to our new version, so you should be familiar with its usage.

Next, we want to add some brand new code. The purpose of this new code will be to

let the user choose the type of hero they want to create. We are giving them three options:

regular, mutate, or robot.

Letting the user choose which type of hero to create

print("Choose from the following hero options: ")

print("Press 1 for a Regular Superhero")

print("Press 2 for a Mutate Superhero")

Chapter 8 Using Classes and Objects

161

print("Press 3 for a Robot Superhero")

answer2 = input()

This will be followed by an if-elif-else block that will check the value of the

user’s answer – which we stored in the variable answer2 – and respond accordingly. For

example, if the user chooses option 1, a regular superhero will be created; option 2, a

mutate; and so forth.

Here is the block of code:

if answer2=='1':

 # Creating the Superhero object

 hero = Superhero()

 �# We print out the result of the created object, including its

parameters

 print("You created a regular super hero!")

 print("Generating stats, name, and super powers.")

 # Creating dramatic effect

 for i in range(1):

 print("...........")

 time.sleep(3)

 print("(nah...you wouldn't like THAT one...)")

 for i in range(2):

 print("...........")

 time.sleep(3)

 print("(almost there....)")

 print(" ")

 print("Your name is %s." % (hero.superName))

 print("Your super power is: ", hero.power)

 print("Your new stats are:")

 print("")

 print("Brains: ", hero.brains)

 print("Braun: ", hero.braun)

 print("Stamina: ", hero.stamina)

 print("Wisdom: ", hero.wisdom)

 print("Constitution: ", hero.constitution)

 print("Dexterity: ", hero.dexterity)

Chapter 8 Using Classes and Objects

162

 print("Speed ", hero.speed)

 print("")

elif answer2=='2':

 # Creating a Mutate object

 hero2 = Mutate()

 print("Generating stats, name, and super powers.")

 # Creating dramatic effect

 for i in range(1):

 print("...........")

 time.sleep(3)

 print("(nah...you wouldn't like THAT one...)")

 for i in range(2):

 print("...........")

 time.sleep(3)

 print("Your name is %s." % (hero2.superName))

 print("Your super power is: ", hero2.power)

 print("Your new stats are:")

 print("")

 print("Brains: ", hero2.brains)

 print("Braun: ", hero2.braun)

 print("Stamina: ", hero2.stamina)

 print("Wisdom: ", hero2.wisdom)

 print("Constitution: ", hero2.constitution)

 print("Dexterity: ", hero2.dexterity)

 print("Speed ", hero2.speed)

 print("")

elif answer2=='3':

 # Create a Robot character

 hero3 = Robot()

 print("Generating stats, name, and super powers.")

 # Creating dramatic effect

 for i in range(1):

 print("...........")

 time.sleep(3)

 print("(nah...you wouldn't like THAT one...)")

Chapter 8 Using Classes and Objects

163

 for i in range(2):

 print("...........")

 time.sleep(3)

 print("Your name is %s." % (hero3.superName))

 print("Your super power is: ", hero3.power)

 print("Your new stats are:")

 print("")

 print("Brains: ", hero3.brains)

 print("Braun: ", hero3.braun)

 print("Stamina: ", hero3.stamina)

 print("Wisdom: ", hero3.wisdom)

 print("Constitution: ", hero3.constitution)

 print("Dexterity: ", hero3.dexterity)

 print("Speed ", hero3.speed)

 print("")

else:

print("You did not choose the proper answer! Program will now self-

destruct!")

Finally, we also need to import time or our dramatic effects won’t work! We do that

at the very top of our code, underneath our import random statement.

�The New and Improved Superhero Generator 3000 Code!
Now that we have all of our pieces coded, let’s make sure they are all in order. Compare

your code to the following code and make sure everything matches. Then, run the

program several times trying out all of the options to see how the program works:

Import the random module so we can randomly generate numbers

Import time module for dramatic pausing effect

import random

import time

Create a Superhero class that will act as a template for any heroes

we create

class Superhero():

 # Initializing our class and setting its attributes

Chapter 8 Using Classes and Objects

164

 def __init__(self):

 self.superName = superName

 self.power = power

 self.braun = braun

 self.brains = brains

 self.stamina = stamina

 self.wisdom = wisdom

 self.constitution = constitution

 self.dexterity = dexterity

 self.speed = speed

Adding random values to each stat using the random() function

braun = random.randint(1,20)

brains = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

constitution = random.randint(1,20)

dexterity = random.randint(1,20)

speed = random.randint(1,20)

Creating a list of possible super powers

superPowers = ['Flying', 'Super Strength', 'Telepathy', 'Super Speed', 'Can

Eat a Lot of Hot Dogs', 'Good At Skipping Rope']

Randomly choosing a super power from the superPowers list

and assigning it to the variable power

power = random.choice(superPowers)

Creating lists of possible first and last names

superFirstName = ['Wonder','Whatta','Rabid','Incredible', 'Astonishing',

'Decent', 'Stupendous', 'Above-average', 'That Guy', 'Improbably']

superLastName = ['Boy', 'Man', 'Dingo', 'Beefcake', 'Girl', 'Woman', 'Guy',

'Hero', 'Max', 'Dream', 'Macho Man','Stallion']

Randomizing Super Hero Name

We do this by choosing one name from each of our two name lists

And adding it to the variable superName

superName = random.choice(superFirstName)+ " " +random.

choice(superLastName)

Creating a subclass of Superhero named Mutate

Chapter 8 Using Classes and Objects

165

Mutate heroes will get a +10 bonus to their speed score.

class Mutate(Superhero):

 def __init__(self):

 Superhero.__init__(self)

 print("You created a Mutate!")

 self.speed = self.speed + 10

Creating a subclass of Superhero named Robot

Robot heroes will get a + 10 bonus to their braun score.

class Robot(Superhero):

 def __init__(self):

 Superhero.__init__(self)

 print("You created a robot!")

 self.braun = self.braun + 10

Introductory text

print("Are you ready to create a super hero with the Super Hero

Generator 3000?")

Ask the user a question and prompt them for an answer

input() 'listens' to what they type on their keyboard

We then use upper() to change the users answer to all uppercase letters

print("Enter Y/N:")

answer = input()

answer = answer.upper()

While loop to check for the answer "Y"

This loop will continue while the value of answer IS NOT "Y"

Only when the user types "Y" will the loop exit and the program continue

while answer != "Y":

 print("I'm sorry, but you have to choose Y to continue!")

 print("Choose Y/N:")

 answer = input()

 answer = answer.upper()

print("Great, let's get started!")

Letting the user choose which type of hero to create

print("Choose from the following hero options: ")

print("Press 1 for a Regular Superhero")

print("Press 2 for a Mutate Superhero")

Chapter 8 Using Classes and Objects

166

print("Press 3 for a Robot Superhero")

answer2 = input()

if answer2=='1':

 # Creating the Superhero object

 hero = Superhero()

 # We print out the result of the created object, including its

parameters

 print("You created a regular super hero!")

 print("Generating stats, name, and super powers.")

 # Creating dramatic effect

 for i in range(1):

 print("...........")

 time.sleep(3)

 print("(nah...you wouldn't like THAT one...)")

 for i in range(2):

 print("...........")

 time.sleep(3)

 print("(almost there....)")

 print(" ")

 print("Your name is %s." % (hero.superName))

 print("Your super power is: ", hero.power)

 print("Your new stats are:")

 print("")

 print("Brains: ", hero.brains)

 print("Braun: ", hero.braun)

 print("Stamina: ", hero.stamina)

 print("Wisdom: ", hero.wisdom)

 print("Constitution: ", hero.constitution)

 print("Dexterity: ", hero.dexterity)

 print("Speed ", hero.speed)

 print("")

elif answer2=='2':

 # Creating a Mutate object

 hero2 = Mutate()

 print("Generating stats, name, and super powers.")

Chapter 8 Using Classes and Objects

167

 # Creating dramatic effect

 for i in range(1):

 print("...........")

 time.sleep(3)

 print("(nah...you wouldn't like THAT one...)")

 for i in range(2):

 print("...........")

 time.sleep(3)

 print("Your name is %s." % (hero2.superName))

 print("Your super power is: ", hero2.power)

 print("Your new stats are:")

 print("")

 print("Brains: ", hero2.brains)

 print("Braun: ", hero2.braun)

 print("Stamina: ", hero2.stamina)

 print("Wisdom: ", hero2.wisdom)

 print("Constitution: ", hero2.constitution)

 print("Dexterity: ", hero2.dexterity)

 print("Speed ", hero2.speed)

 print("")

elif answer2=='3':

 # Create a Robot character

 hero3 = Robot()

 print("Generating stats, name, and super powers.")

 # Creating dramatic effect

 for i in range(1):

 print("...........")

 time.sleep(3)

 print("(nah...you wouldn't like THAT one...)")

 for i in range(2):

 print("...........")

 time.sleep(3)

 print("Your name is %s." % (hero3.superName))

 print("Your super power is: ", hero3.power)

 print("Your new stats are:")

Chapter 8 Using Classes and Objects

168

 print("")

 print("Brains: ", hero3.brains)

 print("Braun: ", hero3.braun)

 print("Stamina: ", hero3.stamina)

 print("Wisdom: ", hero3.wisdom)

 print("Constitution: ", hero3.constitution)

 print("Dexterity: ", hero3.dexterity)

 print("Speed ", hero3.speed)

 print("")

else:

 �print("You did not choose the proper answer! Program will now self-

destruct!")

�In This Episode!
We made some incredible leaps and bounds in this chapter, as we tackled what is,

arguably, the most difficult concept to master of all the topics we discuss in this entire

book. That’s right – the rest is smooth sailing in comparison!

As a brief reminder/future cheat sheet, here is a summary of the things we covered in

this chapter:

•	 OOP stands for object-oriented programming.

•	 Object-oriented programming is a concept where we practice

creating code that can be reused in our programs.

•	 Procedural programming involves writing code that is designed to –

for the most part – execute line by line or in a linear fashion.

•	 The core of OOP revolves around classes, objects, and methods.

•	 A class is like a blueprint or template.

•	 An object is an instance of a class. For instance, if a class is the

blueprint for a home, the object is the actual house created from that

blueprint.

•	 A function used within a class is known as a method.

•	 To define a class, we type

Chapter 8 Using Classes and Objects

169

class Superhero:

...some code...

The def statement is used to define a method within a class. For

example:

def Fly:

...code...

•	 __init__(self) is used to Initialize an object.

•	 self is used to reference a parameter when we create an instance of

a class.

•	 We define an object by assigning it to a variable, like so:

hero = Superhero()

•	 Classes are hierarchal in nature; we can have a main class (the

parent) and then a subclass (the child).

•	 Subclasses inherit the methods and parameters of the parent or

superclass.

•	 To define a subclass, you use code such as:

class Mutate (Superhero)

Chapter 8 Using Classes and Objects

171
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_9

CHAPTER 9

Introducing Other Data
Structures
Welcome back budding hero! Looks like you’ve had a long day of homework, chores,

and, of course, fighting crime. Now all that is left to do is eat your vegetables, put away

your dishes, and for the love of God, man, brush those teeth!

Of course, you could always brush your teeth really fast tonight, and that might buy

you some time to put some more crime-fighting abilities into that programmer brain of

yours! I mean, who needs teeth, after all, when you can just program yourself an app to

chew your food for you?

Seriously though, go brush those teeth….

We are now over halfway through with this book, and you have learned a good, solid

foundation for good programming practices and practical language skills that you will be

able to take with you as you enter the workforce or venture out on your own and develop

your own best-selling software.

Of course, there is always more to learn. Even after you finish reading this masterful

Tome of Programming Knowledge, your journey will not be complete. Being a

programmer is like being a student for life – you will always have to hone your skills and

learn the newest and greatest technology.

In addition to language updates (did we mention that computer languages get

updates pretty frequently?), at some point you will want to venture off into other

programming languages and frameworks. That, however, is for another chapter in the

near future.

This chapter, meanwhile, will be taking a look back. We discussed data structures

earlier, learning how to work with variables and lists. While those are both powerful

instruments we can use to store information, they are not the only data structures that

we have available to us.

https://doi.org/10.1007/978-1-4842-9988-3_9#DOI

172

There are two more that we need to discuss: tuples and dictionaries. Those will be the

topic of conversation for this episode. We will also look at some functions for working

with these two storage units and incorporate them into some new programs.

So, you know what to do – no, not use your X-ray vision to spy on the answers to this

week’s math test.

Brush your teeth!

Then get back here and prepare to learn how to code like a hero. Some more.

�More Data Structures
As stated, we have already looked at two data structures: lists and variables. We

know that a data structure is a storage container that holds data or a piece/pieces of

information. We can store information in these data structures, we can remove the data,

and we can add different data into them. We can also take the data out, use it for part of a

program (metaphorically), and place it back (it doesn’t really ever leave the container).

A variable is able to hold one piece of data. That data can be a letter, a number

or integer, a string of characters, a sentence, a paragraph, and so forth. Additionally,

variables can also hold objects such as lists, which technically means they can hold more

than “one” piece of data. A list, meanwhile, can hold multiple pieces of information.

Think of a variable as a single file folder and list as a file cabinet.

To define a variable, you may recall, we use code such as:

a = "Hello"

b = 7

c = "Hello, I am being held prisoner in a variable!"

To define a list, we use this method:

employees = ['Big E.', 'Bloke Hogan', 'Alfredo the Butler']

priceList = [5, 10, 20, 30, 40, 50]

If we want to print from a variable, we would write something along the lines of:

print(a)

print("You have this many apples: ", b)

Chapter 9 Introducing Other Data Structures

173

You can also use the formatter %s as a stand-in for your variable. For example,

let’s say you wanted to write the sentence, “You have X apples,” where X is the value of

variable b. If you typed this code:

print("You have %s apples!" , b)

You would get the following output when you run it:

You have 7 apples!

To print a list, we can use:

print(employees)

Or to print a single item from a list, we use its index (Remember: the first item in a

list is located at index 0):

print(employees[1])

This would print out:

Bloke Hogan

Now that we have reviewed variables and lists and refreshed our memories about

how data structures work a little, let’s move on to learning all about the other two types

of data structures that Python has to offer.

�What Are Tuples?
Tuples, like lists and variables, are a type of data structure. Unlike variables and lists,

however, tuples are considered immutable. This is just a fancy way of saying that you

cannot change their value or modify them in the normal way.

Tuples are made up of ordered sequences of items. These items – or values – are

defined in between parentheses and separated by commas. To define a tuple, you use

code such as:

villains = ('Eyebrow Raiser', 'Angry Heckler', 'Not So Happy Man', 'The

Heck Raiser')

Chapter 9 Introducing Other Data Structures

174

Just as with a list, we can print out the contents of our tuple using a simple print( )

function:

print(villains)

This would result in:

('Eyebrow Raiser', 'Angry Heckler', 'Not So Happy Man', 'The Heck Raiser')

Also similar to lists, the items in a tuple can be referenced by their index number.

Items in a tuple begin at index 0. So, for instance, if we wanted to print the first item in

our villains tuple, we would use:

print(villains[0])

Which would give us the horrible villain:

Eyebrow Raiser

If we wanted to use the villain tuple as part of a sentence, there are a number of ways

we could do so:

Defining our tuple

villains = ('Eyebrow Raiser', 'Angry Heckler', 'Not So Happy Man', 'The

Heck Raiser')

Printing the items in a tuple

print(villains)

Printing single items in a tuple

print(villains[0])

print(villains[1])

print(villains[2])

print(villains[3])

Ways to append tuple items to sentences

print("The first villain is the sinister", villains[0])

print("The second villain is the terrifying " + villains[1])

Chapter 9 Introducing Other Data Structures

175

Giving us:

('Eyebrow Raiser', 'Angry Heckler', 'Not So Happy Man', 'The Heck Raiser')

Eyebrow Raiser

Angry Heckler

Not So Happy Man

The Heck Raiser

The first villain is the sinister Eyebrow Raiser

The second villain is the terrifying Angry Heckler

Another way that we can use items in a tuple is by slicing them (note that we can also

slice lists). When you slice a tuple, you are singling out a range of values that you wish to

use. The format of this is villains[0:3], as an example. If we run this code:

print(villains[0:3])

the output would be:

('Eyebrow Raiser', 'Angry Heckler', 'Not So Happy Man')

I know what you are thinking – the item at index 3 is 'The Heck Raiser', so why

didn’t that print out?

The answer is simple: when we slice, the first number before the colon tells Python

where to start; the number after the colon tells it to end before that number.

If we were to write print(villains[0:4]), only then would it print out all four of our

items, because Python searches for the item in index 4 – of which there are none – and

prints the item before it.

Note that the starting number of the index does not have to be 0. If we

wanted to skip printing the first item in our tuple, for instance, we could just use

print(villains[1:4]), and it would start printing at the second item:

('Angry Heckler', 'Not So Happy Man', 'The Heck Raiser')

Another trick we can do with tuples is add them together. For instance, let’s say you

have a tuple containing sparkly, purple capes and another tuple full of polka-dotted

capes. Maybe you are tired of having too many closets full of capes, so you wish to

Chapter 9 Introducing Other Data Structures

176

combine them. If so, you can always concatenate your tuples together to make a brand-

new tuple. Consider this example:

Creating a tuple of my purple capes

purpleCapes = ('Purple Frilly Cape', 'Purple Short Cape', 'Purple Cape with

Holes In It')

Creating a tuple of my Polka Dot capes

polkaCapes = ('Black and White Polka Dot Cape', 'White and Beige Polka Dot

Cape', 'Blue Polka Dot Cape Missing the Blue Polka Dots')

Concatenating - or adding - my two tuples of capes together into a new tuple

allMyCapes = (purpleCapes + polkaCapes)

Printing out the values of the newly created tuple

print(allMyCapes)

This code combines the tuple purpleCapes with the items listed in polkaCapes and

stores them in a newly created tuple called allMyCapes. If you run this snippet of code,

you would get:

('Purple Frilly Cape', 'Purple Short Cape', 'Purple Cape with Holes In It',

'Black and White Polka Dot Cape', 'White and Beige Polka Dot Cape', 'Blue

Polka Dot Cape Missing the Blue Polka Dots')

Note that this does not change or affect the values of purpleCapes or polkaCapes;

remember – you cannot change or modify the values in a tuple.

In addition to using the + or concatenation operator on tuples, you can also use the *

or multiplication operator to repeat the values stored in a tuple:

print(allMyCapes[1] * 3)

This prints out the item located at index 1 in the allMyCapes tuple, three times,

resulting in:

Purple Short CapePurple Short CapePurple Short Cape

Note that there are no spaces after the items listed in our tuple, so when we print

them out, they are devoid of any whitespaces.

Chapter 9 Introducing Other Data Structures

177

�The Tuple Functions
Just as there are with lists, tuples, too, have a set of functions you can use to interact with

the data stored within them. These functions are not exclusive to tuples, however, and

can be used elsewhere in your Python code.

Two familiar tuple functions should be min() and max(); you may recall using them

in a previous chapter. When using these two functions in a tuple, they perform their

usual role – that is, they return the minimum and maximum valued item(s) in a tuple.

For example:

Create a tuple containing a set of numbers

lowest_value = (1, 5, 10, 15, 20, 50, 100, 1000)

Use the minimum function to return the lowest value item in the tuple

print(min(lowest_value))

This code would return:

1

Since it is, technically, the lowest value number in our tuple.

If we wanted the highest number, we would use the max() function:

Create a tuple containing a set of numbers

highest_value = (1, 5, 10, 15, 20, 50, 100, 1000)

Use the maximum function to return the highest value item in the tuple

print(max(highest_value))

which, as you could guess, would return: 1000.

Another useful tuple function is len(), which, as you may recall, returns the length

of a string or the number of elements in a list. When used with a tuple, it returns the

number of items contained with the tuple.

Create a tuple with some items

super_hair = ('Super Stache', 'Macho Beard', 'Gargantuan Goat-tee',

'Villainous Toupee', 'Unfortunate Baldness')

Print out the number of items in our tuple

print(len(super_hair))

Chapter 9 Introducing Other Data Structures

178

This would return, 5, since there are five total items in our super_hair tuple.

Examples of uses for the len() function include scenarios where you need to know

the number of employees in a company or how many villains you have locked away

in the Villainous Vault of Retired Super Bad Guys. If you had a tuple containing these

nefarious character’s names, you could simply use the len() function on it and get a

quick head count.

Of course, returning a count of villains in the Villainous Vault of Bad Guys is helpful if

we want to get a quick look at how many inmates there are, but what if we wanted to see

that list printed out in some sort of order – if only there was a function for that….

Oh wait, there is!

A list of Villains Locked Away in the Villainous Vault of Bad Guys

villains = ('Naughty Man ', 'Skid Mark ', 'Mister Millenial ', 'Jack Hammer ',

'The Spelling Bee ', 'Drank All The Milk Man ', 'Wonder Wedgie ',

'Escape Goat')

Print out a sorted list of our villains tuple

print(sorted(villains))

To print a sorted list of a tuple (or lists for that matter), we use the sorted() function,

as shown in the preceding code. A few important things to note. First, the sorted result is

returned in alphabetical order. Second – and most important – the sorted( ) function only

returns a sorted output – it does not actually sort the data in our tuple. Remember, tuples

are immutable and cannot be changed – even by a function as mighty as sorted()!

If we were to run the preceding code, our result would be:

['Drank All The Milk Man ', 'Escape Goat', 'Jack Hammer ', 'Mister Millenial ',

'Naughty Man ', 'Skid Mark ', 'The Spelling Bee ', 'Wonder Wedgie ']

Of course, we can sort numbers just as easily. Consider this code:

A tuple of numbers we are going to sort

numbers_sort = (10, 20, 5, 2, 18)

Sorting numbers in our tuple

print(sorted(numbers_sort))

Chapter 9 Introducing Other Data Structures

179

Were we to run that, it would return the output:

[2, 5, 10, 18, 20]

While we are looking at a tuple full of numbers, let’s examine another useful

function – sum( ). Like other functions showcased thus far, sum( ) should also be familiar

to you. To refresh your memory, it is used to sum – or total – the numbers in a data

structure.

Here is the code we would use to sum up the total of the items in a tuple:

A tuple of numbers we are going to sum

numbers_sum = (10, 20, 5, 2, 18)

Summing items in a tuple

print(sum(numbers_sum))

Running this gives us the total of the items in the numbers_sum tuple: 55.

Finally, we can also convert other data structures – such as lists and variables – to a

tuple, using the tuple() function:

A list we will convert to a tuple

villainList = ['Naughty Man ', 'Skid Mark ', 'Mister Millenial ', 'Jack

Hammer ', 'The Spelling Bee ', 'Drank All The Milk Man ', 'Wonder Wedgie ',

'Escape Goat']

Using tuple() to convert villainList to a tuple

tuple(villainList)

A string we will convert to a tuple

villain1 = "Mustached Menace!"

tuple(villain1)

print(villainList)

print(villain1)

�More Fun with Tuples
Just when you thought our fun with the mighty tuple was over, you find out you hit the

bonus round! Before we move on to our next type of data structure, there are a few more

things we need to learn.

Chapter 9 Introducing Other Data Structures

180

In our introduction to the tuple, we learned that tuples differ from lists in one

very important way: tuples are immutable, and the data contained in them cannot be

changed in any way, whereas lists can be manipulated, updated, and added to.

This makes tuples a powerful tool if you care about data integrity for your data

structure. If you have a group of items that absolutely must not get changed, storing

them in a tuple is the man (or woman) for the job.

That being said, there are some instances where you may want to delete or remove

a tuple from your program. For instance, maybe you have a tuple storing all the different

types of facial hair that heroes and villains can have. What would happen if, suddenly

(hopefully), these facial adornments went out of style? To ensure the items in the tuple

were never accessed again – and to keep our code as neat and efficient as possible – we

have two options.

First, we could simply comment out all the code referencing our tuple using the

or “ ' ' “ comment. That leaves the possibility, however, of someone uncommenting

your code, which could lead to errors or – God forbid – a return of the trend of facial

hair...oh no!

Another option is to delete or modify the code referencing the tuple and then to

actually delete the tuple itself.

There is a way for us to delete an entire tuple; we cannot, however, delete the items

within a tuple. Here is how you can delete a tuple:

A tuple full of facial hair styles for villains and heroes

facial_hair = ('Super Stache', 'Macho Beard', 'Gargantuan Goat-tee', 'Face

Mullet',)

Printing out facial hair

print(facial_hair)

Using del to delete a tuple entirely

del facial_hair

Printing out

print(facial_hair)

In this code snippet we first create the facial_hair tuple and assign it a bunch

of items – one frightening one known as 'face mullet' (I have no idea what that

even means).

Next, we print out the items in facial_hair to prove that creating the tuple did,

indeed, work. After seeing the list of atrocities people are willing to grow on their face, we

Chapter 9 Introducing Other Data Structures

181

decide it’s best to delete the facial_hair tuple and pretend it never existed. We use the

del statement to do so, as in the line that says: del facial_hair.

Finally, to make sure that facial_hair has truly been deleted, we print it one more

time. When we run this code, two things happen with regard to output. First, the items in

facial_hair get printed out. Second, we receive an error message.

Why the message error? Because we deleted facial_hair after printing it the first

time; when we go to print it the second time, the interpreter can no longer find it. That

means we succeeded in ridding the world of crazy facial_hair!

Just another day in the life of a hero!

Here is the result you would see if you ran the program:

('Super Stache', 'Macho Beard', 'Gargantuan Goat-tee', 'Face Mullet')

Traceback (most recent call last):

File "C:/Users/James/AppData/Local/Programs/Python/Python311/TupleExamples.

py", line 8, in <module>

 print(facial_hair)

NameError: name 'facial_hair' is not defined

Sometimes when we use tuples to store data, we may need to know how many times

a particular item appears in our data structure. For example, the word “Mississippi” has a

notorious amount of ‘i’s in it. The same with the letter ‘s’. If we created a tuple containing

that word, we could count the number of instances that both ‘i’ and ‘s’ occurred in the

word so that when people asked us to tell them something interesting, we could say,

“Did you know that Mississippi has a bunch of s’s and i’s in it? True story, bro!”

To count the number of instances that an item occurs in a tuple, or to count the

number of items that equals s, we use the count() method.

Tuple containing all of the letters used to spell Missisisippi

state = ('M', "i", "s", "s", "i", "s", "i", "s", "i", "p", "p", "i")

Note: You could, technically, also easily create the tuple using state

= tuple('Missisisippi') with the tuple() command, which automatically

converts a string into a tuple.

Count the number of times "i" appears in our tuple and print out

the result

print("There are this many of the letter i in Missisisippi: ")

Chapter 9 Introducing Other Data Structures

182

print(state.count('i'))

Count the number of times "s" appears in Missisisippi

print("There are this many of the letter s in Missisisippi: ")

print(state.count('s'))

The characters in parentheses in the code state.count('i') tell Python to count the

number of times ‘i’ appears in the state tuple.

If we run this sample code, we would get the following output:

There are this many of the letter i in Missisisippi

5

There are this many of the letter s in Missisisippi

4

We can also search for an item in our tuple using the keyword in (we can do this

in lists as well). This keyword basically asks if value “x” is in the tuple:

Tuple containing all of the letters used to spell Missisisippi

state = ('M', "i", "s", "s", "i", "s", "i", "s", "i", "p", "p", "i")

Checking to see if "z" or "i" appears in our state tuple

print('z' in state)

print('i' in state)

The in keyword returns a Boolean (True or False) response when checking to see if

an item is contained within a tuple. When we run this code, it returns the output:

False

True

because it first checks to see if there is a 'z' in the state tuple and finds none

(False). Then it checks for an 'i' in the state tuple and of course finds one or

more (True).

Chapter 9 Introducing Other Data Structures

183

�Tuple Examples
We went through a lot of ways to work with tuples so far in this chapter, so to make things

convenient, below you can find a sample Python file containing all of the code written in

this chapter pertaining to tuples thus far.

Feel free to modify this code and to see how changing items in defined tuples affects

the code snippets and their results:

Defining our tuple

villains = ('Eyebrow Raiser', 'Angry Heckler', 'Not So Happy Man', 'The

Heck Raiser')

Printing the items in a tuple

print(villains)

Printing single items in a tuple

print(villains[0])

print(villains[1])

print(villains[2])

print(villains[3])

Ways to append tuple items to sentences

print("The first villain is the sinister", villains[0])

print("The second villain is the terrifying " + villains[1])

Slicing starting at index 0 and ending before the item at index 3

print(villains[0:3])

Slicing starting at index 1 and ending before the item at index 4

print(villains[1:4])

Creating a tuple of my purple capes

purpleCapes = ('Purple Frilly Cape', 'Purple Short Cape', 'Purple Cape with

Holes In It')

Creating a tuple of my Polka Dot capes

polkaCapes = ('Black and White Polka Dot Cape', 'White and Beige Polka Dot

Cape', 'Blue Polka Dot Cape Missing the Blue Polka Dots')

Concatenating - or adding - my two tuples of capes together into a

new tuple

allMyCapes = (purpleCapes + polkaCapes)

Printing out the values of the newly created tuple

print(allMyCapes)

Chapter 9 Introducing Other Data Structures

184

Print the item listed at index 1, 3 times

print(allMyCapes[1] * 3)

Create a tuple containing a set of numbers

lowest_value = (1, 5, 10, 15, 20, 50, 100, 1000)

Use the minimum function to return the lowest value item in the tuple

print(min(lowest_value))

Create a tuple containing a set of numbers

highest_value = (1, 5, 10, 15, 20, 50, 100, 1000)

Use the maximum function to return the highest value item in the tuple

print(max(highest_value))

Create a tuple with some items

super_hair = ('Super Stache', 'Macho Beard', 'Gargantuan Goat-tee',

'Villainous Toupee', 'Unfortunate Baldness')

Print out the number of items in our tuple

print(len(super_hair))

A tuple of Villains Locked Away in the Villainous Vault of Bad Guys

villains = ('Naughty Man ', 'Skid Mark ', 'Mister Millenial ', 'Jack Hammer

', 'The Spelling Bee ', 'Drank All The Milk Man ', 'Wonder Wedgie ',

'Escape Goat')

Print out a sorted list of our villains tuple

print(sorted(villains))

A tuple of numbers we are going to sort

numbers_sort = (10, 20, 5, 2, 18)

Sorting numbers in our tuple

print(sorted(numbers_sort))

A tuple of numbers we are going to sum

numbers_sum = (10, 20, 5, 2, 18)

Summing items in a tuple

print(sum(numbers_sum))

A list we will convert to a tuple

villainList = ['Naughty Man ', 'Skid Mark ', 'Mister Millenial ', 'Jack

Hammer ', 'The Spelling Bee ', 'Drank All The Milk Man ', 'Wonder Wedgie ',

'Escape Goat']

Using tuple() to convert villainList to a tuple

tuple(villainList)

Chapter 9 Introducing Other Data Structures

185

A string we will convert to a tuple

villain1 = "Mustached Menace!"

tuple(villain1)

A tuple full of facial hair styles for villains and heroes

facial_hair = ('Super Stache', 'Macho Beard', 'Gargantuan Goat-tee', 'Face

Mullet',)

Printing out facial hair

print(facial_hair)

Using del to delete a tuple entirely

del facial_hair

Printing out facial_hair to show that it is now empty

print(facial_hair)

Tuple containing all of the letters used to spell Missisisippi

state = ('M', "i", "s", "s", "i", "s", "i", "s", "i", "p", "p", "i")

Count the number of times "i" appears in our tuple and print out

the result

print("There are this many of the letter i in Missisisippi: ")

print(state.count('i'))

Count the number of times "s" appears in Missisisippi

print("There are this many of the letter s in Missisisippi: ")

print(state.count('s'))

Checking to see if "z" or "i" appears in our state tuple

print('z' in state)

print('i' in state)

Looping through the previously created villainList tuple and printing out

each item

for var in villainList:

 print(var)

�Working with Dictionaries
Python has another data structure known as a dictionary. Dictionaries differ from

lists, variables, and tuples in quite an interesting way. Whereas lists and tuples have

data items that are stored at a specific index – and therefore can be referenced at those

reference numbers (starting at index 0) – dictionaries rely on what is known as mapping.

Chapter 9 Introducing Other Data Structures

186

Mapping is a way for Python to store data, in which Python maps keys to values.

This is known as a key-value pair.

The keys are defined on the left side of the key-pair value and typically relate to or

describe the value to their right. Keys are immutable and cannot be changed, while

values are changeable and can be made up of any data type.

To define a dictionary, you give it a name and then enclose the data you are storing

in the dictionary between two curly braces {}:

algebro = {'codename': 'Algebro', 'power': 'Mathemagics', 'real-name':

'Al. G. Bro.'}

In this instance, we can say that the algebro dictionary represents the nefarious

villain, Algebro, Master of Mathemagics! As part of our super villain database, we keep

track of all the not-so-friendly neighborhood villains. In our dictionary, we have a few

pieces of information – namely, their codename, their power, and their real-name. We

represent this data in our dictionary by naming our keys to match the data they will be

paired with.

So, in this example, for instance, codename would be a key, and Algebro would be

a value that belongs to that key. Together they would make one key-value pair in our

algebro dictionary.

The other key-value pairs in the algebro dictionary are

•	 power : mathemagics

•	 real-name: Al. G. Bro

If we wanted to print out the dictionary, we would use:

Create a dictionary name algebro and fill it with key-value pairs

algebro = {'codename': 'Algebro', 'power': 'Mathemagics', 'real-name':

'Al. G. Bro.'}

Print out the algebro dictionary

print(algebro)

Resulting in the output:

{'codename': 'Algebro', 'power': 'Mathemagics', 'real-name': 'Al.

G. Bro.'}

Chapter 9 Introducing Other Data Structures

187

The key-value pairs in a dictionary can also be called elements or data items and are

unsorted. They can also be printed or called separately, as you would expect. Let’s say we

just wanted to know Algebro’s real-name. To print just the value of a specific key within

the dictionary, we would write:

print(algebro['real-name'])

Python would return the result:

Al. G. Bro.

�Dictionary Methods
Dictionaries have several built-in methods that we can use to interact with keys and

values. Let’s say we wanted to see which keys were in a dictionary. To print just those out,

we would use the dict.keys() method:

Create a dictionary name algebro and fill it with key-value pairs

algebro = {'codename': 'Algebro', 'power': 'Mathemagics', 'real-name':

'Al. G. Bro.'}

Print just the keys in the algebro dictionary

print(algebro.keys())

When run, this gives us the output:

dict_keys(['codename', 'power', 'real-name'])

If we wanted to access just the values of the algebro dictionary, we would use the

dict.values() method, like so:

Print just the values in the algebro dictionary

print(algebro.values())

Giving us:

dict_values(['Algebro', 'Mathemagics', 'Al. G. Bro.'])

Chapter 9 Introducing Other Data Structures

188

But what if we wanted to print both the key and values? There is a method for that as

well, known as the dict.items( ) method:

Print the key-value pairs

print(algebro.items())

The output?

dict_items([('codename', 'Algebro'), ('power', 'Mathemagics'), ('real-

name', 'Al. G. Bro.')])

Using dictionary methods in this manner is great for when we need to compare

data or check to see what data is within a dictionary. We can also compare our keys and

their related data to other dictionaries. For example, Algebro the villain may appear in

a several different dictionaries. One might store information about his superpowers

and secret identity, while another dictionary may contain his high school records and

the grades he got in P.E. (trust me, Algebro the Mathemagician was terrible at high school

sports!).

Finally, there is another way to print out the data items in a dictionary – we can

simply iterate (or loop) through the dictionary, printing out information at each

iteration. Remember the for loop? It will come in handy here:

Using a for loop to iterate through and print out our dictionary

for key, value in algebro.items():

 print("The key is: ", key, " and the value is: ", value)

This helpful code snippet results in a much friendlier output:

The key is: codename and the value is: Algebro

The key is: power and the value is: Mathemagics

The key is: real-name and the value is: Al. G. Bro.

�More Fun with Dictionaries
Unlike tuples, dictionary values – though not keys – can be modified. Let’s say we wanted

to add an age to our Algebro villain. To do so, we could simply use code such as:

Chapter 9 Introducing Other Data Structures

189

Create a dictionary name algebro and fill it with key-value pairs

algebro = {'codename': 'Algebro', 'power': 'Mathemagics', 'real-name': 'Al.

G. Bro.'}

Add the key 'age' to the dictionary 'algebro' and assign it the

value '42'

algebro['age'] = 42

Print out algebro to show the newly added key-value pair

print(algebro)

When running this code, we get the result:

{'codename': 'Algebro', 'power': 'Mathemagics', 'real-name': 'Al. G. Bro.',

'age': '42'}

We can see here that our new key-value pair of 'age' and '42' has been added.

The problem you may notice here is that age is not a static number; that is, it changes

over time. Every time our villain Algebro has a birthday, we are going to have to update

this key-value pair.

No worries, as it is just as simple to modify the value for a key as it is to add a

new one:

Updating a the value for our 'age' key

algebro['age'] = 43

Printing the algebro dictionary to see the updated value of the 'age' key

print(algebro)

Now if we were to print the value of age, it would equal: 43.

Another way that we can update a dictionary value is using the dict.update()

method. For example, we could alternatively add a new key known as villainType and

give it a paired value of mutate using the dict.update() method, like so:

Create a dictionary name algebro and fill it with key-value pairs

algebro = {'codename': 'Algebro', 'power': 'Mathemagics', 'real-name':

'Al. G. Bro.'}

Using dict.update() to add a key-pair value to our 'algebro' dictionary

Note the use of curly braces {}, mixed with parentheses ()

Chapter 9 Introducing Other Data Structures

190

algebro.update({'villainType': 'mutate'})

Printing out the results

print(algebro)

Now if you run this code, the output would be:

{'codename': 'Algebro', 'power': 'Mathemagics', 'real-name': 'Al. G. Bro.',

'age': 43, 'villainType': 'mutate'}

Note the addition of the key-value pair villainType mutate. Also notice that you

can also use this method to update any existing key-value pairs in the dictionary, using

the same code.

Using the del keyword – which we have seen before – we can remove a key-value

pair from a dictionary. For instance, if, for some reason, Algebro lost his superpower, we

could delete the entire key-value pair like this:

Using the del keyword to delete a key-value pair

del algebro['power']

Printing algebro to verify that we properly removed the key-value pair

print(algebro)

This gives us:

{'codename': 'Algebro', 'real-name': 'Al. G. Bro.', 'age': 43,

'villainType': 'mutate'}

Verifying that we did, in fact, successfully delete the key power and its related value.

Additionally, if we wanted to delete the entire dictionary, we could use del for

that too:

Deleting the algebro dictionary using the del keyword

del algebro

Printing the deleted algebro, which results in an error

This occurs because algebro no longer exists

print(algebro)

Chapter 9 Introducing Other Data Structures

191

If you run that code, you will get an error message, because you are now trying to

print the algebro dictionary, which we have previously deleted:

Traceback (most recent call last):

File "C:/Users/James/AppData/Local/Programs/Python/Python11/

DictionaryExamples.py", line 58, in <module>

 print(algebro)

NameError: name 'algebro' is not defined

Finally, there may come a time when you wish to remove all of the items or key-

value pairs in a dictionary, yet not delete the dictionary itself. For that, we use the dict.

clear( ) method:

Create a dictionary name algebro and fill it with key-value pairs

algebro = {'codename': 'Algebro', 'power': 'Mathemagics', 'real-name': 'Al.

G. Bro.'}

algebro.clear()

print(algebro)

If you run this snippet of code, you would get the output:

{}

Or, basically, an empty dictionary. Alternatively, you could achieve the same effect

by simply typing: algebro = {}.

�Other Dictionary Methods
All told, there are roughly 26 dictionary methods that you have at your disposal; space

does not permit me to cover all of them in this book; however, I urge you to branch

out and research them on your own. Experiment with them and use your newfound

powers wisely!

Some of these methods you have used already on lists and tuples; these include

things like sum( ), min( ), max( ), sorted( ), and so on.

Chapter 9 Introducing Other Data Structures

192

Here’s a list of these other dictionary methods: go forth and experiment wildly!

•	 dict.clear( ): Removes all of the items in a dictionary

•	 dict.copy( ): Returns a copy of a dictionary

•	 dict.fromkeys( ): Used to create a dictionary from a sequence

•	 dict.get( ): Returns the value of a specified key

•	 dict.items( ): Returns a view of the given dictionary’s key/pair values

•	 dict.keys( ): Returns the keys in a dictionary as a view

•	 dict.popitem( ): Returns – and also removes – a dictionary element

•	 dict.pop( ): Returns – and removes – an element from a specified key

•	 dict.setdefault( ): Checks to see if a key is present and, if not, insets

the key (with a value)

•	 dict.values( ): Returns all of the values in a dictionary as a view

•	 dict.update( ): Used to update a dictionary

Other methods you can use on a dictionary include

•	 any( ): Tests whether an element of an iterable is True

•	 all( ): If all elements of an iterable are True, this returns True

•	 dict( ): Used to create a dictionary

•	 enumerate( ): Creates or returns an enumerate object

•	 iter( ): Returns an iterator for a given object

•	 len( ): Returns the length of an object

•	 max( ): Returns the largest element

•	 min( ): Returns the smallest element

•	 sorted( ): Returns a sorted list

•	 sum( ): Sums all items

Chapter 9 Introducing Other Data Structures

193

�Example Dictionary Code
Here is a sample file with all of the code contained in this chapter. Feel free to make any

changes and experiment (wildly) with the code. Notice any errors and try to modify it in

interesting ways, using the knowledge you have gained thus far in the book.

Remember, have fun and be adventurous (how else would a superhero be, after all?):

Create a dictionary name algebro and fill it with key-value pairs

algebro = {'codename': 'Algebro', 'power': 'Mathemagics', 'real-name':

'Al. G. Bro.'}

Print out the algebro dictionary

print(algebro)

Print out just the real-name key's value

print(algebro['real-name'])

Print just the keys in the algebro dictionary

print(algebro.keys())

Print just the values in the algebro dictionary

print(algebro.values())

Print the key-value pairs

print(algebro.items())

Using a for loop to iterate through and print out our dictionary

for key, value in algebro.items():

 print("The key is: ", key, " and the value is: ", value)

Add the key 'age' to the dictionary 'algebro' and assign it the

value '42'

algebro['age'] = '42'

Print out algebro to show the newly added key-value pair

print(algebro)

Updating a the value for our 'age' key

algebro['age'] = 43

Printing the algebro dictionary to see the updated value of the 'age' key

print(algebro)

Using dict.update() to add a key-pair value to our 'algebro' dictionary

Note the use of curly braces {}, mixed with parentheses ()

algebro.update({'villainType': 'mutate'})

Printing out the results

Chapter 9 Introducing Other Data Structures

194

print(algebro)

Using the del keyword to delete a key-value pair

del algebro['power']

Printing algebro to verify that we properly removed the key-value pair

print(algebro)

##

This section of code is commented out because it will cause

everything error

Deleting the algebro dictionary using the del keyword

del algebro

Printing the deleted algebro, which results in an error

This occurs because algebro no longer exists

#print(algebro)

##

Create a dictionary name algebro and fill it with key-value pairs

algebro = {'codename': 'Algebro', 'power': 'Mathemagics', 'real-name': 'Al.

G. Bro.'}

algebro.clear()

print(algebro)

�In This Episode!
You should be very proud of yourself for having come this far! In this episode, we

expanded your brain storage capacity by including two new data structures to your

memory banks – the tuple and the dictionary!

We covered a lot, and so, as always, it is always a good idea to sum up the majority of

the knowledge we learned in this chapter in a cute bullet list. So guess what? Here it is:

•	 Tuples and dictionaries are two additional forms of data structures

that hold information, alongside variables and lists.

•	 Tuples are similar to lists with the exception that tuples are

immutable; that is, their values cannot be changed or modified.

•	 Tuples are defined in this manner:

•	 villains = (‘Eyebrow Raiser’ , ‘Angry Heckler’ , ‘Not So Happy Man’ ,

‘The Heck Raiser’)

Chapter 9 Introducing Other Data Structures

195

•	 We can print a tuple using print(villains).

•	 We print an item in a tuple using print(villains[0]), which would print

the first item – or the item listed at index 0 – in our tuple.

•	 To print a range of items in a tuple, we use print(villains[0:3]), which

would print the items located at indexes 0, 1, and 2; it ends printing

prior to the item located at the second parameter (in this case, 3).

•	 Tuple functions include min( ), max( ), len( ), sorted( ), sum( ), and

tuple( ).

•	 The del keyword can be used to delete an entire tuple.

•	 count( ) counts the number of instances something occurs in a tuple.

•	 We can use in to check if something appears inside of a tuple; it

returns a Boolean True or False value.

•	 Dictionaries use mapping to store data.

•	 Dictionaries contain a key-value pair or group of key-value pairs, also

known as elements or data items.

•	 Keys are defined on the left side of the colon, while values are defined

on the right.

•	 Dictionaries are defined like so:

algebro = {'codename': 'Algebro' , 'power': 'Mathemagics' ,

'real-name': 'Al. G. Bro.'}

•	 You can print a dictionary using print(algebro).

•	 You can print the value of a specific key using

print(algebro[‘real-name’]).

•	 Dictionary methods include dict.keys( ), dict.items( ), and dict.

update( ).

•	 The del keyword can also be used to delete a dictionary.

•	 dict.clear( ) allows you to clear the elements from a dictionary

without deleting the actual dictionary (just its keys and values pairs).

Chapter 9 Introducing Other Data Structures

197
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_10

CHAPTER 10

Python Files
So far, we have worked primarily within one file; that is, all of our code has been saved

in a single .py file and run from that same file. However, in the real world, a lot of

our programs will be stored in multiple files. What’s more, we are likely to save some

of our favorite code snippets and functions in files for later use. It is just the way we

programmers – which include you now – work.

There are many reasons why we would use multiple files of code. Some of those

centers around efficiency and reducing errors in our code – remember our whole

bit about saving parts of programs that handle common tasks for later reuse in other

programs? We discussed that in-depth when we spoke about functions and modules.

We also have the option to save classes and objects, variables, lists of data, and just

about any type of commonly used code we can think of. Basically, if you think you will

use something in a program later on down the line and it will save you time and reduce

user errors through input (i.e., you typing in code while you are tired from all that crime

fighting), then do yourself a big favor, and make a copy of it in a separate file for later use.

Oh, and make sure you document it thoroughly, so you know what you saved that

awesome code for!

Another reason we use code from multiple files has to do with the fact that – and this

is true on larger projects – often we are not the only coder working on a program. We

may only be handling a small piece of the overall application. For that reason alone, you

may find yourself dealing with a plethora of files.

For example, if you are coding a superhero role-playing game, you may be overseeing

the entire project. Your friend Paul Coderman might be responsible for handling the

portion of code that deals with combat. Your other friend, Ralph Programmerdudeson,

could be handling character creation. And your office nemesis (everyone needs one

of those) might just be sitting in a corner glaring angrily at you all day while eating

questionable quantities of fast food.

https://doi.org/10.1007/978-1-4842-9988-3_10#DOI

198

To pull the program together, you might call in a group of functions from Paul

Coderman’s files and slip in the character creation engine from your boy Ralph

Programmerdudeson’s folder full of code. Finally, your nemesis will add his dose

of anger and vitriol. When combined, you will have all of the elements needed for a

successful role-playing game.

�Working with Files in Python
If you have made it this far in the book, we are going to take it for granted that you know

what a file system is. If not, just think of all of those little folders on your computer

desktop that store documents, Manga comics, video games, and your ample supply of

selfies.

When we initially installed Python, we let it install in the default location. Depending

upon your computer, operating system, and the way you have your hard drives set up,

you likely have something very similar to mine. For instance, my instance of Python and

IDLE are installed at

C:\Users\James\AppData\Local\Programs\Python\Python311

Yours could be a little different, such as

C:\Users\YourName\Programs\Python\Python311

and so forth.

Incidentally, all of the .py or Python files that I create using IDLE are automatically

stored in this same location. In fact, when I run a program, it searches this folder first,

looking for the files. If I were to call another file from a Python program I created, it

would automatically search this folder and expect to find it in here as well.

Here is an example of my Python directory folder, showing all the files I have written

so far for this book (see Figure 10-1).

Chapter 10 Python Files

199

Figure 10-1.  Example of a Python directory folder

Because these files are all in what we will call our root directory, when I call them

into one of my Python programs, I don’t have to do anything special like change

directories or look in other folders; all I have to do is name the file in the program and it

imports it in – easy-peasey, mac-n-cheesey.

Be right back, I need to go eat Mac-N-Cheese now.

Okay, I’m back.

In real-life scenarios, it isn’t always so simple. We usually keep our program files for

each program in specific folders so we don’t get confused or accidentally call the wrong

file. You can imagine that, over the course of even a year, you might accumulate quite a

number of files and you definitely need a way to organize your work.

For instance, if you were working on that superhero RPG, you might have a main

folder called SuperheroRPG. Then, within that folder, you would have a set of folders that

would hold files for each section of the game. Consider this folder structure, for instance:

•	 SuperheroRPG

•	 CharacterCreationModules

•	 BattleEngine

•	 VillainProfiles

•	 AreaFiles

Chapter 10 Python Files

200

•	 RandomEncounterFunctions

•	 ItemLists

•	 SuperPowerLists

•	 VillainsDictionaries

•	 HeroClasses

•	 Mutate

•	 Human

•	 Robot

•	 Magician

•	 SidekickProfiles

and so forth. Each of these folders would hold pieces of your program that carried

out the functions of each of those portions of the program. The BattleEngine folder, for

example, would hold the functions and code responsible for handling fight scenarios,

damage results, and so on.

Since all of those files would be stored outside of the root folder, we would need

to call the file into our main program from whichever directory that portion of code

resided in.

If that seems confusing at the moment, that is okay; we are going to cover how to

call a program from within another program – regardless of where it is located – in great

detail in this chapter.

Now that you are familiar with folder structure and the basic concept that your

Python files might be stored in different locations, the rest will be a piece of cake.

Mmmm…cake. Be right back, gotta eat some cake.

�File Types
So far, we have worked pretty exclusively with .py files. In reality, we can write code

in text or .txt files, which is what most programmers do, relying on programs such as

Windows’ Notepad or another, more impressive text editor known as Notepad++. We will

discuss some tools you can use for coding in the last two chapters of this book; for now,

know that what we have primarily been working with are .py files.

Chapter 10 Python Files

201

As you branch out in your programming and develop your own programs or start

working for a corporation, you will start to involve other file types as well. The most

common of these are .txt, HyperText Markup Language (HTML) (used to develop web

pages), and comma-separated values (CSV) files – think spreadsheet data.

Of course, you will work with other language files too, like C or C++ files and

JSON. This is known as extending Python and is a subject we cover briefly in Chapter 13.

For the examples in this chapter, we will mostly be working with .txt and .py files, but

much of the theory works across the board.

�Creating a Text File in Python Code
There are several ways we could approach the next portion of this book. For starters, we

could simply open up a notepad or text editor program and create a new text file, then

save it to the same directory that you have all of your other (currently) .py and Python

programming files saved to. But that seems a little lazy. Instead, let’s go with a different

approach – let’s create a new text file using some Python code.

We are going to learn a few new concepts in this section, so do not worry too much if

things do not click right away; we will cover everything pretty thoroughly after we get the

core concepts down. Additionally, be sure – as always – to read the commented code so

that you know what each line is meant for.

Remember: our goal in this program is to create a new text file using Python. These

are different than the .py or Python files we have been creating thus far. The trick here is

that we will be creating a text file from within our Python file, so be sure you do not get

confused on which file we are working on.

To start, we need to create a new Python file named FunWithFiles.py. Add the

following code to it:

This code is used to open a file

However, since the file does not already exist

Python instead creates it for us

newFile = open("CreatedFile.txt", 'w')

This code is similar to a print() statement

However, instead of writing text or output to a user's computer screen

It writes it to a file instead

newFile.write("Look, we created a brand new file using Python code!")

The close() function closes the file we are working on and saves it

Chapter 10 Python Files

https://doi.org/10.1007/978-1-4842-9988-3_13

202

It is important to always close a file when we are finished with it

To ensure we do not make any additions or mess up the file in anyway

newFile.close()

There are several things to note in this code. First, our intent here is to use code to

create a new text or .txt file named CreatedFile.txt. We start off by making a variable

named newFile and applying the open() function to it. Normally, we use open() to do

exactly what you think it might do – open a file so that we can take some sort of action

upon it. However, in this instance, since there is no file named CreatedFile.txt for

Python to find, it goes ahead and assumes we wanted to create a new .txt file and does

so. Note that, even if there was a file that existed with the same name, it would overwrite

the existing file and leave it blank inside, so be careful when using this method!

In the line

open("CreatedFile.txt", 'w')

"CreatedFile.txt" is the name of the file we wish to open/create. The 'w' part is

known as an argument and is one of several that we can use within the open() function.

In this instance, 'w' tells Python that you wish to open the file for writing; therefore,

Python opens the file in write mode. This mode allows us to make changes or add things

to the file in question.

Alternatively, we could have used the 'x' mode, which lets us create and write to

a new file. However, it creates the file exclusively, meaning that if the file name already

exists, it will fail and cause an error. To use that, we would simply change the code to:

open("CreatedFile.txt", 'x')

Next in our code, we wanted to add something to our newly created file; we didn’t

have to, of course – we could have just left it blank. However, we may as well have put

something in it while we had it open.

The .write method in the line

newFile.write("Look, we created a brand new file using Python code!")

is used to store or write the text “Look, we created a brand new file using Python

code!” into the newly created CreatedFile.txt file.

Chapter 10 Python Files

203

Finally, we always want to close any file we open or create once we are finished with

it, to ensure it does not get damaged, changed, or affected in any way that we do not

intend. To do that, we used the close() function, as in

newFile.close()

�Reading Files in Python
In addition to creating files and writing to them, we can also read from them as well.

Now that we have created our new file, CreatedFile.txt, let’s create a program to read

from it. Add the following code to your FunWithFiles.py file:

Open the file CreatedFile.txt

read_me_seymour = open("CreatedFile.txt", 'r')

Read the contents of the file

print(read_me_seymour.read())

CreatedFile.close()

Here, we used open() to open our previously created file, and we passed it the 'r' or

read argument/parameter. Then, we used the print() function with the .read method to

print the text to the screen so we could see the contents of our file.

This works fine when we have a single line of text in a file, but what if we have

multiple lines?

Change the code in the FunWithFiles.py file so that it matches this example:

This code is used to open a file

However, since the file does not already exist

Python instead creates it for us

Remember, if the file name already exists, it will overwrite the existing

one, erasing its contents in the process.

newFile = open("CreatedFile.txt", 'w')

This code is similar to a print() statement

However, instead of writing text or output to a user's computer screen

It writes it to a file instead

newFile.write("Look, we created a brand new file using Python code!")

newFile.write("Here is a second line of text!")

The close() function closes the file we are working on and saves it

It is important to always close a file when we are finished with it

Chapter 10 Python Files

204

To ensure we do not make any additions or mess up the file in anyway

newFile.close()

Open the file CreatedFile.txt

read_me_seymour = open("CreatedFile.txt", 'r')

Read the contents of the file

print(read_me_seymour.read())

All we added to our code was this line:

newFile.write("Here is a second line of text!")

When we run the file, we expect to see two lines of text, such as

Look, we created a brand new file using Python code!

Here is a second line of text!

However, that is not the case. Instead, we get the output:

Look, we created a brand new file using Python code!Here is a second line

of code!

But why is that?

There are two answers, both of which we will discuss. First, when we originally wrote

text to our newly created file, we did not provide it any format; .write does not assume

a return carriage or newline character (the equivalent of you pressing the Enter button

after typing a sentence) at the end of the text.

In order to ensure our lines do not run together, therefore, we must be sure to add a

\n newline character at the end of our text. Essentially, you want to modify the two .write

statements so they appear like this:

newFile.write("Look, we created a brand new file using Python code!\n")

newFile.write("Here is a second line of text!\n")

Go ahead and change your FunWithFiles.py file so that it matches those changes.

Now try running the program again. This time, you should have the result:

Look, we created a brand new file using Python code!

Here is a second line of text!

Chapter 10 Python Files

205

�Using readline() and readlines()

There will be times when you only want to read a specific line – or a few specific lines – in

a text file. The .read method reads the entire contents of a file, so that will not work in

this scenario. Instead, we need to use readline( ).

To see this in action, let’s modify our code and change

print(read_me_seymour.read())

to

print(read_me_seymour.readline())

Now when you run the program, your result will be

Look, we created a brand new file using Python code!

This is because readline() only reads one line of text at a time. To read the next line

of text in the file, you would simply add another instance of readline(). Go ahead and

make sure your current copy of FunWithFiles.py matches this code:

This code is used to open a file

However, since the file does not already exist

Python instead creates it for us

newFile = open("CreatedFile.txt", 'w')

This code is similar to a print() statement

However, instead of writing text or output to a user's computer screen

It writes it to a file instead

newFile.write("Look, we created a brand new file using Python code!\n")

newFile.write("Here is a second line of text!\n")

The close() function closes the file we are working on and saves it

It is important to always close a file when we are finished with it

To ensure we do not make any additions or mess up the file in anyway

newFile.close()

Open the file CreatedFile.txt

read_me_seymour = open("CreatedFile.txt", 'r')

Read the contents of the file

Read the first line in the txt file

print(read_me_seymour.readline())

Chapter 10 Python Files

206

Read the second line in the txt file

print(read_me_seymour.readline())

Close the file again

read_me_seymour.close()

In addition to readline( ), there is also a function known as readlines( ), which

operates a little differently, despite appearing nearly identical. If we were to change our

code (don’t) to say print(read_me_seymour.readlines()), instead of printing out a line

of text from the txt file we specify, it would print out a list of lines in the file. The result

would be something like this:

['Look, we created a brand new file using Python code!\n', 'Here is a

second line of text!\n']

�A Warning About Reading and Writing to Files
Before we progress any further, we should discuss how writing to files works. When you

write to a file the first time, everything is fine. However, if we try to open a file and write

to it a second time – using the ‘w’ parameter – you will actually be overwriting whatever

currently exists in the file you are trying to write to.

For example, if you wrote the code

This code is used to open a file

However, since the file does not already exist

Python instead creates it for us

newFile = open("CreatedFile.txt", 'w')

This code is similar to a print() statement

However, instead of writing text or output to a user's computer screen

It writes it to a file instead

newFile.write("Look, we created a brand new file using Python code!\n")

newFile.write("Here is a second line of text!\n")

Opening the File to add more text

addingToFile = open("CreatedFile.txt", 'w')

Writing more text

addingToFile.write("This is new text.\n")

addingToFile.close()

Chapter 10 Python Files

207

and tried to print out the results, what do you think the result would be?

While you might expect it to be something along the lines of

Look, we created a brand new file using Python code!

Here is a second line of text!

This is new text.

that would be false. In reality, the second time that we open the file and start to write

to it, we overwrite any text that already exists and insert new lines of text instead. The

real answer, in this scenario, would be

This is new text.

So, the moral of the story here is simple: always be aware of what mode you are in

when you work with files.

�Appending to Files
To solve the dilemma of how to write to a file without overwriting any existing text in the

file, we simply switch from the 'w' parameter to the 'a' – or append – parameter.

Let’s say we wanted to add another line of text to our file FunWithFiles.py. All we

would need to do is re-open the file enter into append mode. Let’s modify our program

so it matches the following:

This code is used to open a file

However, since the file does not already exist

Python instead creates it for us

newFile = open("CreatedFile.txt", 'w')

This code is similar to a print() statement

However, instead of writing text or output to a user's computer screen

It writes it to a file instead

newFile.write("Look, we created a brand new file using Python code!\n")

newFile.write("Here is a second line of text!\n")

The close() function closes the file we are working on and saves it

It is important to always close a file when we are finished with it

To ensure we do not make any additions or mess up the file in anyway

Chapter 10 Python Files

208

newFile.close()

Open the file CreatedFile.txt

read_me_seymour = open("CreatedFile.txt", 'r')

print("THE ORIGINAL TEXT IN THE FILE")

print(read_me_seymour.readline())

print(read_me_seymour.readline())

Closing the file

read_me_seymour.close()

Opening the file again to write some text to it

addingToFile = open("CreatedFile.txt", 'a')

Adding some text to the file in append mode

addingToFile.write("This is new text.")

Closing the file

addingToFile.close()

Opening the file yet again, to read it

Now that we have appended a line

print("THE TEXT IN THE FILE AFTER WE APPEND")

appendedFile = open("CreatedFile.txt", 'r')

This is another way we can print from a file

Here we are using a for loop

And using the keywords in and line to print each line

In the text file

for line in appendedFile:

 print(line)

Closing the file again

appendedFile.close()

We made quite a few additions this go-around. Thanks to solid documentation

practices, however, it should be fairly obvious what changes were made and what

they did.

Despite that being the case, however, let’s discuss some of the code that was added.

First, a brief overview of the code and its purpose. The intent of the code was to

•	 Create a new txt file

•	 Write two lines of text to the file

•	 Open the file in read mode to read the file

Chapter 10 Python Files

209

•	 Print out the lines in the file

•	 Open the file in append mode

•	 Append a new line of text to the file

•	 Print out the contents of the modified file

In between each of these steps, we also closed the file. So, for each instance of

opening to either read, write, or append, we always wanted to be certain we practiced

good coding and closed our file. This may not have been the most efficient way to code

the file, but for our purposes here – which is simply to learn the basic language, coding

principles, and theory – this works best.

Finally, you may have noticed that we snuck in a little for loop near the end of our

code. This is just another way that we can print out the lines in a text file.

�Working with Directories
As we discussed earlier, so far, we have only worked within the directory that we

originally installed Python. In this section, we are going to learn how to open files from

other folders or directories on your computer.

Before we do that, however, let’s look at a simple way to figure out exactly which

directory we are currently in. Create a new Python called WorkingWithDirectories.py,

and type in this code:

Import the module os

This is used to work with operating system information

import os

Use the getcwd() method of the os module

To see what directory we are in

os.getcwd()

When you run this code, you will get a result similar to mine; it will be different, because

our computer systems and setups are different, but it should appear something like this:

C:\Users\James\AppData\Local\Programs\Python\Python311

Chapter 10 Python Files

210

This is important information to have on hand, as we may have files in different

directories. If we try to open a file in our current directory and it does not exist, we will either

end up with an error or will accidentally create a new version of the file. This, of course,

would make things confusing if we had multiple copies of a file in different directories.

Now that we know our current directory, we could change to another directory and

open a file from there. I say “could” because before we actually try it, we need to create a new

directory to change to. If you remember, at the start of this chapter, I showed you what my

current Python directory looked like. That image was a little misleading, as it did not include

all of the directories or folders that I had. Here is what mine really looks like (see Figure 10-2).

Figure 10-2.  View of my real Python directory, showing files and folders

If you have been following along with this book and creating the files as suggested,

yours will look similar, minus a file or two.

Let’s go ahead and create a new directory that we will call newDirectory using the

mkdir() method of os. Add this code to your WorkingWithDirectories.py file:

Create a new directory or folder

os.mkdir("newDirectory")

Chapter 10 Python Files

211

Now, run the file, which will create a new folder called newDirectory. If you open up

your Python directory folder, you should see it added in the list.

Now, the next part is important! We are now going to comment out the code we just

added before we change directories. We do this, because if we don’t, we will receive an

error message. Why? Because Python won’t create a directory if it already exists. And

since we just created it – well, you get the picture!

Modify your code so it matches mine and then run the program.

Note  Make sure that (“C:/Users/James/AppData/Local/Programs/Python/
Python311/newDirectory”) matches your directory and not mine; you can use the
value returned in the first example of this section where we first learned how to
use os.getcwd( ). If not, you will get an error. Also, make sure to change your \’s to
/’s in your directory path, or you will also receive an error.

Here is the code:

Import the module os

This is used to work with operating system information

import os

Use the getcwd() method of the os module

To see what directory we are in

os.getcwd()

Create a new directory or folder

We commented this out because we created the directory earlier

If we don't, Python will try to create it again

Causing an error

os.mkdir("newDirectory")

Using the chdir() method to change directories

os.chdir("C:/Users/James/AppData/Local/Programs/Python/Python311/

newDirectory")

print(os.getcwd())

Warning! If you received an error message, the reason is most likely because the

directory you tried to change to is incorrect. If you wrote your code to match mine

exactly, this is definitely the case. Remember, our directories are different, so you have to

insert your directory. For example:

Chapter 10 Python Files

212

os.chdir("C:/Users/James/AppData/Local/Programs/Python/Python311/

newDirectory")

This is how I change my directory; yours might be more like:

os.chdir("C:/Users/YourName/Programs/Python/Python311/newDirectory")

It should match whatever the os.getcwd() example returned in our first example of

this section, plus the addition of /newDirectory.

In addition, remember to change your backslashes to forward slashes. For instance,

my original directory was

C:\Users\James\AppData\Local\Programs\Python\Python311

but when we write it in code, it should be

C:/Users/YourName/Programs/Python/Python311/

Once your code is sorted out and you run it, you will receive a similar output to this:

C:\Users\James\AppData\Local\Programs\Python\Python311\newDirectory

showing the directory that you switched to. So long as the last section says \

newDirectory, we know that the code worked.

Now that we know how to create a new directory and how to change to a different

directory, let’s switch back to our original directory, so that we can continue working on

the code we have created thus far in the book.

To switch back, we just use the chdir( ) method again, this time pointing it back to

our original directory. Remember, use your original directory in place of what I write

for mine:

Using the chdir() method to change directories

print("Changing to the newDirectory folder: ")

os.chdir("C:/Users/James/AppData/Local/Programs/Python/Python311/

newDirectory")

Print out the current directory to verify it changed

print(os.getcwd())

Switching back to the original directory

Remember to use your own directory, not mine!

os.chdir("C:/Users/James/AppData/Local/Programs/Python/Python311")

Chapter 10 Python Files

213

Verifying that we are back to the original directory

print("Back to the original directory: ")

print(os.getcwd())

Here, we have added a few print() functions to show what stage of the directory

switch we are in. We also added a final directory change to get back to our original

directory. The result, when run, should be similar to

Changing to the newDirectory folder:

C:\Users\James\AppData\Local\Programs\Python\Python311\newDirectory

Back to the original directory:

C:\Users\James\AppData\Local\Programs\Python\Python311

One last thing before we wrap up our discussion on creating directories and

changing back and forth between them. To avoid any future confusion, let’s go ahead

and delete the newDirectory folder. We could do so by simply opening up the Python

folder and clicking the folder and choosing delete. However, we are programmers now,

and, as programmers are known to do, we should use code to do the hard work for us!

To delete a directory, just add this code to the file:

Deleting the newDirectory directory

Using the rmdir() method

os.rmdir('newDirectory')

Once you run that code, if you look in your Python folder, you will see that the

newDirectory folder no longer exists. Note that we did not need to use the full path

for Python to find the directory. This is because the folder exists in the current root

folder that we have directed Python to search in (i.e., C:\Users\James\AppData\Local\

Programs\Python\Python311). This also holds true when using mkdir and chdir if you

are changing folders into “newDirectory.”

�Bonus Round!
We learned a lot about working with files and navigating directories in this chapter, but

there are still a few things we need to learn how to do. I don’t want to overwhelm you

with too much information, so I am going to make this special super-secret-bonus-round

short and sweet.

Chapter 10 Python Files

214

We learned how to delete directories in the last section, but what about deleting

files? Deleting files is very simple; all we do is use the remove() method, as shown here:

import os

import os

Remove a file use the remove() method

os.remove('test.txt')

This code would remove the file test.txt from the current directory. If the file were

located in a directory other than the current one, we could either switch to that directory

and then use remove( ), or we could just give the file path and name to the remove( )

method, like so:

import os

import os

Remove a file use the remove() method

If the file existed in the newDirectory folder

os.remove('C:\Users\James\AppData\Local\Programs\Python\Python311\

newDirectory\test.txt')

where the directory would equal the directory path where the file existed.

Finally, there may come a time when you wish to change the name of a file. We can

do this using another method, rename():

import os

import os

Rename the file using the rename() method

Rename requires two arguments

The current filename and the new filename

os.rename('test.txt', 'newTest.txt')

This code would take the file test.txt in our current directory and rename it to

newTest.txt.

�FunWithFiles.py Code
Here is a compiled copy of all of the code from our FunWithFile.py file. Feel free to

change this code and experiment with it, running it frequently to see the results of your

changes!

Chapter 10 Python Files

215

This code is used to open a file

However, since the file does not already exist

Python instead creates it for us

newFile = open("CreatedFile.txt", 'w')

This code is similar to a print() statement

However, instead of writing text or output to a user's computer screen

It writes it to a file instead

newFile.write("Look, we created a brand new file using Python code!\n")

newFile.write("Here is a second line of text!\n")

The close() function closes the file we are working on and saves it

It is important to always close a file when we are finished with it

To ensure we do not make any additions or mess up the file in anyway

newFile.close()

Open the file CreatedFile.txt

read_me_seymour = open("CreatedFile.txt", 'r')

print("THE ORIGINAL TEXT IN THE FILE")

print(read_me_seymour.readline())

print(read_me_seymour.readline())

Closing the file

read_me_seymour.close()

Opening the file again to write some text to it

addingToFile = open("CreatedFile.txt", 'a')

Adding some text to the file in append mode

addingToFile.write("This is new text.")

Closing the file

addingToFile.close()

Opening the file yet again, to read it

Now that we have appended a line

print("THE TEXT IN THE FILE AFTER WE APPEND")

appendedFile = open("CreatedFile.txt", 'r')

This is another way we can print from a file

Here we are using a for loop

And using the keywords in and line to print each line

In the text file

Chapter 10 Python Files

216

for line in appendedFile:

 print(line)

Closing the file again

appendedFile.close()

�WorkingWithDirectories.py
Here is the complete code from the WorkingWithDirectories.py file. Note that some of

the code is commented out, as using it more than once will result in an error. This relates

specifically to when we create and delete new directories – if we try to create a directory

that already exists, it will cause an error.

Once again, feel free to experiment with this code and, above all, have fun. After

all, breaking code – and then fixing it – is how we become truly powerful coding

superheroes!

Import the module os

This is used to work with operating system information

import os

Use the getcwd() method of the os module

To see what directory we are in

os.getcwd()

Create a new directory or folder

We commented this out because we created the directory earlier

If we don't, Python will try to create it again

Causing an error

os.mkdir("newDirectory")

Using the chdir() method to change directories

print("Changing to the newDirectory folder: ")

os.chdir("C:/Users/James/AppData/Local/Programs/Python/Python311/

newDirectory")

Print out the current directory to verify it changed

print(os.getcwd())

Switching back to the original directory

Remember to use your own directory, not mine!

os.chdir("C:/Users/James/AppData/Local/Programs/Python/Python311")

Verifying that we are back to the original directory

Chapter 10 Python Files

217

print("Back to the original directory: ")

print(os.getcwd())

Deleting the newDirectory directory

Using the rmdir() method

os.rmdir('newDirectory')

�In This Episode!
You were truly bold in this adventure, young hero! You learned enough to make

EnormoBrain the Wise, Yet Evil jealous. You should see that guy’s forehead by the way –

it’s huge!

As bright and gifted as you are, however, it is always a good idea to have a little

refresher on what you learned. So, without further ado – and before EnormoBrain comes

to steal your glory – here is this episode’s summary:

•	 Python is capable of handling many file types, including .py, .txt,

.html, .c, CSV, and JSON.

•	 open( ) is used to open a file; you can also create a file with open( )

provided a file of the same name does not already exist.

•	 An example of using open( ): open(“CreatedFile.txt”, ‘w’).

•	 The ‘w’ parameter is used to open a file in write mode.

•	 The ‘x’ parameter is used to open a file in creation/write mode.

•	 The .write method lets us add text to a file.

•	 An example of using the .write method: newFile.write(“Here is some

text.”).

•	 Always be certain to close a file using the close( ) function when you

are finished using it.

•	 An example of using close( ): newFile.close( ).

•	 The argument ‘r’ is used to open a file for reading.

•	 The .read( ) method reads all of the text in a file.

•	 An example of using the .read( ) method: print(readMe.read( )).

•	 We use readline( ) to read a single line of a file.

Chapter 10 Python Files

218

•	 An example of readline( ): print(readMe.readline( )).

•	 The append argument – ‘a’ – should be used to write to an existing

file. Using ‘w’ will overwrite the contents of an existing file.

•	 To work with directories, we must import os.

•	 We use getcwd( ) to see what our current directory is.

•	 An example of using getcwd( ): os.getcwd( ).

•	 We use mkdir( ) to create a new directory. For example:

os.mkdir(“newDirectory”).

•	 We use chdir( ) to change directories. For example: os.chdir (“C:/

Users/YourName/”).

•	 We can remove or delete a directory using rmdir( ). For example:

os.rmdir(“newDirectory”).

•	 We can delete files using os.remove( ). For example: os.remove

(‘test.txt’).

•	 We can rename files using os.rename( ). For example:

os.rename(‘test.txt’ , ‘newTest.txt’).

Chapter 10 Python Files

219
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_11

CHAPTER 11

Python for Gaming
It is only appropriate that we have a chapter where we discuss creating video games in

Python – after all, it is that very interest that got me started programming all those years

ago when I was a kid. Things have progressed a lot since then; at the time, PC games

were text-based with the only images consisting of really poor-quality graphics or, worse,

made out of ASCII characters.

Even the sounds were very basic: think single-tone digital boops, beep, and borps.

And animations? Well, they technically existed – for a good example of a really high-tech

PC game of my era, check out a YouTube video for games such as Where in the World Is

Carmen Sandiego? and, my favorite, The Oregon Trail.

Go ahead, I’ll wait. Finished laughing? Good, let’s continue.

That isn’t to say that better-quality video games were not around. Atari had been

around for ages at this point, and the Nintendo Entertainment System (NES), Sega, and

Commodore were all available. I even owned a Nintendo and marveled at the high-tech

8-bit graphics and cutting-edge sound.

And while those games were great – some of them still stand up to this very day and

are more fun than a lot of the games I run on my PS5 – those console games lacked one

thing my PC games had; I was able to hack them and, more importantly, create my own

versions on a computer.

Now things are different. If you want, you can purchase a developer console for

major consoles and, given the right resources and skills, start developing your own

games. Whether those games will ever see the light of day in any game stores or not, who

can say, but the point is, you can, technically, create console games these days.

Back then, at my age at the time, you couldn’t.

Video games are a great way to learn computer programming skills. Given a complex

enough video game and you can really flex your coder muscles. You get to use code in

ways that you might not normally think of using them, and you really need to plan out

your code for a game before you write one – that part is very crucial, especially if you

create a game with a storyline behind it.

https://doi.org/10.1007/978-1-4842-9988-3_11#DOI

220

More important to me, however, is the passion that video games can instill in a

person. I am hoping that if nothing else in this book really gets your imagination cooking

or excites you about programming, creating your own games will.

Even if you have no desire to create games and are more interested in security,

desktop applications, data science, or working with web frameworks, I still encourage

you to follow along in this chapter. While there will not be a ton of in-depth coding

involved, we do cover some concepts that can be used outside of games, such as working

with sounds, images, and even animations.

And besides, every hero needs to learn as much about their powers as they can. I

mean, they say Superman can leap tall buildings, but how often do you see him do it?

Still, one day something might happen where he can’t fly any longer (maybe he loses

his pilot license), and then how will he ever get to the top of a building to stop that giant

ape with the big brain from throwing that really cool – but totally evil – rooftop party in

downtown Metropolis?

�Python for Gaming
Python, admittedly, is not the first language that comes to mind when you think of

video game programming. That being said, it is used in some of the largest games out

there – Battlefield being a great example of a game that is on PC and consoles that uses

some Python.

If you really want to be a game developer, you will want to learn as much as you can

about C++ and JAVA. Those are the two top languages used for most games right now.

Others, such as C# (which extends with Python) for Unity, are also used, but really, you

will want to focus on C++, especially if you wish to pursue console and PC gaming alike.

If you plan on programming web-based games, then you will need HTML5, CSS3,

JavaScript, and SQL (a database language).

There are, of course, a multitude of languages you can develop games in, but those

listed here are the heavy hitters.

That being said, Python is a pretty good choice if you are looking to learn the core

concepts and even create your own games – whether for fun, to share with friends, or as

part of your portfolio. Python is much easier to learn than C++, and if you made it this far

into the book, you already have a pretty good handle on coding basics.

Chapter 11 Python for Gaming

221

Python also has the very handy pygame module, which we installed earlier in the

book, which is really a collection of a bunch of different modules that let you create your

own games and animations in Python.

Since this is a Python book, we will be focusing on how to create games with Python;

but I wouldn’t want you to neglect the fact that you should add other languages to your

repertoire once you have mastered using Python.

�Types of Games You Can Code in Python
There really is no limit on the types of games you can create with Python – at least

in theory. You can make role-playing games (RPG), first-person shooters (FPS),

platformers, puzzle games, and so on. These games can be text-based, a mixture of

simple graphics, sounds, and text, animated, 2D side scrollers (think games like Contra

on the NES), and even 3D games.

If you want to branch out to making 3D games, you will need to learn some

additional technologies, such as Panda3D (www.panda3d.org/). We won’t be diving that

far into game development here but be aware that the option does exist.

While Python helps you make great games, really resource-intensive games – games

that require a lot of memory and processing power – are better served being created with

C++, which gives you greater access to processing and graphic hardware.

To really see what types of games you can develop in Python – and specifically which

type you can program using the pygame module that we will be covering in this chapter –

visit the official Pygame website’s project library, and browse the plethora of games

hosted there: www.pygame.org/tags/all.

You can view games developed by Python programmers by type, libraries used, and

more. It is a great place to get some ideas and inspiration, as well as play some games

and have a lot of fun!

�Pygame Introduction
We installed the pygame module already if you have been following along in this book,

but don’t worry – we will go over installing it again in case you skipped over that part or

want to learn how to do so again.

First, however, we should talk a little bit about Pygame’s history and what,

exactly, it is.

Chapter 11 Python for Gaming

http://www.panda3d.org/
http://www.pygame.org/tags/all

222

While we refer to pygame as a module, in reality, it is a set of modules created specifically

for video game development. Developed by Pete Shinners, the first version was released

back in October 2000. The module(s) was made using a mixture of Python, C, and Assembly.

In addition to games on PCs, Pygame can also be used to develop games for Android

devices using a subset known as PGS4A; you can learn more about programming games

for mobile developments with this specific subset by visiting http://pygame.renpy.org/.

�Installing Pygame
As discussed, we have already installed the pygame module. For clarity’s sake, however,

here is how to install it again, just in case you do not feel like flipping back a few chapters

to Chapter 7.

To install a module – and pygame in particular – open up your command or CMD

window and enter the following at the command prompt:

python -m pip install Pygame

If you do not already have pygame installed, you will see the download and

installation process of the package begin after a few moments in the CMD window. The

message will look similar to Figure 11-1.

Figure 11-1.  Installing pygame

It is just that simple!

Chapter 11 Python for Gaming

http://pygame.renpy.org/
https://doi.org/10.1007/978-1-4842-9988-3_7

223

�Setting Up the Pygame Bare Bones for a Game
The first thing we need is a structure to create our Pygames in. For that, we could use a

bare-bones engine – for lack of a better word, that looks something like this:

import pygame

from pygame.locals import *

import sys

Initialize all of the Pygame modules so we can use them later on

pygame.init()

Create the game screen and set it to 800 x 600 pixels

screen = pygame.display.set_mode((800, 600))

Create a loop that will keep the game running

Until the user decides to quit

while True:

Get feedback from the player in the form of events

 for event in pygame.event.get():

 # If the player clicks the red 'x', it is considered a quit event

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

This is a very bare-bones version of a game using the pygame module. While there

is no technically playable game in this code, it does create a system for us to build our

games on. The code works in the following manner.

After importing the modules we will need – pygame and sys – we also import all of

the extra modules contained within pygame. Importing pygame should be enough, but

sometimes – depending on your system – all of the modules bundled with pygame won’t

load, so we use:

from pygame.locals import *

to make sure we import everything as a precaution.

Now that our modules are loaded, we need to initialize all of the pygame modules. We

do so using the code: pygame.init().

Chapter 11 Python for Gaming

224

So far in our programs, we have run code using IDLE and displayed the results in

the Python Shell. When we write games using Pygame, however, since we are dealing

with graphics, we need to create an actual screen to display our programs on. We use

.display.set_mode() to create a window or screen. This line:screen = pygame.display.

set_mode((800, 600))

creates a screen or window that is 800 x 600 pixels in width and height. It is to this

screen that we will later paint – or blit – our images, graphics, and text to.

The final piece of this code – and something you will need to create for all of your

games – is known as the game loop. This structure’s purpose is fairly simple: receive

input from the user in the form or mouse-clicks and keyboard/key presses, which are

known as events.

When we create an interactive game, we need a way for the user to tell the game that

they are finished playing and to exit out. The game loop also serves this purpose.

The while loop that starts with while True starts the game loop. The program then

waits for the user to take an action – to create an event. Right now, all we have the game

set to look for is a QUIT event.

A QUIT event means that the user has closed the window using the red X in the right-

hand corner of the window. Once this happens, we use two vital functions that, again, all

Pygames must have: pygame.quit() and sys.exit(). These two events end Pygame and

exit the game, respectively. You must have both together; if not, your window will freeze

or hang.

If you were to run this program right now, a window would pop up with a black

background. Nothing else would occur. When you clicked on the red X, the window

would close and the program would end.

�Adding to Our Game Skeleton
Now that our Pygame game skeleton is in place, we can add a little pizzazz to it, if we

wanted to spice things up a little. After all, we are superheroes, and what are heroes

without a little bit of flair?

For starters, let’s create a new file called pygameExample.py. Add the following

code to it:

import pygame

from pygame.locals import *

import sys

Chapter 11 Python for Gaming

225

Creating a tuple to hold the RGB (Red, Green Blue) values

So that we can paint our screen blue later

colorBLUE = (0, 0, 255)

Initialize all of the Pygame modules so we can use them later on

pygame.init()

Create the game screen and set it to 800 x 600 pixels

screen = pygame.display.set_mode((800, 600), 0, 32)

Set a caption to our window

pygame.display.set_caption("Super Sidekick: Sophie the Bulldog!")

Draw a blue background onto our screen/window

screen.fill(colorBLUE)

Draw the now blue window to the screen

pygame.display.update()

Create a variable to hold the value of whether

The game should end or not

running = True

Create a loop that will keep the game running

Until the user decides to quit

When they do, it will change the value of running

To False, ending the game

while True:

Get feedback from the player in the form of events

 for event in pygame.event.get():

 # If the player clicks the red 'x', it is considered a quit event

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

This code is similar to the example I showed you earlier. I did add a few more lines to

the code, with the intent of sprucing up the window and making it look a little better.

The first piece of code I added was:

colorBLUE = (0, 0, 255)

As the comments suggest, this is a tuple, whose values represent the RGB (red, green,

blue) values that we will use to color our screen later on. We have to pass these values

into our screen object/variable as a tuple value, as this is the data type that it accepts.

Chapter 11 Python for Gaming

226

The theory behind RGB values is this: Using a combination of red, green, and blue,

you can make any color visible to the human eye. In our case, the first value of 0 means

there will be zero red in our color. The second value 0 means there will be zero green in

our color. Finally, the third value 255 is the maximum amount of blue that we can add.

If we were to use (0,0,0) instead, as an example, we would end up with the color black,

which is a lack of any colors at all. On the flip side, (255,255,255) would equal white, as

white is a combination of all colors.

Next, we want to add a title or caption to the window that we created, and we do so

by using .display.set_caption(), as in this line:

pygame.display.set_caption("Super Sidekick: Sophie the Bulldog!")

This code will create a caption that looks like this, located at the top of the window,

as shown in Figure 11-2.

Figure 11-2.  Example of a window caption

After that, we want to actually fill the background/screen with the color blue. To do

this, we used .fill():

screen.fill(colorBLUE)

Note that this does not actually add anything to the window just yet. Before the blue

background is actually drawn, we need to update the display using .display.update():

pygame.display.update()

Now when we save our program and run it, a blue screen will pop up, different than

the black one from before, complete with a caption/title for our program! Go ahead and

try it; just remember to click the red X to quit the program.

�Adding Images and Sprites in Pygame
Now that we know how to format our game window and set up a basic game loop, the

next thing we want to do is learn how to work with images. After all, the whole purpose of

using the pygame module is so that we can create video games, right?

Chapter 11 Python for Gaming

227

When we discuss images in two-dimensional – or 2D – video games, we refer to them

as a sprite. This is a simplistic view of what a sprite is, but for our purposes it will work

just fine.

A sprite in video games usually refers to characters, enemies, or images that

represent players. Sprites are also objects in a game, such as bullets, trees, rocks, and

so forth.

These sprites can be static – not moving – or animated. In this section, we are going

to simply discuss a static sprite. You may have noticed that our window caption/title

read: Super Sidekick: Sophie the Bulldog; this was no accident!

Plenty of superheroes have animal sidekicks. Fear of being sued and losing my vast

wealth and collection of slightly vintage mopeds prevent me from naming any, but trust

me, there are a whole slew of them.

Why should you and I be any different? Don’t we deserve a sidekick animal as well?

Mine happens to be a bulldog named Sophie, whose superpower is to burp, sleep, bite

my toes, and snore really loud.

For this portion of our code, I am going to add an image of Sophie the Bulldog to our

game window. If you want, you can follow along. Better yet, if you have an image of your

animal – or any animal you would like to be your sidekick – go ahead and save the image

in the same folder that your pygameExample.py file is located; if you don’t, your program

won’t be able to find it.

A final note: be sure that you use the name of your file vs. what I type in the program.

For example, the image I am using is named, “SophieTheBullDog.jpg”; yours might be

named something different.

Add the following code to your pygameExample.py file, right beneath the section

where you used screen.fill and right before you used pygame.display.update():

sidekick = pygame.Rect(100,100, 200, 200)

sophie = pygame.image.load('SophieTheBullDog.jpg')

thumbnail_sophie = pygame.transform.scale(sophie, (200,200))

screen.blit(thumbnail_sophie, sidekick)

I’ll post the full, updated code after I explain this portion, so you can compare your

file to mine.

The first thing we have to do is create another surface to blit – or paint – our image on

top of. We achieve this in the line: sidekick = pygame.Rect(100,100, 200, 200).

Chapter 11 Python for Gaming

228

This line of code creates a rectangle window that is located at the 100 by 100 XY

coordinate of your screen and is 200 x 200 pixels (height and width).

XY coordinates relate to the position an object appears on your screen. The

surfaces that we create in Pygame are made of pixels, with each pixel residing on a grid

that relates to its XY position. The very top, left corner of a window is located in XY

position (0, 0). Therefore, when we draw our rectangle at position (100, 100), what we

are essentially saying is that it will be located at the 100th pixel across and the 100th

pixel down.

If that bit is confusing, don’t worry too much; it will make sense once you run the

program in a few minutes.

The next line of code:

sophie = pygame.image.load('SophieTheBullDog.jpg')

stores the image named 'SophieTheBullDog.jpg' in the variable sophie. Again,

your image name will be different than mine, so simply replace my image name

with yours.

Since my 'SophieTheBullDog.jpg' image is pretty large – it measures in at 1400 x

1400 – it would be too large to display at its current size in the game window, let alone in

the rectangle surface that we created for it. Therefore, we need to shrink it down to size.

We do this using .transform.scale(), which transforms an image by scaling it to a

size that we give it.

Our line:

thumbnail_sophie = pygame.transform.scale(sophie, (200,200))

shrinks the image to 200 x 200 pixels, which is the exact same size as the sidekick

object rectangle surface we created; if we scaled it larger than the surface, we would not

be able to see the entire image, so always make sure the dimensions or size of the image

matches the surface you created to display it upon.

Finally, the last step will be to actually paint – or blit, remember – the resized image

to the sidekick rectangle surface we created. To do this, we typed:

screen.blit(thumbnail_sophie, sidekick)

The first argument in the parentheses ( ) is the name of the object we want to blit;

the second argument is the object (which includes its location) that we want to blit the

image onto.

Chapter 11 Python for Gaming

229

Here is how the final code should look; modify your code so it looks like mine, being

sure to change the name of your image to whatever your image is named. Also be certain

to move your image into the same folder as your pygameExample.py file, or, again, it will

not work:

import pygame

from pygame.locals import *

import sys

Creating a tuple to hold the RGB (Red, Green Blue) values

So that we can paint our screen blue later

colorBLUE = (0, 0, 255)

Initialize all of the Pygame modules so we can use them later on

pygame.init()

Create the game screen and set it to 800 x 600 pixels

screen = pygame.display.set_mode((800, 600), 0, 32)

Set a caption to our window

pygame.display.set_caption("Super Sidekick: Sophie the Bulldog!")

Draw a blue background onto our screen/window

screen.fill(colorBLUE)

Create a surface to hold our image

sidekick = pygame.Rect(100,100, 200, 200)

create an object to load our image into

sophie = pygame.image.load('SophieTheBullDog.jpg')

Resize our image so it fits the surface we are going to

blit or paint our image onto

thumbnail_sophie = pygame.transform.scale(sophie, (200,200))

blit or paint the image to the screen

screen.blit(thumbnail_sophie, sidekick)

Draw the now blue window to the screen

pygame.display.update()

Create a variable to hold the value of whether

The game should end or not

running = True

Create a loop that will keep the game running

Until the user decides to quit

When they do, it will change the value of running

Chapter 11 Python for Gaming

230

To False, ending the game

while True:

Get feedback from the player in the form of events

 for event in pygame.event.get():

 # If the player clicks the red 'x', it is considered a quit event

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

Save the code and run it. Your result will look different than mine, because I am

using a different image than you, but your result should appear similar to Figure 11-3.

Figure 11-3.  Adding an image to the Pygame game window

Chapter 11 Python for Gaming

231

Before we move on, be sure to change the XY coordinates of the sidekick rectangle

surface so that you can see how XY coordinates work. For example, change the line:

sidekick = pygame.Rect(100,100, 200, 200)

to

sidekick = pygame.Rect(200,200, 200, 200)

and so on.

�Adding Text to Our Pygame Game Window
Adding images to our game is great, but what about text? We can add text as well, which

is exactly what we will be doing in this section.

Adding text to your Pygame game window is a similar process to adding images;

that is, you have to first create a surface to draw them onto. Then you dictate where that

surface will appear on the window before you blit the text to it.

Add the following code to the pygameExample.py file, right below where we used our

screen.fill(colorBLUE) code:

Prepare our font for text

myFont = pygame.font.SysFont('None', 40)

Create a text object

firstText = myFont.render("Sophie The Bulldog", True, colorRED, colorBLUE)

Create the surface to write our text onto and its position

firstTextRect = firstText.get_rect()

firstTextRect.left = 100

firstTextRect.top = 75

blit our text to the window

screen.blit(firstText, firstTextRect)

We are also going to define a new color, colorRED, to use with our text. Place this text

under where you defined colorBLUE:

colorRED = (255, 0, 0)

I will display the code with current edits for you to compare after I explain these

latest editions.

Chapter 11 Python for Gaming

232

To start, we created an object to store our font, which we will apply to our text object

once we create it. We do this in the line:

myFont = pygame.font.SysFont('None', 40)

The arguments for pygame.font.SysFont() are 'None' and 40. The first argument

tells Pygame what font to use. We could have used a font name such as 'Arial', but I

chose to allow Pygame to use its default system font by choosing 'None'. The argument

40 tells Pygame what size of font to use when rendering (or drawing) our text.

Next, we actually create our text object:

 firstText = myFont.render("Sophie The Bulldog", True, colorRED, colorBLUE)

myFont.render(), in this example, has four arguments. The first is what text we

actually want to print to the screen. The second argument – True – tells Pygame whether

you want your text to be anti-aliased or not. This means whether you want it to be

smooth or not; True means smooth; False means not smooth.

The third parameter (colorRED) is the color that we want the text to be, which

is based off of our color tuple that we declared at the beginning of the program. The

fourth and last argument is what color the background of our text should be. I set it to

colorBLUE so that it would match and blend in with the color of our window.

Next, we define our surface, which is a rectangle, that we will print our text object

onto. Then we set the position of where the surface will be, similar to how we decided

where our image was going to appear.

firstTextRect.left = 100 tells Pygame to draw the rectangle surface 100 pixels

from the left of the screen. firstTextRect.top = 75 tells Pygame to draw the rectangle

surface 75 pixels down from the top of the screen.

It is important that we keep in mind where our image that we drew earlier is in

relation to where we place our text.

For example, as you may recall, our image was place at 100 pixels down and 100

pixels from the left.

By setting our text surface at 100 pixels from the left, also, we are ensuring it is

aligned properly with our image. We set the top of our text at 75, so that it sits just above

our image.

Finally, we use screen.blit(firstText, firstTextRect) to paint our text to

the screen.

Here is how my image looks after applying the new code – yours should look similar

to Figure 11-4.

Chapter 11 Python for Gaming

233

Figure 11-4.  Adding text to our Pygame game window

Here is the current version of the code after adding our image and text. Make sure

that your code matches mine:

import pygame

from pygame.locals import *

import sys

Creating a tuple to hold the RGB (Red, Green Blue) values

So that we can paint our screen blue later

And our text red

colorBLUE = (0, 0, 255)

colorRED = (255, 0, 0)

Initialize all of the Pygame modules so we can use them later on

pygame.init()

Chapter 11 Python for Gaming

234

Create the game screen and set it to 800 x 600 pixels

screen = pygame.display.set_mode((800, 600), 0, 32)

Set a caption to our window

pygame.display.set_caption("Super Sidekick: Sophie the Bulldog!")

Draw a blue background onto our screen/window

screen.fill(colorBLUE)

Prepare our font for text

myFont = pygame.font.SysFont('None', 40)

Create a text object

firstText = myFont.render("Sophie The Bulldog", True, colorRED, colorBLUE)

Create the surface to write our text onto and its position

firstTextRect = firstText.get_rect()

firstTextRect.left = 100

firstTextRect.top = 75

blit our text to the window

screen.blit(firstText, firstTextRect)

Create a surface to hold our image

sidekick = pygame.Rect(100,100, 200, 200)

create an object to load our image into

sophie = pygame.image.load('SophieTheBullDog.jpg')

Resize our image so it fits the surface we are going to

blit or paint our image onto

thumbnail_sophie = pygame.transform.scale(sophie, (200,200))

blit or paint the image to the screen

screen.blit(thumbnail_sophie, sidekick)

Draw the now blue window to the screen

pygame.display.update()

Create a variable to hold the value of whether

The game should end or not

running = True

Create a loop that will keep the game running

Until the user decides to quit

When they do, it will change the value of running

To False, ending the game

while True:

Chapter 11 Python for Gaming

235

Get feedback from the player in the form of events

 for event in pygame.event.get():

 # If the player clicks the red 'x', it is considered a quit event

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

�Drawing Shapes in Pygame
Inserting images and sprites in your Pygame games is a great way to add scenery,

characters, and items, but it is not your only option when it comes to graphics, nor is

it always your best option. You also have the ability to draw shapes using some fairly

simple code.

Let’s start by adding a few more colors to our program. Underneath where we

defined our previous colors, add the following bit of code:

colorPINK = (255,200,200)

colorGREEN = (0,255,0)

colorBLACK = (0,0,0)

colorWHITE = (255,255,255)

colorYELLOW = (255,255,0)

Next, we are going to draw our first few shapes. We will be drawing three circles –

each different from the other in a unique way. Add the following code in your file, right

before the pygame.display.update() line:

Drawing a circle

pygame.draw.circle(screen, colorRED, (330, 475), 15, 1)

pygame.draw.circle(screen, colorYELLOW, (375, 475), 15, 15)

pygame.draw.circle(screen, colorPINK, (420, 475), 20, 10)

The .draw.circle method takes a few arguments. The first is what surface we want

to draw our circle on; in this case, we draw it on screen, which is the name of the variable

we created earlier to hold the surface object for our program.

The next argument is the color, which we defined using colorRed. Next, we tell

Python at what pixel or XY coordinate we want the circle to be located at – in this case,

where the center of the circle is.

Chapter 11 Python for Gaming

236

The last two arguments dictate the radius of our circle – 15 in this example – and the

thickness of the line.

The interesting thing to note here is that, were we to run the program after creating

only the first circle, we would see a circle that was not filled with a color. This occurs

because we set the last argument – the line thickness – to 1. If we wanted to entirely fill

our circle with color, we would make the line thickness equal the radius.

We show an example of this, as a comparison, in the second circle we draw, which

has a radius of 15 and a thickness, also, of 15.

Finally, we draw our third circle, and this time, we make the value of the circle’s

thickness half that of the circle’s radius, just so we can see what happens. As a guess, I

am going to say that our final circle will look like a donut. Let’s see if I am right. Save the

program and run it. You should see a result similar to Figure 11-5:

Your result should be similar to mine.

Figure 11-5.  Drawing shapes on our Pygame game window

Chapter 11 Python for Gaming

237

Here are some examples of different shapes you could draw (don’t add them to your

file just yet):

•	 Circles: pygame.draw.circles(surface, color, (x,y), radius, thickness)

Example: pygame.draw.circle(screen, colorYELLOW, (375,

475), 15, 15)

•	 Rectangle: pygame.draw.rect(surface, color, (x,y,width,height),

thickness)

Example: pygame.draw.rect(screen, colorYELLOW, (455, 470,

20, 20), 4)

•	 Line: pygame.draw.line(surface, color, (X,Y Coordinates for the

Beginning of the line),(X,Y Coordinates for the End of the Line),

thickness)

Example: pygame.draw.line(screen, colorRED, (300, 500),

(500,500),1)

Go ahead and add the following lines of code to your file, just below where we placed

the code to create our circles:

pygame.draw.rect(screen, colorYELLOW, (455, 470, 20, 20), 4)

pygame.draw.line(screen, colorRED, (300, 500), (500,500),1)

pygame.draw.line(screen, colorYELLOW, (300, 515), (500,515),1)

pygame.draw.line(screen, colorRED, (300, 530), (500,530),1)

If you run this code, your result will look similar to Figure 11-6.

Chapter 11 Python for Gaming

238

Figure 11-6.  Adding some lines to our Pygame game window

�Adding More Events
What good would a game be if it did not respond to a user? Further, what sort of program

only allows users to quit by clicking the red ‘X’ in the top right-hand corner of the

screen – that is not very intuitive, now is it?

Pygame programs are capable of responding to a vast array of events. These events

can be anything from a click of the mouse, a scroll of the wheel, the press of an arrow on

your keyboard, or a press of any key on a standard keyboard period, just to name a few.

Before we move away from our pygameExample.py file, let’s add a few more events to

program, just so that we have a better feel for how events operate.

Chapter 11 Python for Gaming

239

If you have been following along, your pygameExample.py code should match the

following; if it doesn’t, take a moment to ensure that it does:

import pygame

from pygame.locals import *

import sys

import random

Creating a tuple to hold the RGB (Red, Green Blue) values

So that we can paint our screen blue later

And our text red

colorBLUE = (0, 0, 255)

colorRED = (255, 0, 0)

colorPINK = (255,200,200)

colorGREEN = (0,255,0)

colorBLACK = (0,0,0)

colorWHITE = (255,255,255)

colorYELLOW = (255,255,0)

Initialize all of the Pygame modules so we can use them later on

pygame.init()

Create the game screen and set it to 800 x 600 pixels

screen = pygame.display.set_mode((800, 600), 0, 32)

Set a caption to our window

pygame.display.set_caption("Super Sidekick: Sophie the Bulldog!")

Draw a blue background onto our screen/window

screen.fill(colorBLUE)

Prepare our font for text

myFont = pygame.font.SysFont('None', 40)

Create a text object

firstText = myFont.render("Sophie The Bulldog", True, colorRED, colorBLUE)

Create the surface to write our text onto and its position

firstTextRect = firstText.get_rect()

firstTextRect.left = 100

firstTextRect.top = 75

blit our text to the window

screen.blit(firstText, firstTextRect)

Create a surface to hold our image

Chapter 11 Python for Gaming

240

sidekick = pygame.Rect(100,100, 200, 200)

create an object to load our image into

sophie = pygame.image.load('SophieTheBullDog.jpg')

Resize our image so it fits the surface we are going to

blit or paint our image onto

thumbnail_sophie = pygame.transform.scale(sophie, (200,200))

blit or paint the image to the screen

screen.blit(thumbnail_sophie, sidekick)

Drawing shapes

pygame.draw.circle(screen, colorRED, (330, 475), 15, 1)

pygame.draw.circle(screen, colorYELLOW, (375, 475), 15, 15)

pygame.draw.circle(screen, colorPINK, (420, 475), 20, 10)

pygame.draw.rect(screen, colorYELLOW, (455, 470, 20, 20), 4)

pygame.draw.line(screen, colorRED, (300, 500), (500,500),1)

pygame.draw.line(screen, colorYELLOW, (300, 515), (500,515),1)

pygame.draw.line(screen, colorRED, (300, 530), (500,530),1)

Draw the now blue window to the screen

pygame.display.update()

Create a variable to hold the value of whether

The game should end or not

running = True

Create a loop that will keep the game running

Until the user decides to quit

When they do, it will change the value of running

To False, ending the game

while True:

Get feedback from the player in the form of events

 for event in pygame.event.get():

 # If the player clicks the red 'x', it is considered a quit event

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

Chapter 11 Python for Gaming

241

The portion of the code we are going to be adding our events to is our game loop,

which, to refresh your memory, is this portion of the code:

Create a variable to hold the value of whether

The game should end or not

running = True

Create a loop that will keep the game running

Until the user decides to quit

When they do, it will change the value of running

To False, ending the game

while True:

Get feedback from the player in the form of events

 for event in pygame.event.get():

 # If the player clicks the red 'x', it is considered a quit event

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

As game loops go, this is very simplistic. As stated, it only has one event. The first

thing we want to do is add another way for the user to quit the application. We will use

two methods for this. First, if the user presses ‘q’ on their keyboard, the application will

close. Second, if the user presses the ESC key, the game will also close. Once our code is

updated, the user will officially have three ways to quit our application.

Modify the game loop portion of the code so that it matches the following. Note: Be

very mindful of proper indentation:

Create a variable to hold the value of whether

The game should end or not

running = True

Create a loop that will keep the game running

Until the user decides to quit

When they do, it will change the value of running

To False, ending the game

while True:

Get feedback from the player in the form of events

 for event in pygame.event.get():

 # If the player clicks the red 'x', it is considered a quit event

Chapter 11 Python for Gaming

242

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_q:

 pygame.quit()

 sys.exit()

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 pygame.quit()

 sys.exit()

Save the code and run your program several times. Be sure to press the 'q', click

the red 'X', and press the ESC key as you re-run the program to make sure that each quit

option works.

Note that, in our new code, we have two new event types. The first is pygame.

KEYDOWN, which is used when we are waiting – or listening – for a user to press a key on

their keyboard.

Indented below our pygame.KEYDOWN event type is event.key, which defines what

exact key the program is listening for. Most letters and numbers on a keyboard are

defined by typing pygame.K_ and then the letter or number.

For example, to listen for an 'a', you would use:

if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_a:

 do something...

You can view a full list of keyboard constants by visiting: www.pygame.org/docs/ref/

key.html. In addition, here is a list of some of the more common keyboard constants you

can listen for:

•	 Up arrow: K_UP

•	 Down arrow: K_DOWN

•	 Right arrow: K_RIGHT

•	 Left arrow: K_LEFT

•	 Space bar: K_SPACE

Chapter 11 Python for Gaming

http://www.pygame.org/docs/ref/key.html
http://www.pygame.org/docs/ref/key.html

243

•	 Enter or return: K_RETURN

•	 Numbers: K_0, K_1, K_2, etc.

•	 Letters: K_a, K_b, K_c, K_d, etc.

Before we move on to our next section, let’s add one more thing to our

pygameExample.py file. Let’s listen for another event – the keyboard character ‘b’ . When

the user presses that button, the program will print out some text to the screen.

To achieve this, let’s add the following to our game loop, right underneath our last

if block:

if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_b:

 �barkText = myFont.render("Bark!", True, colorRED,

colorBLUE)

 barkTextRect = barkText.get_rect()

 barkTextRect.left = 300

 barkTextRect.top = 175

 screen.blit(barkText, barkTextRect)

 pygame.display.update()

By now, you should have a pretty good understanding of what this code does. If not,

that is okay – we will go through it step-by-step.

First, we listen for a KEYDOWN event type – that is, someone pressing a key down on

their keyboard. Next, we tell Pygame what key we are listening for:

if event.key == pygame.K_b:

This line says that we are looking for the 'b' key to be pressed down. It is important

to note the difference between a KEYDOWN event and a KEYUP event. As noted, a KEYDOWN

event occurs when a user presses a given key on their keyboard; a KEYUP event occurs

when they release that key. If a KEYUP event is not listened for, then nothing will happen

once the user releases the key.

Next, we define what happens if the user presses the 'b' key. For starters, a text

object name barkText is created. We set the arguments for the text object – what the

text should say, if it is anti-aliased or not, the color of the text, and the color of the

background of the text.

Chapter 11 Python for Gaming

244

Next, in the line:

barkTextRect = barkText.get_rect()

We define the surface that our text will reside upon. From there, we indicated the

position of the surface using:

barkTextRect.left = 300

barkTextRect.top = 175

Finally, we blit the text object and its surface onto the screen and update the display

to show our newly created text.

If you save this code and run it, you will get a result similar to Figure 11-7, provided

you press the 'b' key once the application loads:

Figure 11-7.  Making “Sophie the Bulldog” bark

Chapter 11 Python for Gaming

245

That’s right – Sophie the Bulldog barked! Apparently, she doesn’t like those pesky

circles, rectangles, and lines we drew earlier!

Since the “bark” text in our 'b' button event has been placed within our game loop,

technically each time you press 'b', the text will reload to the screen. However, you will

not be able to see this occur, as the replacement “bark” occurs instantly and is the same

size, shape, and color.

There are a number of ways to make the text appear each time the user presses

the 'b' key. One of the simplest is to use an illusion – something the insidious

Mathemagician would no doubt be proud of!

To pull this illusion off, we are going to add another key press event. The key will still

be 'b', but instead of a KEYDOWN event, we are going to add a KEYUP event.

The idea behind this next portion of code is simple: once the user releases the 'b'

button, the “bark!” will disappear.

The reality is, we will simply be changing the color of the word “bark!” to the same

exact color as the background, making it appear as if it disappeared, when, in fact, it will

simply be hiding in the background.

When the user presses 'b' again, the color will change, once more, to red and

become visible again. This cycle will continue each time the user presses 'b' until they

exit out of the application.

Add this code right below where you defined your last KEYDOWN event, save it, and

then run the program. Be sure to press the ‘b’ button a bunch of times until you get tired

of seeing Sophie bark!

Note M ake certain you indent properly, so that your first if statement lines up
with the previous if statement.

 if event.type == pygame.KEYUP:

 if event.key == pygame.K_b:

 �barkText = myFont.render("Bark!", True, colorBLUE,

colorBLUE)

 barkTextRect = barkText.get_rect()

 barkTextRect.left = 300

 barkTextRect.top = 175

 screen.blit(barkText, barkTextRect)

 pygame.display.update()

Chapter 11 Python for Gaming

246

If your code does not work, take time to make sure it matches the following code.

Here is the complete code for pygameExample.py with all of our latest editions:

import pygame

from pygame.locals import *

import sys

import random

Creating a tuple to hold the RGB (Red, Green Blue) values

So that we can paint our screen blue later

And our text red

colorBLUE = (0, 0, 255)

colorRED = (255, 0, 0)

colorPINK = (255,200,200)

colorGREEN = (0,255,0)

colorBLACK = (0,0,0)

colorWHITE = (255,255,255)

colorYELLOW = (255,255,0)

Initialize all of the Pygame modules so we can use them later on

pygame.init()

Create the game screen and set it to 800 x 600 pixels

screen = pygame.display.set_mode((800, 600), 0, 32)

Set a caption to our window

pygame.display.set_caption("Super Sidekick: Sophie the Bulldog!")

Draw a blue background onto our screen/window

screen.fill(colorBLUE)

Prepare our font for text

myFont = pygame.font.SysFont('None', 40)

Create a text object

firstText = myFont.render("Sophie The Bulldog", True, colorRED, colorBLUE)

Create the surface to write our text onto and its position

firstTextRect = firstText.get_rect()

firstTextRect.left = 100

firstTextRect.top = 75

blit our text to the window

screen.blit(firstText, firstTextRect)

Create a surface to hold our image

Chapter 11 Python for Gaming

247

sidekick = pygame.Rect(100,100, 200, 200)

create an object to load our image into

sophie = pygame.image.load('SophieTheBullDog.jpg')

Resize our image so it fits the surface we are going to

blit or paint our image onto

thumbnail_sophie = pygame.transform.scale(sophie, (200,200))

blit or paint the image to the screen

screen.blit(thumbnail_sophie, sidekick)

Drawing shapes

pygame.draw.circle(screen, colorRED, (330, 475), 15, 1)

pygame.draw.circle(screen, colorYELLOW, (375, 475), 15, 15)

pygame.draw.circle(screen, colorPINK, (420, 475), 20, 10)

pygame.draw.rect(screen, colorYELLOW, (455, 470, 20, 20), 4)

pygame.draw.line(screen, colorRED, (300, 500), (500,500),1)

pygame.draw.line(screen, colorYELLOW, (300, 515), (500,515),1)

pygame.draw.line(screen, colorRED, (300, 530), (500,530),1)

Draw the now blue window to the screen

pygame.display.update()

Create a variable to hold the value of whether

The game should end or not

running = True

Create a loop that will keep the game running

Until the user decides to quit

When they do, it will change the value of running

To False, ending the game

while True:

Get feedback from the player in the form of events

 for event in pygame.event.get():

 # If the player clicks the red 'x', it is considered a quit event

 if event.type == QUIT:

 pygame.quit()

 sys.exit()

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_q:

 pygame.quit()

Chapter 11 Python for Gaming

248

 sys.exit()

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 pygame.quit()

 sys.exit()

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_b:

 �barkText = myFont.render("Bark!", True, colorRED,

colorBLUE)

 barkTextRect = barkText.get_rect()

 barkTextRect.left = 300

 barkTextRect.top = 175

 screen.blit(barkText, barkTextRect)

 pygame.display.update()

 if event.type == pygame.KEYUP:

 if event.key == pygame.K_b:

 �barkText = myFont.render("Bark!", True, colorBLUE,

colorBLUE)

 barkTextRect = barkText.get_rect()

 barkTextRect.left = 300

 barkTextRect.top = 175

 screen.blit(barkText, barkTextRect)

 pygame.display.update()

�In This Episode
Wow, what an exciting – if mind-boggling – chapter! If you made it through this chapter

with only minor scrapes and bruises from gently banging your head on the desk, good

job! The topics covered in this chapter were probably the most difficult to master; if

nothing else, they were as equally complicated as classes and objects and are likely to be

some of the most challenging things you ever have to wrap your brain around in Python.

Good job!

Chapter 11 Python for Gaming

249

But don’t rest on your laurels just yet. The next chapter continues our discussion

on Pygame and dips into two more difficult – but powerful and rewarding – aspects of

creating your own games: animation and collision detection. If you want to be a game

developer or want a programming challenge, you definitely do not want to skip the next

chapter!

Since this chapter and the next chapter go together and are such broad topics, we

will be skipping the usual summary we perform at the end of each chapter; summing up

the important talking points in bullet points does not do the topic justice.

Instead, practice the skills you learned in this chapter and the ones you will learn in

the next chapter and re-read them as often as you need.

And, as always, experiment, experiment.

It literally is the name of the game!

Chapter 11 Python for Gaming

251
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_12

CHAPTER 12

Animating Games
I see you came back for more punishment – good for you! The last chapter was pretty

darned exciting, if I do say so myself. Not only did you get to learn some core game

development theories and practices, but you also got to actually code some as well!

And, most importantly, you got to meet my bulldog Sophie. She’s a good dog when

she is sleeping and she makes an excellent pet sidekick. I mean sure, she tends to sleep

through all of the action, but if you need someone to eat all the food and burp a lot, well,

you couldn’t ask for a better partner.

Last issue, we learned to draw shapes and insert images into our games. We

also learned about game loops and creating events to allow the user to interact with

our games.

This go-around, we learn two more crucial aspects of game development. The first is

animation, which means having objects move around the screen. The second is known

as collision detection, which is what happens when two or more objects touch or when

an object touches the borders of your game window.

I won’t bore you with a long introduction – oh, it’s too late you say?

Let’s get to it then smarty pants!

�Creating Animations in Pygame
We have come a long way in learning some of the core concepts of game design and how

to create our own games in Python using the pygame module. Thus far, we learned how

to create our backgrounds, add images or sprites, insert text, and listen to – and more

importantly, respond to – events such as key presses.

The real meat behind creating a visual, 2D game lies with animation, which is what

we will discuss in this next section. As with all things Python, there are many ways to

achieve animation in our pygames, but since this is a beginner’s book, we are going to

only look at the easiest methods.

https://doi.org/10.1007/978-1-4842-9988-3_12#DOI

252

Our last application, pygameExample.py, became a pretty large file. To

avoid confusion and save some space, let’s create a brand new file named

pygameAnimations.py.

We will be recycling some of our code from pygameExample.py, so don't fret if some

of the code looks a bit familiar. Remember: we always want to reuse our code whenever

possible and appropriate. In particular, some of our color variables and the module

import/initialization portions.

We will be making a bit of a change to the game structure itself, as well as the game

loop. Since animations can be a little more complicated to work with, I wanted to key our

file lean and straightforward to best explain how things work. Besides that, structures for

animations tend to differ from static images and text.

Add the following code to your pygameAnimation.py file to set up the framework:

import our modules

import pygame

from pygame.locals import *

import sys

import random

Initialize our pygame modules

pygame.init()

Create tuples for our colors

colorWHITE = (255,255,255)

colorBLACK = (0,0,0)

colorRED = (255,0,0)

Create our main game window - last time we named it screen

Let's give it a different name this time

gameWindow = pygame.display.set_mode((800,600))

Set the caption/title for our animation

pygame.display.set_caption('Box Animator 5000')

Since we already wrote a version of this code in our previous application, there is no

need to go over it again. Just know that it is the bare-bones code that sets up our screen,

defines colors for us to use on our images and text, and imports and initializes our

modules. We also changed the caption for our window to say “Box Animator 5000.”

Chapter 12 Animating Games

253

Next, we want to create a few more variables:

gameQuit = False

move_x = 300

move_y = 300

The first variable gameQuit will store the value that our game loop checks against to

see if the program should end. So long as gameQuit does not equal True, the game will

continue; once its value is changed to True, the game will end.

The next two variables – move_x and move_y – are used to set the initial position of

the rectangle object that we are going to draw. We put these values in a variable instead

of defining them directly in the rectangle’s arguments because we are going to change

the value of our object’s XY coordinates later in the application.

move_x represents the object’s X position, while move_y is used for its Y position.

Next up will be the game loop for our animated game. We have added a few newer

events, which we will discuss in detail. Add the following to your code:

Game Loop

while not gameQuit:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 pygame.quit()

 sys.exit()

 # If the player presses 'q', it is considered a quit event

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_q:

 pygame.quit()

 sys.exit()

 # If the player presses 'ESC', it is considered a quit event

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 pygame.quit()

 sys.exit()

 # If arrow key left is pressed, move the object left

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_LEFT:

 move_x -= 10

 # If arrow key right is pressed, move the object right

Chapter 12 Animating Games

254

 if event.key == pygame.K_RIGHT:

 move_x += 10

 # If arrow key up is pressed, move the object up

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_UP:

 move_y -=10

 # If arrow key down is pressed, move the object down

 if event.key == pygame.K_DOWN:

 move_y +=10

Most of this game loop should be familiar. We have several events that cover a way

for the user to quit – they can press either ESC or 'q', or click the red 'X'.

We then created key press events for the LEFT, RIGHT, UP, and DOWN arrows. If either of

these buttons is pressed, the following occurs:

•	 If the LEFT key is pressed, the value of move_x is decreased by 10,

moving the object to the left 10 pixels.

•	 If the RIGHT key is pressed, the value of move_x is increased by 10,

moving the object to the right 10 pixels.

•	 If the UP key is pressed, the value of move_y is decreased by 10,

moving the object up 10 pixels.

•	 If the DOWN key is pressed, the value of move_y is increased by 10,

moving the object down 10 pixels.

Now that our game loop and events are in place, the last piece of business remaining

is to create our window, fill it with a color, blit our shape, and update the display:

 # Fill the gameWindow with the color white

 gameWindow.fill(colorWHITE)

 # Blit a black rectangle object

 pygame.draw.rect(gameWindow, colorBLACK, [move_x,move_y,50,50])

 # Update our screen

 pygame.display.update()

There we have it – our first animated game! Go ahead and run the program and test it

out. Be sure to press each of the arrow keys and then run it a few more times to test each

of our “quit” events.

Your screen should look similar to Figure 12-1.

Chapter 12 Animating Games

255

Fi
gu

re
 1

2-
1.

 T
es

ti
n

g
th

e
qu

it
 e

ve
n

ts

Chapter 12 Animating Games

256

That is pretty cool, right? This type of animation logic can be applied to all sorts of

games. For instance, you could make a racing game where a car has to move around the

streets, a fighter game where the character moves across the board, and so forth.

Of course, right now our game is pretty boring, but the main concept to learn here

was moving an object about the board.

As neat as this code is, it does lack a few things. One thing you may have noticed

is that if you move the box too far in any direction, it will move off of the screen and

eventually disappear. It will, technically, come back so long as you move it in the

opposite direction, but you can see how this would cause problems in our game.

There are a few ways to fix this, which we will discuss in the next section. For now,

however, let’s add one more way for our rectangle to move – random teleportation! Talk

about superpowers!

Add the following code snippet, right at the bottom of the rest of your events:

 # if 't' is pressed, randomly teleport the object

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_t:

 move_y = int(random.randint(1,600))

 move_x = int(random.randint(1,600))

Astute observers may have noticed that we imported random at the beginning of

our program; here is why. We want to randomly generate the XY coordinates of our

rectangle object when the user presses 't'. To do that, we use random.randint(), as in

the preceding example. We provide it a range of 1 and 600 pixels to ensure that it never

completely disappears off of the screen.

By now, your code should look like this; if not, or if your code isn’t working, make

sure everything matches and that your indentation is set up correctly:

import our modules

import pygame

from pygame.locals import *

import sys

import random

Initialize our pygame modules

pygame.init()

Create tuples for our colors

colorWHITE = (255,255,255)

Chapter 12 Animating Games

257

colorBLACK = (0,0,0)

colorRED = (255,0,0)

Create our main game window - last time we named it screen

Let's give it a different name this time

gameWindow = pygame.display.set_mode((800,600))

Set the caption/title for our animation

pygame.display.set_caption('Box Animator 5000')

gameQuit = False

move_x = 300

move_y = 300

Game Loop

while not gameQuit:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 gameQuit = True

 pygame.qui()

 sys.exit()

 # If the player presses 'q', it is considered a quit event

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_q:

 pygame.quit()

 sys.exit()

 # If the player presses 'ESC', it is considered a quit event

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 pygame.quit()

 sys.exit()

 # If arrow key left is pressed, move the object left

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_LEFT:

 move_x -= 10

 # If arrow key right is pressed, move the object right

 if event.key == pygame.K_RIGHT:

 move_x += 10

 # If arrow key up is pressed, move the object up

Chapter 12 Animating Games

258

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_UP:

 move_y -=10

 # If arrow key down is pressed, move the object down

 if event.key == pygame.K_DOWN:

 move_y +=10

 # if 't' is pressed, randomly teleport the object

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_t:

 move_y = int(random.randint(1,600))

 move_x = int(random.randint(1,600))

 # Fill the gameWindow with the color white

 gameWindow.fill(colorWHITE)

 # Blit a black rectangle object

 pygame.draw.rect(gameWindow, colorBLACK, [move_x,move_y,50,50])

 # Update our screen

 pygame.display.update()

Run the code and teleport till your brain explodes!

�Collision Detection: Bouncing Off the Walls
As we create more objects in our games, we inevitably run into the problem of handling

how objects behave when they come into contact with each other. For example, if we

have two rectangles animated to move to the center of the window, at some point, their

paths will cross.

We can ignore this contact and in some instances this may be the best option. More

likely than not though, we want to have our objects detect this collision and react a

certain way.

Collision detection is the art of programming objects to be “aware” of when they

bump up against another object and then react appropriately. In some instances, we

may want our object to simply cease moving in that direction. In others, we may want

them to bounce back a few steps, as if they ran into a strong force field.

Chapter 12 Animating Games

259

Collisions can happen for other reasons as well. For instance, you may have created

a maze that a character must get through. If we do not set up collision detection, the

character may simply float straight through our walls. The same goes for doors.

In fact, even if you don’t have walls or doors, or any other objects at all on the screen,

setting up collision detection is a good idea. Why? We touched upon this topic very

briefly when we animated our rectangle; objects we create that are capable of movement

can – and will – move beyond the boundary of the screen we define.

While a window does not inherently have a wall boundary, they do, in fact, have

a boundary. The height and width of the window is the boundary, in these cases. For

instance, let’s say we have a window that is 800 x 600 pixels. We could set the boundaries

of our app along the sides, top, and bottom of this window, making our object bounce off

of them if it crosses the line.

Finally, another form of collision we may want to be aware of is intentional collision.

Think of a game where you are shooting bullets at the enemy. Every time those bullets

hit their target – or collide – we would want them to do things like deal damage, score

points, or trigger some sort of reaction.

In the most basic of terms, a collision occurs whenever two or more objects come

into contact with one another – intentionally or not.

�Collision Detection: Detecting
the Window Boundaries
When we create our pygame applications, we need to keep the boundaries of our

window in mind. For the most part, we will want our objects to stay within the width and

height of our window or game screen. There are occasions where this won’t be the case,

but for our purposes, we are going to focus on what to do when we want to ensure our

objects stay within view of the player.

For our next section of code, we are going to check to make sure that our rectangle

object does not move beyond the width or height of our window. To do this, we have

to check where our rectangle is as it moves around the board and have our program

respond if the rectangle touches the borders.

To achieve this, we are going to use a series of if statements, which we will place

below our game loop and event listeners and right before we create our gameWindow.

fill(colorWHITE).

Chapter 12 Animating Games

260

Add the following code, being sure to indent properly:

 # Check to see if we collide with the right screen end

 if move_x > 750:

 move_x -= 50

 pygame.display.set_caption('Right Collision')

 if move_x < 1:

 move_x += 50

 # Check to see if we collide with the left screen end

 pygame.display.set_caption('Left Collision')

 # Check to see if we collide with the bottom of the screen

 if move_y > 550:

 move_y -= 50

 pygame.display.set_caption('Bottom Collision')

 # Check to see if we collide with the top of the screen

 if move_y < 1:

 move_y += 50

 pygame.display.set_caption('Top Collision')

For such a small amount of code, it certainly does a lot. Let’s walk through the steps.

Our first if statement states that if our rectangle object is located at a space of 750

pixels or greater, then move our rectangle object back 50 pixels in the opposite direction,

creating a bounce effect. This is achieved by subtracting 50 (-=50) from the move_x

variable, which, as you will recall, represents the X coordinate of our rectangle object.

You may have noticed that we did not have the program check to see if our object

was located at a pixel coordinate of higher than 800 X. Why is that, you may ask? Simple:

we always have to keep in mind the size of the object we are detecting collision for. We

must subtract its size – in this case, 50 – from the highest coordinate value. Therefore,

if our rectangle is 50 pixels, and our screen is 800 pixels across, in order to allow our

rectangle to touch the border and not go beyond it, we have to check for an X coordinate

of 750 or greater.

The next part of our code works on the X coordinate again. This time, we are

checking for collision with the left side of the screen. Here, we want to check for values of

less than 1 (remember: the border on the left side of the screen is located at X coordinate

0); once more, if we hit this “wall,” the rectangle bounces 50 pixels in the opposite

direction.

Chapter 12 Animating Games

261

We continue this logic for the Y coordinates as well, checking for the top and bottom

collisions of our window. Again, if a collision is detected, our rectangle will bounce in the

opposite direction 50 pixels – this time up or down accordingly.

Finally, just to add a little more flair to the program, each if check will also change

the window’s caption if a detection occurs, alerting you to which direction – up, down,

left, or right – the collision happened.

There you have it – our first collision detection feature!

Go ahead and save the program and test it out, being sure to bounce into each wall

to make sure the program works properly. If it does not, make sure that it matches the

following completed program code:

import our modules

import pygame

from pygame.locals import *

import sys

import random

Initialize our pygame modules

pygame.init()

Create tuples for our colors

colorWHITE = (255,255,255)

colorBLACK = (0,0,0)

colorRED = (255,0,0)

Create our main game window - last time we named it screen

Let's give it a different name this time

gameWindow = pygame.display.set_mode((800,600))

Set the caption/title for our animation

pygame.display.set_caption('Box Animator 5000')

gameQuit = False

move_x = 300

move_y = 300

Game Loop

while not gameQuit:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 gameQuit = True

 pygame.qui()

Chapter 12 Animating Games

262

 sys.exit()

 # If the player presses 'q', it is considered a quit event

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_q:

 pygame.quit()

 sys.exit()

 # If the player presses 'ESC', it is considered a quit event

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 pygame.quit()

 sys.exit()

 # If arrow key left is pressed, move the object left

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_LEFT:

 move_x -= 10

 # If arrow key right is pressed, move the object right

 if event.key == pygame.K_RIGHT:

 move_x += 10

 # If arrow key up is pressed, move the object up

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_UP:

 move_y -=10

 # If arrow key down is pressed, move the object down

 if event.key == pygame.K_DOWN:

 move_y +=10

 # if 't' is pressed, randomly teleport the object

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_t:

 move_y = int(random.randint(1,600))

 move_x = int(random.randint(1,600))

 # Check to see if we collide with the right screen end

 if move_x > 750:

 move_x -= 50

 pygame.display.set_caption('Right Collision')

 if move_x < 1:

Chapter 12 Animating Games

263

 move_x += 50

 # Check to see if we collide with the left screen end

 pygame.display.set_caption('Left Collision')

 # Check to see if we collide with the bottom of the screen

 if move_y > 550:

 move_y -= 50

 pygame.display.set_caption('Bottom Collision')

 # Check to see if we collide with the top of the screen

 if move_y < 1:

 move_y += 50

 pygame.display.set_caption('Top Collision')

 # Fill the gameWindow with the color white

 gameWindow.fill(colorWHITE)

 # Blit a black rectangle object

 pygame.draw.rect(gameWindow, colorBLACK, [move_x,move_y,50,50])

 # Update our screen

 pygame.display.update()

�Colliding Two Objects
Now that we have set up our border detection, we can move on to another important

type of collision detection – detecting when two objects collide with one another. As

stated prior, there are many reasons why you may want to check for collision between

multiple objects. In addition to seeing if two characters have come into contact or if a

weapon has hit its target, collision detection is useful for determining where an object is

in perceived space.

For example, if you have a game where a character has to leap on top of objects –

as you do in a platform game – how would your game know whether the character

was standing on a patch of grass or atop a box? You can use collision detection – or hit

detection – for just such a purpose.

In our next example, we are going to create a brand new Python file called

objectCollisionExample.py. We will be borrowing some of the code from our

pygameAnimations.py program. Instead of walking you through each section of code, I

am going to start by pasting the entire program, then stepping through the new additions

and modifications we made to our old code.

Chapter 12 Animating Games

264

Take a moment to create your new file and copy the following code into it. Be sure

to read the comments to see if you can figure out the purpose of the program and how

it works before I explain it. As always, be sure to indent your code properly or you will

receive errors:

import our modules

import pygame

from pygame.locals import *

import sys

Initialize our pygame modules

pygame.init()

Create tuples for our colors

colorWHITE = (255,255,255)

colorBLACK = (0,0,0)

colorRED = (255,0,0)

Create our main game window - last time we named it screen

Let's give it a different name this time

gameWindow = pygame.display.set_mode((800,600))

Set the caption/title for our animation

pygame.display.set_caption('Colliding Objects')

gameQuit = False

Create two variables that will store sprite rectangle objects

rect1 = pygame.sprite.Sprite()

rect1.rect = pygame.Rect(300,300,50,50)

rect2 = pygame.sprite.Sprite()

rect2.rect = pygame.Rect(100,100, 100,150)

Game Loop

while not gameQuit:

 for event in pygame.event.get():

 if event.type == pygame.QUIT:

 gameQuit = True

 pygame.quit()

 sys.exit()

 # If the player presses 'q', it is considered a quit event

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_q:

Chapter 12 Animating Games

265

 pygame.quit()

 sys.exit()

 # If the player presses 'ESC', it is considered a quit event

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_ESCAPE:

 pygame.quit()

 sys.exit()

 # If arrow key left is pressed, move the object left

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_LEFT:

 rect1.rect.x = rect1.rect.x - 10

 # If arrow key right is pressed, move the object right

 if event.key == pygame.K_RIGHT:

 rect1.rect.x = rect1.rect.x +10

 # If arrow key up is pressed, move the object up

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_UP:

 rect1.rect.y = rect1.rect.y -10

 # If arrow key down is pressed, move the object down

 if event.key == pygame.K_DOWN:

 rect1.rect.y = rect1.rect.y +10

 # Check for collision between our two rect objects

 # using collide_rect

 # If a collision is detected, we relocate rect1

 # by changing its y and x coordinates

 if pygame.sprite.collide_rect(rect1, rect2):

 rect1.rect.y = 400

 rect1.rect.x = 400

 # Check to see if we collide with the right screen end

 # If it does, we move rect1 back to X coordinate 740

 if rect1.rect.x > 750:

 rect1.rect.x = 740

 pygame.display.set_caption('Right Collision')

 if rect1.rect.x < 1:

 rect1.rect.x = 51

Chapter 12 Animating Games

266

 # Check to see if we collide with the left screen end

 pygame.display.set_caption('Left Collision')

 # Check to see if we collide with the bottom of the screen

 if rect1.rect.y > 550:

 rect1.rect.y = 540

 pygame.display.set_caption('Bottom Collision')

 # Check to see if we collide with the top of the screen

 if rect1.rect.y < 1:

 rect1.rect.y = 50

 pygame.display.set_caption('Top Collision')

 # Fill the gameWindow with the color white

 gameWindow.fill(colorWHITE)

 # Blit our rectangle objects

 pygame.draw.rect(gameWindow, colorBLACK, rect1)

 pygame.draw.rect(gameWindow, colorRED, rect2)

 # Update our screen

 pygame.display.update()

This code works like the previous program in most ways; we create a rectangle

object – this time inserted into a sprite – that we are going to move around the window

using arrow keys. If the rectangle touches any of the window’s edges or boundaries, the

rectangle will bounce a few pixels off of the “wall.”

In addition to this, we created a second rectangle object – rect2 – that is static and

does not move around the board. We also set up code to check to see if rect1 bumps

into rect2; if so, then we change the value of rect1’s X and Y coordinates – just as if it had

hit a wall.

The main difference in this code vs. the previous hit detection example has to do

with the way we create our rectangle object. Instead of simply using .rect and blitting

our rectangle, this time we want to actually create a variable to hold our rectangle

object(s).

Further, we make these rectangles sprites, so that we can access some of the built-in

functions that come with pygame.sprite.Sprite(). There are many built-in functions

that accompany the pygame.sprite module, and unfortunately we do not have space

in this book to cover them all. However, we will be touching upon a very important one

whose purpose is to aid in collision detection.

Chapter 12 Animating Games

267

By storing our rectangle objects in variables and making them sprites, we gain the

ability to change their XY coordinates by directly accessing those attributes.

For example, in the code of the program, you may see something similar to rect1.

rect.x = 100. This code basically says you want to take the variable named rect1,

access the rect object stored in it, and change its x value to 100.

This part of our code:

rect1 = pygame.sprite.Sprite()

rect1.rect = pygame.Rect(300,300,50,50)

rect2 = pygame.sprite.Sprite()

rect2.rect = pygame.Rect(100,100, 100,150)

is used to create our two rectangle objects – rect1 and rect2. Be sure to note that

when we use pygame.Rect, the “R” is capitalized vs. when we use it in rect1.rect.

Failing to properly capitalize it will lead to errors.

The next change is how we define the way objects – rect1 in particular – move around

the window.

Since our rect object is now a sprite, we have to access its parameters – such as its

XY coordinates – differently. Now, to make the object move, we use this method:

 # If arrow key left is pressed, move the object left

 if event.type == pygame.KEYDOWN:

 if event.key == pygame.K_LEFT:

 rect1.rect.x = rect1.rect.x - 10

Notice how instead of using the .move_ip method, we now, instead, simply reassign

the value of rect1.rect.x to a new value, as in this line:

 rect1.rect.x = rect1.rect.x - 10

which says to take the current X coordinate value of rect1 and subtract 10 from it.

We do this for each key press event for the four directional arrows and change the

value of rect1.rect.x and rect1.rect.y depending upon which direction the user is

moving the rectangle in.

Remember that the X value represents left and right movements, while the Y value

represents up and down motion.

Chapter 12 Animating Games

268

The next step is to use collision detection to see if rect1 ever touches rect2. This

is where defining our rectangle objects as sprites comes in handy. One of the built-in

functions of a sprite object is collide_rect, which takes two arguments: the names of

the two objects you wish to detect collision on.

We use this inside of an if statement so that we can check if the objects ever touch

or come into contact with one another. If they do, we change the value of rect1’s X and

Y coordinates to 400 x 400, teleporting it far away from the rect2 object. This is all

accomplished with this simple code:

 if pygame.sprite.collide_rect(rect1, rect2):

 rect1.rect.y = 400

 rect1.rect.x = 400

Finally, the last change we made to our code was the way we handle border collision

with the game window. It is largely the same as before, except, again, instead of changing

the values of move_x and move_y to change the coordinates or our rectangle, we access

the rectangle’s XY parameters directly.

If a wall collision is detected, we simply move the rectangle back a few spaces:

For example:

if rect1.rect.x > 750:

 rect1.rect.x = 740

 pygame.display.set_caption('Right Collision')

says that if rect1’s X coordinate is greater than 750, move rect1 back to X coordinate

740 and then change the window caption to say “Right Collision.”

Go ahead and test the program, making sure to check that the collision detection

works for all four sides of the two objects by trying to move the rect1 object into the rect2

object from the top, bottom, left, and right sides.

Then test the collision detection for the window borders, being certain to check,

again, the top, bottom, left, and right boundaries.

If the code does not work, re-read it and compare, making sure it matches.

And, as always, be mindful of indentation.

Chapter 12 Animating Games

269

�In This Episode!
You accomplished some truly amazing things in the past two chapters, and it is looking

like you are building up to be an unstoppable hero! While we did not cover every gaming

topic possible in these last two chapters – it would take a whole book (if not more) to

do so properly – we did touch upon enough information for you to design a basic video

game and, more importantly, get started doing your own research to create your own

complex games.

Your homework? Get out there and create an interesting game or, at least, the

skeleton of one. I look forward to playing it on the Playstation 402 or whatever system is

around when you become a world-famous game developer!

Chapter 12 Animating Games

271
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_13

CHAPTER 13

Error Handling
We are rapidly approaching the end of this book and our time adventuring together.

Soon, you will be donning your cape on your own, battling evil doers without my

assistance (in your imagination only, of course!), and writing code all by yourself.

Cue sad music.

For now, though, we are still a superhero duo! And while we have learned how to

defeat many programmatic villains and overcome many different obstacles, there is a

topic we still need to discuss: how to overcome our own failures.

Failure, you say? What sort of hero or coder fails?

Sadly, we all do. Or, to look at it a better way: fortunately, we all do.

Why fortunately? Because failure is one of the greatest ways to grow stronger and

improve our skills and programming abilities.

Think about this: do you know why you build muscle when you lift weights? It is

because you tear muscle that then has to heal. When you lift weights, at some point you

hit a point where you can lift no longer – that is, you fail. That failure is exactly what a

bodybuilder is looking for, because they know that only once your muscles fail can they

begin to repair the damage and grow even stronger.

Your programming skills are exactly the same. The only way, in my view, to ever

really understand code is to screw it up and have to figure out what you did wrong.

Anyone can know the language – understanding the language, however, takes years of

failing.

Note, this same logic does not apply to your algebra tests…don’t fail those!

So far, when we have encountered an issue, we simply read our .py file, line by line,

trying to figure out what went wrong. And to be honest, there haven’t really been any

failures – provided you have typed in my examples exactly as written.

Odds are, however, that you mistyped a word or two and that did cause your program

to fail. What you did after that – if you have made it this far – is you scoured your code

looking for the culprit, the misspelled word or indentation that caused the problem, and

then fixed it.

https://doi.org/10.1007/978-1-4842-9988-3_13#DOI

272

If this happened, congratulations – you have officially tested and debugged a

program, even if only in the most basic sense of the word.

Debugging is a new word for us. It means to identify and remove errors from

our code.

Let’s look at that definition again: identify and remove errors from our code.

The biggest part of the debugging process, to me, is finding the error. From there, we

have to understand the error, and only then can we repair or remove the issue causing

the error.

For small programs, we can go line by line trying to find the issue. For larger

programs, we will want to use a program known as a debugger.

�Finding Errors
Python is usually pretty good at telling us we screwed something up. For this section,

let’s go ahead and create a new file called Oops.py.

This file is going to be full of errors, and when you run your programs, expect to get

yelled at by IDLE. When we type in our code, the mistakes in the code may be obvious to

you, or it may not; either way, follow along and pretend you don’t see the mistakes if you

do; it will help you understand how to fix programs better.

Enter the following code into Oops.py:

print hello

For astute programmers, you may already see the problem; if so, kudos, but pretend

you didn’t. Go ahead and run the program and look what happens. Finished? Did you

get an error message? You bet you did! It should read something like

Missing parentheses in call to 'print'. Did you mean print(...)?

This should have appeared as a pop-up message. As you can see, IDLE is pretty

smart – it not only saw that there was a problem in your code, it offered you a suggestion

on how to fix it.

A few things to note here. First, while IDLE does offer a suggestion here, it is actually

incorrect. Since we did not enclose the text we wanted to print in quotation marks,

IDLE assumes that we were really trying to print a variable and shows us how to print a

variable named hello.

Chapter 13 Error Handling

273

In this instance, that was not our intent, but still, it is nice of Python to point out our

error and offer a possible solution.

What we really meant to do was print out the word “hello,” which of course is as

simple as typing print(“Hello”). However, remember, we want our program to fail.

So, the lesson from this first mistake? Sometimes IDLE will give us an error message

in a pop-up message and suggest where the error occurred and a possible solution –

which may or may not be correct.

Now, let’s modify the code in our file so that it matches this:

print("Hello)

Again, you may already see the problem – that we forgot to close our print()

function with a second or closing quotation marks – but go ahead and run the program

to see what happens.

Here, again, we get another pop-up. This time we get a different type of error – an

unterminated string literal error. It should say

Unterminated string literal (detected at line 1)

Here, Python is basically telling us that we did not close the line properly, which we

know we did not do. If we click the “OK” button on the pop-up, IDLE should take us back

to our file and highlight the rest of the line in red – indicating that it thinks there is an

error in this region. It may also place the cursor somewhere on the line where the error

occurs instead.

We know the problem is that we simply forgot our second quotation mark. We are

going to fix that, but this time, let’s leave off the second parentheses instead and see what

happens. Edit your code to match the following, and then run it again:

print("Hello"

This time, we get another error pop-up. This one is a Syntax Error that says:

'(' was never closed

Again, Python will place the cursor back on the line where the error occurred.

When we run our code, Python was looking for an end to the line of our code – which

should have been a closed parenthesis. Instead, it found no close, so it skipped to the

next line looking for more code. When it didn’t find the closed parentheses there either,

it decided we goofed up and highlighted the line to show us where it ran into the error.

Chapter 13 Error Handling

274

This is important, because usually we think Python is showing us where the error

is; in fact, Python is showing us where it errored (is that even a word?). Think of it as

running off of the edge of a diving board; the first step off of the diving board is where

you screwed up, but you probably don’t realize it until the moment right before you

belly-flop awkwardly and lose your trunks in front of your entire class.

Python is the same way.

On to the next error.

Now, let’s modify the code so it matches this:

prant("Hello")

Save the file and run it. No pop-ups this time – we must be doing good!

Well, not quite.

This time, when the program tries to run in the Python Shell, we get the

following result:

Traceback (most recent call last):

 �File "C:/Users/James/AppData/Local/Programs/Python/Python311/Oops.py",

line 1, in <module>

 prant("Hello")

NameError: name 'prant' is not defined. Did you mean: 'print'?

This type of error is known as a NameError. Let’s examine each part of this output

carefully.

The first line says:

Traceback (most recent call last):

This is Python telling you that it is tracing back the errors in your code, with the last

call appearing first. We only have one error this go-around, but don’t worry – we will

have multiple in a moment.

Next, Python tells us some important information. It tells us the location of the file

(yours will be different than mine) and what line it thinks the error is on. In this instance,

it says line 1, or the first line of your code.

Next, it shows us the code where the specific error occurs: prant("Hello").

Finally, it ends by telling us the type of error – NameError – and provides more

details: the name “prant” is not defined.

When we see a message like that, it means that Python saw

prant()

Chapter 13 Error Handling

275

and could not find it in its built-in list of functions. The reason? Because it

doesn’t exist – we misspelled print() and while we know that, Python has no way of

knowing that.

Since Python does not find a built-in function named prant(), it assumes that we

are trying to call a function we created named prant(). Since we did not make a function

with that name, then Python concludes that we have typed a wrong name or failed to

define a function of that name. It also, conveniently, suggests that perhaps we meant

‘print’.

This is a very basic error and is pretty simple for us to trace – or track down – and fix.

All we have to do is look at line 1, find the messed-up code, and change prant("Hello")

to print("Hello"). Then, if we saved it, we could run it and all would be right in

the world.

Of course, we don’t need to bother doing that just yet, because we are still

intentionally making mistakes in our code.

Let’s see if we can make one more type of error before we move on. Modify your code

once more so that it matches the following:

a = 1

whilst a < 4:

 print(a)

 a = a + 1

What this code should do is assign the value of 1 to the variable ‘a’. Then, we created a

while loop that looked to iterate or repeat so long as the value of 'a' was less than 4.

For each iteration through this loop, the value of 'a' gets printed, and we also add +1

to the value of 'a'. In theory, the output of this code would be

1

2

3

However, we made another typo in our code – can you spot it this time?

If you run the code, you will get a hint in the form of a pop-up box that reads

invalid syntax.

Chapter 13 Error Handling

276

What, exactly, does that mean? It means that we spelled something wrong in our

code. Again, we get the red highlight showing where our area is near.

The issue? We spelled whilst instead of while.

Let’s fix the spelling of whilst but make another mistake in its place. Edit the code so

that it matches this:

a = 1

while a < 4

 print(a)

 a = a + 1

Can you spot the error this time? Save the file and run the code. Again, we get a

syntax error, even though we fixed the spelling of while. Every other word is spelled

correctly as well, so what gives?

Syntax errors cover general typos – not just spelling mistakes. In this case, we forgot

to add a colon : at the end of our while statement. The line should read

while a < 4:

If you add the colon at the end and save the file, it should run properly. Python also

gave us a hint about this in the pop-up, which read: “expected ‘:’”.

�Types of Errors
In reality, there are only three main types of errors in Python: syntax errors, logic errors,

and exceptions. We will cover each of these error types and how to handle them in this

section. So, strap on your superhero safety goggles, and let’s get ready to fix the problems

of the world!

Well, okay – maybe just the problems in our code to start with.

�Syntax Errors
We already discussed syntax errors a little in our preceding overview of errors. To refresh

your memory, a syntax error occurs when Python is unable to understand or read a line

of code.

Chapter 13 Error Handling

277

Syntax errors are normally caused by something as simple as a typo; perhaps you

misspelled a function or forgot to add a colon at the end of your statement. Think of

them as grammar or spelling mistakes.

Of all the errors you receive, odds are that syntax errors will occur the most

frequently. This is both good and bad; it’s good because it means that, most often, your

errors are simply a spelling or punctuation problem and not an issue with programming

logic. It’s bad because, well, they can be annoying to track down, especially after your

eyes are blurry from typing code all day… and night.

The vast majority of syntax errors are fatal and will cause your code not to execute,

which again is a blessing in disguise. While it may be annoying to have your code not

work at all, it also ensures that you don’t ship a piece of software that has a hidden

problem in it.

If you run into a syntax error, note where the red line is highlighted in IDLE or

note the line number where the error occurs and look for any problems with spelling,

indentation, colon, quotation, and parentheses use, or invalid arguments within that

line, the line before it, or the line after it.

�Logical Errors
The most problematic of all errors are the dreaded logic errors. As the name suggests,

these occur when there is a flaw in your programming logic. These types of errors can

cause your program to behave in a funny manner or explode completely.

Part of what makes logical errors so frustrating is the fact that they don’t always

cause an obvious error. Sometimes, Python does not even catch the error, and you,

yourself, may miss it. This is why it is so crucial to frequently test your code and provide

documentation whenever possible.

There are several ways to uncover these types of errors, including using a debugging

program, which we will cover later on in this chapter. The best way to deal with logical

errors is to prevent them in the first place. We do this by planning our programs in

advance and testing frequently. Using flowcharts can help you figure out how each

section of your code should flow and is a helpful tool to avoid logical errors.

Of course, logical errors will still happen; it is all just part of being a programmer.

Here is an example of a logical error – see if you can figure out why this program will

return a result that is not what was intended. Here’s a hint: the intent of this program is

to find the average of two numbers:

Chapter 13 Error Handling

278

a = 10

b = 5

average = a + b / 2

print(average)

If you are not great at math, don’t worry; when we write this program, we expect

that the average of 10 and 5 would be 7.5; however, when we run this program, we get

the result:

12.5

which is certainly not right. Why did this happen? Let’s check our math to see if we

did the calculation correctly.

If we were writing this equation on a piece of paper, we would write a + b / 2 – exactly

as we see it. a + b equals 15, divided by 2 equals 7.5 right?

If you will recall from our discussion on math operators and numbers, math does not

always work the same in Python as it does when using pen and paper. In Python, there

is an order of precedence, meaning Python looks at an equation and determines which

portion to solve first before moving on to the next section.

If this part is unclear, I encourage you to go back to the chapter dealing with

operators and numbers and review it one more time. Come back when it makes sense.

In order to have Python perform the equation in the order that we want it to, we need

to force the order of precedence using parentheses ( ). The real way to write this code,

without getting a logical error, would be:

a = 10

b = 5

average = (a + b) / 2

print(average)

This time, if you ran the code, you would get

7.5

Chapter 13 Error Handling

279

For those that are not mathematically inclined – or those that are sleep deprived –

you may have completely missed the fact that this code was not behaving properly at all.

Python did not send a warning or an error message at all, so we would have no real way

of knowing there was a problem if we did not test the results and double-check to make

sure they were right.

Now, imagine if this were part of a banking application and you could see how a

simple logical error could ruin an entire system – and make a lot of people very sad!

�Exceptions
Exceptions are a peculiar breed of error. There are several types of built-in exceptions,

but they are too numerous to cover in this chapter. Instead, you can visit the Python.

org’s doc page on built-in exceptions located at https://docs.python.org/3/library/

exceptions.html#built-in-exceptions to see the different types. I’ll explain why that

may be even more useful than you think in a moment.

For now, know that exceptions occur when Python understands your code but is

unable to perform an action based off of it. For instance, maybe you are trying to connect

to the Internet to scrape – or copy – some data from a website, but you are unable to

connect. Or maybe you have a script that is trying to make use of an API that no longer

exists at the address you give it.

Exceptions differ from syntax errors in a number of ways. One of those is the fact

that they do not always cause an error. This is good and bad; it is good because your

programs can sometimes still run with an exception; it is bad because, well, your

programs can still sometimes run with an exception!

We don’t want our code to run with errors!

The great thing about exceptions – if you want to look on the bright side – is that we

can do something called exception handling. To handle an exception basically means

that we anticipate the error may occur and then script a way to deal – or handle – them.

Let’s say that we have a program that asks for a user’s four-digit pin number. We want

to ensure that the value is numeric in nature. We have set our variable to specifically hold

an integer value. Let’s start out with the base code:

pin = int(input("Enter your pin number: "))

print("You entered pin: ", pin)

Chapter 13 Error Handling

https://docs.python.org/3/library/exceptions.html#built-in-exceptions
https://docs.python.org/3/library/exceptions.html#built-in-exceptions

280

If you put that code in a file and run it, it will ask you for a pin number. Go ahead and

try it out – you can add it into your Oops.py file if you like. To begin with, type in a four-

digit number and press Enter. The program will spit out a response similar to

You entered pin: 1234

where 1234 would be whatever number you entered.

Now, run the program again, only this time, enter something like “abcd” when

prompted and press Enter.

This go-around you will get the following output:

Traceback (most recent call last):

 File "C:/Users/James/AppData/Local/Programs/Python/Python311/Oops.py",

line 1, in <module>

 pin = int(input("Enter your pin number: "))

ValueError: invalid literal for int() with base 10: 'abcd'

Here, we are presented with an exception error of the type ValueError. This happens

because the type of value Python was expecting to find in the variable pin was an

integer; instead, you typed in a string.

One of the ways we can ensure that Python does not toss an error like this and force

our program to not run properly is to handle the error in advance. Since we know that

someone may enter the wrong data type into our variable, we can create code to catch

the error when it happens and handle it.

Try typing in this code, replacing the other version of the code, then save your file

and run it:

Example of exception handling a ValueError

try:

 pin = int(input("Enter your pin number: "))

 �print("You entered: ", pin)

except ValueError:

 print("You must only enter a numeric value.")

Chapter 13 Error Handling

281

This is known as a try and except block in Python. Its specific purpose is to catch an

exception and handle it. The code contained within the block is treated with kid gloves,

in a sense; Python realizes that you intend to handle an error if it occurs, and if one exists

(of the type you specify), it triggers your except statement.

Go ahead and run this program and enter in 'abcd' when prompted again to see

how the code now functions. You should get a response like:

Enter your pin number: abcd

You must only enter a numeric value.

Once Python hits the except statement, it follows your instructions and then exits out

of the program. In real life, we would want to enclose this code in a loop so that it would

start again if there was an exception. For instance, you could use a simple while loop,

like this:

Example of exception handling a ValueError

repeat = 1

while repeat > 0:

 try:

 pin = int(input("Enter your pin number: "))

 print("You entered: ", pin)

 repeat = 0

 except ValueError:

 print("You must only enter a numeric value.")

 repeat = 1

�The Try Except Else Block
Another thing you can do is create a Try Except Else block. The idea behind this

would be that if there were no exceptions, the code would carry out a different set of

instructions. For example:

Example of exception handling a ValueError

Using a Try Except Else block

Enclosed in a while loop

repeat = 1

while repeat > 0:

Chapter 13 Error Handling

282

 try:

 pin = int(input("Enter your pin number: "))

 except ValueError:

 print("You must only enter a numeric value.")

 repeat = 1

 else:

 print("You entered: ", pin)

 repeat = 0

This has the same result – and works similar – to the previous version of the program.

The difference? It is a little cleaner and more readable. It basically reads as

Try this code. If it doesn't work:

Execute some code if an exception occurs.

Else if there are no exceptions, run this code.

�Using Finally
There is one more thing we can add to our block – the finally clause. finally is useful

when we want some code to run no matter what – even if there is an error.

Example of exception handling a ValueError

Using a Try Except Else Finally block

try:

 pin = int(input("Enter your pin number: "))

except ValueError:

 print("You must only enter a numeric value.")

else:

 print("You entered: ", pin)

finally:

 print("Are we done yet?")

To study this code a little better, we removed the while loop and the repeat variable/

code relating to repeat. Basically, what this code is saying is this:

Ask for a pin number that is an integer value.

If the pin number is not an integer,

Trigger the except statement.

Chapter 13 Error Handling

283

Else print the value of the pin number.

Additionally, no matter what,

Trigger the finally clause.

The result of this code if you entered 'abcd' and triggered the exception would be:

Enter your pin number: abcd

You must only enter a numeric value.

Are we done yet?

If you ran it again and entered '1234' as your pin, it would result in:

Enter your pin number: 1234

You entered: 1234

Are we done yet?

Either way, you will note, our finally clause triggered – as intended. This is a great

way to have your program carry on if you have an exception error that you anticipated.

�Creating Custom Exceptions
In addition to handling exceptions from the defined list of built-in exceptions, we can

also create a custom exception as well. To do this, we use raise. Here is a quick example:

super_name = "Afraid-of-Spiders-Man"

villain = "spiders"

if villain == "spiders":

 �raise Exception("Yeah, no thanks...my name says it all...villain

should NOT equal spiders!")

Here we start off creating two variables. One holds the name of our superhero,

super_name, while the other holds the type of villain our hero will encounter – villain.

Next, we perform an if check that checks to see if the value of villain is equal to

'spiders' (after all, our hero is named Afraid of Spiders Man!). Since villain does,

indeed, match 'spiders', we use raise to create an exception:

Chapter 13 Error Handling

284

When I run the code, I get this error:

Traceback (most recent call last):

File "C:/Users/James/AppData/Local/Programs/Python/Python311/Oops.py", line

4, in <module>

raise Exception("Yeah, no thanks...my name says it all...villain should NOT

equal spiders!")

Exception: Yeah, no thanks...my name says it all...villain should NOT

equal spiders!

Note  You can ignore the line number in this example – I have other code in
my file that makes the line number the error appears on different than yours
would appear.

Here we see our exception error being raised, printing out some text that says:

Exception: Yeah, no thanks...my name says it all...villain should NOT

equal spiders!

In this example, I was trying to be funny, so I made the exception say a joke. In

reality, when you create your own exceptions, you will have them say something more

along the lines of

Exception: the villain variable contains a value that is not allowed –

spiders.

That way if someone enters the wrong value, we immediately know when we look at

the exception what the problem is without having to trace down the issue.

Another type of custom exception we can create is an AssertionError exception.

This type of exception starts off a program by asserting that a given condition is True or

met. If so, then the program can continue running. If not, an AssertionError exception

is thrown.

Consider this short snippet of code

assert 1 + 1 == 2, "One plus One does equal 2!"

assert 2 + 2 == 5, "2 + 2 does not equal five! Error in line 2!!"

Chapter 13 Error Handling

285

Here we have two assert statements. If we run this program, nothing happens for

line 1 of the program – this is because the equation 1 + 1 does, in fact, equal 2, so the

assert condition test equals True.

When the second line of code tries to be executed, the assert test condition proves

False (2 + 2 does not equal 5), and so the AssertionError is triggered, resulting in

this output:

Traceback (most recent call last):

File "C:/Users/James/AppData/Local/Programs/Python/Python311/Oops.py", line

2, in <module>

 assert 2 + 2 == 5, "2 + 2 does not equal five! Error in line 2!!"

AssertionError: 2 + 2 does not equal five! Error in line 2!!

To make things convenient, I went ahead and added the line the error in our code

was written in the output from the assert, along with the reason the AssertionError

was raised.

�Logging
Another tool at our disposal for finding errors in our code – especially for longer

programs – is to use logging. There are several ways to do this, but the easiest is

probably by importing the logging module.

One method programmers use to reduce errors in their code is to use print()

to verify everything is working as it should. For example, let’s say that I have a group

of stats – as we do in our Superhero Generator 3000 application – that are randomly

generated.

I could just trust that my code is working right and assume that the stats are being

randomly generated properly, but that might not be the smartest thing to do. To make

sure I have coded everything properly, I might want to have the numbers randomly

generate, then – temporarily – insert some code to print out the results of those stats.

Once I am satisfied that the random number generation is working properly, I can

remove all of the print() and continue with my code.

Chapter 13 Error Handling

286

For example, I might write this code to start with

import random

brains = 0

braun = 0

stamina = 0

wisdom = 0

power = 0

constitution = 0

dexterity = 0

speed = 0

brains = random.randint(1,20)

braun = random.randint(1,20)

stamina = random.randint(1,20)

wisdom = random.randint(1,20)

constitution = random.randint(1,20)

dexterity = random.randint(1,20)

speed = random.randint(1,20)

Then, realizing that I need to check that all of the values are randomizing properly, I

might go back and edit my code to add these print() functions:

import random

brains = 0

braun = 0

stamina = 0

wisdom = 0

power = 0

constitution = 0

dexterity = 0

speed = 0

brains = random.randint(1,20)

print("Brains: ", brains)

braun = random.randint(1,20)

print("Braun: ", braun)

stamina = random.randint(1,20)

print("Stamina: ", stamina)

Chapter 13 Error Handling

287

wisdom = random.randint(1,20)

print("Wisdom: ", wisdom)

constitution = random.randint(1,20)

print("Constitution: ", constitution)

dexterity = random.randint(1,20)

print("Dexterity: ", dexterity)

speed = random.randint(1,20)

print("Speed: ", speed)

Then what I could do is run the program once, to see if values are being stored in my

variables, giving me the result:

Brains: 19

Braun: 19

Stamina: 2

Wisdom: 11

Constitution: 14

Dexterity: 12

Speed: 6

Then, satisfied that values are being added, I would run one more test to make sure

the values are being randomized each time the program runs. The test is simple: if the

values are different the second time around, it works. The results?

Brains: 20

Braun: 2

Stamina: 14

Wisdom: 18

Constitution: 6

Dexterity: 19

Speed: 3

Since the values are different for each stat in both of my test runs, I can assume my

use of random is correct. I no longer need my print() functions. I can either comment

them out or remove them completely.

Chapter 13 Error Handling

288

Since this is a simple piece of code, I will go ahead and remove the print() functions

so that my code is more readable.

Instead of cluttering up my file with a bunch of print( ) functions, I could, instead,

use logging to monitor the file and write the results to a separate text file.

Another benefit of logging is that we get to keep a record of events and errors that

happen in our code for a later date, in case a new bug pops up or we need to review

the log.

It is important to note that logging is about more than just monitoring for warnings

and errors; it is also useful for monitoring triggered events as well.

In fact, the logging module has its own set of “level of importance” ratings you can

use when logging. They are

Critical: Used for critical errors that can cause a program to have serious problems or

not run at all.

Error: For serious, non-critical problems

Warning: Used for when something unexpected has – or could – happen

Info: Used as confirmation that your code is working as intended – similar to our use

of the print() statement

Debug: Helpful for diagnosing any issues and providing information that may be

helpful in the debugging process

In truth, logging and the use of the logging module in particular are beyond the

scope of this book. It would take an entire chapter to explain its usage properly, and

while I encourage a beginner to learn logging, it simply does not fit in our curriculum.

That being said, set aside some time to read the official Python documentation

on logging and the logging module. Also, look at some tutorials on the Internet and

in other, more advanced books, and start to dabble with logging as you create more

complex programs.

Stick your toe in, and, when you are comfortable, dive on in!

�Debugging Tools in Python
We spoke a lot about fixing errors in your code, testing your code, and how to perform

exception handling. We also talked about logging and the basic concept of using the

logging module to track errors and events in a log file.

Chapter 13 Error Handling

289

Another trick up our superhero sleeves we can use to solve coding problems is a tool

known as a debugger. There are many debuggers for Python available to choose from,

each with their own strengths and weaknesses. Some cover specific areas of Python,

choosing to specialize, while others are general-purpose debugging tools with similar

features to other debugging programs.

Python, in fact, has its own debugging tool, known as pdb.

Technically, pdb is a module that you can import and use. The module lets you step

into your programs and check them line by line to see if they are working properly.

Remember our example earlier of using print( ) statements to check that our stats

random values were being assigned properly? Using the pdb debugger module, you

could achieve the same result without having to write all of those print() statements.

You can learn more about the Python debugger pdb module at the Python’s

documentation website – just make sure the version of the documentation you are

viewing matches the version of Python you have installed on your computer. Here is a

link to Python 3.11, for example:

https://docs.python.org/3.11/library/pdb.html

As with logging, you should study debugging and begin learning the basics now, and

then as you create more complex programs, get more comfortable using whichever you

end up choosing. For now, I would stick with pdb.

�One Final Tip for Handling Errors
If I haven’t said this before, I wanted to leave you with one final tip for finding and

dealing with errors in your code: use comments.

What, exactly, does that mean though?

The concept is simple enough: if you suspect a section of code is causing you a

problem, use a comment (#) to make the line of code invisible to Python, and then run

your code and see if the problem still exists. If it doesn’t, you have found your problem; if

the problem persists, move on to the next section of code.

For more complicated constructs like if blocks, use multi-line comments (“””) to

comment out the whole section. For example:

"""

IF

code

Chapter 13 Error Handling

https://docs.python.org/3.11/library/pdb.html

290

code

code

"""

would comment out the code in between the triple quotation marks (“””).

This is a common practice used by coders of all levels. Just don’t forget to

uncomment your code after you check and/or fix it!

�In This Episode!
Can you believe we have come this far? Only one chapter left till we conclude our

superhero adventure together!

Super! Outstanding! Stupendous! Amazing! Spectacular!

Boom! Pow! Bam! Sock-O!

This chapter was all about errors: finding them, fixing them, logging them, and

debugging them. Here are some highlights of these topics that you can review at your

leisure.

And then, it is off to the final chapter!

•	 The three types of errors in Python are syntax errors, logic errors, and

exceptions.

•	 Syntax errors are similar to a spelling error or grammar error; they are

usually fatal and will cause your code not to execute.

•	 Logical errors occur when there is a flaw in your programming logic.

They do not always cause a noticeable error and frequently cause

programs to behave oddly vs. breaking.

•	 Exceptions do not always cause an error, and oftentimes programs

can still run despite throwing an exception.

•	 There are many types of built-in exceptions, including ValueError

and NameError.

•	 In addition to built-in exceptions, we can also create our own

exceptions using raise and assert.

Chapter 13 Error Handling

291

•	 Try-except-else-finally blocks give you more control over handling

your errors by allowing you to dictate what happens if certain

criteria – or error types – are encountered.

•	 Exception handling is the process of handling – or dealing with –

exception errors.

•	 Logging allows you to track errors, warnings, debugging information,

and events in your code. You can save these log files to a separate file

for later use.

•	 You can use the logging module to assist in logging.

•	 There are many tools to help you debug – or find errors and fix them –

available for Python.

•	 Python’s built-in debugger is the module pdb.

•	 You can use single-line commenting and multi-line commenting

to comment out blocks of code that may (or may not) be causing

errors in your programs. You can then test your code to see if these

commented-out portions were the culprit.

Chapter 13 Error Handling

293
© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3_14

CHAPTER 14

Python Career
Well, young hero, it has been a long journey. We have overcome many foes – nefarious

villains like Jack Hammer and the vile Algebro. We have read through this mystical tome

and gained insight and wisdom that have allowed us to enhance our powers to heights

previously unknown. We are talking Mount Everest types of heights.

Or, at the very least, the top of that really tall slide on the playground.

Regardless, when we first started this adventure together – and that is truly what it

was, an adventure – you were a mere sidekick with a mustard stain on your super tights

and a wrinkled cape. Your mask, though brightly colored, barely covered your face.

But look at you now! A full-blown hero, full of amazing powers. You can create your

own programs, write video games, hack (ethically) computers, perform great feats of

mathematics, randomly generate statistics, and so much more.

You have gone from fledgling hero to superhero; from student to… well, greater

student.

But mostly, you have gone from reader to programmer. And that, my friend, was the

purpose of this book.

And yet, even as you stand on this great precipice, comfortable in your tricked-out

superhero lair and practicing your newfound powers and knowledge, you must never

rest. The world is an ever-changing landscape, and so, too, is technology. Python, too, is

an evolving beast, with no end in sight.

For that very reason, you must continue to practice the knowledge you already

possess until it becomes like a second language. You need to dream in code! Then, go

out, learn more of the language, and dream some more!

There is still a lot left of Python for you to discover and grow with. This book was just

the tip of the iceberg. Practical, real-world experience that you cannot learn in a book

awaits you. Updated versions of Python await you.

And, perhaps, other programming languages.

https://doi.org/10.1007/978-1-4842-9988-3_14#DOI

294

I encourage you to branch out and never be satisfied with your knowledge. Look

at other languages. Consider learning some Perl, which is very similar to Python and

should be easy for you to pick up. Ruby on Rails and PHP are great next languages as

well, especially if you wish to branch out into web application programming.

C and C++ are a bit more difficult, but well worth the effort to learn, even if you just

learn the basics. While you are at it, HTML, JavaScript, and JSON are all handy tools that

you should add to your resume and skill set.

Speaking of resume, this final chapter serves one real purpose: to prepare you for

the real world of programming. Whether you are 13 or 18, sooner or later you will need

to decide what direction you wish to head in with regard to a career path; knowing what

options are available to you now can help guide your learning path in the future.

For instance, if you decide you want to pursue game programming, continuing

learning pygame and fooling around with Scratch will definitely help. Adding languages

like C, JAVA, and C++ is a definite requirement – particularly C++.

In this chapter, we will look at all of the current – and future – career options to help

you begin to think about what you want to do when you are an adult. We will also look at

common interview questions, for those of you that already are adults and need to start

paying those bills!

After all, you can’t expect to make it on a superhero salary….

We will also refresh our memory on the best programming practices, so that we

continue to write good code and keep our jobs once we get them. I can’t stress the

importance of good coding principles enough. The future of the world depends upon it!

Speaking of the future (yes, I am the Segue King!), we will look at the future of Python

as a language. We will discuss its role in virtual reality (VR), augmented reality (AR),

artificial intelligence (AI), and a whole slew of other abbreviations that make us sound

hip and cool when we say them.

Finally, we will wrap up the chapter with a Python terms cheat sheet and answer

some of the most frequently asked questions (FAQ) people have with regard to Python

and programming in general.

It’s been a long road – no reason to make it any longer. Strap on your superhero boots

and lace ‘em up! It’s time to finish this journey.

Superhero style!

Chapter 14 Python Career

295

�Working with Python
When you picked up this book, you may or may not have had a career path in mind

and that is okay; many people go undecided about what they want to do when they are

“grown-up” until they are, well, way past the point of being grown-up!

Whether you know what you want to be or not – or what profession you want to

follow – one thing is for certain: you care about what that something is. That is evidenced

by the fact that you invested in this book and, more importantly, yourself. You spent the

time to read these pages and try out the code, and that is more than a lot of people your

age have done so far. Good for you!

The next step is figuring out what you want to do with the knowledge you have

gained. Most likely, you will want to continue on as a Python developer, regardless of the

field or other languages and skills you may learn.

Some of what you do in your career will depend upon factors other than the ones

you choose. People you meet, places you live, and available jobs will always factor in

to where the road leads you. You might start out thinking you will be a video game

programmer, intern at a video game development company as a game tester to gain

some experience and veer off into that path. Who knows – that is part of the adventure

of life!

That doesn’t mean you can’t aim for a certain goal and even stick to it. Just know

that no matter how well-intentioned your plans are, sometimes you might find yourself

somewhere other than you predicted, and that is okay.

All of that aside, it is good to have an idea of where you want to go. So, with that in

mind, let’s take a look at some possible career options as you develop into a part-time

superhero, full-time programmer.

�Career Paths for Python
The career paths listed in this section are not in any particular order; none is better than

the others, although you may find pay rates are higher in some areas than others. We are

not going to focus on that; I believe firmly in doing what you love. If you do that, success

will follow.

This list is in no way conclusive; there are quite a few careers you can choose from,

but these are the most common currently.

Chapter 14 Python Career

296

�Beta Tester
Beta testers are the unsung heroes of the software developer world. They are the ones

that test programs and software and figure out what works and what doesn’t – both from

a technical perspective and a user-experience perspective. In some instances, you may

be asked to specifically test a certain feature or aspect of a program; in others, you may

need to check everything.

Programming knowledge is important for this role but isn’t the most important.

I’ve beta tested many programs that I had no real experience for from a programming

language perspective; I understood the concepts and how things worked and that served

its purpose well.

Of course, if you know the language and can pinpoint exact issues in code, then all

the better and you will likely have an easier time finding work.

Odds are, you have already beta tested software and maybe not fully realized it. If

you are an avid video game player or a fan of mobile games, oftentimes you will get to

try a beta version prior to it being released to the general population. While this isn’t

quite the same as having a paying gig, there can be benefits, such as free software and/or

hardware.

�Code Debugger/Bug Locator
This may sound similar to a beta tester, but it really is a little more involved in most

instances. Your mission: locate wonky, bad code and report in on how to fix it – or fix it

yourself, depending on the job.

If you are the type of person that likes to spend hours trying to solve the mystery

of what is wrong with a program or like to take things apart, this may be a good career

option for you; at the very least, it is a good skill to have, no matter where your career

path takes you.

Keep in mind that you will be looking through other people’s code and oftentimes

multiple people’s code. Hopefully those people document well and follow standard

guidelines, but you never know what you are going to run into.

Still, this is a great way to stay at the top of your game and getting good at finding

errors in programs will come in handy if you become a software developer or create your

own applications.

Chapter 14 Python Career

297

�Data Scientists
If you are good with statistics, numbers, and research, you may want to consider entering

the field of data science. Python is huge in the world of data science, which is a mixture

of statistics and machine learning techniques.

Thanks to its great library of mathematical and data visualization tools (such as

matplotlib and NumPy), Python programmers lead the field in terms of data science

careers. In this line of work, you will be using graphs and other tools to help organize,

interpret, and display data sets for a broad range of industries and applications.

The algorithms you develop and your interpretation of data help an organization or

business make critical decisions. You will need an analytical brain, good math skills, and,

of course, a little programming know-how for this career path, but it promises to be a

rewarding field for those that love figuring out what information really means!

�Software Developer/Software Engineer
There are a ton of options when it comes to being a software developer. This is probably

the role you think of first when you think of where you will fit in the grand scheme

of things.

Software developers create a multitude of software, including productivity

applications (like Microsoft Office) to music creation programs and pretty much

anything you could think of. Just take a peek at the applications on your computer, and

you will have a good idea of just how broad that spectrum really is.

If you do decide to be a software developer or software engineer, keep in mind that

you will want to learn as much about Python and other languages as you can; it never

hurts to know other languages and frameworks, and, as a bonus, once you know Python,

learning a second or third coding language becomes a whole lot easier, as much of the

logic and structures are the same across languages; it is mostly just a matter of learning

new syntax and programming styles (e.g., not every language uses indentation).

�Video Game Programmer
While this occupation technically falls under the same path as software developer, I

thought I would give it special mention. As an avid fan of video games – that is, after all,

what got me into programming in the first place – I would be remiss if I did not count this

as its own separate career option.

Chapter 14 Python Career

298

Video game development has really blossomed over the past decade. In fact, when

I was in college, there were only a handful of colleges – mostly specialty – that offered

courses, much less degrees, in game development. In fact, my college only offered one

such course – and just one time a year!

Of course, we used to all chisel our code on giant stones and wore bones in our noses

at the time, but still….

If you want to develop for the major consoles, you will need to know more than

Python and pygame. In fact, while Python will certainly help you understand some of the

logic required, you will really need to branch out into C++ and stick your foot in some C

and JAVA as well.

If you opt to go the route of non-console gaming, or PC gaming, you may have more

options, but really, C++ is the way to go, at the time of this writing.

�Mobile Development
While Python is not the first language you might think of for mobile development, you

can, indeed, use the language to create apps and/or tie-in to other languages that are,

arguably, better at mobile app development.

Mobile apps consist of any app that you use on your phone or tablet. This can be

games, messenger apps, news reader applications, banking software, and even mobile

versions of websites – the list goes on and on.

If you choose this important and huge market, you would be well-served to learn

the true powerhouse languages for mobile development: C# or Objective-C, C++, JAVA,

Swift, or even HTML5. For simplicity’s sake, you might want to begin with HTML5, as it

may have an easier learning curve than the others on that list. You can also use HTML5

for web development, so it is a pretty handy tool to have in your arsenal if you find

mobile app development just isn’t for you.

Of course, C++, C, and JAVA will also open other doors for you as well, but they are a

little more complicated to learn, so it all depends on your time frame and needs.

Either way, just know that you can use Python for mobile development even if it isn’t

widely known for that use.

Chapter 14 Python Career

299

�Web Development and Web Applications
If you want to create web-based applications, Python can certainly help in that endeavor.

In fact, one of the really strong points of Python is its array of powerful web frameworks,

such as Django and Flask. These frameworks act as a sort of blueprint or skeleton that

let you rapidly deploy the “bones” of your applications, saving you a ton of time in setup

and coding. Basically, they create the basics that you find in web applications for you, so

that you don’t have to go re-inventing the wheel.

Combine Python and web frameworks with HTML5, and a little JavaScript, and you

will be a force to be reckoned with in the world of the Internet. For example, Google,

YouTube, and Yahoo all rely on Python for their platforms. If that doesn’t tell you how

good Python is, I don’t know what will!

�System Administration
While sysadmins (or system administrators if you dare!) are an interesting lot, they

are also a very necessary part of any organization. And Python, as you probably have

guessed by now, is exceptionally good at helping sysadmins get the job done.

Systems administrators use Python to create tools and utilities that help them,

well, administrate computer systems, control operating systems, and work on

networking tasks.

It also allows you to create your own servers and clients, messaging systems, and

more. Python is by far the best friend of a sysadmin.

That, and cats, for some reason….

�Research, Teaching, and More
Python is also a great tool for research, as the data scientist section touched upon. It

features so many libraries and tools for complex equations and handling data sets that it

is no wonder NASA relies so heavily upon the language.

What’s more, teaching Python in a school or university setting is always a great way

to make a living and pass on knowledge to future generations at the same time. It is so

easy to learn and, as a by-product, easy to teach, that it is a pretty common first stepping

stone in computer science course requirements.

And who knows… if you teach it enough, maybe one day you could write your own

book about it.

You know what… scratch that. Leave the book writing to me; I have dogs to feed!

Chapter 14 Python Career

300

�Common Python Interview Questions
For some of you reading this book, you won’t have to worry about what sort of questions

you might be asked in an interview; for others, this will be a very real concern, sooner

rather than later. Either way, whether you are ready to enter the workforce or are still a

bit too young to consider such a thing, we suggest you take the time to study and ponder

the list of common Python interview questions in this section.

While a good many of these topics were covered in this book, many more were not;

remember, this is a beginner’s book, designed to teach you what you need to get started

programming in Python. It is not meant to send you out into the workforce, fully armed.

If there are any terms or ideas that do not make sense, we urge you to Google them,

look them up in other books, and learn as much as you can. These questions and

answers are not simply here to help you cheat your way into a job because you are good

at memorization; indeed, these questions are common interview questions because the

concepts they allude to are important programming principles.

Therefore, knowing the answers to these questions – and further, truly

understanding them through study and practice – not only will help you land a job when

you are ready, but will help you keep, and even thrive, at that job!

�Can You Tell Me Some of the Key Features of Python?
This is a deceptively simple question. The interviewer is going to be looking to see how

well you know Python, how interested you really are in the language, and how well you

know its common features. While there are quite a few you could point out, the most

common are

•	 Python is an interpreted language, meaning that it does not need to

be compiled prior to being run like certain other languages.

•	 Python is a multi-purpose language, capable of being used in a

wide array of fields, including data science, ethical hacking, system

administration, web development, mobile app development, video

game programming, scientific modeling, and much more.

•	 Python is highly readable, easy-to-learn, yet powerful. It is an object-

oriented language that is dynamically typed (this means there is no

need to define the data types of variables that you declare; Python

can detect, for the most part, the data type you intend).

Chapter 14 Python Career

301

�What Is the Difference Between a Tuple and a List
We covered this question in an earlier chapter and the answer is pretty simple: tuples

are immutable, meaning that their values cannot be changed. Lists, meanwhile, are

mutable, which means you can change their values. Another difference is that tuples

require round braces ( ), while lists use square brackets []. Finally, while it may not be

noticeable to a human, lists are, technically, slower than a tuple.

�What Is Inheritance?
We covered the concept of inheritance in our chapter that dealt with objects and

classes. As you may recall, classes follow a hierarchical structure, akin to a parent-child

relationship. When we have a parent – or superclass – the child class of that parent

inherits the attributes and methods of the parent.

Remember: classes and objects – a key feature of object-oriented programming

(OOP) – are all about code reusability. A child class can inherit from one parent class or

multiple parent classes, allowing for great flexibility and great coding efficiency.

�How Do You Generate Random Values in Python?
An important module we used quite a lot in this book was random. It was pivotal to

creating the randomized values of our hero stats in our superhero generator program

and also used to randomize the selection of superhero names, as well as, powers.

To use it, we first have to import it:

import random

And then apply it to our code. For instance, we could write:

import random

a = random.randint(1, 10)

print(a)

This would store a random value between 1 and 10 in the variable a, then print it out.

Chapter 14 Python Career

302

�How Do You Create a List, Tuple, and Dictionary
in Python?
This may seem like a simple question, but it can stump a programmer if they have to do

it on the spot, so practice creating each of these and know when to use them so that it

becomes second nature to you.

The answers are:

myList = ['James', 'Mike', 'Spinach Man', 'Mister Kung Food']

myTuple = ('James', 'Mike', 'Spinach Man', 'Mister Kung Food')

myDict = {'Writer' : 'James Payne', 'Student' : 'YourName'}

�What Is the Difference Between a Local Variable
and a Global Variable?
Local variables are meant to be used within a function; that is, we create the

variable inside of our function. If a variable is defined outside of a function, it is

considered global.

�What Are the Different Data Types Python Offers?
There are, in total, five basic data types in Python: numbers, strings, lists, tuples, and

dictionaries.

�What Is a GUI? What Python Library Is Best
for GUI Development?
This two-part question has a simple answer. First, GUI stands for graphical user interface

and allows you to incorporate things such as buttons, labels, text boxes, check boxes,

radio buttons, and so forth in your programs.

Python’s default library for GUI development is known as Tkinter and is arguably the

best for those just starting out.

Chapter 14 Python Career

303

�How Do You Open a File in Python?
This is another topic we covered in this book. As you may recall, we use the open( )

function to open a file. We first specify the name and location of the file (if the file is

located outside of the root that is), then which mode we are opening the file in. For

example:

myFile = open("test.py', 'w')

opens the file test.py, located in the root directory, in write mode.

�How Would You List the Functions of a Module?
Another common interview question you might be asked is how you would view a list of

the functions in a given module. For that, we use the dir() method:

import random

print dir(random)

Using help() is also helpful to view documentation within a module.

�Other Python Interview Questions
You never really know what type of Python-specific questions you will be asked in an

interview, so be sure you study up well in advance of your interviews. The ones included

here are pretty common, but there are plenty more you may be asked.

In addition, you may well be asked to answer some code-specific questions or asked

to write code to perform some specific function in the spur of the moment. Be prepared

to write the basics and know the most common built-ins and functions.

One great way to prepare for a job interview is to study the company and the types

of programming you will be doing there. For instance, if the company develops web

applications, you know in advance that you will be asked about web frameworks.

Finally, always be prepared to answer questions not related to Python or

programming – those will be asked as well. Career goals, past experience, personality

questions, and general manner/attitude will all be considered during the interview

process, so be sure you do not ignore basic interview preparation.

And clean behind your ears…your future boss just may inspect behind them!

Chapter 14 Python Career

304

�Best Programming Practices
While much of coding is personal preferences, when you get into the workforce, there are

always standards that you must follow. We discussed the importance of good and proper

documentation; this section is about the best programming practices to follow.

The tips in this section will help make you a better programmer, make you more

efficient, avoid common pitfalls, and reduce your coding errors. This is not a complete

list, by far, but it should put you on the path to coding like a superhero!

�Follow Style Guides
In his infinite wisdom, the inventor of Python created what is known as a style guide. Just

like Python itself, this style guide, known as the PEP – or Python Enhancement Proposals –

is a list of suggestions for a wide range of topics in Python. It covers everything from

deprecated (removed) modules to style guides, to guidelines on language evolution.

There are a number of PEPs – literally. For example, the style guide is PEP 8 and

was originally created by our great leader, Guido Van Rossum, Barry Warsaw, and Nick

Coghlan back in 2001.

It covers how to lay out your code, whether or not to use tabs or spaces for

indentation, the maximum line length for your code, working with string quotes, and

much, much more.

Most jobs that hire you will expect you to be familiar with this particular PEP,

particularly the sections covering indentation and naming conventions. Not only will

this help your co-workers who have to review and work with your code, but the PEP style

guide will also help you code better, more efficient and error-proof code.

You can find PEP 8 at the Python.org website: www.python.org/dev/peps/

pep-0008/.

You can find a list of all PEPs at:

www.python.org/dev/peps/.

As an example, here is what PEP 8 has to say with regard to naming conventions:

Classes: Use capital letters for the first and second word (and any further words) in

the name. For example: VillainType or MutateClass.

Variables, functions, methods, modules, and packages: Use lowercase words

separated by underscores. For example: my_hero_name or my_villain_name.

Chapter 14 Python Career

http://www.python.org/dev/peps/pep-­0008/
http://www.python.org/dev/peps/pep-­0008/

305

�If It’s Broken, Fix It (Now, Not Later)
Often, when we are making great headway on a program, we want to keep pushing

forward. This is especially true in an office environment, when deadline pressures are

looming and you start to feel a time crunch and even get harassed to finish your portion

of code and move on to the next part.

This mentality can become a big issue, however. While we may be tempted to ignore

minor errors in our code with the thought that we can circle around to fix them later, the

truth is, this thought process is more often a trap than it is a help.

An error here or there is expected, but, like an avalanche on a snowy mountain,

they can quickly begin to pile up and destroy everything in their path. Errors often lead

to other errors, creating a domino effect. If a portion of code doesn’t work right or gives

you errors, it can make other sections perform oddly. What’s worse, those sections that

are affected may not even give warnings or errors – causing even bigger problems down

the line.

The lesson here is simple: test your code often. If you find a bug, fix it immediately,

and do not move ahead in your work unless that problem is solved. You’ll thank me later,

trust me!

�Documentation Is Everything
We touched on this thought many times in the book, but it bears repeating here: always,

always, document your code. Clear documentation is key to a successful program – this

includes its initial version, as well as any version that follows.

As you know, Python programs can consist of thousands of lines of code. Millions

even. Have you ever read another person’s letters or e-mails? Under the best of

circumstances, people are not always clear, even though they speak the same language

as you. Python is no different; while every code (should, at any rate) tries to stick to

conventional naming conventions and code structure, the truth is, a lot of coders are

self-taught.

We also get lazy over time and assumptive; we assume that anyone looking at our

code will understand what we intended to do. Worse, we assume that we will remember

what we were trying to do several years in the past.

Chapter 14 Python Career

306

While documenting your code may take a little more time, in the long run it will save

you oodles of time. Whether it does so because it reduces time you spend tracking down

bugs and code errors or because you can quickly reuse portions of code, documentation

is probably the most important – in my book (and this is my book after all) best practices

that you can follow.

And when we say documentation, that includes not just # comments or “”” multi-line

comments; it includes proper docstring usage as well.

There are tools out there for you to use as well, as you develop into a professional

coder, such as Sphinx and reStructuredText. But for now, start off with the basics and

practice documenting each section of code you write.

�Use Code Repositories and Packages
One of the biggest selling points for using Python is that you get access to a huge library

of Python packages, created and tested by the Python community of developers. These

pieces of code and functions can save you a lot of time, errors, and grief when you are

working on your own projects. As the saying goes, why re-invent the wheel?

You can find packages for use at The Python Package Index (PyPi) repository,

located at https://pypi.org. There are currently 477,000 projects listed with nearly

736,000 users.

You can search projects, browse them, or see a list of trending projects if you are

unsure what you are looking for or are looking for inspiration.

In addition to finding packages to help your programs, you can also learn how to

package – and host – your own packages for others to test and use at the PyPi website.

I highly encourage you to visit this site frequently and review what others in the

Python community are up to.

You may remember us using pip to install a few packages in this book; this is the

repository those packages came from.

�Test Often
Just because it needs to be reiterated, I am going to take a whole other paragraph or two

to say it: test your code. Test it often.

Chapter 14 Python Career

https://pypi.org

307

Anytime you make a new major change or add another section, test the preceding

code. Even if it is something as simple as an if block or a small loop. If you have a portion

of code that relies on decision-making or a conditional statement, make sure you test

each possible answer.

For example, if you have an if block then says “if yes, then X, if no, then Y, else z,”

make sure you perform each of those conditions. Be thorough in your tests and, as stated

above, fix if you find warnings or errors.

Then, once you fix it, test again.

�Choose a Side: Indentation or Spaces
This harkens back to our conversation on style guides and PEP recommendations; when

writing code, always choose whether you are going to use spaces for indentations or tabs.

Then stick with that decision.

There are arguments – I’ve witnessed them in person – about which to use, and at

the end of the day, I am going to anger half the Python users out there by saying this: it

doesn’t matter, so long as you use your option consistently.

In addition to personal preference and PEP guidelines, keep in mind that any

organization you work for will have their own style guidelines, and those will override

anything else – personal preference and otherwise.

But again, when coding, always use the same spacing/tab conventions.

�Classes Are Great, But Not Everything Needs to Be One
Anytime you program any structure or thing in Python – or any language for that

matter – always consider whether or not it is best served as what you are making it as.

For example, classes are great for reusability, but so are functions. The same goes for

modules.

At the end of the day, your real job is to make everything as simple as it can be. If

you do that, then you will achieve the goals we spoke so much about through this book:

reusable code, reducing errors, efficient code.

Another benefit of keeping things simple is that it makes everything more readable,

and the importance of that can’t be overstated. The easier something is to read, the

easier you and co-workers will be able to track down issues or append code sections.

Chapter 14 Python Career

308

That is part of the negative of using too many classes and modules; while they are

great in many ways, they tend to break the readability of Pythonic code.

Use them, by all means; just make sure they are necessary and the simplest way to do

whatever you are trying to achieve.

�The Future of Python
As it stands, Python is, arguably, the most-used programming language on the planet.

That trend, which has been trending for quite some time, does not seem to be slowing

down. The language is so simple to learn, powerful, and flexible, that the odds of it falling

out of favor anytime in the foreseeable future are pretty slim.

There are a few areas that are anticipated to grow pretty rapidly with Python. In part,

this is due to the rising popularity of these specific niches or industries. For others, it is

due to the fact that Python excels in that general arena.

One example of this is data science, research, and scientific programming

applications. Already a powerhouse in this arena, the language will only continue to

grow with regard to use as a data science go-to.

Another factor driving the growth of Python is that there are a bunch of corporations

that built applications based off of Python 2. With the stability of Python 3, those

companies are beginning to update and port their code over to Python 3, which is a

much simpler process than, say, switching to a completely new set of code.

Python is not invulnerable, of course. There are some areas where Python definitely

needs to grow. One of those is mobile development. Rather than shy away from this

realm, however, you can certainly expect the Python community and the Python creators

to step up to the plate and ensure that Python is not left in the dust when it comes to

mobile app development and tools to help you tackle this field.

Looming on the horizon – or knocking at your door right now depending on where

you are at in your programming studies and views of technology – are high-tech fields

such as artificial intelligence (AI) (think about the explosion of ChatGPT), virtual reality

(VR), augmented reality (AR), and the ever-growing field of IoT (Internet of Things).

Smart homes and connected devices are a rapidly growing market, and you can be sure

that Python will be a part of this mix.

At the end of the day, Python’s learning curve and ease of use make it a language that

will be widely used for decades to come. Why? Simple: if you own a business, you can

hire someone that can get up to speed coding Python very quickly. Combine that with

Chapter 14 Python Career

309

its flexibility, the vast array of Python packages developed by the community, and all of

the other great things we have discussed to death throughout this book and my money is

solidly on Python remaining a powerhouse for coders.

And yours should be too.

�Python Terms
There are a great many terms discussed in Python. This book, as comprehensive as it

may be, does not cover them all. To help sum up the data in this book, and teach you a

few new terms, we are including this section to help define some of the more common

Python terms you may encounter as you continue to develop as a programmer.

Argument: A value you assign to a function. Also known as a parameter.

Assign: Giving a variable, list, dictionary, tuple, or other object a value.

Boolean: A value equaling either True or False.

Class: You can think of a class as a blueprint for an object. There are superclasses –

or parent classes – and child classes. A child class can inherit the traits – methods and

attributes – of a parent class. Using these blueprints, you can then rapidly create objects

based upon one – or more – class.

Comment: A comment is used to help document – or explain – what a section or piece

of code is being used for. You can comment using a # followed by a whitespace and then

text for a single-line comment, like so:

This is a comment.

When Python sees the # symbol, it ignores everything on that line following the

whitespace, allowing you to leave notes to yourself or other programmers. If you need

more space, you can keep using # for each following line of comments or you can use '''

or """ for a multi-line comment. Here is an example of a multi-line comment:

'''

Here is a comment.

Here is another.

Here is more!

'''

Conditional statement: A statement that will – or won’t – execute depending upon

whether or not a certain condition is met.

Chapter 14 Python Career

310

def: def is used to define – or create – a function. See the term function for more.

Dictionary: A dictionary is a data type that consists of one or more key-value pairs.

In this instance, each key corresponds to a value. The key portion of the dictionary is

immutable, meaning it cannot be changed. Values in dictionaries can be of any type –

number, string, or otherwise and can be changed. We define a dictionary like this:

example_dict{'Name' : 'Paul', 'Age': '22'}

This assigns two items to the dictionary. The first key-value is Name : Paul, where

Name is the key and Paul is the value. The second key is Age, which has the value of 22.

Docstring: A documentation string; a piece of documentation that gets embedded in

a Python program, module, or function.

Floating-point: A decimal number, such 2.5 or 102.19.

Function: A function is a code that you can call within your program. We usually use

functions to save pieces of code we intend to use more than once.

Here is how we define a function:

def name_of_function(parameters):

 # Here is where your code would go. For example:

 print("Look, I'm a function!")

To call the function, we could type

name_of_function()

Immutable: If something is immutable, it means that you cannot change its value.

Import: Loading a library into your program.

Integer: A whole number, such as 1, 400, 20,000, or even -50,000.

Iterable: An object that can be iterated (or looped) over.

Len: The len() function is used to count the length of an object, such as a variable

containing a string, items in a list, and so forth. If used in a list, it would count the

number of items or elements. If used on a string, it would count the characters in the

string. Here are some examples:

a = "This is my variable"

some_list = [1,2,3,4,5]

len(a)

len(some_list)

Chapter 14 Python Career

311

This would result in:

19

5

Note  len( ) counts whitespaces too.

List: Lists are a Python data type that stores an ordered group of values of any type.

Unlike tuples, lists are mutable, meaning that the value they hold can change.

To create a list, you could type this:

my_list = [0,1,2,3,4,5]

my_other_list = ['James', 'Super Taco', 'Not So Super Taco', 'Regular

Taco Man']

Loop: A loop is used to iterate – or repeat – a given piece of code a number of times

depending upon a set of criteria. There is a for loop, which iterates however many times

you tell it to, and a while loop, which repeats so long as a condition is TRUE.

An example of a for loop:

for i in range(0, 5):

 print(i + 1)

This would result in

1

2

3

4

5

Example of a while loop:

while a == 4:

 print(" a equals 4! Yay!")

Chapter 14 Python Career

312

Method: A function that belongs to an object.

Mutable: Something that is mutable can have its value changed.

Object: What you create using the blueprint of a class.

Parameter: Another name for an argument (though some would argue with that

comparison).

print(): The print() function lets us display or output something to the

user’s screen:

print("Hello Universe!")

would result in:

Hello Universe!

String: A string is a data type that consists of any letter, number, whitespace, or

special character.

Syntax error: An error you encounter when you have entered text wrong, spelled a

portion of code wrong, or made a mistake in your syntax.

Traceback: A sequential list of calls to a function(s) that caused an error.

Tuple: A tuple is a data type that stores ordered collections of values of any type.

Unlike lists, they are immutable and their values cannot be changed.

You can create a tuple by using code similar to:

my_tuple = ('El Taco Diablo', 'Tiny Monster', 'Guy Focal')

my_other_tuple = ('0', '1', '2', '3', '4')

Variable: A variable is a data type that stores a single value. That value can be a

number, a character, a sentence, and so forth. They can also contain lists, dictionaries,

and even functions.

To create a variable, you use the assignment operator:

a = 12

b = "Snap, The Cereal Killer!"

Chapter 14 Python Career

313

Index

A
allMyCapes tuple, 176
Animation

box, move, 256
game window, 254
game loop, 253, 254
key press events, 254
pygameAnimation.py file, 252
pygameExample.py, 252
racing game, 256
random.randint(), 256, 258
testing, quit events, 254, 255
variables, 253
XY coordinates, 256

Argument, 309
Artificial intelligence (AI), 6, 17, 24,

294, 308
Assign, 309
Assignment operator, 31, 36, 37, 83, 312
Augmented reality (AR), 17, 294, 308

B
Beta testers, 296
Block commenting, 41
Boolean, 67, 74, 96, 182, 195, 309
Boolean logic operator, 67–69
Break statement, 86, 92, 94, 95, 97
Built-in functions, 130

number functions, 133–135, 137
string functions, 131–133, 136

Built-ins, 122, 123, 138, 303

C
Classes, 94, 140–141, 309

blueprints, 140, 141
definition, 141
DNA for object, 140
methods, 142
in Python, 140
Superhero, 141
Superhero Generator 3000, 144–152

Code debugger/bug locator, 296
Code hierarchy, 76
Collision detection, 258

intentional collision, 259
maze, 259
objects, colliding

border collision, 268
collide_rect, 268
directional arrows, 267
hit detection, 266
.move_ip method, 267
objectCollisionExample.py, 263,

265, 266
pygame.sprite.Sprite(), 266
rectangle objects, 266–268
testing, 268
wall collision, 268
X/Y values, 267

uses, 263
walls/doors, 259
window, 259
window boundaries

if statements, 259, 260

© James R. Payne 2024
J. R. Payne, Python for Teenagers, https://doi.org/10.1007/978-1-4842-9988-3

https://doi.org/10.1007/978-1-4842-9988-3#DOI

314

object size, 260
program code, 261–263
rectangle object, 259
testing, 268
X/Y coordinates, 260, 261

Comma-separated values (CSV),
201, 217

Comment, 39, 58, 309
Comparison operator, 65, 67–69, 73,

74, 80
Computer programming

coding, 1
languages, 1, 2
Python, 2
shapes and sizes, 1

Concatenation, 46, 58, 176
Conditional statements, 62, 79, 309

Boolean logic operator, 67–69
comparison operator, 67–69
else-if statements, 70–73
else statements, 69–70
if statement, 64–67
logical operators, 73–75
nesting, 75–78

ConditionalStatements.py, 64, 65, 67
Constructor method, 146
Continue statement, 92, 94, 95, 97

D
Data science, 220, 297, 300, 308
Data scientists, 297, 299
Data structures

lists and variables, 172
storage container, 172

Data types, 3, 23–29, 36, 52, 84, 302
Debugging, 272, 277, 288–290

Debugging tools, 288–289
Decision-making, 61–63, 79, 307
def, 142, 310
dict.clear() method, 191, 192, 195
Dictionaries, 185, 302, 310

algebro, 186
code, 188
codename, 186
example dictionary code, 193–194
key-value pair, 186, 187, 190
methods

algebro, 188
dict.items(), 188
dict.keys(), 187
dict.values(), 187
for loop, 188
list of other methods, 192

values, 188, 189
dict.items() method, 188, 192, 195
dict.keys() method, 187, 192, 195
dict.update() method, 189, 192, 195
dict.values() method, 187, 192
Directories

chdir() method, 212, 218
code, 211
current directory, 210
deletion, 213
__doc__ command, 123–125, 129
error message, 211
files and folders, 210
getcwd(), 218
mkdir() method, 210, 218
newDirectory, 211, 213
original directory, 212
os.getcwd(), 212
print() functions, 213
root folder, 213
WorkingWithDirectories.py, 209

Collision detection (cont.)

INDEX

315

dir() method, 303
Docstring, 123, 126, 306, 310
Documentation, 41, 123, 129, 139, 208,

289, 305, 306
DoomsdayClock.py, 92, 94

E
elif statements, 73, 78–80
else-if statements, 70–73, 80
else statements, 69–70, 75, 80
Errors

built-in exceptions, 279–281, 290
code modification, 274, 275
comments, 289–291
custom exceptions, 283, 284, 290
file location, 274
finally clause, 282, 283, 291
IDLE, 272, 273
iteration, 275
logical errors, 277, 279, 290
NameError, 274
Oops.py, 272, 273
parenthesis, 273
prant() function, 275
print() function, 273
programmers, 272
quotation mark, 273
syntax errors, 273, 276, 290
spelling, 276
Try Except Else block, 281, 282

F
facial_hair tuple, 180, 181
Files

appending, 207, 208
close() function, 217

FunWithFile.py file, 214, 215
open(), 217
reading

FunWithFiles.py file, 203, 204
\n newline, 204
open() function, 203
print() function, 203
readline(), 205, 206
readlines(), 206
text, 204
warning, 206, 207

readline(), 217
.read() method, 217
remove() method, 214, 218
rename() method, 214, 218
text file, Python code, 201, 203
types, 200, 217
WorkingWithDirectories.py file,

216, 217
writing, 206, 207

firstFunction(), 129
Float data type, 26
Floating-point, 310
For loops, 87–92, 96
Function, 136, 137, 310
FunWithFile.py file, 214, 215

G
Games types, 221
Global variables, 302
Graphical user interface (GUI), 302

H
help() function, 129, 138, 303
HyperText Markup Language (HTML),

201, 294

INDEX

316

I, J
if statement, 63–68, 70, 74, 80, 86, 94, 95,

260, 268
Immutable, 173, 178, 180, 186, 194, 310
Import, 33, 100, 121, 223, 252, 310
Indented code, 66, 76
Index number, 52, 174
InfiniteLoop.py, 83
Infinite loops, 83, 96
Inheritance, 139, 152, 301
__init__ method, 146
__init__(self), 153
Inline commenting, 42
input() function, 83, 102, 103, 148, 159
Integer, 24, 36, 310
Internet of Things (IoT), 4, 17, 308
Iterable, 192, 310
Iterate, 83, 91, 92, 96, 188, 275
Iterating variable, 87

K
Keys, 186–188, 192, 195, 266
Key-value pair, 186, 187, 189–191, 195

L
LearningText.py, 43
len() function, 133, 177, 178, 310, 311
Limiting loops, 85–87
list.clear(), 58
list.copy(), 57
list.count(), 56
ListExample.py, 53
list.extend(), 57
list.index(), 57
list.reverse(), 56
Lists, 172, 301, 302, 311

index, 173
method, 172
tuples (see Tuples)

Local variables, 302
Logging

benefits, 288
logging module, 288, 291
print() functions, 286, 288
Python documentation, 288
random number generation, 285
reduce errors, 285
values, 287
variables, 287

Logical operators, 73–75, 80
LogicalOperatorsExample.py, 74
Loop logic, 84
Loops, 81, 311

break statement, 92, 94, 95
continue statement, 92, 94, 95
for loop, 87–92
infinite loop, 83
limiting loops, 85–87
loop logic, 84
pass statement, 92, 94, 95
SinisterLoop.py, 82
str.lower(), 85
use of, 81
while loop, 82, 83
WonderBoyPassword.py, 84

M
Mapping, 185, 186, 195
MathIsHard.py, 68, 69, 71
max() function, 134, 135, 177
Methods, 56–58, 142, 187–188, 191,

192, 312
min(), 134, 135, 137

INDEX

317

Mobile development, 222, 298, 308
Modules, 121

built-ins, 122, 123, 125
create modules, 127–130
definition, 122
package, 126–127
types, 122

Mutable, 301, 311, 312

N
Naming conventions, 33, 37, 39, 304, 305
Nesting, 23, 75–78
Nintendo Entertainment System (NES),

219, 221
Number data types

float(), 27
floating-point number, 28
function int(), 28
Python Shell, 27

Number functions, 133–135, 137

O
Object, 312

creation, 143
HotDogMan object, 143
OOP, 144
SampleClassandObject.py, 143
Superhero Generator 3000, 144

Object-oriented programming (OOP), 139
classes and objects, 144
concept, 140
good code documentation, 139
merit, 139
procedural code, 140
reusable code, 140
Superhero Generator 3000 program, 159

Objects, 141
open() function, 303
Order of operation, 36
ourFirstModule file, 129
ourFirstModule.py file, 127–129

P, Q
Package, 126–127, 137, 138, 222, 306, 309
Parameter, 33, 96, 146, 267, 312
Pass statement, 92, 94, 95, 97
passwordAttempt, 86
PC games, 219
pip command, 126
polkaCapes, 176
PowersandWeaknesses.py, 54
print() function, 44, 45, 53, 132, 312
Procedural code, 140
Programming languages, 1–3, 29, 67, 122,

140, 294, 308
Programming practices

classes and modules, 307, 308
code repositories, 306
documentation, 305, 306
errors, 305
indentations/tabs, 307
packages, 306
style guides, 304
testing, 306

Pseudocode, 62, 63, 79
purpleCapes, 176
Pygame, 127

animation (see Animation)
bare-bones engine, 223, 224
.display.set_caption(), 226
.display.update(), 226
events, 241

illusion, 245

INDEX

318

keyboard character, 243
KEYDOWN, 243, 245
KEYUP, 243
pygameExample.py, 246, 248
pygame.KEYDOWN, 242
Sophie Bulldog, bark, 244, 245
surface, 244
text object, 243
word color, 245

.fill(), 226
game loops, 241
images/sprites

adding image, 230
animal sidekicks, 227
paint/blit, 228
parentheses (), 228
pixels, 228
pygameExample.py file, 227, 229
SophieTheBullDog.jpg, 227, 228
.transform.scale(), 228
video games, 227
XY coordinates, 228, 231

installation, 222
keyboard constants, 242
PGS4A, 222
programs, 238
pygameExample.py, 224, 225, 239, 240
quit option, 242
RGB values, 226
shapes, 237

circles, 235, 236
colors, 235
drawing, 236
lines, 237, 238

text, 232, 233
colorRED, 231, 232
font, 232

image, 232
myFont.render(), 232
pixels, 232
pygameExample.py file, 231, 233, 234
pygame.font.SysFont(), 232
surface, 232

window boundaries, 259
Python, 2, 3, 17, 19, 20, 22–24, 26, 28, 34,

40, 42, 44, 49–51, 54
advantage, 4
applications, 3
benefits and advantages, 3, 5
calculations, 20
code, 6
directory folder, 198
documentation website, 289
environment, 11
Facebook, 5
features, 300
files, 199
frameworks, 4
fun language, 5
Google, 5
government agencies and

institutions, 6
growth, 308
IDLE, 13, 198
installation, 7, 11, 198
installer, 9
IoT, 4
on macOS, 16
Netflix, 5
operator precedence, 21
operators, 21
packages, 309
platforms and systems, 4, 22
program, 6
programmers, 297

Pygame (cont.)

INDEX

319

.py file, 14
research, 299
root folder, 200
Setup Progress, 10
string, 7
superhero RPG, 199
teaching, 299
version, 8
video games, 6
Wayne Enterprises, 5
Windows, 10
world use, 5

Python developer, 295
Python Enhancement Proposals (PEP),

304, 307
Python modules (see Modules)
Python package, 127, 138, 306, 309
Python Shell, 11, 12, 15, 16, 19, 27–29, 46, 224

R
random.choice, 106
random() function, 33, 37
RandomGenerator.py file, 33, 35, 40, 42
random() module, 33, 146
random.randint() function, 112
Random values, 301
range(), 89, 96
Role-playing games (RPG), 32, 197, 198, 221

S
SampleClassandObject.py, 143
Sinister Loop, 82, 87, 92
SinisterLoop.py, 82
Snippets of code, 63, 72, 121, 140
Software developers, 296, 297
Software engineer, 297

sorted() function, 178
Step parameter, 89, 90
String, 46, 47, 312

multi-line, 48
multiple line, 48
print() function, 49

String data, 43
String functions, 131–133, 136
String replication operator, 46
str.isalpha(), 132
str.islower(), 131
str.isnumeric(), 132
str.lower(), 85, 97, 131
str.upper(), 97, 131
Subclasses, 152–159
sum(), 135, 137
superFirstName, 149
super_hair tuple, 178
SuperheroClass.py file, 145, 146, 156
Superhero Generator 3000 program,

32, 33, 152
application, 36
bells and whistles, 159–163
classes and objects, 144–152
code, new and improved, 163–168

SuperheroGenerator3000.py file
code, completed, 114–118
finish program, 112–114
fully functional application, 99–100
importing modules, 100–101
introductory text/accepting input from

user, 103–104
lists, 102
name generation, 105–107
randomize superpowers, 109–112
re-read, 107–109
suspense/pause, 103–105
variables, 101

INDEX

320

SuperHeroQuiz.py, 77
Superhero role-playing game (RPG),

197, 199
superHeroType, 64
superLastName, 149
SyntaxErrors, 20
System administration, 299, 300
Systems administrators, 299

T
testingModule.py file, 128, 129
time() function, 103–105
time.sleep(), 104, 110
time.time() function, 104
Traceback, 312
Tried-and-true Python modules, 121
Tuples, 301, 302, 312

allMyCapes, 176
brand-new tuple, 176
count() method, 181
examples, 183–185
facial_hair, 180, 181
functions, 177–179

len(), 177
max(), 177
min(), 177
sorted(), 178
sum(), 179

immutable, 173
items/values, 173
“Mississippi”, 181
polka-dotted capes, 175
print() function, 174

slice lists, 175
villain tuple, 174

U
UncleElseIf.py, 70, 71
UserIQ, 132, 133

V
Variables, 29, 37, 45, 51, 172, 312

code, 172
data, 29, 172
and lists, 172
tuples (see Tuples)
values, 31
VariableTest.py, 29, 30

Video game development, 17, 127, 222,
295, 298

Video game programmer, 295, 297–298
Video games, 6, 17, 198, 219, 220, 227, 297
villains variable, 91
Virtual reality (VR), 3, 17, 294, 308

W, X
Web applications, 299, 303
Web development, 298–300
While loop, 82, 83, 96, 103, 224, 311
WonderBoyPassword.py, 84, 86
WorkingWithDirectories.py file, 216, 217

Y, Z
YouTube video, 219

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Computer Programming and Python
	Programming Language Overview
	Python Overview
	How Does Python Differ from Other Programming Languages?
	The Benefits of Python
	Examples of Python in the Wild
	Your First Python Program
	Installing Python
	Installing Python on Windows

	Installing Python on Other Operating Systems
	In This Episode!

	Chapter 2: It All Adds Up
	Operator Precedence
	Data Types: Know Your Enemy
	Converting Number Data Types
	What Are Variables?
	Superhero Generator 3000
	In This Episode!

	Chapter 3: Stringing Things Along
	Leave Your Comments at the Door
	Block Commenting
	Inline Commenting
	Other Uses for Commenting

	Texting – Without Your Phone
	Working with Strings and Variables
	Longer Strings
	Strings on Multiple Lines
	Formatting Strings
	Introducing a New Weapon to Your Arsenal: Lists
	Changing Lists
	Other List Methods
	In This Episode!

	Chapter 4: Making Decisions
	Making Decisions
	Conditional Statements
	Behold – The If Statement!
	Boolean Logic and Comparison Operators
	Else Statements
	Else-If Statements
	Logical Operators
	Nesting – Not Just for the Birds
	In This Episode!

	Chapter 5: Loops and Logic
	What Are Loops?
	Limiting Loops
	For Loops
	More Fun with For Loops
	Break, Continue, and Pass Statements
	In This Episode!

	Chapter 6: Using What We’ve Learned
	Creating Your First Real Program
	Importing Modules
	Creating Our Variables
	Defining Our Lists
	Introductory Text and Accepting Input from the User
	Creating Suspense!
	Randomizing Superhero Names
	A Quick Check-In
	Randomizing the Superpowers
	Finishing Our Program
	The SuperheroGenerator3000 Code – Completed!

	Chapter 7: Saving Time with Functions, Modules, and Built-Ins
	Defining Modules
	Built-Ins
	Packages
	Creating Your Own Module

	Common Built-In Functions
	String Functions
	Number Functions

	Practice Your New Functions
	String Function Examples
	Number Function Examples

	In This Episode!

	Chapter 8: Using Classes and Objects
	What Is OOP?
	What Are Classes (And Will I Be Graded?)
	What Are Objects
	Creating Our First Class
	Creating Our First Object
	Improving the Superhero Generator 3000!
	Inheritance, Subclasses, and More!
	Adding the Bells and Whistles
	The New and Improved Superhero Generator 3000 Code!
	In This Episode!

	Chapter 9: Introducing Other Data Structures
	More Data Structures
	What Are Tuples?
	The Tuple Functions
	More Fun with Tuples
	Tuple Examples
	Working with Dictionaries
	Dictionary Methods
	More Fun with Dictionaries
	Other Dictionary Methods
	Example Dictionary Code
	In This Episode!

	Chapter 10: Python Files
	Working with Files in Python
	File Types
	Creating a Text File in Python Code
	Reading Files in Python
	Using readline() and readlines()

	A Warning About Reading and Writing to Files
	Appending to Files
	Working with Directories
	Bonus Round!
	FunWithFiles.py Code
	WorkingWithDirectories.py
	In This Episode!

	Chapter 11: Python for Gaming
	Python for Gaming
	Types of Games You Can Code in Python
	Pygame Introduction
	Installing Pygame
	Setting Up the Pygame Bare Bones for a Game
	Adding to Our Game Skeleton
	Adding Images and Sprites in Pygame
	Adding Text to Our Pygame Game Window
	Drawing Shapes in Pygame
	Adding More Events
	In This Episode

	Chapter 12: Animating Games
	Creating Animations in Pygame
	Collision Detection: Bouncing Off the Walls
	Collision Detection: Detecting the Window Boundaries
	Colliding Two Objects
	In This Episode!

	Chapter 13: Error Handling
	Finding Errors
	Types of Errors
	Syntax Errors
	Logical Errors
	Exceptions
	The Try Except Else Block

	Using Finally
	Creating Custom Exceptions
	Logging
	Debugging Tools in Python
	One Final Tip for Handling Errors
	In This Episode!

	Chapter 14: Python Career
	Working with Python
	Career Paths for Python
	Beta Tester
	Code Debugger/Bug Locator
	Data Scientists
	Software Developer/Software Engineer
	Video Game Programmer
	Mobile Development
	Web Development and Web Applications
	System Administration
	Research, Teaching, and More

	Common Python Interview Questions
	Can You Tell Me Some of the Key Features of Python?
	What Is the Difference Between a Tuple and a List
	What Is Inheritance?
	How Do You Generate Random Values in Python?
	How Do You Create a List, Tuple, and Dictionary in Python?

	What Is the Difference Between a Local Variable and a Global Variable?
	What Are the Different Data Types Python Offers?
	What Is a GUI? What Python Library Is Best for GUI Development?
	How Do You Open a File in Python?
	How Would You List the Functions of a Module?

	Other Python Interview Questions
	Best Programming Practices
	Follow Style Guides
	If It’s Broken, Fix It (Now, Not Later)
	Documentation Is Everything
	Use Code Repositories and Packages
	Test Often
	Choose a Side: Indentation or Spaces
	Classes Are Great, But Not Everything Needs to Be One

	The Future of Python
	Python Terms

	Index

