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Preface

I bought a copy of Python for Scientists at a conference booth in 2016, looking for an
affordable and easily readable textbook for a Python course I was teaching at that time.
I was intrigued by how straightforwardly even complex things were explained in this
book. It was a perfect match for my course and my students, despite my impression that
the book was rather heavily focused on mathematical applications.

It has been five years since the second edition of Python for Scientists was released.
This is a long time in the life cycle of a programming language that is still under active
development. It was definitely time for an update.

Unfortunately, John is no longer with us to provide this update himself. Instead, I was
honored that this task was offered to me, and I could not decline.

Besides updating the Python code examples shown in the book, I took the opportunity
to also update the content of the book with the goal of making it accessible to a broader
audience of scientists, especially those with a quantitative focus in their work. This in-
cludes a more in-depth discussion of numerical mathematics with NumPy (Chapter 4)
and SciPy (Chapter 5), plotting capabilities with Matplotlib (Chapter 6), and, for the
first time, data handling with Pandas (Chapter 8), performance computing with Python
(Chapter 9), and an outline of software development techniques that are useful to scien-
tists (Chapter 10). However, in order to keep the book reasonably short and affordable,
other content, such as the detailed treatment of ordinary and partial differential equa-
tions, had to be significantly shortened or removed altogether — Python packages for
dealing with such problems exist, but their discussion is beyond the scope of this begin-
ner book.

I sincerely hope the third edition of Python for Scientists will be a useful companion on

your long journey to becoming a scientific programmer.

Michael Mommert
St. Gallen, November 2022
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1.1

1.2

Introduction

Python for Scientists

The title of this book is Python for Scientists, but what does that mean? The dictionary
defines “Python” as either (a) a nonvenomous snake from Asia or Saharan Africa or (b)
a computer programming language, and it is the second option that is intended here. By
“scientist,” we mean anyone who uses quantitative models either to obtain conclusions
by processing precollected experimental data or to model potentially observable results
from a more abstract theory, and who asks “what if?”” What if I analyze the data in a
different way? What if I change the model?

Given the steady progress in the development of evermore complex experiments that
explore the inner workings of nature and generate vast amounts of data, as well as the
necessity to describe these observations with complex (nonlinear) theoretical models,
the use of computers to answer these questions is mandatory. Luckily, advances in com-
puter hardware and software development mean that immense amounts of data or com-
plex models can be processed at increasingly rapid speeds. It might seem a given that
suitable software will also be available so that the “what if”” questions can be answered
readily. However, this turns out not always to be the case. A quick pragmatic reason
is that while there is a huge market for hardware improvements, scientists form a very
small fraction of it and so there is little financial incentive to improve scientific soft-
ware. But for scientists, specialized, yet versatile, software tools are key to unraveling
complex problems.

Scientific Software

Before we discuss what types of scientific software are available, it is important to
note that all computer software comes in one of two types: proprietary or open-source.
Proprietary software is supplied by a commercial firm. Such organizations have both
to pay wages and taxes and to provide a return for their shareholders. Therefore, they
have to charge real money for their products, and, in order to protect their assets from
their competitors, they do not tell the customer how their software works. Thus the end
users have little chance of being able to adapt or optimize the product for their own use.
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Introduction

Since wages and taxes are recurrent expenditures, the company needs to issue frequent
charged-for updates and improvements (the Danegeld effect).

Open-source software, on the other hand, is available for free. It is usually developed
by computer-literate individuals, often working for universities or similar organizations,
who provide the service for their colleagues. It is distributed subject to anti-copyright
licenses, which give nobody the right to copyright it or to use it for commercial gain.
Conventional economics might suggest that the gamut of open-source software should
be inferior to its proprietary counterpart, or else the commercial organizations would
lose their market. As we shall see, this is not necessarily the case.

Next we need to differentiate between two different types of scientific software. The eas-
iest approach to extracting insight from data or modeling observations utilizes prebuilt
software tools, which we refer to as “scientific software tools.” Proprietary examples
include software tools and packages like Matlab, Mathematica, IDL, Tableau, or even
Excel and open-source equivalents like R, Octave, Scil.ab, and LibreOffice. Some of
these tools provide graphical user interfaces (GUIs) enabling the user to interact with
the software in an efficient and intuitive way. Typically, such tools work well for stan-
dard tasks, but they do offer only a limited degree of flexibility, making it hard if not
impossible to adapt these packages to solve some task they were not designed for. Other
software tools provide more flexibility through their own idiosyncratic programming
language in which problems are entered into a user interface. After a coherent group
of statements, often just an individual statement, has been typed, the software writes
equivalent core language code and compiles it on the fly. Thus errors and/or results can
be reported back to the user immediately. Such tools are called “interpreters” as they in-
terpret code on the fly, thus offering a higher degree of flexibility compared to software
tools with shiny GUIs.

On a more basic level, the aforementioned software tools are implemented in a pro-
gramming language, which is a somewhat limited subset of human language in which
sequences of instructions are written, usually by humans, to be read and understood by
computers. The most common languages are capable of expressing very sophisticated
mathematical concepts, albeit often with a steep learning curve. Although a myriad of
programming languages exist, only a handful have been widely accepted and adopted
for scientific applications. Historically, this includes C and Fortran, as well as their de-
scendants. In the case of these so-called compiled languages, compilers translate code
written by humans into machine code that can be optimized for speed and then pro-
cessed. As such, they are rather like Formula 1 racing cars. The best of them are capable
of breathtakingly fast performance, but driving them is not intuitive and requires a great
deal of training and experience. This experience is additionally complicated by the fact
that compilers for the same language are not necessarily compatible and need to be sup-
plemented by large libraries to provide functionality for seemingly basic functionality.

Since all scientific software tools are built upon compiled programming languages,
why not simply write your own tools? Well, a racing car is not usually the best choice
for a trip to the supermarket, where speed is not of paramount importance. Similarly,
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1.2 Scientific Software 3

compiled languages are not always ideal for quickly trying out new ideas or writing
short scripts to support you in your daily work. Thus, for the intended readers of this
book, the direct use of compilers is likely to be unattractive, unless their use is manda-
tory. We therefore look at the other type of programming language, the so-called in-
terpreted languages, which include the previously mentioned scientific tools based on
interpreters. Interpreted languages lack the speed of compiled languages, but they typi-
cally are much more intuitive and easier to learn.

Let us summarize our position. There are prebuilt software tools, some of which are
proprietary and some of which are open-source software, that provide various degrees
of flexibility (interpreters typically offer more flexibility than tools that feature GUIs)
and usually focus on specific tasks. On a more basic level, there are traditional compiled
languages for numerics that are very general, very fast, rather difficult to learn, and do
not interact readily with graphical or algebraic processes. Finally, there are interpreted
languages that are typically much easier to learn than compiled languages and offer a
large degree of flexibility but are less performant.

So, what properties should an ideal scientific software have? A short list might contain:

O a mature programming language that is both easy to understand and has extensive
expressive ability,

O integration of algebraic, numerical, and graphical functions, and the option to import
functionality from an almost endless list of supplemental libraries,

O the ability to generate numerical algorithms running with speeds within an order of
magnitude of the fastest of those generated by compiled languages,

O a user interface with adequate on-line help and decent documentation,

O an extensive range of textbooks from which the curious reader can develop greater
understanding of the concepts,

O open-source software, freely available,

O implementation on all standard platforms, e.g., Linux/Unix, Mac OS, Windows.
O a concise package, and thus implementable on even modest hardware.

You might have guessed it: we are talking about Python here.

In 1991, Guido van Rossum created Python as an open-source, platform-independent,
general purpose programming language. It is basically a very simple language sur-
rounded by an enormous library of add-on packages for almost any use case imagin-
able. Python is extremely versatile: it can be used to build complex software tools or as
a scripting language to quickly get some task done. This versatility has both ensured its
adoption by power users and led to the assembly of a large community of developers.
These properties make Python a very powerful tool for scientists in their daily work and
we hope that this book will help you master this tool.
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1.3

1.4

Introduction

About This Book

The purpose of this intentionally short book is to introduce the Python programming
language and to provide an overview of scientifically relevant packages and how they
can be utilized. This book is written for first-semester students and faculty members,
graduate students and emeriti, high-school students and post-docs — or simply for ev-
eryone who is interested in using Python for scientific analysis.

However, this book by no means claims to be a complete introduction to Python. We
leave the comprehensive treatment of Python and all its details to others who have
done this with great success (see, e.g., Lutz, 2013). We have quite deliberately pre-
ferred brevity and simplicity over encyclopedic coverage in order to get the inquisitive
reader up and running as soon as possible.

Furthermore, this book will not serve as the “Numerical Recipes for Python,” meaning
that we will not explain methods and algorithms in detail: we will simply showcase how
they can be used and applied to scientific problems. For an in-depth discussion of these
algorithms, we refer to the real Numerical Recipes — Press et al. (2007) and all following
releases that were adapted to different programming languages — as well as other works.

Given the dynamic environment of software development, details on specific packages
are best retrieved from online documentation and reference websites. We will provide
references, links, and pointers in order to guide interested readers to the appropriate
places. In order to enable an easy entry into the world of Python, we provide all code
snippets presented in this book in the form of Jupyter Notebooks on the CoCalc cloud
computing platform. These Notebooks can be accessed, run, and modified online for a
more interactive learning experience.

We aim to leave the reader with a well-founded framework to handle many basic, and
not so basic, tasks, as well as the skill set to find their own way in the world of scientific
programming and Python.

References

Print Resources

Lutz, Mark. Learning Python: Powerful Object-Oriented Programming. O’Reilly Me-
dia, 2013.

Press, William H, et al. Numerical Recipes: The Art of Scientific Computing. 3rd ed.,
Cambridge University Press, 2007.
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2.1

About Python

Python is currently the most popular programming language among scientists and other
programmers. There are a number of reasons leading to its popularity and fame, es-
pecially among younger researchers. This chapter introduces the Python programming
language and provides an overview on how to install and use the language most effi-
ciently.

What Is Python?

Python is a general-purpose programming language that is extremely versatile and rela-
tively easy to learn. It is considered a high-level programming language, meaning that
the user typically will not have to deal with some typical housekeeping tasks when de-
signing code. This is different from other (especially compiled) languages that heavily
rely on the user to do these tasks properly. Python is designed in such a way as to help
the user to write easily readable code by following simple guidelines. But Python also
implements powerful programming paradigms: it can be used as an object-oriented, pro-
cedural, and functional programming language, depending on your needs and use case.
Thus Python combines the simplicity of a scripting language with advanced concepts
that are typically characteristic for compiled languages. Some of these features — which
we will introduce in detail in Chapter 3 — include dynamic typing, built-in object types
and other tools, automatic memory management and garbage collection, as well as the
availability of a plethora of add-on and third-party packages for a wide range of use
cases. Despite its apparent simplicity, these features make Python a very competitive,
powerful, and flexible programming language.

Most importantly, Python is open-source and as such freely available to everyone. We
detail in Section 2.2 how to obtain and install Python on your computer.

Based on various recent reports and statistics, Python is currently the most popular
programming language among researchers and professional software developers for a
wide range of applications and problems. This popularity largely stems from the ease
of learning Python, as well as the availability of a large number of add-on packages
that supplement basic Python and provide easy access to tasks that would otherwise be
cumbersome to implement.
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About Python

But there is also a downside: Python is an interpreted language, which makes it slower
than compiled languages. However, Python provides some remedies for this issue as we
will see in Chapter 9.

For researchers, Python offers a large range of well-maintained open-source packages,
many of which are related to or at least based on the SciPy ecosystem. SciPy contains
packages for scientific computing, mathematics, and engineering applications. Despite
being the backbone of many Python applications, SciPy is completely open-source and
funded in some part through NumFocus, a nonprofit organization supporting the devel-
opment of scientific Python packages. We will get to know some of the packages that
are part of the SciPy universe in Chapters 4, 5, and 8.

A Brief History of Python

The Python programming language was conceived by Guido van Rossum, a Dutch com-
puter scientist, in the 1980s. He started the implementation in 1989 as a hobby project
over the Christmas holidays. The first release became available in 1991 and Python 1.0
was released in 1994; Python 2.0 became available in 2000. With a growing user base,
the development team also started to grow and gradually all the features that we appre-
ciate about this language were implemented. Python 3.0 was released in 2008, which
broke the backwards compatibility with Python 2.x due to some design decisions. The
existence of two versions of Python that were incompatible with each other generated
some confusion, especially with inexperienced users. However, support for Python 2.x
ended in 2020, leaving Python 3.x as the only supported version of Python. The example
code shown in this book and the accompanying Jupyter Notebooks (see Section 2.4.2)
are based on Python version 3.9.12, but this should not matter as future versions should
be compatible with that one.

Van Rossum is considered the principal author of Python and has played a central role
in its development until 2018. Since 2001, the Python Software Foundation, a nonprofit
organization focusing on the development of the core Python distribution, managing
intellectual rights, and organizing developer conferences, has played an increasingly
important role in the project. Major design decisions within the project are made by a
five-person steering council and documented in Python Enhancement Protocols (PEPs).
PEPs mainly discuss technical proposals and decisions, but we will briefly look at two
PEPs that directly affect users: the Zen of Python (PEP 20, Section 2.1.2) and the Python
Style Guide (PEP 8, Section 3.13).

We would also like to note that in 2012, NumFOCUS was founded as a nonprofit or-
ganization that supports the development of a wide range of scientific Python packages
including, but not limited to, NumPy (see Chapter 4), SciPy (see Chapter 5), Matplotlib
(see Chapter 6), SymPy (see Chapter 7), Pandas (see Chapter 8), Project Jupyter, and
[Python. The support through NumFOCUS for these projects includes funding that is
based on donations to NumFOCUS; for most of these open-source projects, donations
are their only source of funding.
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One detail we have skipped so far is why Van Rossum named his new programming
language after a snake. Well, he did not. Python is actually named after the BBC comedy
TV show Monty Python’s Flying Circus, of which Van Rossum is a huge fan. In case you
were wondering, this is also the reason why the words “spam” and “eggs” are oftentimes
used as metasyntactic variables in Python example code in a reference to their famous
“Spam” sketch from 1970.

The Zen of Python

The Zen of Python is an attempt to summarize Van Rossum’s guiding principles for the
design of Python into 20 aphorisms, only 19 of which have been written down. These
guiding principles are very concise and distill many features of Python into a few words.
The Zen of Python is so important that it is actually published (PEP 20) and its content
is literally built into the Python language and can be accessed as follows:

import this

Beautiful is better than ugly.

Explicit is better than implicit.

Simple is better than complex.

Complex is better than complicated.

Flat is better than nested.

Sparse is better than dense.

Readability counts.

Special cases aren’t special enough to break the rules.

Although practicality beats purity.

Errors should never pass silently.

Unless explicitly silenced.

In the face of ambiguity, refuse the temptation to guess.

There should be one — and preferably only one — obvious way to
do it.

Although that way may not be obvious at first unless you’re Dutch.

Now is better than never.

Although never is often better than xrightx now.

If the implementation is hard to explain, it’s a bad idea.

If the implementation is easy to explain, it may be a good idea.

Namespaces are one honking great idea — let’s do more of those!

Please note that these guidelines focus on the design of the Python programming lan-
guage, not necessarily the design of code written in Python. Nevertheless, you are free to
follow these guidelines when writing your own code to create truly pythonic code. The
term pythonic is often used within the Python community to refer to code that follows
the guiding principles mentioned here.
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These guiding principles are numerous and some of them might not be immediately
clear to the reader, especially if you are new to Python programming. We would sum-
marize the most important Python concepts as follows.

Simplicity Simple code is easier to write and read; it improves readability, shareability,
and maintainability, and therefore helps you and others in the short term and
long term.

Readability It is nice to write code as compact as possible, but if writing compact
code requires some tricks that are hard to understand, you might prefer a more
extensive implementation that provides better readability. Why? Imagine that
your future self tries to modify some code that you wrote years ago. If your
code is well-readable, you will probably have fewer problems understanding
what the individual lines of code do.

Explicitness We will explain this idea with an example. Consider you are writing code
that is able to read data from different file formats. A decision you have to
make is the following: will you create a single function that is able to read
all the different file formats, or do you create a number of individual functions,
each of which is able to read only a single file format? The pythonic way would
be the latter: each function that you create will explicitly be able to deal with
only a single file format in contrast to a single function that implicitly deals
with all file formats. Why is this solution favored? Generally, explicit code is
easier to understand and less prone to confusion.

Naturally, these concepts are entangled and closely related to each other. However, there
is no need to memorize these concepts. You will internalize those concepts that are
relevant to you by writing code and reading code written by others. And, of course,
nobody can force you to follow these principles in your own coding; but we hope that
this section provides you a better understanding of the Python programming language
and its design.

Installing Python

Depending on the operating system you are using, there are several ways to install
Python on your computer, some of which are simpler than others. The easiest and at
the same time safest way to install Python is to use the Anaconda environment as de-
tailed below.

Alternatively, you can also install Python from scratch on your computer — unless it is
already installed. In the latter case, you should be careful not to interfere with the native
Python already installed as it might be required by your operating system. This process
might be a bit more complicated, but there are detailed installation guides for all oper-
ating systems available online. To be on the safe side, we recommend the installation of
Anaconda, which comes with Conda, a tool to set up and utilize virtual environments,
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in order to prevent interference with other versions of Python that might be installed on
your computer. Once Python is installed, additional packages can also be installed using
Conda and the Package installer for Python, pip.

Anaconda and Conda

Anaconda is a Python distribution package for data science and machine learning appli-
cations. Despite this specialization, the Anaconda Individual Edition (also known as the
“Anaconda Distribution”) constitutes a solid basis for any scientific Python installation.

The Anaconda Distribution is provided and maintained by Anaconda Inc. (previously
known as Continuum Analytics). Despite being a for-profit company, Anaconda Inc.
distributes the Anaconda Individual Edition for free.

Installing Anaconda

Installing Anaconda is simple and straightforward. All that is required is to download
the respective Anaconda Individual Edition installer (see Section 2.6) for your operating
system and run it. The installer will walk you through the installation process. Note that
you will need to agree to the Anaconda license agreement. At the end of the installa-
tion routine, you will be asked whether to make Anaconda Python your default Python
version, which is a good idea in most cases. If you now start the Python interpreter (see
Section 2.4.1), you will be greeted by Anaconda Python. Congratulations, you have
successfully installed Anaconda Python on your computer.

Conda

One advantage of using Anaconda is the availability of Conda, an open-source pack-
age and environment manager that was originally developed by Anaconda Inc., but has
subsequently been released separately under an open-source license. Although, for a
beginner, the simple installation process for Anaconda Python is most likely its most
important feature, Conda also solves two problems in the background. As a package
manager, it allows you to easily install Python packages with a single command on
your command line, e.g.,

conda install numpy

Almost all major Python packages are available through Conda. Packages are available
through Conda-Forge (see Section 2.6), a GitHub (see Section 10.3.1) organization that
contains repositories of “Conda recipes” for a wide range of packages. Conda-Forge
contains more detailed information on how to install packages through Conda, as well
as a list of all packages that are available through Conda.

As an environment manager, Conda allows you to define different environments, each
of which can have its own Python installation. Although this is an advanced feature and
becomes important when you are dealing with specific versions of your Python pack-
ages, there is still some benefit for the Python beginner. Some operating systems use
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native Python installation to run crucial services; meddling with these Python installa-
tions can seriously harm your system. By default, Anaconda creates a base environment
for the user. Since this environment is independent from your system, there is no danger
in meddling with your system Python installation. Thus using Anaconda is safer than
using your system Python installation.

It is not complicated to define new Conda environments and to switch between them.
However, due to the advanced nature of dealing with different environments, we refer
to the Conda documentation to learn more about how to do this.

Pip and PyPI

Pretty much all Python packages are registered with the Python Package Index, PyPI,
which enables the easy distribution of these packages. Installing packages from PyPI is
very easy using the pip package manager, which comes with most Python installations,
e.g.,

pip install numpy

Everybody can publish their code via PyPI; in Section 10.3.2 we will show how this can
be achieved. Since PyPI is the official repository of Python packages, pretty much all
available packages are installable using pip.

Pip or Conda?

After learning about Conda and pip you might be confused which of these tools you
should use to install Python packages. The short answer is, in most cases it does not
matter. Especially for beginners, it is perfectly fine and typically also safe to install
packages using pip. Pip is typically faster than Conda in installing packages.

This faster installation process comes at a (small) price that won’t matter to most users.
The price is that Conda is generally safer in installing new packages. Before Conda in-
stalls a new package, it will check the version numbers of all packages that are already
installed in your current Conda environment and it will check whether these packages
in the present versions are compatible with the new package and vice versa. Pip sim-
ply checks whether the versions of the installed packages are compatible with the new
package — and it will update the already present packages, to make them compatible
with the new package. However, pip disregards that there might be requirements by
other packages that will break by updating these existing packages. As a result, pip may
break packages that were previously installed.

This happens very rarely, since most Python packages are compatible over many dif-
ferent versions. However, in the case of quickly developing projects it is mandatory to
use specific versions of packages. In those cases, it is much safer to use Conda to install
new packages. For most other users, especially on the beginner level, there should be
no major issues.
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How Python Works

In Chapter 1, we already introduced compiled and interpreted programming languages.
As a brief reminder, compiled languages take the code written by the user in some
high-level programming language and translate it into machine-readable code that is
written to an executable file. Interpreted languages, on the other hand, do not require the
high-level code provided by the user to be compiled. Instead, the interpreter reads the
code in chunks and translates them sequentially into some less-basic kind of machine-
readable bytecode that is directly executed. As you can imagine, compiled languages
perform faster than interpreted languages, since the compiler already does the hard work
to translate user code to efficient machine-readable code, whereas an interpreter has to
do this on the fly in a less efficient way.

The following sections will detail how to directly provide code to the interpreter in
different ways.

How to Use Python

There are different ways to use Python, the most important of which we will introduce
in the following sections. Which of these options you should use depends on your pref-
erences and the problem you are trying to solve.

In the remainder of this book, we assume that you are using Jupyter Notebooks. This
choice is mainly driven by the opportunity to publish all code elements from this book
as readily accessible Jupyter Notebooks. You can run these Notebooks (as well as your
own Notebooks) online in the cloud, or locally on your computer as detailed below.
However, we would like to point out that it is not a requirement for the reader to use
these Notebooks in order to follow this book in any way. Feel free to use whichever
interface to Python you feel most comfortable with.

The Python Interpreter

The easiest way to use Python is to run its interpreter in interactive mode. On most
operating systems, this is done by simply typing python into a terminal or powershell
window. Once started, you can type Python commands and statements into the inter-
preter, which are then executed line by line (or block by block if you use indentation).

While this might be useful to quickly try something out, it is not really suited to write
long scripts or other more or less complex pieces of code. The interpreter also provides
only a bare minimum in terms of support and usability.

The Python interpreter also offers a different way to run Python code that is much better
suited for running longer pieces of code. Instead of writing your code line by line into
the interpreter, you can simply write your code into an ordinary text file and pass that
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file to the interpreter in your terminal window or on the command line. You can give
your code file any name you want, but by convention, you should use the file ending
“.py.” You can use the most basic text editor for this purpose: Emacs, Vim, Nano or
Gedit on Linux, TextEdit or Sublime on a Mac, or NotePad on Windows. It is important
that the resulting Python code file does not contain any fancy formatting, just clean
text.

For example, you could create a file named “hello.py” with the following single line
of content:

print(’Hello World!’)

You can then run this script in a terminal window or powershell by using

python hello.py

Make sure that Python is properly installed on your system (see Section 2.2) and that
you run this command in the same directory where the hello.py file resides. If suc-
cessful, the output that you receive should look like this:

Hello World!

And this is your first Python program!

IPython and Jupyter

IPython (Interactive Python) is an architecture for interactive computing with Python:
it can be considered as the Python interpreter on steroids. The IPython interpreter has
been designed and written by scientists with the aim of offering very fast exploration
and construction of code with minimal typing effort, and offering appropriate, even
maximal, on-screen help when required. It further supports introspection (the ability to
examine the properties of any Python object at runtime), tab completion (autocomple-
tion support during typing when hitting the Tab key), history (IPython stores commands
that are entered and their results, both of which can be accessed at runtime), as well
as support for parallel computing. Most importantly, IPython includes a browser-based
Notebook interface with a visually appealing notebook-like appearance.

The first version of [Python was published in 2001. Project Jupyter evolved from IPython
around 2014 as a nonprofit, open-source project to support interactive data science
and scientific computing. The Notebook interface was subsequently outsourced from
IPython and implemented as part of Jupyter, where it was perfected and extended in
different ways. Most notably, Jupyter Notebooks are language agnostic and can be used
with different programming languages using so-called kernels. The Python kernel is
provided and still maintained by the IPython project.
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Figure 2.1 A newly created Jupyter Notebook containing a single, empty code cell.

The following sections introduce the most important features of Jupyter.

Jupyter Notebooks

The most relevant feature of Jupyter for you will most likely be the Jupyter Notebook,
which is an enhanced version of the IPython Notebook. All programming examples
are presented in the form of Jupyter Notebooks and imitate their appearance (see Fig-
ure 2.1). Furthermore, all code elements shown in this book are available as Jupyter
Notebooks online at CoCalc, and also at www.cambridge.org/9781009014809.

Jupyter Notebooks are documents that consist of distinct cells that can contain and run
code, formatted text, mathematical equations, and other media. Notebooks are run in
your browser through a server that is either hosted locally on your computer or in the
cloud (see Section 2.4.4).

To start a Jupyter Notebook server locally, you simply have to run

jupyter notebook

in a terminal window or powershell. This will run a server in the background that is
typically accessible through http://localhost:8888 (you need to type this into the
URL field of your browser to access the Notebook server). You will see a list of files and
directories located in the directory you started the server from. From here you can nav-
igate your file system, and open existing Jupyter Notebooks or create new ones. Note-
book files use the filename ending .ipynb, indicating that they are using the IPython
kernel. To open a Notebook, simply click on the file and you will see something that
looks like Figure 2.1.

Cloud services hosting Jupyter Notebook servers are a different avenue that allow you to
utilize Notebooks without the (minor) hassle of having to install the necessary software
on your computer. As a result, Notebooks that run on cloud services (see Section 2.4.4)
might look a little bit different to what is shown in Figure 2.1, but rest assured that they
can be used in the same way as described in this book.

Notebooks consist of cells that are either code cells that contain Python code or mark-
down cells that contain text or other media utilizing the markdown language. Mark-
down is a lightweight markup language (pun intended) that enables you to quickly
format text and even supports LaTeX inline math. A markdown cheat sheet contain-
ing some formatting basics is provided in Table 2.1 for your convenience; for more
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Table 2.1 Jupyter Notebook markdown cheat sheet

Markdown Appearance

¥ Large Headline Large Headline
### Medium Headline Medium Headline

##### Small Headline Small Headline

normal text
*emphasized/italics* text
**pold** text

‘simple one-line code sample®

normal text

emphasizedjitalics text

bold text

simple one-line code sample

‘¢ ‘python

print(’multi-line syntax’) print(Cmulti-line syntax’)
print(’highlighting’, ’!’) print(’highlighting’, ’!’)
* unordered list item 1 e unordered list item 1

* unordered list item 2 e unordered list item 2

1. ordered list item 1
2. ordered list item 2

1. ordered list item 1
2. ordered list item 2

[https://www.python.org] (1ink)

link

ITalt text][https://...image.jpg]
I[alt text][/path/to/image. jpg]

insert image from url
insert image from file

$\frac{1}{2} x"2 = \int x\, dx$

%xz = fxdx

information on how to use the markdown language, please consult your favorite internet
search engine.

To run any cell, i.e., to run the code in a code cell or to render the text in a markdown cell,
you can click the corresponding “run” button or simply use the keyboard shortcut shift
+ enter. If your code cell generates output, this output will be displayed underneath
the code cell. Note that each executed code cell will be numbered (e.g., [1] for the
code cell that was executed first) at the beginning of that cell and that the corresponding
output will carry the same number. This number is stored in the history of the Notebook
and can be utilized and indexed during runtime. Note that in the case of markdown cells,
the raw input that you provided is simply replaced by the rendered text upon execution.

For as long as a Notebook is open and running, the memory is shared between all cells.
That means that if you define an object in one cell and execute that cell, you can access
that object from any other cell. This also means that if you change the object in one cell,
its state changes in all other cells, too. Thus the order in which cells are executed might
be important.

There is no rule for how many lines of code should go into a single code cell. When
testing code or performing explorative data analysis, you might end up with a number
of single-line code cells. If you develop large-scale numerical models, you might end
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up with cells containing hundreds of lines of code. The same applies to the number of
cells in a Notebook.

We encourage the reader to take full advantage of the features of a Notebook: com-
bine code cells and markdown cells in such a way as to treat the Notebook as a self-
explanatory document that contains runnable Python code.

While code cells generally expect to receive valid Python commands, they can also
execute commands on the underlying operating system’s terminal or command line en-
vironment. Magic commands provide the user with a way to interact with the operating
system and file system from within a Jupyter Notebook. A very long, very detailed de-
scription of magic commands can be found by typing %magic, and a compact list of
available commands is given by typing %lsmagic. Note that there are two types of
magic: line magic and cell magic. Line magic commands are prefixed by % and operate
only on a single line of a cell. Cell magic, on the other hand, is prefixed by %% and
operates on the entire cell; cell magic should always appear at the beginning of a cell.

A harmless line magic example is pwd, which comes from the Unix operating system
and prints the name of the current directory (present working directory). With magic,
pwd can be called by invoking

%pwd

An example for a cell magic command is %%timeit, which we introduce in Section
9.1.1 to accurately measure the time it takes to run a specific cell.

Magic commands provide a useful set of commands, but this set is limited. There is
also the possibility to execute commands directly on the operating system level without
having to leave a running Notebook environment. This can be achieved in code cells
by prepending an exclamation mark (!). For instance, you can use this mechanism to
install missing Python packages from within a Notebook:

Ipip install <package name>

(see Section 2.2.2 for an introduction on pip).

Within this book, we display Notebook code cells as follows:

This is a code cell.

The output of a cell is displayed differently:

This is the code cell’s output.

Please be aware that the output that you might receive on your computer may differ from
the output provided in this book. This is especially true for code elements that rely on
random numbers, but also other examples. Finally, please be aware that we had to edit
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the output provided by Python manually in a few cases to have it displayed properly in
this book.

JupyterLab

JupyterLab is an advanced version of the Jupyter Notebook. It provides you with an
interface to arrange multiple files — e.g., documents, Jupyter Notebooks, text editors,
consoles — on a single screen. The idea behind the JupyterLab environment is to sup-
port data analysis by combining different tools into a single environment. To start a
JupyterLab server locally, all you need to do is to run

jupyter lab

in your Linux or Mac terminal or your Windows powershell. The combination of Note-
books and data visualization tools makes JupyterLabs powerful for tasks involving the
analysis of data and other tasks. We encourage readers to experiment with this system,
but we will not require its use in the following.

JupyterHub

JupyterHub runs a multi-user server for Jupyter Notebooks. This means that multiple
users can log into a server to run and share Notebooks. Some research institutes maintain
their own JupyterHub to provide their researchers a collaborative work environment. A
detailed discussion of JupyterHub is outside the scope of this book, but we would like
the reader to be aware of its existence.

Integrated Development Environments

If you prefer a more sophisticated environment for coding, you should have a look at in-
tegrated development environments (IDEs), which support you in your software devel-
opment endeavors by providing online help, checking your syntax on the fly, highlight-
ing relevant code elements, integrating with and supporting version control software,
providing professional debugging tools, and many other things.

A wide range of IDEs for Python is available. Here we briefly introduce a small number
of freely available open-source IDEs that run on all major operating systems (Linux,
Mac OS, and Windows).

A very simple IDE for beginners is Thonny. One feature of Thonny that might appeal
to beginners is that it comes with an option to install its own Python interpreter; the user
will not have to install Python themselves (although this is of course still possible). Fur-
thermore, Thonny provides features that will help you code in Python, better understand
your code, and find mistakes in your code during typing.

Spyder is a much more advanced IDE that is tailored to scientific applications with a
focus on data science. Spyder is written in Python and for Python. It comes with many
features of professional IDEs, like a debugger, and it allows you to work with Jupyter
Notebooks.
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PyCharm and VSCode (Visual Studio Code) are two rather professional IDEs provid-
ing all of the aforementioned features plus a wide range of plugins for a variety of use
cases. While VSCode, although provided by Microsoft, is completely free of charge,
PyCharm has two different versions: a free-to-use Community Edition that comes with
all the bells and whistles for Python programming, and a Professional Version that is
not free, but comes with additional support for the development of scientific software
and web applications.

Finding the right IDE that fits your needs is mostly a matter of taste, habit, and expecta-
tions. Feel free to try all of these IDEs and pick the one that suits your needs. Be aware
that especially the more professional environments will typically feel less comfortable
in the beginning and that it takes some time to get used to setting them up and working
with them. However, at some point, you will get used to them and enjoy some of their
more advanced features.

However, always keep in mind that there is no requirement to use an IDE to become
a good programmer. There are plenty of people out there that write excellent and ex-
tremely complex code, using simple text editors like Vim or Emacs (even those can
be customized into very efficient programming tools by installing a few extensions) or
Jupyter Notebooks. Our bottom line is this: feel free to use whatever tool you feel most
comfortable with!

Cloud Environments

Finally, we would like to point out that it is possible to run Jupyter Notebooks in cloud
environments. For instance, all Notebooks utilized in this book are available online and
can be run on different cloud services. Free computing is available through a number
of providers; we would like to point out three examples: Binder, CoCalc, and Google
Colab. Binder enables you to run Notebooks hosted in Github repositories (see Section
10.3.1) and does, as of writing this, not require any form of registration or user authen-
tication. CoCalc provides similar functionality; all Jupyter Notebooks related to this
book are hosted at CoCalc. Google Colab requires registration with Google services;
usage is free to some reasonable extent. The advantage of Colab is its integration in the
Google services environment (e.g., it is possible to connect to Google Drive for storing
Notebooks and data files) and the option to ask for additional computational resources
like GPU support at no charge (as of this writing).

Where to Find Help?

Before we get started on actual programming with Python, we would like to share a few
words on how to get help when you are stuck with an issue. First of all, do not panic:
there are many ways for you to get help, depending on your situation.
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In case you are unsure about how to use a function or method, or you are trying to
find the right function or method for your purpose, you can consult the corresponding
Reference, which describes its syntax and semantics in detail. The Python Language
Reference describes the syntax and core semantics of the language. On the other hand,
the Python Standard Library contains details on the workings of the built-in function-
ality of Python. Both references are important and you might want to browse them to
get an idea of their content and utility. In addition to these resources, each major Python
package has its own reference document. As a practical example, let us consider the
math package reference that is part of the Python Standard Library. For each function
in the math module, the reference provides a detailed docstring (see Section 3.1) that
describes the function’s general functionality as well as its arguments. For instance, the
docstring of math.perm() looks like this:

math.perm(n, k=None)

Return the number of ways to choose k items from n items without
repetition and with order.

Evaluates to n! / (n — k)! when k <= n and evaluates to zero when k >
n.

If k is not specified or is None, then k defaults to n and the
function returns n!.

Raises TypeError if either of the arguments are not integers. Raises
ValueError if either of the arguments are negative.

New in version 3.8.

math.perm takes two arguments: a (required) positional argument (see Section 3.8.2),
n, and an (optional) keyword argument (see Section 3.8.3), k. The docstring defines the
functionality of the function and what it returns. Furthermore, it contains information
on the exceptions (see Section 3.10.2) that it may raise and a note about when it was im-
plemented into the math module. Based on this information — and after reading the next
chapter of this book — it should be straightforward to utilize this function. References
can be accessed online by utilizing your favorite search engine, by using the help()
function in your Python interpreter, or through your favorite IDE.

If you prefer looking things up in printed books instead of browsing the Internet, you
may, of course, also refer to literature (see, e.g., Section 3.14). The advantage here is
that function descriptions might be less technical and easier to understand — but on the
downside, these descriptions might be incomplete. Nevertheless, literature is definitely
a good resource if you are looking for help.

Even if you are perfectly sure about how to use a function, errors may occur. When
an error occurs during runtime, Python will tell you about it. It will not only tell you
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on which line of code what type of error occurred, but also how the program reached
that point in your code (this is called the traceback; see Section 3.10.1 for more details
on this). The latter might sound trivial, but it is actually very useful when dealing with
highly modular programs that consist of hundreds or thousands of lines of code.

Every once in a while, every programmer will encounter a problem that they cannot
solve without help from others. A perfectly legitimate approach to solving this problem
would be to search for a solution on the Internet. An excellent resource, and likely the
most common website to pop up as a result of search engine queries, is StackOverflow,
which is used by beginners and professional programmers alike. You can ask questions
on StackOverflow, but it is more than likely that the specific problem that you encoun-
tered has already been addressed and answered by the community and can therefore be
found with most internet search engines. For instance, the last line of your traceback
(the actual error message; see Section 3.10.1) would be a good candidate to enter into
a search engine, potentially leading to a number of cases in which other coders experi-
enced similar issues and presumably were able to solve them. While this sounds trivial,
this process of finding the solution to a problem online should be in no way stigmatized.
On the contrary, we encourage users in this process, since the potential to learn from
others cannot be underestimated.
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3.1

Basic Python

Very few people would learn a foreign language by first mastering a grammar textbook
and then memorizing a dictionary. Most start with a few rudiments of grammar and
a tiny vocabulary. Then, by practice, they gradually extend their range of constructs
and working vocabulary. This allows them to comprehend and speak the language very
quickly, and it is the approach to learning Python that is being adopted here. The disad-
vantage is that the grammar and vocabulary are diffused throughout the learning process,
but this is ameliorated by the existence of language references, such as those cited in
Sections 2.6 and 3.14, to which the reader can refer for further reading. For now, we
will start with the very basics of Python and gradually make our way toward the more
complex aspects. As a reminder: all code elements from this chapter are available in a
Jupyter Notebook (cambridge.org/9781009029728/ch3).

Most of the functions introduced in this chapter are built-in functions, meaning that they
are available in every Python installation and do not require importing external packages
(see Section 3.3). This is in contrast to other functionality requiring explicit importing
of external modules and packages as presented in the subsequent chapters.

Typing Python

Every programming language includes blocks of code, which consist of one or more
lines of code forming a syntactic unit. Python uses fewer parentheses “()” and braces
“{}” than other languages, and instead uses indentation as a tool for formatting blocks.
After any line ending in a colon (“:””) an indented block is required. Although the amount
of indentation is not specified, the unofficial standard is four spaces. Jupyter Notebooks,
IDEs, and any Python-aware text editor will help you to provide proper indentation
where required. This very specific meaning of indentation often causes headaches in
new Python users who have previously used other programming languages, but you

will quickly grow used to this concept.

Python allows two forms of comments. A pound or hash symbol “#” indicates that the
rest of the current line is a comment and will be ignored by the interpreter:

# this is a line comment
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A different form of comment is provided in the form of the “documentation string”
or docstring that can run over many lines and include any printable character. It is
delimited by a pair of triple quotes ("""), e.g.,

"""This is a long docstring
that continues

mwon

across multiple lines.

Technically, docstrings define multiline strings (see Section 3.5.7), but since defining
objects without assigning them to identifiers (see Section 3.2) does no harm, they may
be used for multiline comments, too. Docstrings are typically used to provide brief
documentation on a function or class that you wrote (see Sections 2.5, 3.8, and 3.11).

For completeness, we note that it is possible to place several Python statements on the
same line provided we separate them with semicolons:

a=4; b=25.5; c=1.5+2j; d = 'a’

While this is legitimate Python code, it is rather unusual to put multiple statements on
the same line as it severely affects the readability of the code (see Sections 3.13 and
2.1.2 for some motivation on this). Instead, every statement should appear on a new
line.

To prevent overlong lines (fewer than 80 characters are preferred according to PEPS;
see Section 3.13), long statements can and should be broken up. This can be achieved
with the line continuation symbol \:

a=1+2+3+4+5+)\
6 +7 +8+9 + 10

or, if a statement is bracketed by parentheses “()”, we can split the line at any point
between them without the need for the continuation symbol:

a=(1+2+3+4+5+
6 +7 + 8+ 9 + 10)

The latter is typically considered more pythonic and should be the preferred way to
break up long lines.

Objects and Identifiers

Python deals exclusively with objects and identifiers. An object may be thought of as a
region of computer memory containing both some data and information associated with
that data. Pretty much everything in Python is actually an object. For a simple object,
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this information consists of its type, and its identity' (i.e., the location in memory, which
is of course machine-dependent). The identity is therefore of no interest to most users.
They need a machine-independent method for accessing objects. This is provided by
an identifier, a label that can be attached to objects. You can think of the identifier
as the name of a variable, and it is made up of one or more characters. The first must
be a letter, or underscore, and any subsequent characters must be digits, letters, or un-
derscores. Identifiers are case-sensitive: x and X are different identifiers. Identifiers that
have leading and/or trailing underscores have specialized uses, and should be avoided
by the beginner. We must also avoid using predefined words that are already used within
Python as function names (such as print (), range, or open) or have other meanings
(e.g., list, int, or True), since choosing such an identifier would disconnect it from
its original use case and preclude its future use. However, the choice between, say, xnew,
x_new, and xNew is a matter of taste.

The following example explains the details:

p=3.14
p

3.14

We create an object by simply assigning a value (3.14) to the identifier p using the
assignment operator (=; see below). Note that we never declared the type of the object
p, which we would have had to declare in C or other compiled languages. This is no
accident or oversight. A fundamental feature of Python is that the type belongs to the
object, not to the identifier.> This means that the object’s type only becomes relevant —
and is defined — at runtime. This feature is referred to as dynamic typing and is charac-
teristic of Python. If ambiguous, Python will choose the data type able to represent the
full complexity of the value as efficiently as possible. When evaluating an object, as is
done in the second line in the code cell above (p), the identifier is simply replaced with
the object (3. 14 in this case). Now we setq = p:

q="D

The right-hand side is replaced by whatever object p pointed to, and q is a new identifier
that points to this object, see Figure 3.1). No equality of identifiers q and p is implied
here! Next, we reassign the identifier p to a string object (see Section 3.5.7 for details
on strings):

p = 'pi

' An unfortunate choice of name, not to be confused with the about-to-be-defined identifiers.
2 The curious can find the type of an object with identifier p with the command type (p) and its identity
with id(p).
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4299016976 4299016976 4299016976

<float> <float> <float>

4324916004

<string>

p=3.14 q=p p="pi

Figure 3.1 A schematic representation of assignments in Python. After the first command
p=3.14, the float object 3. 14 is created and identifier p is assigned to it. Here the object is
depicted by its identity, a large number, its address in the memory (highly machine-dependent)
where the data are stored, and the type. The second command q=p assigns identifier q to the
same object. The third command p="pi’ assigns p to a new string object, leaving q pointing to
the original float object.

What are the values of p and g now?

p

pi

p, which used to be a float (see Section 3.4.2), is now a string. But what about q?

q

The original float object is still pointed to by the identifier q (see Figure 3.1), and this
is confirmed here. Suppose we were to reassign the identifier q. Then, unless in the
interim another identifier had been assigned to g, the original float object would have
no identifier assigned to it and so becomes inaccessible to the programmer. Python will
detect this automatically and silently free up computer memory, a process known as
garbage collection.

Because of its importance in what follows, we emphasize the point that the basic build-
ing block in Python is the assignment operation, which, despite appearances, has noth-
ing to do with equality. In pseudocode,

<identifier> = <object>
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which will appear over and over again. As we have already stated, the type of an object
“belongs” to the object and not to any identifier assigned to it. Henceforth we shall try
to be less pedantic!

Namespaces and Modules

While Python is running, it needs to keep a list of those identifiers that have been as-
signed to objects. This list is called a namespace, and, as a Python object, it too has an
identifier. For example, while working in a Notebook or the interpreter, the namespace,
__name__, has the unmemorable name _main__.

One of the strengths of Python is its ability to include objects, functions, classes, etc.,
written either by you or someone else. To enable this inclusion, suppose you have cre-
ated a file containing objects, e.g., obj1, obj2 that you want to reuse. Common exam-
ples for such objects are functions or classes, but they could also contain data. The file
should be saved as, e.g., foo.py, where the .py ending is mandatory. (Note that with
most text editors you need this ending for the editor to realize that it contains Python
code.) This file is then called a module. The module’s identifier is foo, i.e., the filename
minus the ending.

This module can be imported into subsequent sessions via

import foo

(When the module is first imported, it is compiled into byfecode and written to a di-
rectory named __pycache__/ in a file named after the module and ending in .pyc. On
subsequent imports, the interpreter loads this precompiled bytecode unless the modifi-
cation date of foo.py is more recent, in which case a new version of the file foo.pyc
is generated automatically.) One effect of this import is to make the namespace of the
module available as foo. Then the objects from foo are available with, e.g., identifiers
foo.objl and foo.obj2. Note that it is necessary to specify that obj1 and obj2 are
defined in the foo namespace by explicitly prepending foo. to these identifiers. If you
are absolutely sure that obj1l and obj2 will not clash with identifiers in the current
namespace, you can import them directly via

from foo import objl, obj2

and then refer to them as obj1 and obj2.

It is possible to import all objects from module foo into the current namespace using

from foo import =

but this should be avoided for the following reason: if an identifier obj1 already existed
in the current namespace, this identifier will be overwritten by this import process, which
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usually means that the original object becomes inaccessible. For example, suppose we
had an identifier gamma referring to a float. Then

from math import =

overwrites this and gamma now refers to the gamma-function. A subsequent

from cmath import =x

overwrites gamma with the complex gamma-function! Note, too, that import statements
can appear anywhere in Python code, and so chaos is lurking if we use this option.

Especially for packages, which provide common namespaces for collections of mod-
ules, it makes sense to import only those objects that you really need. In case there
are a number of objects that you need, you can also import the module and rename its
namespace. Common names for packages that we will use extensively later in this book
include

import numpy as np

for the NumPy package (see Chapter 4),

import matplotlib.pyplot as plt

for the Matplotlib package (see Chapter 6), and

import pandas as pd

for the Pandas package (see Chapter 8).

We finish our discussion of namespaces and modules with a related note. When you
write Python code into . py files, it is good practice to wrap relevant code into functions
(Section 3.8) and classes (Section 3.11) and to call and utilize those from within a code
block that follows an if statement (see Section 3.6) that looks as follows:

if __name__ == "__main__":
<code block>

If the . py file is executed from the terminal or command line, the namespace is named
—main__ and therefore, the code block is executed. However, if the . py file is imported
as a module, its namespace is not _main__, but the name of the module. Therefore,
the code block is not executed, but all the functions and classes within the module are
available to the user. In practice, this is incredibly convenient. While developing a suite
of objects, e.g., functions, we can keep the ancillary test functions nearby. In production
mode via import, these ancillary functions are effectively “commented out.”
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Numbers

Python contains three simple types of number objects, and we introduce a fourth, not-
so-simple, one.

Integers

Python refers to whole numbers as integers (int). While earlier versions of Python
only supported limited ranges for the values of integers, in current versions (Python 3
and later) integers are unbounded, meaning that there is no limit on their value. Creating
an int object is done simply by assigning a whole number to an identifier:

p =2
type (p)

int

As we see, p is indeed of type integer.

The usual mathematical operations of addition (+), subtraction (-), multiplication ()
and division (/) are, of course, implemented and available in basic Python. Naturally,
these operators are not only implemented for integers, but also for all other applicable
data types. In the case of division, even if both p and g are integers, the result of the
division p/g will be represented by a float (a real-number data type, see Section 3.4.2).
Furthermore, integer division is defined in Python by p//q. The remainder of this type
of division is available through the modulo operation, p%q. Exponentiation p? is also
available as px+q, and can produce a real number if ¢ < 0. Finally, there is one more
useful feature that Python inherited from its C roots. Suppose we wish to increment
integer p by two. Instead of

p=p+ 2

one can also type

p += 2

The same formalism applies to a number of mathematical operators. Needless to say,
the usual mathematical rules apply with respect to the use of brackets. Finally, we would
like to point out that additional mathematical functions are available through external
packages; good starting points here are the math module dealing with real numbers,
cmath for complex numbers, and the NumPy and SciPy packages (see Chapters 4 and
5, respectively).

Real numbers

Floating-point numbers are readily available as floats (float). In most installations, the
default will be approximately 16 digits of precision for floats in the range (10739 103%%).
The notation for float constants is standard, e.g.,
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—3.14, —314e—2, —314.0e—-2, —0.00314E3
(—3.14, —-3.14, —-3.14, —-3.14)

all represent the same float.

The usual arithmetic rules for addition, subtraction, multiplication, division, and expo-
nentiation are available for floats (see Section 3.4.1). For the first three, mixed mode
operations are implemented seamlessly, e.g., if addition of an integer and a float is re-
quested, then the infeger is automatically converted into a float before the operation is
applied, a process that is referred to as widening. Widening of an integer to a float is
available explicitly, e.g., float (4) will return 4.0. Narrowing of a float to an integer
is defined by the following algorithm. If x is real and positive, then there exist an integer
m and a float y such that

xX=m+y where 0<y<1.0.

In Python, this narrowing is implemented via int(x), which returns m. If x is nega-
tive, then int (x)=-int(-x), succinctly described as “truncation towards zero,” e.g.,
int(1.4)=1 and int(-1.4)=-1. The use of int() and float() (and similar func-
tions) is also referred to as explicit type conversion.

Booleans

Booleans (bool) are utilized to express the outcome of conditional statements and are
widely utilized in the context of controlling the flow of your program (e.g., using if
statements; see Section 3.6). A Boolean can have either the value True or False and
can be instantiated with a given value:

= True
False

N T o
1

, b
(True, False)

or by evaluating a condition, for instance involving the less than comparison operator
(<):
12 < 10

False

Other comparison (or relational) operators include > (greater than), >= (greater than
or equal to), <= (less than or equal to), == (equal to) and ! = (not equal to). It is possible to
combine a number of comparisons, or Booleans in general, in simple logical expressions
utilizing and, or, and not. The following code cells show a few examples:
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10 < 12 and 1 < 2

True

The combined expression is True since both “10 < 12” and “1 < 2” are True.

not 10 < 12 or 1 > 2

False

This expression is False since both “not 10 < 12” and “1 > 2” are False. Please
note that the not keyword, which simply negates an expression, in this situation only
applies to the subsequent expression. The use of parentheses provides a better control
over the combination of multiple expressions; compare the following two examples:

not (10 < 12 or 1 > 2)

False

In this case, not is applied to the combined expression “10 < 12 or 1 > 27, which
is, of course, True.

1< 2 and (not 3 <2 or 1 == 0)

True

Here, both “1 < 2” and “not 3 < 2 or 1 == 0" are True, since “not 3 < 2”is
True.

Complex Numbers

We have introduced three classes of numbers that form the simplest types of Python
objects. These are the basis for classes of numbers that are more complicated. For ex-
ample, rational numbers can be implemented in terms of pairs of integers (see Section
3.11 for an example implementation of a class dealing with fractions). For our purposes,
a probably more useful class is that of complex numbers, implemented in terms of a pair
of real numbers. Whereas mathematicians usually denote the imaginary unit V-1 by
i, many engineers prefer j, and Python has adopted the latter approach. Thus a Python
complex number can be defined explicitly as, e.g.,

c = 1.5-0.4j
C

(1.5-0.43)
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Note carefully the syntax: the j (or equivalently J) follows the float with no intervening
“x.” Alternatively, a pair of floats a and b can be widened to a complex number via ¢ =
complex(a,b). We can narrow a complex; e.g., with c, as in the last sentence, c.real

returns a and c.imag returns b:

c.real, c.imag
(1.5, —0.4)

Both real and imag are attributes of the complex class (see Section 3.11 to learn what
attributes are). Another useful object is the conjugate() method, which returns the
complex conjugate of c:

c.conjugate()
(1.5+0.43)

conjugate() is a method of the complex class. Methods are class-specific functions
and therefore require a pair of parentheses (see Section 3.11 for details), which may be
used to pass arguments to the method.

The five basic arithmetic operations work for Python complex numbers and in mixed
mode widening are done automatically. The library of mathematical functions for com-
plex arguments is cmath instead of math. However, for obvious reasons, the comparison
operations described in Section 3.4.3 are not defined for complex numbers, although the
equality and inequality operators are available.

You have now seen enough of Python to use it as a sophisticated five-function calculator,
and you are urged to try out a few examples of your own.

Container Objects

The usefulness of computers is based in large part on their ability to carry out repetitive
tasks very quickly. Most programming languages therefore provide container objects,
often called “arrays,” which can store large numbers of objects of the same type and
retrieve them via an indexing mechanism. Mathematical vectors would correspond to
one-dimensional arrays, matrices to two-dimensional arrays, etc. It may come as a sur-
prise to find that the Python core language has no array concept. Instead, it has container
objects that are much more general: lists, tuples, strings, and dictionaries. It will soon
become clear that we can simulate an array object via a list, and this is how numerical
work in Python used to be done. Because of the generality of lists, such simulations
took a great deal longer than equivalent constructions in Fortran or C, and this gave
Python a deservedly poor reputation for its slowness in numerical work. Developers
produced various schemes to alleviate this by implementing the NumPy package for
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numerical math, which we will introduce in Chapter 4. Arrays in NumPy have much
of the versatility of Python lists, but are implemented behind the scenes as arrays in
C, significantly reducing, but not quite eliminating, the speed penalty. In this section,
we describe the core container objects in sufficient detail for much scientific work.
They excel in the “administrative, bookkeeping chores” where Fortran and C are at
their weakest. Number-crunching numerical arrays are deferred to Chapter 4, but the
reader particularly interested in numerics will need to understand the content of this
section, because the ideas developed here carry forward into that chapter.

Lists
Let’s have a look at how /ists can be used.

[1, 4.0, ’a’]

[1, 4.0, ’a’]

This is our first instance of a Python lisz, an ordered sequence of Python objects that are
not necessarily of the same type separated by commas and surrounded by square brack-
ets [1.3 Lists themselves are Python objects, and can be assigned a Python identifier:

u = [1, 4.0, ’'a’]
v = [3.14, 2.78, u, 42]
len(v)

We see that in creating the list, an identifier is replaced by the object it refers to, e.g.,
one list can be an element in another. This construct of having a list as an element in
another [list is called a nested list. The beginner should consult Figure 3.1 again. It is
the object, not the identifier, that matters. In the last line of the code cell, we invoke
an extremely useful Python function, 1en(), which returns the length of a sequence
(Python functions will be discussed in detail in Section 3.8). The length of list v is 4,
since /ist u only counts as a single element.

We can replicate lists with the multiplication operation, «:

V2

[3.14, 2.78, [1, 4.0, ’a’], 42, 3.14, 2.78, [1, 4.0, ’a’], 42]

3 We define a sequence as a series or succession of items or elements in the most general sense and will use
this term synonymously with lists, tuples (see Section 3.5.6), and later arrays (see Section 4.1), as those
data types are often interchangeable.
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We can concatenate /ists with the addition operation (list concatenation), +:

v+u

[3.14, 2.78, [1, 4.0, ’a’], 42, 1, 4.0, ’a’]

and we can append items to the end of a /ist using the append () function, which is only
available for lists:

v.append(’ foo’)
v

[3.14, 2.78, [1, 4.0, ’a’], 42, ’'foo’]

Note that append () directly modifies the underlying /isz.

List Indexing

We can access elements of u by indexing, u[i] where i € [0, len(u)) is an integer. Note
that indexing starts with index ® (u[0]) and ends with index len(u) -1 (u[len(u)-1]):

v[0]

3.14

Index O refers to the first element of /ist v; index 1 thus points to the second elements,
and so on. So far, this is very similar to what is available for arrays in, e.g., C or Fortran.
However, a Python list such as u “knows” its length, and so we could also index the ele-
ments in reverse order, by invoking u[len(u)-k] where k € (0, len(u)], which Python
abbreviates to u[-k]. This turns out to be very convenient. For example, not only is the
first element of any list w referred to by w[0], but the last element is w[-1]:

v[—1]

"foo’

The middle line of Figure 3.2 shows both sets of indices for a list of length 8. Using
the code snippet above, you might like to guess the objects corresponding to v[1] and
v[-3], and perhaps use the Notebook to check your answers.

At first sight, this may appear to be a trivial enhancement, but it becomes very pow-
erful when coupled to the concepts of slicing and mutability, which we address next.
Therefore, it is important to make sure you understand clearly what negative indices
represent.
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List Slicing

Given a list u, we can form more lists by the operation of slicing. The simplest form of
aslice is u[start:end], which is a list of length end-start, as shown in Figure 3.2.
If the slice occurs on the right-hand side of an assignment, then a new [ist is created.
For example,

nv = v[1:4]
nv

[2.78, [1, 4.0, ’a’], 42]

generates a new [ist with three elements, where nv[0] is initialized with v[1]. Please
note that the end point of the slice (index 4) is exclusive and will not be included in the
newly generated /ist.

If the slice occurs on the left, no new [list is generated. Instead, it allows us to change a
block of values in an existing /list:

nv[1:] = [1, 2]
nv

[2.78, 1, 2]

Note the notation here: we omit the end index, meaning all the way to the end of the
list. In the same way, omitting the start index means all items starting from the first
e.g., v[:-1] is a copy of v with the last element omitted. Consequently, omitting both
indices (v[:]) means the entire /ist with one caveat: since slicing generates a new list,
v[:] contains the same items as v, but it is a different object (a copy of the original
list); this is an efficient way to duplicate lists.

The more general form of slicing is su = u[start:end:step]. Then su contains the
elements u[start], u[start+step], u[start+2*step], ..., as long as the index is
less than start+end. Consider the following example:

u=1[0, 1, 2, 3, 4, 5, 6, 7, 8]
uf2:—1:2]

[2! 4! 6]

A particularly useful choice is step=-1, which allows traversal of the /ist in the reverse
direction:

ul::—1]

See Figure 3.2 for an example.
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u[2:6] or u[2:-2] cld]e|f

8|76 |5 |4 |3 ]2 ]|

u[6:2:-1] oru[-2:-6:-1] | 9| f | e | d

Figure 3.2 Indices and slicing for a list u of length 8. The middle line shows the contents of u
and the two sets of indices by which the elements can be addressed. The top line shows the
contents of a slice of length 4 with conventional ordering. The bottom line shows another slice
with reversed ordering.

These are important new constructs that may well be unfamiliar to programmers used
to C, Fortran, or other languages. It is worth spending some time to really understand
the underlying principles of slicing, as it is also applicable to other sequences such
as NumPy arrays (see Section 4.1), which makes it extremely powerful. Play with the
examples shown here and carry out further experiments of your own.

List Mutability

For any container object u, it may be possible to modify an element or a slice, without
any apparent change having been applied to the object’s identifier. Such objects are said
to be mutable. As an example, consider a politician’s promises. In particular, lists are
mutable. There is a trap here for the unwary. Consider the code:

u=[0,1,4,9,16]
vV =u

v[2] = ’foo’

v

[0, 1, 'foo’, 9, 16]

This code cell should be comprehensible: u is assigned to a list object and so is v.
Because lists are mutable, we may change the second element of the /ist object v. But u
is pointing to the same object (see Figure 3.1) and it too shows this change:

u

[0, 1, 'foo’, 9, 16]
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While the logic is clear, this may not be what was intended, for u was never changed
explicitly.

It is important to remember the assertion made above: a slice of a list is always a new
object, even if the dimensions of the slice and the original /ist agree. Therefore, compare
the previous code cell with the following one:

u= [0,1,4,9,16]
v = ul:]

v[2] = ’foo’

u

Now we generate a new slice object, which is a shallow copy. If u contains an element
that is mutable, e.g., another /list w, the corresponding element of v still accesses the
original w. To guard against this, we need a deep copy to obtain a distinct but exact copy
of both u and its current contents. Changes to v do not alter the u-/ist and vice versa.

List Functions

Lists are very versatile objects, and there exist many Python functions that utilize them
to perform different tasks. For instance, we already learned about the 1en() function
to derive the length of a list. In the following, we will introduce some other useful
functions performing on lists.

The sum() function computes the sum of all elements of a list:

u=[1, 2, 3, 4, 5]
sum(u)

15

Keep in mind that sum() is not very smart: of course, all the elements of the /ist must
be numerical, otherwise the function will result in an error:

u=[1, 2, 'foo’, 4, 5]

sum(u)

TypeError Traceback (most recent call last)
<ipython—input—35-3323b4f6€688> in <module>

1u=T_[1, 2, 'foo’, 4, 5]
> 2 sum(u)

TypeError: unsupported operand type(s) for +: ’int’ and ’str
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This also precludes the application of this function on nested lists:

u=[1, 2, [1, 1], 4, 5]
sum(u)

TypeError Traceback (most recent call last)

<ipython—input—36—1b88faa89e6c> in <module>
1u=7[1, 2, [1, 1], 4, 5]

—> 2 sum(u)

TypeError: unsupported operand type(s) for +: ’int’ and ’list’

(See Section 3.10.1 to learn how to interpret these error messages.)

Another useful /ist function is zip (), which allows you to combine the elements of two
lists of equal length in pairs (similar to the way a zipper works):

u= [0, 1, 2, 3]
v: [la!, ’b!, ,C’, ld‘]
list(zip(u, v))

[, ’a’), @@, ’b’), (2, 'c¢’), @G, 'd")]

Here we create two [lists of equal length and zip them together. The result is a list of
tuples (see Section 3.5.6), each of which contains two elements: the first element is
from list u and the second element is from /ist v. The order of elements from the two
lists is naturally conserved. Note a little detail here: in order to receive a human readable
output from zip () you must apply the 1ist () function to turn its elements into a /ist.

The filter () function allows you to filter elements from a /ist that meet a specific
condition. This condition can be expressed by a Python function (see Section 3.8). For
now consider the following example of a function (less_than_5()) that returns the
value True if the value provided to the function is less than 5, or False otherwise. The
filter () function can now be utilized to extract exactly those elements from a /ist that
are less than 5:

u = [1, 07 31 51 67 9]

def less_than_5(x):

won

a function that returns True if x<5"""
return x < 5

list(filter(less_than_5, u))

[1, 0, 3]


https://doi.org/10.1017/9781009029728.004
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.004
https://www.cambridge.org/core

38

3.5.6

Basic Python

In a similar way, the map() function allows one to apply a function to every single
element of a /ist. In the following example, we apply a function that squares the value
of its argument:

def square(x):

won mwon

a function that returns the square value
return Xx::2

list(map(square, u))
[1, 0, 9, 25, 36, 81]

As aresult, we obtain a new /ist containing the squares of the elements of the original list
in the corresponding order. The map () function can, of course, also be used to perform
element-wise comparisons:

list(map(less_than_5, u))

[True, True, True, False, False, False]

Now how can we use map () to check whether all elements of a /ist (not just individual
ones) have values less than 5? Here we need the al1() function, which takes in a list
of Booleans and returns True only if all of them are True:

all(list(map(less_than_5, u)))

False

Similarly, we can check whether any of the /ist elements are True utilizing the any ()
function:

any (list(map(less_than_5, u)))

True

Finally, we note that all of the functions that we introduced here for /ists work exactly
the same way on tuples (see Section 3.5.6). For NumPy arrays (see Section 4.1) similar
functions are available from the NumPy package.

Tuples

The next container to be discussed is the tfuple. Syntactically, it differs from a /ist only
by using “()” instead of “[]” as delimiters. Indexing and slicing work as for /ists as
do the functions introduced for lists in Section 3.5.5. However, there is a fundamental
difference. We cannot change the values of its elements; a tuple is immutable. At first
sight, the fuple would appear to be entirely redundant. Why not use a list instead? The
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rigidity of a fuple, however, has an advantage. We can use a fuple where a scalar quantity
is expected, and in many cases we can drop the brackets () when there is no ambiguity,
and indeed this is the most common way of utilizing fuples. Consider the following
code cell, where we have written two examples for fuple assignment that lead to the
same result:

(a, b, ¢, d) = (4, 5.0, 1.5+2j, 'a’)
a, b, ¢, d=4, 5.0, 1.5+2j, ’a’

In both lines we make multiple scalar assignments with a single assignment operator.
This becomes extremely useful in the common case where we need to swap two objects,
or equivalently two identifiers, say a and b. The conventional way to do this is:

temp = a
a==>b
b = temp

This would work in any language, assuming temp, a, and b all refer to the same type.
However,

a, b =Db, a

does the same job in Python, is clearer, more concise, and works for arbitrary types.

Another common use for tuples is the ability to pass a variable number of arguments to
a function, as discussed in Section 3.8. We also would like to point out that tuples are
more memory efficient, but we defer this discussion to Section 9.1.3.

Finally, we note a feature of the notation that often confuses the beginner. We some-
times need a tfuple with only one element, say foo. The construction (foo) strips the
parentheses and leaves just the element. The correct tuple construction is (foo,).

Strings

Although we have already seen strings in passing, we note that Python regards them as
immutable container objects for alphanumeric characters. There is no comma separator
between items. The delimiters can be either single quotes or double quotes, but not a
mixture. The advantage is that the unused delimiter can occur within the string; e.g.,

sl = "It’s time to go"

s2 = "Bravo!" he shouted.’

Indexing and slicing work in the same way as for /lists.

There are two very useful conversion functions that can be associated with strings. The
function str() when applied to a Python object will produce a string representation of
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that object. The function eval() acts as the inverse of str(). Consider the following
code cell:

L =11, 2, 3, 5, 8, 13]
1s = str(L)
1s

’[1, 2, 3, 5, 8, 131’

This creates the string representation of a list; we can now use eval () to create a new
list from this representation and compare it to the original /ist:

eval(ls) ==
True

Strings will turn out to be very useful for the input of data, and, most importantly, pro-
ducing formatted output from the print () function (see Section 3.9.2). The string class
contains a wide range of useful methods for dealing with sequential and unstructured
data. We introduce only a few examples here.

Consider the case that you have some tabular data stored in such a way that each row is
a string (we look at a single row called row in this example) that contains the different
fields separated by commas. In order to separate the fields, you can use the split()
method:

row = "1,45,23.2, London ,2.45,#FF0000,16.3453"
1 = row.split(’,’)
1

[’1’, ’45’, ’23.2°, ’ London ’, ’'2.45’, ’#FF0000’, ’16.3453’]

In this case, since the fields are separated by commas, we must specify the delimiter
symbol when calling the method by invoking split(’,’). The data contains integers,
floats, and strings. The fourth field (index 3) of 1 contains a string with some leading
and trailing whitespaces; those can be easily removed with the strip() method:

1[3].stripQ

’London’

By default, strip() will remove leading and trailing whitespaces, but it is also possi-
ble to remove other characters like underscores by invoking row.strip(’_’). Let’s
assume that you would like to replace the string ’#FFO000’ with something more
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meaningful like "red’; the replace() method will replace each occurrence of the
former with the latter throughout the string:

row.replace(’#FF0000’, ’'red’)
’1,45,23.2, London ,2.45,red,16.3453’

These are probably the most common and useful string modification methods; we refer
to the string class reference that is part of the Python built-in reference (see Section
3.14) for an extensive list. We close the discussion of strings with a note that strings
containing only numeric characters can be easily converted to numerical data types with
explicit type conversion (see Section 3.4.2), e.g., using int (1[0]) or float(1[2]).

Dictionaries

As we have seen, a list object is an ordered collection of objects, A dictionary object
is an unordered collection. Instead of accessing the elements by virtue of their position,
we must assign a key, an immutable object, for instance a string, which identifies the
element. Thus a dictionary is a collection of pairs of objects, where the first element in
the pair is a unique key and the second is referred to as the corresponding value. A key—
value pair is referred to as an item written as “key: value”. The dictionary delimiters
are the braces { }. Here is a simple example that illustrates two different ways to define
the same dictionary:

params = {’alpha’: 1.3, ’beta’: 2.74}
params = dict(alpha=1.3, beta=2.74)
params

{’alpha’: 1.3, ’beta’: 2.74}

We fetch items via keys rather than position, e.g., params[’alpha’] will return 1. 3.
Dictionaries are mutable, so we can add new items and modify existing items:

2.6
0.999

params[’alpha’]

params [’ gamma’]
params

{’alpha’: 2.6, ’beta’: 2.74, ’gamma’: 0.999}

This illustrates the main numerical use of dictionaries, to pass around an unknown and
possibly variable number of parameters. Another important use will be keyword argu-
ments in functions (see Section 3.8). Dictionaries are extremely versatile and commonly
utilized in many Python programs and scripts.
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Sets

Sets can be thought of as dictionaries that only contain keys but no values. As such, they
are unordered collections of unique keys just like sets in the mathematical sense:

a
a

Note how the key 4 appears twice in the definition of the set, but is present only once in
the resulting set. Python sets provide functionality based on their mathematical equiva-
lent. Given a second set, we can derive the union() of the two sets:

b=1{4, 5,5, 6, 7, 8 ’apple’}
a.union(b)

{1, 2, 3, 4, 5, 6, 7, 8, ’apple’}

and their intersection():

a.intersection(b)

{4, 5}

Python if Statements

Normally, Python executes statements in the order that they are written. The if state-
ment is the simplest way to modify this behavior, and exists in every programming
language. In its simplest form, the pseudo-Python syntax is

if <Boolean expression>:
<block 1>
<block 2>

Here, the expression must produce a True or False result. If True, then block 1 is
executed, followed by block 2, the rest of the program; if the expression is False,
then only block 2 is executed. Note that the if statement ends with a colon (:) in-
dicating that an indented block must follow. The absence of delimiters such as braces
makes it much easier to follow the logic, but the price required is careful attention to
the indentation. Any Python-aware editor should take care of this automatically.

A generalization of the if statement is

if <Boolean expression 1>:
<block 1>
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elif <Boolean expression 2>:
<block 2>

else:
<block 3>

<block 4>

which executes either block 1, block 2, or block 3, followed by block 4. Let’s
look at this code cell in detail. If the first expression is True, block 1 is executed and
then block 4. The second expression is not executed, nor is the else block (block 3)
touched on. However, if the first expression is False, then the elif (short for else-if)
expression is tested; if True, then block 2 is executed and then block 4. Finally, if
both expressions are False, then the else block, block 3, is executed followed by
block 4. Itis important to note that only one of the “branches” of the if statement is
executed. Furthermore, the number of elif branches is not limited, but there must be
only one (or none at all) else branch.

Here is a real-world example involving a complete if statement:
a=>5
if a > 5:
print("a is greater than 5")
elif a < 5:
print("a is less than 5")

else:
print("a is equal to 5")

print("now we know the result and move on...")

a is equal to 5
now we know the result and move on...

(We will introduce the print () function in Section 3.9.2.)

A situation that arises quite often is a construction with terse expressions, e.g.,

if a >= 0:
y =1
else:
y = 2

As in the C-family of languages, there is an abbreviated form. The snippet above can be
shortened in Python to

y=1 if a>=0 else 2
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Please keep in mind our Zen of Python (see Section 2.1.2), especially the two points
Simple is better than complex and Readability counts. This example is simple, but short-
ening if statements in real-life code can quickly become ugly and hard to decipher. Use
it wisely!

Loop Constructs

Computers are capable of repeating sequences of actions with great speed, and Python
has two loop constructs, for and while loops.

The for Loop

For loops are the simplest loop constructs and therefore exist in all programming lan-
guages: as for loops in the C-family and as do loops in Fortran. The Python for loop
construct is a generalized, sophisticated evolution of these. Its simplest form is

for <iterator> in <iterable>:
<block>

Here, the iterable is any container object. The iterator is any quantity that can be used to
access, term by term, the elements of the container object. For instance, if the iterable is
an ordered container, like a list (e.g., 1=[1,2,3]) then the iterator would be assigned
the elements of 1 sequentially in each iteration. The changing value of the iterator,
cycling through the iterable can then be utilized in the loop’s block.

This sounds very abstract and needs to be elucidated. We start with a simple, but uncon-
ventional example:

X = 4

for x in "abc":
print(x)

print(x)

a

b

C

C

Keep in mind that before we start the for loop, we assign an integer value to x. In each
iteration of the loop, x (the iterator) will retrieve one element from the iterable, which
in this case is a string (remember that strings work similarly to lists; see Section 3.5.1),
and execute the block, which consists here only of a print () function that displays x.
After finishing the loop, we print x again and find that it still has the same value as in the
final iteration; the integer value that we assigned before the loop has been overwritten.
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At first sight it looks as though the iterator and iterable must be single objects, but
we can circumvent this requirement by using fuples. For example, suppose Z is a list
of tuples each of length 2. Then a loop with two iferators can be constructed via the
following:

z=[Ca, D, Cb’, 2), Cc’, 3)]

for (x, y) in Z:
print(x, y)

and be perfectly permissible. For another generalization, consider the zip() function
introduced in Section 3.5.5.

Before we can exhibit usage that is more traditional, we need to introduce the built-
in Python range() function. range is an iterable that generates items, in this case
integers, on demand. Its general form is range(start, end, step) that generates
integers [start, start+step, start+2*step,...] one at a time as long as each
integer is less than end. In order to retrieve a full list of all integers, you can wrap
range() in a list () call. Here, step is an optional argument, which defaults to one,
and start is optional, defaulting to zero. Thus 1list(range(4)) yields [0, 1, 2,
3]. range() is very powerful in combination with for loops as it allows to easily
iterate over indices, e.g., of a list:

1 =100, 1, 2, 3, 4]

for i in range(len(l)):
1[i] += 1

A word of caution: The block can change the iferator and, in theory, also the iterable
that is iterated over. Consider this simple example:

1=1[0, 1, 2, 3, 4]

for i in range(len(l)):
if i+1 < len(l):
1[i+1] #= 2
print(1[i])
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0 O B N S

While it seems tempting to utilize this fact, it should be avoided at all cost as it may lead
to erratic and unexpected behavior, the debugging of which will be a nightmare.

The while Loop

The other extremely useful loop construct supported by Python is the while loop.
While the for loop iterates over a container object, the while loop repeats a code
block until a condition is met:

i=0
while i < 5:

print (i)
i+=1

print(’done!’)
0
1
2
3
4

done!

The condition i < 5 is tested after each iteration. Note that once the integer i reaches
the value of five, the code block is not evaluated and skipped. A common but dangerous
use case for while uses no condition at all: while True will loop eternally if not
stopped by a break statement (see Section 3.7.4).

The continue Statement

The loop structures that we saw so far have a fixed control flow and are not very flexible.
The continue statement allows for skipping remainders of a code block once invoked.
Consider the following example of a loop through a range of integers:

for i in range(10):
if i > 5:
continue
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print (i)

print(’done!’)

(O B N A =

done!

For each value of i, as the program cycles through integer values ranging from zero
to nine, it is checked whether i > 5 in the if-clause. If this condition is met, the
continue statement is called; if not, the remainder of the for-block is executed, con-
sisting of a print() call, printing the value of i. Once the loop has finished, the
word ’done!’ is printed. The output of this code cell shows how continue works:
if continue is called, the remainder of the for-block is ignored and Python immedi-
ately resumes with the next iteration. As a result, only integers i less than 6 are printed
as those do not meet the condition i > 5.

The break Statement

The break statement allows for premature ending of the loop. The basic syntax is shown
using a different implementation of the previous example (see Section 3.7.3):

for i in range(10):
if i > 5:
break
print (i)

print(’done!’)

(O B N O R A =

done!

Here, break immediately stops the entire for loop and does not resume with the next
iteration. Both continue and break provide powerful means to manipulate the control


https://doi.org/10.1017/9781009029728.004
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.004
https://www.cambridge.org/core

48

3.7.5

Basic Python

flow in loop structures. Of course, both statements can be used together in the same loop
to provide the user with a high degree of flexibility.

List Comprehensions

A task that arises surprisingly often is the following. We have a list 11, and need to
construct a second list 12 whose elements are a fixed function of the corresponding
elements of the first. The conventional way to do this (without the use of the map()
function introduced in Section 3.5.5) is via a for loop. For example, let us produce an
item-wise squared /ist:

11 = [2, 3, 5, 7, 11, 14]
12 =[]

for i in range(len(l1)):
12.append (11[i]*%2)

12

[4, 9, 25, 49, 121, 196]

However, Python can execute the same loop in a single line via a list comprehension:

12 = [x#%2 for x in 11]

Not only is this shorter, it is faster, as we will detail in Section 9.1.3.

List comprehensions are considerably more versatile than this. Suppose we want to build
12, but only for the odd numbers in 11:

[x%%2 for x in 11 if x%2]
[9, 25, 49, 121]

As you can see, we can combine list comprehensions with an inline if statement.

Suppose we have a list of points in the plane, where the coordinates of the points are
stored in tuples, and we need to form a /ist of their Euclidean distances from the origin:

import math

lpoints = [(1, ®), (1, 1), (4, 3), (5, 12)]
[math.sqrt(x**2 + y*%2) for (x, y) in lpoints]

[1.0, 1.4142135623730951, 5.0, 13.0]
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Next, suppose that we have a rectangular grid of points with the x-coordinates in one
list and the y-coordinates in the other. We can build the distance list as follows:

l_x = [@y 2’ 3’ 4]
ly =1[1, 2]
[math.sqrt(x*%2 + y*%2) for x in 1.x for y in 1_y]

[1.0, 2.0, 2.23606797749979, 2.8284271247461903,
3.1622776601683795, 3.605551275463989,
4.123105625617661, 4.47213595499958]

List comprehension is a Python feature that, despite its initial unfamiliarity, is well worth
mastering. However, as we will see in Section 9.1.4, for some of the use cases that we
presented here, it is strongly recommended to use NumPy functionality as it is much
faster and easier to read.

Also, another reminder on the Zen of Python (see Section 2.1.2), especially the points
Simple is better than complex and Readability counts. List comprehensions can quickly
become hard to understand. Do not use them for overly complex tasks.

Functions

A function is a device that groups together a sequence of statements that can be executed
an arbitrary number of times within a program. To increase generality, we may supply
input arguments that can change between invocations. A function may, or may not,
return data.

In Python, a function is, like everything else, an object. We will explore first the basic
syntax and the concept of scope and only finally, in Sections 3.8.2 to 3.8.5, the nature of
input arguments. (This may seem an illogical order, but the variety of input arguments
is extremely rich.)

Syntax and Scope

A Python function may be defined anywhere in a program before it is actually used;
there is no need to define it at the beginning of a code file. The basic syntax is outlined
in the following piece of pseudocode:

def <name>(<arglist>):

"""docstring
<body>

The def denotes the start of a function definition; <name> assigns an identifier or name
to address the object. The usual rules on identifier names apply, and of course the iden-
tifier can be changed later. The brackets “()” are mandatory. Between them, we may


https://doi.org/10.1017/9781009029728.004
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.004
https://www.cambridge.org/core

50

Basic Python

insert zero, one or more object identifiers, separated by commas, which are called argu-
ments (see below). The final colon is mandatory.

Next follows the docstring, which describes what the function does in a concise way,
and finally the body of the function, the statements to be executed. As we have seen
already, such blocks of code have to be indented. The conclusion of the function body
is indicated by a return to the same level of indentation as was used for the def state-
ment. In rare circumstances, we may need to define a function, while postponing the
filling-out of its body. In this preliminary phase, the body should consist of the sin-
gle statement pass. It is not mandatory, but conventional and highly recommended, to
include a docstring (see Section 3.13).

The body of the function definition introduces a new private namespace that is destroyed
when the execution of the body code terminates (see Section 3.3 for an introduction to
namespaces). When the function is invoked, this namespace is populated by the iden-
tifiers introduced as arguments in the def statement, and will point to whatever the
arguments pointed at when the function was invoked. The namespace of the function is
within the scope of each of these identifiers. A scope consists of the places (or names-
paces) in which identifiers are looked up. New identifiers introduced in the body also
belong in the function’s namespace; they can only be invoked from within the func-
tion. Of course, the function is defined within a namespace (outside the function) that
contains other external identifiers. These external identifiers are also within the scope
of the function. This means that if you use an identifier that is not defined within the
function’s namespace, Python will search for this identifier outside the function. Those
identifiers from outside the function that have the same names as the function arguments
or identifiers already defined in the body do not exist in the private namespace, because
they have been replaced by those private identifiers. The others are visible in the private
namespace, but it is strongly recommended not to use them unless the user is absolutely
sure that they will point to the same object on every invocation of the function. Summa-
rized, this means that within a function, Python can see both identifiers that are defined
within the same function and outside. However, identifiers within a function cannot be
seen from the outside. For a detailed discussion of the concept of scopes, please refer to
Lutz (2013). In order to ensure portability when defining functions, try to use only the
identifiers contained in the argument /ist and those that you have defined within, and
that are intrinsic to, the private namespace.

Usually we require the function to produce some object or associated identifier, say y,
and this is done with a line return y. The function is exited after such a statement and
so the return statement will be the last executed, and is hence usually the last statement
in the function body. In principle, y should be scalar, but this is easily circumvented by
using a fuple. For example, to return three quantities, say u, v, and w one should use
a tuple, e.g., return (u, v, w) or even return u, v, w. If, however, there is no
return statement, Python inserts an invisible return None statement. Here None is
a special Python identifier that refers to an empty or void object, and is the “value”
returned by the function.
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Here are some simple toy examples to illustrate these features:

x = 23

def add_one(x):
""" Takes x and returns x + 1.

mwon

X += 1
return x

add_one (0.456)

1.456

Ignoring the first line of this code cell for now, the following happens. We define the
function add_one (x) with one positional argument (x, more on positional arguments in
a bit). The function body contains a brief docstring, adds one to x and then returns the
result. So far, the function has only been defined, but not executed. That happens in the
final line of the code cell. Called with the float value 0.456, the result is 1.456.

Let’s get back to the first line of the code cell. It defines an identifier x with value 23.
What will be the value of x after we defined and executed a function that also contains
an identifier x?

X

23

Here x remains unchanged at 23. The fact that function add_one() also contains an
identifier named x does not concern the identifier x that was defined outside the func-
tion: anything that happens to x inside the function is limited to the function’s names-
pace and will not affect identifiers on the outside.

Next consider a faulty example:

def add_z(x):
""" Adds z to x and returns x+z.

mwon

return x+z

add-z (0.456)

NameError Traceback (most recent call last)
<ipython—input—54—df0717a7367f> in <module>

2 """ Adds z to x and returns x+z. """

3 return x+z

—> 4 add_z(0.456)
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<ipython—input—54—df0717a7367f> in add_z(x)
1 def add_z(x):
2 """ Adds z to x and returns x+z. """

= 3 return x+z
4 add_z(0.456)

NameError: name ’z’ is not defined

Here, we define a function that adds to its positional argument x an identifier z that is
not defined within its namespace (please see Section 3.10 for a discussion of Python
errors). The function looks for an identifier z in the enclosing namespace. None can
be found and so Python stops with an error. If, however, we introduce an instance of z
before calling the function:

z =1
add_z (0.456)

1.456

then the function works as expected. However, this is nonportable behavior. We can only
use the function inside namespaces where an instance of z has already been defined.
There are a few cases where this condition will be satisfied, but in general this type of
function should be avoided as it might lead to unexpected behavior.

Better coding is shown in the following example, which also shows how to return mul-
tiple values via a fuple, and also that functions are objects:

def add_x_and_y(x, y):

mwoen mwoen

Add x and y and return them and their sum.
Z =X+ Yy
return x, y, z

a, b, ¢ = add_x_and_y (1, 0.456)
a, b, c

(1, 0.456, 1.456)

The identifier z is private to the function, and is lost after the function has been left.
Because we assigned c to the object pointed to by z, the object itself is not lost when
the identifier z disappears. The next code cell demonstrates that functions are objects,
and we can assign new identifiers to them (it may be helpful to look again at Figure 3.1
at this point):
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f = add_x_and_y
£(0.456, 1)

(0.456, 1, 1.456)

So far, the objects used as arguments have been immutable, and so have not been
changed by the function’s invocation. This is not quite true if the argument is a mu-
table container, as is shown in the following example:

1 =10, 1, 2]

def add_with_side_effects(m):

mwoen mon

Increment first element of list.
m[O] += 1

add_with_side_effects (1)
1

[1, 1, 2]

The content of /ist 1 has been changed, with no assignment operator outside the function
body and no return statement. This is a side effect that is harmless in this context, but
can lead to subtle hard-to-identify errors in real-life code. The cure is to make a private
copy within the function’s body:

1 =1[0, 1, 2]

def add_without_side_effects(m):

mwoen mn

Increment first element of list.
mc = m[:]

mc[0] += 1

return mc

print(add_without_side_effects(l))

print (1)
[1! 11 2]
[0, 1, 2]

In some situations, there will be an overhead in copying a long /ist, which may detract
from the speed of the code, and so there is a temptation to avoid such copying. However,
before using functions with side effects, remember the adage “premature optimization
is the root of all evil,” and use them with care.
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We will now investigate the different types of arguments that are available for Python
functions.

Positional Arguments

This is the conventional case, common to all programming languages. As an example,
consider

def spam(a,b,c):
<body>

Every time spam is called, precisely three arguments must be supplied. An example
might be spam(3, 2, 1), and the obvious substitution by order takes place. Another
way of calling the function might be spam(c=1,a=3,b=2), which allows a relaxation
of the ordering. It causes an error to supply any other number of arguments.

Keyword Arguments

Another form of function definition specifies keyword arguments, e.g.,

def eggs(d=21.2, e=4, f="a’):
<block>

In calling such a function, we can give all arguments, or omit some, in which case the de-
fault value will be taken from the def statement. For example, invoking eggs (f="b")
will use the default values d=21.2 and e=4 so as to make up the required three argu-
ments. Since these are keyword arguments, the order does not matter.

Itis possible to combine both of these forms of arguments in the same function, provided
all of the positional arguments come before the keyword ones. For example:

def spam_and_eggs(a, b, c, d=21.2, e=4, f='a’)
<block>

Now, in calling this function, we must give between three and six arguments, and the
first three refer to the positional arguments.

Arbitrary Number of Positional Arguments

It frequently happens that we do not know in advance how many arguments will be
needed. For example, imagine designing a print () function (see Section 3.9.2), where
you cannot specify in advance how many items are to be printed. Python uses fuples
to resolve this issue. Here is a much simpler example to illustrate syntax, method, and
usage. We are given an arbitrary collection of numbers, for which we want to compute
the arithmetic mean:
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def average(xargs):
""" Return mean of a non—empty tuple of numbers. """
s = sum(args)

return s/len(args)

print(average(l, 2, 3, 4))
print(average(l, 2, 3, 4, 5))

As =args is simply a fuple, we can use the sum() function to sum up its elements and
then simply divide by the number of elements to derive the mean. It is customary, but not
obligatory, to call the tuple args in the definition. The asterisk = is, however, mandatory;
the notation specifies that the function takes any number of positional arguments.

Arbitrary Number of Keyword Arguments

Python has no problem coping with a function that takes a fixed number of expected po-
sitional arguments, followed by an arbitrary number of positional arguments, followed
by an arbitrary number of keyword arguments. The key here is the convention of “po-
sitional before keyword,” meaning that positional arguments are always listed before
keyword arguments and that args always follows after expected positional arguments.
As the previous section showed, the additional positional arguments are packed into a
tuple (identified by an asterisk). The additional keyword arguments are wrapped into a
dictionary that is typically indicated by «+kwargs (note the extra asterisk). The follow-
ing example exemplifies the process:

def show(a, b, =xargs, s#xkwargs):
print(a, b, args, kwargs)

show(1.3, 2.7, 3, ’a’, 4.2, alpha=0.99, gamma=5.67)

1.3 2.7 (3, ’a’, 4.2) {’alpha’: 0.99, ’gamma’: 5.67}

Beginners are not likely to want to use all of these types of arguments proactively.
However, they will see them occasionally in the docstrings of library functions, and so
it is useful to know what they are.

Anonymous Functions

It should be obvious that the choice of a name for a function’s arguments is arbitrary,
f(x) and f(y) refer to the same function. On the other hand, we saw in the code snippet
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for the function add_x_and_y () in Section 3.8.1 that we could change the name to £()
with impunity. This is a fundamental tenet of mathematical logic, usually described
in the formalism of the lambda-calculus or A-calculus. There will occur situations in
Python coding where the name of the function is totally irrelevant, and Python can
mimic the lambda calculus. Using a lambda function, we could have coded the function
add_x_and_y () from Section 3.8.1 as follows:

f = lambda x, y: (x, y, X+y)
(1, 2)

1, 2, 3

Lambda functions are expressions that consist of a single expression, unlike functions
that contain blocks of statements. They consist of the keyword 1lambda, one or more
arguments, a colon (:), and the expression involving the arguments. Lambda functions
are typically used as inline function definitions containing rather simple functionality.
Their use is convenient, but in most cases, an explicit function definition is the more
pythonic way.

Python Input/Output

Every programming language needs to have functions that either accept input data or
output other data, and Python is no exception. Input data usually comes from either the
keyboard or a file, while output data is usually “printed” either to the screen or written
to a file. File input/output, typically abbreviated as I/O, can be either in human-readable
form or binary data. In the following, we introduce methods for input/output operations.

Keyboard Input

Here we look at a small amount of data, input from the keyboard. There are several ways
to do this, and so we have chosen the simplest solutions. Let us start with a snippet for
children:

name = input("What is your name? ")

print("Your name is + name)

On execution, the first line containing input() issues the prompt question, and the
keyboard input is encapsulated as a string. Thus the second line makes sense — we are
printing the concatenation of two strings.

The print () Function

We have utilized the print () function already in different code snippets leading up to
this point, so let us introduce it properly. The print () function displays sequences of
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characters on the screen to present the information contained in objects to the human
user. The function expects a variable number of arguments, implicitly a fuple. Consider
the following example:

it = 12
y = 3.412
print("After iteration", it, "the solution was", y)

After iteration 12 the solution was 3.412

We provide a tuple containing strings, an integer, and a float to the print () function in
the form of a fuple. Here we have no control over the formatting of the two numbers, and
this is a potential source of problems, e.g., when producing a table, where uniformity
is highly desirable. The preferred way to customize the output of the print () function
is to provide it with a single argument in the form of a formatted string. Python offers
two ways for formatting strings: string formatting expressions and string formatting
method calls. In this book, we will utilize the latter, which should be the preferred way
for formatting strings nowadays. The former approach, which is based on the C printf
model, is nevertheless still valid and widely used: we will briefly outline this approach
at the end of this section.

Formatted strings utilize the format method of the String class from which strings are
instantiated. The simplest way to adopt the previous example would look as follows:

print("After iteration {} the solution was {}".format(it, y))

After iteration 12 the solution was 3.412

We apply the format method to a string in which braces “{}” serve as placeholders
for the arguments provided to the format method in the order in which they appear.
Arguments can also be references by index:

print("After iteration {0} the solution was {1}".format(it, y))

or by keyword:

print("After iteration {iteration} the solution was {value}".format(
iteration=it, value=y))

While the results of all these examples are identical to the unformatted print () call,
the power of format lies in its flexibility. For each argument data type, a wide range of
customization options are available by modifying the corresponding placeholder. In the
following, we will briefly present the most common formatting options and point to the
formatter options of the string class for an in-depth discussion.
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In general, string formatter placeholders have the following structure:

{<identifier><:formatspec>}

where identifier can be omitted if there is one placeholder for each argument pro-
vided to the format method. If not omitted, identifier stands for the index of an
argument or a key contained in a dictionary provided as the argument to the format
method. identifier may contain brackets [] to reference elements of a list (e.g.,
"{0[0]} < {0[1]}".format([1, 31)) or attribute calls (e.g., for an object coo with
attributes x and y: "{0.x} and {0.y}".format(coo)). The optional :formatspec
part defines the exact formatting rules for each placeholder, following this general struc-
ture:

:<fill><align><sign><width><,><.precision><typecode>

All of these components are optional and their availability depends on the typecode
(see below). width defines the length in characters that is occupied by this placeholder;
align may be [<, >, 4] for [left aligned, right aligned, centered] output; £ill defines a
character that is used to fill the unused space (blanks are used by default). For numerical
arguments, sign can be used to display signs: + will force to always display a sign, -
will only display negative signs, and a blank will display a blank in case of positive
numbers and minus sign in case of negative numbers; ““,” will enable the use of thou-
sands separators. In the case of floats, .precision defines the number of digits after
the decimal point to be displayed. Finally, typecode defines the type of the argument
to be displayed; the most common choices are s for strings, d for integers, £ for floats in
floating-point decimal representation and e (and E) for floats in floating-point exponen-
tial representation. The following code cell and corresponding output (shown here side
by side) showcases examples for different formatting options; note that we also show
different identifier options that do not affect the formatting of the string:

# strings

print(’ab{:5s}ef’.format(’cd’)) abcd ef
print(’ab{0:x25s}ef’.format(’cd’)) abxcdxxef
print(’ab{[a]:_>5s}ef’.format({’a’: ’cd’})) ab___cdef
# integers

print(’{:8d}’ .format(362500)) 362500
print(’{:>8,d}’ .format(362500)) 362,500
print(’{0:>05d} .format(13)) 00013
print(’{0:>+5d}’ .format(—13)) =13
print(’{0:>+5d} .format(13)) +13
print(’{0:> 5d}’ .format(13)) 13

# floats

print(’{:210.3f}’ .format(3.14159)) 3.142
print(’{0:8,.3f}’.format(1234.56789)) 1,234.568

print(’{0:8,.3e}’.format(1234.56789)) 1.235e+03
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Finally, we also briefly introduce string formatting expressions, which are still widely
used. Using this approach, our simple example from the beginning looks like this:

print("After iteration %d the solution was %f" % (it, y))

After iteration 12 the solution was 3.412000

First of all, note the different syntax: instead of calling a string method (. format()),
formatting expressions utilize the % operator to define a convenient way for multiple
string substitutions in a single call. Similarly to the formatting method approach, place-
holders are defined in the target string, which are then substituted with identifiers pro-
vided by the % operator. Note that each placeholder here must carry a typecode. The
definition of typecodes and other formatting options is almost identical to those above
and almost as flexible:

print("After iteration %03d the solution was %.2f" % (it, y))

After iteration 012 the solution was 3.41

So why prefer the formatting method over formatting expressions? We have to admit
that the advantages of the formatting method are small (in terms of flexibility in format-
ting and providing values for the placeholders), but it is generally more pythonic and as
such should be given preference.

File Input/Output

In the context of scientific programming, it is probably more important to be able to
read data to and from files than to ask a human during runtime for manual data input.

File input/output operations in Python utilize file objects that must be opened to operate
on them. The following code cell creates a simple ASCII file named test.txt in the
current working directory and writes some text into the file:

f = open(’test.txt’, 'w’)
f.write(’this is a test\n’)
f.close()

In a very similar way, we can read data from the same file and print its content to the
screen:

f = open(’test.txt’, 'r’)

print(f.read())

f.close()

this is a test
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The first line of both code cells uses the open() function to open a file object for file
test.txt in different processing modes; the processing mode to write to a file is "w’,
whereas the processing mode to read a file is "r’. One more important processing mode
for ASCII files is "a’ for appending to an existing file. While both *a’ and "w’ will
create files if they do not yet exist, only "a’ will append to a file that already exists,
whereas 'w’ will simply overwrite already existing files. The same processing modes
are also available for binary files, using the processing mode labels 'wb’, "ab’, and
‘rb’.

File objects provide a range of methods to manipulate files. write() will append a
string to the file object; note that in contrast to the print() function, the write()
method will not automatically close with a linebreak, so those must be appended man-
ually at the end of each line as ’\n’. If you have a list of strings, the writelines()
method will help you to write all of them in a single method call. Similarly, the read )
method will read the entire file content into a single string, while the readlines()
method reads each line of the file into a separate string that is part of a /isz. Finally,
the close() method will close the file object; note that calling close () explicitly is
good practice, but in case you forget to close the file, this will be done automatically by
Python once your code finishes running. Another elegant way to handle file objects is
utilizing context managers:

with open(’test’, ’'a’) as f:
f.write(’more test\n’)

The with statement identifies the context manager. File object f is only available
within the context manager code block and will be automatically closed upon leaving
the code block. Context managers are the preferred way to deal with file objects as they
improve the readability and coherence of your code.

Error Handling

In case you already played with some of the Python code examples provided thus far,
you probably have come across some error messages. In this section, we will learn how
to read error messages and how to deal with errors in your code.

Traceback

Python tries its best to help you identify code passages that cause errors by providing
a traceback, which can be thought of as an elaborate error message. When you see a
traceback for the first time it can be quite overwhelming, so let’s have a look at a simple
example in which we call an identifier that has not yet been defined:

print(xyz)
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NameError Traceback (most recent call last)
<ipython—input—1-b6499aa2e891> in <module>
—> 1 print(xyz)

NameError: name ’xyz’ is not defined

In this trivial case, the traceback consists of four lines: the first line names the actual
error type (see Section 3.10.2) and identifies the output as a traceback, the second line
indicates the module in which the error occurred, the third line indicates the line of the
error (the first line of the previous code cell), and the fourth line indicates the actual
error and provides some more details.

A key feature of the traceback is that it traces back the error through your code, al-
lowing you to understand what led your code to crash. To showcase the idea behind
this, consider the following example in which we call a function that tries to perform a
division by zero:

def invert(x):
return 1/x

invert (0)

ZeroDivisionError Traceback (most recent call last)
<ipython—input—97—£981e239492b> in <module>

1 def invert(x):

2 return 1/x
—> 3 invert(0)

<ipython—input—97—£981e239492b> in invert(x)
1 def invert(x):

—> 2 return 1/x
3 invert(0)

ZeroDivisionError: division by zero

This traceback is longer than the previous example: the first line now contains a different
error type and the following lines indicate the order of calls leading up to the error. The
bottom line of the code cell, which is the first line to be executed after reading the
function, calls invert, on the second line of which the ZeroDivisionError happens.
While this example is brief, traceback can be easily several tens of lines long. The actual
error that is reported, happens always on the last code line reported, guiding you to the
faulty part of your code. The actual appearance of the fraceback may vary with the
version of Python you are using.
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Errors, Exceptions, and Warnings

Whenever Python encounters an error, it triggers an exception, which can be dealt with
in different ways. In the case of the tracebacks shown in Section 3.10.1, these exceptions
are handled by the default exception handler of Python, which prints the error message
including the fraceback and immediately terminates the execution of the code. The most
common exceptions are as follows:

IndentationError a line of code uses an unexpected level of indentation;
IndexError an index is out range for the given sequence, e.g., list(range(5)) [6];
KeyError a key (e.g., of a dict) is not available, e.g., {0:a’, 1:’b’}[2];
NameError an identifier of this name is not available;

SyntaxError unintelligible syntax, e.g., print ((’test);

TypeError an operation is applied to an object of the wrong type, e.g., range(’a’);
ValueError an operation is applied to an object with the wrong value, e.g., int(’a’).

However, exceptions can also be intercepted during runtime as part of your code, allow-
ing Python to deal with (not fully) unexpected situations. Consider the previous example
of the invert function: it is possible that this function is called with zero as its argu-
ment, causing the termination of the code execution. Since this scenario cannot be ruled
out, Python provides a means to handle this case with a try-except block:

def invert_safe(x):
try:
return 1/x
except ZeroDivisionError:
return None

print(invert_safe(0))
print(invert_safe(2))

None
0.5

In this updated version, function invert_safe contains a try-except block, which is
started by a try statement and ends with an except clause. The idea is that Python
will try to execute the code in the try block; if no error occurs in this block, the except
clause is simply ignored. However, if it encounters an error that is listed after the except
clause (multiple comma-separated errors are possible), the corresponding code block
is executed (in this case, None is returned). Error handling with try-except blocks
enables the programmer to handle common errors and prevent their code from crashing
if expected issues occur.
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Exceptions can also be raised by programmers to indicate that something unexpected is
happening. For instance, let’s consider the case that the value of x must be less than 5;
the following lines will raise a ValueError together with a meaningful error message:

X =6

if x >= 5:
raise ValueError(’x must be less than 5 ({} provided)’.format(x))

ValueError Traceback (most recent call last)
<ipython—input—100—14d7daf3900b> in <module>
1x=26
2 if x >= 5:
—> 3 raise ValueError(’x must be less than 5 ({} provided)’.
format (x))

ValueError: x must be less than 5 (6 provided)

Finally, for the sake of completeness, we will also mention warnings, which inform the
user of some unexpected behavior, but will not affect the execution of code. A common
example for warnings are DeprecationWarnings that are typically raised from within
modules that are about to change in future releases. As with the check engine light in
your car, the most common interaction with warnings is to simply ignore them. All
warning messages can be suppressed with help from the warnings module:

import warnings
warnings.filterwarnings("ignore™)

While useful at times, please be warned that by suppressing all incoming warnings,
some important issues might go undetected; warnings are typically there for a reason.

Introduction to Python Classes

Classes are extremely versatile structures in Python. The basic idea behind them is that
you may have a fixed data structure or object that occurs frequently, together with op-
erations directly associated with it. The Python class encapsulates both the object and
its operations. Our introductory presentation by way of a scientific example is concise
but contains many of the features most commonly used by scientists. In this pedagogic
context, we shall use a class implementing fractions. We have in mind to implement a
Frac as a pair of infegers num and den, where the latter is nonzero. We have to be care-
ful, however, because 3/7 and 24 /56 are usually regarded as the same number, meaning
that the class requires a method for reducing the fraction. We also require methods
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for simple arithmetic operations, addition and multiplication, as well as methods for
generating a human-readable representation of a fraction and converting the fraction
to a real number. The following snippet shows a simple Frac class implementing this
functionality:

The first novelty here is the class statement, which ends with a terminating colon,
indicating that the actual class is defined through indentation. As part of the class Frac,
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we define six methods — methods are functions (thus the def statements) that belong to
a Python class. Each method contains a short docstring, providing crucial information,
and its code uses additional indentation. The first method, __init__(), would in other
languages be called a “constructor.” The __init__() method is automatically invoked
when a new instance of the corresponding class is created — in this case, it takes a pair of
integers and creates a Frac instance. The mandatory name __init__() is strange, but,
as we shall see, it is never used outside the class definition. The convention of leading
and trailing double-underscores indicates a reserved method that has a special meaning
in Python.

The first argument in most class methods is usually called self, and it too never ap-
pears outside the class definition. self is a reference to the current class instance, once
an instance has been created. This all looks very unfamiliar, so let’s see how we can
instantiate a Frac instance:

a = Frac(3,7)

This is asking for a Frac object for the integer pair 3 and 7 to be referenced by the
identifier a. Implicitly, this line invokes the __init__() method with self replaced
by a, and num and den replaced by 3 and 7. It then assigns num to a.num (since self
references to the instance, which is a) and den to a. den, but only if den!=0; otherwise,
a ValueError with a meaningful error message is raised (see Section 3.10.2). a.den
and a.nom are class attributes , which are class-specific variables that can be accessed
in this way outside the class definition:

a.den

The purpose of the method __repr__ is to output a meaningful string representation
of any Frac instance. This can be invoked by simply stating the identifier (a) in a
Notebook, or utilizing the print() function. In that case, the self statement in the
method code is replaced by a:

a

3/7

While these first two methods are more or less essential, we may define methods to carry
out class operations. Here, we implement multiplication and addition, which appear
as class methods _mul__() and __add__(), respectively. Again, we find this peculiar
naming convention. Why not just call them mul and add? These particular naming
conventions have special meanings; in the case of _mul__(), we do not necessar-
ily need to call a._mul__(b), but we can use the actual arithmetic operator for this
method call, a*b. Multiplication of two Frac objects requires the definition of the class
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method __mul__(). When we invoke a*b where b is a different instance of class Frac,
this function is invoked with self replaced by the left operand, here a, and another
replaced by the right operand, here b. Note how the numerator and denominator of the
product are computed, and then __init__(Q) is called with the result to create a new
Frac object, so that c = a*b would create a new Frac with identifier c. As the code
snippet shows, addition is handled in exactly the same way:

b = Frac(l, 2)
c = axb
d = a+b

print(a, b, c, d)

3/7 1/2 3/14 13/14

We also defined a reduce() method that utilizes the Euclidean algorithm to find the
greatest common divisor to reduce the fraction:

e = Frac(3, 27)
e.reduce()

1/9

Finally, we defined a method to_real () that converts a fraction to a real number:

print(b.to_real())
print (type(b.to_real()))

0.5
float

Note how the return value of the to_real () method indeed returns a float value.

Classes are extremely versatile and useful as they enable Python to be used in an object-
oriented way (see the following section for details on this).

The Structure of Python

Near the end of Section 3.2, we pointed out the relationship between identifiers and
objects, and we now return to this topic. In our pedagogic example of a Python class
Fracin Section 3.11, we noted that an instance of a Frac, e.g., a=Frac(3,7), produces
an identifier a referring to an object of class Frac. Now a Frac object contains data,
here a pair of integers, together with a set of methods to operate on them. We access the
data relevant to the instance via the “dot mechanism,” e.g., a.num. Similarly, we access
the associated methods via, e.g., a.to_real().
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So far, this is merely gathering previously stated facts. However, Python is packed with
objects, some very complicated, and this dot mechanism is used universally to access
the objects’ components. We have already seen enough of Python to point out some
examples.

Our first example is that of complex numbers described in Section 3.4.4. Suppose we
have setc = 1.5-0.47j or equivalently ¢ = complex(1.5,-0.4). We should regard
complex numbers as being supplied by class Complex, although to guarantee speed
they are hard-coded into the system. Now just as with the Frac class, we access the
data via c.real and c.imag, while c.conjugate() produces the complex conjugate
number 1.5+0.4j. These are further examples of instances and attributes. Python is
object oriented.

Our next example refers to modules described in Section 3.3. Like most other features
in Python, a module is an object. Thus import math as mincludes the math module
and gives it the identifier m. We can access data as, e.g., m.pi, and functions by, e.g.,
m.gamma(2).

Once you master the concept of the dot mechanism, understanding Python should be-
come a lot clearer. See, e.g., the discussion of container objects in Section 3.5. All of
the more sophisticated packages, e.g., NumPy, Matplotlib, SymPy, and Pandas, rely on
it.

A Python Style Guide

In the previous sections, we learned the basics of the Python programming language.
In theory, this is sufficient to write your own code for scientific applications. However,
especially to researchers, the motto sharing is caring applies: code is often exchanged
with other researchers, modified and extended to other use cases. As motivated by the
Zen of Python (see Section 2.1.2), well-written and well-documented code is more eas-
ily used by others (and by your future self). For this reason, every Python programmer
should strive to follow some simple guidelines to make their code easy to read and un-
derstand. An extensive guide for how to write good Python code is provided as part
of PEPS (see Section 3.14). Here, we summarize only a few important guidelines that
should be easy to follow:

O Keep your code tidy and well-readable. This ensures that others will be able to make
sense of your intentions and your code. It further simplifies debugging and makes
your life easier.

O Provide comments in your code. Do not comment every line. Instead, provide short
descriptions for blocks of code. For complicated lines of code, consider providing
a short motivation for why you use this specific approach. Use docstrings in your
function definitions.
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O Be consistent. Python provides you with a great deal of freedom for your program-
ming style. For instance, consider a simple sum: you can type it as “x+y”’ or as “x
+ y”. Both versions are perfectly valid. The former has the advantage of requiring
less space and is the preferred way as per PEP8. But in the end, it is up to you to
decide which version you prefer. However, you should not mix both versions as it
complicates reading your code.

O

Group your code into blocks, separated by blank lines. Code blocks are natural units
as they can be used to fulfill a given purpose or solve a specific problem. Add
a comment to the top of each block (see above) and end it with a blank line.
This significantly improves readability of your code and makes it easier to orient
yourself in large programs.

O Use indentation wisely. It is widely customary to use four whitespaces of indentation.
Never use tabs.* If you are breaking a line of code within a pair of brackets, start
the new line at the column that follows the opening brackets (see Section 3.1 for
an example).

O

Wrap overlong lines. PEP8 recommends a maximum line length of 79 characters.
This limit is (at least in part) due to historical reasons. For your personal pro-
gramming, you do not have to follow this guideline, but we recommend using
some consistent line length limit. The problem with overlong lines is that IDEs
and text editors will eventually wrap them automatically, which may lead to com-
plications in reading them.

O Pick meaningful names for your identifiers. The times of Fortran, where all identifiers
should be as short as possible, are over. Use names that allow you to remember
what the purpose of the object or function is, without making them too long!

This list could be continued eternally. However, we think it would be better for you to
define the details of your programming style yourself.
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NumPy: Numerical Math

NumPy (Harris et al., 2020) is an add-on package that forms the core of the NumPy/
SciPy ecosystem and is supported by the NumFocus organization (see Section 2.1.1).
It brings enhancements that allow Python to be used constructively for scientific com-
puting, by offering a performance close to that of compiled languages but with the ease
of the Python language. NumPy implements the fundamental infrastructure for a num-
ber of other scientific packages, the array object, and some useful basic functionality
for the processing and analysis for large amounts of data. This chapter is merely an
introduction to NumPy; for a complete guide, please refer to Oliphant (2015).

Before we start, we must import the NumPy package. The preferred approach is to
preface the code with

import numpy as np

Then a NumPy function func needs to be written as np.<func>. Of course, the user
is free to rename the package namespace, but the use of np can be considered tradi-
tional in the community and we will follow this tradition throughout this book and the
accompanying Notebook (cambridge.org/9781009029728/ch4).

Arrays

The basic object in NumPy is the np.ndarray class, or simply the array (ndarray
stands for n-dimensional array). For the remainder of this book we will define arrays
to refer to instances of the ndarray class. Arrays are (possibly multidimensional) se-
quences of objects, all of which share the same data type, that have a size that is fixed
upon creation. (Note that Python /lists do not impose homogeneity on their items, and
that a list object can enlarge dynamically via the intrinsic append () function; see Sec-
tion 3.5.1.) The homogeneity requirement ensures that each item occupies the same
amount of memory. This enables the NumPy designers to implement many operations
involving arrays as precompiled C code. Because of this, operations on arrays can be
executed much more efficiently and with much less support code than that required for
Python [ists. Let us illustrate this point with an often-quoted simple example. Suppose
that a is a large Python /ist and we want to increment each element of the list by one.
Using the pythonic approach of Chapter 3, we might use a simple for-loop that iterates
over a and increments each element individually. We measure the time it takes to finish
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this operation with the time module (we will introduce a more elegant way to measure
runtimes in Section 9.1.1):

import time
a = list(range(10000000))
b = []

starttime = time.time()

for i in range(len(a)):
b.append(a[i]+1)

print(time.time()—starttime, ’seconds’)

3.5564627647399902 seconds

While this runtime may not sound like a lot (and may actually be shorter on your com-
puter), the following implementation using NumPy arrays will already show you why
NumPy is so powerful:

a = np.array(a)

starttime = time.time()

b=a+1

print(time.time()—starttime, ’seconds’)

0.680443286895752 seconds

The use of a NumPy array reduces the runtime significantly and instead of having to
deal with a loop, the syntax is short and easy to understand.

One-Dimensional Arrays

Vectors are simply one-dimensional arrays that form the basic building blocks for nu-
merical computation. We look first at how to construct them, what their properties are
and then at how to use them. It makes sense here to distinguish three types of construc-
tors: to build a vector from another container object, from scratch, or to “look like”
another object.

Arrays are easily created from other container objects, e.g., lists, tuples, or other
arrays, using the function np.array(). Consider the following example in which we
create an array x from a list 1:

[1, 2, 3.0]
X = np.array(l)

array([1., 2., 3.1)
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First of all, Python indicates that this object is of type array to prevent confusion with
lists and other container objects. Also, note how in the resulting array all elements of
the list, which contains both floats and integers, are converted to floats (note the deci-
mal points); this is done since all elements of an array must have the same data type
—in fact, the array itself has a data type. np.array () will try to guess an appropriate
type. In this case, float was chosen as it is the least complex data type to accommo-
date both floats and integers. This automatic choice can be overridden by specifying
the dtype parameter upon creation of the array. Possible choices include bool, int,
float, complex, and even user-defined types. In this following example, we create an
array of complex numbers from 1:

np.array(l, dtype=complex)
array([1.+40.j, 2.+0.j, 3.+0.j]1)

The data type of an array, as well as many other useful properties, is accessible through
attributes. For instance, the data type is accessible through the dtype attribute:

x.dtype
dtype(’float64’)

Note that the data type is not simply float but float64, which is a NumPy data type indi-
cating a float with 64-bit precision (see the NumPy resources in the References for an
overview of available types). Other useful attributes include the number of dimensions
(ndim, trivial in the case of vectors), the number of elements (size), and the shape
(shape) of the array:

print (x.ndim)
print(x.size)
print (x.shape)

1

3

3,

For a full list of attributes, please refer to the ndarray reference.

Ndarray also provides a range of methods. For instance, an existing array can be re-
cast with a different data type using the astype () method:

X.astype(int)
array([1, 2, 31)

Many other methods are also available as package-level functions in NumPy. Therefore,
we simply list some common methods and refer to the discussion of the corresponding
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functions in the following sections: for array shape manipulations, np.reshape(),
np.transpose(), np.flatten(), and np.squeeze() are available (Section 4.1.5),
while common mathematical functions include np.mean(), np.std(), np.max(),
np.argmin(), np.argsort(), np.sum(), and np.clip (see Section 4.5). We show
just a few examples here to provide the user with an idea of their use as methods
(np.linspace() will be introduced below):

X = np.linspace(0, 10, 11)

print(x.mean()) # mean of array

print(x.max()) # max of array

print(x.argmax()) # index of max element
print(x.clip(2, 6)) # clip array values to range [2,6]

5.0

10.0

10

[2. 2. 2. 3. 4. 5. 6. 6. 6. 6. 6.]

Also, note that most built-in functions that work on sequence containers like lists and
tuples also work on arrays (see Sections 3.5.1 and 3.5.5):

print(len(x))

print (sum(x))
print (max(x))

11
55.0
10.0

In the same way, important concepts like slicing (Section 3.5.3) and indexing (Section
3.5.2) work for arrays in the same way as for other container objects:

x[2:5], x[0]
(array([2., 3., 4.]), 0.0)

NumPy provides a number of functions that create arrays from scratch. Perhaps the
most useful constructor is np.linspace(), which builds an equally spaced array of
floats. In its simplest use case, the function takes a start value, a stop value, and the
number of steps as arguments:

np.linspace(0®, 1, 10)

array ([0. , 0.11111111, 0.22222222, 0.33333333, 0.44444444,
0.55555556, 0.66666667, 0.77777778, 0.88888889, 1. iD)
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Note that the final element of the resulting array has the same value as the assigned stop
value. This is the case since the keyword argument endpoint defaults to True, meaning
that the final element has the same value as the stop value. However, if endpoint=False,
the stop value is exclusive:

np.linspace(®, 1, 10, endpoint=False)
array([06. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9])

With the retstep keyword argument, we can obtain a fuple containing the generated
array and the step size taken:

np.linspace(®, 1, 10, endpoint=False, retstep=True)
(array([®. , 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]), 0.1)

The function np.logspace() is similar, but the numbers are equally spaced on a loga-
rithmic scale (note that the start and stop values must be provided in units of log;):

np.logspace(0®, 3, 10)

array ([ 1. , 2.15443469, 4.64158883, 10. ,
21.5443469 , 46.41588834, 100. , 215.443469 ,
464.15888336, 1000. 1

Somewhat closer to the range() function of Python is the function np.arange(),
which returns an array rather than a list. In contrast to np.linspace(), np.arange()
takes a step size instead of the number of steps as an argument:

np.arange(l, 10, 1)
array([1, 2, 3, 4, 5, 6, 7, 8, 91)

Note that the stop value is by default excluded by this function; unlike np.linspace(),
there is no explicit way to include the stop value in the array. Python will try to deduce
the type of the array, e.g., int, float, or complex, from the input arguments, but this
choice can be overridden by specifying the dtype argument:

np.arange(l, 10, 1, dtype=complex)

array([1.+40.j, 2.+0.j, 3.+0.j, 4.+0.j, 5.+0.j, 6.+0.j, 7.+0.7,
8.+0.j, 9.+0.31)

Also, we would like to point out that the step size defaults to unity if only two positional
arguments are provided:

np.arange(l, 10)


https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core

4.1 Arrays 77

array([1, 2, 3, 4, 5, 6, 7, 8, 91)

Three further vector constructors turn out to be surprisingly useful. For instance,
np.zeros(Q):

np.zeros (5, dtype=float)
array([0., 0., 0., 0., 0.])

constructs an array of floats, filled with zeros. The function np.ones() does the same
but packs the array with ones, and np.empty () constructs an array of the same length
but leaves the values of the contents unspecified. In addition to these three functions,
there also exist look alike-constructors that create the corresponding arrays shaped
after an array that is provided to them. For instance, both lines in this example result in
arrays of the same shape as x, but filled with zeros:

np.zeros(x.shape)

np.zeros_like(x)

array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.1

Basic Array Arithmetic
Arithmetical operations between arrays of the same size can be performed as follows:

a np.linspace(®, 1, 5)

c = np.linspace(l, 3, 5)
print(a+c)
print(axc)
print(a/c)

[1. 1.75 2.5 3.25 4. ]
[0. 0.375 1. 1.875 3. ]
[0. 0.16666667 0.25 0.3 0.33333333]

Let us look in detail at the result of the summation operation. The sum is an array of
the same size as its operands. The ith component is the sum of the i-components of a
and c. In this sense, the + operator is said to act component-wise. All of the arithmetical
operations in this code snippet are acting component-wise, as do other operators like **
(exponentiation) and % (modulo).

Incidentally, there is an efficiency issue, relevant for large arrays, which should, per-
haps, be highlighted here. Suppose that instead of a+c we had set a = a+c. Python
would have created a temporary array to hold the sum required on the right-hand side,
filled it, then attached the identifier a to it, and finally deleted the original a-array. It
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is faster to use a += c, which avoids the creation of a temporary array. Similar con-
structions are available for the other arithmetic operators acting on vectors. There is,
however, a pitfall for the unwary. In Python, if a scalar a has type int and a second
scalar b has type float, then the operation a += b widens the type of a to float. In
fact, this is not the case for NumPy arrays, if the += operator is used! The reader is
encouraged to try

a = np.ones(4, dtype=int)
b = np.linspace(0, 1, 4)
a+=b

UFuncTypeError Traceback (most recent call last)
<ipython—input—30—319837fad535> in <module>

1 a = np.ones(4, dtype=int)

2 b = np.linspace(0, 1, 4)
—> 3 a+=b
UFuncTypeError: Cannot cast ufunc ’add’ output from
dtype(’float64’) to dtype(’int64’) with casting rule ’same_kind’

to see that the type of a is unchanged. However, the result will not be narrowed back to
int by truncation towards zero. Instead, an exception will be raised, warning about this
issue. Finally, be aware that the operation a + b (which creates a new array) does not
suffer from this issue, since the new array is simply widened.

In general, arithmetical operations between vectors of different sizes that produce an-
other vector cannot be defined unambiguously, and so cause an error. However, such
operations between an array and a scalar can be given an unambiguous meaning:

a = np.linspace(®, 1, 5)
print(ax2)

print (ax=x2)

print(a/2)

[6. 0.5 1. 1.5 2. ]
[0. 0.0625 0.25 0.5625 1. ]
[0. 0.125 0.25 0.375 0.5 ]

For someone unaware of the workings of NumPy, the results should be surprising
since operations between an array, here a, and a scalar, here 2, are not defined. How-
ever, NumPy is able to handle this situation efficiently and performs the operation
component-wise.

We now have enough information to consider a simple but nontrivial example, the
smoothing of data by three-point averaging. Suppose f refers to a Python vector of
data. We might smooth the data at interior points as follows:
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f = np.sin(np.linspace(®, 2xnp.pi, 100))

f_av = f.copy() # make a copy, just as for lists

for i in range(l, len(f)—1): # loop over interior points
fav[i] = (£[i—-1] + £f[i] + £f[i+1]1)/3

(We will learn about np . pi in Section 4.3 and np.sin() in Section 4.2.1.) This works
well for small arrays but becomes very slow for larger vectors. Consider instead:

f_avnp = f.copy() # as above
f avnp[l:—-1] = (£f[:—2] + f[1:—-1] + £f[2:])/3

This vectorized code will execute much faster for large arrays since the implied loop
will be executed using precompiled C code. One way to get the slicings correct is to
note that in each slice [a:b], the difference a-b is the same, i.e., 2.

Finally, we need to point out to beginners that there is an extremely important difference
between arrays and lists. If 1 is a Python list, then 1[ :] is always a (shallow) copy, but
for NumPy arrays, slicings always reference the original array. That is why we had to
enforce an explicit (deep) copy in the code snippets above.

Two (and More)-Dimensional Arrays

We turn next to arrays with two and more dimensions. Fortunately, having mastered
the basic definitions, it is easy to see that the definitions are consistent with those for
vectors, and that much of what we have already learned about one-dimensional arrays
or vectors carries through. As we already saw in the discussion of one-dimensional
arrays (see Section 4.1.1), a general NumPy array carries three important attributes:
ndim, the number of dimensions or axes; shape, a fuple of dimension ndim that gives
the extent or length along each axis; and dtype, which gives the type of each element.
Let us see them in a familiar context:

v = np.linspace(0®, 1.0, 11)
v.ndim, v.shape, v.dtype

(1, (11,), dtype(’float64’))

Here, the array has a shape of (11,) (a tuple with one element is almost, but not
quite, synonymous with the number 11), meaning a vector of length 11. To get a better
understanding of shapes, we now consider a two-dimensional array. A conceptually
simple method of generating two-dimensional arrays explicitly is from a list of lists,
e.g.,

X = np.array([[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]11)
X
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array([[ ©®, 1, 2, 3],
[ 4, 51 67 7]1
[ 8 9, 10, 111D

The displayed representation of the array clarifies how the initializing list has to be
structured: the outer /ist’s elements form the rows of a two-dimensional matrix, whereas
the inner /ist’s elements contain the different elements of each row. If we interpret this
object as a matrix, it has three rows and four columns. We can compare this interpreta-
tion with the object’s shape:

x.shape
G, O

In the two-dimensional case, the shape of an array agrees with the matrix notation
of (number of rows, number of columns). Generally, we refer to the rightmost axis of
an array (the one containing four elements in this case) as the trailing axis; this will
be important when we introduce broadcasting (see Section 4.1.4). Higher dimensional
arrays can be built following the same logic:

im = np.array([[[1, O, 0], [1, 1, ®]],
(cy, o, 11, [0, 0, 111D

im. shape
@, 25 3)

Three-dimensional arrays such as this one are typical for representing images. You can
consider this as a two-dimensional array, representing the image plane, each element
of which is a vector containing RGB (red-green-blue) values for each pixel. We will
discuss this representation some more in Section 6.6.

For any dimensionality, the shape of an array should be regular; irregular or “ragged”
shapes are not permitted. For instance, an array cannot be generated from irregularly
shaped nested lists:

np.array([[1, 2, 3], [4, 5], [6, 7, 81D

(For the sake of completeness: it is actually possible to generate an array from such a
list by using dtype=object, but the result would be an array of lists that would not
follow the typical array behavior in all cases.)

The next snippet shows how we can access individual rows and columns:

print(x[2]) # 3rd row
print(x[:,1]) # 2nd column
print(x[2][1]) # specific element
print(x[2,1]) # specific element
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[ 8 9 10 11]
[15 9]

9

9

The good news is that the Python indexing (Section 3.5.2) and slicing (Section 3.5.3)
conventions still apply. The first item extracts the third row (index 2) and the second
item extracts the second column (index 1) from x. The last two items show ways to
access an individual element of x. In the first, we create an intermediate temporary
vector from the last row, and then access an element of that vector. It is, however, more
efficient, especially for large arrays, to access the required element directly, as in the
last entry.

In general, the same constructors that we introduced for vectors (see Section 4.1.1) are
able to generate multi-dimensional arrays. For instance, we can generate a (3x3x3)
array only containing zeros using:

np.zeros((3, 3, 3))

Note how the shape of the array is passed to the function as a fuple. In the same
way, np.ones(), np.empty(), and, of course, the corresponding look-alike functions
can be utilized. Nevertheless, be aware that np.linspace(), np.logspace(), and
np.arange() can only generate vectors — however, those can be reshaped into multi-
dimensional arrays utilizing np.reshape() and other shape-changing methods (see
Section 4.1.5).

NumPy also provides functionality to create matrices from coordinate vectors. Sup-
pose we are given vectors of x-values x;, where 0 < i < m, and y-values y;, where
0 < k < n, and we want to represent a function u(x,y) by grid values uy = u(x;, yi).
Mathematically, we might use a m X n array ordered in matrix form, e.g., form = 3 and
n =4

Upo Ul U2 U3

uijp Uil Uz U3

Upo Uzp U U3
We are thinking of x increasing downwards and y increasing rightwards. However, in
the image-processing world, many prefer to require x to increase rightwards and y to
increase upwards, leading to image form

Ups U3 U3

Upy U Ux

Upr Uy Uz

Upp Uio U20
Clearly, the two arrays are linear transformations of each other. Because examples in
the literature often use arrays corresponding to symmetric matrices, the differences are
rarely spelled out explicitly. We therefore need to exhibit care.
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Since assembling grid values u; from vectors x and y can be rather complex, NumPy
provides tools for this purpose. For vectors, we learned about the NumPy functions
np.linspace() and np.arange(). For two-dimensional arrays, there are four pos-
sible intervals. As a concrete example, we try to explicitly construct a grid with —1 <
x < land 0 <y < 1 and a spacing of 0.25 in both directions, and perform a simple
arithmetical operation on it.

Perhaps the easiest to understand is the np.meshgrid() constructor. We first construct
vectors xv and yv, which define the two coordinate axes for the intervals, then two
arrays xa and ya on which y and x respectively are held constant. Finally, we compute
their product:

xv = np.linspace(-1, 1, 5)
yv = np.linspace(®, 1, 3)
xa, ya = np.meshgrid(xv, yv)
print("xa = \n", xa)
print("ya = \n", ya)
print("xaxya = \n", xakya)

Xa =
[[-1. —-0.5 0. 0.5 1. 1]
[-1. —-0.5 0. 0.5 1. 1]
[-1. —0.5 0. 0.5 1. 1]
ya =
[[6. 0. ©0. 0. 0. ]
[0.5 0.5 0.5 0.5 0.5]
1

[1. 1. 1. 1. 11

Xakya =
[[-0. —0. 0. 0. 0. 1]
[-0.5 —0.25 0. 0.25 0.5 1]
[-1. -0.5 0. 0.5 1. 11

Notice from the shape of xa or ya that np.meshgrid() uses image form.
The np.mgrid and np.ogrid operators use rather different syntax, cobbled together

from slicing notation, and the representation of complex numbers. We illustrate this
first in one dimension:

np.mgrid[—1:1:9j]
array([-1. , —-0.75, —-0.5 , —-0.25, 0. , .25, 0.5, 0.75, 1. 1)

np.mgrid[—1:1:0.25]
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array([-1. , —-0.75, —-0.5 , —0.25, ©0. , 0.25, 0.5, 0.75])

Note that the first code cell, with pure imaginary spacing, mimics the effect of the one-
dimensional np . linspace (), while the second emulates np .arange (). Although un-
familiar, this notation is succinct and generalizes to two or more dimensions, where it
uses matrix form:

xm, ym = np.mgrid[—1:1:5j, 0:1:33j]
print("xm = \n", xm)

print("ym = \n", ym)

print("xmzym = \n", xmsym)

xm =
[=il, =i, =i. ]
[-0.5 —0.5 —0.5]
[ 0. 0. 0. ]
[ 0.5 0.5 0.5]
1

[ 1. 1. 1]
ym =

[[6. 0.5 1. ]

[6. 0.5 1. ]

[6. 0.5 1. ]

[0. 0.5 1. ]

[06. 0.5 1. 1]
Xmsym =

[[-0. —-0.5 —-1. ]

[-0. —0.25 —0.5 ]

[ 0. 0. 0. 1]

[ . 0.25 0.5 ]

[ O 0.5 1. 11

This is shorter than the first code snippet of this section, but achieves the same result up
to a linear transformation.

For large arrays, especially with more dimensions, much of the data in xm and ym may
be redundant. This deficiency is addressed by the np.ogrid variant, which also uses
matrix form:

X0, yo = np.ogrid[—1:1:5j, 0:1:3j]

print("xo = \n", xo)

print("yo = \n", yo)

print("xo.shape = ", xo.shape, " yo.shape = ", yo.shape)
print("xoxyo = \n", xoxyo)
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X0 =
[[-1. 1
[—0.5]
[ 0.1
[ 0.5]
[ 1. 1]
yo =
[[6. 0.5 1. 1]
xo0.shape = (5, 1) yo.shape = (1, 3)

X0*y0 =
[[-0. —-0.5 —-1. ]
[-0. —-0.25 —0.5 ]
[ 0. 0. 0. 1]
[ 0. 0.25 0.5 ]
[ ® 0.5 1. 11

You should verify that xo and yo have shapes chosen so that the broadcasting rules
apply, and that xm*ym (from the last snippet) and xo*yo are identical.

Broadcasting

Suppose that y is an array with precisely the same shape as x. Then x+y, x-y, x+y
and x/y are arrays of the same shape, where the operations are carried out component-
wise, i.e., component by component. In certain circumstances, these operations are well-
defined even when the shapes of x and y differ, and this is called broadcasting. We
generalize to a situation where we have a number of arrays, not necessarily of the same
shape, to which we are applying arithmetical operations. At first sight, broadcasting
seems somewhat strange, but it is easier to grasp if we remember two rules:

O The first rule of broadcasting is that if the arrays do not have the same number of
dimensions, then a “1” will be repeatedly prepended to the shapes of the smaller
arrays until all the arrays have the same number of axes.

O The second rule of broadcasting ensures that arrays with a size of 1 along a particular
dimension or axis act as if they had the size of the array with the largest size along
that dimension. The value of the array element is assumed to be the same along
that dimension for the “broadcasted” array.

As a simple example, consider the array v = np.linspace(®, 10, 11) with shape
(11,). What does 2*v mean? Well, 2 has shape (8,) and so by the first rule we aug-
ment the shape of “2” to (1,). Next, we use the second rule to increase the shape of
“2” to (11,), with identical components. Finally, we perform component-wise multi-
plication to double each element of v:

v = np.linspace(®, 10, 11)
2%V
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array([ 0., 2., 4., 6., 8., 10., 12., 14., 16., 18., 20.])

The same holds for other arithmetic operations. However, if w is a vector with shape
(5,), the broadcasting rules do not allow for the construction of v«w:

w = np.arange(5)
VW

ValueError Traceback (most recent call last)
<ipython—input—40—429aa0d280e3> in <module>
1 w = np.arange(5)
—> 2 VW
ValueError: operands could not be broadcast together with
shapes (11,) (5,)

Since the shape of w violates the broadcasting rules, v=w results in a ValueError.
To see array arithmetic with broadcasting in action, consider the following examples:

x = np.array([[0, 1, 2], [3, 4, 5], [6, 7, 811
r = np.array([0, 1, 2])
np.array([[0], [1], [2]11)

kX

array([[ 0, 1, 4],
[ 0, 4, 10],
[ o6, 7, 16]11)

Here, r is reshaped (since it has the lower dimensionality) from shape (3,) to (1, 3)
before the multiplication so that the sequence [0, 1, 2] is multiplied to each “row”
of x. A different example:

X*kC

array([[ 0, O, 0],
[ 3, 4, 51,
[12, 14, 161]1)

In this example, c already has the same number of dimensions as x so only the second
rule of broadcasting applies here so that the “column vector” [0, 1, 2] is multiplied
to each “column” of x.

IrxC

array([[0, 0, 0],
[01 17 2],
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[0, 2, 411

In this final example, r is reshaped from shape (3,) to (1, 3) and now has the same
dimensionality as ¢, which is of shape (3, 1). The multiplication of both now leads to
an array of shape (3, 3).

There is one more thing to point out based on the following result:

XkI

array([[ ®, 1, 4],
[ o, 4, 10],
[ o, 7, 16]1]1)

Note that since x+r equals r=X, x-r is not the same as matrix multiplication, nor is x+x
a matrix multiplication. For these, try np.dot(x,r) or dot (x,x). A brief introduction
to matrix arithmetic will be given in Section 4.7.

Array Manipulations

NumPy provides a number of tools to change the shape of arrays. One of these tools
is np.reshape(), which takes an existing array (or even a list) and a tuple, and, if
possible, recasts the array into another, the shape of which is determined by the fuple.
A common example is:

np.reshape(range(6), (2,3))

array([[0, 1, 2],
[3, 4, 511D

but a potentially more useful idea is

np.reshape(np.linspace(®, 1.0, 9), (3, 3))

array ([[0. , 0.125, 0.25 ],
[0.375, 0.5 , 0.625],
[0.75 , 0.875, 1. 11D

Naturally, the number of elements of the new shape, as described through the ruple, must
exactly match the number of elements of the original array. For instance, the following
attempt to create a 3x3 matrix out of an array with 10 elements will fail and result in a
ValueError:

np.reshape(np.arange(10), (3,3))

ValueError Traceback (most recent call last)
<ipython—input—47—-76bc63b294f5> in <module>
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—> 1 np.reshape(np.arange(10), (3,3))
<__array_function__ internals> in reshape(xargs, s#:xkwargs)

.../numpy/core/fromnumeric.py in reshape(a, newshape, order)

297 [5, 611)
298 B
—> 299 return _wrapfunc(a, ’'reshape’, newshape, order=order)
300
301
.../core/fromnumeric.py in _wrapfunc(obj, method, xargs, :xxkwds)
56
57 try:
—— 518 return bound(xargs, sxxkwds)
59 except TypeError:
60 # A TypeError occurs if the object does have

ValueError: cannot reshape array of size 10 into shape (3,3)

For the user’s convenience, the function can automatically derive the length of a single
axis if the wildcard value -1 is provided. The following code cell will generate a 4x3
array since the size of the trailing axis (number of columns) is fixed to 3 and the original
array has a size of 12:

np.reshape(np.arange(12), (=1, 3))

array([[ ©, 1, 21,
[ 3, 4, 5],
[ 6, 7, 8],
[ 9, 10, 11]1]1)

Finally, we would like to point out that np.reshape(), just like all of the following
functions introduced in this section, is also implemented as a method of the array class,
enabling the following use:

X = np.arange(12).reshape(3, 4)
X

array([[ ®, 1, 2, 3],
[ 4! 51 67 7]1
[ 8 9, 10, 111D

It is important to note here that the reshape () method, other than the np.reshape()
function, does not require a fuple as argument; instead, the length of each axis can be
passed as an individual integer.
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One important aspect of reshaping arrays is the index order in which the reshaping is
done. By default, all NumPy reshaping functions and methods assume a C-like index
order in which the last axis index changes fastest while the first axis index changes
slowest. The opposite is also possible, where the first index changes fastest and the
last index changes slowest; this is referred to as the Fortran-like index order. When
reshaping, the index order can be set with the order argument: *C’ for the C-like order
(which is also the default order) and ’F’ for the Fortran-like order. To visualize the
difference between the two orders, the following code cell performs the same reshaping
operation as the previous cell, but using the Fortran-like index order:

np.arange(12) .reshape((3, 4), order="F’)

array([[ 0, 3, 6, 9],
[ 1, 4, 7, 10],
[ 2, 5, 8, 111D

While the shape of the resulting array is identical, the order of elements changed. Inter-
preting the result as a matrix, the Fortran-like index order “fills in column-by-column,”
whereas the C-like index order “fills in row-by-row.” While the different orders might
come in handy at some point, we would like to point out that since C-like index ordering
is the default in NumPy, one typically will not encounter too many situations in which
to think about what ordering scheme to use to retrieve consistent results. In case a dif-
ferent ordering scheme seems to be the right choice, the order argument is supported
by most array creation and manipulation functions and methods.

Now, let’s consider some other shape modification functions. Sometimes it is useful to
be able to flatten an array, which means to reshape it in vectorial form. This can be
easily achieved with the function np.ravel():

np.ravel (x)
array([ 60, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

Note that the same result can also be achieved with:

x.reshape(—1)

NumPy provides a function to derive the transpose of an array, np.transpose():

np.transpose(x)

array([[ ©, 4, 8],
[ 1, 5, 9],
[ 2, 6, 10],
[ 3, 7, 111]1)

The transpose is also accessible as a class method (x.transpose()) and even as an
attribute of the array class, x.T.
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A number of different array transformations for rearranging elements are available,
which are especially useful for arrays that contain image data of the shape 7 X w X c,
where i and w are the height and width, respectively, of the image in pixel units and ¢
is the number of channel (e.g., three for RGB images). np.£1ip() can be used to flip
arrays along a specified axis. For arrays containing image data, a flip along axis zero
means an up-down flip, whereas a flip along axis one means a left-right flip:

im = np.arange(4) .reshape(2, 2)
print(’original:\n’, im)

print(’ flip u—d:\n’, np.flip(im, axis=0))
print(’ flip 1-r:\n’, np.flip(im, axis=1))

original:
[[0 1]
[2 31]
flip u—d:
[[2 3]
[0 11]
flip 1-r:
[[1 0]
[3 21]

This example uses the special case of a single-channel (grayscale) image; for color im-
ages, the results follow the same rules (and axis=2 would simply reverse the order of
the color channels). Note that flips in both directions can also be achieved with the con-
venience functions np.flipud() and np.fliplr(). Finally, np.rot90() performs
rotations of integer multiples of 90 degrees. For instance, the following code line will
rotate the array by 90 degrees (k=1 x 90 degrees):

np.rot90(im, k=1, axes=(0, 1))

array([[1, 3],
[0, 211

The argument axes here defines the plane in which the rotation is supposed to happen.
In this trivial case of a two-dimensional array, the choice is simple: axes=(0, 1).In
case of an image array following the general shape & X w X ¢, the same choice for axes
would indeed rotate the image perpendicular to the image plane and leave the channels
untouched. Note that negative values for k lead to rotations in the opposite direction and
that values for k greater than 3 lead to the same results ask % 4.

NumPy provides a number of ways to join arrays. The most basic function for joining
arrays is np.concatenate(). The function takes as positional argument a sequence
(i.e., a list, tuple, or array) of sequences, and as keyword argument an axis index (zero
by default) referencing the axis along which the input sequences will be joined. The
following example shows how to join a tuple of lists into a vector:
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np.concatenate(([®, 1, 2], [3, 41, [5, 6, 7, 81, [91))

array ([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])

Note that the individual lists are of variable length. Concatenating sequences of variable
shape is only possible if their only variable axis is the same axis along which the se-
quences are joined. For instance, consider the following nested lists (of shape 2x2 and
2x3) that we try to concatenate along axis one, i.e., we join them horizontally:

np.concatenate([[[1, 2, 3], [6, 7, 811, [[4, 5], [9, 10]]], axis=1)

array([[ 1, 2, 5, 6, 71,
[ 3, 4, 8, 9, 101D

Despite their different shapes, we can join those lists — but only along axis one — whereas
joining them along axis zero results in a ValueError:

np.concatenate([[[1, 2, 3], [6, 7, 811, [[4, 5], [9, 10]]], axis=0)

ValueError Traceback (most recent call last)
<ipython—input—69—0c15b65chb492> in <module>
—> 1 np.concatenate([[[1, 2, 3], [6, 7, 811,

[[4, 5], [9, 10]]1], axis=0)
<__array_function__ internals> in concatenate(xargs, #:xkwargs)
ValueError: all the input array dimensions for the concatenation
axis must match exactly, but along dimension 1, the array at
index O has size 3 and the array at index 1 has size 2

While np . concatenate () joins sequences along existing axes, np.stack() creates a
new axis along which a sequence is stacked:

np.stack([[[0, 11, [2, 311, [[4, 51, [6, 711, [[8, 91, [10, 11111,
axis=0)

array([[[ 0, 1],

[ 2, 311,
[C 4, 51,
[ 6, 711,
(c 8, 91,

[10, 11711


https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core

4.1 Arrays 91

np.stack([[[®, 11, [2, 311, [[4, 51, [6, 711, [[8, 91, [10, 11111,
axis=1)

array([[[ O, 17,

[ 4, 51,
L8 911,
[f 2, 31,
[ 6, 71,
[10, 11711

np.stack([[[®, 1], [2, 311, [[4, 51, [6, 711, [[8, 91, [10, 11111,
axis=2)

array([[[ 0, 4, 8],
[ 1, 5, 911,
[[ 2, 6, 101,

3, 7, 1111D

The convenience functions np.vstack(), np.hstack(), and np.dstack() are avail-
able for concatenating arrays and other sequences of arrays along the vertical, horizon-
tal, and depth dimensions, respectively. Note that although their naming might suggest
a behavior that is similar to np . stack(), the three functions actually provide the same
results as np.concatenate() with axis arguments zero (vertical stacking), one (hori-
zontal), and two (depth).

Finally, NumPy provides functions to deal with empty axes. Sometimes it is necessary
to create arrays with seemingly weird shapes for specific purposes (e.g., broadcasting).
For instance, it might be necessary to create an array of the form array ([[0], [1],
[2], [31, [411). There are numerous ways to create this array, but one of the more
elegant ways involves np. expand dims (). As its name suggests, this function expands
the shape of an array by adding axes. The desired array can be easily generated:

np.expand_dims (np.arange(5), axis=1)

array ([[0],
[11,
[2],
[31,
[411

Any number of axes can be added by providing a tuple of axis indices to the axis key-
word argument. The opposite operation — getting rid of seemingly unnecessary axes —
is possible with np . squeeze():
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np.squeeze([[0], [11, [2], [3], [41], axis=1)
array ([0, 1, 2, 3, 4]1)

Finally, we can modify individual elements of arrays; this is possible despite the fact
that arrays are immutable since the functions introduced here create modified copies
of the original array. The examples provided below refer to the two-dimensional case,
which is very common; with the explanations provided below it should be trivial to
figure out higher-dimensional cases.

np.append () will append values to the end of an array on an axis of your choice. While
this sounds somewhat similar to the append() function that exists for lists, there are a
few caveats to keep in mind. First of all, since arrays must not be ragged, the shape of
the sequence (typically an array or a list) to be appended must fit the shape of the array
to which it is appended. This requirement excludes the axis on which the sequence is
to be appended. This sounds rather complicated, so let’s consider our example array x,
which is of shape (3, 4). First, we want to append a new row to x, which means that
we want to append to axis zero. The sequence we want to add thus has to be of shape
(1, 4); the length of the first axis is unity, since this is the axis to which we want to
append and the length of 4 in the second axis is given by the shape of x. Hence, we can
perform this operation with:

np.append(x, [[10, 20, 30, 40]], axis=0)

array([[ ®, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8 9, 10, 11],
[10, 20, 30, 40]1)

Note that the sequence [[10, 20, 30, 40]] is of the desired shape (1, 4) and x is
not changed by the function call, which returns a modified copy of x. Now consider the
case that we would like to append a new column (axis one). Following the same logic
as above, our sequence to be appended must be of shape (3, 1):

np.append(x, [[10], [20], [30]], axis=1)

array([[ ®, 1, 2, 3, 10],
[ 4, 5, 6, 7, 20],
[ 8 9, 10, 11, 3011)

Bringing sequences into the right shape can be a hassle, but the np.reshape () method
can be of great help here; the following code cell will provide the same result as the
previous cell:

np.append(x, np.array([10, 20, 30]).reshape(3, 1), axis=1)
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Be aware that the axis keyword argument is optional; if omitted, both the array and
the sequence will be flattened before the append operation:

np.append(x, [[10], [20], [30]1)

array([ ©0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 10, 20, 30])

The function np.insert() allows you to insert a sequence at a given index position
on a given axis. This function is much less strict in its formatting requirements, as the
user provides all necessary parameters as arguments: np.insert(<array>, <index
position>, <sequence>, <axis>). In order to add a row after the first row of x,
we can use the following:

np.insert(x, 1, [10, 20, 30, 40], axis=0)

array([[ 6, 1, 2, 3],
[10, 20, 30, 40],
[ 4, 5, 6, 7],
[ 8, 9, 10, 1111

Note that in contrast to np . append (), we simply provide the new row as a vector array.
Similarly, we can add a new column after the first column of x:

np.insert(x, 1, [10, 20, 30], axis=1)

array([[ 0, 10, 1, 2, 3],
[ 4, 20, 5, 6, 71,
[ 8 30, 9, 10, 1111

axis is again a keyword argument; if omitted, the array will be flattened before the
sequence is inserted at the position index:

np.insert(x, 1, [10, 20, 30])
array([ 0, 10, 20, 30, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])

We would also like to point out that the position index can be replaced with a slice or a
sequence of integers, referring to a range of positions (see below for a related example).

Finally, np.delete() allows you to remove elements (or sub-arrays) from an array
that are identified based on the position index on a given axis. For instance, we can
delete the center row (index 1) from x:

np.delete(x, 1, axis=0)

array([[ 0, 1, 2, 3],
[ 8 9, 10, 111D
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Using slices instead of a positional index, you can also remove sub-arrays:

np.delete(x, np.s_[2:], axis=1)

array([[0, 1],
[4l 5],
[8, 911D

Here, np.s_is a means to build standalone index ruples for arrays. Keep in mind that
directly indexing those parts of an array that you would like to keep might be easier to
read and more efficient than np.delete():

x[:,:2]

array([[0, 1],
[4l 5]!
[8, 911

Working with Arrays

Mathematical Functions and Operators

NumPy offers a wide range of functions that operate on arrays and in most cases also on
lists (which are then internally converted to arrays) and scalars. A large fraction of these
functions fall under the category of universal functions or ufuncs, which are functions
that, when applied to a scalar, generate a scalar, but when applied to an array produce an
array of the same size, by operating component-wise. An overview of different ufuncs
is shown in Table 4.1.

While many functions are unique, there is a significant overlap with the math module
or other basic Python modules. For instance, there is a function math.sqrt() and a
function np. sqrt (), both of which compute square roots. The difference between the
two functions is that only np.sqrt () can compute component-wise square roots from
an array, whereas math.sqrt() only works on scalars. Since NumPy functions are
also compatible with scalar inputs, we recommend to use the NumPy versions of these
functions in all cases.

Using ufuncs is simple. They can be easily imported from NumPy and used on scalar
objects:

np.sqrt(9)

3.0
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Table 4.1 A collection of commonly used ufuncs that can be applied to scalars and arrays
of different shapes sorted by different categories. Arguments are provided in parentheses
and symbols in square brackets represent alternative ways to call a function if all arguments
are NumPy arrays. Each function can be called as np.<function name>.

Operators:

add(x,y) [x+y] subtract(x,y) [x-y] multiply(x,y) [x:y]
divide(x,y) [x/y] power(x,y) [X:«y] remainder(x,y) [x%y]
abs(x) sign(x) floor(x)

sqrt(x) conjugate(x) gcd(x,y)

exp(x) log(x) logl10(x)
Trigonometry:

sin(x) cos(x) tan(x)

arcsin(x) arccos(x) arctan(x)

sinh(x) cosh(x) tanh(x)

arcsinh(x) arccosh(x) arctanh(x)
arctan2(x,y) deg2rad(x) rad2deg(x)
Comparisons:

greater(x,y) [x>y] greater_equal (x,y) [x>=y] equal(x,y) [x==y]
less(x,y) [x<y] less_equal (x,y) [x<=y] not_equal (x,y) [x!=y]
logical_and(x,y) [a&b] logical_ or(x,y) [x|b] logical not(x)

and arrays:

np.sqrt(np.arange(5))
array ([0. , 1. , 1.41421356, 1.73205081, 2. 1)

Note that ufuncs applied to arrays perform their operations in an component-wise fash-
ion and return an array of the same shape. If a ufunc takes two objects as arguments,
those should be of the same shape or must be broadcastable to a common shape.

One important comment on trigonometric functions. As in most other programming
languages, trigonometric ufuncs require arguments in radians — not degrees. Please keep
this in mind when using those to save yourself long hours of debugging code that oth-
erwise works perfectly fine. Take advantage of the np.deg2rad() and np.rad2deg()
functions to convert between both definitions.

One point that is not made clear in the documentation of Python functions in general
is the domain and range of each of these functions. For example, how does NumPy
interpret V—1? In basic Python, math. sqrt (-1) will produce an error and the program
will stop. However, cmath.sqrt(-1) returns 1j, for the argument is widened to a
complex value. ufuncs behave diftferently, and the type of the argument is critical. Note
that np.sqrt(-1+0j) takes a complex square root and returns 1j, but np.sqrt(-1)
produces a warning and returns np.nan.
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Sums and Products

We can sum the elements of any array x with np. sum(x). If x has more than one dimen-
sion (we use two for illustrative purposes), then np.sum(x, axis=0) sums over the
individual rows (along the columns), and np. sum(x, axis=1) sums over the columns
(along the rows):

a = [[1, 2], [3, 4]1]

print(’sum over all elements:’, np.sum(a))
print(’sum over rows:’, np.sum(a, axis=0))
print(’sum over columns:’, np.sum(a, axis=1))

sum over all elements: 10
sum over rows: [4 6]
sum over columns: [3 7]

With the same syntax, the function np . cumsum(x) produces an array of the same shape
as x but with cumulative sums. The functions np.prod() and np.cumprod() do the
same but for products.

Comparing Arrays

In almost every nontrivial program, there will be user-defined functions, and it is highly
desirable that, where appropriate, they behave like ufuncs, in the sense that when ap-
plied to arrays of consistent dimensions, they return arrays of an appropriate dimension
without invoking explicit loops over the components. In many cases, e.g., where only
arithmetical operations and ufuncs are involved, this will be manifestly true.

However, if comparisons of arrays and other logical statements are involved, this may
not be the case. Consider, e.g., the “top hat” function:

0 ifx<O,
h(x) =<1 if0<x<1,
0 ifx>1.

Using the techniques of Chapter 3, we might try to apply this definition via the code
def h(x):

mwoen mon

Hat function implemented with basic Python.
if x < 0.0:
return 0.0
elif x <= 1.0:
return 1.0
else:
return 0.0

v = np.linspace(-2, 2, 401)
h(v)
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ValueError Traceback (most recent call last)
<ipython—input—87—62eb3b65da55> in <module>
8
9 v = np.linspace(-2, 2, 401)
—> 10 h(v)
<ipython—input—87—62eb3b65da55> in h(x)
1 def h(x):
—> 2 if x < 0.0:
3 return 0.0
4 elif x <= 1.0:
5 return 1.0

ValueError: The truth value of an array with more than one
element is ambiguous. Use a.any() or a.all()

However, this fails, and the reason is very simple. If x has more than one element, then
x<0.0 is ambiguous. If x is a scalar, then x<0 is unambiguous. It must evaluate to True
or False. But what if x is a vector, i.e., a one-dimensional array? Clearly, the right-
hand side of the inequality is a scalar, and a moment’s thought should suggest that the
assertion should be interpreted component-wise, so as to produce a vector of outcomes.
Let us test this hypothesis:

X = np.arange(10)
x <5

array([ True, True, True, True, True, False, False, False,
False, False])

Indeed, the result of x < 5 is a vector of length 10 of type bool, a logical array, of
which precisely the first five components are True.

The next code snippet demonstrates an extremely useful feature of NumPy:

y = x.copy )
y[x < 5] = —y[x < 5]
y

array([ 0, -1, =2, -3, -4, 5, 6, 7, 8, 9D

We may treat logical arrays such as x < 5 as slice definitions on one or both sides
of an assignment. First we make a copy y of x. The right-hand side of the next line
first selects those components of y that are less than 5, i.e., those for which the corre-
sponding component of x < 5 is True, then multiplies them by —1. The assignment
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then inserts precisely the modified components back into y. Thus we have computed
y = |x| using implicit, C-style, loops. The reason for the copy is to leave the original x
unchanged.

Acting on scalars, we can combine logical operators, e.g., x>0 and x<1, by chaining
them

s =0.1
s>0 and s<1

True

or using

0<s<1

True

Acting on arrays, we cannot use the keywords and and or to combine logical array
expressions in the same way. To combine such expressions and evaluate them in an
element-wise fashion on arrays, we must use the bitwise operators: & (and) and | (or):

(x>1) & (x<7)

array([False, False, True, True, True, True, True, False,
False, False])

Please note that the use of parentheses around the individual comparisons is mandatory
in this case. As we expected, the result of this statement is an array of booleans. This
notation, which applies to NumPy arrays and other advanced data types like Pandas
DataFrames and Series (see Sections 8.2 and 8.1) but not lists, is very powerful, as is
shown in the next section.

Instead of comparing arrays component-wise, we could ask whether all or any elements
of the array meet a certain condition. This can be easily addressed with the functions
np.all(Q and np.any():

print('any x > 0:’, np.any(x > 0))
print(’all x > 0:’, np.all(x > 0))

any x > 0: True
all x > 0: False

Not all elements in x are greater than zero since one of them equals zero.
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Advanced Array Indexing

We saw in Sections 3.5.1 and 4.1 that /ists and arrays support indexing and slicing. To
provide even more flexibility, arrays also support indexing based on logical arrays and
lists of booleans of the same size that can be used to quickly filter data. Based on the
code cells presented in the previous section, consider the following example, which will
filter values greater than 1 and less than 7:

x[(x>1) & (x<7)]

array([2, 3, 4, 5, 6])

This is possible since (x>1) & (x<7) simply generates an array of booleans, which
acts as a mask on the values of x: in the resulting array only those values are con-
tained that are True since they match the condition. This type of indexing is extremely
versatile, so let’s consider some more examples.

It is possible to design your own list of booleans and use it for indexing:

1 = [True, True, False, False, True, True, False, False, True, True]
x[1]

array([®, 1, 4, 5, 8, 9])

That means that any process that generates a list or array can be exploited here':

c = [True if i % 2 ==0 else False for i in range(len(x))]
x[c]

array ([0, 2, 4, 6, 8])

Finally, any function or method that generates a boolean output can be utilized. In the
following example, we generate a copy of x and set one of its values to nan (see Section
4.3). With indexing, we extract all values from the new array that are not nan:

y = x.copy().astype(£float)

y[3] = np.nan

printC'y:’, y)

print(’'y cleaned:’, y[~np.isnan(y)])

y: [ 0. 1. 2. nan 4. 5. 6. 7. 8. 9.]

y cleaned: [0. 1. 2. 4. 5. 6. 7. 8. 9.]

' Of course, the same result can be achieved much more easily with x[::2], but the idea here is to show
that list comprehensions (Section 3.7.5) can be utilized, too.
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There are two things to note here. First, we need to change the data type of our copy
of x to float since nan is defined as a float and cannot be used in an array of data
type integer. Secondly, we have to explain that the tilde operator (~) in front of the
np.isnan() function (see Section 4.3) call negates its results in an element-wise fash-
ion. Thus ~np.isnan(y) creates an array of booleans that is True for each element of
y that is not nan and vice versa, which is then used to mask out values from y that are
nan. In one final example, we combine some of the approaches that we saw earlier:

y[~np.isnan(y) & (yx%2>25)]
array([6., 7., 8., 9.1)

Indexing based on lists and arrays of booleans is very common when dealing with large
amounts of data and we will encounter it again in Chapter 8, where we discuss the
Pandas package. One reason for its importance is that (typically) the notation is easy to
read and, more importantly, the indexing process is extremely fast as it heavily relies on
NumPy’s C backbone.

Sorting and Searching

The ability to sort NumPy arrays is always useful. For numerical sorting, the np.sort ()
function can be used:

X = np.array([4, 1, 7, 2, 9, 3])
np.sort(x)

array([1l, 2, 3, 4, 7, 9])

The function sorts the elements of x in ascending order and returns a sorted copy of this
array, which means that its content is untouched. Different sorting algorithms can be
utilized (quicksort is used by default) and in the case of multidimensional arrays, those
can be sorted along specific axes.

For some applications, you are more interested in how to reorder the index of an array
so that it is ordered instead of actually obtaining an ordered array. The sequence of
indices of an array to bring it in order can be obtained with np.argsort():

zZ = np.argsort(x)
print(’indices:’, z)
print(’ordered array:’, x[z])

indices: [1 3 5 0 2 4]
ordered array: [1 2 3 4 7 9]

In this case, z is an array of indices that order x; we can use z to obtain an ordered
version of x.
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To search for elements that meet specific conditions, a selection of functions is of-
fered by NumPy, a small subset of which we introduce here. Trivial functions include
np.argmin() and np.argmax(), which identify the index of the element correspond-
ing to the minimum and maximum value, respectively. More complex queries are possi-
ble with the np.where() function, which works very similarly to the indexing method
introduced in Section 3.5.2, but provides some more flexibility. It is possible to provide
two arrays to this function and based on some condition, it will choose whether to pick
an element from the first or the second array. In this example, we pick an element from
x if its value is less than 5 or the corresponding value from x: 10 otherwise:

np .where(x<5, x, xx10)

array([ 4, 1, 70, 2, 90, 3])

Note that the array from which the boolean sequence is derived can be unrelated to those
arrays from which values are extracted — they simply must have the same shape?:

y = np.arange(6)
np.where(x<5, y, y*10)

array([ ®, 1, 20, 3, 40, 5])

Constants

The NumPy constant nan, or not a number, refers to a float of indeterminate value.
Further arithmetic may be performed on it, but the result will always be np.nan.

In NumPy, direct division by zero 1.0/0.0 produces an ZeroDivisionError and the
execution halts. However, if it occurs indirectly, e.g., within a loop, this is not the case.
Consider the following example:

x = np.linspace(—2, 2, 5)
x, 1.0/x

RuntimeWarning: divide by zero encountered in true_divide
(array([-2., —-1., ©®., 1., 2.1), array([-0.5, —1. , inf, 1. ,
0.51))

which produces a warning and array([-0.5,-1.,inf,1.,0.5]). Here inf behaves
pretty much like infinity in further calculations. It is available as np.inf; its negative is
given by np . NINF (there is an unfortunate asymmetry in notation here). Other important
constants are np.pi and np. e, which can be readily used.

2 This also holds for the indexing method introduced above.
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Random Numbers

Random numbers are necessary for a wide range of applications; for instance, those that
describe stochastic processes. NumPy provides different random number generators as
part of the np.random module.

The default way to generate random numbers involves the instantiation of a random
number generator (rng) using np.random.default_rngQ):

from numpy.random import default_rng

rng = default_rng()
rng.random()

0.1982743

The random() method generates a random number from the interval [0, 1) of the type
float based on a uniform distribution. By providing an integer as argument, it generates
a one-dimensional array of random numbers from this interval:

rng.random(3)

array([0.75351311, 0.53814331, 0.32973172])

and by providing a tuple, it generates a multi-dimensional array of arbitrary shape:

rng.random((3, 3))

array ([[0.7884287 , 0.30319483, 0.45349789],
[0.1340417 , 0.40311299, 0.20345524],
[0.26231334, 0.75036467, 0.28040876]1]1)

Since the resulting random numbers are stored in an array, it is easy to scale them onto
a different interval; for instance, consider the interval [5, 20):

5 + rng.random(3)*15

array([ 9.15336806, 7.40978013, 19.5488812 ])

If the user instead of floats prefers integers, the integers () method can be used, which
allows for defining a range of values (keyword argument low and high) and the size of
the output array:

rng.integers(low=10, high=100, size=(3,3))
array([[47, 56, 36],

[20, 48, 66],
[51, 79, 421D
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Of course, the user is not limited to generating uniformly distributed random numbers
of different data types. Methods are available to sample from the most common proba-
bility distributions. We showcase the use of the Normal distribution and leave it to the
reader to explore other distributions. The parameters of the normal () method, 1loc and
scale, refer to the Normal distribution’s mean and standard deviation, respectively. An
optional size keyword argument is also available to generate arbitrarily shaped arrays
of random numbers. To sample 10 random values from a Normal distribution with mean
value 5 and standard deviation 1, this code cell will do the trick:

rng.normal (loc=5, scale=1, size=10)

array([5.66306337, 4.48599363, 3.35192483, 5.16746474,
5.10901409, 3.77264795, 4.31677334, 4.92795632,
4.05524838, 4.90173003])

Finally, we will introduce the concept of random seeds. Each random generator uses
a seed value starting from which random numbers are generated. Since the seed val-
ues used on different systems might vary, running the same code that utilizes the same
random number generator on two different computers might lead to different results.
This is somewhat the idea behind random numbers, but it renders the reproducibility
of the results of stochastic processes almost impossible. To enable reproducibility, it is
possible to manually set a seed value, which means that random numbers are generated
always in the same order.® It is good practice to fix the seed value at the beginning of
your code if it includes stochastic elements. The reproducibility of the results will help
you in debugging your code, and others in understanding your code and results.

To set a seed value, you simply need to initialize your random number generator with
this value. For instance, if your seed value is 42 (a very common choice that is somehow
related to life, the universe, and everything), all you need is:

rng_seeded = default_rng(42)

If you now generate a set of random numbers, you will receive the following result:

rng_seeded.random(3)

array ([0.77395605, 0.43887844, 0.85859792])

There seems to be no difference to generating random numbers without a seed value.
However, now try the following: reset the seed value and generate three consecutive
scalar floats.

rng_seeded = default_rng(42)

for i in range(3):
print(rng_seeded.random())

3 This may sound diametrically opposed to the concept of random numbers, but be aware that the numbers
generated still follow a random pattern, but simply occur in a fixed order.
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0.7739560485559633
0.4388784397520523
0.8585979199113825

Note that these random numbers are identical to the ones generated by the previous code
block — but this time they were generated as individual numbers and not in the form of
an array. Indeed, by (re)setting a seed value, random numbers are generated in a fixed
order. If a different seed value is chosen, other random numbers will be generated; be
aware that the difference between two seed values has no impact on “how different” two
sets of random numbers generated based on them are.

For the sake of completeness, we will also point out NumPy legacy methods for gener-
ating random numbers, as they are still being widely used. Common examples include
np.random.rand() and np.random.normal () for generating uniformly distributed
random numbers and random numbers following a Normal distribution, respectively.
Seed values can be fixed with np.random. seed(). The use of these methods is almost
identical to those methods introduced above. Although these methods are still being
used (including in this book), the reader should consider using the random number gen-
erator methods introduced above, as those provide more flexibility.

Simple Statistics

NumPy provides a wide range of functions related to statistical analysis, of which we
can only introduce a subsample. Please be aware that the SciPy package extends the
functionality presented here with respect to statistics (see Section 5.7). All functions
introduced below can be called as np . <function name> and can be applied to arrays,
lists, and scalar values.

Most functions are extremely straightforward to use and do not require long introduc-
tions. For instance, the basic maximum function, np.max():

X = np.array([[5,4,1], [7,3,2]11)
np .max (x)

We already introduced the concept of axis, which allows you to specify an axis along
which the maximum is calculated. Consider the following cases:

print(’axis=0:’, np.max(x, axis=0))

print(’axis=1:’, np.max(x, axis=1))

axis=0: [7 4 2]
axis=1: [5 7]
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The same logic applies to functions such as np.min(), np.mean(), np.median(),
np.std() (standard deviation), and np.var () (variance).

The averaging function np.average() is slightly different from np.mean() in that it
provides an optional weights argument. If provided, it must be an array with either the
same shape as the input array or a shape appropriate to the chosen axis. The result is an
appropriately weighted average, as is exemplified in the following code cell, which as-
sumes some measurements x and corresponding uncertainties xerr, the inverse squares
of which we use as weights:

x = [3.1, 2.7, 2.5, 3.1, 2.9]

xerr = np.array([0.05, 0.15, 0.6, 0.1, 0.05])

print ('unweighted:’, np.average(x))
print(’weighted:’, np.average(x, weights=1/xerr*x2))

unweighted: 2.8600000000000003
weighted: 2.995014662756598

Of course, if an element of the data provided to one of these functions is nan, the
outcome of this function will be nan, too. To deal with this issue, many functions have
alternative implementations that ignore values that are nan, including np.nanmin(),
np.nanmax (), np.nanmean(), np.nanmedian(), np.nanstd(), and np.nanvar().
In order to identify values that are nan, np.isnan() returns an array of booleans of the
same shape as the input array, with a True entry for each instance of nan. The function
np.isfinite(x) does the opposite, returning False for each nan or inf.

One function that proves useful in the exploration of new data is np.histogram(),
which generates a histogram from a data array. The output of this function consists
of a tuple containing two arrays: the frequency distribution across the bins, and the
locations of the bin edges (the length of this latter array equals the number of bins plus
one). The bins keyword argument defines the bins of the histogram; if an integer value
is provided to bins, this value is adopted as the number of bins and they are evenly
spread from the minimum value to the maximum value:

X = np.random.normal (size=100)
hist, bins = np.histogram(x, 10)
print(’hist:’, hist)
print(’bins:’, bins)

hist: [ 3 4 7 9 18 24 11 11 9 4]

bins: [-2.67309102 —2.20990876 —1.74672651 —1.28354426 —0.820362
—0.35717975 0.1060025 0.56918475 1.03236701 1.49554926
1.95873151]
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The first line here generates some random numbers based on a Normal distribution (see
Section 4.4). In this case, we generate a histogram with 10 bins (11 edges). If you prefer
to define the edges of your bins yourself, you can do so by assigning a list to bins:

hist, bins = np.histogram(x, [-3, -1, O, 1, 3])
print(’hist:’, hist)
print(’bins:’, bins)

hist: [15 44 28 13]
bins: [-3 -1 0 1 3]

Note that the bins do not necessarily all need to be of the same size. Another useful
property of np.histogram() is the ability to return a density instead of a frequency
across the bins:

hist, bins = np.histogram(x, [-3, —1, 0, 1, 3], density=True)
print(’hist:’, hist)
print(’sum over hist:’, np.sumChistx(bins[1:]—bins[:—1])))

hist: [0.075 0.44 0.28 0.065]
sum over hist: 1.0

Naturally, the sum of the density multiplied with the bin widths amounts to unity.

Finally, NumPy also contains a number of functions for correlating data that we briefly
mention here. np.correlate() computes the cross-correlation between two one-
dimensional arrays:

np.correlate([1, 2, 3], [4, 5, 6])

array([32])

The function np.corrcoef() computes the Pearson product-moment correlation coef-
ficients between two arrays:

np.corrcoef([1, 2, 3], [4, 5, 6])

array([[1., 1.7,
[1., 1.1

Finally, np.cov() computes the covariance matrix between two arrays:

np.cov([1l, 2, 31, [4, 5, 61)

array([[1., 1.7,
[1., 1.1D
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Polynomials

Polynomials in a single variable occur very frequently in data analysis, and NumPy of-
fers several approaches for manipulating them. A concise way to describe a polynomial
is in terms of its coefficients, e.g.,

4 3 2
CoX" + X7 + X" + c3x + ¢4 © {co, 1, €2, €3, ¢4} © [co, €1, 02,03, ¢4]

stored as a Python /isz.

Converting Data to Coefficients

A rather abstract approach to define a polynomial is to specify a list of its roots. This
defines the coefficient /ist only up to an overall factor, and the function np.poly()
always chooses c[0]=1, i.e., a monic polynomial:

roots = [0, 1, 1, 2]
coeffs = np.poly(roots)
coeffs

array([ 1., —4., 5., —2., 0.])

The resulting array contains the coefficients of the four order polynomial f(x) = x* —
4x3 +5x% = 2x.

More often we have a list or array x of x-values and a second one y of y-values and
we seek a “best fit” least squares approximation by an unknown polynomial of given
order n. This is called polynomial interpolation and the function np.polyfit() does
precisely that. For the sake of simplicity, consider the function f(x) = x> + 1; we
provide a small number of values x and corresponding values y from which we derive
the polynomial coefficients presuming a third-order polynomial function:

x = [0, 2, 3, 5]
y = [1, 5, 10, 26]
np.polyfit(x, y, 3)

array([—3.45782877e—16, 1.00000000e+00, —7.79648189e-15,
1.00000000e+007)

Rounding of these coefficients leads to the correct function, f(x) = x> + 1.#

Converting Coefficients to Data
If you are given the coefficient array, then np.roots() delivers the roots:

np.roots(coeffs)

4 The numerical solution of problems may lead to uneven solutions. Although clearly greater than zero
from a mathematical standpoint, values of the order of 10~ are of the same order of magnitude as
typical numerical noise and may therefore be assumed zero.
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array ([2.+0.00000000e+00j, 1.+2.83263462e—08j, 1.—2.83263462e—08j,
0.+0.00000000e+0075])

Although the resulting array is of a complex nature, the imaginary parts are negligibly
small. Considering only the real parts, the resulting roots are identical to those in the
list from which the coefficients were generated above.

More usefully, given the coefficient array and a single x-value or an array of x-values,
np.polyval () returns the corresponding y-values:

np.polyval (coeffs, [0, 1, 2, 31)

array([ 0., 0., 0., 12.])

Manipulating Polynomials in Coefficient Form

The functions np.polyadd(), np.polysub(), np.polymult(), and np.polydiv(Q
handle the four basic arithmetic functions. The function np.polyder () obtains the x-
derivative of a given polynomial, while np.polyint() performs x-integration, where
the arbitrary constant is set to zero. We leave the exploration of these functions to the
inclined reader and point to the corresponding NumPy reference.

Linear Algebra

Basic Operations on Matrices

For arrays of the same shape, addition and multiplication by a scalar have already been
defined and they act component-wise. This is completely consistent with interpreting
the mathematicians’ concept of a matrix as a two-dimensional array. There is, how-
ever, a problem with multiplication of such arrays. The standard NumPy operation acts
component-wise, which is very different from the accepted definition of matrix multi-
plication. Consider the multiplication on the left-hand side of the following equation:

(s 3)0)-(3)

Naively, one could expect to express this multiplication with the following code cell:

A np.array([[1, 2], [3, 41])
b = np.array([[5], [6]11)
A xDb

array([[ 5, 10],
[18, 24]11)
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Of course, this results in an incorrect solution. The problem is that the multiplication
operator (») is defined for component-wise multiplication, but not for matrix multipli-
cation. As such, it applies the rules of broadcasting (Section 4.1.4) and results in a
two-dimensional array.

To apply the matrix multiplication here, one can use the np.matmul () function, which
can be represented with the @ operator (A @ b here); the np.dot () function could also
be used but is discouraged in this case:

A = np.array([[1, 21, [3, 411)
b = np.array([[5], [6]1)
np.matmul (A, b)

array([[17],
[3911)

This provides the expected result. In the following, we will introduce some more func-
tionality that is related to matrices and linear algebra.
Suppose that A is a NumPy array with two dimensions:

A

array([[1, 2],
[3, 41D

The transpose of A is available as A.transpose (), or more succinctly as A.T (here we
call the transposed array as an attribute of instance A):

A.T

array([[1, 3],
(255D

Note that NumPy does not distinguish between column and row vectors. This means
that if u is a one-dimensional array or vector, thenu.T = u.

We already know how to build zero matrices, e.g., z = np.zeros((4, 4)). The func-
tion np.identity() creates identity matrices, e.g.

np.identity(3)

array([[1., 0., 0.],
[6., 1., 0.7,
[0., 0., 1.1
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A more general form of this is the np.eye () function. np.eye(m,n,k,dtype=float)
returns an m X n matrix, where the kth diagonal consists of ones and the other elements
are zero. By adding up eye-type arrays, one can build up banded matrices:

2%np.eye(3, 4, —1) + 3xnp.eye(3, 4, 0) + 4xnp.eye(3, 4, 1)

array([[3., 4., 0., 0.],
[2., 3., 4., 0.],
[0., 2., 3., 4.1

Next, consider a different situation where we have a set of m vectors v1, v2, ..., vm all
of length n and we want to construct an m X n matrix with the vectors as rows. This is
accomplished easily with the np.vstack() function (see Section 4.1.5):

vl = np.array([1, 2, 31)
v2 = np.array([4, 5, 6])
np.vstack((vl, v2))

array([[1, 2, 3],
[4, 5, 611D

Note that because the actual number of arguments for np.vstack() is variable, we
must wrap them in a fuple first, because np.vstack () takes precisely one argument.

Matrix Arithmetic

NumPy contains a module np.1linalg that handles operations on matrices that are more
specialized. Suppose that A is a square n X n matrix. The determinant of A is given by
np.linalg.det(Q):

import numpy.linalg as la
A = np.array([[4, 2, 0], [9, 3, 7], [1, 2, 11])
la.det(A)

—48.00000000000003

Assuming A is nonsingular, its inverse is obtained with np.linalg.inv(Q):
Ainv = la.inv(A)

np.matmul (A, Ainv)

array([[ 1.00000000e+00, 0.00000000e+00, —2.22044605e—16],
[ 0.00000000e+00, 1.00000000e+00, —2.77555756e—17],
[ 0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])

Within the numerical noise, this is the identity matrix.
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The function np.linalg.eig() can be used to numerically compute eigenvalues and
eigenvectors. This function delivers the eigenvectors as columns of an n-row matrix.
Each column has unit Euclidean length, i.e., the eigenvectors are normalized.

A = np.array([[-2, —4, 2], [-2, 1, 2], [4, 2, 5]])
evals, evecs = la.eig(A)

evall = evals[0]

evecl = evecs[:,0]

evall, evecl

(=5.000000000000005, array([ 0.81649658, 0.40824829, —0.40824829]))

We can check the normalization (we use np.linalg.norm() to compute the norm of
a vector):

la.norm(evecl), np.matmul (evecl, evecl)

(0.9999999999999999, 0.9999999999999999)

and the eigenvalue property:

np.matmul (A, evecl) — evallxevecl

array ([ 4.44089210e—15, 1.77635684e—15, —3.10862447e—15])

which is a zero-vector within the numerical noise.

There are many more functions available in the 1inalg module, which we encourage
the reader to explore.

Solving Linear Systems of Equations

A very common problem is the need to obtain a “solution” x to a linear system of
equations

Ax = b, 4.1
where A is a matrix and x and b are vectors. np.linalg.solve() does that for you.

The simplest case is where A is n X n and is nonsingular, while x and b are n-vectors.
Then the solution vector x is well-defined and unique. It is straightforward to obtain
a numerical approximation to it, as the next code cell shows. We shall treat two cases
simultaneously, with

321 5 1
A=|5 5 5[, b=[5| and b=]|0
1 46 -3 -1
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A = np.array([[3, 2, 11, [5, 5, 5], [1, 4, 6]11)
b = np.array([[5, 11, [5, O], [-3, —7.0/2]11)
la.solve(A, b)

array([[ 1. , 1.5],
[ 20 5 =2 1,
[-2. , 0.51D)

‘We can check the solutions:

np.matmul (A, la.solve(A, b)) — b

array([[ 0.00000000e+00, —6.66133815e—16],
[ 0.00000000e+00, —6.66133815e—16],
[—8.88178420e—16, 4.44089210e-16]1)

Once more, all elements are zero within the numerical noise.

This is but the briefest introduction to the linear algebra capabilities of NumPy. For
more tools, please refer to the references provided and check out the SciPy capabilities
related to linear algebra (Section 5.6).

File Input/Output

In this section, we look at how to communicate with humans or other programs and how
to store intermediate results. We can distinguish at least two scenarios and we consider
simple examples of input and output processes for them. The first supposes that we are
given a text file that contains numbers, and we wish to read those into NumPy arrays.
Conversely, we might want to output numbers to a text file. The second scenario is
similar but for reasons of speed and economy of space, we wish to use binary files that
can be processed by another NumPy program, possibly on a different platform.

In the following, we try to convince the reader to take advantage of the file I/O func-
tionality provided by NumPy whenever possible. However, we also would like to point
out that even more flexible methods are available as part of the Pandas package (see
Section 8.6).

Text File Input/Output

For the sake of brevity, we simply assume that as the result of some kind of analysis, we
are reporting three float values for each of four time steps. Given NumPy arrays con-
taining them (we use random numbers here), we aim to produce a file called data. txt
with a comma-separated tabular representation of the data that can be read both by
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humans and by other programs. We can formulate this task only utilizing core Python
functionality (as introduced in Section 3.9.3):

results = np.random.rand(4, 3)

with open(’data.txt’, 'w’) as outfile:
outfile.write("#i,x,y,z\n")
for i, row in enumerate(results):
outstr = ’{:d},’.format(i)
for col in row:
outstr += ’{:.4f},’ .format(col)
outfile.write(outstr[:—1]+’\n’)

After generating some artificial data in the first line, we open the file data. txt in write
mode using a context manager (Section 3.9.3), and write a meaningful headline; then
we loop through the data in both axes, writing them into a string for each line; and
finally we write those to the file. The resulting file may look like this>:

#1i,x,y,z

0,0.5660,0.7940,0.1326
1,0.1995,0.6625,0.9750
2,0.3359,0.8355,0.8288
3,0.0465,0.6019,0.4465

This format might look familiar to those who frequently deal with data files. It is often
referred to as a comma-separated values or csv file, which is typically used as the
filename ending to reveal its nature.

To parse the file back into a NumPy array using basic Python, a few steps are required.
After opening the file, it has to be read line-by-line and the numerical values must be
parsed one at a time and then stored in an array of the correct shape:

data = np.empty((4,3), dtype=float)

with open(’data.txt’, 'r’) as infile:
for i, row in enumerate(infile.readlines()):
if '#’ in row: continue # ignore header line
for j, val in enumerate(row.split(’,’)):
if j > 0: # ignore index
data[i—1,j—1] = float(val)

data

5 It may look different on your computer since the numbers are generated by a random number generator.
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array([[0.566 , 0.794 , 0.1326],
[0.1995, 0.6625, 0.975 1],
[0.3359, 0.8355, 0.8288],
[0.0465, 0.6019, 0.4465]])

Now let’s find out how we can solve the same tasks with the help of NumPy. We
start by writing data to a file with the np.savetxt() function. In its simplest form,
np.savetxt() only requires a file object generated with open() and the array to be
written to file. In order to recreate the formatting of the file, some optional arguments
can be used: header to provide a header line, fmt to set the formatting of the individual
values, and delimiter to set the delimiter character:

results = np.random.rand(4, 3)
results = np.insert(results, 0, np.arange(4), axis=1)

with open(’data2.txt’, 'w’) as outfile:
np.savetxt(outfile, results, header=’i,x,y,z’,
delimiter=",", fmt="%.4f")

The resulting file looks like this (naturally, the random numbers are now different):

# 1i,x,y,z

0.0000,0.0512,0.7331,0.9968
1.0000,0.3581,0.6672,0.4414
2.0000,0.4502,0.2560,0.6469
3.0000,0.5883,0.4981,0.0087

which is close enough to the original file. Note that the np.savetxt() function call
does all the formatting and file i/o operations instead of requiring two loops as when
using only basic Python.

What about reading in this file? We can use the np.loadtxt () function here. It takes as
positional argument the filename and provides a range of optional arguments of which
we utilize delimiter to set the delimiter character and usecols to indicate the column
indices to be read in:

np.loadtxt(’data2.txt’, delimiter=",’, usecols=(1,2,3))

array([[0.0512, 0.7331, 0.9968],
[0.3581, 0.6672, 0.4414],
[0.4502, 0.256 , 0.6469],
[0.5883, 0.4981, 0.008711)

Note that a single function call to np.loadtxt () is able to load the data into an ar-
ray without requiring any post-processing steps. This example hopefully clarifies why
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NumPy I/O should be preferred over basic Python routines whenever possible. No need
to say that NumPy I/O is, of course, much faster on large data files than processing those
files with basic Python.

Binary File Input/Output

If performance is an issue and human readability of the data file is not required, you
should consider writing your data into binary files. Since different platforms encode
numbers in different ways, there is a danger that binary files may be highly platform-
dependent. NumPy has its own binary format, which should guarantee platform inde-
pendence. However, these files cannot be read easily by other non-Python programs.

A single vector or array is easily written or read. Using the array definitions above, we
would write the array to file with np.save():

np.save(’array.npy’, Xx)

and we could recover the array with np.load():

x = np.load(’array.npy’)

File opening and closing is handled silently provided we use the .npy postfix in the file
name.

Although not part of the NumPy package, we would like to point out that more complex
data containers and all kinds of Python objects can be easily “pickled.” Pickles are
serialized Python objects that are stored in binary files. Consider the following example
code to write a dictionary to a pickle:

import pickle

two’, 3: ’three’}
pickle.dump(a, open(’test.pkl’, ’wb’))

The pickle.dump () function will serialize dictionary a and write it to a file (test. pkl,;
note that the file object has to be opened in binary write mode, wb). To un-pickle the
data, you can use the pickle.load() function in the same way:

pickle.load(open(’test.pkl’, ’rb’))
{1: ’one’, 2: ’two’, 3: ’three’}

Pickles can contain any Python object, including classes and their instances. Unfortu-
nately, this makes them somewhat unsafe as pickle files can be hacked and malicious
code can be inserted that runs when un-pickling the file. Therefore, it is considered
unsafe to load pickle files from untrusted sources.
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Special Array Types

For the sake of completeness, we briefly introduce two more concepts that are available
in NumPy but which have lost some of their importance with the emergence of Pandas
DataFrames and other concepts (Chapter 8): masked arrays and structured arrays. We
briefly outline how these specialized arrays work and how they can be used.

Masked Arrays

Masked arrays are exactly what their name suggests. They are arrays that come with
a mask that enables the user to ignore some of their elements. Consider the following
example:

import numpy.ma as ma

x = ma.masked_array([1l, 2, 3, 4, 5],
mask=[False, False, False, True, True])

masked_array(data=[1, 2, 3, —, —1,
mask=[False, False, False, True, True],
£fill value=999999)

Masked arrays are available from the np.ma module. Their creation is very similar to
that of regular arrays, but they provide the option to provide a binary mask array of the
same shape; a True element refers to one that is masked, while a False element is not
masked. This is reflected by the string representation of the masked array. The fill value
refers to a placeholder value that may replace the masked values. In order to retrieve
only the unmasked values of the array, the compressed() method can be used:

x.compressed()
array([1, 2, 31)

If, instead, you prefer that masked values are filled with the fill value, you can use the
filled () method:

x.filled )

array ([ i 2, 3, 999999, 999999])

The main advantage of masked arrays is that you can use most NumPy functions and
they will be able to ignore masked values without any additional effort:

np .mean(x)
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2.0

The main use cases of masked arrays are incomplete or corrupt data sets, problems to
which they pose an elegant remedy. A less elegant but still decent way to deal with such
data sets can be achieved through careful pre-processing of the data.

Structured Arrays

Structured arrays can be thought of as data tables: they contain rows of data that follow
a very strict schema. Each field in this schema has a specific data type and can be
addressed by its name. Let’s consider the following example:

x = np.array([(’John’, 12, 89.5), (’Michael’, 12, 76.2)],
dtype=[(’name’, ’'<U15’), (’class’, ’'i’),
(’score’, "f’)1)

array([(’John’, 12, 89.5), (’Michael’, 12, 76.2)],
dtype=[(’name’, ’'<U15’), (’class’, ’<i4’), (’score’, ’'<f4’)])

Structured arrays can be created by invoking np.array(), just like regular arrays.
In contrast to those, you need to provide a list of tuples, where each tuple stands for
one data element (row in the data table), and a format definition provided to dtype.
The format definition is a list of tuples, where each fuple consists of two strings: the
identifier of the field and its zype. In this case, the fields are named name, class, and
score, with corresponding data types string (with 15 characters or fewer), an integer,
and a float, respectively.

The advantage of structured arrays is that reading code becomes very intuitive as you
can address fields by name:

x[’name’]
array([’John’, ’'Michael’], dtype=’<U15’)

or by row index:

x[1]
(’Michael’, 12, 76.2)

The disadvantage of structured arrays is that their elements are immutable and modify-
ing them takes some effort. We thus end our brief discussion of structured arrays here
and point to Section 8.2 in which we will discuss Pandas DataFrames that provide the
same (and even higher) level of user-friendliness and much more flexibility.


https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core

118 NumPy: Numerical Math

4.10 References

Online resources
O General NumPy resources

NumPy project website
https://numpy.org/

NumPy documentation
https://numpy.org/doc/stable/

NumPy user guide
https://numpy.org/doc/stable/user/

NumPy API reference

https://numpy.org/doc/stable/reference/index.html#reference

NumPy tutorials
https://numpy.org/numpy-tutorials/features.html

NumPy glossary
https://numpy.org/doc/stable/glossary.html

Guide to NumPy book
https://docs.scipy.org/doc/_static/numpybook.pdf

O Arrays/Working with arrays

NumPy fundamentals
https://numpy.org/doc/stable/user/basics.html

Array object
https://numpy.org/doc/stable/reference/arrays.html

np.ndarray reference

https://numpy.org/doc/stable/reference/arrays.ndarray.html

Array routines

https://numpy.org/doc/stable/reference/routines.html

Data types
https://numpy.org/devdocs/user/basics.types.html

O Constants

Constants reference

https://numpy.org/doc/stable/reference/constants.html

O Random numbers

np.random reference
https://numpy.org/doc/stable/reference/random/index.html


https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core

4.10 References 119

O

Simple statistics

Statistics reference
https://numpy.org/doc/stable/reference/routines.statistics.html

O Polynomials

Polynomials reference
https://numpy.org/doc/stable/reference/routines.polynomials.html

O

Linear Algebra

np.linalg reference
https://numpy.org/doc/stable/reference/routines.linalg.html

O

File input/output

Input and Output
https://numpy.org/doc/stable/reference/routines.io.html

pickle module reference
https://docs.python.org/3/library/pickle.html

O

Special array types

Masked arrays
https://numpy.org/doc/stable/reference/maskedarray.html

np .ma reference
https://numpy.org/doc/stable/reference/routines.ma.html

Structured arrays
https://numpy.org/doc/stable/user/basics.rec.html

Print resources

Harris, Charles R., et al. “Array programming with NumPy.” Nature, vol. 585, no. 7825,
Sept. 2020, pp. 357-362. doi:10.1038/s41586-020-2649-2.

Oliphant, Travis E. A Guide to NumPy. 2nd ed., CreateSpace Independent Publishing
Platform, 2015.


https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.005
https://www.cambridge.org/core

5.1

SciPy: Numerical Methods

As we learned in Chapter 2, the term “SciPy” refers to different things in the Python
universe. In general, SciPy is an open-source software stack for scientific computing in
Python with a focus on numerical methods. This SciPy ecosystem includes a number
of popular packages, such as NumPy (Chapter 4), Matplotlib (Chapter 6), and Pandas
(Chapter 8), as well as the SciPy package itself, which is the topic of this chapter.

The SciPy package provides a number of computationally efficient numerical methods,
such as routines for numerical integration, interpolation, optimization, linear algebra,
and statistics that are easy to use and feature a common interface that is compatible
with other libraries in the SciPy ecosystem. All this functionality is based on the use
of NumPy arrays (see Section 4.1), enabling high computational performance. Given
the wide range of functionality implemented in the SciPy package, we focus in this
introduction and in the accompanying Notebook (cambridge.org/9781009029728/ch5)
on some common functionality that the reader might find useful.

We saw in Chapter 4 that it is customary to import the NumPy package as a whole and
to name its namespace np. This is typically not the case for SciPy. NumPy is usually
imported as a whole as it provides some basic numerical functionality (e.g., in the form
of arrays, Section 4.1), whereas SciPy contains a variety of highly specialized functions
and methods. Therefore, one would only import those functions or modules from the
package that is actually being used. This also minimizes confusion, as some objects
in SciPy carry similar or even identical identifiers to those available in NumPy. In the
following, we will only import those functions that we will actually use, but we assume
that NumPy has been imported as np.

Special Functions

The module scipy.special contains a wide variety of special functions that are imple-
mented in SciPy for your convenience. The set of functions includes elliptical functions,
Bessel and Legendre functions, different polynomials, and hypergeometric functions, as
well as error functions, functions related to information theory, combinatorics, statistics,
and many others.
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To keep this book reasonably short and since most of these functions can be utilized in
the same simple way, we restrict ourselves to a very short example use case involving
the factorial function, implemented as scipy.special.factorialQ):

from scipy.special import factorial
factorial (5)

120.0

Since SciPy builds upon NumPy, all special functions are vectorized, meaning that you
can apply them to arrays in a component-wise fashion:

factorial(np.array([1, 2, 3, 4, 51))

array([ 1., 2., 6., 24., 120.])

Constants

As a scientist, you are probably working with mathematical or physical constants all the
time. scipy.constants helps you with that: instead of having to remember long and
complicated numbers, you simply have to remember to import scipy.constants.

For instance, the speed of light in a vacuum in units of m/s can be accessed as follows:

from scipy import constants as const
const.c

299792458.0

It is just as easy to access as a wide range of other constants, units, and prefixes. For
instance, did you know that a light year can be comfortably expressed in terms of peta
inches?

const.light_year / (const.peta * const.inch)

372.4697036449134

Please refer to the scipy.constants reference for a full list of constants and their def-
initions. In case your favorite physical constant is missing from this list, make sure to
check the physical constants dictionary, which contains physical constants
recommended by CODATA 2018 (Tiesinga et al., 2011), including their units and un-
certainties. For instance, the mass of a proton can be accessed as:
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const.physical_constants[’ proton mass’]
(1.67262192369e—27, ’kg’, 5.1le—37)

where the returned fuple contains the constant’s value, unit, and uncertainty, in that
order. For a list of all physical constants contained in this dictionary, you can access a
list of all dictionary keys using const.physical_constants.keys(Q).

Numerical Integration

The module scipy.integrate contains a number of numerical integrators to integrate
over functions, fixed numerical data, as well as ordinary differential equations (ODEs).
In this section, we will discuss the former two cases, while ODEs are discussed in detail
in Section 5.8.

Integrating over Functions

As a first example, we will integrate the sine function from x = 0 to x = m/2. This
integral is simple, so we can derive the exact solution analytically:

T/2
f sin(x) dx = [ cos(0)]f/* = —(0- 1) = 1. (5.1)
0

We will use the Quadrature method, implemented as scipy.integrate.quad(),
to numerically solve this integral. This function is a numerical integrator that uses a
Fortran 77 implementation (QUADPACK) of this algorithm as a backbone, and requires
an integrator function object that is to be integrated over, as well as the lower and upper
limits of the integration. Optional arguments include absolute (epsabs) and relative
error limits (epsrel) to define when computation is stopped. As an integrator function
we can simply pass np. sin, since Python functions are objects:

from scipy.integrate import quad
quad(np.sin, 0, np.pi/2)
(0.9999999999999999, 1.1102230246251564e—14)

quad () returns a tuple containing the integration result and the corresponding uncer-
tainty; as you can see, the result almost perfectly matches our analytical solution. Note
that we passed np.sin (without brackets); this means that we provide the function as
an object and leave the evaluation of the function to the quadrature method.

Now consider the following Gaussian integral:

+00
f e dx = \/E (5.2)
—00 a
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We can define this mathematical function simply as a Python function. This example
differs from the previous example in that the integration is not just over a finite range,
but over all real numbers. Furthermore, this Gaussian integral contains a yet-undefined
factor a. However, NumPy is not able to deal with symbolic math (but SymPy is; see
Chapter 7) and therefore we have to provide a value for a to solve the integral numeri-
cally. We choose a = 2:

def gauss(x, a):

mwien mwoen

A simple Gaussian function.
return np.exp(—axxk%2)

quad(gauss, —np.inf, np.inf, args=2)

(1.2533141373155017, 4.467450311842062e—09)

(Please note that v7/2 = 1.253314, so the result is correct.) We can express the limits
of the integral ([—oco, co]) using np.inf (see Section 4.3); also note that we can provide
arguments to our function gauss () using the optional argument args. Since gauss()
only has a single argument besides x, we can pass a scalar value here. If gauss() had
more arguments (e.g., gauss(x, a, b, c)), we would need to provide those as a list
or tuple (e.g., quad(gauss, ..., args=(a,b,c))). In any case the first argument of
quad () must be the variable that is integrated over.

Finally, SciPy provides multivariate versions of quad():

O scipy.integrate.dblquad() for integrations in two dimensions,
O scipy.integrate.tplquad() for three dimensions, and

O scipy.integrate.nquad() for n dimensions,

all of which work very similarly. In this final example, we will calculate the three-
dimensional integral over a volume element using tplquad(). In this case, the func-
tion that we integrate over is the volume element expressed in spherical coordinates,
r? sin(#) dr d¢ dO, which we implement as a Python function:

from scipy.integrate import tplquad

def spherical _volume_element(theta, phi, r):

mwon mwon

Volume element in spherical coordinates.
return rxx2xnp.sin(theta)

tplquad(spherical_volume_element,
0, 1, # limits in r
0, 2«np.pi, # limits in phi
0, np.pi) # limits in theta
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(4.1887902047863905, 1.3890950796949933e—13)

Of course, the result is 47/3. In this case — as in all multivariate implementations of
quad() - please note that the order of the three variables (r, phi, theta) in the call of
tplquad() is reversed from the order in the definition of the integrand function.

Integrating over Sampled Values

There might be cases in which you need to integrate over a distribution of sampled
values since the underlying function is not known. In this case, SciPy offers a number
of numerical integrators that work very similarly. We will showcase their application
based on scipy.integrate.simps(), which implements Simpson’s rule for numer-
ical integration. In this example, we will sample the sine function in the interval [0, 7/2]
and integrate the resulting distribution; the result should be very similar to the result
we obtained with scipy.integrate.quad() based on the actual sine function in the
above example:

from scipy.integrate import simps

np.linspace(®, np.pi/2, 100)

np.sin(x)
simps(y, Xx) # note the order of the arguments: y, X

0.9999998326009374

In contrast to the function integrators introduced above, integrations over samples will
not provide uncertainty measures. However, keep in mind that the number of samples
(i.e., the sampling interval) will significantly affect the accuracy of your computation.

Optimization and Root Search

A number of different optimization algorithms for finding extreme function values are
available in scipy.optimize for both univariate and multivariate problems.

Local Univariate Optimization

The function scipy.optimize.minimize scalar() serves as a wrapper for a num-
ber of different solvers to find the minimum value of a function of a single variable.
Consider the function f(x) = (x —3)?, which has its global minimum value at x = 3. We
can use Brent’s algorithm to find this value numerically:
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from scipy.optimize import minimize_scalar

def func(x):

mwoen mwon

A simple function.
return (x—3)=x%x2

minimize_scalar (func)

fun: 0.0
nfev: 10
nit: 4
success: True

x: 3.0

The function returns an OptimizeResult object that contains all you need to know
about the procedure. For instance, the attribute success tells you whether the algorithm
did succeed in finding a minimum or not, fun returns the function value at the solution
x, and nit contains the number of iterations that were necessary.

In case you are dealing with a function with multiple minima, you can use the bracket
parameter to define a starting range with which you would like to initialize Brent’s
algorithm:

minimize_scalar(np.sin, bracket=(3, 5))

fun: —0.9999999999999999
nfev: 12
nit: 8
success: True
x: 4.712388992568656

However, please keep in mind that the solution does not necessarily have to end up
within this bracket.

Local Multivariate Optimization

scipy.optimize.minimize() is the multivariate equivalent of minimize_scalar().
As such, it can be used to solve our univariate problem from above with only minor
modifications:

from scipy.optimize import minimize

def func(x):
"""A simple function."""
return (x—3)x%x2


https://doi.org/10.1017/9781009029728.006
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.006
https://www.cambridge.org/core

126

SciPy: Numerical Methods

minimize (func, 0)

fun: 2.5388963550532293e—16
hess_inv: array([[0.5]])
jac: array([—1.69666681e—08])
message: ‘Optimization terminated successfully.’

nfev: 6
nit: 2
njev: 3
status: 0

success: True
x: array([2.99999998])

First of all, the function call of minimize () includes one additional positional argu-
ment, x0, which is the initial guess for the solver. Note that x® must have the same
dimensionality as your function. Since our function func is only univariate, we can use
a simple integer value here. Also, note the additional attributes in the OptimizeResult
object that is returned to you, including the Jacobian matrix (jac) and the inverse of the
objective function’s Hessian (hess_inv), and the fact that x is now being returned as an
array.

Let us now consider a real multivariate problem. We define a function with two vari-
ables, x and y, as well as parameters a, b, and ¢: f(x,y) = (x — a)*> + (y — b)> + c. This
function has a minimum at (x, y) = (a, b).

There are two things you must consider when turning this function into a Python func-
tion (func2d()) to be used with minimize (). First, the function to be minimized is
expected to have only a single input variable x, which can be an array, so we have to
pack both x and y into x (x=(x, ¥)). Second, we need to provide values for the param-
eters a, b, ¢ as arguments of func2d() — this is taken care of in minimize () using
the args parameter. When invoking minimize (), the function will vary x in search of
minima, while keeping the parameters passed by args constant. Parametric functions
are useful, if, for instance, you want to explore the behavior of your function over a
given parameter space, expressed by your function arguments:

def func2d(x, a, b, c):

mwoen mwoen

A two—dimensional surface.
return (x[0]—-a)*x2 + (x[1]-b)**x2 + c

To find the minimum of function func2d () numerically, we need to assign values to its
three parameters; we choose some random integer values for this example:

minimize (func2d, (0, 0), args=(4, 5, 2))
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fun: 2.000000000000098
hess_inv: array([[ 0.80487808, —0.24390243],
[—0.24390243, 0.69512192]11)
jac: array([ 5.36441803e—07, —3.27825546e—07])
message: ’Optimization terminated successfully.’

nfev: 12
nit: 3
njev: 4
status: 0

success: True
x: array([4.00000026, 4.99999983])

The result, x, now contains a pair of coordinates that correspond to x and y.

The above examples all used the same optimization algorithm. However, both methods
offer alternatives using the method keyword argument: minimize_scalar() supports
3 different minimization algorithms, while minimize () offers a total of 14 different
methods (see the corresponding reference for a list). In most cases, it should not matter
which method is used. But there may be exceptions to this rule, especially with respect
to computational performance, so it might be worth experimenting with the optimization
method.

Function Fitting

scipy.optimize.lsq _linear () represents a linear method for fitting parametric func-
tions to data; the nonlinear equivalents are scipy.optimize.least_squares() and
scipy.optimize.curve fit(). Since all of these methods work similarly, we intro-
duce here only one of these functions, curve_fit().

A typical use case for curve_fit() is to find a set of parameters ® for a function
f(x,®) by minimizing the residuals y — f(x, ®) for given sets of x and corresponding y.
Consider the polynomial function f(x,a, b, c,d) = ax® + bx> + cx + d with parameters
® = (a,b,c,d) = (5,-2,1,0). In the following code cell we generate a set y = f(x, ®)
values (ys) for equidistant x (xs) and then use curve_fit() to fit f(x,a, b, c,d) to the
data to recover the parameters a, b, ¢, and d:

from scipy.optimize import curve_fit

def fun(x, a, b, c, d):

mwoen mon

A polynomial function.
return axx*xx3 + b#xx*xx2 + cxx + d

xs = np.linspace(-=5, 5, 5)
ys = fun(xs, 5, -2, 1, 0)
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popt, pcov = curve_fit(fun, xs, ys)

print (popt)
print (fun(0®, xpopt))

[ 5.00000000e+00 —2.00000000e+00 1.00000000e+00 4.76557815e—24]
4.765578148199792e—-24

The parameters and the function value at x = 0 are recovered with high accuracy (see
Figure 5.1, left panel, for a plot of the results). Using curve_fit () is straightforward;
all it requires is the function to be fitted to the data (fun), x values (xs), and correspond-
ing y values (ys). The function returns two arrays: popt, which is a one-dimensional
array holding the best-fit solutions for our parameters (in this case ® = [a, b, ¢, d]), and
pcov, which is the covariance of the parameters listed in popt. The covariance matrix
is useful to investigate interrelations between the parameters and one can easily derive
uncertainties (107) on the estimated parameters as np.sqrt(np.diag(pcov)).

By default, curve_fit () utilizes the Levenberg-Marquardt algorithm to fit the func-
tion, but other algorithms can be selected using the function’s method parameter. To
restrict the search in parameter space, the bounds parameter can be invoked to provide
upper and lower bounds on each parameter. Also, a sequence of first-guess parameters
can be provided using p@.

Real-world measurements are affected by uncertainties. curve_fit() can account for
such uncertainties and derive that set of parameters © that will minimize the residuals
y— f(x, ®) while properly weighting the individual data points based on their uncertain-
ties. We simulate measurement uncertainties by adding random noise to our y values,
ys: we draw measurement uncertainties (errs) for each measurement from a Gaussian
distribution and then add these uncertainties to our ys and rerun the fitting:

np.random.seed(43) # fix random seed

errs = np.random.normal (loc=0, scale=300, size=len(ys))
ys_err = fun(xs, 5, —2, 1, 0) + errs

popt, pcov = curve_fit(fun, xs, ys_err, sigma=errs,
absolute_sigma=True)

print (popt)
print (fun(0®, xpopt))

[ 5.92810004 2.11598822 —20.54940534 —46.53133151]
—46.5313315110218

The best-fit parameters (popt) now clearly differ from the set of parameters from which
our data set (xs and ys) has been generated, as does the value at x = 0. Figure 5.1 (right
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Figure 5.1 Fitting results obtained with scipy.optimize.curve_fit() (gray line) based on
five data points (black dots) following a third-order polynomial function (black dotted line).
Left: Using the exact function values as input data points, curve_fit () is able to reproduce the
function parameters of the polynomial and its course with high accuracy. Right: curve_fit ()
is able to account for uncertainties assigned to the data points (displayed here as error bars); the
resulting fitted function (gray line) differs from the original function (dotted line) and follows
more closely those data points with low uncertainties while putting less weight on those data
points with high uncertainties.

panel) visualizes the fit and shows how data points with smaller uncertainties clearly
have a higher weight in defining the best-fit parameters. curve_fit () accounts for the
uncertainties using the sigma parameter, which in this case holds an uncertainty value
for each value in xs; please note that in order to utilize these uncertainties as absolute
values, i.e., in the same units as the function, you have to set absolute_sigma=True.

Root Search

For the task of root finding, scipy.optimize.root_scalar() for univariate or scalar
functions and scipy.optimize.root() for multivariate or vector functions are avail-
able. Since both functions work very similarly, we will present here only the univariate
case.

Consider the function f(x) = (x + a)(x + b), which has two roots at x = —a and x = —b
(see Figure 5.2). We will use root_scalar() to find the roots of this function for
parameters a = =2 and b = 4:

In order to use this function correctly, there should be some understanding of the differ-
ent methods that are available for root finding. The default root search method is the bi-
section method, which requires the user to provide two locations that serve as brackets
for the iterative search algorithm. The key here is that the corresponding function values
have opposite signs (and that the function is continuous, obviously). In the case of our
function, the latter requirement means that we cannot simply provide a bracket that is
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40 A

20 1

Figure 5.2 Example function for univariate root search: f(x) = (x — 2)(x + 4) with roots at
x=—-4and x = 2.

wide enough to include both roots. Hence, root_scalar() will only find one root at a
time. Looking at the graph (Figure 5.2), a good choice for a bracket around the root at
x = —4 would be [-5, —2] (or most other choices). Now we can run root_scalar() to
find this root:

from scipy.optimize import root_scalar
def fun(x, a, b):

"""A simple function.
return (x+a):x(x+b)

mwon

root_scalar(fun, args=(—2, 4), method="bisect’, bracket=(-5,-2))

converged: True
flag: ’converged’
function_calls: 43
iterations: 41
root: —3.9999999999995453

The resulting RootResults object has a number of attributes, including a binary flag
(converged) indicating whether the method has converged to a solution, the number
of times the function has been evaluated (function_calls), the number of iterations
(iterations), and the actual result of the root search (root). Note that the solution
is not exactly —4. This is due to the fact that the method stops iterating when a certain
termination tolerance has been reached; the default tolerance can be modified using the
rtol and xtol (see Section 5.8.1) parameters of root_scalar().

Another common root search algorithm is Newton’s method, which requires a first
guess for the location of a root and the first derivative of our function:
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def fun_deriv(x, a, b):
"""The derivative of our simple function.

won

return 2xx + a + b

root_scalar(fun, args=(—2, 4), method='newton’, fprime=fun_deriv,
x0=3)

converged: True
flag: ’converged’
function_calls: 10
iterations:
root: 2.0

Note how Newton’s method converges much faster in this particular case.

Numerical Interpolation

Interpolation means the approximation of a function inbetween locations for which the
exact function values are known. In contrast to function fitting, interpolation makes no
assumptions on the global behavior of the function to be interpolated; instead, it only
makes assumptions on the behavior of the function between these locations. As a result,
it is only able to estimate function values in between the known function behavior, but
not beyond (this is referred to as extrapolation).

One of the easiest forms of interpolation assumes a linear behavior of the function and
simply approximates the function value based on a linear function that is anchored to
the two closest locations that bracket the location to be interpolated. Other interpola-
tion algorithms utilize nearest-neighbor approximation (the same function value as the
nearest-neighbor location with a known function value) or polynomials of higher order.
Support for interpolation problems is provided by scipy.interpolate.

Univariate Interpolation

In the case of univariate interpolation, the scipy.interpolate.interpld() class
creates a callable function that will interpolate function values y for any x provided.
Consider the case in which we try to interpolate the function f(x) = x* between the
locations x € [-3,-1.5,0, 1.5, 3]. First, we generate values on the x-axis, xs, and the
corresponding values on the y-axis, ys=f(xs):

xs = np.linspace(-3, 3, 5)

def fun(x):
"""A simple 4—th order polynomial.

mwon

return x:x:x4

ys = fun(xs)
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Original Function Nearest-Neighbor
80 - 1
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Figure 5.3 Example use of scipy.interpolate.interpld() to interpolate the function

f(x) = x*. Black points indicate the locations of known function values. The top left panel shows
the original function as shown by a gray line. The other panels interpolate the function based on
the known locations using different methods (black lines).

We can now use the interp1d() function to create a function object that can be called
directly with x values at which to interpolate:

from scipy.interpolate import interpld

interp = interpld(xs, ys)
interp(0.32)

array(1.08)

The result is a NumPy array with the interpolated function values. In the example shown
above, the default interpolation kind is used, which is linear interpolation. Different
kinds of interpolation can be chosen using the kind argument, leading to different re-
sults as shown in Figure 5.3.
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Figure 5.4 Impact of different boundary conditions on the results of CubicSpline() applied to
interpolate the function f(x) = x*. Black points indicate the locations of known function values;
the gray line indicates the original function, black lines correspond to cubic spline interpolations.

For well-behaved functions, third-order polynomials (kind="cubic’ in interpld())

provide good interpolation results that are twice continuously differentiable. This method
is typically referred to as a Cubic Spline, which is also separately implemented as

scipy.interpolate.CubicSpline. The advantage of this class over interpld()

is the higher degree of customizability. For instance, CubicSpline objects are able to

extrapolate beyond the range of known data. Furthermore, the user can pick between
different boundary conditions as shown in Figure 5.4 (please refer to the corresponding

Notebook for some example code).

Multivariate Interpolation

For the case of multivariate interpolation, scipy.interpolate contains a number of
options for both unstructured data and grid data. We will introduce only one of these
functions, scipy.integrate.griddata(), which provides sufficient flexibility to be
applicable in most situations: the function can be applied to n-dimensional data (i.e.,
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it is not restricted to two-dimensional data) and it has the most common interpolations
routines built in.

A typical use case for griddata() involves the interpolation of a (potentially unknown)
multivariate function from a sparse sample of locations at which the function value is
known. In the following example, we simulate this situation by synthesizing function
values z at random locations (x, y) within a small area (x € [0, 1), y € [0, 1)) in the x-y
plane; the underlying function we use is f(x,y) = cos (20x) sin (30(1 — 4/y)), but this is
only relevant for the generation of the synthetic data:

def fun(x, y):
"""A more complex 2d surface function.

won

return np.cos(20:xx)*np.sin(30:x(1—np.sqrt(y)))

X = np.random.rand(1000)
y = np.random.rand(1000)

z = fun(x, y)

Based on these randomly sampled data points, as well as a predefined grid, griddata()
will interpolate the underlying function f(x,y) with different methods. The most conve-
nient way to generate the grid on which to interpolate the function is to use np.mgrid
(see Section 4.1.3). We generate the grid and fit the data with griddata() using differ-
ent methods:

from scipy.interpolate import griddata
xgrid, ygrid = np.mgrid[0:1:100j, 0:1:100j]

pred_near = griddata((x, y), z, (xgrid, ygrid), method=’'nearest’)
pred_lin = griddata((x, y), z, (xgrid, ygrid), method=’linear’)
pred_cub = griddata((x, y), z, (xgrid, ygrid), method='cubic’)

Figure 5.5 shows the plotted predictions from the different interpolation methods. While
nearest-neighbor interpolation provides a rather spotted appearance, linear and espe-
cially cubic interpolation lead to much smoother results. Please note that only the
nearest-neighbor method fills the entire area with interpolated function values. In the
case of linear or cubic interpolation, areas close to the edges of the interpolation ranges
may be left empty due to a lack of data points, which are randomly distributed in this
example. Those areas for which no interpolation is possible can be filled with a constant
value using griddata()’s £fill_value parameter.

Linear Algebra

We saw in Chapter 4 that NumPy arrays can be used as vectors and matrices, providing
perfect data types for linear algebra use cases. scipy.linalg provides a wide range of
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5.6.1

Original Data Nearest-Neighbor
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Figure 5.5 scipy.interpolate.griddata() example. Top Left: Original data based on
which the interpolations are performed. Other Panels: Interpolation results using different
interpolation methods.

functionality for such applications. Many of the functions in this submodule use BLAS
or LAPACK routines in the background for efficient computations. Please note that
scipy.linalg imports most of the functionality from np.linalg; identically named
functions might differ in their functionality.

Matrix Operations

Please refer to Section 4.7 for a discussion of basic matrix operations. We mainly focus
here on the discussion of functionality that is unique to scipy.linalg.

Consider the following matrix:

which we implement in Python as

A = np.array([[4, 31, [3, 2]]1)
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With scipy.linalg.det(), we can calculate the determinant of this matrix:

from scipy import linalg
linalg.det(A)

-1.0

or its norm with scipy.linalg.norm():

linalg.norm(A)

6.164414002968976

or its inverse matrix, A~!', with scipy.linalg.inv() (if available):

linalg.inv(A)

array([[-2., 3.1,
[ 3., —4.1D

We can easily check whether the inverse matrix is correct by evaluating the matrix
product A - A"

np.matmul (1inalg.inv(A), A)

array([[1., 0.1,
[0., 1.1

the result of which is, of course, the identity matrix.

scipy.linalg.eig() is a function to derive eigenvalues and eigenvectors. While this
sounds very similar to np.linalg.eig(), the SciPy version enables the computation
of both the left and the right eigenvectors, and it solves the generalized eigenvalue prob-
lem of a square matrix. Additional functions are available to solve eigenvalue problems
for Hermitian, tridiagonal, and banded matrices. Since they all work in a somewhat
similar fashion, we refer to Section 4.7 for an example.

Finally, scipy.linalg contains a wide range of functionality for the decomposition
of matrices and for solving linear equation systems. Let’s have a look at the latter first.

Consider the following system of linear equations:

2x1+ X+ 3x3 = 9
X1— 2X2+ X3 = -2
3x1+ 2x+ 2x3 = 7
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which can be displayed in matrix notation (A - x = b) as

2 1 3 X1 9
1 -2 1] X2 | = -2
32 2)\xs 7

This system of linear equations can be expressed by a square matrix A and vector b and
can thus be easily solved with the scipy.linalg.solve() function, which is rather
similar to the same function provided through np.linalg (see Section 4.7.3). This
function requires only A and b and the solution vector x will be output:

A = np-arraY([[Zy 1! 3]! [17 _2! l]! [31 2! 2]])
b = np.array([9, -2, 7]1)

linalg.solve(A, b)
array([-1., 2., 3.1)

If A is of a special matrix type, this information can be provided to solve() with the
assume_a parameter to support the solution finding: “sym” if A is symmetric, “her” is
A is hermitian, “pos” if A is positive definite, and “gen” for a generic matrix (default).

scipy.linalg also provides special functions for solving systems involving specific
matrix types. In case A is a triangular matrix, scipy.linalg.solve_triangular()
should be used; scipy.linalg.solve_banded() in case A is a banded matrix (note
that A is not required to be of square shape), as well as other special cases.

The algorithm utilized by solve() to solve a system of linear equations is based on
LU decomposition with partial pivoting, which is available in the form of two sep-
arate functions: scipy.linalg.lu() and scipy.linalg.lu_factor(). Both func-
tions decompose a matrix A into a lower triangular matrix, L, and an upper triangular
matrix, U. The difference between the two functions is that, in addition to L and U,
lu(Q) returns a binary permutation matrix P indicating the permutations necessary to
satisfy PA = LU:

linalg.lu(A) # returns (P, L, U)

(array([[0., 0., 1.7,

[0., 1., 0.7,
[1., 0., 0.11),
array ([[1. , 0. , 0. 1
[0.33333333, 1. , 0. 1
[0.66666667, 0.125 , 1. 1D,
array([[ 3. , 2. , 2. 1,
[ 0. , —2.66666667, 0.33333333],

[ 0. , 0. , 1.625 11))
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lu_factor(), on the other hand, returns only a NumPy array named lu that merges L
and U by containing the off-diagonal nonzero elements of L in its lower triangle (unit
diagonal elements of L are omitted) and the nonzero elements of U in its upper triangle.
In a similarly memory-efficient fashion, instead of the permutation matrix P the function
returns a pivot array, piv, for each row of A, holds the corresponding row with which
this row was interchanged:

linalg.lu_factor(A) # returns lu, piv

(array([[ 3. , 2. , 2. 1,
[ ©.33333333, —2.66666667, ©0.33333333],
[ 0.66666667, 0.125 , 1.625 11D,

array([2, 1, 2], dtype=int32))

The advantage of lu_factor() is that, in addition to the very efficient storage of in-
formation, both 1u and piv can be directly used as input parameters for the function
scipy.linalg.lu solve(), which solves a system of linear equations based on LU
decomposition and provides the same result as solve():

linalg.lu_solve(linalg.lu_factor(A), b)
array([—-1., 2., 3.01)

In addition to LU decomposition, scipy.linalg contains a wide range of other de-
composition algorithms, such as

O Cholesky decomposition (scipy.linalg.cholesky (), which also comes with a
linear equation solver, scipy.linalg.cho_solve()),

O QR decomposition (scipy.linalg.qr()), and
O Singular value decomposition (scipy.linalg.svd(Q)).

Finally, we would like to point out the SciPy module scipy.sparse, which has its own
library for linear algebra, scipy.sparse.linalg, to deal with sparse two-dimensional
matrices and their efficient implementation and processing. We omit the discussion of
sparsity for the sake of keeping this book short, but we strongly believe that the func-
tionality discussed in this section will help the user to deal with those modules.

Statistics

The NumPy package contains some of the most basic functions for descriptive statistics:
mean(), median(), std(), etc. (See Section 4.5 for an overview). scipy.stats goes
a few steps further, comprising a wide range of univariate, multivariate, and discrete
probability distributions, as well as more functions for descriptive statistics, correlation
functions, statistical tests, and much more.
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The Swiss-army knife (or Sackmesser, as they say in Switzerland) of scipy.stats
is the scipy.stats.describe() function, which simply derives a number of useful
descriptive statistics for any NumPy array:

from scipy import stats

[
1l

np.random.normal (size=10000)

stats.describe(a)

DescribeResult (nobs=10000, minmax=(—3.856375329240597,
4.479084251025757),
mean=0.013534053064887258, variance=1.0020215237320191,
skewness=—0.0080664682066731, kurtosis=0.07645608593476849)

The results, including measures like sample size, mean, and variance, are provided in
the form of a DescribeResult object. Individual metrics from this object can be
extracted as attributes:

S.mean

0.013534053064887258

Univariate Continuous Probability Distributions

scipy.stats provides a unified interface to comfortably deal with a wide range of
probability distributions, allowing you to easily access probability density functions
and cumulative density functions, and to draw random samples from these distributions.
The following example should provide you with a sense of how to use these probability
distribution classes. Please be aware that in order to produce reproducible results, you
will need to set the seed value for your random number generators. Since SciPy builds
upon NumPy, you can set the seed value with np.random.seed() as described in
Section 4.4.

Consider a Normal distribution, implemented as scipy.stats.norm(), from which
we draw ten random numbers:

from scipy.stats import norm
norm.rvs(size=10)
array([—1.38593767, 0.89270951, 0.04557416, 0.69261578,

0.3576738 , —0.14233488, —0.40889239, 0.22063606,
1.56021517, 1.32031721])
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The method rvs allows you to draw random variates from a given distribution (in this
case norm). The parameter size specifies the number of samples to be drawn. Note that
this function call is very similar to numpy.random.normal () (see Section 4.4).

You can also specify the properties of your distribution using the location (Lloc; mean
value in the case of norm) and scale (scale; standard deviation in the case of norm)
parameters:

gauss = norm(loc=5, scale=2)
gauss.mean(), gauss.std()

(5.0, 2.0)
We can draw random numbers from this distribution using the same method as before:
gauss.rvs(size=5)

array([4.16030601, 5.04342604, 3.81770634, 5.6573647 , 3.92527482])

A wide range of descriptive statistics methods is implemented for each probability dis-
tribution as class methods:

print(’mean:’, gauss.mean())

print(’median:’, gauss.median())

print(’standard deviation:’, gauss.std())

print(’variance:’, gauss.var())

print(’l-st moment = mean:’, gauss.moment(l))

print(’2 sigma bracket:’, gauss.interval(0.9545))
print(’expectation value = mean:’, gauss.expect(lambda x: x))
mean: 5.0

median: 5.0

standard deviation: 2.0

variance: 4.0

1-st moment = mean: 5.0

2 sigma bracket: (0.9999951122007928, 9.000004887799205)
expectation value = mean: 5.0

While most of these methods are easily explained, others are slightly more complicated.
For instance, moment (n) derives the nth order noncentral moment (n = 1 is identical to
the mean) of the underlying distribution, interval (alpha) derives the o confidence
interval with equal areas around the median (the 95.45% range brackets the 2-sigma
confidence interval), and expect (fun) derives the expectation value of a function fun
over the underlying probability distribution. Note that it is possible to modify those
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Figure 5.6 Comparison of the probability density function (pdf) and the cumulative distribution
function (cdf) for our modified Normal distribution gauss.

parameters defining a probability distribution (in the case of norm() this is scale and
loc) in either of these methods, too (e.g., norm.mean(loc=2, scale=0.1)).

You can also directly access the distribution’s underlying probability density function
(pdf) and its cumulative distribution function (cdf) as shown in Figure 5.6, which is
generated by the following script (we learn about plotting with Matplotlib in Chapter 6):

import matplotlib.pyplot as plt

X = np.linspace(-5, 15, 100)

plt.plot(x, gauss.pdf(x), label="pdf’, color=’black’)
plt.plot(x, gauss.cdf(x), label=’cdf’, color=’grey’)
plt.xlabel(’x’)

plt.legend()

So far, we have only considered a simple univariate Normal distribution. scipy.stats
contains almost 100 different continuous univariate probability density functions that
can all be accessed using the same API. For instance, Figure 5.7 shows the y? distri-
bution for different degrees of freedom (df). This is possible since all of these classes
are derived from a generic parent class, which even enables you to implement your own
probability density distribution to utilize this common API and functionality.

Multivariate and Discrete Probability Distributions

Both multivariate and discrete probability distributions share APIs that are similar to
that of the univariate case.
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Figure 5.7 The probability density function (left) and the cumulative distribution function (right)
of the y? distribution for different degrees of freedom (df).

We start with the multivariate case and show how to utilize a multivariate Normal
distribution. For the sake of simplicity and easier plotting, we focus here on the two-
dimensional case, but it should be clear that higher-dimensional applications work very
similarly.

As a first example, we plot the probability density function of a Normal distribution in
two dimensions (see Figure 5.8), utilizing scipy.stats.multivariate normal() :

from scipy.stats import multivariate_normal

xgrid, ygrid = np.mgrid[—1:1:.01, —1:1:.01]
norm2d = multivariate_normal (mean=[0.1, 0.2],

cov=[[2, 0.3], [6.3, 111
z = norm2d.pdf(np.dstack((xgrid, ygrid)))

plt.imshow(z, origin=’lower’, cmap=’'Greys.r’)
plt.contour(z, colors=’white’)

Note how our 2d-Normal distribution is defined by two parameters: mean, which is the
location of the mean of the distribution in two dimensions, and cov, which is a positive
semi-definite covariance matrix.

Generating random variates from this distribution works in the exact same way as in the
univariate case:

norm2d.rvs(size=3)
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Figure 5.8 The probability density function of a two-dimensional Normal distribution with
contour lines.

array([[—0.13538416, —0.15443739],
[—2.14191249, 0.51744353],
[ 0.70846622, 0.21360603]1]1)

Note how each of the three random samples is two-dimensional.

Finally, we will have a look at discrete probability distributions. For instance, consider
the case of a binomial distribution (scipy.stats.binom()) with parameters n = 10
and p = 0.5. The probability mass function (pmf, the discrete equivalent of the pdf) of
this distribution over the integer variable k describes the probability of, e.g., obtaining
“heads” k times in 10 perfectly fair coin tosses (p = 0.5). This probability, for instance
for the case k = 3, can easily be calculated:

from scipy.stats import binom
binom(n=10, p=0.5).pmf(3)

0.11718750000000014

We can also plot the probability mass function (pmf) over a range of values k (see
Figure 5.9):

from scipy.stats import binom

k = range(1l1l)

plt.bar(k, binom(n=10, p=0.5).pmf(k), color=’grey’)
plt.xlabel('k’)

plt.ylabel ('pmf’)
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Figure 5.9 The probability mass function (pmf) of a Binomial distribution with n = 10 and
p = 0.5 over the range k € [0, 1,...,9, 10].

Correlation Tests

Correlation functions provide a measure for the intensity of relationship or association
between two data sets. The most important correlation measure is the Pearson corre-
lation coefficient, which is implemented as scipy.stats.pearsonr(). The Pearson
correlation coefficient, r, measures the linear relationship between two data sets and, by
assuming that each data set is drawn from a Gaussian distribution, can be used to test for
noncorrelations in the data sets. A wide range of other correlation tests are implemented
as part of scipy.stats, like Spearman rank correlation and Kendall’s 7, but these can
be used exactly like Pearson’s r.

pearsonr (), like most other implemented correlation tests, returns a correlation coef-
ficient — a number between —1 and 1 with 0 indicating the absence of association and
1 (—1) indicating a maximum (negative) relationship — and a two-sided p-value for a
hypothesis test with the null hypothesis that the two data sets are not associated, which
can be loosely interpreted as the probability that an uncorrelated system produces data
sets that have at least the same correlation measure as computed for these data sets.

To showcase the use of pearsonr () and most other correlation functions, we test for a
linear correlation between an equidistant set of x values and values y that were generated
from x using three different functions — a linear function, a combination of a linear and
a sine function, and a point cloud — to which we add noise:

n = 100
X = np.linspace(®, 10, n)
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Figure 5.10 Scatter plots of the data distributions utilized in our correlation analysis.

linear = 3 % x + np.random.normal(loc=0, scale=2, size=n)
sine = x + 5xnp.sin(x) + np.random.normal (loc=0, scale=1, size=n)
cloud = np.random.normal (loc=10, scale=5, size=n)

The three data samples are visualized in Figure 5.10. We run pearsonr on these data
sets using:

print(’linear’, stats.pearsonr(x, linear))
print(’sine’, stats.pearsonr(x, sine))
print(’cloud’, stats.pearsonr(x, cloud))

linear (0.9797199554204509, 3.118145385863985e—70)
sine (0.6002567712191895, 4.0930717838548105e—11)
cloud (—0.089519560313744, 0.3757679885553531)

As one would expect, r is highest for the linear data set and lowest (in absolute terms)
for the cloud data set. The p-values for the linear and the sine data sets are small enough
to rule out the null hypothesis that an uncorrelated system ends up with the same corre-
lation coefficient. Please note that the square of r is generally defined as the coefficient
of determination, 72, another useful measure for the comparison of data sets.

574 Distribution Tests

In addition to correlation tests, scipy.stats also contains a wide range of other sta-
tistical tests, including distribution tests. Distribution tests test the null hypothesis that
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a data sample, x, is drawn from a population following a given probability distribution.
Here, we focus on two such tests: the Anderson—Darling test and the Kolmogorov—
Smirnov test.

The Anderson-Darling test is implemented as scipy.stats.anderson(). We show-
case the use of anderson() by checking whether a sample of 10* random variates
drawn from a Normal distribution (array a) or a lognormal distribution (array b) are
drawn from a Normal distribution:

from scipy import stats

a = stats.norm.rvs(loc=3, scale=5, size=int(le4))

b = stats.lognorm.rvs(s=1, size=int(le4))
print(’a:’, stats.anderson(a, dist=’norm’))
print(’b:’, stats.anderson(b, dist=’norm’))

a: AndersonResult(statistic=0.09327630706502532, critical_values=
array([0.576, 0.656, 0.787, 0.918, 1.092]), significance_level=
array([15. , 10. , 5. , 2.5, 1. 1))

b: AndersonResult(statistic=1019.0929522524693, critical_values=array
([0.576, 0.656, 0.787, 0.918, 1.092]), significance_level=array
([15. , 16. , 5. , 2.5, 1. 1))

Calling anderson() returns an AndersonResult object with attributes statistic,
critical_values, and significance_level, which we will discuss in the follow-
ing. The statistic, the actual result calculated by the function, has to be compared against
the critical values that refer to different significance levels. The critical values are pre-
calculated for different significance levels and depend on the distribution for which they
are tested. If the derived statistic is larger than a critical value, the null hypothesis that
the data is drawn from a population following a Normal distribution can be rejected at
the corresponding significance level. In the case of sample a, the null hypothesis cannot
be rejected at either significance level; sample a is likely to be drawn from a Normal
distribution, which is indeed true. For b, the statistic is much larger than either criti-
cal value, meaning that at any significance level we can reject the null hypothesis, so
sample b is likely not to be drawn from a Normal distribution, which is also correct.
Note how this test is able to properly account for nonstandard distribution parameters
for the Normal distribution. The Anderson—Darling test implementation is able to test
for a number of distributions including Normal, exponential, logistic, and Gumbel.

More flexibility for distribution testing is provided by the Kolmogorov—Smirnov test
(scipy.stats.kstest (), which allows the user to test against any probability distri-
bution implemented within scipy.stats, or even their own distribution.

However, we would like to focus here on a different implementation of the KS-test,
which is the two-sample KS-test, scipy.stats.ks_2samp(). This implementation
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allows you to test the null hypothesis that two samples, x and y, are drawn from the
same probability distribution. We can easily check this hypothesis for the two samples
that we generated for the Anderson—Darling test:

stats.ks_2samp(a, b)
KstestResult(statistic=0.3627, pvalue=0.0)

The result of the function call is aKstestResult object with two attributes: statistic
and pvalue. If the derived statistic is small or the p-value is high, we cannot reject the
null hypothesis that both samples were drawn from the same distribution, which is not
the case here.

For the sake of completeness, we now consider two samples that are indeed drawn from
the same distribution:

c = stats.norm.rvs(loc=3, scale=5, size=int(le4))
stats.ks_2samp(a, c)

KstestResult(statistic=0.013, pvalue=0.3667356837968788)

In this case, the p-value is very high and the statistic is low, meaning that we cannot
reject the null hypothesis. Keep in mind that this result does not prove that both samples
are drawn from the same distribution — we simply cannot rule out the possibility that
they might be drawn from the same distribution.

Also, note that the two-sample KS-test will reject the null hypothesis if two samples
are drawn from distributions following the same functional behavior but have different
parameters:

d = stats.norm.rvs(loc=0, scale=1, size=int(le4))
stats.ks_2samp(a, d)

KstestResult(statistic=0.558, pvalue=0.0)

Ordinary Differential Equations

Differential equations are very common in many scientific areas. The reason for this
popularity is that, quite often, it is easier to describe the changes in the state of a system
than to describe the actual state directly. One distinguishes between ordinary differen-
tial equations (ODEs) and partial differential equations (PDEs): the former deals with
functions of only a single independent variable and its derivatives and the latter deals
with multivariate functions and their partial derivatives. Some differential equations can
be integrated analytically (see Section 7.6.4 to learn how SymPy can help you with
that) or numerically if an analytical solution is unfeasible or simply not necessary. In
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this section, we will introduce SciPy methods for numerically integrating ODEs that
are implemented as part of the scipy.integrate module. There are different tools for
solving initial value problems and boundary value problems, which we will introduce
in the following.

Initial Value Problems

A very wide range of ODEs can be written in the following standard form:

v = fy(@,n, =19, y(to) = yo. (5.3)

Because we specify sufficient conditions at an initial time # = £, to fix the solution, this is
called an initial value problem. A great deal of research has been devoted to the initial
value problem shown in Equation (5.3). scipy.integrate.solve_ivp() is able to
integrate initial value problem ODEs. A number of different numerical integrators are
available, allowing you to choose a method that is suitable to your problem.

As a first simple example, we consider exponential decay of the form
).’(t)z_)’(t)’ y(t():()): 1’

and suppose we want the solution at + = 1. The following code solves this problem
numerically:

from scipy.integrate import solve_ivp
def fun(t, y):

"""Exponential decay ODE."""
return —y

solve_ivp(fun, [0,1], [1], t_eval=[0,1])

message: ’The solver successfully reached the end of the
integration interval.’

nfev: 14
njev: 0
nlu: 0
sol: None
status: O

success: True

t: array ([0, 1])
t_events: None

y: array([[1. , 0.36809008]1)
y_events: None

solve_ivp () returns an OdeResult object that contains a lot of information. The rep-
resentation shown above is nicely formatted, and most items are easy to understand and
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can be accessed as attributes. The solutions (y) provided are y(=0) = 1, which is in
fact our initial condition, and y(t=1) = ¢!, which is, of course, the correct solution.
Calling solve_ivp() and its output seems complicated, so let us go through it step
by step. The required input for solve_ivp() consists of the function to be integrated
(fun in this case), the interval of integration ([0, 1]), and the initial data ([1]). In
this example, we also provide the keyword argument t_eval (see below). The Python
function fun(t, y) returns the right-hand side of the exponential decay ODE as an
array of the same shape as y. Note the order of the arguments in fun: the first argument
is t, which is scalar, and the second argument is y, which is also scalar in this case, but
could be n-dimensional if a system of n equations is provided. Similarly, we will need
an array y0 that contains the initial data; again, in this case, y® is one-dimensional,
but could be n-dimensional. Finally, we can supply t_eval an array of t-values for
which we would like the corresponding y-values returned; if omitted, t_eval will be
automatically picked, covering a logarithmic scale over the interval of integration.

In this case, solve_ivp() utilizes an explicit Runge-Kutta method of order 5(4),
which is the default ODE solver. If a different solver is wished for, it can be set with
the method keyword argument (please refer to the References for a list of available
solvers). Most solvers use adaptive step sizes in the integration process to minimize
error tolerances. These error tolerances can be controlled via the keyword arguments
atol (absolute error tolerance) and rtol (relative error tolerance); the solver tries to
keep the local error estimates below the threshold atol + rtolsabs(y). We should
recognize that atol and rtol refer to local one-step errors, and that the global er-
ror may be much larger. For this reason, it is unwise to choose these parameters to
be so large that the details of the problem are poorly approximated. If they are cho-
sen so small that the solver can satisfy neither of the criteria, a run time error will be
reported.

Finally, we briefly discuss other useful features of solve_ivp(). Suppose the function
fun depends on parameters, e.g., f(t, y, alpha, beta).The function solve_ivp()
needs to be told this as a keyword argument specifying a tuple, e.g., args=(alpha,
beta). Furthermore, solve_ivp() can cope automatically with equations or systems
that are or become stiff. If this is a possibility, then it is strongly recommended to supply
the Jacobian of f(y, f) as a function, say jac(y, t), and to include it with the keyword
argument jac. If it is not supplied, then solve_ivp() will try to construct one by nu-
merical differentiation, which can be potentially dangerous in critical cases.

Here is another simple example of a system of equations, the harmonic oscillator:
¥+ @’y =0, y0)=1,30)=0,

which we will solve and plot for w = 2 and 0 < ¢ < 2. We first rewrite the equation as
a system:

y= (y7y)T’ y(t) = @7 —G)ZY)T,

and plug the system into solve_ivp (), resulting in Figure 5.11:
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Harmonic Oscillator
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Figure 5.11 The solutions we achieved by numerically integrating the harmonic oscillator
equation with solve_ivp(Q).

def fun(t, Y, omega):

mwoen mwon

Harmonic oscillator as first—order system.
y, ydot =Y
return ydot, —omegakx2:ky

sol = solve_ivp(fun, [0, 2xnp.pi], [1, O],
t_eval=np.linspace(®, 2#np.pi, 101), args=(2,))

fig, ax = plt.subplots()

ax.plot(sol.t, sol.y[0], label=r’$y$’, color=’black’)
ax.plot(sol.t, sol.y[1], label=r’$\dot{y}$’, color=’grey’)
ax.set_xlabel('t’)

ax.set_title(’Harmonic Oscillator’)

ax.legend ()

fig.show()

A few things should be noted here. The first is that in the definition of function fun,
we have “unwrapped” the vector argument for the sake of clarity in the return values.
Secondly, in the call of function solve_ivp (), the argument args must be a tuple, even
if there is only one value.

Finally, we point out that there is an older function, scipy.integrate.odeint(),
that is capable of performing integration of ODEs. While providing reliable results,
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the interface of this particular function is not as flexible as that of solve_ivp() and
offers fewer options. Therefore, it is suggested to use the newer function, solve_ivp(),
instead.

Boundary Value Problems

Boundary value problems are much harder to solve than initial value problems as they
pose global problems instead of local problems. Therefore, the existence and unique-
ness of solutions for boundary value problems is far less clear than for initial value
problems, and depends in an intrinsic way on the behavior of the solution throughout
the integration interval.

We utilize the scipy.integrate.solve bvp() function, which is designed to solve
first-order boundary value problems subject to two-point boundary conditions of the
following standard form:
dy
a - f (.X, Y. p)
g(y(a),y(b),p) =0

where x is an independent scalar variable, y(x) is a function returning an n-dimensional
vector, and p is a k-dimensional vector of parameters that are unknown and will be found
together with y(x). The boundary conditions are defined as a function g(y(a), y(), p)
over the range a > x > b. In order to solve this problem, n + k boundary conditions are
required, which implies that g must be an (n + k)-dimensional function. To introduce the
use of the function solve_bvp(), we solve the Sturm—-Liouville problem, for which
vy = A * sin(k = x) is a solution for k = nr with n € N:

Ay+k-y=0
with the boundary conditions
¥(0) = y(1) = 0 and y'(0) = k.

(The latter condition enforced A = 1.) We rewrite the problem as a first-order system:

ﬂ _ _ »
—k2 Y

dx
and implement the system as function fun():

Vi
A

def fun(x, y, p):

mwoen

Sturm—Liouville problem implementation as first—order system,
rhs evaluation"""
k = p[0]

return np.vstack((y[1], —k*x2 =% y[0]))

in which p is implemented as a list or array with a single element. We implement the
boundary condition as function g():


https://doi.org/10.1017/9781009029728.006
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.006
https://www.cambridge.org/core

152

SciPy: Numerical Methods

1.00 4 —— solve_bvp()

0.75 - — y(x) =sin(2nx)

0.50 A
0.25 A1

> 0.00 4
—0.25 A
—0.50 A
—0.75 A

—1.00 A

0.00 0.25 050 0.75 1.00 1.25 150 1.75 2.00
X

Figure 5.12 Our numerical integration of the Sturm—Liouville problem with solve_bvp()
compared to the analytical solution (both lines are on top of each other).

def g(ya, yb, p):
"""Boundary condition
k = p[0]
return np.array([ya[0], yb[0], ya[l] — k])

mwon

In order to use the solver function, we have to provide an initial mesh for vector x (x)
and an initial guess for y (y-init), which are then provided to the function together
with the function fun() and the boundary condition function g ():

X = np.linspace(0®, 2, 10)

y-init = np.zeros((2, x.size))

y-init[0®, 1] =1

y_init[®, 3] = -1

sol = solve_bvp(fun, g, x, y_init, p=[6])

y_init is chosen in such a way as to guide the solver to find a solution for k = 27 by
setting the values of y to roughly follow sin(27x) and initializing p with an initial guess
that is somewhat close to the expected result. The value of p found by the solver is

sol.p[0]

6.283294600464725

which agrees very well with our expectation (27r). We compare the numerical solution
found by solve_bvp() to the actual solution, y(x) = sin(2zx) in Figure 5.12. Indeed,


https://doi.org/10.1017/9781009029728.006
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.006
https://www.cambridge.org/core

5.9

5.10

5.9 SciKits: A Whole New World 153

the numerical solution approximates the analytical solution very well over the given
range. However, this example also showcases that numerically solving boundary value
problems for systems of ODE:s is rather complex and requires some rough guesses for
the expected solution and, thus, some parameter tuning to find the correct solution.

SciKits: A Whole New World

We hope this chapter gave you an impression of the capabilities behind SciPy — even if
we are only able to present a tiny fraction of the entire package here. But wait... there’s
even more!

The SciPy universe includes a number of supplemental scientific packages that are much
more focused on specific research tasks: the SciKits. There is a huge (and ever-growing)
variety of these SciKits, so we would like to point out only a rather small selection for
different purposes:

O scikit-learn is a highly popular machine learning package and the de facto standard
library for “traditional” machine learning methods (Pedregosa et al., 2011).

O scikit-image is a large library for image processing (Walt et al., 2011).
O scikit-bio is a package for bioinformatics.

O scikit-video provides support for video processing in Python.

O scikit-hep provides tools and methods for particle physicists.

O scikit-cuda provides a Python interface to the Cuda programming language to run
code on Graphics Processing Units (GPUs).

While providing merely a glimpse, we hope that this list motivates you to look out for
interesting SciKit packages that may support you in your research. For a full list of all
available and registered SciKits, please refer to the References.
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6.1.1

Matplotlib: Plotting

The Matplotlib package provides plotting capabilities that are fully compatible with the
greater SciPy and NumPy environment. The development of Matplotlib was initially
inspired by MATLAB’s plotting capabilities (hence the name), but the project has been
for a long time entirely independent of MATLAB and is fully implemented in Python
and NumPy.

For an overview of Matplotlib’s capabilities, the reader is strongly urged to peruse the
Matplotlib Gallery, where a large collection of publication quality figures, and the code
to generate them, is displayed. This is an excellent way (a) to explore the visual capabil-
ities of Matplotlib and (b) to learn ways to implement well-designed figures. Because
Matplotlib contains hundreds of functions, we can include here only a small subset.
Note that almost all of the figures in this book were generated using Matplotlib, and the
source code for each figure and all examples in this chapter are contained in the Jupyter
Notebooks available with this book (cambridge.org/9781009029728/ch6).

Getting Started: Simple Figures

Converting theoretical wishes into actual figures involves two distinct processes, fron-
tends and backends, and the reader needs to know a little about both.

Frontends

The frontend is the user interface. Matplotlib offers two different interfaces: the pro-
cedural pylab interface imitates MATLAB’s syntax, but is limited in its functionality
and thus we discourage using it; and the more pythonic pyplot interface that provides
an object-oriented API and full generality. In this book, we will only discuss the use of

pyplot.
The recommended way to access pyplot is to import its functionality as follows:

import matplotlib.pyplot as plt

We will follow this convention in this book and import most functionality discussed
in this chapter from pyplot (the plt module). Note that this approach is different from
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how we use other packages, such as the NumPy package (Chapter 4), where we import
functionality directly from the package level (import numpy as np). In Matplotlib,
low-level settings are being performed on the package level, one of which is discussed
in the following subsection.

Backends

The frontend supplies Python with user-requests. But how should Python turn them
into visible results? Should they be output to a screen (which screen?), to paper (which
printer?), to another application? These questions are obviously hardware-dependent
and it is the job of the software backend to answer them. The Matplotlib package con-
tains a wide range of backends, but which one should be used? Fortunately, your Python
installer will most likely have recognized your hardware configuration and chosen the
optimal general purpose backend for it. p1t@.get_backend() will reveal which back-
end is actually being used, in case you are interested. In many instances there should
be no need to change this, but there are exceptions: for instance, you might want to be
able to generate plots in scripts that are not rendered on the screen first. A good choice
in this case is typically the Agg backend. If you want to change your backend to Agg,
you can do so by invoking

import matplotlib
matplotlib.use(’Agg’)

Now, any plots that are generated will not be displayed to you, so make sure to use
plt.savefig() (see Section 6.1.3) to write your plots to file.

A Simple Figure

Provided you only want to draw a simple figure, you can get by with just a few lines of
code. The following code cell, for instance, produces the plot shown in Figure 6.1:

np.linspace(—np.pi, np.pi, 101)

y = np.sin(x) + np.sin(3%x)/3.0

plt.plot(x, y)
plt.xlabel(’x’)
plt.ylabel(C’y’)
plt.title(’A simple plot’)
plt.show()

The first lines of the cell should be clear: we define two NumPy arrays as the data to be
plotted: x is a sequence of equidistant values ranging from —x to 7 and y is the outcome
of a sum of sine functions applied to each of the values from x.

Matplotlib commands are called in the following lines. The most important call here is
plt.plot(x, y), which does most of the hard work by plotting a line that is defined
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Figure 6.1 A minimalistic plot generated with Matplotlib.

by values of x on the abscissa and corresponding values of y on the ordinate (see Sec-
tion 6.4.1 for more details on line plots). The following commands, plt.xlabel(),
plt.ylabel(), and plt.title() provide axis labels on the abscissa and ordinate,
and set the title of the plot, respectively. None of these three commands is required to
display the plot on the screen, but providing proper labeling of axes and the plot in gen-
eral should be good custom. Technically, all the lines discussed so far create a plot — but
they display nothing on the screen.! This is typically done by invoking plt.show(),
which tells the chosen backend (see Section 6.1.2) to create the corresponding out-
put. What exactly happens when you invoke plt.show() depends on the backend and
Python interface you are using. When running a script or code in the Python interpreter,
most likely a window will open that shows the plot and provides some control over
the display. If you run your code in a Jupyter Notebook, the plot appears below the
corresponding code cell.

It is also possible to display plots interactively in combination with plt.show().
Running your code in the Python interpreter, you will not need to do anything: if your
backend supports interactive plotting, it will open an interactive plot window. In Jupyter
Notebooks, it requires some line magic (see Section 2.4.2) to open interactive plots.
First, be aware that the ipympl package must be installed (if it is not there, you can
install it by typing “pip install ipympl” into your console). In any cell that is

! This is not really the case for Jupyter Notebooks: Notebooks will always try to display Matplotlib plots
when a cell is executed, even without explicitly invoking plt.show().
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supposed to open a plot interactively, the first line must be ¥matplotlib widget. An
example is provided in the Jupyter Notebook corresponding to this chapter. Interactive
plotting allows you to modify axis ranges on the fly and has some other neat tricks. The
nicest feature of interactive plotting is introduced in Section 6.9.2.

If, instead of displaying the plot, you prefer to save the plot to a file, you can replace
plt.show() with plt.savefig(Q):

plt.savefig(’simple plot.pdf’)

which saves the plot as simple_plot.pdf using the pdf file format.

The types of files that can be written depend on the implementation and backend, but
most support png, pdf, ps, eps and svg files. A useful keyword argument to know for
savefig() is dpi, which allows you to define the resolution in dots per inch to be used
in creating a raster image files such as png and jpg. Note that vector file formats such
as svg, ps, eps and pdf are not affected by this argument. Another useful keyword
argument is transparent, which, if True (default is False), turns the background of
the resulting plot transparent.

This example merely scratches on the surface of what is possible with Matplotlib. The
following sections will dive deeper into the possibilities and API, starting with a discus-
sion of the object-oriented nature of Matplotlib.

Object-Oriented Matplotlib

Matplotlib is capable of very much more than the simple plot discussed previously. This
is implemented in object-oriented fashion using classes, as reviewed briefly in Section
3.11. However, while that section was concerned with the actual construction of classes,
the scientist user will be using predefined ones, and so needs only to assimilate two
pieces of jargon.

s

A figure class instance is what an artist would call his “canvas;” see Figure 6.2. A
Matplotlib session might include several figures. Within a figure there may be one or
more class axes instances. Note that “axes” is a plural noun. It refers to, e.g., the set of
coordinate axes, not merely a single coordinate axis. For example, Figure 6.2 contains
two axes instances. Each instance contains an x-axis and a y-axis. In order to master
plotting, we need to be able to access both classes.

Fortunately it is very easy to construct figure and axes instances. Distinct figure in-
stances can be instantiated by calling plt.figure():

figl = plt.figure()

fig2 = plt.figure()

Clearly an axes instance belongs to a figure. However, a figure may contain many
axes, a configuration we refer to as a compound figure (see Section 6.8 for an in-depth
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1.0 1.0
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00 02 04 06 08 10 00 02 04 06 08 1.0

Figure 6.2 A schematic figure produced by Matplotlib. The totality of what is shown here is a
Figure class instance. It contains two Axes class instances (left and right panel). Each axes
instance contains an x-axis and a y-axis.

discussion). For example, Figure 6.2 contains two axes arranged in one row with two
columns. In order to add axes to figures, we can use plt.add_subplot():

axl = figl.add_subplot(121)
ax2 = figl.add_subplot(122)

In this case, both axes are now part of £igl, creating the same setup as shown in Figure
6.2. The arguments to plt.add-subplot() consist in this case of three integers that
define, in this order, the number of rows, the number of columns, and the index of the
current axis in the compound figure with index 1 starting in the upper left corner of the
figure increasing to the right. axes are typically named ax (or some variation thereof)
to make clear that you are dealing with an axes object. In this book, we stick to this
convention, as you will see. The same setup can also be achieved with a one-liner:

fig, ax = plt.subplots(l, 2)

which will return a figure instance, fig, and an array of axes, ax, as shown in Fig-
ure 6.2. plt.subplots() takes as arguments the number of rows and the number of
columns of the resulting compound figure; this shape is reflected by the shape of ax:

ax.shape
,)
Please note that plt.subplots() is not only useful for creating compound figure.

For instance, plt.subplots(1l, 1), orin fact even plt.subplots(), is a perfectly
legitimate function call for creating a single-axes figure (one figure object and one axes
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object). As an example, let us consider the simplest plot shown in Section 6.1.3, and
rewrite the code in object-oriented form. Those lines dealing with Matplotlib function-
ality could be replaced by:

fig, ax = plt.subplots())
ax.plot(x, y)
ax.set_xlabel('x’)
ax.set_ylabel('y’)
ax.set_title(’A simple plot’)
fig.show()

“Why should 1?7” the tyro will exclaim. “Why should I replace four valid lines of code
(to define the plot) with five, and use longer function names?” We need to examine
carefully what is going on here.

In fact, the code used in Section 6.1.3 to generate Figure 6.1, which is based on func-
tionality directly drawn from plt, serves as a wrapper. In practice, Matplotlib does the
following: Matplotlib internally converts the plt-based instructions to the equivalent
of the object-oriented code shown here. However, the private names for the figures and
axes objects are not available to the ordinary user, strictly limiting the flexibility of this
approach.

For simple figures, the plt-based approach, implemented early on to ensure MATLAB
consistency, is harmless until one tries to construct more complicated figures. Using
plt-based functionality will come with a range of restrictions, preventing you from
designing good-looking plots. It is for this reason that we highly recommend using the
object-oriented procedure for anything other than quick, simple figures.

Therefore, the advantages of the object-oriented approach (full control over what is go-
ing to happen) clearly outweigh its disadvantages (slightly longer code). For users who
are already used to the plt-based functionality, here is a quick summary of what to
expect. First of all, pretty much all functions to create plots such as plt.scatter()
(see Section 6.4.2) can be called directly on an axes object: ax.scatter(). For some
functionality, such as plt.xlabel(), plt.ylabel(), and plt.title(), equivalents
operating on axes objects exist that have slightly different names: these functions use
the prefix “set_” (ax.set_xlabel (), ax.set_ylabel (), ax.set_title()). Admit-
tedly, this is a rather minor difference — and it is actually also more pythonic by being
more explicit than the plt-based approach. Nevertheless, it might take some time to get
used to the object-oriented approach, but it is well worth the time, as we will see in the
following sections.

Customizing Plots

The object-oriented nature of Matplotlib may feel unnecessarily complicated to a begin-
ner, but it offers a great deal of flexibility and customizability. In this section, we will
introduce some of the basic elements that will allow you to generate plots in publication
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quality. More importantly, mastering the concepts presented here will enable you to
try out some more complex concepts on your own. In the following, we will provide
only a few code examples (a few more examples are provided in the corresponding
Jupyter Notebook), as it is best to apply these concepts yourself and see how they
work.

Finally, please be aware that most of the concepts introduced in this section are also
available for the simpler plt interface, but, as we discussed in the previous section, they
might have slightly different names (e.g., p1t.title() instead of ax.set_title())
and might provide less modularity and flexibility. In the following code examples, we
assume that ax is a single axes object.

Figure Size

The physical size of any visualization is important to enable readability — and the same
applies to the size of a figure object. Naturally, all axes objects defined for a given
figure must be able to fit inside that figure. Therefore, the figure size should be chosen
carefully to fit all axes, as well as their labels, titles, etc. The size of a figure must be
defined at instantiation, using the figsize keyword argument, which requires a tuple
of float or integer values corresponding to the width and height of the figure in units
of inches. Therefore, the figsize keyword argument is available for plt.figure() and
for plt.subplots(), as those return figure objects. For instance, the following line
of code creates a figure object containing a panel of 4 (2 X 2) axes objects of physical
extent 10 cmx 10 cm (using a conversion factor of 2.54 cm/inch):

fig, ax = plt.subplots(2, 2, figsize=(10/2.54, 10/2.54))

Axis Range and Scaling

By default, Matplotlib will create plots with linear scaling and display a range of values
on each axis (i.e., x-axis and y-axis) that is based on the minimum and maximum values
of the data points provided. Although Matplotlib usually makes an excellent choice of
axis extents, they are easily changed for the x-axis with:

ax.set_xlim(xmin, xmax)

and similarly for the y-axis with ax.set_ylim(ymin, ymax).

Sometimes, however, one or more logarithmic axes are desired. The scaling of the x-axis
can be easily changed to a logarithmic scale by invoking

ax.set_xscale(’log’)

and similarly for the y-axis.
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Figure 6.3 An example plot with manually set, nonequidistant ticks on the x-axis defined with

ax.set_xticks() and corresponding string labels provided with ax.set_xticklabels().

Ticks

The location of ticks on the x-axis and y-axis is also selected by Matplotlib in a typ-
ically smart way, but, of course, there is a way to override this automatic choice. The
methods ax.set xticks() and ax.set_yticks() control the ticks along both axes
and each take a list or NumPy array as input that indicates the tick locations. It is
also useful to know that providing an empty list will remove ticks entirely. Now that
we are able to select ticks manually, can we also label them manually? Of course!
ax.set_xticklabels() and set_yticklabels() does exactly that; you simply pro-
vide a list of labels that has the same length as the /ist of ticks. Consider the following
example resulting in Figure 6.3:

months =

4, 7, 9, 10, 12]

[11
temp = [-3, 12, 23, 19, 8, 2]

fig, ax = plt.subplots()

ax.
ax.
ax.
ax.
ax.

plot(months, temp)
set_xticks(months)
set_xticklabels([’Jan’, ’Apr’,
set_xlabel (’Month’)
set_ylabel (' Temperature (C)’)

plt.show()

>Jul’, ’Sep’, ’Oct’

"Dec’])
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Grid

By default, Matplotlib does not display a grid. It can be added manually by invoking
ax.grid(). This function supports many of the keyword arguments discussed in Sec-
tion 6.4.1, including linestyle, linewidth, and color; the distribution of the grid
lines follows that of the ticks on each axis.

Legend

Suppose we are producing a figure with two or more curves. We may attach a label
to each curve, by including the parameter label="string’ in the call to ax.plot().
After all of the curves have been plotted, the function ax.legend() draws a legend that
contains a line for each labeled curve showing its style and label. This function provides
a wide range of keyword arguments, the most important of which, loc, defines the
position of the legend; while ’best’ tries to find the most suitable location by itself,
you can name a corner (e.g., 'upper right’) or an edge (e.g., *lower center’).
There are a number of other options: e.g., title allows you to provide a title label,
with ncol you can set the number of columns of your legend, framealpha provides
transparency support of the legend background, and this is just some of the other tweaks
available.

Transparency

Most Matplotlib functions support transparency for lines, surfaces, and markers, which
is typically provided with the alpha keyword argument to which a float value is as-
signed; 1 means solid, whereas 0 means fully transparent. To create a transparent back-
ground, review Section 6.1.3.

Text and Annotations

Suppose we wish to place a plain text string in a figure starting at (x,y) in data coor-
dinates, i.e., those defined by the x-axis and y-axis of an axes object. The extremely
versatile Matplotlib function ax.text () does precisely that:

ax.text(x, y, ’'this is a text label’)

There are various ways of enhancing it by changing its color (red, blue, ...), fontsize
(as a float in pt), fontstyle (normal, italic, ...) and many other properties as de-
tailed by the function’s docstring. There follows an example for the use of this function.

Sometimes we wish to refer to a particular feature on the figure, and this is the purpose
of ax.annotate(), which has a slightly idiosyncratic syntax. It allows you to place a
label at location xytext (in data coordinates) from which an arrow points to a different
location (xy) on the plot. Consider the following example, the result of which is shown
in Figure 6.4:
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Figure 6.4 A simple example that showcases the use of text(), annotate() and the
generation of mathematical formulae with mathtext (see Sections 6.3.7 and 6.3.8).

np.linspace(0®, 2, 101)
x—D*%3 + 1

< M
1n

fig, ax = plt.subplots()

ax.plot(x, y)

ax.text(1.25, 1.75, r’$f(x)=(x—1)43+1$")

ax.annotate(’point of inflection at x=1’, xy=(1,1),
xytext=(0.8,0.5), horizontalalignment='center’,
arrowprops=dict(facecolor="hlack’,width=1,
shrink=0.05))

plt.show()

Mathematical Formulae

This is an opportune moment to discuss the Achilles heel of all plotting software. How
do we display decently formatted mathematical formulae? Most word processors offer
add-on tools to display mathematical formulae but quite often, and especially for intri-
cate formulae, they look ugly. Matplotlib provides a way to generate properly formatted
mathematical formulae by taking advantage of TeX functionality.

Matplotlib includes a primitive engine called mathtext to provide TeX-style expres-
sions. This is far from a complete LaTeX installation, but it is self-contained, and
the Matplotlib documentation features a succinct review of the main TeX commands.
The engine can be accessed from plot functions that expect to receive a string ar-
gument, e.g., ax.title(), ax.text(), ax.set_xlabel(), ax.set_ylabel(), or
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ax.annotate(). As a concrete real-life example, consider the following line of code,
which we used in the generation of Figure 6.4:

ax.text(1.25, 1.75, r’$f(x)=(x-1)43+1$")

To understand this line, consider first the string itself. You need to know that mathe-
matics is defined in TeX between a pair of dollar ($) signs. Then TeX strips the dollar
signs and sets the mathematics in italic font with the font size determined by the (TeX)
context. The r prepended to the string indicates that this is a raw string, so that Mat-
plotlib will call up its mathtext engine. (Without it, the dollar signs would be rendered
verbatim.)

Colors

In most cases, the readability of plots increases significantly by plotting data in differ-
ent colors. This capability is implemented in most plotting functions discussed here,
such as plt.plot() (Section 6.4.1), plt.scatter() (Section 6.4.2), plt.imshow()
(Section 6.6), and others with the color keyword argument. Changing the color of a
specific feature such as a plot line is as simple as assigning the name of the color to this
keyword argument. For instance, the following sample creates a green plot line:

ax.plot(x, y, color=’green’)

Be aware that Matplotlib is not limited to standard colors such as “red,” “green,” and
“blue.” Instead, it provides a huge variety of colors, including somewhat exotic varieties
such as “lightgoldenrodyellow,” “mediumvioletred,” and “lightsteelblue.” See the “List
of named colors” in Section 6.10. If you require an even wider selection of colors, or
if you are interested in defining your own colors, please review the “Specifying colors”
document (see Section 6.10). One more comment on colors: you might have noticed
that assigning colors explicitly is not required to generate plots using colors. If none
are defined, Matplotlib will use colors that follow a specific sequence. Of course, the
sequence underlying this cycle can be altered, but we leave the details to the interested
reader at this point.

Sometimes it is beneficial to the visual presentation of data to color-code the individ-
ual data points, which allows for representing a third dimension on an otherwise two-
dimensional plot. Such color-coding is implemented in Matplotlib with the concept of
colormaps. The idea is that the user provides a list or NumPy array of numerical val-
ues to the ¢ keyword argument (note that it is not color in this case) of the respective
plotting function, which has to be of the same length as the input data (x and y). Such
functionality is available for a number of functions, including plt.plot() (Section
6.4.1), plt.scatter() (Section 6.4.2), plt.imshow() (Section 6.6), and others. In
the following example, which makes use of the scatter plot function plt.scatter(),
we plot points that follow the function f(x) = x> and encode the distance of the indi-
vidual points from the origin in the points’ color as shown in Figure 6.5:


https://doi.org/10.1017/9781009029728.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.007
https://www.cambridge.org/core

6.3 Customizing Plots 167

20

10 A

—10 1

—20 1

Figure 6.5 Scatter plot of a polynomial function (f(x) = x*) in which we encode the Euclidean
distance to the origin in the color of the markers.

X = np.linspace(-3, 3, 101)
Yy = X#x%3
r = np.sqrt(x**%2 + yx%2) # Euclidean distance

fig, ax = plt.subplots()
ax.scatter(x, y, c=r)
ax.set_xlabel('x’)
ax.set_ylabel('y’)
fig.show()

Note how we compute the Euclidean distance to the origin as r and provide this array
to the color keyword argument of the plotting function. The actual color encoding,
i.e., identifying the range of values and assigning a specific color to each value over this
range, is done internally. By default, a min-max scaling is used. If you prefer to set the
range manually, you can do so by setting the minimum and maximum values via vmin
and vmax, respectively.

The choice of color is performed by the colormap and the corresponding cmap keyword
argument. The default colormap in NumPy is viridis, which shows low values in purple,
high values in yellow and intermediate values in shades of blue and green.” A wide
range of colormaps is available as part of Matplotlib, which can be easily imported with

2 While not immediately obvious, viridis was selected as default due to its being seen as unbiased and its
accessibility to people with deficiencies in perceiving colors.
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Figure 6.6 Plot of a 3d surface generated with plot_surface() using color-encoding and a
colorbar.

the function plt.get_cmap() (see the following example and the reference table of
available colormaps, Section 6.10).

So far, we used color encodings only to provide qualitative information on the data
plotted in color. In order to be able to interpret the color data quantitatively, we can
add a colorbar that indicates which colors are assigned to which values. The following
code cell plots a 3d surface using plt.plot_surface(), which we will elaborate on
in Section 6.9.2, with a color encoding that indicates the height (z value) of the surface
and a color bar (using ax.colorbar()) for reference (see Figure 6.6):

XX, yy = np.mgrid[—2:2:101j, —2:2:101j]
zZ = np.exp(—2xXX*k*k2—yy*k*2)*np.cos (2:xxx)*np.cos (3xyy)

fig, ax = plt.subplots(subplot_kw={ projection’:’3d’})

surf = ax.plot_surface(xx, yy, zz, cmap=plt.get_cmap(’Greys’),
linewidth=0)

cbar = plt.colorbar(surf, label="Height’)

ax.set_xlim3d(-2.0, 2.0)

ax.set_ylim3d(—2.0, 2.0)

ax.set_zlim3d(-0.5, 1.0)

ax.set_xlabel(’x’)

ax.set_ylabel(’y’)

ax.set_zlabel('z’)

ax.elev, ax.azim = 10, 30

fig.show()
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Note that we use the Greys colormap in this case and we remove the wireframe structure
from the surface plot with 1inewidth=0. A color bar has to be generated for a specific
object, which is in this case the instance of plt.plot_surface(), which weve named
surf here. We add a 1abel to the color bar and point out that many other options exist
to customize the color bar.

Cartesian Plots

In the following, we will introduce some plotting functions based on cartesian coordi-
nate systems. Be aware that we will limit our introduction to their application to axes
objects (i.e., function call: ax.<function>) but we would like to point out that the
same functions can also be directly invoked from plt (i.e., plt.<function>; see Sec-
tion 6.2 for a discussion).

Line Plots

ax.plot() is a very powerful and versatile function that allows you to create line plots.
The simplest call — see, e.g., the example code shown in Section 6.1.3 and the example
plot shown in Figure 6.1 —would be ax.plot (x,y), where x and y are one-dimensional
NumPy arrays of the same length that refer to the abscissa and ordinate values, respec-
tively, of the nodes of the linear segments to be plotted. This would generate a curve
linking the points (x[0], y[0]), (x[1],y[1]), ..., using the default style options. It is worth
keeping in mind that plot () is only able to draw line segments without any curvature.
However, as shown in Figure 6.1 and the corresponding code presented in Section 6.1.3,
one is able to approximate smooth curvature by utilizing high resolution input data, i.e.,
arrays with a dense coverage of the range to be plotted.

The most concise call would be ax.plot(y), where y is a NumPy vector of length
n. Then a default x vector is created with integer spacing to enable the curve to be
drawn. The syntax allows many curves to be drawn with one call. Suppose y and z are
ordinate values for abscissa values x of the same length, then the following code would
plot both curves on the same axes:

ax.plot(x, y)
ax.plot(x, z)

In order to be able to distinguish different curves (and to create visually appealing plots),
there is a wide range of style options available, which we will discuss in the following.

By the style of a curve, we mean its color, nature, and thickness. Matplotlib allows for
a variety of line colors, which have to be provided to the color keyword argument:
ax.plot(x, y, color="red’). Please see Section 6.3.9 for a general discussion of
colors in Matplotlib. Curves are by default solid lines, but other line styles are possible.
To change the line style, utilize the 1inestyle keyword argument in combination with
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Table 6.1 The 12 most commonly used marker styles.

character ~ marker style

point (default)
circle

star

plus

X

triangle down
triangle up
triangle left
triangle right
square
pentagon
hexagon

* O -

> < X+

5o B8 VA

one of the following self-describing string values: solid, dashed, dotted, dashdot,
or None (for no curve at all). Finally, we can modify the line width of our curve by
providing a float value to the 1inewidth keyword argument. The value refers to the
width of the curve in measures of printer’s points. Thus to draw a magenta dash-dotted
curve of width four points, we would use:

ax.plot(x, y, color="magenta’, linestyle=’'dashdot’, linewidth=4)

Scatter Plots

To plot point clouds, ax.scatter() would be the function of choice. It also requires
two input arrays, holding the x and y coordinates of the data points to be plotted.
ax.scatter() provides a number of keyword arguments: marker to set the marker
style, s to set the marker size, linestyle for line segments connecting the markers (if
desired), as well as color to set the marker and line color. Matplotlib offers a bouquet
of marker styles, and the 12 most commonly used ones are given in Table 6.1. The fol-
lowing complete example code produces a simple scatter plot using different clusters
with different colors and symbols (see Figure 6.7):

fig, ax = plt.subplots()

for i in range(3):
x = np.random.normal (loc=[3, O, 1][i],
scale=[0.5, 1, 0.2][i], size=20)
y = np.random.normal (loc=[2, 1, 3][i],
scale=[0.5, 1, 0.2][i], size=20)
's’, 'AT][i], s=20,
color=[’black’, ’grey’, ’'lightgrey’][i],
label=i)

ax.scatter(x, y, marker=['o’,
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Figure 6.7 A scatter plot example generated with scatter (), showing the effect of using
different marker types.

ax.set_xlabel(’x’)
ax.set_ylabel('y’)
ax.legend(loc=4)
plt.show()

It is also possible to specify different colors for the marker face (markerfacecolor)
and the marker edge (markeredgecolor). In combination with markeredgewidth,
which specifies the width of the edge, there are many many possibilities, not all of them
aesthetically pleasant.

Error Bars

When measurements are involved, we often need to display error bars. Matplotlib han-
dles these efficiently, using the function ax.errorbar(). This function behaves like
ax.plot(), but with extra parameters. Consider first, errors in the y-variable, which
we specify with the yerr argument. If yerr is a scalar (homoscedastic errors) or an
array of values (heteroscedastic errors) that has the same dimension as y, then sym-
metric error bars are drawn. In the latter case, each element of yerr is the error of
that element of y with the same index. Thus for the kth point at y[k], the error bar
extends from y[k]-yerr[k] to y[k]+yerr[k]. If the errors are not symmetric, then
yerr should be a 2 X n array, and the kth error bar extends from y[k]-yerr([0,k]
to y[k]+yerr[1,k]. Analogous remarks apply to x-errors and the keyword argument
xerr. By default, the color and line width are derived from the main curve. Consider
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Figure 6.8 A simple plot generated with errorbar (), showing data with heteroscedastic error
bars.

the following example with heteroscedastic symmetric errors in both x and y, resulting
in Figure 6.8:

X = np.linspace(0®, 4, 21)
y = np.exp(—x)

xe = 0.08+np.random.rand(len(x))
ye = 0.1xnp.random.rand(len(y))

fig, ax = plt.subplots()

ax.errorbar(x, y, xerr=xe, yerr=ye, marker=’o’, capsize=2,
color="black’)

plt.show()

Note that marker defines the marker type (see Section 6.4.2) and capsize defines the
width of the caps, which defaults to zero otherwise.

Plotting Filled Areas

ax.fill between() provides a way to plot lines and fill the area between them. The
outcome of this function depends crucially on its arguments. Generally, you need to
provide three lists or NumPy arrays that all must have the same length: the first one
containing x-values, the second and third containing corresponding y-values that de-
scribe the range of values to be filled. Strictly speaking, the second sequence of y-values
is not required; if omitted, all those values default to zero, meaning that the area be-
tween the y-values provided and the x-axis are filled. Let’s consider the data plotted in
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Figure 6.9 Displaying uncertainties as filled areas with ax.fill _between().

Figure 6.8 and plot the uncertainties as a filled range around the actual values as shown
in Figure 6.9:

fig, ax = plt.subplots()

ax.fill _between(x, y+ye, y—ye, color=’lightgrey’)
ax.plot(x, y, color="black’)

plt.show()

Although nontrivial, it is possible to use this function to draw somewhat arbitrary shapes
by providing hand-crafted arrays containing the corners of the shapes. Be aware that
shapes generally need to be closed, which means that the final pair of (x, y) values must
be identical to the first pair.

Bar Plots

Another common type of plot are bar plots, which can be realized with ax.bar() and
are commonly used to visualize histograms and other data. The arguments required by
this function include a list or NumPy array of x-values (x) that correspond to the bar
centers or edges (make sure to use align="edge’ in the latter case) and the corre-
sponding bar heights (height). Both x and height must have the same length, if x
provides bar center locations. In addition to typical keyword arguments like color,
alpha, etc., ax.bar() features some unique arguments that allow you to control the
width of the bars (width) and the y-coordinate of their bottoms (bottom, which defaults
to zero). The latter allows you to stack bar plots on top of each other. Consider the fol-
lowing example in which we draw numbers from two different Gaussian distributions,
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Figure 6.10 A stacked bar plot visualizing histograms of two Gaussians, generated with
ax.bars().

create histograms with np.histogram() and plot the stacked histograms as shown in
Figure 6.10:

x1 np.random.normal (loc=0, scale=2, size=1000)
x2 = np.random.normal (loc=3, scale=1, size=2000)
histl, bins = np.histogram(xl, bins=np.linspace(-5, 10, 16))

hist2, bins = np.histogram(x2, bins=np.linspace(-5, 10, 16))

fig, ax = plt.subplots()

ax.bar(bins[:—1], histl, align="edge’, width=0,
color="black’)

ax.bar(bins[:—1], hist2, bottom=histl, align=’edge’,
width=0.8, color="grey’)

ax.set_xlabel('x’)

ax.set_ylabel ('Frequency’)

plt.show()

Polar Plots

Suppose we use polar coordinates (r, 6) and define a curve by r = f(6). It is straight-
forward to plot this curve using ax.polar() (or plt.polar()), which behaves rather
like ax.plot (). Figure 6.11 was created with the following code cell:
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Figure 6.11 A simple polar plot generated with Matplotlib.

theta = np.linspace(®, 2xnp.pi, 201)

rl = np.abs(np.cos(5.0xtheta) — 1.5xnp.sin(3.0xtheta))
r2 = theta/np.pi
r3 = 2.25%np.ones_like(theta)

fig, ax = plt.subplots(subplot_kw={’projection’: ’polar’})

ax.plot(theta, rl, label="trig’, color='black’)

ax.plot(5«theta, r2, label=’spiral’, color=’grey’)

ax.plot(theta, r3, label="circle’, color=’lightgrey’,
linewidth=5)

ax.legend(loc="upper right’)

plt.show()

Plotting Images

Matplotlib can be used to plot image data via the function ax.imshow() (or
plt.imshow()). Image data can be provided in the form of a NumPy array. For a
simple grayscale image, only a single value per pixel (typically float values between 0
and 1, or 0 and 255 in the case of 8-bit encoding) is required, so the array must have
two dimensions, which are the height and width in units of pixels. In the following code
cell we load a grayscale image (gray=True) that is stored within SciPy (see Chapter 5)
as an array:
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0 200 400 600 800 1000

Figure 6.12 A simple grayscale image plot generated with p1t.imshow().

from scipy.misc import face

im = face(gray=True)
print (im. shape)
print(np.min(im), np.max(im))

(768, 1024)
0 250

Internalize the properties of this array: it has a shape of (768, 1024), and thus only
two dimensions, and it consists of values ranging from 0 to 250 (obviously using an
8-bit encoding with a potential maximum value of 255).

To display the data contained in im as an image, we can use plt.imshow() to generate
the output shown in Figure 6.12:

fig, ax = plt.subplots()
ax.imshow(im, cmap=’Greys r’)
fig.show()

In its simplest use case, imshow() is called with the image data array as its sole argu-
ment. In this case, however, we also select a specific colormap (to prevent Matplotlib
from using viridis in this case): Greys_r displays low values in dark shades and high
values in bright shades (see Section 6.5 for more on colormaps). Although the image
appears in the correct up-right orientation, a look at the y-axis reveals something un-
expected: the coordinate origin of the image is in the top left corner and not the bottom


https://doi.org/10.1017/9781009029728.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.007
https://www.cambridge.org/core

6.6 Plotting Images 177

left corner as is typically the case in plots. This is nothing to worry about. The image
stored in im is stored in matrix coordinates (rows, columns) instead of typical image
coordinates (x, y); therefore, the image appears upright although the coordinate origin
is in the upper left corner. If your image is stored in pairs of (x, y)-coordinates, you
can use the keyword argument origin="1lower’ to set the coordinate origin in the bot-
tom left corner. To switch between the matrix and image coordinate conventions you
can use the transposed array, im.transpose() or img.T, and adapt the y-axis origin
(origin="upper’ or origin=’"1lower’), where necessary.

The situation becomes slightly more complicated for color images. Color data are typ-
ically provided in the form of RGB values, a tuple containing values for the red, green,
and blue content of a pixel, each represented by a floar in the range [0, 1] or integers in
the range [0, 255]. We can load the same image as a color image:

im = face()
print (im.shape)
print(np.min(im), np.max(im))

(768, 1024, 3)
0 255

Note the different shape of im: although the image still has the same height (768) and
width (1024), every single pixel now consists of three numbers that refer to the three
color channels (r, g, and b; in this order). We extract the color information for a single
pixel (x=330, y=600) that is part of a green plant:

im[600,330]
array([153, 195, 132], dtype=uint8)

Indeed, interpreting the resulting array as RGB-triplet, the green value is significantly
higher than the others. Note that since the image array is provided in coordinates of
rows and columns, we have to query a specific location as (y, x) coordinate pair. In
order to extract a single color channel, one can simply use:

= im[:,:,0]
g = im[:,:,1]
b = im[:,:,2]

and in order to combine them again into a format that will be interpreted as an RGB
image by imshow (), we can take advantage of np.dstack() (see Section 4.1.5):

im2 = np.dstack([r, g, bl)
im2.shape

(768, 1024, 3)
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Figure 6.13 A plain contour plot generated with contour (). Note the different line styles that
are used for the different contour levels, as well as the labels that were automatically generated
by clabel().

Of course, this results in the same image that we had before. One final note: plotting the
color version of im would, of course, display the same image as shown in Figure 6.12
with proper colors.

Contour Plots

Suppose we have a relation F(x,y) = z, and let zo be a fixed value for z. Subject to
the conditions of the implicit function theorem, we can, after possibly interchanging
the roles of x and y, solve this relation, at least locally, for y = f(x, zo). These are the
“contour curves” or “contours” of z. What do they look like as zy varies? In princi-
ple, we need to specify two-dimensional arrays of equal shape for each of x, y, and
z, and a vector of values for zy. Matplotlib allows for a number of short-cuts in this
process using the ax.contour() function. For example, according to the documen-
tation, we can omit the x- and y-arrays. However, Matplotlib then creates the missing
arrays as integer-spaced grids using np.meshgrid(), which creates the transpose of
what is usually needed, and so we should be careful if using this option! If we do not
specify the zp vector, we can give instead the number of contour curves that should
be drawn, or accept the default value. By default, the zo values are not shown on the
plot; the ax.clabel () function can be used to generate them, using as argument the
values returned by ax.contour(). Figure 6.13 was produced by the following code
cell:
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[X, Y] = np.mgrid[—2.5:2.5:51j, —3:3:61j]
Z = Xx%2 — Yxx2

fig, ax = plt.subplots()

ax.imshow(Z, extent=[-2.5, 2.5, —3, 3], cmap=’'Greys.r’)
curves = ax.contour(X, Y, Z, 12, colors=’black’)
ax.clabel (curves)

fig.show()

X,Yand Z are 51 X61 arrays of floats. We plot Z with the proper extent fuple and over-
lay the outcome of the function ax.contour, which draws 12 contour curves and re-
turns their values. The Z-value labels are then attached to the curves with ax.clabel ().

Compound Figures

We saw in Section 6.4.1 that it is possible to draw several curves into a single axes object
by invoking ax.plot() several times for different data sets. Sometimes it is useful to
present data in a panel consisting of several axes for better readability.

As we already saw in Section 6.2, this task is performed easily thanks to Matplotlib’s
object-oriented framework. Consider the following example in which we plot four dif-
ferent decay rates in the same figure that contains a 2 X2 grid of axes (see Figure 6.14).

t = np.linspace(0,5,101)
yl 1.0/(t+1.0)

y2 = np.exp(—t)

y3 = np.exp(—5xt#:x2)

y4 = np.exp(—0.5xt*xx3)

fig, ax = plt.subplots(2, 2, sharex=True, sharey=True)
# top left axes:

ax[0, 0].plot(t, yl, color=’grey’)

ax[0, 0].set_ylabel(r’$£(t)$")

ax[0, 0].set_title(r’$1/(t+1)$’, y=0.8)

# top right axes:

ax[0, 1].plot(t, y2, color="grey’)

ax[0, 1].set_title(r’$\exp(—t)$’, y=0.8)

# bottom left axes:

ax[1, 0].plot(t, y3, color=’grey’)

ax[1, 0].set_xlabel(r’$t$’)

ax[1l, 0].set_ylabel(r’$£(t)$’)

ax[1l, 0].set_title(r’$\exp(—5t+2)$’, y=0.8)
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Figure 6.14 An example of a compound plot showing different decay functions. Note that all
plots (axes) share the same x and y values, which is a result of setting sharex=True and
sharey=True in subplots().

# bottom right axes:

ax[1, 1].plot(t, y4, color=’grey’)

ax[1, 1].set_xlabel(r’$t$’)

ax[1, 1].set_title(r’$\exp(—0.5t*3)$’, y=0.8)
fig.subplots_adjust (hspace=0.1, wspace=0.1)
fig.tight_layout()

fig.show()

The first five lines of this code cell generate data to be plotted; the following lines
generate a figure with a 2 X 2 array of axes. Note that plt.subplots() is called with
the keyword arguments sharex=True and sharey=True, which means that all four
axes share the same value ranges on their x-axis and y-axis. We then populate each axes
with a curve, assign some axis labels where appropriate and titles utilizing mathtext (see
Section 6.3.8). After all plots are generated, we adjust the horizontal and vertical spaces
between the axes with plt.subplots_adjust() and we call plt.tight_layout()
to minimize the margins around the axes.

Of course, there are no requirements that all axes in a figure must be of the same plot
type, or of the same size. While Matplotlib offers a huge degree of flexibility here,
generating flawless compound plots often requires a lot of hard work. We encourage the
reader to play with the settings presented here to gain some experience, which will help
to understand more complex features of Matplotlib.
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Multidimensional Visualization

In many scientific problems, one does not just work in a two-dimensional setting but in a
much higher dimensional space. This poses a problem for the visualization of measured
and modeled data. In this section, we will investigate how we can utilize Matplotlib
functionality for this task.

The Reduction to Two Dimensions

The screen and a paper page are both two dimensional, and so any representation of a
three- or higher-dimensional object must ultimately be reduced to two dimensions.

A common approach is often called the “cut plane” technique, which imposes some
arbitrary condition or conditions on the coordinates so as to reduce their dimensionality.
The simplest and most common approach is to assume constant values for all but two of

the coordinates, e.g., z = zo, w = Wy, ..., thus giving a restricted but two-dimensional
view of the object. Hopefully, by doing this several times for a (not too large) set of
choices for zg, wy, ..., we will be able to recover valuable information about the object.

An example of this approach is the contour curve procedure in Matplotlib mentioned in
Section 6.7.

Other approaches exist, but we refer the interested reader to the literature in order to
identify suitable methods to visualize highly dimensional data.

3D Plots

If your visualization problem is restricted to three dimensions (or you can find a three-
dimensional representation for a subset of your problem), Matplotlib provides you some
functionality to visualize your data. The crucial detail is that for 3d plots, ax must be an
instance of the Axes3d class instead of Axes, which is achieved by instantiating with

fig, ax = plt.subplots(subplot_kw={’projection’:’3d’})

or alternatively

fig = plt.figure()
ax = fig.add_subplot(projection="3d’)

In this section, we shall consider three cases, with a concrete example for each. Our
examples are artificial in the sense that they are predefined analytically. However, in
setting them up we need to construct finite sets of discrete data. In the real world, we
would instead use our own finite sets of discrete data, derived either from experiment or
a complicated numerical simulation.

The first case we consider is that of a parametrized curve x(7) = (x(2), y(?), z(t)), and
as a specific example we consider the curve C,,,(a):

x = (1 + acos(nt)) cos(mt), y = (1 + acos(nt)) sin(mt), z = asin(nt),
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Figure 6.15 A 3d-plot of a parametrized curve plotted with mplot3d().

where ¢ € [0, 2], n and m are integers, and O < a < 1. This is a spiral wrapped around a
circular torus, with major and minor radii 1 and a, respectively, a three-dimensional gen-
eralization of the well-known Lissajous figures. We visualize this parametrized curve
with the next code cell using the ax.mplot3d() function and show the result in Fig-
ure 6.15:

theta = np.linspace(®, 2%np.pi, 401)

a, m, n=20.3, 11, 9 # arbitrary parameters
x = (1 + axnp.cos(nxtheta)) #* np.cos(mxtheta)
y = (1 + aknp.cos(nktheta)) * np.sin(mxtheta)
z

axnp.sin(nxtheta)

fig, ax = plt.subplots(subplot_kw={ projection’:’3d’})
ax.plot(x, y, z, linewidth=2, color=’grey’)
ax.set_zlim3d(-1.0, 1.0)

ax.set_xlabel(’x’)

ax.set_ylabel(’y’)

ax.set_zlabel('z’)

ax.elev, ax.azim = 30, 45

fig.show()

Note that since ax is here an Axes3D object, ax.plot() now takes three positional
arguments. As you can probably guess, ax.set_zlim3d() sets the range in the z di-
mension and ax.elev and ax.azim set the initial viewing angle for the scene. When
viewed interactively, it is possible to rotate and zoom the scene to get a better picture
of it.
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Figure 6.16 An example of a simple surface generated with plot_surface().

The second case we consider is that of a surface of the form z = z(x,y). Here we
consider the artificial but specific example:

= cos(2x)cos(3y) where —2<x<2,-3<y<3.

We can plot this surface with the function plt.plot_surface() as shown in the fol-
lowing example code, the result of which is shown in Figure 6.16:

XX, yy = np.mgrid[—2:2:101j, —2:2:101j]
zZ = np.exp(—2xxXX*x*2—yy*x2)*np.cos (2:xxXxX)*np.cos (3xyy)

fig, ax = plt.subplots(subplot_kw={’projection’:’3d’})
ax.plot_surface(xx, yy, zz, color="lightgrey’)
ax.set_x1im3d(-2.0,2.0)

ax.set_ylim3d(-2.0,2.0)

ax.set_z1lim3d(—0.5,1.0)

ax.set_xlabel('x’)

ax.set_ylabel('y’)

ax.set_zlabel('z’)

fig.show()

If a “wire frame” representation of the surface is preferred, it can be obtained by simply
replacing the call to ax.plot_surface() with ax.plot wireframe().

For the third and final case we consider here, we shall treat the more general case of a
parametrized surface x = x(u,v), y = y(u,v), z = z(u, v), which reduces to the case
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Figure 6.17 Enneper’s surface visualized using plot_surface(), taking advantage of the
concept of transparency.

if we choose x = u, y = v. As a concrete example, we consider the self-intersecting
minimal surface discovered by Enneper:

2

x:u(l—u2/3+v2),y:v(l—v2/3+u2),z=u2—v where —2 < u,v < 2.

A code snippet to draw Figure 6.17 is:

[u,v] = np.mgrid[—2:2:51j, —2:2:61j]
X, vV, z = Wk(l—u#x2/3+v*%2), vk(1l—v#k2/3+Uus%2), Wkk2—Vk:k2

fig, ax = plt.subplots(subplot_kw={ projection’:’3d’})
ax.plot_surface(x.T, y.T, z.T, alpha=0.5, color=’'lightgrey’)
ax.elev, ax.azim = 20, 70

ax.set_xlabel(’x’)

ax.set_ylabel(’y’)

ax.set_zlabel('z’)

fig.show()

Notice first that the underlying code is based on image-processing conventions, and
so the Matplotlib commands expect two-dimensional arrays to be supplied in image
form. Thus we need to supply the transpose of the x-, y-, and z-arrays. It should be
noted that this is a nontrivial self-intersecting surface, and its visualization requires a
judicious choice of parameters. Further, the optimal choice may well depend on the
viewing angle. There is a great deal of computation going on here, but rendering should
be smooth even on older laptops.

This is a great time to remind the reader that Matplotlib supports interactive plotting
(see Section 6.1.3). Using the corresponding line magic (%matplotlib widget) al-
lows you to change the viewing angle on the fly and rotate the surface. It therefore
helps you to find the best projection, which makes interactive plotting very useful for
3d visualizations. Please see the Jupyter Notebook for this chapter for an example.
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6.10 References

Online resources

O General Matplotlib resources

Project website
https://matplotlib.org/

Documentation
https://matplotlib.org/stable/index.html

User guide
https://matplotlib.org/stable/users/index

API reference
https://matplotlib.org/stable/api/index

Tutorials
https://matplotlib.org/stable/tutorials/index.html

Examples
https://matplotlib.org/stable/plot_types/index.html

Cheat sheet
https://matplotlib.org/cheatsheets/

Gallery
https://matplotlib.org/stable/gallery/index.html

O Getting started: simple figures

Quickstart
https://matplotlib.org/stable/tutorials/introductory/usage.html

Backends
https://matplotlib.org/stable/users/explain/backends.html

O Object-oriented Matplotlib/Customizing plots

Basic usage
https://matplotlib.org/stable/tutorials/introductory/usage.html

Pyplot reference
https://matplotlib.org/stable/api/-as_gen/matplotlib.pyplot.html

Legend reference
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.legend.html

Annotations
https://matplotlib.org/stable/tutorials/text/annotations.html


https://doi.org/10.1017/9781009029728.007
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.007
https://www.cambridge.org/core

186 Matplotlib: Plotting

Text in Matplotlib figures

https://matplotlib.org/stable/tutorials/text/text_intro.html

Writing mathematical expressions
https://matplotlib.org/stable/tutorials/text/mathtext.html

List of named colors
https://matplotlib.org/stable/gallery/color/named_colors.html

Specifying colors
https://matplotlib.org/stable/tutorials/colors/colors.html

Colormap reference

https://matplotlib.org/stable/gallery/color/colormap_reference.html
O Cartesian plots/Polar plots/Plotting images/Contour plots

Pyplot function reference
https://matplotlib.org/stable/api/_as_gen/matplotlib.pyplot.html

O Compound figures

Arranging multiple axes in a figure

https://matplotlib.org/stable/tutorials/intermediate/arranging.axes.ht
ml

O Multi-dimensional visualization

3d plotting
https://matplotlib.org/stable/gallery/index.html#d-plotting
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A computer algebra system (CAS) is a computer program designed to manipulate math-
ematical expressions in symbolic rather than numeric form, a task carried out routinely
by theoretical scientists. There are a number of specialist programs, and some general
purpose systems applicable to a wide range of problems, and it is the latter that we
consider here. Perhaps the best known commercial systems are Maple and Mathemat-
ica. In this chapter, we introduce SymPy, which is a Python package for symbolic math
applications that is written entirely in Python and can thus be used within a Python
environment.

In this book and the accompanying Jupyter Notebook (cambridge.org/9781009029728/
ch7), we follow the convention introduced by the SymPy documentation and import
functionality from the package as needed. As a result, later code cells of this chapter
rely upon imports performed in earlier code cells.

Symbols and Functions

When writing down algebra, one often uses expressions like

D = (x+y)+*exp(x)xcos(y)

This will not work in SymPy, principally because SymPy is a Python library and so its
syntax must conform to that of Python. The snippet fails, first because the identifier x is
not defined. We have to associate x with a definite value, e.g., x = 4, and this defeats
the purpose — we want to leave x and y to take unknown arbitrary values. SymPy gets
around this by defining a new entity: a symbol, actually a Python class. There are several
ways to create symbol instances, and perhaps the easiest way to define the symbols x
and y is to use

from sympy import symbols
X, y = symbols('x y’)

If we try to run the equation code cell now, Python will still complain because exp (x)
and cos(x) are undefined. It recognizes a function, of course, but has no definition
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for the exponential of a symbol. SymPy contains such definitions. Let us combine
everything in the following code cell:

from sympy import exp, cos

X, y = symbols("x y")
D = (x+y)+*exp(x)*cos(y)
D

(x + y)*exp(x)*xcos(y)

Before we talk about what happens here mathematically, we need to spend a few words
on what is displayed here. Running this code cell in a Jupyter Notebook, you are likely
to see a much prettier version of this output, which looks more like this:

(x+y) e cos(y)

The reason for this is that SymPy will check the environment you are working on (e.g.,
a Jupyter Notebook, the Python interpreter, etc.) and it selects a means of output that
gives you the most visually appealing results. In the case of Jupyter Notebooks, MathJax
is utilized to render your output in a very appealing way. You can invoke this “check”
for rendering capabilities manually by calling the sympy.init _printing() function.
Naturally, you can also use this function to select an output that suits you: please refer to
the documentation for details. In the following, we make use of the print () function
to obtain compact ASCII representations of the outputs, which are more print-friendly
than fancier representations.

Now we get back to what is actually going on here. Notice that we never declared D as a
symbol, because it was unnecessary. By definition it inherits all of the properties of the
right-hand side of the declaration; see Section 3.2. The class Symbol contains defini-
tions of all of the standard operations, e.g., addition, multiplication, exponentiation, etc.,
and so the right-hand side of the D-declaration is itself a symbol. All Python has to do
is to associate the identifier D with it. In its simplest form, the symbols creation operator
takes a string of one or more comma- or space-separated labels and returns a fuple of
identifiers to the corresponding symbols. You could assignb, c, a=symbols("abc"),
but not if you valued your sanity. Note that these labels/identifiers can be of arbitrary
length, and if it is a “standard” symbol with, e.g., a greek letter, then that should be
shown on output. For example, if we were to declare theta to be a symbol, then the
output should look like 6. SymPy knows about the standard labels. The docstring for
symbols () offers several ways of mass-producing symbols, and careful study is highly
recommended. It is important to realize early on that symbols must be immutable; see
Section 3.5.4.

D is a known function of x and y. We usually also need unknown functions, e.g., f(x,y)
as well. They can be created by giving an additional keyword, identifying those new
symbols as functions:
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from sympy import Function
f, g = symbols("f g", cls=Function)
print(£(x), f(x, y), g(x))

f(x) £(x, y) g(x)

Notice that SymPy neither knows nor cares about the number of function arguments. It
is the user’s responsibility to check consistency of argument values.

Especially when considering simplification, it is helpful to know that certain symbols
are always of a specific type. For a real-life example consider the equation, ubiquitous
in complex variable courses, z = x + iy. It is tacitly assumed that both x and y take real
values only. Otherwise the splitting into real and imaginary parts does not make sense.
Within SymPy, suppose that i and j take integer values, while u and v are always real.
This is indicated by

i, j = symbols("i j", integer=True)
u, v = symbols("u v", real=True)
i.is_integer, j*j, (j*j).is_integer, u.is_real

(True, j*%2, True, True)

Note how we check for integer types with is_integer and real types with is_real,
both of which are attributes (see Section 3.11).

As can be seen from the output of this code cell, neither i nor j represent V-1 in
SymPy. It is catered for as sympy.I. Also very useful are e, m, and oo, available as
sympy .E, sympy.pi, and sympy. oo, respectively.

As we have said, expressions are immutable. So how does one find out the result of
substituting specific values for, say, x and y in D? This is done with the substitution
operator, which is available either as a function sympy . subs (), or more commonly, as
a class method (sympy . symbols. subs()). For instance, to find D when x=0:

DO® = D.subs(x, 0)
DOpi = DO.subs(y, sympy.pi)
print (DO, DOpi, D.subs([(x, 0), (y, sympy.pi)]))

y*kcos(y) —pi —pi
Here, the third element shows how to make many substitutions at once using a list

of (old, new) ruples. We repeat: symbols such as D are immutable, and so D is not
changed by the substitution operation in the first line.
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Conversions from Python to SymPy and Vice Versa

Suppose x and y are symbols. So are x+1 and 0. 5+y. The integer and float are widened
to symbols. Fractions need a little care. Consider this line:

x + 1/3
x + 0.333333333333333

Python parses “1/3” as float, which is correct, but probably not really charming to the
eye. sympy.Rational () provides a means to represent rational numbers:

from sympy import Rational

print(x + Rational(l, 3))
print(Rational (’ 0.5’ )xy)

x + 1/3
y/2

Although Rational ) is extremely useful, there are other more user-friendly ways to
achieve the same effect.

sympy . SQ) converts singleton expressions, given as strings, to their SymPy equivalents.
Compare the code cell above with this:

from sympy import S

print(x + S('1/3°))
print (S("1/2")*y)

x + 1/3
y/2

Similarly, the function sympy.sympify() converts arbitrary expressions, given as
strings, to their SymPy equivalents. It is assumed that all relevant symbols have already
been declared as such. Two examples are explored here:

from sympy import sympify

D_s = sympify(’ (x+y)=*exp(x)*cos(y)’)

cosdiff = sympify("cos(x)*cos(y) + sin(x)#sin(y)")
print(D_s)

print (cosdiff)
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(x + y)*exp(x)=xcos(y)
sin(x)*sin(y) + cos(x)*xcos(y)

D_s should behave in an identical manner to the D defined earlier.

We saw that sympy . subs () provides symbolic function evaluations. If you prefer nu-
merical values for function evaluations, you can obtain those with sympy.evalf(),
which takes a single optional integer argument, the precision. Consider the following
example:

cospi4 = cosdiff.subs([(x, sympy.pi/2), (y, sympy.pi/4)]1)
print((cospi4, cospi4.evalf(), cospi4d.evalf(6)))

(sqrt(2)/2, 0.707106781186548, 0.707107).

After substituting x and y with corresponding values, we can see three different outputs:
subs () returns the symbolic result, evalf() returns the numerical result with some
default precision, and evalf(6) returns the same numerical result with a precision of
six digits.

A different way to evaluate functions numerically is provided with sympy.NQ). Be

aware that N(<expr>, <args>) actually serves as a wrapper and is the equivalent of
using sympify(<expr>).evalf(<args>).

All of this is perfectly adequate for a few selected values of the arguments, but what if
we want to use the expression as a function, preferably a ufunc in the sense of Section
4.2.1? The SymPy function sympy.lambdify() does precisely that. It takes as argu-
ments a tuple of the function arguments, the name of the expression, and the Python
base library to be used. In practice, it’s extremely easy:

from sympy import lambdify

func = lambdify((x, y), cosdiff, ’'numpy’)
xn = np.linspace(®, 2xnp.pi, 4)

func(xn, 0.0)

array([ 1. , —0.5, —=0.5, 1. 1)

Matrices and Vectors

For the sake of completeness, we introduce matrices and vectors at this point. SymPy
implements matrices with the Matrix class, and an n-vector as an n X 1 matrix. The
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constructor requires an ordered /ist of rows, where each row is an ordered list of ele-
ments. As an example, we create a matrix:

from sympy import Matrix

M = Matrix([[1, x]1, [y, 11D
M

Matrix([[1, x], [y, 111)

a vector:

V = Matrix([[u], [v]])
print (V)

Matrix([[ul, [v11)

and compute the product of both:

print (MxV)

Matrix([[u + v#x], [uxy + v]])

which, of course, uses matrix multiplication in this case (unlike NumPy; see Section
4.7.1). A surprisingly large number of functions/methods can be applied to matrices.
Unfortunately, we can only introduce a small subsample and will need to leave it to the
reader to explore SymPy’s full matrix capabilities.

One useful method of the Matrix class is eigenvects(), which returns a list of
tuples, where each fuple contains an eigenvalue, multiplicity, and a basis for the eigen-
vectors. For square matrices, the transpose (M.T), determinant (M.det()), and inverse
(M.inv(Q)) are readily available as attributes or class methods.

Before we let the reader explore the matrix capabilities of SymPy, we would like to point
out an important detail. We stated above that symbols were immutable. This assertion
needs to be qualified, and at this point the beginner might like to review the same issue
for lists; see Section 3.5.4. A matrix M is immutable, but its content may be changed
freely:

M[0O,1]=u
M

Matrix([[1, ul, [y, 111)
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Differentiation

Suppose D is defined as in Section 7.1. We can use sympy .diff() to derive the first-order
derivative of D with respect to x:

from sympy import diff
print(diff(D, x))
(x + y)*exp(x)=xcos(y) + exp(x)xcos(y)

Alternatively, we could also use D.diff(x) resulting in the same expression. This sec-
ond version relies on the fact that D is a symbol object. Higher derivatives are computed
by providing the order as additional argument, e.g.,

print(D.diff(x, 2))
(x + y + 2)xexp(x)xcos(y)

or simply by adding more variable identifiers,

print(D.diff(x, x))
(x +y + 2)xexp(x)xcos(y)

Sometimes we may not wish to compute the derivative explicitly, so-called “lazy” dif-
ferentiation. This is accomplished by the sympy.Derivative() function: note the
capital letter. If, later, we want to carry out the evaluation, then the class method doit ()
carries out the postponed calculation:

from sympy import Derivative

D_xyy = Derivative(D, x, y, 2)
print(D_xyy, D_xyy.doit())

Derivative((x + y)*xexp(x)*cos(y), x, (y, 2)) —((x + y)xcos(y) + 2*sin
(y) + cos(y))=*xexp(x)

Integration

Indefinite integration is the inverse of differentiation and SymPy treats it accordingly.
As with all computer algebra systems, the “constant of integration” is never shown
explicitly. The following code cell integrates function D indefinitely over y, utilizing the
sympy . integrate () function and the sympy.symbols.integrate() method:
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from sympy import integrate

print(integrate(D, y))
print(D.integrate(y))

(xxsin(y) + y*xsin(y) + cos(y))=xexp(x)
(xxsin(y) + y*xsin(y) + cos(y))=xexp(x)

Naturally, indefinite integration over x and y works just the same way:

print(integrate(D, x, y))
print(D.integrate(x, y))

(xxsin(y) + y*xsin(y) — sin(y) + cos(y)):*exp(x)
(xxsin(y) + y*xsin(y) — sin(y) + cos(y)):*exp(x)

“Lazy” integration is handled by the sympy.Integral () function:
from sympy import Integral
yD = Integral(D, y)

print (yD)
print(yD.doit())

Integral ((x + y)xexp(x)*xcos(y), y)
(xxsin(y) + y*xsin(y) + cos(y))=xexp(x)

Definite integration works very similarly. One simply provides integration parameters
in the form of a tuple (<variable>, <lower limit>, <upper limit>):

print(integrate(D, (y, 0, sympy.pi)),
D.integrate((y, 0, sympy.pi)))

—2xexp (x) —2xexp(x)

Multiple definite integrals are handled in the obvious way:

print(integrate (exp(—x**2—y*%2), (x, 0, sympy.oo),
(y, 0, sympy.00)))

pi/4

Of course, there is also a “lazy” version:

dint = Integral (exp(—x##2—y*%2), (x, 0, sympy.oo),
(y, 0, sympy.o0))
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print(dint)
print(dint.doit())

Integral (exp(—x#*2 — y**2), (x, 0, o00), (y, 0, 00))
pi/4

As every practicing scientist knows, differentiation is a reasonably straightforward op-
eration. One needs to know the derivatives of a few elementary functions, the “product”
or “Leibniz” rule, and the rule for differentiating a function of a function. The rest is
algebra, and is readily automated.

Integration can be very much harder. Certainly one needs to know plenty of standard
integrals, including the definitions of many “special functions.” For instance, the indef-
i

inite integral of the Gaussian function e™* cannot be expressed in terms of elementary
functions, and so mathematicians have defined it as an error function:

erf(z) = % foz e du.

T
These problems are amenable to automation. However, the Achilles heel of all integra-
tors is the following: one may need several changes of independent variables in order
to reduce a given integral to a standard one. Such changes are learned by experience,
and offer a serious problem to computer scientists. Thus it is an ongoing challenge to
developers to include enough algorithms to handle tricky cases. SymPy has no prob-

lems with the following two examples, although it might take some time to receive the
results:

from sympy import sqrt
print(integrate(sqrt(x+sqrt(xx*2+1))/x, X))

sqrt (x)xgamma(—1/4)x*2:xgamma (1/4) *
hyper((—1/4, —-1/4, 1/4), (1/2, 3/4),
exp_polar(Ixpi)/x*%2)/(8xpixgamma(3/4))

from sympy import sin
print(integrate(exp(—x)*sin(x**2)/x, (x, 0, sympy.00)))

sqrt (2)#(—gamma(—1/4)xgamma (1/4)+hyper((1/2, 1), (3/4, 5/4, 3/2),
—1/64)/4 + pixfresnelc(sqrt(2)/(2xsqrt(pi)))xgamma(—1/4)xgamma
(1/4)/2 — 3xpixfresnels(sqrt(2)/(2xsqrt(pi)))xgamma(—3/4)+gamma
(—1/4)xgamma(5/4) /(2«gamma(1/4)) + pixgamma(l/4)xgamma(3/4))/(8x*
pi)
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If SymPy cannot integrate your expression, it will eventually, after trying all of its store
of algorithms, return the “lazy” integral form, a mark of failure. This can be deceptive,
so please be aware.

Series and Limits

Suppose we really wanted to know the value of that last integral, at least for moderate
values of x. We first define

foo = exp(sin(x))

We could consider first expanding foo as a Taylor series in x. This ought to be uni-
formly convergent for arbitrary y. Then term-by-term integration should give a useful
approximation. SymPy allows us to calculate, e.g., the first 10 terms in the Taylor series
expansion with sympy.symbols.series() and integrate it:

foo_ser = foo.series(x, 0, 10)
foo_ser.integrate(x)

X + X%%2/2 + X%%3/6 — X*%%5/40 — x%%6/90 — x%x%x7/1680 + x%x%x8/720 + 31xx
#%9/51840 + x*+10/56700 + O(x*x%11)

As expected, we obtain the expansion up to order 10; the remainder term obeys the
usual applied mathematicians’ “big-Oh” rules. If it bothers you, then remove it via a
class method, e.g.:

print (foo_ser.integrate(x).remove0())

X%%10/56700 + 31%x%%9/51840 + x%x%x8/720 — x%%7/1680 — x%%6/90 — X
#%5/40 + X%%3/6 + X#%2/2 + X

(Note the reversed order of terms.)

Limits are handled in a straightforward way, e.g.:

from sympy import limits
print (limit((foo—1-x)/x**2, x, 0))
1/2

At points of discontinuity, limits from below and from above will differ. By default
limit () takes the limit from above, but both limits are readily available:

goo = 1/(x — 1)

print(limit(goo, x, 1, dir="-"))
print(limit(goo, x, 1, dir='+"))
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Equality, Symbolic Equality and Simplification

As our snapshot of some of SymPy’s capabilities has shown, it can create quite compli-
cated expressions, which might not be immediately useful to the user. Can we simplify
them? How would we test two long expressions to see if they were the same?

Let us start from pure Python. As we have seen, the “equals” sign (=) has nothing to
do with equality; it is the Python assignment operator (e.g., a=3), and SymPy of course
respects this. Numerical equality is handled by the double equality sign ==, e.g.:

12/3 ==
True

Unfortunately for the end user, the SymPy developers have reserved == for “Symbolic
equality”, which is not what the user wants. As an example, consider the two expres-
sions:

exl = (x+y)#*2
eX2 = Xk%2 + 2%X%y + Yxk2
exl == ex2

False

They are not “symbolically equal,” for one is a product of sums, while the other is a sum
of products. Fortunately, SymPy can resolve this impasse. We can expand expressions
with sympy . expand() or sympy.symbols.expand():

from sympy import expand

print (expand(ex1))
print(exl.expand())

Xkk2 + 2%XkYy + Yhkk2
X#%2 + 2%Xky + Ykk2

and we can factor expressions with sympy . factor() or sympy.symbols. factor():

from sympy import factor
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print (factor(ex2))
print(ex2. factor())

(X + y)#*%2
(x + y)#*2

Both methods do what we might expect and we can exploit them for our problem:

print(exl.expand() == ex2)
print(exl == ex2.factor())

True
True

expand() is an extraordinarily versatile function and we refer to its documentation
for details. In particular there are many ways to extend its scope to more specialized
expressions, e.g., sympy.expand_trig() for trigonometric expressions:

from sympy import expand_trig

print (expand_trig(sin(x+y)))
print (expand(cos(x—y), trig=True))

sin(x)*cos(y) + sin(y)xcos(x)
sin(x)*sin(y) + cos(x):*xcos(y)

One has to be particularly careful when treating powers, because a number of apparent
identities are not true. For example it is not true that (x*)* = x* in general; e.g., Va2 #
x, for a simple counterexample is ((=1)*)'/2 = 1 # (=1)>1/2 = (=1)! = —1. However,
the identity is true if b is an integer. Similarly it is not true that x*y* = (xy)*, try x =y =
—1,a = 1/2. This identity does hold if both x and y are positive real numbers and a is
real. SymPy is well aware of these problems and will not use these identities unless the
user defined the Symbols with the appropriate restrictions in sympy . symbols().

An extremely useful function is sympy.cancel () which will take any rational expres-
sion and try to reduce it to canonical form. As an example, consider the matrix M defined
and altered in Section 7.3:

A = MxM.inv ()
print (A)

Matrix([[—uxy/(—uxy + 1) + 1/(—uxy + 1), 0], [0, —uxy/(—uxy + 1) +
1/(-uxy + 11D

This is hard to read, but the result is definitely not the identity matrix. We apply cancel ()
to get canonical forms of the nonzero elements of A:
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A[1,0] = A[1,0].cancel()
A[1,1] = A[1,1].cancel()
print(A)

Matrix([[1, 01, [0, 111)

Yes, this is now clearly the identity matrix.

To see why cancel () is not a default option, have a look at this simple example (we
abstain from printing the entire result here as our modest contribution to forest conser-
vation):

c = (x%%256 — 1)/(x—-1)
print(c)
print(c.cancel())

(x%%256 — 1) /(x — 1)
X#%255 + X%%254 + X%%253 + X*%252 + x%%251 + x%x250 ...

.+ X#xd 4+ Xk%3 + Xkk2 + X + 1

Solving Equations

Readers of the last section could argue, with some justification, that there appears to be
no way of defining an “equation,” since = and == have both been used up. Traditionally,
an equation has both a left-hand side, lhs, and a right-hand side, rhs. Using definitions
from before, let us set:

lhs = D

rhs cosdiff

There are two ways in SymPy to create an equation, both given in the following code
cell:

from sympy import Eq

eqnl = Eq(lhs, rhs)
eqn2 = lhs — rhs
print(eqnl)
print(eqn2)

Eq((x + y)*exp(x)=xcos(y), sin(x)*xsin(y) + cos(x)xcos(y))
(x + y)xexp(x)=xcos(y) — sin(x)*sin(y) — cos(x)*cos(y)
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The expression eqnl produces the traditional form of an equation as an instance of
sympy .Eq. The second, eqn2, is equally valid in contexts where an equation is ex-
pected. SymPy implicitly adds the missing =0.

The universal workhorse to solve equations is sympy.solvers.solve() (see Section
7.6.3), but for equations in one variable, sympy.solveset() (see Section 7.6.1) is
recommended, while one is asked to use sympy.linsolve() (see Section 7.6.2) for
linear systems of equations.

Equations with One Independent Variable

Simple univariate equations, written as expressions, are straightforward. For example:
from sympy import solveset

print(solveset(4xx—3, X))
print(solveset (3#X*%3—16%X%%2+23%X—6, X))

{374}
{1/3, 2, 3}

As the name suggests, solveset () returns a set of solutions, and so multiplicities are
ignored. However, sympy.roots() can supply these:

from sympy import roots
quad = x#%2 — 2xx + 1

print(solveset(quad, x))
print (roots(quad))

Simple transcendental equations are solved over the complex plane, by default:

solveset(exp(x)—1, x)
ImageSet (Lambda(_.n, 2x_nxIxpi), Integers)

This output seems a little cryptic; the rendered version probably makes more sense:

{2ninln € 7}

If solveset () cannot solve an equation, it returns a cop-out:

print(solveset(cos(x) — x, X))
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ConditionSet(x, Eq(—x + cos(x), 0), Complexes)

The output is mathematics jargon for the following: x is a complex number that is also
a member of the set of numbers satisfying cos x = x!

Linear Equations with More than One Independent Variable

This is not a straightforward topic, and it is hard to find a clear concise account. In the
following paragraphs, we look, in an abstract way, at a system of » linear equations in 7
unknowns. For the remainder of this section, we look at the simplest case, n = 2. Read-
ers unfamiliar with the ideas in the next paragraphs should skip forward and backward
between here and the following paragraphs, which provide a real-life example.

Let A be a n X n matrix with constant components, and let b be a given n-vector. Our
aim is to solve the nth order linear system:

Ax=b

for an n-vector of unknowns, x. The general case is also the simplest. This is when A
is nonsingular, i.e., detA # 0. Then the inverse A~ exists, and so there is a unique
solution:

x=A"p.

Next, suppose A is singular. Consider first the set of vectors k such that Ak = 0. This is
called the kernel of A. It is easy to see that the kernel is actually a vector space. (Note
that in the previous case, A nonsingular, the kernel is an empty set.) There is another
vector space associated with A, its range, which is the set of vectors r such that one can
find an x such that Ax = r. As an aside, there is an important result that the sum of the
dimensions of the kernel and range is n. We can now split the case A is singular into two
subcases. Suppose first that the given vector b lies in the range. Then, by definition, we
can find an x( such that Axo = b. However, consider x = x + k, where k is an arbitrary
vector in the kernel. Then Ax = A(xy + k) = Axo + Ak = b+ 0 = b. Hence, we have
solutions, but infinitely many of them! However, if b is not in the range, then there are
no solutions at all — the equations are inconsistent.

Let us consider some concrete examples in two dimensions. Suppose

1 2 0
=l 3ol
in other words, we are considering the linear system:

x+2y=0, 3x+4y=2.

Computing the inverse of A is a highly inefficient approach to finding the solution.
Elementary methods, or Gaussian elimination, quickly show x = 2, y = —1. Next, we
consider a singular A and set, say,
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A= 1 2 Alf =(* + 2y _ X .
2 4 y 2x + 4y Y
We see that the range of A is the set of vectors (X, Y)” such that Y = 2X, while the

kernel is the set of vectors (x,y)” such that x = —2y. Here both are one-dimensional.
Suppose first that b = (1,2)7, i.e., we are considering the linear system:

x+2y=1, 2x+4y=2.
Then by elementary methods we find
x=1-24, y=4, Aarbitrary.

It should be evident that the A-contribution comes from the kernel. Finally, consider the
case b = (1, 1), which is not in the range. The linear system

x+2y=1, 2x+4y=1
has no solutions!

We now examine how SymPy’s 1insolve () handles these three possibilities. Obvi-
ously this is gross overkill for such simple systems, but the examples generalize in the
obvious way to much more complicated problems.

One approach is to specify the equations in scalar form within a list. For an explicit ex-
ample we consider the nonsingular case. We also need to specify a list of the unknowns:

from sympy import linsolve

eqns = [x+2xy, 3#x+4xy—2]
print(linsolve(egns, [x,y]))

{2, -}

In many cases, it will be more convenient to specify the system matrix A and the right-
hand-side vector b. We consider the many-valued solution case:

A = Matrix([[1, 2], [2, 4]11)
b = Matrix([[1], [2]11)
print(linsolve((A, b), [x, y1))

{1 — 2%y, ¥}

Here the solution is to be interpreted as follows: y can take arbitrary values, and then
x =1 —2yis determined.

If the equations are the output from some other function, they are frequently supplied
in augmented matrix form, i.e., the b-vector is adjoined as an extra last column to the
A-matrix. We illustrate this example with the final example discussed:
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Ab = Matrix([[1, 2, 11, [2, 4, 21D
print(linsolve(A_b, [x, y1))

{1 - 2%y, D}

7.6.3 More General Equations

The SymPy function solve() is the universal workhorse for nonlinear equations, or
systems of such equations. As a first example, consider the following system of equa-
tions as we run it through solve():

from sympy.solvers import solve

neq = [y*#%2 — xX*x%2 — 2%x —1, 3%x — y —1]
print(solve(neq, [x, y1))

[0, -1, 1, 2)]

Next consider some equations involving square roots:

print(solve([sqrt(x) — sqrt(y) -1, sqrt(x+y) — 21, [x ,y1))

[(sqrt(7)/2 + 2, 2 — sqrt(7)/2)]

However, problems arise when we consider nth roots, where n is an odd integer, i.e.,
3,5,.... As a concrete example consider the two equations

m =x+1, m =x-1.
By cubing each equation, one sees that the solutions are, respectively,
x=-3,0,0, x=0,0,3.
On the other hand, solve () returns only parts of these solutions:

from sympy import root

eql = root(3#x+1, 3) — x — 1
eq2 = root(3%x—1, 3) — x + 1
print(solve(eql, x), solve(eq2, x))

[0] [3]

What has gone wrong? In the first case, the root x = —3 is missing, for which VBx+1=
V=8 = —2. In the second, the root x = 0 is missing, for which V3x—1 = V-1 = —1.
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The default version of solve() ignores the cube roots of negative numbers! However,
setting the flag check to False corrects this errant behavior:

print(solve(eql, x, check=False), solve(eq2, x, check=False))

[-3, 6] [0, 3]

Many equations have no known analytic solutions. If a numerical solution is accept-
able, then SymPy offers a variant sympy . solvers.nsolve() which does that:

from sympy.solver import nsolve

print(nsolve(eql, x, 0))
print (nsolve(eq2, x, 0))

0
3.0 + 6.34781618646896e—51x%I

nsolve() requires an initial guess for the solution; we use zero in both cases. Although
the second solution is a complex number, its imaginary part is negligible and thus the
solution is 3.

Solving Ordinary Differential Equations

A surprisingly large gamut of theoretical science is ruled by ordinary differential equa-
tions, and unfortunately only a few of them can be solved analytically, the subject of this
section. The overwhelming majority need numerical treatment, and this difficult topic
was explored in Section 5.8.

Turning to analytical solutions, we remark first that the novice should not expect mir-
acles. Note that solving the indefinite integral y = f f(x)dx is equivalent to solving
the differential equation dy/dx = f(x), and so the problems attendant on the first ex-
ercise carry over to the second. SymPy will be able to solve only a limited range of
ordinary differential equations. In this discussion, we will introduce the tools provided
by SymPy, which should enable the reader to approach more complex problems with
the help of the corresponding documentation.

SymPy’s main workhorse for solving ODEs is sympy.solvers.ode.dsolve(). We
start with some examples of what dsolve() can do and what it cannot do. Let us start
with a single linear equation with constant coefficients:

from sympy import Function
from sympy.solvers.ode import dsolve

f = Function(’'£f’)
ode = f(x).diff(x, 2) + 4xf(x)
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sol = dsolve(ode, f(x))
print(sol)

Eq(f(x), Cl#sin(2xx) + C2xcos(2*x))

As usual by default, “ = 0” is missing from the differential equation. Alternatively, one
coulduse ode = Eq(f(x).diff(x, 2) + 4*f(x), O0) for more clarity. The correct
general solution is given, which includes two integration constants C1, C2, displayed as
Cy, C,. Now suppose we would like to impose initial conditions, say, f(0) = 2, f/(0) =
0. We can provide a dictionary of these initial conditions to the keyword argument ics
in the following way:

print(dsolve(ode, f(x), ics={f(x).subs(x, 0): 2,
f(x).diff(x).subs(x, 0): 0}))

Eq(f(x), 2xcos(2%x))

As we see, C; = 0 and C, = 2 for this set of initial conditions and the particular solution
is given by

psol = sol.subs([('C27, 2), ('C1l’, ®1)
psol

Eq(£f(x), 2%cos(2%x))

Those first-order nonlinear equations that are “exact” are solved quickly:

ode2 = sin(£(x)) + (xxcos(£f(x)) + f(x))*£f(x).diff(x)
print(dsolve(ode2, £f(x)))

Eq(Cl + xxsin(£f(x)) + f(x)*x2/2, 0)

First-order equations with quadratic terms are often of Bernoulli type and usually yield
an exact solution:

from sympy import log

ode3 = xxf(x).diff(x) + £(x) — log(x)*f(x)**2
print(dsolve(ode3))

Eq(f(x), 1/(Clxx + log(x) + 1))

Notice that if there is only one dependent variable, as here, it is not necessary to specify
it as an argument to dsolve().
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Certain linear equations with variable coefficients are also easy to solve, e.g., an inho-
mogeneous Euler equation:

ode4d = £(x).diff(x, 2)xxx%2 — 4%f(x).diff(x)*x + 6%xf(X) — X*%3
print (dsolve(ode4))

Eq(f(x), x*x2x(Cl + C2xx + x*xlog(x)))

Some equations yield only to the solution by series technique:

ode5 = xx(£(x).diff(x, 2)) + 2x(£(x).diff(x)) + xxf(x)
print(dsolve (ode5))

Eq(f(x), (Clxbesselj(1/2, x) + C2xbessely(1/2, x))/sqrt(x))

Besides equations in one variable, we can also solve equations with two or more vari-
ables:

ode6 = [£(x).diff(x) — 2xf(x) — g(x), gx).diff(x) —£f(x) — 2xg(x)]
print(dsolve (ode6))

[Eq(£(x), —Clxexp(x) + C2xexp(3%xx)),
Eq(g(x), Clxexp(x) + C2xexp(3#%x))]

However, there is a serious limitation for elementary solvers such as dsolve (). In many
real-world examples the given equation is not of a standard form, but is related to one
via a simple transformation. Alas, dsolve () cannot deal with this. A simple example
suffices to illustrate the problem, viz., f'(x) = (x + f)*:

print(dsolve(f(x).diff(x) — (x + £(x))*%x2))

Eq(f(x), (—Clxx + I*Cl + xxexp(2xI*x) + Ixexp(2xI%x))/
(C1 — exp(2%Ixx)))

dsolve() returns as a default the power series expansion about x = 0. However, con-
sider the simple transformation g(x) = x+ f(x). This transforms the differential equation
into one with the independent variable absent, g’(x) = 1 + g°:

print (dsolve(g(x).diff(x) —1 — (g(x))#*%2))
Eq(g(x), —tan(Cl — x))

Thus the solution of dsolve(f(x).diff(x) — (x + f(x))**2) is f(x) = tan(x —
C1) — x, which dsolve () has failed to pick up.
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Solving Partial Differential Equations

SymPy provides some limited functionality to solve partial differential equations (PDEs)
as part of the sympy.solvers.pde module. Due to the rather specific nature of PDEs
and to keep this book reasonably short, we simply refer the interested reader to the
corresponding documentation.

Plotting from within SymPy

In Chapter 6, we already introduced Matplotlib as a graphics workhorse capable of pro-
ducing top-quality plots, and most scientist users will need to gain familiarity with it.
Its input is numerical data, typically in NumPy array format. SymPy produces expres-
sions, which are not quite the same thing. However, we saw in Section 7.2 that the
lambdify () function can be used to transmogrify expressions into NumPy functions,
exactly what is needed.

However, SymPy will often be used as an exploratory tool, and it would be very useful to
provide a built-in graphics facility without all of the cosmetic features of full Matplotlib.
SymPy provides a plotting module, based, of course, on Matplotlib, for this purpose.
It produces fully functional graphics functions in two and three dimensions, including
some features not available in Matplotlib. In the following, we will only briefly intro-
duce some limited plotting capabilities and leave it to the interested reader to explore
other options.

For line plots we can utilize SymPy’s version of Matplotlib’s plot() (see Section
6.4.1), which is called sympy.plotting.plot(), but has a syntax that is rather differ-
ent:

from sympy.plotting import plot
figl = plot(sin(x), x, x*x2, (x, —4, 4),
title="Plotting Sines with SymPy’)

The output is shown in Figure 7.1; it is not ideal, but it is serviceable. In contrast to
Matplotlib’s plot () (see Section 6.4.1), the SymPy version takes as arguments an arbi-
trary number of functions, a fuple indicating the variable and ranges over which to plot,
(x, -4, 4),and you can directly assign a title label.

We turn next to two-dimensional curves defined implicitly. Matplotlib’s plot () func-
tion required no modification to handle these. However, SymPy has a special function,
sympy.plotting.plot_parametric(), for this purpose, which we illustrate with a
simple case:

(x,y) = (cos 0 + % cos 76 + % cos 176, sinf + % sin 70 + % sin 176).
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Plotting sines with SymPy

15.0 4
12.5 4
10.0 4

7.5 4
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—-2.5 7

—-5.0 -

Figure 7.1 A simple line plot for different functions generated with SymPy’s plot () function.

Notice in the code here, that we never need to specify the number of evaluation points.
The SymPy function can determine what it thinks is needed. Of course, if it gets it
wrong, there is always a manual override:

from sympy.plotting import plot_parametric

xc = cos(u) + cos(7%u)/2 + sin(17%u)/3

yc = sin(u) + sin(7xu)/2 + cos(1l7xu)/3

fig2 = plot_parametric(xc, yc, (u, 0, 2xsympy.pi))

Figure 7.2 A parametrically defined curve using SymPy’s plot_parametric() function.
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The output is shown in Figure 7.2. Because Matplotlib is in control, by giving the plot
object a name, here £ig2, we can save it to a file, say foo.pdf via an extra line, using
a class method:

fig2.save(’ foo.pdf’)

SymPy plotting contains a functionality not present in Matplotlib, the ability to plot one
or more curves defined implicitly in the plane. This feat can be accomplished with
the function sympy.plotting.plot_implicit(). We consider the curve described
by x* + xy + y* = 1, which is an ellipse, but it is not so easy to give it in explicit or
parametric form. The input to plot_implicit () is the equation, and the ranges of the
independent variables, resulting in Figure 7.3:

from sympy.plotting import plot_implicit
fig3 = plot_implicit(x#*2+x+y+y**x2 — 1, (x,—1.5,1.5),
Gry=1:5,1.5))

We now give an example with more complicated data. We are aiming to determine the
curve in the complex plane given by | cos(z?)| = 1, where z = x + iy, and x and y are
real. We first redefine x and y within SymPy, ensuring that they take only real values.
We then define z = x + iy and w = cos(z?). We need to expand it in the form w = X +iY
for suitable X and Y, and that is what the next line does. Next we form wa = |w| with
the same expansion rules. (The reader may wish to review the relevant docstrings at this
point.) Finally drawing it is straightforward:

1.5 1

. -0.51

~1.04

—-1.5-

Figure 7.3 The implicitly defined curve x> + xy +y> = 1 generated with Sympy’s
plot_implicit() function.
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Figure 7.4 The implicitly defined curve | cos((x + iy)*)| = 1 generated with SymPy’s
plot_implicit() function.

from sympy import Abs

X, y = symbols("x y", real=True)
Z = X + sympy.Ixy

w = cos(zx%2).expand(complex=True)
wa = Abs(w).expand(complex=True)
fig4d = plot_implicit(waxx2— 1)

The output is shown in Figure 7.4.

Our final example is to describe graphically the intersection in the positive quadrant of
the two regions defined by x*> + y*> < 4 and xy > 1, respectively, i.e., the region within
the circle that lies above the hyperbola branch. We need the function sympy . And to take
both inequalities into account. The result is shown in Figure 7.5:

from sympy import And

fig5 = plot_implicit(And(x*%2 + y*%2 < 4, xxy > 1), (x,0,2),
(y, 0, 2), line_color=’lightgrey’)
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Figure 7.5 The region in the first quadrant defined by x> + y> < 4 and xy > 1, plotted using
SymPy’s plot_implicit () function.

The SymPy plotting function sympy.plotting.plot3d parametric_line() allows
you to plot curves in three dimensions. We illustrate this function with a single para-
metrically defined curve, a conical spiral, shown in Figure 7.6:

from sympy.plotting import plot3d_parametric_line
figb = plot3d_parametric_line (ussympy.cos(4*u), ussympy.sin(4xu),
u, (u, 0, 10))

Figure 7.6 A conical spiral (x,y, z) = (ucos 4u, usin 4u, u) plotted with SymPy’s
plot3d_parametric_line().

Finally, drawing surfaces based on Cartesian coordinates is straightforward. Here we
show how to superimpose graphs of z = x*> + y? and z = xy, drawn on different
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rectangular grids with sympy.plotting.plot3d(), the result of which is presented
in Figure 7.7:

from sympy.plotting import plot3d
fig7 = plot3d((x*%2 + y=*%2, (x, —3, 3), (y, -3, 3)),
(X*Y, (xy _51 5)! (y; _51 5)))

f(x, y)

Figure 7.7 The surface z = x* + y> drawn for -3 < x,y < 3 and z = xy drawn for -5 < x,y < 5
with SymPy’s plot3d() function.
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8.1

Pandas: Data Handling

Pandas is a Python package for data analysis and manipulation. The development of the
package started in 2008 and its name derives from panel data, a term that is common
for multidimensional data sets as utilized in the fields of statistics and econometrics.
The main idea behind Pandas was to fill a gap in the Python ecosystem that existed at
that time: a lack of a comprehensive framework to deal with large amounts of — espe-
cially labeled — data sets and time-series data. Similarly to NumPy, Pandas is optimized
for computational efficiency by implementing much of its functionality using C, while
presenting a well-structured Python API to the user. Some concepts in Pandas lean on
similar concepts in other data analysis tools, e.g., the DataFrame is closely modeled af-
ter data.frame objects available in the R programming language. In this chapter, we will
introduce some basic functionality of Pandas to help readers interested in data analysis
to get up to speed quickly. As usual, we will only scratch the surface of what is possible
with Pandas, so we urge readers to explore Pandas in this chapter and the corresponding
Jupyter Notebook (cambridge.org/9781009029728/ch8).

In the following, we will always assume that Pandas has been imported as pd:

import pandas as pd

Series

Pandas provides two key concepts for storing data: Series and DataFrame objects. Se-
ries (pd.Series) can be used to store one-dimensional, and two-dimensional data. We
can generate a Series easily from a list or array. Let us consider the case that you want
to store some monthly average temperatures as a Series:

s = pd.Series([—-0.3, 0.4, 3.9, 7.4, 12.6, 15.0, 17.2, 16.8, 13.1,
9.1, 3.7, 0.8], name="temp C’)

S

0 —0.3
1 0.4
2 3.9
3 7.4
4 12.0
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15.
17.
16.
13.
9.
10 3.
11 0.8

Name: temp_C, dtype: float64

O 00 N o wuv
N R B 00N

Similar to arrays, Series have specific data types; but by contrast, they also have a name
attribute and each element of the Series has a unique row label or index label. In this
specific case, those are automatically generated ascending integer numbers. The row
label can be used to address individual elements of the Series, e.g., the fourth element
can be extracted with

s[3]

7.4

Note that this notation is very similar to the way indexing works in lists and arrays, but
we will see later that indexing Series allows you to use all kinds of labels and not only
integer indices. Series come with a wide range of methods for data analysis; we provide
a few examples in the following code cell:

print(’'mean:’, s.mean())

print(’min:’, s.min())

print(’standard deviation:’, s.std())

print(’index of max element:’, s.argmax())
print(’values as list:’, s.values)

print(’indices of sorted Series:’, s.argsort().values)
print(’cumulative sum:’, s.cumsum().values)

mean: 8.258333333333331

min: —0.3

standard deviation: 6.520242373260415

index of max element: 6

values as list: [-0.3 0.4 3.9 7.4 12. 15. 17.2 16.8 13.1 9.1
3.7 0.8]

indices of sorted Series: [ ® 111 10 2 3 9 4 8 5 7 6]

cumulative sum: [-0.3 0.1 4. 11.4 23.4 38.4 55.6 72.4 85.5 94.6
98.3 99.1]

Note that methods like argsort () or cumsum() return new Series objects; in the ex-
amples here, we convert those to lists, which take up less space when printed. For a
more in-depth discussion of Pandas functions and methods, please refer to Section 8.4.
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Let us have a closer look at index labels, which are called indexes in Pandas. Right now,
our index consists simply of the infeger position of each element, which is identical to
indices utilized in lists and arrays. One advantage of Series over these container struc-
tures is that you can create your own index. In our temperature measurement example,
we could, for instance, use the abbreviated month as a string as index:

s2 = s.set_axis([’jan’, ’feb’, ’mar’, ’apr’, ’'may’, ’'jun’,
"jul’, ’aug’, ’sep’, ’oct’, ’nov’, ’dec’])

s2

jan -0.3

feb 0.4

mar .9

apr 7.4

may 12.0

jun 15.0

jul 17.2

aug 16.8

sep 13.1

oct 9.1

nov 3.7

dec 0.8

Name: temp_C, dtype: float64

This representation certainly looks very nice, but, more importantly, it allows us to index
the mean temperature of a given month in a very intuitive and readable way:

s2[’oct’]

As aresult, the index may carry meaningful information and Series objects can therefore
be considered to carry two-dimensional data. Playing devil’s advocate, one might argue
that this intuitive way to index Series objects is not a revolutionary advantage over other
sequence containers such as lists or arrays. While there is a grain of truth in this thought,
Series objects provide a huge range of useful methods (as shown) and there is at least
one more useful property, as we will see in the following.

DataFrames

DataFrames are based on the data.frame concept of the R programming language and
provide a handy way to deal with tabular data and therefore consist of rows and columns.
As we will see in the following, individual columns of DataFrames are actually Series
objects, building a bridge to the previous section. There are different ways to build
DataFrames from scratch. Here, we focus on a method that is easy to understand and


https://doi.org/10.1017/9781009029728.009
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.009
https://www.cambridge.org/core

8.2 DataFrames 217

applicable to most problems: we will build a DataFrame from a dictionary. This hap-
pens in such a way that dictionary keys refer to column names and dictionary values
are sequences of common length containing the actual column data. For illustration,
we extend our example from Section 8.1 by adding more weather data: our DataFrame
instance contains average temperatures (temp_C), average rain amounts (rain_mm), and
labels corresponding to the month in which those measurements have been taken (mon):

df = pd.DataFrame ({

mon - :

[’jan’, ’feb’, 'mar’, ’apr’, ’may’, ’jun’,
"jul’, ’aug’, ’sep’, ’oct’, ’'nov’, ’dec’],
"temp.C’: [-0.3, 0.4, 3.9, 7.4, 12.0, 15.0, 17.2,
16.8, 13.1, 9.1, 3.7, 0.8],
’rainmm’: [59, 57, 84, 100, 143, 153, 172, 164,

135, 89, 88, 801}

df

mon temp_C rain_mm
0 jan —-0.3 59
1 feb 0.4 57
2 mar 29 84
3 apr 7.4 100
4 may 12.0 143
5 jun 15.0 153
6 jul 17.2 172
7 aug 16.8 164
8 sep 13.1 135
9 oct .1 89
10 nov .7 88
11 dec 0.8 80

Similar to the Series objects introduced earlier, Pandas certainly knows how to represent
the data contained in df in a visually appealing way. Note that df is a common identifier
for a DataFrame object and we stick to this convention throughout this book. A different
method to build DataFrames from scratch utilizes a list of lists, the latter of which
represent the individual rows of the resulting DataFrame:

df2 = pd.DataFrame (

[[’jan’, —0.3, 59], ['feb’, 0.4, 57], ['mar’, 3.9, 84],
[’apr’, 7.4, 100], ['may’, 12.0, 143], [’jun’, 15.0, 153],
[’jul’, 17.2, 172], [’aug’, 16.8, 164], [’sep’, 13.1, 135],
[’oct’, 9.1, 89], [’'nov’, 3.7, 88], ['dec’, 0.8, 80]1],

columns=[’mon’, ’temp_C’, ’rain.mm’])

This example generates the same DataFrame as before. Finally, Pandas also provides
methods to read in data from a variety of file types, which we will discuss in detail in
Section 8.6.
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Axis Labels and Indexes

Every DataFrame has a columns attribute that provides you with a sequence of its
column labels:

df.columns
Index([’'mon’, 'temp. C’, ’rainmm’], dtype='object’)

Although the result is of type Index, it can be utilized like a /ist.

In general, an index is used in Pandas to store axis labels; in the case of df.columns,
it returns the column labels. In order to retrieve the row labels, you can invoke the
df.index attribute:

df.index
RangeIndex(start=0, stop=12, step=1)

The attribute returns a Rangelndex object, indicating that the row labels are a continu-
ous sequence starting at ® and ending just before 12 (the final element is 11) with a step
size of one. This object can be easily turned into a list:

list(df.index)
[e, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]

The row index labels are indeed the same labels that are shown in the first column (which
does not carry a column label) in our representation of df. Every DataFrame has a row
index; if none is provided in the generation of the DataFrame (as in our case), a simple
Rangelndex starting at zero is generated. However, our DataFrame contains a column of
month labels (mon) that would be perfectly suited as an index. Can we use this column
as index instead of the Rangelndex? Yes, we can: by invoking the df.set_index()
method on this column label:

df = df.set_index(’mon’)

df

temp_ C rain_mm
mon
jan —-0.3 59
feb 0.4 57
mar .9 84
apr 7.4 100
may 12.0 143
jun 15.0 153
jul 17.2 172
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aug 16.8 164
sep 13.1 135
oct 9.1 89
nov 3.7 88
dec 0.8 80

Note how the column of numerical row labels has disappeared and instead the column
of months is used as index (indicated by the offset of the mon column label compared to
the other column labels). Like most Pandas functions and methods, df.set_index()
does not modify df; instead, it returns a modified copy.

As a shortcut, you can also define the row index column in the generation of a DataFrame:

df = pd.DataFrame ({
temp C’: [-0.3, 0.4, 3.9, 7.4, 12.0, 15.0, 17.2, 16.8, 13.1,
9.1, 3.7, 0.8],
'rain.mm’: [59, 57, 84, 100, 143, 153, 172, 164, 135, 89, 88,

801},
index=[’jan’, ’'feb’, ’'mar’, ’apr’, ’'may’, ’jun’,
’jul’, ’aug’, ’sep’, ’oct’, ’nov’, ’dec’])
df
temp_C rain_mm
jan -0.3 59
feb 0.4 57
mar 89 84
apr 7.4 100
may 12.0 143
jun 15.0 153
jul 17.2 172
aug 16.8 164
sep 13.1 135
oct .1 89
nov o 88
dec 0.8 80

In this case, the row index has no specific label but this is also not necessary as it can
always be accessed via df.index.

Before we close this introduction to Pandas DataFrames, we would like to mention three
methods that will simplify your life, especially when dealing with large DataFrames.
Sometimes, it is useful to inspect only the first n or final n rows of a DataFrame. This
can be achieved with the methods df.head() and df.tail (), which are named after
the infamous Unix commands. Both methods extract a specific number of rows (five
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by default; this may be overridden by providing an integer number when calling the
method) from the DataFrame they are applied to:

df.head(3)

temp_C rain_mm

jan —0.3 59
feb 0.4 57
mar 3.9 84
df.tail(2)

temp_C rain_mm
nov 3.7 88
dec 0.8 80

Please note that both methods do not simply display excerpts from DataFrame df, but
actually return crops from this DataFrame, which in turn are DataFrames, as well.
Finally, the df.describe () method provides a statistical overview of the DataFrame
it is applied:

df.describe()
temp_C rain_mm

count 12.000000 12.000000
mean 8.258333 110.333333

std 6.520242 40.824087
min —0.300000 57.000000
25% 2.975000 83.000000
50% 8.250000 94.500000

75% 13.575000 145.500000
max 17.200000 172.000000

For each column in the DataFrame, the method returns a bouquet of statistical informa-
tion in a similar way as scipy.stats.describe() (see Section 5.7) does.

8.2.2 Accessing Data

Pandas provides different ways for accessing data stored in DataFrames and Series.! For
instance, Pandas supports indexing through the same mechanisms that we have learned
for lists and arrays. However, there are (admittedly rare) cases in which these mecha-
nisms are ambiguous and therefore might not lead to the expected result. Therefore, as
part of this book, we will only present the most explicit and preferred way for indexing

' While the following discussion focuses on DataFrames, you will see that the methods discussed in this
section apply also to Series objects.
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DataFrames (and Series), the 1oc and iloc properties. At first, using these properties
might seem a bit ungainly in comparison to other methods, but they actually represent
the most comprehensive way of indexing and are definitely worth learning. Before we
introduce their use, what is a property? Python properties are a convenient way to deal
with get and sef methods of classes; they are not class methods and instead return prop-
erty objects that enable you to access data in the underlying class object. Their use is
straightforward, although it may seem unusual at first, as we will see in the following
examples.

The first method to access rows in DataFrames uses the df.iloc property. Through
this property, you can address individual rows through position-based integer values
(ranging from 0 to len(df)-1); therefore, iloc ignores the index of the DataFrame
object and only operates on positions. To access row data, the most common use cases
of iloc utilize single integer values to address single rows:

df.iloc[0]
temp_C —0.3
rain_mm 59.0

Name: jan, dtype: float64

lists of integer values to address multiple rows:

df.iloc[[2,3,5]]

temp_C rain_mm

mar 3.9 84
apr 7.4 100
jun 15.0 153

or slices to address ranges of rows:

df.iloc[2:5]

temp_C rain_mm

mar 3.9 84
apr 7.4 100
may 12.0 143

What might appear weird to you right now is that the iloc property uses square brackets
instead of parentheses; this is due to the fact that it is a property and not a class method
or function. Also, you might have noticed that the returned object types differ: indeed,
when addressing a single row, a Series object is returned, whereas when addressing
multiple rows, a DataFrame object is returned.
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So now we can extract rows from a DataFrame, but what about columns? Single
columns can be extracted easily as attributes:

df.rain_mm

jan 59
feb 57
mar 84
apr 100
may 143
jun 153
jul 172
aug 164
sep 135
oct 89
nov 88
dec 80

Name: rain.mm, dtype: int64

Just like in the case of single rows, single columns are extracted as Series objects. In
order to extract multiple rows, resulting in a new DataFrame object, we suggest using
the loc property, which we introduce next.

The loc property provides the most comprehensive way to access data in DataFrames
as it enables the user to address a group of rows and columns at the same time, or either
of those separately. This data access can be based on index labels or logical arrays
(see Section 4.2.3); note that the latter is not available with iloc, which selects data
only based on positions. The three examples that we showed for iloc look a little bit
different when using loc, but they result in the same data, as shown in the following.
We can select a single row based on its index label:

df.loc[’jan’]

temp _C -0.3
rain_mm 59.0
Name: jan, dtype: float64

or multiple rows based on their index labels:

df.loc[[’mar’, ’apr’, ’jun’]]

temp_C rain_mm
mar 3.9 84
apr 7.4 100
jun 15.0 153
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or a range of rows using slicing based on index labels:

df.loc[’mar’: ’may’]

temp_C rain_mm

mar 3.9 84
apr 7.4 100
may 12.0 143

Note how it is possible to slice even through nonnumerical indices and that the end point
of the slice (may) is included in this case.

Using loc, column labels can be specified using the same logic, but keep in mind that
it is mandatory to also specify the rows that you would like to extract in that case. The
full notation of loc is df.loc[<rows>, <columns>]. Therefore, to extract all rows
of the column rain_mm you can use the full slice (:) to address all row labels:

df.loc[:, ’rain_mm’]
jan 59
feb 57
mar 84
apr 100
may 143
jun 153
jul 172
aug 164
sep 135
oct 89
nov 88
dec 80

Name: rain mm, dtype: int64

Now, we can combine a selection of rows and columns and extract, for instance, the
amount of rain that fell during the summer months from May to September:

df.loc[’may’:’sep’, 'rain_mm’]
may 143
jun 153
jul 172
aug 164
sep 135

Name: rain mm, dtype: int64
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But this is not all. We already saw in Section 8.1 that the Series class provides a wide
range of methods, for instance, to aggregate elements of the Series. This allows us to
derive the sum of rainfall over the summer months in a very concise and readable way:

df.loc[’may’:’sep’, 'rainmm’].sum()

767

It gets even better. 1oc also allows you to provide a logical array, an array (or list) of
booleans, to indicate those rows that you would like to extract. We can take advantage
of this feature to create a powerful formalism to extract only those data points that
meet certain conditions (compare to Section 4.2.3). The following example extracts the
average temperatures during those months with rain amounts less than 100 mm:

df.loc[df.rainmm < 100, ’temp C’]

jan —-0.3
feb 0.4
mar 3.9
oct 9.1
nov 3.7
dec 0.8

Name: temp_C, dtype: float64

What happens here is that the condition df.rain.mm < 100 returns a list of booleans
that are utilized by 1oc as a boolean mask or logical array to return only those rows for
which the condition holds.

Modifying Data
The mechanisms that we learned to access data in DataFrames and Series (see previous

section) also allow for modifying data as shown in the following example:

df2 = df.copy(Q
df2.loc[df2.rain.mm < 100, 'temp.C’] = 0

df2

temp_C rain_mm
jan 0.0 59
feb 0.0 57
mar 0.0 84
apr 7.4 100
may 12.0 143
jun 15.0 153
jul 17.2 172
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aug 16.8 164
sep 13.1 135
oct 0.0 89
nov 0.0 88
dec 0.0 80

First, we create a copy of df, df2, so we do not alter df. After creating this copy,
we modify the temperatures of those months in which the amount of rain is less than
100 mm to 0. We can therefore use the 1oc and iloc properties to identify data elements
(rows, columns, or combinations thereof) to which we can assign new values. Naturally,
the same mechanisms can be used to crop a selection of the current DataFrame:

df2 = df.copyQ
df2 = df2.loc[’may’:’sep’, :]

df2

temp_C rain_mm
may 12.0 143
jun 15.0 153
jul 17.2 172
aug 16.8 164
sep 13.1 135

Here we extract a DataFrame only containing the summer months from our original
DataFrame, df.

Naturally, we can also add data to our DataFrame. Consider the case that we would like
to add another column containing the temperature in units of Fahrenheit. The conversion
of temperatures can be accomplished with the known relation Tr = T¢ - 1.8 + 32, which
we will utilize in the following:

def temp_conversion(df):

"""Convert temperatures in a DataFrame from C to F
return df.temp Cx1.8 + 32

df2 = df.assign(temp_F=temp_conversion)

df2

temp_ C rainmm temp_F
jan -0.3 59 31.46
feb 0.4 57 32.72
mar o) 84 39.02
apr 7.4 100 45.32
may 12.0 143 53.60
jun 15.0 153 59.00
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jul 17.2 172 62.96
aug 16.8 164 62.24
sep 13.1 135 55.58
oct .1 89 48.38
nov .7 88 38.66
dec 0.8 80 33.44

The method df.assign() creates a new column from a functional relation based on
data stored in the DataFrame.

If the data you would like to add is not related to the data present in the DataFrame,
you can use the loc property that we introduced in Section 8.2.2 to define the new
column’s name and assign a sequence of the proper length (the number of rows in the
DataFrame):

df2 = df.copy(Q
df2.loc[:, ’snowfall’] = [True, True, False, False, False, False,
False, False, False, False, True, True]

df2

temp_.C rainmm snowfall
jan -0.3 59 True
feb 0.4 57 True
mar 3.9 84 False
apr 7.4 100 False
may 12.0 143 False
jun 15.0 153 False
jul 17.2 172 False
aug 16.8 164 False
sep 13.1 135 False
oct ! 89 False
nov 3.7 88 True
dec 0.8 80 True
Please note the notation here (df2.loc[:, ’snowfall’]): for each row in df2, we

address a column (’ snowfall’) to which we assign a list of booleans. Since a column
of this name does not yet exist, it is being added to the DataFrame. Similarly, single
rows can be added to a DataFrame:

df2.loc[’avg’] = [8.3, 110.3, False]
df2

temp_C rainmm snowfall
jan -0.3 59.0 True
feb 0.4 57.0 True
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mar 3.9 84.0 False
apr 7.4 100.0 False
may 12.0 143.0 False
jun 15.0 153.0 False
jul 17.2 172.0 False
aug 16.8 164.0 False
sep 13.1 135.0 False
oct 9.1 89.0 False
nov 3.7 88.0 True
dec 0.8 80.0 True
avg 8.3 110.3 False

However, this method cannot be used to add multiple rows. To add multiple new rows,
the best way is to create a second DataFrame containing the new data but utilizing the
same columns and then appending that DataFrame to the original DataFrame. Consider
the following example in which we generate a new DataFrame that contains annual
means for three years:

df2 = pd.DataFrame ({ temp C’: [9.7, 9.5, 9.9],
"rain.mm’: [1989.8, 1753.1, 1670.6]},
index=[’2020’, ’2019’, ’2018’])

df2

temp_C rain_mm
2020 9.7 165.8
2019 9.5 146.1
2018 9.9 139.2

We would like to append this new DataFrame to our original DataFrame and use the
pd.concat () function for this task:

pd.concat([df, df2])

temp_C rain_mm

jan —0.3 59.0
feb 0.4 57.0
mar 3.9 84.0
apr 7.4 100.0
may 12.0 143.0
jun 15.0 153.0
jul 17.2 172.0
aug 16.8 164.0
sep 13.1 135.0
oct g, 1 89.0
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nov 3.7 88.0
dec 0.8 80.0
2020 9.7 165.8
2019 9.5 146.1
2018 9.9 139.2

concat() does what its name suggests: it simply concatenates DataFrames. We can
use this function to append the new data to the existing DataFrame preserving row
order, and — more importantly — the row index from both DataFrames. If you find that
the row index from both DataFrames is incompatible (which indeed it is) and therefore
not that important, you can choose to ignore the index entirely and to replace it with a
Rangelndex:

pd.concat([df, df2], ignore_index=True)

temp_C rain_mm
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As you can see, the row index from both DataFrames is removed and reset, but — of
course — the order of the rows is preserved. The advantage of this approach is that you
can append a DataFrame with an otherwise incompatible row index, as well as those
that do not contain a meaningful row index.

concat () not only allows you to append rows, but you can also append columns. Con-
sider the following case in which we generate a new DataFrame containing minimum
and maximum temperatures for each month, which will then be appended as a new
column to the original DataFrame. To showcase the power of concat(), the order of
months in the new DataFrame will be reversed:

df3 = pd.DataFrame ({  temp min C’: [-1.9, 1.0, 6.2, 9.7, 13.0, 13.1,
11.0, 7.8, 3.5, 0.6, —2.5, —3.0],
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"temp_max_C’: [3.5, 6.5, 12.3, 16.8, 20.9, 21.6,
19.2, 16.3, 11.5, 7.3, 3.3, 2.5]1},

) ’

index=[’dec’, ’'nov’, ’oct’, ’sep’, ’aug’, ’jul’ ,
"jun’, ’may’, ’apr’, ’'mar’, ’feb’, ’jan’])

pd.concat([df, df3], axis=1)

temp_.C rainmm temp.min C temp max_C

jan -0.3 59 -3.0 Zad
feb 0.4 57 =245 303
mar .9 84 0.6 7.3
apr 7.4 100 3.5 11.5
may 12.0 143 7.8 16.3
jun 15.0 153 11.0 19.2
jul 17.2 172 13.1 21.6
aug 16.8 164 13.0 20.9
sep 13.1 135 9.7 16.8
oct oy 89 ®.2 12.3
nov .7 88 1.0 6.5
dec 0.8 80 =i.9 .5

The only difference to the function call is that we specified axis=1, which overrides the
default axis=0. What does this mean? When we introduced the use of the 1oc property
(Section 8.2.2), we learned that we can specify both rows and columns following the
schema df.loc[<rows>, <columns>]. Pandas is very consistent about this schema
and order: operations applied on axis=0 utilize rows, whereas operations applied to
axis=1 utilize columns. Therefore, pd.concat([df, df3], axis=1) will concate-
nate two DataFrames column-wise, whereas pd.concat([df, df3], axis=0) (or
pd.concat([df, df3])) will concatenate two DataFrames row-wise. Now go ahead
and check the numbers of the resulting DataFrame. You will see that concat () did not
just paste the new columns next to the existing data, it actually accounted for the month
label used as index and matched them properly.

So far in our examples, we made sure that both DataFrames that we concatenated had
the same number of rows or columns, perpendicular to the axis on which we apply
the concatenation operation. But what would happen if we were to concatenate two
DataFrames along their rows with a different number of columns? If you expect Pandas
to complain in this case, you underestimate its power:

df2 = pd.DataFrame ({’ temp.C’: [9.7, 9.5, 9.9],
‘rainmm’: [165.8, 146.1, 139.2],
’snowfall’: [True, True, Truel},
index=[’2020’, ’2019’, ’'2018°])
pd.concat([df, df2])
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temp_ C rain mm snowfall

jan -0.3 59.0 nan
feb 0.4 57.0 nan
mar 3.9 84.0 nan
apr 7.4 100.0 nan
may 12.0 143.0 nan
jun 15.0 153.0 nan
jul L7 o2 172.0 nan
aug 16.8 164.0 nan
sep 13.1 135.0 nan
oct 9.1 89.0 nan
nov 3.7 88.0 nan
dec 0.8 80.0 nan
2020 9.7 165.8 True
2019 9.5 146.1 True
2018 9.9 139.2 True

df2 has one more column than df, but concat() performs the concatenation without
hesitation. The resulting DataFrame now contains all three columns. But what values
will that third column contain for those rows that came from df, which did not contain
this column? Pandas is smart about this issue and fills those rows with missing data
with nans. In Section 8.2.4 we will learn some tools that Pandas provides to deal with
such missing data. Here concat () utilizes a strategy that is called an outer join, a term
that originates from relational algebra and is often utilized in the context of relational
databases like SQL and others. In an outer join, all rows and columns from df and
df2 are considered in the concatenation operation (*“join”); where data is missing, those
values are filled with nans (see Section 4.3). The opposite of an outer join is an inner
Jjoin, in which only those subsets of rows and columns are considered that are complete
and do not contain nans. Consider the following example:

pd.concat([df, df2], join='inner’)

temp_C rain_mm

jan —0.3 59.0
feb 0.4 57.0
mar 3.9 84.0
apr 7.4 100.0
may 12.0 143.0
jun 15.0 153.0
jul 17.2 172.0
aug 16.8 164.0
sep 13.1 135.0
oct g, 1 89.0
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nov 3.7 88.0
dec 0.8 80.0
2020 9.7 165.8
2019 9.5 146.1
2018 9.9 139.2

By specifying the keyword argument join="inner’ we can invoke an inner join with
the result that only the two original columns are concatenated since only those are
complete. The join keyword argument therefore allows you to shape the resulting
DataFrame in a concatenation operation when some data is missing (if there is no data
missing, both inner and outer join will lead to the same result).

For the sake of completeness, we will mention one more function that allows you to
modify DataFrames. The pd.merge() function merges two DataFrames based on a
common index. We briefly exemplify its use by reproducing one of our earlier results.
We merge DataFrames df and df3 based on their common row index:

pd.merge(df, df3, left_index=True, right_index=True)

temp_.C rainmm tempminC temp-max_C

jan -0.3 59 -3.0 Zud
feb .4 57 -2.5 3.3
mar .9 84 0.6 7.3
apr 7.4 100 3.5 11.5
may 12.0 143 7.8 16.3
jun 15.0 153 11.0 19.2
jul 17.2 172 13.1 21.6
aug 16.8 164 13.0 20.9
sep 13.1 135 9.7 16.8
oct o 89 6.2 12.3
nov .7 88 1.0 6.5
dec 0.8 80 =i.9 5

As you see, the result is identical to the previous concatenation. merge () is highly
customizable. In this example, we simply use the row index of the respective DataFrame
(left_index=True and right_index=True) to perform the row matching on, but it
is also possible to select any other column using the left_on and right_on keyword
arguments. Furthermore, merge () provides even more options for inner and outer joins.
Given its flexibility, we leave it to the interested reader to experiment with this function
and others that are available.

Dealing with Missing Data

As we saw in Section 8.2.3, it is possible to have DataFrame (and, of course, also
Series) objects that contain missing data. Such missing values are stored as np.nan
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values. Hence, to mark missing or erroneous values, we can assign np.nan to those
values. Let us implant some missing data into our DataFrame:

df2 = df.copy()

df2.loc[['may’, ’sep’], 'rainmm’] = np.nan
df2.loc[’feb’, 'temp_C’] = np.nan
df2

temp_C rain_mm

jan -0.3 59.0
feb nan 57.0
mar 3.9 84.0
apr 7.4 100.0
may 12.0 nan
jun 15.0 153.0
jul 17.2 172.0
aug 16.8 164.0
sep 13.1 nan
oct 1 89.0
nov 7 88.0
dec 0.8 80.0

As you can see, all missing values appear as nan. Pandas provides you with tools to deal
with missing data in your DataFrames. The two most common techniques might be to
simply drop rows with missing data or to replace missing values with some predefined
value. Let us have a look at both approaches.

First, we have to identify missing values: the df.isna() method returns a DataFrame
of the same shape, with True values where data are missing and False otherwise:

df2.isna()

temp_C rain_mm

jan False False
feb True False
mar False False
apr False False
may False True
jun False False

jul False False

aug False False
sep False True
oct False False
nov False False

dec False False
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The method df.notna() returns the exact opposite. Naturally, both methods can also
be applied to Series objects.

To drop all rows with missing data, we can use the df.dropna() method:

df2.dropna()

temp_C rain_mm

jan -0.3 59.0
mar 3.9 84.0
apr 7.4 100.0
jun 15.0 153.0
jul 17.2 172.0
aug 16.8 164.0
oct 9.1 89.0
nov o 88.0
dec 0.8 80.0

By default, the method uses the keyword argument axis=0; in accordance with the
behavior that we observed for other Pandas functions, changing its value to axis=1
will drop all columns that contain missing data. Furthermore, you can use the keyword
argument how="all’ to only drop those rows or columns for which all elements are
missing; the default value is how="any’.

Alternatively, you can replace missing values in your data with predefined values using
the function df.fillna(). A zeroth order interpolation approach would be to replace
missing data in each column with the respective mean value of that column:

df2.fillna(df2.mean(axis=0))

temp_C rain_mm

jan —0.300000 59.0
feb 8.972727 57.0
mar 3.900000 84.0
apr 7.400000 100.0
may 12.000000 104.6
jun 15.000000 153.0
jul 17.200000 172.0
aug 16.800000 164.0
sep 13.100000 104.6
oct 9.100000 89.0
nov 3.700000 88.0
dec 0.800000 80.0

Here we calculate the mean values for each column (nan values are by default ignored
in this computation) and store them in a Series object that is able to match the columns
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based on the column labels. Since the values in our two columns seem to roughly follow
some functional behavior with added noise, you can also interpolate missing values
using df.interpolate():

df2.interpolate()

temp_ C rain_mm

jan -0.3 59.0
feb 1.8 57.0
mar 3.9 84.0
apr 7.4 100.0
may 12.0 126.5
jun 15.0 153.0
jul 17.2 172.0
aug 16.8 164.0
sep 13.1 126.5
oct 1 89.0
nov .7 88.0
dec 0.8 80.0

By default, this method utilizes a linear interpolation method, but a wide variety of
interpolation techniques is available.

Specific Types of Data

Pandas can deal with a wide range of data types beyond numerical data. In the following,
we discuss some features related to specific data types and how they can be handled
within DataFrames.

Categorical Data

Categorical data can be of numerical, textual, or other nature, but they rely on a dis-
crete basis. Each data point falls into a specific category and the number of available
categories is finite. There may be an underlying hierarchy for the available categories
(ranked data), but this is not necessary. To stick with our weather-based examples of this
chapter, the “UV-index” (ranked integer values) or “cloudiness” (ranked textual data)
would be good examples for categorical data:

df2 = pd.DataFrame (
{’clouds’: [’cloudy’, ’cloudy’, ’partly cloudy’,

'mostly clear’, ’clear’, ’clear’, ’partly cloudy’],
‘uv’: [0, 0, 1, 3, 5, 5, 11},
index=['mon’, ’'tue’, ’'wed’, ’thu’, ’fri’, ’sat’, ’sun’])

df2
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clouds uv

mon cloudy 0
tue cloudy 0
wed partly cloudy 1
thu mostly clear 3
fri clear 5
sat clear 5

1

sun partly cloudy

In order to get a list of unique elements for a specific column (or Series in general),
you can use the df.unique () method:

df2.clouds.unique ()

array([’cloudy’, ’'partly cloudy’, ’mostly clear’, ’clear’],
dtype=object)

The method df.value_counts() returns a Series object that counts how often each
unique element appears in a Series:

df2.clouds.value_counts ()

partly cloudy 2
clear 2
cloudy 2
mostly clear 1

Name: clouds, dtype: int64

Finally, if you would like to extract only those rows in your DataFrame for which
one column containing categorical data has a specific value, you can use the .1loc
property introduced in Section 8.2.2:

df2.loc[df2.clouds == ’partly cloudy’, ’'uv’].mean()
1.0

In this example, we first extract a Series object containing the UV-index for those rows
for which the clouds column holds the value partly cloudy and then we apply the
mean () method of the Series class.

Textual Data
As we have already seen, Series objects, and therefore DataFrame columns, may con-
tain strings.? Since many functions and methods in Pandas require numerical data, we

2 1In this case, the data type of the underlying Series is typically shown as object, which may also refer to
other data.
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need a slightly different toolset. As mentioned, we can utilize the 1oc property to filter
textual data. Unfortunately, this approach requires knowledge of the exact value for
which to filter. If, instead, you would like to filter all rows for which different nuances
of cloudiness are present, we could try to find all rows that contain the word “cloudy”
(i.e., either “cloudy” or “partly cloudy”). For this purpose, Pandas provides as part
of the pd.Series.str submodule vectorized string functions that can be applied to
Series and index objects containing textual data. In order to filter all those rows of the
DataFrame for which the column clouds contains the string cloudy, we can utilize the
str.contains() function:

df2.clouds.str.contains(’cloud’, regex=False)

mon True
tue True
wed True
thu False
fri False
sat False
sun True

Name: clouds, dtype: bool

contains() requires as its sole positional argument a pattern string that is matched
against each element of the Series. By default, this pattern is treated as a regular ex-
pression; since we are checking for a simple sequence of characters, we deactivate this
feature by setting regex=False. Furthermore, contains() assumes that this pattern
is case sensitive unless case=False is used. Finally, calling contains () results in a
Series of booleans that can be combined with the loc property to return a DataFrame
containing only those days that are subject to significant cloud coverage:

df2.loc[df2.clouds.str.contains(’cloud’, regex=False)]

clouds uv
mon cloudy
tue cloudy
wed partly cloudy

[ = —]

sun partly cloudy

Beyond contains (), pd.Series. str contains a wide range of vectorized string func-
tions that are close relatives of those which we have already met in Section 3.5.7. For
instance, we can find and replace specific strings in our Series object. Consider the fol-
lowing example, which will perform replace() on the Series to replace occurrences
of the word “cloudy” with the word “sunny” in the clouds column:

df4 = df2.copy(Q
df4.loc[:, ’'clouds’] = df4.clouds.str.replace(’cloudy’, ’sunny’)
df4
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clouds uv

mon sunny 0
tue sunny 0
wed partly sunny 1
thu mostly clear 3
fri clear 5
sat clear 5

1

sun partly sunny

We leave it to the reader to explore the other string operations that are available as part
of pd.Series.str.

Dates and Times

Pandas can help you to convert strings containing dates and times to datetime64 objects
that allow you to deal with time-series data properly. Consider the following Series that
contains strings referring to points in time provided in the format YYYY-MM-DD HH:MM:

dates = pd.Series([’2020—01-01 12:34’, ’2020—03—01 08:47’,
’2020—06—01 14:23’, ’'2020—09—01 22:56°,
’2020—12—-01 13:45°])

dates

0 2020—-01-01 12:34
1 2020—03—-01 08:47
2 2020—-06—01 14:23
3 2020—09—-01 22:56
4 2020—12—01 13:45
dtype: object

pd.to_datetime() is able to convert this Series of strings to a Series of datetime64
objects:

dates = pd.to_datetime(dates)
dates

0 2020—01-01 12:34:00
1 2020—03—-01 08:47:00
2 2020—06—01 14:23:00
3 2020—09—-01 22:56:00
4 2020—12—01 13:45:00
dtype: datetime64[ns]

Note how the date representations barely change, but the data type of the Series changed
from object (which, in this case, refers to string data) to datetime64. Now, what can we
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do with the data? Pandas provides a number of functions as part of the pd.Series.dt
submodule. For instance, we can isolate times with pd.Series.dt.time:

dates.dt.time

0 12:34:00
1 08:47:00
2 14:23:00
3 22:56:00
4 13:45:00

dtype: object

In a similar way, we could also extract information like the year, month, day, hour,
minute, and second. Furthermore, we can compute time differences based on date-
time64 objects:

datedelta = dates — dates.iloc[0]
datedelta

0 0 days 00:00:00
1 59 days 20:13:00
2 152 days 01:49:00
3 244 days 10:22:00
4 335 days 01:11:00
dtype: timedelta64[ns]

Here we derive the time difference relative to the first row in our Series. Note how
Pandas outputs the time differences in a way that makes it easily readable for humans.
If you prefer a more quantitative measure, you can convert the time difference into any
appropriate unit, e.g., seconds:

datedelta.astype(’timedeltab4[s]’)

0 0.0
1 5170380.0
2 13139340.0
3 21118920.0
4 28948260.0

dtype: float64

Functions

In Section 8.1, we saw that the Series class contains methods (e.g., pd.Series.mean()
to compute the mean value of a Series) to perform computations based on the underlying
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Table 8.1 A collection of common Pandas methods for descriptive statistics and other
related operations. The methods listed here are applicable to Series and DataFrame
objects; in the latter case, operations are by default applied along rows, but can also be
applied along columns (keyword argument axis=1). Aggregating methods result in scalar
results, while results of nonaggregating methods have the same length as the input data.
Methods listed here should be self-explanatory; if in doubt about their use case, please refer
to the Pandas reference (see Section 8.8).

Aggregating methods::

count () sum() prod()
median() mean() max ()

minQ) mode () abs()

std() var() quantile(x)
Nonaggregating methods::

cumsum() cumprod () cummax ()
cummin()

data. Naturally, similar method implementations exist for the DataFrame class. Before
we investigate this functionality, we create a new DataFrame to experiment with:

df = pd.DataFrame ({
“temp C’: [12.3, 13.5, 9.2, 8.2, 10.2, 11.3, 13.51},
index=["mon’, ’tue 'wed’, 'thu’, ’'fri’, ’sat’, ’sun’])
df = pd.concat([df, df2], axis=1)

df.loc[:, ["temp_C’, ’uv’]].mean()

temp_C 11.171429
uv 2.142857
dtype: float64

The resulting Series object contains the mean values of all numerical columns in df;
nonnumerical columns are ignored where methods are not defined for such data.

A wide range of standard functions and methods are available. Table 8.1 provides an
overview of the most common ones. Note that some functions and methods are of ag-
gregating nature and result in scalar results, while others result in output of the same
shape as the input data. Furthermore, some methods like mean(), std(), and sum()
ignore missing data (see Section 8.2.4) in their computations.

In order to aggregate the results of multiple methods as those listed in Table 8.1, you can
use the aggregate method, df.agg(), to conveniently collate their results in a Series
or DataFrame object. For instance, if you are interested in deriving the min, max, and
mean of all numeric columns in your DataFrame you can call:

df.loc[:, ['temp C’, ’uv’]].agg([’min’, ’'max’, ’mean’])
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temp_C uv
min 8.200000 0.000000
max 13.500000 5.000000
mean 11.171429 2.142857

You can simply provide a list of method names (see, e.g., Table 8.1 or the Pandas ref-
erence min Section 8.8) as individual strings to the df.agg() function. If you prefer
to aggregate the results of different functions for the individual columns, you can also
provide a dictionary that contains lists of the measures to be computed for the different
columns:

df.loc[:, ['temp C’, 'uv’]].agg(

{’temp_C’: [’min’, ’max’, ’'mean’], ’uv’: ’median’})

temp_C uv

min 8.200000 nan
max 13.500000 nan
mean 11.171429 nan
median nan 1.0

The resulting DataFrame contains four rows — one for each measure that we want to
compute. However, those rows only contain values for the columns to which they have
been previously assigned. Therefore, df.agg() allows you to compute tailored aggre-
gated statistics for your DataFrame.

Despite the wealth of functions and methods already implemented in Pandas, you might
want to be able to provide your own functions. This is possible with the df.apply()
method. Imagine we would like to apply some polynomial function to the numerical
data and then sum up the results of each column. We can define a function that includes
the polynomial and the summation and then provide this function to the df.apply ()
method:

def func(x):

woen mon

some function
return np.sum(3xX*:*k2+3:%X)

df.loc[:, ['temp C’, ’'uv’]].apply(func)
temp_C 2932.8

uv 228.0
dtype: float64

There are a few important details that we need to discuss. First of all, we can apply our
function func only to numerical data, so we have to use the loc property to isolate
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Figure 8.1 A simple bar plot, generated with df.plot().

the two numerical columns in our DataFrame. Furthermore, we provide func as an
object to df.apply (), which means without specifically calling the function (e.g., as
func(x)). Here df.apply () will evaluate func on each column of df; if you would
like to evaluate it on each row, you need to specify that with the keyword argument
axis=1. Naturally, if func would not include a summation, the result df.apply ()
would be another DataFrame, preserving the original row structure. This flexibility
makes df.apply () a powerful tool for transforming data in a DataFrame.

Data Visualization

Plotting Pandas data is straightforward and allows the use of all functions and methods
discussed in Chapter 6. Nevertheless, Pandas also provides a few plotting functions of
its own that serve as shortcuts to Matplotlib routines. Consider the following example
using the df.plot() method:

df3.plot(y="temp max C’, kind=’bar’)

The result is shown in Figure 8.1. By simply providing the label of the column to be
plotted on the ordinate, Pandas will default to plotting the DataFrame row index on the
abscissa with corresponding axis labels. Alternatively, a different column label can be
provided for the abscissa. In this case, we chose a bar plot; the kind keyword argument
defaults to 1ine and features a wide range of options, including box, pie, scatter, and
other plot styles. The df. plot () method is highly customizable in ways that closely re-
semble those introduced for Matplotlib functions in Chapter 6. This is on purpose, since


https://doi.org/10.1017/9781009029728.009
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.009
https://www.cambridge.org/core

242

Pandas: Data Handling

temp_C uv
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Figure 8.2 A simple histogram plot, generated with df.hist Q).

the method utilizes Matplotlib functionality and returns an axes instance (see Section
6.2). For details on how to customize plots, we refer to the method documentation.

Another convenient method allows you to quickly generate and plot histograms for all
columns containing numerical data, df .hist () (see Figure 8.2):

df2.hist

If you prefer to generate a histogram only for a single column, you can use the column
keyword argument to provide the column label or a list thereof; alternatively, you can
apply hist() also to an extracted Series object. Similarly to np.histogram() (see
Section 4.5), the bins keyword argument allows you to provide an integer number of
bins or a list of bin edges.

Unfortunately, the df.hist () method cannot deal with nonnumerical data. In order
to plot a histogram for nonnumerical data, we must use a workaround that counts the
frequency of the different labels and then plots them in the form of a bar plot (see Figure
8.3):

df.clouds.value_counts() .plot(kind="bar’)

Note that in this case, we use the plot () method of the Series class, which of course
works very similarly to DataFrame’s equivalent. This example showcases Pandas’ flex-
ibility in chaining method and function calls for the task of plotting data.
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Figure 8.3 A histogram plot, generated from textual data with df.plot (). Note how the labels
on the abscissa are automatically extracted from the underlying index and added to the plot.

File Input/Output

Pandas supports a wide range of file formats for storing data for different use cases and
data sets of different sizes. Most file input/output routines provide a somewhat similar
API and, of course, seamless integration into the Pandas environment. We will therefore
focus in the following introduction on reading and writing comma-separated values
(csv) files, which constitute a very common means to store modest amounts of tabular
data. csv files (see Section 4.8) contain data in a comma-separated way, which makes
such files readable and editable by humans and does not require any special tools for
using this file format. A csv file may look like this:

mon,12.3,5,clear
tue,13.5,4,clear
wed,9.2,1,mostly cloudy
thu,8.2,2,partly cloudy
fri,10.2,3,partly cloudy
sat,11.3,4,mostly clear
sun,13.5,5,clear

The file contains rows of data in four columns that are separated by commas in each row:
weekday, temperature, UV-index, and cloudiness; the different columns use different
data types (strings, floats, integers). Saved as a plain (i.e., unformatted) text file, e.g.,
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weather. csv, this file is definitely readable by humans, but finding the proper value of
one column for a specific row can be tricky due to the lack of horizontal alignment.

To read this file into a Pandas DataFrame, the pd.read_csv() function can be used:

df = pd.read_csv(’weather.csv’)

df

mon 12.3 5 clear
0 tue 13.5 4 clear
1 wed 9.2 1 mostly cloudy
2 thu 8.2 2 partly cloudy
3 fri 10.2 3 partly cloudy
4 sat 11.3 4 mostly clear
5 sun 13.5 5 clear

At first, this looks like the DataFrame that we expect, but please have a closer look.
Something seems off. Have you found it? The problem becomes obvious looking at the
row index: there are only six rows in this DataFrame because the read_csv () function
interpreted the first row of the file as the column names. This problem can be fixed
easily in two ways. Either, you insert a header row into the file (that might look like this:
day, temp_C,uv, clouds), or you explicitly provide column names to read_csv():

df = pd.read_csv(’weather.csv’,

names=[’day’, ’'temp_C’, ’uv’, ’'clouds’])

df

day temp_C uv clouds
0 mon 12.3 5 clear
1 tue 13.5 4 clear
2 wed 9.2 1 mostly cloudy
3  thu 8.2 2 partly cloudy
4 fri 10.2 3 partly cloudy
5 sat 11.3 4 mostly clear
6 sun 13.5 5 clear

This looks much better. As you can see, the first row of the file is now treated correctly.
But there is still room for improvement: we could use the column day as our row index:

df = pd.read_csv(’weather.csv’,

names=[’'day’, ’temp_C’, ’uv’, ’clouds’],
index_col="day’)

df

temp_C uv clouds
day
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mon 12.3 5 clear
tue 13.5 4 clear
wed 9.2 1 mostly cloudy
thu 8.2 2 partly cloudy
fri 10.2 3 partly cloudy
sat 11.3 4 mostly clear
sun 13.5 5 clear

As you can probably imagine by now, read_csv() is highly customizable and flexible.
For instance, the file to be read does not necessarily have to use commas to separate
values. The sep keyword arguments allows you to specify the delimiter symbol or a
sequence of symbols as a string (sep=",’ by default); for instance, for a file that uses
pipe symbols (|) as delimiters (e.g., mon|12.3|5|clear) you would use the keyword
argument sep="|". If whitespaces are used as delimiters, delim whitespace=True
should be used; the advantage of this keyword argument is that if True, any number
of successive whitespaces counts as a single delimiter. Other optional features include
the specific selection of relevant columns with the usecols keyword or the skipping of
header rows (skiprows) or footer rows (skipfooter), which might be useful to deal
with leading and trailing comments and metadata that might be present in such data files.
Another useful feature is to define how missing values appear in the file; if, for instance,
missing values are indicated as -999, the keyword argument na_values="-999" will
turn those instances into nan values so that you can use the methods discussed in Section
8.2.4. A long list of additional features is available for this function and we urge users
who frequently deal with csv files to have a look at those.

Now that we are able to read csv files, it would also be useful to write data into such
files. The equivalent of pd.read_csv() for writing data to files is df.to_csv(). Asa
bare minimum, the function expects the name of the file to be written. In the following
example, we will also provide a label for the row index, which would otherwise be
blank:

df.to_csv(’weather2.csv’, index_label=’day’)

The resulting file, weather2.csv, contains the same data as weather.csv, but also
a header line containing the column labels, so that it could be read by read_csv()
without having to provide column names:

day, temp_C,uv,clouds
mon,12.3,5,clear
tue,13.5,4,clear
wed,9.2,1,mostly cloudy
thu,8.2,2,partly cloudy
fri,10.2,3,partly cloudy
sat,11.3,4,mostly clear
sun,13.5,5,clear
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Pandas also provides functionality to read other common file formats. For instance, it is
possible to parse tabular data stored in sheets of x/sx spreadsheet files into a DataFrame
with read_excel() and to write them with to_excel(). For users of relational
databases, it might be interesting to read and write entire SQL databases into DataFrame
structures with read_sql () and to_sql (). Other common file formats for which read
and write functions exist include json, xml, hdf5, and others. For a full reference of the
file formats that are supported, please refer to the Pandas 10 Tools reference listed in
Section 8.8.

Pandas Hints

In this final section, we would like to feature some hints that are hard to squeeze in
anywhere else. We hope that some of these hints will help you in being more efficient
in using Pandas.

The great strength of Pandas is that it provides vectorization for many functions and
aspects. However, sometimes all you need is to loop over the rows of a DataFrame to
process data. This task is simplified with the iterrows() method, which allows you
to iterate over the rows of the underlying DataFrame and returns its values as a Series
object. A typical use case for df.iterrows() might look as follows:

for id, data in df.iterrows():
print(’On {} we had {}C and the sky was {}.’.format(
id.capitalize(), data.temp_C, data.clouds))

On Mon we had 12.3C and the sky was clear.
On Tue we had 13.5C and the sky was clear.
On Wed we had 9.2C and the sky was mostly cloudy.
On Thu we had 8.2C and the sky was partly cloudy.
On Fri we had 10.2C and the sky was partly cloudy.
On Sat we had 11.3C and the sky was mostly clear.
On Sun we had 13.5C and the sky was clear.

Note that df.iterrows() returns a fuple that contains the row’s index and data sepa-
rately.

Pandas functions typically return modified copies of DataFrames and Series objects
and almost never changes them in place. However, many Pandas functions provide the
keyword argument inplace, which defaults to False. For those functions, if you use
inplace=True, Pandas will change the object you are dealing with in place, saving you
some typing. But please be careful: applying inplace=True on the wrong function call
might modify your data irreversibly.

Pandas provides functionality to group data in a DataFrame. The process of “grouping”
involves the splitting of the data based on some criteria, the application of some function
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to each group separately, and the combination of these results into a new DataFrame or
Series object. Since this sounds rather abstract, let us have a look at a practical example.
Consider the case that, based on our weather data stored in df, we would like to com-
pute the average temperature and UV-index for different levels of cloudiness. The de-
fault workflow to achieve this goal would be to identify the different unique levels of
cloudiness (stored in column clouds), isolate the rows associated with each level of
cloudiness, calculate the mean temperature and UV-index for each data set and then
combine all the results back into a DataFrame object. Pandas’ df. groupby () function
in combination with mean () does all that for you in one line:

df.groupby(’clouds’) .mean()

temp_C uv
clouds
clear 13.1 4.666667
mostly clear 11.3 4.000000
mostly cloudy 9.2 1.000000
partly cloudy 9.2 2.500000

Here we group the data based on the labels stored in the clouds column. For more
complex DataFrame objects, it is possible to group the data on multiple column labels.
df.groupby () can also group data based on arbitrary conditions, like, for instance, the
value of the UV-index:

df.groupby(df.uv < 3).mean()

temp_C uv

uv
False 12.16 4.2
True 8.70

Note that calling df.groupby(’clouds’) by itself only provides a generator object
that has to be combined with any of the functions and methods introduced in Section
8.4 to provide a meaningful output.
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9.1.1

Performance Python

Python is typically considered a slow programming language: its computational per-
formance is lower than that of other programming languages like C/C++ or Fortran,
which are typically used for numerical simulations and other computationally intensive
tasks. As we already saw in Section 2.1, this is because Python is an interpreted lan-
guage, which means that it does not fully compile its code to machine code prior to its
execution. Instead, Python code gets compiled into bytecode, which is then interpreted
and executed by CPython. As a result, Python code performs typically slower than, for
instance, C or Fortran code.

However, there are ways to improve the performance of Python code significantly —
to a degree that makes it comparable to C/C++. This is possible as Python is using C
in the background (through CPython). In this chapter, and the corresponding Jupyter
Notebook (cambridge.org/9781009029728/ch9), we will discuss how to take advantage
of this close relationship to C, as well as other methods to improve the performance of
your Python code.

For further reading on this topic, we can recommend Gorelick (2020).

How to Write Efficient Python Code

The more efficient your code, the fewer resources it takes during runtime, the faster it
runs, and the sooner it completes. In the case of short scripts, efficiency is typically not
an issue. However, if you are working on a computationally intensive problem like a
numerical simulation or a complex data preparation pipeline, tiny details in coding can
have a huge impact on the runtime of your code. This is especially true if you run many
iterations of your code: a difference of 1 second in runtime adds up to an additional
16.7 minutes for only 1,000 iterations.

There are different ways to make your code more efficient. The following sections in-
troduce some measures you can take, in order of increasing complexity. But first, we
need to learn how we can objectively quantify the performance of your code.

Measuring performance

The easiest way to measure the runtime of code is to utilize the time module. The
time.time() function returns the time in seconds since some epoch as a floating point
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number. On most Windows and Unix systems, this epoch is January 1, 1970, 00:00:00
(UTC) and the time that has passed since then in units of seconds, often referred to as
Unix Time. For instance, the timestamp of writing this very sentence can be represented
in Unix Time as:

import time
time.time ()

1641285970.1614494

In order to measure the time required to run some piece of code, we can simply subtract
timestamps taken before and after the corresponding code lines. Consider the following
example:

start = time.time()
x =0

for i in range(1000):

X += 1
print(time.time()—start)

0.00023126602172851562

start here refers to the timestamp before the loop. After evaluating the loop, we gen-
erate a new timestamp and subtract start, resulting in the number of seconds that
passed in the meantime. Naturally, such a simple expression and short loop evaluate
very quickly; it took only 0.2 ms. However, there is an issue. Reevaluate the code cell
and you will see that you will get a different time span. This is perfectly fine since the
runtime of one or more lines of code depends on many factors, including memory, disk
and core processing unit (CPU) usage of background tasks, and can vary widely even
on the same computer. This effect is pronounced for short code elements that evaluate
in subsecond time spans; evaluating longer scripts that take seconds or minutes to run,
this effect is much weaker and runtime estimates become more stable. Therefore, using
the time module to estimate runtimes makes sense for long evaluation times, whereas
in the case of short code snippets, other tools should be preferred.

But why would you want to know the time it takes for a single line of code to eval-
uate? Scientific programs oftentimes rely on solving the same equation over and over
again. Consider numerical simulations or data processing: for each sample in a data
set or each position on a grid in space, you apply the same task, which is often re-
peated millions of times. Therefore, to make your code as efficient as possible, it makes
perfect sense to optimize this “bottleneck™ in your code and make it run as fast as
possible.
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Python provides a very convenient interface for benchmarking the performance of small
pieces of code. The timeit module is able to measure the runtime of code repeatedly
and provides you with some meaningful statistics on the results. There are different
ways to make use of the timeit module; since we utilize Jupyter Notebooks in this
book, we focus on how to use this module in the Notebook environment. Conveniently,
Jupyter Notebooks allow you to access timeit functionality as magic commands. We
consider a simple example using timeit line magic (see Section 2.4.2):

%timeit 5x%20

6.46 ns +— 0.0513 ns per loop (mean +— std. dev. of 7 runs, 100000000
loops each)

The output provided by the timeit magic command is very detailed and may vary in
appearance. Here, it contains the mean and standard deviation evaluated over a given
number of runs, each of which contains a specific number of loop iterations. Therefore,
evaluating this entire cell takes much longer than the 6.46 ns specified by the output.
The number of runs and loops utilized in the analysis are determined by the magic
command itself, based on the computational complexity of the code. In this case, the
statement (5+x20) is evaluated in each run in a loop with 100,000,000 iterations. Why
so many iterations? Whenever you run code, there is overhead involved, for instance, to
allocate memory and move data into the right places. While technically necessary, this
one-time preparation process should not really count against the runtime of the code as
it is highly dependent on your computer and its current state. Estimating this overhead
is hard, but a way around this issue is to run the same code many times, minimizing
the one-time overhead’s impact on the overall runtime of the looped code. Therefore,
if the evaluation is repeated n times, the runtime of this loop can be measured and the
resulting duration divided by n to obtain a better estimate of the actual runtime of the
code. This is exactly what %timeit does: it measures the runtime over 100,000,000
iterations and scales it down to a single iteration; the mean and standard deviation of
the runtime are then derived from seven independent runs.

If you prefer to set the number of loop iterations and the number of runs yourself, you
can do so as follows:

%timeit —n 10000 —r 10 5xx20

7.73 ns +— 0.928 ns per loop (mean +— std. dev. of 10 runs, 10000
loops each)

The meaning of the options should be obvious: -r sets the number of repetitions or runs
and -n sets the number of iterations per loop. As you can see, the resulting runtime is
different but overlaps with the previous result when accounting for uncertainties.
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So far, we used %timeit as a line magic command (see Section 2.4.2), but there is also
a cell magic version, %%timeit, that allows you to benchmark several lines of code,
i.e., an entire cell, at a time. Consider the following example:

%%timeit
x =0

for i in range(10):
X += 1

448 ns +— 19.9 ns per loop (mean +— std. dev. of 7 runs, 1000000
loops each)

timeit and time provide us with the means to efficiently benchmark our code and
individual elements of it. Now that we have these tools, we will look into how we can
improve the efficiency of our code.

Optimization Starts before Coding

Optimizing your code should start at the design level and not just when your code is
written and done. You have already learned many of the tools to write efficient code and
in the next sections you will get some more hints on how and why to use them, and you
will learn some new tools. Once you feel familiar with these tools, you should try to use
them regularly. Most importantly, when you start writing code, one of the first questions
to ask yourself should be: which of these tools can or should I use?

If you plan to process large amounts of tabular data stored in files, you probably should
not use string functions to parse this data from a File object (see Section 3.9.3). Instead,
try to use functionality from the NumPy (see Section 4.8) or Pandas (see Section 8.6)
packages. While it is true that importing large modules such as Pandas adds some over-
head to your runtime, you will usually make up for such overhead due to the superior
efficiency of the implemented functionality, which is often highly optimized.

As a different example, consider numerical simulations, which are typically compu-
tationally expensive. In this case, you would not want to deal with lists for storing
intermediate results (for reasons you will learn in Section 9.1.3). Instead, you should
absolutely build on NumPy arrays and their vectorized functionality. In some cases, it
might be worth taking it one step further by implementing methods to expedite compu-
tations even more by exploiting your computer’s hardware as shown in Section 9.2. The
next sections will introduce some of these techniques and provide some hints on how to
improve your Python code.


https://doi.org/10.1017/9781009029728.010
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.010
https://www.cambridge.org/core

254

Performance Python

Optimizing Basic Python

Most users who are new to Python will mainly utilize basic, or so-called built-in, Python
components, which we encountered in Chapter 3. Although built-in functionality is
somewhat limited compared to the wealth of functionality offered by NumPy (Chap-
ter 4), SciPy (Chapter 5), or Pandas (Chapter 8), it already offers rich opportunities to
optimize your code.

For instance, lists can be expensive (see Sections 3.5.1 and 3.5.5 for more on lists).
Building /ists by repeatedly calling append () is especially resource demanding: when-
ever you use append (), memory is dynamically allocated to store the current list plus
some extra margin based on its current length. Once the list outgrows a certain thresh-
old length, this memory allocation process is repeated to enable the storage of an even
longer list, assuming that it will grow even longer in the future. This is not an issue if
you are dealing with short lists; but if your /ist has thousands or millions of elements,
you should avoid using append () due to its dynamic memory allocation. Consider the
following practical example: we generate a sequence of 1 million infeger numbers and
square each of them. How long will this take if we create an empty list and sequentially
append squared integer numbers in a loop?

%%timeit
1 =11

for i in range(1000000) :
1.append (i*:*2)

264 ms +— 5.78 ms per loop (mean +— std. dev. of 7 runs, 1 loop each)

Well, how can we make this process faster? Since we know how long our /ist will be,
we could define a list of the corresponding length with dummy values and overwrite
those through indexing:

%%timeit
1 = list(range(1000000))

for i in 1:
1[1i] = ix%2

247 ms +— 4.85 ms per loop (mean +— std. dev. of 7 runs, 1 loop each)

Indeed, this is slightly faster. However, be aware that the square operation can be quite
expensive, too, especially for large numbers. In this case, the runtime might be mainly
driven by the computation of the squares. To get a better impression of the performance
improvements, let us do the same comparison for a computationally lighter operation:
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%%timeit
1 =11

for i in range(1000000):
1.append(i+1)

98.7 ms +— 517 microsec per loop (mean +— std. dev. of 7 runs, 10
loops each)

%%timeit
1 = list(range(1000000))

for i in 1:
1[i] = i+l

83.9 ms +— 182 microsec per loop (mean +— std. dev. of 7 runs, 10
loops each)

Indeed, now the difference between the two methods amounts to ~15%, which is quite
significant. In conclusion, the use of the append() method is rather expensive and
should be restricted to shorter lists.

Another way to solve this task would be to use a list comprehension (see Section 3.7.5).
How does it compare to the other approaches performance-wise?

%timeit [i%%2 for i in range(1000000)]
238 ms +— 3.99 ms per loop (mean +— std. dev. of 7 runs, 1 loop each)

The runtime of a corresponding list comprehension compares very well to the case in
which we created a list of the correct length and then changed its elements through
indexing. Indeed, this is exactly what the list comprehension does, so it makes sense
to take about as much time as that scenario. Therefore, list comprehensions are rather
efficient as they create /ists of a static length.

If the length of our list is static and fixed, we might also consider replacing the list with
a tuple, which is immutable. Let us do this with the following fuple comprehension, the
equivalent of the list comprehension we used earlier:

%timeit (ix*2 for i in range(1000000))

465 ns +— 5.58 ns per loop (mean +— std. dev. of 7 runs, 1000000
loops each)
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The result is astounding! Simply by replacing the list with a fuple, we achieve a
performance boost of a factor of 5x10°. Why is that? Tuples are immutable and there-
fore require less memory than lists; this means, they are significantly more efficient and
data can be stored as a fuple much faster than as a list. Admittedly, this is an extreme
example. But even for smaller sequences there is a measurable effect. As a result, if you
are about to create a container for a static sequence (one that will not change over time),
you should absolutely consider the use of fuples.

Finally, before we change topic slightly, we would like to point out that, almost gen-
erally, the most efficient way to deal with sequences of any type is to store them as
NumPy arrays (see Section 4.1) with their superior vectorization capabilities. We dis-
cuss the advantages of NumPy in detail in Section 9.1.4.

One more, less obvious, example for how to improve the performance of your Python
code is to decrease the amount of output generated during runtime. Especially in
the case of complex computations or numerical simulations, it makes sense to output
some parameters or results to see whether your program is still on the right track during
runtime. However, you should be aware that i/o operations, plotting, file access, or even
something as simple as print() function calls, or in general any kind of output, is
surprisingly time consuming. In case you are looping over such an operation many
times it is easy to slow down your code considerably. Therefore, if you encounter a
slow-down due to outputting results or parameters, you could, for instance, reduce its
frequency to every nth iteration.

We conclude this section with two final remarks. Firstly, there are myriad ways to im-
prove the performance of code. You can probably spend hours improving your code to
save a few minutes on its runtime. But is it worth it? Here you have to trade off the
overall runtime of the code and how often you will actually use it against the time that
you are willing to invest into making the code faster. There is probably no point in op-
timizing a script that takes a few seconds or even minutes to run if you use it only once
a week. However, if you wrote some code to perform numerical simulations with pa-
rameters that need to be carefully tuned, then it is probably worth spending a few hours
trying to improve the runtime. Secondly, you can probably replace every loop structure
in your code with a list comprehension to make it run faster. But in turn, you will make
it harder for others (and your future self) to read and understand what your code does.
This is just one example, but there are others. Therefore, in agreement with the Zen of
Python (see Section 2.1.2), we support the notion that optimization should not happen
at the cost of readability.

NumPy

The most important advice to improve the performance of your code, especially in a
scientific setting where computationally expensive code is common, is to use NumPy
wherever possible. We discussed the reason for this recommendation in Chapter 4:
arrays and NumPy functionality are implemented in such a way that they support
vectorization. Vectorization means that functions and other operations on arrays are
not sequentially applied to the elements one at a time; instead, they are applied to all
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elements at the same time. Naturally, vectorization boosts computational performance
significantly — but how is it done? NumPy cheats a little bit in that it utilizes com-
piled mathematical libraries under the hood that are implemented in the C language.
NumPy serves as a Python layer on top of these libraries so that users can take ad-
vantage of their computational advantages and not have to bother with the quirks of
using C.

Let us quantify how fast the use of arrays is by looking at the same task as in Section
9.1.3: we square | million integer numbers and store the result as an array:

%timeit np.arange (1000000) xx2

2.47 ms +— 469 microsec per loop (mean +— std. dev. of 7 runs, 100
loops each)

This approach is a factor of 100 faster than our original approach that uses lists and
their append () method (see Section 9.1.3). We note that it is also significantly slower
than using tuples, which is easily explained by the more complex memory structure
of arrays compared to that of tuples. While tuples might appear faster in this case,
we nevertheless recommend the use of arrays wherever possible, simply due to the
wealth of functionality that is implemented in NumPy, and, of course, optimized for
computational performance.

Let us compare the performance of a more complex mathematical operation to get a
better sense for the power of vectorization. We compute the variance over a sequence of
10,000 integer numbers. With basic Python, this requires computing the mean and then
deriving the expectation over the squared residuals from the mean:

%%timeit

a = list(range(10000))
mean = sum(a)/len(a)
sum( (x—mean)#*x2 for x in a)/len(a)

1.61 ms +— 76.9 microsec per loop (mean +— std. dev. of 7 runs, 1000
loops each)

Now, we use the np.var() function (see Section 4.5) that allows us to compute the
variance in a single line:

%%timeit

a = np.arange (10000)
np.var(a)

55.1 microsec +— 602 ns per loop (mean +— std. dev. of 7 runs, 10000
loops each)
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Not only does the use of NumPy improve the readability of the code, it also improves
computational performance significantly. It is therefore safe to assume that if there is
functionality implemented within NumPy (or most other official Python packages for
that matter), it is optimized for computational performance by using vectorization, un-
derlying C code, and potentially some other tricks.

Since vectorization is important for performance, it would be great if we could use
this trait in functions that we define ourselves. In fact, this might already be the case.
Consider a function that converts temperatures from units of Celsius to Fahrenheit:

def C_to_F(T):
"""Convert Celsius temperatures to Fahrenheit.

mwon

return Tx1.8+32

Naturally, this function works with scalar input data:

C_to_F(16)

60.8

However, the way Python works, the input argument is not required to be a scalar, which
means that we can pass an array to the function. Also, since the inner workings of the
function support vectorization (T« 1.8+32 is well-defined for arrays), the output will be
an array, too:

C_to_F(np.arange(10, 30, 2))
array([50. , 53.6, 57.2, 60.8, 64.4, 68. , 71.6, 75.2, 78.8, 82.4])

Therefore, if a function supports vectorization, it will by default benefit from the same
performance boosts we have already seen. But when exactly does a function support
vectorization? The short answer is: when it behaves like a universal function (ufunc,
see Section 4.2.1), which means that it operates on arrays and supports broadcasting
and type casting. Generally, if you build your function on ufuncs, it will also behave
like a ufunc. But not all self-defined functions meet these requirements; the following
function, for instance, does not behave like a ufunc as it fails to process arrays as input
arguments:
def greater(a, b):

"""Return the greater of a or b."""
if a > b:

return True
else:

return False

The function fails as the use of the greater than operator is ambiguous when applied to
arrays (see Section 4.2.3 for a discussion). Assume that we would like to evaluate this
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function on a large number of values that are stored as an array. Of course, it would be
possible to modify the function so that this ambiguity is resolved and the function works
natively with arrays. However, in this case, we choose a different path that generalizes
better. We will take advantage of NumPy’s vectorize() function that allows you to
vectorize any function:

vgreater = np.vectorize(greater)
vgreater (np.arange(5), 3)

array([False, False, False, False, True])

Note that the two input arguments to vgreater() have different dimensionalities:
NumPy defaults in this case to the broadcasting rule (see Section 4.1.4). It goes without
saying that vgreater () returns an array.

The advantage of the vectorize() function is its general applicability: it can uti-
lize almost any function and turn it into a vectorized function. However, be aware that
vectorize() is not able to magically improve the performance of the underlying func-
tion!

Let us summarize what we have learned in this section: you should use NumPy func-
tionality and arrays as much as possible in your code. In order to take full advantage of
NumPy’s performance, try to design computationally intensive functions in such a way
that they vectorize. For functions that cannot be vectorized, the vectorize () function
might be a way to improve their performance if applied to long arrays.

Parallelization

A different approach to efficient and performant computing is parallelization. Virtually
all computers nowadays contain CPUs with more than one “core.” Even laptop comput-
ers now contain multicore architectures, containing four or even more cores, that allow
them to run many different processes in parallel: several instances of web browsers,
multimedia players, and other pieces of software. This parallelization is rather complex
and not suitable for every problem. In the scope of this book, we will only consider
parallelization for problems that are embarrassingly parallel; a problem falls into this
category if it can be separated into independent and parallel tasks at no significant cost.
An example of an embarrassingly parallel problem would be to solve the same equation
for a range of different parameter combinations — the key is that each evaluation of the
equation is independent from all other evaluations. A problem that would not be embar-
rassingly parallel would require some way to exchange parameters or results between
the different evaluations. Naturally, the handling of embarrassingly parallel problems is
much easier than general parallelization problems. However, they also tend to be much
more common as they apply to most situations in which you apply the same function or
algorithm to large amounts of data.
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Parallel computing is a rather complex task as it requires a deeper understanding of the
inner workings of computers. Each computer contains one or more CPUs that perform
the heavy lifting when it comes to computations. In order to enable parallelization,
modern CPUs support hyperthreading, which enables each core to work on two things
at a time and in some way to act as two separate processors; such a virtual component
is called a thread. A running program or process can run on a single thread or on
multiple threads to improve its performance. By design, Python only uses single threads,
enforced by the Python Global Interpreter Lock, which precludes the use of multiple
threads by default.

However, Python provides two packages that support threading in different ways:
threading and multiprocessing. Although their syntax is rather similar, both con-
cepts are very different and should be applied in different situations. Multithreading
generally speeds up tasks that spend time waiting for external events to happen (network-
bound problem), while multiprocessing speeds up code that relies heavily on com-
putations (CPU-bound problem). In the following, we provide some brief examples
showcasing what is possible with these techniques.

Multithreading

The threading module enables you to run processes in parallel in different threads.
This method helps you to perform tasks in parallel that are network-bound but not re-
ally computationally intensive. Consider the following example in which we simulate a
function that accesses data from a file or a website and adds it to a list:

import time
import threading

def retrieve(sources, results):

mwoen mwon

Simulate retrieval of data from file or website.
for i, source in enumerate(sources):

print(’retrieving data from:’, source)
time.sleep(0.3) # wait
results[i] = ’data from {}’.format(source)
websites = [’websitel’, ’website2’, ’website3’, ’website4’,
’website5’]

files = [’filel’, ’file2’, ’file3’, ’file4’, ’file5’]

The code in this cell might require some explanation, so let us go through it line by line.
The cell starts with importing the time and threading modules; the latter provides
the multithreading functionality that we introduce here and the time modules provide a
function, time.sleep (), which simply waits for the number of seconds provided as its
argument. We then define a function, retrieve() that has two positional arguments:
sources, which is a list of data sources (filenames or website urls), and results,
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which is a list of the same length as sources, the content of which is irrelevant for
now. Inside retrieve(), we loop over all elements from list sources, print the cur-
rent data source on the screen and simulate waiting for the data retrieval (file access or
website download and scraping) with time.sleep(). In each iteration, we replace the
corresponding element in list results with a dummy string as a placeholder for the
data that we retrieved. This final line of the function reveals the purpose of results:
by passing a placeholder list of the same length as sources to function retrieve(),
we can modify this /ist inside this function and these changes will persist outside the
scope of this function. Therefore, results acts as a means to return data from func-
tion retrieve(). This seemingly complicated way is necessary due to the way the
threading module works. Finally, we create two [ists that contain dummy website
names and file names.

We showcase the outcome of running function retrieve() in the following code cell
and measure its runtime without utilizing multithreading:

%%timeit —n 1 —r 1

results_websites = [None] * len(websites)
results_files = [None] * len(files)
retrieve(websites, results_websites)
retrieve(files, results_files)

retrieving data from: websitel
retrieving data from: website2
retrieving data from: website3
retrieving data from: website4
retrieving data from: website5
retrieving data from: filel
retrieving data from: file2
retrieving data from: file3
retrieving data from: file4
retrieving data from: file5
3.01 s +— 0 ns per loop (mean +— std. dev. of 1 run, 1 loop each)

We see that the function sequentially runs through the lists of website names and file
names, which takes a bit more than 3 seconds (~10 % 0.3 s). Note that we generate here
two lists that contain Nones, which we use to store our data in and pass to retrieve ()
as positional arguments.

We will run the function again, but this time we will take advantage of the multithread-
ing module and we will again measure how long the runtime is. We start this cell by
creating our empty results lists for websites and files. Now follows the multithread-
ing functionality: we create two threads, which we call t1 and t2. Each thread receives
as target the name of our function (retrieve, note the missing parentheses: we only
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pass the function and do not call it, yet) and as arguments (args), we provide a tuple
of list pairs containing the different data source lists and their corresponding results
lists. After defining our threads, we start them individually and terminate them subse-
quently.

%%timeit —n 1 —r 1
results_websites = [None] % len(websites)
results_files = [None] *x len(files)

# define threads

tl = threading.Thread(target=retrieve, args=(websites,
results_websites))

t2 = threading.Thread(target=retrieve, args=(files, results_files))

# starting threads
tl.start()
t2.start()

# terminate threads
tl.join()
t2.join()

retrieving data from: websitel
retrieving data from: filel
retrieving data from: website2
retrieving data from: file2
retrieving data from: website3
retrieving data from: file3
retrieving data from: website4
retrieving data from: file4
retrieving data from: website5
retrieving data from: file5
1.5 s +— 0 ns per loop (mean +— std. dev. of 1 run, 1 loop each)

The output shows that data from websites and files are retrieved in an alternating fash-
ion, suggesting that both threads indeed run in parallel. This notion is supported by the
runtime of the function call: 1.5 seconds are exactly half the runtime of the sequen-
tial processing without multithreading — half the runtime, since we use twice as many
threads as before. We leave it to the user to check that both results lists are properly
populated. The implementation of multithreading now reveals why we need to take a
detour in returning the results from function retrieve(): threads are unable to handle
objects that are returned from functions using the return keyword.

This example shows how multithreading can be used to speed up network-bound
processes. Be aware that if your threaded function is computationally intensive, and
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therefore CPU-bound, multithreading will not help you to improve its runtime. Instead,
you should be looking at multiprocessing for your code.

Multiprocessing

The multiprocessing module enables multiprocessing within Python to expedite
large CPU-bound computations in which a large data set is mapped to a function. We
showcase the effects and use of multiprocessing on a simple example involving the nu-
merical integration of an intricate scalar function for a large number of input values:

from scipy.integrate import quad
myfunc = lambda x: np.exp(x)/np.sin(x)x(l+np.tanh(x))

def myintegral(z):
return quad(myfunc, 0, z)

X = np.random.rand(100)

We define function myfunc () implicitly as a lambda-function (see Section 3.8.6); the
integral over myfunc () is encapsulated in function myintegral (). Array x contains
100 random numbers that are uniformly distributed (see Section 4.4). Please note that
myintegral ) is defined for a scalar input z, i.e., a single element from x. As a base-
line evaluation, we loop through x, extract a single element for which we evaluate the
integral, and append it to a list containing all the results:

%%timeit —n 3 —r 3
output = []

for xi in x:
output.append(myintegral (xi))

7.74 s +— 1.23 s per loop (mean +— std. dev. of 3 runs, 3 loops each)

Evaluating the integral for all elements from x takes almost 8 seconds.

Now, let us take advantage of multiprocessing and compare the runtime to this base-
line. We will use the multiprocessing module by defining an instance of the class
multiprocessing.Pool. A pool is an object that takes care of most multiprocessing
aspects for you. All we have to do is to define an instance:

from multiprocessing import Pool

pool = Pool()
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and use this instance to map our function, myintegral (), to each element of our data
set (x):

%%timeit —n 3 —r 3
output = pool.map(myintegral, x)
2.51 s +— 288 ms per loop (mean +— std. dev. of 3 runs, 3 loops each)

As you can see, the runtime is significantly reduced as the workload is shared over
all the cores available on your computer. This can be best seen by looking at the load
on your CPUs (e.g., using the htop command under Linux or MacOS or the Task
Manager under Windows): in the multiprocessing case, the load of all CPUs should
be maximized, whereas in the nonparallelized case, the entire work is done by a single
CPU.

It should be pointed out that other ways to utilize the multiprocessing module exist,
but, especially in the case of embarrassingly parallel problems, the Pool class and its
map () method provide a convenient way to implement multiprocessing capabilities.

What Else?

The methods and approaches discussed here will help you to improve the performance
of your code in most cases. However, sometimes, turning your computer up to ten might
not be enough and you may need a little extra help to go all the way up to eleven. Of
course, Python supports you in squeezing out that very last bit of performance. In the
following, we briefly outline some of these methods on a very high level. We deliber-
ately refrain from briefly introducing their functionality as it would not pay justice to
their complexity and functionality. Instead, we provide links to useful references, which
we propose to the interested reader for self-study to learn more about these approaches.

Dask is a Python module dedicated to parallel computing. In addition to enabling par-
allelization on single multicore machines, Dask also enables distributed computing on
clusters of computers. Furthermore, Dask provides big data collections (DataFrames,
Bags, and Arrays) that support parallelization and the handling of data sets that are too
large to fit into your computer’s memory. At the same time, the API to use these col-
lections is derived from familiar modules such as Pandas or NumPy, making their use
extremely intuitive if you are already familiar with these modules. Dask is an excellent
choice if you plan to use multicore architectures on single or across multiple computers
and/or if you plan on utilizing extremely large data sets. For more information, we sim-
ply point to the Dask documentation, which provides some excellent introductions and
tutorials on how to utilize its functionality.

A different approach to improve performance that is relevant to a specific type of prob-
lem is to utilize graphics processing units. GPUs are hardware components that were
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initially developed to accelerate the creation of images, for instance, to create highly
complex and increasingly photo-realistic renderings for computer games in real time.
With this purpose in mind, GPUs are highly efficient in performing large-scale matrix
multiplications. However, people quickly found other use cases for GPUs such as Deep
Learning applications. Harnessing the power of GPUs for your own research is easier
than you might think as dedicated Python modules for this purpose are available. These
modules are most commonly utilized by the Deep Learning community to build, train,
and utilize Neural Network architectures. Therefore, most of these modules mainly cater
to the needs of this community, but they are modular and flexible enough to be useful
in other contexts as well. The most common Deep Learning frameworks available for
Python are PyTorch and Tensorflow; they provide a consistent interface to perform-
ing GPU computations with PyTorch generally having a more pythonic interface than
Tensorflow. Another notable package to perform large-scale GPU (and CPU) computa-
tions is Aesara (formerly Theano), which is less focused on the Deep Learning commu-
nity. Here, we simply refer to the respective documentation for more information and
tutorials.

Finally, we would like to point out an entirely different approach to improve perfor-
mance. As we saw in Section 9.1.4, NumPy owes a large part of its computational
efficiency to the fact that it is actually built upon compiled C code and specialized
math libraries implemented in C. As a Python user, you can take advantage of the same
mechanisms that NumPy utilizes: the ctypes module enables language binding for C
functionality from within Python code. Similar language binding capabilities are also
available for the Fortran language with the £2py module. Language binding enables
you to run precompiled code in the form of a Python function. The advantages of this
approach are obvious: you generally gain from the high computational performance of
precompiled code, while at the same time benefiting from the simplicity of working
from a Python environment. For researchers utilizing legacy code available in C or For-
tran there is one more advantage: you can continue using your C or Fortran code within
Python without having to translate it to Python. Setting up language bindings is, unfor-
tunately, nontrivial, especially in the case of extensive code bases. However, it might
well be worth mastering it to improve performance, or simply to benefit from existing
legacy code. We refer to the Python documentation for details on the implementation.
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What we have learned so far should be sufficient to write code that is useful for scientific
(and other) applications. But there is so much more out there. Professional software
developers have built their own ecosystems of methods and software, which can also be
of use to researchers and programmers.

This chapter briefly outlines some more advanced concepts related to and borrowed
from professional software development. We will learn about version control, which
enables the user to keep track of changes in their code, and we will discuss how to
publish code so that it can be used by others.

Version Control

Consider the following common problem in coding: you have a piece of code that works
perfectly fine and all you want to do is to add this final feature to make it perfect. After
you are done with your changes, you run the code again to check if it is still working —
and it fails. If you changed your code in many different places, it might not be obvious
which of those changes caused the code to fail, so you have to undo your changes —
one by one. Wouldn’t it be nice if you could just restore your code to the state it was in
before you changed anything?

This is what version control does. Version control allows the user to keep track of
all the changes (including changes implemented by others) applied to their code. The
use of version control software is standard procedure in professional software devel-
opment, but not so much in research, although everybody should really use it: version
control enables you to back up your projects — programming code but also paper or
thesis manuscripts — in a dynamic way. If you find that you would like to undo some
changes that you applied a while ago, you can simply undo them and restore the state
of your project before you applied those changes. Similarly, you can change every as-
pect of your project and try out new things; if you decide to keep those changes, you
can do so, but if you decide against it, you can simply restore your project. So why
is version control uncommon in research environments? It is uncommon because it is
somewhat tedious to learn how to use version control properly and even then it means
some additional steps in your workflow that it is just too tempting to skip.
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In the following, we will briefly introduce how to use git, which is probably the most
common version control system.

git

git is an open-source distributed version control system, meaning that you can track your
project locally as well as on a remote server. The system was originally developed for
Linux (as a matter of fact, it was developed to keep track of changes in the development
of the Linux kernel) and is now available without cost for a range of operating systems.
It is perfectly suited for the coordination of large collaborative software development
projects or to provide version control for small coding projects run by a single person —
and everything in-between.

git can be run from the terminal, or using one of many different GUIs. In fact, many
serious IDEs (e.g., pycharm, vscode, and many others) come with excellent support for

git.

In the following examples, we will run git from the terminal; most GUIs will use the
same terminology as is used in the terminal for the different steps, so you should be
able to easily identify the same functionality in any GUI tool. Please note that git has
a much higher complexity than is shown here. It is an extremely flexible and versatile
tool, which unfortunately adds to the impression that its use is complex and hard to
learn. In the following examples, we will focus on the bare minimum that you need to
turn git into a useful tool for your work. For more details on how git works, have a look
at the corresponding references.

Setting up git
Before you can use git, you have to configure a few things. We do this in the following
in the terminal or console (indicated by the leading dollar sign, $), where we call it git.

For instance, you have to tell git your name and email address, as those are tracked
within your project. This is required even if you are the only person working on your
project and you only need do it once if you do it globally — i.e., for all git repositories
on your computer — by typing the following into your terminal, console or powershell:

$ git config —global user.name "<your name>"
$ git config —global user.email <your email address>

Once this is done, we can create our first git repository by initializing it with the init
command. To do so, create a new directory for your project and run':

$ git init

! git init can also be used in a directory that is not empty, but for this example we will use an empty

directory.
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This will create a hidden directory .git/, which contains all the information that git
requires for tracking files and the entire evolution of our project. The safest thing to do
is to simply ignore the existence of this hidden directory.

Tracking Changes

Suppose we have a Python script named script.py in the project directory that we
would like to track. This file, although it lives in the project directory, is not yet being
tracked, which we can see by using git’s status command:

$ git status
On branch main

No commits yet

Untracked files:

(use "git add <file>..." to include in what will be committed)
script.py
nothing added to commit but untracked files present (use "git add"
to track)

The status command tells us that there is one untracked file, which is script.py. It
also tells us that we are on branch main (we will learn about branches in a bit) and that
there are no files available to commit (again, we will learn about this in a second).

To enable the tracking of this file, we must go through a two-step process. First, we
have to add this file to the staging area, which is to tell git that we intend it to track
this file in its current state. The second step is to commit changes, which will store the
individual files’ states in the history of the project. Each commit can be seen as a time
step in the evolution or timeline of your project.

We can stage script.py using the add command:

$ git add script.py
$ git status
On branch main

No commits yet

Changes to be committed:

(use "git rm —cached <file>..." to unstage)

new file: script.py

The status command now tells us that script.py is staged and ready to be commit-
ted. If you have multiple files that you would like to track in their current state, you can
add them to the staging area with the add command. Once you are done staging, you
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can commit all your changes, which is typically done by including a very brief note to
yourself or others working on the same project to remind them of the changes that you
applied. Let’s commit our single file for now with a note that we added this file:

$ git commit —m ’added script.py’

[main (root—commit) 99a773d] added script.py
1 file changed, 1 insertion(+)

create mode 100644 script.py

$ git status

On branch main

nothing to commit, working tree clean

Only after finishing this commit, the file script.py is being tracked by git — a snapshot
of the current version of the file is added to the history of your project. Your commit
receives a unique alphanumeric identifier, in this case (99a773d), which allows you to
reference this point in the development of your project in the future. status now tells
us that there is nothing to commit and that the working tree (is) clean; the working tree
means your repository directory with all tracked and untracked files. Since there are no
untracked files in the directory, it is clean.

So what does tracking mean? Let’s assume we change the content of script.py after
we started tracking it. Any changes to the content of the file will be noticed by git:

$ git status
On branch main
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git restore <file>..." to discard changes in working
directory)

modified: script.py

no changes added to commit (use "git add" and/or "git commit —a")

The status command informs us that our changes to script. py have not been staged.
It does not matter how big those changes are, git will notice them, even if we only
changed a single character. To save changes to the file, we need to use the same two-
step process that we used before to add this file to the repository: add for staging and
commit:

$ git add script.py
$ git commit —m ’minor changes’
[main 90fcOb8] minor changes

1 file changed, 1 insertion(+)

It is necessary to stage the file again, since you are staging a new version of the file. It is
possible for you to work on several files at the same time, but then you might decide to
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track the changes on only one of them; in this case, you would stage and commit only
this one file, while restoring the other files (see below).

To get an overview of the history of all your commits, you can use the log command:

$ git log

commit 90fcOb8ef4def14c851889chb2ed4cfd517c81251b (HEAD —> main)
Author: <your name> <your email address>

Date: <date>

minor changes

commit 99a773d1344ada55df82ee®2900c769d72£f0fdf9
Author: <your name> <your email address>
Date: <date>

added script.py

Note how the commit identifier is actually much longer than the seven characters that
are presented to the user at the time of the commit. Also, now it should be clear why
we have to provide our name and email address to git: every commit — and thus every
change to the project — is unambiguously assigned to the project team member who
performed that commit.

Undoing Changes
git provides a number of strategies and tools to undo changes in your project, depending
on where you are in the development process.

O Consider the case that you modified some file but you have not yet staged it. If you
decide not to stage it but instead to return it to its original state (i.e., its state during
the most recent commit), you can simply restore it using:

$ git restore <filename>

Note that there is no way to restore the changes that you undo here.

O If you already staged the file and decide to remove it from the staging area, the
following commands will first “un-stage” the file and then undo all changes:

$ git restore —staged <filename>
$ git restore <filename>

O If you want to restore a single file from a previous commit, you can use:

$ git checkout <commit—id> <filename>
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commit n n+1 n+2 n+3

Figure 10.1 Linear development with git on a single branch one commit at a time, represented
here by commits with sequentially increasing indices.

This will overwrite your file completely; if instead you only want to restore part
of that file, you can use the -p option of the checkout command to interactively
patch the file.

O Finally, if you decide to go back to a past commit and abandon all changes (and
commits) that you applied in the meantime, you can use

$ git reset —hard <commit—id>

Note that this command will reset your entire project history to this commit and
thus irretrievable delete any changes that happened after this commit. Use this
command very carefully.

There are many other ways of undoing and restoring files; for more information and
learning materials, please refer to the references section.

Working with Branches
So far, the development process in our project directory is linear, as shown in Figure
10.1: we gradually add and modify files in order to improve our project step by step.

Of course, real-life coding projects typically follow a more complicated path: you try
out code snippets, modify elements to make them more efficient or easier to read,
and you discard many things along the way. Instead of a linear development process,
this much more resembles a tree-like structure, where you start at the root and follow
branches, most of which end along the way, typically leaving one branch that represents
the most mature state of your project.

git adopts this picture by introducing the concept of branches. Branches are develop-
ment states of your project that allow you to experiment by taking your project into a
new direction without compromising the structure of your project.

So far, in the linear development of your project, we have only used a single branch, the
main branch (this name has been provided by git and is actually displayed when invok-
ing the status command). The main branch should always be the main development
branch of your project, representing the most mature state of your project.

Let’s assume that you want to try a new idea for script.py, but you also have a list of
other important changes you know will take some time so you defer their implementa-
tion. Since you do not want to wait to try out your idea, you decide to create a separate
branch which you call experiment:

$ git branch experiment
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n n+1 n+3 n+4
{ @ main branch
O experiment branch
n+2

Figure 10.2 An example development graph using branching in git. Based on the main branch at
commit n + 1, we create the experiment branch. We apply changes to both branches and commit
the corresponding changes (commits n + 2 and n + 3). Finally, we merge the experiment branch
into the main branch (commit n + 4).

You can now switch to this new branch and start modifying your code:

$ git checkout experiment
Switched to branch ’experiment’

This process is visualized in Figure 10.2. We create the experiment branch at commit
n + 1 and modify the code on this branch as we wish. Note that the project files in both
branches are identical before applying any changes.

At some point, we feel the pressure to work on the other open issues. Since those
changes are not part of your experiment, we will implement them on the main branch.
In order to go back to the main branch, we have to stage and commit our changes to the
experiment branch (commit n + 2 in Figure 10.2) and go back to the main branch:

$ git checkout main
Switched to branch ’main’

Now it should become clear why branches are a useful tool: all our project files are in
the exact same state they were in before we even created our experiment branch (commit
n + 1). We can implement our changes on the main branch without having to interfere
with our experiment — and vice versa.

Once we are done on the main branch, we can stage and commit (n + 3) our changes
again, and switch back to the experiment branch. Similarly, none of the changes that we
applied to the main branch were applied to the files on the experiment branch. Instead,
all files are in the same state we left them in when we returned to the main branch
(commit n + 2). The files in the two branches are treated like two separate projects.

We can repeat the process and implement changes in both branches by switching be-
tween them and committing changes. But at some point, we need to decide what to do
with the experiment branch. If we are not interested in keeping the work done on this
branch, we can simply delete it:

$ git branch —d experiment
Deleted branch experiment (was 90fcOb8).
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The alternative would be to keep the work done on the experiment branch and to imple-
ment it into the main branch. This process of combining two branches is called merging.
To merge both branches, we have to switch to the main branch first and then tell git to
merge the experiment branch with the main branch:

$ git checkout main
Switched to branch ’main’
$ git merge experiment
Updating 90£fcOb8..aab72f1
Fast—forward
script.py | 2 ++
1 file changed, 2 insertions(+)

In this example, both branches were merged without any problems and the resulting
project files will contain all changes previously applied to the main and experiment
branches. To do so, git will identify new or modified code elements in both versions of
each file and apply all changes to the main branch file versions. But what happens if
the same line of code was modified on both branches in different ways? Which version
to keep and which version to scrap? git cannot make this decision — only the developer
can. In this case, you have a merge conflict:

$ git merge experiment

Auto—merging script.py

CONFLICT (content): Merge conflict in script.py

Automatic merge failed; fix conflicts and then commit the result.

The merge conflict has to be resolved manually. Open the conflicting file (in this case
script.py) and modify it. To support you, git will highlight the conflicting lines and
present both code versions so that you can simply delete or alter those lines of code
that you do not want to keep. Once you saved the conflicting files after resolving the
conflicts, you have to run:

$ git commit

As a result of all of this, any changes that you applied to the main branch and the
experiment branch are now applied to the main branch. If you like, you can now delete
the experiment branch.

This concludes our brief git introduction, which only touches the surface of what git is
actually capable of. If you find git useful, we encourage you to have a look at Section
10.3.1 and the additional reading references provided in Section 10.4.

Create Your Own Python Module

In case you wrote some useful code that you would like to use frequently in the future,
you should consider packaging your code into a module. The advantage is simple: you
can install your module on your system in a way similar to the way pip (see Section
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2.2.2) does, which means that you can import your module from anywhere in your
filesystem and you don’t have to be in the same directory in which your module code
resides. Creating your own module is remarkably simple due to tools like setuptools
that do all the heavy lifting for you.

The first requirement for your own module — let’s call it mymodule — is to provide
your code in a specific directory structure relative to some project root directory (in
this case we use the current working directory, ./, but it could be anywhere on your
system):

-/

./__init__.py

./setup.py

./mymodule/

./mymodule/__init__.py
./mymodule/mymodule.py
./mymodule/mysubmodule/
./mymodule/mysubmodule/__init__.py
./mymodule/mysubmodule/submodule.py

Note that our module mymodule contains a submodule, which we call mysubmodule.
Why do we need this specific file and directory structure?

O The file setup.py defines your module and has to be located in your project root
directory. In its simplest form, setup.py can look like this:

from setuptools import setup, find_packages

setup (name="mymodule’,
version="0.1",
packages=find_packages())

In this example, we define a module named mymodule with version number
0. 1. This information is being managed by setuptools.setup(). The func-
tion find packages() simply walks through your project directory tree and col-
lects all modules it can find and adds them to mymodule. The setup() function
has many more parameters that can (and should) be set to provide more informa-
tion on your module and to simplify its use. For instance, it is possible to define
requirements on other third-party modules that will be installed alongside your
module, if not yet present. We point to some resources describing these mecha-
nisms in Section 10.4.

O Each directory in your project directory tree should contain a file called __init__.py.
This file marks a module or submodule and is called when the corresponding
module or submodule is imported in Python; it can be used to define the module
structure, but it can also be left empty without any consequences.
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The file . /mymodule/__init__.py may have the following content:

from . import mymodule

and . /mymodule/mysubmodule/__init__.py may look like this:

from . import mysubmodule

This syntax involving dots is different from a typical import statement and can
only be used in the context of module definitions. It simply means that mymodule
uses the content of mymodule.py and mysubmodule uses the content of the file
mysubmodule.py (mind that the suffix .py is omitted in the import statement).

Once the module is defined and the files and directories are arranged in the right order,
how do we use our module? All you need to do is to go to your project root directory
and run

$ python setup.py install

This command will install the module in your Python path. Now you can use your
module from anywhere on your system like any other Python module:

import mymodule # import the entire module
from mymodule import somefunc # import a single function
from mymodule import mysubmodule # import only mysubmodule

One more additional hint: if you are still working on the code of your module, you can
use

$ python setup.py develop —user

to install it in development mode: any changes to the code will trigger a recompilation of
the code so that your module always uses its latest version. There is no need to reinstall
the module between changes.

Publish Your Code

If you find your code useful, others might too. Hence, you should consider publishing
your code. Publishing code that you used to generate results in your previous publication
increases the reproducibility of your work and might even enable some other researcher
to continue your work or apply it to a completely different field. The following sections
introduce two concepts for how to publish your code and make it accessible to others.

One important consideration that applies to both concepts is that of licensing. It is good
practice to publish your work (your code — or anything else for that matter) with proper
licensing. The reason for this is manifold: maybe you want to restrict the use of your
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code for certain purposes, or at least you may want to rule out liability, but most certainly
you want others using your work for their purposes to acknowledge your contribution.
There is a wide range of licenses available from which to pick and your choice should
rely on your own motivations and thoughts. Instead of making suggestions here, we
would like to point out a service provided by GitHub (see Section 10.4) that helps you
pick an appropriate license for your code.

GitHub

The easiest way to publish your code is to simply upload it to a public repository in the
form that works best for you. GitHub is a free service that hosts public or proprietary
repositories; it strongly relies on the git version control software.

If you already organized your project in the form of a git repository (we call this the
local repository, see Section 10.1.1), you can simply push its content to GitHub. To
do so, you must sign up with GitHub and create an empty repository (we call this the
remote repository) and link it to your local repository.

In your local repository you have to register your remote repository:

git remote add origin https://github.com/<username>/<project>test.git
git push —u origin main

The second line will upload content from your local project git repository to your remote
GitHub repository. As you work on your local repository you can and should regularly
push your code to the remote repository on GitHub.

Just like git, GitHub allows you to track and store code files, text files, webpages, data
files... pretty much anything.

If you want people to find and use your repository, you should add a README file and
a LICENSE file. The former allows you to briefly describe your code, what it does,
how it can be used, etc. For simple formatting, you can use the markdown language
(README.md; see Section 2.4.2 for a brief introduction into the markdown language)
or restructured text (README.rst). The LICENSE file is important to inform potential
users of how they are allowed to use your code. For a discussion of different license
types, we refer to resources listed in Section 10.4.

Python Package Index

In case your code is already available as a module as defined in Section 10.2, there is
a much more elegant solution: you can add your module to the Python Package Index
(PyPI). The reward is that you — and anybody else for that matter — can install mymodule
by simply invoking

$ pip install mymodule


https://doi.org/10.1017/9781009029728.011
https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781009029728.011
https://www.cambridge.org/core

278

10.4

Software Development Tools

The process of publishing your code with PyPI is not necessarily complicated but it
is extensive enough that we will only outline it here. For a detailed description of the
process, please refer to the official PyPI guidelines (see Section 10.4). In a nutshell, the
following steps need to be taken to post your module to PyPI:

1 your code has to be stored following a specific directory structure;

2 you have to create a file that contains meta information, such as the name of the
module and a short description of what it does;

3 you create a README file with a short description;

4 you create a LICENSE file that contains information on the software license under
which you provide your module;

5 you generate a distribution archive that bundles everything; and finally
6 you upload your distribution archive to PyPI.

Providing your code on PyPI is a great opportunity to not only showcase your work, but
may also be a great contribution to your research community. As a good citizen, you
should definitely consider it!
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object oriented programming, 66
OdeResult, 148
open(), 60
open-source software, 2
OptimizeResult, 125

Index

or, 29
outer join, 230, 231

package, 27
Pandas, 214
column, 222
DataFrame, 216
df, 217
index, 215, 216
inplace, 246
Series, 214
pass, 50
pd, 214
concat(), 227
DataFrame, 216, 217
merge(), 231
read_csv(), 244
read_excel (), 246
read_sql (), 246
Series, 214
argmax(), 215
argsort(), 215
cumsum(), 215
dt, 238
isna(), 232
mean(), 215
minQ), 215
notna(), 233
stdQ), 215
str, 236
values, 215
to_datetime(), 237
Pearson correlation coefficient, 144
PEP, 6
pickle, 115
dumpQ), 115
load(Q), 115
pip, 10, 275
plt (Matplotlib), 156
add_subplot(), 160
axes, 159
bar(), 173
clabel(), 178
cmap keyword, 167
colorbar(), 168
colormap, 167
contour(), 178
errorbar(), 171
figure, 159
figure size, 162
figure(), 159, 162
fill_between(), 172
get_backend(), 157
get_cmap(), 168
gridQ, 164
imshow(), 175
mplot3d(), 182
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plot(), 157,169
plot_surface(), 183
plot_wireframe(), 183
polar(), 174
savefig(Q), 159
show(), 157
subplots(), 160, 162, 180
subplots_adjust(), 180
tight_layout(Q), 180
title(), 157
xlabel(), 157
ylabel(), 157
polynomial, 107
interpolation, 107
print(Q), 57
format (), 57
probability density function,
141
probability distribution, 139

probability mass function, 143

process, 260

proprietary software, 1

.py, 26, 27

.pyc, 26

__pycache__, 26

PyCharm, 17

PyPIL 10

Python, 5
history, 6
installation, 8
interpreter, 11
Monty Python, 7
overview, 5
Package Index, 277
PyPI, 277
Python 2.x, 6
Python 3.x, 6
Software Foundation, 6
Zen, 7

Python Package Index, 10

pythonic, 7

QR decomposition, 138
quadrature, 122

radians, 95

raise, 63
range(), 45
Rangelndex, 218
raster image, 159
readlines(), 60
reference, 18
relational operator, 29
return, 50
RootResults, 130
Runge—Kutta, 149

Sackmesser, 139
scientific software, 1
SciKits, 153
SciPy, 6
scipy
constants, 121
c, 121

light_year, 121
physical_constants, 121
integrate, 122
dblquad(), 123
nquad(), 123
OdeResult, 148
quad(), 122
simps(), 124
solve_bvp(), 151
tplquad(Q), 123
interpolate, 131
CubicSpline, 133
griddata(), 133
interpl1d(), 131
linalg, 134
cho_solve(), 138
cholesky(), 138
det(), 136
eig(Q), 136
inv(), 136
1uQ, 137
lu_factor(), 137
norm(), 136
qr(Q, 138
solve(), 137
solve_banded(), 137
solve_triangular(), 137
svd(), 138
optimize, 124
curve_fit(Q), 127
least_squares(), 127
1sqg_linear(), 127
minimize(), 125
minimize_scalar(), 124
OptimizeResult, 125
root(), 129
root_scalar(), 129
RootResults, 130
sparse, 138
linalg, 138
special, 120
factorial(), 121
stats, 138
anderson(), 146
AndersonResult, 146
binom(), 143
describe(), 139
DescribeResult, 139
ks_2samp(), 146
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kstest(), 146
KstestResult, 147

multivariate_normal(), 142

norm(), 139
pearsonr(), 144
SciyPy, 120
scope, 50
seed value, 103
sequence, 32
Series (Pandas), 214
set, 42
intersection(), 42
union(), 42
setup.py, 275
develop, 276
install, 276
setuptools, 275
find_packages(), 275
setup(), 275
shape (NumPy), 79
Simpson’s rule, 124
slicing
operator (:), 34
Spyder, 16
StackOverflow, 19
string, 39
eval(), 40
replace(), 41
split(), 40
str(), 39
strip(), 40
Sturm-Liouville problem, 151
subtraction (-), 28
sum(), 36, 75
SVD decomposition, 138
lazy integration, 194
sympy
And, 210
cancel(), 198
cos(), 188
Derivative(), 193
diffQ), 193
E, 189
EqQ, 199
evalf(), 191
exp(), 188
expand(), 197
expand_trig(), 198
factor(), 197
Junction, 188
I, 189
init_printing(), 188
Integral(), 194
integrate(), 193
lambdify (), 191
lazy differentiation, 193

Index

limit(), 196
linsolve(), 200, 202
Matrix, 191
det(), 192
eigenvects(), 192
inv(Q), 192
T, 192
NQO, 191
00, 189
pi, 189
plotting
plot(Q), 207
plot3d(), 212

plot3d_parametric_line(), 211

plot_implicit(), 209
plot_parametric(), 207
Rational(), 190
roots(), 200
SO, 190
solvers
nsolve(), 204
solve(), 200, 203
solveset(), 200
subs (), 189
substitution, 189
symbolic equality, 197
symbols, 187
symbols
cancel(), 198
diff(), 193
doit(), 193
expand(), 197
factor(), 197
integrate(), 193
is_integer, 189
is_real, 189
remove0(), 196
series(), 196
subs(), 189
symbols(), 187
sympify (), 190
type, 189
SyntaxError, 62

Thonny, 16
thread, 260
threading, 260
time, 73, 250
sleep(), 260
time(Q), 250
timeit, 252
%%timeit, 253
%timeit, 252
traceback, 19, 60
trigonometric functions, 95
True, 29
try, 62
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288 Index

tuple, 38 vectorization, 79, 121
instantiation (()), 38 version control, 267, 268

type, 24 viridis, 167

type(), 24 VSCode, 17

TypeError, 62
warnings, 63

ufunc, 94 while, 46
universal function, 94 widening, 29, 78
unix time, 251 with, 60
write(), 60
value (dictionary), 41 writelines(), 60
ValueError, 62
vector, 73 ZeroDivisionError, 101

vector file, 159 zip(Q), 37
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